TMAG5273A2QDBVT [TI]

TMAG5273 3-Axis Linear Hall Effect Sensor With I2C Interface;
TMAG5273A2QDBVT
型号: TMAG5273A2QDBVT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TMAG5273 3-Axis Linear Hall Effect Sensor With I2C Interface

文件: 总59页 (文件大小:2331K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMAG5273  
SLYS045 – JUNE 2021  
TMAG5273 3-Axis Linear Hall Effect Sensor With I2C Interface  
1 Features  
3 Description  
5% (Typical) Sensitivity Drift Across Operating  
Temperature  
Integrated Temperature Compensation for Multiple  
Magnet Types  
Selectable Linear Magnetic Sensitivity Range at X,  
Y, or Z Axis:  
– TMAG5273A1: ±40 mT, ±80 mT  
– TMAG5273A2: ±133 mT, ±266 mT  
Maximum 1-MHz I2C Clock Speed  
Cyclic Redundancy Check (CRC) with I2C Read  
Maximum 20-Ksps Sensing Bandwidth per Axis  
Interrupt Pin for Conversion Trigger and Status  
Update  
Integrated Angle CORDIC calculation with Gain  
and Offset Adjustment  
1.7-V to 3.6-V Supply Voltage VCC Range  
The TMAG5273 is  
a
3-Axis (3D) linear Hall  
effect sensor designed for wide range of industrial  
and personal electronics applications. This device  
integrates 3 independent Hall sensors in X, Y,  
and Z axes. A precision analog signal-chain along  
with integrated 12-bit AD converter digitizes the  
measured analog magnetic field values. The I2C  
interface, while supporting multiple operating VCC  
ranges, ensures seamless data communications with  
low-voltage microcontrollers. The device integrated  
temperature sensor data is available for multiple  
system functions, such as thermal budget check or  
temperature compensation calculation for a given  
magnetic field.  
The TMAG5273 can be configured to enable any  
magnetic fields and temperature measurements at  
any order required for a particular application. The  
device supports user defined interrupt and conversion  
trigger functions either through a dedicated INT pin, or  
through I2C line. Threshold detection features, along  
with wake up from sleep mode, enable flexible system  
design to optimize speed versus power consumption.  
Multiple diagnostics features enhance system design  
robustness and data integrity.  
2 Applications  
Electricity Meters  
Electronic Smart Lock  
Smart Thermostat  
Joystick & Gaming Controllers  
Drone Payload Control  
Door & Window Sensor  
Magnetic Proximity Sensor  
Mobile Robot Motor Control  
E-Bike  
The device is offered in two different orderables  
for separate magnetic field ranges. Each orderable  
part can be configured further to select one of two  
magnetic field ranges that suits the magnet strength  
and component placements during system calibration.  
The high level of integration provides flexibility and  
cost effectiveness in a wide array of sensing system  
implementations.  
1.7V to 3.6V  
1.2V to 5.5V  
VCC  
INT  
The device performs consistently across a wide  
ambient temperature range of –40°C to +125°C.  
TEST  
SCL  
SDA  
Device Information(1)  
GND  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
TMAG5273  
DBV (6)  
2.9 mm × 1.6 mm  
(1) For all available packages, see the package option  
addendum at the end of the data sheet.  
Application Block Diagram  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. ADVANCE INFORMATION for preproduction products; subject to change  
without notice.  
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................4  
6.5 Electrical Characteristics ............................................5  
6.6 Temperature Sensor .................................................. 5  
6.7 Magnetic Characteristics For A1 ................................6  
6.8 Magnetic Characteristics For A2 ................................7  
6.9 Magnetic Temp Compensation Characteristics ..........7  
6.10 I2C Interface Timing ................................................. 8  
6.11 Power up & Conversion Time ...................................8  
6.12 Typical Characteristics..............................................9  
7 Detailed Description......................................................10  
7.1 Overview...................................................................10  
7.2 Functional Block Diagram.........................................10  
7.3 Feature Description...................................................10  
7.4 Programming............................................................ 19  
7.5 Register Map.............................................................27  
8 Application and Implementation..................................38  
8.1 Application Information............................................. 38  
8.2 Typical Application.................................................... 41  
8.3 What to Do and What Not to Do............................... 43  
9 Power Supply Recommendations................................43  
10 Layout...........................................................................44  
10.1 Layout Guidelines................................................... 44  
10.2 Layout Example...................................................... 44  
11 Device and Documentation Support..........................45  
11.1 Documentation Support.......................................... 45  
11.2 Receiving Notification of Documentation Updates..45  
11.3 Support Resources................................................. 45  
11.4 Trademarks............................................................. 45  
11.5 Electrostatic Discharge Caution..............................45  
11.6 Glossary..................................................................45  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 45  
12.1 Package Option Addendum....................................49  
12.2 Tape and Reel Information......................................52  
4 Revision History  
DATE  
REVISION  
NOTES  
June 2021  
*
Initial release.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
5 Pin Configuration and Functions  
SCL  
1
2
3
6
5
4
SDA  
INT  
GND  
GND (TEST)  
VCC  
Not to scale  
Figure 5-1. DBV Package 6-Pin SOT-23) Top View  
Table 5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
SCL  
NO.  
1
IO  
Ground  
Serial clock.  
GND  
2
Ground reference.  
GND (TEST)  
VCC  
3
Input  
TI Test Pin. Connect to ground in application.  
Power supply.  
4
Power supply  
Interrupt input/ output. If not used and connected to ground, set  
MASK_INTB = 1b.  
INT  
5
6
IO  
IO  
SDA  
Serial data.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMAG5273  
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
0
MAX  
UNIT  
V
VCC  
IOUT  
VOUT  
VIN  
Main supply voltage  
4
Output current, SDA, INT  
Output voltage, SDA, INT  
Input voltage, SCL, SDA, INT  
Magnetic flux density  
10  
mA  
V
–0.3  
–0.3  
7
7
V
BMAX  
TJ  
Unlimited  
150  
T
Junction temperature  
Storage temperature  
–40  
–65  
°C  
°C  
Tstg  
170  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated  
under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JS-002, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
over recommended VCC range (unless otherwise noted)  
MIN  
1.7  
0
NOM  
MAX  
3.6  
5.5  
2
UNIT  
V
VCC  
VOUT  
IOUT  
VIH  
Main supply voltage  
Output voltage, SDA, INT  
V
Output current, SDA, INT  
mA  
VCC  
VCC  
C
Input HIGH voltage, SCL, SDA, INT  
Input LOW voltage, SCL, SDA, INT  
Operating free air temperature  
0.7  
VIL  
0.3  
TA  
–40  
125  
6.4 Thermal Information  
TMAG5273  
THERMAL METRIC(1)  
DBV (SOT-23)  
6 PINS  
162  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
81.6  
50.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
30.7  
ΨJB  
49.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
 
 
 
 
 
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
over recommended VCC range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SDA, INT  
VOL  
Output LOW voltage, SDA, INT pin  
IOUT = 2mA  
0
0
0.4  
V
IOZ  
Output leakage current, SDA, INT pin Output disabled, VOZ = 5.5V  
100  
nA  
RPU =10KΩ, CL =20pF, VPU =1.65V to  
5.5V  
tFALL_INT  
INT output fall time  
6
ns  
INT Interrupt time duration during  
pulse mode  
tINT (INT)  
tINT (SCL)  
INT_MODE =001b or 010b  
INT_MODE =011b or 100b  
10  
10  
µs  
µs  
SCL Interrupt time duration  
DC POWER SECTION  
(1)  
VCCUV  
IACTIVE  
Under voltage threshold at VCC  
VCC = 2.3V to 3.6V  
1.9  
2.0  
2.3  
2.2  
V
X, Y, Z, or thermal sensor active  
conversion, LP_LN =0b  
Active mode current  
Active mode current  
mA  
X, Y, Z, or thermal sensor active  
conversion, LP_LN =1b  
IACTIVE  
2.7  
mA  
Device in trigger mode, no conversion  
started  
ISTANDBY  
ISLEEP  
Stand-by mode current  
Sleep mode current  
0.45  
5
mA  
nA  
AVERAGE POWER DURING DUTY-CYCLE MODE  
Wake-up interval 1-ms, magnetic 1-ch  
conversion, LP_LN =0b, VCC =3.3V  
ICC_DCM_1000_1  
ICC_DCM_1000_1  
ICC_DCM_1000_4  
ICC_DCM_1000_4  
Duty-cycle mode current consumption  
Duty-cycle mode current consumption  
Duty-cycle mode current consumption  
Duty-cycle mode current consumption  
153  
152  
227  
227  
µA  
µA  
µA  
µA  
Wake-up interval 1-ms, magnetic 1-ch  
conversion, LP_LN =0b, VCC =1.8V  
Wake-up interval 1-ms, 4-ch  
conversion, LP_LN =0b, VCC =3.3V  
Wake-up interval 1-ms, 4-ch  
conversion, LP_LN =0b, VCC =1.8V  
Wake-up interval 1000-ms,  
ICC_DCM_0p2_1  
Duty-cycle mode current consumption magnetic 1-ch conversion, LP_LN =0b,  
VCC =3.3V  
1.23  
0.88  
µA  
µA  
Wake-up interval 1000-ms,  
Duty-cycle mode current consumption magnetic 1-ch conversion, LP_LN =0b,  
VCC =1.8V  
ICC_DCM_0p2_1  
Wake-up interval 1000-ms, 4-ch  
Duty-cycle mode current consumption  
ICC_DCM_0p2_4  
ICC_DCM_0p2_4  
1.25  
0.9  
µA  
µA  
conversion, LP_LN =0b, VCC =3.3V  
Wake-up interval 1000-ms, 4-ch  
Duty-cycle mode current consumption  
conversion, LP_LN =0b, VCC =1.8V  
(1) The DIAG_STATUS and VCC_UV_ER bits are not valid for VCC < 2.3V  
6.6 Temperature Sensor  
over operating free-air temperature range (unless otherwise noted)  
over recommended VCC range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TSENS_RANGE  
TADC_T0  
Temperature sensing range  
–40  
170(1)  
C
Temperature result in decimal value  
(from 16-bit format) for TSENS_T0  
17508  
25  
TSENS_T0  
TADC_RES  
NRMS_T  
Reference temperature for TADC_T0  
C
LSB/C  
C
Temp sensing resolution (in 16-bit  
format)  
60.1  
0.4  
RMS (1 Sigma) temperature noise  
CONV_AVG = 000b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMAG5273  
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
over operating free-air temperature range (unless otherwise noted)  
over recommended VCC range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
NRMS_T  
RMS (1 Sigma) temperature noise  
CONV_AVG = 101b  
0.2  
C
(1) TI recommends not to exceed the specified operating free air temperature per the Recommended Operating Conditions table  
6.7 Magnetic Characteristics For A1  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
X_Y_RANGE =0b  
X_Y_RANGE =1b  
Z_RANGE =0b  
Z_RANGE =1b  
±40 mT range  
MIN  
TYP  
±40  
±80  
±40  
±80  
820  
410  
MAX UNIT  
mT  
BIN_A1_X_Y  
Linear magnetic range  
BIN_A1_X_Y  
Linear magnetic range  
mT  
BIN_A1_Z  
Linear magnetic range  
mT  
BIN_A1_Z  
Linear magnetic range  
mT  
SENS40_A1  
Sensitivity, X, Y, or Z axis  
Sensitivity, X, Y, or Z axis  
Sensitivity error, X, Y, Z axis  
Sensitivity drift from 25C, X, Y, Z axis  
Sensitivity Linearity Error, X, Y-axis  
Sensitivity Linearity Error, Z axis  
LSB/mT  
LSB/mT  
SENS80_A1  
±80 mT range  
SENSER_PC_25C_A1  
SENSER_PC_TEMP_A1  
SENSLER_XY_A1  
SENSLER_Z_A1  
SENSMS_XY_A1  
TA =25C  
±5.0% ±20.0%  
±5.0%  
TA =25C  
TA =25C  
±0.10%  
±0.10%  
Sensitivity mismatch among X-Y axes TA =25C  
±0.50%  
Sensitivity mismatch among Y-Z, or X-  
Z axes  
SENSMS_Z_A1  
TA =25C  
±1.0%  
SENSMS_DR_XY_A1  
SENSMS_DR_Z_A1  
Sensitivity mismatch drift X-Y axes  
±5%  
Sensitivity mismatch drift Y-Z, or X-Z  
axes  
±15%  
Boff_A1  
Offset  
TA =25C  
±300  
±3.0  
±1000  
µT  
Boff_TC_A1  
Offset drift  
±10.0 µT/°C  
µT  
RMS (1 Sigma) magnetic noise (X or  
Y-axis)  
LP_LN =0b, CONV_AVG =  
000, TA =25C  
NRMS_XY_00_000_A1  
NRMS_XY_01_000_A1  
NRMS_XY_00_101_A1  
NRMS_XY_01_101_A1  
NRMS_Z_00_000_A1  
NRMS_Z_01_000_A1  
NRMS_Z_00_101_A1  
NRMS_Z_01_101_A1  
AERR_Y_Z_101_A1_25  
AERR_X_Z_101_A1_25  
AERR_X_Y_101_A1_25  
±125  
±110  
±31  
±28  
±45  
±41  
±11  
RMS (1 Sigma) magnetic noise (X or  
Y-axis)  
LP_LN =1b, CONV_AVG =  
000, TA =25C  
µT  
µT  
RMS (1 Sigma) magnetic noise (X or  
Y-axis)  
LP_LN =0b, CONV_AVG =  
101, TA =25C  
RMS (1 Sigma) magnetic noise (X or  
Y-axis)  
LP_LN =1b, CONV_AVG =  
101, TA =25C  
µT  
RMS (1 Sigma) magnetic noise (Z  
axis)  
LP_LN =0b, CONV_AVG =  
000, TA =25C  
µT  
RMS (1 Sigma) magnetic noise (Z  
axis)  
LP_LN =1b, CONV_AVG =  
000, TA =25C  
µT  
RMS (1 Sigma) magnetic noise (Z  
axis)  
LP_LN =0b, CONV_AVG =  
101, TA =25C  
µT  
RMS (1 Sigma) magnetic noise (Z  
axis)  
LP_LN =1b, CONV_AVG =  
101, TA =25C  
±9  
µT  
Y-Z Angle error in full 360 degree  
rotation  
CONV_AVG = 101, TA =25C  
CONV_AVG = 101, TA =25C  
CONV_AVG = 101, TA =25C  
±1.0  
±1.0  
±0.5  
Degree  
Degree  
Degree  
X-Z Angle error in full 360 degree  
rotation  
X-Y Angle error in full 360 degree  
rotation  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
6.8 Magnetic Characteristics For A2  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
±133  
±266  
±133  
±266  
250  
MAX UNIT  
mT  
BIN_A2_X_Y  
Linear magnetic range  
X_Y_RANGE =0b  
X_Y_RANGE =1b  
Z_RANGE =0b  
Z_RANGE =1b  
±133 mT range  
±266 mT range  
TA = 25C  
BIN_A2_X_Y  
Linear magnetic range  
mT  
BIN_A2_Z  
Linear magnetic range  
mT  
BIN_A2_Z  
Linear magnetic range  
mT  
SENS133_A2  
Sensitivity, X, Y, or Z axis  
Sensitivity, X, Y, or Z axis  
Sensitivity error, X, Y, Z axis  
Sensitivity drift from 25C, X, Y, Z axis  
Sensitivity Linearity Error, X, Y-axis  
Sensitivity Linearity Error, Z axis  
LSB/mT  
LSB/mT  
SENS266_A2  
125  
SENSER_PC_25C_A2  
SENSER_PC_TEMP_A2  
SENSLER_XY_A2  
SENSLER_Z_A2  
SENSMS_XY_A2  
±5.0% ±20.0%  
±5.0%  
TA =25C  
TA =25C  
±0.10%  
±0.10%  
Sensitivity mismatch among X-Y axes TA =25C  
±0.50%  
Sensitivity mismatch among Y-Z, or X-  
Z axes  
SENSMS_Z_A2  
TA =25C  
±1.0%  
±5%  
SENSMS_DR_XY_A2  
SENSMS_DR_Z_A2  
Sensitivity mismatch drift X-Y axes  
Sensitivity mismatch drift Y-Z, or X-Z  
axes  
±15%  
Boff_A2  
Offset  
TA =25C  
±300  
±3.0  
±1000  
µT  
Boff_TC_A2  
Offset drift  
±10 µT/°C  
µT  
RMS (1 Sigma) magnetic noise (X or  
Y-axis)  
LP_LN =0b, CONV_AVG =  
000, TA =25C  
NRMS_XY_00_000_A2  
NRMS_XY_01_000_A2  
NRMS_XY_01_101_A2  
NRMS_XY_10_101_A2  
NRMS_Z_00_000_A2  
NRMS_Z_10_000_A2  
NRMS_Z_00_101_A2  
NRMS_Z_10_101_A2  
AERR_Y_Z_101_A2  
AERR_X_Z_101_A2  
AERR_X_Y_101_A2  
±150  
±145  
±37  
RMS (1 Sigma) magnetic noise (X or  
Y-axis)  
LP_LN =1b, CONV_AVG =  
000, TA =25C  
µT  
µT  
RMS (1 Sigma) magnetic noise (X or  
Y-axis)  
LP_LN =0b, CONV_AVG =  
101, TA =25C  
RMS (1 Sigma) magnetic noise (X or  
Y-axis)  
LP_LN =1b, CONV_AVG =  
101, TA =25C  
±34  
µT  
RMS (1 Sigma) magnetic noise (Z  
axis)  
LP_LN =0b, CONV_AVG =  
000, TA =25C  
±75  
µT  
RMS (1 Sigma) magnetic noise (Z  
axis)  
LP_LN =1b, CONV_AVG =  
000, TA =25C  
±71  
µT  
RMS (1 Sigma) magnetic noise (Z  
axis)  
LP_LN =0b, CONV_AVG =  
101, TA =25C  
±19  
µT  
RMS (1 Sigma) magnetic noise (Z  
axis)  
LP_LN =1b, CONV_AVG =  
101, TA =25C  
±16  
µT  
Y-Z Angle error in full 360 degree  
rotation  
CONV_AVG = 101, TA =25C  
CONV_AVG = 101, TA =25C  
CONV_AVG = 101, TA =25C  
±1.0  
±1.0  
±0.50  
Degree  
Degree  
Degree  
X-Z Angle error in full 360 degree  
rotation  
X-Y Angle error in full 360 degree  
rotation  
6.9 Magnetic Temp Compensation Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MAG_TEMPCO =00b  
MIN  
TYP  
MAX UNIT  
%/°C  
TC_00  
TC_12  
TC_20  
Temperature compensation (X, Y, Z-axes)  
Temperature compensation (X, Y, Z-axes)  
Temperature compensation (X, Y, Z-axes)  
0
0.12  
0.2  
MAG_TEMPCO =01b  
MAG_TEMPCO =11b  
%/°C  
%/°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMAG5273  
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
6.10 I2C Interface Timing  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
I2C Interface Fast Mode Plus (VCC =2.3V to 3.6V)  
LOAD = 50 pF, VCC  
=2.3V to 3.6V  
fI2C_fmp  
I2C clock (SCL) frequency  
1000 KHz  
twhigh_fmp  
twlo_wfmp  
tsu_cs_fmp  
th_cs_fmp  
ticr_fmp  
High time: SCL logic high time duration  
Low time: SCL logic low time duration  
SDA data setup time  
350  
500  
50  
ns  
ns  
ns  
ns  
SDA data hold time  
120  
SDA, SCL input rise time  
120  
55  
ns  
ns  
µs  
µs  
µs  
µs  
ticf_fmp  
SDA, SCL input fall time  
th_ST_fmp  
tsu_SR_fmp  
tsu_SP_fmp  
tw_SP_SR_fmp  
Start condition hold time  
0.1  
0.1  
0.1  
0.2  
Repeated start condition setup time  
Stop condition setup time  
Bus free time between stop and start condition  
I2C Interface Fast Mode (VCC =1.7V to 3.6V)  
LOAD = 50 pF, VCC  
=1.7V to 3.6V  
fI2C  
I2C clock (SCL) frequency  
400 KHz  
twhigh  
twlow  
tsu_cs  
th_cs  
High time: SCL logic high time duration  
Low time: SCL logic low time duration  
SDA data setup time  
600  
1300  
100  
0
ns  
ns  
ns  
ns  
SDA data hold time  
ticr  
SDA, SCL input rise time  
300  
300  
ns  
ns  
µs  
µs  
µs  
µs  
ticf  
SDA, SCL input fall time  
th_ST  
tsu_SR  
tsu_SP  
tw_SP_SR  
Start condition hold time  
0.3  
0.3  
0.3  
0.6  
Repeated start condition setup time  
Stop condition setup time  
Bus free time between stop and start condition  
6.11 Power up & Conversion Time  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
Time to go to stand-by mode after VCC supply  
tstart_power_up  
270  
50  
µs  
µs  
µs  
voltage crossing VCC_MIN  
tstart_sleep  
Time to go to stand-by mode from sleep mode(1)  
Time to go into continuous measure mode from  
stand-by mode  
tstart_measure  
80  
CONV_AVG = 000b,  
OPERATING_MODE =10b, only one  
channel enabled  
tmeasure  
Conversion time(2)  
50  
µs  
CONV_AVG = 101b,  
OPERATING_MODE =10b, only one  
channel enabled  
tmeasure  
tgo_sleep  
Conversion time(3)  
825  
20  
µs  
µs  
Time to go into sleep mode after SCL goes high  
(1) The device will recognize the I2C communication from a primary only during stand-by or continuous measure modes. While the device  
is in sleep mode, a valid secondary address will wake up the device but no acknowledge will be sent to the primary. Start up time need  
to be considered before addressing the device after wake up.  
(2) Add 25µs for each additional magnetic channel enabled for conversion with CONV_AVG = 000b. When CONV_AVG = 000b, the  
conversion time doesn't change with the T_CH_EN bit setting.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
(3) For conversion with CONV_AVG =101b, each channel data is collected 32 times. If an additional channel is enabled with CONV_AVG  
=101b, add 32×25µs = 800µs to the tmeasure to calculate the conversion time for two channels.  
6.12 Typical Characteristics  
at TA = 25°C typical (unless otherwise noted)  
Figure 6-1. Standby Mode ICC vs. Temperature  
Figure 6-2. Active Mode ICC vs. Temperature  
Figure 6-3. Sleep Mode ICC vs. Temperature  
Figure 6-4. Average ICC vs. DCM Mode Sleep Time  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMAG5273  
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The TMAG5273 IC is based on the Hall-effect technology and precision mixed signal circuitry from Texas  
Instruments. The output signals (raw X, Y, Z magnetic data and temperature data) are accessible through the I2C  
interface.  
The IC consists of the following functional and building blocks:  
• The power mode control system supports two different power rail, the VCC, containing a low-power oscillator,  
basic biasing, accurate reset, undervoltage detection, and a fast oscillator.  
• The sensing and measurement block contains the hall biasing, hall probes with multiplexers, noise filters,  
temperature sensor, and a 12-bit AD converter. The hall sensor data and temperature data are multiplexed  
through the same ADC.  
• The I2C interface, containing the register files and I/O pads. The TMAG5273 supports clock speed up to 1MHz  
at VCC range from 2.3V to 3.6V, and up to 400KHz at VCC range below 2.3V.  
7.2 Functional Block Diagram  
VCC  
Power Management & Oscillator  
SCL  
Result Registers  
Z
X
+
Gain &  
ADC  
MUX  
Filtering  
Interface  
SDA  
INT  
-
TEST  
Y
Config Registers  
Temp sensor  
Digital Core  
GND  
7.3 Feature Description  
7.3.1 Magnetic Flux Direction  
As shown in Figure 7-1, the TMAG5273 will generate positive ADC codes in response to a magnetic north pole  
in the proximity. Similarly, the TMAG5273 will generate negative ADC codes if magnetic south poles approach  
from the same directions.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
S
N
1
2
3
Figure 7-1. Direction of Sensitivity  
7.3.2 Sensor Location  
Figure 7-2 shows the location of X, Y, Z hall elements inside the TMAG5273.  
1.85-mm  
Y
X
Z
0.68-mm  
Figure 7-2. Location of X, Y, Z Hall Elements  
7.3.3 Interrupt Function  
The TMAG5273 supports flexible and configurable interrupt functions through either the INT or the SCL pin.  
Table 7-1 shows different conversion completion events where result registers and SET_COUNT bits update,  
and where they do not.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMAG5273  
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
Table 7-1. Result Register & SET_COUNT Update After Conversion Completion  
I2C Bus Busy, not Talking to  
Device  
I2C Bus Busy & Talking to  
Device  
I2C Bus not Busy  
Mode  
Description  
INT_MODE  
Result  
SET_COUNT Result  
SET_COUNT  
Update?  
Result  
SET_COUNT  
Update?  
Update?  
Update?  
Update?  
Update?  
000b  
001b  
No Interrupt  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Interrupt  
Yes  
No  
Yes  
through INT  
010b  
Interrupt  
through  
Yes  
Yes  
No  
No  
Yes  
Yes  
INTExcept  
when I2C Busy  
011b  
100b  
Interrupt  
through SCL  
Yes  
No  
Yes  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Interrupt  
through SCL  
Except when  
I2C Busy  
Note  
It is not recommended to share the same I2C bus with multiple secondary devices when using  
the SCL pin for interrupt function. The SCL interrupt may corrupt transactions with other secondary  
devices if present in the same I2C bus.  
Interrupt Through SCL  
Figure 7-3 shows an example for interrupt function through the SCL pin with the device programmed to wake  
up and measure for threshold cross at a predefined intervals. The wake-up intervals can be set through the  
SLEEPTIME bits. Once the magnetic threshold cross is detected, the device asserts a fixed width interrupt signal  
through the SCL pin, and goes back to stand-by mode.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
Stand-by Mode  
Wake-up & Sleep Mode  
Opera ng Mode  
X Ch Threshold  
X Magne c Field  
Interrupt via SCL  
Time  
Figure 7-3. Interrupt Through SCL  
Fixed Width Interrupt Through INT  
Figure 7-4 shows an example for fixed-width interrupt function through the INT pin. The device is programmed  
to be in wake-up & sleep mode to detect a magnetic threshold. The INT_STATE register bit is set 1b. Once the  
magnetic threshold cross is detected, the device asserts a fixed width interrupt signal through the INT pin, and  
goes back to stand-by mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMAG5273  
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
Stand-by Mode  
Wake-up & Sleep Mode  
Opera ng Mode  
X Ch Threshold  
X Magne c Field  
Interrupt via INT  
(Fixed Width)  
SCL Line  
Time  
Figure 7-4. Fixed Width Interrupt Through INT  
Latched Interrupt Through INT  
Figure 7-5 shows an example for latched interrupt function through the INT pin. The device is programmed to  
be in wake-up & sleep mode to detect a magnetic threshold. The INT_STATE register bit is set 0b. Once the  
magnetic threshold cross is detected, the device asserts a latched interrupt signal through the INT pin, and goes  
back to stand-by mode. The interrupt latch is cleared only after the device receives a valid address through the  
SCL line.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
Stand-by Mode  
Wake-up & Sleep Mode  
Opera ng Mode  
X Ch Threshold  
X Magne c Field  
Interrupt via INT  
(Latched)  
SCL Line  
Time  
Figure 7-5. Latched Interrupt Through INT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMAG5273  
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
7.3.4 Device I2C Address  
Table 7-2 shows the default factory programmed I2C addresses of the TMAG5273. The device needs to be  
addressed with the factory default I2C address after power up. If required, a primary can assign a new I2C  
address through the I2C_ADDRESS register bits after power up.  
Table 7-2. I2C Default Address  
Device Version  
TMAG5273A1  
TMAG5273B1  
TMAG5273C1  
TMAG5273D1  
TMAG5273A2  
TMAG5273B2  
TMAG5273C2  
TMAG5273D2  
Magnetic Range I2C Address (7 MSB Bits)  
I2C Write Address (8-Bit)  
I2C Read Address (8-Bit)  
35h  
6Ah  
44h  
F0h  
88h  
6Ah  
44h  
F0h  
88h  
6Bh  
45h  
F1h  
89h  
6Bh  
45h  
F1h  
89h  
22h  
±40 mT, ±80 mT  
78h  
44h  
35h  
22h  
±133 mT, ±266 mT  
78h  
44h  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
7.3.5 Magnetic Range Selection  
Table 7-3 shows the magnetic range selection for the TMAG5273 device. The X, Y, and Z axes range can be  
selected with the X_Y_RANGE and Z_RANGE register bits.  
Table 7-3. Magnetic Range Selection  
RANGE REGISTER SETTING  
X_Y_RANGE = 0b  
X_Y_RANGE = 1b  
Z_RANGE = 0b  
TMAG5273A1-Q1  
TMAG5273A2-Q1  
Comment  
±40 mT  
±133 mT  
X, Y Axis Field  
Z Axis Field  
±80 mT  
±266 mT  
Better SNR performance  
Better SNR performance  
±40 mT  
±133 mT  
Z_RANGE = 1b  
±80 mT  
±266 mT  
7.3.6 Update Rate Settings  
The TMAG5273 offers multiple update rates to offer design flexibility to system designers. The different update  
rates can be selected with the CONV_AVG register bits. Table 7-4 shows different update rate settings for the  
TMAG5273.  
Table 7-4. Update Rate Settings  
UPDATE RATE  
TWO AXES  
13.3 Ksps  
8.0 Ksps  
OPERATING  
MODE  
REGISTER SETTING  
Comment  
SINGLE AXIS  
20.0 Ksps  
13.3 Ksps  
8.0 Ksps  
THREE AXES  
10.0 Ksps  
5.7 Ksps  
X, Y, Z Axis  
X, Y, Z Axis  
X, Y, Z Axis  
X, Y, Z Axis  
X, Y, Z Axis  
X, Y, Z Axis  
CONV_AVG = 000b  
CONV_AVG = 001b  
CONV_AVG = 010b  
CONV_AVG = 011b  
CONV_AVG = 100b  
CONV_AVG = 101b  
Fastest update rate  
4.4 Ksps  
3.1 Ksps  
4.4 Ksps  
2.4 Ksps  
1.6 Ksps  
2.4 Ksps  
1.2 Ksps  
0.8 Ksps  
1.2 Ksps  
0.6 Ksps  
0.4 Ksps  
Best SNR case  
7.3.7 Power Saving Modes  
The TMAG5273 supports multiple operating modes for wide array of applications as explained in Figure 7-6.  
A specific operating mode is selected by setting the corresponding value in the OPERATING_MODE register  
bits. The device starts powering up after VCC supply crosses the minimum threshold as specified in the  
Recommended Operating Condition (ROC) table.  
7.3.7.1 Standby (Trigger) Mode  
The TMAG5273 goes to standby mode after first time powering up. At this mode the digital circuitry and  
oscillators are on, and the device is ready to accept commands from the primary device. Based off the  
commands the device can start a sensor data conversion, goes to power saving mode, or start data transfer  
through I2C interface. A new conversion can be triggered through I2C command or through INT pin. In this mode  
the device retains the immediate past conversion result data in the corresponding result registers. The time it  
takes for the device to go to standby mode from power up is denoted by Tstart_power_up  
.
7.3.7.2 Sleep Mode  
The TMAG5273 supports an ultra-low power sleep mode where it retains the critical user configuration settings.  
In this mode the device doesn't retain the conversion result data. A primary can wake up the device from sleep  
mode through I2C communications or the INT pin. The time it takes for the device to go to stand-by mode from  
sleep mode is denoted by Tstart_sleep  
.
7.3.7.3 Wake-up & Sleep (W&S) Mode  
In this mode the TMAG5273 can be configured to go to sleep and wake up at a certain interval, and measure  
sensor data based off the SLEEPTIME register bits setting. The device can be set to generate an interrupt  
through the INT_CONFIG_1 register. Once the conversion is complete and the interrupt condition is met, the  
TMAG5273 will exit the W&S mode and go to the stand-by mode. The last measured data will be stored in the  
corresponding result registers before the device goes to the stand-by mode. If the interrupt condition isn't met,  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMAG5273  
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
the device will continue to be in the W&S mode to wake up and measure data at the specified interval. A primary  
can wake up the TMAG5273 anytime during the W&S mode through I2C bus or INT pin. The time it takes for the  
device to go to stand by mode from W&S mode is denoted by Tstart_sleep  
.
7.3.7.4 Continuous Measure Mode  
In this mode the TMAG5273 continuously measures the sensor data per SENSOR_CONFIG &  
DEVICE_CONFIG register settings. In this mode the result registers can be accessed through the I2C lines. The  
time it takes for the device to go from stand-by mode to continuous measure mode is denoted by Tstart_measure  
.
7.3.7.5  
Device Startup: (VCC crossing MIN threshold specified in the ROC  
table)  
Sleep Mode  
Wake-up & Sleep Mode  
Tstart_power_up  
Tstart_sleep  
Tgo_sleep  
Stand-by (Trigger) Mode  
Tstart_measure  
Continuous Measure Mode  
Figure 7-6. TMAG5273 Power-Up Sequence  
Table 7-5 shows different device operational modes of the TMAG5273.  
Table 7-5. Operating Modes  
Access to  
User  
Registers  
Operating  
Mode  
Retain User  
Configuration  
Device Function  
Comment  
Continuous Continuously measuring x, y, z axis,  
Yes  
Yes  
Yes  
Yes  
Measure Mode  
or temperature data  
Device is ready to accept  
I2C commands and start active  
conversion  
Stand-by  
Mode  
Wakes up at a certain interval  
to measure the x, y, z axis, or  
temperature data  
Wake-up &  
Sleep Mode  
1, 5, 10, 15, 20, 30, 50, 100, 500, 1000, 2000, 5000,  
& 20000-ms intervals supported.  
No  
No  
Yes  
Yes  
Device retains key configuration  
settings, but doesn't retain the  
measurement data  
Sleep mode can be utilized by a primary device  
to implement other power saving intervals not  
supported by wake-up & sleep mode.  
Sleep Mode  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
7.4 Programming  
7.4.1 I2C Interface  
The TMAG5273 offers I2C interface, a two-wire interface to connect low-speed devices like microcontrollers, A/D  
and D/A converters, I/O interfaces and other similar peripherals in embedded systems.  
7.4.1.1 SCL  
SCL is the clock line. It is used to synchronize all data transfers over the I2C bus.  
7.4.1.2 SDA  
SDA is the bidirectional data line for the I2C interface.  
7.4.1.3 I2C Read/Write  
The TMAG5273 supports multiple I2C read and write frames targeting different applications. I2C_RD and  
CRC_EN bits offers multiple read frames to optimize the read time, data resolution and data integrity for a  
select application.  
7.4.1.3.1 Standard I2C Write  
Figure 7-7 shows an example of standard I2C two byte write command supported by TMAG5273. The starting  
byte contains 7-bit secondary device address and a '0' at the R/W command bit. The MSB of the second byte  
contains the conversion trigger bit. Writing '1' at this trigger bit will start a new conversion after the register  
address decoding is completed. The 7 LSB bits of the second byte contains the starting register address for  
the write command. After the two command bytes, the primary device starts to send the data to be written at  
the corresponding register address. Each successive write byte will send the data for the successive register  
address in the secondary device.  
Primary Data  
ACK from Secondary  
No ACK from Primary  
Trigger Command  
Secondary Data  
Start/ Stop from Primary  
ACK from Primary  
0
Data[Reg_Add]  
Data[Reg_Add+1]  
Data[Reg_Add+n]  
Register address  
Secondary address  
Figure 7-7. Standard I2C Write  
7.4.1.3.2 General Call Write  
Figure 7-8 shows an example of the general call I2C write command supported by the TMAG5273. This  
command is useful to configure multiple I2C devices in a I2C bus simultaneously. The starting byte contains  
8-bit '0's. The MSB of the second byte contains the conversion trigger bit. Writing '1' at this trigger bit will start a  
new conversion after the register address decoding is completed. The 7 LSB bits of the second byte contains the  
starting register address for the write command. After the two command bytes, the primary device starts to send  
the data to be written at the corresponding register address of all the secondary devices in the I2C bus. Each  
successive write byte will send the data for the successive register address in the secondary devices.  
Primary Data  
ACK from Secondary  
No ACK from Primary  
Trigger Command  
Secondary Data  
Start/ Stop from Primary  
ACK from Primary  
0
0 0 0 0 0 0 0  
Data[Reg_Add]  
Data[Reg_Add+1]  
Data[Reg_Add+N]  
Register address  
General call address  
Figure 7-8. General Call I2C Write  
7.4.1.3.3 Standard 3-Byte I2C Read  
Figure 7-9 and Figure 7-10 show examples of standard I2C three byte read command supported by the  
TMAG5273. The starting byte contains 7-bit secondary device address and the R/W command bit '0'. The  
MSB of the second byte contains the conversion trigger command bit. Writing '1' at this trigger bit will start a  
new conversion after the register address decoding is completed. The 7 LSB bits of the second byte contains  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMAG5273  
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
the starting register address for the write command. After receiving ACK signal from secondary, the primary send  
the secondary address once again with R/W command bit as '1'. The secondary starts to send the corresponding  
register data. It will send successive register data with each successive ACK from primary. If CRC is enabled,  
the secondary will send the fifth CRC byte based off the CRC calculation of immediate past 4 register bytes.  
Note  
In the standard 3-byte read command the TMAG5273 doesn't support CRC if the data length is more  
than 4 byte. Initiate successive read commands for larger data stream requiring CRC.  
Primary Data  
ACK from Secondary  
ACK from Primary  
No ACK from Primary  
Trigger Command  
Secondary Data  
Start/ Stop from Primary  
0
1
Data[Reg_Add]  
Data[Reg_Add+1]  
Data[Reg_Add+n]  
Register address  
Secondary address  
Secondary address  
Figure 7-9. Standard 3-Byte I2C Read With CRC Disabled, CRC_EN = 0b  
Primary Data  
ACK from Secondary  
Trigger Command  
No ACK from Primary  
ACK from Primary  
Start/ Stop from Primary  
Secondary Data  
0
1
Data[Reg_Add]  
Data[Reg_Add+1]  
Data[Reg_Add+2]  
Register address  
Secondary address  
Secondary address  
Data[Reg_Add+3]  
CRC  
Figure 7-10. Standard 3-Byte I2C Read With CRC Enabled, CRC_EN = 1b  
7.4.1.3.4 1-Byte I2C Read Command for 16-Bit Data  
Figure 7-11 and Figure 7-12 show examples of 1-byte I2C read command supported by the TMAG5273. Select  
I2C_RD =01b to enable this mode. The command byte contains 7-bit secondary device address and a '1' at  
the R/W bit. In this mode, per MAG_CH_EN and T_CH_EN bits setting, the device will send 16-bit data of  
the enabled channels and the CONV_STATUS register data byte. If CRC is enabled, the device will send an  
additional CRC byte based off the CRC calculation of the command byte and the data sent in the current packet.  
When multiple channels are enabled, the sent data follows the T, X, Y, and Z sequence in the successive data  
bytes.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
Primary Data  
Secondary Data  
ACK from Secondary  
ACK from Primary  
No ACK from Primary  
Start/ Stop from Primary  
1
Secondary address  
Data[Axis1_MSB]  
Data[Axis1_LSB]  
Data[CONV_STATUS]  
Data[Axis2_MSB]  
Data[Y_MSB]  
Single Axis Measurement Example,. X or Y or Z  
1
Data[Axis1_MSB]  
Data[Axis1_LSB]  
Data[Axis2_LSB]  
Data[CONV_STATUS]  
Secondary address  
Two Axes Measurement Example, XY or YZ or XZ  
1
Data[X_MSB]  
Data[X_LSB]  
Data[Y_LSB]  
Data[Z_MSB]  
Data[Z_LSB]  
Secondary address  
Data[CONV_STATUS]  
Three Axes Measurement Example, XYZ  
1
Data[T_MSB]  
Data[T_LSB]  
Data[X_MSB]  
Data[X_LSB]  
Data[Y_MSB]  
Data[Y_LSB]  
Secondary address  
Data[Z_MSB]  
Data[Z_LSB]  
Data[CONV_STATUS]  
All Sensors Measurement Example, TXYZ  
Figure 7-11. 1-Byte I2C Read Command for 16-Bit Data With CRC Disabled, CRC_EN = 0b  
Primary Data  
ACK from Secondary  
ACK from Primary  
No ACK from Primary  
Secondary Data  
Start/ Stop from Primary  
1
Data[Axis1_MSB]  
Data[Axis1_LSB]  
Data[CONV_STATUS]  
Data[Axis2_MSB]  
Data[Y_MSB]  
CRC  
Secondary address  
Single Axis Measurement Example,. X or Y or Z  
1
Data[Axis1_MSB]  
Data[Axis1_LSB]  
Data[Axis2_LSB]  
Data[CONV_STATUS]  
CRC  
Secondary address  
Two Axes Measurement Example, XY or YZ or XZ  
1
Data[X_MSB]  
Data[X_LSB]  
Data[Y_LSB]  
Data[Z_MSB]  
Data[Z_LSB]  
Secondary address  
Data[CONV_STATUS]  
CRC  
Three Axes Measurement Example, XYZ  
1
Data[T_MSB]  
Data[T_LSB]  
Data[Y_MSB]  
Data[Y_LSB]  
Data[Z_MSB]  
Data[Z_LSB]  
Secondary address  
Data[CONV_STATUS]  
CRC  
Three Axes Measurement Example, TYZ  
Figure 7-12. 1-Byte I2C Read Command for 16-Bit Data With CRC Enabled, CRC_EN = 1b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMAG5273  
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
Note  
In the 1-byte read command for 16-bit data only up to 3 channels data can be sent when CRC is  
enabled. This restriction doesn't apply if CRC is disabled.  
7.4.1.3.5 1-Byte I2C Read Command for 8-Bit Data  
Figure 7-13 and Figure 7-14 show examples of 1-byte I2C read command supported by the TMAG5273. Select  
I2C_RD =10b to enable this mode. The command byte contains 7-bit secondary device address and a '1' at  
the R/W bit. In this mode, per MAG_CH_EN and T_CH_EN bits setting, the device will send 8-bit data of  
the enabled channels and the CONV_STATUS register data byte. If CRC is enabled, the device will send an  
additional CRC byte based off the CRC calculation of the command byte and the data sent in the current packet.  
When multiple channels are enabled, the sent data follows the T, X, Y, and Z sequence in the successive data  
bytes.  
Primary Data  
ACK from Secondary  
No ACK from Primary  
Secondary Data  
Start/ Stop from Primary  
ACK from Primary  
1
Data[Axis1_MSB]  
Data[CONV_STATUS]  
Secondary address  
Single Axis Measurement Example,. X or Y or Z  
1
Data[Axis1_MSB]  
Data[Axis2_MSB]  
Data[CONV_STATUS]  
Secondary address  
Two Axes Measurement Example, XY or YZ or XZ  
1
Data[Y_MSB]  
Data[X_MSB]  
Data[Z_MSB]  
Data[CONV_STATUS]  
Secondary address  
Three Axes Measurement Example, XYZ  
1
Data[Y_MSB]  
Data[X_MSB]  
Data[Z_MSB]  
Data[CONV_STATUS]  
Data[T_MSB]  
Secondary address  
All Sensors Measurement Example, TXYZ  
Figure 7-13. 1-Byte I2C Read Command for 8-Bit Data With CRC Disabled, CRC_EN = 0b  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
Primary Data  
Secondary Data  
ACK from Secondary  
ACK from Primary  
No ACK from Primary  
Start/ Stop from Primary  
1
Data[Axis1_MSB]  
Data[CONV_STATUS]  
CRC  
Secondary address  
Single Axis Measurement Example, X or Y or Z  
1
Data[Axis1_MSB]  
Data[Axis2_MSB]  
Data[CONV_STATUS]  
CRC  
Secondary address  
Two Axes Measurement Example, XY or YZ or XZ  
1
Data[X_MSB]  
Data[Y_MSB]  
Data[Z_MSB]  
Data[CONV_STATUS]  
CRC  
Secondary address  
Three Axes Measurement Example, XYZ  
1
Data[T_MSB]  
Data[X_MSB]  
Data[Y_MSB]  
Data[Z_MSB]  
Data[CONV_STATUS]  
CRC  
Secondary address  
Three Axes & Temperature Measurement Example, TXYZ  
Figure 7-14. 1-Byte I2C Read Command for 8-Bit Data With CRC Enabled, CRC_EN = 1b  
Note  
In the 1-byte read command for 8-bit data any combinations of channels can be sent without  
restrictions.  
7.4.1.3.6 I2C Read CRC  
The TMAG5273 supports optional CRC during I2C read. The CRC can be enabled through the CRC_EN register  
bit. The CRC is performed on a data string that is determined by the I2C read type. The CRC information is sent  
as a single byte after the data bytes. The code is generated by the polynomial x8 + x2 + x + 1. Initial CRC bits are  
FFh.  
The following equations can be employed to calculate CRC:  
d = Data Input, c = Initial CRC (FFh)  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
(9)  
newcrc[0] = d[7] ^ d[6] ^ d[0] ^ c[0] ^ c[6] ^ c[7]  
newcrc[1] = d[6] ^ d[1] ^ d[0] ^ c[0] ^ c[1] ^ c[6]  
newcrc[2] = d[6] ^ d[2] ^ d[1] ^ d[0] ^ c[0] ^ c[1] ^ c[2] ^ c[6]  
newcrc[3] = d[7] ^ d[3] ^ d[2] ^ d[1] ^ c[1] ^ c[2] ^ c[3] ^ c[7]  
newcrc[4] = d[4] ^ d[3] ^ d[2] ^ c[2] ^ c[3] ^ c[4]  
newcrc[5] = d[5] ^ d[4] ^ d[3] ^ c[3] ^ c[4] ^ c[5]  
newcrc[6] = d[6] ^ d[5] ^ d[4] ^ c[4] ^ c[5] ^ c[6]  
newcrc[7] = d[7] ^ d[6] ^ d[5] ^ c[5] ^ c[6] ^ c[7]  
The following examples show calculated CRC byte based off various input data:  
I2C Data 00h : CRC = F3h  
I2C Data FFh : CRC = 00h  
I2C Data 80h : CRC = 7Ah  
I2C Data 4Ch : CRC = 10h  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMAG5273  
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
I2C Data E0h : CRC = 5Dh  
I2C Data 00000000h : CRC = D1h  
I2C Data FFFFFFFFh : CRC = 0Fh  
7.4.2 Data Definition  
7.4.2.1 Magnetic Sensor Data  
The X, Y, and Z magnetic sensor data are stored in x_MSB_RESULT and x_LSB_RESULT registers. Each  
sensor output is stored in 16-bit 2's complement format in two 8-bit registers as shown in Figure 7-15. The data  
can be retrieved as 16-bit format combining both MSB and LSB registers, or as 8-bit format through the MSB  
register.  
x_MSB_RESULT  
x_LSB_RESULT  
Figure 7-15. Magnetic Sensor Data Definition  
The measured magnetic field can be calculated using Equation 10 for 16-bit data, and using Equation 11 for 8-bit  
data.  
Ã14  
+
E=0 &E × 2E  
F &15 × 215  
:
;
2
16  
ꢀ ꢀ  
× 2 $4  
$ =  
(10)  
where  
B is magnetic field in mT.  
Di is the data bit as shown in Figure 7-15.  
BR is the magnetic range in mT for the corresponding channel.  
(11)  
7.4.2.2 Temperature Sensor Data  
The TMAG5273 will measure temperature from –40 °C to 170 °C. The temperature sensor data are stored in  
T_MSB_RESULT and T_LSB_RESULT registers. The sensor output is stored in 16-bit 2's complement format in  
two 8-bit registers as shown in Figure 7-16. The data can be retrieved as 16-bit format combining both MSB and  
LSB registers, or as 8-bit format through the MSB register.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
T_MSB_RESULT  
T_LSB_RESULT  
Figure 7-16. Temperature Sensor Data Definition  
The measured temperature in degree Celsius can be calculated using Equation 12 for 16-bit data, and using  
Equation 13 for 8-bit data.  
(12)  
where  
T is the measured temperature in degree Celsius.  
TSENS_T0 as listed in the Electrical Characteristics table.  
TADC_RES is the change in ADC code per degree Celsius.  
TADC_T0 as listed in the Electrical Characteristics table.  
TADC_T is the measured ADC code for temperature T.  
(13)  
7.4.2.3 Angle and Magnitude Data Definition  
The TMAG5273 calculates the angle from a pair of magnetic axes based off the ANGLE_EN register bits  
setting. The ANGLE_RESULT_MSB and ANGLE_RESULT_LSB registers store the angle information as shown  
in Figure 7-17. Bits D04-D12 store angle integer value from 0 to 360 degree. Bits D00-D03 store fractional angle  
value. The 3-MSB bits are always populated as b000. The angle can be calculated using Equation 14.  
(14)  
where  
A is the angle measured in degree.  
Di is the data bit as shown in Figure 7-17.  
For example: a 354.50 degree is populated as 0001 0110 0010 1000b and a 17.25 degree is populated as 000  
0001 0001 0100b.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMAG5273  
 
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
Reserved bits  
9-bit Angle integer value  
4-bit Angle fraction value  
0
0 0  
Figure 7-17. Angle Data Definition  
During the angle calculation, use Equation 15 to calculate the resultant vector magnitude.  
2
/ = /#&%%D12 + /#&%%D2  
§
(15)  
where  
MADCCh1, MADCCh2 are the ADC codes of the two magnetic channels selected for the angle calculation.  
The magnitude value is stored in the MAGNITUDE_RESULT register as shown in Magnitude Result Data  
Definition. For on-axis angular measurement the magnitude value should remain constant across the full 360°  
measurement.  
MAGNITUDE_RESULT  
Figure 7-18. Magnitude Result Data Definition  
7.4.2.4 Magnetic Sensor Offset Correction  
The TMAG5273 enables offset correction of a pair of magnetic axes as shown in Figure 7-19. The  
MAG_OFFSET_CONFIG_1 and MAG_OFFSET_CONFIG_2 registers store the offset values to be corrected  
in 2's complement data format. The selection and order of the sensors are defined in the ANGLE_EN register  
bits setting. The default value of these offset correction registers are set as zero.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
Δ
set  
0mT Reference Axis  
Figure 7-19. Magnetic Sensor Data Offset Correction  
The amount of offset for each axis can be calculated using Equation 16. As an example, with a ±40mT range,  
MAG_OFFSET_CONFIG_1 set at 10000000b, and MAG_OFFSET_CONFIG_2 set at 0001000b, the offset  
correction for the first axis is −2.5mT and second axis is 0.312mT.  
(16)  
where  
ΔOffset is the amount of offset correction to be applied in mT.  
Di is the data bit in the offset MAG_OFFSET_CONFIG_x register.  
BR is the magnetic range in mT for the corresponding channel.  
7.5 Register Map  
7.5.1 TMAG5273 Registers  
Table 7-6 lists the TMAG5273 registers. All register offset addresses not listed in Table 7-6 should be considered  
as reserved locations and the register contents should not be modified.  
User Configuration Registers  
Table 7-6. TMAG5273 Registers  
Offset  
0h  
Acronym  
Register Name  
Section  
Go  
DEVICE_CONFIG_1  
DEVICE_CONFIG_2  
SENSOR_CONFIG_1  
SENSOR_CONFIG_2  
X_THR_CONFIG  
Y_THR_CONFIG  
Z_THR_CONFIG  
Configure Device Operation Modes  
Configure Device Operation Modes  
Sensor Device Operation Modes  
Sensor Device Operation Modes  
X Threshold Configuration  
Y Threshold Configuration  
Z Threshold Configuration  
1h  
Go  
2h  
Go  
3h  
Go  
4h  
Go  
5h  
Go  
6h  
Go  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMAG5273  
 
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
Table 7-6. TMAG5273 Registers (continued)  
Offset  
7h  
Acronym  
Register Name  
Section  
T_CONFIG  
Temp Sensor Configuration  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
8h  
INT_CONFIG_1  
MAG_GAIN_CONFIG  
Configure Device Operation Modes  
Configure Device Operation Modes  
9h  
Ah  
MAG_OFFSET_CONFIG_1  
MAG_OFFSET_CONFIG_2  
I2C_ADDRESS  
Configure Device Operation Modes  
Configure Device Operation Modes  
I2C Address Register  
Bh  
Ch  
Dh  
DEVICE_ID  
ID for the device die  
Eh  
MANUFACTURER_ID_LSB  
MANUFACTURER_ID_MSB  
T_MSB_RESULT  
Manufacturer ID lower byte  
Manufacturer ID upper byte  
Conversion Result Register  
Conversion Result Register  
Conversion Result Register  
Conversion Result Register  
Conversion Result Register  
Conversion Result Register  
Conversion Result Register  
Conversion Result Register  
Conversion Status Register  
Conversion Result Register  
Conversion Result Register  
Conversion Result Register  
Device_Diag Status Register  
Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
T_LSB_RESULT  
X_MSB_RESULT  
X_LSB_RESULT  
Y_MSB_RESULT  
Y_LSB_RESULT  
Z_MSB_RESULT  
Z_LSB_RESULT  
CONV_STATUS  
ANGLE_RESULT_MSB  
ANGLE_RESULT_LSB  
MAGNITUDE_RESULT  
DEVICE_STATUS  
Complex bit access types are encoded to fit into small table cells. Table 7-7 shows the codes that are used for  
access types in this section.  
Table 7-7. TMAG5273 Access Type Codes  
Access Type  
Read Type  
R
Code  
R
Description  
Read  
Write Type  
W
W
Write  
W1CP  
W
1C  
P
Write  
1 to clear  
Requires privileged access  
Reset or Default Value  
- n  
Value after reset or the default value  
7.5.1.1 DEVICE_CONFIG_1 Register (Offset = 0h) [Reset = 0h]  
DEVICE_CONFIG_1 is shown in Table 7-8.  
Return to the Summary Table.  
Table 7-8. DEVICE_CONFIG_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CRC_EN  
R/W  
0h  
Enables I2C CRC byte to be sent  
0h = CRC disabled  
1h = CRC enabled  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
Table 7-8. DEVICE_CONFIG_1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6-5  
MAG_TEMPCO  
R/W  
0h  
Temperature coefficient of the magnet  
0h = 0% (No temperature compensation)  
1h = 0.12%/ deg C (NdBFe)  
2h = Reserved  
3h = 0.2%/deg C (Ceramic)  
4-2  
CONV_AVG  
R/W  
0h  
Enables additional sampling of the sensor data to reduce the noise  
effect (or to increase resolution)  
0h = 1x - 10.0Ksps (3-axes) or 20Ksps (1 axis)  
1h = 2x - 5.7Ksps (3-axes) or 13.3Ksps (1 axis)  
2h = 4x - 3.1Ksps (3-axes) or 8.0Ksps (1 axis)  
3h = 8x - 1.6Ksps (3-axes) or 4.4Ksps (1 axis)  
4h = 16x - 0.8Ksps (3-axes) or 2.4Ksps (1 axis)  
5h = 32x - 0.4Ksps (3-axes) or 1.2Ksps (1 axis)  
1-0  
I2C_RD  
R/W  
0h  
Defines the I2C read mode  
0h = Standard I2C 3-byte read command  
1h = 1-byte I2C read command for 16-bit sensor data and conversion  
status  
2h = 1-byte I2C read command for 8-bit sensor MSB data and  
conversion status  
3h = Reserved  
7.5.1.2 DEVICE_CONFIG_2 Register (Offset = 1h) [Reset = 0h]  
DEVICE_CONFIG_2 is shown in Table 7-9.  
Return to the Summary Table.  
Table 7-9. DEVICE_CONFIG_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
THR_HYST  
R/W  
0h  
Select thresholds for the interrupt function  
0h = Takes the 2's complement value of each x_THR_CONFIG  
register to create a magnetic threshold of the corresponding axis  
1h = Takes the 7 LSB bits of the x_THR_CONFIG register to create  
two opposite magnetic thresholds (one north, and another south) of  
equal magnitude.  
2h = Reserved  
3h = Reserved  
4h = Reserved  
5h = Reserved  
6h = Reserved  
7h = Reserved  
4
3
2
LP_LN  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Selects the modes between low active current or low-noise modes  
0h = Low active current mode  
1h = Low noise mode  
I2C_GLITCH_FILTER  
TRIGGER_MODE  
I2C glitch filter  
0h = Glitch filter on  
1h = Glitch filter off  
Selects a condition which initiates a single conversion based  
off already configured registers. A running conversion completes  
before executing a trigger. Redundant triggers are ignored.  
TRIGGER_MODE is available only during the modes explicitly  
mentioned in OPERATING_MODE.  
0h = Conversion Start at I2C Command Bits, DEFAULT  
1h = Conversion starts through trigger signal at INT pin  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMAG5273  
 
 
 
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
Table 7-9. DEVICE_CONFIG_2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1-0  
OPERATING_MODE  
R/W  
0h  
Selects Operating Mode and updates value based on operating  
mode if device transitions from Wake-up and sleep mode to Standby  
mode.  
0h = Standby Mode (starts new conversion at trigger event)  
1h = Sleep mode  
2h = Continuous mode  
3h = Wake-up and Sleep mode (duty-cycled mode)  
7.5.1.3 SENSOR_CONFIG_1 Register (Offset = 2h) [Reset = 0h]  
SENSOR_CONFIG_1 is shown in Table 7-10.  
Return to the Summary Table.  
Table 7-10. SENSOR_CONFIG_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
MAG_CH_EN  
R/W  
0h  
Enables data acquisition of the magnetic axis channel(s)  
0h = All magnetic channels of off, DEFAULT  
1h = X channel enabled  
2h = Y channel enabled  
3h = X, Y channel enabled  
4h = Z channel enabled  
5h = Z, X channel enabled  
6h = Y, Z channel enabled  
7h = X, Y, Z channel enabled  
8h = XYX channel enabled  
9h = YXY channel enabled  
Ah = YZY channel enabled  
Bh = XZX channel enabled  
Ch = Reserved  
Dh = Reserved  
Eh = Reserved  
Fh = Reserved  
3-0  
SLEEPTIME  
R/W  
0h  
Selects the time spent in low power mode between conversions  
when OPERATING_MODE =11b  
0h = 1ms  
1h = 5ms  
2h = 10ms  
3h = 15ms  
4h = 20ms  
5h = 30ms  
6h = 50ms  
7h = 100ms  
8h = 500ms  
9h = 1000ms  
Ah = 2000ms  
Bh = 5000ms  
Ch = 20000ms  
7.5.1.4 SENSOR_CONFIG_2 Register (Offset = 3h) [Reset = 0h]  
SENSOR_CONFIG_2 is shown in Table 7-11.  
Return to the Summary Table.  
Table 7-11. SENSOR_CONFIG_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R
0h  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
 
 
 
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
Table 7-11. SENSOR_CONFIG_2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
THRX_COUNT  
R/W  
0h  
Number of threshold crossings before the interrupt is assereted  
0h = 1 threshold crossing  
1h = 4 threshold crossing  
5
4
MAG_THR_DIR  
MAG_GAIN_CH  
ANGLE_EN  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Selects the direction of threshold check. This bit is ignored when  
THR_HYST > 001b  
0h = sets interrupt for field above the threshold  
1h = sets interrupt for field below the threshold  
Selects the axis for magnitude gain correction value entered in  
MAG_GAIN_CONFIG register  
0h = 1st channel is selected for gain adjustment  
1h = 2nd channel is selected for gain adjustment  
3-2  
Enables angle calculation, magnetic gain, and offset corrections  
between two selected magnetic channels  
0h = No angle calculation, magnitude gain, and offset correction  
enabled  
1h = X 1st, Y 2nd  
2h = Y 1st, Z 2nd  
3h = X 1st, Z 2nd  
1
0
X_Y_RANGE  
Z_RANGE  
R/W  
R/W  
0h  
0h  
Select the X and Y axes magnetic range from 2 different options.  
0h = ±40mT (TMAG5273A1) or ±133mT (TMAG5273A2), DEFAULT  
1h = ±80mT (TMAG5273A1) or ±266mT (TMAG5273A2)  
Select the Z axis magnetic range from 2 different options.  
0h = ±40mT (TMAG5273A1) or ±133mT (TMAG5273A2), DEFAULT  
1h = ±80mT (TMAG5273A1) or ±266mT (TMAG5273A2)  
7.5.1.5 X_THR_CONFIG Register (Offset = 4h) [Reset = 0h]  
X_THR_CONFIG is shown in Table 7-12.  
Return to the Summary Table.  
Table 7-12. X_THR_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
X_THR_CONFIG  
R/W  
0h  
8-bit, 2' complement X axis threshold code for limit  
check. The range of possible threshold entrees can be  
+/-128. The threshold value in mT is calculated for  
A1 as (40(1+X_Y_RANGE)/128)*X_THR_CONFIG, for A2 as  
(133(1+X_Y_RANGE)/128)*X_THR_CONFIG. Default 0h means no  
threshold comparison.  
7.5.1.6 Y_THR_CONFIG Register (Offset = 5h) [Reset = 0h]  
Y_THR_CONFIG is shown in Table 7-13.  
Return to the Summary Table.  
Table 7-13. Y_THR_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Y_THR_CONFIG  
R/W  
0h  
8-bit, 2' complement Y axis threshold code for limit  
check. The range of possible threshold entrees can be  
+/-128. The threshold value in mT is calculated for  
A1 as (40(1+X_Y_RANGE)/128)*X_THR_CONFIG, for A2 as  
(133(1+X_Y_RANGE)/128)*X_THR_CONFIG. Default 0h means no  
threshold comparison.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMAG5273  
 
 
 
 
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
7.5.1.7 Z_THR_CONFIG Register (Offset = 6h) [Reset = 0h]  
Z_THR_CONFIG is shown in Table 7-14.  
Return to the Summary Table.  
Table 7-14. Z_THR_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Z_THR_CONFIG  
R/W  
0h  
8-bit, 2' complement Z axis threshold code for limit check. The range  
of possible threshold entrees can be +/-128. The threshold value in  
mT is calculated for A1 as (40(1+Z_RANGE)/128)*Z_THR_CONFIG,  
for A2 as (133(1+Z_RANGE)/128)*Z_THR_CONFIG. Default 0h  
means no threshold comparison.  
7.5.1.8 T_CONFIG Register (Offset = 7h) [Reset = 0h]  
T_CONFIG is shown in Table 7-15.  
Return to the Summary Table.  
Table 7-15. T_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
T_THR_CONFIG  
R/W  
0h  
Temperature threshold code entered by user. The valid temperature  
threshold ranges are -41C to 170C with the threshold codes for -41C  
= 1Ah, and 170C = 34h. Resolution is 8 degree C/ LSB. Default 0h  
means no threshold comparison.  
0
T_CH_EN  
R/W  
0h  
Enables data acquisition of the temperature channel  
0h = Temp channel disabled  
1h = Temp channel enabled  
7.5.1.9 INT_CONFIG_1 Register (Offset = 8h) [Reset = 0h]  
INT_CONFIG_1 is shown in Table 7-16.  
Return to the Summary Table.  
Table 7-16. INT_CONFIG_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSLT_INT  
R/W  
0h  
Enable interrupt response on conversion complete.  
0h = Interrupt is not asserted when the configured set of conversions  
are complete  
1h = Interrupt is asserted when the configured set of conversions are  
complete  
6
5
THRSLD_INT  
INT_STATE  
R/W  
R/W  
0h  
0h  
Enable interrupt response on a predefined threshold cross.  
0h = Interrupt is not asserted when a threshold is crossed  
1h = Interrupt is asserted when a threshold is crossed  
INT interrupt latched or pulsed.  
0h = INT interrupt latched until clear by a primary addressing the  
device  
1h = INT interrupt pulse for 10us  
4-2  
INT_MODE  
R/W  
0h  
Interrupt mode select.  
0h = No interrupt  
1h = Interrupt through INT  
2h = Interrupt through INT except when I2C bus is busy.  
3h = Interrupt through SCL  
4h = Interrupt through SCL except when I2C bus is busy.  
5h = Reserved  
6h = Reserved  
7h = Reserved  
1
RESERVED  
R
0h  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
 
 
 
 
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
Table 7-16. INT_CONFIG_1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
MASK_INTB  
R/W  
0h  
Mask INT pin when INT connected to GND  
0h = INT pin is enabled  
1h = INT pin is disabled (for wake-up and trigger functions)  
7.5.1.10 MAG_GAIN_CONFIG Register (Offset = 9h) [Reset = 0h]  
MAG_GAIN_CONFIG is shown in Table 7-17.  
Return to the Summary Table.  
Table 7-17. MAG_GAIN_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
GAIN_VALUE  
R/W  
0h  
8-bit gain value determined by a primary to adjust a Hall axis  
gain. The particular axis is selected based off the settings of  
MAG_GAIN_CH and ANGLE_EN register bits. The binary 8-bit input  
is interpreted as a fractional value in between 0 and 1 based off  
the formula, 'user entered value in decimal/256'. Gain value of 0 is  
interpreted by the device as 1.  
7.5.1.11 MAG_OFFSET_CONFIG_1 Register (Offset = Ah) [Reset = 0h]  
MAG_OFFSET_CONFIG_1 is shown in Table 7-18.  
Return to the Summary Table.  
Table 7-18. MAG_OFFSET_CONFIG_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
OFFSET_VALUE_1ST  
R/W  
0h  
8-bit, 2s complement offset value determined by a primary to adjust  
first axis offset value. The range of possible offset valid entrees can  
be +/-128. The offset value is calculated by multiplying bit resolution  
with the entered value.  
7.5.1.12 MAG_OFFSET_CONFIG_2 Register (Offset = Bh) [Reset = 0h]  
MAG_OFFSET_CONFIG_2 is shown in Table 7-19.  
Return to the Summary Table.  
Table 7-19. MAG_OFFSET_CONFIG_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
OFFSET_VALUE_2ND  
R/W  
0h  
8-bit, 2s complement offset value determined by a primary to adjust  
second axis offset value. The range of possible offset valid entrees  
can be +/-128. The offset value is calculated by multiplying bit  
resolution with the entered value.  
7.5.1.13 I2C_ADDRESS Register (Offset = Ch) [Reset = 6Ah]  
I2C_ADDRESS is shown in Table 7-20.  
Return to the Summary Table.  
Table 7-20. I2C_ADDRESS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
I2C_ADDRESS  
R/W  
35h  
7-bit default factory I2C address is loaded from OTP during first  
power up. Change these bits to a new setting if a new I2C address is  
required (at each power cycle these bits need to be written again to  
avoid going back to default factory address).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMAG5273  
 
 
 
 
 
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
Table 7-20. I2C_ADDRESS Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
I2C_ADDRESS_UPDATE R/W  
_EN  
0h  
Enable a new user defined I2C address.  
0h = Disable update of I2C address  
1h = Enable update of I2C address with bits (7:1)  
7.5.1.14 DEVICE_ID Register (Offset = Dh) [Reset = 12h]  
DEVICE_ID is shown in Table 7-21.  
Return to the Summary Table.  
Table 7-21. DEVICE_ID Register Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
Reset  
Description  
RESERVED  
VER  
R
4h  
Reserved  
R
2h  
Device version indicator.  
0h = Reserved  
1h = TMAG5273 A1 unit  
2h = TMAG5273 A2 unit  
3h = Reserved  
7.5.1.15 MANUFACTURER_ID_LSB Register (Offset = Eh) [Reset = 49h]  
MANUFACTURER_ID_LSB is shown in Table 7-22.  
Return to the Summary Table.  
Table 7-22. MANUFACTURER_ID_LSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MANUFACTURER_ID_[7:  
0]  
R
49h  
8-bit unique manufacturer ID  
7.5.1.16 MANUFACTURER_ID_MSB Register (Offset = Fh) [Reset = 54h]  
MANUFACTURER_ID_MSB is shown in Table 7-23.  
Return to the Summary Table.  
Table 7-23. MANUFACTURER_ID_MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MANUFACTURER_ID_[15 R  
:8]  
54h  
8-bit unique manufacturer ID  
7.5.1.17 T_MSB_RESULT Register (Offset = 10h) [Reset = 0h]  
T_MSB_RESULT is shown in Table 7-24.  
Return to the Summary Table.  
Table 7-24. T_MSB_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
T_CH_RESULT [15:8]  
R
0h  
T-channel data conversion results, MSB 8 bits.  
7.5.1.18 T_LSB_RESULT Register (Offset = 11h) [Reset = 0h]  
T_LSB_RESULT is shown in Table 7-25.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
 
 
 
 
 
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
Return to the Summary Table.  
Table 7-25. T_LSB_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
T_CH_RESULT [7:0]  
R
0h  
T-channel data conversion results, LSB 8 bits.  
7.5.1.19 X_MSB_RESULT Register (Offset = 12h) [Reset = 0h]  
X_MSB_RESULT is shown in Table 7-26.  
Return to the Summary Table.  
Table 7-26. X_MSB_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
X_CH_RESULT [15:8]  
R
0h  
X-channel data conversion results, MSB 8 bits.  
7.5.1.20 X_LSB_RESULT Register (Offset = 13h) [Reset = 0h]  
X_LSB_RESULT is shown in Table 7-27.  
Return to the Summary Table.  
Table 7-27. X_LSB_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
X_CH_RESULT [7:0]  
R
0h  
X-channel data conversion results, LSB 8 bits.  
7.5.1.21 Y_MSB_RESULT Register (Offset = 14h) [Reset = 0h]  
Y_MSB_RESULT is shown in Table 7-28.  
Return to the Summary Table.  
Table 7-28. Y_MSB_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Y_CH_RESULT [15:8]  
R
0h  
Y-channel data conversion results, MSB 8 bits.  
7.5.1.22 Y_LSB_RESULT Register (Offset = 15h) [Reset = 0h]  
Y_LSB_RESULT is shown in Table 7-29.  
Return to the Summary Table.  
Table 7-29. Y_LSB_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Y_CH_RESULT [7:0]  
R
0h  
Y-channel data conversion results, LSB 8 bits.  
7.5.1.23 Z_MSB_RESULT Register (Offset = 16h) [Reset = 0h]  
Z_MSB_RESULT is shown in Table 7-30.  
Return to the Summary Table.  
Table 7-30. Z_MSB_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Z_CH_RESULT [15:8]  
R
0h  
Z-channel data conversion results, MSB 8 bits.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMAG5273  
 
 
 
 
 
 
 
 
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
7.5.1.24 Z_LSB_RESULT Register (Offset = 17h) [Reset = 0h]  
Z_LSB_RESULT is shown in Table 7-31.  
Return to the Summary Table.  
Table 7-31. Z_LSB_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Z_CH_RESULT [7:0]  
R
0h  
Z-channel data conversion results, LSB 8 bits.  
7.5.1.25 CONV_STATUS Register (Offset = 18h) [Reset = 0h]  
CONV_STATUS is shown in Table 7-32.  
Return to the Summary Table.  
Table 7-32. CONV_STATUS Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
Reset  
Description  
SET_COUNT  
POR  
R
0h  
Rolling Count of Conversion Data Sets  
R/W1CP  
0h  
Device powered up, or experienced power-on-reset. Bit is clear when  
host writes back '1'.  
0h = No POR  
1h = POR occurred  
3-2  
1
RESERVED  
R
R
0h  
0h  
Reserved  
DIAG_STATUS  
Detect any internal diagnostics fail which include VCC UV, internal  
memory CRC error, INT pin error and internal clock error. Ignore this  
bit status if VCC < 2.3V.  
0h = No diag fail  
1h = Diag fail detected  
0
RESULT_STATUS  
R
0h  
Conversion data buffer is ready to be read.  
0h = Conversion data not complete  
1h = Conversion data complete  
7.5.1.26 ANGLE_RESULT_MSB Register (Offset = 19h) [Reset = 0h]  
ANGLE_RESULT_MSB is shown in Table 7-33.  
Return to the Summary Table.  
Table 7-33. ANGLE_RESULT_MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
ANGLE_RESULT_MSB  
R
0h  
Angle measurement result in degree. The data is displayed  
from 0 to 360 degree in 13 LSB bits after combining the  
ANGLE_RESULT_MSB and _LSB bits. The 4 LSB bits allocated for  
fraction of an angle in the format (xxxx/16).  
7.5.1.27 ANGLE_RESULT_LSB Register (Offset = 1Ah) [Reset = 0h]  
ANGLE_RESULT_LSB is shown in Table 7-34.  
Return to the Summary Table.  
Table 7-34. ANGLE_RESULT_LSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
ANGLE_RESULT_LSB  
R
0h  
Angle measurement result in degree. The data is displayed  
from 0 to 360 degree in 13 LSB bits after combining the  
ANGLE_RESULT_MSB and _LSB bits. The 4 LSB bits allocated for  
fraction of an angle in the format (xxxx/16).  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
 
 
 
 
 
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
7.5.1.28 MAGNITUDE_RESULT Register (Offset = 1Bh) [Reset = 0h]  
MAGNITUDE_RESULT is shown in Table 7-35.  
Return to the Summary Table.  
Table 7-35. MAGNITUDE_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MAGNITUDE_RESULT  
R
0h  
Resultant vector magnitude (during angle measurement) result. This  
value should be constant during 360 degree measurements  
7.5.1.29 DEVICE_STATUS Register (Offset = 1Ch) [Reset = 0h]  
DEVICE_STATUS is shown in Table 7-36.  
Return to the Summary Table.  
Table 7-36. DEVICE_STATUS Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
Reset  
Description  
RESERVED  
INTB_RB  
R
0h  
Reserved  
R
0h  
0h  
Indicates the level that the device is reading back from INT pin.  
0h = INT pin driven low  
1h = INT pin status high  
3
2
1
0
OSC_ER  
R/W1CP  
Indicates if Oscillator error is detected. Bit is clear when host writes  
back '1'.  
0h = No Oscillator error detected  
1h = Oscillator error detected  
INT_ER  
R/W1CP  
R/W1CP  
R/W1CP  
0h  
0h  
0h  
Indicates if INT pin error is detected. Bit is clear when host writes  
back '1'.  
0h = No INT error detected  
1h = INT error detected  
OTP_CRC_ER  
VCC_UV_ER  
Indicates if OTP CRC error is detected. Bit is clear when host writes  
back '1'.  
0h = No OTP CRC error detected  
1h = OTP CRC error detected  
Indicates if VCC undervoltage was detected. Bit is clear when host  
writes back '1'. Ignore this bit status if VCC < 2.3V.  
0h = No VCC UV detected  
1h = VCC UV detected  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TMAG5273  
 
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Select the Sensitivity Option  
Select the highest TMAG5273 sensitivity option that can measure the required range of magnetic flux density so  
that the ADC output range is maximized.  
Larger-sized magnets and farther sensing distances can generally enable better positional accuracy than very  
small magnets at close distances, because magnetic flux density increases exponentially with the proximity to a  
magnet. TI created an online tool to help with simple magnet calculations under the DRV5055 product folder on  
ti.com.  
8.1.2 Temperature Compensation for Magnets  
The TMAG5273 temperature compensation is designed to directly compensate the average temperature drift  
of several magnets as specified in the MAG_TEMPCO register bits. The residual induction (Br) of a magnet  
typically reduces by 0.12%/°C for NdFeB, and 0.20%/°C for ferrite magnets as the temperature increases. Set  
the MAG_TEMPCO bit to default 00b if the device temperature compensation is not needed.  
8.1.3 Sensor Conversion  
Multiple conversion schemes can be adopted based off the MAG_CH_EN and CONV_AVG register bits setting.  
8.1.3.1 Continuous Conversion  
The TMAG5273 can be set in continuous conversion mode when OPERATING_MODE is set to 10b. Figure 8-1  
shows few examples of continuous conversion. The input magnetic field is processed in two steps. In the first  
step the device spins the hall sensor elements, and integrates the sampled data. In the second step the ADC  
block coverts the analog signal into digital bits and stores in the corresponding result register. While the ADC  
starts processing the first magnetic sample, the spin block can start processing another magnetic sample. In this  
mode the temperature data is taken at the beginning of each new conversion. This temperature data is used to  
compensate for the thermal drift.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
tstart_measur  
e
HALL Spin &  
Integra on  
X-Axis  
Temp  
X-Axis  
Temp  
X-Axis  
X-Axis  
ADC  
Start  
Conv me  
Start next  
Ini ate  
Time  
OPERATING_MODE = 10b, MAG_CH_EN = 0001b, CONV_AVG = 000b  
tstart_measur  
e
HALL Spin &  
Integra on  
X-Axis  
Temp  
X-Axis  
X-Axis  
X-Axis  
Temp  
X-Axis  
X-Axis  
X-Axis  
X-Axis  
ADC  
Start next  
Start  
Conv me  
Ini ate  
Time  
OPERATING_MODE = 10b, MAG_CH_EN = 0001b, CONV_AVG = 001b  
tstart_measur  
e
HALL Spin &  
Integra on  
X-Axis  
Temp  
Y-Axis  
X-Axis  
X-Axis  
Temp  
Y-Axis  
Z-Axis  
Y-Axis  
Z-Axis  
Y-Axis  
X-Axis  
Z-Axis  
Z-Axis  
ADC  
Start next  
Start  
Conversion me  
Ini ate  
Time  
OPERATING_MODE = 10b, MAG_CH_EN = 1100b, CONV_AVG = 000b  
Figure 8-1. Continuous Conversion Examples  
8.1.3.2 Trigger Conversion  
The TMAG5273 supports trigger conversion with OPERATING_MODE set to 00b. The trigger event can  
be initiated through I2C command or INT signal. Figure 8-2 shows an example of trigger conversion with  
temperature, X, Y, and Z sensors activated.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TMAG5273  
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
tstart_measur  
e
HALL Spin &  
Integra on  
X-Axis  
Y-Axis  
Z-Axis  
Temp  
X-Axis  
Y-Axis  
Z-Axis  
ADC  
Start  
Conversion me  
Trigger  
Time  
Figure 8-2. Trigger Conversion for Temperature, X, Y, & Z Sensors  
8.1.3.3 Pseudo-Simultaneous Sampling  
In absolute angle measurement, application sensor data from multiple axes are required to calculate an accurate  
angle. The magnetic field data collected at different times through the same signal chain introduces error in  
angle calculation. The TMAG5273 offers pseudo-simultaneous sampling data collection modes to eliminate this  
error. Figure 8-3 shows an example where MAG_CH_EN is set at 1011b to collect XZX data. The time stamps  
for X and Z sensor data are the same as shown in Equation 17.  
P:1 + P:2  
P< =  
2
(17)  
where  
tX1, tZ, tX2 are time stamps for X, Z, X sensor data completion as defined in Figure 8-3.  
HALL Spin &  
Integra on  
X-Axis  
Temp  
Z-Axis  
X-Axis  
Z-Axis  
X-Axis  
X-Axis  
ADC  
tX1  
tZ  
tX1  
Time  
Figure 8-3. XZX Magnetic Field Conversion  
The vertical X, Y sensors of the TMAG5273 exhibit more noise than the horizontal Z sensor. The pseudo-  
simultaneous sampling can be used to equalize the noise floor when two set of vertical sensor data are collected  
against one set of horizontal sensor data, as in examples of XZX or YZY modes.  
8.1.4 Magnetic Limit Check  
The TMAG5273 enables magnetic limit checks for single or multiple axes at the same time. Figure 8-4  
to Figure 8-7 show examples of magnetic limit cross detection events while the field going above, below,  
exiting a magnetic band, and entering a magnetic band. The device will keep generating interrupt with each  
new conversion if the magnetic fields remain in the shaded regions in the figures. The MAG_THR_DIR and  
THR_HYST register bits help select different limit cross modes.  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
X Ch Threshold  
X Ch Threshold  
0 mT  
0 mT  
X Magne c Field  
X Magne c Field  
Interrupt  
Interrupt  
Time  
Time  
Figure 8-5. Magnetic Lower Limit Cross Check  
With MAG_THR_DIR =1b, THR_HYST = 000b  
Figure 8-4. Magnetic Upper Limit Cross Check  
With MAG_THR_DIR =0b, THR_HYST = 000b  
X Ch Threshold  
X Ch Threshold  
0 mT  
0 mT  
X Magne c Field  
- X Ch Threshold  
X Magne c Field  
- X Ch Threshold  
Interrupt  
Interrupt  
Time  
Figure 8-6. Magnetic Field Going Out of Band  
Check With MAG_THR_DIR =0b, THR_HYST = 001b  
Time  
Figure 8-7. Magnetic Field Entering a Band Check  
With MAG_THR_DIR =1b, THR_HYST = 001b  
8.2 Typical Application  
Magnetic angle sensors are very popular due to contactless and reliable measurements, especially in  
applications requiring long-term measurements in rugged environments. The TMAG5273 offers an on-chip angle  
calculator providing angular measurement based off any two of the magnetic axes. The two axes of interest can  
be selected in the ANGLE_EN register bits. The device offers angle output in complete 360 degree scale. Take  
several error sources into account for angle calculation, including sensitivity error, offset error, linearity error,  
noise, mechanical vibration, temperature drift, and so forth.  
1.7V to 3.6V  
1.2V to 5.5V  
VCC  
INT  
TEST  
SCL  
SDA  
GND  
Figure 8-8. TMAG5273 Application Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TMAG5273  
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
8.2.1 Design Requirements  
Use the parameters listed in Table 8-1 for this design example  
Table 8-1. Design Parameters  
DESIGN PARAMETERS  
ON-AXIS MEASUREMENT  
OFF-AXIS MEASUREMENT  
Device  
VCC  
TMAG5273-A1  
3.3 V  
TMAG5273-A1  
3.3 V  
Cylinder: 4.7625-mm diameter, 12.7-mm  
thick, neodymium N52, Br = 1480  
Cylinder: 4.7625-mm diameter, 12.7-mm  
thick, neodymium N52, Br = 1480  
Magnet  
Select the same range for both axes based  
off the highest possible magnetic field seen  
by the sensor  
Select the same range for both axes based  
off the highest possible magnetic field seen  
by the sensor  
Magnetic Range Selection  
RPM  
<600  
<600  
Desired Accuracy  
<2° for 360° rotation  
<2° for 360° rotation  
8.2.2 Detailed Design Procedure  
For accurate angle measurement, the two axes amplitudes must be normalized by selecting the proper gain  
adjustment value in the MAG_GAIN_CONFIG register. The gain adjustment value is a fractional decimal number  
between 0 and 1. The following steps must be followed to calculate this fractional value:  
Set the device at 32x average mode and rotate the shaft full 360 degree.  
Record the two axes sensor ADC codes for the full 360 degree rotation.  
Measure the maximum peak-peak ADC code delta for each axis, Ax and Ay as shown in Figure 8-10 or  
Figure 8-11.  
#
;
): =  
#
:
If AX>AY, set the MAG_GAIN_CH register bit to 0h. Calculate the gain adjustment value for X axis:  
1
); =  
)
:
If AX<AY, set the MAG_GAIN_CH register bit to 1h. Calculate the gain adjustment value for Y axis:  
The target binary gain setting at the GAIN_VALUE register bits are calculated from the equation, GX or GY =  
GAIN_VALUEdecimal/ 1024.  
Example 1: If AX = AY = 60,000, the GAIN_VALUE register bits are set at default 0h.  
Example 2: If AX= 60,000, AY = 45,000, the GX = 45,000/60,000 =0.75.  
Example 3: If AX= 45,000, AY = 60,000, the GX = (60,000/45,000) =1.33. Since GX >1, the gain adjustment  
needs to be applied to Y axis with GY =1/GX  
8.2.2.1 Gain Adjustment for Angle Measurement  
Common measurement topology include angular position measurements in on-axis or off-axis angular  
measurements shown in Figure 8-9. Select the on-axis measurement topology whenever possible as this offers  
the best optimization of magnetic field and the device measurement ranges. The TMAG5273 offers on-chip gain  
adjustment option to account for mechanical position misalignments.  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
On-axis  
Off-axis  
S
S
N
N
Figure 8-9. On-Axis vs. Off-Axis Angle Measurements  
8.2.3 Application Curves  
Ay  
Ax = Ay  
Figure 8-11. X and Y Sensor Data for Full 360  
Degree Rotation for Off-Axis Measurement  
Figure 8-10. X and Y Sensor Data for Full 360  
Degree Rotation for On-Axis Measurement  
8.3 What to Do and What Not to Do  
The TMAG5273 updates the result registers at the end of a conversion. I2C read of the result register needs to  
be synchronized with the conversion update time to avoid reading a result data while the result register is being  
updated. For applications with tight timing budget use the INT signal to notify the primary when a conversion is  
complete.  
9 Power Supply Recommendations  
A decoupling capacitor close to the device must be used to provide local energy with minimal inductance. TI  
recommends using a ceramic capacitor with a value of at least 0.01 µF. Connect the TEST pin to ground.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TMAG5273  
 
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
10 Layout  
10.1 Layout Guidelines  
Magnetic fields pass through most nonferromagnetic materials with no significant disturbance. Embedding Hall  
effect sensors within plastic or aluminum enclosures and sensing magnets on the outside is common practice.  
Magnetic fields also easily pass through most printed-circuit boards (PCBs), which makes placing the magnet on  
the opposite side of the PCB possible.  
10.2 Layout Example  
SCL  
SDA  
GND  
INT  
GND (TEST)  
VCC  
Figure 10-1. Layout Example With TMAG5273  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, HALL-ADAPTER-EVM User's Guide (SLYU043)  
Texas Instruments, TMAG5273 Evaluation Manual user's guide (SLYU058)  
Texas Instruments, Angle Measurement With Multi-Axis Linear Hall-Effect Sensors application report  
(SBAA463)  
Texas Instruments, Absolute Angle Measurements for Rotational Motion Using Hall-Effect Sensors  
application brief (SBAA503)  
Texas Instruments, Limit Detection for Tamper and End-of-Travel Detection Using Hall-Effect Sensors  
application brief (SBOA514)  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TMAG5273  
 
 
 
 
 
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
6
5
2X 0.95  
3.05  
2.75  
1.9  
2
4
3
0.50  
6X  
0.25  
0.15  
0.00  
0.2  
C A B  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/B 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
Figure 12-1. DBV Package Outline  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TMAG5273  
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214840/B 03/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Figure 12-2. DBV Package Board Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TMAG5273  
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/B 03/2018  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Figure 12-3. DBV Package Stencil Outline  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TMAG5273  
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
12.1 Package Option Addendum  
Packaging Information  
Package  
Drawing  
Lead/Ball  
Finish(6)  
MSL Peak  
Temp(3)  
Device  
Orderable  
Status(1)  
Package Type  
Pins  
Package Qty  
Eco Plan(2)  
Op Temp (°C)  
Marking(4) (5)  
TMAG5273A1Q ACTIVE  
DBVR  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
6
Call TI  
Non-RoHS &  
Non-Green  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
TMAG5273A1Q ACTIVE  
DBVT  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Non-RoHS &  
Non-Green  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
TMAG5273A2Q ACTIVE  
DBVR  
Non-RoHS &  
Non-Green  
TMAG5273A2Q ACTIVE  
DBVT  
Non-RoHS &  
Non-Green  
TMAG5273A3Q ACTIVE  
DBVR  
Call TI  
Call TI  
Call TI  
Call TI  
TMAG5273A3Q ACTIVE  
DBVT  
TMAG5273A4Q ACTIVE  
DBVR  
TMAG5273A4Q ACTIVE  
DBVT  
TMAG5273B1Q ACTIVE  
DBVR  
Non-RoHS &  
Non-Green  
TMAG5273B1Q ACTIVE  
DBVT  
Non-RoHS &  
Non-Green  
TMAG5273B2Q ACTIVE  
DBVR  
Non-RoHS &  
Non-Green  
TMAG5273B2Q ACTIVE  
DBVT  
Non-RoHS &  
Non-Green  
TMAG5273B3Q ACTIVE  
DBVR  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
TMAG5273B3Q ACTIVE  
DBVT  
TMAG5273B4Q ACTIVE  
DBVR  
TMAG5273B4Q ACTIVE  
DBVT  
TMAG5273C1 ACTIVE  
QDBVR  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TMAG5273  
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
Package  
Drawing  
Lead/Ball  
Finish(6)  
MSL Peak  
Temp(3)  
Device  
Orderable  
Status(1)  
Package Type  
Pins  
Package Qty  
Eco Plan(2)  
Op Temp (°C)  
Marking(4) (5)  
TMAG5273C1 ACTIVE  
QDBVT  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
6
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
TMAG5273C2 ACTIVE  
QDBVR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
6
6
6
6
6
6
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
TMAG5273C2 ACTIVE  
QDBVT  
TMAG5273D1 ACTIVE  
QDBVR  
TMAG5273D1 ACTIVE  
QDBVT  
TMAG5273D2 ACTIVE  
QDBVR  
TMAG5273D2 ACTIVE  
QDBVT  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by  
weight in homogeneous material).  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the  
finish value exceeds the maximum column width.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on  
information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties.  
TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming  
materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
 
 
 
 
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TMAG5273  
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
12.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
P1 Pitch between successive cavity centers  
W
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
TMAG5273A1QDBVR  
TMAG5273A1QDBVT  
TMAG5273A2QDBVR  
TMAG5273A2QDBVT  
TMAG5273A3QDBVR  
TMAG5273A3QDBVT  
TMAG5273A4QDBVR  
TMAG5273A4QDBVT  
TMAG5273B1QDBVR  
TMAG5273B1QDBVT  
TMAG5273B2QDBVR  
TMAG5273B2QDBVT  
TMAG5273B3QDBVR  
TMAG5273B3QDBVT  
TMAG5273B4QDBVR  
TMAG5273B4QDBVT  
TMAG5273C1QDBVR  
TMAG5273C1QDBVT  
TMAG5273C2QDBVR  
TMAG5273C2QDBVT  
TMAG5273D1QDBVR  
TMAG5273D1QDBVT  
TMAG5273D2QDBVR  
TMAG5273D2QDBVT  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TMAG5273  
 
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
Package Drawing Pins  
SPQ  
3000  
250  
Length (mm) Width (mm)  
Height (mm)  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
TMAG5273A1QDBVR  
TMAG5273A1QDBVT  
TMAG5273A2QDBVR  
TMAG5273A2QDBVT  
TMAG5273A3QDBVR  
TMAG5273A3QDBVT  
TMAG5273A4QDBVR  
TMAG5273A4QDBVT  
TMAG5273B1QDBVR  
TMAG5273B1QDBVT  
TMAG5273B2QDBVR  
TMAG5273B2QDBVT  
TMAG5273B3QDBVR  
TMAG5273B3QDBVT  
TMAG5273B4QDBVR  
TMAG5273B4QDBVT  
TMAG5273C1QDBVR  
TMAG5273C1QDBVT  
TMAG5273C2QDBVR  
TMAG5273C2QDBVT  
TMAG5273D1QDBVR  
TMAG5273D1QDBVT  
TMAG5273D2QDBVR  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TMAG5273  
TMAG5273  
SLYS045 – JUNE 2021  
www.ti.com  
Device  
Package Type  
Package Drawing Pins  
DBV  
SPQ  
Length (mm) Width (mm)  
Call TI Call TI  
Height (mm)  
TMAG5273D2QDBVT  
SOT-23  
6
250  
Call TI  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TMAG5273  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jun-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTMAG5273A2QDBVR  
ACTIVE  
SOT-23  
DBV  
6
3000  
Non-RoHS &  
Non-Green  
Call TI  
Call TI  
-40 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TMAG5273A3QDBVR

TMAG5273 3-Axis Linear Hall Effect Sensor With I2C Interface
TI

TMAG5273A3QDBVT

TMAG5273 3-Axis Linear Hall Effect Sensor With I2C Interface
TI

TMAG5273A4QDBVR

TMAG5273 3-Axis Linear Hall Effect Sensor With I2C Interface
TI

TMAG5273A4QDBVT

TMAG5273 3-Axis Linear Hall Effect Sensor With I2C Interface
TI

TMAG5273B1QDBVR

TMAG5273 3-Axis Linear Hall Effect Sensor With I2C Interface
TI

TMAG5273B1QDBVT

TMAG5273 3-Axis Linear Hall Effect Sensor With I2C Interface
TI

TMAG5273B2QDBVR

TMAG5273 3-Axis Linear Hall Effect Sensor With I2C Interface
TI

TMAG5273B2QDBVT

TMAG5273 3-Axis Linear Hall Effect Sensor With I2C Interface
TI

TMAG5273B3QDBVR

TMAG5273 3-Axis Linear Hall Effect Sensor With I2C Interface
TI

TMAG5273B3QDBVT

TMAG5273 3-Axis Linear Hall Effect Sensor With I2C Interface
TI

TMAG5273B4QDBVR

TMAG5273 3-Axis Linear Hall Effect Sensor With I2C Interface
TI

TMAG5273B4QDBVT

TMAG5273 3-Axis Linear Hall Effect Sensor With I2C Interface
TI