TMP392A2DRLR [TI]

TMP392 双通道(过热和温热)、电阻器可编程温度开关 | DRL | 6 | -55 to 130;
TMP392A2DRLR
型号: TMP392A2DRLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TMP392 双通道(过热和温热)、电阻器可编程温度开关 | DRL | 6 | -55 to 130

开关 电阻器
文件: 总25页 (文件大小:855K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMP392  
ZHCSKH3 NOVEMBER 2019  
TMP392 超小型、双通道(高低温跳变)、0.5µA 电阻器可编程温度开关  
1 特性  
3 说明  
1
电阻器可编程的温度跳闸点和迟滞选项  
TMP392 器件属于超低功耗、双通道、电阻器可编程  
温度开关系列,可在 30°C 130°C 范围内对系统过  
热事件进行保护和检测。TMP392 可提供双路过热  
电阻器容差可实现零误差  
迟滞选项:5°C10°C 20°C  
(热、温)检测。跳闸温度 (TTRIP) 和热迟滞 (THYST  
)
适用于过热检测的双路输出  
选项可由两个位于 SETA SETB 引脚上的 E96 系列  
电阻器(1% 容差)进行编程。通道 A 电阻器的阻值  
范围为 1.05K909K,具有 48 个不同阻值。通  
B 电阻器的阻值范围为 10.5K909KΩ  
通道 A(过热 - 热):+30 +124°C,阶跃为  
2°C  
通道 B(过热 - 温):+30 +105°C,阶跃为  
5°C  
精度级别选项(在 +30°C +130°C 范围内达到最  
大值):  
SETA 输入的接地电阻器值可设置通道 A TTRIP 阈  
值。SETB 输入的接地电阻器值可设置通道 B TTRIP  
阈值,两个通道的 THYST 选项可设置为 5°C 10°C,  
以防止发生不需要的数字输出切换。当 SETB 输入接  
地,通道 A 运行时具有 20°C 的迟滞。电阻器精度对  
A2 级:±3.0°C(在 +30°C +70°C 范围内为  
±1.5°C)  
A3 级:±3.5°C(在 +30°C +70°C 范围内为  
±2.0°C)  
T
TRIP 精度没有影响。  
超低功耗:25°C 时为 0.5µA(典型值)  
电源电压:1.62 5.5V  
开漏输出  
为使客户能够进行电路板级制造, TMP392 可通过发  
SETA SETB 引脚功能激活数字输出,从而支持  
跳闸测试功能。  
跳闸测试功能支持系统内测试  
采用 SOT-563 (1.60mm × 1.20mm)、  
6 引脚封装  
器件信息(1)  
器件型号  
TMP392  
封装  
封装尺寸(标称值)  
2 应用  
SOT-563 (6)  
1.60mm × 1.20mm  
直流/交流逆变器  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
直流/直流转换器  
温度变送器  
器件比较  
环境控制系统 (ECS)  
电动工具  
器件型号  
TMP390  
TMP392  
功能  
输出类型  
/冷  
/温  
开漏  
移动电源  
照明控制  
简化原理图  
工业机器人  
RSETA and RSETB select trip  
thresholds and hysteresis options.  
机器视觉  
VDD or VDDIO  
STB DVR  
WLAN/Wi-Fi 接入点  
VDD  
R
P
RP  
SETA  
OUTA  
OUTB  
Optional Trip  
Test  
TMP39x  
SETB  
RSETA  
RSETB  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNIS216  
 
 
 
TMP392  
ZHCSKH3 NOVEMBER 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 11  
8.1 Applications Information.......................................... 11  
8.2 Typical Applications ................................................ 11  
Power Supply Recommendations...................... 17  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
7.1 Overview ................................................................... 7  
7.2 Functional Block Diagram ......................................... 7  
7.3 Feature Description................................................... 7  
10 Layout................................................................... 17  
10.1 Layout Guidelines ................................................. 17  
10.2 Layout Example .................................................... 18  
11 器件和文档支持 ..................................................... 19  
11.1 接收文档更新通知 ................................................. 19  
11.2 支持资源................................................................ 19  
11.3 ....................................................................... 19  
11.4 静电放电警告......................................................... 19  
11.5 Glossary................................................................ 19  
12 机械、封装和可订购信息....................................... 19  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2019 11 月  
*
初始发行版。  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TMP392  
www.ti.com.cn  
ZHCSKH3 NOVEMBER 2019  
5 Pin Configuration and Functions  
DRL Package  
6-Pin SOT-563  
Top View  
SETA  
SETB  
GND  
1
2
3
6
5
4
OUTA  
VDD  
OUTB  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
Channel A temperature set point. Connect a standard E96, 1% resistance between SETA  
and GND.  
1
SETA  
Input  
Channel B temperature and Hysteresis set point. Connect a standard E96, 1% resistance  
between SETB and GND.  
2
3
4
5
6
SETB  
GND  
Input  
Ground  
Device ground.  
Channel B logic open-drain active low output. If unused, the output can be left floating or  
connected to GND.  
OUTB  
VDD  
Logic Output  
Supply  
Power supply voltage (1.62 V – 5.5 V).  
Channel A logic open-drain active low output. If unused, the output can be left floating or  
connected to GND.  
OUTA  
Logic Output  
Copyright © 2019, Texas Instruments Incorporated  
3
TMP392  
ZHCSKH3 NOVEMBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
-0.3  
–0.3  
–55  
–60  
MAX  
UNIT  
V
Supply voltage  
VDD  
6
6
Voltage at  
OUTA, OUTB  
SETA, SETB  
V
Voltage at  
VDD + 0.3  
150  
V
Junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Powering the device when the operating junction temperature is outside the Recommended Operating Conditions, may affect the  
functional operation of the device. The device must be power cycled after the system has returned to conditions as indicated under  
Recommended Operating Conditions.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
5.5  
UNIT  
V
VDD  
VOUTA  
VOUTB  
ISETA  
ISETB  
RPA  
Supply voltage  
1.62  
3.3  
Channel A output pull-up voltage (open-drain)  
Channel B output pull-up voltage (open-drain)  
SETA pin circuit leakage current  
VDD + 0.3  
VDD + 0.3  
20  
V
V
-20  
-20  
nA  
nA  
SETB pin circuit leakage current  
20  
Pullup resistor connected from OUTA to VDDIO(1)  
Pullup resistor connected from OUTB to VDDIO(1)  
Operating free-air temperature (specified performance)  
1
10  
k  
RPB  
TA  
–55  
130  
°C  
(1) Where VDDIO is an independent power supply other than VDD, and shall not exceed (VDD + 0.3) V.  
6.4 Thermal Information  
TMP392  
THERMAL METRIC(1)  
DRL (SOT)  
6 PINS  
230  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
103.4  
111.6  
5.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
110.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor IC Package Thermal Metrics application report,  
(SPRA953).  
4
Copyright © 2019, Texas Instruments Incorporated  
 
TMP392  
www.ti.com.cn  
ZHCSKH3 NOVEMBER 2019  
6.5 Electrical Characteristics  
Minimum and maximum specifications are over -55°C to 130°C and VDD = 1.62V - 5.5V (unless otherwise noted); typical  
specifications are at TA = 25°C and VDD = 3.3 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TEMPERATURE TO DIGITAL CONVERTER  
TEMPERATURE MEASUREMENT  
30°C to 70°C, VDD = 2.5V  
to 5.5V(1)  
-1.5  
-2.0  
-2.5  
-3.0  
±0.5  
±0.5  
±0.5  
1.5  
2.0  
2.5  
3.0  
30°C to 70°C, VDD =  
1.62V to 2.5V(1)  
TMP392A2  
°C  
30°C to 130°C, VDD =  
2.5V to 5.5V(1)  
Trip Point Accuracy  
30°C to 130°C, VDD =  
1.62V to 2.5V(1)  
30°C to 70°C(1)  
30°C to 130°C(1)  
±0.5  
±0.5  
-2.0  
-3.5  
2.0  
3.5  
°C  
°C  
°C  
°C  
TMP392A3  
2 selection column 2  
2 selection column 3  
5
10  
THYST  
Trip point hysteresis  
Channel A only when SETB connected  
to GND  
20  
°C  
TRIP POINT RESISTOR PROGRAMMING  
SETA resistor range  
1.05  
10.5  
-1.0  
909  
909  
1.0  
k  
kΩ  
%
SETB resistor range  
SETA & SETB resistor tolerance  
TA=25°C  
SETA & SETB resistor  
-100  
-0.2  
100 ppm/°C  
temperature coefficient(2)  
SETA & SETB resistor lifetime  
drift(2)  
0.2  
50  
%
DIGITAL INPUT/OUTPUT  
Input capacitance for SETA &  
SETB (includes PCB)  
CIN  
pF  
RPD  
VOL  
Internal Pull down resistance  
Output logic low level  
SETA & SETB  
IOL = -3 mA  
125  
kΩ  
0
0.4  
0.1  
V
Leakage current on output high  
level  
ILKG  
-0.1  
µA  
TCov  
TS  
Conversion duration  
Sampling period  
0.65  
0.5  
ms  
s
POWER SUPPLY  
IQ  
Average Quiescent current  
VDD = 1.62V to 3.3V  
0.5  
0.25  
135  
250  
1.5  
1
μA  
IStandby  
IConv  
ISU  
Standby current  
Conversion current  
μA  
μA  
V
Startup (Reset) peak current  
Power-on-reset threshold voltage  
Brownout detect  
Reset Time interval only.  
Supply going up  
VPOR  
Supply going down  
1.1  
V
Time required by device to reset after  
power up  
Power Reset Time  
10  
ms  
(1) Trip point accuracy test conditions is from 30°C to 130°C, since for the TMP392 the trip points for both channels is from 30°C to 124°C  
(2) Recommended Value  
版权 © 2019, Texas Instruments Incorporated  
5
TMP392  
ZHCSKH3 NOVEMBER 2019  
www.ti.com.cn  
6.6 Typical Characteristics  
1.4  
3
2.5  
2
1.62 V  
3.3 V  
1.2  
4.4 V  
5.5 V  
1
1.5  
1
0.8  
0.6  
0.4  
0.2  
0
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
D002  
30  
40  
50  
60  
70  
80  
90  
100 110 120  
Temperature (èC)  
(VS = 1.62 V, 3.3 V, 4.4 V, 5.5 V)  
D006  
(VS = 3.3 V)  
1. Average Supply Current vs Operating Temperature  
2. Hot Trip Point Accuracy vs Operating Temperature  
3
2.5  
2
6
-55èC  
5
25èC  
4
130èC  
1.5  
1
3
2
1
0.5  
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
1.5  
2
2.5  
3
3.5  
4
Supply Voltage (V)  
4.5  
5
5.5  
6
30  
40  
50  
60  
70  
80  
90  
100  
D001  
Temperature (èC)  
D002  
(VS = 3.3 V)  
4. Sampling Period Variation vs Supply Voltage  
3. Warm Trip Point Accuracy vs Operating Temperature  
200  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
200  
1.62 V  
2.2 V  
3.3 V  
5.5 V  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
1.5  
2
2.5  
3
3.5  
Supply Voltage (V)  
4
4.5  
5
5.5  
6
0
1
2
3
4
Load Current (mA)  
5
6
7
8
9
10  
D005  
D004  
(TAMB = 25°C)  
5. Conversion Current vs Supply Voltage  
6. Output Voltage vs Load Current  
6
版权 © 2019, Texas Instruments Incorporated  
TMP392  
www.ti.com.cn  
ZHCSKH3 NOVEMBER 2019  
7 Detailed Description  
7.1 Overview  
The TMP392 ultra-low power, dual channel, resistor programmable temperature switches enable detection and  
protection of system thermal events over a wide temperature range. The TMP392 offers dual overtemperature  
(hot and warm) detection. Channel A is referred to as the hot channel, and Channel B is referred to as the warm  
channel. The trip temperatures and hysteresis options are programmed by two E96-series (1%) standard decade  
value resistors on the SETA and SETB pins. The TMP392 can enable a customer board-level manufacturing test  
through the trip test function that can force the SETA or SETB pins to logic high to activates the digital outputs.  
7.2 Functional Block Diagram  
RSETA and RSETB select trip  
thresholds and hysteresis options.  
VDD  
VDD or VDDIO  
RP  
RP  
SETA  
SETB  
OUTA  
OUTB  
C
TMP39x  
R
SETA  
R
SETB  
7. Simplified Schematic  
7.3 Feature Description  
The TMP392 requires two resistors to set the two trip points and hysteresis, according to 1 and 2 for the  
hot and warm channel device. The output of the TMP392 is open-drain and requires two pullup resistors. TI  
recommends to use a pullup voltage supply that does not exceed VDD + 0.3 V. The pullup resistors used in  
between the OUTA and OUTB pins and the pullup supply should be greater than 1 kΩ. The device powers on  
when the supply voltage goes beyond 1.5 V, and starts sampling the input resistors to set the two trip points and  
hysteresis value after power-on. These values will remain the same until the device goes through a power cycle.  
After the device sets the trip points and hysteresis level, the device will update the output every half a second.  
The conversion time is typically 0.65 ms when the temperature is checked against the trip points and the outputs  
are updated. The device remains in standby mode between conversions. If either channel is not used, the output  
can be grounded or left floating.  
7.3.1 TMP392 Programming Tables  
The temperature threshold and hysteresis options for the TMP392 device are programmed using two external  
1% E96 standard resistors. The specific resistor value to ground on the SETA input sets the temperature  
threshold of channel A. The specific resistor value to ground on the SETB input sets the temperature threshold of  
channel B, as well as the hysteresis for both channel A and channel B.  
1. TMP392 Channel A Threshold Setting  
CHANNEL A (HOT)  
TRIP TEMPERATURE  
(°C)  
CHANNEL A (HOT) TRIP RESET  
TEMPERATURE (°C) FOR  
HYSTERESIS = 5°C  
CHANNEL A (HOT) TRIP RESET  
TEMPERATURE (°C) FOR  
HYSTERESIS = 10°C  
CHANNEL A NOMINAL 1%  
RESISTORS (KΩ)  
30  
32  
1.05  
1.21  
25  
27  
20  
22  
版权 © 2019, Texas Instruments Incorporated  
7
 
TMP392  
ZHCSKH3 NOVEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
1. TMP392 Channel A Threshold Setting (接下页)  
CHANNEL A (HOT)  
TRIP TEMPERATURE  
(°C)  
CHANNEL A (HOT) TRIP RESET  
TEMPERATURE (°C) FOR  
HYSTERESIS = 5°C  
CHANNEL A (HOT) TRIP RESET  
CHANNEL A NOMINAL 1%  
TEMPERATURE (°C) FOR  
HYSTERESIS = 10°C  
RESISTORS (KΩ)  
34  
36  
1.40  
1.62  
1.87  
2.15  
2.49  
2.87  
3.32  
3.83  
4.42  
5.11  
5.90  
6.81  
7.87  
9.09  
10.5  
12.1  
14.0  
16.2  
18.7  
21.5  
24.9  
28.7  
33.2  
38.3  
44.2  
51.1  
59.0  
68.1  
78.7  
90.9  
105  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
51  
53  
55  
57  
59  
61  
63  
65  
67  
69  
71  
73  
75  
77  
79  
81  
83  
85  
87  
89  
91  
93  
95  
97  
99  
101  
103  
105  
107  
109  
111  
113  
115  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
72  
74  
76  
78  
80  
82  
84  
86  
88  
90  
92  
94  
96  
98  
100  
102  
104  
106  
108  
110  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
72  
74  
76  
78  
80  
82  
84  
86  
88  
90  
92  
94  
96  
121  
98  
140  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
162  
187  
215  
249  
287  
332  
383  
442  
511  
590  
681  
8
版权 © 2019, Texas Instruments Incorporated  
TMP392  
www.ti.com.cn  
ZHCSKH3 NOVEMBER 2019  
Feature Description (接下页)  
1. TMP392 Channel A Threshold Setting (接下页)  
CHANNEL A (HOT)  
TRIP TEMPERATURE  
(°C)  
CHANNEL A (HOT) TRIP RESET  
TEMPERATURE (°C) FOR  
HYSTERESIS = 5°C  
CHANNEL A (HOT) TRIP RESET  
TEMPERATURE (°C) FOR  
HYSTERESIS = 10°C  
CHANNEL A NOMINAL 1%  
RESISTORS (KΩ)  
122  
124  
787  
909  
117  
119  
112  
114  
When the SETA pin is grounded or left floating during the device power up, the OUTA pin  
always stays low. The Channel B functionality is not affected by the SETA channel.  
2. TMP392 Channel B Threshold and Hysteresis Setting  
CHANNEL B  
(WARM) TRIP  
TEMPERATURE (°C)  
CHANNEL B NOMINAL 1% RESISTORS (KΩ)  
CHANNEL B (WARM) TRIP RESET TEMPERATURE (°C)  
HYSTERESIS = 5°C  
HYSTERESIS = 10°C  
HYSTERESIS = 5°C  
HYSTERESIS = 10°C  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
105  
90.9  
78.7  
68.1  
59.0  
51.1  
44.2  
38.3  
33.2  
28.7  
24.9  
21.5  
18.7  
16.2  
14.0  
12.1  
10.5  
105  
121  
140  
162  
187  
215  
249  
287  
332  
383  
442  
511  
590  
681  
787  
909  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
When the SETB pin is grounded or left floating during the POR, the OUTB pin always  
stays low and the Channel A hysteresis is set to 20°C.  
7.3.2 Trip Test  
The purpose of the trip test is in system manufacturing test without putting the TMP392 through costly  
temperature verification of the assembly of TMP392 and pullup resistors. When the SETA or SETB pin is set to a  
high logic level, the associated output goes low. When the input pin level goes low, the output goes to its  
previous condition before the trip test. The trip test does not affect the current condition of the device. The trip  
test signals should stay above 0.8 × VDD for logic high and below 0.2 × VDD for logic low.  
The trip test operation is shown in 8. The trip test must be performed with a single toggle when the device is  
operating at a temperature that will not cause the corresponding output to trip. The trip test is intended for  
production testing after assembly, and must not be used as a functional feature.  
版权 © 2019, Texas Instruments Incorporated  
9
 
TMP392  
ZHCSKH3 NOVEMBER 2019  
www.ti.com.cn  
(Channel A)  
Hot threshold  
Hysteresis:  
5°C, or 10°C  
(Channel B)  
Warm threshold  
Time (s)  
OUTA  
OUTB  
Trip test  
asserts output  
SETA  
SETB  
Time (s)  
8. TMP392 Trip Test Operation  
7.3.3 20°C Hysteresis  
The 20°C hysteresis feature is only available on Channel A. To activate the feature, the SETB pin must be  
connected to ground and SETA pin connected to the resistor to set the appropriate trip point on Channel A.  
7.4 Device Functional Modes  
The device has one mode of operation, as described above, that applies when operated within the  
Recommended Operating Conditions.  
10  
Copyright © 2019, Texas Instruments Incorporated  
TMP392  
www.ti.com.cn  
ZHCSKH3 NOVEMBER 2019  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Applications Information  
The TMP392 device is part of a family of ultra-low power, dual channel, resistor programmable temperature  
switches that can enable detection and protection of system thermal events over a wide temperature range. The  
trip temperatures (TTRIP) and hysteresis options are programmed by two E96-series (1%) standard decade value  
resistors on the SETA and SETB pins. The thermal hysteresis (THYST) function is to prevent undesired digital  
output switching due to small temperature changes.  
8.2 Typical Applications  
8.2.1 Simplified Application Schematic  
Figure 9 shows the simplified schematic where RSETA and RSETB are used to set channel A trip point (SETA) and  
channel B trip point and hysteresis for both channels (SETB). SETA and SETB can be programmed at a variety  
of temperatures based on the device, as described in 1 for channel A trip point, and 2 for channel B trip  
point and hysteresis for both channels. OUTA and OUTB outputs correspond to the temperature threshold  
detection at SETA and SETB, respectively.  
RSETA and RSETB select trip  
thresholds and hysteresis options.  
VDD or VDDIO  
VDD  
RP  
RP  
SETA  
SETB  
OUTA  
OUTB  
Optional Trip  
Test  
TMP39x  
RSETA  
RSETB  
Figure 9. Simplified Schematic  
8.2.1.1 Design Requirements  
The TMP392 requires two resistors to set the high and low trip points and hysteresis, and two pullup resistors for  
the open-drain device. TI also highly recommends to place a 0.1-µF, power-supply bypassing capacitor close to  
the VDD supply pin. To minimize the internal power dissipation, use two pullup resistors greater than 1 kΩ from  
the OUTA and OUTB pins to the VDD pin. A separate supply, VDDIO, may be used for the pullup voltage to set  
the output voltage level to the level required by the MCU, as shown in Figure 9. The open-drain output gives  
flexibility of pulling up to any voltage independent of VDD (VDDIO must be less than or equal to VDD + 0.3 V).  
This allows for use of longer cables or different power supply options. If a separate voltage level is not required,  
TI recommends to tie the pullup to the TMP392 VDD.  
If the SETA or SETB connected resistor value is outside the legal range, the associated output goes to  
permanent output zero stage and the channel cannot be used. The other channel still will be in operating  
condition, and device can be used in one channel mode. If the SETB input is grounded or left floating, the  
Channel B cannot be used and the hysteresis for Channel A will be 20°C. The SETA and SETB connected  
resistors are measured during POR. If two consecutive measurements are not matching each other, then the  
device sets the associated channel output to zero and repeats the resistor measurements until the  
measurements match. When the measurements match, the channel output is released. Note that it is possible to  
connect some device outputs together by shorting the OUTA or OUTB line.  
Copyright © 2019, Texas Instruments Incorporated  
11  
 
TMP392  
ZHCSKH3 NOVEMBER 2019  
www.ti.com.cn  
Typical Applications (continued)  
8.2.1.2 Detailed Design Procedure  
The resistor to ground values on the SETA input sets the TTRIP threshold of Channel A. The resistor to ground  
value on the SETB input sets the TTRIP threshold of Channel B—as well as the THYST 5°C and 10°C options. TI  
recommends that the resistors at SETA and SETB have a 1% tolerance at room temperature. Each resistor can  
range from 1.05 Kto 909 K, representing one of 48 unique values. The exact temperature thresholds and trip  
points are shown in 1 and 2. The pullup resistors should be at least 1 kΩ to minimize internal power  
dissipation. To get the correct threshold for resistor values, take care to minimize the board level capacitance  
and leakage at the SETA and SETB pins.  
The waveform for the TMP392 output for hot/warm thresholds is shown in Figure 10. The hysteresis can be set  
to 5°C, 10°C, or 20°C. When the temperature exceeds the hot trip point threshold, OUTA goes low until the  
temperature drops below the hysteresis threshold. When the temperature exceeds the warm trip threshold,  
OUTB goes low and returns high after the temperature drops below the hysteresis threshold. If the switch has  
already tripped and the temperature is in the hysteresis band, a POR event will cause the output to go high after  
the power is restored.  
8.2.1.3 Application Curves  
(Channel A)  
Hot threshold  
(Channel B)  
Warm threshold  
Time (s)  
OUTA  
OUTB  
Time (s)  
Figure 10. TMP392 Output With Hot/Warm Thresholds and Hysteresis  
12  
Copyright © 2019, Texas Instruments Incorporated  
 
TMP392  
www.ti.com.cn  
ZHCSKH3 NOVEMBER 2019  
Typical Applications (continued)  
8.2.2 TMP392 With 10°C Hysteresis  
Figure 11 shows an example circuit for dual overtemperature protection using the TMP392. In this example, the  
trip points are set at +60°C and +90°C with 10°C hysteresis. This circuit is useful in cases where a lower  
overtemperature detection may be used to warn the application of rising system temperature and take software  
corrective actions such as lowering the performance, while the higher overtemperature detection may be used to  
start a fan to cool the system to a lower temperature.  
VDD = 3.0 V  
0.1 µF  
3.3 V  
10 kΩ  
VDD  
TMP392  
GND  
VCC  
Microprocessor  
GND  
OUTA  
OUTB  
SETA  
SETB  
78.7 kΩ  
Channel A Trip Temp = +90°C  
and Hysteresis = 10°C  
10 kΩ  
249 kΩ  
Channel B Trip Temp = 60°C  
and Hysteresis = 10°C  
Figure 11. TMP392 Example Circuit at +90°C and +60°C Thresholds With 10°C Hysteresis  
8.2.2.1 Design Requirements  
In this example, VDD can be 3 V. The output pins may be tied to a switch to control a fan or other analog  
circuitry. Figure 11 uses 10-kΩ pullup resistors at the OUTA and OUTB outputs. Place a 0.1-µF bypass capacitor  
close to the TMP392 device to reduce noise coupled from the power supply. If needed, the output of multiple  
parts can be connected together.  
8.2.2.2 Detailed Design Procedure  
SETA sets the +90°C threshold using 78.7 kΩ. SETB sets the +60°C trip point and 10°C hysteresis using 249  
kΩ. These values were determined using 1 and 2. These resistors should have maximum of 1% tolerance  
at room temperature and 100 ppm/°C or less over the desired temperature range. A summary of the resistor  
settings used in this example is shown in Table 3. See 1 and 2 for additional trip points and hysteresis  
configurations.  
The switching output of the TMP392 can be visualized with the output diagram shown in Figure 12. It is key to  
notice that hysteresis is subtracted from both Channel A and Channel B threshold values. OUTA remains high  
until the sensor reaches +90°C where the output goes low, and returns high after the temperature drops back  
down to +80°C. OUTB remains high until the sensor reaches +60°C where the output goes low, and returns high  
after the temperature drops back down to +50°C.  
Table 3. Example Resistor Settings and Trip Points  
CHANNEL  
SETA  
RESISTOR SETTING (kΩ)  
HYSTERESIS (°C)  
TRIP TEMPERATURE (°C)  
78.7  
249  
+90  
+60  
10  
SETB  
Copyright © 2019, Texas Instruments Incorporated  
13  
 
 
TMP392  
ZHCSKH3 NOVEMBER 2019  
www.ti.com.cn  
8.2.2.3 Application Curve  
OUTB  
VCC  
OUTA  
VCC  
+50°C  
Figure 12. TMP392 Output Response With Hysteresis  
+60°C  
TTRIP  
+80°C  
+90°C  
TTRIP  
14  
Copyright © 2019, Texas Instruments Incorporated  
TMP392  
www.ti.com.cn  
ZHCSKH3 NOVEMBER 2019  
8.2.3 One Channel Operation for Hot Trip Point up to 124°C  
Figure 13 shows the TMP392 configured for one channel operation, with a single resistor to set the hot trip point  
and hysteresis. Table 4 shows the possible resistor values and hysteresis values that may be used for one  
channel applications.  
3.3 V  
0.1 µF  
10 kΩ  
VDD  
OUTA  
SETA  
33.2 kΩ  
TMP39x  
SETB  
OUTB  
GND  
Figure 13. TMP392 One Channel (Hot) Operation Example Circuit With 78°C Trip Point and 5°C  
Hysteresis  
Table 4. Single Resistor One Channel Setting  
CHANNEL A TRIP  
TEMPERATURE (°C)  
NOMINAL 1% RESISTOR (KΩ)  
HYSTERESIS (°C)  
10.5  
12.1  
14.0  
16.2  
18.7  
21.5  
24.9  
28.7  
33.2  
38.3  
44.2  
51.1  
59.0  
68.1  
78.7  
90.0  
105  
62  
64  
66  
68  
70  
72  
74  
76  
78  
80  
82  
84  
86  
88  
90  
92  
94  
96  
98  
100  
102  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
10  
10  
10  
10  
10  
121  
140  
162  
187  
Copyright © 2019, Texas Instruments Incorporated  
15  
 
 
TMP392  
ZHCSKH3 NOVEMBER 2019  
www.ti.com.cn  
Table 4. Single Resistor One Channel Setting (continued)  
CHANNEL A TRIP  
TEMPERATURE (°C)  
NOMINAL 1% RESISTOR (KΩ)  
HYSTERESIS (°C)  
215  
249  
287  
332  
383  
442  
511  
590  
681  
787  
909  
104  
106  
108  
110  
112  
114  
116  
118  
120  
122  
124  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
8.2.3.1 Application Curve  
Hot threshold  
Hysteresis  
5°C  
Time (s)  
OUTA  
VDD  
When VDD supply voltage is zero, the pullup output voltage is still present  
Time (s)  
Figure 14. TMP392 One Channel (Hot) Operation Thresholds and Hysteresis  
16  
Copyright © 2019, Texas Instruments Incorporated  
TMP392  
www.ti.com.cn  
ZHCSKH3 NOVEMBER 2019  
8.2.4 One Channel Operation for Warm Trip Point from 30°C up to 105°C  
Figure 15 shows the TMP392 configured for one channel operation, with a single resistor to set the warm trip  
point and hysteresis. The resistor values for one channel warm trip point is same as described in 2.  
3.3 V  
0.1 µF  
10 kΩ  
VDD  
OUTA  
SETA  
TMP392  
215 kΩ  
SETB  
OUTB  
GND  
Figure 15. TMP392 One Channel (Warm) Operation Example Circuit With 55°C Trip Point and 10°C  
Hysteresis  
9 Power Supply Recommendations  
The low supply current and wide supply range of the TMP392 allow the device to be powered from many  
sources. VDDIO must always be lower than or equal to VDD + 0.3 V.  
Power supply bypassing is strongly recommended by adding a 0.1-µF capacitor from VDD to GND. In noisy  
environments, TI recommends to add a filter with 0.1-µF capacitor and 100-Ω resistor between external supply  
and VDD to limit the power supply noise.  
10 Layout  
10.1 Layout Guidelines  
The TMP392 is extremely simple to layout. Place the power supply bypass capacitor as close to the device as  
possible, and connect the capacitor as shown in Figure 16. Place the RSETA and RSETB resistors as close to the  
device as possible. Carefully consider the resistor placement to avoid additional leakage or parasitic capacitance,  
as this may affect the actual resistor sense value for the trip thresholds and hysteresis. If there is a possibility of  
moisture condensation on the SETA and SETB circuits, which may lead to additional leakage current, consider  
adding a conformal coating to the circuits.  
版权 © 2019, Texas Instruments Incorporated  
17  
 
TMP392  
ZHCSKH3 NOVEMBER 2019  
www.ti.com.cn  
10.2 Layout Example  
VIA to ground plane  
VIA to power plane  
RSETA  
SETA  
SETB  
GND  
OUTA  
VDD  
0.1 F  
RSETB  
OUTB  
Figure 16. TMP392 Recommended Layout  
18  
版权 © 2019, Texas Instruments Incorporated  
TMP392  
www.ti.com.cn  
ZHCSKH3 NOVEMBER 2019  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMP392A2DRLR  
TMP392A2DRLT  
TMP392A3DRLR  
TMP392A3DRLT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
DRL  
DRL  
DRL  
DRL  
6
6
6
6
4000 RoHS & Green  
250 RoHS & Green  
4000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-55 to 130  
-55 to 130  
-55 to 130  
-55 to 130  
1CH  
1CH  
1CI  
NIPDAU  
NIPDAU  
NIPDAU  
1CI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
DRL0006A  
SOT - 0.6 mm max height  
S
C
A
L
E
8
.
0
0
0
PLASTIC SMALL OUTLINE  
1.7  
1.5  
PIN 1  
ID AREA  
A
1
6
4X 0.5  
1.7  
1.5  
2X 1  
NOTE 3  
4
3
1.3  
1.1  
0.3  
6X  
0.05  
TYP  
0.00  
B
0.1  
0.6 MAX  
C
SEATING PLANE  
0.05 C  
0.18  
0.08  
6X  
SYMM  
SYMM  
0.27  
0.15  
6X  
0.1  
0.05  
C A B  
0.4  
0.2  
6X  
4223266/C 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-293 Variation UAAD  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4223266/C 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4223266/C 12/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TMP392A2DRLT

TMP392 双通道(过热和温热)、电阻器可编程温度开关 | DRL | 6 | -55 to 130

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP392A3DRLR

TMP392 双通道(过热和温热)、电阻器可编程温度开关 | DRL | 6 | -55 to 130

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP392A3DRLT

TMP392 双通道(过热和温热)、电阻器可编程温度开关 | DRL | 6 | -55 to 130

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP3C6411GLZ300

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP3C6411GLZ5E0

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP3C6411GLZA300

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP3C6411GLZA5E0

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP3C6411ZLZ300

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP3C6411ZLZ5E0

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP3C6411ZLZA300

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP3C6411ZLZA5E0

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMP3C6414CGLZ300

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI