TMAG6180-Q1 [TI]

Automotive high-precision analog AMR angle sensor with 360° angle range;
TMAG6180-Q1
型号: TMAG6180-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Automotive high-precision analog AMR angle sensor with 360° angle range

文件: 总36页 (文件大小:1829K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
TMAG6180-Q1 汽车类高精度模AMR 360° 角度传感器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
– 温度等040°C 150°C  
• 高精度高AMR 角度传感器  
TMAG6180-Q1 是一款基于异性磁阻 (AMR) 技术的高  
精度角度传感器。该器件集成信号调节放大器并提供  
与所施加平面磁场的方向相关的差分正弦和余弦模拟输  
出。该器件还在 X 轴和 Y 轴上具有两个独立的霍尔传  
感器输出可用于将传感器的角度范围扩展360°。  
– 角度误差0.1°典型值)  
– 角度误差0.6°整个温度范围内的最大值)  
< 2µs 的超低延迟支持高100krpm  
360° 角度范围  
TMAG6180-Q1 具有宽工作磁场可极大地降低角度  
精度对传感器和磁体之间气隙位置的依赖性。该器件在  
正弦和余弦输出上具有超低延迟可大大减少延迟相关  
角度误差非常适合高达 100krpm 转子位置检测等高  
速应用。  
• 在整个温度范围内无需校准  
以功能安全合规型为目标:  
– 专为功能安全应用开发  
– 在发布量产版本时将会提供有助于使系统设计符  
ISO 26262 ASIL B 标准的文档  
• 宽工作磁场范20mT - 1T  
• 温度补偿正弦和余弦差分模拟输出  
• 支持差分端或单端应用  
该器件集成了两个用于正交检测的开漏霍尔传感器输出  
Q0 Q1可将 AMR 传感器的范围从 180° 扩展到  
360°TMAG6180-Q1 支持绝对位置检测应用的单端  
或差分模式。  
• 快速启动时间< 40µs  
TMAG6180-Q1 提供广泛的诊断功能可满足严格的  
功能安全汽车和工业要求。该器件可在 -40°C 至  
+150°C 的宽环境温度范围内保持稳定一致的性能同  
时具有超小的热漂移和寿命误差。  
• 使用霍尔传感器的集成象限检测  
AMR 角度范围扩展360°  
– 可用于速度和方向  
– 开漏数字输出  
• 电源电压范围2.7V 5.5V  
封装信息  
封装尺寸标称值)  
器件型号  
封装  
2 应用  
TMAG6180-Q1  
VSSOP (8)  
3.00mm × 3.00mm  
电动助力转向  
转向角传感器  
BLDC/PMSM 转子位置检测  
电动自行车  
雨刮器模块  
传动器  
Supply Voltage  
2.7 to 5.5V  
TMAG6180  
VCC  
Q0  
Q1  
0.1µF  
伺服驱动器位置传感器  
牵引电机  
SIN_P  
µController  
SIN_N  
COS_P  
COS_N  
TMAG6180  
GND  
应用方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLYS037  
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................19  
8 Application and Implementation..................................20  
8.1 Application Information............................................. 20  
8.2 Typical Application.................................................... 21  
8.3 Power Supply Recommendations.............................27  
8.4 Layout....................................................................... 27  
9 Device and Documentation Support............................28  
9.1 接收文档更新通知..................................................... 28  
9.2 支持资源....................................................................28  
9.3 Trademarks...............................................................28  
9.4 静电放电警告............................................................ 28  
9.5 术语表....................................................................... 28  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Magnetic Characteristics.............................................5  
7 Detailed Description........................................................7  
7.1 Overview.....................................................................7  
7.2 Functional Block Diagram...........................................7  
7.3 Feature Description.....................................................8  
Information.................................................................... 28  
10.1 Package Option Addendum....................................31  
10.2 Tape and Reel Information......................................32  
4 Revision History  
DATE  
REVISION  
NOTES  
March 2023  
*
Initial release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMAG6180-Q1  
English Data Sheet: SLYS037  
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
COS_P  
GND  
1
2
3
4
8
7
6
5
SIN_P  
VCC  
SIN_N  
Q1  
COS_N  
Q0  
Not to scale  
5-1. DGK Package 8-Pin VSSOP Top View  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
NAME  
1
COS_P  
O
G
O
O
O
O
P
Differential cosine output (positive)  
Ground reference  
2
3
4
5
6
7
8
GND  
COS_N  
Q0  
Differential cosine output (negative)  
Quadrature 0 digital output (open drain)  
Quadrature 1 digital output (open drain)  
Differential sine output (negative)  
Power supply  
Q1  
SIN_N  
VCC  
SIN_P  
O
Differential sine output (positive)  
(1) I = input, O = output, I/O = input and output, G = ground, P = power  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMAG6180-Q1  
English Data Sheet: SLYS037  
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
10  
0.3  
MAX  
7
UNIT  
V
VCC  
IOUT  
VOUT  
BMAX  
TJ  
Main supply voltage  
Output current (SIN_P, SIN_N, COS_P, COS_N, Q1, Q0)  
Output voltage (SIN_P, SIN_N, COS_P, COS_N, Q1 ,Q0)  
Magnetic flux density  
10  
7
mA  
V
1
T
Junction temperature  
170  
150  
°C  
°C  
40  
65  
Tstg  
Storage temperature  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM), per AEC Q100-002(1)  
±2000  
HBM ESD classification level 2  
V(ESD) Electrostatic discharge  
V
Charged device model (CDM), per All pins  
AEC Q100-011  
CDM ESD classification level C4B  
±500  
±750  
Corner pins (1, 4, 5, and 8)  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
MAX  
UNIT  
V
VCC  
TA  
CL  
IL  
Main supply voltage  
5.5  
150  
10  
Operating free air temperature  
C
40  
0.1  
Capacitive load on SIN_P, SIN_N, COS_P, COS_N  
Current load on SIN_P, SIN_N, COS_P, COS_N  
nF  
mA  
1
1  
6.4 Thermal Information  
TMAG6180-Q1  
DGK (VSSOP)  
8 PINS  
166.8  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
57.8  
88.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
7.0  
87.1  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS037  
4
Submit Document Feedback  
Product Folder Links: TMAG6180-Q1  
 
 
 
 
 
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
AMR Output Parameters  
Single-ended output voltage peak to  
peak  
Vout  
TA = 25°C  
55  
60  
± 0.3  
± 2  
65 %VCC  
%
Amplitude asynchronism ratio (Vpk  
Cos/ Vpk Vsin)  
k
Differential offset of SIN/COS outputs  
at room  
Voffset_room  
Voffset_tc  
B = 30 mT, TA = 25°C, VCC = 3.3 V  
B = 30 mT, VCC = 3.3 V  
mV  
Temperature coefficient of differential  
offset voltage  
± 0.05  
mV/ °C  
VCM  
Common-mode output voltage  
Output referred noise (differential)  
Series output resistance  
50  
0.5  
55  
%VCC  
mVrms  
VNOISE  
Rout  
B= 30 mT, Cload = 100 pF  
Update rate of the automatic gain  
control  
tagc_update  
1
s
DC Power  
VVCC_UV  
VVCC_OV  
IACT  
Undervoltage threshold at VCC  
Overvoltage threshold at VCC  
Active mode current from VCC  
2.45  
5.9  
2.65  
6.2  
10  
V
V
6.5  
mA  
To achieve 90% of output voltages  
after VCC has reached final value  
(Cload =100 pF)  
ton_startup  
Power-on time during Startup  
38  
45  
µs  
µs  
Power-on time after SLEEPB goes  
high  
To achieve 90% of output voltages  
after SLEEPB > VIH (Cload =100 pF)  
ton_sleep  
Digital I/O  
VOL_Q  
Low level output voltage  
I =1 mA on Q0, Q1 pins  
0
0.4  
V
Hall sensor outputs  
Change in BOP or BRP to change in  
output  
tpd  
Propagation delay time per channel  
10  
µs  
6.6 Magnetic Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Angular Performance  
Angular error linearity across  
temperature on continuous calibration  
(gain / offset) (differential ended)  
B=30 mT, VCC= 5V, Magnetic field  
Rotation Speed = 1000 rpm  
deg  
0.4  
ANGERR_DYN_DE  
0.1  
0.1  
Angular error linearity across  
temperature on continuous calibration  
(gain / offset) (single ended)  
B=30 mT, VCC= 5V, Magnetic field  
Rotation Speed = 1000 rpm  
deg  
0.5  
ANGERR_DYN_SE  
Angular error linearity across  
temperature after room temp  
calibration (of offset / gain mismatch) alignment  
(single ended)  
B = 30 mT, VCC = 5V, Ideal magnet  
ANGERR_RTCAL_SE  
0.2  
0.2  
0.8  
0.7  
deg  
deg  
Angular error linearity across  
temperature after room temp  
calibration (of offset / gain mismatch) alignment  
(differential ended)  
B = 30 mT, VCC = 5V, Ideal magnet  
ANGERR_RTCAL_DE  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMAG6180-Q1  
English Data Sheet: SLYS037  
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
MAX UNIT  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
Angular error linearity across  
ANGERR_NOCAL_SE temperature with no calibration of  
gain / offset (single ended)  
B = 30 mT, VCC = 5V, Ideal magnet  
alignment  
0.6  
1
deg  
deg  
Angular error linearity across  
ANGERR_NOCAL_DE temperature with no calibration of  
gain / offset (differential ended)  
B = 30 mT, VCC = 5V, Ideal magnet  
alignment  
0.4  
0.8  
ANGLT_DRIFT  
ANGHYST  
Angle error lifetime drift  
Angle hysteresis error  
Orthogonolity Error  
B = 30 mT  
B = 30 mT  
B = 30 mT  
0.05  
0.01  
0.01  
deg  
deg  
deg  
ANGOE_ERR  
Angular RMS (1-sigma) noise in  
degrees  
ANGNOISE  
B = 30 mT, Cload = 100 pF  
0.01  
deg  
tdel_amr  
Propagation Delay time  
3-dB Bandwidth  
Cload = 100pF  
Cload = 100pF  
1.6  
µs  
BW3dB_amr  
100  
KHz  
Magnetic Field Rotation Speed =  
10000 rpm, Cload = 100pF  
Phase error  
0.15  
deg  
φerr  
Hall sensor characteristics  
BOP(X),BOP(Y)  
BRP(X),BRP(Y)  
BOP - BRP  
BSYM_OP  
Magnetic field operating point  
3
3  
6
mT  
mT  
mT  
mT  
mT  
mT  
mT  
Magnetic field release point  
Magnetic hysteresis  
Operating point symmetry  
Operating point symmetry  
Release point symmetry  
Release point symmetry  
±0.1  
0
Bop(x) Bop(y)  
Bop(x) Bop(y)  
Brp(x) Brp(y)  
Brp(x) Brp(y)  
BSYM_OP  
BSYM_RP  
±0.1  
0
BSYM_RP  
Change in BOP or BRP to change in  
output  
tPD_HALL  
Propagation delay time per channel  
10  
μs  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS037  
6
Submit Document Feedback  
Product Folder Links: TMAG6180-Q1  
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TMAG6180-Q1 is a high-precision angle sensor based on the AMR sensor technology vertically integrated  
on top of the integrated amplifiers on silicon. The differential output sine and cosine signals from the AMR sensor  
are proportional to the angle of the applied magnetic field. They are internally signal conditioned, temperature  
compensated, and driven by differential output amplifiers with the ability to drive large capacitive loads. The  
output voltages of the AMR sensor are ratiometric to the supply voltage to ensure the external ADC can use the  
supply voltage as a reference.  
TMAG6180-Q1 integrates X and Y Hall sensors to provide quadrature outputs on pins Q0 and Q1, respectively.  
The Hall effect sensors are chopper stabilized, signal conditioned, and multiplexed to provide two digital latched  
outputs. These outputs can be used to extend the angle sensing range of the AMR sensor from 180 degrees to  
360 degrees.  
The TMAG6180-Q1 contains the following functional and building blocks:  
The Power Management and Oscillators block contains internal regulators, biasing circuitry, a low-frequency,  
wake-up oscillator and a high-frequency, wake-up oscillator, overvoltage detection circuitry, and undervoltage  
detection circuitry  
The AMR sensor contains two Wheatstone bridges made of magnetic resistive sensors, each sensing one of  
the components of the applied magnetic field, the sine and the cosine components.  
The AMR sensing path contains the signal conditioning amplifiers, offset compensation, automatic gain  
control circuitry and the output drivers.  
The Quadrature Detection Path contains the X and Y Hall sensors, related biasing circuitry, signal  
conditioning, logic comparators and digital logic to drive the Q1 and Q0 outputs  
The Internal memory block supports the factory-programmed values  
The diagnostic blocks support background diagnostic checks of the internal circuitry  
7.2 Functional Block Diagram  
Power  
Management  
Diagnostics  
Clocks  
Memory  
COS_P  
COS_N  
Low pass Filter  
(optional)  
VCC  
GND  
Output  
Driver  
Analog  
Front End  
0.1µF  
(minimum)  
Low pass Filter  
(optional)  
Offset  
compensation  
Automatic Gain  
Control  
AMR Sensor  
SIN_P  
SIN_N  
Low pass Filter  
(optional)  
Output  
Driver  
Analog  
Front End  
Low pass Filter  
(optional)  
Q0  
Q1  
Driver  
Driver  
Digital  
Logic  
Amp  
MUX  
X – Hall Sensor  
Y – Hall Sensor  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMAG6180-Q1  
English Data Sheet: SLYS037  
 
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Magnetic Flux Direction  
The TMAG6180-Q1 is sensitive to the magnetic field component in X and Y directions. The X and Y fields are in-  
plane with the package. The device will generate sine and cosine outputs from the AMR based on the reference  
position (0o). See 7-1.  
By  
(Sin)  
Bin  
Φ
0o  
Bx  
(Cos)  
7-1. Direction of Sensitivity  
7.3.2 Sensors Location and Placement tolerances  
7-2 shows the location of the AMR sensor and X, Y Hall elements and their placement tolerances inside the  
TMAG6180-Q1.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS037  
8
Submit Document Feedback  
Product Folder Links: TMAG6180-Q1  
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
Top View  
1.5 mm  
AMR  
sensor  
0.93 mm  
1.5 mm  
centered  
±25 µm  
X
Y
Hall  
sensors  
Side View  
0.38 mm  
7-2. Location of AMR sensor and Hall Elements  
The center of the AMR and Hall sensors lie in the center of the package. 7-3 shows the tolerances of the die  
rotation within the package . This causes a reference angle error (Φ) of ± 3o .  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMAG6180-Q1  
English Data Sheet: SLYS037  
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
Top View  
Die  
(typical placement)  
Φ
Rotated Die  
(Placement error)  
7-3. Die rotation tolerances in the package  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS037  
10  
Submit Document Feedback  
Product Folder Links: TMAG6180-Q1  
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
7.3.3 Magnetic Response  
The AMR sensor has two components that are sensitive to the in-plane magnetic field X and Y axes parallel to  
the chip surface. 7.3.3 shows the AMR sensor with the differential sine and cosine outputs SIN_P, SIN_N,  
COS_P and COS_N. The outputs have an electrical range of 180 degrees. If the mechanical angle between the  
sensor reference and the direction of the magnetic field is θ, then the AMR outputs correspond to cosine 2θ  
and sine 2θ respectively. For every 360° rotation of the external magnetic field, the AMR outputs provide two  
periods, at 180° sensing range for each period. Hence, for a dipole magnet rotating at speed of f, the electrical  
output from the AMR sensor outputs can be at twice the frequency at 2f. Use 方程式 1 to calculate the angle of  
the magnetic field is calculated using an arctangent2 function.  
Vsin  
arctan2  
Vcos  
θ =  
(1)  
2
where  
Vsin is the differential sine output  
Vcos is the differential cosine output  
The AMR sensor is sensitive only to the direction of the magnetic field and has a wide operating magnetic field  
range. The voltage levels of the AMR outputs are independent of the absolute flux density as long as the  
magnetic flux density is above the minimum recommended operating fields.  
Voltage (V)  
VCC  
Diagnostic Band  
90% VCC  
Vsin_p (max)  
By (sin)  
90o  
Vout  
SIN_P  
COS_P  
SIN_N  
COS_N  
θ
0o  
VCM (VCC / 2  
)
Bx (cos)  
Vsin_p (min)  
10% VCC  
Diagnostic Band  
180  
Magnetic field angle (in degrees)  
90  
0
270  
360  
7-4. AMR Sensor Outputs Magnetic Response  
The two integrated Hall sensors X and Y that are sensitive to the in-plane X and Y axes similar to the AMR  
sensor. 7-4 response shows both the Hall outputs reacting to the input field by going low when the field is  
higher than operating point (BOP) and going high when the field is lower than returning point (BRP).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMAG6180-Q1  
English Data Sheet: SLYS037  
 
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
Hall sensor output (VQ)  
VQ (H)  
BHYS  
VQ (L)  
B
South  
North  
BRP  
BOP  
0 mT  
7-5. Hall Sensor Magnetic Response  
For a rotating input magnetic field, with the X and Y components of BSIN and BCOS respectively, 7-6 shows the  
response of the AMR and Hall sensors. The integrated X and Y Hall sensors provide digital outputs (Q0 and Q1,  
respectively). See the 7.2. The Hall sensors have a 360° compared to the 180° angle range of the AMR  
sensors. By utilizing the digital outputs of the Hall sensors, the angle range of the AMR sensor can be extended  
to 360°.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS037  
12  
Submit Document Feedback  
Product Folder Links: TMAG6180-Q1  
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
Input Magnetic Field  
(mT)  
BSIN  
BCOS  
BOP  
BRP  
Time(s)  
(V)  
VSIN_P – VSIN_N  
AMR outputs  
VCOS_P – VCOS_N  
Differential  
output voltage  
Time(s)  
(V)  
Y Hall output  
Q1  
Time(s)  
X Hall output  
Q0  
Time(s)  
7-6. Magnetic Response of AMR and Hall sensors  
7.3.4 Parameters Definition  
7.3.4.1 AMR Output Parameters  
The single-ended output signals SIN_P, SIN_N, COS_P and COS_N as shown in 7-4. They are ratiometric to  
the supply voltage (VCC). The common-mode voltage (VCM) of the individual signals is half of the supply voltage  
(VCC /2). For single-ended signals, VOUT is defined as the difference between the maximum and minimum output  
voltage for a rotating magnetic field. Use 方程2 to calculate VOUT_SIN_P  
.
V
= V  
V  
SIN_P min  
(2)  
OUT_SIN_P  
SIN_P max  
where  
VSIN_P (min) is the minimum output voltage across the full magnetic angle range  
VSIN_P (max) is the maximum output voltage across the full magnetic angle range  
Typically, VOUT is around 60% of the supply voltage (VCC). The diagnostic band indicates that the output signals  
are outside normal operating range and indicates a presence of fault.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMAG6180-Q1  
English Data Sheet: SLYS037  
 
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
Voltage  
VCC  
Vcos_diff(max)  
Vsin_diff(max)  
Acos_diff  
SIN_P – SIN_N  
COS_P – COS_N  
Voff_cos  
0
Voff_sin  
Asin_diff  
Vcos_diff(min)  
Vsin_diff(min)  
- VCC  
0
90  
270  
360  
180  
Magnetic field angle (in degrees)  
7-7. AMR Differential Ended Output Signals  
The differential sine and cosine output signals shown in 7-7 are generated from the corresponding sine and  
cosine single-ended outputs. Use 方程3 and 方程4 to calculate the differential voltages.  
V
V
= V  
V  
SIN_N  
(3)  
(4)  
sin_diff  
cos_diff  
SIN_P  
= V  
V  
COS_N  
COS_P  
The offset of the differential signals is the average of the maximum and minimum voltages of the sine or cosine  
signals. Use 方程5 and 方程6 to calculate the offsets for the sine and cosine signals.  
V
+ V  
2
sin_diff max  
sin_diff min  
V
V
=
=
(5)  
(6)  
offset_sin  
offset_cos  
V
+ V  
2
cos_diff max  
cos_diff min  
For single-ended signals, the offset is the common-mode voltage (VCM).  
Use 方程7 to calculate the differential offset for sine and cosine channels at any given temperature, TA.  
o
V
= V  
* 1 + V  
* T 25 C  
(7)  
offset  
offset, room  
offset_TC  
A
where  
VOffset_TCis the temperature drift coefficient of the offset  
VOffset_roomis the room temperature offset  
Use 方程8 and 方程9 to calculate the amplitudes of the differential signals.  
V
V  
sin_diff max  
sin_diff min  
A
=
(8)  
sin_diff  
2
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS037  
14  
Submit Document Feedback  
Product Folder Links: TMAG6180-Q1  
 
 
 
 
 
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
V
V  
cos_diff max  
cos_diff min  
A
=
(9)  
cos_diff  
2
Use 方程10 to calculate the amplitude for single-ended signals.  
V
V  
sin_p max  
sin_p min  
A
=
(10)  
sin_p  
2
Amplitude asynchronism refers to the amplitude mismatch error between sine and cosine channels. Use 方程式  
11 to calculate the amplitude mismatch error.  
A
cos_diff  
k = 1 −  
(11)  
A
sin_diff  
The sine and cosine output signals are typically out-of-phase by 90 degrees, but if an internal phase error occurs  
owing to sensor and other on chip circuitry non-idealities, the sine and cosine outputs from the sensor can be  
different than the ideal 90 degrees. This error is referred to as the orthogonality error. This error is defined as the  
angle error between the zero crossing of the cosine output and maximum value of the sine outputs.  
The hysteresis error ( ANGhyst) refers to the largest angle error difference between a clockwise rotation and a  
counter-clockwise rotation.  
For the AMR sensor, the orthogonality error and the hysteresis errors are negligible.  
7.3.4.2 Transient Parameters  
Propagation delay (tdel_amr) is defined as the time taken for signal to propagate from magnetic input change to  
the sine and cosine AMR outputs. The bandwidth limitation of the internal signal conditioning amplifiers causes a  
phase shift on the applied magnetic field. The propagation delay increases based on the speed of the rotating  
field and it is specified at the maximum speed of the recommended magnetic field. 7-8shows an input rotating  
magnetic field and the response of the AMR outputs. The propagation delay leads in the signal path leads to a  
phase error.  
Angle of input  
magnetic field (in deg)  
tdel_amr  
360o  
φerr  
Input magnetic angle  
Measured magnetic angle  
0o  
Time(s)  
(V)  
SIN_P – SIN_N (ideal)  
COS_P – COS_N (ideal)  
SIN_P – SIN_N (measured)  
COS_P – COS_N (measured)  
AMR outputs  
Differential  
output voltage  
Time(s)  
7-8. AMR Output Propagation Delay and Phase Error  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMAG6180-Q1  
English Data Sheet: SLYS037  
 
 
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
The phase error (φerr) refers to the angle error between the input magnetic field and output of the sensor. This  
error increases with the speed of the rotating magnetic field and the propagation delay of the AMR sensor.  
Typically this error can be compensated to the first order if the speed of the rotating magnetic field is known.  
7.3.4.2.1 Power-On Time  
The power-on time during startup (Ton_startup) is defined as the time it takes for the AMR outputs to reach to 90%  
of their final value (under a constant magnetic field) after the VCC reaches VCC(min). 7-9 shows the power-on  
time of the device during a VCC ramp.  
VCC  
VCC (MIN)  
TON_STARTUP  
time  
SIN, COS outputs  
90% VOUT_final  
Invalid  
time  
7-9. Power-On Time During Startup  
7.3.4.3 Angle Accuracy Parameters  
The overall angle error represents the relative angular error. 7.3.4.3 shows the deviation from the reference  
line after zero angle definition..  
180o  
Ideal output  
Measured Angle  
(in degrees)  
ANGERR  
Measured data  
0
180o  
Magnetic Angle (in degrees)  
7-10. Angle Error  
The uncalibrated angular error (ANGERR_NOCAL_DE) is defined as the maximum deviation from an ideal angle  
without any offset and amplitude mismatch calibration for the VSIN and VCOS differential signals. For single-  
ended signals, the uncalibrated angular error is denoted by ANGERR_NOCAL_SE  
.
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS037  
16  
Submit Document Feedback  
Product Folder Links: TMAG6180-Q1  
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
The single point calibration angular error (ANGERR_RTCAL_DE) is defined as the maximum deviation from an ideal  
angle after the offset calibration is applied to the VSIN and VCOS differential signals at room temperature  
(25°C). For single-ended signals, the uncalibrated angular error is denoted by ANGERR_RTCAL_SE  
.
The dynamic angular error (ANGERR_DYN) is defined as the maximum deviation from an ideal angle with the  
continuous offset and gain calibration applied to the VSIN and VCOS differential signals. The error is measured  
at 1 krpm and includes the phase error owing to the propagation delay of the AMR outputs.  
7.3.4.4 Hall Sensor Parameters  
The Hall sensors X and Y have factory-calibrated operating (BOP) and release points (BRP). The operating and  
release points shown in 7-4 give the magnetic hysteresis for each Hall sensor.  
Use 方程12 and 方程13 to calculate the symmetry point for each axis.  
B
= B  
+ B  
RP X  
(12)  
(13)  
SYM X  
OP X  
where  
BOP (X) and BOP (X) represent the operating and release points for X Hall sensor  
B
= B  
+ B  
OP Y RP Y  
SYM Y  
where  
BOP (Y) , BOP (Y) represent the operating and release points for Y Hall sensor  
Use 方程14 to calculate the operating point symmetry.  
B
= B  
B  
OP Y  
(14)  
(15)  
SYM_OP  
OP X  
Use 方程15 to calculate the release point symmetry.  
B
= B  
B  
SYM_RP  
RP X RP Y  
7.3.5 Automatic Gain Control (AGC)  
To reduce the drift of the AMR sensor outputs across temperature, the TMAG6180-Q1 features an automatic  
gain control circuitry where the device changes the gain of the output drivers to keep the final output within an  
appropriate voltage range on SIN_P, SIN_N, COS_P and COS_N. The AGC block uses the square root of the  
sum of the squared amplitudes of the two channels to sense amplitude of output signals and set gain selection.  
This means that the AGC block will set the gain for sine and cosine channels such that the peak-to-peak  
amplitude of single-ended voltages, VOUT is within the range listed in Specifications. The AGC block changes the  
gain of both the sine and cosine channels simultaneously.  
If the outputs are out of the normal operating range, the AGC block changes the gain of the sine and cosine  
channels by a step size of ±1% VCC at an interval of tagc_update , typically around 1 second, as defined in  
Specifications. 7-11 shows the differential AMR outputs for a continuously rotating input field. The shaded  
area represents the ' No AGC Control ' band that represents ±5% of VCC and it is centered at 60% of VCC. Notice  
that the AGC loop reduces the gain of the sine and cosine channels and updates the amplitude of the sine and  
cosine signals when drift outside of the shaded region at a step size of 1% VCC. If the outputs remain within the  
shaded region, then no action is taken by the AGC control loop.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMAG6180-Q1  
English Data Sheet: SLYS037  
 
 
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
Angle of input  
magnetic field (in deg)  
360o  
0o  
Time (s)  
AMR output Voltage (V)  
tagc_update  
± 5% Vcc  
V = 1% Vcc  
60% Vcc  
No AGC control  
Time (s)  
0
No AGC control  
-60% Vcc  
± 5% Vcc  
SIN_P – SIN_N  
COS_P – COS_N  
7-11. Timing Diagram Showing the Operation of Automatic Gain Control  
7.3.6 Safety and Diagnostics  
The TMAG6180-Q1 supports several device and system level diagnostics features to detect, monitor, and report  
failures during the device operation.  
In the event of a failure, the TMAG6180-Q1 is placed in a FAULT state, where the outputs from the AMR sensors  
are placed in a high-impedance state. As shown in Application and Implementation section, users can added  
pullup or pulldown resistors on SIN_P, SIN_N, COS_P, COS_N pins at the termination site (that is the  
microcontroller). The resistors are generally pulled up to supply voltage or pulled down to ground such that the  
ADC code on MCU is out of expected range. This will signal fault to the microcontroller.  
In the fault state, the digital outputs Q0 and Q1 are not driven internally by the device.  
The TMAG6180-Q1 performs the following device and system level checks:  
7.3.6.1 Device Level Checks  
AMR signal path checks  
AMR sensor bias check  
AMR output signals common-mode check  
Automatic gain control loop check  
Hall sensor signal path checks  
Hall sensor bias and resistance check  
Hall sensor comparator check  
Power management and supporting circuitry checks  
Internal LDO undervoltage check  
Internal clocks integrity check  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS037  
18  
Submit Document Feedback  
Product Folder Links: TMAG6180-Q1  
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
Internal memory integrity check (or a cyclic redundancy checkCRC)  
7.3.6.2 System Level Checks  
VCC undervoltage and overvoltage check  
Pin level opens and short checks  
7.4 Device Functional Modes  
7.4.1 Operating Modes  
The TMAG6180-Q1 has primarily one mode of operation when all the conditions in the Recommended Operating  
Conditions are met. When the part detects an internal fault, the device switches into a fault mode (safe state). 图  
7-12 shows the state transition for TMAG6180.  
VCC > VCC(min)  
Fault goes away  
Active mode  
Safe State  
Fault detected  
7-12. TMAG6180-Q1State Transition Diagram  
7.4.1.1 Active Mode  
The device starts powering up after the VCC supply crosses the minimum threshold as specified in the  
Recommended Operating Conditions section, the TMAG6180-Q1 enters the active mode, in which the SIN_P,  
SIN_N, COS_P and COS_N outputs actively provide the angle of the applied magnetic field. The average  
current consumption during the active conversion is IACT  
.
7.4.1.2 Fault Mode  
The TMAG6180-Q1 supports extensive fault diagnostics as detailed in the Diagnostics section. When a fault is  
detected, the part enters the fault mode. In this mode, the AMR outputs and the Q0 and Q1 Hall outputs are  
placed in a high-impedance state.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMAG6180-Q1  
English Data Sheet: SLYS037  
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Power Supply as the Reference for External ADC  
The AMR output signals of the TMAG6180-Q1 are ratiometric to the supply voltage, VCC. This enables the  
external ADC to use the TMAG6180-Q1 supply voltage as a reference and eliminate the errors that might arise if  
a separate reference voltage is used. This also enables to optimize the external ADC input range. TI therefore  
recommends to use the supply voltage (VCC) as the reference for the external ADCs. To ensure the noise on the  
power supply is minimized, TI recommends using a 0.1-µF bypass capacitor.  
8.1.2 AMR Output Dependence on Airgap Distance  
The AMR sensor is only sensitive to the direction of the applied magnetic field along the X-Y plane parallel to the  
chip surface. The applied magnetic field from a rotating magnet might vary based on the airgap distance  
between the TMAG6180-Q1 and the magnet.  
As long the absolute field magnetic field is above the minimum field listed in Recommended Operating  
Conditions, the angle accuracy from the AMR outputs are independent of the value of the applied magnetic field.  
8.1.3 Calibration of Sensor Errors  
The TMAG6180-Q1 is factory-calibrated for best angular accuracy. Some of the electrical errors from the sensor  
that impact the angle accuracy can be calibrated out for achieving the best performance. 8-1 shows the  
impact of the different sensor error parameters such as offset, amplitude mismatch and orthogonality error on  
the angle accuracy.  
By  
By  
By  
Bx  
Bx  
Bx  
(c)  
(a)  
(b)  
8-1. Angle Accuracy Impact Owing to Sensor Electrical Errors (a) Offset Error (b) Amplitude Mismatch  
Error (c) Orthogonality Error  
Based on the parameters defined in 7.3.4.1, use 方程16 to calculate the angle from the AMR sensors.  
A
A
sin 2θ + V  
sin  
offset_sin  
arctan2  
cos 2θ + V  
cos  
offset_cos  
θ =  
(16)  
2
where  
Voffset_sin and Voffset_cos are the differential offsets of the sine and cosine outputs  
Asin and Acos are the differential amplitude of the sine and cosine outputs  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS037  
20  
Submit Document Feedback  
Product Folder Links: TMAG6180-Q1  
 
 
 
 
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
The impact of the angle accuracy owing to the orthogonality error and the hysteresis errors is negligible for the  
TMAG6180-Q1 and can be ignored.  
To calibrate the offset and amplitude mismatch errors, the magnetic field rotates over the entire range and the  
sine and cosine outputs are sampled continuously to obtain the minimum and maximum values of the outputs.  
Users can calculate the average of the minimum and maximum values of the respective outputs across the full  
angle range to find the offset error of the sine and cosine outputs. Use 方程式 17 and 方程式 18 to calculate the  
offset correction parameters for sine and cosine.  
V
+ V  
2
sin max  
sin min  
V
V
=
=
(17)  
(18)  
os_ sin_cal  
os_ cos_cal  
V
+ V  
2
cos max  
cos min  
Users can calculate the difference of the minimum and maximum values of the respective outputs across the full  
angle range to find the amplitude of the sine and cosine outputs. Use 方程式 19 to calculate the amplitude  
correction parameters for sine and cosine.  
V
V
V  
V  
sin max  
sin min  
cos min  
A
= 1 −  
(19)  
corr  
cos max  
8.1.3.1 Offset error calibration  
8.1.3.2 Amplitude mismatch calibration  
8.2 Typical Application  
The TMAG6180-Q1 AMR angle sensor can be used in either in single-ended output mode or differential output  
mode. The TMAG6180-Q1 has the drive capability to either drive differential or single-ended SAR or Sigma  
Delta ADCs. Typically, an external microcontroller processes the AMR output signals to extract the angular  
position.  
The differential-ended output mode is helpful to eliminate any common mode disturbances in the system. 8-2  
shows a typical application circuit where the differential output signals SIN_P, SIN_N, COS_P and COS_N are  
all connected to the four single-ended ADCs in the external microcontroller. If differential ADCs are available,  
then they are typically recommended. The load capacitors and resistors must match each other to typically  
achieve high accuracy. During sleep mode or when a fault is detected, the outputs are placed in high-impedance  
state. To ensure that external microcontroller can detect this case, TI recommends using pulldown or pullup  
resistors.  
The TMAG6180-Q1 can drive capacitive loads up to 10 nF directly on the AMR output pins and, for a cable with  
capacitances of 100 pF/m, the device can drive up to 100-m capacitive loads. With the ability to source and sink  
currents up to 1 mA, the device can drive resistive loads.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMAG6180-Q1  
English Data Sheet: SLYS037  
 
 
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
Supply Voltage  
2.7 to 5.5V  
(1)  
(1)  
Rpu  
Rpu  
µController  
GPIO1  
TMAG6180  
VCC  
Q0  
Q1  
GPIO2  
0.1µF  
Low pass Filter (3)  
Low pass Filter (3)  
Low pass Filter (3)  
Low pass Filter (3)  
SIN_P  
ADC1  
ADC2  
SIN_N  
ADC3  
COS_P  
GND  
ADC4  
COS_N  
(2)  
(2)  
(2)  
(2)  
Rpu  
Rpu  
Rpu  
Rpu  
(1) 50K < Rpd < 500K (can be left floating if unused)  
(2) 5K < Rpu < 1M (can be left floating if unused)  
(3) Optional RC filter to reduce noise.  
Filter time constant must be lesser than on speed of rotation  
8-2. Application Diagram for TMAG6180-Q1 in Differential-Ended Output Mode  
If the number of ADC ports in the micro-controller are limited, or if the number of wires from the sensor to the  
microcontroller must be kept to a minimum, TI recommends using the single-ended output mode. 8-3 shows a  
typical application circuit where only the positive output channels (SIN_P and COS_P) are connected to single-  
ended ADCs. The unused output signals (SIN_N and COS_N) can be either left floating or connected to ground  
through a high resistance. In single-ended output mode, the dynamic range (SNR) and noise immunity is  
typically reduced compared to the differential output mode. To reduce noise on the outputs and for filtering EMC  
disturbances, an external low-pass filter such as a first order RC network can be used. The bandwidth of the  
external filter must be designed based on the rotation speed of the magnetic field to be detected. TI  
recommends adding pullup or pulldown resistors to ground on the single-ended outputs (SIN_P and COS_P) to  
ensure that their outputs are defined when the outputs are in high-impedance state. The supply voltage of the  
sensor is used as the reference for the ADCs in the microcontroller.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS037  
22  
Submit Document Feedback  
Product Folder Links: TMAG6180-Q1  
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
Supply Voltage  
2.7 to 5.5V  
(1)  
(1)  
Rpu  
Rpu  
µController  
TMAG6180  
VCC  
Q0  
GPIO1  
GPIO2  
ADC1  
Q1  
0.1µF  
Low pass Filter (3)  
SIN_P  
(4)  
SIN_N  
ADC2  
COS_P  
Low pass Filter (3)  
GND  
(4)  
COS_N  
(2)  
(2)  
Rpu  
Rpu  
(1) 50K < Rpd < 500K (can be left floating if unused)  
(2) 5K < Rpu < 1M (can be left floating if unused)  
(3) Optional RC filter to reduce noise.  
Filter time constant must be lesser than on speed of rotation  
(4) Can be left floating or connected to ground through R > 100 K  
8-3. Application Diagram for TMAG6180-Q1 in Single-Ended Output Mode  
8.2.1 Design Requirements  
8-4 shows the center of the magnet aligned with the center of the sensor in a typical on-axis application.  
8-4. On axis measurement setup for TMAG6180-Q1  
Use the parameters listed in 8-1 for this design example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMAG6180-Q1  
English Data Sheet: SLYS037  
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
8-1. Design Parameters  
DESIGN PARAMETERS  
ON-AXIS MEASUREMENT  
VCC  
5 V  
Cylinder: 4.7625-mm diameter, 12.7-mm thick, neodymium N52, Br =  
1480  
Magnet  
Output mode  
Differential-ended  
8,000 RPM  
<1°  
Maximum speed of the motor  
Desired Angle error across temperature  
Magnet to sensor placement  
End of shaft  
8.2.2 Detailed Design Procedure  
For accurate angle measurement, the center of the magnet is aligned to the center of the sensor with acceptable  
tolerances. Follow these steps to ensure that the sensor is calibrated for best accuracy:  
Reference angle calibration - Set the reference angle based on the magnet alignment to the sensor. This  
error can be saved in the microcontroller for runtime absolute position calculation. This error is also known as  
Angle offset in a system.  
Electrical offset calibration - See Calibration of Sensor Errors for the offset calibration procedure. If the sensor  
cannot be rotated across the full range, then the electrical offsets cannot be calibrated.  
Amplitude mismatch calibration - See Calibration of Sensor Errors for the amplitude mismatch calibration  
procedure. If the sensor cannot be rotated across the full range, then the amplitude mismatch cannot be  
calibrated.  
To extend the angle range from the AMR sensor to 360 degrees, see Extending the Angle Range to 360  
Degrees  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS037  
24  
Submit Document Feedback  
Product Folder Links: TMAG6180-Q1  
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
8.2.2.1 Extending the Angle Range to 360 Degrees  
Input Magnetic  
Field (BIN) (mT)  
BSIN  
BCOS  
BOP  
BRP  
Angle (deg)  
(V)  
VSIN_P – VSIN_N  
AMR outputs  
VCOS_P – VCOS_N  
Differential  
output voltage  
Angle (deg)  
(V)  
Y Hall output  
Q1  
Angle (deg)  
X Hall output  
Q0  
Angle (deg)  
Angle (deg)  
Q1_Q0  
11  
00  
10  
01  
0
360  
90  
270  
180  
Magnetic field angle (AbsAngle)  
(in degrees)  
8-5. Magnetic Response for a 360° Input Field  
8-5 shows the response of the differential-ended AMR output signals and the Hall outputs (Q1, Q0) for a 360°  
input magnetic field (BIN).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMAG6180-Q1  
English Data Sheet: SLYS037  
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
An example code for extending the angle range from 180 degrees to 360 degrees using the Q0, Q1 outputs is  
given below ;  
MeasuredAngle = arctan2(SIN, COS)/2 ; //0-180° angle range , Multiply by 180/Pi if  
the angle is returned in radians  
MeasuredAngle = 90 - MeasuredAngle // If arctan2 function returns from -90deg to  
90deg angle range, then use this to convert to 0-180° angle range  
if (MeasuredAngle is between 45°–135°) then  
(
if (Q1_Q0 is 00b or 10b) then //around 90°  
AbsAngle = MeasuredAngle ;  
else //Q1_Q0 is 11b or 01b, around 270°  
AbsAngle = MeasuredAngle + 180°;  
)
else //MeasuredAngle is 0°–45° or 135°-180°  
(
if (Q1_Q0 is 00b or 01b) then //around 0°  
(
if (MeasuredAngle ≥ 135°) then  
AbsAngle = MeasuredAngle + 180°;  
else  
//MeasuredAngle is 0-45°  
AbsAngle = MeasuredAngle;  
)
else  
//2Digital is 10b or 11b, around 180°  
(
if (MeasuredAngle ≥ 135°) then  
AbsAngle = MeasuredAngle;  
else  
//MeasuredAngle is 0-45°)  
AbsAngle = MeasuredAngle + 180°;  
)
)
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS037  
26  
Submit Document Feedback  
Product Folder Links: TMAG6180-Q1  
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
8.3 Power Supply Recommendations  
A decoupling capacitor close to the device must be used to provide local energy with minimal inductance. TI  
recommends using a ceramic capacitor with a value of at least 0.1 µF.  
8.4 Layout  
8.4.1 Layout Guidelines  
Magnetic fields pass through most nonferromagnetic materials with no significant disturbance. Embedding  
magnetic sensors within plastic or aluminum enclosures and sensing magnets on the outside is common  
practice. Magnetic fields also easily pass through most printed circuit boards (PCBs), which makes placing the  
magnet on the opposite side of the PCB possible.  
8.4.2 Layout Example  
COS_P  
GND  
SIN_P  
0.1uF (min)  
VCC  
SIN_N  
COS_N  
Q0  
Q1  
8-6. Layout Example With TMAG6180-Q1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMAG6180-Q1  
English Data Sheet: SLYS037  
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS037  
28  
Submit Document Feedback  
Product Folder Links: TMAG6180-Q1  
 
 
 
 
 
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMAG6180-Q1  
English Data Sheet: SLYS037  
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS037  
30  
Submit Document Feedback  
Product Folder Links: TMAG6180-Q1  
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
10.1 Package Option Addendum  
Packaging Information  
Device  
Orderable  
Device  
Package  
Type  
Package  
Drawing  
Package  
Qty  
Eco  
Lead/Ball MSL Peak Op Temp  
Status(1)  
Pins  
Marking(4)  
Plan(2)  
Finish(6)  
Temp(3)  
(°C)  
(5)  
PTMAG61 ACTIVE  
80A0DGK  
VSSOP  
DGK  
8
2500  
Call TI  
Call TI  
Call TI  
-40 to 150  
RQ1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using  
this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please  
check www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS  
requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where  
designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the  
die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free  
(RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based  
flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will  
appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device  
Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line.  
Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis  
on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other  
limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold  
by TI to Customer on an annual basis.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMAG6180-Q1  
English Data Sheet: SLYS037  
 
 
 
 
 
 
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
10.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
PTMAG6180A0DGKRQ1  
VSSOP  
DGK  
8
2500  
330  
12.4  
5.3  
3.4  
1.4  
8
12  
Q1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS037  
32  
Submit Document Feedback  
Product Folder Links: TMAG6180-Q1  
 
TMAG6180-Q1  
ZHCSQR5 MARCH 2023  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
PTMAG6180A0DGKRQ1  
Package Type  
Package Drawing Pins  
DGK  
SPQ  
Length (mm) Width (mm)  
366 364  
Height (mm)  
VSSOP  
8
2500  
50  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMAG6180-Q1  
English Data Sheet: SLYS037  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTMAG6180A0DGKRQ1  
ACTIVE  
VSSOP  
DGK  
8
2500  
TBD  
Call TI  
Call TI  
-40 to 150  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMAG6181-Q1

Automotive high-precision analog AMR angle sensor with integrated turns counter
TI

TMAR47M2AD16V

Aluminum Electrolytic Capacitor, Polarized, Aluminum, 100V, 20% +Tol, 20% -Tol, 0.47uF
VISHAY

TMAS100K50NPO-XX-TR30

Axial Ceramic Monolithic Capacitor
TAITRON

TMB

TMB SERIES SYNCHRONOUS TIMING MODULES
EUROQUARTZ

TMB-1.2

EM Brake
ETC

TMB-1.2H

EM Brake (with hub)
ETC

TMB-1.2HI

EM Brake (with inverted hub)
ETC

TMB-10

EM Brake
ETC

TMB-10H

EM Brake (with hub)
ETC

TMB-10HI

EM Brake (with inverted hub)
ETC

TMB-2.5

EM Brake
ETC

TMB-2.5H

EM Brake (with hub)
ETC