TMP112-Q1 [TI]

采用 2.56mm2 封装、具有 I2C/SMBus 的汽车类 ±0.5°C 1.4V 至 3.6V 数字温度传感器;
TMP112-Q1
型号: TMP112-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 2.56mm2 封装、具有 I2C/SMBus 的汽车类 ±0.5°C 1.4V 至 3.6V 数字温度传感器

温度传感 传感器 温度传感器
文件: 总37页 (文件大小:1565K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
TMP112-Q1 SOT563 封装的汽车级高精度、低功耗  
数字温度传感器  
1 特性  
3 说明  
• 具有符AEC-Q100 标准的下列特性  
TMP112-Q1 器件是一款数字温度传感器旨在要求高  
精度的应用中替NTC/PTC 热敏电阻。该器件在未经  
校准或无外部组件信号调节的情况下可提供的精度为  
±0.5°C。器件温度传感器为高度线性化产品无需复  
杂计算或查表即可得知温度。该器件还具有可提高精度  
的校准功能因此用户可将精度校准±0.17°C请参  
可提高精度的校准功能 部分。片上 12 ADC 具  
备最0.0625°C 的分辨率。  
– 温度等1: 40°C 125°C 环境工作温度范  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C6  
提供功能安全  
有助于进行功能安全系统设计的文档  
SOT563 (1.6mm × 1.6mm) 尺寸SOT23 减  
68%  
1.6mm × 1.6mm SOT563 封装尺寸较 SOT23 封装减  
68%TMP112-Q1 器件与 SMBus、两线制和 I2C  
接口兼容可与多达四个器件共用一根总线。该器件还  
具有 SMBus 警报功能。器件的额定工作电压范围是  
1.4V 3.6V个工作范围内最大静态电流为  
10µA。  
• 精度无需校准:  
0°C 65°C 范围内0.5°C最大值)  
– –40°C 125°C 范围内1°C最大值)  
• 低静态电流:  
10μA 运行电流最大值)  
1μA 关断电流最大值)  
• 电源电压范围1.4 3.6V  
• 分辨率12 位  
器件信息(1)  
封装尺寸标称值)  
器件型号  
TMP112-Q1  
封装  
SOT563 (6)  
1.60mm × 1.20mm  
• 数字输出SMBus、两线制I2C 接口兼容  
NIST 可追溯  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
Temperature  
• 汽车空调  
Diode  
1
2
3
Control  
logic  
6
5
4
temp.  
SCL  
GND  
SDA  
• 信息娱乐处理器管理  
• 空气流量传感器  
• 电池控制单元  
• 引擎控制单元  
UREA 传感器  
• 抽水机  
sensor  
ΔΣ  
Serial  
V+  
ADC  
interface  
Config.  
and temp.  
register  
HID 灯  
• 安全气囊控制单元  
ALERT  
Oscillator  
ADD0  
Supply Voltage  
1.4 V to 3.6 V  
TMP112-Q1  
方框图  
Supply Bypass  
Capacitor  
0.01 µF  
Pullup Resistors  
5 k  
TMP112-Q1  
Two-Wire  
Host Controller  
1
2
3
6
5
4
SCL  
SDA  
V+  
GND  
ALERT  
ADD0  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLOS887  
 
 
 
 
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
内容  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 修订历史记录.....................................................................2  
5 说明.........................................................................3  
6 引脚配置和功能................................................................. 4  
7 规格................................................................................... 5  
7.1 绝对最大额定值...........................................................5  
7.2 ESD 等级.................................................................... 5  
7.3 建议运行条件.............................................................. 5  
7.4 热性能信息..................................................................5  
7.5 电气特性......................................................................5  
7.6 针对用户校准系统的技术规范..................................... 6  
7.7 时序要求......................................................................7  
7.8 典型特性......................................................................8  
8 详细说明.......................................................................... 10  
8.1 概述...........................................................................10  
8.2 功能方框图................................................................10  
8.3 特性说明....................................................................11  
8.4 器件功能模式............................................................ 17  
8.5 编程...........................................................................18  
9 应用和实现.......................................................................23  
9.1 应用信息....................................................................23  
9.2 典型应用....................................................................26  
10 电源相关建议.................................................................27  
11 布局................................................................................28  
11.1 布局指南..................................................................28  
11.2 布局示例..................................................................28  
12 器件和文档支持............................................................. 29  
12.1 文档支持..................................................................29  
12.2 接收文档更新通知................................................... 29  
12.3 社区资源..................................................................29  
12.4 商标.........................................................................29  
13 机械、封装和可订购信息...............................................29  
4 修订历史记录  
Changes from Revision E (December 2018) to Revision F (June 2022)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 将提I2C 的旧术语实例通篇更改为控制器和目标。......................................................................................... 1  
• 向部分添加了“功能安全”信息................................................................................................................. 1  
Changes from Revision D (December 2015) to Revision E (December 2018)  
Page  
• 更新ADD0 引脚连接SDA SCL 的说明...................................................................................................4  
• 将电源电压最大值5V 更改4V.....................................................................................................................5  
SCLADD0 SDA 引脚的输入电压最大值5V 更改4V.......................................................................5  
ALERT 引脚的输入电压最大值从(V+) + 0.5V 更改为(V+) + 0.3 4.........................................................5  
• 将结至环境热阻200°C/W 更新210.3°C/W................................................................................................. 5  
• 将结至外壳热阻73.7°C/W 更新105.0°C/W......................................................................................5  
• 将结至电路板热阻34.4°C/W 更新87.5°C/W...............................................................................................5  
• 将结至顶特征参数3.1°C/W 更新6.1°C/W...................................................................................................5  
• 将结至电路板特征参数34.2°C/W 更新87.0°C/W........................................................................................5  
• 添加了接收文档更新通部分..........................................................................................................................29  
Changes from Revision C (March 2015) to Revision D (December 2015)  
Page  
• 添加了“NIST 特性”要点.................................................................................................................................. 1  
• 向部分添加了最后一段................................................................................................................................1  
Changes from Revision B (November 2014) to Revision C (March 2015)  
Page  
• 更新了电路原理图上的引脚编号......................................................................................................................... 1  
• 将处理额定值表更改ESD 等级并将贮存温度参数移至绝对最大额定值...................................................5  
• 更改了温度精度温度误差参数的最小值、典型值和最大值。.......................................................................5  
• 将电气特性表的部分2.85 更改3.4MHz.............................................................................................. 5  
• 更改了典型特性部分25°C 时的温度误差.....................................................................................................8  
• 更改了典型特性部分中温度误差与温度间的关系.............................................................................................8  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMP112-Q1  
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
Changes from Revision A (October 2014) to Revision B (November 2014)  
Page  
• 将器件状态从产品预发更改为量产数.........................................................................................................1  
5 说明)  
TMP112-Q1 器件旨在测量控制单元、温度控制、信息娱乐和传感器模块的工作温度。器件的额定工作温度范围为  
-40°C 125°C。  
TMP112-Q1 生产单元已经过 100% 的传感器测试具有 NIST 可追溯的特点并已借助 NIST 可追溯的设备使用  
ISO/IEC 17025 标准认可的校准要求进行验证。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMP112-Q1  
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
6 引脚配置和功能  
SCL  
1
2
3
6
5
4
SDA  
V+  
GND  
ALERT  
ADD0  
6-1. DRL 6 SOT563 俯视图  
6-1. 引脚功能  
引脚  
I/O  
说明  
编号  
名称  
SCL  
1
2
3
I
串行时钟。开漏输出需要上拉电阻器。  
接地  
GND  
ALERT  
O
过热提醒。开漏输出需要上拉电阻器。  
地址选择。连接V+GNDSDA SCL  
电源电压1.4V 3.6V  
4
5
6
ADD0  
V+  
I
I
SDA  
I/O  
串行数据。开漏输出需要上拉电阻器。  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMP112-Q1  
 
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
7 规格  
7.1 绝对最大额定值  
在自然通风条件下的工作温度范围内测得除非另有说明(1)  
最小值  
最大值  
单位  
V+  
4
V
电源电压  
4
V
V
SCLADD0 SDA 的电压  
ALERT 的电压  
0.5  
0.5  
(V+) + 0.3  
且≤4  
5
V
0.5  
输出电压  
-55  
150  
150  
150  
°C  
°C  
°C  
工作温度  
结温TJ  
贮存温度Tstg  
60  
(1) 应力超出绝对最大额定下所列的值可能会对器件造成永久损坏。这些列出的值仅仅是应力额定值这并不表示器件在这些条件下以及  
建议运行条以外的任何其他条件下能够正常运行。长时间处于绝对最大额定条件下可能会影响器件的可靠性。  
7.2 ESD 等级  
单位  
人体放电模(HBM)AEC Q100-002(1)  
充电器件模(CDM)AEC Q100-011  
±2000  
±1000  
V(ESD)  
V
静电放电  
(1) AEC Q100-002 指示应当按ANSI/ESDA/JEDEC JS-001 规范执HBM 应力测试。  
7.3 建议运行条件  
在自然通风条件下的工作温度范围内测得除非另有说明)  
最小值  
1.4  
标称值  
最大值  
单位  
V+  
TA  
3.3  
3.6  
V
电源电压  
-40  
125  
°C  
自然通风工作温度  
7.4 热性能信息  
TMP112-Q1  
热指标(1)  
DRL (SOT563)  
6 引脚  
210.3  
单位  
RθJA  
RθJC(top)  
RθJB  
ψJT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
结至环境热阻  
105.0  
结至外壳顶部热阻  
结至电路板热阻  
87.5  
6.1  
结至顶部特征参数  
结至电路板特征参数  
87.0  
ψJB  
(1) 有关新旧热指标的更多信息请参IC 封装热指应用报SPRA953。  
7.5 电气特性  
TA = 25°C V+ = 1.4 3.6V 时测得除非另有说明。  
参数  
测试条件  
最小值  
典型值  
最大值  
单位  
温度输入  
-40  
125  
°C  
温度范围  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMP112-Q1  
 
 
 
 
 
 
 
 
 
 
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
TA = 25°C V+ = 1.4 3.6V 时测得除非另有说明。  
参数  
测试条件  
最小值  
典型值  
最大值  
单位  
25°CV+ = 3.3V  
±0.1  
±0.5  
±0.25  
±0.5  
±0.5  
±1.0  
0°C 65°CV+=3.3 V  
40°C 125°C  
°C  
温度精度温度误差)  
0.0625  
±0.25  
°C/V  
40°C 125°C  
精度与电源  
长期稳定性  
分辨(LSB)  
最低有效位  
(LSB)  
< 1  
3000 小时  
0.0625  
°C  
数字输入/输出  
3
pF  
V
输入电容  
VIH  
VIL  
II  
0.7 × (V+)  
3.6  
0.3 × (V+)  
1
输入逻辑高电平  
输入逻辑低电平  
输入电流  
V
0.5  
0 < VI < 3.6V  
μA  
V+>2VIOL=3 mA  
V+<2VIOL=3 mA  
V+>2VIOL=3 mA  
V+< 2VIOL = 3mA  
0
0
0
0
0.4  
VOL(SDA)  
V
输出逻辑低电平SDA  
0.2 × (V+)  
0.4  
VOL(ALERT)  
V
输出逻辑低电平ALERT  
0.2 × (V+)  
12  
26  
0.25  
1
分辨率  
35  
ms  
转换时间  
单稳态模式  
CR1=0CR0=0  
CR1=0CR0=1  
Conv/s  
转换模式  
4
CR1=1CR0=0默认值)  
CR1=1CR0=1  
8
30  
40  
ms  
V
超时时间  
电源  
1.4  
3.6  
10  
工作电源电压范围  
串行总线无效CR1 = 1CR0 = 0  
默认值)  
7
IQ  
μA  
μA  
平均静态电流  
关断电流  
串行总线有效SCL (ƒ(SCL)) =  
15  
400kHz  
85  
0.5  
10  
串行总线有效ƒ(SCL) = 3.4MHz  
串行总线无效  
1
ISD  
串行总线有效ƒ(SCL) = 400kHz  
串行总线有效ƒ(SCL) = 3.4MHz  
80  
7.6 针对用户校准系统的技术规范  
更多有关此表中所列斜率的信息请参阅校准以提高精度部分。  
参数  
条件  
最小值  
最大值  
单位  
-7  
0
0
5
8
m°C/°C  
V+ = 3.340°C 25°C  
V+ = 3.325°C 85°C  
V+ = 3.385°C 125°C  
平均斜率  
温度误差与温度间的关系(1)  
m°C/°C  
m°C/°C  
0
(1) 由于噪声可量化用户校准温度准确度可±1LSB 之内。  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMP112-Q1  
 
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
7.7 时序要求  
请参阅时序部分了解时序图。  
快速模式  
高速模式  
最大值  
单位  
最小值 最大值 最小值  
V+  
0.001  
600  
0.4  
0.001  
160  
2.85 MHz  
ns  
ƒ(SCL)  
SCL 运行频率  
t(BUF)  
停止和启动条件之间的总线空闲时间  
重复启动条件后的保持时间。  
在此周期后生成第一个时钟。  
t(HDSTA)  
600  
160  
ns  
t(SUSTA)  
t(SUSTO)  
t(HDDAT)  
t(SUDAT)  
t(LOW)  
600  
600  
160  
160  
25  
ns  
ns  
重复启动条件建立时间  
停止条件设置时间  
数据保持时间  
请参阅双线制时序图  
100  
900  
105  
80  
ns  
ns  
ns  
ns  
ns  
ns  
100  
25  
数据设置时间  
1300  
600  
210  
60  
SCL 时钟低电平期  
SCL 时钟高电平期  
数据下降时间  
V+请参阅双线制时序图  
t(HIGH)  
tFD  
请参阅双线制时序图  
请参阅双线制时序图  
请参阅双线制时序图  
300  
300  
tRD  
数据上升时间  
SCLK 100kHz请参阅双线  
制时序图  
1000  
ns  
tFC  
tRC  
300  
300  
40  
40  
ns  
ns  
时钟下降时间  
时钟上升时间  
请参阅双线制时序图  
请参阅双线制时序图  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMP112-Q1  
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
7.8 典型特性  
TA 25°C V+=3.3 V 时测得除非额外注明。  
30  
25  
20  
15  
10  
5
0
D001  
Temperature Error (èC)  
Accuracy vs Supply (°C/V)  
7-1. 25°C 时的温度误差  
7-2. 精度与电源间的关系  
1
0.8  
0.6  
0.4  
0.2  
0
20  
18  
16  
14  
12  
10  
8
1.4-V Supply  
3.6-V Supply  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
6
4
Mean  
Mean + 3 s  
Mean - 3 s  
2
0
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (°C)  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
D002  
每秒四次转换  
7-3. 温度误差与温度间的关系  
7-4. 平均静态电流与温度间的关系  
10  
9
8
7
6
5
4
3
2
1
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.4-V Supply  
–55°C  
3.6-V Supply  
25°C  
125°C  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (°C)  
1k  
10k  
100k  
1M  
10M  
Bus Frequency (Hz)  
3.3V 电源电压时的温度  
7-5. 关断电流与温度间的关系  
7-6. 静态电流与总线频率间的关系  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMP112-Q1  
 
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
1.4-V Supply  
3.6-V Supply  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (°C)  
7-7. 转换时间与温度间的关系  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMP112-Q1  
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
8 详细说明  
8.1 概述  
TMP112-Q1 器件是一款数字温度传感器是热管理和热保护应用的理想之选。TMP112-Q1 器件采用两线制与  
SMBus I2C 接口兼容。该器件的工作温度范围为 –40°C 125°C8-1 展示了 TMP112-Q1 器件的方框  
图。8-2 展示TMP112-Q1 器件中包含ESD 保护电路。  
TMP112-Q1 器件内的温度传感器是芯片本身。散热路径贯穿封装引线以及塑料封装。封装引线提供主要散热路  
因为金属的热阻较低。  
TMP112-Q1 器件还有一个替代版本。TMP102-Q1 器件降低了精度具有相同的微封装并且引脚对引脚兼容。  
8-1. TMP112-Q1 TMP102-Q1 的优势对比  
电源电压最  
电源电压  
最小值)  
指定的校准漂移  
斜率  
本地传感器精度最大值)  
器件  
兼容接口  
封装  
电源电流  
分辨率  
大值)  
I2C  
SMBus  
SOT563  
1.2 × 1.6 × 0.6  
0.5°C:(0°C 65°C)  
1°C:(-40°C 125°C)  
12 位  
0.0625°C  
TMP112-Q1  
TMP102-Q1  
10µA  
1.4V  
1.4V  
3.6V  
I2C  
SMBus  
SOT563  
1.2 × 1.6 × 0.6  
2°C:(25°C 85°C)  
3°C(-40°C 125°C)  
12 位  
0.0625°C  
10µA  
3.6V  
8.2 功能方框图  
Temperature  
Diode  
temp.  
1
2
3
Control  
6
SCL  
SDA  
logic  
sensor  
ΔΣ  
5
4
Serial  
GND  
V+  
ADC  
interface  
Config.  
and temp.  
register  
ALERT  
Oscillator  
ADD0  
TMP112-Q1  
8-1. 内部框图  
Device  
SCL  
SDA  
V+  
GND  
Core  
V+  
ALERT  
A0  
8-2. 等效内ESD 电路  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMP112-Q1  
 
 
 
 
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
8.3 特性说明  
8.3.1 数字温度输出  
每次温度测量转换的数字输出会存储在只读温度寄存器中。TMP112-Q1 器件的温度寄存器配置为 12 位只读寄存  
在配置寄存器中将 EM 位设为 0请参阅扩展模式 (EM) 部分或配置为 13 位只读寄存器在配置寄存器中  
EM 位设为 1),存储最近一次转换的输出。必须读取两个字节以获得数据8-8 所示。字节 1 是最高有  
效字节 (MSB)之后是字节 2即最低有效字节 (LSB)。前 12 扩展模式中为 13 用于指示温度。如果不  
需要这个信息那么没有必要读取最低有效字节。温度的数据格式在8-2 8-3 中列出。一个 LSB 等于  
0.0625°C负数用二进制补码格式表示。上电或复位后在首次转换完成前温度寄存器读数为 0°C。字节 2 的  
D0 位表示正常模式EM 位等0或扩展模式EM 位等1),可用于区分两种温度寄存器数据格式。温度寄  
存器中未使用的位始终读0。  
8-2. 12 位温度数据格式(1)  
(°C)  
128  
127.9375  
100  
80  
数字输出二进制)  
0111 1111 1111  
0111 1111 1111  
0110 0100 0000  
0101 0000 0000  
0100 1011 0000  
0011 0010 0000  
0001 1001 0000  
0000 0000 0100  
0000 0000 0000  
1111 1111 1100  
1110 0111 0000  
1100 1001 0000  
十六进制  
7FF  
7FF  
640  
500  
75  
4B0  
320  
50  
25  
190  
0.25  
0
004  
000  
-0.25  
-25  
FFC  
E70  
C90  
-55  
(1) 处于内部温度模式的温ADC 的分辨率为每次计0.0625°C。  
8-2 未列出所有温度。使用以下规则可得到给定温度的数字数据格式或给定数字数据格式的温度。  
若要将正温度值转换为数字数据格式:  
1. 将温度除以分辨率  
2. 将结果转换12 位、左对齐格式的二进制代码MSB = 0 表示正号。  
示例(50°C) / (0.0625°C / LSB) = 800 = 320h = 0011 0010 0000  
若要将正数字数据格式转换为温度:  
1. 12 位、左对齐二进制温度结果转换为十进制数MSB = 0 表示正号。  
2. 将十进制数与分辨率相乘得到正温度值。  
示例0011 0010 0000 = 320h = 800 × (0.0625°C / LSB) = 50°C  
若要将负温度值转换为数字数据格式:  
1. 将温度绝对值除以分辨率将结果转换12 位、左对齐格式的二进制代码。  
2. 对二进制数求反码再加一生成结果的二进制补码。MSB = 1 来表示一个负数。  
示例(|25°C|) / (0.0625°C / LSB) = 400 = 190h = 0001 1001 0000  
二进制补码格式1110 0110 1111 + 1 = 1110 0111 0000  
若要将负数字数据格式转换为温度:  
1. 对二进制数求反码再加一生成温度结果12 位、左对齐二进制数的二进制补码MSB = 1 表示温度结果为  
负值。它表示温度绝对值的二进制数。  
2. 转换为十进制数并与分辨率相乘得到绝对温度再乘1 得到负号。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMP112-Q1  
 
 
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
示例1110 0111 0000 的二进制补码0001 1001 0000 = 0001 1000 1111 + 1  
转换为温度0001 1001 0000 = 190h = 400; 400 × (0.0625°C / LSB) = 25°C = (|25°C|); (|25°C|) × (1)  
= 25°C  
8-3. 13 位温度数据格式  
(°C)  
150  
数字输出二进制)  
0 1001 0110 0000  
0 1000 0000 0000  
0 0111 1111 1111  
0 0110 0100 0000  
0 0101 0000 0000  
0 0100 1011 0000  
0 0011 0010 0000  
0 0001 1001 0000  
0 0000 0000 0100  
0 0000 0000 0000  
1 1111 1111 1100  
1 1110 0111 0000  
1 1100 1001 0000  
十六进制  
0960  
0800  
07FF  
0640  
0500  
04B0  
0320  
0190  
0004  
0000  
1FFC  
128  
127.9375  
100  
80  
75  
50  
25  
0.25  
0
0.25  
25  
-55  
1E70  
1C90  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMP112-Q1  
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
8.3.2 串行接口  
TMP112-Q1 器件只在 I2CSMBus 以及与两线制接口兼容的总线上作为目标器件运行。通过开漏 I/O 线路 SDA  
SCL 与总线连接。SDA SCL 引脚特有的集成式峰值抑制滤波器和施密特触发器可大大减少输入峰值和总线  
噪声的影响。TMP112-Q1 器件支持针对快速1kHz 400kHz和高速1kHz 2.85MHz模式的传输协议。  
在所有被发送的数据字节MSB 被首先发送。  
8.3.2.1 总线概述  
发起传输的器件被称为控制器而受控制器控制的器件为目标。总线必须由一个控制器件控制以生成串行时钟  
(SCL)控制总线访问并生成启动和停止条件。  
为了寻址一个特定的器件SCL 引脚为高电平时将数据线(SDA) 的逻辑电平从高拉为低以启动一个启动条  
件。总线上的所有目标器件在时钟的上升沿移入目标地址字节最后一位表明希望进行的是读取还是写入操作。  
在第九个时钟脉冲期间被寻址的目标器件会生成一个确认位并SDA 引脚下拉为低电平对控制器做出响应。  
然后数据传输被发起并且发出超过 8 个时钟脉冲随后是一个确认位。在数据传输期间SCL 引脚为高电平时  
SDA 引脚必须保持稳定这是因SCL 引脚为高电平时SDA 引脚的任何变化都会被认为是启动或停止信号。  
当所有数据的传输均已完成后控制器会SCL 引脚为高电平时SDA 引脚从低拉为高生成一个停止条件。  
8.3.2.2 串行总线地址  
若要与 TMP112-Q1 器件进行通信控制器必须首先通过目标地址字节来对目标器件进行寻址。目标地址字节包  
7 个地址位和一个指示执行读取还是写入操作的方向位。  
TMP112-Q1 器件具有一个地址引脚最多允许在单个总线上寻址四个器件。8-4 列出了用于适当连接最多四个  
器件的引脚逻辑电平。  
8-4. 地址引脚和目标地址  
A0 引脚连接  
器件两线制地址  
1001 000  
接地  
V+  
1001 001  
1001 010  
SDA  
SCL  
1001 011  
8.3.2.3 写入和读取操作  
通过为指针寄存器写入适当的值可访问 TMP112-Q1 器件上的特定寄存器。指针寄存器的值是 R/W 位为低电平  
时在目标地址字节之后传输的第一个字节。每次写入 TMP112-Q1 器件的操作都需要指针寄存器的值请参阅图  
8-4。  
TMP112-Q1 器件读取时写入操作存入指针寄存器的最后一个值用于确定读取操作会读取哪个寄存器。若要  
为读取操作更改寄存器指针必须在指针寄存器中写入一个新值。若要完成此操作应在 R/W 位为低电平时发出  
一个目标地址字节后跟指针寄存器字节。无需额外的数据。然后控制器可以生成一个启动条件并在 R/W 位  
为高电平时发送目标地址字节以启动读取命令。这个队列的详细信息请见8-5。如果需要从同一寄存器进行重  
复的读取操作则不必一直发送指针寄存器字节因为 TMP112-Q1 器件将保留指针寄存器的值直到该值被下  
一个写入操作更改。  
首先发送的寄存器字节为最高有效字节之后是最低有效字节。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMP112-Q1  
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
8.3.2.4 目标模式运行  
TMP112-Q1 器件可作为目标接收器或目标发送器运行。作为目标器件时TMP112-Q1 器件绝不会驱动 SCL 线  
路。  
8.3.2.4.1 目标接收器模式  
控制器传输的第一个字节为目标地址其中 R/W 位为低电平。然后TMP112-Q1 器件确认接收到有效地址。控  
制器传输的下一个字节为指针寄存器。然后TMP112-Q1 器件确认接收到指针寄存器字节。接下来的一个或多个  
字节写入的寄存器由指针寄存器寻址。TMP112-Q1 器件确认收到每个数据字节。控制器可生成启动或停止条件,  
终止数据传输。  
8.3.2.4.2 目标发送器模式  
控制器传输的第一个字节为目标地址其中 R/W 位为高电平。目标器件确认接收到有效的目标地址。下一个字节  
由目标传输并且是指针寄存器所指示的寄存器的最高有效字节。控制器确认收到数据字节。目标传输的下一个  
字节是最低有效字节。控制器确认收到数据字节。控制器可在接收任何数据字节时生成一个非确认或生成启动  
或停止条件从而终止数据传输。  
8.3.2.5 SMBus 警报功能  
TMP112-Q1 器件支持 SMBus 警报功能。当 TMP112-Q1 器件在中断模式下运行时 (TM = 1)ALERT 引脚可作  
SMBus 警报信号连接。当控制器检测到警报线路上存在警报条件时控制器会向总线发送 SMBus 警报命令  
(0001 1001)。如果 ALERT 引脚有效器件将确认 SMBus 警报命令并在 SDA 线路上返回目标地址进行响应。  
目标器件地址字节的第八位 (LSB) 表明警报条件是否是温度超过 T(HIGH) 或者低于 T(LOW) 引起的。如果温度超过  
T(HIGH)LSB 为高电平如果温度低T(LOW) 则为低电平。这个队列的详细信息请见8-6。  
如果总线中的多个器件SMBus 警报命令做出响应SMBus 警报命令目标地址部分的仲裁将确定哪个器件清  
除了其警报状态。具有最低两线制地址的器件将在仲裁中胜出。如果 TMP112-Q1 器件在仲裁中胜出TMP112-  
Q1 ALERT 引脚将在 SMBus 警报命令完成时变为无效。如果 TMP112-Q1 器件未在仲裁中胜出TMP112-Q1  
ALERT 引脚将保持有效。  
8.3.2.6 常规调用  
如果第八位为 0TMP112-Q1 器件会对两线制的常规调用地址 (0000 000) 作出响应。该器件确认常规调用地  
并对第二个字节中的命令作出响应。如果第二个字节0000 0110TMP112-Q1 内部寄存器会被复位为上电  
值。TMP112-Q1 器件不支持常规地址获取命令。  
8.3.2.7 (Hs) 模式  
为了使两线制总线的运行频率大400kHz在一个启动条件将总线切换至高速运行后控制器器件必须发出一个  
Hs 模式控制器代码 (0000 1xxx) 作为第一个字节。TMP112-Q1 器件并不确认这个字节而是将其 SDA SCL  
引脚上的输入滤波器和 SDA 引脚上的输出滤波器切换到 Hs 模式运行从而支持最高 2.85MHz 的传输。在发出  
Hs 模式控制器代码后控制器会传输一个两线制目标器件地址来启动数据传输操作。总线将继续在 Hs 模式下  
运行直到总线中出现停止条件。TMP112-Q1 器件在收到停止条件后会将输入和输出滤波器切换回快速模式运  
行。  
8.3.2.8 超时功能  
在启动和停止条件之间如果 SCL 引脚保持为低电平 30ms典型值),TMP112-Q1 器件将复位串行接口。如  
SCL 引脚被拉低TMP112-Q1 会释SDA 线路并等待来自主机控制器的启动条件。为避免激活超时功能,  
请保持SCL 工作频率至少1kHz 时的通信速度。  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMP112-Q1  
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
8.3.2.9 时序图  
TMP112-Q1 器件采用两线制SMBus I2C 接口兼容。8-3 8-6 展示了 TMP112-Q1 器件的各种操  
作。8-3 中的参数列于时序要表中。总线定义如下:  
总线空闲SDA SCL 线路都保持高电平。  
开始数据传 SCL 线路为高电平时SDA 线路状态的变化从高电平变为低电平定义了启动条件。每个数据传  
:  
送由一个启动条件启动。  
停止数据传 SCL 线路为高电平时SDA 线路状态的变化从低电平变为高电平定义了停止条件。每一个被终  
:  
止的数据传输带有一个重复的启动或者停止条件。  
数据传输在启动条件和停止条件之间传送的数据字节的数量没有限制由控制器器件确定。还可以使用  
TMP112-Q1 器件进行单字节更新。如果只需更新最高有(MS) 字节可在总线上发出一个启动或  
停止信息终止通信。  
确认:  
每个接收器件被寻址后必须生成一个确认位。做出确认的器件必须在确认时钟脉冲期间下SDA  
线路这样一来在确认时钟脉冲的高电平期间SDA 线路为稳定低电平。必须将建立和保持时间  
考虑在内。控制器在接收数据时通过在目标已发出的最后一个字节上生成一个非确认(1)控制器  
可发出数据传输终止信号。  
8.3.2.9.1 双线制时序图  
请参阅时序要表了解时序规格。  
t(LOW)  
tFC  
t(HDSTA)  
tRC  
SCL  
t(SUSTO)  
t(HDSTA)  
t(HIGH) t(SUSTA)  
t(HDDAT)  
t(SUDAT)  
SDA  
t(BUF)  
tRD  
tFD  
S
P
P
S
8-3. 两线制时序图  
1
9
1
9
SCL  
¼
A1(1) A0(1)  
SDA  
1
0
0
1
0
R/W  
0
0
0
0
0
0
P1  
P0  
¼
Start By  
Controller  
ACK By  
Device  
ACK By  
Device  
Frame 2 Pointer Register Byte  
Frame 1 Two-Wire Target Address Byte  
1
9
1
9
SCL  
(Continued)  
SDA  
D7 D6  
D5  
D4 D3  
D2 D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(Continued)  
ACK By  
Device  
ACK By  
Device  
Stop By  
Controller  
Frame 3 Data Byte 1  
Frame 4 Data Byte 2  
A. A0 A1 的值ADD0 引脚决定。  
8-4. 针对写入字格式的两线制时序图  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMP112-Q1  
 
 
 
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
1
9
1
9
¼
SCL  
A1(1) A0(1)  
R/W  
0
0
0
0
0
0
P1  
P0  
SDA  
1
0
0
1
0
Start By  
Controller  
ACK By  
Device  
ACK By  
Device  
Stop By  
Controller  
Frame 1 Two-Wire Target Address Byte  
Frame 2 Pointer Register Byte  
1
9
1
9
SCL  
¼
(Continued)  
SDA  
A1(1) A0(1)  
¼
0
1
0
0
1
R/W  
D7  
D6  
D5  
D4 D3  
D2  
D1  
D0  
(Continued)  
Start By  
ACK By  
Device  
From  
Device  
ACK by  
Controller(2)  
Controller  
Frame 3 Two-Wire Target Address Byte  
9
Frame 4 Data Byte 1 Read Register  
1
SCL  
(Continued)  
SDA  
D7 D6  
D5  
D4  
D3  
D2  
D1  
D0  
(Continued)  
From  
ACK by  
Controller(3)  
Stop by  
Device  
Controller  
Frame 5 Data Byte 2 Read Register  
A. A0 A1 的值ADD0 引脚决定。  
B. 控制器必须SDA 引脚保持为高电平以终止单字节读取操作。  
C. 控制器必须SDA 引脚保持为高电平以终止双字节读取操作。  
8-5. 针对读取字格式的两线制时序图  
ALERT  
SCL  
1
9
1
9
SDA  
0
0
0
1
1
0
0
R/W  
1
0
0
1
A1  
A0 Status  
Start By  
Controller  
ACK By  
Device  
From  
Device  
NACK By Stop By  
Controller Controller  
Frame 1 SMBus ALERT Response Address Byte  
Frame 2 Target Address from Device  
A. A0 A1 的值ADD0 引脚决定。  
8-6. SMBus 警报的时序图  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMP112-Q1  
 
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
8.4 器件功能模式  
8.4.1 连续转换模式  
TMP112-Q1 器件的默认模式为连续转换模式。在连续转换模式期间ADC 执行连续温度转换并将每个结果存  
储到温度寄存器中覆盖上次转换的结果。转换率位 CR1 CR0 TMP112-Q1 器件的转换率配置为 0.25Hz、  
1Hz4Hz 8Hz。默认速率为 4HzTMP112-Q1 器件的典型转换时间为 26ms。为了获得不同的转换率,  
TMP112-Q1 器件进行一次转换后会断电并等待 CR1 CR0 设定的适当延迟。8-5 列出了 CR1 CR0 的  
设置。  
8-5. 转换率设置  
CR1  
CR0  
转换率  
0.25Hz  
1Hz  
0
0
1
1
0
1
0
1
4Hz默认值)  
8Hz  
8-7 所示在上电或通用广播复位后TMP112-Q1 器件会立即开始转换。26ms典型值之后可获得第  
一个结果。转换期间的有效静态电流为 40μA27°C 时的典型值。延迟期间的静态电流为 2.2μA27°C 时的  
典型值。  
Delay(1)  
26 ms  
26 ms  
Startup  
Start of  
Conversion  
A. 延迟是通过配置寄存器中CR1 CR0 位设置的。  
8-7. 转换开始  
8.4.2 扩展模(EM)  
扩展模式位将器件配置为正常模式运(EM = 0) 或者扩展模式运(EM = 1)。在正常模式下温度寄存器和上限  
下限寄存器使12 位数据格式。正常模式TMP112-Q1 器件TMP75 兼容。  
通过将温度寄存器和上限下限寄存器配置13 位数据格式扩展模(EM = 1) 可测量高128°C 的温度。  
8.4.3 关断模(SD)  
关断模式位可关闭除串行接口外的所有器件电路可实现最大的功率节省通常可将电流消耗减少到小于  
0.5μA。将 SD 位设为 1 会启用关断模式。将此位设为 1 器件会在电流转换完成后关闭。将 SD 位设为 0  
器件将保持连续转换状态。  
8.4.4 单稳态转换就绪模(OS)  
TMP112-Q1 器件具有单稳态温度测量模式。当器件处于关断模式时OS 位写1 将开始一次温度转换。转换  
OS 位读数0。完成单次转换时器件恢复关断状态。转换之OS 位读数1。如果无需对温度进行持续  
监控这个特性能有效地减TMP112-Q1 器件的功耗。  
由于转换时间短TMP112-Q1 器件可实现更高的转换速率。单次转换通常需要 26ms读取只需不到 20μs。使  
用单稳态模式时可实现每30 次或者更多次的转换。  
8.4.5 恒温模(TM)  
恒温模式位指示器件运行在比较器模(TM = 0) 还是中断模(TM = 1)。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMP112-Q1  
 
 
 
 
 
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
8.4.5.1 比较器模(TM = 0)  
在比较器模式下 (TM = 0)当温度等于或超出 T(HIGH) 寄存器中的值时警报引脚被激活并保持有效直到温度下  
T(LOW) 寄存器中的值之下。更多有关比较器模式的信息请参阅上限和下限寄存部分。  
8.4.5.2 中断模(TM = 1)  
在中断模式 (TM = 1) 当温度超出 T(HIGH) 或低于 T(LOW) 寄存器时警报引脚将被激活。主机控制器读取温度  
寄存器时警报引脚将被清除。更多有关中断模式的信息请参阅上限和下限寄存部分。  
8.5 编程  
8.5.1 指针寄存器  
8-8 显示了 TMP112-Q1 器件的内部寄存器结构。器件的 8 位指针寄存器用于寻址指定的数据寄存器。指针寄  
存器使用两个 LSB请参阅8-12来标识哪个数据寄存器必须对读取或写入命令做出响应。P[1:0] 字节的上电  
复位值00。默认情况下TMP112-Q1 器件在上电时读取温度。  
Pointer  
Register  
Temperature  
Register  
SCL  
Configuration  
Register  
I/O  
Control  
Interface  
T(LOW)  
Register  
SDA  
T(HIGH)  
Register  
8-8. 内部寄存器结构  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMP112-Q1  
 
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
8-6 列出了 TMP112-Q1 器件中可用寄存器的指针地址。8-7 列出了指针寄存器字节的位。在写入命令期  
P2 P7 字节必须始终0。  
8-6. 指针地址  
P1  
0
P0  
0
寄存器  
温度寄存器[R])  
配置寄存器[R/W])  
0
1
1
0
T(LOW) 寄存(R/W)  
1
1
T
(HIGH) 寄存(R/W)  
8-7. 指针寄存器类型  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
0
0
0
0
0
0
寄存器位  
8.5.2 温度寄存器  
TMP112-Q1 器件的温度寄存器配置12 位只读寄存器在配置寄存器中将 EM 位设0请参阅扩展模式 (EM)  
部分或配置为 13 位只读寄存器在配置寄存器中EM 位设为 1),存储最近一次转换的输出。必须读取两个  
字节以获得数据8-8 所示。字1 是最高有效字节 (MSB)之后是字节 2最低有效字节 (LSB)12 位  
扩展模式中13 用于指示温度。如果不需要这个信息那么没有必要读取最低有效字节。  
8-8. 温度寄存器的字1 2(1)  
D7  
T11  
(T12)  
T3  
D6  
T10  
(T11)  
T2  
D5  
D4  
D3  
D2  
T6  
(T7)  
0
D1  
T5  
(T6)  
0
D0  
T4  
(T5)  
0
字节  
T9  
T8  
T7  
1
(T10)  
T1  
(T9)  
T0  
(T8)  
0
2
(T4)  
(T3)  
(T2)  
(T1)  
(T0)  
(0)  
(0)  
(1)  
(1) 扩展模13 位配置显示在圆括号内。  
8.5.3 配置寄存器  
配置寄存器是一款用于存储温度传感器工作模式控制位16 位读取/写入寄存器。读取/写入操作首先执行 MSB。  
8-9 列出了配置寄存器的格式和上电及复位值。为了实现兼容性第一个字节与 TMP75 TMP275 器件中的  
配置寄存器相对应。所有寄存器被逐个字节更新。  
8-9. 配置和上电/复位格式  
D7  
OS  
0
D6  
R1  
1
D5  
R0  
1
D4  
F1  
0
D3  
F0  
0
D2  
POL  
0
D1  
TM  
0
D0  
SD  
0
字节  
1
CR1  
1
CR0  
0
AL  
1
EM  
0
0
0
0
0
2
0
0
0
0
8.5.3.1 关断模(SD)  
关断模式位可关闭除串行接口外的所有器件电路可实现最大的功率节省通常可将电流消耗减少到小于  
0.5μASD 位设1 会启用关断模式。当此位设1 器件会在电流转换完成后关闭。SD 位设0 器件  
将保持连续转换状态。  
8.5.3.2 恒温模(TM)  
恒温模式位指示器件在比较器模式 (TM = 0) 还是中断模式 (TM = 1)下运行。更多有关比较器和中断模式的信息,  
请参阅上限和下限寄存部分。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMP112-Q1  
 
 
 
 
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
8.5.3.3 (POL)  
极性位使用户能够调整 ALERT 引脚输出的极性。如果将 POL 位设为 0默认),ALERT 引脚将变为低电平有  
效。如果POL 位设1ALERT 引脚变为高电平有效ALERT 引脚的状态反转。ALERT 引脚在各种模式下的  
运行如8-9 所示。  
T(HIGH)  
Measured  
Temperature  
T(LOW)  
ALERT PIN  
(Comparator Mode)  
POL = 0  
ALERT PIN  
(Interrupt Mode)  
POL = 0  
ALERT PIN  
(Comparator Mode)  
POL = 1  
ALERT PIN  
(Interrupt Mode)  
POL = 1  
Read  
Read  
Time  
Read  
8-9. 输出传送功能图  
8.5.3.4 故障队(F1/F0)  
当测得的温度超过 T(HIGH) T(LOW) 寄存器中用户定义的限值时存在故障情况。此外生成一个警报所需的故  
障情况的数量可使用故障队列进行编程。提供的故障队列是为了防止由环境噪声造成的一个假警报。为了触发  
警报功能故障队列要求连续进行故障测量。8-10 列出了可编程的所测故障数量用于在器件中触发警报情  
况。T(HIGH) T(LOW) 寄存器格式和字节顺序请参阅上限和下限寄存部分。  
8-10. TMP112-Q1 故障设置  
F1  
0
F0  
连续故障  
0
1
2
4
6
0
1
1
0
1
1
8.5.3.5 转换器分辨率R1 R0)  
转换器分辨率位 R1 R0 是只读位。TMP112-Q1 转换器分辨率在启动时设置最高设置为 11以将温度寄存器  
12 位分辨率。  
8.5.3.6 单稳态模(OS)  
当器件处于关断模式时OS 位写入 1 将开始一次温度转换。转换期间 OS 位读数为 0。完成单次转换时器  
件恢复关断状态。更多有关单稳态转换模式的信息请参阅单稳态转换就绪模(OS) 部分。  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMP112-Q1  
 
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
8.5.3.7 扩展模(EM)  
扩展模式位将器件配置为正常模式运(EM = 0) 或者扩展模式运(EM = 1)。在正常模式下温度寄存器和上限  
下限寄存器使12 位数据格式。更多有关扩展模式的信息请参阅扩展模(EM) 部分。  
8.5.3.8 (AL)  
AL 位是一个只读函数。对 AL 位的读取可提供比较器模式状态的信息。POL 位的状态将从 AL 位返回的数据极性  
反转。如果 POL 位等于 0AL 位读数为 1在温度等于或者超过编程的连续故障数所对应的 T(HIGH) AL  
位读数0AL 位读数0 的状态将持续到温度降到编程的连续故障数所对应T(LOW) 以下之后读数将再次变  
1TM 位的状态不会影AL 位的状态。  
8.5.3.9 转换(CR)  
转换率位 CR1 CR0TMP112-Q1 器件的转换率配置为 0.25Hz1Hz4Hz8Hz。默认速率为 4Hz。  
更多有关转换率位的信息请参阅连续转换模部分。  
8.5.4 上限和下限寄存器  
温度限值存储在 T(LOW) T(HIGH) 寄存器中与温度结果的格式相同它们的值在每次转换时与温度结果进行比  
较。比较结果驱ALERT 引脚的行为该引脚作为比较器输出或中断由配置寄存器TM 位设置。  
在比较器模(TM = 0) 当温度等于或超T(HIGH) 寄存器中的值时ALERT 引脚变为有效并根据故障F1  
F0 生成连续故障数。ALERT 引脚保持有效直到温度下降到同一故障数所指示T(LOW) 值。  
在中断模式 (TM = 1) 当温度等于或超过连续故障数8-10 所示对应的 T(HIGH) 值时ALERT 引脚变  
为有效。ALERT 引脚保持有效直到任一寄存器发生读取操作或器件成功地对 SMBus 警报响应地址做出响  
应。如果器件被置于关断模式ALERT 引脚也会被清零。如果 ALERT 引脚被清零只有当温度下降到低于  
T
(LOW) 它才会重新变为有效并保持有效状态直到任一寄存器的读取操作将其清零或者对 SMBus 警报  
响应地址做出成功响应。如ALERT 引脚被清零将重复以上循环当温度等于或者超T(HIGH) ALERT 引  
脚变为有效。用通用广播复位命令来复位器件也可ALERT 引脚清零。这一操作也会使器件中内部寄存器的状  
态清零使器件返回到比较器模(TM = 0)。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMP112-Q1  
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
两种运行模式都在8-9 中展示。8-11 8-12 列出了 T(HIGH) T(LOW) 寄存器的格式。最高有效字节将首  
先发送然后是最低有效字节。T(HIGH) T(LOW) 的上电复位值为:  
T(HIGH) = 80°C  
T(LOW) = 75°C  
T
(HIGH) T(LOW) 的数据格式与温度寄存器所使用的数据格式一样。  
8-11. T(HIGH) 寄存器的字1 2(1)  
D7  
H11  
(H12)  
H3  
D6  
H10  
(H11)  
H2  
D5  
D4  
D3  
D2  
H6  
(H7)  
0
D1  
H5  
(H6)  
0
D0  
H4  
(H5)  
0
字节  
H9  
H8  
H7  
1
(H10)  
H1  
(H9)  
H0  
(H8)  
0
2
(H4)  
(H3)  
(H2)  
(H1)  
(H0)  
(0)  
(0)  
(0)  
(1) 扩展模13 位配置显示在圆括号内。  
8-12. T(LOW) 寄存器的字1 2(1)  
D7  
L11  
(L12)  
L3  
D6  
L10  
(L11)  
L2  
D5  
D4  
D3  
D2  
L6  
D1  
L5  
D0  
L4  
字节  
L9  
L8  
L7  
1
(L10)  
L1  
(L9)  
L0  
(L8)  
0
(L7)  
0
(L6)  
0
(L5)  
0
2
(L4)  
(L3)  
(L2)  
(L1)  
(L0)  
(0)  
(0)  
(0)  
(1) 扩展模13 位配置显示在圆括号内。  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMP112-Q1  
 
 
 
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
9 应用和实现  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 应用信息  
9.1.1 校准以提高精度  
有很多温度监控应用要求在限定的温度范围内的准确度优0.5°C。对给定温度上温度传感器偏移量的了解与对  
于固定范围内平均温度量程斜率误差的理解结合在一起使得提升准确度成为可能。  
TMP112-Q1 器件有三个明显不同的斜率区域这些区域较为接近它固有的曲率。下面列出了这三个明显的斜率区  
:  
1. 应用-40°C 25°C Slope1  
2. 应用25°C 85°C Slope2  
3. 应用85°C 125°C Slope3  
针对用户校准系统的技术规表定义了这些斜率同时也展示在9-1 中。  
备注  
针对用户校准系统的技术规表中列出的每个斜率均25°C 增加。  
0.8  
Slope3MAX  
Slope1MAX  
0.6  
Slope2MAX  
0.4  
0.2  
0
-0.2  
-0.4  
Slope1MIN  
Slope2MIN  
Slope3MIN  
-0.6  
-40-30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110120 130  
Temperature (°C)  
9-1. 准确度和斜坡曲线与温度间的关系  
使用方程1 计算特定温度时最差情况下的准确度:  
Accuracy(worst-case) = Accuracy(25°C) + DT ´ Slope  
(1)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMP112-Q1  
 
 
 
 
 
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
9.1.1.1 1-15°C 50°C 范围内寻找最坏情况下的精度  
作为一个示例如果用户只关心 -15°C 50°C 间的温度精度使用方程式 2 方程式 4 中展示的两个斜率计算  
结果可确定最坏情况下的精度。  
Accuracy  
= Accuracy  
+ DT ´ Slope  
25°C  
worst-case  
(
)
(
)
(2)  
m°C  
°C  
æ
ö
Accuracy  
= 0.3°C + -15°C - 25°C  
´
-7  
= 0.58°C  
(
)
ç
è
÷
ø
MAX[-15°C to 25°C]  
(
)
(3)  
(4)  
Accuracy  
= Accuracy  
+ DT ´ Slope2  
25°C MAX  
MAX[25°C to 50°C]  
(
)
(
)
(
)
m°C  
°C  
æ
ö
Accuracy  
= 0.3°C + 50°C - 25°C  
´
5
= 0.425°C  
÷
(
)
ç
è
MAX[25°C to 50°C]  
(
)
ø
(5)  
(6)  
同样的计算操作也必须应用于最小情况:  
Accuracy  
= Accuracy  
+ DT ´ Slope1  
MIN  
( )  
MIN[-15°C to 25°C]  
(
25°C  
(
)
)
é
m°C ù  
æ
ö
Accuracy  
= -0.5°C + -15°C - 25°C  
´
0
= -0.5°C  
(
)
ê
ç
÷ú  
MIN[-15°C to 25°C]  
(
)
°C  
è
ø
ë
û
(7)  
(8)  
Accuracy  
= Accuracy  
+ DT ´ Slope2  
25°C MIN  
MIN[25°C to 50°C]  
(
)
(
)
(
)
é
m°C ù  
æ
ö
Accuracy  
= -0.5°C + 50°C - 25°C  
´
0
= -0.5°C  
(
)
ê
ç
è
÷ú  
MIN[25°C to 50°C]  
(
)
°C  
ø
ë
û
(9)  
根据以上计算结果用户在最坏情况下能够15°C 50°C 的温度范围内得0.58°C -0.5°C 之间的精度。  
9.1.1.2 225°C 100°C 范围内寻找最坏情况下的精度  
如果所需的温度范围落入斜3 的区域内则有必要首先计算 25°C 85°C 之间最坏情况下的值并把它与温度  
变化和斜3 的量程误差之积相加。作为一个示例考虑如方程10 中所示25°C 125°C 的温度范围:  
Accuracy  
= Accuracy  
+ DT ´ Slope2  
+ DT ´ Slope3  
MAX MAX  
MAX[25°C to 100°C]  
25°C  
(
)
(
)
(
)
(
)
(10)  
(11)  
m°C  
°C  
m°C  
°C  
æ
ö
æ
ö
Accuracy  
= 0.3°C + 85°C - 25°C  
´
4.5  
+ 100°C - 85°C  
(
´
8
= 0.69°C  
(
)
)
ç
è
÷
ø
ç
è
÷
ø
MAX[25°C to 100°C]  
(
)
然后如方程12 所示进行最小值情况下的计算:  
Accuracy  
= Accuracy  
+ DT ´ Slope2  
+ DT ´ Slope3  
MIN  
( )  
MIN[25°C to 100°C]  
25°C  
MIN  
(
)
(
)
(
)
(12)  
(13)  
é
m°C ù  
é
m°C ù  
æ
ö
æ
ö
Accuracy  
= -0.5°C + 85°C - 25°C  
´
0
+
100°C - 85°C  
(
´
0
= -0.5°C  
(
)
)
ê
ç
è
÷ú  
ê
ç
÷ú  
MIN[25°C to 100°C]  
(
)
°C  
°C  
ø
è
ø
ë
û
ë
û
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMP112-Q1  
 
 
 
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
9.1.2 使用斜率规范1 点校准  
25°C 时的初始精度保证与斜率区域提供的精度对于大多数应用而言已足够高。但是如果想得到更高的精度可  
25°C 1 点校准实现。此校准可消除室温下的偏移量从而减TMP112-Q1 温度读数曲率最低点的误差  
源。9-2 显示了经校准TMP112-Q1 器件的误差。  
0.8  
Slope3MAX  
0.6  
0.4  
Slope1MAX  
Slope2MAX  
0.2  
0
-0.2  
-0.4  
-0.6  
Calibration at 25°C Removes Offset  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120 130  
Temperature (°C)  
9-2. 经校准的精度和斜率曲线与温度间的关系  
使用之前 0°C 50°C 的示例温度范围最差温度误差现在被减少到最差斜率这是因为 25°C 上的偏移,  
0.3°C -0.5°C 的最小和最大温度误差被去除。因此用户可以认为最差准确度被提升到0.175°C。  
9.1.2.1 电源电平对精度的影响  
3.3V 电源电压的直流变化抗扰度帮助 TMP112-Q1 器件达到出色精度。这种抗扰度的重要性在于用户不必使用  
另外一个 LDO 稳压器来产生 3.3V 电压以实现高精度。然而来自电源改变的噪声量化会增加一些温度测量准  
确度中的轻微改变。例如如果用户选择在 1.8V 电压下运行器件最坏情况下的预期精度变化可由方程式 14 算  
:  
0.25°C  
é
ù
Accuracy  
= ± V+ - 3.3 V ´  
(
)
PSR  
(
ê
ú
)
V
ë
û
(14)  
(15)  
0.25°C  
é
ù
Accuracy  
= ± 1.8 V - 3.3 V  
´
= ±0.375°C  
(
)
PSR  
(
ê
ú
)
V
ë
û
这个例子是由于电源变化而产生的最坏情况下的精度必须添加到精度中再加上斜率最大值。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMP112-Q1  
 
 
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
9.2 典型应用  
TMP112-Q1 器件用于测量电路板上安装该器件的位置处的 PCB 温度。可编程地址选项支持在单一串行总线上监  
控电路板上的最多四个位置。  
Supply Voltage  
1.4 V to 3.6 V  
Supply Bypass  
Capacitor  
0.01 µF  
Pullup Resistors  
5 k  
TMP112-Q1  
Two-Wire  
Host Controller  
6
5
4
1
2
3
SDA  
V+  
SCL  
GND  
ALERT  
ADD0  
SCLSDA ALERT 引脚需要上拉电阻器。  
9-3. 典型连接  
9.2.1 设计要求  
TMP112-Q1 器件的 SCLSDA ALERT 引脚需要上拉电阻器。上拉电阻器的建议值是 5kΩ。在一些应用中,  
上拉电阻器可低于或高5kΩ但这些引脚上的电流不得超过 3mA。建议在电源上添0.01μF 旁路电容器如  
9-3 中所示。SCL SDA 线路可通过上拉电阻器上拉为等于或大V+ 的电源。若要在总线上配置四种不同地  
址中的其中一个ADD0 引脚连接GNDV+SDA SCL 引脚。  
9.2.2 详细设计过程  
TMP7112-Q1 器件贴近热源必须进行监控),布局要利于实现出色的热耦合。这种放置方式可确保在尽可能  
最短的时间间隔内捕捉温度变化。为了在要求对环境或者表面温度进行测量的应用中保持准确度必须小心操  
使封装和引线不受周围环境温度的影响。热传导粘合剂有助于实现精确表面温度测量。  
TMP112-Q1 器件是超低功耗器件在电源总线上生成的噪声非常低。在 TMP112-Q1 器件的 V+ 引脚上应用 RC  
滤波器可进一步降低 TMP112-Q1 器件可能传播到其他元件的噪声。9-4 中的 R(F) 必须小于 5kΩ,C(F) 必须大  
10nF。  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMP112-Q1  
 
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
Supply Voltage  
R
(F) 5 kΩ  
Device  
SCL  
SDA  
V+  
GND  
C
(F) 10 nF  
ALERT  
ADD0  
9-4. 降噪技术  
9.2.3 应用曲线  
9-5 展示了 TMP112-Q1 器件从室温 (27°C) 浸入 100°C 油浴的阶跃响应。时间常数或输出达到输入阶跃  
63% 的时间是 0.8 秒。时间常数结果取决于 TMP112-Q1 器件所安装的印刷电路板 (PCB)。在此测试中,  
TMP112-Q1 器件焊接0.375in × 0.437in 的双PCB 上。  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
-1  
1
3
5
7
9 11 13 15 17 19  
Time (s)  
9-5. 温度阶跃响应  
10 电源相关建议  
TMP112-Q1 器件的工作电源电压范围为 1.4V 3.6V。该器件针对 3.3V 工作电源进行了优化可在整个电源电  
压范围内准确测量温度。更多有关电源影响器件精度的信息请参阅电源电平对精度的影部分。  
为确保正常运行需要使用电源旁路电容器。将电容器尽可能靠近该器件的电源引脚和接地引脚放置。电源旁路  
电容器的典型值0.01μF。带有嘈杂或者高阻抗电源的应用也许需要额外的去耦合电容器来抑制电源噪声。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMP112-Q1  
 
 
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
11 布局  
11.1 布局指南  
电源旁路电容器的位置应尽可能靠近电源引脚和接地引脚。建议使用 0.01μF 的旁路电容器。可以添加额外的去  
耦电容以补偿噪声或高阻抗电源。通5kΩ拉电阻器上拉开漏输出引脚SDASCL ALERT。  
11.2 布局示例  
Via to Power or Ground Plane  
Via to Internal Layer  
Pull-Up Resistors  
SCL  
SDA  
V+  
Supply Voltage  
GND  
ALERT  
ADD0  
Supply Bypass  
Capacitor  
Ground Plane for  
Thermal Coupling  
to Heat Source  
Serial Bus Traces  
Heat Source  
11-1. 布局示例  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMP112-Q1  
 
 
 
TMP112-Q1  
ZHCSD10F SEPTEMBER 2014 REVISED JUNE 2022  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
相关文档如下:  
TMP112 数据表SBOS473  
或访http://www.ti.com.cn/product/cn/TMP112TMP112 产品文件夹  
12.2 接收文档更新通知  
若要接收文档更新通知请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的提醒我进行注册即可每周接收  
产品信息更改摘要关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
12.4 商标  
SMBusis a trademark of Intel, Inc.  
所有商标均为其各自所有者的财产。  
13 机械、封装和可订购信息  
下述页面包含机械、封装和订购信息。这些信息是指定器件可用的最新数据。数据如有变更恕不另行通知且  
不会对此文档进行修订。有关此数据表的浏览器版本请查阅左侧的导航栏。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMP112-Q1  
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-May-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMP112AQDRLRQ1  
ACTIVE  
SOT-5X3  
DRL  
6
4000 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
-40 to 125  
SLP  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TMP112-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-May-2022  
Catalog : TMP112  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-May-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMP112AQDRLRQ1  
SOT-5X3  
DRL  
6
4000  
180.0  
8.4  
1.98  
1.78  
0.69  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-May-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOT-5X3 DRL  
SPQ  
Length (mm) Width (mm) Height (mm)  
223.0 270.0 35.0  
TMP112AQDRLRQ1  
6
4000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DRL0006A  
SOT - 0.6 mm max height  
S
C
A
L
E
8
.
0
0
0
PLASTIC SMALL OUTLINE  
1.7  
1.5  
PIN 1  
ID AREA  
A
1
6
4X 0.5  
1.7  
1.5  
2X 1  
NOTE 3  
4
3
1.3  
1.1  
0.3  
6X  
0.05  
TYP  
0.00  
B
0.1  
0.6 MAX  
C
SEATING PLANE  
0.05 C  
0.18  
0.08  
6X  
SYMM  
SYMM  
0.27  
0.15  
6X  
0.1  
0.05  
C A B  
0.4  
0.2  
6X  
4223266/C 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-293 Variation UAAD  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4223266/C 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4223266/C 12/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TMP112AIDRLR

High-Accuracy, Low-Power, Digital Temperature Sensor With SMBus™/Two-Wire Serial Interface in SOT563
TI

TMP112AIDRLT

High-Accuracy, Low-Power, Digital Temperature Sensor With SMBus™/Two-Wire Serial Interface in SOT563
TI

TMP112AQDRLRQ1

采用 2.56mm2 封装、具有 I2C/SMBus 的汽车类 ±0.5°C 1.4V 至 3.6V 数字温度传感器 | DRL | 6 | -40 to 125
TI

TMP112BIDRLR

采用 2.56mm2 封装、具有 I2C/SMBus 的 ±0.5°C 1.4V 至 3.6V 数字温度传感器 | DRL | 6 | -40 to 125
TI

TMP112BIDRLT

±0.5&deg;C 1.4V to 3.6V digital temperature sensor with I2C/SMBus in 2.56mm2 package 6-SOT-5X3 -40 to 125
TI

TMP112NAIDRLR

±0.5&deg;C 1.4V to 3.6V digital temperature sensor with I2C/SMBus in 2.56mm2 package 6-SOT-5X3 -40 to 125
TI

TMP112NAIDRLT

±0.5&deg;C 1.4V to 3.6V digital temperature sensor with I2C/SMBus in 2.56mm2 package 6-SOT-5X3 -40 to 125
TI

TMP112_1

High-Accuracy, Low-Power, Digital Temperature Sensor With SMBus™/Two-Wire Serial Interface in SOT563
TI

TMP114

TMP114 Ultra-Thin, 1.2-V to 1.8-V Supply, High Accuracy Digital Temperature Sensor with I2C Interface
TI

TMP114A

TMP114 Ultra-Thin, 1.2-V to 1.8-V Supply, High Accuracy Digital Temperature Sensor with I2C Interface
TI

TMP114AIYMTR

TMP114 Ultra-Thin, 1.2-V to 1.8-V Supply, High Accuracy Digital Temperature Sensor with I2C Interface
TI

TMP114AIYMTT

TMP114 Ultra-Thin, 1.2-V to 1.8-V Supply, High Accuracy Digital Temperature Sensor with I2C Interface
TI