TMP75C-Q1 [TI]

具有双线制接口和报警功能、精度为 1°C 的数字温度传感器;
TMP75C-Q1
型号: TMP75C-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有双线制接口和报警功能、精度为 1°C 的数字温度传感器

温度传感 传感器 温度传感器
文件: 总32页 (文件大小:829K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMP75C-Q1  
ZHCSFP0 NOVEMBER 2016  
TMP75C-Q1 具有两线制接口和报警功能的 1.8V 数字温度传感器  
1 特性  
3 说明  
1
适用于汽车电子 应用  
TMP75C-Q1 是一款集成数字温度传感器,此传感器具  
有一个可由 1.8V 电源供电运行的 12 位模数转换器  
(ADC),并且与 NCT75 ADT75 引脚和寄存器兼  
容。此器件采用 SOIC-8 VSSOP-8 两种封装,不需  
要外部元件便可测温。TMP75C-Q1 能够以 0.0625°C  
的分辨率读取温度,额定工作温度范围为 –40°C 至  
+125°C。  
具有符合 AEC-Q100 标准的下列结果:  
器件温度 1 级:-40°C 125°C 的环境运行温  
度范围  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 2  
器件组件充电模式 (CDM) ESD 分类等级 C5  
NCT75 ADT75 的低压替代产品  
具有两线制接口的数字输出  
多达 8 个引脚可编程总线地址  
具有可编程触发值的过热 ALERT 引脚  
用于节省电池电量的关断模式  
单次转换模式  
TMP75C-Q1 特有 系统管理总线 (SMBus) 和两线制接  
口兼容性,并且可在同一总线上,借助 SMBus 过热报  
警功能支持多达 8 个器件。利用可编程温度限值和  
ALERT 引脚,传感器既可作为一个独立恒温器运行,  
也作为一个针对节能或系统关断的过热警报器运行。  
厂家校准温度精度和抗扰数字接口使得 TMP75C-Q1  
成为其他传感器和电子元器件温度补偿的合适解决方  
案,而且无需针对分布式温度感测的额外系统级校准或  
复杂的电路板布局布线。  
工作温度范围:-40°C +125°C  
工作电源范围:1.4V 3.6V  
静态电流:  
15μA 工作电流(典型值),0.3μA 关断电流(典  
型值)  
TMP75C-Q1 是多种消费类、计算机、通信、工业和环  
境应用热管理和保护的理想 选择。  
准确度:  
0°C +70°C 范围内为 ±0.25°C(典型值)  
-20°C +85°C 范围内为 ±0.5°C(典型值)  
-40°C +125°C 范围内为 ±1°C(典型值)  
器件信息(1)  
器件名称  
TMP75C-Q1  
封装  
SOIC (8)  
VSSOP (8)  
封装尺寸(标称值)  
4.90mm × 3.90mm  
3.00mm × 3.00mm  
分辨率:12 (0.0625°C)  
封装:小外形尺寸集成电路 (SOIC)-8 和超薄小外  
形尺寸封装 (VSSOP)-8  
(1) 要了解所有可用封装,请参见数据表末尾的封装选项附录。  
2 应用  
服务器和计算机热管理  
电信设备  
办公机器、机顶盒、  
恒温器控制  
视频游戏控制台  
电源和电池热保护  
环境监测和供热通风与空气调节 (HVAC)  
电机驱动器热保护  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS840  
 
 
 
TMP75C-Q1  
ZHCSFP0 NOVEMBER 2016  
www.ti.com.cn  
温度精度(误差)与环境温度之间的关系  
简化电路原理图  
1.4 V to 3.6 V  
3
2
0.01 mF  
1
TMP75C-Q1  
0
1
8
7
6
5
SDA  
VS  
A0  
A1  
A2  
2
œ1  
œ2  
œ3  
SCL  
Two-Wire  
Host Controller  
Mean  
3
ALERT  
Mean - 61  
Mean + 61  
4
GND  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
C005  
2
版权 © 2016, Texas Instruments Incorporated  
TMP75C-Q1  
www.ti.com.cn  
ZHCSFP0 NOVEMBER 2016  
目录  
7.5 Programming........................................................... 17  
7.6 Register Map........................................................... 17  
Application and Implementation ........................ 20  
8.1 Application Information............................................ 20  
8.2 Typical Application ................................................. 20  
Power Supply Recommendations...................... 21  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 8  
7.3 Feature Description................................................... 9  
7.4 Device Functional Modes........................................ 16  
8
9
10 Layout................................................................... 22  
10.1 Layout Guidelines ................................................. 22  
10.2 Layout Example .................................................... 22  
11 器件和文档支持 ..................................................... 23  
11.1 文档支持 ............................................................... 23  
11.2 接收文档更新通知 ................................................. 23  
11.3 社区资源................................................................ 23  
11.4 ....................................................................... 23  
11.5 静电放电警告......................................................... 23  
11.6 Glossary................................................................ 23  
12 机械、封装和可订购信息....................................... 23  
7
4 修订历史记录  
日期  
修订版本  
注释  
2016 11 月  
*
最初发布。  
Copyright © 2016, Texas Instruments Incorporated  
3
 
TMP75C-Q1  
ZHCSFP0 NOVEMBER 2016  
www.ti.com.cn  
5 Pin Configuration and Functions  
D and DGK Packages  
8-Pin SOIC and VSSOP  
Top View  
SDA  
SCL  
1
2
3
4
8
VS  
A0  
A1  
A2  
7
6
5
ALERT  
GND  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
7
A0  
A1  
A2  
I
I
Address select. Connect to GND or VS.  
Address select. Connect to GND or VS.  
Address select. Connect to GND or VS.  
6
5
I
ALERT  
GND  
SCL  
SDA  
VS  
3
O
I
Overtemperature alert. Open-drain output; requires a pull-up resistor.  
4
Ground.  
2
Serial clock.  
1
I/O  
I
Serial data. Open-drain output; requires a pull-up resistor.  
Supply voltage, 1.4 V to 3.6 V.  
8
4
Copyright © 2016, Texas Instruments Incorporated  
TMP75C-Q1  
www.ti.com.cn  
ZHCSFP0 NOVEMBER 2016  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
MAX  
UNIT  
V
Supply voltage, VS  
4
4
SDA, SCL, ALERT, A2, A1  
–0.3  
–0.3  
V
Input voltage  
A0  
(VS) + 0.3  
10  
V
Sink current  
SDA, ALERT  
mA  
°C  
°C  
Operating junction temperature  
Storage temperature, Tstg  
–40  
–60  
150  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.4  
NOM  
MAX  
3.6  
UNIT  
V
Supply voltage  
1.8  
Operating free-air temperature, TA  
–40  
125  
°C  
6.4 Thermal Information  
TMP75C-Q1  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
125.4  
71.5  
DGK (VSSOP)  
8 PINS  
188.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
79.1  
65.8  
109.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
21.1  
15.3  
ψJB  
65.3  
108  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2016, Texas Instruments Incorporated  
5
TMP75C-Q1  
ZHCSFP0 NOVEMBER 2016  
www.ti.com.cn  
6.5 Electrical Characteristics  
At TA = –40°C to +125°C and VS = +1.4 V to +3.6 V, unless otherwise noted. Typical values at TA = 25°C and VS = +1.8 V.  
PARAMETER  
TEMPERATURE INPUT  
Temperature range  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
–40  
125  
°C  
°C  
Temperature resolution  
0.0625  
±0.25  
±0.5  
0°C to +70°C  
±1  
±2  
±3  
Temperature accuracy  
(error)  
–20°C to +85°C  
°C  
–40°C to +125°C  
±1  
DIGITAL INPUT/OUTPUT  
VIH  
VIL  
IIN  
High-level input voltage  
Low-level input voltage  
Input current  
0.7(VS)  
-0.3  
VS  
0.3(VS)  
1
V
V
0 V < VIN < (VS) + 0.3 V  
μA  
V
S 2 V, IOUT = 3 mA  
0.4  
Low-level output  
voltage  
VOL  
V
VS < 2 V, IOUT = 3 mA  
0.2(VS)  
ADC resolution  
Conversion time  
Update Rate  
12  
27  
80  
22  
Bit  
ms  
ms  
ms  
One-shot mode  
20  
16  
35  
29  
Bus timeout time  
POWER SUPPLY  
Operating supply range  
1.4  
3.6  
37  
V
Serial bus inactive  
15  
25  
95  
0.3  
10  
80  
IQ  
Quiescent current  
Shutdown current  
Serial bus active, SCL frequency = 400 kHz  
Serial bus active, SCL frequency = 3.4 MHz  
Serial bus inactive  
µA  
8
ISD  
Serial bus active, SCL frequency = 400 kHz  
Serial bus active, SCL frequency = 3.4 MHz  
µA  
6
Copyright © 2016, Texas Instruments Incorporated  
TMP75C-Q1  
www.ti.com.cn  
ZHCSFP0 NOVEMBER 2016  
6.6 Typical Characteristics  
At TA = 25°C and VS = +1.8 V (unless otherwise noted).  
50  
10  
9
8
7
6
5
4
3
2
1
0
Vs = 1.4V  
45  
Vs = 1.4V  
Vs = 1.8V  
Vs = 3.6V  
Vs = 1.8V  
40  
Vs = 3.6V  
35  
30  
25  
20  
15  
10  
5
0
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
Temperature (°C)  
C001  
C002  
Figure 1. Quiescent Current vs Temperature  
Figure 2. Shutdown Current vs Temperature  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
200  
175  
150  
125  
100  
75  
Ta = -55˘C  
Ta = 25˘C  
Ta = 125˘C  
50  
Vs = 1.4V  
Vs = 1.8V  
Vs = 3.6V  
25  
0
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
10  
100  
1000  
10000  
Temperature (°C)  
Bus Frequency (kHz)  
C003  
C004  
Figure 3. Conversion Time vs Temperature  
Figure 4. Quiescent Current vs Bus Frequency  
3
2
1
0
œ1  
œ2  
œ3  
Mean  
Mean - 61  
Mean + 61  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
C005  
Temperature Error (°C)  
C006  
Figure 6. Temperature Error at 25°C  
Figure 5. Temperature Error vs Temperature  
Copyright © 2016, Texas Instruments Incorporated  
7
TMP75C-Q1  
ZHCSFP0 NOVEMBER 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TMP75C-Q1 is a digital temperature sensor optimal for thermal management and thermal protection  
applications. The TMP75C-Q1 is two-wire and SMBus interface compatible, and is specified over a temperature  
range of –40°C to +125°C.  
The temperature sensing device for the TMP75C-Q1 is the chip itself. A bipolar junction transistor (BJT) inside  
the chip is used in a band-gap configuration to produce a voltage proportional to the chip temperature. The  
voltage is digitized and converted to a 12-bit temperature result in degrees Celsius, with resolution of 0.0625°C.  
The package leads provide the primary thermal path because of the lower thermal resistance of the metal. Thus,  
the temperature result is equivalent to the local temperature of the printed circuit board (PCB) where the sensor  
is mounted.  
7.2 Functional Block Diagram  
ë{  
Device  
Voltage Regulator  
Serial Interface  
Register Bank  
Oscillator  
SDA  
SCL  
A0  
Control Logic  
N x I  
I
ALERT  
A1  
A2  
ADC  
Thermal  
BJT  
GND  
8
Copyright © 2016, Texas Instruments Incorporated  
TMP75C-Q1  
www.ti.com.cn  
ZHCSFP0 NOVEMBER 2016  
7.3 Feature Description  
7.3.1 Digital Temperature Output  
The 12-bit digital output from each temperature measurement conversion is stored in the read-only temperature  
register. Two bytes must be read to obtain the data, as shown in Figure 14. Note that byte 1 is the most  
significant byte, followed by byte 2, the least significant byte. The temperature result is left-justified with the 12  
most significant bits used to indicate the temperature. There is no need to read the second byte if resolution  
below 1°C is not required. Table 1 summarizes the temperature data format. One LSB equals 0.0625°C.  
Negative numbers are represented in binary twos complement format.  
Table 1. Temperature Data Format(1)  
DIGITAL OUTPUT  
TEMPERATURE (°C)  
BINARY  
HEX  
7FF  
7FF  
640  
500  
4B0  
320  
190  
004  
000  
FFC  
E70  
D80  
128  
127.9375  
100  
80  
0111 1111 1111  
0111 1111 1111  
0110 0100 0000  
0101 0000 0000  
0100 1011 0000  
0011 0010 0000  
0001 1001 0000  
0000 0000 0100  
0000 0000 0000  
1111 1111 1100  
1110 0111 0000  
1101 1000 0000  
75  
50  
25  
0.25  
0
–0.25  
–25  
–40  
(1) The temperature sensor resolution is 0.0625°C/LSB.  
Table 1 does not supply a full list of all temperatures. Use the following rules to obtain the digital data format for  
a given temperature, and vice versa.  
To convert positive temperatures to a digital data format:  
Divide the temperature by the resolution. Then, convert the result to binary code with a 12-bit, left-justified  
format, and MSB = 0 to denote a positive sign.  
Example: (+50°C) / (0.0625°C / LSB) = 800 = 320h = 0011 0010 0000  
To convert a positive digital data format to temperature:  
Convert the 12-bit, left-justified binary temperature result, with the MSB = 0 to denote a positive sign, to a  
decimal number. Then, multiply the decimal number by the resolution to obtain the positive temperature.  
Example: 0011 0010 0000 = 320h = 800 × (0.0625°C / LSB) = +50°C  
To convert negative temperatures to a digital data format:  
Divide the absolute value of the temperature by the resolution, and convert the result to binary code with a  
12-bit, left-justified format. Then, generate the twos complement of the result by complementing the binary  
number and adding one. Denote a negative number with MSB = 1.  
Example: (|–25°C|) / (0.0625°C / LSB) = 400 = 190h = 0001 1001 0000  
Two's complement format: 1110 0110 1111 + 1 = 1110 0111 0000  
To convert a negative digital data format to temperature:  
Generate the twos compliment of the 12-bit, left-justified binary number of the temperature result (with MSB  
= 1, denoting negative temperature result) by complementing the binary number and adding one. Convert to  
decimal number and multiply by the resolution to get the absolute temperature, then multiply by –1 for the  
negative sign.  
Example: 1110 0111 0000 has twos complement of 0001 1001 0000 = 0001 1000 1111 + 1  
Convert to temperature: 0001 1001 0000 = 190h = 400; 400 × (0.0625°C / LSB) = 25°C = (|–25°C|);  
(|–25°C|) × (–1) = –25°C  
Copyright © 2016, Texas Instruments Incorporated  
9
 
TMP75C-Q1  
ZHCSFP0 NOVEMBER 2016  
www.ti.com.cn  
7.3.2 Temperature Limits and Alert  
The temperature limits are stored in the TLOW and THIGH registers (Table 7 and Table 8) in the same format as  
the temperature result, and their values are compared to the temperature result on every conversion. The  
outcome of the comparison drives the behavior of the ALERT pin, which can operate as a comparator output or  
an interrupt, and is set by the TM bit in the Configuration register (Table 6).  
In comparator mode (TM = 0, default), the ALERT pin becomes active when the temperature is equal to or  
exceeds the value in THIGH (fault conditions) for a consecutive number of conversions as set by the FQ bits of the  
configuration register. ALERT clears when the temperature falls below TLOW for the same consecutive number of  
conversions. The difference between the two limits acts as a hysteresis on the comparator output, and a fault  
counter prevents false alerts as a result of environmental noise.  
In interrupt mode (TM = 1), the ALERT pin becomes active when the temperature equals or exceeds the value in  
THIGH for a consecutive number of fault conditions. The ALERT pin remains active until a read operation of any  
register occurs. After the ALERT pin is cleared, this pin becomes active again only when temperature falls below  
TLOW for a consecutive number of fault conditions, and remains active until cleared by a read operation of any  
register. The cycle repeats with the ALERT pin becoming active when the temperature equals or exceeds THIGH  
,
and so on. The ALERT pin is cleared also when the device is placed in shutdown mode (see Shutdown Mode for  
shutdown mode description). This action also clears the fault counter memory.  
The active state of the ALERT pin is set by the POL bit in the configuration register. When POL = 0 (default), the  
ALERT pin is active low. When POL = 1, the ALERT pin is active high. The operation of the ALERT pin in the  
various modes is illustrated in Figure 7.  
THIGH  
Measured  
Temperature  
TLOW  
Device ALERT PIN  
(Comparator Mode)  
POL = 0  
Device ALERT PIN  
(Interrupt Mode)  
POL = 0  
Device ALERT PIN  
(Comparator Mode)  
POL = 1  
Device ALERT PIN  
(Interrupt Mode)  
POL = 1  
Read  
Read  
Time  
Read  
Figure 7. ALERT Pin Modes of Operation  
10  
Copyright © 2016, Texas Instruments Incorporated  
 
TMP75C-Q1  
www.ti.com.cn  
ZHCSFP0 NOVEMBER 2016  
7.3.3 Serial Interface  
The TMP75C-Q1 operates as a slave device only on the two-wire bus and SMBus. Connections to the bus are  
made using the open-drain I/O lines, SDA and SCL. The SDA and SCL pins feature integrated spike-suppression  
filters and Schmitt triggers to minimize the effects of input spikes and bus noise. The TMP75C-Q1 supports the  
transmission protocol for both fast (1 kHz to 400 kHz) and high-speed (1 kHz to 3 MHz) modes. All data bytes  
are transmitted MSB first.  
7.3.3.1 Bus Overview  
The device that initiates the transfer is called a master, and the devices controlled by the master are slaves. The  
bus must be controlled by a master device that generates the serial clock (SCL), controls the bus access, and  
generates the start and stop conditions.  
To address a specific device, initiate a start condition by pulling the data line (SDA) from a high to a low logic  
level while SCL is high. All slaves on the bus shift in the slave address byte; the last bit indicates whether a read  
or write operation follows. During the ninth clock pulse, the slave being addressed responds to the master by  
generating an acknowledge bit and pulling SDA low.  
Data transfer is then initiated and sent over eight clock pulses followed by an acknowledge bit. During data  
transfer, SDA must remain stable while SCL is high because any change in SDA while SCL is high is interpreted  
as a start or stop signal.  
After all data have been transferred, the master generates a stop condition indicated by pulling SDA from low to  
high, while SCL is high.  
7.3.3.2 Serial Bus Address  
To communicate with the TMP75C-Q1, the master must first communicate with slave devices using a slave  
address byte. The slave address byte consists of seven address bits, and a direction bit indicating the intent of  
executing either a read or write operation. The TMP75C-Q1 features three address pins that allow up to eight  
devices to be addressed on a single bus. The TMP75C-Q1 latches the status of the address pins at the start of a  
communication. Table 2 describes the pin logic levels and the corresponding address values.  
Table 2. Address Pin Connections and Slave Addresses  
DEVICE TWO-WIRE ADDRESS  
A2  
GND  
GND  
GND  
GND  
VS  
A1  
GND  
GND  
VS  
A0  
GND  
VS  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
GND  
VS  
VS  
GND  
GND  
VS  
GND  
VS  
VS  
VS  
GND  
VS  
VS  
VS  
7.3.3.3 Writing and Reading Operation  
Accessing a particular register on the TMP75C-Q1 is accomplished by writing the appropriate value to the pointer  
register. The value for the pointer register is the first byte transferred after the slave address byte with the R/W  
bit low. Every write operation to the TMP75C-Q1 requires a value for the pointer register (see Figure 9).  
When reading from the TMP75C-Q1, the last value stored in the pointer register by a write operation is used to  
determine which register is read by a read operation. To change the register pointer for a read operation, a new  
value must be written to the pointer register. This action is accomplished by issuing a slave address byte with the  
R/W bit low, followed by the pointer register byte. No additional data are required. The master can then generate  
a start condition and send the slave address byte with the R/W bit high to initiate the read command. See  
Figure 10 for details of this sequence. If repeated reads from the same register are desired, there is no need to  
continually send the pointer register bytes because the TMP75C-Q1 stores the pointer register value until it is  
changed by the next write operation.  
Note that register bytes are sent with the most significant byte first, followed by the least significant byte.  
Copyright © 2016, Texas Instruments Incorporated  
11  
 
TMP75C-Q1  
ZHCSFP0 NOVEMBER 2016  
www.ti.com.cn  
7.3.3.4 Slave Mode Operations  
The TMP75C-Q1 can operate as a slave receiver or slave transmitter.  
7.3.3.4.1 Slave Receiver Mode:  
The first byte transmitted by the master is the slave address, with the R/W bit low. The TMP75C-Q1 then  
acknowledges reception of a valid address. The next byte transmitted by the master is the pointer register. The  
TMP75C-Q1 then acknowledges reception of the pointer register byte. The next byte or bytes are written to the  
register addressed by the pointer register. The TMP75C-Q1 acknowledges reception of each data byte. The  
master can terminate data transfer by generating a start or stop condition.  
7.3.3.4.2 Slave Transmitter Mode:  
The first byte transmitted by the master is the slave address, with the R/W bit high. The slave acknowledges  
reception of a valid slave address. The next byte is transmitted by the slave and is the most significant byte of  
the register indicated by the pointer register. The master acknowledges reception of the data byte. The next byte  
transmitted by the slave is the least significant byte. The master acknowledges reception of the data byte. The  
master can terminate data transfer by generating a not-acknowledge bit on reception of any data byte, or by  
generating a start or stop condition.  
7.3.3.5 High-Speed (Hs) Mode  
In order for the two-wire bus to operate at frequencies above 400 kHz, the master device must issue an SMBus  
Hs-mode master code (00001xxx) as the first byte after a start condition to switch the bus to high-speed  
operation. The TMP75C-Q1 does not acknowledge this byte, but does switch its input filters on SDA and SCL  
and its output filters on SDA to operate in Hs-mode, allowing transfers at up to 3 MHz. After the Hs-mode master  
code has been issued, the master transmits a two-wire slave address to initiate a data-transfer operation. The  
bus continues to operate in Hs-mode until a stop condition occurs on the bus. Upon receiving the stop condition,  
the TMP75C-Q1 switches the input and output filters back to fast-mode operation.  
7.3.3.6 Timeout Function  
The TMP75C-Q1 resets the serial interface if SCL or SDA are held low for 22 ms (typ) between a start and stop  
condition. If the TMP75C-Q1 is pulled low, it releases the bus and then waits for a start condition. To avoid  
activating the timeout function, it is necessary to maintain a communication speed of at least 1 kHz for the SCL  
operating frequency.  
12  
Copyright © 2016, Texas Instruments Incorporated  
TMP75C-Q1  
www.ti.com.cn  
ZHCSFP0 NOVEMBER 2016  
7.3.3.7 Two-Wire Timing  
The TMP75C-Q1 is two-wire and SMBus compatible. Figure 8 to Figure 10 describe the various operations on  
the TMP75C-Q1. Parameters for Figure 8 are defined in Table 3. Bus definitions are:  
Bus Idle  
Both SDA and SCL lines remain high.  
Start Data Transfer A change in the state of the SDA line, from high to low, while the SCL line is high defines a  
start condition. Each data transfer is initiated with a start condition.  
Stop Data Transfer A change in the state of the SDA line from low to high while the SCL line is high defines a  
stop condition. Each data transfer is terminated with a repeated start or stop condition.  
Data Transfer The number of data bytes transferred between a start and a stop condition is not limited, and is  
determined by the master device.  
The receiver acknowledges the transfer of data. It is also possible to use the TMP75B for  
single-byte updates. To update only the MS byte, terminate communication by issuing a start  
or stop condition on the bus.  
Acknowledge Each receiving device, when addressed, must generate an acknowledge bit.  
A device that acknowledges must pull down the SDA line during the acknowledge clock  
pulse so that the SDA line is stable low during the high period of the acknowledge clock  
pulse. Setup and hold times must be taken into account. When a master receives data, the  
termination of the data transfer can be signaled by the master generating a not-acknowledge  
(1) on the last byte transmitted by the slave.  
Table 3. Timing Diagram Requirements  
FAST MODE  
MIN  
HIGH-SPEED MODE  
MAX  
0.4  
MIN  
0.001  
0.001  
160  
MAX  
UNIT  
MHz  
MHz  
ns  
V
S 1.8 V  
VS < 1.8 V  
S 1.8 V  
VS < 1.8 V  
0.001  
3
f(SCL)  
SCL operating frequency  
0.001  
0.4  
2.5  
V
1300  
Bus free time between  
stop and start conditions  
t(BUF)  
1300  
260  
ns  
Hold time after repeated start condition.  
After this period, the first clock is generated.  
t(HDSTA)  
600  
160  
ns  
t(SUSTA)  
t(SUSTO)  
Repeated start condition setup time  
Stop condition setup time  
600  
600  
0
160  
160  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
V
S 1.8 V  
VS < 1.8 V  
S 1.8 V  
VS < 1.8 V  
S 1.8 V  
VS < 1.8 V  
900  
900  
100  
140  
t(HDDAT)  
t(SUDAT)  
t(LOW)  
Data hold time  
0
0
V
100  
100  
1300  
1300  
600  
10  
Data setup time  
SCL clock low period  
20  
V
190  
240  
60  
t(HIGH)  
SCL clock high period  
Data rise and fall time  
Clock rise and fall time  
tR(SDA), tF(SDA)  
tR(SCL), tF(SCL)  
tR  
300  
300  
80  
40  
Clock and data rise time for SCLK 100 kHz  
1000  
Copyright © 2016, Texas Instruments Incorporated  
13  
TMP75C-Q1  
ZHCSFP0 NOVEMBER 2016  
www.ti.com.cn  
7.3.3.8 Two-Wire Timing Diagrams  
t(LOW)  
tF  
tR  
t(HDSTA)  
SCL  
t(HDSTA)  
t(HIGH) t(SUSTA)  
t(SUSTO)  
t(HDDAT)  
t(SUDAT)  
SDA  
t(BUF)  
P
S
S
P
Figure 8. Two-Wire Timing Diagram  
1
9
1
9
SCL  
SDA  
¼
A2(1) A1(1) A0(1)  
1
0
0
1
R/W  
0
0
0
0
0
P2  
P1  
P0  
¼
Start By  
Master  
ACK By  
ACK By  
Device  
Device  
Frame 2 Pointer Register Byte  
Frame 1 Two-Wire Slave Address Byte  
1
9
1
9
SCL  
(Continued)  
SDA  
D7 D6  
D5  
D4 D3  
D2 D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(Continued)  
ACK By  
Device  
ACK By  
Stop By  
Master  
Device  
Frame 3 Data Byte 1  
Frame 4 Data Byte 2  
(1) The value of A0, A1, and A2 are determined by the connections of the corresponding pins.  
Figure 9. Two-Wire Timing Diagram for Write Word Format  
14  
Copyright © 2016, Texas Instruments Incorporated  
TMP75C-Q1  
www.ti.com.cn  
ZHCSFP0 NOVEMBER 2016  
1
9
1
9
¼
SCL  
SDA  
1
0
0
1
A2(1) A1(1) A0(1)  
R/W  
0
0
0
0
0
P2  
P1  
P0  
Start By  
Master  
ACK By  
ACK By  
Stop By  
Master  
Device  
Device  
Frame 1 Two-Wire Slave Address Byte  
Frame 2 Pointer Register Byte  
1
9
1
9
SCL  
¼
(Continued)  
SDA  
A2(1) A1(1) A0(1)  
¼
1
0
0
1
R/W  
D7  
D6  
D5  
D4 D3  
D2  
D1  
D0  
(Continued)  
Start By  
Master  
ACK By  
From  
Device  
ACK By  
Master(2)  
Device  
Frame 3 Two-Wire Slave Address Byte  
Frame 4 Data Byte 1 Read Register  
1
9
SCL  
(Continued)  
SDA  
D7 D6  
D5  
D4  
D3  
D2  
D1  
D0  
(Continued)  
From  
ACK By  
Master(3)  
Stop By  
Master  
Device  
Frame 5 Data Byte 2 Read Register  
(1) The value of A0, A1, and A2 are determined by the connections of the corresponding pins.  
(2) Master should leave SDA high to terminate a single-byte read operation.  
(3) Master should leave SDA high to terminate a two-byte read operation.  
Figure 10. Two-Wire Timing Diagram for Read Word Format  
Copyright © 2016, Texas Instruments Incorporated  
15  
TMP75C-Q1  
ZHCSFP0 NOVEMBER 2016  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Continuous-Conversion Mode  
The default mode of the TMP75C-Q1 is continuous conversion, where the ADC performs continuous temperature  
conversions and stores each result to the Temperature register, overwriting the result from the previous  
conversion. The typical conversion rate of TMP75C-Q1 is 12 Hz, with 80 ms between the start of each  
consecutive conversion. The TMP75C-Q1 has a typical conversion time of 27 ms. To achieve its conversion  
rates, the TMP75C-Q1 makes a conversion, and then powers down and waits for a delay 53 ms.  
After power-up, the TMP75C-Q1 immediately starts a conversion, as shown in Figure 11. The first result is  
available after 27 ms (typical). The active quiescent current during conversion is 45 μA (typical at +25°C). The  
quiescent current during delay is 1 μA (typical at +25°C).  
Delay(1)  
Delay(1)  
27 ms  
27 ms  
27 ms  
Startup  
Start of  
Conversion  
Start of  
Conversion  
(1) Delay is set to 53 ms (typ).  
Figure 11. Conversion Start  
7.4.2 Shutdown Mode  
The shutdown mode saves maximum power by shutting down all device circuitry other than the serial interface,  
and reduces current consumption to typically less than 0.3 μA. Shutdown mode is enabled when the SD bit in the  
configuration register is set to 1; the device shuts down and terminates a conversion if it is ongoing. When SD is  
equal to 0, the device operates in continuous-conversion mode. When shutdown mode is enabled, the ALERT  
pin and fault counter clear in both comparator and interrupt modes. The ALERT pin and the fault counter remain  
clear until the SD bit is set.  
7.4.3 One-Shot Mode  
The TMP75C-Q1 features a one-shot temperature measurement mode. When the device is in continuous  
conversion (SD = 0), writing a 1 to the OS bit enables shutdown mode, where any write to the one-shot register  
triggers a single temperature conversion. The device returns to the shutdown state at the completion of the single  
conversion, and a subsequent write to the one-shot register triggers another single conversion followed by a  
return to shutdown state. This mode reduces power consumption in the TMP75C-Q1 when continuous  
temperature monitoring is not required.  
When the device is in complete shutdown (SD = 1), the one-shot mode is not active regardless of the state of the  
OS bit, and a write to the one-shot register has no effect.  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
TMP75C-Q1  
www.ti.com.cn  
ZHCSFP0 NOVEMBER 2016  
7.5 Programming  
Figure 12 shows the internal register structure of the TMP75C-Q1. Use the 8-bit pointer register to address a  
given data register. The pointer register uses the three LSBs to identify which of the data registers respond to a  
read or write command. Figure 13 identifies the bits of the pointer register byte.  
Pointer  
Register  
Temperature  
Register  
Configuration  
Register  
SCL  
I/O  
Control  
TLOW  
Register  
Interface  
SDA  
THIGH  
Register  
One-Shot  
Register  
Figure 12. Internal Register Structure  
7.6 Register Map  
Table 4 describes the registers available in the TMP75C-Q1 with their pointer addresses, followed by the  
description of the bits in each register.  
Table 4. Register Map and Pointer Addresses  
P2  
0
P1  
0
P0  
0
REGISTER  
Temperature register (read only, default)  
Configuration register (read/write)  
TLOW register (read/write)  
0
0
1
0
1
0
0
1
1
THIGH register (read/write)  
1
0
0
One-Shot register (write only; write any value to start a  
conversion)  
Figure 13. Pointer Register (pointer = N/A) [reset = 00h]  
7
6
5
4
3
2
1
0
Reserved  
W-0h  
P2  
P1  
P0  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Copyright © 2016, Texas Instruments Incorporated  
17  
 
 
 
TMP75C-Q1  
ZHCSFP0 NOVEMBER 2016  
www.ti.com.cn  
Figure 14. Temperature Register (pointer = 0h) [reset = 0000h]  
15  
14  
13  
T9  
12  
T8  
11  
T7  
10  
T6  
9
8
T11  
T10  
T5  
T4  
R-00h  
7
6
5
4
3
2
1
0
T3  
T2  
T1  
T0  
Reserved  
R-0h  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 5. Temperature Register Description  
Name  
Description  
T11 to T4  
T3 to T0  
The 8 MSBs of the temperature result (resolution of 1°C)  
The 4 LSBs of the temperature result (resolution of 0.0625°C)  
Figure 15. Configuration Register (pointer = 1h) [reset = 0000h]  
15  
7
14  
6
13  
OS  
12  
11  
10  
9
8
Reserved  
R/W-0h  
FQ  
POL  
TM  
SD  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
5
4
3
2
1
0
Reserved  
R-00h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6. Configuration Register Description  
Name  
Description  
Reserved  
Reserved bits  
Write 0 to these bits on configuration register update.  
One-shot control  
OS  
SD = 0 and OS = 0: Continuous conversion mode (default)  
SD = 0 and OS = 1: One-shot mode; the device is in shutdown mode but writing any value to the one-shot register  
initiates a conversion. The device returns to shutdown mode at the end of the conversion.  
SD = 1 and OS = x: The device is in shutdown mode and the status of the OS bit has no effect. Writing to the one-  
shot register does not start a conversion.  
FQ  
Fault queue to trigger the ALERT pin  
FQ = 0h: 1 fault (default)  
FQ = 1h: 2 faults  
FQ = 2h: 4 faults  
FQ = 3h: 6 faults  
POL  
TM  
ALERT polarity control  
POL = 0: ALERT is active low (default)  
POL = 1: ALERT is active high  
ALERT thermostat mode control  
TM = 0: ALERT is in comparator mode (default)  
TM = 1: ALERT is in interrupt mode  
Shutdown control bit  
SD  
SD = 0: Device is in continuous conversion mode (default)  
SD = 1: Device is in shutdown mode  
18  
Copyright © 2016, Texas Instruments Incorporated  
TMP75C-Q1  
www.ti.com.cn  
ZHCSFP0 NOVEMBER 2016  
Figure 16. TLOW - Temperature Low Limit Register (pointer = 2h) [reset = 4B00h](1)  
15  
14  
13  
L9  
12  
L8  
11  
L7  
10  
L6  
9
8
L11  
L10  
L5  
L4  
R/W-4Bh  
7
6
5
4
3
2
1
0
L3  
L2  
L1  
L0  
Reserved  
R-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
(1) 4B00h = 75°C.  
Table 7. TLOW Register Description  
Name  
Description  
The 8 MSBs of the temperature low limit (resolution of 1°C)  
The 4 LSBs of the temperature low limit (resolution of 0.0625°C)  
L11 to L4  
L3 to L0  
Figure 17. THIGH - Temperature High Limit Register (pointer = 3h) [reset = 5000h](1)  
15  
14  
13  
12  
11  
10  
9
8
H11  
H10  
H9  
H8  
H7  
H6  
H5  
H4  
R/W-50h  
7
6
5
4
3
2
1
0
H3  
H2  
H1  
H0  
Reserved  
R-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
(1) 5000h = 80°C.  
Table 8. THIGH Register Description  
Name  
Description  
The 8 MSBs of the temperature high limit (resolution of 1°C)  
The 4 LSBs of the temperature high limit (resolution of 0.0625°C)  
H11 to H4  
H3 to H0  
Copyright © 2016, Texas Instruments Incorporated  
19  
TMP75C-Q1  
ZHCSFP0 NOVEMBER 2016  
www.ti.com.cn  
8 Application and Implementation  
8.1 Application Information  
The TMP75C-Q1 is used to measure the PCB temperature of the location it is mounted. The programmable  
address options allow up to eight locations on the board to be monitored on a single serial bus. Connecting the  
ALERT pins together and programming the temperature limit registers to desired values allows for a temperature  
watchdog operation of all devices, interrupting the host controller only if the temperature exceeds the limits.  
8.2 Typical Application  
1.4 V to 3.6 V  
0.01 mF  
TMP75C-Q1  
1
2
3
4
8
7
6
5
SDA  
VS  
A0  
A1  
A2  
Two-Wire  
Host Controller  
SCL  
Connect to VS or  
GND for up to 8  
Address  
ALERT  
GND  
Combinations  
1.4 V to 3.6 V  
TMP75C-Q1  
0.01 mF  
1
2
3
4
8
7
SDA  
VS  
A0  
A1  
A2  
SCL  
Connect to VS or  
GND for up to 8  
Address  
6
5
ALERT  
GND  
Combinations  
Copyright © 2016, Texas Instruments Incorporated  
Additional  
Sensor  
Locations  
Figure 18. Temperature Monitoring of Multiple Locations on a PCB  
20  
Copyright © 2016, Texas Instruments Incorporated  
 
TMP75C-Q1  
www.ti.com.cn  
ZHCSFP0 NOVEMBER 2016  
Typical Application (continued)  
8.2.1 Design Requirements  
The TMP75C-Q1 only requires pull-up resistors on SDA and ALERT, although a pull-up resistor is typically  
present on the SCL as well. A 0.01-μF bypass capacitor on the supply is recommended, as shown in Figure 18.  
The SCL, SDA, and ALERT lines can be pulled up to a supply that is equal to or higher than VS through the pull-  
up resistors. To configure one of eight different addresses on the bus, connect A0, A1, and A2 to either VS or  
GND.  
8.2.2 Detailed Design Procedure  
The TMP75C-Q1 should be placed in close proximity to the heat source to be monitored, with a proper layout for  
good thermal coupling. This ensures that temperature changes are captured within the shortest possible time  
interval.  
8.2.3 Application Curves  
Figure 19 shows the step response of the TMP75C-Q1 to a submersion in an oil bath of 100°C from room  
temperature (27°C). The time-constant, or the time for the output to reach 63% of the input step, is 1.5 seconds.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
œ1 0  
1
2
3
4
5
6
7
8
9 1011121314151617181920  
Time (s)  
C007  
Figure 19. Temperature Step Response  
9 Power Supply Recommendations  
The TMP75C-Q1 operates with a power supply in the range of 1.4 V to 3.6 V. It is optimized for operation at 1.8-  
V supply but can measure temperature accurately in the full supply range.  
A power-supply bypass capacitor is required for stability; place this capacitor as close as possible to the supply  
and ground pins of the device. A typical value for this supply bypass capacitor is 0.01 μF. Applications with noisy  
or high-impedance power supplies may require additional decoupling capacitors to reject power-supply noise.  
Copyright © 2016, Texas Instruments Incorporated  
21  
 
TMP75C-Q1  
ZHCSFP0 NOVEMBER 2016  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Place the power-supply bypass capacitor as close as possible to the supply and ground pins. The recommended  
value of this bypass capacitor is 0.01 μF. Additional decoupling capacitance can be added to compensate for  
noisy or high-impedance power supplies.  
Pull up the open-drain output pins (SDA and ALERT) to a supply voltage rail (VS or higher but up to 3.6 V)  
through 10-kΩ pull-up resistors.  
10.2 Layout Example  
Via to Power or Ground Plane  
Via to Internal Layer  
Pull-Up Resistors  
Supply Bypass  
Capacitor  
Supply Voltage  
SDA  
VS  
A0  
A1  
A2  
SCL  
ALERT  
GND  
Ground Plane for  
Thermal Coupling  
to Heat Source  
Serial Bus Traces  
Heat Source  
Figure 20. Layout Example  
22  
版权 © 2016, Texas Instruments Incorporated  
TMP75C-Q1  
www.ti.com.cn  
ZHCSFP0 NOVEMBER 2016  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档ꢀ  
相关文档如下:  
TMP75BEVM TMP75CEVM 用户指南》(文献编号:SBOU141)  
11.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
23  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMP75CQDGKRQ1  
TMP75CQDRQ1  
ACTIVE  
ACTIVE  
VSSOP  
SOIC  
DGK  
D
8
8
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
T75CQ  
T75CQ  
NIPDAU-DCC  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TMP75CID

暂无描述
TI

TMP75CIDGKR

TMP75C 1.8-V Digital Temperature Sensor with Two-Wire Interface and Alert
TI

TMP75CIDGKT

TMP75C 1.8-V Digital Temperature Sensor with Two-Wire Interface and Alert
TI

TMP75CIDR

暂无描述
TI

TMP75CQDGKRQ1

具有双线制接口和报警功能、精度为 1°C 的数字温度传感器 | DGK | 8 | -40 to 125
TI

TMP75CQDRQ1

具有双线制接口和报警功能、精度为 1°C 的数字温度传感器 | D | 8 | -40 to 125
TI

TMP8035AP

IC 8-BIT, 11 MHz, MICROCONTROLLER, PDIP40, PLASTIC, DIP-40, Microcontroller
TOSHIBA

TMP8035AT

8-Bit Microcontroller
ETC

TMP8035N

8-Bit Microcontroller
ETC

TMP8035P

8-Bit Microcontroller
ETC

TMP8035PI

IC 8-BIT, 6 MHz, MICROCONTROLLER, PDIP40, PLASTIC, DIP-40, Microcontroller
TOSHIBA

TMP8039AP

8-Bit Microcontroller
ETC