TMP421AQDCNRQ1 [TI]

符合 AEC-Q100 标准的汽车类单通道远程温度传感器 | DCN | 8 | -40 to 125;
TMP421AQDCNRQ1
型号: TMP421AQDCNRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

符合 AEC-Q100 标准的汽车类单通道远程温度传感器 | DCN | 8 | -40 to 125

温度传感 输出元件 传感器 换能器 温度传感器
文件: 总36页 (文件大小:742K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMP421-Q1, TMP422-Q1, TMP423-Q1  
ZHCSFV7 NOVEMBER 2016  
TMP42x-Q1 ±1°C 远程和本地温度传感器  
1 特性  
3 说明  
1
具有符合 AEC-Q100 标准的下列结果:  
TMP421-Q1TMP422-Q1 TMP423-Q1 器件分别  
为内置本地温度传感器的单通道、双通道和三通道汽车  
类远程温度传感器监视器。远程温度传感器二极管连接  
的晶体管通常为低成本 NPN PNP 型晶体管或二极  
管,它们都是微控制器、微处理器或现场可编程门阵列  
(FPGA) 的组成部件。  
温度等级 1-40°C +125°C  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 2  
器件组件充电模式 (CDM) ESD 分类等级 C5  
小外形尺寸晶体管 (SOT) 23-8封装中删除了封装名  
针对多个器件制造商的远程精度均为 ±1°C,无需校  
准。两线制串口可接受 SMBus 写字节、读字节、发送  
字节和接收字节命令来配置器件。  
±1°C 远程二极管传感器(最大值)  
±1.5°C 本地温度传感器(最大值)  
串联电阻抵消  
TMP421-Q1, TMP422-Q1, and TMP423-Q1包括串联  
电阻抵消、可编程非理想因子、宽范围远程温度测量  
(高达 +150°C)以及二极管故障检测。  
N 因数校正  
两线制 I2C SMBus™兼容串口  
多接口地址  
二极管故障检测  
TMP421-Q1, TMP422-Q1, and TMP423-Q1采用 8 引  
脚小外形尺寸晶体管 (SOT)-23 封装。  
符合 RoHS 标准且无 Sb/Br  
器件信息(1)  
2 应用  
处理器和现场可编程栅极阵列 (FPGA) 温度监视  
器件型号  
TMP421-Q1  
TMP422-Q1  
TMP423-Q1  
封装  
封装尺寸(标称值)  
液晶显示屏 (LCD)、数字光处理 (DLP) 和硅基液晶  
(LCOS) 投影仪  
SOT-23 (8)  
2.90mm × 1.63mm  
服务器  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
中央办公电信设备  
存储区域网络 (SAN)  
针对 TMP421-Q1, TMP422-Q1, and TMP423-Q1的二极管输入配置  
5 V  
TMP421-Q1  
TMP422-Q1  
TMP423-Q1  
8
V+  
1
1
1
7
6
SCL  
SDA  
DXP  
DX1  
DXP1  
SMBus  
Controller  
2
2
2
DXN  
DX2  
DXP2  
3
3
3
A1  
DX3  
DXP3  
4
4
4
A0  
DX4  
DXN  
GND  
5
1 Channel Local  
1 Channel Remote  
1 Channel Local  
2 Channels Remote  
1 Channel Local  
3 Channels Remote  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS821  
 
 
 
TMP421-Q1, TMP422-Q1, TMP423-Q1  
ZHCSFV7 NOVEMBER 2016  
www.ti.com.cn  
目录  
8.5 Programming........................................................... 14  
8.6 Register Maps......................................................... 21  
Application and Implementation ........................ 25  
9.1 Application Information............................................ 25  
9.2 Typical Applications ................................................ 25  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Timing Requirements................................................ 7  
7.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 10  
8.1 Overview ................................................................. 10  
8.2 Functional Block Diagram ....................................... 10  
8.3 Feature Description................................................. 12  
8.4 Device Functional Modes........................................ 14  
9
10 Power Supply Recommendations ..................... 29  
11 Layout................................................................... 29  
11.1 Layout Guidelines ................................................. 29  
11.2 Layout Example .................................................... 30  
11.3 Measurement Accuracy and Thermal  
Considerations ......................................................... 30  
12 器件和文档支持 ..................................................... 31  
12.1 相关链接................................................................ 31  
12.2 接收文档更新通知 ................................................. 31  
12.3 社区资源................................................................ 31  
12.4 ....................................................................... 31  
12.5 静电放电警告......................................................... 31  
12.6 Glossary................................................................ 31  
13 机械、封装和可订购信息....................................... 31  
8
4 修订历史记录  
日期  
修订版本  
注释  
2016 11 月  
*
最初发布。  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TMP421-Q1, TMP422-Q1, TMP423-Q1  
www.ti.com.cn  
ZHCSFV7 NOVEMBER 2016  
5 Device Comparison Table  
TWO-WIRE  
ADDRESS  
PART NUMBER  
DESCRIPTION  
TMP421-Q1  
TMP422-Q1  
TMP423-Q1  
Single-channel remote junction temperature sensor  
Dual-channel remote junction temperature sensor  
Triple-channel remote junction temperature sensor  
100 11xx  
100 11xx  
100 1100  
6 Pin Configuration and Functions  
TMP421-Q1 DCN Package  
8-Pin SOT-23  
Top View  
V+  
DXP  
DXN  
A1  
1
2
3
4
8
7
6
5
SCL  
SDA  
GND  
A0  
TMP421-Q1 Pin Functions  
PIN  
NAME  
TYPE  
DESCRIPTION  
NO.  
1
DXP  
DXN  
A1  
Analog input  
Analog input  
Digital input  
Digital input  
Ground  
Positive connection to remote temperature sensor  
2
Negative connection to remote temperature sensor  
3
Address pin  
Address pin  
Ground  
4
A0  
5
GND  
SDA  
SCL  
V+  
6
Bidirectional digital input-output Serial data line for SMBus, open-drain; requires pullup resistor to V+  
7
Digital input  
Serial clock line for SMBus, open-drain; requires pullup resistor to V+  
Positive supply voltage (2.7 V to 5.5 V for the TMP421-Q1)  
8
Power supply  
Copyright © 2016, Texas Instruments Incorporated  
3
TMP421-Q1, TMP422-Q1, TMP423-Q1  
ZHCSFV7 NOVEMBER 2016  
www.ti.com.cn  
TMP422-Q1 DCN Package  
8-Pin SOT-23  
Top View  
V+  
DX1  
DX2  
DX3  
DX4  
1
2
3
4
8
7
6
5
SCL  
SDA  
GND  
TMP422-Q1 Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
Channel 1 remote temperature sensor connection pin.  
Also sets the TMP422-Q1 address; see Table 4.  
1
DX1  
Analog input  
Analog input  
Analog input  
Channel 1 remote temperature sensor connection pin.  
Also sets the TMP422-Q1 address; see Table 4.  
2
3
4
DX2  
DX3  
DX4  
Channel 2 remote temperature sensor connection pin.  
Also sets the TMP422-Q1 address; see Table 4.  
Channel 2 remote temperature sensor connection pin.  
Also sets the TMP422-Q1 address; see Table 4.  
Analog input  
Ground  
5
6
7
8
GND  
SDA  
SCL  
V+  
Ground  
Bidirectional digital input-output Serial data line for SMBus, open-drain; requires pullup resistor to V+.  
Digital input  
Serial clock line for SMBus, open-drain; requires pullup resistor to V+.  
Positive supply voltage (2.7 V to 5.5 V).  
Power supply  
TMP423-Q1 DCN Package  
8-Pin SOT-23  
Top View  
V+  
DXP1  
DXP2  
DXP3  
DXN  
1
2
3
4
8
7
6
5
SCL  
SDA  
GND  
TMP423-Q1 Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
DXP1  
DXP2  
DXP3  
DXN  
GND  
SDA  
Analog input  
Analog input  
Analog input  
Analog input  
Ground  
Channel 1 positive connection to remote temperature sensor  
Channel 2 positive connection to remote temperature sensor  
Channel 3 positive connection to remote temperature sensor  
2
3
4
Common negative connection to remote temperature sensors, channel 1, channel 2, and channel 3  
Ground  
5
6
Bidirectional digital input-output Serial data line for SMBus, open-drain; requires pullup resistor to V+  
7
SCL  
Digital input  
Serial clock line for SMBus, open-drain; requires pullup resistor to V+  
Positive supply voltage (2.7 V to 5.5 V)  
8
V+  
Power supply  
4
Copyright © 2016, Texas Instruments Incorporated  
TMP421-Q1, TMP422-Q1, TMP423-Q1  
www.ti.com.cn  
ZHCSFV7 NOVEMBER 2016  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
7
UNIT  
Power supply, VS  
V
Pins 1, 2, 3, and 4 only  
Input voltage  
–0.5  
–0.5  
VS + 0.5  
7
V
Pins 6 and 7 only  
Input current  
10  
mA  
°C  
°C  
°C  
Operational temperature  
Junction temperature, TJ max  
Storage temperature, Tstg  
–55  
–60  
127  
150  
130  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±3000  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–40  
2.7  
MAX  
UNIT  
°C  
Temperature  
125  
5.5  
Power-supply voltage  
V
7.4 Thermal Information  
TMP42x-Q1  
THERMAL METRIC(1)  
DCN (SOT-23)  
UNIT  
8 PINS  
147  
115  
33  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
38  
ψJB  
33  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2016, Texas Instruments Incorporated  
5
 
TMP421-Q1, TMP422-Q1, TMP423-Q1  
ZHCSFV7 NOVEMBER 2016  
www.ti.com.cn  
MAX UNIT  
7.5 Electrical Characteristics  
at TA = –40°C to +125°C and V+ = 2.7 V to 5.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
TEMPERATURE ERROR  
TA = –40°C to +125°C  
–2.5  
–1.5  
–1  
±1.25  
±0.25  
±0.25  
±1  
2.5  
°C  
TELOCAL  
Local temperature sensor  
TA = 15°C to 85°C, V+ = 3.3 V  
1.5  
TA = 15°C to 85°C, TD = –40°C to +150°C, V+ = 3.3 V  
TA = –40°C to +100°C, TD = –40°C to +150°C, V+ = 3.3 V  
TA = –40°C to +125°C, TD = –40°C to +150°C  
1
TEREMOTE Remote temperature sensor(1)  
–3  
3
5
°C  
–5  
±3  
Local and remote power-supply  
sensitivity  
PSS  
V+ = 2.7 V to 5.5 V  
–0.5  
±0.2  
0.5  
°C/V  
TEMPERATURE MEASUREMENT  
Conversion time (per channel)  
100  
115  
12  
130  
ms  
Local temperature sensor (programmable)  
Remote temperature sensor  
High, series resistance = 3 kmaximum  
Medium high  
Resolution  
Bits  
12  
120  
60  
Remote sensor source currents  
μA  
Medium low  
12  
Low  
6
η
Remote transistor ideality factor  
TMP42x-Q1 optimized ideality factor  
1.008  
SMBus INTERFACE  
VIH  
VIL  
Logic input high voltage (SCL, SDA)  
2.1  
V
V
Logic input low voltage (SCL, SDA)  
Hysteresis  
0.8  
500  
mV  
mA  
V
SMBus output low sink current  
SDA output low voltage  
Logic input current  
6
VOL  
IOUT = 6 mA  
0.15  
0.4  
1
0 VIN 6 V  
–1  
μA  
DIGITAL INPUTS  
Input capacitance  
3
pF  
V
VIH  
VIL  
IIN  
Input logic high voltage  
Input logic low voltage  
Leakage input current  
0.7(V+)  
–0.5  
(V+)+0.5  
0.3(V+)  
1
V
0 V VIN V+  
μA  
POWER SUPPLY  
V+  
Specified voltage range  
2.7  
5.5  
38  
V
μA  
μA  
μA  
μA  
μA  
V
0.0625 conversions per second  
32  
400  
3
Eight conversions per second  
525  
10  
IQ  
Quiescent current  
Serial bus inactive, shutdown mode  
Serial bus active, fS = 400 kHz, shutdown mode  
Serial bus active, fS = 3.4 MHz, shutdown mode  
90  
350  
2.4  
1.6  
UVLO  
POR  
Undervoltage lockout  
2.3  
2.6  
2.3  
Power-on-reset threshold  
V
(1) Tested with less than 5-effective series resistance and 100-pF differential input capacitance.  
6
Copyright © 2016, Texas Instruments Incorporated  
TMP421-Q1, TMP422-Q1, TMP423-Q1  
www.ti.com.cn  
ZHCSFV7 NOVEMBER 2016  
7.6 Timing Requirements  
at –40°C to +125°C and V+ = 2.7 V to 5.5 V (unless otherwise noted); values are based on statistical analysis of samples  
tested during initial release  
FAST MODE  
MIN  
HIGH-SPEED MODE  
UNIT  
MAX  
MIN  
0.001  
160  
MAX  
2.56  
f(SCL)  
t(BUF)  
SCL operating frequency  
0.001  
0.4  
MHz  
ns  
Bus free time between STOP and START condition  
1300  
Hold time after repeated START condition.  
After this period, the first clock is generated.  
t(HD;STA)  
600  
160  
ns  
t(SU;STA)  
t(SU;STO)  
t(HD;DAT)  
t(VD.DAT)  
t(SU;DAT)  
t(LOW)  
Repeated START condition setup time  
STOP condition setup time  
Data hold time  
600  
600  
160  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
160  
(1)  
25  
See  
5
90  
Data valid time (data response time)(2)  
900  
Not applicable  
Data setup time  
100  
1300  
600  
10  
250  
60  
SCL clock LOW period  
SCL clock HIGH period  
Data fall time  
t(HIGH)  
tF – SDA  
tF – SCL  
tR  
300  
300  
1000  
35  
150  
40  
Clock fall time  
Clock, data rise time  
Serial bus timeout  
25  
25  
35  
(1) The maximum tHD;DAT can be 0.9 μs for Fast-Mode, and is less than the maximum tVD;DAT by a transition time.  
(2) tVDDATA = time for data signal from SCL LOW to SDA output (HIGH to LOW, depending on which is worse).  
tLOW  
tR  
tF  
tHIGH  
VIH  
SCL  
VIL  
tHD;DAT  
tVD;DAT  
tSU;STA  
tHD;STA  
tSU;STO  
tBUF  
tSU;DAT  
VIH  
VIL  
SDA  
P
S
S
P
Figure 1. Two-Wire Timing Diagram  
Copyright © 2016, Texas Instruments Incorporated  
7
 
 
TMP421-Q1, TMP422-Q1, TMP423-Q1  
ZHCSFV7 NOVEMBER 2016  
www.ti.com.cn  
7.7 Typical Characteristics  
at TA = 25°C and V+ = 5 V (unless otherwise noted)  
3
3
2
V+ = 3.3V  
50 Units Shown  
V+ = 3.3V  
TREMOTE = +25°C  
2
30 Typical Units Shown  
h = 1.008  
1
1
0
-1  
-2  
-3  
0
-1  
-2  
-3  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature, TA (°C)  
Ambient Temperature, TA (°C)  
Figure 2. Remote Temperature Error vs Temperature  
Figure 3. Local Temperature Error vs Temperature  
2.0  
1.5  
60  
40  
20  
V+ = 2.7V  
1.0  
0.5  
R - GND  
R - V+  
0
0
V+ = 5.5V  
-0.5  
-1.0  
-1.5  
-2.0  
-20  
-40  
-60  
0
5
10  
15  
20  
25  
30  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
Leakage Resistance (MW)  
RS (W)  
Figure 4. Remote Temperature Error vs Leakage Resistance  
Figure 5. Remote Temperature Error vs Series Resistance  
(Diode-Connected Transistor, 2N3906 PNP)  
2.0  
3
1.5  
2
V+ = 2.7V  
1.0  
1
0.5  
V+ = 5.5V  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-1  
-2  
-3  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
Capacitance (nF)  
RS (W)  
Figure 7. Remote Temperature Error vs Differential  
Capacitance  
Figure 6. Remote Temperature Error vs Series Resistance  
(GND Collector-Connected Transistor, 2N3906 PNP)  
8
Copyright © 2016, Texas Instruments Incorporated  
 
 
TMP421-Q1, TMP422-Q1, TMP423-Q1  
www.ti.com.cn  
ZHCSFV7 NOVEMBER 2016  
Typical Characteristics (continued)  
at TA = 25°C and V+ = 5 V (unless otherwise noted)  
25  
Local 100mVPP Noise  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
20  
Remote 100mVPP Noise  
Local 250mVPP Noise  
15  
Remote 250mVPP Noise  
10  
5
0
V+ = 5.5V  
-5  
-10  
-15  
-20  
-25  
V+ = 2.7V  
0
0.0625 0.125 0.25  
0
5
10  
15  
0.5  
1
2
4
8
Frequency (MHz)  
Conversion Rate (conversions/sec)  
Figure 8. Temperature Error vs Power-Supply Noise  
Frequency  
Figure 9. Quiescent Current vs Conversion Rate  
500  
8
7
6
5
4
3
2
1
0
450  
400  
350  
300  
250  
200  
150  
100  
50  
V+ = 5.5V  
V+ = 3.3V  
1M 10M  
0
1k  
10k  
100k  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SCL CLock Frequency (Hz)  
V+ (V)  
Figure 10. Shutdown Quiescent Current vs SCL Clock  
Frequency  
Figure 11. Shutdown Quiescent Current vs Supply Voltage  
Copyright © 2016, Texas Instruments Incorporated  
9
 
TMP421-Q1, TMP422-Q1, TMP423-Q1  
ZHCSFV7 NOVEMBER 2016  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TMP421-Q1 is a two-channel digital temperature sensor that combines a local die temperature-  
measurement channel and a remote-junction temperature-measurement channel, and is available in an 8-pin  
SOT-23 package. The TMP422-Q1 (three-channel), and TMP423-Q1 (four-channel) are digital temperature  
sensors that combine a local die temperature measurement channel and two or three remote junction  
temperature measurement channels, respectively, in a single 8-pin SOT-23 package. These devices are two-  
wire- and SMBus interface-compatible and are specified over a temperature range of –40°C to +125°C. The  
TMP421-Q1, TMP422-Q1, and TMP423-Q1 each contain multiple registers for holding configuration information  
and temperature measurement results.  
For proper remote temperature sensing operation, the TMP421-Q1 requires only a transistor connected between  
DXP and DXN pins. If the remote channel is not utilized, DXP can be left open or tied to GND.  
The TMP422-Q1 requires transistors connected between DX1 and DX2 and between DX3 and DX4. Unused  
channels on the TMP422-Q1 must be connected to GND. The TMP423-Q1 requires a transistor connected to  
each positive channel (DXP1, DXP2, and DXP3), with the base of each channel tied to the common negative,  
DXN. For an unused channel, the TMP423-Q1 DXP pin can be left open or tied to GND.  
8.2 Functional Block Diagram  
V+  
8
A1 3  
A0 4  
Serial  
Interface  
Register  
Bank  
SCL 7  
SDA 6  
Oscillator  
V+  
Control  
Logic  
2 × I  
20 × I 5 × I  
MUX  
I
Local  
Thermal BJT  
M
U
X
ADC  
DXP 1  
DXN 2  
Voltage  
Reference  
5
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 12. The TMP421-Q1 Supports Multiple Slave Addresses and a Single Remote Diode Input  
10  
Copyright © 2016, Texas Instruments Incorporated  
TMP421-Q1, TMP422-Q1, TMP423-Q1  
www.ti.com.cn  
ZHCSFV7 NOVEMBER 2016  
Functional Block Diagram (continued)  
V+  
8
SCL  
SDA  
7
6
Serial  
Interface  
Register  
Bank  
Oscillator  
V+  
Control  
Logic  
Local  
Thermal BJT  
2 × I  
20 × I 5 × I  
MUX  
I
M
U
X
DX1  
DX2  
1
2
ADC  
DX3  
DX4  
3
4
Voltage  
Reference  
5
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 13. The TMP422-Q1 With Four Possible Remote Diode Inputs  
V+  
8
SCL  
SDA  
7
6
Serial  
Interface  
Register  
Bank  
Oscillator  
V+  
Control  
Logic  
Local  
Thermal BJT  
2 × I  
20 × I 5 × I  
MUX  
I
M
U
X
DXP1  
DXP2  
1
2
ADC  
DXP3  
DXN  
3
4
Voltage  
Reference  
5
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 14. The TMP423-Q1 With Three Remote Diode Inputs  
Copyright © 2016, Texas Instruments Incorporated  
11  
TMP421-Q1, TMP422-Q1, TMP423-Q1  
ZHCSFV7 NOVEMBER 2016  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Temperature Measurement Data  
Temperature measurement data can be taken over an operating range of –40°C to +127°C for both local and  
remote locations.  
However, measurements from –55°C to +150°C can be made both locally and remotely by reconfiguring the  
TMP421-Q1, TMP422-Q1, and TMP423-Q1 for the extended temperature range, as described as follows.  
Temperature data that result from conversions within the default measurement range are represented in binary  
form, as shown in Table 1, 2s Complement Standard Binary column. Note that although the device is rated to  
only measure temperatures down to –55°C, the device can read temperatures below this level. However, any  
temperature below –64°C results in a data value of –64 (C0h). Likewise, temperatures above 127°C result in a  
value of 127 (7Fh). The device can be set to measure over an extended temperature range by changing bit 2  
(RANGE) of Configuration Register 1 from low to high. The change in measurement range and data format from  
standard binary to extended binary occurs at the next temperature conversion. For data captured in the extended  
temperature range configuration, an offset of 64 (40h) is added to the standard binary value, as shown in the  
Extended Binary column of Table 1. This configuration allows measurement of temperatures as low as –64°C,  
and as high as 191°C; however, most temperature-sensing diodes only measure with the range of –55°C to  
+150°C. Additionally, the TMP421-Q1, TMP422-Q1, and TMP423-Q1 are rated only for ambient temperatures  
ranging from –40°C to +125°C. Parameters in the Absolute Maximum Ratings table must be observed.  
Table 1. Temperature Data Format (Local and Remote Temperature High Bytes)  
LOCAL/REMOTE TEMPERATURE REGISTER  
HIGH BYTE VALUE (1°C RESOLUTION)  
TEMPERATURE  
(°C)  
2s COMPLEMENT STANDARD BINARY(1)  
EXTENDED BINARY(2)  
BINARY  
BINARY  
HEX  
C0  
CE  
E7  
00  
HEX  
00  
–64  
–50  
–25  
0
1100 0000  
1100 1110  
1110 0111  
0000 0000  
0000 0001  
0000 0101  
0000 1010  
0001 1001  
0011 0010  
0100 1011  
0110 0100  
0111 1101  
0111 1111  
0111 1111  
0111 1111  
0111 1111  
0000 0000  
0000 1110  
0010 0111  
0100 0000  
0100 0001  
0100 0101  
0100 1010  
0101 1001  
0111 0010  
1000 1011  
1010 0100  
1011 1101  
1011 1111  
1101 0110  
1110 1111  
1111 1111  
0E  
27  
40  
1
01  
41  
5
05  
45  
10  
0A  
19  
4A  
59  
25  
50  
32  
72  
75  
4B  
64  
8B  
A4  
BD  
BF  
D6  
EF  
FF  
100  
125  
127  
150  
175  
191  
7D  
7F  
7F  
7F  
7F  
(1) Resolution is 1°C/count. Negative numbers are represented in 2s-complement format.  
(2) Resolution is 1°C/count. All values are unsigned with a –64°C offset.  
12  
Copyright © 2016, Texas Instruments Incorporated  
 
TMP421-Q1, TMP422-Q1, TMP423-Q1  
www.ti.com.cn  
ZHCSFV7 NOVEMBER 2016  
Both local and remote temperature data use two bytes for data storage. The high byte stores the temperature  
with 1°C resolution. The second or low byte stores the decimal fraction value of the temperature and allows a  
higher measurement resolution, as shown in Table 2. The measurement resolution for the both the local and  
remote channels is 0.0625°C, and is not adjustable.  
Table 2. Decimal Fraction Temperature Data Format (Local and Remote Temperature Low Bytes)  
TEMPERATURE REGISTER LOW BYTE VALUE  
(0.0625°C RESOLUTION)(1)  
TEMPERATURE  
(°C)  
STANDARD AND EXTENDED BINARY  
0000 0000  
HEX  
00  
10  
20  
30  
40  
50  
60  
70  
80  
90  
A0  
B0  
C0  
D0  
E0  
F0  
0
0.0625  
0.1250  
0.1875  
0.2500  
0.3125  
0.3750  
0.4375  
0.5000  
0.5625  
0.6250  
0.6875  
0.7500  
0.8125  
0.8750  
0.9385  
0001 0000  
0010 0000  
0011 0000  
0100 0000  
0101 0000  
0110 0000  
0111 0000  
1000 0000  
1001 0000  
1010 0000  
1011 0000  
1100 0000  
1101 0000  
1110 0000  
1111 0000  
(1) Resolution is 0.0625°C/count. All possible values are shown.  
8.3.2 Remote Sensing  
The TMP421-Q1, TMP422-Q1, and TMP423-Q1 are designed to be used with either discrete transistors or  
substrate transistors built into processor chips and ASICs. Either NPN or PNP transistors can be used, as long  
as the base-emitter junction is used as the remote temperature sense. NPN transistors must be diode-  
connected. PNP transistors can either be transistor- or diode-connected (see Figure 20, Figure 21, and  
Figure 22).  
8.3.3 Series Resistance Cancellation  
Series resistance in an application circuit that typically results from printed circuit board (PCB) trace resistance  
and remote line length is automatically cancelled by the TMP421-Q1, TMP422-Q1, and TMP423-Q1, preventing  
what would otherwise result in a temperature offset. A total of up to 3 kof series line resistance is cancelled by  
the TMP421-Q1, TMP422-Q1, and TMP423-Q1, eliminating the need for additional characterization and  
temperature offset correction. See the two Remote Temperature Error vs Series Resistance typical characteristic  
curves (Figure 5 and Figure 6) for details on the effects of series resistance and power-supply voltage on sensed  
remote temperature error.  
8.3.4 Differential Input Capacitance  
The TMP421-Q1, TMP422-Q1, and TMP423-Q1 tolerate differential input capacitance of up to 1000 pF with  
minimal change in temperature error. The effect of capacitance on sensed remote temperature error is illustrated  
in Figure 7, Remote Temperature Error vs Differential Capacitance.  
Copyright © 2016, Texas Instruments Incorporated  
13  
 
TMP421-Q1, TMP422-Q1, TMP423-Q1  
ZHCSFV7 NOVEMBER 2016  
www.ti.com.cn  
8.3.5 Filtering  
Remote junction temperature sensors are usually implemented in a noisy environment. Noise is most often  
created by fast digital signals, and can corrupt measurements. The TMP421-Q1, TMP422-Q1, and TMP423-Q1  
have a built-in 65-kHz filter on the inputs of DXP and DXN (TMP421-Q1 and TMP423-Q1), or on the inputs of  
DX1 through DX4 (TMP422-Q1), to minimize the effects of noise. However, a bypass capacitor placed  
differentially across the inputs of the remote temperature sensor is recommended to make the application more  
robust against unwanted coupled signals. The value of this capacitor must be between 100 pF and 1 nF. Some  
applications attain better overall accuracy with additional series resistance; however, this increased accuracy is  
application-specific. When series resistance is added, the total value must not be greater than 3 k. If filtering is  
needed, suggested component values are 100 pF and 50 on each input; exact values are application-specific.  
8.3.6 Sensor Fault  
The TMP421-Q1 can sense a fault at the DXP input resulting from incorrect diode connection. The TMP421-Q1,  
TMP422-Q1, and TMP423-Q1 can all sense an open circuit. Short-circuit conditions return a value of –64°C. The  
detection circuitry consists of a voltage comparator that trips when the voltage at DXP exceeds (V+) – 0.6V  
(typical). The comparator output is continuously checked during a conversion. If a fault is detected, the OPEN bit  
(bit 0) in the temperature result register is set to 1 and the rest of the register bits must be ignored.  
When not using the remote sensor with the TMP421-Q1, the DXP and DXN inputs must be connected together  
to prevent meaningless fault warnings. When not using a remote sensor with the TMP422-Q1, connect the DX  
pins (see Table 4) such that DXP connections are grounded and DXN connections are left open (unconnected).  
Unused TMP423-Q1 DXP pins can be left open or connected to GND.  
8.3.7 Undervoltage Lockout  
The TMP421-Q1, TMP422-Q1, and TMP423-Q1 sense when the power-supply voltage has reached a minimum  
voltage level for the ADC to function. The detection circuitry consists of a voltage comparator that enables the  
ADC after the power supply (V+) exceeds 2.45 V (typical). The comparator output is continuously checked during  
a conversion. The TMP421-Q1, TMP422-Q1, and TMP423-Q1 do not perform a temperature conversion if the  
power supply is not valid. The PVLD bit (bit 1, see Table 6) of the individual Local/Remote Temperature Register  
is set to 1 and the temperature result may be incorrect.  
8.3.8 Timeout Function  
The TMP421-Q1, TMP422-Q1, and TMP423-Q1 reset the serial interface if the SCL or SDA lines are held low for  
30 ms (typical) between a START and STOP condition. If the TMP421-Q1, TMP422-Q1, and TMP423-Q1 are  
holding the bus low, the device releases the bus and waits for a START condition. To avoid activating the  
timeout function, a communication speed of at least 1 kHz must be maintained for the SCL operating frequency.  
8.4 Device Functional Modes  
8.4.1 Shutdown Mode (SD)  
The TMP421-Q1, TMP422-Q1, and TMP423-Q1 Shutdown Mode allows the user to save maximum power by  
shutting down all device circuitry other than the serial interface, reducing current consumption to typically less  
than 3 μA; see Figure 11, Shutdown Quiescent Current vs Supply Voltage. Shutdown Mode is enabled when the  
SD bit (bit 6) of Configuration Register 1 is high; the device shuts down when the current conversion is  
completed. When SD is low, the device maintains a continuous conversion state.  
8.5 Programming  
8.5.1 Serial Interface  
The TMP421-Q1, TMP422-Q1, and TMP423-Q1 operate only as a slave device on the two-wire bus (I2C or  
SMBus). Connections to either bus are made via the open-drain I/O lines, SDA and SCL. The SDA and SCL pins  
feature integrated spike suppression filters and Schmitt triggers to minimize the effects of input spikes and bus  
noise. The TMP421-Q1, TMP422-Q1, and TMP423-Q1 support the transmission protocol for fast (1 kHz to  
400 kHz) and high-speed (1 kHz to 3.4 MHz) modes. All data bytes are transmitted MSB first.  
14  
Copyright © 2016, Texas Instruments Incorporated  
 
TMP421-Q1, TMP422-Q1, TMP423-Q1  
www.ti.com.cn  
ZHCSFV7 NOVEMBER 2016  
Programming (continued)  
8.5.2 Bus Overview  
The TMP421-Q1, TMP422-Q1, and TMP423-Q1 are SMBus or I2C interface compatible. In SMBus protocol, the  
device that initiates the transfer is called a master, and the devices controlled by the master are slaves. The bus  
must be controlled by a master device that generates the serial clock (SCL), controls the bus access, and  
generates the START and STOP conditions.  
To address a specific device, a START condition is initiated. START is indicated by pulling the data line (SDA)  
from a high-to-low logic level when SCL is high. All slaves on the bus shift in the slave address byte, with the last  
bit indicating whether a read or write operation is intended. During the ninth clock pulse, the slave being  
addressed responds to the master by generating an Acknowledge and pulling SDA low.  
Data transfer is then initiated and sent over eight clock pulses followed by an Acknowledge bit. During data  
transfer SDA must remain stable when SCL is high, because any change in SDA when SCL is high is interpreted  
as a control signal.  
When all data are transferred, the master generates a STOP condition. STOP is indicated by pulling SDA from  
low to high, when SCL is high.  
8.5.3 Bus Definitions  
The TMP421-Q1, TMP422-Q1, and TMP423-Q1 are two-wire and SMBus-compatible. Figure 1 and Figure 15 to  
Figure 17 describe the timing for various operations on the TMP421-Q1, TMP422-Q1, and TMP423-Q1.  
Parameters for Figure 1 are defined in Timing Requirements. Bus definitions are:  
Bus Idle  
Both SDA and SCL lines remain high.  
Start Data Transfer A change in the state of the SDA line from high to low when the SCL line is high defines a  
START condition. Each data transfer initiates with a START condition. Denoted as S in Figure 1.  
Stop Data Transfer A change in the state of the SDA line from low to high when the SCL line is high defines a  
STOP condition. Each data transfer terminates with a repeated START or STOP condition.  
Denoted as P in Figure 1.  
Data Transfer The number of data bytes transferred between a START and a STOP condition is not limited and  
is determined by the master device. The receiver acknowledges data transfer.  
Acknowledge Each receiving device, when addressed, is obliged to generate an Acknowledge bit. A device  
that acknowledges must pull down the SDA line during the Acknowledge clock pulse in such a way  
that the SDA line is stable low during the high period of the Acknowledge clock pulse. Setup and  
hold times must be taken into account. On a master receive, data transfer termination can be  
signaled by the master generating a Not-Acknowledge on the last byte transmitted by the slave.  
Copyright © 2016, Texas Instruments Incorporated  
15  
TMP421-Q1, TMP422-Q1, TMP423-Q1  
ZHCSFV7 NOVEMBER 2016  
www.ti.com.cn  
Programming (continued)  
1
9
1
9
SCL  
¼
SDA  
1
0
0
1
1
0
0(1) R/W  
P7 P6 P5 P4 P3  
P2 P1  
P0  
¼
Start By  
Master  
ACK By  
ACK By  
TMP42x-Q1  
TMP42x-Q1  
Frame 2 Pointer Register Byte  
Frame 1 Two-Wire Slave Address Byte  
1
9
SCL  
(Continued)  
SDA  
D7 D6 D5 D4 D3 D2 D1 D0  
(Continued)  
ACK By  
Stop By  
Master  
TMP42x-Q1  
Frame 3 Data Byte 1  
(1) Slave address 1001100 shown.  
Figure 15. Two-Wire Timing Diagram for Write Word Format  
1
9
1
9
¼
SCL  
SDA  
1
0
0
1
1
0
0(1)  
R/W  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
¼
Start By  
Master  
ACK By  
ACK By  
TMP42x-Q1  
TMP42x-Q1  
Frame 1 Two-Wire Slave Address Byte  
Frame 2 Pointer Register Byte  
1
9
1
9
SCL  
¼
(Continued)  
SDA  
0(1)  
¼
1
0
1
0
0
1
R/W  
D7  
D6  
D5  
D4 D3  
D2  
D1  
D0  
(Continued)  
Start By  
Master  
ACK By  
From  
TMP42x-Q1  
NACK By  
Master(2)  
TMP42x-Q1  
Frame 3 Two-Wire Slave Address Byte  
Frame 4 Data Byte 1 Read Register  
(1) Slave address 1001100 shown.  
(2) The master must leave the SDA high to terminate a single-byte read operation.  
Figure 16. Two-Wire Timing Diagram for Single-Byte Read Format  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
TMP421-Q1, TMP422-Q1, TMP423-Q1  
www.ti.com.cn  
ZHCSFV7 NOVEMBER 2016  
Programming (continued)  
1
9
1
9
¼
SCL  
0(1)  
R/W  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
¼
SDA  
1
0
0
1
1
0
Start By  
Master  
ACK By  
ACK By  
TMP42x-Q1  
TMP42x-Q1  
Frame 1 Two-Wire Slave Address Byte  
Frame 2 Pointer Register Byte  
1
9
1
9
SCL  
¼
(Continued)  
SDA  
0(1)  
¼
1
0
1
0
0
1
R/W  
D7  
D6  
D5  
D4 D3  
D2  
D1  
D0  
(Continued)  
Start By  
Master  
ACK By  
From  
TMP42x-Q1  
ACK By  
Master  
TMP42x-Q1  
Frame 3 Two-Wire Slave Address Byte  
Frame 4 Data Byte 1 Read Register  
1
9
SCL  
(Continued)  
SDA  
D7 D6  
D5  
D4  
D3  
D2  
D1  
D0  
(Continued)  
From  
NACK By Stop By  
Master(2)  
Master  
TMP42x-Q1  
Frame 5 Data Byte 2 Read Register  
(1) Slave address 1001100 shown.  
(2) The master must leave the SDA high to terminate a two-byte read operation.  
Figure 17. Two-Wire Timing Diagram for Two-Byte Read Format  
8.5.4 Serial Bus Address  
To communicate with the TMP421-Q1, TMP422-Q1, and TMP423-Q1, the master must first address slave  
devices via a slave address byte. The slave address byte consists of seven address bits, and a direction bit  
indicating the intent of executing a read or write operation.  
8.5.5 Two-Wire Interface Slave Device Addresses  
The TMP421-Q1 supports nine slave device addresses and the TMP422-Q1 supports four slave device  
addresses. The TMP423-Q1 has one of two factory-preset slave addresses.  
The slave device address for the TMP421-Q1 is set by the A1 and A0 pins according to Table 3.  
The slave device address for the TMP422-Q1 is set by the connections between the external transistors and the  
TMP422-Q1 according to Figure 18 and Table 4. If one of the channels is unused, the respective DXP  
connection must be connected to GND, and the DXN connection must be left unconnected. The polarity of the  
transistor for external channel 2 (pins 3 and 4) sets the least significant bit of the slave address. The polarity of  
the transistor for external channel 1 (pins 1 and 2) sets the next least significant bit of the slave address.  
Copyright © 2016, Texas Instruments Incorporated  
17  
 
TMP421-Q1, TMP422-Q1, TMP423-Q1  
ZHCSFV7 NOVEMBER 2016  
www.ti.com.cn  
Programming (continued)  
Table 3. TMP421-Q1 Slave Address Options  
TWO-WIRE SLAVE ADDRESS  
0011 100  
A1  
A0  
Float  
0
1
0011 101  
Float  
0011 110  
0
Float  
Float  
Float  
0
0011 111  
1
0101 010  
Float  
1001 100  
0
0
1
1
1001 101  
1
1001 110  
0
1001 111  
1
Table 4. TMP422-Q1 Slave Address Options  
TWO-WIRE SLAVE ADDRESS  
1001 100  
DX1  
DX2  
DX3  
DX4  
DXP1  
DXP1  
DXN1  
DXN1  
DXN1  
DXN1  
DXP1  
DXP1  
DXP2  
DXN2  
DXP2  
DXN2  
DXN2  
DXP2  
DXN2  
DXP2  
1001 101  
1001 110  
1001 111  
SCL  
SDA  
V+  
DX1  
DX2  
DX3  
DX4  
V+  
SCL  
SDA  
GND  
DX1  
DX2  
DX3  
DX4  
V+  
DX1  
V+  
SCL  
SDA  
GND  
DX1  
DX2  
DX3  
DX4  
V+  
SCL  
SDA  
GND  
Q0  
Q2  
SCL  
SDA  
GND  
Q4  
DX2  
DX3  
DX4  
Q6  
Q3  
Q5  
Q7  
Q1  
Address = 1001100  
Address = 1001101  
Address = 1001110  
Address = 1001111  
Figure 18. TMP422-Q1 Connections for Device Address Setup  
The TMP422-Q1 checks the polarity of the external transistor at power-on, or after software reset, by forcing  
current to pin 1 when connecting pin 2 to approximately 0.6 V. If the voltage on pin 1 does not pull up to near the  
V+ of the TMP422-Q1, pin 1 functions as DXP for channel 1, and the second LSB of the slave address is 0. If the  
voltage on pin 1 does pull up to near V+, the TMP422-Q1 forces current to pin 2 when connecting pin 1 to 0.6 V.  
If the voltage on pin 2 does not pull up to near V+, the TMP422-Q1 uses pin 2 for the DXP of channel 1, and sets  
the second LSB of the slave address to 1. If both pins are shorted to GND or if both pins are open, the TMP422-  
Q1 uses pin 1 as the DXP and sets the address bit to 0. This process is then repeated for channel 2 (pins 3 and  
4).  
If the TMP422-Q1 is to be used with transistors that are located on another device (such as a CPU, DSP, or  
graphics processor), Pin 1 or pin 3 are recommended to be used as the DXP to ensure correct address  
detection. If the other device has a lower supply voltage or is not powered when the TMP422-Q1 tries to detect  
the slave address, a protection diode can turn on during the detection process and the TMP422-Q1 can  
incorrectly choose the DXP pin and corresponding slave address. Using pin 1 or pin 3 for transistors that are on  
other devices ensures the correct operation independent of supply sequencing or levels.  
The TMP423-Q1 has a factory-preset slave address. The TMP423A-Q1 slave address is 1001100b, and the  
TMP423B-Q1 slave address is 1001101b. The configuration of the DXP and DXN channels are independent of  
the address. Unused DXP channels can be left open or tied to GND.  
18  
Copyright © 2016, Texas Instruments Incorporated  
TMP421-Q1, TMP422-Q1, TMP423-Q1  
www.ti.com.cn  
ZHCSFV7 NOVEMBER 2016  
8.5.6 Read and Write Operations  
Accessing a particular register on the TMP421-Q1, TMP422-Q1, and TMP423-Q1 is accomplished by writing the  
appropriate value to the Pointer Register. The value for the Pointer Register is the first byte transferred after the  
slave address byte with the R/W bit low. Every write operation to the TMP421-Q1, TMP422-Q1, and TMP423-Q1  
requires a value for the Pointer Register (see Figure 15).  
When reading from the TMP421-Q1, TMP422-Q1, and TMP423-Q1, the last value stored in the Pointer Register  
by a write operation is used to determine which register is read by a read operation. To change which register is  
read for a read operation, a new value must be written to the Pointer Register. This transaction is accomplished  
by issuing a slave address byte with the R/W bit low, followed by the Pointer Register byte; no additional data  
are required. The master can then generate a START condition and send the slave address byte with the R/W bit  
high to initiate the read command. See Figure 17 for details of this sequence. If repeated reads from the same  
register are desired, the Pointer Register bytes do not have to be continually sent because the TMP421-Q1,  
TMP422-Q1, and TMP423-Q1 retain the Pointer Register value until that value is changed by the next write  
operation. Note that register bytes are sent MSB first, followed by the LSB.  
Read operations must be terminated by issuing a Not-Acknowledge command at the end of the last byte to be  
read. For a single-byte operation, the master must leave the SDA line high during the Acknowledge time of the  
first byte that is read from the slave. For a two-byte read operation, the master must pull SDA low during the  
Acknowledge time of the first byte read, and must leave SDA high during the Acknowledge time of the second  
byte read from the slave.  
8.5.7 High-Speed Mode  
In order for the two-wire bus to operate at frequencies above 400 kHz, the master device must issue a High-  
Speed mode (Hs-mode) master code (0000 1xxx) as the first byte after a START condition to switch the bus to  
high-speed operation. The TMP421-Q1, TMP422-Q1, and TMP423-Q1 do not acknowledge this byte, but switch  
the input filters on SDA and SCL and the output filter on SDA to operate in Hs-mode, allowing transfers at up to  
3.4 MHz. After the Hs-mode master code has been issued, the master transmits a two-wire slave address to  
initiate a data transfer operation. The bus continues to operate in Hs-mode until a STOP condition occurs on the  
bus. Upon receiving the STOP condition, the TMP421-Q1, TMP422-Q1, and TMP423-Q1 switch the input and  
output filters back to fast mode operation.  
8.5.8 One-Shot Conversion  
When the TMP421-Q1, TMP422-Q1, and TMP423-Q1 are in shutdown mode (SD = 1 in the Configuration  
Register 1), a single conversion is started on all enabled channels by writing any value to the One-Shot Start  
Register, pointer address 0Fh. This write operation starts one conversion; the TMP421-Q1, TMP422-Q1, and  
TMP423-Q1 return to shutdown mode when that conversion completes. The value of the data sent in the write  
command is irrelevant and is not stored by the TMP421-Q1, TMP422-Q1, and TMP423-Q1. When the TMP421-  
Q1, TMP422-Q1, and TMP423-Q1 are in shutdown mode, the conversion sequence currently in process must be  
completed before a one-shot command can be issued. One-shot commands issued during a conversion are  
ignored.  
8.5.9 η-Factor Correction Register  
The TMP421-Q1, TMP422-Q1, and TMP423-Q1 allow for a different η-factor value to be used for converting  
remote channel measurements to temperature. The remote channel uses sequential current excitation to extract  
a differential VBE voltage measurement to determine the temperature of the remote transistor. Equation 1  
describes this voltage and temperature.  
hkT  
I2  
I1  
VBE2 - VBE1  
=
ln  
q
(1)  
The value η in Equation 1 is a characteristic of the particular transistor used for the remote channel. The power-  
on reset value for the TMP421-Q1, TMP422-Q1, and TMP423-Q1 is η = 1.008. The value in the η-Factor  
Correction Register can be used to adjust the effective η-factor according to Equation 2 and Equation 3.  
1.008 ´ 300  
heff  
=
300 - NADJUST  
(2)  
19  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
 
TMP421-Q1, TMP422-Q1, TMP423-Q1  
ZHCSFV7 NOVEMBER 2016  
www.ti.com.cn  
300 ´ 1.008  
NADJUST = 300 -  
heff  
(3)  
The η-correction value must be stored in two's-complement format, yielding an effective data range from –128 to  
+127. The n-correction value can be written to and read from pointer address 21h. The η-correction value for the  
second remote channel (TMP422-Q1 and TMP423-Q1) can be written and read from pointer address 22h. The η-  
correction value for the third remote channel (TMP423-Q1 only) can be written to and read from pointer address  
23h. The register power-on reset value is 00h, thus having no effect unless the register is written to.  
8.5.10 Software Reset  
The TMP421-Q1, TMP422-Q1, and TMP423-Q1 can be reset by writing any value to the Software Reset  
Register (pointer address FCh). This action restores the power-on reset state to all of the TMP421-Q1, TMP422-  
Q1, and TMP423-Q1 registers as well as aborts any conversion in process. The TMP421-Q1, TMP422-Q1, and  
TMP423-Q1 also support reset via the two-wire general call address (0000 0000). The General Call Reset  
section contains more information.  
Table 5. η-Factor Range  
NADJUST  
η
BINARY  
HEX  
7F  
0A  
08  
DECIMAL  
0111 1111  
0000 1010  
0000 1000  
0000 0110  
0000 0100  
0000 0010  
0000 0001  
0000 0000  
1111 1111  
1111 1110  
1111 1100  
1111 1010  
1111 1000  
1111 0110  
1000 0000  
127  
10  
8
1.747977  
1.042759  
1.035616  
1.028571  
1.021622  
1.014765  
1.011371  
1.008  
06  
6
04  
4
02  
2
01  
1
00  
0
FF  
FE  
FC  
FA  
F8  
F6  
80  
–1  
–2  
–4  
–6  
–8  
–10  
–128  
1.004651  
1.001325  
0.994737  
0.988235  
0.981818  
0.975484  
0.706542  
8.5.11 General Call Reset  
The TMP421-Q1, TMP422-Q1, and TMP423-Q1 support reset via the two-wire General Call address 00h (0000  
0000b). The TMP421-Q1, TMP422-Q1, and TMP423-Q1 acknowledge the General Call address and respond to  
the second byte. If the second byte is 06h (0000 0110b), the TMP421-Q1, TMP422-Q1, and TMP423-Q1  
execute a software reset. This software reset restores the power-on reset state to all TMP421-Q1, TMP422-Q1,  
and TMP423-Q1 registers, and aborts any conversion in progress. The TMP421-Q1, TMP422-Q1, and TMP423-  
Q1 take no action in response to other values in the second byte.  
8.5.12 Identification Registers  
The TMP421-Q1, TMP422-Q1, and TMP423-Q1 allow for the two-wire bus controller to query the device for  
manufacturer and device IDs to enable software identification of the device at the particular two-wire bus  
address. The manufacturer ID is obtained by reading from pointer address FEh. The device ID is obtained by  
reading from pointer address FFh. The TMP421-Q1, TMP422-Q1, and TMP423-Q1 each return 55h for the  
manufacturer code. The TMP421-Q1 returns 21h for the device ID; the TMP422-Q1 returns 22h for the device  
ID; and the TMP423-Q1 returns 23h for the device ID. These registers are read-only.  
20  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TMP421-Q1, TMP422-Q1, TMP423-Q1  
www.ti.com.cn  
ZHCSFV7 NOVEMBER 2016  
8.6 Register Maps  
The TMP421-Q1, TMP422-Q1, and TMP423-Q1 contain multiple registers for holding configuration information,  
temperature measurement results, and status information. These registers are described in Figure 19 and  
Table 6.  
8.6.1 Pointer Register  
Figure 19 shows the internal register structure of the TMP421-Q1, TMP422-Q1, and TMP423-Q1. The 8-bit  
Pointer Register is used to address a given data register. The Pointer Register identifies which of the data  
registers must respond to a read or write command on the two-wire bus. This register is set with every write  
command. A write command must be issued to set the proper value in the Pointer Register before executing a  
read command. Table 6 describes the pointer address of the TMP421-Q1, TMP422-Q1, and TMP423-Q1  
registers. The power-on reset (POR) value of the Pointer Register is 00h (0000 0000b).  
Pointer Register  
Local and Remote Temperature Registers  
Status Register  
SDA  
Configuration Registers  
One-Shot Start Register  
Conversion Rate Register  
N-Factor Correction Registers  
Identification Registers  
Software Reset  
I/O  
Control  
Interface  
SCL  
Figure 19. Internal Register Structure  
Table 6. Register Map  
BIT DESCRIPTION  
POINTER  
(HEX)  
POR (HEX)  
REGISTER DESCRIPTION  
7
6
5
4
3
2
1
0
00  
01  
00  
00  
LT11  
LT10  
LT9  
LT8  
LT7  
LT6  
LT5  
LT4  
RT4  
Local Temperature (High Byte)(1)  
Remote Temperature 1  
(High Byte)(1)  
RT11  
RT11  
RT11  
RT10  
RT10  
RT10  
RT9  
RT9  
RT9  
RT8  
RT8  
RT8  
RT7  
RT7  
RT7  
RT6  
RT6  
RT6  
RT5  
RT5  
RT5  
Remote Temperature 2  
02  
03  
00  
00  
RT4  
RT4  
(2) (3)  
(High Byte)(1)  
Remote Temperature 3  
(3)  
(High Byte)(1)  
08  
09  
BUSY  
0
0
0
0
0
0
0
0
0
0
0
0
0
Status Register  
00  
SD  
RANGE  
Configuration Register 1  
1C/3C(2)  
7C(3)  
/
(3)  
0A  
0
REN3(3)  
REN2(2)  
REN  
LEN  
RC  
0
0
Configuration Register 2  
0B  
0F  
10  
11  
07  
0
0
0
0
0
X
0
0
R2  
X
R1  
X
R0  
X
Conversion Rate Register  
One-Shot Start(4)  
X
X
X
X
00  
00  
LT3  
RT3  
LT2  
RT2  
LT1  
RT1  
LT0  
RT0  
0
PVLD  
PVLD  
0
Local Temperature (Low Byte)  
Remote Temperature 1 (Low Byte)  
Remote Temperature 2  
0
OPEN  
12  
00  
RT3  
RT2  
RT1  
RT0  
0
0
PVLD  
OPEN  
(3)  
(Low Byte)(2)  
13  
21  
22  
23  
00  
00  
00  
00  
RT3  
NC7  
NC7  
NC7  
RT2  
NC6  
NC6  
NC6  
RT1  
NC5  
NC5  
NC5  
RT0  
NC4  
NC4  
NC4  
0
0
PLVD  
NC1  
NC1  
NC1  
OPEN  
NC0  
Remote Temperature 3 (Low Byte)(3)  
NC3  
NC3  
NC3  
NC2  
NC2  
NC2  
N Correction 1  
(3)  
NC0  
N Correction 2(2)  
NC0  
N Correction 3(3)  
(1) Compatible with Two-Byte Read; see Figure 17.  
(2) TMP422-Q1.  
(3) TMP423-Q1.  
(4) X = undefined. Writing any value to this register initiates a one-shot start; see the One-Shot Conversion section.  
Copyright © 2016, Texas Instruments Incorporated  
21  
 
 
TMP421-Q1, TMP422-Q1, TMP423-Q1  
ZHCSFV7 NOVEMBER 2016  
www.ti.com.cn  
Register Maps (continued)  
Table 6. Register Map (continued)  
BIT DESCRIPTION  
POINTER  
POR (HEX)  
(HEX)  
REGISTER DESCRIPTION  
7
X
0
0
0
0
6
X
1
0
0
0
5
X
0
1
1
1
4
X
1
0
0
0
3
X
0
0
0
0
2
X
1
0
0
0
1
X
0
0
1
1
0
X
1
1
0
1
FC  
FE  
Software Reset(5)  
55  
21  
Manufacturer ID  
TMP421-Q1 Device ID  
TMP422-Q1 Device ID  
TMP423-Q1 Device ID  
FF  
(5) X = undefined. Writing any value to this register initiates a software reset; see the Software Reset section.  
8.6.2 Temperature Registers  
The TMP421-Q1, TMP422-Q1, and TMP423-Q1 have multiple 8-bit registers that hold temperature measurement  
results. The local channel and each of the remote channels have a high byte register that contains the most  
significant bits (MSBs) of the temperature analog-to-digital converter (ADC) result and a low byte register that  
contains the least significant bits (LSBs) of the temperature ADC result. The local channel high byte address is  
00h; the local channel low byte address is 10h. The remote channel high byte is at address 01h; the remote  
channel low byte address is 11h. For the TMP422-Q1, the second remote channel high byte address is 02h; the  
second remote channel low byte is 12h. The TMP 423 uses the same local and remote address as the TMP421-  
Q1 and TMP422-Q1, with the third remote channel high byte of 03h; the third remote channel low byte is 13h.  
These registers are read-only and are updated by the ADC each time a temperature measurement is completed.  
The TMP421-Q1, TMP422-Q1, and TMP423-Q1 contain circuitry to assure that a low byte register read  
command returns data from the same ADC conversion as the immediately preceding high byte read command.  
This assurance remains valid only until another register is read. For proper operation, the high byte of a  
temperature register must be read first. The low byte register must be read in the next read command. The low  
byte register can be left unread if the LSBs are not needed. Alternatively, the temperature registers can be read  
as a 16-bit register by using a single two-byte read command from address 00h for the local channel result, or  
from address 01h for the remote channel result (02h for the second remote channel result, and 03h for the third  
remote channel). The high byte is output first, followed by the low byte. Both bytes of this read operation are from  
the same ADC conversion. The power-on reset value of all temperature registers is 00h.  
8.6.3 Status Register  
The Status Register reports the state of the temperature ADCs. Table 7 summarizes the Status Register bits.  
The Status Register is read-only, and is read by accessing pointer address 08h.  
The BUSY bit = 1 if the ADC is making a conversion; BUSY is set to 0 if the ADC is not converting.  
Table 7. Status Register Format  
STATUS REGISTER ( READ = 08h, WRITE = NA)  
BIT #  
BIT NAME  
D7  
BUSY  
0(1)  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
POR VALUE  
0
0
0
0
0
0
0
(1) FOR TMP421-Q1 AND TMP423-Q1: BUSY changes to 1 almost immediately (< 100 μs) following power-up, when the TMP421-Q1 and  
TMP423-Q1 begin the first temperature conversion. BUSY is high whenever the TMP421-Q1 and TMP423-Q1 convert a temperature  
reading.  
FOR TMP422-Q1: The BUSY bit changes to 1 approximately 1 ms following power-up. BUSY is high whenever the TMP422-Q1  
converts a temperature reading.  
22  
Copyright © 2016, Texas Instruments Incorporated  
 
TMP421-Q1, TMP422-Q1, TMP423-Q1  
www.ti.com.cn  
ZHCSFV7 NOVEMBER 2016  
8.6.4 Configuration Register 1  
Configuration Register 1 (pointer address 09h) sets the temperature range and controls the shutdown mode. The  
Configuration Register is set by writing to pointer address 09h and read by reading from pointer address 09h.  
Table 8 summarizes the bits of Configuration Register 1.  
The shutdown (SD) bit (bit 6) enables or disables the temperature measurement circuitry. If SD = 0, the TMP421-  
Q1, TMP422-Q1, and TMP423-Q1 convert continuously at the rate set in the conversion rate register. When SD  
is set to 1, the TMP421-Q1, TMP422-Q1, and TMP423-Q1 stop converting when the current conversion  
sequence is complete and enter a shutdown mode. When SD is set to 0 again, the TMP421-Q1, TMP422-Q1,  
and TMP423-Q1 resume continuous conversions. When SD = 1, a single conversion can be started by writing to  
the One-Shot Register. See the One-Shot Conversion section for more information.  
The temperature range is set by configuring the RANGE bit (bit 2) of the Configuration Register. Setting this bit  
low configures the TMP421-Q1, TMP422-Q1, and TMP423-Q1 for the standard measurement range (–40°C to  
+127°C); temperature conversions are stored in the standard binary format. Setting bit 2 high configures the  
TMP421-Q1, TMP422-Q1, and TMP423-Q1 for the extended measurement range (–55°C to +150°C);  
temperature conversions are stored in the extended binary format (see Table 1).  
The remaining bits of the Configuration Register are reserved and must always be set to 0. The power-on reset  
value for this register is 00h.  
Table 8. Configuration Register 1 Bit Descriptions  
CONFIGURATION REGISTER 1 (Read/Write = 09h, POR = 00h)  
POWER-ON RESET  
BIT  
7
NAME  
Reserved  
FUNCTION  
VALUE  
0
0 = Run  
1 = Shut Down  
6
SD  
0
0
0
0
5, 4, 3  
2
Reserved  
0 = –40°C to +127°C  
1 = –55°C to +150°C  
Temperature Range  
Reserved  
1, 0  
8.6.5 Configuration Register 2  
Configuration Register 2 (pointer address 0Ah) controls which temperature measurement channels are enabled  
and whether the external channels have the resistance correction feature enabled or disabled. Table 9  
summarizes the bits of Configuration Register 2.  
The RC bit (bit 2) enables the resistance correction feature for the external temperature channels. If RC = 1,  
series resistance correction is enabled; if RC = 0, resistance correction is disabled. Resistance correction must  
be enabled for most applications. However, disabling the resistance correction can yield slightly improved  
temperature measurement noise performance, and reduce conversion time by about 50%, which can lower  
power consumption when conversion rates of two per second or less are selected.  
The LEN bit (bit 3) enables the local temperature measurement channel. If LEN = 1, the local channel is enabled;  
if LEN = 0, the local channel is disabled.  
The REN bit (bit 4) enables external temperature measurement for channel 1. If REN = 1, the first external  
channel is enabled; if REN = 0, the external channel is disabled.  
For the TMP422-Q1 and TMP423-Q1 only, the REN2 bit (bit 5) enables the second external measurement  
channel. If REN2 = 1, the second external channel is enabled; if REN2 = 0, the second external channel is  
disabled.  
For the TMP423-Q1 only, the REN3 bit (bit 6) enables the third external measurement channel. If REN3 = 1, the  
third external channel is enabled; if REN3 = 0, the third external channel is disabled.  
The temperature measurement sequence is: local channel, external channel 1, external channel 2, external  
channel 3, shutdown, and delay (to set conversion rate, if necessary). The sequence starts over with the local  
channel. If any of the channels are disabled, they are bypassed in the sequence.  
Copyright © 2016, Texas Instruments Incorporated  
23  
 
TMP421-Q1, TMP422-Q1, TMP423-Q1  
ZHCSFV7 NOVEMBER 2016  
www.ti.com.cn  
Table 9. Configuration Register 2 Bit Descriptions  
CONFIGURATION REGISTER 2 (Read/Write = 0Ah, POR = 1Ch for TMP421-Q1; 3Ch for TMP422-Q1; 7Ch for TMP423-Q1)  
POWER-ON RESET  
BIT  
NAME  
FUNCTION  
VALUE  
7
Reserved  
0
1 (TMP423-Q1)  
0 (TMP421-Q1,  
TMP422-Q1)  
0 = External channel 3 disabled  
1 = External channel 3 enabled  
6
5
REN3  
REN2  
1 (TMP422-Q1,  
TMP423-Q1)  
0 (TMP421-Q1)  
0 = External channel 2 disabled  
1 = External channel 2 enabled  
0 = External channel 1 disabled  
1 = External channel 1 enabled  
4
3
REN  
LEN  
1
1
0 = Local channel disabled  
1 = Local channel enabled  
0 = Resistance correction disabled  
1 = Resistance correction enabled  
2
RC  
1
0
1, 0  
Reserved  
8.6.6 Conversion Rate Register  
The Conversion Rate Register (pointer address 0Bh) controls the rate at which temperature conversions are  
performed. This register adjusts the idle time between conversions but not the conversion timing itself, thereby  
allowing the TMP421-Q1, TMP422-Q1, and TMP423-Q1 power dissipation to be balanced with the temperature  
register update rate. Table 10 describes the conversion rate options and corresponding current consumption. A  
one-shot command can be used during the idle time between conversions to immediately start temperature  
conversions on all enabled channels.  
Table 10. Conversion Rate Register  
CONVERSION RATE REGISTER (Read/Write = 0Bh, POR = 07h)  
AVERAGE IQ (TYP) (μA)  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
CONVERSIONS/SEC  
V+ = 2.7 V  
V+ = 5.5 V  
32  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0.0625  
0.125  
0.25  
0.5  
11  
17  
38  
28  
49  
47  
69  
1
80  
103  
155  
220  
413  
2
128  
190  
373  
4(1)  
8(2)  
(1) Conversion rate shown is for only one or two enabled measurement channels. When three channels are enabled, the conversion rate is  
2 and 2/3 conversions-per-second. When four channels are enabled, the conversion rate is 2 per second.  
(2) Conversion rate shown is for only one enabled measurement channel. When two channels are enabled, the conversion rate is 4  
conversions-per-second. When three channels are enabled, the conversion rate is 2.667 conversions-per-second. When four channels  
are enabled, the conversion rate is 2 conversions-per-second.  
24  
Copyright © 2016, Texas Instruments Incorporated  
 
TMP421-Q1, TMP422-Q1, TMP423-Q1  
www.ti.com.cn  
ZHCSFV7 NOVEMBER 2016  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TMP42x-Q1 require a transistor connected between the DXP and DXN pins for remote temperature  
measurement. The SDA (and SCL if driven by an open-drain output) require pulllup resistors as part of the  
communication bus. The TMP421-Q1 includes slave address select pins (A1 and A0) allowing more than one  
device to reside on the same bus.  
9.2 Typical Applications  
9.2.1 TMP421-Q1 Basic Connections  
The TMP421-Q1, TMP422-Q1, and TMP423-Q1 SCL and SDA interface pins each require pull-up resistors as  
part of the communication bus. A 0.1-μF power-supply bypass capacitor is recommended for local bypassing.  
Figure 20, Figure 21, and Figure 22 illustrate typical configurations for the TMP421-Q1, TMP422-Q1, and  
TMP423-Q1, respectively.  
+5 V  
Transistor-connected configuration(1)  
:
0.1 mF  
10 kW  
(typ)  
10 kW  
(typ)  
Series Resistance  
(2)  
RS  
8
V+  
7
1
2
SCL  
SDA  
DXP  
(3)  
SMBus  
Controller  
(2)  
CDIFF  
RS  
6
DXN  
A1  
TMP421-Q1  
3
4
A0  
GND  
5
Diode-connected configuration(1)  
(2)  
RS  
:
(3)  
(2)  
CDIFF  
RS  
Copyright © 2016, Texas Instruments Incorporated  
(1) Diode-connected configuration provides better settling time. Transistor-connected configuration provides better series  
resistance  
cancellation.  
(2) RS (optional) must be < 1.5 kin most applications. Selection of RS depends on application; see the Filtering section.  
(3) CDIFF (optional) must be < 1000 pF in most applications. Selection of CDIFF depends on application; see the Filtering  
section and  
Figure 7, Remote Temperature Error vs Differential Capacitance.  
Figure 20. TMP421-Q1 Basic Connections  
9.2.1.1 Design Requirements  
The TMP421-Q1, TMP422-Q1, and TMP423-Q1 are designed to be used with either discrete transistors or  
substrate transistors built into processor chips, field programmable gate arrays (FPGAs) and application-specific  
integrated circuits (ASICs). Either NPN or PNP transistors can be used, as long as the base-emitter junction is  
used as the remote temperature sense. NPN transistors must be diode-connected. PNP transistors can either be  
transistor or diode-connected.  
Copyright © 2016, Texas Instruments Incorporated  
25  
 
TMP421-Q1, TMP422-Q1, TMP423-Q1  
ZHCSFV7 NOVEMBER 2016  
www.ti.com.cn  
Errors in remote temperature sensor readings are typically the consequence of the ideality factor and current  
excitation used by the TMP421-Q1, TMP422-Q1, and TMP423-Q1 versus the manufacturer-specified operating  
current for a given transistor. Some manufacturers specify a high-level and low-level current for the temperature-  
sensing substrate transistors. The TMP421-Q1, TMP422-Q1, and TMP423-Q1 use 6 μA for ILOW and 120 μA for  
IHIGH  
.
The ideality factor (η-factor) is a measured characteristic of a remote temperature sensor diode as compared to  
an ideal diode. The TMP421-Q1, TMP422-Q1, and TMP423-Q1 allow for different η-factor values; see the η-  
Factor Correction Register section.  
The ideality factor for the TMP421-Q1, TMP422-Q1, and TMP423-Q1 is trimmed to be 1.008. For transistors that  
have an ideality factor that does not match the TMP421-Q1, TMP422-Q1, and TMP423-Q1, Equation 4 can be  
used to calculate the temperature error. Note that for the equation to be used correctly, actual temperature (°C)  
must be converted to kelvins (K).  
h - 1.008  
TERR  
=
´ (273.15 + T(°C))  
1.008  
where  
η = ideality factor of remote temperature sensor  
T(°C) = actual temperature  
TERR = error in TMP421-Q1, TMP422-Q1, and TMP423-Q1 because η 1.008  
Degree delta is the same for °C and K  
(4)  
(5)  
For η = 1.004 and T (°C) = 100°C:  
1.004 -1.008  
æ
ö
TERR  
=
´ 273.15 +100°C  
ç
÷
1.008  
è
ø
TERR = 1.48°C  
If a discrete transistor is used as the remote temperature sensor with the TMP421-Q1, TMP422-Q1, and  
TMP423-Q1, the best accuracy can be achieved by selecting the transistor according to the following criteria:  
1. Base-emitter voltage > 0.25 V at 6 μA, at the highest sensed temperature.  
2. Base-emitter voltage < 0.95 V at 120 μA, at the lowest sensed temperature.  
3. Base resistance < 100 .  
4. Tight control of VBE characteristics indicated by small variations in hFE (that is, 50 to 150).  
Based on these criteria, two recommended small-signal transistors are the 2N3904 (NPN) or 2N3906 (PNP).  
9.2.1.2 Detailed Design Procedure  
The local temperature sensor inside the TMP421-Q1, TMP422-Q1, and TMP423-Q1 is influenced by the ambient  
air around the device but mainly monitors the PCB temperature that it is mounted to. In most applications, the  
TMP421-Q1, TMP422-Q1, and TMP423-Q1 package is in electrical, and therefore thermal, contact with the  
printed-circuit board (PCB), as well as subjected to forced airflow. The accuracy of the measured temperature  
directly depends on how accurately the PCB and forced airflow temperatures represent the temperature that the  
TMP421-Q1, TMP422-Q1, and TMP423-Q1 is measuring. Additionally, the internal power dissipation of the  
TMP421-Q1, TMP422-Q1, and TMP423-Q1 can cause the temperature to rise above the ambient or PCB  
temperature. The internal power is negligible because of the small current drawn by TMP421-Q1, TMP422-Q1,  
and TMP423-Q1 (see the Measurement Accuracy and Thermal Considerations section for more details).  
For this design example a diode connected 2N3906 transistor was used thus the default setting of the n-factor  
and offset can be used.  
26  
Copyright © 2016, Texas Instruments Incorporated  
 
TMP421-Q1, TMP422-Q1, TMP423-Q1  
www.ti.com.cn  
ZHCSFV7 NOVEMBER 2016  
9.2.1.3 Application Curve  
The following curve shows the typical accuracy of the TMP421-Q1, TMP422-Q1, and TMP423-Q1 when  
connected to a 2N3906 remote transistor. All three TMP421-Q1, TMP422-Q1, and TMP423-Q1 will have the  
same performance and have identical design requirements when it comes to the accuracy of the remote sensor.  
3
V+ = 3.3V  
TREMOTE = +25°C  
2
30 Typical Units Shown  
h = 1.008  
1
0
-1  
-2  
-3  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature, TA (°C)  
9.2.2 TMP422-Q1 Basic Connections  
+5V  
Transistor-connected configuration(1)  
:
0.1 mF  
10 kW  
(typ)  
10 kW  
(typ)  
Series Resistance  
(2)  
RS  
8
V+  
7
1
2
DX1(4)  
DX2(4)  
SCL  
SDA  
DXP1  
DXP2  
(3)  
(2)  
SMBus  
Controller  
CDIFF  
RS  
6
DXN1  
DXN2  
(2)  
(2)  
TMP422-Q1  
RS  
RS  
3
4
DX3(4)  
(3)  
CDIFF  
DX4(4)  
GND  
5
Diode-connected configuration(1)  
:
(2)  
RS  
(3)  
(2)  
CDIFF  
RS  
Copyright © 2016, Texas Instruments Incorporated  
(1) Diode-connected configuration provides better settling time. Transistor-connected configuration provides better series  
resistance  
cancellation.  
(2) RS (optional) must be < 1.5 kin most applications. Selection of RS depends on application; see the Filtering section.  
(3) CDIFF (optional) must be < 1000 pF in most applications. Selection of CDIFF depends on application; see the Filtering  
section and  
Figure 7, Remote Temperature Error vs Differential Capacitance.  
(4) TMP422-Q1 SMBus slave address is 1001 100 when connected as shown.  
Figure 21. TMP422-Q1 Basic Connections  
Copyright © 2016, Texas Instruments Incorporated  
27  
TMP421-Q1, TMP422-Q1, TMP423-Q1  
ZHCSFV7 NOVEMBER 2016  
www.ti.com.cn  
9.2.3 TMP423-Q1 Basic Connections  
+5V  
Transistor-connected configuration(1)  
:
10 kW  
(typ)  
10 kW  
(typ)  
0.1 mF  
Series Resistance  
(2)  
RS  
8
V+  
1
7
6
DXP1  
DXP2  
SCL  
SDA  
(2)  
(2)  
(3)  
SMBus  
Controller  
RS  
CDIFF  
2
(3)  
CDIFF  
TMP423-Q1  
RS  
3
4
DXP3  
DXN  
(3)  
(2)  
(2)  
(2)  
CDIFF  
RS  
RS  
RS  
GND  
5
Diode-connected configuration(1)  
(2)  
RS  
:
DXP  
DXN  
(3)  
(2)  
CDIFF  
RS  
Copyright © 2016, Texas Instruments Incorporated  
(1) Diode-connected configuration provides better settling time. Transistor-connected configuration provides better series  
resistance  
cancellation.  
(2) RS (optional) must be < 1.5 kin most applications. Selection of RS depends on application; see the Filtering section.  
(3) CDIFF (optional) must be < 1000 pF in most applications. Selection of CDIFF depends on application; see the Filtering  
section and  
Figure 7, Remote Temperature Error vs Differential Capacitance.  
Figure 22. TMP423-Q1 Basic Connections  
28  
Copyright © 2016, Texas Instruments Incorporated  
TMP421-Q1, TMP422-Q1, TMP423-Q1  
www.ti.com.cn  
ZHCSFV7 NOVEMBER 2016  
10 Power Supply Recommendations  
The TMP421-Q1, TMP422-Q1, and TMP423-Q1 operates with a power-supply range of 2.7 V to 5.5 V. The  
device is optimized for operation at a 3.3 V supply but can measure temperature accurately in the full supply  
range. TI recommends a power-supply bypass capacitor. Place this capacitor as close as possible to the supply  
and ground pins of the device. A typical value for this supply bypass capacitor is 0.1 μF. Applications with noisy  
or high-impedance power supplies may require additional decoupling capacitors to reject power-supply noise.  
11 Layout  
11.1 Layout Guidelines  
Remote temperature sensing on the TMP421-Q1, TMP422-Q1, and TMP423-Q1 measures very small voltages  
using very low currents; therefore, noise at the device inputs must be minimized. Most applications using the  
TMP421-Q1, TMP422-Q1, and TMP423-Q1 have high digital content, with several clocks and logic level  
transitions creating a noisy environment. Layout must adhere to the following guidelines:  
1. Place the TMP421-Q1, TMP422-Q1, and TMP423-Q1 as close to the remote junction sensor as possible.  
2. Route the DXP and DXN traces next to each other and shield them from adjacent signals through the use of  
ground guard traces, as shown in Figure 23. If a multilayer PCB is used, bury these traces between ground  
or V+ planes to shield them from extrinsic noise sources. 5 mil (0.127 mm) PCB traces are recommended.  
3. Minimize additional thermocouple junctions caused by copper-to-solder connections. If these junctions are  
used, make the same number and approximate locations of copper-to-solder connections in both the DXP  
and DXN connections to cancel any thermocouple effects.  
4. Use a 0.1-μF local bypass capacitor directly between the V+ and GND of the TMP421-Q1, TMP422-Q1, and  
TMP423-Q1; see Figure 24. Minimize filter capacitance between DXP and DXN to 1000 pF or less for  
optimum measurement performance. This capacitance includes any cable capacitance between the remote  
temperature sensor and the TMP421-Q1, TMP422-Q1, and TMP423-Q1.  
5. If the connection between the remote temperature sensor and the TMP421-Q1, TMP422-Q1, and TMP423-  
Q1 is less than 8 in (20.32 cm) long, use a twisted-wire pair connection. Beyond 8 in, use a twisted, shielded  
pair with the shield grounded as close to the TMP421-Q1, TMP422-Q1, and TMP423-Q1 as possible. Leave  
the remote sensor connection end of the shield wire open to avoid ground loops and 60-Hz pickup.  
6. Thoroughly clean and remove all flux residue in and around the pins of the TMP421-Q1, TMP422-Q1, and  
TMP423-Q1 to avoid temperature offset readings as a result of leakage paths between DXP or DXN and  
GND, or between DXP or DXN and V+.  
V+  
DXP  
Ground or V+ layer  
on bottom and  
top, if possible.  
DXN  
GND  
NOTE: Use minimum 5 mil (0.127mm) traces with 5 mil spacing.  
Figure 23. Suggested PCB Layer Cross-Section  
Copyright © 2016, Texas Instruments Incorporated  
29  
 
TMP421-Q1, TMP422-Q1, TMP423-Q1  
ZHCSFV7 NOVEMBER 2016  
www.ti.com.cn  
11.2 Layout Example  
0.1-mF Capacitor  
0.1-mF Capacitor  
GND  
GND  
PCB Via  
PCB Via  
V+  
V+  
DXP  
DXN  
A1  
1
2
3
4
8
DX1  
DX2  
DX3  
DX4  
1
2
3
4
8
7
6
5
7
6
5
A0  
TMP421-Q1  
TMP422-Q1  
0.1-mF Capacitor  
GND  
PCB Via  
V+  
DXP1  
DXP2  
DXP3  
DXN  
1
2
3
4
8
7
6
5
TMP423-Q1  
Figure 24. Suggested Bypass Capacitor Placement and Trace Shielding  
11.3 Measurement Accuracy and Thermal Considerations  
The temperature measurement accuracy of the TMP421-Q1, TMP422-Q1, and TMP423-Q1 depends on the  
remote and local temperature sensor being at the same temperature as the system point being monitored.  
Clearly, if the temperature sensor is not in good thermal contact with the part of the system being monitored,  
then there is a delay in the response of the sensor to a temperature change in the system. For remote  
temperature-sensing applications using a substrate transistor (or a small, SOT-23 transistor) placed close to the  
device being monitored, this delay is usually not a concern.  
The local temperature sensor inside the TMP421-Q1, TMP422-Q1, and TMP423-Q1 monitors the ambient air  
around the device. The thermal time constant for the TMP421-Q1, TMP422-Q1, and TMP423-Q1 is  
approximately two seconds. This constant implies that if the ambient air changes quickly by 100°C, then the  
TMP421-Q1, TMP422-Q1, and TMP423-Q1 requires approximately 10 seconds (that is, five thermal time  
constants) to settle to within 1°C of the final value. In most applications, the TMP421-Q1, TMP422-Q1, and  
TMP423-Q1 package is in electrical, and therefore thermal, contact with the printed circuit board (PCB), as well  
as subjected to forced airflow. The accuracy of the measured temperature directly depends on how accurately  
the PCB and forced airflow temperatures represent the temperature that the TMP421-Q1, TMP422-Q1, and  
TMP423-Q1 is measuring. Additionally, the internal power dissipation of the TMP421-Q1, TMP422-Q1, and  
TMP423-Q1 can cause the temperature to rise above the ambient or PCB temperature. The internal power  
dissipated as a result of exciting the remote temperature sensor is negligible because of the small currents used.  
For a 5.5-V supply and maximum conversion rate of eight conversions per second, the TMP421-Q1, TMP422-  
Q1, and TMP423-Q1 dissipate 2.3 mW (PDIQ = 5.5 V × 415 μA). A θJA of 100°C/W (for SOT-23 package) causes  
the junction temperature to rise approximately 0.23°C above the ambient.  
30  
版权 © 2016, Texas Instruments Incorporated  
TMP421-Q1, TMP422-Q1, TMP423-Q1  
www.ti.com.cn  
ZHCSFV7 NOVEMBER 2016  
12 器件和文档支持  
12.1 相关链接  
以下表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
11. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
TMP421-Q1  
TMP422-Q1  
TMP423-Q1  
12.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
SMBus is a trademark of Intel Corporation.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
31  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMP421AQDCNRQ1  
TMP421AQDCNTQ1  
TMP422AQDCNRQ1  
TMP422AQDCNTQ1  
TMP423AQDCNRQ1  
TMP423AQDCNTQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DCN  
DCN  
DCN  
DCN  
DCN  
DCN  
8
8
8
8
8
8
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
421Q  
421Q  
422Q  
422Q  
423Q  
423Q  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TMP421AQDCNTQ1

符合 AEC-Q100 标准的汽车类单通道远程温度传感器 | DCN | 8 | -40 to 125
TI

TMP421C

±1°C Remote and Local TEMPERATURE SENSOR
TI

TMP421YZDR

±1°C Remote and Local TEMPERATURE SENSOR
TI

TMP421YZDT

±1°C Remote and Local TEMPERATURE SENSOR
TI

TMP421_12

±1°C Remote and Local TEMPERATURE SENSOR
TI

TMP421_15

±1°C Remote and Local TEMPERATURE SENSOR
TI

TMP422

【1∑C Remote and Local TEMPERATURE SENSOR in SOT23-8
BB

TMP422

±1°C Remote and Local TEMPERATURE SENSOR in SOT23-8
TI

TMP422-EP

具有 N 因数和串联电阻校正的双路远程和本地温度传感器
TI

TMP422-Q1

符合 AEC-Q100 标准的汽车类 2 通道远程温度传感器
TI

TMP422AIDCNR

【1∑C Remote and Local TEMPERATURE SENSOR in SOT23-8
BB

TMP422AIDCNR

±1°C Remote and Local TEMPERATURE SENSOR in SOT23-8
TI