TMP235A2DBZR [TI]

10mV/C、1C 模拟温度传感器 | DBZ | 3 | -40 to 150;
TMP235A2DBZR
型号: TMP235A2DBZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

10mV/C、1C 模拟温度传感器 | DBZ | 3 | -40 to 150

温度传感 传感器 温度传感器
文件: 总26页 (文件大小:1065K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMP235, TMP236  
ZHCSH80E SEPTEMBER 2017REVISED MAY 2019  
TMP23x 低功耗高精度模拟输出温度传感器  
1 特性  
工厂自动化和控制  
测试和测量  
1
具有成本效益的热敏电阻替代产品  
在宽温度范围内具有高精度:  
3 说明  
±2.5°C(最大值):–40°C +150°C  
TMP23x 器件是一系列精密 CMOS 集成电路线性模拟  
温度传感器,其输出电压与温度成正比,工程师可以将  
其用于多种模拟温度检测 应用。这些温度传感器比市  
面上同类引脚兼容器件的精确度更高,在 0°C 至  
+70°C 温度范围内 ±0.5°C 的典型精度。该系列器件的  
精度经提高后,可适用于众多模拟温度检测 应用。  
TMP235 器件在 –40°C +150°C 完全温度范围和  
2.3V 5.5V 电源电压范围内提供 10mV/°C 正斜率输  
出。具有更高增益的 TMP236 传感器在 –10°C 至  
+125°C 温度范围和 3.1V 5.5V 电源电压范围内提供  
19.5mV/°C 正斜率输出。  
(TMP235)  
±2.5°C(最大值):–10°C +125°C  
(TMP236)  
提供两种精度级别型号:  
A2 级:±0.5°C(典型值)  
A4 级:±1°C(典型值)  
正斜率传感器增益,失调电压(典型值):  
10mV/°C0°C 500mV (TMP235)  
19.5mV/°C0°C 400mV (TMP236)  
宽工作电源电压范围:  
2.3V 5.5V (TMP235)  
3.1V 5.5V (TMP236)  
9μA 典型静态电流和 800µs 典型加电时间可实现有效  
的功率循环架构,以最大限度地降低电池供电设备的功  
率损耗。AB 类输出驱动器提供强大的 500µA 最高输  
出,可驱动高达 1000pF 的电容负载,并可直接连接到  
模数转换器采样保持输入端。凭借出色的精确度和强大  
的线性输出驱动器,TMP23x 模拟输出温度传感器是  
具有成本效益的无源热敏电阻替代方案。  
输出短路保护  
低功耗:9μA(典型值)  
输出强大,可驱动高达 1000pF 的负载  
提供的封装选项:  
5 引脚 SC70 (DCK) 表面贴装  
3 引脚 SOT-23 (DBZ) 表面贴装  
封装尺寸兼容符合行业标准的 LMT8x-Q1 和  
LM20 温度传感器  
器件信息(1)  
器件型号  
TMP235,  
TMP236  
封装  
SC70 (5)  
SOT-23 (3)  
封装尺寸(标称值)  
2.00mm × 1.25mm  
2.92mm × 1.30mm  
2 应用  
电网基础设施  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
无线和电信基础设施  
汽车信息娱乐系统  
功能方框图  
输出电压与环境温度间的关系  
3
VDD  
2.5  
2
Thermal Diodes  
1.5  
1
VOUT  
0.5  
TMP235  
TMP236  
0
-50  
GND  
-25  
0
25  
50  
75  
100  
125 150  
TA (èC)  
D003  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS857  
 
 
 
 
 
 
TMP235, TMP236  
ZHCSH80E SEPTEMBER 2017REVISED MAY 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 11  
8.1 Application Information............................................ 11  
8.2 Typical Application .................................................. 11  
Power Supply Recommendations...................... 12  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 8  
7.3 Feature Description................................................... 8  
8
9
10 Layout................................................................... 12  
10.1 Layout Guidelines ................................................. 12  
10.2 Layout Examples................................................... 12  
11 器件和文档支持 ..................................................... 13  
11.1 相关链接................................................................ 13  
11.2 接收文档更新通知 ................................................. 13  
11.3 社区资源................................................................ 13  
11.4 ....................................................................... 13  
11.5 静电放电警告......................................................... 13  
11.6 Glossary................................................................ 13  
12 机械、封装和可订购信息....................................... 13  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision D (August 2018) to Revision E  
Page  
Changed recommended operating temperature range from: –50°C to 150°C to: –40°C to 150°C ....................................... 4  
Changed power supply bypassing recommendations on how to avoid noise effect on the device output .......................... 12  
Changes from Revision C (August 2018) to Revision D  
Page  
DBZ (SOT-23) 封装状态从预览更改为生产数据 ................................................................................................................ 1  
Changes from Revision B (February 2018) to Revision C  
Page  
添加了 DBZ (SOT-23) 预览封装 ............................................................................................................................................ 1  
Added TMP236 test conditions to the operating current parameters..................................................................................... 5  
Added SOT-23 and SC70 package test conditions to the Accuracy Level 2 (A2) limits in the 0to 70range ................ 5  
Changes from Revision A (December 2017) to Revision B  
Page  
已更改 将典型精度规格参考值从 ±1°C ±2°C 更改为 ±0.5°C ±1°C................................................................................ 1  
Deleted erroneous AOQL footnote......................................................................................................................................... 5  
Changed specification limits indicated in 1........................................................................................................................ 6  
Added Device Functional Modes section ............................................................................................................................ 10  
Changes from Original (September 2017) to Revision A  
Page  
已更改 将文档状态从预告信息更改成了生产数据” .............................................................................................................. 1  
2
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TMP235, TMP236  
www.ti.com.cn  
ZHCSH80E SEPTEMBER 2017REVISED MAY 2019  
5 Pin Configuration and Functions  
DBZ Package  
3-Pin SOT-23  
Top View  
DCK Package  
5-Pin SC70  
Top View  
1
NC  
GND  
VOUT  
1
2
3
5
NC  
VDD  
3
GND  
2
4
VDD  
VOUT  
Not to scale  
Not to scale  
NC- no internal connection  
Pin Functions  
PIN  
NAME  
TYPE  
DESCRIPTION  
SOT-23  
SC70  
GND  
NC  
3
2
2
5
1
3
4
Ground  
Power supply ground.  
O
I
No internal connection. This pin may be left floating or connected to GND.  
No internal connection. This pin may be left floating or connected to GND.  
Outputs voltage proportional to temperature  
NC  
VOUT  
VDD  
1
Positive supply input  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
TMP235, TMP236  
ZHCSH80E SEPTEMBER 2017REVISED MAY 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
MAX  
UNIT  
Supply voltage, VDD  
Output voltage, VOUT  
Output current  
+6  
V
–0.3 (VDD + 0.3)  
–30  
+30  
+200  
+150  
+150  
mA  
°C  
Latch-up current, each pin  
Junction temperature (TJ)  
–200  
Storage temperature (Tstg  
)
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Theseare stress ratings  
only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under Recommended  
OperatingConditions. Exposure to absolute-maximum-rated conditions for extended periods mayaffect device reliability.  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
(1)  
Human-body model (HBM) per JESD22-A114  
Charged-device model (CDM), per JEDEC specification JESD22-C101  
V(ESD)  
Electrostatic discharge  
V
(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.3  
NOM  
MAX UNIT  
Input voltage (TMP235)  
Input voltage (TMP236)  
Operating free-air temperature  
5.5  
V
5.5  
VDD  
TA  
3.1  
–40  
150  
°C  
6.4 Thermal Information  
TMP235  
(1)(2)  
THERMAL METRIC  
DCK (SC70)  
DBZ (SOT-23)  
UNIT  
PINS  
275  
84  
PINS  
167  
90  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance(3)(4)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
56  
146  
35  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.2  
55  
ΨJB  
146  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) For information on self-heating and thermal response time see Layout Guidelines section.  
(3) The junction to ambient thermal resistance (RθJA ) under natural convection is obtained in a simulation on a JEDEC-standard, High-K  
board as specified in JESD51-7, in an environment described in JESD51-2. Exposed pad packages assume that thermal vias are  
included in the PCB, per JESD 51-5.  
(4) Changes in output due to self heating can be computed by multiplying the internal dissipation by the thermal resistance.  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TMP235, TMP236  
www.ti.com.cn  
ZHCSH80E SEPTEMBER 2017REVISED MAY 2019  
6.5 Electrical Characteristics  
TMP235: VDD = 2.3 V to 5.5 V, GND = Ground, TA = –40°C to +125°C and no load (unless otherwise noted)  
TMP236: VDD = 3.1 V to 5.5 V, GND = Ground, TA = –10°C to +125°C and no load (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
TA = 25, VDD = 2.3 V, TMP235  
TA = 25, VDD = 3.1 V, TMP236  
TA = –40to +125, TMP235  
TA = –10to +125, TMP236  
TA = 150, TMP235  
9
10  
IDD  
Operating current  
14.5  
15  
µA  
17  
Δ/  
ΔVDD  
Line regulation  
–0.1  
0.02  
0.1  
/V  
SENSOR ACCURACY  
TA = 25°C  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±1  
TA = 0°C to 70°C (SC70 Package)  
TA = 0°C to +70°C (SOT-23 Package)  
TA = –40°C to +125°C (TMP235A2)  
TA = –10°C to +125°C (TMP236A2)  
TA = –40°C to +150°C (TMP235A2)  
TA = 25°C  
–1  
–1.2  
–2  
+1  
+1.2  
+2  
–2  
+2  
(1)  
TACY  
Temperature accuracy  
–2  
+2  
TA = 0°C to 70°C  
–2  
–4  
–4  
–5  
±1  
+2  
+4  
+4  
+5  
Accuracy  
Level 4  
(A4)  
TA = –40°C to +125°C (TMP235A4)  
TA = –10°C to +125°C (TMP236A4)  
TA = –40°C to +150°C (TMP235A4)  
±1  
±1  
±1  
SENSOR OUTPUT  
TMP235  
500  
400  
10  
V0  
Output voltage offset at 0 °C  
mV  
TMP236  
TMP235  
TC  
Temperature coefficient (sensor gain)  
mV/℃  
TMP236  
19.5  
±0.5  
VONL  
IOUT  
Output nonlinearity(1)  
Output current  
TA = 0 °C to 70 °C, no load  
500  
μA  
IOUT = 100 μA, f = 100 Hz  
IOUT = 100 μA, f = 500 Hz  
20  
50  
ZOUT  
Output impedance  
TA = 0°C to 70°C, IOUT = 100 μA,  
ΔVOUT / ΔIOUT  
Output load regulation  
1
tON  
Turn on time  
Time to reach accuracy within ±0.5°C  
800  
μs  
pF  
s
CLOAD  
tRES  
Typical load capacitance  
1000  
Thermal response to 63%  
SC70  
30°C (Air) to +125°C (Fluid Bath)  
1.3  
(1) Accuracy is defined as the error between the measured and reference output voltages, tabulated in the TMP235 Transfer  
Tableand TMP236 Transfer Table at the specified conditions of supply voltage and temperature (expressed in °C). Accuracy limits  
include line regulation within the specified conditions. Accuracy limits do not include load regulation; they assume no DC load.  
版权 © 2017–2019, Texas Instruments Incorporated  
5
TMP235, TMP236  
ZHCSH80E SEPTEMBER 2017REVISED MAY 2019  
www.ti.com.cn  
6.6 Typical Characteristics  
at TA = 25°C, (unless otherwise noted)  
6
6
4
Average  
Avg ê3s  
Limits  
Average  
Avg ê3s  
Limits  
4
2
0
2
0
-2  
-4  
-6  
-2  
-4  
-6  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
TA (èC)  
TA (èC)  
D001  
D002  
TMP235: VDD = 2.3 to 5.5 V, IOUT = 0 µA, CLOAD = 1000 pF  
TMP235: VDD = 2.3 to 5.5 V, IOUT = 0 µA, CLOAD = 1000 pF  
1. Accuracy vs. TA Temperature (A2 Accuracy Level)  
2. Accuracy vs. TA Temperature (A4 Accuracy Level)  
3
0.1  
2.5  
2
0.05  
0
1.5  
1
-0.05  
0.5  
TMP235  
TMP236  
VDD = 2.3 V  
VDD = 5.5 V  
0
-50  
-0.1  
-50  
-25  
0
25  
50  
75  
100  
125 150  
-25  
0
25  
50  
75  
100  
125  
150  
TA (èC)  
TA (èC)  
D003  
D004  
IOUT = 0 µA, CLOAD = 1000 pF  
TMP235: IOUT = from 0 µA to 100 µA, CLOAD = 1000 pF  
3. Output Voltage vs. Ambient Temperature  
4. Changes in Accuracy vs. Ambient Temperature (Due to  
Load)  
14  
3.5  
IOUT = 500 mA  
IOUT = 400 uA  
IOUT = 300 uA  
IOUT = 200 uA  
IOUT = 100 uA  
3
12  
10  
8
2.5  
2
1.5  
1
0.5  
0
VDD = 2.3 V  
6
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
TA (èC)  
75  
100  
125  
150  
TA (èC)  
D005  
D006  
TMP235: IOUT = 0 µA, CLOAD = 1000 pF  
TMP235: VDD = 2.3 V, CLOAD = 1000 pF  
5. Supply Current vs. Temperature  
6. Load Regulation vs. Ambient Temperature  
版权 © 2017–2019, Texas Instruments Incorporated  
6
 
TMP235, TMP236  
www.ti.com.cn  
ZHCSH80E SEPTEMBER 2017REVISED MAY 2019  
Typical Characteristics (接下页)  
at TA = 25°C, (unless otherwise noted)  
0.1  
1
0.8  
0.6  
0.4  
0.2  
0
TMP235  
0.05  
0
-0.05  
-0.1  
-50  
-25  
0
25  
50  
TA (èC)  
75  
100  
125  
150  
0
0.5  
1
1.5  
2
2.5  
VDD (V)  
3
3.5  
4
4.5  
5
5.5  
D007  
D008  
TMP235: VDD = 2.3 to 5.5 V, IOUT = 0 µA, CLOAD = 1000 pF  
TMP235: TA = 25°C  
8. Output Voltage vs. Power Supply  
7. Line Regulation (Δ°C / ΔVDD) vs. Ambient Temperature  
3
2
1.5  
1
2.5  
2
1.5  
1
0.5  
0
0.5  
-0.5  
-0.25  
0
-0.25  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
0
0.25 0.5 0.75 1  
Time (ms)  
1.25 1.5 1.75  
2
Time (ms)  
D009  
D010  
TMP235: TA = 25°C  
9. Output vs. Settling Time to Step VDD  
TMP235: TA = 25°C, VDD Ramp Rate = 5 V/ms  
10. Output vs. Settling Time to Ramp VDD  
150  
1000  
100  
10  
125  
100  
75  
50  
25  
0
SC70 Package  
12 14 16  
1
-2  
0
2
4
6
Time (ms)  
8
10  
1
10  
100 1000  
Frequency (Hz)  
10000  
100000  
D011  
D012  
TMP235: 1 × 1 (inches) PCB, Air 26°C to Fluid Bath 123°C  
TMP235: TA = 25°C, VDD = 5 V, IOUT = 100 µA  
11. Thermal Response (Air-to-Fluid Bath)  
12. Output Impedance vs. Frequency  
版权 © 2017–2019, Texas Instruments Incorporated  
7
TMP235, TMP236  
ZHCSH80E SEPTEMBER 2017REVISED MAY 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TMP23x devices are a family of linear analog temperature sensors with an output voltage proportional to  
temperature. These temperature sensors have an accuracy from 0°C to 70°C of ±1.25°C (TMP23xA2) and ±2°C  
(TMP23xA4). The TMP235 device provides a positive slope output of 10 mV/°C over the full –40°C to +150°C  
temperature range and a supply range from 2.3 V to 5.5 V. The higher gain TMP236 sensor provides a positive  
slope output of 19.5 mV/°C from –10°C to +125°C and a supply range from 3.1 V to 5.5 V. A class-AB output  
driver provides a maximum output of 500 µA to drive capacitive loads up to 1000 pF.  
7.2 Functional Block Diagram  
VDD  
Thermal Diodes  
VOUT  
GND  
7.3 Feature Description  
As shown in 3, the TMP23x devices are linear. A small VOUT gain shift, however, is present at temperatures  
above 100°C. When small shifts are expected, a piecewise linear function provides the best accuracy and is  
used for the device accuracy specifications (see Specifications). Typical output voltages of the TMP23x devices  
across the full operating temperature range are listed in 3 and 4. The ideal linear columns represent the  
ideal linear VOUT output response with respect to temperature, while the piecewise linear columns indicate the  
small voltage shift at elevated temperatures.  
The piecewise linear function uses three temperature ranges listed in 1 and 2. In equation form, the voltage  
output VOUT of the TMP23x is calculated by 公式 1:  
VOUT = (TA – TINFL) × TC + VOFFS  
where  
VOUT is the TMP23x voltage output for a given temperature  
TA is the ambient temperature in °C  
TINFL is the temperature inflection point for a piecewise segment in °C  
TC is the TMP23x temperature coefficient or gain  
VOFFS is the TMP23x voltage offset  
(1)  
Therefore, the TA temperature for a given VOUT voltage output within a piecewise voltage range (VRANGE) is  
calculated in 公式 2. For applications where the accuracy enhancement above 100°C is not required, use the first  
row of 1 and 2 for all voltages.  
TA = (VOUT – VOFFS ) / TC + TINFL  
(2)  
1. TMP235 Piecewise Linear Function Summary  
TA RANGE  
VRANGE (mV)  
TINFL (°C)  
TC (mV/°C)  
VOFFS (mV)  
(°C)  
–40 to +100  
100 to 125  
125 to 150  
< 1500  
1500 to 1752.5  
> 1752.5  
0
10  
500  
1500  
100  
125  
10.1  
10.6  
1752.5  
8
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
TMP235, TMP236  
www.ti.com.cn  
ZHCSH80E SEPTEMBER 2017REVISED MAY 2019  
2. TMP236 Piecewise Linear Function Summary  
TA RANGE  
(°C)  
VRANGE (mV)  
TINFL (°C)  
TC (mV/°C)  
VOFFS (mV)  
–40 to +100  
100 to 125  
125 to 150  
2350  
> 2350  
0
19.5  
19.7  
400  
2350  
100  
3. TMP235 Transfer Table  
VOUT (mV)  
IDEAL LINEAR VALUES  
VOUT (mV)  
PIECEWISE LINEAR VALUES  
TEMPERATURE (°C)  
–40  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
100  
150  
100  
150  
200  
200  
250  
250  
300  
300  
350  
350  
400  
400  
450  
450  
0
500  
500  
5
550  
550  
10  
600  
600  
15  
650  
650  
20  
700  
700  
25  
750  
750  
30  
800  
800  
35  
850  
850  
40  
900  
900  
45  
950  
950  
50  
1000  
1050  
1100  
1150  
1200  
1250  
1300  
1350  
1400  
1450  
1500  
1550  
1600  
1650  
1700  
1750  
1800  
1850  
1900  
1950  
2000  
1000  
1050  
1100  
1150  
1200  
1250  
1300  
1350  
1400  
1450  
1500  
1550.5  
1601  
1651.5  
1702  
1752.5  
1805.5  
1858.5  
1911.5  
1964.5  
2017.5  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
105  
110  
115  
120  
125  
130  
135  
140  
145  
150  
版权 © 2017–2019, Texas Instruments Incorporated  
9
TMP235, TMP236  
ZHCSH80E SEPTEMBER 2017REVISED MAY 2019  
www.ti.com.cn  
4. TMP236 Transfer Table  
VOUT (mV)  
IDEAL LINEAR VALUES  
VOUT (mV)  
PIECEWISE LINEAR VALUES  
TEMPERATURE (°C)  
–40  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
205  
303  
400  
498  
595  
693  
790  
888  
985  
1083  
1180  
1278  
1375  
1473  
1570  
1668  
1765  
1863  
1960  
2058  
2155  
2253  
2350  
2448  
2545  
2643  
2740  
2838  
205  
303  
0
400  
5
498  
10  
595  
15  
693  
20  
790  
25  
888  
30  
985  
35  
1083  
1180  
1278  
1375  
1473  
1570  
1668  
1765  
1863  
1960  
2058  
2155  
2253  
2350  
2448.5  
2547  
2645.4  
2743.9  
2842.4  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
105  
110  
115  
120  
125  
130  
135  
140  
145  
150  
7.4 Device Functional Modes  
The singular functional mode of the TMP23x is an analog output directly proportional to temperature.  
10  
Copyright © 2017–2019, Texas Instruments Incorporated  
TMP235, TMP236  
www.ti.com.cn  
ZHCSH80E SEPTEMBER 2017REVISED MAY 2019  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The features of the TMP235 make the series of devices designed for various general temperature-sensing  
applications. The TMP235 and TMP236 devices can operate down to a 2.3-V and a 3.1-V supply with 9-µA  
power consumption, respectively. As a result, the series is designed for battery-powered applications. The  
TMP23x series is mounted in two surface mount technology packages (SC70 and SOT-23.)  
8.2 Typical Application  
8.2.1 Connection to an ADC  
Simplified Input Circuit of  
SAR Analog-to-Digital Converter  
Reset  
2.3 V to 5.5 V  
Input  
Pin  
Sample  
R
MUX  
R
SS  
TI Device  
RFILTER  
V
DD  
OUT  
GND  
C
BP  
C
C
MUX  
FILTER  
C
SAMPLE  
Figure 13. Suggested Connections to an ADC Input Stage  
8.2.1.1 Design Requirements  
See Figure 13 for suggested connections to an ADC input stage. Most CMOS-based ADCs have a sampled data  
comparator input structure. When the ADC charges the sampling capacitor (CSAMPLE), the capacitor requires  
instantaneous charge from the output of the analog source temperature sensor, such as the TMP23x. Therefore,  
the output impedance of the temperature sensor can affect ADC performance. In most cases, adding an external  
capacitor (CFILTER) mitigates design challenges. The TMP23x is specified and characterized with a 1000-pF  
maximum capacitive load (CLOAD). Figure 13 shows CLOAD as the sum of CFILTER + CMUX + CSAMPLE. TI  
recommends maximizing the CFILTER value while allowing for the maximum specified ADC input capacitance  
(CMUX + CSAMPLE) to limit the total CLOAD at 1000 pF. In most cases, a 680-pF CFILTER provides a reasonable  
allowance for ADC input capacitance to minimize ADC sampling error and reduce noise coupling. An optional  
series resistor (RFILTER) and CFILTER provides additional low-pass filtering to reject system level noise. TI  
recommends placing RFILTER and CFILTER as close as possible to the ADC input for optimal performance.  
8.2.1.2 Detailed Design Procedure  
Depending on the input characteristics of the ADC, an external CFILTER may be required. The value of CFILTER  
depends on the size of the sampling capacitor (CSAMPLE) and the sampling frequency while observing a maximum  
CLOAD of 1000 pF. The capacitor requirements can vary because the input stages of all ADCs are not identical.  
Figure 13 shows a general ADC application as an example only.  
Copyright © 2017–2019, Texas Instruments Incorporated  
11  
 
TMP235, TMP236  
ZHCSH80E SEPTEMBER 2017REVISED MAY 2019  
www.ti.com.cn  
Typical Application (continued)  
8.2.1.3 Application Curve  
3
2.5  
2
1.5  
1
0.5  
TMP235  
TMP236  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
TA (èC)  
D003  
Figure 14. Output Voltage vs. Ambient  
9 Power Supply Recommendations  
The low supply current and supply range of the TMP23x allow the device to be easily powered from many  
sources.  
Power supply bypassing is strongly recommended. In noisy environments, TI recommends to add a filter with  
0.1-μF capacitor and 100-Ω resistor between external supply and VDD to limit the power supply noise. Larger  
capacitances may be required and are dependent on the noise of the power supply.  
10 Layout  
10.1 Layout Guidelines  
The layout of the TMP23x series is simple. If a power supply bypass capacitor is used, the capacitor must be  
connected as Layout Examples shows.  
10.2 Layout Examples  
VIA to ground plane  
VIA to power plane  
GND  
GND  
OUT  
GND  
VDD  
0.1 µF  
Figure 15. Recommended Layout: SC70 Package  
12  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TMP235, TMP236  
www.ti.com.cn  
ZHCSH80E SEPTEMBER 2017REVISED MAY 2019  
11 器件和文档支持  
11.1 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
5. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
TMP235  
TMP236  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2019, Texas Instruments Incorporated  
13  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMP235A2DBZR  
TMP235A2DBZT  
TMP235A2DCKR  
TMP235A2DCKT  
TMP235A4DBZR  
TMP235A4DBZT  
TMP235A4DCKR  
TMP235A4DCKT  
TMP236A2DBZR  
TMP236A2DBZT  
TMP236A2DCKR  
TMP236A2DCKT  
TMP236A4DBZR  
TMP236A4DBZT  
TMP236A4DCKR  
TMP236A4DCKT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SC70  
DBZ  
DBZ  
DCK  
DCK  
DBZ  
DBZ  
DCK  
DCK  
DBZ  
DBZ  
DCK  
DCK  
DBZ  
DBZ  
DCK  
DCK  
3
3
5
5
3
3
5
5
3
3
5
5
3
3
5
5
3000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-10 to 125  
-10 to 125  
-10 to 125  
-10 to 125  
-10 to 125  
-10 to 125  
-10 to 125  
-10 to 125  
2352  
2352  
19L  
NIPDAUAG | SN  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
250 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
3000 RoHS & Green  
250 RoHS & Green  
SC70  
19L  
SOT-23  
SOT-23  
SC70  
NIPDAUAG | SN  
NIPDAUAG | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
2354  
2354  
19M  
19M  
2362  
2362  
1BS  
1BS  
2364  
2364  
1BT  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
250 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
3000 RoHS & Green  
250 RoHS & Green  
SC70  
SOT-23  
SOT-23  
SC70  
NIPDAUAG | SN  
NIPDAUAG | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
250 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
3000 RoHS & Green  
250 RoHS & Green  
SC70  
SOT-23  
SOT-23  
SC70  
NIPDAUAG | SN  
NIPDAUAG | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
250 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
SC70  
1BT  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMP235A2DBZR  
TMP235A2DBZT  
TMP235A2DCKR  
TMP235A2DCKR  
TMP235A2DCKT  
TMP235A2DCKT  
TMP235A4DBZR  
TMP235A4DBZT  
TMP235A4DCKR  
TMP235A4DCKR  
TMP235A4DCKT  
TMP235A4DCKT  
TMP236A2DBZR  
TMP236A2DBZT  
TMP236A2DCKR  
TMP236A2DCKR  
SOT-23  
SOT-23  
SC70  
DBZ  
DBZ  
DCK  
DCK  
DCK  
DCK  
DBZ  
DBZ  
DCK  
DCK  
DCK  
DCK  
DBZ  
DBZ  
DCK  
DCK  
3
3
5
5
5
5
3
3
5
5
5
5
3
3
5
5
3000  
250  
180.0  
180.0  
178.0  
180.0  
178.0  
180.0  
180.0  
180.0  
180.0  
178.0  
178.0  
180.0  
180.0  
180.0  
178.0  
180.0  
8.4  
8.4  
9.0  
8.4  
9.0  
8.4  
8.4  
8.4  
8.4  
9.0  
9.0  
8.4  
8.4  
8.4  
9.0  
8.4  
3.2  
3.2  
2.85  
2.85  
2.5  
1.3  
1.3  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
3000  
3000  
250  
2.4  
1.2  
SC70  
2.47  
2.4  
2.3  
1.25  
1.2  
SC70  
2.5  
SC70  
250  
2.47  
3.2  
2.3  
1.25  
1.3  
SOT-23  
SOT-23  
SC70  
3000  
250  
2.85  
2.85  
2.3  
3.2  
1.3  
3000  
3000  
250  
2.47  
2.4  
1.25  
1.2  
SC70  
2.5  
SC70  
2.4  
2.5  
1.2  
SC70  
250  
2.47  
3.2  
2.3  
1.25  
1.3  
SOT-23  
SOT-23  
SC70  
3000  
250  
2.85  
2.85  
2.5  
3.2  
1.3  
3000  
3000  
2.4  
1.2  
SC70  
2.47  
2.3  
1.25  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2023  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMP236A2DCKT  
TMP236A2DCKT  
TMP236A4DBZR  
TMP236A4DBZT  
TMP236A4DCKR  
TMP236A4DCKR  
TMP236A4DCKT  
TMP236A4DCKT  
SC70  
SC70  
DCK  
DCK  
DBZ  
DBZ  
DCK  
DCK  
DCK  
DCK  
5
5
3
3
5
5
5
5
250  
250  
178.0  
180.0  
180.0  
180.0  
180.0  
178.0  
180.0  
178.0  
9.0  
8.4  
8.4  
8.4  
8.4  
9.0  
8.4  
9.0  
2.4  
2.47  
3.2  
2.5  
2.3  
1.2  
1.25  
1.3  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
SOT-23  
SOT-23  
SC70  
3000  
250  
2.85  
2.85  
2.3  
3.2  
1.3  
3000  
3000  
250  
2.47  
2.4  
1.25  
1.2  
SC70  
2.5  
SC70  
2.47  
2.4  
2.3  
1.25  
1.2  
SC70  
250  
2.5  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMP235A2DBZR  
TMP235A2DBZT  
TMP235A2DCKR  
TMP235A2DCKR  
TMP235A2DCKT  
TMP235A2DCKT  
TMP235A4DBZR  
TMP235A4DBZT  
TMP235A4DCKR  
TMP235A4DCKR  
TMP235A4DCKT  
TMP235A4DCKT  
TMP236A2DBZR  
TMP236A2DBZT  
TMP236A2DCKR  
TMP236A2DCKR  
TMP236A2DCKT  
TMP236A2DCKT  
SOT-23  
SOT-23  
SC70  
DBZ  
DBZ  
DCK  
DCK  
DCK  
DCK  
DBZ  
DBZ  
DCK  
DCK  
DCK  
DCK  
DBZ  
DBZ  
DCK  
DCK  
DCK  
DCK  
3
3
5
5
5
5
3
3
5
5
5
5
3
3
5
5
5
5
3000  
250  
210.0  
210.0  
180.0  
183.0  
180.0  
183.0  
210.0  
210.0  
183.0  
180.0  
180.0  
183.0  
210.0  
210.0  
180.0  
183.0  
180.0  
183.0  
185.0  
185.0  
180.0  
183.0  
180.0  
183.0  
185.0  
185.0  
183.0  
180.0  
180.0  
183.0  
185.0  
185.0  
180.0  
183.0  
180.0  
183.0  
35.0  
35.0  
18.0  
20.0  
18.0  
20.0  
35.0  
35.0  
20.0  
18.0  
18.0  
20.0  
35.0  
35.0  
18.0  
20.0  
18.0  
20.0  
3000  
3000  
250  
SC70  
SC70  
SC70  
250  
SOT-23  
SOT-23  
SC70  
3000  
250  
3000  
3000  
250  
SC70  
SC70  
SC70  
250  
SOT-23  
SOT-23  
SC70  
3000  
250  
3000  
3000  
250  
SC70  
SC70  
SC70  
250  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2023  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMP236A4DBZR  
TMP236A4DBZT  
TMP236A4DCKR  
TMP236A4DCKR  
TMP236A4DCKT  
TMP236A4DCKT  
SOT-23  
SOT-23  
SC70  
DBZ  
DBZ  
DCK  
DCK  
DCK  
DCK  
3
3
5
5
5
5
3000  
250  
210.0  
210.0  
183.0  
180.0  
183.0  
180.0  
185.0  
185.0  
183.0  
180.0  
183.0  
180.0  
35.0  
35.0  
20.0  
18.0  
20.0  
18.0  
3000  
3000  
250  
SC70  
SC70  
SC70  
250  
Pack Materials-Page 4  
PACKAGE OUTLINE  
DBZ0003A  
SOT-23 - 1.12 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
2.64  
2.10  
1.12 MAX  
1.4  
1.2  
B
A
0.1 C  
PIN 1  
INDEX AREA  
1
0.95  
(0.125)  
3.04  
2.80  
1.9  
3
(0.15)  
NOTE 4  
2
0.5  
0.3  
3X  
0.10  
0.01  
(0.95)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.20  
0.08  
TYP  
0.6  
0.2  
TYP  
SEATING PLANE  
0 -8 TYP  
4214838/D 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration TO-236, except minimum foot length.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X (0.95)  
2
(R0.05) TYP  
(2.1)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214838/D 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X(0.95)  
2
(R0.05) TYP  
(2.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214838/D 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMP235A2DBZT

10mV/C、1C 模拟温度传感器 | DBZ | 3 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP235A2DCKR

10mV/C、1C 模拟温度传感器 | DCK | 5 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP235A2DCKT

10mV/C、1C 模拟温度传感器 | DCK | 5 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP235A4DBZR

10mV/C、1C 模拟温度传感器 | DBZ | 3 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP235A4DBZT

10mV/C、1C 模拟温度传感器 | DBZ | 3 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP235A4DCKR

10mV/C、1C 模拟温度传感器 | DCK | 5 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP235A4DCKT

10mV/C、1C 模拟温度传感器 | DCK | 5 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP235AEDBZRQ1

10mV/C 汽车类 1.5C 模拟温度传感器 | DBZ | 3 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP235AEDBZTQ1

10mV/C 汽车类 1.5C 模拟温度传感器 | DBZ | 3 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP235AEDCKRQ1

10mV/C 汽车类 1.5C 模拟温度传感器 | DCK | 5 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP235AEDCKTQ1

10mV/C 汽车类 1.5C 模拟温度传感器 | DCK | 5 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP235AQDBZRQ1

10mV/C 汽车类 1.5C 模拟温度传感器 | DBZ | 3 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI