TMDS181 [TI]

6Gbps HDMI 2.0 TMDS 重定时器;
TMDS181
型号: TMDS181
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

6Gbps HDMI 2.0 TMDS 重定时器

文件: 总59页 (文件大小:2474K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
TMDS181x 6Gbps TMDS 重定时器  
1 特性  
3 说明  
1
HDMI™ 输入端口与输出端口间具有时钟和数据恢  
(CDR) 电路,支持高达 6Gbps 的数据速率  
TMDS181x 是一款数字视频接口 (DVI) 或高清多媒体  
接口 (HDMI™) 重定时器。TMDS181x 支持四条  
TMDS 通道,音频返回通道 (SPDIF_IN/ARC_OUT) 和  
数字显示控制 (DDC) 接口。TMDS181x 支持高达  
6Gbps 的信号传输速率,可实现最高分辨率达  
4k2k60p 24 /像素和高达 WUXGA 16 位色深或  
1080p,并且具有较高的刷新率。TMDS181x 经配置  
可支持 HDMI2.0a 标准。TMDS181x 在低于 1.0Gbps  
的数据速率下会自动配置为重驱动器,而在高于该速率  
时会自动配置为重定时器。重驱动器模式支持  
HDMI1.4b,数据速率高达 3.4Gbps  
在重定时器模式下可兼容高达 6Gbps HDMI™  
电气参数  
支持 4k2k60p 和高达 WUXGA 16 位色深或  
1080p,具有更高的刷新率  
对输入流重新定时以补偿随机抖动  
自适应接收器均衡器或可编程固定均衡器  
I2C 和引脚设置可编程  
5+ 位对内偏移补偿  
支持单端模式 ARC  
链路调试工具包括位于RX 均衡器之后眼图  
TMDS181x 支持双电源轨(VDD 1.2VVCC 为  
3.3V),有助于降低功耗。该器件采用多种电源管理  
方法来降低整体功耗。TMDS181x 通过 I2C 或引脚设  
置支持固定的接收 EQ 增益或自适应接收 EQ 控制,  
以补偿不同长度的输入电缆或电路板走线。  
48 引脚 7mm × 7mm 0.5mm 间距超薄型四方扁平  
无引线 (VQFN) 封装  
扩展商业温度范围为 0°C 85°C (TMDS181)  
工业温度范围为 -40°C 85°C (TMDS181I)  
2 应用  
器件信息(1)  
数字电视  
器件型号  
TMDS181  
TMDS181I  
封装  
封装尺寸(标称值)  
数字投影仪  
VQFN (48)  
7.00mm × 7.00mm  
音频/视频设备  
Blu-Ray™DVD  
监视器  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
台式机/一体化计算机  
有源线缆  
空白  
简化电路原理图  
Iꢂ5_{bY  
Iꢂ5_{w/  
ë{!5W  
1ꢄ0YQ  
7ꢅ06 lQ  
ë.L!{  
ꢁ0Q  
ꢁ0Q  
hÜÇ_/[Yp  
hÜÇ_/[Yn  
Lb_/[Yp  
Lb_/[Yn  
9v  
Çꢃ5{  
5ata wegisters  
{í!ꢂ  
ꢂ[[  
ë.L!{  
ꢂ[[ /ontrol  
{9w59{  
ꢂolarity  
I5aL  
/onn  
ꢁ0Q  
ꢁ0Q  
hÜÇ_5ꢀ2:0]p  
hÜÇ_5ꢀ2:0]n  
Lb_5ꢀ2:0]p  
Lb_5ꢀ2:0]n  
DꢂÜ  
9v  
Çꢃ5{  
Audiovisual  
/ontrol .lock, L2/  
wegisters,  
TMDS  
181  
Processing HDMI  
SW/HD  
6
/ontrol  
[ocal L2/  
/ontrol  
{5!_/Ç[  
{/[_/Ç[  
Unit  
55/ꢅ !w/  
{ꢂ5LC_Lb  
!w/  
!w/_hÜÇ  
55/ {noop  
.lock  
{5!_{bY  
{/[_{bY  
{5!_{w/  
{/[_{w/  
!/ÇLë9 55/ .[h/Y  
Db5  
ë55  
1ꢅ2ë  
3ꢅ3ë  
ëw9D  
ë//  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLASE75  
 
 
 
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information.................................................. 8  
6.5 Power Supply Electrical Characteristics ................... 8  
6.6 TMDS Differential Input Electrical Characteristics .... 9  
8
9
Detailed Description ............................................ 24  
8.1 Overview ................................................................. 24  
8.2 Functional Block Diagram ....................................... 25  
8.3 Feature Description................................................. 25  
8.4 Device Functional Modes........................................ 31  
8.5 Register Maps......................................................... 33  
Application and Implementation ........................ 40  
9.1 Application Information............................................ 40  
9.2 Typical Applications ................................................ 40  
10 Power Supply Recommendations ..................... 47  
11 Layout................................................................... 48  
11.1 Layout Guidelines ................................................. 48  
11.2 Layout Example .................................................... 49  
12 器件和文档支持 ..................................................... 50  
12.1 文档支持................................................................ 50  
12.2 相关链接................................................................ 50  
12.3 接收文档更新通知 ................................................. 50  
12.4 社区资源................................................................ 50  
12.5 ....................................................................... 50  
12.6 静电放电警告......................................................... 50  
12.7 Glossary................................................................ 50  
13 机械、封装和可订购信息....................................... 50  
6.7 TMDS Differential Output Electrical  
Characteristics ......................................................... 10  
6.8 DDC, I2C, HPD, and ARC Electrical  
Characteristics ......................................................... 11  
6.9 Power-Up and Operation Timing Requirements..... 12  
6.10 TMDS Switching Characteristics........................... 13  
6.11 HPD Switching Characteristics ............................. 14  
6.12 DDC and I2C Switching Characteristics................ 14  
6.13 Typical Characteristics.......................................... 15  
Parameter Measurement Information ................ 15  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (July 2016) to Revision D  
Page  
Added Note 5 to the Power Supply Electrical Characteristic table ....................................................................................... 8  
Deleted text "which is needed for certain HDMI CTS test." from the third paragraph in the Overview section .................. 24  
Changed section: Input Signal Detect Block ....................................................................................................................... 28  
Changed H to X in the first row of the HPD_SNK column in Table 12 ................................................................................ 47  
Changed the IN_Dx column in Table 12 ............................................................................................................................. 47  
Changes from Revision B (April 2016) to Revision C  
Page  
Recommended Operating Conditions, Changed the CONTROL PINS section .................................................................... 7  
DDC, I2C, HPD, and ARC Electrical Characteristics, Changed the DDC AND I2C section ................................................. 11  
Changes from Revision A (October 2015) to Revision B  
Page  
Recommended Operating Conditions, Added VIL "Low-level input voltage at HPD, OE" ...................................................... 7  
Recommended Operating Conditions, Moved pin OE From: VIH MIN value of 2 V To: VIH MIN value of 2.6 V ................... 7  
Power-Up and Operation Timing Requirements, Deleted the VDD_ramp and VCC_ramp MIN values ............................. 12  
Changed Figure 1 ................................................................................................................................................................ 12  
DDC Functional Description , Changed text "address 22h (see Figure 31) through the I2C interface." To: "address  
0Bh through the I2C interface." ............................................................................................................................................ 32  
Added Note to 11–400-kbps in Table 6................................................................................................................................ 35  
Added Note to 11–400-kbps in Table 6................................................................................................................................ 36  
2
版权 © 2015–2017, Texas Instruments Incorporated  
 
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
Changes from Original (August 2015) to Revision A  
Page  
已将器件状态从产品预览更新为量产数据” .......................................................................................................................... 1  
Absolute Maximum Ratings, Changed max value from 1.56 V to VCC + 0.3V; added input current and Min value............. 6  
Absolute Maximum Ratings, Added Max Input Current on Main Link Differential Input pins................................................. 6  
Recommended Operating Conditions, Updated the note showing the values shown are only for Microcontroller  
driven and not values based upon pull up or pull down resistors. ........................................................................................ 7  
Power Supply Electrical Characteristics, Increased Max Value of ISD2 from 10 to 15mA ................................................... 8  
TMDS Differential Input Electrical Characteristics, Changed Max Receiver impedance value to 115 ................................. 9  
DDC, I2C, HPD, and ARC Electrical Characteristics, Inserted values for SCL/SDA_SNK ................................................. 11  
TMDS Switching Characteristics, Changed from 6000 to 3400 .......................................................................................... 13  
Table 4, Deleted Clear and NA Access Tags ...................................................................................................................... 34  
Table 8, Removed reg20h[5:4] ARC_SWING ..................................................................................................................... 39  
Figure 35, Removed 1k pullup from switch as not needed ................................................................................................. 43  
Pin Strapping Configuration for HDMI2.0a and HDMI1.4b , Added Note for VSADJ resistor value in Compliance Pin  
Strapping section ................................................................................................................................................................. 46  
Pin Strapping Configuration for HDMI2.0a and HDMI1.4b , Changed De-emphasis value from 0 dB to -2 dB for  
recommended configuration for compliance testing............................................................................................................. 46  
I2C Control for HDMI2.0a and HDMI1.4b, Added Note for VSADJ resistor value in Compliance I2C control section  
and included register that can increase or decrease the VOD swing ................................................................................. 46  
Copyright © 2015–2017, Texas Instruments Incorporated  
3
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
5 Pin Configuration and Functions  
RGZ Package  
48-Pin VQFN  
Top View  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
TX_TERM_CTL  
SWAP/POL  
1
2
35  
OUT_D2p  
OUT_D2n  
HPD_SNK  
OUT_D1p  
OUT_D1n  
GND  
IN_D2p  
IN_D2n  
3
4
5
6
34  
33  
HPD_SRC  
IN_D1p  
32  
31  
IN_D1n  
GND  
30  
29  
7
8
Db5  
IN_D0p  
OUT_D0p  
OUT_D0n  
A1  
9
28  
27  
IN_D0n  
I2C_EN/PIN  
IN_CLKp  
10  
11  
OUT_CLKp  
OUT_CLKn  
26  
25  
IN_CLKn  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
4
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
Pin Functions(1)  
PIN  
TYPE(2)  
DESCRIPTION  
NAME  
VCC  
NO.  
13, 43  
P
P
3.3 V power supply  
VDD  
14, 23, 24, 37, 48  
1.2 V power supply  
7, 19, 41, 30,  
Thermal pad  
GND  
G
Ground  
MAIN LINK INPUT PINS  
IN_D2p/n  
2, 3  
5, 6  
I
I
I
I
Channel 2 differential input  
Channel 1 differential input  
Channel 0 differential input  
Clock differential input  
IN_D1p/n  
IN_D0p/n  
8, 9  
IN_CLKp/n  
11, 12  
MAIN LINK OUTPUT PINS (FAIL SAFE)  
OUT_D2n/p  
OUT_D1n/p  
OUT_D0n/p  
OUT_CLKn/p  
34, 35  
31, 32  
28, 29  
25, 26  
O
O
O
O
TMDS data 2 differential output  
TMDS data 1 differential output  
TMDS data 0 differential output  
TMDS data clock differential output  
HOT PLUG DETECT PINS  
HPD_SRC  
4
O
I
Hot plug detect output to source side  
Hot plug detect input from sink side  
HPD_SNK  
33  
AUDIO RETURN CHANNEL AND DDC PINS  
SPDIF_IN  
ARC_OUT  
45  
44  
SPDIF signal input  
Audio return channel output  
I/O  
I/O  
I/O  
SDA_SRC  
SCL_SRC  
47  
46  
Source side TMDS port bidirectional DDC data line  
Source side TMDS port bidirectional DDC clock line  
SDA_SNK  
SCL_SNK  
39  
38  
Sink side TMDS port bidirectional DDC data line  
Sink side TMDS port bidirectional DDC clock line  
CONTROL PINS  
Operation enable/reset pin  
OE = L: Power-down mode  
OE = H: Normal operation  
Internal weak pull up: Resets device when transitions from H to L  
OE  
42  
17  
I
I
Signal detector circuit enable  
SIG_EN = L: Signal detect circuit disabled:  
SIG_EN = H: Signal detect circuit enabled: When no valid clock device enters  
standby mode.  
SIG_EN  
Internal weak pull down  
De-emphasis control when I2C_EN/PIN = Low.  
PRE_SEL = L: –2 dB  
PRE_SEL = No Connect: 0 dB  
I
PRE_SEL  
20  
21  
3 level  
PRE_SEL = H: Reserved  
When I2C_EN/PIN = High de-emphasis is controlled through I2C  
Input receive equalization pin strap when I2C_EN/PIN = Low  
EQ_SEL = L: Fixed EQ at 7.5 dB at 3 GHz  
I
EQ_SEL = No Connect: Adaptive EQ  
EQ_SEL/A0  
3 level  
EQ_SEL = H: Fixed at 14 dB at 3 GHz  
When I2C_EN/PIN = High address bit 1  
Note: 3 level for pin strap programming but 2 level when I2C address  
I2C_EN/PIN = High; puts device into I2C Control Mode  
I2C_EN/PIN = Low; puts device into pin strap mode  
I2C_EN/PIN  
SCL_CTL  
10  
15  
I
I
Note: I2C CSR is addressable at all times, but features that can be controlled by pin  
strapping can only be changed by I2C when this pin is pulled high  
I2C clock signal  
Note: When I2C_EN = Low Pin strapping takes priority and those functions cannot be  
changed by I2C  
(1) (H) Logic high (pin strapped to VCC through 65 kΩ resistor); (L) Logic Low (pin strapped to GND through 65 kΩ resistor); (for mid-level  
= No connect)  
(2) G = Ground, I = Input, O = Output, P = Power  
Copyright © 2015–2017, Texas Instruments Incorporated  
5
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Pin Functions(1) (continued)  
PIN  
TYPE(2)  
DESCRIPTION  
NAME  
SDA_CTL  
VSadj  
NO.  
16  
I2C data signal  
I/0  
Note: When I2C_EN = Low Pin strapping takes priority and those functions cannot be  
changed by I2C  
22  
I
I
TMDS-compliant voltage swing control nominal resistor to GND  
High address bit 2 for I2C programming  
Weak internal pull down  
A1  
27  
Note: When in Pin Strapping Mode leave pin as No connect  
Transmit termination control  
TX_TERM_CTL = H, no transmit termination  
TX_TERM_CTL = L, transmit termination impedance in approximately 75 to 150  
TX_TERM_CTL = No Connect, automatically selects the termination impedance  
Data rate (DR) > 3.4 Gbps – 75 to 150 Ω differential near end termination  
2 Gbps > DR < 3.4 Gbps – 150 to 300 Ω differential near end termination  
DR < 2 Gbps – no termination  
I
TX_TERM_CTL  
36  
3 level  
Note: If left floating will be in automatic select mode.  
Input lane SWAP and polarity control pin  
I
SWAP/POL = H: receive lanes polarity swap (retimer mode only)  
SWAP/POL = L: receive lanes swap (redriver and retimer mode)  
SWAP/POL = No Connect: normal operation  
SWAP/POL  
NC  
1
3 level  
18, 40  
NA  
No connect  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)(2)  
MIN  
–0.3  
MAX  
UNIT  
VCC  
Supply voltage(3)  
VDD  
4
V
–0.3  
1.4  
VCC + 0.3V  
4
Main link input differential voltage (IN_Dx, IN_CLKx) IIN = 15mA  
TMDS outputs ( OUT_Dx)  
VCC - 0.75V  
–0.3  
Voltage  
V
HPD_SRC, Vsadj, SDA_CTL, SCL_CTL, OE, A1, PRE_SEL, EQ_SEL/A0,  
I2C_EN/PIN, SIG_EN, TX_TERM_CTL,  
–0.3  
–0.3  
4
HDP_SNK, SDA_SNK, SCL_SNK, SDA_SRC, SCL_SRC  
Main link input current (IN_Dx, IN_CLKx)  
Continuous power dissipation  
6
Input Current IIN  
Tstg  
15  
mA  
°C  
See Thermal Information  
–65 150  
Storage temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to network ground terminal.  
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-B  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.  
6
Copyright © 2015–2017, Texas Instruments Incorporated  
 
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.135  
1.1  
NOM  
3.3  
MAX UNIT  
VCC  
Supply voltage nominal value 3.3 V  
Supply voltage nominal value 1.2 V  
Case temperature  
3.465  
1.27  
92.7  
85  
V
VDD  
1.2  
V
TCASE  
°C  
°C  
°C  
TMDS181  
TMDS181I  
0
Operating free-air  
temperature  
TA  
–40  
85  
MAIN LINK DIFFERENTIAL PINS  
VID_PP Peak-to-peak input differential voltage  
75  
1560 mVpp  
VCC  
0.1  
+
VIC  
Input common mode voltage  
Data rate  
VCC – 0.4  
V
dR  
0.25  
4.5  
6
Gbps  
RVSADJ TMDS compliant swing voltage bias resistor nominal  
7.06  
kΩ  
CONTROL PINS  
VI-DC  
DC input voltage  
Control pins  
–0.3  
3.6  
0.3  
0.8  
1.4  
V
V
Low-level input voltage at PRE_SEL, EQ_SEL/A0, TX_TERM_CTL, SWAP/POL  
pins only  
(1)  
VIL  
Low-level input voltage at OE  
Mid-level input voltage at PRE_SEL, EQ_SEL/A0, TX_TERM_CTL, SWAP/POL  
pins only  
(1)  
VIM  
1
1.2  
V
V
High-level input voltage at PRE_SEL, EQ_SEL/A0, TX_TERM_CTL, SWAP/POL,  
OE(2) pins only  
(1)  
VIH  
2.6  
VOL  
VOH  
IIH  
Low-level output voltage  
High-level output voltage  
High-level input current  
0.4  
V
V
2.4  
–30  
–25  
–50  
30  
25  
µA  
µA  
mA  
µA  
kΩ  
IIL  
Low-level input current  
IOS  
Short-circuit output current  
High impedance output current  
Pullup resistance on OE pin  
50  
IOZ  
10  
ROEPU  
150  
250  
(1) These values are based upon a microcontroller driving the control pins. The pullup/pulldown/floating resistor configuration will set the  
internal bias to the proper voltage level which will not match the values shown here.  
(2) This value is based upon a microcontroller driving the OE pin. A passive reset circuit using an external capacitor and the internal pullup  
resistor will set OE pin properly, but may have a different value than shown due to internal biasing.  
Copyright © 2015–2017, Texas Instruments Incorporated  
7
 
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
6.4 Thermal Information  
TMDS181x  
RGZ (VQFN)  
48 PINS  
31.1  
THERMAL METRIC(1)(2)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
18.2  
8.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
8.1  
RθJC(bot)  
3.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Test conditions for ΨJB and ΨJT are clarified in the Semiconductor and IC Package Thermal Metrics.  
6.5 Power Supply Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX(2)  
UNIT  
OE = H, VCC = 3.3 V/3.465 V, VDD = 1.2 V/1.27 V  
IN_Dx: VID_PP = 1200 mV, 6 Gbps TMDS pattern, VI = 3.3 V,  
I2C_EN/PIN = L, PRE_SEL= NC, EQ_SEL= NC,  
SDA_CTL/CLK_CTL = 0 V  
Device power dissipation  
(retimer operation)  
(3)(4)  
(3)(4)  
PD1  
800  
900  
mW  
OE = H, VCC = 3.3 V/3.465 V, VDD = 1.2 V/1.27 V  
IN_Dx: VID_PP = 1200 mV, 2.97 Gbps TMDS pattern, VI = 3.3 V,  
I2C_EN/PIN = L, PRE_SEL= NC, EQ_SEL= H,  
SDA_CTL/CLK_CTL = 0 V  
Device power dissipation  
(redriver operation)  
PD2  
500  
600  
mW  
OE = H, VCC = 3.3 V/3.465 V, VDD = 1.2 V/1.27 V, HPD = H, No  
valid input signal  
(3)(4)(5)  
(3)(4)(5)  
PSD1  
PSD2  
Device power in standby  
50  
10  
100  
30  
mW  
mW  
Device power in power down  
OE = L, VCC = 3.3 V/3.465 V, VDD = 1.2 V/1.27 V  
OE = H, VCC = 3.3 V/3.465 V, VDD = 1.2 V/1.27 V  
IN_Dx: VID_PP = 1200 mV, 6 Gbps TMDS pattern  
I2C_EN/PIN = L, PRE_SEL = NC, EQ_CTL = NC,  
SDA_CTL/CLK_CTL = 0 V  
VCC supply current (TMDS  
6Gpbs retimer mode)  
(3)(4)  
(3)(4)  
(3)(4)  
(3)(4)  
ICC1  
IDD1  
ICC2  
IDD2  
131  
332  
92  
150  
350  
mA  
mA  
mA  
mA  
OE = H, VCC = 3.3 V/3.465 V, VDD = 1.2 V/1.27 V  
IN_Dx: VID_PP = 1200 mV, 6 Gbps TMDS pattern  
I2C_EN/PIN = L, PRE_SEL = NC, EQ_CTL = NC,  
SDA_CTL/CLK_CTL = 0 V  
VDD supply current (TMDS  
6Gpbs retimer mode)  
OE = H, VCC = 3.3 V/3.465 V, VDD = 1.2 V/1.27 V  
IN_Dx: VID_PP = 1200 mV, 2.97 Gbps TMDS pattern  
I2C_EN/PIN = L, PRE_SEL = NC, EQ_CTL = H,  
SDA_CTL/CLK_CTL = 0 V  
VCC supply current (TMDS  
6Gpbs redriver mode)  
OE = H, VCC= 3.3 V/3.465 V, VDD = 1.2 V/1.27 V  
IN_Dx: VID_PP = 1200 mV, 3.4 Gbps TMDS pattern  
I2C_EN/PIN = L, PRE_SEL = NC, EQ_CTL = H,  
SDA_CTL/CLK_CTL = 0 V  
VDD supply current (TMDS  
6Gpbs redriver mode)  
187  
OE = H, VCC = 3.3 V/3.465 V, VDD = 1.2  
V/1.27 V, HPD = H: No valid signal on  
IN_CLK  
3.3 V rail(3)  
6
15  
50  
(5)  
(5)  
ISD1  
Standby current  
mA  
mA  
1.2 V rail  
40  
3.3 V rail(3)  
1.2 V rail  
2
5
OE = L, VCC = 3.3 V/3.465 V, VDD = 1.2  
V/1.27 V  
ISD2  
Power-down current  
3.5  
15  
(1) The typical rating is simulated at 3.3 V VCC and 1.2 V VDD and at 27°C temperature unless otherwise noted  
(2) The maximum rating is simulated at 3.465 V VCC and 1.27 V VDD and at 85°C temperature unless otherwise noted  
(3) ICC is a direct result of the source design as the TMDS181x integrated receive termination resistor accounts for 85 to 110 mA.  
(4) IDD is impacted by ARC usage. Connecting a 500 kresistor to GND at SPDIF reduces the value by more than 20 mA  
(5) The measurements were made with no active source connected.  
8
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
6.6 TMDS Differential Input Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX(2)  
UNIT  
DR_RX_DATA_R TMDS data lanes data rate  
0.25  
6
Gbps  
(Retimer Mode)  
T
DR_RX_DATA_R TMDS data lanes data rate  
0.25  
3.4  
Gbps  
MHz  
(Redriver Mode)  
D
DR_RX_CLK  
tRX_DUTY  
tCLK_JIT  
TMDS clock lanes clock rate  
Input clock duty circle  
25  
340  
60%  
0.3  
40%  
50%  
Input clock jitter tolerance  
Input data jitter tolerance  
Tbit  
ps  
tDATA_JIT  
Test the TTP2, see Figure 12  
150  
Test at TTP2 when DR = 1.6 Gbps, see  
Figure 12  
tRX_INTRA  
tRX_INTER  
EQH(D)  
Input intrapair skew tolerance  
Input interpair skew tolerance  
112  
ps  
ns  
dB  
1.8  
15  
Fixed EQ gain for data lane  
IN_D(0,1,2)n/p  
EQ_SEL/A0 = H; fixed EQ gain, test at 6  
Gbps  
15  
Fixed EQ gain for data lane  
IN_D(0,1,2)n/p  
EQ_SEL/A0 = L; fixed EQ gain, test at 6  
Gbps  
EQL(D)  
7.5  
dB  
Adaptive EQ gain for data lane  
IN_D(0,1,2)n/p  
EQ_SEL/A0 = NC; adaptive EQ  
(Retimer Mode Only)  
EQZ(D)  
EQ(c)  
2
dB  
dB  
EQ gain for clock lane IN_CLKn/p EQ_SEL/A0 = H,L,NC  
3
100  
3.3  
Input differential termination  
impedance  
RINT  
85  
115  
VITERM  
Input termination voltage  
OE = H  
3.465  
V
(1) The typical rating is simulated at 3.3 V VCC and 1.2 V VDD and at 27°C unless otherwise noted  
(2) The maximum rating is simulated at 3.465 V VCC and 1.27 V VDD and at 85°C unless otherwise noted  
Copyright © 2015–2017, Texas Instruments Incorporated  
9
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
6.7 TMDS Differential Output Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
VCC – 10  
MAX(2) UNIT  
Single-ended high level output  
voltage  
Data rate 1.65 Gbps  
PRE_SEL = NC; TX_TERM_CTL = H; OE  
= H; DR = 750 Mbps; VSadj = 7.06 kΩ;  
VCC + 10  
Single-ended high level output  
voltage  
Data rate >1.65 Gbps and  
<3.4 Gbps  
PRE_SEL = NC; TX_TERM_CTL = NC;  
OE = H; DR = 2.97 Gbps; VSadj = 7.06 kΩ;  
VCC-200  
VCC + 10  
V
VOH  
Single-ended high level output  
voltage  
PRE_SEL = NC; TX_TERM_CTL = L; OE  
= H; DR = 6 Gbps; VSadj = 7.06 kΩ;  
VCC – 400  
VCC – 600  
VCC – 700  
VCC + 10  
Data rate >3.4 Gbps and < 6  
Gbps(2)  
Single-ended low level output  
voltage  
Data rate 1.65 Gbps  
PRE_SEL = NC; TX_TERM_CTL = H; OE  
= H; DR = 750 Mbps; VSadj = 7.06 kΩ;  
VCC – 400  
Single-ended low level output  
voltage  
Data rate >1.65 Gbps and  
<3.4 Gbps  
PRE_SEL = NC; TX_TERM_CTL = NC;  
OE = H; DR = 2.97 Gbps; VSadj = 7.06 kΩ;  
VCC – 400  
V
VOL  
Single-ended low level output  
voltage  
PRE_SEL = NC; TX_TERM_CTL = L; OE  
= H; DR = 6 Gbps; VSadj = 7.06 kΩ;  
VCC – 1000  
VCC – 400  
Data rate >3.4 Gbps and < 6  
Gbps(2)  
PRE_SEL = NC; TX_TERM_CTL =  
H/NC/L; OE = H; DR = 270 Mbps/2.97/6  
Gbps VSadj = 7.06 kΩ;  
Single-ended output voltage  
swing on data lane  
VSWING_DA  
400  
400  
200  
500  
500  
300  
20  
600  
600  
400  
mV  
mV  
PRE_SEL = NC; TX_TERM_CTL = H; OE  
= H; Data rate 3.4 Gbps; VSadj = 7.06  
kΩ;  
Single-ended output voltage  
swing on clock lane  
VSWING_CLK  
PRE_SEL = NC; TX_TERM_CTL = NC;  
OE = H; Data rate > 3.4 Gbps; VSadj =  
7.06 kΩ;  
Change in single-end output  
voltage swing per 100 Ω  
ΔVSadj  
ΔVSWING  
mV  
mV  
Change in steady state output  
common mode voltage  
between logic levels  
ΔVOCM(SS)  
–5  
5
Output differential voltage  
before pre-emphasis  
VSADJ = 7.06 kΩ; PRE_SEL = NC see  
Figure 10  
VOD(PP)  
VOD(SS)  
800  
600  
1200  
1075  
mV  
mV  
Steady state output differential VSADJ = 7.06 kΩ; PRE_SEL = L, see  
voltage  
Figure 11  
3.4 Gbps < Rbit 3.712 Gps  
TX_TERM_CTL = NC; PRE_SEL = NC;  
OE = H; VSadj = 7.06 kΩ;  
335  
Total TMDS data lanes output  
differential voltage for  
HDMI2.0. Retimer Mode Only  
See Figure 14  
–19.66 ×  
(Rbit2) +  
(106.74 × Rbit)  
3.712 Gbps < Rbit < 5.94 Gbps  
TX_TERM_CTL = NC; PRE_SEL = NC;  
OE = H; VSadj = 7.06 kΩ;  
VOD_range  
mV  
+ 209.58  
5.94 Gbps Rbit 6.0 Gbps  
TX_TERM_CTL = NC; PRE_SEL = NC;  
OE = H; VSadj = 7.06 kΩ;  
150  
IOS  
Short-circuit current limit  
Main link output shorted to GND  
50  
45  
mA  
Failsafe condition leakage  
current  
VCC = 0 V; VDD = 0 V; TMDS Outputs  
pulled to 3.3 V through 50 Ω resistor;  
ILEAK  
μA  
Source termination resistance  
for HDMI2.0  
RTERM  
75  
150  
(1) The typical rating is simulated at 3.3 V VCC and 1.2 V VDD and at 27°C unless otherwise noted  
(2) The maximum rating is simulated at 3.465 V VCC and 1.27 V VDD and at 85°C unless otherwise noted  
10  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
6.8 DDC, I2C, HPD, and ARC Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX(2) UNIT  
DDC AND I2C  
SCL/SDA_SNK, SCL/SDA_SRC DC  
input voltage  
–0.3  
–0.3  
5.5  
3.6  
V
V
V
VI-DC  
SCL/SDA_CTL, DC input voltage  
SCL/SDA_SNK, SCL/SDA_SRC Low  
level input voltage  
0.3 x VCC  
VIL  
SCL/SDA_CTL Low level input  
voltage  
0.3 x VCC  
V
V
V
SCL/SDA_SNK, SCL/SDA_SRC high  
level input voltage  
3
VIH  
SCL/SDA_CTL high level input  
voltage  
0.7 x VCC  
I0 = 3 mA and VCC > 2 V  
I0 = 3 mA and VCC < 2 V  
0.4  
SCL/SDA_CTL, SCL/SDA_SRC low  
level output voltage  
VOL  
V
0.2 x VCC  
SCL clock frequency fast I2C mode  
for local I2C control  
fSCL  
400  
400  
kHz  
pF  
Total capacitive load for each bus line  
(DDC and local I2C pins)  
Cbus  
HPD  
VIH  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
HPD_SNK  
2.1  
V
V
V
V
VIL  
HPD_SNK  
0.8  
3.6  
0.1  
VOH  
VOL  
IOH = –500 µA; HPD_SRC,  
IOL = 500 µA; HPD_SRC,  
2.4  
0
VCC = 0 V; VDD = 0 V; HPD_SNK =  
5 V;  
ILEAK  
Failsafe condition leakage current  
40  
μA  
Device powered; VIH = 5 V;  
IH_HPD includes RpdHPD resistor  
current  
40  
IH_HPD  
High-level input current  
µA  
Device powered; VIL = 0.8 V;  
IL_HPD includes RpdHPD resistor  
current  
30  
RpdHPD  
HPD input termination to GND  
VCC = 0 V  
150  
0
190  
220  
kΩ  
SPDIF AND ARC  
Operating DC voltage for single mode  
ARC output  
VEL  
Test at ARC_OUT, see Figure 22  
5
V
VIN_DC  
Operating DC voltage for SPDIF input  
Signal amplitude of SPDIF input  
0.05  
0.6  
V
V
VSP_SW  
0.2  
0.4  
0.5  
0.5  
Test at ARC_OUT, 55 Ω external  
termination resistor, see Figure 22  
VElSWING  
Signal amplitude on the ARC output  
Signal frequency on ARC  
0.6  
V
5.645  
±0.1%  
CLK_ARC  
Test at ARC_OUT, see Figure 22  
3.687  
13.517  
55%  
MHz  
Duty cycle  
Data rate  
tEDGE  
Output clock duty cycle  
SPDIF input DR  
45%  
50%  
7.373  
11.29  
27.034 Mbps  
Rise/fall time for ARC output  
From 10% to 90% voltage level  
0.4  
UI  
Input termination resistance for  
SPDIF  
R_IN_SPDIF  
Rest  
75  
55  
Ω
Single mode output termination  
resistance  
0.1 MHz to 128× the maximum  
frame rate  
36  
75  
Ω
(1) The typical rating is simulated at 3.3 V VCC and 1.2 V VDD and at 27°C unless otherwise noted  
(2) The maximum rating is simulated at 3.465 V VCC and 1.27 V VDD and at 85°C unless otherwise noted  
Copyright © 2015–2017, Texas Instruments Incorporated  
11  
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
6.9 Power-Up and Operation Timing Requirements  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
0
NOM  
MAX  
UNIT  
µs  
td1  
VDD stable before VCC  
200  
td2  
VDD and VCC stable before OE assertion  
CDR active operation after retimer mode initial  
CDR turn off time after retimer mode de-assert  
VDD supply ramp up requirements  
VCC supply ramp up requirements  
100  
µs  
td3  
15  
120  
100  
100  
ms  
ns  
td4  
VDD_ramp  
VCC_ramp  
ms  
ms  
(1) See Operation Timing for more information  
t
d2  
h9  
t
d1  
ë// ꢀ ë55  
ë55 ꢀ ë//  
Figure 1. Power-Up Timing for TMDS181  
td3  
/5w !ctive  
td4  
wetimer mode  
h9 5e-assert or  
Iꢀ5_{bY 5e-assert or  
wedriver mode  
Figure 2. CDR Timing for TMDS181  
12  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
 
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
6.10 TMDS Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
REDRIVER MODE  
TEST CONDITIONS  
MIN TYP(1)  
MAX(2)  
UNIT  
dR  
Data rate (redriver mode)  
250  
250  
3400  
600  
Mbps  
ps  
Propagation delay time (low to  
high)  
tPLH  
Propagation delay time (high to  
low)  
tPHL  
250  
800  
ps  
Transition time (rise and fall  
time); measured at 20% and  
80% levels for data lanes.  
TMDS clock meets tT3 for all  
three times.  
TX_TERM_CTL = NC; PRE_SEL = NC;  
OE = H; 1.48 Gbps and 2.97 Gbps data  
lines, 148 MHz and 297 MHz clock  
tT1(1.4b)  
75  
ps  
TX_TERM_CTL = NC; PRE_SEL = NC;  
OE = H; 1.48 Gbps, 2.97 Gbps  
tT3  
100  
ps  
ps  
Default setting for internal intra-pair skew  
adjust, TX_TERM_CTL = NC; PRE_SEL =  
NC; 1.48 Gbps, 2.97 Gbps; See Figure 8  
tSK_INTRA  
Intra-pair output skew  
Inter-pair output skew  
40  
Default setting for internal inter-pair skew  
adjust, TX_TERM_CTL = NC; PRE_SEL =  
NC; 1.48 Gbps, 2.97 Gbps; See Figure 8  
tSK_INTER  
100  
ps  
DR = 2.97 Gbps, PRE_SEL = NC,  
EQ_SEL/A0 = NC ; . See Figure 12 at  
TTP3  
Total output data jitter  
HDMI1.4b  
tJITD1(1.4b)  
0.2  
Tbit  
Tbit  
CLK = 25 MHz, 74.25 MHz, 75 MHz, 150  
MHz, 297 MHz  
tJITC1(1.4b)  
Total output clock jitter  
0.25  
RETIMER MODE  
dR  
Data rate (retimer mode)  
0.25  
6
Gbps  
Gbps  
Automatic redriver to retimer  
crossover (when selected)  
Measured with input signal applied = 200  
mVpp  
dXVR  
0.75  
1
1.25  
fCROSSOVER Crossover frequency hysteresis  
250  
0.4  
MHz  
MHz  
PLLBW  
Data retimer PLL bandwidth  
Default loop bandwidth setting  
Tested when data rate >1.0Gbps  
1
Input clock frequency detection  
and retimer acquisition time  
tACQ  
180  
µs  
Tbit  
ps  
IJT1  
Input clock jitter tolerance  
0.3  
TX_TERM_CTL = L; PRE_SEL = NC; 6  
Gbps data lines,  
tT1(2.0)  
45  
75  
Transition time (rise and fall  
time); measured at 20% and  
80% levels for data lanes.  
TMDS clock meets tT3 for all  
three times.  
TX_TERM_CTL = NC; PRE_SEL = NC;  
1.48 Gbps and 2.97 Gbps data lines, 148  
MHz and 297 MHz clock  
tT1 (1.4b)  
ps  
ps  
TX_TERM_CTL = NC; PRE_SEL = NC;  
1.48 Gbps, 2.97 Gbps, 6 Gbps data lines,  
148 MHz, 297 MHz clock  
tT3  
100  
tDCD  
OUT_CLK ± duty cycle  
Inter-pair output skew  
40%  
50%  
60%  
0.2  
Default setting for internal inter-pair skew  
adjust, TX_TERM_CTL = NC; PRE_SEL =  
NC; 1.48 Gbps, 2.97 Gbps, 6 Gbps data  
lines, 148 MHz, 297 MHz clock; See  
Figure 8  
tSK_INTER  
Tch  
Default setting for internal intra-pair skew  
adjust, TX_TERM_CTL = NC; PRE_SEL =  
NC; 1.48 Gbps, 2.97 Gbps, 6 Gbps data  
lines, 148 MHz, 297 MHz clock; See  
Figure 8  
tSK_INTRA  
Intra-pair output skew  
Total output clock jitter  
0.15  
0.25  
Tbit  
Tbit  
CLK = 25 MHz, 74.25 MHz, 75 MHz, 150  
MHz, 297 MHz  
tJITC1(1.4b)  
(1) The typical rating is simulated at 3.3 V VCC and 1.2 V VDD and at 27°C unless otherwise noted  
(2) The maximum rating is simulated at 3.465 V VCC and 1.27 V VDD and at 85°C unless otherwise noted  
Copyright © 2015–2017, Texas Instruments Incorporated  
13  
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
TMDS Switching Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX(2)  
UNIT  
tJITC1(2.0)  
DR = 6 Gbps: CLK = 150 MHz  
0.3  
Tbit  
3.4 Gbps < Rbit 3.712 Gps  
TX_TERM_CTL = NC; PRE_SEL = NC;  
OE = H  
0.4  
2
3.712 Gbps < Rbit < 5.94 Gbps  
TX_TERM_CTL = NC; PRE_SEL = NC;  
OE = H  
–0.0332Rbit  
+
+
Total output data jitter  
See Figure 14  
tJITD2  
0.2312Rbit  
Tbit  
0.1998  
5.94 Gbps Rbit 6.0 Gbps  
TX_TERM_CTL = NC; PRE_SEL = NC;  
OE = H  
0.6  
6.11 HPD Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX(2)  
UNIT  
ns  
tPD(HPD)  
tT(HPD)  
Propagation delay from HPD_SNK to  
See Figure 16; not valid during  
switching time  
40  
2
120  
HPD_SRC; rising edge and falling edge(2)  
HPD logical disconnected timeout  
See Figure 17  
ms  
(1) The typical rating is simulated at 3.3 V VCC and 1.2 V VDD and at 27°C unless otherwise noted  
(2) The maximum rating is simulated at 3.465 V VCC and 1.27 V VDD and at 85°C unless otherwise noted  
6.12 DDC and I2C Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
VCC = 3.3 V  
MIN  
TYP  
MAX UNIT  
tr  
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Pulse duration, SCL high  
300  
300  
ns  
ns  
μs  
μs  
ns  
μs  
μs  
μs  
μs  
tf  
tHIGH  
tLOW  
tSU1  
0.6  
1.3  
100  
0.6  
0.6  
0.6  
1.3  
Pulse duration, SCL low  
Setup time, SDA to SCL  
tST, STA  
tHD,STA  
tST,STO  
t(BUF)  
Setup time, SCL to start condition  
Hold time, start condition to SCL  
Setup time, SCL to stop condition  
Bus free time between stop and start condition  
Source to sink: 100kbps pattern;  
tPLH1  
tPHL1  
tPLH2  
tPHL2  
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
360  
230  
250  
200  
ns  
ns  
ns  
ns  
Cb(Sink) = 400 pF(1); see Figure 20  
Sink to source: 100kbps pattern;  
Cb(Source) = 100 pF(1); see Figure 21  
(1) Cb = total capacitance of one bus line in pF.  
14  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
6.13 Typical Characteristics  
200  
180  
160  
140  
120  
100  
80  
350  
325  
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
1.2V  
3.3V  
1.2V  
3.3V  
60  
40  
50  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Data Rate (Gbps)  
Data Rate (Gbps)  
D001  
D002  
Figure 3. Current vs Data Rate Redriver Mode  
Figure 4. Current vs Data Rate Retimer Mode  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
VOD No Term  
VOD 150 to 300 W  
VOD 75 to 150 W  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
VSADJ (kW)  
D003  
Figure 5. VSADJ vs VOD  
7 Parameter Measurement Information  
VCC  
3.3 ë  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
0.ꢀ pC  
5+  
ò
ù
Receiver  
Driver  
VID  
VD+  
VY  
5t  
VID = VD+ œ VDœ  
VOD = VY œ VZ  
VDœ  
VZ  
VICM = (VD+ + VDœ  
)
VOC = (VY + VZ)  
2
2
Figure 6. TMDS Main Link Test Circuit  
Copyright © 2015–2017, Texas Instruments Incorporated  
15  
 
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Parameter Measurement Information (continued)  
4.0 V  
VCC  
VID  
2.6 V  
VID+  
VID(pp)  
0 V  
VIDœ  
tPHL  
80%  
tPLH  
80%  
VOD(pp)  
VOD  
0 V  
20%  
tf  
20%  
tr  
Figure 7. Input/Output Timing Measurements  
tSK_INTRA  
tSK_INTRA  
TMDS_OUTxp  
TMDS_OUTxn  
50%  
tSK_INTER  
TMDS_OUTyp  
TMDS_OUTyn  
Figure 8. TMDS Output Skew Measurements  
VOC  
Figure 9. HDMI/DVI TMDS Output Common Mode Measurement  
ûVOC(SS)  
16  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
Parameter Measurement Information (continued)  
ëh5(tt)  
tw9_{9[=ù  
ësadj = 7.06YQ  
Figure 10. Output Differential Waveform  
tw9_{9[ = ù  
ësadj = 7.06 lQ  
tw9_{9[ = [  
ësadj = 7.06 lQ  
1sꢀ biꢀ  
2nd ꢀo ꢁ biꢀ  
ëh5({{)  
ëh5(tt)  
Figure 11. Output De-Emphasis Waveform  
Copyright © 2015–2017, Texas Instruments Incorporated  
17  
 
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Parameter Measurement Information (continued)  
Avcc(4)  
RT  
(5)  
RT  
SMA  
SMA  
SMA  
SMA  
REF  
Cable  
EQ  
Data +  
Coax  
Coax  
Coax  
Coax  
RX  
+EQ  
OUT  
Data œ  
Parallel(6)  
BERT  
Jitter Test  
Instrument(2,3)  
FR4 PCB trace(1)  
and AC coupling  
capacitors  
Device  
FR4 PCB trace  
AVcc  
RT  
[No Pre-  
emphasis]  
RT  
REF  
Cable  
EQ  
SMA  
SMA  
SMA  
SMA  
Coax  
Coax  
Coax  
Coax  
Clk+  
RX  
+EQ  
OUT  
Clkœ  
Jitter Test  
Instrument(2,3)  
TTP4_EQ  
TTP4  
TTP1  
TTP2  
TTP3  
TTP2_EQ  
A. The FR4 trace between TTP1 and TTP2 is designed to emulate 1 to 8 inches of FR4, AC coupling capacitor,  
connector, and another 1 to 8 inches of FR4. Trace width = 4 mils. 100-Ω differential impedance.  
B. All jitter is measured at a BER of 10-9  
C. Residual jitter reflects the total jitter measured at TTP4 minus the jitter measured at TTP1  
D. AVCC = 3.3 V  
E. RT = 50 Ω,  
F. The input signal from parallel Bert does not have any pre-emphasis. Refer to Recommended Operating Conditions.  
Figure 12. HDMI Output Jitter Measurement  
HDMI Mask  
mV  
75  
V
20  
TMDS181 Post EQ  
0
Eye Mask  
œ20  
œ75  
H
Tbit  
ps  
0.3  
0.5  
0.7  
œ33.7 œ25  
25  
33.7  
Figure 13. Input Eye Mask Post EQ – TTP2_EQ  
18  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
Parameter Measurement Information (continued)  
V
0
H
0
0.5  
A. See Table 1.  
Figure 14. Output Eye Mask at TTP4_EQ  
Table 1. Output Eye Mask V and H Values  
TMDS Data Rate (Gbps)  
3.4 < DR < 3.712  
H (Tbit  
)
V (mV)  
0.6  
335  
3.712 < DR < 5.94  
5.94 DR 6.0  
–0.0332Rbit2 +0.2312 Rbit + 0.1998  
–19.66Rbit2 + 106.74Rbit + 209.58  
0.4  
150  
It5_{bY  
It5_{w/  
190K  
100Kꢀ  
Figure 15. HPD Test Circuit  
Copyright © 2015–2017, Texas Instruments Incorporated  
19  
 
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
HPD_SNK  
VCC  
50%  
0 V  
tPD(HPD)  
HPD_SRC  
VCC  
50%  
0 V  
Figure 16. HPD Timing Diagram 1  
HPD_SNK  
50%  
VCC  
0 V  
VCC  
HPD Logical Disconnect  
Timeout  
tT(HPD)  
HPD_SRC  
0 V  
Logically  
Disconnected  
Device Logically  
Connected  
Figure 17. HPD Logic Disconnect Timeout  
20  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
tHD,STA  
tf  
tr  
SCL  
tST,STO  
SDA  
t(BUF)  
START  
STOP  
Figure 18. START and STOP Condition Timing  
tHIGH  
tLOW  
SCL  
tST,STA  
SDA  
tSU1  
Figure 19. SCL and SDA Timing  
Copyright © 2015–2017, Texas Instruments Incorporated  
21  
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
SDA_SRC/SCL_SRC  
INPUT  
½ Vcc  
tPLH1  
tPHL1  
80%  
20%  
SDA_SNK/SCL_SNK  
OUTPUT  
½ Vcc  
tf  
tr  
Figure 20. DDC Propagation Delay – Source to Sink  
SDA_SNK/SCL_SNK  
INPUT  
½ Vcc  
tPHL2  
tPLH2  
80%  
20%  
SDA_SRC/SCL_SRC  
OUTPUT  
½ Vcc  
tf  
tr  
Figure 21. DDC Propagation Delay – Sink to Source  
22  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
1 µF  
ARC_OUT  
SPDIF_IN  
Receiver  
Rest  
VEL  
VEL SWING  
Figure 22. ARC Output  
UI  
0.4 UI  
0.4 UI  
Figure 23. Rise and Fall Time of ARC  
Copyright © 2015–2017, Texas Instruments Incorporated  
23  
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TMDS181 is a DVI or HDMI™ retimer. The TMDS181 supports four TMDS channels, audio return channel  
(SPDIF_IN/ARC_OUT), hot plug detect, and DDC interfaces. The TMDS181 supports signaling rates up to 6  
Gbps in retimer mode to allow for the highest resolutions of 4k2k60p 24 bits per pixel and up to WUXGA 16-bit  
color depth or 1080p with higher refresh rates. In redriver mode it supports HDMI1.4b with data rates up to 3.4  
Gbps. The TMDS181 can be configured to support the HDMI2.0a standard which includes higher data rate, lower  
clock swing, and clock frequency. The TMDS181 can automatically configure itself as a redriver at low data rate  
(<1.0 Gbps) or as a retimer above this data rate. For passing compliance and reducing system-level design  
issues, several features are included such as TMDS output amplitude adjust using an external resistor on the  
VSADJ pin and source termination selection control. Device operation and configuration can be programmed by  
pin strapping or I2C. Four TMDS181s can be used on one I2C bus when I2C_EN enable and device address set  
by A0/A1.  
To reduce active power, the TMDS181 supports dual power supply rails of 1.2 V on VDD and 3.3 V on VCC.  
There are several methods of power management, such as going into power-down mode using three methods:  
HPD is low  
Writing a 1 to register 09h[3]  
De-asserting OE  
De-asserting OE clears the I2C registers, thus once reasserted the device must be reprogrammed if I2C was  
used for device setup. Upon return to normal active operation from reasserted OE or reasserted HPD, the  
TMDS181 requires the source to write a 1 to the TMDS_CLOCK_RATIO_STATUS bit for the TMDS181 to  
resume 1/40th clock mode. The TMDS181 does not reset this bit based upon a DDC read transaction. The  
SIG_EN pin enables the signal detect circuit that provides an automatic power-management feature during  
normal operation. When no valid signal is present on the inputs, the device will enter standby mode. By disabling  
the detect circuit, the receiver block is always on. DDC bridge supports the HDMI2.0 SCDC communication, 100  
Kbps data rate default and 400 kbps adjustable by software.  
TMDS181 supports both fixed EQ gain control or adaptive equalization to compensate for different lengths of  
input cables or board traces. The EQ gain can be software adjusted by I2C control or selection between two fixed  
values or adaptive (Retimer Mode Only) equalization by pin strapping EQ_SEL pin. The customer can pull up or  
down TX_TERM_CTL through a 65 kΩ resistor to change the termination impedance for improved output  
performance when working in HDMI1.4b or leave it not connected. When not connected, the TMDS181 in  
conjunction with the rate detect automatically changes its output termination to meet HDMI1.4b or HDMI2.0a  
needs. For HDMI1.4b a transmitter termination of 150 Ω to 300 Ω is allowed for data rates above 2 Gbps to  
compensate for reflections. The automatic termination selection will configure the TMDS181 for this. It is  
important to note that there are times that this is not the best solution and no termination may be needed to pass  
compliance. For HDMI2.0a the 75 Ω to 150 Ω transmitter termination is required and the link will not work if this  
is not set.  
The TMDS181 supports the audio return channel to support HDMI1.4b. To make implementation easier, the  
TMDS181 supports input pin swapping and input polarity swap. When swapping the input pins, IN_CLK and  
IN_D2 swap and IN_D1 and IN_D0 swap with each other. Swap works in both retimer and redriver mode.  
Polarity swap exchanges the N and P channel polarity in each input lane and is only available during retimer  
mode. Lane swap and polarity swap can be implemented at the same time in retimer mode.  
Two temperature gradient versions of the device are available: extended commercial temperature range 0ºC to  
85ºC (TMDS181) and industrial temperature range from –40ºC to 85ºC (TMDS181I).  
24  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
8.2 Functional Block Diagram  
HPD_SRC  
HPD_SNK  
190<Q  
SIGNAL  
DETECT  
VBIAS  
SIG_DET_OUT  
VSADJ  
50Q  
50Q  
OUT_CLKp  
IN_CLKp  
IN_CLKn  
TMDS  
EQ  
OUT_CLKn  
Data Registers  
SWAP  
PLL  
VBIAS  
PLL Control  
SERDES  
50Q  
50Q  
IN_D[2:0]p  
IN_D[2:0]n  
OUT_D[2:0]p  
EQ  
TMDS  
OUT_D[2:0]n  
Control Block, I2C Registers  
TERM_SEL  
EQ_CTL  
I2C_EN/PIN  
PRE_SEL  
Enable  
EQ_SEL  
A0  
SIG_DET_OUT  
EQ_SEL/A0  
A1  
SIG_EN  
PRE_SEL  
OE  
TX_TERM_CTL  
SWAP/POL  
A1  
Local I2C  
Control  
SDA_CTL  
SCL_CTL  
DDC Snoop Block  
SDA_SRC  
SDA_SNK  
ACTIVE DDC BLOCK  
SCL_SRC  
SCL_SNK  
SPDIF_IN  
ARC_OUT  
ARC Function  
GND  
1.2V  
3.3V  
VDD  
VCC  
VREG  
Copyright © 2016, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 Reset Implementation  
When OE is de-asserted, control signal inputs are ignored; the HDMI inputs and outputs are high impedance. It  
is critical to transition the OE from a low level to a high level after the VCC supply has reached the minimum  
recommended operating voltage. Achieve this transition by a control signal to the OE input, or by an external  
capacitor connected between OE and GND. To ensure the TMDS181 is properly reset, the OE pin must be de-  
asserted for at least 100 μs before being asserted. When OE is reasserted, the TMDS181 must be  
Copyright © 2015–2017, Texas Instruments Incorporated  
25  
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
reprogrammed if it was programmed by I2C and not pin strapping. When implementing the external capacitor, the  
size of the external capacitor depends on the power up ramp of the VCC supply, where a slower ramp-up results  
in a larger-value external capacitor. Refer to the latest reference schematic for TMDS181; consider  
approximately 200 nF capacitor as a reasonable first estimate for the size of the external capacitor. Figure 24  
and Figure 25 show both OE implementations.  
h9  
ww{Ç = 200 Y  
/
Figure 24. External Capacitor Controlled OE  
GPO  
OE  
C
Figure 25. OE Input from Active Controller  
8.3.2 Operation Timing  
TMDS181 starts to operate after the OE signal is properly set after power-up timing completes. See Figure 1,  
Figure 2, and Power-Up and Operation Timing Requirements. If OE is held low until VDD and VCC become stable,  
there is no rail sequence requirement.  
8.3.3 Swap and Polarity Working  
TMDS181 incorporates swap function, which can set the input lanes in swap mode. The IN_D2 routes to the  
OUT_CLK position. The IN_D1 swaps with IN_D0. The swap function only changes the input pins. The EQ setup  
follows the new mapping (see Figure 26). This function can be used with the SWAP/POL pin 1 and control the  
register 0x09h bit 7 for SWAP enable. Lane swap function works in both redriver and retimer mode.  
The TMDS181 can also swap the input polarity signals. When SWAP/POL is high the n and p pins on each lane  
will swap. Polarity swap only works when in retimer mode. Take care when this function is enabled and the  
device is in automatic crossover mode between redriver and retimer modes. When the data rate drops to the  
redriver level, the polarity swap is lost.  
26  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
Table 2. SWAP Function(1)  
Normal Operation  
SWAP = L or CSR 0x09h bit 7 is 1’b1  
IN_D2 OUT_D2  
IN_D1 OUT_D1  
IN_D0 OUT_D0  
IN_CLK OUT_CLK  
IN_D2 OUT_CLK  
IN_D1 OUT_D0  
IN_D0 OUT_D1  
IN_CLK OUT_D2  
(1) The output lanes never change, only the input lanes change. See  
Figure 26.  
36  
35  
34  
33  
32  
Çꢁwa_/Ç[  
hÜÇ_ꢀ2p  
hÜÇ_ꢀ2n  
{í!tꢂth[  
1
2
{í!tꢂth[  
36  
35  
34  
33  
32  
Çꢁwa_/Ç[  
hÜÇ_ꢀ2p  
hÜÇ_ꢀ2n  
1
2
Lb_ꢀ2p  
Lb_ꢀ2n  
Lb_ꢀ2p  
Lb_ꢀ2n  
ꢀ!Ç! [!bꢁ2  
/[h/Y [!bꢁ  
3
3
Itꢀ_{bY  
hÜÇ_ꢀ1p  
4
Itꢀ_{bY  
hÜÇ_ꢀ1p  
Itꢀ_{w/  
Lb_ꢀ1p  
Itꢀ_{w/  
Lb_ꢀ1p  
4
5
5
ꢀ!Ç! [!bꢁ1  
ꢀ!Ç! [!bꢁ0  
hÜÇ_ꢀ1n  
hÜÇ_ꢀ1n  
Lb_ꢀ1n  
Dbꢀ  
31  
30  
Lb_ꢀ1n  
Dbꢀ  
6
31  
30  
6
Dbꢀ  
7
Dbꢀ  
7
29  
28  
27  
26  
25  
Lb_ꢀ0p  
hÜÇ_ꢀ0p  
hÜÇ_ꢀ0n  
!1  
8
Lb_ꢀ0p  
hÜÇ_ꢀ0p  
hÜÇ_ꢀ0n  
29  
28  
27  
26  
25  
8
ꢀ!Ç! [!bꢁ0  
ꢀ!Ç! [!bꢁ1  
Lb_ꢀ0n  
L2/_ꢁbꢂtLb  
Lb_/[Yp  
9
Lb_ꢀ0n  
L2/_ꢁbꢂtLb  
Lb_/[Yp  
9
10  
11  
12  
10  
11  
12  
!1  
hÜÇ_/[Yp  
hÜÇ_/[Yn  
/[h/Y [!bꢁ  
hÜÇ_/[Yp  
hÜÇ_/[Yn  
ꢀ!Ç! [!bꢁ2  
Lb_/[Yn  
Lb_/[Yn  
{í!t = ù  
Ln bormal íorking  
{í!t = [  
Ln {wap íorking  
Figure 26. TMDS181 Swap Function  
8.3.4 TMDS Inputs  
Standard TMDS terminations are integrated on all TMDS inputs. External terminations are not required. Each  
input data channel contains an adaptive or fixed equalizer to compensate for cable or board losses. The voltage  
at the TMDS input pins must be limited below the absolute maximum ratings. An unused input should not be  
connected to ground because this would result in excessive current flow damaging the device. An unused input  
channel can be externally biased to prevent output oscillation. The complementary input pin is recommended to  
be grounded through a 1 kresistor and the other pin left open. The input pins can be polarity changed through  
the local I2C register when in retimer mode.  
8.3.5 TMDS Inputs Debug Tools  
There are two methods for debugging a system to make sure the inputs to the TMDS181 are valid. A TMDS  
error checker is implemented to provide a rough bit error rate per data lane. This allows the system implementer  
to determine how the link between the source and TMDS181 is performing on all three data lanes. See RX  
PATTERN VERIFIER CONTROL/STATUS Register.  
If a high error count is evident, the TMDS181 has a way to view the general eye quality. A tool is available that  
uses the I2C link to download the data that can be plotted for an eye diagram. This is available per data lane.  
This tool also provides a method to turn on an internal PRBS generator that will transmit a data signal on the  
data pins. A clock at the proper frequency is required on the IN_CLK pins to generate the expected output data  
rate.  
Copyright © 2015–2017, Texas Instruments Incorporated  
27  
 
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.3.6 Receiver Equalizer  
Equalizers are used to clean up inter-symbol interference (ISI) jitter or loss from the bandwidth-limited board  
traces and cables. TMDS181 supports fixed receiver equalizer (Retimer and Redriver Mode) and adaptive  
receiver equalizer (Retimer Mode) by setting the EQ_SEL/A0 pin or through I2C reg0Ah[5]. When EQ_SEL/A0 is  
high, the EQ gain is fixed to 14 dB and when set low ,the EQ gain is set to 7.5 dB. TMDS181 operates in  
adaptive equalizer mode when the EQ_SEL/A0 pin is left floating. The EQ gain is automatically adjusted based  
on the data rate to compensate for trace or cable loss. Various fixed EQ values can be set through local I2C  
control, reg0Dh[5:1]. The fixed EQ value can be programmed for both the data and clock. Adaptive equalization  
is the default setting.  
Figure 27. Adaptive EQ Gain Curve for >3.4 Gbps  
8.3.7 Input Signal Detect Block  
When SIG_EN is enabled, the TMDS looks for a valid TMDS clock signal input. The device is fully functional  
when a valid signal is detected. If no valid TMDS clock signal is detected, the device enters standby mode  
waiting for a valid signal at the clock input. The internal CDR is shut down and all of the TMDS outputs are in  
high-Z status. TMDS signal detect circuit can be set as enable by SIG_EN pin or through local I2C control but is  
default disabled. Implementer should activate this function in normal operation for power saving.  
8.3.8 Audio Return Channel  
The audio return channel in TMDS181 enables a TV, through a single HDMI cable, to send audio data upstream  
to an A/V receiver or surround audio controller, increasing user flexibility and eliminating the need for any  
separate S/PDIF audio connection. The TMDS181 supports single mode audio return channel. Customer can  
import the S/PDIF signal to SPDIF_IN and send out the signal from ARC_OUT and pass through the general  
HDMI cable to audio receiver. By I2C control, customer can disable ARC_OUT by register. Default enable after  
initialize.  
8.3.9 Transmitter Impedance Control  
HDMI2.0a standard requires a termination impedance in the 75 Ω to 150 Ω range for data rates >3.4 Gbps.  
Source termination is disabled at data rates <2 Gbps. When the data rate is between 2 Gbps and 3.4 Gbps, the  
output signal may be better if the termination value is between 150 Ω to 300 Ω, depending upon system  
implementation. It is important to note that there are times that this is not the best solution and no termination  
may be needed to pass compliance. TMDS181 supports three different source termination impedances for  
HDMI1.4b and HDMI2.0a. Pin 36, TX_TERM_CTL, offers a selection option to choose the output termination  
impedance value. This function can be programmed using I2C, reg0Bh[4:3] TX_TERM_CTL. For HDMI2.0a the  
75 Ω to 150 Ω transmitter termination is required and the link will not work if this is not set.  
28  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
Table 3. TX Termination Control  
PIN 36  
CONFIGURATION  
DESCRIPTION  
TX_TERM_CTL = H  
TX_TERM_CTL = L  
The transmitter has no termination  
The transmit termination impedance is approximately 75 Ω to 150 Ω to support  
HDMI2.0a  
TX_TERM_CTL = NC Automatically selects the impedance  
DR > 3.4 Gbps – 75 Ω to 150 Ω differential near end termination  
2 Gbps > DR < 3.4 Gbps – 150 Ω to 300 Ω differential near-end termination  
DR < 2 Gbps – No termination  
8.3.10 TMDS Outputs  
A 1% precision resistor, 7.06 kΩ, is recommended to be connected from VSADJ pin to ground to allow the  
differential output swing to comply with TMDS signal levels. The differential output driver provides a typical 10  
mA current sink capability, which provides a typical 500 mV voltage drop across a 50 Ω termination resistor.  
AVCC  
VCC  
TMDS181  
Zo = RT  
Zo = RT  
TMDS DRIVER  
TMDS RECEIVER  
Figure 28. TMDS Driver and Termination Circuit  
Referring to Figure 28, if VCC (TMDS181 supply) and AVCC (sink termination supply) are both powered, the  
TMDS output signals are high impedance when OE = high. The normal operating condition is that both supplies  
are active. Refer to Figure 28, if VCC is on and AVCC is off, the TMDS outputs source a typical 5-mA current  
through each termination resistor to ground. A total of 33 mW of power is consumed by the terminations  
independent of the OEB logical selection. When AVCC is powered on, normal operation (OE controls output  
impedance) is resumed. When the power source of the device is off and the power source to termination is on,  
the IO(off) output leakage current specification ensures the leakage current is limited to 45 μA or less. The VOD of  
the clock and data lanes can be reduced through I2C. See Table 12 for details. Figure 3 shows the different  
output voltages based on the different VSADJ settings.  
8.3.11 Pre-Emphasis/De-Emphasis  
The TMDS181 provides de-emphasis as a way to compensate for ISI loss between the TMDS181 outputs to a  
TMDS receiver. There are two methods to implement this function. When in pin strapping mode the PRE_SEL  
pin controls this function. The PRE_SEL pin provides - 2 dB or 0 dB de-emphasis, which allows the output signal  
pre-conditioning to offset interconnect losses from the TMDS181 device to the TMDS receiver. De-emphasis is  
recommended to be set at 0 dB while connecting to a receiver through short PCB route. When pulled to ground  
though a 65 kΩ resistor - 2 dB can be realized, see Figure 11. When using I2C, reg0Ch[1:0] is used to make  
these adjustments.  
As there are times that true pre-emphasis may be the best solution there are two ways to accomplish this. If pin  
strapping is being used the best method is to reduce the VSADJ resistor value thus increasing the VOD swing  
and then pulling the PRE_SEL pin to ground using the 65 kΩ resistor, see Figure 29. If using I2C there are two  
methods to accomplish this. The first is similar to pin strapping by reducing the VSADJ resistor value and then  
implementing - 2 dB de-emphasis. The second method is to set reg0Ch[7:5] = 011 and set reg0Ch[1:0] = 01  
which will accomplish the same pre-emphasis setting, see Figure 30.  
Copyright © 2015–2017, Texas Instruments Incorporated  
29  
 
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
NOTE  
De-emphasis is only implement able during retimer mode. In redriver mode this function is  
not available.  
tw9_{9[ = ù  
ësadj = 7.06YQ  
tw9_{9[ = [  
ësadj = 4.5YQ  
1sꢁ biꢁ  
ëh5(tt) = 1400mëpp  
2nd ꢁo ꢂ biꢁ  
ëh5({{) = 11ꢀ0mëpp  
Figure 29. Output Pre-Emphasis Using Pin Strapping  
30  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
tw9_{9[ = ù  
ësadj = 7.06YQ  
ësadj = 7.06YQ  
L2/ weg0/hꢀ7:5] = 011  
weg0/ꢀ1:0] = 01  
1sꢀ biꢀ  
2nd ꢀo ꢁ biꢀ  
ëh5(tt) = 1200mëpp  
ëh5({{) = 1020mëpp  
Figure 30. Output Pre-Emphasis Using I2C  
8.4 Device Functional Modes  
8.4.1 Retimer Mode  
Clock and data recovery circuits (CDR) are used to track, sample, and retime the equalized data bit streams. The  
CDRs are designed with a loop bandwidth to minimize the amount of jitter transfer from the video source to the  
TMDS outputs. Input jitter within the CDR’s PLL bandwidth, < 1 MHz will be transferred to the TMDS outputs.  
Higher frequency jitter above the CDR loop bandwidth is attenuated, providing a jitter cleaning function to reduce  
the amount of high frequency jitter from the video source. The retimer is automatically activated at pixel clock  
approximately above 100 MHz when jitter cleaning is needed for robust operation when this option is enabled  
(default). The retimer operates at about 1 Gbps to 6 Gbps DR.  
When systems switch to higher data rates above 3.4 Gbps, the CDR operates at between 85 MHz to 150 MHz  
pixel clock (3.4+ to 6.0 Gbps), supporting up to 4K2K high resolution with a 60 Hz refresh rate, or 3D 1080p  
HDTV. At pixel clock below 100 MHz, the TMDS181 automatically bypasses the internal retimer and operates as  
a redriver. When the video source changes resolution, the internal retimer starts the acquisition process to  
determine the input clock frequency and acquire lock to new data bit streams. During the clock frequency  
detection period and the retimer acquisition period that last approximately 7 ms, the TMDS drivers can be kept  
active (default) or programmed to be disabled to avoid sending invalid clock or data to the downstream receiver.  
The TMDS181 can be configured to work as a redriver (full range), crossover (redriver-retimer), and retimer (full  
range).  
Copyright © 2015–2017, Texas Instruments Incorporated  
31  
 
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Device Functional Modes (continued)  
8.4.2 Redriver Mode  
The TMDS181 also has a redriver mode that can be enabled through I2C, at reg0Ah[1:0] DEV_FUNC_MODE,  
which compensates for ISI channel loss. In this mode, power is reduced as the CDR and PLL are turned off.  
When in automatic mode, the TMDS181 is in redriver mode for data rates <1.0 Gbps. By using I2C, the device  
can be put in redriver mode for the complete data range of 250 Mbps to 3.4 Gbps. This is done by writing a 00 to  
register 0Ah[1:0]. If the link has excessive random jitter, then retimer mode is the best operating mode. When in  
redriver mode, the device only compensates for ISI loss. When in redriver mode compliance is not guaranteed as  
skew compensation and retiming functions are disabled. If a significant amount of random jitter is present, the  
system may not pass compliance at the connector.  
8.4.3 DDC Training for HDMI2.0a Data Rate Monitor  
As part of discovery, the source reads the sink’s E-EDID information to understand the capabilities of the sink.  
Part of this read is HDMI Forum Vendor Specific Data Block (HF-VSDB) MAX_TMDS_Character_Rate byte to  
determine the data rate supported. Depending upon the value, the source writes to slave address 0xA8 offset  
0x20 bit1, TMDS_CLOCK_RATIO_STATUS. The TMDS181 snoops this write to determine the TMDS clock ratio  
and thus sets its own TMDS_CLOCK_RATIO_STATUS bit accordingly. If a 1 is written, then the TMDS clock is  
set to 1/40th of TMDS bit period. If a 0 is written, then the TMDS clock is set to 1/10th of TMDS bit period. The  
TMDS181 defaults to 1/10th of TMDS bit period unless a 1 is written to address 0xA8 offset 0x20 bit 1. When  
HPD is deasserted, this bit is reset to default values. If the source does not write this bit, the TMDS181 will not  
be configured for TMDS clock 1/40th mode in support of HDMI2.0a. As the TMDS181 is in the system link, but  
not recognized as part of the link, it is possible that the source could read the sink EDID where this bit is set and  
does not rewrite this bit. If the TMDS181 has entered a power-down state, this bit is cleared and does not re-set  
on a read. To work properly, the bit has to be set again with a write by the source.  
8.4.4 DDC Functional Description  
The TMDS181 solves sink/source level issues by implementing a master/slave control mode for the DDC bus.  
When the TMDS181 detects the start condition on the DDC bus from the SDA_SRC/SCL_SRC, it will transfer the  
data or clock signal to the SDA_SNK/SCL_SNK with little propagation delay. When SDA_SNK detects the  
feedback from the downstream device, the TMDS181 will pull up or pull down the SDA_SRC bus and deliver the  
signal to the source.  
The DDC link defaults to 100 kbps but can be set to various values including 400 kbps by setting the correct  
value to address 0Bh through the I2C interface. The DDC lines are 5 V tolerant when the device is powered off.  
NOTE  
The TMDS181 utilizes clock stretching for DDC transactions. As there are sources and  
sinks that do not perform this function correctly a system may not work correctly as DDC  
transactions are incorrectly transmitted/received. To overcome this a snoop configuration  
can be implemented where the SDA/SCL from the source is connected directly to the  
SDA/SCL sink. The TMDS181 will need its SDA_SNK and SCL_SNK pins connected to  
this link in order to correctly configure the TMDS_CLOCK_RATIO_STATUS bit. Care must  
be taken when this configuration is being implemented as the voltage levels for DDC  
between the source and sink may be different, 3.3 V vs 5 V; See Figure 35 and See  
Figure 36  
8.4.5 Mode Selection Functional Description  
Mode selection definition: This bit lets the receiver know where the device is located in a system for the purpose  
of centering the AEQ point. The TMDS181 is targeting sink applications, so the default value is 1, which will  
center the EQ at 12 to 13 dB depending upon TMDS_CLOCK_RATIO_STATUS value (see Equalization Control  
Register). If the TMDS181 is in a source application, the value should be changed to a value of 0, which centers  
the EQ at 6.5 to 7.5 dB depending upon the TMDS_CLOCK_RATIO_STATUS value.  
32  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
8.5 Register Maps  
8.5.1 Local I2C Overview  
The TMDS181 local I2C interface is always enabled, but will only be able to overwrite pin strapped features when  
I2C_EN/PIN is high. The SCL_CTL and SDA_CTL terminals are used for I2C clock and data respectively. The  
TMDS181 I2C interface conforms to the two-wire serial interface defined by the I2C Bus Specification, Version 2.1  
(January 2000), and supports the fast mode transfer up to 400 kbps.  
The device address byte is the first byte received following the START condition from the master device. The 7-  
bit device address for TMDS181 decides by the combination of EQ_SEL/A0 and A1. Figure 31 clarifies the  
TMDS181 target address.  
Figure 31. TMDS181 I2C Device Address Description  
A1/A0  
00  
7 (MSB)  
6
0
0
0
0
5
1
1
1
1
4
1
1
1
1
3
1
1
1
0
2
1
0
0
1
1
0
1
0
1
0 (W/R)  
0/1  
HEX  
BC/BD  
BA/BB  
B8/B9  
B6/B7  
1
1
1
1
01  
0/1  
10  
0/1  
11  
0/1  
The typical source application of the TMDS181 is as a retimer in a TV connecting the HDMI output connector  
and an internal HDMI transmit through flat cables. The register setup can adjust by source side. When TMDS181  
is used in a sink side application, it receives data from input connector and transmits to receiver. Local I2C buses  
run at 400 kHz supporting fast-mode I2C operation.  
The following procedure is used to write to the TMDS181 I2C registers:  
1. The master initiates a write operation by generating a start condition (S), followed by the TMDS181 7-bit address and a  
zero-value W/R bit to indicate a write cycle.  
2. The TMDS181 acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within TMDS181) to be written, consisting of one byte of data, MSB-  
first.  
4. The TMDS181 acknowledges the sub-address cycle.  
5. The master presents the first byte of data to be written to the I2C register.  
6. The TMDS181 acknowledges the byte transfer.  
7. The master may continue presenting additional bytes of data to be written, with each byte transfer completing with an  
acknowledge from the TMDS181.  
8. The master terminates the write operation by generating a stop condition (P).  
The following procedure is used to read the TMDS181 I2C registers.  
1. The master initiates a read operation by generating a start condition (S), followed by the TMDS181 7-bit address and a  
one-value W/R bit to indicate a read cycle.  
2. The TMDS181 acknowledges the address cycle.  
3. The TMDS181 transmits the contents of the memory registers MSB-first starting at register 00h.  
4. The TMDS181 waits for either an acknowledge (ACK) or a not-acknowledge (NACK) from the master after each byte  
transfer; the I2C master acknowledges reception of each data byte transfer.  
5. If an ACK is received, the TMDS181 transmits the next byte of data.  
6. The master terminates the read operation by generating a stop condition (P).  
NOTE  
Upon reset, the TMDS181 sub-address is always set to 0x00. When no sub-address is  
included in a read operation, the TMDS181 sub-address increments from the previous  
acknowledged read or write data byte. If it is required to read from a sub-address that is  
different from the TMDS181 internal sub-address, a write operation with only a sub-  
address specified is needed before performing the read operation.  
Copyright © 2015–2017, Texas Instruments Incorporated  
33  
 
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Refer to Local I2C Control Bit Access TAG Convention for TMDS181 local I2C register descriptions. Reads from  
reserved fields not described return zeros, and writes are ignored.  
8.5.2 Local I2C Control Bit Access TAG Convention  
Reads from reserved fields return zero, and writes to read-only reserved registers are ignored. All addresses not  
defined by this specification are considered reserved. Reads from these addresses return zero and writes are  
ignored.  
BIT ACCESS TAG CONVENTIONS  
A table of bit descriptions is typically included for each register description that indicates the bit field name, field  
description, and the field access tags. Table 4 describes the field access tags.  
Table 4. Field Access Tags  
ACCESS TAG  
NAME  
Read  
Write  
Set  
DESCRIPTION  
R
W
S
The field will be read by software  
The field will be written by software  
The field will be set by a write of 1. Writes of 0 to the field have no effect  
Hardware may autonomously update this field  
U
Update  
8.5.3 CSR Bit Field Definitions  
8.5.3.1 ID Registers  
Table 5. ID Registers Field Descriptions  
ADDRESS  
BITS  
DESCRIPTION  
ACCESS  
00h~07h  
7:0  
DEVICE_ID  
R
These fields return a string of ASCII characters “TMDS181” followed by one space  
character.  
TMDS181: Address 0x00 – 0x07 = {- 0x54”T”, 0x4D”M”, 0x44”D”, 0x53”S”, 0x31”1”,  
0x38”8”, 0x31”1”, 0x20},  
08h  
7:0  
REV _ID. This field identifies the device revision.  
0000001 – TMDS181 revision 1  
R
34  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
8.5.3.2 MISC CONTROL Register  
Table 6. MISC CONTROL Register Field Descriptions  
ADDRESS  
BITS  
DEFAULT DESCRIPTION  
ACCESS  
09h  
7
1’b0  
LANE_SWAP. This field swaps the input lanes as per Figure 26.  
RWU  
0 – Disable (default) no lane swap  
1 – Enable: Swaps input lanes (redriver and retimer mode)  
Note: Field is loaded from SWAP/POL pin; Writes are ignored when I2C_EN/PIN = 0  
6
1’b0  
LANE_POLARITY swaps the input data and clock lanes polarity.  
0 – Disabled (default) no polarity swap  
RWU  
1 – Swaps the input data and clock lane polarity (retimer mode only)  
Note: Field is loaded from SWAP/POL pin; Writes are ignored when I2C_EN/PIN = 0  
5
4
1’b0  
1’b0  
Reserved  
R
SIG_EN. This field enables the clock lane activity detect circuitry. (Redriver mode only  
because the retimer requires a clock input to work, so without a clock input, the  
device enters standby regardless)  
RWU  
0 – Disable (default) Clock detector circuit closed and receiver always works in  
normal operation.  
1 – Enable, clock detector circuit makes the receiver automatically enter the standby  
state when no valid data detect.  
Note: Field is loaded from SIG_EN pin; Writes are ignored when I2C_EN/PIN = 0  
3
2
1’b0  
1’b0  
PD_EN  
RW  
RW  
RW  
0 – Normal working (default)  
1 – Forced power down by I2C, lowest power state  
HPD_AUTO_PWRDWN_DISABLE  
0 – Automatically enters power-down mode based on HPD_SNK (default)  
1 – Does not automatically enter power down mode  
I2C_DR_CTL. I2C data rate supported for configuring device.  
1:0  
2’b10  
00 – 5 Kbps  
01 – 10 Kbps  
10 – 100 Kbps (default)  
11 – 400 Kbps (Note: HPD_AUTO_PWRDWN_DISABLE must be set before enabling  
400 Kbps mode)  
0Ah  
7
6
5
4
1’b1  
1’b0  
1’b1  
1’b1  
Application mode selection (see Device Functional Modes)  
TMDS181  
0 – Source  
1 – Sink (default)  
RW  
RW  
HPDSNK_GATE_EN. The field sets the functional relationship between HPD_SNK  
and HPD_SRC.  
0 – HPD_SNK passed through to the HPD_SRC (default)  
1 – HPD_SNK does not pass through to the HPD_SRC.  
EQ_ADA_EN. This field enables the equalizer functioning state.  
0 – Fixed EQ  
1 – Adaptive EQ (default)  
RWU  
RW  
Writes are ignored when I2C_EN/PIN = 0  
EQ_EN. This field enables the equalizer.  
0 -- EQ disable  
1 – EQ enable (default)  
Writes are ignored when I2C_EN/PIN = 0  
3
2
1’b0  
1’b0  
Reserved  
R
APPLY_RXTX_CHANGES, Self-clearing write-only bit.  
W
Writing a 1 to this bit will apply new TX_TERM, HDMI_TWPST1, EQ_EN,  
EQ_ADA_EN, VSWING, Fixed EQ Value settings to the clock and data lanes. Writes  
to the respective registers do not take immediate effect.  
This bit does not need to be written if I2C configuration occurs while HPD_SNK are  
low, I2CPD_EN = 1 or there is no HDMI clock applied and SIGN_EN is high.  
1:0  
2’b01  
DEV_FUNC_MODE. This field selects the device working function mode.  
00 – Redriver mode: 250 Mbps – 3.4 Gbps  
RW  
01 – Automatic redriver to retimer crossover at 1.0 Gbps (default)  
10 – Automatic retimer when HDMI2.0a based upon  
TMDS_CLOCK_RATIO_STATUS  
11 – Retimer mode across full range 250 Mbps to 6 Gbps  
When changing crossover point, need to toggle PD_EN or toggle external HPD_SNK.  
Copyright © 2015–2017, Texas Instruments Incorporated  
35  
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 6. MISC CONTROL Register Field Descriptions (continued)  
ADDRESS  
BITS  
7:5  
DEFAULT DESCRIPTION  
3’b000 Reserved  
ACCESS  
R
0Bh  
4:3  
2'b00  
TX_TERM_CTL. Controls termination for HDMI TX.  
RWU  
00 – No termination (default)  
01 – 150 Ω to 300 Ω  
10 – Reserved  
11 – 75 Ω to 150 Ω  
Note: Writes are ignored when I2C_EN/PIN = 0; reflects the value of TX_TERM_CTL  
pin.  
2
1
1'b0  
1'b0  
DDC_DR_SEL Defines the DDC output speed for DDC bridge  
0 = 100 kbps (default)  
1 = 400 kbps (Note: HPD_AUTO_PWRDWN_DISABLE must be set before enabling  
400 Kbps mode)  
RW  
TMDS_CLOCK_RATIO_STATUS. This field is updated from snoop of DDC write to  
slave address 0xA8 offset 0x20 bit 1 that occurred on the SDA_SRC/SCL_SRC  
interface. When bit 1 of address 0xA8 offset 0x20 in the SCDC register set is written  
to a 1’b1, then this field will be set to a 1’b1. When bit 1 of address 0xA8 offset 0x20  
is written to a 1’b0, then this field will be set to a 1’b0. This field is reset to default  
value whenever HPD_SNK is de-asserted for greater than 2 ms.  
RWU  
0 – TMDS Clock is 1/10 of TMDS bit period (default)  
1 – TMDS Clock is 1/40 of TMDS bit period  
0
1'b0  
DDC_TRAIN_SETDISABLE; This field indicate the DDC training block function status.  
If disabled the device will only work in HDMI1.x or DVI modes.  
0 – DDC training enable (default)  
1 – DDC training disable  
Note: To force TMDS_CLOCK_RATIO_STATUS to 1 this register bit must be set to 1  
which will force the 1/40 mode for HDMI2.0  
RW  
RW  
0Ch  
7:5  
3’b000  
VSWING_DATA: Data output swing control  
000 – Vsadj set (default)  
001 – Increase by 7%  
010 – Increase by 14%  
011 – Increase by 21%  
100 – Decrease by 30%  
101 – Decrease by 21%  
110 – Decrease by 14%  
111 – Decrease by 7%  
4:2  
3’b000  
VSWING_CLK: Clock output swing control: Default is set by Vsadj resistor value and  
the value of reg_0Dh[0].  
RW  
000 – Vsadj (default)  
001 – Increase by 7%  
010 – Increase by 14%  
011 – Increase by 21%  
100 – Decrease by 30%  
101 – Decrease by 21%  
110 – Decrease by 14%  
111 – Decrease by 7%  
1:0  
2’b00  
HDMI_TWPST1[1:0]. HDMI de-emphasis FIR post-cursor-1 signed tap weight.  
RWU  
(Retimer Mode Only)  
00 – No de-emphasis (default)  
01 – 2 dB de-emphasis  
10 – Reserved  
11 – Reserved  
Note: Reflects value of PRE_SEL pin; Writes are ignored when I2C_EN/PIN = 0  
36  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
8.5.3.3 Equalization Control Register  
Table 7. Equalization Control Register Field Descriptions  
ADDRESS  
BITS  
7:6  
DEFAULT DESCRIPTION  
ACCESS  
0Dh  
2’b00  
Reserved  
R
5:3  
1’b000  
Data lane EQ – Sets fixed EQ values  
HDMI1.x  
RW  
HDMI2.0a  
000 – 0 dB (default)  
001 – 4.5 dB  
000 – 0 dB (default)  
001 – 3 dB  
010 – 6.5 dB  
010 – 5 dB  
011 – 8.5 dB  
011 – 7.5 dB  
100 – 9.5 dB  
101 – 11 dB  
110 – 13 dB  
111 – 14.5 dB  
100 – 10.5 dB  
101 – 12 dB  
110 – 14 dB  
111 – 16.5 dB  
2:1  
1’b00  
Clock lane EQ - Sets fixed EQ values  
HDMI1.x  
RW  
RW  
HDMI2.0a  
00 – 0 dB (default)  
01 – 1.5 dB  
00 – 0 dB (default)  
01 – 1.5 dB  
10 – 3 dB  
10 – 3 dB  
11 – RSVD  
11 – 4.5 dB  
0
1’b0  
DIS_HDMI2_SWG:  
0 – Clock VOD is half of set values when TMDS_CLOCK_RATIO_STATUS states  
in HDMI2.0a mode (default)  
1 – Disables TMDS_CLOCK_RATIO_STATUS control of the clock VOD so output  
swing is at full swing.  
Copyright © 2015–2017, Texas Instruments Incorporated  
37  
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.5.3.4 RX PATTERN VERIFIER CONTROL/STATUS Register  
Table 8. RX PATTERN VERIFIER CONTROL/STATUS Register Field Description(1)  
ADDRESS  
BITS  
DEFAULT  
DESCRIPTION  
ACCESS  
0Eh  
7:4  
4’b0000  
PV_SYNC[3:0]. Pattern timing pulse. This field is updated for 8UI once every cycle  
of the PRBS generator. 1 bit per lane.  
R
3:0  
4’b0000  
PV_LD[3:0]. Load pattern-verifier controls into RX lanes. When asserted high, the  
PV_TO, PV_SEL, PV_LEN, PV_CP20, and PV_CP values are enabled into the  
corresponding RX lane. These values are then latched and held when PV_LD[n] is  
subsequently deasserted low. 1 bit per lane.  
RWU  
0Fh  
10h  
7:4  
3:0  
7
4’b0000  
4’b0000  
1’b0  
PV_FAIL[3:0]. Pattern verification mismatch detected. 1 bit per lane.  
PV_TIP[3:0]. Pattern search/training in progress. 1 bit per lane.  
RU  
RU  
RW  
PV_CP20. Customer pattern length 20/16 bits.  
0 – 16 bits (default)  
1 – 20 bits  
6
1’b0  
Reserved  
R
5:3  
3’b000  
PV_LEN[2:0]. PRBS pattern length  
000 – PRBS7 (default)  
001 – PRBS11  
RW  
010 – PRBS23  
011 – PRBS31  
100 – PRBS15  
101 – PRBS15  
110 – PRBS20  
111 – PRBS20  
2:0  
3’b000  
PV_SEL[24:0]. Pattern select control  
RW  
000 – Disabled (default)  
001 – PRBS  
010 - Clock  
011 - Custom  
1xx – Timing only mode with sync pulse spacing defined by PV_LEN  
11h  
12h  
13h  
7:0  
7:0  
7:4  
3:0  
7:3  
2:0  
7
‘h00  
‘h00  
PV_CP[7:0]. Custom pattern data.  
RW  
RW  
R
PV_CP[15:8]. Custom pattern data.  
4’b0000  
4’b0000  
5’b00000  
3’b000  
1’b0  
Reserved  
PV_CP[19:16]. Custom pattern data. Used when PV_CP20 = 1’b1.  
Reserved  
RW  
R
14h  
15h  
PV_THR[2:0]. Pattern-verifier retain threshold.  
DESKEW_CMPLT. Indicates that TMDS lane deskew has completed when high.  
Reserved  
RW  
R
6:5  
4
2’b00  
R
1’b0  
BERT_CLR. Clear BERT counter (on rising edge).  
TST_INTQ_CLR. Clear latched interrupt flag.  
TST_SEL[2:0]. Test interrupt source select.  
PV_DP_EN[3:0]. Enable datapath verified based on DP_TST_SEL, 1 bit per lane.  
Reserved  
RSU  
RSU  
RW  
RW  
R
3
1’b0  
2:0  
7:4  
3
3’b000  
4’b0000  
1’b0  
16h  
2:0  
3’b000  
DP_TST_SEL[2:0] Selects pattern reported by BERT_CNT[11:0], TST_INT[0] and  
TST_INTQ[0] and PV_DP_EN is non-zero.  
000 – TMDS disparity or data errors (default)  
001 – FIFO errors  
RW  
010 – FIFO overflow errors  
011 – FIFO underflow errors  
100 – TMDS deskew status  
101,110,111 – Reserved  
17h  
7:4  
3:0  
7:0  
7:4  
3:0  
4’b0000  
4’b0000  
‘h00  
TST_INTQ[3:0]. Latched interrupt flag. 1 bit per lane.  
TST_INT[3:0]. Test interrupt flag. 1 bit per lane.  
BERT_CNT[7:0]. BERT error count. Lane 0  
Reserved  
RU  
RU  
RU  
R
18h  
19h  
4’b0000  
4’b0000  
BERT_CNT[11:8]. BERT error count. Lane 0  
RU  
(1) If PV_DP_EN is used to monitor TMDS data path errors the counters for lanes 0, 1, 2, and 3 are ignored.  
38  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
Table 8. RX PATTERN VERIFIER CONTROL/STATUS Register Field Description(1) (continued)  
ADDRESS  
1Ah  
BITS  
7:0  
7:4  
3:0  
7:0  
7:4  
3:0  
7:0  
7:4  
3:0  
7
DEFAULT  
‘h00  
DESCRIPTION  
ACCESS  
RU  
R
BERT_CNT[19:12]. BERT error count. Lane 1  
Reserved  
1Bh  
4’b0000  
4’b0000  
‘h00  
BERT_CNT[23:20]. BERT error count. Lane 1  
BERT_CNT[31:24]. BERT error count. Lane 2  
Reserved  
RU  
RU  
R
1Ch  
1Dh  
4’b0000  
4’b0000  
‘h00  
BERT_CNT[35:32]. BERT error count. Lane 2  
BERT_CNT[19:12]. BERT error count. Lane 3  
Reserved  
RU  
RU  
R
1Eh  
4’b0000  
‘h00  
1Fh  
20h  
BERT_CNT[23:20]. BERT error count. Lane 3  
RU  
R
1’b0  
Power Down Status Bit.  
0 – Normal Operation (default)  
1 – Device in Power Down Mode  
6
1’b0  
Standy Status Bit.  
0 – Normal Operation (default)  
1 – Device in Standby Mode  
R
R
5:0  
6’b000000  
Reserved  
Copyright © 2015–2017, Texas Instruments Incorporated  
39  
 
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TMDS181 was defined to work in many applications. This includes source applications like a Blu-ray™ DVD  
player or AVR. The adaptive receive equalizer makes it ideal for sink applications like UHDTV, monitors, and  
projectors where cable length can be widely varied. When in a sink application, the designer must consider  
several system-level architectures. The TMDS181 is also capable of working in an active cable to extend the  
cable length even further.  
9.2 Typical Applications  
9.2.1 Source Side Application  
I5aL/5ëL  
weceptacle  
1
3
3ꢁ  
34  
32  
31  
2ꢂ  
28  
26  
2ꢁ  
2
3
2
Ça5{_52p  
Ça5{_52n  
Ça5{_51p  
52p  
52n  
Lb_52p  
Lb_52n  
Lb_51p  
Lb_51n  
Lb_50p  
Lb_50n  
Lb_ꢀ[Yp  
Lb_ꢀ[Yn  
It5_{wꢀ  
hÜÇ_52p  
hÜÇ_52n  
hÜÇ_51p  
hÜÇ_51n  
hÜÇ_50p  
hÜÇ_50n  
hÜÇ_ꢀ[Yp  
hÜÇ_ꢀ[Yn  
Db51  
Db52  
8
4
Db53  
Db54  
Db5ꢁ  
Db56  
51p  
11  
14  
17  
6
6
Ça5{_51n  
Ça5{_50p  
Ça5{_50n  
Ça5{_ꢀ[Yp  
Ça5{_ꢀ[Yn  
ꢀ9ꢀ  
51n  
7
8
50p  
50n  
10  
12  
11  
12  
4
Ça5{_ꢀ[Yp  
Ça5{_ꢀ[Yn  
ꢁë  
13  
It5  
ꢀ9ꢀ  
20  
21  
22  
23  
ꢁë  
ꢀ!{9_Db51  
55ꢀ_{ꢀ[ ꢀ!{9_Db52  
55ꢀ_{5! ꢀ!{9_Db53  
2YQ  
2YQ  
38  
3ꢂ  
33  
1ꢁ  
16  
1ꢂ  
{ꢀ[_{bY  
{5!_{bY  
It5_{bY  
!wꢀ_hÜÇ  
2YQ  
2YQ  
46  
47  
4ꢁ  
55ꢀ_{ꢀ[  
55ꢀ_{5!  
{t5LC  
{ꢀ[_{wꢀ  
{5!_{wꢀ  
{t5LC_Lb  
It5  
ꢀ!{9_Db54  
44  
40  
bꢀ  
bꢀ  
bꢀ  
1aQ  
0.01uC  
500YQ  
18  
ÇI9wa![ t!5  
Db5  
ëꢀꢀ  
41  
7
Db5  
65lQ  
65lQ  
1
1ꢂ  
30  
Db5  
ëꢀꢀ  
{í!t/th[  
L2ꢀ_9b/tLb  
{LD_9b  
Db5  
10  
17  
20  
21  
27  
36  
2YQ  
2YQ  
1ꢁ  
tw9_{9[  
L2ꢀ_{ꢀ[  
L2ꢀ_{5!  
{ꢀ[_ꢀÇ[  
{5!_ꢀÇ[  
16  
9v_{9[/!0  
!1  
hptional  
42  
Çó_Ç9wa_ꢀÇ[  
h9  
0.1uC  
65lQ  
65lQ  
ꢀ9ꢀ  
ꢀ9ꢀ  
22  
ë{!5W  
7.06YQ  
1%  
ë55  
ëꢀꢀ  
14  
24  
23  
37 48  
13 43  
ëꢀꢀ  
10uC  
0.1uC 0.1uC 0.1uC 0.1uC 0.01uC 0.01uC  
0.01uC  
10uC  
0.1uC  
ë55  
Copyright © 2016, Texas Instruments Incorporated  
Figure 32. TMDS181 in Source Side Application  
40  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
Typical Applications (continued)  
9.2.1.1 Design Requirements  
The TMDS181 can be designed into many different applications. All applications have certain requirements for  
the system to work properly. Two voltage rails are required to support the lowest power consumption possible.  
The OE pin must have a 0.1 µF capacitor to ground. This pin can be driven by a processor, but the pin needs to  
change states after voltage rails have stabilized. The best way to configure the device is by using I2C. However,  
pin strapping is provided because I2C is not available in all cases. As sources may have different naming  
conventions, it is necessary to confirm that the link between the source and the TMDS181 are correctly mapped.  
A swap function is provide for the input pins in case signaling is reversed between source and device. The  
control pin values in Table 9 are based upon driving pins with a microcontroller; otherwise, the shown  
pullup/pulldown configuration meet device levels. Table 9 provides information on expected values in order to  
perform properly.  
Table 9. Design Parameters  
DESIGN PARAMETER  
VALUE  
3.3 V  
VCC  
VDD  
1.2 V  
Main link input voltage  
VID = 75 mVpp to 1.2 Vpp  
65 kΩ resistor connected to GND  
Not connected  
Control pin max voltage for low  
Control pin voltage range mid  
Control pin min voltage for high  
VSADJ resistor  
65 kΩ resistor connected to Vcc  
7.06 k1%  
9.2.1.2 Detailed Design Procedure  
The TMDS181 is a signal conditioning device that provides several forms of signal conditioning to support  
compliance for HDMI or DVI at a source connector. These forms of signal conditioning are accomplished using  
receive equalization, retiming, and output driver configure ability. The transmitter drives 2 to 3 inches of board  
trace and connector when compliance is required at the connector.  
To design in the TMDS181 for a source side application, the designer must understand the following.  
Determine the loss profile between the GPU/chipset and the HDMI/DVI connector.  
Based upon this loss profile and signal swing, determine the optimal location for the TMDS181 in order to  
pass source electrical compliance, usually within 2 to 3 inches of the connector.  
Use the typical application Figure 32 for information on control pin resistors.  
The TMDS181 has a receiver adaptive equalizer, but can also be configured using EQ_SEL control pin.  
Set the VOD, pre-emphasis and termination levels appropriately to support compliance by using the  
appropriate VSADJ resistor value and setting PRE_SEL and TX_TERM_CTL control pins.  
The thermal pad must be connected to ground.  
See schematics in Figure 32 on recommended decoupling capacitors from VCC pins to ground.  
Copyright © 2015–2017, Texas Instruments Incorporated  
41  
 
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
9.2.1.3 Application Curves  
Figure 33. Input Eye After 3M Cable at 5.94Gbps  
Figure 34. Output Eye from TMDS181 after 3M Input Cable  
at 5.94Gbps  
9.2.2 Sink Side Application  
For a sink side application, HPD needs consideration. The TMDS181 drives the HPD signal to 3.3 V, which  
meets requirements, but if 5 V HPD signaling is required, the two circuits shown in Figure 35 are required. As  
sources are not consistent in implementing all aspects of the DDC link, TI recommends to configure the  
TMDS181 as per Figure 35. Another consideration for how HPD is implemented is the architecture and behavior  
of the HDMI RX/scalar. The standard requires sinks to clear the TMDS_CLOCK_RATIO_STATUS in the SCDC  
when either +5 V power signal from source is not present or when hot plug detect pin goes low for 100 ms or  
more. When HPD goes low, the TMDS181 automatically clears this bit. The TMDS181 expects the  
TMDS_CLOCK_RATIO_STATUS bit to be set with a write from source to receiver/sink. If this does not happen,  
the TMDS181 may come up in the wrong configuration. Until the HDMI ecosystem matures, TI recommends to  
implement sink application as per Figure 36 to address this.  
Designing the TMDS181 into a sink side application requires similar care as for a source side application.  
However, because compliance is at the receiver, there is more flexibility for the transmitter to the HDMI  
RX/chipset link. Because many different reflection points are possible, the TMDS181 allows for swing, pre-  
emphasis, and transmitter termination control that can help minimize these reflections. The TMDS181 has a 3.3  
V HPD drive capability which meets requirements. In cases where the designer needs to support 5 V HPD drive  
capability, the circuit shown in Figure 35 is required.  
To design in the TMDS181 for a source side application, the designer must understand the following.  
Determine the loss profile between the RX/chipset and the HDMI/DVI connector  
Based upon this loss profile and signal swing, determine the optimal location for the TMDS181 to pass sink  
electrical compliance.  
Use the typical application Figure 35 for information on control pin resistors.  
The TMDS181 has a receiver adaptive equalizer, but can also be configured using EQ_SEL control pin.  
Set the VOD, pre-emphasis and termination levels appropriately to support a link between TMDS181 and  
HDMI RX/chipset by using the appropriate VSADJ resistor value and setting PRE_SEL and TX_TERM_CTL  
control pins.  
The thermal pad must be connected to ground.  
See schematics in Figure 35 on recommended decoupling capacitors from VCC pins to ground.  
Because the HDMI ecosystem supporting 4k2kp60 is not mature, TI recommends to design the TMDS181  
into the sink application as shown in Figure 36.  
42  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
IꢀꢂL/ꢀëL  
/onnector  
IꢀꢂL ꢃó/{calar  
35  
2
3
Çꢂꢀ{_ꢀ2p  
Dꢄꢀ1  
ꢀ2p  
ꢀ2n  
Lꢄ_ꢀ2p  
Lꢄ_ꢀ2n  
Lꢄ_ꢀ1p  
Lꢄ_ꢀ1n  
Lꢄ_ꢀ0p  
Lꢄ_ꢀ0n  
Lꢄ_ꢅ[Yp  
Lꢄ_ꢅ[Yn  
hÜÇ_ꢀ2p  
34  
32  
31  
2ꢆ  
28  
26  
25  
Dꢄꢀ2  
Dꢄꢀ3  
Dꢄꢀ4  
Dꢄꢀ5  
Dꢄꢀ6  
Çꢂꢀ{_ꢀ2n  
Çꢂꢀ{_ꢀ1p  
Çꢂꢀ{_ꢀ1n  
Çꢂꢀ{_ꢀ0p  
Çꢂꢀ{_ꢀ0n  
Çꢂꢀ{_ꢅ[Yp  
Çꢂꢀ{_ꢅ[Yn  
h9  
hÜÇ_ꢀ2n  
hÜÇ_ꢀ1p  
hÜÇ_ꢀ1n  
hÜÇ_ꢀ0p  
hÜÇ_ꢀ0n  
hÜÇ_ꢅ[Yp  
hÜÇ_ꢅ[Yn  
5
ꢀ1p  
6
ꢀ1n  
8
ꢀ0p  
ꢀ0n  
11  
12  
Çꢂꢀ{_ꢅ[Yp  
Çꢂꢀ{_ꢅ[Yn  
hptional  
h9  
5ë  
ꢅ!{9_Dꢄꢀ1  
ꢅ!{9_Dꢄꢀ2  
ꢅ!{9_Dꢄꢀ3  
ꢅ!{9_Dꢄꢀ4  
Lf 5ë is required. {ee 5ë  
Itꢀ implemenꢁaꢁion  
below  
47YQ  
47YQ  
38  
3ꢆ  
ꢀꢀꢅ_{ꢅ[  
ꢀꢀꢅ_{ꢀ!  
{ꢅ[_{ꢄY  
{ꢀ!_{ꢄY  
4
Itꢀ_{ꢃꢅ  
Itꢀ  
ꢂꢂ/_{/[  
ꢂꢂ/_{ꢂ!  
IꢀꢂL_5ë  
1YQ  
46  
47  
{ꢅ[_{ꢃꢅ  
{ꢀ!_{ꢃꢅ  
IꢀꢂL_5ë  
IꢀꢂL_5ë  
ꢂꢂ/_{/[  
0.01uC  
1uC  
45  
33  
ꢀꢀꢅ_{ꢅ[  
ꢀꢀꢅ_{ꢀ!  
{tꢀLC_Lꢄ  
Itꢀ_{ꢄY  
{tꢀLC  
Itꢀ  
ꢂꢂ/_{ꢂ!  
40  
18  
ꢄꢅ  
ꢄꢅ  
500YQ  
2nd metꢁod to implement Iꢃꢂ  
in bypassing Iꢃꢂ_{w/ and  
tieing Iꢃꢂ_{ꢅY to 5ë from  
IꢂꢀL /onnecotr  
ꢅ9ꢅ  
!ꢃꢅ  
ꢅ9ꢅ  
weduces ꢃoꢄer /onsumption  
Lf !w/ not used in system  
ëꢅꢅ  
1uC  
44  
!ꢃꢅ_hÜÇ  
ÇI9ꢃꢂ![ t!ꢀ  
Dꢄꢀ  
55Q  
65lQ  
1
65lQ  
41  
Lmplementation specific.  
ꢀay not be needed if {ource  
ꢁas implemented  
{í!t/th[  
L2ꢅ_9ꢄ/tLꢄ  
{LD_9ꢄ  
7
10  
17  
20  
21  
27  
36  
Dꢄꢀ  
ëꢅꢅ  
1ꢆ  
30  
Dꢄꢀ  
Dꢄꢀ  
tꢃ9_{9[  
9v_{9[/!0  
!1  
2YQ  
2YQ  
15  
L2ꢅ_{ꢅ[  
L2ꢅ_{ꢀ!  
{ꢅ[_ꢅÇ[  
{ꢀ!_ꢅÇ[  
16  
Çó_Ç9ꢃꢂ_ꢅÇ[  
hptional  
42  
h9  
65lQ  
h9  
65lQ  
0.1uC  
ëꢀꢀ  
22  
ë{!ꢀW  
ëꢅꢅ  
7.06YQ  
10uC  
0.1uC 0.1uC 0.1uC 0.1uC 0.01uC 0.01uC  
1%  
0.01uC  
10uC  
0.1uC  
14  
24  
23  
37 48  
13 43  
ëꢅꢅ  
ëꢀꢀ  
5 ë Itꢀ Lmplemenꢁaꢁion  
5ë  
1lQ  
5ë  
10Q  
1lQ  
Itꢀ  
100Q  
Itꢀ_{ꢃꢅ  
100lQ  
Copyright © 2016, Texas Instruments Incorporated  
Figure 35. TMDS181 in Sink Side Application (Including 5 V HPD Implementation)  
Copyright © 2015–2017, Texas Instruments Incorporated  
43  
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
I5aL/5ëL  
/onnector  
I5aL wó/{cꢀlꢀr  
3ꢂ  
34  
32  
31  
2ꢃ  
28  
26  
2ꢂ  
2
3
Ça5{_52p  
Ça5{_52n  
Ça5{_51p  
Ça5{_51n  
Ça5{_50p  
Ça5{_50n  
Ça5{_ꢁ[Yp  
Ça5{_ꢁ[Yn  
Db51  
Db52  
52p  
52n  
Lb_52p  
Lb_52n  
Lb_51p  
Lb_51n  
Lb_50p  
Lb_50n  
Lb_ꢁ[Yp  
Lb_ꢁ[Yn  
hÜÇ_52p  
hÜÇ_52n  
hÜÇ_51p  
hÜÇ_51n  
hÜÇ_50p  
hÜÇ_50n  
hÜÇ_ꢁ[Yp  
hÜÇ_ꢁ[Yn  
Db53  
Db54  
Db5ꢂ  
Db56  
51p  
6
51n  
8
50p  
50n  
11  
12  
Ça5{_ꢁ[Yp  
Ça5{_ꢁ[Yn  
ꢂë  
I5aL_ꢂë  
I5aL_ꢂë  
ꢁ!{9_Db51  
ꢁ!{9_Db52  
ꢁ!{9_Db53  
ꢁ!{9_Db54  
18  
40  
4
47YQ  
47YQ  
bꢁ  
bꢁ  
bꢁ  
1YQ  
38  
3ꢃ  
55ꢁ_{ꢁ[  
55ꢁ_{5!  
h9  
{ꢁ[_{bY  
{5!_{bY  
Iꢃꢂ  
It5_{wꢁ  
It5  
ꢂꢂ/_{/[  
ꢂꢂ/_{ꢂ!  
hptional  
h9  
46  
47  
{ꢁ[_{wꢁ  
{5!_{wꢁ  
0.01uC  
Iꢃꢂ  
1uC  
4ꢂ  
33  
ꢂꢂ/_{/[  
ꢂꢂ/_{ꢂ!  
55ꢁ_{ꢁ[  
55ꢁ_{5!  
{t5LC_Lb  
It5_{bY  
{t5LC  
It5  
500YQ  
ꢁ9ꢁ  
!wꢁ  
ꢁ9ꢁ  
weduces ꢃoꢄer /onsumption  
Lf !w/ not used in system  
ëꢁꢁ  
1uC  
44  
!wꢁ_hÜÇ  
ÇI9wa![ t!5  
Db5  
55Q  
65lQ  
1
65lQ  
41  
Lmplementation specific.  
ꢀay not be needed if {ource  
ꢁas implemented  
{í!t/th[  
L2ꢁ_9b/tLb  
{LD_9b  
7
10  
17  
20  
21  
27  
36  
Db5  
ëꢁꢁ  
1ꢃ  
30  
Db5  
Db5  
tw9_{9[  
9v_{9[/!0  
!1  
2YQ  
2YQ  
1ꢂ  
L2ꢁ_{ꢁ[  
L2ꢁ_{5!  
{ꢁ[_ꢁÇ[  
{5!_ꢁÇ[  
16  
Çó_Ç9wa_ꢁÇ[  
hptional  
42  
h9  
65lQ  
h9  
65lQ  
0.1uC  
ëꢁꢁ  
ë55  
22  
10uC  
0.01uC 0.1uC  
ë{!5W  
7.06YQ  
1%  
0.1uC  
10uC  
0.1uC 0.1uC 0.1uC 0.01uC 0.01uC  
14  
24  
23  
37 48  
13 43  
ëꢁꢁ  
ë55  
Copyright © 2016, Texas Instruments Incorporated  
Figure 36. TMDS181 in Sink Side Application  
44  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
9.2.3 Application Chain Showing DDC Connections  
The DDC circuitry inside the TMDS181 allows multiple stage operation (see Figure 36). The retimer devices can  
be connected to any of the bus segments. The number of devices that can be connected in series is limited by  
repeater delay/time of flight considerations for the maximum bus speed requirements.  
SOURCE  
Active Cable  
SINK  
5 V  
5 V  
3.3 V  
5 V  
5 V  
3.3 V  
RUPsource  
RUPsource  
Rup Rup  
Rup Rup  
RUPsink  
RUPsink  
SLK_SRC SLK_SINK  
SLK_SINK  
SLK_SRC  
RSLK  
SLK_SRC SLK_SINK  
TSCL  
TSDA  
SDA_SRC  
SDA_SRC SDA_SINK  
SDA_SINK  
RSDA  
SDA_SRCSDA_SINK  
C1  
C3  
C3  
C2  
C1  
C2  
C2  
C2  
BUS  
SLAVE  
BUS  
MASTER  
TMDS181  
TMDS181  
TMDS181  
Copyright © 2016, Texas Instruments Incorporated  
Figure 37. Typical Series Application  
9.2.3.1 Detailed Design Procedure  
9.2.3.1.1 DDC Pullup Resistors  
NOTE  
This section is informational only and subject to change depending upon the specific  
system implementation.  
The pullup resistor value is determined by two requirements.  
1. The maximum sink current of the I2C buffer: The maximum sink current is 3 mA or slightly higher for an I2C driver  
supporting standard-mode I2C operation.  
VCC  
Rup(m in)  
=
Isin k  
(1)  
2. The maximum transition time on the bus: The maximum transition time, T, of an I2C bus is set by an RC time constant.  
The parameter, k, can be calculated from Equation 3 by solving for t, the times at which certain voltage thresholds are  
reached. Different input threshold combinations introduce different values of t. Table 10 summarizes the possible values  
of k under different threshold combinations.  
T = k × RC  
where  
R is the pullup resistor value.  
C is the total load capacitance.  
(2)  
(3)  
œ t  
V(t) = VDD ì (1 œ e RC  
)
Copyright © 2015–2017, Texas Instruments Incorporated  
45  
 
 
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 10. Value k upon Different Input Threshold Voltages  
Vth–\Vth+  
0.1VCC  
0.7VCC  
1.0986  
1.0415  
0.9808  
0.9163  
0.8473  
0.65VCC  
0.9445  
0.8873  
0.8267  
0.7621  
0.6931  
0.6VCC  
0.8109  
0.7538  
0.6931  
0.6286  
0.5596  
0.55VCC  
0.6931  
0.6360  
0.5754  
0.5108  
0.4418  
0.5VCC  
0.5878  
0.5306  
0.4700  
0.4055  
0.3365  
0.45VCC  
0.4925  
0.4353  
0.3747  
0.3102  
0.2412  
0.4VCC  
0.4055  
0.3483  
0.2877  
0.2231  
0.1542  
0.35VCC  
0.3254  
0.2683  
0.2076  
0.1431  
0.0741  
0.3VCC  
0.2513  
0.1942  
0.1335  
0.0690  
0.15VCC  
0.2VCC  
0.25VCC  
0.3VCC  
From Equation 1, Rup(min) = 5.5 V / 3 mA = 1.83 kΩ to operate the bus under a 5 V pullup voltage and provide <3  
mA when the I2C device is driving the bus to a low state. If a higher sink current, for example 4 mA, is allowed,  
Rup(min) can be as low as 1.375 kΩ. If DDC working at standard mode of 100 Kbps, the maximum transition time  
T is fixed, 1 μs, and using the k values from Table 10, the recommended maximum total resistance of the pullup  
resistors on an I2C bus can be calculated for different system setups. If DDC working in fast mode of 400 Kbps,  
the transition time should be set at 300 ns according to I2C specification. To support the maximum load  
capacitance specified in the HDMI specification, calculate Ccable(max) = 700 pF / Csource = 50 pF / Ci = 50 pF,  
R(max) as shown in Table 11.  
Table 11. Pullup Resistor Upon Different Threshold Voltages and 800 pF Loads  
Vth-\Vth+  
0.1VCC  
0.15VCC  
0.2VCC  
0.25VCC  
0.3VCC  
0.7VCC  
1.14  
1.2  
0.65VCC  
1.32  
0.6VCC  
1.54  
1.66  
1.8  
0.55VCC  
1.8  
0.5VCC  
2.13  
0.45VCC  
2.54  
0.4VCC  
3.08  
3.59  
4.35  
5.6  
0.35VCC  
3.84  
0.3VCC  
4.97  
6.44  
9.36  
18.12  
UNIT  
kΩ  
1.41  
1.97  
2.36  
2.87  
4.66  
kΩ  
1.27  
1.36  
1.48  
1.51  
2.17  
2.66  
3.34  
6.02  
kΩ  
1.64  
1.99  
2.23  
2.45  
3.08  
4.03  
8.74  
kΩ  
1.8  
2.83  
3.72  
5.18  
8.11  
16.87  
kΩ  
To accommodate the 3-mA drive current specification, a narrower threshold voltage range is required to support  
a maximum 800-pF load capacitance for a standard-mode I2C bus.  
9.2.3.1.2 Compliance Testing  
Compliance testing is very system design specific. Properly designing the system and configuring the TMDS181  
can help pass compliance for a system. The following information is a starting point to help prepare for  
compliance testing. As each system is different there are many features in the TMDS181 to help tune the circuit.  
These include fixed RX equalization, adaptive RX equalization, VOD adjust by several methods, pre-emphasis/de-  
emphasis, and source termination. Passing both HDMI2.0a and HDMI1.4b compliance is easier to accomplish  
when using I2C as this provides more fine tuning capability.  
9.2.3.1.2.1 Pin Strapping Configuration for HDMI2.0a and HDMI1.4b  
VSADJ Resistor = 7.06 kΩ: Note: This value may be changed in order to improve Intra-pair skew margin but  
will increase output VOD so care must be taken to avoid VOD and VL compliance issues.  
PRE_SEL = L for -2 dB (For Intra-pair Skew)  
TX_TERM_CTL = NC for Auto Select.  
9.2.3.1.2.2 I2C Control for HDMI2.0a and HDMI1.4b  
VSADJ Resistor = 7.06 kΩ: This value may be changed in order to improve Intra-pair skew but will increase  
VOD so care must be taken to avoid VOD and VL compliance issues. The VOD can be increased or decreased  
by using I2C Reg0Ch[7:2]  
PRE_SEL = Reg0Ch[1:0] = 01 for -2 dB (Labeled HDMI_TWPST)  
TX_TERM_CTL = NC for Auto Select.  
Reg0Bh[4:3] = 00 No TX Term; HDMI1.4b < 2 Gbps (This may be best value for all HDMI1.4b)  
Reg0Bh[4:3] = 01 150 Ω to 300 Ω; HDMI1.4b > 2 Gbps  
Reg0Bh[4:3] = 11 75 Ω to 150 Ω; HDMI2.0a  
46  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
10 Power Supply Recommendations  
To minimize the power consumption of customer application, TMSD181 used the dual power supply. VCC is 3.3 V  
with 5% range to support the I/O voltage. VDD is 1.2 V to supply the internal digital control circuit. TMDS181  
operates in three different working states.  
Power-down mode:  
OE = Low puts the device into its lowest power state by shutting down all function blocks.  
When OE is reasserted, the transitions from L H create a reset, and if the device is programmed  
through I2C, it must be reprogrammed.  
Writing a 1 to register 09h[3].  
OE = High, HPD_SNK = Low  
Standby mode: HPD_SNK = High, but no valid clock signal detect on clock lane.  
Normal operation: Working in redriver or retimer  
When HPD asserts, the device CDR and output enables based on the signal detector circuit result.  
HPD_SRC = HPD_SNK in all conditions. The HPD channel is operational when VCC is over 3 V.  
NOTE  
1. When the TMDS181 is put into a power-down state, the I2C registers are cleared. This is  
important as the TMDS_CLOCK_RATIO_STATUS bit will be cleared. If cleared and HDMI2.0  
resolutions are to be supported, the TMDS181 expects the source to write a 1 to this bit  
location. If this does not happen, the PLL will not be set properly and no video may be evident.  
2. Power performance of the TMDS181 is highly dependent upon the HDMI transmitter  
architecture driving the TMDS181 receiver. The TMDS181 has integrated the termination  
resistors, which increases the power consumption on the 3.3 V rail by as much as 400 mW.  
This is the power required by the HDMI transmitter to switch and not needed by the TMDS181  
to operate properly.  
Table 12. Power-Up and Operation Timing Requirements  
INPUTS  
SIG_EN  
STATUS  
DATA  
RATE  
OUT_Dx  
OUT_CLK  
HPD_SNK OE  
IN_CLK  
HPD_SRC  
IN_Dx  
SDA/SCL_CTL  
DDC  
ARC  
MODE  
X
L
L
H or L  
H or L  
X
X
X
X
H
L
RX Termination On  
RX Termination On  
Disable  
Active  
High-Z  
High-Z  
Disabled  
Disabled  
Disable  
Disable  
Power-down mode  
Power-down mode  
H
Power-down mode  
by W 1 to 09h[3]  
H
H
H
H
H or L  
X
X
X
H
H
RX Termination On  
Active  
Active  
High-Z  
High-Z  
Disabled  
Active  
Disable  
Active  
H
D0-D2 disabled  
with RX termination  
On, IN_CLK active  
No valid  
TMDS clock  
Standby mode  
(squelch waiting)  
(no valid  
signal)  
H or L  
(no valid  
signal)  
D0-D2 disabled  
with RX termination  
On, IN_CLK activee  
No valid  
TMDS clock  
Retimer  
mode  
Standby mode  
(Squelch waiting)  
H
H
H
H
H
H
H
H
H
H
H
H
Active  
Active  
Active  
Active  
High-Z  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
H
Valid TMDS  
clock  
Retimer  
mode  
(Valid  
signal)  
RX active  
RX active  
RX active  
TX active  
TX active  
TX active  
Normal operation  
Normal operation  
Normal operation  
L
No valid  
TMDS clock  
Redriver  
mode  
(no valid  
signal)  
H
Valid TMDS  
clock  
Redriver  
mode  
(Valid  
signal)  
Copyright © 2015–2017, Texas Instruments Incorporated  
47  
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For the TMDS181 on a high-K board: It is required to solder the PowerPAD™ onto the thermal land to ground.  
A thermal land is the area of solder-tinned-copper underneath the PowerPAD package. On a high-K board, the  
TMDS181 can operate over the full temperature range by soldering the PowerPAD onto the thermal land.  
On a low-K board: For the device to operate across the temperature range on a low-K board, the designer must  
use a 1-oz Cu trace connecting the GND pins to the thermal land. A simulation shows RθJA = 100.84°C/W  
allowing 545 mW power dissipation at 70°C ambient temperature. A general PCB design guide for PowerPAD  
packages is provided in PowerPAD Thermally Enhanced Package, SLMA002. TI recommends using at a  
minimum a four-layer stack to accomplish a low-EMI PCB design. TI recommends six layers as the TMDS181 is  
a two-voltage-rail device.  
Routing the high-speed TMDS traces on the top layer avoids the use of vias (and their discontinuities) and  
allows for clean interconnects from the HDMI connectors to the retimer inputs and outputs. It is important to  
match the electrical length of these high-speed traces to minimize both inter-pair and intra-pair skew.  
Placing a solid ground plane next to the high-speed single layer establishes controlled impedance for  
transmission link interconnects and provides an excellent low-inductance path for the return current flow.  
Placing a power plane next to the ground plane creates an additional high-frequency bypass capacitance.  
Routing slower-speed control signals on the bottom layer allows for greater flexibility because these signal  
links usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power/ground plane system to  
the stack to keep symmetry. This makes the stack mechanically stable and prevents it from warping. Also, the  
power and ground plane of each power system can be placed closer together, thus increasing the high-  
frequency bypass capacitance significantly.  
Layer 1: TMDS signal layer  
Layer 1: TMDS signal layer  
5 to 10 mils  
20 to 40 mils  
5 to 10 mils  
Layer 2: Ground Plane  
Layer 2: Ground Plane  
Layer 3: VCC Power Plane  
Layer 4: VDD Power Plane  
Layer 5: Ground Plane  
Layer 3: Power Plane  
Layer 4: Control signal layer  
Layer 6: Control signal layer  
Figure 38. Recommended 4- or 6-Layer PCB Stack  
48  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS181, TMDS181I  
www.ti.com.cn  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
11.2 Layout Example  
1µC  
!ꢄ/_ꢆÜÇ  
ꢀꢀQ  
Db5  
1µC  
{ꢁ5LC_Lb  
{5!_{bY  
{/[_{ꢄ/  
2kQ  
2kQ  
ë//  
2kQ  
ꢀë  
2kQ  
ë//  
ꢀë  
{5!_{ꢄ/  
{/[_{bY  
aꢂtch Iigh {peed trꢂces  
length ꢂs close ꢂs possiꢃle to  
minimize {kew  
6ꢀkQ  
ë//  
{í!ꢁꢅꢁꢆ[  
6ꢀkQ  
Db5  
6ꢀkQ  
ë//  
Çó_Ç9ꢄa_/Ç[  
1
6ꢀkQ  
Db5  
Lb_52pꢅn  
ꢆÜÇ_52pꢅn  
Iꢁ5_{bY  
Iꢁ5_{ꢄ/  
Lb_51pꢅn  
ꢆÜÇ_51pꢅn  
Db5  
Db5  
Db5  
Lb_50pꢅn  
ꢆÜÇ_50pꢅn  
6ꢀkQ  
ë//  
6ꢀkQ  
ë//  
!1  
L2/_9bꢅꢁLb  
6ꢀkQ  
Db5  
6ꢀkQ  
Db5  
ꢆÜÇ_/[Ypꢅn  
Lb_/[Ypꢅn  
{/[_/Ç[  
ꢁlꢂce ë// ꢂnd ë55 decoupling  
cꢂps ꢂs close to ë// ꢂnd ë55  
pins ꢂs possiꢃle  
ë//  
ë//  
2kQ  
2kQ  
ë{!5W  
{5!_/Ç[  
aꢂtch Iigh {peed trꢂces  
length ꢂs close ꢂs possiꢃle to  
minimize {kew  
A. If ARC is not used, tie a 500 kΩ resistor to GND at the SPDIF_IN pin.  
B. The 55 Ω resistor to GND on the ARC_OUT pin is implementation specific and may not be needed if it is already  
implemented elsewhere.  
Figure 39. Layout Example – Source Side  
版权 © 2015–2017, Texas Instruments Incorporated  
49  
TMDS181, TMDS181I  
ZHCSE70D AUGUST 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
本节标识的文档均在本规范中引用。为简化文本,文中的大多数参考文献均用文档标签 [文档标签] 标识,而不使用  
完整的文档标题。  
1. [HDMI] 高清多媒体接口规范版本 1.4b2011 10 月  
2. [HDMI] 高清多媒体接口规范版本 2.0a2015 3 月  
3. [HDMI] 高清多媒体接口 CTS 版本 1.4b2011 10 月  
4. [HDMI] 高清多媒体接口 CTS 版本 2.0k2015 6 月  
5. [I2C] I2C 总线规范版本 2.12000 1 月  
12.2 相关链接  
下面的表格列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的  
快速链接。  
13. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
TMDS181  
TMDS181I  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
Blu-Ray, Blu-ray are trademarks of Blu-ray Disc Association.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
50  
版权 © 2015–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMDS181IRGZR  
TMDS181IRGZT  
TMDS181RGZR  
TMDS181RGZT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
0 to 85  
TMDS181I  
NIPDAU  
NIPDAU  
NIPDAU  
TMDS181I  
TMDS181  
TMDS181  
0 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Dec-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMDS181IRGZR  
TMDS181IRGZT  
TMDS181RGZR  
TMDS181RGZT  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
2500  
250  
330.0  
180.0  
330.0  
180.0  
16.4  
16.4  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
1.1  
1.1  
1.1  
1.1  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
2500  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Dec-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMDS181IRGZR  
TMDS181IRGZT  
TMDS181RGZR  
TMDS181RGZT  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
2500  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
38.0  
35.0  
38.0  
35.0  
2500  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
RGZ0048B  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
7.15  
6.85  
A
B
PIN 1 INDEX AREA  
7.15  
6.85  
1 MAX  
C
SEATING PLANE  
0.05  
0.00  
0.08 C  
2X 5.5  
4.1 0.1  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
13  
24  
44X 0.5  
12  
25  
49  
SYMM  
2X  
5.5  
0.30  
0.18  
36  
48X  
1
0.1  
0.05  
C B A  
48  
37  
SYMM  
PIN 1 ID  
(OPTIONAL)  
0.5  
0.3  
48X  
4218795/B 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGZ0048B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.1)  
(1.115) TYP  
(0.685)  
TYP  
37  
48  
48X (0.6)  
1
36  
48X (0.24)  
(1.115)  
TYP  
44X (0.5)  
(0.685)  
TYP  
SYMM  
49  
(
0.2) TYP  
VIA  
(6.8)  
(R0.05)  
TYP  
12  
25  
13  
24  
SYMM  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218795/B 02/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGZ0048B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.37)  
TYP  
37  
48  
48X (0.6)  
1
36  
48X (0.24)  
44X (0.5)  
(1.37)  
TYP  
SYMM  
49  
(R0.05) TYP  
(6.8)  
9X  
METAL  
TYP  
(
1.17)  
12  
25  
13  
24  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49  
73% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4218795/B 02/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TMDS181IRGZR

6Gbps HDMI 2.0 TMDS 重定时器 | RGZ | 48 | -40 to 85
TI

TMDS181IRGZT

6Gbps HDMI 2.0 TMDS 重定时器 | RGZ | 48 | -40 to 85
TI

TMDS181RGZR

6Gbps HDMI 2.0 TMDS 重定时器 | RGZ | 48 | 0 to 85
TI

TMDS181RGZT

6Gbps HDMI 2.0 TMDS 重定时器 | RGZ | 48 | 0 to 85
TI

TMDS250

2.5 Gbps 2-TO-1 DVI/HDMI SWITCH
TI

TMDS250PAGR

2.5 Gbps 2-TO-1 DVI/HDMI SWITCH
TI

TMDS250PAGRG4

SPECIALTY CONSUMER CIRCUIT, PQFP64, GREEN, PLASTIC, TQFP-64
TI

TMDS251

2.5 Gbps 2-TO-1 DVI/HDMI SWITCH
TI

TMDS251PAGR

2.5 Gbps 2-TO-1 DVI/HDMI SWITCH
TI

TMDS251PAGRG4

2.5 Gbps 2-TO-1 DVI/HDMI SWITCH
TI

TMDS261

1080p - Deep Color 2-to-1 HDMI/DVI Switch With Adaptive Equalization
TI

TMDS261B

TWO-PORT HDMI SWITCH
TI