TMP468AIRGTT [TI]

±0.75⁰C 高精度多通道远程和本地温度传感器 | RGT | 16 | -40 to 125;
TMP468AIRGTT
型号: TMP468AIRGTT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

±0.75⁰C 高精度多通道远程和本地温度传感器 | RGT | 16 | -40 to 125

温度传感 传感器 温度传感器
文件: 总49页 (文件大小:1949K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMP468  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
TMP468 9 通道(8 条远程通道和 1 条本地通道)高精度温度传感器  
1 特性  
的前两个句子  
1
8 通道 远程二极管温度传感器精度:±0.75°C(最  
大值)  
3 说明  
TMP468器件是一款使用双线制 SMBus I2C 兼容接  
口的多区域高精度低功耗温度传感器。除了本地温度  
外,还可以同时监控多达八个连接远程二极管的温度区  
域。聚合系统中的温度测量可通过缩小保护频带提升性  
能,并且可以降低电路板复杂程度。典型用例为监测服  
务器和电信设备等复杂系统中不同处理器(如 MCU、  
GPU FPGA)的温度。该 器件 将诸如串联电阻抵  
消、可编程非理想性因子、可编程偏移和可编程温度限  
值等高级特性完美结合,提供了一套精度和抗扰度更高  
且稳健耐用的温度监控解决方案。  
本地和远程二极管精度:±0.75°C(最大值)  
适用于 DSBGA 封装的本地温度传感器精度:±  
0.35°C(最大值)  
温度分辨率:0.0625°C  
电源和逻辑电压范围:1.7V 3.6V  
67µA 工作电流(1SPS,所有通道激活)  
0.3µA 关断电流  
远程二极管:串联电阻抵消、  
η 因子校正、偏移校正和二极管故障检测  
寄存器锁定功能可保护关键寄存器  
兼容 I2C SMBus™的双线制接口,支持引脚可  
编程地址  
八个远程通道(以及本地通道)均可独立编程,设定两  
个在测量位置的相应温度超出对应值时触发的阈值。此  
外,还可通过可编程迟滞设置避免阈值持续切换。  
16 凸点 DSBGA 16 引脚 VQFN 封装  
2 应用  
TMP468 器件可提供高测量精度 (0.75°C) 和测量分辨  
(0.0625°C)。该器件还支持低电压轨(1.7V 至  
3.6V)和通用双线制接口,采用高空间利用率的小型  
封装(3mm × 3mm 1.6mm × 1.6mm),可在计算  
系统中轻松集成。远程结支持 –55°C +150°C 的温  
度范围。  
微控制器 (MCU)、图形处理器 (GPU)、专用集成电  
(ASIC)、现场可编程门阵列 (FPGA)、数字信号  
处理器 (DSP) 和中央处理器 (CPU) 温度监控  
电信设备  
服务器和个人计算机  
云以太网交换机  
器件信息(1)  
安全数据中心  
器件型号  
TMP468  
封装  
DSBGA (16)  
VQFN (16)  
封装尺寸(标称值)  
1.60mm x 1.60mm  
3.00mm x 3.00mm  
高度集成的医疗系统  
精密仪表和测试设备  
发光二极管 (LED) 照明温度控制  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
典型应用电路原理图  
Remote  
Zone 4  
Remote  
Zone 3  
Remote  
Remote  
Zone 2  
Zone 1  
1.7 V to 3.6 V  
CBYPASS  
RS1 RS2  
RS1 RS2  
RS1 RS2  
CDIFF  
RS1 RS2  
CDIFF  
RSCL RSDA RT2 RT  
D3  
V+  
CDIFF  
CDIFF  
2-Wire Interface  
SMBus / I2  
A1  
D4  
C4  
C3  
D1+  
D2+  
D3+  
D4+  
D-  
C
TMP468 SCL  
SDA  
B1  
C1  
D1  
A3  
A2  
B2  
C2  
D2  
Compatible  
Controller  
THERM2  
D5+  
Overtemperature  
Shutdown  
B3  
B4  
D6+  
D7+  
D8+  
THERM  
Local  
ADD  
Zone 9  
CDIFF  
CDIFF  
RS1 RS2  
CDIFF  
CDIFF  
GND  
A4  
RS1 RS2  
RS1 RS2  
RS1 RS2  
Remote  
Zone 5  
Remote  
Zone 6  
Remote  
Zone 7  
Remote  
Zone 8  
Copyright  
© 2016, Texas Instruments Incorporated  
有关远程二极管建议,请参阅Design Requirements部分。  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS762  
 
 
 
 
 
 
 
 
TMP468  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 13  
7.5 Programming........................................................... 13  
7.6 Register Maps......................................................... 19  
Application and Implementation ........................ 29  
8.1 Application Information............................................ 29  
8.2 Typical Application .................................................. 30  
Power Supply Recommendations...................... 33  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Two-Wire Timing Requirements ............................... 7  
6.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 11  
8
9
10 Layout................................................................... 34  
10.1 Layout Guidelines ................................................. 34  
10.2 Layout Example .................................................... 35  
11 器件和文档支持 ..................................................... 37  
11.1 接收文档更新通知 ................................................. 37  
11.2 社区资源................................................................ 37  
11.3 ....................................................................... 37  
11.4 静电放电警告......................................................... 37  
11.5 Glossary................................................................ 37  
12 机械、封装和可订购信息....................................... 37  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (March 2017) to Revision B  
Page  
更新的封装信息..................................................................................................................................................................... 37  
Changes from Original (November 2016) to Revision A  
Page  
已添加 16 引脚 VQFN 封装版本(整个数据表中)。............................................................................................................. 1  
已删除 说明 (续) 部分并将文本移到说明部分..................................................................................................................... 1  
已添加 VQFN 封装和封装尺寸信息至器件信息................................................................................................................... 1  
已添加 版权声明至典型应用原理图......................................................................................................................................... 1  
Added RGT (VQFN) pinout diagram in the Pin Configuration and Functions section .......................................................... 4  
Added remote junction temperature parameter and values to Recommended Operating Conditions table ......................... 5  
Changed formatting of Thermal Information table note ......................................................................................................... 5  
Changed TMP468 Thermal Information table package from "RGT (QFN)" to "RGT (VQFN)" .............................................. 5  
Updated formatting of Two-Wire Timing Requirements table ............................................................................................... 7  
Changed Timing Requirements table note parameter from tVD;DATA to tVD;DAT ........................................................................ 7  
已添加 2017 copyright to Functional Block Diagram ........................................................................................................... 10  
已更改 table headers in Continuous Conversion Times table ............................................................................................. 26  
已添加 2017 copyright to Typical Application schematic in Application Information section................................................ 30  
已更改 η-factor setting from 1.003674 to 1.0067 in Figure 23 table note in Typical Application section............................. 30  
已更改 conversion rate from 16 conversions/second to 1 conversion/second in the Detailed Design Procedure section .. 32  
已更改 units of 公式 7 from "µs" to "µA"............................................................................................................................... 32  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TMP468  
www.ti.com.cn  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
5 Pin Configuration and Functions  
TMP468 YFF Package  
16-Pin DSBGA  
Bottom View  
V+  
(D3)  
D4+  
(D1)  
D8+  
(D2)  
SCL  
(D4)  
THERM2  
(C3)  
SDA  
(C4)  
D3+  
(C1)  
D7+  
(C2)  
D6+  
(B2)  
D2+  
(B1)  
THERM  
(B3)  
ADD  
(B4)  
D1+  
(A1)  
D5+  
(A2)  
D-  
(A3)  
GND  
(A4)  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
ADD  
B4  
Digital input  
Analog input  
Address select. Connect to GND, V+, SDA, or SCL.  
Positive connection to remote temperature sensors. A total of 8 remote channels are supported. An  
unused channel must be connected to D–.  
D1+  
D2+  
D3+  
D4+  
D5+  
D6+  
D7+  
D8+  
A1  
B1  
C1  
D1  
A2  
B2  
C2  
D2  
Positive connection to remote temperature sensors. A total of 8 remote channels are supported. An  
unused channel must be connected to D–.  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Positive connection to remote temperature sensors. A total of 8 remote channels are supported. An  
unused channel must be connected to D–.  
Positive connection to remote temperature sensors. A total of 8 remote channels are supported. An  
unused channel must be connected to D–.  
Positive connection to remote temperature sensors. A total of 8 remote channels are supported. An  
unused channel must be connected to D–.  
Positive connection to remote temperature sensors. A total of 8 remote channels are supported. An  
unused channel must be connected to D–.  
Positive connection to remote temperature sensors. A total of 8 remote channels are supported. An  
unused channel must be connected to D–.  
Positive connection to remote temperature sensors. A total of 8 remote channels are supported. An  
unused channel must be connected to D–.  
D–  
A3  
A4  
Analog input  
Ground  
Negative connection to remote temperature sensors. Common for 8 remote channels.  
Supply ground connection  
GND  
Serial clock line for I2C- or SMBus compatible two-wire interface.  
Requires a pullup resistor to a voltage between 1.7 V and 3.6 V (not necessarily V+) if driven by an  
open-drain output.  
SCL  
D4  
C4  
B3  
Digital input  
Serial data line for I2C or SMBus compatible two-wire interface. Open-drain; requires a pullup resistor  
to a voltage between 1.7 V and 3.6 V, not necessarily V+.  
Bidirectional digital  
input/output  
SDA  
Thermal shutdown or fan-control pin.  
Active low; open-drain; requires a pullup resistor to a voltage between 1.7 V and 3.6 V, not necessarily  
V+. If this pin is not used it may be left open or grounded.  
THERM  
Digital output  
Second THERM output.  
THERM2  
V+  
C3  
D3  
Digital output  
Power supply  
Active low; open-drain; requires a pullup resistor to a voltage between 1.7 V and 3.6 V, not necessarily  
V+. If this pin is not used it may be left open or grounded.  
Positive supply voltage, 1.7 V to 3.6 V; requires 0.1-µF bypass capacitor to ground.  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
TMP468  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
TMP468 RGT Package  
16-Pin VQFN  
Top View  
D6+  
D5+  
D4+  
D3+  
1
2
3
4
12  
SDA  
11  
THERM2  
THERM  
ADD  
Thermal  
Pad  
10  
9
Not to scale  
NC - No internal connection  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
ADD  
9
Digital input  
Analog input  
Address select. Connect to GND, V+, SDA, or SCL.  
Positive connection to remote temperature sensors. A total of 8 remote channels are  
supported. An unused channel must be connected to D–.  
D1+  
D2+  
D3+  
D4+  
D5+  
D6+  
D7+  
D8+  
6
5
Positive connection to remote temperature sensors. A total of 8 remote channels are  
supported. An unused channel must be connected to D–.  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Positive connection to remote temperature sensors. A total of 8 remote channels are  
supported. An unused channel must be connected to D–.  
4
Positive connection to remote temperature sensors. A total of 8 remote channels are  
supported. An unused channel must be connected to D–.  
3
Positive connection to remote temperature sensors. A total of 8 remote channels are  
supported. An unused channel must be connected to D–.  
2
Positive connection to remote temperature sensors. A total of 8 remote channels are  
supported. An unused channel must be connected to D–.  
1
Positive connection to remote temperature sensors. A total of 8 remote channels are  
supported. An unused channel must be connected to D–.  
16  
15  
Positive connection to remote temperature sensors. A total of 8 remote channels are  
supported. An unused channel must be connected to D–.  
D–  
7
8
Analog input  
Ground  
Negative connection to remote temperature sensors. Common for 8 remote channels.  
Supply ground connection  
GND  
Serial clock line for I2C or SMBus-compatible two-wire interface.  
Requires a pullup resistor to a voltage between 1.7 V and 3.6 V (not necessarily V+) if driven  
by an open-drain output.  
SCL  
13  
12  
10  
Digital input  
Serial data line for I2C- or SMBus-compatible two-wire interface. Open-drain; requires a pullup  
resistor to a voltage between 1.7 V and 3.6 V, not necessarily V+.  
Bidirectional digital  
input/output  
SDA  
Thermal shutdown or fan-control pin.  
Active low; open-drain; requires a pullup resistor to a voltage between 1.7 V and 3.6 V, not  
necessarily V+. If this pin is not used it may be left open or grounded.  
THERM  
Digital output  
Second THERM output.  
THERM2  
V+  
11  
14  
Digital output  
Power supply  
Active low; open-drain; requires a pullup resistor to a voltage between 1.7 V and 3.6 V, not  
necessarily V+. If this pin is not used it may be left open or grounded.  
Positive supply voltage, 1.7 V to 3.6 V; requires 0.1-µF bypass capacitor to ground.  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
TMP468  
www.ti.com.cn  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
UNIT  
Power supply  
Input voltage  
V+  
6
6
V
THERM, THERM2, SDA, SCL, and ADD only  
((V+) + 0.3)  
and 6  
D1+ through D8+  
–0.3  
V
D– only  
–0.3  
–25  
–10  
–55  
0.3  
SDA sink  
All other pins  
Input current  
mA  
10  
Operating temperature  
150  
150  
150  
°C  
°C  
°C  
Junction temperature (TJ, maximum)  
Storage temperature, Tstg  
–60  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.7  
NOM  
MAX  
3.6  
UNIT  
V
V+  
TA  
TD  
Supply voltage  
Operating free-air temperature  
Remote junction temperature  
–40  
–55  
125  
150  
°C  
°C  
6.4 Thermal Information  
TMP468  
THERMAL METRIC(1)  
RGT (VQFN)  
YFF (DSBGA)  
UNIT  
16 PINS  
16 PINS  
76  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
46  
43  
17  
0.8  
5
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
0.7  
13  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.4  
ψJB  
13  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
 
TMP468  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
6.5 Electrical Characteristics  
at TA = –40°C to +125°C and V+ = 1.7 V to 3.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TEMPERATURE MEASUREMENT  
TA = 20°C to 30°C, V+ = 1.7 V to 2 V (DSBGA)  
TA = –40°C to 125°C, V+ = 1.7 V to 2 V (DSBGA)  
TA = –40°C to 100°C, V+ = 1.7 V to 3.6 V (VQFN)  
TA = –40°C to 125°C, V+ = 1.7 V to 3.6 V  
(DSBGA):  
–0.35  
–0.75  
–1  
±0.125  
±0.125  
±0.5  
0.35  
0.75  
1
°C  
°C  
°C  
TLOCAL  
Local temperature sensor accuracy  
TA = –10°C to 50°C, TD = –55°C to 150°C  
V+ = 1.7 V to 3.6 V  
–0.75  
±0.125  
0.75  
(VQFN):  
TREMOTE Remote temperature sensor accuracy  
Local temperature error supply sensitivity  
°C  
TA = –10°C to 85°C, TD = –55°C to 150°C  
V+ = 1.7 V to 3.6 V  
TA = –40°C to 125°C, TD = –55°C to 150°C  
V+ = 1.7 V to 3.6 V  
–1  
±0.5  
1
V+ = 1.7 V to 3.6 V  
–0.15  
–0.25  
±0.05  
±0.1  
0.15  
0.25  
°C/V  
°C/V  
Remote temperature error supply sensitivity V+ = 1.7 V to 3.6 V  
Temperature resolution  
(local and remote)  
0.0625  
°C  
ADC conversion time  
ADC resolution  
One-shot mode, per channel (local or remote)  
16  
13  
17  
ms  
Bits  
High  
120  
45  
Remote sensor  
source current  
Medium  
Low  
Remote transistor ideality factor  
SERIAL INTERFACE (SCL, SDA)  
Series resistance 1 kΩ (maximum)  
µA  
7.5  
η
1.008  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
Hysteresis  
0.7 × (V+)  
V
V
0.3 × (V+)  
200  
mV  
mA  
V
SDA output-low sink current  
20  
–1  
IO = –20 mA, V+ 2 V  
IO = –15 mA, V+ < 2 V  
0 V VIN 3.6 V  
0.15  
0.4  
0.2 × V+  
1
VOL  
Low-level output voltage  
V
Serial bus input leakage current  
Serial bus input capacitance  
μA  
pF  
4
DIGITAL INPUTS (ADD)  
VIH  
VIL  
High-level input voltage  
0.7 × (V+)  
–0.3  
V
V
Low-level input voltage  
Input leakage current  
Input capacitance  
0.3 × (V+)  
1
0 V VIN 3.6 V  
–1  
μA  
pF  
4
DIGITAL OUTPUTS (THERM, THERM2)  
Output-low sink current  
VOL = 0.4 V  
IO = –6 mA  
VO = V+  
6
mA  
V
VOL  
IOH  
Low-level output voltage  
0.15  
0.4  
1
High-level output leakage current  
μA  
POWER SUPPLY  
V+ Specified supply voltage range  
1.7  
3.6  
375  
600  
21  
V
Active conversion, local sensor  
Active conversion, remote sensors  
Standby mode (between conversions)  
Shutdown mode, serial bus inactive  
Shutdown mode, serial bus active, fS = 400 kHz  
Shutdown mode, serial bus active, fS = 2.56 MHz  
Rising edge  
240  
400  
15  
µA  
IQ  
Quiescent current  
0.3  
120  
300  
1.5  
1.2  
0.2  
4
µA  
µA  
1.65  
1.35  
POR  
POH  
Power-on-reset threshold  
Power-on-reset hysteresis  
V
V
Falling edge  
1
6
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TMP468  
www.ti.com.cn  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
6.6 Two-Wire Timing Requirements  
at TA = –40°C to +125°C and V+ = 1.7 V to 3.6 V (unless otherwise noted)  
The master and the slave have the same V+ value. Values are based on statistical analysis of samples tested during initial  
release.  
MIN  
MAX  
UNIT  
Fast mode  
0.001  
0.001  
1300  
160  
600  
160  
600  
160  
600  
160  
0
0.4  
fSCL  
SCL operating frequency  
MHz  
High-speed mode  
Fast mode  
2.56  
Bus free time between stop and start  
condition  
tBUF  
ns  
ns  
High-speed mode  
Fast mode  
Hold time after repeated start condition.  
After this period, the first clock is generated.  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tVD;DAT  
tSU;DAT  
tLOW  
High-speed mode  
Fast mode  
Repeated start condition setup time  
Stop condition setup time  
Data hold time when SDA  
Data valid time(2)  
ns  
High-speed mode  
Fast mode  
ns  
High-speed mode  
Fast mode  
(1)ns  
ns  
High-speed mode  
Fast mode  
0
130  
900  
0
High-speed mode  
Fast mode  
100  
20  
Data setup time  
ns  
High-speed mode  
Fast mode  
1300  
250  
600  
60  
SCL clock low period  
SCL clock high period  
Data fall time  
ns  
High-speed mode  
Fast mode  
tHIGH  
ns  
High-speed mode  
Fast mode  
20 × (V+ / 5.5)  
300  
100  
300  
40  
tF – SDA  
tF, tR – SCL  
tR  
ns  
High-speed mode  
Fast mode  
Clock fall and rise time  
Rise time for SCL 100 kHz  
Serial bus timeout  
ns  
High-speed mode  
Fast mode  
1000  
ns  
High-speed mode  
Fast mode  
15  
15  
20  
20  
ms  
High-speed mode  
(1) The maximum tHD;DAT can be 0.9 µs for fast mode, and is less than the maximum tVD;DAT by a transition time.  
(2) tVD;DAT = time for data signal from SCL LOW to SDA output (HIGH to LOW, depending on which is worse).  
tr  
t(LOW)  
tf  
VIH  
VIL  
SCL  
SDA  
t(HIGH)  
t(SU:STA)  
t(SU:STO)  
t(HD:STA)  
t(HD:DAT)  
t(SU:DAT)  
t(BUF)  
VIH  
VIL  
P
S
S
P
Figure 1. Two-Wire Timing Diagram  
版权 © 2016–2017, Texas Instruments Incorporated  
7
TMP468  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
6.7 Typical Characteristics  
at TA = 25°C and V+ = 3.6 V (unless otherwise noted)  
1.5  
1
1.5  
Max Limit  
Max Limit  
Average + 3s  
1
Average + 3s  
0.5  
0
0.5  
Typical Units  
0
Typical Units  
-0.5  
-1  
-0.5  
-1  
Average - 3s  
Min Limit  
Average - 3s  
Min Limit  
-20  
-1.5  
-40  
-1.5  
-40  
0
20  
40  
60  
80  
100  
120  
-20  
0
20  
40  
60  
80  
100  
120  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D001  
Typical behavior of 75 VQFN devices over temperature at V+ =  
1.8 V  
Typical behavior of 95 DSBGA devices over temperature at V+ =  
1.8 V  
3. Local Temperature Error vs Ambient Temperature  
2. Local Temperature Error vs Ambient Temperature  
1.5  
1.5  
Average + 3s  
Max Limit  
Max Limit  
Average + 3s  
1
1
0.5  
0
0.5  
Typical Units  
Typical Units  
0
-0.5  
-1  
-0.5  
-1  
Min Limit  
-25  
Average - 3s  
75 100  
Average - 3s  
Min Limit  
0
-1.5  
-50  
-1.5  
0
25  
50  
125  
-50  
-25  
25  
50  
75  
100  
125  
Device Junction Temperature (èC)  
Device Junction Temperature (°C)  
D003  
Typical behavior of 75 VQFN devices over temperature at V+ =  
1.8 V with the remote diode junction at 150°C.  
Typical behavior of 30 DSBGA devices over temperature at V+ =  
1.8 V with the remote diode junction at 150°C.  
5. Remote Temperature Error vs Device Junction  
4. Remote Temperature Error vs Device Junction  
Temperature  
Temperature  
1
40  
D+ to V+  
D+ to GND  
0.8  
30  
20  
Average + 3s  
0.6  
0.4  
0.2  
0
Max Limit  
10  
0
Typical Units  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-10  
-20  
-30  
-40  
Min Limit  
Average - 3s  
1
10  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Leakage Resistance (MW)  
Device Junction Temperature (°C)  
Typical behavior of 30 devices over temperature with V+ from 1.8  
V to 3.6 V  
7. Remote Temperature Error vs Leakage Resistance  
版权 © 2016–2017, Texas Instruments Incorporated  
6. Remote Temperature Error Power Supply Sensitivity vs  
Device Junction Temperature  
8
TMP468  
www.ti.com.cn  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
Typical Characteristics (接下页)  
at TA = 25°C and V+ = 3.6 V (unless otherwise noted)  
0.5  
0
-5  
V+ = 1.8 V  
V+ = 3.6 V  
0.4  
0.3  
0.2  
0.1  
0
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Series Resistance (W)  
Differential Capacitance (nF)  
No physical capacitance during measurement  
No physical series resistance on D+, D– pins during measurement  
8. Remote Temperature Error vs Series Resistance  
9. Remote Temperature Error vs  
Differential Capacitance  
400  
800  
V+ = 1.8 V  
V+ = 3.6 V  
V+ = 1.8 V  
V+ = 3.6 V  
360  
700  
600  
500  
400  
300  
200  
100  
0
320  
280  
240  
200  
160  
120  
80  
40  
0
0.05 0.1  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Conversion Rate (Hz)  
Frequency (Hz)  
16 samples per second (default mode)  
10. Quiescent Current vs Conversion Rate °  
11. Shutdown Quiescent Current  
vs SCL Clock Frequency  
400  
390  
380  
370  
360  
350  
340  
330  
320  
310  
300  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.5  
2
2.5  
3
3.5  
4
1.5  
2
2.5  
3
3.5  
4
V+ Voltage (V)  
V+ Voltage (V)  
12. Quiescent Current vs Supply Voltage  
13. Shutdown Quiescent Current vs Supply Voltage  
(at Default Conversion Rate of 16 Conversions Per Second)  
版权 © 2016–2017, Texas Instruments Incorporated  
9
 
 
TMP468  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TMP468 device is a digital temperature sensor that combines a local temperature measurement channel  
and eight remote-junction temperature measurement channels in VQFN-16 or DSBGA-16 packages. The device  
has a two-wire-interface that is compatible with I2C or SMBus interfaces and includes four pin-programmable bus  
address options. The TMP468 is specified over a local device temperature range from –40°C to +125°C. The  
TMP468 device also contains multiple registers for programming and holding configuration settings, temperature  
limits, and temperature measurement results. The TMP468 pinout includes THERM and THERM2 outputs that  
signal overtemperature events based on the settings of temperature limit registers.  
7.2 Functional Block Diagram  
V+  
ADD  
SCL  
Serial  
Interface  
Register  
Bank  
SDA  
THERM  
Oscillator  
Local  
Thermal  
BJT  
V+  
Control  
Logic  
6 × I  
16 × I  
I
THERM2  
D1+  
D2+  
D3+  
D4+  
D5+  
D6+  
D7+  
D8+  
MUX  
Voltage  
Reference  
MUX  
ADC  
D-  
Copyright © 2017, Texas Instruments Incorporated  
GND  
10  
版权 © 2016–2017, Texas Instruments Incorporated  
TMP468  
www.ti.com.cn  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
7.3 Feature Description  
7.3.1 Temperature Measurement Data  
The local and remote temperature sensors have a resolution of 13 bits (0.0625°C). Temperature data that result  
from conversions within the default measurement range are represented in binary form, as shown in the  
Standard Binary column of 1. Negative numbers are represented in two's-complement format. The resolution  
of the temperature registers extends to 255.9375°C and down to –256°C, but the actual device is limited to  
ranges as specified in the Electrical Characteristics table to meet the accuracy specifications. The TMP468  
device is specified for ambient temperatures ranging from –40°C to +125°C; parameters in the Absolute  
Maximum Ratings table must be observed to prevent damage to the device.  
1. Temperature Data Format (Local and Remote Temperature)  
LOCAL OR REMOTE TEMPERATURE REGISTER VALUE  
(0.0625°C RESOLUTION)  
STANDARD BINARY(1)  
TEMPERATURE  
(°C)  
BINARY  
HEX  
E0 00  
E7 00  
F3 80  
FF F0  
FF F8  
00 00  
00 08  
00 10  
00 18  
00 20  
00 28  
00 30  
00 38  
00 40  
00 48  
00 50  
00 58  
00 60  
00 68  
00 70  
00 78  
00 80  
02 80  
05 00  
0C 80  
19 00  
25 80  
32 00  
3E 80  
3F 80  
4B 00  
57 80  
5F 80  
–64  
–50  
1110 0000 0000 0000  
1110 0111 0000 0000  
1111 0011 1000 0000  
1111 1111 1111 0000  
1111 1111 1111 1000  
0000 0000 0000 0000  
0000 0000 0000 1000  
0000 0000 0001 0000  
0000 0000 0001 1000  
0000 0000 0010 0000  
0000 0000 0010 1000  
0000 0000 0011 0000  
0000 0000 0011 1000  
0000 0000 0100 0000  
0000 0000 0100 1000  
0000 0000 0101 0000  
0000 0000 0101 1000  
0000 0000 0110 0000  
0000 0000 0110 1000  
0000 0000 0111 0000  
0000 0000 0111 1000  
0000 0000 1000 0000  
0000 0010 1000 0000  
0000 0101 0000 0000  
0000 1100 1000 0000  
0001 1001 0000 0000  
0010 0101 1000 0000  
0011 0010 0000 0000  
0011 1110 1000 0000  
0011 1111 1000 0000  
0100 1011 0000 0000  
0101 0111 1000 0000  
0101 1111 1000 0000  
–25  
–0.1250  
–0.0625  
0
0.0625  
0.1250  
0.1875  
0.2500  
0.3125  
0.3750  
0.4375  
0.5000  
0.5625  
0.6250  
0.6875  
0.7500  
0.8125  
0.8750  
0.9375  
1
5
10  
25  
50  
75  
100  
125  
127  
150  
175  
191  
(1) Resolution is 0.0625°C per count. Negative numbers are represented in two's-complement format.  
版权 © 2016–2017, Texas Instruments Incorporated  
11  
 
TMP468  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
Both local and remote temperature data use two bytes for data storage with a two's-complement format for  
negative numbers. The high byte stores the temperature with 2°C resolution. The second or low byte stores the  
decimal fraction value of the temperature and allows a higher measurement resolution, as shown in 1. The  
measurement resolution for both the local and the remote channels is 0.0625°C.  
7.3.2 Series Resistance Cancellation  
Series resistance cancellation automatically eliminates the temperature error caused by the resistance of the  
routing to the remote transistor or by the resistors of the optional external low-pass filter. A total up to 1-kΩ series  
resistance can be cancelled by the TMP468 device, which eliminates the need for additional characterization and  
temperature offset correction. See 8 for details on the effects of series resistance on sensed remote  
temperature error.  
7.3.3 Differential Input Capacitance  
The TMP468 device tolerates differential input capacitance of up to 1000 pF with minimal change in temperature  
error. The effect of capacitance on the sensed remote temperature error is illustrated in 9.  
7.3.4 Sensor Fault  
The TMP468 device can sense a fault at the D+ resulting from an incorrect diode connection. The TMP468  
device can also sense an open circuit. Short-circuit conditions return a value of –256°C. The detection circuitry  
consists of a voltage comparator that trips when the voltage at D+ exceeds (V+) – 0.3 V (typical). The  
comparator output is continuously checked during a conversion. If a fault is detected, then the RxOP bit in the  
Remote Channel Status register is set to 1.  
When not using the remote sensor with the TMP468 device, the corresponding D+ and D– inputs must be  
connected together to prevent meaningless fault warnings.  
7.3.5 THERM Functions  
Operation of the THERM (pin B3) and THERM2 (pin C3) interrupt pins are shown in 14.  
The hysteresis value is stored in the THERM Hysteresis register and applies to both the THERM and THERM2  
interrupts.  
Temperature Conversion Complete  
150  
140  
130  
120  
THERM Limit  
110  
100  
THERM Limit - Hysteresis  
90  
THERM2 Limit  
80  
70  
THERM2 Limit - Hysteresis  
Measured  
Temperature  
60  
50  
Time  
THERM2  
THERM  
14. THERM and THERM2 Interrupt Operation  
12  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
TMP468  
www.ti.com.cn  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode (SD)  
The TMP468 shutdown mode enables the user to save maximum power by shutting down all device circuitry  
other than the serial interface, and reducing current consumption to typically less than 0.3 μA; see 13.  
Shutdown mode is enabled when the shutdown bit (SD, bit 5) of the Configuration Register is HIGH; the device  
shuts down immediately once the current conversion is complete. When the SD bit is LOW, the device maintains  
a continuous-conversion state.  
7.5 Programming  
7.5.1 Serial Interface  
The TMP468 device operates only as a slave device on the two-wire bus (I2C or SMBus). Connections to either  
bus are made using the open-drain I/O lines, SDA, and SCL. The SDA and SCL pins feature integrated spike  
suppression filters and Schmitt triggers to minimize the effects of input spikes and bus noise. The TMP468  
device supports the transmission protocol for fast (1 kHz to 400 kHz) and high-speed (1 kHz to 2.56 MHz)  
modes. All data bytes are transmitted MSB first.  
While the TMP468 device is unpowered bus traffic on SDA and SCL may continue without any adverse effects to  
the communication or to the TMP468 device itself. As the TMP468 device is powering up, the device does not  
load the bus, and as a result the bus traffic may continue undisturbed.  
7.5.1.1 Bus Overview  
The TMP468 device is compatible with the I2C or SMBus interface. In I2C or SMBus protocol, the device that  
initiates the transfer is called a master, and the devices controlled by the master are slaves. The bus must be  
controlled by a master device that generates the serial clock (SCL), controls the bus access, and generates the  
start and stop conditions.  
To address a specific device, a start condition is initiated. A start condition is indicated by pulling the data line  
(SDA) from a high-to-low logic level when SCL is high. All slaves on the bus shift in the slave address byte, with  
the last bit indicating whether a read or write operation is intended. During the ninth clock pulse, the addressed  
slave responds to the master by generating an acknowledge (ACK) bit and pulling SDA low.  
Data transfer is then initiated and sent over eight clock pulses followed by an acknowledge bit (ACK). During  
data transfer, SDA must remain stable when SCL is high. A change in SDA when SCL is high is interpreted as a  
control signal. The TMP468 device has a word register structure (16-bit wide), with data writes always requiring  
two bytes. Data transfer occurs during the ACK at the end of the second byte.  
After all data are transferred, the master generates a stop condition. A stop condition is indicated by pulling SDA  
from low to high when SCL is high.  
版权 © 2016–2017, Texas Instruments Incorporated  
13  
TMP468  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
Programming (接下页)  
7.5.1.2 Bus Definitions  
The TMP468 device has a two-wire interface that is compatible with the I2C or SMBus interface. 15 through 图  
20 illustrate the timing for various operations on the TMP468 device. The bus definitions are as follows:  
Bus Idle:  
Both SDA and SCL lines remain high.  
Start Data Transfer: A change in the state of the SDA line (from high to low) when the SCL line is high defines  
a start condition. Each data transfer initiates with a start condition.  
Stop Data Transfer: A change in the state of the SDA line (from low to high) when the SCL line is high defines  
a stop condition. Each data transfer terminates with a repeated start or stop condition.  
Data Transfer: The number of data bytes transferred between a start and stop condition is not limited and is  
determined by the master device. The receiver acknowledges the data transfer.  
Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge bit. A device  
that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a way  
that the SDA line is stable low during the high period of the acknowledge clock pulse. Take setup  
and hold times into account. On a master receive, data transfer termination can be signaled by the  
master generating a not-acknowledge on the last byte that is transmitted by the slave.  
1
9
1
9
SCL  
SDA  
1
0
0
1
0
A1 A0 R/W  
P7 P6 P5 P4 P3 P2 P1 P0  
ACK  
by  
Device  
ACK  
by  
Device  
Stop  
by  
Master  
Start by  
Master  
Frame 1  
Frame 2  
Serial Bus Address  
Byte from Master  
Pointer Byte  
from Master  
15. Two-Wire Timing Diagram for Write Pointer Byte  
1
1
9
1
9
SCL  
SDA  
0
0
1
A1 A0 R/W  
P7 P6 P5 P4 P3 P2 P1 P0  
0
ACK  
by  
Device  
ACK  
by  
Device  
Start by  
Master  
Frame 1  
Serial Bus Address Byte  
from Master  
Frame 2  
Pointer Byte from Master  
1
9
1
9
SCL  
(continued)  
SDA  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
(continued)  
ACK  
by  
ACK  
by  
Stop  
by  
Device  
Device Master  
Frame 3  
Frame 4  
Word MSB from Master  
Word LSB from Master  
16. Two-Wire Timing Diagram for Write Pointer Byte and Value Word  
14  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
TMP468  
www.ti.com.cn  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
Programming (接下页)  
1
1
9
1
9
SCL  
SDA  
0
0
1
0
A1 A0 R/W  
P7 P6 P5 P4 P3 P2 P1 P0  
ACK  
by  
Device  
ACK  
by  
Device  
Start by  
Master  
Frame 1  
Frame 2  
Serial Bus Address  
Byte from Master  
Pointer Byte  
from Master  
1
1
9
1
9
SCL  
(continued)  
SDA  
(continued)  
0
0
1
0
A1 A0  
D15 D14 D13 D12 D11 D10 D9 D8  
R/W  
Repeat  
Start by  
Master  
ACK  
by  
Device  
NACK Stop  
by  
Master Master  
by  
Frame 3  
Frame 4  
Data Byte 1 from  
Device  
Serial Bus Address  
Byte from Master  
(1) The master must leave SDA high to terminate a single-byte read operation.  
17. Two-Wire Timing Diagram for Pointer Set Followed by a Repeat Start and Single-Byte Read Format  
1
9
1
9
SCL  
SDA  
1
0
0
1
0
A1 A0 R/W  
P7 P6 P5 P4 P3 P2 P1 P0  
ACK  
by  
Device  
ACK  
by  
Device  
Start by  
Master  
Frame 1  
Frame 2  
Serial Bus Address  
Byte from Master  
Pointer Byte  
from Master  
1
1
9
1
9
1
9
SCL  
(continued)  
SDA  
(continued)  
0
0
1
0
A1 A0  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
R/W  
Repeat  
Start by  
Master  
ACK  
by  
Device  
ACK  
by  
Master  
NACK Stop  
by  
Master Master  
by  
Frame 3  
Frame 4  
Data Byte 1 from  
Device  
Frame 5  
Data Byte 2 from  
Device  
Serial Bus Address  
Byte from Master  
18. Two-Wire Timing Diagram for Pointer Byte Set Followed by a Repeat Start and Word (Two-Byte)  
Read  
版权 © 2016–2017, Texas Instruments Incorporated  
15  
 
TMP468  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
Programming (接下页)  
1
9
1
9
SCL  
SDA  
80h Block Read Auto Increment Pointer  
1
0
0
1
0
A1 A0 R/W  
ACK  
by  
ACK  
by  
Device  
Start by  
Master  
Frame 1  
Frame 2  
Pointer Byte from  
Master  
Device  
Serial Bus Address  
Byte from Master  
1
1
9
1
9
1
9
SCL  
(continued)  
SDA  
(continued)  
0
0
1
0
A1 A0  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
R/W  
Repeat  
Start by  
Master  
ACK  
by  
Device  
ACK  
by  
Master  
ACK  
by  
Master  
Frame 3  
Serial Bus Address  
Byte from Master  
Frame 4  
Word 1 MSB from  
Device  
Frame 5  
Word 1 LSB from  
Device  
1
9
1
9
SCL  
(continued)  
SDA  
(continued)  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
ACK  
by  
NACK Stop  
by by  
Master Master  
Frame (2N + 2)  
Word N MSB from  
Device  
Frame (2N + 3)  
Word N LSB from  
Device  
Master  
19. Two-Wire Timing Diagram for Pointer Byte Set Followed by a Repeat Start and Multiple-Word (N-  
Word) Read  
1
1
9
1
9
1
9
SCL  
SDA  
0
0
1
0
A1 A0  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
R/W  
ACK  
by  
Device  
ACK  
by  
Master  
ACK  
by  
Master  
Start by  
Master  
Frame 3  
Serial Bus Address  
Byte from Master  
Frame 4  
Word 1 MSB from  
Device  
Frame 5  
Word 1 LSB from  
Device  
1
9
1
9
SCL  
(continued)  
SDA  
(continued)  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
ACK  
by  
NACK Stop  
by by  
Master Master  
Frame (2N + 2)  
Word N MSB from  
Device  
Frame (2N + 3)  
Word N LSB from  
Device  
Master  
20. Two-Wire Timing Diagram for Multiple-Word (N-Word) Read Without a Pointer Byte Set  
16  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TMP468  
www.ti.com.cn  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
Programming (接下页)  
7.5.1.3 Serial Bus Address  
To communicate with the TMP468 device, the master must first address slave devices using a slave address  
byte. The slave address byte consists of seven address bits and a direction bit indicating the intent of executing a  
read or write operation. The TMP468 device allows up to four devices to be addressed on a single bus. The  
assigned device address depends on the ADD pin connection as described in 2.  
2. TMP468 Slave Address Options  
SLAVE ADDRESS  
ADD PIN CONNECTION  
BINARY  
1001000  
1001001  
1001010  
1001011  
HEX  
48  
GND  
V+  
49  
SDA  
SCL  
4A  
4B  
7.5.1.4 Read and Write Operations  
Accessing a particular register on the TMP468 device is accomplished by writing the appropriate value to the  
pointer register. The value for the pointer register is the first byte transferred after the slave address byte with the  
R/W bit low. Every write operation to the TMP468 device requires a value for the pointer register (see 16).  
The TMP468 registers can be accessed with block or single register reads. Block reads are only supported for  
pointer values 80h to 88h. Registers at 80h through 88h mirror the Remote and Local Temperature registers (00h  
to 08h). Pointer values 00h to 08h are for single register reads.  
7.5.1.4.1 Single Register Reads  
When reading from the TMP468 device, the last value stored in the pointer register by a write operation is used  
to determine which register is read by a read operation. To change which register is read for a read operation, a  
new value must be written to the pointer register. This transaction is accomplished by issuing a slave address  
byte with the R/W bit low, followed by the pointer register byte; no additional data are required. The master can  
then generate a start condition and send the slave address byte with the R/W bit high to initiate the read  
command; see 17 through 19 for details of this sequence.  
If repeated reads from the same register are desired, continually sending the pointer register bytes is not  
necessary because the TMP468 device retains the pointer register value until the value is changed by the next  
write operation. The register bytes are sent by the MSB first, followed by the LSB. If only one byte is read (MSB),  
a consecutive read of TMP468 device results in the MSB being transmitted first. The LSB can only be accessed  
through two-byte reads.  
The master terminates a read operation by issuing a not-acknowledge (NACK) command at the end of the last  
byte to be read or transmitting a stop condition. For a single-byte operation, the master must leave the SDA line  
high during the acknowledge time of the first byte that is read from the slave.  
The TMP468 register structure has a word (two-byte) length, so every write transaction must have an even  
number of bytes (MSB and LSB) following the pointer register value (see 16). Data transfers occur during the  
ACK at the end of the second byte or LSB. If the transaction does not finish, signaled by the ACK at the end of  
the second byte, then the data is ignored and not loaded into the TMP468 register. Read transactions do not  
have the same restrictions and may be terminated at the end of the last MSB.  
7.5.1.4.2 Block Register Reads  
The TMP468 supports block mode reads at address 80h through 88h for temperature results alone. Setting the  
pointer register to 80h signals to the TMP468 device that a block of more than two bytes must be transmitted  
before a stop is issued. In this mode, the TMP468 device auto increments the internal pointer. After the 18 bytes  
of temperature data are transmitted, the internal pointer resets to 80h. If the transmission is terminated before  
register 88h is read, the pointer increments so a consecutive read (without a pointer set) can access the next  
register.  
版权 © 2016–2017, Texas Instruments Incorporated  
17  
 
TMP468  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
7.5.1.5 Timeout Function  
The TMP468 device resets the serial interface if either SCL or SDA are held low for 17.5 ms (typical) between a  
start and stop condition. If the TMP468 device is holding the bus low, the device releases the bus and waits for a  
start condition. To avoid activating the timeout function, maintain a communication speed of at least 1 kHz for the  
SCL operating frequency.  
7.5.1.6 High-Speed Mode  
For the two-wire bus to operate at frequencies above 1 MHz, the master device must issue a high-speed mode  
(HS-mode) master code (0000 1xxx) as the first byte after a start condition to switch the bus to high-speed  
operation. The TMP468 device does not acknowledge the master code byte, but switches the input filters on  
SDA and SCL and the output filter on SDA to operate in HS-mode, allowing transfers up to 2.56 MHz. After the  
HS-mode master code is issued, the master transmits a two-wire slave address to initiate a data transfer  
operation. The bus continues to operate in HS-mode until a stop condition occurs on the bus. Upon receiving the  
stop condition, the TMP468 device switches the input and output filters back to fast mode.  
7.5.2 TMP468 Register Reset  
The TMP468 registers can be software reset by setting bit 15 of the Software Reset register (20h) to 1. This  
software reset restores the power-on-reset state to all TMP468 registers and aborts any conversion in progress.  
7.5.3 Lock Register  
All of the configuration and limit registers may be locked for writes (making the registers write-protected), which  
decreases the chance of software runaway from issuing false changes to these registers. The Lock column in 表  
3 identifies which registers may be locked. Lock mode does not effect read operations. To activate the lock  
mode, Lock Register C4h must be set to 0x5CA6. The lock only remains active while the TMP468 device is  
powered up. Because the TMP468 device does not contain nonvolatile memory, the settings of the configuration  
and limit registers are lost once a power cycle occurs regardless if the registers are locked or unlocked.  
In lock mode, the TMP468 device ignores a write operation to configuration and limit registers except for Lock  
Register C4h. The TMP468 device does not acknowledge the data bytes during a write operation to a locked  
register. To unlock the TMP468 registers, write 0xEB19 to register C4h. The TMP468 device powers up in locked  
mode, so the registers must be unlocked before the registers accept writes of new data.  
18  
版权 © 2016–2017, Texas Instruments Incorporated  
TMP468  
www.ti.com.cn  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
7.6 Register Maps  
3. TMP468 Register Map  
PTR  
(HEX)  
00  
POR  
(HEX)  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
N/A  
LOCK  
(Y/N)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
TMP468 FUNCTIONAL REGISTER - BIT DESCRIPTION  
REGISTER DESCRIPTION  
15  
14  
LT11  
RT11  
RT11  
RT11  
RT11  
RT11  
RT11  
RT11  
RT11  
0
13  
LT10  
RT10  
RT10  
RT10  
RT10  
RT10  
RT10  
RT10  
RT10  
0
12  
LT9  
11  
LT8  
10  
LT7  
9
LT6  
8
LT5  
7
6
5
4
3
2
0(1)  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LT12  
LT4  
RT4  
RT4  
RT4  
RT4  
RT4  
RT4  
RT4  
RT4  
0
LT3  
RT3  
RT3  
RT3  
RT3  
RT3  
RT3  
RT3  
RT3  
0
LT2  
RT2  
RT2  
RT2  
RT2  
RT2  
RT2  
RT2  
RT2  
0
LT1  
RT1  
RT1  
RT1  
RT1  
RT1  
RT1  
RT1  
RT1  
0
LT0  
RT0  
RT0  
RT0  
RT0  
RT0  
RT0  
RT0  
RT0  
0
Local Temperature  
Remote Temperature 1  
Remote Temperature 2  
Remote Temperature 3  
Remote Temperature 4  
Remote Temperature 5  
Remote Temperature 6  
Remote Temperature 7  
Remote Temperature 8  
Software Reset Register  
THERM Status  
01  
RT12  
RT12  
RT12  
RT12  
RT12  
RT12  
RT12  
RT12  
RST  
RT9  
RT9  
RT9  
RT9  
RT9  
RT9  
RT9  
RT9  
0
RT8  
RT8  
RT8  
RT8  
RT8  
RT8  
RT8  
RT8  
0
RT7  
RT7  
RT7  
RT7  
RT7  
RT7  
RT7  
RT7  
0
RT6  
RT6  
RT6  
RT6  
RT6  
RT6  
RT6  
RT6  
0
RT5  
RT5  
RT5  
RT5  
RT5  
RT5  
RT5  
RT5  
0
02  
0
03  
0
04  
0
05  
0
06  
0
07  
0
08  
0
20  
0
21  
R8TH  
R8TH2  
R8OPN  
R7TH  
R7TH2  
R7OPN  
R6TH  
R6TH2  
R6OPN  
R5TH  
R5TH2  
R5OPN  
R4TH  
R4TH2  
R4OPN  
R3TH  
R3TH2  
R3OPN  
R2TH  
R2TH2  
R2OPN  
R1TH  
R1TH2  
R1OPN  
LTH  
LTH2  
0
0
0
0
0
0
22  
N/A  
0
0
0
0
0
THERM2 Status  
23  
N/A  
0
0
0
0
0
Remote Channel OPEN Status  
Configuration Register (Enables,  
OneShot, ShutDown, ConvRate,  
BUSY)  
30  
0F9C  
Y
REN8  
REN7  
REN6  
REN5  
REN4  
REN3  
REN2  
REN1  
LEN  
OS  
SD  
CR2  
CR1  
CR0  
BUSY  
0
38  
39  
3A  
40  
0080  
7FC0  
7FC0  
0000  
Y
Y
Y
Y
0
HYS11  
HYS10  
HYS9  
HYS8  
HYS7  
HYS6  
HYS5  
HYS4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
THERM Hysteresis  
LTH1_12 LTH1_11 LTH1_10 LTH1_09 LTH1_08 LTH1_07 LTH1_06 LTH1_05 LTH1_04 LTH1_03  
0
0
0
0
0
0
Local Temperature THERM Limit  
Local Temperature THERM2 Limit  
Remote Temperature 1 Offset  
LTH2_12 LTH2_11 LTH2_10 LTH2_09 LTH2_08 LTH2_07 LTH2_06 LTH2_05 LTH2_04 LTH2_03  
ROS12  
RNC7  
ROS12(2)  
RNC6  
ROS10  
RNC5  
ROS9  
RNC4  
ROS8  
RNC3  
ROS7  
RNC2  
ROS6  
RNC1  
ROS5  
RNC0  
ROS4  
0
ROS3  
0
ROS2  
ROS1  
ROS0  
Remote Temperature 1 η-Factor  
41  
0000  
Y
0
0
0
0
0
0
Correction  
42  
43  
48  
7FC0  
7FC0  
0000  
Y
Y
Y
RTH1_12 RTH1_11 RTH1_10 RTH1_09 RTH1_08 RTH1_07 RTH1_06 RTH1_05 RTH1_04 RTH1_03  
RTH2_12 RTH2_11 RTH2_10 RTH2_09 RTH2_08 RTH2_07 RTH2_06 RTH2_05 RTH2_04 RTH2_03  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Remote Temperature 1 THERM Limit  
Remote Temperature 1 THERM2 Limit  
Remote Temperature 2 Offset  
ROS12  
RNC7  
ROS12  
RNC6  
ROS10  
RNC5  
ROS9  
RNC4  
ROS8  
RNC3  
ROS7  
RNC2  
ROS6  
RNC1  
ROS5  
RNC0  
ROS4  
0
ROS3  
0
ROS2  
ROS1  
ROS0  
Remote Temperature 2 η-Factor  
49  
0000  
Y
0
0
0
0
0
0
Correction  
4A  
4B  
50  
7FC0  
7FC0  
0000  
Y
Y
Y
RTH1_12 RTH1_11 RTH1_10 RTH1_09 RTH1_08 RTH1_07 RTH1_06 RTH1_05 RTH1_04 RTH1_03  
RTH2_12 RTH2_11 RTH2_10 RTH2_09 RTH2_08 RTH2_07 RTH2_06 RTH2_05 RTH2_04 RTH2_03  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Remote Temperature 2 THERM Limit  
Remote Temperature 2 THERM2 Limit  
Remote Temperature 3 Offset  
ROS12  
RNC7  
ROS12  
RNC6  
ROS10  
RNC5  
ROS9  
RNC4  
ROS8  
RNC3  
ROS7  
RNC2  
ROS6  
RNC1  
ROS5  
RNC0  
ROS4  
0
ROS3  
0
ROS2  
ROS1  
ROS0  
Remote Temperature 3 η-Factor  
51  
0000  
Y
0
0
0
0
0
0
Correction  
52  
53  
58  
7FC0  
7FC0  
0000  
Y
Y
Y
RTH1_12 RTH1_11 RTH1_10 RTH1_09 RTH1_08 RTH1_07 RTH1_06 RTH1_05 RTH1_04 RTH1_03  
RTH2_12 RTH2_11 RTH2_10 RTH2_09 RTH2_08 RTH2_07 RTH2_06 RTH2_05 RTH2_04 RTH2_03  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Remote Temperature 3 THERM Limit  
Remote Temperature 3 THERM2 limit  
Remote temperature 4 Offset  
ROS12  
RNC7  
ROS12  
RNC6  
ROS10  
RNC5  
ROS9  
RNC4  
ROS8  
RNC3  
ROS7  
RNC2  
ROS6  
RNC1  
ROS5  
RNC0  
ROS4  
0
ROS3  
0
ROS2  
ROS1  
ROS0  
Remote Temperature 4 η-Factor  
59  
0000  
Y
0
0
0
0
0
0
Correction  
(1) Register bits highlighted in purple are reserved for future use and always report 0; writes to these bits are ignored.  
(2) Register bits highlighted in green show sign extended values.  
版权 © 2016–2017, Texas Instruments Incorporated  
19  
 
TMP468  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
Register Maps (接下页)  
3. TMP468 Register Map (接下页)  
PTR  
(HEX)  
5A  
POR  
(HEX)  
7FC0  
7FC0  
0000  
LOCK  
TMP468 FUNCTIONAL REGISTER - BIT DESCRIPTION  
REGISTER DESCRIPTION  
(Y/N)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
0
0
0
1
0
0
0
0
0
0
0
Y
Y
Y
RTH1_12 RTH1_11 RTH1_10 RTH1_09 RTH1_08 RTH1_07 RTH1_06 RTH1_05 RTH1_04 RTH1_03  
RTH2_12 RTH2_11 RTH2_10 RTH2_09 RTH2_08 RTH2_07 RTH2_06 RTH2_05 RTH2_04 RTH2_03  
0
0
0
0
0
0
Remote Temperature 4 THERM Limit  
Remote Temperature 4 THERM2 Limit  
Remote Temperature 5 Offset  
5B  
60  
ROS12  
RNC7  
ROS12  
RNC6  
ROS10  
RNC5  
ROS9  
RNC4  
ROS8  
RNC3  
ROS7  
RNC2  
ROS6  
RNC1  
ROS5  
RNC0  
ROS4  
0
ROS3  
0
ROS2  
ROS1  
ROS0  
Remote Temperature 5 η-Factor  
61  
0000  
Y
0
0
0
0
0
0
Correction  
62  
63  
68  
7FC0  
7FC0  
0000  
Y
Y
Y
RTH1_12 RTH1_11 RTH1_10 RTH1_09 RTH1_08 RTH1_07 RTH1_06 RTH1_05 RTH1_04 RTH1_03  
RTH2_12 RTH2_11 RTH2_10 RTH2_09 RTH2_08 RTH2_07 RTH2_06 RTH2_05 RTH2_04 RTH2_03  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Remote Temperature 5 THERM Limit  
Remote Temperature 5 THERM2 Limit  
Remote Temperature 6 Offset  
ROS12  
RNC7  
ROS12  
RNC6  
ROS10  
RNC5  
ROS9  
RNC4  
ROS8  
RNC3  
ROS7  
RNC2  
ROS6  
RNC1  
ROS5  
RNC0  
ROS4  
0
ROS3  
0
ROS2  
ROS1  
ROS0  
Remote Temperature 6 η-Factor  
69  
0000  
Y
0
0
0
0
0
0
Correction  
6A  
6B  
70  
7FC0  
7FC0  
0000  
Y
Y
Y
RTH1_12 RTH1_11 RTH1_10 RTH1_09 RTH1_08 RTH1_07 RTH1_06 RTH1_05 RTH1_04 RTH1_03  
RTH2_12 RTH2_11 RTH2_10 RTH2_09 RTH2_08 RTH2_07 RTH2_06 RTH2_05 RTH2_04 RTH2_03  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Remote Temperature 6 THERM Limit  
Remote Temperature 6 THERM2 Limit  
Remote Temperature 7 Offset  
ROS12  
RNC7  
ROS12  
RNC6  
ROS10  
RNC5  
ROS9  
RNC4  
ROS8  
RNC3  
ROS7  
RNC2  
ROS6  
RNC1  
ROS5  
RNC0  
ROS4  
0
ROS3  
0
ROS2  
ROS1  
ROS0  
Remote Temperature 7 η-Factor  
71  
0000  
Y
0
0
0
0
0
0
Correction  
72  
73  
78  
7FC0  
7FC0  
0000  
Y
Y
Y
RTH1_12 RTH1_11 RTH1_10 RTH1_09 RTH1_08 RTH1_07 RTH1_06 RTH1_05 RTH1_04 RTH1_03  
RTH2_12 RTH2_11 RTH2_10 RTH2_09 RTH2_08 RTH2_07 RTH2_06 RTH2_05 RTH2_04 RTH2_03  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Remote Temperature 7 THERM Limit  
Remote Temperature 7 THERM2 Limit  
Remote Temperature 8 Offset  
ROS12  
RNC7  
ROS12  
RNC6  
ROS10  
RNC5  
ROS9  
RNC4  
ROS8  
RNC3  
ROS7  
RNC2  
ROS6  
RNC1  
ROS5  
RNC0  
ROS4  
0
ROS3  
0
ROS2  
ROS1  
ROS0  
Remote Temperature 8 η-Factor  
79  
0000  
Y
0
0
0
0
0
0
Correction  
7A  
7B  
7FC0  
7FC0  
Y
Y
RTH1_12 RTH1_11 RTH1_10 RTH1_09 RTH1_08 RTH1_07 RTH1_06 RTH1_05 RTH1_04 RTH1_03  
RTH2_12 RTH2_11 RTH2_10 RTH2_09 RTH2_08 RTH2_07 RTH2_06 RTH2_05 RTH2_04 RTH2_03  
0
0
0
0
0
0
0
0
0
0
0
0
Remote Temperature 8 THERM Limit  
Remote Temperature 8 THERM2 Limit  
Local Temperature (Block Read  
Range - Auto Increment Pointer  
Register)  
80  
81  
82  
83  
84  
85  
86  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
LT12  
RT12  
RT12  
RT12  
RT12  
RT12  
RT12  
LT11  
RT11  
RT11  
RT11  
RT11  
RT11  
RT11  
LT10  
RT10  
RT10  
RT10  
RT10  
RT10  
RT10  
LT9  
RT9  
RT9  
RT9  
RT9  
RT9  
RT9  
LT8  
RT8  
RT8  
RT8  
RT8  
RT8  
RT8  
LT7  
RT7  
RT7  
RT7  
RT7  
RT7  
RT7  
LT6  
RT6  
RT6  
RT6  
RT6  
RT6  
RT6  
LT5  
RT5  
RT5  
RT5  
RT5  
RT5  
RT5  
LT4  
RT4  
RT4  
RT4  
RT4  
RT4  
RT4  
LT3  
RT3  
RT3  
RT3  
RT3  
RT3  
RT3  
LT2  
RT2  
RT2  
RT2  
RT2  
RT2  
RT2  
LT1  
RT1  
RT1  
RT1  
RT1  
RT1  
RT1  
LT0  
RT0  
RT0  
RT0  
RT0  
RT0  
RT0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Remote Temperature 1 (Block Read  
Range - Auto Increment Pointer  
Register)  
Remote Temperature 2 (Block Read  
Range - Auto Increment Pointer  
Register)  
Remote Temperature 3 (Block Read  
Range - Auto Increment Pointer  
Register)  
Remote Temperature 4 (Block Read  
Range - Auto Increment Pointer  
Register)  
Remote Temperature 5 (Block Read  
Range - Auto Increment Pointer  
Register)  
Remote Temperature 6 (Block Read  
Range - Auto Increment Pointer  
Register)  
20  
版权 © 2016–2017, Texas Instruments Incorporated  
TMP468  
www.ti.com.cn  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
Register Maps (接下页)  
3. TMP468 Register Map (接下页)  
PTR  
POR  
LOCK  
(Y/N)  
TMP468 FUNCTIONAL REGISTER - BIT DESCRIPTION  
REGISTER DESCRIPTION  
(HEX)  
(HEX)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Remote Temperature 7 (Block Read  
Range - Auto Increment Pointer  
Register)  
87  
0000  
N/A  
RT12  
RT11  
RT10  
RT9  
RT8  
RT7  
RT6  
RT5  
RT4  
RT3  
RT2  
RT1  
RT0  
0
0
0
Remote Temperature 8 (Block Read  
Range - Auto Increment Pointer  
Register)  
88  
0000  
8000  
N/A  
N/A  
RT12  
RT11  
RT10  
RT9  
RT8  
RT7  
RT6  
RT5  
RT4  
RT3  
RT2  
RT1  
RT0  
0
0
0
Write 0x5CA6 to lock registers and 0xEB19 to unlock registers  
Read back: locked 0x8000; unlocked 0x0000  
Lock Register. This locks the registers  
after initialization.  
C4  
FE  
FF  
5449  
0468  
N/A  
N/A  
0
0
1
0
0
0
1
0
0
0
1
1
0
0
0
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
0
Manufacturers Identification Register  
Device Identification/Revision Register  
版权 © 2016–2017, Texas Instruments Incorporated  
21  
TMP468  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
7.6.1 Register Information  
The TMP468 device contains multiple registers for holding configuration information, temperature measurement  
results, and status information. These registers are described in 21 and 3.  
7.6.1.1 Pointer Register  
shows the internal register structure of the TMP468 device. The 8-bit pointer register addresses a given data  
register. The pointer register identifies which of the data registers must respond to a read or write command on  
the two-wire bus. This register is set with every write command. A write command must be issued to set the  
proper value in the pointer register before executing a read command. 3 describes the pointer register and the  
internal structure of the TMP468 registers. The power-on-reset (POR) value of the pointer register is 00h (0000  
0000b). 3 lists a summary of the pointer values for the different registers. Writing data to unassigned pointer  
values are ignored and does not affect the operation of the device. Reading an unassigned register returns  
undefined data and is ACKed.  
Pointer Register  
2
Local Temp  
Local THERM Limit  
Local THERM2 Limit  
Remote 5 Offset  
Remote 5 h -factor  
Remote 5 THERM  
Remote 5 THERM2  
2
2
2
2
2
2
Remote Temp 1  
Remote Temp 2  
Remote Temp 3  
Remote Temp 4  
Remote Temp 5  
Remote Temp 6  
Remote Temp 7  
Remote Temp 8  
SDA  
SCL  
Remote 1 Offset  
Remote 1 h -factor  
Remote 1 THERM  
Remote 1 THERM2  
Remote 6 Offset  
Remote 6 h -factor  
Remote 6 THERM  
Remote 6 THERM2  
Remote 2 Offset  
Remote 2 h -factor  
Remote 2 THERM  
Remote 2 THERM2  
2
2
Serial  
Remote 7 Offset  
Remote 7 h -factor  
Remote 7 THERM  
Remote 7 THERM2  
Interface  
THERM Status  
THERM2 Status  
Remote Open Status  
Remote 3 Offset  
Remote 3 h -factor  
Remote 3 THERM  
Remote 3 THERM2  
Manufacturer ID  
Device ID  
Remote 8 Offset  
Remote 8 h -factor  
Remote 8 THERM  
Remote 8 THERM2  
Configuration  
Software Reset  
Lock Initialization  
Remote 4 Offset  
Remote 4 h -factor  
Remote 4 THERM  
Remote 4 THERM2  
THERM Hysterisis  
21. TMP468 Internal Register Structure  
7.6.1.2 Local and Remote Temperature Value Registers  
The TMP468 device has multiple 16-bit registers that hold 13-bit temperature measurement results. The 13 bits  
of the local temperature sensor result are stored in register 00h. The 13 bits of the eight remote temperature  
sensor results are stored in registers 01h through 08h. The four assigned LSBs of both the local (LT3:LT0) and  
remote (RT3:RT0) sensors indicate the temperature value after the decimal point (for example, if the temperature  
result is 10.0625°C, then the high byte is 0000 0101 and the low byte is 0000 1000). These registers are read-  
only and are updated by the ADC each time a temperature measurement is complete. Asynchronous reads are  
supported, so a read operation can occur at any time and results in valid conversion results being transmitted  
once the first conversion is complete after power up for the channel being accessed. If after power up a read is  
initiated before a conversion is complete, the read operation results in all zeros (0x0000).  
7.6.1.3 Software Reset Register  
The Software Reset Register allows the user to reset the TMP468 registers through software by setting the reset  
bit (RST, bit 15) to 1. The power-on-reset value for this register is 0x0000. Resets are ignored when the device is  
in lock mode, so writing a 1 to the RST bit does not reset any registers.  
22  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TMP468  
www.ti.com.cn  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
4. Software Reset Register Format  
STATUS REGISTER (READ = 20h, WRITE = 20h, POR = 0x0000)  
BIT NUMBER  
BIT NAME  
FUNCTION  
15  
RST  
0
1 software reset device; writing a value of 0 is ignored  
Reserved for future use; always reports 0  
14-0  
7.6.1.4 THERM Status Register  
The THERM Status register reports the state of the THERM limit comparators for local and eight remote  
temperatures. 5 lists the status register bits. The THERM Status register is read-only and is read by accessing  
pointer address 21h.  
5. THERM Status Register Format  
THERM STATUS REGISTER (READ = 21h, WRITE = N/A)  
BIT NUMBER  
BIT NAME  
R8TH  
R7TH  
R6TH  
R5TH  
R4TH  
R3TH  
R2TH  
R1TH  
LTH  
FUNCTION  
1 when Remote 8 exceeds the THERM limit  
1 when Remote 7 exceeds the THERM limit  
1 when Remote 6 exceeds the THERM limit  
1 when Remote 5 exceeds the THERM limit  
1 when Remote 4 exceeds the THERM limit  
1 when Remote 3 exceeds the THERM limit  
1 when Remote 2 exceeds the THERM limit  
1 when Remote 1 exceeds the THERM limit  
1 when Local sensor exceeds the THERM limit  
Reserved for future use; always reports 0.  
15  
14  
13  
12  
11  
10  
9
8
7
6:0  
0
The R8TH:R1TH and LTH flags are set when the corresponding temperature exceeds the respective  
programmed THERM limit (39h, 42h, 4Ah, 52h, 5Ah, 62h, 6Ah, 72h, 7Ah). These flags are reset automatically  
when the temperature returns below the THERM limit minus the value set in the THERM Hysteresis register  
(38h). The THERM output goes low in the case of overtemperature on either the local or remote channels, and  
goes high as soon as the measurements are less than the THERM limit minus the value set in the THERM  
Hysteresis register. The THERM Hysteresis register (38h) allows hysteresis to be added so that the flag resets  
and the output goes high when the temperature returns to or goes below the limit value minus the hysteresis  
value.  
版权 © 2016–2017, Texas Instruments Incorporated  
23  
 
TMP468  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
7.6.1.5 THERM2 Status Register  
The THERM2 Status register reports the state of the THERM2 limit comparators for local and remote 1-8  
temperatures. 6 lists the status register bits. The THERM2 Status register is read-only and is read by  
accessing pointer address 22h.  
6. THERM2 Status Register Format  
THERM2 STATUS REGISTER (READ = 22h, WRITE = N/A)  
BIT NUMBER  
BIT NAME  
R8TH2  
R7TH2  
R6TH2  
R5TH2  
R4TH2  
R3TH2  
R2TH2  
R1TH2  
LTH2  
FUNCTION  
1 when Remote 8 exceeds the THERM2 limit  
1 when Remote 7 exceeds the THERM2 limit  
1 when Remote 6 exceeds the THERM2 limit  
1 when Remote 5 exceeds the THERM2 limit  
1 when Remote 4 exceeds the THERM2 limit  
1 when Remote 3 exceeds the THERM2 limit  
1 when Remote 2 exceeds the THERM2 limit  
1 when Remote 1 exceeds the THERM2 limit  
1 when Local Sensor exceeds the THERM2 limit  
Reserved for future use; always reports 0.  
15  
14  
13  
12  
11  
10  
9
8
7
6:0  
0
The R8TH2:R1TH2 and LTH2 flags are set when the corresponding temperature exceeds the respective  
programmed THERM2 limit (3Ah, 43h, 4Bh, 53h, 5Bh, 63h, 6Bh, 73h, 7Bh). These flags are reset automatically  
when the temperature returns below the THERM2 limit minus the value set in the THERM Hysteresis register  
(38h). The THERM2 output goes low in the case of overtemperature on either the local or remote channels, and  
goes high as soon as the measurements are less than the THERM2 limit minus the value set in the THERM  
Hysteresis register. The THERM Hysteresis register (38h) allows hysteresis to be added so that the flag resets  
and the output goes high when the temperature returns to or goes below the limit value minus the hysteresis  
value.  
7.6.1.6 Remote Channel Open Status Register  
The Remote Channel Open Status register reports the state of the connection of remote channels one through  
eight. 7 lists the status register bits. The Remote Channel Open Status register is read-only and is read by  
accessing pointer address 23h.  
7. Remote Channel Open Status Register Format  
REMOTE CHANNEL OPEN STATUS REGISTER (READ = 23h, WRITE = N/A)  
BIT NUMBER  
BIT NAME  
R8OPEN  
R7OPEN  
R6OPEN  
R5OPEN  
R4OPEN  
R3OPEN  
R2OPEN  
R1OPEN  
0
FUNCTION  
1 when Remote 8 channel is an open circuit  
1 when Remote 7 channel is an open circuit  
1 when Remote 6 channel is an open circuit  
1 when Remote 5 channel is an open circuit  
1 when Remote 4 channel is an open circuit  
1 when Remote 3 channel is an open circuit  
1 when Remote 2 channel is an open circuit  
1 when Remote 1 channel is an open circuit  
Reserved for future use; always reports 0.  
15  
14  
13  
12  
11  
10  
9
8
7:0  
The R8OPEN:R1OPEN bits indicate an open-circuit condition on remote sensors eight through one, respectively.  
The setting of these flags does not directly affect the state of the THERM or THERM2 output pins. Indirectly, the  
temperature reading(s) may be erroneous and exceed the respective THERM and THERM2 limits, activating the  
THERM or THERM2 output pins.  
24  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
TMP468  
www.ti.com.cn  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
7.6.1.7 Configuration Register  
The Configuration Register sets the conversion rate, starts one-shot conversion of all enabled channels, enables  
conversion the temperature channels, controls the shutdown mode and reports when a conversion is in process.  
The Configuration Register is set by writing to pointer address 30h, and is read from pointer address 30h. 8  
summarizes the bits of the Configuration Register.  
8. Configuration Register Bit Descriptions  
CONFIGURATION REGISTER (READ = 30h, WRITE = 30h, POR = 0x0F9C)  
BIT NUMBER  
NAME  
FUNCTION  
POWER-ON-RESET VALUE  
1 = enable respective remote  
channel 8 through 1 conversions  
15:8  
REN8:REN1  
1111 1111  
1 = enable local channel  
conversion  
7
LEN  
1
1 = start one-shot conversion on  
enabled channels  
6
5
OS  
SD  
0
0
1 = enables device shutdown  
Conversion rate control bits;  
control conversion rates for all  
enabled channels from 16  
seconds to continuous  
conversion  
4:2  
CR2:CR0  
111  
1 when the ADC is converting  
(read-only bit ignores writes)  
1
0
BUSY  
0
0
Reserved  
The Remote Enable eight through one (REN8:REN1, bits 15:8) bits enable conversions on the respective remote  
channels. The Local Enable (LEN, bit 7) bit enables conversions of the local temperature channel. If all LEN and  
REN are set to 1 (default), this enables the ADC to convert the local and all remote temperatures. If the LEN is  
set to 0, the local temperature conversion is skipped. Similarly if a REN is set to 0, that remote temperature  
conversion channel is skipped. The TMP468 device steps through each enabled channel in a round-robin fashion  
in the following order: LOC, REM1, REM2, REM8, LOC, REM1, and so on. All local and remote temperatures are  
converted by the internal ADC by default after power up. The configuration register LEN and REN bits can be  
configured to save power by reducing the total ADC conversion time for applications that do not require all of the  
eight remote and local temperature information. Note writing all zeros to REN8:REN1 and LEN has the same  
effect as SD = 1 and OS = 0.  
The shutdown bit (SD, bit 5) enables or disables the temperature-measurement circuitry. If SD = 0 (default), the  
TMP468 device converts continuously at the rate set in the conversion rate register. When SD is set to 1, the  
TMP468 device immediately stops the conversion in progress and instantly enters shutdown mode. When SD is  
set to 0 again, the TMP468 device resumes continuous conversions starting with the local temperature.  
The BUSY bit = 1 if the ADC is making a conversion. This bit is set to 0 if the ADC is not converting.  
After the TMP468 device is in shutdown mode, writing a 1 to the one-shot (OS, bit 6) bit starts a single ADC  
conversion of all the enabled temperature channels. This write operation starts one conversion and comparison  
cycle on either the eight remote and one local sensor or any combination of sensors, depending on the LEN and  
REN values in the Configuration Register (read address 30h). The TMP468 device returns to shutdown mode  
when the cycle is complete. 9 details the interaction of the SD, OS, LEN, and REN bits.  
9. Conversion Modes  
WRITE  
REN[8:1], LEN  
All 0  
READ  
REN[8:1], LEN  
All 0  
FUNCTION  
OS SD  
OS SD  
0
0
0
0
0
1
1
0
1
1
Shutdown  
Continuous conversion  
Shutdown  
At least 1 enabled  
At least 1 enabled  
At least 1 enabled  
Written value  
Written value  
Written value  
1
1
1
One-shot conversion  
版权 © 2016–2017, Texas Instruments Incorporated  
25  
 
 
TMP468  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
The conversion rate bits control the rate that the conversions occur (CR2:CR0, bits 4:2). The value of CR2:CR0  
bits controls the idle time between conversions but not the conversion time itself, which allows the TMP468  
device power dissipation to be balanced with the update rate of the temperature register. 10 describes the  
mapping for CR2:CR0 to the conversion rate or temperature register update rate.  
10. Conversion Rate  
CR2:CR0  
000  
DECIMAL VALUE  
FREQUENCY (Hz)  
TIME (s)  
0
1
2
3
4
5
6
0.0625  
0.125  
0.25  
0.5  
1
16  
8
001  
010  
4
011  
2
100  
1
101  
2
0.5  
0.25  
110  
4
Continuous conversion; depends on number of enabled channels; see 表  
111  
7
11 (default).  
11. Continuous Conversion Times  
CONVERSION TIME (ms)  
NUMBER OF REMOTE CHANNELS ENABLED  
LOCAL DISABLED  
LOCAL ENABLED  
0
1
2
3
4
5
6
7
8
0
15.5  
31.3  
15.8  
31.6  
47.4  
63.2  
79  
47.1  
62.9  
78.7  
94.5  
94.8  
110.6  
126.4  
110.3  
126.1  
141.9  
The remaining bits of the configuration register are reserved and must always be set to 0. The POR value for this  
register is 0x0F9C.  
7.6.1.8 η-Factor Correction Register  
The TMP468 device allows for a different η-factor value to be used for converting remote channel measurements  
to temperature for each temperature channel. There are eight η-Factor Correction registers assigned: one to  
each of the remote input channels (addresses 41h, 49h, 51h, 59h, 61h, 69h, 71h and 79h). Each remote channel  
uses sequential current excitation to extract a differential VBE voltage measurement to determine the temperature  
of the remote transistor. 公式 1 shows this voltage and temperature.  
÷
I2  
I
hkT  
q
VBE2 - VBE1  
=
In  
« 1 ◊  
(1)  
The value η in 公式 1 is a characteristic of the particular transistor used for the remote channel. The POR value  
for the TMP468 device is η = 1.008. The value in the η-Factor Correction register can be used to adjust the  
effective η-factor, according to 公式 2 and 公式 3.  
«
÷
1.008 ì 2088  
2088 + NADJUST  
eff  
=
(2)  
(3)  
«
÷
1.008 ì 2088  
NADJUST  
=
- 2088  
eff  
26  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
 
 
 
TMP468  
www.ti.com.cn  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
The η-factor correction value must be stored in a two's-complement format, which yields an effective data range  
from –128 to +127. The POR value for each register is 0000h, which does not affect register values unless a  
different value is written to the register. The resolution of the η-factor register changes linearly as the code  
changes and has a range from 0.0004292 to 0.0005476, with an average of 0.0004848.  
12. η-Factor Range  
NADJUST ONLY BITS 15 TO 8 IN THE REGISTER ARE SHOWN  
η
BINARY  
HEX  
7F  
0A  
08  
DECIMAL  
0111 1111  
0000 1010  
0000 1000  
0000 0110  
0000 0100  
0000 0010  
0000 0001  
0000 0000  
1111 1111  
1111 1110  
1111 1100  
1111 1010  
1111 1000  
1111 0110  
1000 0000  
127  
10  
8
0.950205  
1.003195  
1.004153  
1.005112  
1.006073  
1.007035  
1.007517  
1.008  
06  
6
04  
4
02  
2
01  
1
00  
0
FF  
FE  
FC  
FA  
F8  
F6  
80  
–1  
–2  
–4  
–6  
–8  
–10  
–128  
1.008483  
1.008966  
1.009935  
1.010905  
1.011877  
1.012851  
1.073829  
7.6.1.9 Remote Temperature Offset Register  
The offset registers allow the TMP468 device to store any system offset compensation value that may result from  
precision calibration. The value in these registers is added to the remote temperature results upon every  
conversion. Each of the eight temperature channels have an independent assigned offset register (addresses  
40h, 48h, 50h, 58h, 60h, 68h, 70h, and 78h). Combined with the independent η-factor corrections, this function  
allows for very accurate system calibration over the entire temperature range for each remote channel. The  
format of these registers is the same as the temperature value registers with a range from +127.9375 to –128.  
Take care to program this register with sign extension, as values above +127.9375 and below –128 are not  
supported.  
7.6.1.10 THERM Hysteresis Register  
The THERM Hysteresis register (address 38h) sets the value of the hysteresis used by the temperature  
comparison logic. All temperature reading comparisons have a common hysteresis. Hysteresis prevents  
oscillations from occurring on the THERM and THERM2 outputs as the measured temperature approaches the  
comparator threshold (see the THERM Functions section). The resolution of the THERM Hysteresis register is  
1°C and ranges from 0°C to 255°C.  
7.6.1.11 Local and Remote THERM and THERM2 Limit Registers  
Each of the eight remote and the local temperature channels has associated independent THERM and THERM2  
Limit registers. There are nine THERM registers (addresses 39h, 42h, 4Ah, 52h, 5Ah, 62h, 6Ah, 72h, and 7Ah)  
and nine THERM2 registers (addresses 39h, 43h, 4Bh, 53h, 5Bh, 63h, 6Bh, 73h, and 7Bh), 18 registers in total.  
The resolution of these registers is 0.5°C and ranges from +255.5°C to –255°C. See the THERM Functions  
section for more information.  
Setting a THERM limit to 255.5°C disables the THERM limit comparison for that particular channel and disables  
the limit flag from being set in the THERM Status register. This prevents the associated channel from activating  
the THERM output. THERM2 limits, status, and outputs function similarly.  
版权 © 2016–2017, Texas Instruments Incorporated  
27  
TMP468  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
7.6.1.12 Block Read - Auto Increment Pointer  
Block reads can be initiated by setting the pointer register to 80h to 87h. The temperature results are mirrored at  
pointer addresses 80h to 88h; temperature results for all the channels can be read with one read transaction.  
Setting the pointer register to any address from 80h to 88h signals to the TMP468 device that a block of more  
than two bytes must be transmitted before a design stop is issued. In block read mode, the TMP468 device auto  
increments the pointer address. After 88h, the pointer resets to 80h. The master must NACK the last byte read  
so the TMP468 device can discontinue driving the bus, which allows the master to initiate a stop. In this mode,  
the pointer continuously loops in the address range from 80h to 88h, so the register may be easily read multiple  
times. Block read does not disrupt the conversion process.  
7.6.1.13 Lock Register  
Register C4h allows the device configuration and limit registers to lock, as shown by the Lock column in 3. To  
lock the registers, write 0x5CA6. To unlock the registers, write 0xEB19. When the lock function is enabled,  
reading the register yields 0x8000; when unlocked, 0x0000 is transmitted.  
7.6.1.14 Manufacturer and Device Identification Plus Revision Registers  
The TMP468 device allows the two-wire bus controller to query the device for manufacturer and device  
identifications (IDs) to enable software identification of the device at the particular two-wire bus address. The  
manufacturer ID is obtained by reading from pointer address FEh; the device ID is obtained from register FFh.  
Note that the most significant byte of the Device ID register identifies the TMP468 device revision level. The  
TMP468 device reads 0x5449 for the manufacturer code and 0x0468 for the device ID code for the first release.  
28  
版权 © 2016–2017, Texas Instruments Incorporated  
TMP468  
www.ti.com.cn  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TMP468 device requires a transistor connected between the D+ and D– pins for remote temperature  
measurement. Tie the D+ pin to D– if the remote channel is not used and only the local temperature is  
measured. The SDA, ALERT, and THERM pins (and SCL, if driven by an open-drain output) require pullup  
resistors as part of the communication bus. TI recommends a 0.1-µF power-supply decoupling capacitor for local  
bypassing. 22 and 23 illustrate the typical configurations for the TMP468 device.  
版权 © 2016–2017, Texas Instruments Incorporated  
29  
TMP468  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
8.2 Typical Application  
RS1  
CDIFF  
RS1  
RS2  
1.7 V to 3.6 V  
1.7 V to 3.6 V  
CDIFF  
CBYPASS  
RSCL RSDA RT1  
RT2  
RS2  
RS1  
B1  
D2+  
A1  
D1+  
D3  
V+  
B4  
ADD  
CDIFF  
C1  
D1  
A2  
B2  
D4  
C4  
C3  
B3  
D3+  
D4+  
D5+  
D6+  
Two-Wire Interface  
SMBus / I2C Compatible  
Controller  
SCL  
SDA  
RS2  
TMP468  
RS1  
THERM2  
Overtemperature  
Shutdown  
CDIFF  
THERM  
RS2  
RS1  
D7+  
C2  
D8+  
D2  
D-  
A3  
GND  
A4  
CDIFF  
RS2  
RS1  
RS1  
CDIFF  
CDIFF  
RS2  
RS2  
Copyright © 2017, Texas Instruments Incorporated  
(1) The diode-connected configuration provides better settling time. The transistor-connected configuration provides  
better series resistance cancellation. TI recommends a MMBT3904 or MMBT3906 transistor with an η-factor of 1.008.  
(2) RS (optional) is < 1 kΩ in most applications. RS is the combined series resistance connected externally to the D+, D–  
pins. RS selection depends on the application.  
(3) CDIFF (optional) is < 1000 pF in most applications. CDIFF selection depends on the application; see 9.  
(4) Unused diode channels must be tied to D– .as shown for D5+.  
22. TMP468 Basic Connections Using a Discrete Remote Transistor  
30  
版权 © 2016–2017, Texas Instruments Incorporated  
TMP468  
www.ti.com.cn  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
Typical Application (接下页)  
(2)  
RS  
Series Resistance  
(2)  
RS  
NPN Diode-Connected Configuration(1)  
(2)  
RS  
Series Resistance  
(2)  
RS  
D+  
D-  
(3)  
PNP Diode-Connected Configuration(1)  
CDIFF  
TMP468  
(2)  
RS  
Series Resistance  
(2)  
RS  
PNP Transistor-Connected Configuration(1)  
(2)  
(2)  
RS  
RS  
RS  
(2)  
(2)  
RS  
Internal and PCB  
Series Resistance  
trocessor, CtD!, or !{L/  
Integrated PNP Transistor-Connected Configuration(1)  
Copyright © 2017, Texas Instruments Incorporated  
23. TMP468 Remote Transistor Configuration Options  
8.2.1 Design Requirements  
The TMP468 device is designed to be used with either discrete transistors or substrate transistors built into  
processor chips, field programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs) ;  
see 23. Either NPN or PNP transistors can be used, as long as the base-emitter junction is used as the  
remote temperature sensor. NPN transistors must be diode-connected. PNP transistors can either be transistor-  
or diode-connected (see 23).  
Errors in remote temperature sensor readings are typically the consequence of the ideality factor (η-factor) and  
current excitation used by the TMP468 device versus the manufacturer-specified operating current for a given  
transistor. Some manufacturers specify a high-level and low-level current for the temperature-sensing substrate  
transistors. The TMP468 uses 7.5 μA (typical) for ILOW and 120 μA (typical) for IHIGH  
.
The ideality factor (η-factor) is a measured characteristic of a remote temperature sensor diode as compared to  
an ideal diode. The TMP468 allows for different η-factor values; see the η-Factor Correction Register section.  
The η-factor for the TMP468 device is trimmed to 1.008. For transistors that have an ideality factor that does not  
match the TMP468 device, 公式 4 can be used to calculate the temperature error.  
版权 © 2016–2017, Texas Instruments Incorporated  
31  
 
TMP468  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
Typical Application (接下页)  
For 公式 4 to be used correctly, the actual temperature (°C) must be converted to Kelvin  
(K).  
h -1.008  
1.008  
O
TERR  
=
ì 273.15 + T C  
(
)
)
(
«
÷
where  
TERR = error in the TMP468 device because η 1.008  
η = ideality factor of the remote temperature sensor  
T(°C) = actual temperature, and  
(4)  
(5)  
In 公式 4, the degree of delta is the same for °C and K.  
For η = 1.004 and T(°C) = 100°C:  
1.004 - 1.008  
1.008  
TERR  
=
ì 273.15 + 100èC  
(
)
÷
«
TERR = -1.48èC  
If a discrete transistor is used as the remote temperature sensor with the TMP468 device, then select the  
transistor according to the following criteria for best accuracy:  
Base-emitter voltage is > 0.25 V at 7.5 μA, at the highest-sensed temperature.  
Base-emitter voltage is < 0.95 V at 120 μA, at the lowest-sensed temperature.  
Base resistance is < 100 Ω.  
Tight control of VBE characteristics indicated by small variations in hFE (50 to 150).  
Based on these criteria, TI recommends using a MMBT3904 (NPN) or a MMBT3906 (PNP) transistor.  
8.2.2 Detailed Design Procedure  
The local temperature sensor inside the TMP468 is influenced by the ambient air around the device but mainly  
monitors the PCB temperature that it is mounted to. The thermal time constant for the TMP468 device is  
approximately two seconds. This constant implies that if the ambient air changes quickly by 100°C, then the  
TMP468 device takes approximately 10 seconds (that is, five thermal time constants) to settle to within 1°C of  
the final value. In most applications, the TMP468 package is in electrical (and therefore thermal) contact with the  
printed-circuit board (PCB), and subjected to forced airflow. The accuracy of the measured temperature directly  
depends on how accurately the PCB and forced airflow temperatures represent the temperature that the TMP468  
device is measuring. Additionally, the internal power dissipation of the TMP468 device can cause the  
temperature to rise above the ambient or PCB temperature. The internal power is negligible because of the small  
current drawn by the TMP468 device. 公式 6 can be used to calculate the average conversion current for power  
dissipation and self-heating based on the number of conversions per second and temperature sensor channel  
enabled. 公式 7 shows an example with local and all remote sensor channels enabled and conversion rate of 1  
conversion per second; see the Electrical Characteristics table for typical values required for these calculations.  
For a 3.3-V supply and a conversion rate of 1 conversion per second, the TMP468 device dissipates 0.224 mW  
(PDIQ = 3.3 V × 68 μA) when both the remote and local channels are enabled.  
Average Conversion Current = (Local Conversion Time) × (Conversions Per Second) × (Local Active IQ ) +  
(Remote Conversion Time) × (Conversions Per Second) × (Remote Active IQ) × (Number of Active Channels +  
(Standby Mode) × [1 œ ((Local Conversion Time) + (Remote Conversion Time) × (Number of Active  
Channels)) × (Conversions Per Second)]  
(6)  
32  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
TMP468  
www.ti.com.cn  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
Typical Application (接下页)  
1
sec  
1
Average Conversion Current =(16 ms)ì(  
)ì(240 mA)  
+ (16 ms)ì(  
)ì(400 mA)ì(8)  
sec  
1
»
ÿ
+ (15 mA)ì 1 - ((16 ms)+ (16 ms)ì(8))ì(  
)
Ÿ
sec  
= 68 mA  
(7)  
(8)  
The temperature measurement accuracy of the TMP468 device depends on the remote and local temperature  
sensor being at the same temperature as the monitored system point. If the temperature sensor is not in good  
thermal contact with the part of the monitored system, then there is a delay between the sensor response and  
the system changing temperature. This delay is usually not a concern for remote temperature-sensing  
applications that use a substrate transistor (or a small, SOT-23 transistor) placed close to the monitored device.  
8.2.3 Application Curve  
24 and 25 show the typical step response to submerging a TMP468 device (initially at 25°C) in an oil bath  
with a temperature of 100°C and logging the local temperature readings.  
110%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
110%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
-2  
0
2
4
6
8
10  
12  
14  
16  
18  
-2  
0
2
4
6
8
10  
12  
14  
16  
18  
Time (s)  
Time (s)  
D014  
24. TMP468DSBGA Temperature Step Response 25. TMP468VQFN Temperature Step Response  
of Local Sensor  
of Local Sensor  
9 Power Supply Recommendations  
The TMP468 device operates with a power-supply range from 1.7 V to 3.6 V. The device is optimized for  
operation at a 1.8-V supply, but can measure temperature accurately in the full supply range.  
TI recommends a power-supply bypass capacitor. Place this capacitor as close as possible to the supply and  
ground pins of the device. A typical value for this supply bypass capacitor is 0.1 μF. Applications with noisy or  
high-impedance power supplies may require additional decoupling capacitors to reject power-supply noise.  
版权 © 2016–2017, Texas Instruments Incorporated  
33  
 
 
TMP468  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Remote temperature sensing on the TMP468 device measures very small voltages using very low currents;  
therefore, noise at the device inputs must be minimized. Most applications using the TMP468 device have high  
digital content, with several clocks and a multitude of logic-level transitions that create a noisy environment.  
Layout must adhere to the following guidelines:  
1. Place the TMP468 device as close to the remote junction sensor as possible.  
2. Route the D+ and D– traces next to each other and shield them from adjacent signals through the use of  
ground guard traces, as shown in 26. If a multilayer PCB is used, bury these traces between the ground  
or V+ planes to shield them from extrinsic noise sources. TI recommends 5-mil (0.127 mm) PCB traces.  
3. Minimize additional thermocouple junctions caused by copper-to-solder connections. If these junctions are  
used, make the same number and approximate locations of copper-to-solder connections in both the D+ and  
D– connections to cancel any thermocouple effects.  
4. Use a 0.1-μF local bypass capacitor directly between the V+ and GND of the TMP468. For optimum  
measurement performance, minimize filter capacitance between D+ and D– to 1000 pF or less. This  
capacitance includes any cable capacitance between the remote temperature sensor and the TMP468.  
5. If the connection between the remote temperature sensor and the TMP468 is wired and is less than eight  
inches (20.32 cm) long, use a twisted-wire pair connection. For lengths greater than eight inches, use a  
twisted, shielded pair with the shield grounded as close to the TMP468 device as possible. Leave the remote  
sensor connection end of the shield wire open to avoid ground loops and 60-Hz pickup.  
6. Thoroughly clean and remove all flux residue in and around the pins of the TMP468 device to avoid  
temperature offset readings as a result of leakage paths between D+ and GND, or between D+ and V+.  
V+  
D+  
Ground or V+ layer  
on bottom and top,  
if possible.  
D-  
GND  
NOTE: Use a minimum of 5-mil (0.127 mm) traces with 5-mil spacing.  
26. Suggested PCB Layer Cross-Section  
34  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TMP468  
www.ti.com.cn  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
10.2 Layout Example  
ëL! to ꢁoꢂer or Dround ꢁlane  
ëL! to Lnternal [ayer  
1 nF  
51+  
!1  
5ꢀ+  
!2  
5-  
!3  
Db5  
!4  
1 nF  
1 nF  
1 nF  
1 nF  
52+  
.1  
56+  
.2  
ÇIw  
.3  
!55  
.4  
53+  
/1  
57+  
/2  
ÇI2  
/3  
{5!  
/4  
54+  
51  
58+  
52  
ë+  
53  
{/[  
54  
0.1 F  
1 nF  
27. TMP468 YFF Package Layout Example  
版权 © 2016–2017, Texas Instruments Incorporated  
35  
TMP468  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
Layout Example (接下页)  
ëL! to ꢀower or Dround ꢀlane  
ëL! to Lnternal [ayer  
0.1 F  
1 nF  
1 nF  
58+ ë+  
57+  
{/[  
16 1ꢃ 14 13  
56+  
5ꢃ+  
54+  
1 nF  
1 nF  
1 nF  
1 nF  
{5!  
1
2
3
4
12  
11  
10  
ÇI9ꢁꢂ2  
ÇI9ꢁꢂ  
Exposed  
Thermal Pad  
53+  
!55  
6
7
8
Db5  
52+ 51+ 5-  
1 nF  
1 nF  
28. TMP468 RGT Package Layout Example  
36  
版权 © 2016–2017, Texas Instruments Incorporated  
TMP468  
www.ti.com.cn  
ZHCSFP4B NOVEMBER 2016REVISED JUNE 2017  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册后,即可每周定  
期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
SMBus is a trademark of Intel Corporation.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参见左侧的导航栏。  
版权 © 2016–2017, Texas Instruments Incorporated  
37  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMP468AIRGTR  
TMP468AIRGTT  
TMP468AIYFFR  
TMP468AIYFFT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGT  
RGT  
YFF  
YFF  
16  
16  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
T468  
T468  
NIPDAU  
SNAGCU  
SNAGCU  
DSBGA  
DSBGA  
TMP468  
TMP468  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Aug-2017  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMP468AIRGTR  
TMP468AIRGTT  
TMP468AIYFFR  
TMP468AIYFFT  
VQFN  
VQFN  
RGT  
RGT  
YFF  
YFF  
16  
16  
16  
16  
3000  
250  
330.0  
180.0  
180.0  
180.0  
12.4  
12.4  
8.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
4.0  
4.0  
12.0  
12.0  
8.0  
Q2  
Q2  
Q1  
Q1  
DSBGA  
DSBGA  
3000  
250  
1.65  
1.65  
1.65  
1.65  
0.81  
0.81  
8.4  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Aug-2017  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMP468AIRGTR  
TMP468AIRGTT  
TMP468AIYFFR  
TMP468AIYFFT  
VQFN  
VQFN  
RGT  
RGT  
YFF  
YFF  
16  
16  
16  
16  
3000  
250  
367.0  
210.0  
182.0  
182.0  
367.0  
185.0  
182.0  
182.0  
35.0  
35.0  
20.0  
20.0  
DSBGA  
DSBGA  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RGT0016C  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
1.0  
0.8  
C
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
1.5  
1
12  
0.30  
16X  
0.18  
13  
16  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.05  
0.5  
0.3  
16X  
4222419/D 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGT0016C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
(0.58) TYP  
8
(R0.05)  
ALL PAD CORNERS  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222419/D 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGT0016C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4222419/D 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
YFF0016  
DSBGA - 0.625 mm max height  
SCALE 8.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
0.625 MAX  
C
SEATING PLANE  
0.05 C  
0.30  
0.12  
BALL TYP  
1.2 TYP  
D
C
B
SYMM  
1.2  
D: Max = 1.592 mm, Min =1.531 mm  
E: Max = 1.592 mm, Min =1.531 mm  
TYP  
0.4 TYP  
A
1
2
3
4
0.3  
0.2  
16X  
0.015  
SYMM  
C A B  
0.4 TYP  
4219386/A 05/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0016  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
16X ( 0.23)  
(0.4) TYP  
4
3
1
2
A
B
C
SYMM  
D
SYMM  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219386/A 05/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information,  
see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0016  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
16X ( 0.25)  
1
2
3
4
A
(0.4) TYP  
B
SYMM  
METAL  
TYP  
C
D
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4219386/A 05/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TMP468AIYFFR

±0.75⁰C 高精度多通道远程和本地温度传感器 | YFF | 16 | -40 to 125
TI

TMP468AIYFFT

±0.75⁰C 高精度多通道远程和本地温度传感器 | YFF | 16 | -40 to 125
TI

TMP4700AC

NMOS 4-BIT MICROCONTROLLER
TOSHIBA

TMP470M0JJ25V

Aluminum Electrolytic Capacitor, Polarized, Aluminum, 6.3V, 20% +Tol, 20% -Tol, 47uF
VISHAY

TMP470M0JJ35V

Aluminum Electrolytic Capacitor, Polarized, Aluminum, 6.3V, 20% +Tol, 20% -Tol, 47uF
VISHAY

TMP470M0JK25V

Aluminum Electrolytic Capacitor, Polarized, Aluminum, 6.3V, 20% +Tol, 20% -Tol, 47uF
VISHAY

TMP470M1AE35V

Aluminum Electrolytic Capacitor, Polarized, Aluminum, 10V, 20% +Tol, 20% -Tol, 47uF
VISHAY

TMP470M1AE42V

Aluminum Electrolytic Capacitor, Polarized, Aluminum, 10V, 20% +Tol, 20% -Tol, 47uF
VISHAY

TMP470M1AF35V

Aluminum Electrolytic Capacitor, Polarized, Aluminum, 10V, 20% +Tol, 20% -Tol, 47uF
VISHAY

TMP470M1AJ25V

Aluminum Electrolytic Capacitor, Polarized, Aluminum, 10V, 20% +Tol, 20% -Tol, 47uF
VISHAY

TMP470M1AJ35V

Aluminum Electrolytic Capacitor, Polarized, Aluminum, 10V, 20% +Tol, 20% -Tol, 47uF
VISHAY

TMP470M1CE42V

Aluminum Electrolytic Capacitor, Polarized, Aluminum, 16V, 20% +Tol, 20% -Tol, 47uF
VISHAY