TMS320BC51PQ [TI]

DIGITAL SIGNAL PROCESSORS; 数字信号处理器
TMS320BC51PQ
型号: TMS320BC51PQ
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DIGITAL SIGNAL PROCESSORS
数字信号处理器

数字信号处理器
文件: 总91页 (文件大小:1303K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
Powerful 16-Bit TMS320C5x CPU  
Multiple Phase-Locked Loop (PLL)  
Clocking Options (×1, ×2, ×3, ×4, ×5, ×9  
Depending on Device)  
20-, 25-, 35-, and 50-ns Single-Cycle  
Instruction Execution Time for 5-V  
Operation  
Block Moves for Data/Program  
Management  
25-, 40-, and 50-ns Single-Cycle Instruction  
Execution Time for 3-V Operation  
On-Chip Scan-Based Emulation Logic  
Boundary Scan  
Single-Cycle 16 × 16-Bit Multiply/Add  
224K × 16-Bit Maximum Addressable  
External Memory Space (64K Program, 64K  
Data, 64K I/O, and 32K Global)  
Five Packaging Options  
– 100-Pin Quad Flat Package (PJ Suffix)  
– 100-Pin Thin Quad Flat Package  
(PZ Suffix)  
– 128-Pin Thin Quad Flat Package  
(PBK Suffix)  
– 132-Pin Quad Flat Package (PQ Suffix)  
– 144-Pin Thin Quad Flat Package  
(PGE Suffix)  
2K, 4K, 8K, 16K, 32K × 16-Bit Single-Access  
On-Chip Program ROM  
1K, 3K, 6K, 9K × 16-Bit Single-Access  
On-Chip Program/Data RAM (SARAM)  
1K Dual-Access On-Chip Program/Data  
RAM (DARAM)  
Low Power Dissipation and Power-Down  
Modes:  
– 47 mA (2.35 mA/MIP) at 5 V, 40-MHz  
Clock (Average)  
Full-Duplex Synchronous Serial Port for  
Coder/Decoder Interface  
Time-Division-Multiplexed (TDM) Serial Port  
– 23 mA (1.15 mA/MIP) at 3 V, 40-MHz  
Clock (Average)  
– 10 mA at 5 V, 40-MHz Clock (IDLE1 Mode)  
– 3 mA at 5 V, 40-MHz Clock (IDLE2 Mode)  
– 5 µA at 5 V, Clocks Off (IDLE2 Mode)  
Hardware or Software Wait-State  
Generation Capability  
On-Chip Timer for Control Operations  
Repeat Instructions for Efficient Use of  
Program Space  
High-Performance Static CMOS Technology  
Buffered Serial Port  
Host Port Interface  
IEEE Standard 1149.1 Test-Access Port  
(JTAG)  
description  
The TMS320C5x generation of the Texas Instruments (TI ) TMS320 digital signal processors (DSPs) is  
fabricated with static CMOS integrated circuit technology; the architectural design is based upon that of an  
earlier TI DSP, the TMS320C25. The combination of advanced Harvard architecture, on-chip peripherals,  
on-chip memory, and a highly specialized instruction set is the basis of the operational flexibility and speed of  
the ’C5x devices. They execute up to 50 million instructions per second (MIPS).  
The ’C5x devices offer these advantages:  
Enhanced TMS320 architectural design for increased performance and versatility  
Modular architectural design for fast development of spin-off devices  
Advanced integrated-circuit processing technology for increased performance  
Upward-compatible source code (source code for ’C1x and ’C2x DSPs is upward compatible with ’C5x DSPs.)  
Enhanced TMS320 instruction set for faster algorithms and for optimized high-level language operation  
New static-design techniques for minimizing power consumption and maximizing radiation tolerance  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
TI is a trademark of Texas Instruments Incorporated.  
IEEE Standard 1149.1–1990, IEEE Standard Test-Access Port and Boundary-Scan Architecture  
References to ’C5x in this document include both TMS320C5x and TMS320LC5x devices unless specified otherwise.  
Copyright 1996, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
description (continued)  
Table 1 provides a comparison of the devices in the ’C5x generation. It shows the capacity of on-chip RAM and  
ROM memories, number of serial and parallel I/O ports, execution time of one machine cycle, and type of  
package with total pin count.  
Table 1. Characteristics of the ’C5x Processors  
ON-CHIP MEMORY (16-BIT WORDS)  
I/O PORTS  
POWER  
SUPPLY  
(V)  
CYCLE  
TIME  
(ns)  
PACKAGE  
TYPE  
QFP  
TMS320  
DEVICES  
DARAM  
SARAM  
ROM  
DATA +  
DATA +  
PROG  
DATA  
PROG  
SERIAL  
PARALLEL  
PROG  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
§
§
§
§
§
§
TMS320C50  
TMS320LC50  
TMS320C51  
TMS320LC51  
TMS320C52  
TMS320LC52  
TMS320C53  
TMS320LC53  
TMS320C53S  
TMS320LC53S  
TMS320LC56  
TMS320LC57  
TMS320C57S  
TMS320LC57S  
544  
544  
544  
544  
544  
544  
544  
544  
544  
544  
544  
544  
544  
544  
9K  
9K  
1K  
1K  
2K  
2K  
8K  
8K  
4K  
4K  
2
2
2
2
64K  
64K  
64K  
64K  
64K  
64K  
64K  
64K  
64K  
64K  
64K  
5
3.3  
5
50/35/25  
50/40/25  
132 pin  
132 pin  
50/35/25/20 100/132 pin  
3.3  
5
50/40/25  
50/35/25/20  
50/40/25  
50/35/25  
50/40/25  
50/35/25  
50/40/25  
35/25  
100/132 pin  
100 pin  
100 pin  
132 pin  
132 pin  
100 pin  
100 pin  
100 pin  
128 pin  
144 pin  
144 pin  
1
1
3.3  
5
§
§
§
§
3K  
3K  
3K  
3K  
6K  
6K  
6K  
6K  
16K  
16K  
16K  
16K  
2
2
3.3  
5
2
2
2
2
2
2
#
#
#
#
3.3  
3.3  
3.3  
5
32K  
32K  
||  
64K + HPI  
64K + HPI  
64K + HPI  
35/25  
§
||  
||  
2K  
2K  
50/35/25  
50/35  
§
3.3  
Sixteen of the 64K parallel I/O ports are memory mapped.  
QFP = Quad flatpack  
ROM boot loader available  
TDM serial port not available  
Includes auto-buffered serial port (BSP) but TDM serial port not available  
HPI = Host port interface  
§
#
||  
Pinouts for each package are device-specific.  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
TMS320C50, TMS320LC50, TMS320C51, TMS320LC51, TMS320C53, TMS320LC53  
PQ PACKAGE  
(TOP VIEW)  
17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117  
116  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
NC  
NC  
NC  
NC  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
V
V
SSD  
V
V
DDI  
SSD  
NC  
DDI  
IACK  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NC  
CLKOUT1  
XF  
HOLDA  
TDX  
DX  
TFSX/TFRM  
FSX  
TMS  
CLKMD2  
V
V
DDD  
V
V
SSI  
DDD  
TCK  
SSI  
TDO  
V
V
SSD  
V
V
DDC  
98  
SSD  
NC  
DDC  
97  
X1  
INT1  
INT2  
INT3  
INT4  
NMI  
96  
X2/CLKIN  
CLKIN2  
BR  
95  
94  
93  
STRB  
R/W  
PS  
92  
DR  
91  
TDR  
FSR  
CLKR  
90  
IS  
89  
DS  
88  
NC  
V
87  
V
DDA  
SSC  
V
86  
V
DDA  
NC  
NC  
SSC  
85  
NC  
NC  
84  
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83  
NOTE: NC = No connect (These pins are reserved.)  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
Pin Functions for Devices in the PQ Package  
SIGNAL  
TYPE  
DESCRIPTION  
PARALLEL INTERFACE BUS  
A0A15  
I/O/Z  
I/O/Z  
O/Z  
16-bit external address bus (MSB: A15, LSB: A0)  
16-bit external data bus (MSB: D15, LSB: D0)  
Program, data, and I/O space select outputs, respectively  
Timing strobe for external cycles and external DMA  
Read/write select for external cycles and external DMA  
Read and write strobes, respectively, for external cycles  
External bus ready/wait-state control input  
D0D15  
PS, DS, IS  
STRB  
I/O/Z  
I/O/Z  
O/Z  
R/W  
RD, WE  
READY  
BR  
I
I/O/Z  
Bus request. Arbitrates global memory and external DMA  
SYSTEM INTERFACE/CONTROL SIGNALS  
Reset. Initializes device and sets PC to zero  
Microprocessor/microcomputer mode select. Enables internal ROM  
Puts parallel I/F bus in high-impedance state after current cycle  
Hold acknowledge. Indicates external bus in hold state  
External flag output. Set/cleared through software  
I/O branch input. Implements conditional branches  
Timer output signal. Indicates output of internal timer  
Instruction acquisition signal  
RS  
I
MP/MC  
HOLD  
HOLDA  
XF  
I
I
O/Z  
O/Z  
I
BIO  
TOUT  
IAQ  
O/Z  
O/Z  
O/Z  
I
IACK  
INT1INT4  
NMI  
Interrupt acknowledge signal  
External interrupt inputs  
I
Nonmaskable external interrupt  
SERIAL PORT INTERFACE (SPI)  
DR  
I
O/Z  
I
Serial receive-data input  
DX  
Serial transmit-data output. In high-impedance state when not transmitting  
Serial receive-data clock input  
CLKR  
CLKX  
FSR  
FSX  
I/O/Z  
I
Serial transmit-data clock. Internal or external source  
Serial receive-frame-synchronization input  
I/O/Z  
Serial transmit-frame-synchronization signal. Internal or external source  
TDM SERIAL-PORT INTERFACE  
TDR  
I
O/Z  
I
TDM serial receive-data input  
TDX  
TDM serial transmit-data output. In high-impedance state when not transmitting  
TDM serial receive-data clock input  
TCLKR  
TCLKX  
I/O/Z  
TDM serial transmit-data clock. Internal or external source  
TDM serial receive-frame-synchronization input. In the TDM mode, TFSR/TADD is used to output/  
input the address of the port.  
TFSR / TADD  
I/O/Z  
I
TDM serial transmit-frame-synchronization signal. Internal or external source. In the TDM mode,  
TFSX/TFRM becomes TFRM, the TDM frame synchronization.  
TFSX /TFRM  
LEGEND:  
I
= Input  
O = Output  
Z = High impedance  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
Pin Functions for Devices in the PQ Package (Continued)  
EMULATION/IEEE STANDARD 1149.1 TEST ACCESS PORT (TAP)  
TAP scan data input  
TDI  
I
TDO  
O/Z  
TAP scan data output  
TMS  
I
TAP mode select input  
TCK  
I
TAP clock input  
TRST  
EMU0  
EMU1/OFF  
I
TAP reset (with pulldown resistor). Disables TAP when low  
Emulation control 0. Reserved for emulation use  
Emulation control 1. Puts outputs in high-impedance state when low  
CLOCK GENERATION AND CONTROL  
Oscillator output  
I/O/Z  
I/O/Z  
X1  
O
X2/CLKIN  
CLKIN2  
I
Clock/oscillator input  
I
I
Clock input  
CLKMD1, CLKMD2  
CLKOUT1  
Clock-mode select inputs  
O/Z  
Device system-clock output  
POWER SUPPLY CONNECTIONS  
Supply connection, address-bus output  
Supply connection, data-bus output  
Supply connection, control output  
Supply connection, internal logic  
Supply connection, address-bus output  
Supply connection, data-bus output  
Supply connection, control output  
Supply connection, internal logic  
V
V
V
V
V
V
V
V
S
S
S
S
S
S
S
S
DDA  
DDD  
DDC  
DDI  
SSA  
SSD  
SSC  
SSI  
LEGEND:  
Input  
I
=
O = Output  
S = Supply  
Z = High impedance  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
TMS320LC57  
PBK PACKAGE  
( TOP VIEW )  
128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97  
1
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
HINT  
WE  
2
HD1  
RD  
EMU0  
3
EMU1/OFF  
V
4
HD0  
HRDY  
SSC  
V
5
SSC  
6
V
TOUT  
BCLKX  
CLKX  
DDA  
7
A15  
8
A14  
9
V
A13  
DDC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
A12  
BFSR  
BCLKR  
RS  
A11  
A10  
CLKMD1  
READY  
HOLD  
BIO  
V
V
SSA  
SSA  
V
DDC  
TDI  
HDS1  
HDS2  
V
DDC  
IAQ  
V
TRST  
DDI  
V
V
V
SSI  
SSI  
DDI  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
V
MP/MC  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
V
SSA  
DDD  
HCS  
V
DDD  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
Pin Functions for the TMS320LC57 in the PBK Package  
SIGNAL  
TYPE  
DESCRIPTION  
PARALLEL INTERFACE BUS  
A0A15  
I/O/Z  
I/O/Z  
O/Z  
16-bit external address bus (MSB: A15, LSB: A0)  
16-bit external data bus (MSB: D15, LSB: D0)  
D0D15  
PS, DS, IS  
STRB  
Program, data, and I/O space select outputs, respectively  
Timing strobe for external cycles and external DMA  
Read/write select for external cycles and external DMA  
Read and write strobes, respectively, for external cycles  
External bus ready/wait-state control input  
Bus request. Arbitrates global memory and external DMA  
SYSTEM INTERFACE/CONTROL SIGNALS  
Reset. Initializes device and sets PC to zero  
Microprocessor/microcomputer mode select. Enables internal ROM  
Puts parallel I/F bus in high-impedance state after current cycle  
Hold acknowledge. Indicates external bus in hold state  
External flag output. Set/cleared through software  
I/O branch input. Implements conditional branches  
Timer output signal. Indicates output of internal timer  
Instruction acquisition signal  
I/O/Z  
I/O/Z  
O/Z  
R/W  
RD, WE  
READY  
BR  
I
I/O/Z  
RS  
I
MP/MC  
HOLD  
HOLDA  
XF  
I
I
O/Z  
O/Z  
I
BIO  
TOUT  
IAQ  
O/Z  
O/Z  
I
INT1INT4  
NMI  
External interrupt inputs  
I
Nonmaskable external interrupt  
SERIAL PORT INTERFACE  
DR  
I
O/Z  
I
Serial receive-data input  
DX  
Serial transmit-data output. In high-impedance state when not transmitting  
Serial receive-data clock input  
CLKR  
CLKX  
FSR  
FSX  
I/O/Z  
I
Serial transmit-data clock. Internal or external source  
Serial receive-frame-synchronization input  
Serial transmit-frame-synchronization signal. Internal or external source  
HOST PORT INTERFACE (HPI)  
I/O/Z  
HCNTL0  
HCNTL1  
HINT  
I
HPI mode control 1  
I
HPI mode control 2  
O/Z  
Host interrupt  
HDS1  
I
HPI data strobe 1  
HDS2  
I
HPI data strobe 2  
HR/W  
HAS  
I
HPI read/write strobe  
I
HPI address strobe  
HRDY  
HCS  
O/Z  
HPI ready signal  
I
HPI chip select  
HBIL  
I
HPI byte identification input  
HD0HD7  
LEGEND:  
I/O/Z  
HPI data bus  
I
= Input  
O = Output  
Z = High impedance  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
Pin Functions for the TMS320LC57 in the PBK Package (Continued)  
SIGNAL  
TYPE  
DESCRIPTION  
BUFFERED SERIAL PORT  
BSP receive data input  
BDR  
BDX  
I
O/Z  
I
BSP transmit data output; in high-impedance state when not transmitting  
BSP receive-data clock input  
BCLKR  
BCLKX  
BFSR  
I/O/Z  
I
BSP transmit-data clock; internal or external source  
BSP receive frame-synchronization input  
BSP transmit frame-synchronization signal; internal or external source  
EMULATION/JTAG INTERFACE  
BFSX  
I/O/Z  
TDI  
I
JTAG-test-port scan data input  
TDO  
O/Z  
JTAG-test-port scan data output  
TMS  
I
JTAG-test-port mode select input  
TCK  
I
JTAG-port clock input  
TRST  
EMU0  
EMU1/OFF  
I
JTAG-port reset (with pull-down resistor). Disables JTAG when low  
Emulation control 0. Reserved for emulation use  
Emulation control 1. Puts outputs in high-impedance state when low  
CLOCK GENERATION AND CONTROL  
Oscillator output  
I/O/Z  
I/O/Z  
X1  
O
I
X2/CLKIN  
Clock input  
CLKMD1, CLKMD2,  
CLKMD3  
I
Clock-mode select inputs  
CLKOUT1  
O/Z  
Device system-clock output  
POWER SUPPLY CONNECTIONS  
Supply connection, address-bus output  
Supply connection, data-bus output  
Supply connection, control output  
Supply connection, internal logic  
Supply connection, address-bus output  
Supply connection, data-bus output  
Supply connection, control output  
Supply connection, internal logic  
V
V
V
V
V
V
V
V
S
S
S
S
S
S
S
S
DDA  
DDD  
DDC  
DDI  
SSA  
SSD  
SSC  
SSI  
LEGEND:  
Input  
I
=
O = Output  
S = Supply  
Z = High impedance  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
TMS320C51, TMS320LC51, TMS320C52, TMS320LC52, TMS320C53S, TMS320LC53S, TMS320LC56  
PZ PACKAGE  
(TOP VIEW)  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
EMU0  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
WE  
RD  
V
A15  
A14  
A13  
A12  
A11  
A10  
EMU1/OFF  
V
DDA  
SSC  
TOUT  
9
RS  
READY  
HOLD  
BIO  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
CLKMD1  
V
SSA  
V
SSA  
TDI  
TRST  
V
V
V
DDI  
SSI  
SSI  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
MP/MC  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
V
V
SSA  
DDD  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
NOTE: NC = No connect (These pins are reserved.)  
See Table 2 for device-specific pinouts.  
Table 2. Device-Specific Pinouts for the PZ Package  
’LC56  
PIN  
’C51, ’LC51  
TCLKX  
’C52, ’LC52  
’C53S, ’LC53S  
CLKX2  
CLKX1  
FSR2  
5
V
BCLKX  
CLKX  
BFSR  
BCLKR  
DR  
SSI  
CLKX  
§
6
CLKX  
7
TFSR/TADD  
TCLKR  
DR  
V
V
SSI  
8
CLKR2  
DR1  
SSI  
DR  
§
46  
47  
TDR  
V
SSI  
DR2  
BDR  
§
48  
49  
FSR  
FSR  
FSR1  
FSR  
§
CLKR  
CLKIN2  
FSX  
CLKR  
CLKIN2  
FSX  
CLKR1  
CLKIN2  
FSX1  
CLKR  
CLKMD3  
FSX  
83  
§
91  
92  
TFSX/TFRM  
DX  
V
FSX2  
BFSX  
DX  
SSI  
§
93  
94  
DX  
NC  
DX1  
TDX  
DX2  
BDX  
§
Pin names beginning with “B” indicate signals on the buffered serial port (BSP).  
No functional change  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
Pin Functions for Devices in the PZ Package  
SIGNAL  
TYPE  
DESCRIPTION  
PARALLEL INTERFACE BUS  
A0A15  
I/O/Z  
I/O/Z  
O/Z  
16-bit external address bus (MSB: A15, LSB: A0)  
16-bit external data bus (MSB: D15, LSB: D0)  
Program, data, and I/O space select outputs, respectively  
Timing strobe for external cycles and external DMA  
Read/write select for external cycles and external DMA  
Read and write strobes, respectively, for external cycles  
External bus ready/wait-state control input  
D0D15  
PS, DS, IS  
STRB  
I/O/Z  
I/O/Z  
O/Z  
R/W  
RD, WE  
READY  
BR  
I
I/O/Z  
Bus request. Arbitrates global memory and external DMA  
SYSTEM INTERFACE/CONTROL SIGNALS  
Reset. Initializes device and sets PC to zero  
RS  
I
MP/MC  
HOLD  
HOLDA  
XF  
I
Microprocessor/microcomputer mode select. Enables internal ROM  
Puts parallel I/F bus in high-impedance state after current cycle  
Hold acknowledge. Indicates external bus in hold state  
External flag output. Set/cleared through software  
I/O branch input. Implements conditional branches  
Timer output signal. Indicates output of internal timer  
External interrupt inputs  
I
O/Z  
O/Z  
BIO  
I
TOUT  
INT1INT4  
NMI  
O/Z  
I
I
Nonmaskable external interrupt  
SERIAL PORT INTERFACE  
DR, DR1, DR2  
I
O/Z  
I
Serial receive-data input  
DX, DX1, DX2  
Serial transmit-data output. In high-impedance state when not transmitting  
Serial receive-data clock input  
CLKR, CLKR1, CLKR2  
CLKX, CLKX1, CLKX2  
FSR, FSR1, FSR2  
FSX, FSX1, FSX2  
I/O/Z  
I
Serial transmit-data clock. Internal or external source  
Serial receive-frame-synchronization input  
I/O/Z  
Serial transmit-frame-synchronization signal. Internal or external source  
BUFFERED SERIAL PORT (BSP) (SEE NOTE 1)  
BSP receive data input  
BDR  
I
O/Z  
I
BDX  
BSP transmit data output; in high-impedance state when not transmitting  
BSP receive-data clock input  
BCLKR  
BCLKX  
BFSR  
I/O/Z  
I
BSP transmit-data clock; internal or external source  
BSP receive frame-synchronization input  
BFSX  
I/O/Z  
BSP transmit frame-synchronization signal; internal or external source  
LEGEND:  
I
= Input  
O = Output  
Z = High impedance  
NOTE 1: ’LC56 devices only  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
Pin Functions for Devices in the PZ Package (Continued)  
SIGNAL  
TYPE  
DESCRIPTION  
TDM SERIAL PORT INTERFACE  
TDM serial receive-data input  
TDR  
TDX  
I
O/Z  
I
TDM serial transmit-data output. In high-impedance state when not transmitting  
TDM serial receive-data clock input  
TCLKR  
TCLKX  
I/O/Z  
TDM serial transmit-data clock. Internal or external source  
TDM serial receive-frame-synchronization input. In the TDM mode, TFSR/TADD is used to output/  
input the address of the port  
TFSR / TADD  
TFSX /TFRM  
I/O/Z  
I
TDM serial transmit-frame-synchronization signal. Internal or external source. In the TDM mode,  
TFSX/TFRM becomes TFRM, the TDM frame sync.  
EMULATION/JTAG INTERFACE  
JTAG-test-port scan data input  
TDI  
I
TDO  
O/Z  
JTAG-test-port scan data output  
TMS  
I
JTAG-test-port mode select input  
TCK  
I
JTAG-port clock input  
TRST  
EMU0  
EMU1/OFF  
I
JTAG-port reset (with pull-down resistor). Disables JTAG when low  
Emulation control 0. Reserved for emulation use  
Emulation control 1. Puts outputs in high-impedance state when low  
CLOCK GENERATION AND CONTROL (SEE NOTE 2)  
Oscillator output  
I/O/Z  
I/O/Z  
X1  
O
I
X2/CLKIN  
CLKIN2  
Clock/oscillator input (PLL clock input for ’C56)  
Clock input (PLL clock input for ’C50, ’C51, ’C52, ’C53, ’C53S)  
I
CLKMD1, CLKMD2,  
CLKMD3  
I
Clock-mode select inputs  
CLKOUT1  
O/Z  
Device system-clock output  
POWER SUPPLY CONNECTIONS  
Supply connection, address-bus output  
Supply connection, data-bus output  
Supply connection, control output  
Supply connection, internal logic  
Supply connection, address-bus output  
Supply connection, data-bus output  
Supply connection, control output  
Supply connection, internal logic  
V
V
V
V
V
V
V
V
S
S
S
S
S
S
S
S
DDA  
DDD  
DDC  
DDI  
SSA  
SSD  
SSC  
SSI  
LEGEND:  
Input  
I
=
O = Output  
S = Supply  
Z = High impedance  
NOTE 2: CLKIN2 pin is replaced by CLKMD3 pin on ’LC56 devices.  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
TMS320C52, TMS320LC52  
PJ PACKAGE  
(TOP VIEW)  
83 82 81  
100 99  
97 96 95 94 93 92 91 90 89 88 87 86 85 84  
98  
D8  
1
EMU1/OFF  
EMU0  
80  
V
2
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DDD  
V
V
3
SSD  
DDC  
V
V
4
SSD  
D7  
DDC  
V
5
DDI  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
V
6
DDI  
CLKOUT1  
7
XF  
8
HOLDA  
NC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
DX  
V
SSI  
TMS  
DDD  
FSX  
V
V
CLKMD2  
V
DDD  
TCK  
SSI  
V
SSI  
V
V
TDO  
SSD  
V
SSD  
DDC  
INT1  
INT2  
INT3  
INT4  
NMI  
DR  
X1  
X2/CLKIN  
CLKIN2  
BR  
STRB  
R/W  
PS  
V
SSI  
FSR  
IS  
CLKR  
DS  
V
V
DDA  
SSC  
V
WE  
SSA  
A0  
RD  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
NOTE: NC = No connect (These pins are reserved.)  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
Pin Functions for the TMS320C52, TMS320LC52 in the PJ Package  
SIGNAL  
TYPE  
DESCRIPTION  
PARALLEL INTERFACE BUS  
A0A15  
I/O/Z  
I/O/Z  
O/Z  
16-bit external address bus (MSB: A15, LSB: A0)  
16-bit external data bus (MSB: D15, LSB: D0)  
D0D15  
PS, DS, IS  
STRB  
Program, data, and I/O space select outputs, respectively  
Timing strobe for external cycles and external DMA  
Read/write select for external cycles and external DMA  
Read and write strobes, respectively, for external cycles  
External bus ready/wait-state control input  
I/O/Z  
I/O/Z  
O/Z  
R/W  
RD, WE  
READY  
BR  
I
I/O/Z  
Bus request. Arbitrates global memory and external DMA  
SYSTEM INTERFACE/CONTROL SIGNALS  
Reset. Initializes device and sets PC to zero  
Microprocessor/microcomputer mode select. Enables internal ROM  
Puts parallel I/F bus in high-impedance state after current cycle  
Hold acknowledge. Indicates external bus in hold state  
External flag output. Set/cleared through software  
I/O branch input. Implements conditional branches  
Timer output signal. Indicates output of internal timer  
External interrupt inputs  
RS  
I
MP/MC  
HOLD  
HOLDA  
XF  
I
I
O/Z  
O/Z  
BIO  
I
TOUT  
INT1INT4  
NMI  
O/Z  
I
I
Nonmaskable external interrupt  
SERIAL PORT INTERFACE  
DR  
I
O/Z  
I
Serial receive-data input  
DX  
Serial transmit-data output. In high-impedance state when not transmitting  
Serial receive-data clock input  
CLKR  
CLKX  
FSR  
FSX  
I/O/Z  
I
Serial transmit-data clock. Internal or external source  
Serial receive-frame-synchronization input  
I/O/Z  
Serial transmit-frame-synchronization signal. Internal or external source  
EMULATION/JTAG INTERFACE  
TDI  
I
JTAG-test-port scan data input  
TDO  
O/Z  
JTAG-test-port scan data output  
TMS  
I
JTAG-test-port mode select input  
TCK  
I
JTAG-port clock input  
TRST  
I
JTAG-port reset (with pulldown resistor). Disables JTAG when low  
Emulation control 0. Reserved for emulation use  
Emulation control 1. Puts outputs in high-impedance state when low  
EMU0  
EMU1/OFF  
LEGEND:  
I/O/Z  
I/O/Z  
I
= Input  
O = Output  
Z = High impedance  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
Pin Functions for the TMS320C52, TMS320LC52 in the PJ Package (Continued)  
SIGNAL  
TYPE  
DESCRIPTION  
CLOCK GENERATION AND CONTROL  
Oscillator output  
Clock/oscillator input  
X1  
O
X2/CLKIN  
I
CLKIN2  
I
I
Clock input (PLL clock input for ’C52, ’LC52)  
Clock-mode select inputs  
CLKMD1, CLKMD2  
CLKOUT1  
O/Z  
Device system-clock output  
POWER SUPPLY CONNECTIONS  
Supply connection, address-bus output  
Supply connection, data-bus output  
Supply connection, control output  
Supply connection, internal logic  
Supply connection, address-bus output  
Supply connection, data-bus output  
Supply connection, control output  
Supply connection, internal logic  
V
V
V
V
V
V
V
V
S
S
S
S
S
S
S
S
DDA  
DDD  
DDC  
DDI  
SSA  
SSD  
SSC  
SSI  
LEGEND:  
Input  
I
=
O = Output  
S = Supply  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
TMS320C57S, TMS320LC57S  
PGE PACKAGE  
(TOP VIEW)  
HINT  
EMU0  
NC  
1
WE  
HD1  
RD  
HD0  
HRDY  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
2
3
EMU1/OFF  
4
V
5
SSC  
V
V
6
SSC  
DDA  
TOUT  
BCLKX  
CLKX  
A15  
NC  
A14  
A13  
A12  
NC  
7
8
9
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
DDC  
98  
BFSR  
BCLKR  
RS  
97  
96  
A11  
A10  
CLKMD1  
95  
READY  
HOLD  
NC  
94  
93  
V
SSA  
92  
BIO  
V
SSA  
91  
V
TDI  
DDC  
90  
V
HDS1  
HDS2  
DDC  
89  
IAQ  
88  
TRST  
V
DDI  
87  
V
V
SSI  
DDI  
86  
V
A9  
A8  
A7  
NC  
A6  
A5  
A4  
A3  
NC  
A2  
A1  
A0  
SSI  
85  
MP/MC  
D15  
D14  
D13  
NC  
84  
83  
82  
81  
80  
D12  
D11  
D10  
D9  
NC  
D8  
79  
78  
77  
76  
75  
74  
V
V
HCS  
DDD  
SSA  
73  
V
DDD  
NOTE: NC = No connect (These pins are reserved.)  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
Pin Functions for the TMS320C57S, TMS320LC57S in the PGE Package  
SIGNAL  
TYPE  
DESCRIPTION  
PARALLEL INTERFACE BUS  
A0A15  
I/O/Z  
I/O/Z  
O/Z  
16-bit external address bus (MSB: A15, LSB: A0)  
16-bit external data bus (MSB: D15, LSB: D0)  
Program, data, and I/O space select outputs, respectively  
Timing strobe for external cycles and external DMA  
Read/write select for external cycles and external DMA  
Read and write strobes, respectively, for external cycles  
External bus ready/wait-state control input  
Bus request. Arbitrates global memory and external DMA  
SYSTEM INTERFACE/CONTROL SIGNALS  
Reset. Initializes device and sets PC to zero  
Microprocessor/microcomputer mode select. Enables internal ROM  
Puts parallel I/F bus in high-impedance state after current cycle  
Hold acknowledge. Indicates external bus in hold state  
External flag output. Set/cleared through software  
I/O branch input. Implements conditional branches  
Timer output signal. Indicates output of internal timer  
Instruction acquisition signal  
D0D15  
PS, DS, IS  
STRB  
I/O/Z  
I/O/Z  
O/Z  
R/W  
RD, WE  
READY  
BR  
I
I/O/Z  
RS  
I
MP/MC  
HOLD  
HOLDA  
XF  
I
I
O/Z  
O/Z  
I
BIO  
TOUT  
IAQ  
O/Z  
O/Z  
I
INT1INT4  
NMI  
External interrupt inputs  
I
Nonmaskable external interrupt  
SERIAL PORT INTERFACE (SPI)  
DR  
I
O/Z  
I
Serial receive-data input  
DX  
Serial transmit-data output. In high-impedance state when not transmitting  
Serial receive-data clock input  
CLKR  
CLKX  
FSR  
FSX  
I/O/Z  
I
Serial transmit-data clock. Internal or external source  
Serial receive-frame-synchronization input  
Serial transmit-frame-synchronization signal. Internal or external source  
HOST PORT INTERFACE (HPI)  
I/O/Z  
HCNTL0  
HCNTL1  
HINT  
I
HPI mode control 1  
I
HPI mode control 2  
O/Z  
Host interrupt  
HDS1  
I
HPI data strobe 1  
HDS2  
I
HPI data strobe 2  
HR/W  
HAS  
I
HPI read/write strobe  
I
HPI address strobe  
HRDY  
HCS  
O/Z  
HPI ready signal  
I
HPI chip select  
HBIL  
I
HPI byte identification input  
HD0HD7  
LEGEND:  
I/O/Z  
HPI data bus  
I
= Input  
O = Output  
Z = High impedance  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
Pin Functions for the TMS320C57S, TMS320LC57S in the PGE Package (Continued)  
SIGNAL  
TYPE  
DESCRIPTION  
BUFFERED SERIAL PORT  
BSP receive data input  
BDR  
BDX  
I
O/Z  
I
BSP transmit data output; in high-impedance state when not transmitting  
BSP receive-data clock input  
BCLKR  
BCLKX  
BFSR  
I/O/Z  
I
BSP transmit-data clock; internal or external source  
BSP receive frame-synchronization input  
BSP transmit frame-synchronization signal; internal or external source  
EMULATION/JTAG INTERFACE  
BFSX  
I/O/Z  
TDI  
I
JTAG-test-port scan data input  
TDO  
O/Z  
JTAG-test-port scan data output  
TMS  
I
JTAG-test-port mode select input  
TCK  
I
JTAG-port clock input  
TRST  
EMU0  
EMU1/OFF  
I
JTAG-port reset (with pulldown resistor). Disables JTAG when low  
Emulation control 0. Reserved for emulation use  
Emulation control 1. Puts outputs in high-impedance state when low  
CLOCK GENERATION AND CONTROL  
Oscillator output  
I/O/Z  
I/O/Z  
X1  
O
I
X2/CLKIN  
PLL clock input  
CLKMD1, CLKMD2,  
CLKMD3  
I
Clock-mode select inputs  
CLKOUT1  
O/Z  
Device system-clock output  
POWER SUPPLY CONNECTIONS  
Supply connection, address-bus output  
Supply connection, data-bus output  
Supply connection, control output  
Supply connection, internal logic  
Supply connection, address-bus output  
Supply connection, data-bus output  
Supply connection, control output  
Supply connection, internal logic  
V
V
V
V
V
V
V
V
S
S
S
S
S
S
S
S
DDA  
DDD  
DDC  
DDI  
SSA  
SSD  
SSC  
SSI  
LEGEND:  
Input  
I
=
O = Output  
S = Supply  
Z = High impedance  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
architecture  
The ’C5x’s advanced Harvard-type architecture maximizes the processing power by maintaining two separate  
memorybusstructures, programanddata, forfull-speedexecution. Instructionssupportdatatransfersbetween  
the two spaces. This architecture permits coefficients stored in program memory to be read into the RAM,  
eliminating the need for a separate coefficient ROM. The ’C5x architecture also makes available immediate  
instructions and subroutines based on computed values. Increased throughput on the ’C5x for many DSP  
applications is accomplished using single-cycle multiply/accumulate instructions with a data-move option, up  
to eight auxiliary registers with a dedicated arithmetic unit, a parallel logic unit, and faster I/O necessary for  
data-intensive signal processing. The architectural design emphasizes overall speed, communication, and  
flexibility in processor configuration. Control signals and instructions provide floating-point support,  
block-memory transfers, communication to slower off-chip devices, and multiprocessing implementations  
as shown in the functional block diagram.  
Table 3 explains the symbols that are used in the functional block diagram.  
Table 3. Symbols Used in Functional Block Diagram  
SYMBOL  
ABU  
DESCRIPTION  
Auto-buffering unit  
SYMBOL  
IFR  
DESCRIPTION  
Interrupt-flag register  
Interrupt-mask register  
ACCB  
ACCH  
ACCL  
ALU  
Accumulator buffer  
IMR  
Accumulator high  
INDX  
IR  
Indirect-addressing-index register  
Instruction register  
Accumulator low  
Arithmetic logic unit  
MCS  
Microcall stack  
ARAU  
ARB  
Auxiliary-register arithmetic unit  
Auxiliary-register pointer buffer  
Auxiliary-register compare register  
Auxiliary-register pointer  
MUX  
Multiplexer  
PAER  
PASR  
PC  
Block-repeat-address end register  
Block-repeat-address start register  
Program counter  
ARCR  
ARP  
ARR  
Address-receive register (ABU)  
Auxiliary registers  
PFC  
Prefetch counter  
AR0–AR7  
AXR  
PLU  
Parallel logic unit  
Address-transmit register (ABU)  
Receive-buffer-size register (ABU)  
Transmit-buffer-size register (ABU)  
Block-move-address register  
Block-repeat-counter register  
Buffered serial port  
PMST  
PRD  
Processor-mode-status register  
Timer-period register  
BKR  
BKX  
PREG  
RPTC  
SARAM  
SFL  
Product register  
BMAR  
BRCR  
BSP  
Repeat-counter register  
Single-access RAM  
Left shifter  
C
Carry bit  
SFR  
Right shifter  
CBER1  
CBER2  
CBSR1  
CBSR2  
DARAM  
DBMR  
DP  
Circular buffer 1 end address  
Circular buffer 2 end address  
Circular buffer 1 start address  
Circular buffer 2 start address  
Dual-access RAM  
SPC  
Serial-port interface-control register  
Status registers  
ST0,ST1  
TCSR  
TCR  
TDM channel-select register  
Timer-control register  
TDM  
Time-division-multiplexed serial port  
TDM data transmit register  
Timer-count register  
Dynamic bit manipulation register  
Data memory page pointer  
Serial-port data receive register  
Serial-port data transmit register  
Global memory allocation register  
Host port interface  
TDXR  
TIM  
DRR  
TRAD  
TRCV  
TREG0  
TREG1  
TREG2  
TRTA  
TSPC  
TDM received-address register  
TDM data-receive register  
Temporary register for multiplication  
Temporary register for dynamic shift count  
Temporary register used as bit pointer in dynamic-bit test  
TDM receive-/transmit-address register  
TDM serial-port-control register  
DXR  
GREG  
HPI  
HPIAH  
HPIAL  
HPICH  
HPICL  
HPI-address register (high bytes)  
HPI-address register (low bytes)  
HPI-control register (high bytes)  
HPI-control register (low bytes)  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
functional block diagram  
Program Bus  
CLKMD1  
CLKMD2  
IS  
Serial Port 1  
DX  
SPC  
CLKX  
DS  
16  
PFC(16)  
FSX  
PS  
DXR  
DR  
16  
RW  
STRB  
READY  
BR  
X1  
FSR  
DRR  
PAER(16)  
16  
CLKOUT1  
X2/CLKIN  
CLKIN2/CLKMD3  
CLKR  
16  
16  
MUX  
Serial Port 2  
XF  
16  
16  
Compare  
DX2  
HOLD  
HOLDA  
IAQ  
16  
16  
16  
16  
SPC  
16  
CLKX2  
IR(16)  
FSX2  
MCS(16)  
PC(16)  
16  
PASR(16)  
16  
BMAR(16)  
ST0(16)  
DXR  
DRR  
DR2  
BO  
RD  
FSR2  
CLKR2  
RS  
WE  
NMI  
IACK  
ST1(16)  
Address  
Stack  
PMST(16)  
RPTC(16)  
IMR(16)  
MP/MC  
TDM  
INT(1–4)  
Program  
’C50  
ROM  
2K  
(8x16)  
4
TSPC  
’C51  
8K  
IFR(16)  
’C52  
4K  
TDXR  
TRCV  
TDX  
’C53  
16K  
32K  
32K  
GREG(16)  
BRCR(16)  
TREG1(5)  
TREG2(4)  
TFRM  
TCLKX  
TDR  
16  
16  
’C56  
16  
A15–A0  
’C57  
16  
TCSR(8)  
TRTA  
TADD  
TCLKR  
Instruction  
16  
16  
RBIT  
Program Bus  
TRAD(16)  
D15–D0  
16  
BSP  
DXR  
16  
Data Bus  
16  
16  
AXR(11)  
BKX(11)  
DRR  
BDX  
16  
DFSX  
BCLKX  
BDR  
3
9
7 LSB  
16  
16 16  
16  
16  
from IR  
AR0(16)  
AR1(16)  
DP(9)  
BFSR  
BCLKR  
DBMR(16)  
MUX  
AR2(16)  
ARR(11)  
BKR(11)  
16  
16  
16  
ARP(3)  
3
AR3(16)  
3
9
AR4(16)  
16  
AR5(16)  
MUX  
TREG0(16)  
Multiplier  
ARB(3)  
Timer  
TCR  
AR6(16)  
AR7(16)  
16  
CBSR1(16)  
CBSR2(16)  
CBER1(16)  
CBER2(16)  
3
TOUT  
SFL(0–16)  
MUX  
PREG(32)  
32  
PRD  
TIM  
16  
PLU (16)  
SFL (–6, 0, 1, 4)  
32  
MUX  
HD0  
32  
INDX(16)  
32  
HPI  
HD7  
ARCR(16)  
HCNTL1  
HCNTL0  
HBIL  
SFR(0–16)  
HPICL  
HPIAL  
HPICH  
HPIAH  
16  
MUX  
32  
HCS  
HDS(1–1)  
HAS  
ARAU(16)  
MUX  
MUX  
HR/W  
HRDY  
HINT  
ALU(32)  
16  
32  
32  
Data/Prog  
SARAM  
32  
MUX  
’C50  
’C51  
’C53  
’C56  
’C57  
9K  
1K  
3K  
6K  
6K  
Data/Prog  
DARAM  
B0 (512x16)  
Data  
C
ACCH(16)  
ACCL(16)  
32  
ACCB(32)  
DARAM  
B2 (32x16)  
B1 (512x16)  
16  
Shifter(0–7)  
16  
MUX  
16  
MUX  
16  
16  
16  
Not available on all devices (see Table 1).  
NOTES: A. Signals in shaded text are not available on  
100-pin QFP packages.  
B. Symbol descriptions appear in Table 3.  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
32-bit ALU/accumulator  
The 32-bit ALU and accumulator implement a wide range of arithmetic and logical functions, the majority of  
which execute in a single cycle. The ALU is a general-purpose arithmetic/logic unit that operates on 16-bit words  
taken from data memory or derived from immediate instructions. In addition to the usual arithmetic instructions,  
the ALU can perform Boolean operations, facilitating the bit manipulation ability required of a high-speed  
controller. One input to the ALU always is supplied by the accumulator, and the other input can be furnished  
from the product register (PREG) of the multiplier, the accumulator buffer (ACCB), or the output of the scaling  
shifter [which has been read from data memory or from the accumulator (ACC)]. After the ALU performs the  
arithmetic or logical operation, the result is stored in the ACC where additional operations, such as shifting, can  
be performed. Data input to the ALU can be scaled by the scaling shifter. The 32-bit ACC is split into two 16-bit  
segments for storage in data memory. Shifters at the output of the ACC provide a left shift of 0 to 7 places. This  
shift is performed while the data is being transferred to the data bus for storage. The contents of the ACC remain  
unchanged. When the postscaling shifter is used on the high word of the ACC (bits 3116), the most significant  
bits (MSBs) are lost and the least significant bits (LSBs) are filled with bits shifted in from the low word (bits  
150). When the postscaling shifter is used on the low word, the LSBs are filled with zeros.  
The ’C5x supports floating-point operations for applications requiring a large dynamic range. By performing left  
shifts, the normalization instruction (NORM) is used to normalize fixed-point numbers contained in the ACC.  
The four bits of the TREG1 define a variable shift through the scaling shifter for the ADDT/LACT/SUBT  
instructions (add to/load to/subtract from ACC with shift specified by TREG1). These instructions are useful  
in denormalizing a number (converting from floating point to fixed point). They are also useful for executing an  
automatic gain control (AGC) going into a filter.  
The single-cycle 1-bit to 16-bit right shift of the ACC efficiently aligns the ACC’s contents. This, coupled with  
the32-bittemporarybufferontheACC, enhancestheeffectivenessoftheALUinextended-precisionarithmetic.  
The ACCB provides a temporary storage place for a fast save of the ACC. The ACCB also can be used as an  
input to the ALU. The minimum or maximum value in a string of numbers is found by comparing the contents  
of the ACCB with the contents of the ACC. The minimum or maximum value is placed in both registers, and,  
if the condition is met, the carry bit (C) is set to 1. The minimum and maximum functions are executed by the  
CRLT and CRGT instructions, respectively.  
scaling shifters  
The ’C5x provides a scaling shifter that has a 16-bit input connected to the data bus and a 32-bit output  
connected to the ALU. This scaling shifter produces a left shift of 0 to 16 bits on the input data. The shift count  
is specified by a constant embedded in the instruction word or by the value in TREG1. The LSBs of the output  
are filled with zeros; the MSBs may be either filled with zeros or sign extended, depending upon the value of  
the sign-extension mode (SXM) bit of status register ST1.  
The ’C5x also contains several other shifters that allow it to perform numerical scaling, bit extraction,  
extended-precision arithmetic, and overflow prevention. These shifters are connected to the output of the  
product register and the ACC.  
parallel logic unit  
The parallel logic unit (PLU) is a second logic unit, additional to the main ALU, that executes logic operations  
on data without affecting the contents of the ACC. The PLU provides the bit-manipulation ability required of a  
high-speed controller and simplifies control/status register operations. The PLU provides a direct logic  
operation path to data memory space and can set, clear, test, or toggle multiple bits directly in a data memory  
location, a control/status register, or any register that is mapped into data memory space.  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
16 × 16-bit parallel multiplier  
The ’C5x uses a 16 × 16-bit hardware multiplier that is capable of computing a signed or an unsigned 32-bit  
product in a single machine cycle. All multiply instructions, except the MPYU (multiply unsigned) instruction,  
perform a signed multiply operation in the multiplier. That is, two numbers being multiplied are treated as  
2s-complement numbers, and the result is a 32-bit 2s-complement number.  
There are two registers associated with the multiplier: TREG0, a 16-bit temporary register that holds one of the  
operands for the multiplier, and PREG, the 32-bit product register that holds the product. Four product shift  
modes (PM) are available at the PREG’s output. These shift modes are useful for performing  
multiply/accumulate operations, performing fractional arithmetic, or justifying fractional products. The PM field  
of status register ST1 specifies the PM shift mode.  
The product can be shifted one bit to compensate for the extra sign bit gained in multiplying two 16-bit  
2s-complement numbers (MPY). A 4-bit shift is used in conjunction with the MPY instruction with a short  
immediate value (13 bits or less) to eliminate the four extra sign bits gained in multiplying a 16-bit number by  
a 13-bit number. Finally, the output of PREG can, instead, be right-shifted 6 bits to enable the execution of up  
to 128 consecutive multiply/accumulates without the possibility of overflow.  
The load-TREG0 (LT) instruction normally loads TREG0 to provide one operand (from the data bus), and the  
MPY instruction provides the second operand (also from the data bus). A multiplication also can be performed  
with a short or long immediate operand by using the MPY instruction with an immediate operand. A product is  
obtained every two cycles except when a long immediate operand is used.  
Four multiply/accumulate instructions (MAC, MACD, MADD, and MADS as defined in Table 7) fully utilize the  
computational bandwidth of the multiplier, allowing both operands to be processed simultaneously. The data  
for these operations is transferred to the multiplier during each cycle through the program and data buses. This  
facilitates single-cycle multiply/accumulates when used with repeat (RPT and RPTZ) instructions. In these  
instructions, the coefficient addresses are generated by the PC, while the data addresses are generated by the  
ARAU. This allows the repeated instruction to access the values sequentially from the coefficient table and step  
through the data in any of the indirect addressing modes. The RPTZ instruction also clears the accumulator and  
the product register to initialize the multiply/accumulate operation.  
The MACD and MADD instructions, when repeated, support filter constructs (weighted running averages) so  
that as the sum-of-products is executed, the sample data is shifted in memory to make room for the next sample  
and to eliminate the oldest sample. Circular addressing with MAC and MADS instructions also can be used to  
support filter implementation.  
auxiliary registers and auxiliary-register arithmetic unit (ARAU)  
TheC5xprovidesaregisterfilecontainingeightauxiliaryregisters(AR0AR7). Theauxiliaryregistersareused  
for indirect addressing of the data memory or for temporary data storage. Indirect auxiliary-register addressing  
allowsplacementofthedatamemoryaddressofaninstructionoperandintooneoftheauxiliaryregisters. These  
registers are referenced with a 3-bit auxiliary register pointer (ARP) that is loaded with a value from 0 through  
7, designated AR0 through AR7, respectively. The auxiliary registers and the ARP can be loaded from data  
memory, the ACC, the product register, or by an immediate operand defined in the instruction. The contents of  
these registers can be stored in data memory or used as inputs to the central arithmetic logic unit (CALU). These  
registers are accessible as memory-mapped locations within the ’C5x data-memory space.  
The auxiliary register file (AR0AR7) is connected to the auxiliary register arithmetic unit (ARAU). The ARAU  
can autoindex the current auxiliary register while the data memory location is being addressed. Indexing can  
be performed either by ±1 or by the contents of the INDX register. As a result, accessing tables of information  
does not require the CALU for address manipulation; thus, the CALU is free for other operations in parallel.  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
memory  
The ’C5x implements three separate address spaces for program memory, data memory, and I/O. Each space  
accommodates a total of 64K 16-bit words (see Figures 1 through 7). Within the 64K words of data space, the  
256 to 32K words at the top of the address range can be defined to be external global memory in increments  
of powers of two, as specified by the contents of the global memory allocation register (GREG). Access to global  
memory is arbitrated using the global memory bus request (BR) signal.  
The ’C5x devices include a considerable amount of on-chip memory to aid in system performance and  
integration including ROM, single-access RAM (SARAM), and dual-access RAM (DARAM). The amount and  
types of memory available on each device are shown in Table 1.  
On the ’C5x, the first 96 (05Fh) data-memory locations are allocated for memory-mapped registers. This  
memory-mapped register space contains various control and status registers including those for the CPU, serial  
port, timer, and software wait-state generators. Additionally, the first 16 I/O port locations are mapped into this  
data-memory space, allowing them to be accessed either as data memory using single-word instructions or as  
I/O locations with two-word instructions. Two-word instructions allow access to the full 64K words of I/O space.  
The mask-programmable ROM is located in program memory space. Customers can arrange to have this ROM  
programmed with contents unique to to any particular application. The ROM is enabled or disabled by the state  
of the MP/MC control input upon resetting the device or by manipulating the MP/MC bit in the PMST status  
register after reset. The ROM occupies the lowest block of program memory when enabled. When disabled,  
these addresses are located in the device’s external program-memory space.  
The ’C5x also has a mask-programmable option that provides security protection for the contents of on-chip  
ROM. When this internal option bit is programmed, no externally-originating instruction can access the on-chip  
ROM. This feature can be used to provide security for proprietary algorithms.  
An optional boot loader is available in the device’s on-chip ROM. This boot loader can be used to transfer a  
program automatically from data memory or the serial port to anywhere in program memory. In data memory,  
theprogramcanbelocatedonany1K-wordboundaryandcanbeineitherbyte-wideor16-bitwordformat. Once  
the code is transferred, the boot loader releases control to the program for execution.  
The ’C5x devices provide two types of RAM: single-access RAM (SARAM) and dual-access RAM (DARAM).  
The single-access RAM requires a full machine cycle to perform a read or a write; however, this is not one large  
RAMblockinwhichonlyoneaccesspercycleisallowed. Itismadeupof2K-wordsize-independentRAMblocks  
and each one allows one CPU access per cycle. The CPU can read or write one block while accessing another  
block at the same time. All ’C5x processors support multiple accesses to its SARAM in one cycle as long as they  
go to different RAM blocks. If the total SARAM size is not a multiple of two, one block is made smaller than 2K  
words. With an understanding of this structure, programmers can arrange code and data appropriately to  
improve code performance. Table 4 shows the sizes of available SARAM on the applicable ’C5x devices.  
Table 4. SARAM Block Sizes  
DEVICE  
’C50/LC50  
NUMBER OF SARAM BLOCKS  
Four 2K blocks and one 1K block  
One 1K block  
’C51/LC51  
’C53/C53S /LC53  
’LC56  
One 2K block and one 1K block  
Three 2K blocks  
’C57S/LC57/’LC57S Three 2K blocks  
memory (continued)  
The ’C5x dual-access RAM (DARAM) allows writes to, and reads from, the RAM in the same cycle without the  
address restrictions of the SARAM. The dual-access RAM is configured in three blocks: block 0 (B0), block 1  
(B1), and block 2 (B2). Block 1 is 512 words in data memory and block 2 is 32 words in data memory. Block 0  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
is a 512-word block which can be configured as data or program memory. The CLRC CNF (configure B0 as data  
memory) and SETC CNF (configure B0 as program memory) instructions allow dynamic configuration of the  
memory maps through software. When using block 0 as program memory, instructions can be downloaded from  
external program memory into on-chip RAM and then executed.  
When using on-chip RAM, ROM, or high-speed external memory, the ’C5x runs at full speed with no wait states.  
The ability of the DARAM to allow two accesses to be performed in one cycle, coupled with the parallel nature  
oftheC5xarchitecture, enablesthedevicetoperformthreeconcurrentmemoryaccessesinanygivenmachine  
cycle. Externally, the READY line can be used to interface the ’C5x to slower, less expensive external memory.  
Downloading programs from slow off-chip memory to on-chip RAM can speed processing while cutting system  
costs.  
Program  
Program  
Data  
Hex  
Hex  
Hex  
0000  
0000  
0000  
Memory-Mapped  
Registers  
Interrupts and  
Reserved  
(external)  
Interrupts and  
Reserved  
(on-chip)  
005F  
0060  
003F  
0040  
003F  
0040  
On-Chip  
DARAM B2  
On-Chip  
ROM  
External  
007F  
0080  
07FF  
0800  
07FF  
0800  
Reserved  
00FF  
0100  
On-Chip DARAM B0  
(CNF = 0)  
Reserved (CNF = 1)  
On-Chip SARAM  
(RAM = 1)  
On-Chip SARAM  
(RAM = 1)  
02FF  
0300  
External  
(RAM = 0)  
External  
(RAM = 0)  
On-Chip  
DARAM B1  
04FF  
0500  
2BFF  
2C00  
2BFF  
2C00  
Reserved  
07FF  
0800  
On-Chip SARAM  
(OVLY = 1)  
External  
External  
External (OVLY = 0)  
2BFF  
2C00  
FDFF  
FE00  
FDFF  
FE00 On-Chip DARAM B0  
(CNF = 1)  
On-Chip DARAM B0  
(CNF = 1)  
External (CNF = 0)  
External  
External (CNF = 0)  
FFFF  
FFFF  
FFFF  
MP/MC = 1  
(microprocessor mode)  
MP/MC = 0  
(microcomputer mode)  
Figure 1. TMS320C50 and TMS320LC50 Memory Map  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
Program  
Program  
Data  
Hex  
Hex  
Hex  
0000  
0000  
0000  
Memory-Mapped  
Registers  
Interrupts and  
Reserved  
Interrupts and  
Reserved  
005F  
0060  
(external)  
(on-chip)  
003F  
0040  
003F  
0040  
On-Chip  
DARAM B2  
On-Chip  
ROM  
007F  
0080  
External  
1FFF  
2000  
1FFF  
2000  
Reserved  
00FF  
0100  
On-Chip DARAM  
B0 (CNF = 0)  
Reserved (CNF = 1)  
On-Chip SARAM  
(RAM = 1)  
On-Chip SARAM  
(RAM = 1)  
02FF  
0300  
External  
(RAM = 0)  
External  
(RAM = 0)  
On-Chip  
DARAM B1  
04FF  
0500  
23FF  
2400  
23FF  
2400  
Reserved  
07FF  
0800  
On-Chip SARAM  
(OVLY = 1)  
External  
External  
External (OVLY = 0)  
0BFF  
0C00  
FDFF  
FE00  
FDFF  
FE00  
On-Chip DARAM  
B0 (CNF = 1)  
External (CNF = 0)  
On-Chip DARAM  
B0 (CNF = 1)  
External (CNF = 0)  
External  
FFFF  
FFFF  
FFFF  
MP/MC = 1  
(microprocessor mode)  
MP/MC = 0  
(microcomputer mode)  
Figure 2. TMS320C51 and TMS320LC51 Memory Map  
Program  
Program  
Data  
Hex  
Hex  
Hex  
0000  
0000  
0000  
Memory-Mapped  
Registers  
Interrupts and  
Reserved  
(external)  
Interrupts and  
Reserved  
(on-chip)  
005F  
0060  
003F  
0040  
003F  
0040  
On-Chip  
DARAM B2  
On-Chip  
ROM  
007F  
0080  
0FFF  
1000  
Reserved  
00FF  
0100  
On-Chip DARAM  
B0 (CNF = 0)  
Reserved (CNF = 1)  
02FF  
0300  
External  
On-Chip  
DARAM B1  
External  
04FF  
0500  
Reserved  
External  
07FF  
0800  
FDFF  
FE00  
FDFF  
FE00  
On-Chip DARAM  
B0 (CNF = 1)  
On-Chip DARAM  
B0 (CNF = 1)  
External (CNF = 0)  
External (CNF = 0)  
FFFF  
FFFF  
FFFF  
MP/MC = 1  
(microprocessor mode)  
MP/MC = 0  
(microcomputer mode)  
Figure 3. TMS320C52 and TMS320LC52 Memory Map  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
Hex  
0000  
Program  
Hex  
0000  
Program  
Hex  
0000  
Data  
Memory-Mapped  
Registers  
Interrupts and  
Reserved  
(external)  
Interrupts and  
Reserved  
(on-chip)  
005F  
0060  
003F  
0040  
003F  
0040  
On-Chip  
DARAM B2  
On-Chip  
ROM  
External  
007F  
0080  
3FFF  
4000  
3FFF  
4000  
Reserved  
00FF  
0100  
On-Chip DARAM  
B0 (CNF = 0)  
Reserved (CNF = 1)  
On-Chip SARAM  
(RAM = 1)  
On-Chip SARAM  
(RAM = 1)  
02FF  
0300  
External  
(RAM = 0)  
External  
(RAM = 0)  
On-Chip  
DARAM B1  
04FF  
0500  
4BFF  
4C00  
4BFF  
4C00  
Reserved  
07FF  
0800  
On-Chip SARAM  
(OVLY = 1)  
External  
External  
External (OVLY = 0)  
13FF  
1400  
FDFF  
FE00  
FDFF  
FE00  
On-Chip DARAM  
B0 (CNF = 1)  
External (CNF = 0)  
On-Chip DARAM  
B0 (CNF = 1)  
External (CNF = 0)  
External  
FFFF  
FFFF  
FFFF  
MP/MC = 1  
(microprocessor mode)  
MP/MC = 0  
(microcomputer mode)  
Figure 4. TMS320C53, TMS320C53S, TMS320LC53, and TMS320LC53S Memory Map  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
Program  
Program  
Data  
Hex  
Hex  
0000  
Hex  
0000  
0000  
Memory-Mapped  
Registers  
Interrupts and Reservrd  
(external)  
Interrupts and Reserved  
(on-chip)  
005F  
0060  
007F  
0080  
On-Chip DARAM B2  
Reserved  
003F  
0040  
003F  
0040  
00FF  
0100  
External  
On-Chip ROM  
On-Chip DARAM B0 (CNF = 0)  
Reserved (CNF = 1)  
7FFF  
8000  
7FFF  
8000  
02FF  
0300  
On-Chip DARAM B1  
Reserved  
On-Chip SARAM Blk0  
(RAM = 1)  
External (RAM = 0)  
On-Chip SARAM Blk0  
(RAM = 1)  
External (RAM = 0)  
04FF  
0500  
87FF  
8800  
87FF  
8800  
07FF  
0800  
On-Chip SARAM Blk0  
BSP Block (OVLY = 1)  
External (OVLY = 0)  
On-Chip SARAM Blk1  
(RAM = 1)  
External (RAM = 0)  
On-Chip SARAM Blk1  
(RAM = 1)  
External (RAM = 0)  
0FFF  
1000  
8FFF  
9000  
8FFF  
9000  
On-Chip SARAM Blk1  
(OVLY = 1)  
External (OVLY = 0)  
On-Chip SARAM Blk2  
(RAM = 1)  
External (RAM = 0)  
On-Chip SARAM Blk2  
(RAM = 1)  
External (RAM = 0)  
17FF  
1800  
On-Chip SARAM Blk2  
(OVLY = 1)  
External (OVLY = 0)  
97FF  
9800  
97FF  
9800  
1FFF  
2000  
External  
External  
External  
FDFF  
FE00  
FDFF  
FE00  
On-Chip DARAM B0  
(CNF = 1)  
On-Chip DARAM B0  
(CNF = 1)  
External (CNF = 0)  
External (CNF = 0)  
FFFF  
FFFF  
FFFF  
MP/MC = 1  
MP/MC = 0  
Figure 5. TMS320LC56 Memory Map  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
Program  
Program  
Data  
Hex  
0000  
Hex  
0000  
Hex  
0000  
Memory-Mapped  
Registers  
Interrupts and Reservrd  
(external)  
Interrupts and Reserved  
(on-chip)  
005F  
0060  
007F  
0080  
On-Chip DARAM B2  
Reserved  
003F  
0040  
003F  
0040  
00FF  
0100  
External  
On-Chip ROM  
On-Chip DARAM (CNF = 0)  
Reserved (CNF = 1)  
7FFF  
8000  
7FFF  
8000  
02FF  
0300  
On-Chip DARAM B1  
On-Chip SARAM Blk0  
(RAM = 1)  
External (RAM = 0)  
On-Chip SARAM Blk0  
(RAM = 1)  
External (RAM = 0)  
04FF  
0500  
HPI Control Register  
Reserved  
0501  
07FF  
0800  
87FF  
8800  
87FF  
8800  
On-Chip SARAM Blk0  
BSP Block (OVLY = 1)  
External (OVLY = 0)  
On-Chip SARAM Blk1  
(RAM = 1)  
External (RAM = 0)  
On-Chip SARAM Blk1  
(RAM = 1)  
External (RAM = 0)  
0FFF  
1000  
8FFF  
9000  
8FFF  
9000  
On-Chip SARAM Blk1  
HPI Block (OVLY = 1)  
External (OVLY = 0)  
On-Chip SARAM Blk2  
(RAM = 1)  
External (RAM = 0)  
On-Chip SARAM Blk2  
(RAM = 1)  
External (RAM = 0)  
17FF  
1800  
On-Chip SARAM Blk2  
(OVLY = 1)  
External (OVLY = 0)  
97FF  
9800  
97FF  
9800  
1FFF  
2000  
External  
External  
External  
FDFF  
FE00  
FDFF  
FE00  
On-Chip DARAM B0  
(CNF = 1)  
On-Chip DARAM B0  
(CNF = 1)  
External (CNF = 0)  
External (CNF = 0)  
FFFF  
FFFF  
FFFF  
MP/MC = 1  
MP/MC = 0  
Figure 6. TMS320LC57 Memory Map  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
Program  
Program  
Data  
Hex  
0000  
Hex  
0000  
Hex  
0000  
Memory-Mapped  
Registers  
Interrupts and Reservrd  
(external)  
Interrupts and Reserved  
(on-chip)  
005F  
0060  
007F  
0080  
On-Chip DARAM B2  
Reserved  
003F  
0040  
003F  
0040  
07FF  
0800  
On-Chip ROM  
External  
00FF  
0100  
External  
On-Chip DARAM (CNF = 0)  
Reserved (CNF = 1)  
7FFF  
8000  
7FFF  
8000  
02FF  
0300  
On-Chip DARAM B1  
HPI Control Register  
On-Chip SARAM Blk0  
(RAM = 1)  
External (RAM = 0)  
On-Chip SARAM Blk0  
(RAM = 1)  
External (RAM = 0)  
04FF  
0500  
0501  
Reserved  
87FF  
8800  
87FF  
8800  
07FF  
0800  
On-Chip SARAM Blk0  
BSP Block (OVLY = 1)  
External (OVLY = 0)  
On-Chip SARAM Blk1  
(RAM = 1)  
External (RAM = 0)  
On-Chip SARAM Blk1  
(RAM = 1)  
External (RAM = 0)  
0FFF  
1000  
8FFF  
9000  
8FFF  
9000  
On-Chip SARAM Blk1  
HPI Block (OVLY = 1)  
External (OVLY = 0)  
On-Chip SARAM Blk2  
(RAM = 1)  
External (RAM = 0)  
On-Chip SARAM Blk2  
(RAM = 1)  
External (RAM = 0)  
17FF  
1800  
On-Chip SARAM Blk2  
(OVLY = 1)  
External (OVLY = 0)  
97FF  
9800  
97FF  
9800  
1FFF  
2000  
External  
External  
External  
FDFF  
FE00  
FDFF  
FE00  
On-Chip DARAM B0  
(CNF = 1)  
On-Chip DARAM B0  
(CNF = 1)  
External (CNF = 0)  
External (CNF = 0)  
FFFF  
FFFF  
FFFF  
MP/MC = 1  
MP/MC = 0  
Figure 7. TMS320C57S Memory Map  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
interrupts and subroutines  
The ’C5x implements four general-purpose interrupts, INT4INT1, along with reset (RS) and the nonmaskable  
interrupt (NMI) which are available for external devices to request the attention of the processor. Internal  
interrupts are generated by the serial port (RINT and XINT), by the timer (TINT), and by the software-interrupt  
(TRAP, INTR, and NMI) instructions. Interrupts are prioritized with RS having the highest priority, followed by  
NMI, and INT4 having the lowest priority. Additionally, any interrupt except RS and NMI can be masked  
individually with a dedicated bit in the interrupt mask register (IMR) and can be cleared, set, or tested using its  
own dedicated bit in the interrupt flag register (IFR). The reset and NMI functions are not maskable.  
All interrupt vector locations are on two-word boundaries so that branch instructions can be accommodated in  
those locations. While normally located at program memory address 0, the interrupt vectors can be remapped  
to the beginning of any 2K-word page in program memory by modifying the contents of the interrupt vector  
pointer (IPTR) located in the PMST status register.  
A built-in mechanism protects multicycle instructions from interrupts. If an interrupt occurs during a multicycle  
instruction, the interrupt is not processed until the instruction completes execution. This mechanism applies to  
instructions that are repeated (using the RPT instruction) and to instructions that become multicycle because  
of wait states.  
Each time an interrupt is serviced or a subroutine is entered, the PC is pushed onto an internal hardware stack,  
providing a mechanism for returning to the previous context. The stack contains eight locations, allowing  
interrupts or subroutines to be nested up to eight levels deep.  
In addition to the eight-level hardware PC stack, eleven key CPU registers are equipped with an associated  
single-level stack or shadow register into which the registers’ contents are saved upon servicing an interrupt.  
The contents are restored into their particular CPU registers once a return-from-interrupt instruction (RETE or  
RETI) is executed. The registers that have the shadow-register feature include the ACC and buffer, product  
register, status registers, and several other key CPU registers. The shadow-register feature allows  
sophisticated context save and restore operations to be handled automatically in cases where nested interrupts  
are not required or if interrupt servicing is performed serially.  
power-down modes  
The ’C5x implements several power-down modes in which the ’C5x core enters a dormant state and dissipates  
considerably less power. A power-down mode is invoked either by executing the IDLE/IDLE2 instructions or  
by driving the HOLD input low. When the HOLD signal initiates the power-down mode, on-chip peripherals  
continue to operate; this power-down mode is terminated when HOLD goes inactive.  
While the ’C5x is in a power-down mode, all internal contents are maintained; this allows operation to continue  
unaltered when the power-down mode is terminated. All CPU activities are halted when the IDLE instruction  
is executed, but the CLKOUT1 pin remains active. The peripheral circuits continue to operate, allowing  
peripherals such as serial ports and timers to take the CPU out of its powered-down state. A power-down mode,  
when initiated by an IDLE instruction, is terminated upon receipt of an interrupt.  
The IDLE2 instruction is used for a complete shutdown of the core CPU as well as all on-chip peripherals. In  
IDLE2, the power is reduced significantly because the entire device is stopped. The power-down mode is  
terminated by activating any of the external interrupt pins (RS, NMI, INT1, INT2, INT3, and INT4) for at least  
five machine cycles.  
bus-keeper circuitry (TMS320LC56/’C57S/’LC57)  
The TMS320LC56/’C57S/’LC57 devices provide built-in bus keeper circuitry which holds the last state driven  
on the data bus by either the DSP or an external device after the bus is no longer being driven. This capability  
prevents excess power consumption caused by a floating bus, thus allowing optimization of power consumption  
without the need for external pullup resistors.  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
external interface  
The ’C5x supports a wide range of system interfacing requirements. Program, data, and I/O address spaces  
provide interface to memory and I/O, maximizing system throughput. The full 16-bit address and data bus, along  
with the PS, DS, and IS space select signals, allow addressing of 64K 16-bit words in each of the three spaces.  
I/O design is simplified by having I/O treated the same way as memory. I/O devices are mapped into the I/O  
address space using the processor’s external address and data buses in the same manner as memory-mapped  
devices.  
The ’C5x external parallel interface provides various control signals to facilitate interfacing to the device. The  
R/W output signal is provided to indicate whether the current cycle is a read or a write. The STRB output signal  
provides a timing reference for all external cycles. For convenience, the device also provides the RD and the  
WE output signals, which indicate a read and a write cycle, respectively, along with timing information for those  
cycles. The availability of these signals minimizes external gating necessary for interfacing external devices to  
the ’C5x.  
Interface to memory and I/O devices of varying speeds is accomplished by using the READY line. When  
transactionsaremadewithslowerdevices, theC5xprocessorwaitsuntiltheotherdevicecompletesitsfunction  
and signals the processor via the READY line. Once a ready indication is provided back to the ’C5x from the  
external device, execution continues.  
The bus request (BR) signal is used in conjunction with the other ’C5x interface signals to arbitrate external  
global-memory accesses. Global memory is external data-memory space in which the BR signal is asserted  
at the beginning of the access. When an external global-memory device receives the the bus request, the  
external device responds by asserting the READY signal after the global memory access is arbitrated and the  
global access is completed.  
external direct-memory access (DMA) capability  
All ’C5x devices with single-access RAM offer a unique feature allowing another processor to read and write  
to the ’C5x internal memory. To initiate a read or write operation to the ’C5x single-access RAM, the host or  
master processor requests a hold state on the DSP’s external bus. When acknowledged with HOLDA, the host  
can request access to the internal bus by pulling the BR signal low. Unlike the hold mode, which allows the  
current operation to complete and allows CPU operation to continue (if status bit HM=0), a BR-requested DMA  
always halts the operation currently being executed by the CPU. Access to the internal bus always is granted  
on the third clock cycle after the BR signal is received. In the PQ package, the IAQ pin also indicates when bus  
access has been granted. In the PZ package, this pin is not present so the host is required to wait two clock  
cycles after driving the bus request low before beginning DMA transfer.  
host port interface (HPI) (TMS320C57S, TMS320LC57, TMS320LC57S only)  
The HPI is an 8-bit parallel port used to interface a host processor to the ’C57S/’LC57. The host port is  
connected to a 2k word on-chip buffer through a dedicated internal bus. The dedicated bus allows the CPU to  
work uninterrupted while the host processor accesses the host port. The HPI memory buffer is a single-access  
RAM block which is accessible by both the CPU and the host. The HPI memory also can be used as  
general-purpose data or program memory. Both the CPU and the host have access to the HPI control register  
(HPIC) and the host can address the HPI memory through the HPI address register (HPIA).  
Data transfers of 16-bit words occur as two consecutive bytes with a dedicated pin, HBIL, indicating whether  
the high or low byte is being transmitted. Two control pins, HCNTL1 and HCNTL0, control host access to the  
HPIA, HPI data (with an optional automatic address increment), or the HPIC. The host can interrupt the  
’C57S/’LC57 by writing to HPIC. The ’C57S/’LC57 can interrupt the host with a dedicated HINT pin that the host  
acknowledges and clears.  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
host port interface (continued)  
The HPI has two modes of operation, shared-access mode (SAM) and host-only mode (HOM). In SAM, the  
normal mode of operation, both the ’C57S/’LC57 and the host can access HPI memory. In this mode,  
asynchronous host accesses are resynchronized internally and, in case of conflict, the host has access priority  
and the ’C57S/’LC57S waits one cycle. Host and CPU accesses to the HPI memory can be resychronized  
through polling of a command word or through interrupts to prevent stalling the CPU for one cycle. The HOM  
capability allows the host to access HPI memory while the ’C57S/’LC57 is in IDLE2 mode (all internal clocks  
stopped) or in reset mode. The external ’C57S/’LC57S clock even can be stopped. The host can, therefore,  
access the HPI RAM while the ’C57S/’LC57 is in its optimum configuration in terms of power consumption.  
The HPI control register has two data strobes, HDS1 and HDS2, a read/write strobe HR/W, and an address  
strobe HAS, to enable a glueless interface to a variety of industry-standard host devices. The HPI is easily  
interfaced to hosts with multiplexed address/data bus, separate address and data buses, one data strobe, and  
a read/write strobe, or two separate strobes for read and write. An HPI-ready pin, HRDY, is provided to specify  
wait states for hosts that support an asynchronous input. When the ’C57S/’LC57 operating frequency is  
variable, or when the host is capable of accessing at a faster rate than the maximum shared-access mode  
access rate, the HRDY pin provides a convenient way to adjust the host access rate automatically (no software  
handshake needed) to a change in the ’C57S/’LC57 clock rate or an HPI-mode switch.  
The HPI supports high-speed back-to-back accesses. In the shared-access mode, the HPI can handle one byte  
every five ’C57S/’LC57 periods (that is, 64 Mb/s with a 40-MHz ’C57S/’LC57). The HPI is designed so that the  
host can take advantage of this high bandwidth and run at frequencies up to (f n) ÷ 5, where n is the number  
of host cycles for an external access and f is the ’C57S/’LC57 frequency. In host-only mode, the HPI supports  
even higher speed back-to-back host accesses: 1 byte every 50 ns (that is, 160 Mb/s) independently of the  
’C57S/’LC57 clock rate.  
serial ports  
The ’C5x provides high-speed full-duplex serial ports that allow direct interface to other ’C5x devices, codecs,  
and other devices in a system. There is a general-purpose serial port, a time-division-multiplexed (TDM) serial  
port, and an auto-buffered serial port (BSP).  
The general-purpose serial port uses two memory-mapped registers for data transfer: the data-transmit register  
(DXR) and the data-receive register (DRR). Both registers can be accessed in the same manner as any other  
memory location. The transmit and receive sections of the serial port each have associated clocks,  
frame-synchronization pulses, and serial shift registers, and serial data can be transferred either in bytes or in  
16-bit words. Serial port receive and transmit operations can generate their own maskable transmit and receive  
interrupts (XINT and RINT), allowing serial port transfers to be managed by way of software. The ’C5x serial  
ports are double-buffered and fully static.  
The TDM port allows the device to communicate through time-division multiplexing with up to seven other ’C5x  
devices with TDM ports. Time-division multiplexing is the division of time intervals into a number of subintervals  
with each subinterval representing a prespecified communications channel. The TDM port serially transmits  
16-bit words on a single data line (TDAT) and destination addresses on a single address line (TADD). Each  
device can transmit data on a single channel and receive data from one or more of the eight channels providing  
a simple and efficient interface for multiprocessing applications. A frame synchronization pulse occurs once  
every 128 clock cycles corresponding to transmission of one 16-bit word on each of the eight channels. Like  
the general-purpose serial port, the TDM port is double-buffered on both input and output data. The TDM port  
also can be configured in software to operate as a general-purpose serial port as described above. Both types  
of ports are capable of operating at up to one-fourth the machine cycle rate (CLKOUT1).  
The buffered serial port (BSP) consists of a full-duplex double-buffered serial port interface (SPI) and an  
auto-buffering unit (ABU). The SPI block of the BSP is an enhanced version of the general-purpose serial port.  
The auto-buffering unit allows the SPI to read/write directly to ’C5x internal memory using a dedicated bus  
independently of the CPU. This results in minimum overhead for SPI transactions and faster data rates.  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
serial ports (continued)  
When auto-buffering capability is disabled (standard mode), transfers with SPI are performed under software  
control through interrupts. In this mode, the ABU is transparent and the word-based interrupts (WXINT and  
WRINT) provided by the SPI are sent to the CPU as transmit interrupt (XINT) and receive interrupt (RINT).  
When auto buffering is enabled, word transfers are done directly between the SPI and the ’C5x internal memory,  
using ABU-embedded address generators.  
The ABU has its own set of circular addressing registers with corresponding address-generation units. Memory  
for the buffers resides in 2K words of ’C5x internal memory. The length and starting addresses of the buffers  
are user-programmable. A buffer-empty/-full interrupt can be posted to the CPU. Buffering is halted easily  
because of an auto-disabling capability. Auto-buffering capability can be enabled separately for transmit and  
receive sections. When auto-buffering is disabled, operation is similar to the general-purpose serial port.  
The SPI allows transfer of 8-, 10-, 12-, or 16-bit data packets. In burst mode, data packets are directed by a  
frame-synchronization pulse for every packet. In continuous mode, the frame-synchronization pulse occurs  
when the data transmission is initiated and no further pulses occur. The frame and clock strobes are frequency  
and polarity programmable. The SPI is fully static and operates at arbitrarily low clock frequencies. The  
maximum operating frequency is CLKOUT1 (28.6 Mb/s at 35 ns, 40 Mb/s at 25 ns). The SPI transmit section  
also includes a pulse-coded modulation (PCM) mode that allows easy interface with a PCM line.  
Most ’C5x devices provide one general-purpose serial port and one TDM port. The ’C52 provides one  
general-purpose serial port and no TDM port. The ’C53SX provides two general-purpose serial ports and no  
TDMport. TheLC56, ’C57S, andLC57devicesprovideonegeneral-purposeserialportandonebufferedserial  
port.  
software wait-state generators  
Software wait-state generation is incorporated in the ’C5x without any external hardware for interfacing with  
slower off-chip memory and I/O devices. The circuitry consists of 16 wait-state generating circuits and is  
user-programmable to operate with 0, 1, 2, 3, or 7 wait states. For off-chip memory accesses, these wait-state  
generators are mapped on 16K-word boundaries in program memory, data memory, and the I/O ports.  
The ’C53S/’C57S and ’LC56/57 devices have software-programmable wait-state generators that are controlled  
by one 16-bit wait-state register PDWSR at address 0x28. The programmed number of wait states (0 through  
7) applies to all external addresses at the corresponding address space (program, data, I/O) regardless of  
address value.  
timer  
The ’C5x features a 16-bit timing circuit with a 4-bit prescaler. This timer clocks between one-half and one  
thirty-second the machine rate of the device itself, depending on the programmable timer’s divide-down ratio.  
This timer can be stopped, restarted, reset, or disabled by specific status bits.  
The timer can be used to generate CPU interrupts periodically. The timer is decremented by one at every  
CLKOUT1 cycle. A timer interrupt (TINT) and a pulse equal to the duration of a CLKOUT1 cycle on the external  
TOUT pin are generated each time the counter decrements to zero. The timer provides a convenient means  
of performing periodic I/O or other functions. When the timer is stopped, the internal clocks to the timer are shut  
off, allowing the device to run in a low-power mode of operation.  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
IEEE 1149.1 boundary scan interface  
The IEEE 1149.1 boundary-scan interface is used for emulation and test purposes. The IEEE 1149.1 scanning  
logic provides the boundary-scan path to and from the interfacing devices. Also, it can be used to test pin-to-pin  
continuity as well as to perform operational tests on those peripheral devices that surround the ’C5x. On ’C5x  
devices which do not provide boundary-scan capability, the IEEE 1149.1 interface is used for emulation  
purposes only. It is interfaced to other internal scanning logic circuitry, which has access to all of the on-chip  
resources. Thus, the ’C5x can perform on-board emulation by means of IEEE 1149.1 serial pins and the  
emulation-dedicated pins (see IEEE Standard 1149.1 for more details). Table 5 shows IEEE 1149.1 and  
boundary-scan functions supported by the ’C5x family of devices.  
Table 5. IEEE 1149.1 Interface/Boundary Scan/On-Chip Analysis Block Configurations  
on the ’C5x/’LC5x Device Family  
DEVICE TYPE  
’C50/LC50  
IEEE 1149.1 INTERFACE  
BOUNDARY-SCAN CAPABILITY  
ON-CHIP ANALYSIS BLOCK  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Full  
Full  
’C51/LC51  
’C52/LC52  
’C53/LC53  
’C53S/LC53S  
’LC56  
Full  
Yes  
No  
Full  
Reduced  
Full  
No  
’C57S  
Yes  
No  
Full  
’LC57  
Full  
on-chip analysis block  
The on-chip analysis block, in conjunction with the ’C5x EVM, provides the capability to perform a variety of  
debugging and performance evaluation functions in a target system. The full analysis block provides capability  
for message passing by a combination of monitor mode and scan, flexible breakpoint setup based on events,  
counting of events, and a PC discontinuity trace buffer. Breakpoints can be triggered based on the following  
events: program fetches/reads/writes, EMU0/1 pin activity (used in multiprocessing), data reads/writes, CPU  
events(calls, returns, interrupts/traps, branches, pipelineclock), andevent-counteroverflow. Theeventcounter  
is a 16-bit counter which can be used for performance analysis. The event counter can be incremented based  
on the occurrence of the following events: CPU clocks (performance monitoring), pipeline advances, instruction  
fetches (used to count instructions for an algorithm), branches, calls, returns, interrupts/traps, program  
reads/writes, or data reads/writes. The PC discontinuity-trace buffer provides a method to monitor program  
counter flow.  
These analysis functions are available on all ’C5x devices except the ’C53S and ’LC53S which have a reduced  
analysis block (see Table 5). The reduced analysis block provides capability for message passing and  
breakpoints based on program fetches/reads/writes and EMU0/1 pin activity.  
multiprocessing  
The flexibility of the ’C5x allows configurations to satisfy a wide range of system requirements; the device can  
be used in a variety of system configurations, including, but not limited to, the following:  
A standalone processor  
A multiprocessor with devices in parallel  
A slave/host multiprocessor with global-memory space  
A peripheral processor interfaced via processor-controlled signals to another device  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
multiprocessing (continued)  
For multiprocessing applications, the ’C5x is capable of allocating global-memory space and communicating  
with that space via the BR and ready control signals. Global memory is data memory shared by more than one  
device. Globalmemoryaccessmustbearbitrated. The8-bitmemory-mappedglobalmemoryallocationregister  
(GREG) specifies part of the ’C5x’s data memory as global external memory. The contents of the register  
determine the size of the global memory space. If the current instruction addresses an operand within that  
space, BR is asserted to request control of the bus. The length of the memory cycle is controlled by the READY  
line.  
The ’C5x supports direct memory access (DMA) to its external program, data, and I/O spaces using the HOLD  
and HOLDA signals. Another device can take complete control of the ’C5x’s external memory interface by  
asserting HOLD low. This causes the ’C5x to to place its address, data, and control lines in the high-impedance  
state and assert HOLDA. While external memory is being accessed, program execution from on-chip memory  
can proceed concurrently when the device is in hold mode.  
Multiple ’C5x devices can be interconnected through their serial ports. This form of interconnection allows  
information to be transferred at high speed while using a minimum number of signal connections. A complete  
full-duplex serial-port interconnection between multiple processors can be accomplished with as few as four  
signal lines.  
instruction set  
The ’C5x microprocessor implements a comprehensive instruction set that supports both numeric-intensive  
signal processing operations and general-purpose applications, such as multiprocessing and high-speed  
control. Source code for the ’C1x and ’C2x DSPs is upward compatible with the ’C5x.  
For maximum throughput, the next instruction is prefetched while the current one is being executed. Because  
the same data lines are used to communicate to external data, program, or I/O space, the number of cycles an  
instruction requires to execute varies, depending on whether the next data operand fetch is from internal or  
external memory. Highest throughput is achieved by maintaining data memory on chip and using either internal  
or fast external program memory.  
addressing modes  
The ’C5x instruction set provides six basic memory-addressing modes: direct, indirect, immediate, register,  
memory mapped, and circular addressing.  
In direct addressing, the instruction word contains the lowest seven bits of the data-memory address. This field  
is concatenated with the nine bits of the data-memory page pointer (DP) to form the 16-bit data-memory  
address. Therefore, in the direct-addressing mode, data memory is paged effectively with a total of 512 pages,  
each of which contains 128 words.  
Indirect addressing accesses data memory through the auxiliary registers. In indirect addressing mode, the  
address of the instruction operand is contained in the currently selected auxiliary register. Eight auxiliary  
registers (AR0AR7) provide flexible and powerful indirect addressing. To select a specific auxiliary register,  
the auxiliary register pointer (ARP) is loaded with a value from 0 to 7 for AR0 through AR7, respectively.  
There are seven types of indirect addressing: autoincrement or autodecrement, postindexing by either adding  
or subtracting the contents of AR0, single-indirect addressing with no increment or decrement, and bit-reversed  
addressing (used in FFTs) with increment or decrement. All operations are performed on the current auxiliary  
register in the same cycle as the original instruction, following which the current auxiliary register and ARP can  
be modified.  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
addressing modes (continued)  
In immediate addressing, the actual operand data is provided in a portion of the instruction word or words. There  
are two types of immediate addressing: long and short. In short-immediate addressing, the data is contained  
in a portion of the bits in a single-word instruction. In long-immediate addressing, the data is contained in the  
second word of a two-word instruction. The immediate-addressing mode is useful for data that does not need  
to be stored or used more than once during the course of program execution, such as initialization values,  
constants, etc.  
The register-addressing mode uses operands in CPU registers either explicitly, such as with a direct reference  
to a specific register, or implicitly, with instructions that intrinsically reference certain registers. In either case,  
operand reference is simplified because 16-bit values can be used without specifying a full 16-bit operand  
address or immediate value.  
Memory-mapped addressing provides the convenience of easy access to memory-mapped registers located  
on page zero of data memory. The flexibility of memory-mapped addressing results because accesses are  
made independently of actual DP value and without having to provide a complete address of the memory  
location being accessed. Commonly used on-board registers can be accessed with a simplified addressing  
scheme.  
Circular addressing is the most sophisticated ’C5x addressing mode. This addressing mode allows specified  
buffers in memory to be accessed sequentially with a pointer that automatically wraps around to the beginning  
of the buffer when the last location is accessed. A total of two independent circular buffers can be allocated at  
any given time.  
Five dedicated registers are allocated for implementation of circular addressing: a beginning-of-buffer and an  
end-of-buffer register for each of the two independent circular buffers and a control register. Additionally, one  
of the auxiliary registers is used as the pointer into the circular buffer. All registers used in circular addressing  
must be initialized properly prior to performing any circular buffer access.  
The circular-addressing mode allows implementation of circular buffers, which facilitate data structures used  
in FIR filters, convolution and correlation algorithms, and waveform generators. Having the capability to access  
circular buffers automatically with no overhead allows these types of data structures to be implemented most  
efficiently.  
repeat feature  
The repeat function can be used withinstructionssuchasmultiply/accumulates(MACandMACD), blockmoves  
(BLDD and BLPD), I/O transfers (IN/OUT), and table read/writes (TBLR/TBLW). These instructions, although  
normally multicycle, are pipelined when the repeat feature is used, and they effectively become single-cycle  
instructions. For example, the table-read instruction may take three or more cycles to execute, but when the  
instruction is repeated, a table location can be read every cycle.  
The repeat counter (RPTC) is a 16-bit register that, when loaded with a number N, causes the next single  
instruction to be executed N + 1 times. The RPTC register is loaded by either the RPT or the RPTZ instruction,  
resulting in a maximum of 65,536 executions of a given instruction. RPTC is cleared by reset. The RPTZ  
instruction clears both ACC and PREG before the next instruction starts repeating. Once a repeat instruction  
(RPT or RPTZ) is decoded, all interrupts including NMI (except reset) are masked until the completion of the  
repeat loop. However, the device responds to the HOLD signal while executing an RPT/RPTZ loop.  
repeat feature (continued)  
The ’C5x implements a block-repeat feature that provides zero-overhead looping for implementation of FOR  
and DO loops. The function is controlled by three registers (PASR, PAER, and BRCR) and the BRAF bit in the  
PMST register. The block-repeat counter register (BRCR) is loaded with a loop count of 0 to 65,535. Then,  
execution of the RPTB (repeat block) instruction loads the program-address-start register (PASR) with the  
address of the instruction following the RPTB instruction and loads the program-address-end register (PAER)  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
with its long-immediate operand. The long-immediate operand is the address of the instruction following the last  
instruction in the loop minus one. (The repeat block must contain at least three instruction words.) Execution  
of the RPTB instruction automatically sets active the BRAF bit. With each PC update, the PAER contents are  
compared to the PC. If they are equal, the BRCR contents are compared to zero. If the BRCR contents are  
greater than zero, BRCR is decremented and the PASR is loaded into the PC, repeating the loop. If not, the  
BRAF bit is set low and the processor resumes execution past the end of the code’s loop.  
The equivalent of a WHILE loop can be implemented by setting the BRAF bit to zero if the exit condition is met.  
The program then completes the current pass through the loop but does not go back to the top. To exit, the bit  
must be reset at least four instruction words before the end of the loop. It is possible to exit block-repeat loops  
and return to them without stopping and restarting the loop. Branches, calls, and interrupts do not necessarily  
affect the loop. When program control is returned to the loop, loop execution is resumed.  
instruction set summary  
This section summarizes the operational codes (opcodes) of the instruction set for the ’C5x digital signal  
processors. The instruction set is a super set of the ’C1x and ’C2x instruction sets. The instructions are arranged  
according to function and are alphabetized by mnemonic within each category. The symbols in Table 6 are used  
in the instruction set opcode table (Table 7). The Texas Instruments ’C5x assembler accepts ’C2x instructions  
as well as ’C5x instructions.  
The number of words that an instruction occupies in program memory is specified in column 4 of Table 7. In  
these cases, different forms of the instruction occupy a different number of words. For example, the ADD  
instruction occupies one word when the operand is a short immediate value or two words if the operand is a  
long immediate value.  
The number of cycles that an instruction requires to execute is listed in column 5 of Table 7. All instructions are  
assumed to be executed from internal program memory and internal data dual-access memory. The cycle  
timings are for single-instruction execution, not for repeat mode.  
A read or write access to any peripheral memory-mapped register in data memory locations 20h4Fh adds one  
cycle to the cycle time shown because all peripherals perform these accesses over the internal peripheral bus.  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
instruction set summary (continued)  
Table 6. Opcode Symbols  
SYMBOL  
DESCRIPTION  
A
Address  
ACC  
ACCB  
ARX  
Accumulator  
Accumulator buffer  
Auxiliary register value (07)  
BITX  
BMAR  
DBMR  
I
4-bit field specifies which bit to test for the BIT instruction  
Block-move address register  
Dynamic bit-manipulation register  
Addressing-mode bit  
II...II  
Immediate operand value  
INTM  
INTR#  
N
Interrupt-mode flag bit  
Interrupt vector number  
Field for the XC instruction, indicating the number of instructions (one or two) to execute conditionally  
PREG  
PROG  
RPTC  
SHF, SHFT  
TC  
Product register  
Program memory  
Repeat counter  
3/4 bit shift value  
Test-control bit  
Two bits used by the conditional execution instructions to represent the conditions TC, NTC, and BIO  
T P Meaning  
0 0  
0 1  
1 0  
1 1  
BIO low  
TC=1  
TC=0  
T P  
None of the above conditions  
TREGn  
Temporary register n (n = 0, 1, or 2)  
4-bit field representing the following conditions:  
Z:  
L:  
V:  
C:  
ACC = 0  
ACC < 0  
Overflow  
Carry  
A conditional instruction contains two of these 4-bit fields. The 4-LSB field of the instruction is a 4-bit mask field. A 1 in the  
corresponding mask bit indicates that the condition is being tested. The second 4-bit field (bits 47) indicates the state of  
the conditions designated by the mask bits as being tested. For example, to test for ACC 0, the Z and L fields are set while  
the V and C fields are not set. The next 4-bit field contains the state of the conditions to test. The Z field is set to indicate  
testing the condition ACC = 0, and the L field is reset to indicate testing the condition ACC 0. The conditions possible with  
these 8 bits are shown in the BCND, CC, and XC instructions. To determine if the conditions are met, the 4-LSB bit mask  
is ANDed with the conditions. If any bits are set, the conditions are met.  
Z L V C  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
instruction set summary (continued)  
Table 7. TMS320C5x Instruction Set Opcodes  
ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS  
INSTRUCTION  
Absolute value of ACC  
Add ACCB to ACC with carry  
Add to ACC with shift  
Add to low ACC short immediate  
Add to ACC long immediate with shift  
Add to ACC with shift of 16  
MNEMONIC  
OPCODE  
WORDS  
CYCLES  
ABS  
ADCB  
ADD  
ADD  
ADD  
1011 1110 0000 0000  
1011 1110 0001 0001  
0010 SHFT IAAA AAAA  
1011 1000 IIII IIII  
1011 1111 1001 SHFT  
0110 0001 IAAA AAAA  
1011 1110 0001 0000  
0110 0000 IAAA AAAA  
0110 0010 IAAA AAAA  
0110 0011 IAAA AAAA  
0110 1110 IAAA AAAA  
1011 1111 1011 SHFT  
1011 1110 1000 0001  
1011 1110 0001 0010  
1011 1111 1110 SHFT  
1011 1110 0000 0001  
1011 1110 0001 1011  
1011 1110 0001 1100  
1011 1110 0001 1101  
1011 1110 0001 1111  
0001 SHFT IAAA AAAA  
1011 1111 1000 SHFT  
0110 1010 IAAA AAAA  
1011 1001 IIII IIII  
0110 1001 IAAA AAAA  
0110 1011 IAAA AAAA  
0000 1000 IAAA AAAA  
1011 1110 0000 0010  
1010 0000 IAAA AAAA  
0110 1101 IAAA AAAA  
1011 1111 1100 SHFT  
1011 1110 1000 0010  
1011 1110 0001 0011  
1011 1110 0000 1100  
1011 1110 0001 0100  
1011 1110 0000 1101  
1011 1110 0001 0101  
1011 1110 0001 1110  
1001 1SHF IAAA AAAA  
1001 0SHF IAAA AAAA  
1000 1000 IAAA AAAA  
1011 1110 0101 1010  
1011 1110 0101 1011  
1011 1110 0001 1000  
1011 1110 0001 1001  
1011 1110 0000 1001  
1011 1110 0001 0110  
1011 1110 0000 1010  
1011 1110 0001 0111  
0011 SHFT IAAA AAAA  
0110 0101 IAAA AAAA  
1011 1010 IIII IIII  
1011 1111 1010 SHFT  
1
1
1
1
2
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
2
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
2
1
1
1
ADD  
Add ACCB to ACC  
Add to ACC with carry  
ADDB  
ADDC  
ADDS  
ADDT  
AND  
Add to low ACC with sign extension suppressed  
Add to ACC with shift specified by TREG1 [30]  
AND ACC with data value  
AND with ACC long immediate with shift  
AND with ACC long immediate with shift of 16  
AND ACCB with ACC  
Barrel shift ACC right  
Complement ACC  
Store ACC in ACCB if ACC > ACCB  
Store ACC in ACCB if ACC< ACCB  
Exchange ACCB with ACC  
Load ACC with ACCB  
Load ACC with shift  
Load ACC long immediate with shift  
Load ACC with shift of 16  
Load low word of ACC with immediate  
Load low word of ACC  
Load ACC with shift specified by TREG1 [30]  
Load ACCL with memory-mapped register  
Negate ACC  
Normalize ACC  
OR ACC with data value  
OR with ACC long immediate with shift  
OR with ACC long immediate with shift of 16  
OR ACCB with ACC  
Rotate ACC 1 bit left  
Rotate ACCB and ACC left  
Rotate ACC 1 bit right  
Rotate ACCB and ACC right  
Store ACC in ACCB  
Store high ACC with shift  
Store low ACC with shift  
Store ACCL to memory-mapped register  
Shift ACC 16 bits right if TREG1 [4] = 0  
Shift ACC0–ACC15 right as specified by TREG1 [30]  
Subtract ACCB from ACC  
Subtract ACCB from ACC with borrow  
Shift ACC 1 bit left  
Shift ACCB and ACC left  
Shift ACC 1 bit right  
Shift ACCB and ACC right  
AND  
AND  
ANDB  
BSAR  
CMPL  
CRGT  
CRLT  
EXAR  
LACB  
LACC  
LACC  
LACC  
LACL  
LACL  
LACT  
LAMM  
NEG  
1
1 or 2  
1
1
1
2
2
1
1
1
1
1
1
1
NORM  
OR  
OR  
OR  
ORB  
ROL  
ROLB  
ROR  
RORB  
SACB  
SACH  
SACL  
SAMM  
SATH  
SATL  
SBB  
SBBB  
SFL  
SFLB  
SFR  
SFRB  
SUB  
SUB  
1
1 or 2  
1
1
1
1
1
1
1
1
1
1
1
2
Subtract from ACC with shift  
Subtract from ACC with shift of 16  
Subtract from ACC short immediate  
Subtract from ACC long immediate with shift  
SUB  
SUB  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
instruction set summary (continued)  
Table 7. TMS320C5x Instruction Set Opcodes (Continued)  
ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS (CONTINUED)  
INSTRUCTION  
MNEMONIC  
OPCODE  
WORDS  
CYCLES  
Subtract from ACC with borrow  
Conditional subtract  
SUBB  
SUBC  
SUBS  
SUBT  
XOR  
XOR  
XOR  
XORB  
ZALR  
ZAP  
0110 0100 IAAA AAAA  
0000 1010 IAAA AAAA  
0110 0110 IAAA AAAA  
0110 0111 IAAA AAAA  
0110 1100 IAAA AAAA  
1011 1111 1101 SHFT  
1011 1110 1000 0011  
1011 1110 0001 1010  
0110 1000 IAAA AAAA  
1011 1110 0101 1001  
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
2
2
1
1
1
Subtract from ACC with sign extension suppressed  
Subtract from ACC, shift specified by TREG1 [30]  
XOR ACC with data value  
XOR with ACC long immediate with shift  
XOR with ACC long immediate with shift of 16  
XOR ACCB with ACC  
Zero ACC, load high ACC with rounding  
Zero ACC and product register  
AUXILIARY REGISTERS AND DATA PAGE POINTER INSTRUCTIONS  
INSTRUCTION  
MNEMONIC  
OPCODE  
WORDS  
CYCLES  
Add to AR short immediate  
Compare AR with CMPR  
Load AR from addressed data  
Load AR short immediate  
Load AR long immediate  
Load data page pointer with addressed data  
Load data page immediate  
Modify auxiliary register  
Store AR to addressed data  
Subtract from AR short immediate  
ADRK  
CMPR  
LAR  
LAR  
LAR  
LDP  
LDP  
MAR  
SAR  
SBRK  
0111 1000 IIII IIII  
1011 1111 0100 01CM  
0000 0ARX IAAA AAAA  
1011 0ARX IIII IIII  
1011 1111 0000 1ARX  
0000 1101 IAAA AAAA  
1011 110I IIII IIII  
1000 1011 IAAA AAAA  
1000 0ARX IAAA AAAA  
0111 1100 IIII IIII  
1
1
1
1
2
1
1
1
1
1
1
1
1
1
2
2
2
1
1
1
BRANCH INSTRUCTIONS  
MNEMONIC  
INSTRUCTION  
OPCODE  
WORDS  
CYCLES  
Branch unconditional with AR update  
Branch addressed by ACC  
Branch addressed by ACC delayed  
Branch AR 0 with AR update  
Branch AR 0 with AR update delayed  
Branch conditional  
Branch conditional delayed  
Branch unconditional with AR update delayed  
Call subroutine addressed by ACC  
Call subroutine addressed by ACC delayed  
Call unconditional with AR update  
Call unconditional with AR update delayed  
Call conditional  
Call conditional delayed  
Software interrupt  
Nonmaskable interrupt  
Return  
Return conditional  
Return conditionally, delayed  
Return, delayed  
Return from interrupt with enable  
Return from interrupt  
Trap  
B
0111 1001 1AAA AAAA  
1011 1110 0010 0000  
1011 1110 0010 0001  
0111 1011 1AAA AAAA  
0111 1111 1AAA AAAA  
1110 00TP ZLVC ZLVC  
1111 00TP ZLVC ZLVC  
0111 1101 1AAA AAAA  
1011 1110 0011 0000  
1011 1110 0011 1101  
0111 1010 1AAA AAAA  
0111 1110 1AAA AAAA  
1110 10TP ZLVC ZLVC  
1111 10TP ZLVC ZLVC  
1011 1110 011I NTR#  
1011 1110 0101 0010  
1110 1111 0000 0000  
1110 11TP ZLVC ZLVC  
1111 11TP ZLVC ZLVC  
1111 1111 0000 0000  
1011 1110 0011 1010  
1011 1110 0011 1000  
1011 1110 0101 0001  
111N 01TP ZLVC ZLVC  
2
1
1
2
2
2
2
2
1
1
2
2
2
2
1
1
1
1
1
1
1
1
1
1
4
4
2
BACC  
BACCD  
BANZ  
BANZD  
BCND  
BCNDD  
BD  
CALA  
CALAD  
CALL  
CALLD  
CC  
2 or 4  
2
2 or 4  
2
2
4
2
4
2
2 or 4  
2
4
4
CCD  
INTR  
NMI  
RET  
4
RETC  
RETCD  
RETD  
RETE  
RETI  
TRAP  
XC  
2 or 4  
2
2
4
4
4
1
Execute next one or two INST on condition  
instruction set summary (continued)  
Table 7. TMS320C5x Instruction Set Opcodes (Continued)  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
I/O AND DATA MEMORY OPERATIONS  
INSTRUCTION  
MNEMONIC  
OPCODE  
WORDS  
CYCLES  
Block move from data to data memory  
Block move data to data DEST long immediate  
Block move data to data with source in BMAR  
Block move data to data with DEST in BMAR  
Block move data to PROG with DEST in BMAR  
Block move from program to data memory  
Block move PROG to data with source in BMAR  
Data move in data memory  
Input external access  
Load memory-mapped register  
Out external access  
Store memory-mapped register  
Table read  
Table write  
BLDD  
BLDD  
BLDD  
BLDD  
BLDP  
BLPD  
BLPD  
DMOV  
IN  
LMMR  
OUT  
SMMR  
TBLR  
TBLW  
1010 1000 IAAA AAAA  
1010 1001 IAAA AAAA  
1010 1100 IAAA AAAA  
1010 1101 IAAA AAAA  
0101 0111 IAAA AAAA  
1010 0101 IAAA AAAA  
1010 0100 IAAA AAAA  
0111 0111 IAAA AAAA  
1010 1111 IAAA AAAA  
1000 1001 IAAA AAAA  
0000 1100 IAAA AAAA  
0000 1001 IAAA AAAA  
1010 0110 IAAA AAAA  
1010 0111 IAAA AAAA  
2
2
1
1
1
2
1
1
2
2
2
2
1
1
3
3
2
2
2
3
2
1
2
2 or 3  
3
2 or 3  
3
3
PARALLEL LOGIC UNIT INSTRUCTIONS  
INSTRUCTION  
MNEMONIC  
OPCODE  
WORDS  
CYCLES  
AND DBMR with data value  
APL  
APL  
CPL  
CPL  
OPL  
OPL  
SPLK  
XPL  
XPL  
0101 1010 IAAA AAAA  
0101 1110 IAAA AAAA  
0101 1011 IAAA AAAA  
0101 1111 IAAA AAAA  
0101 1001 IAAA AAAA  
0101 1101 IAAA AAAA  
1010 1110 IAAA AAAA  
0101 1000 IAAA AAAA  
0101 1100 IAAA AAAA  
1
2
1
2
1
2
2
1
2
1
2
1
2
1
2
2
1
2
AND long immediate with data value  
Compare DBMR to data value  
Compare data with long immediate  
OR DBMR to data value  
OR long immediate with data value  
Store long immediate to data  
XOR DBMR to data value  
XOR long immediate with data value  
T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS  
INSTRUCTION  
MNEMONIC  
OPCODE  
WORDS  
CYCLES  
Add PREG to ACC  
Load high PREG  
Load TREG0  
Load TREG0 and accumulate previous product  
Load TREG0, accumulate previous product, and move  
data  
Load TREG0 and load ACC with PREG  
Load TREG0 and subtract previous product  
Multiply/accumulate  
Multiply/accumulate with data shift  
Mult/ACC w/source ADRS in BMAR and DMOV  
Mult/ACC with source address in BMAR  
Multiply data value times TREG0  
Multiply TREG0 by 13-bit immediate  
Multiply TREG0 by long immediate  
Multiply TREG0 by data, add previous product  
Multiply TREG0 by data, ACC – PREG  
Multiply unsigned data value times TREG0  
Load ACC with product register  
APAC  
LPH  
LT  
LTA  
LTD  
1011 1110 0000 0100  
0111 0101 IAAA AAAA  
0111 0011 IAAA AAAA  
0111 0000 IAAA AAAA  
0111 0010 IAAA AAAA  
1
1
1
1
1
1
1
1
2
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
3
3
3
1
1
2
1
1
1
1
1
1
1
1
1
1
1
LTP  
LTS  
0111 0001 IAAA AAAA  
0111 0100 IAAA AAAA  
1010 0010 IAAA AAAA  
1010 0011 IAAA AAAA  
1010 1011 IAAA AAAA  
1010 1010 IAAA AAAA  
0101 0100 IAAA AAAA  
110I IIII IIII IIII  
1011 1110 1000 0000  
0101 0000 IAAA AAAA  
0101 0001 IAAA AAAA  
0101 0101 IAAA AAAA  
1011 1110 0000 0011  
1011 1110 0000 0101  
1000 1101 IAAA AAAA  
1000 1100 IAAA AAAA  
1011 1111 0000 00PM  
0101 0010 IAAA AAAA  
0101 0011 IAAA AAAA  
1011 1110 0101 1000  
MAC  
MACD  
MADD  
MADS  
MPY  
MPY  
MPY  
MPYA  
MPYS  
MPYU  
PAC  
SPAC  
SPH  
SPL  
SPM  
SQRA  
SQRS  
ZPR  
Subtract product from ACC  
Store high product register  
Store low product register  
Set PREG shift count  
Data to TREG0, square it, add PREG to ACC  
Data to TREG0, square it, ACC – PREG  
Zero product register  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
instruction set summary (continued)  
Table 7. TMS320C5x Instruction Set Opcodes (Continued)  
CONTROL INSTRUCTIONS  
MNEMONIC  
INSTRUCTION  
Test bit specified immediate  
OPCODE  
WORDS  
CYCLES  
BIT  
0100 BITX IAAA AAAA  
0110 1111 IAAA AAAA  
1011 1110 0100 0010  
1011 1110 0100 0110  
1011 1110 0100 1000  
1011 1110 0100 1010  
1011 1110 0100 1110  
1011 1110 0100 0100  
1011 1110 0100 0000  
1011 1110 0100 1100  
1011 1110 0010 0010  
1011 1110 0010 0011  
0000 1110 IAAA AAAA  
0000 1111 IAAA AAAA  
1000 1011 0000 0000  
1011 1110 0011 0010  
1000 1010 IAAA AAAA  
0111 0110 IAAA AAAA  
1011 1110 0011 1100  
0000 1011 IAAA AAAA  
1011 1110 1100 0100  
1011 1011 IIII IIII  
1011 1110 1100 0110  
1011 1110 1100 0101  
1011 1110 0100 0011  
1011 1110 0100 0111  
1011 1110 0100 1001  
1011 1110 0100 1011  
1011 1110 0100 1111  
1011 1110 0100 1101  
1011 1110 0100 0101  
1011 1110 0100 0001  
1000 1110 IAAA AAAA  
1000 1111 IAAA AAAA  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
Test bit in data value as specified by TREG2 [30]  
Reset overflow mode  
Reset sign extension mode  
Reset hold mode  
Reset TC bit  
Reset carry  
Reset CNF bit  
Reset INTM bit  
Reset XF pin  
Idle  
Idle until interrupt — low-power mode  
Load status register 0  
Load status register 1  
No operation  
Pop PC stack to low ACC  
Pop stack to data memory  
Push data memory value onto PC stack  
Push low ACC to PC stack  
Repeat instruction as specified by data  
Repeat next INST specified by long immediate  
Repeat INST specified by short immediate  
Block repeat  
Clear ACC/PREG and repeat next INST long immediate  
Set overflow mode  
Set sign extension mode  
Set hold mode  
Set TC bit  
Set carry  
BITT  
CLRC  
CLRC  
CLRC  
CLRC  
CLRC  
CLRC  
CLRC  
CLRC  
IDLE  
IDLE2  
LST  
LST  
NOP  
POP  
POPD  
PSHD  
PUSH  
RPT  
RPT  
RPT  
RPTB  
RPTZ  
SETC  
SETC  
SETC  
SETC  
SETC  
SETC  
SETC  
SETC  
SST  
Set XF pin high  
Set CNF bit  
Set INTM bit  
Store status register 0  
Store status register 1  
SST  
development support  
Texas Instruments offers an extensive line of development tools for the ’C5x generation of DSPs, including tools  
to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully  
integrate and debug software and hardware modules.  
The following products support development of ’C5x-based applications:  
Software Development Tools:  
Assembler/Linker  
Simulator  
Optimizing ANSI C compiler  
Application algorithms  
C/Assembly debugger and code profiler  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
development support (continued)  
Hardware Development Tools:  
Extended development set (XDS ) emulator (supports ’C5x multiprocessor system debug)  
’C5x EVM (Evaluation Module)  
’C5x DSK (DSP Starter Kit)  
The TMS320 Family Development Support Reference Guide (SPRU011) contains information about  
development support products for all TMS320 family member devices, including documentation. Refer to this  
document for further information about TMS320 documentation or any other TMS320 support products from  
Texas Instruments. There is an additional document, the TMS320 Third Party Support Reference Guide  
(SPRU052), which contains information about TMS320-related products from other companies in the industry.  
To receive copies of TMS320 literature, contact the Literature Response Center at 800/477-8924.  
See Table 8 for complete listings of development support tools for the ’C5x. For information on pricing and  
availability, contact the nearest TI field sales office or authorized distributor.  
Table 8. TMS320C5x, TMS320LC5x Development Support Tools  
DEVELOPMENT TOOL  
PLATFORM  
Software  
PART NUMBER  
Compiler/Assembler/Linker  
PC-DOS , OS/2  
SPARC , HP  
PC-DOS, OS/2  
PC-DOS, WIN  
SPARC  
TMDS3242855-02  
TMDS3242555-08  
TMDS3242850-02  
TMDS3245851-02  
TMDS3245551-09  
DFDP  
Compiler/Assembler/Linker  
Assembler/Linker  
Simulator  
Simulator  
Digital Filter Design Package  
Debugger/Emulation Software  
Debugger/Emulation Software  
PC-DOS  
PC-DOS, OS/2, WIN  
SPARC  
TMDS3240150  
TMDS3240650  
Hardware  
XDS-510 XL Emulator  
XDS-510 WS Emulator  
EVM Evaluation Module  
DSK DSP Starter Kit  
PC-DOS, OS/2  
SPARC  
TMD000510  
TMDS000510WS  
TMDS3260050  
TMDS3200051  
PC-DOS, WIN  
PC-DOS  
device and development support tool nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320  
devices and support tools. Each TMS320 member has one of three prefixes: TMX, TMP, or TMS. Texas  
Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These  
prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX)  
through fully qualified production devices/tools (TMS/TMDS). This development flow is defined below.  
Device development evolutionary flow:  
TMX  
TMP  
Experimental device that is not necessarily representative of the final device’s electrical  
specifications  
Final silicon die that conforms to the device’s electrical specifications but has not completed  
quality and reliability verification  
PC-DOS and OS/2 are trademarks of International Business Machines Corp.  
SPARC is a trademark of SPARC International, Inc.  
WIN is a trademark of Microsoft Corporation.  
HP is a trademark of Hewlett-Packard Company.  
XDS is a trademark of Texas Instruments Incorporated.  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
device and development support tool nomenclature (continued)  
TMS Fully-qualified production device  
Support tool development evolutionary flow:  
TMDX  
Development support product that has not yet completed Texas Instruments internal qualification  
testing.  
TMDS  
Fully qualified development support product  
TMX and TMP devices and TMDX development support tools are shipped against the following disclaimer:  
“Developmental product is intended for internal evaluation purposes.”  
TMS devices and TMDS development support tools have been characterized fully, and the quality and reliability  
of the device has been demonstrated fully. TI’s standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production  
devices. TexasInstrumentsrecommendsthatthesedevicesnotbeusedinanyproductionsystembecausetheir  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, N, FN, or GB) and temperature range (for example, L). Figure 8 provides a legend for reading the  
complete device name for any TMS320 family member.  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
TMS 320 (L)  
(B)  
C
52  
PJ (L)  
PREFIX  
TEMPERATURE RANGE (DEFAULT: 0 TO 70°C)  
H = 0 to 50°C  
TMX= experimental device  
TMP= prototype device  
TMS= qualified device  
SMJ = MIL-STD-883C  
L
=
=
0 to 70°C  
S
55 to 100°C  
M = 55 to 125°C  
SM = High Rel (non-883C)  
A
=
40 to 85°C  
PACKAGE TYPE  
DEVICE FAMILY  
320 = TMS320 Family  
N
=
=
=
=
=
=
=
=
=
=
plastic DIP  
ceramic CER-DIP  
J
JD  
GB  
FZ  
FN  
FD  
PJ  
PQ  
PZ  
ceramic DIP side-brazed  
ceramic PGA  
LOW VOLTAGE OPTION (3.3V)  
BOOT LOADER OPTION  
ceramic CER-QUAD  
plastic leaded CC  
ceramic leadless CC  
100-pin plastic EIAJ QFP  
132-pin plastic bumpered QFP  
100-pin plastic TQFP  
TECHNOLOGY  
C = CMOS  
E
= CMOS EPROM  
PBK = 128-pin plastic TQFP  
PGE= 144-pin plastic TQFP  
DEVICE  
’C1x DSP:  
’C3x DSP:  
10  
14  
15  
16  
17  
30  
31  
32  
’C4x DSP:  
’C5x DSP:  
40  
44  
’C2x DSP:  
25  
26  
50  
51  
52  
53  
56  
57  
’C2xx DSP:  
203  
209  
Figure 8. TMS320 Device Nomenclature  
documentation support  
Extensive documentation supports all TMS320 family generations of devices from product announcement  
through applications development. The types of documentation available include data sheets, such as this  
document, with design specifications, complete user’s guides for all devices, development support tools, and  
three volumes of the publication Digital Signal Processing Applications with the TMS320 Family (literature  
numbers SPRA012, SPRA016, and SPRA017).  
The application book series describes hardware and software applications, including algorithms, for fixed and  
floating point TMS320 family devices. The TMS320C5x User’s Guide (literature number SPRU056), which  
describes in detail the fifth-generation TMS320 products, is currently available.  
A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support digital signal  
processing research and education. The TMS320 newsletter, Details on Signal Processing, is published  
quarterly and distributed to update TMS320 customers on product information. The TMS320 DSP bulletin board  
service (BBS) provides access to information pertaining to the TMS320 family, including documentation, source  
code and object code for many DSP algorithms and utilities. The BBS can be reached at 713/274-2323.  
Information regarding TI DSP products is also available on the Worldwide Web at http:/www.ti.com uniform  
resource locator (URL).  
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
absolute maximum ratings over operating ambient-air temperature range (unless otherwise noted)  
(’320C5x only)  
Supply voltage range, V  
(see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V  
DD  
Input voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V  
I
Output voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V  
O
Operating ambient temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
Operating case temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 85°C  
Storage temperature range, T  
A
C
stg  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 150°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 3: All voltage values are with respect to V  
.
SS  
recommended operating conditions (’320C5x only)  
MIN NOM  
MAX  
UNIT  
V
V
V
Supply voltage  
Supply voltage  
4.75  
5
0
5.25  
DD  
V
SS  
X2/CLKIN, CLKIN2  
3
2.5  
V
DD  
V
DD  
V
DD  
+0.3  
+0.3  
+0.3  
0.7  
V
IH  
High-level input voltage  
CLKX, CLKR, TCLKX, TCLKR  
All other inputs  
V
2
X2/CLKIN, CLKIN2, CLKX, CLKR, TCLKX, TCLKR  
All other inputs  
– 0.3  
– 0.3  
V
IL  
Low-level input voltage  
V
0.8  
I
I
High-level output current (see Note 4)  
Low-level output current  
– 300  
µA  
mA  
°C  
OH  
2
OL  
T
Operating case temperature  
0
85  
85  
C
T
Operating ambient temperature  
40  
°C  
A
This I  
can be exceeded when using a 1-kpulldown resistor on the TDM serial port TADD output; however, this output still meets V  
OH  
OH  
specifications under these conditions.  
NOTE 4: Figure 9 shows the test load circuit and Figure 10 and Figure 11 show the voltage reference levels.  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
electrical characteristics over recommended ranges of supply voltage and operating ambient-air  
temperature (unless otherwise noted) (’320C5x only)  
PARAMETER  
TEST CONDITIONS  
= 300 µA  
MIN TYP  
MAX  
UNIT  
V
V
V
High-level output voltage (see Note 4)  
Low-level output voltage (see Note 4)  
I
I
2.4  
3
OH  
OH  
= 2 mA  
0.3  
0.6  
20  
V
OL  
OL  
BR (with internal pullup)  
All other 3-state outputs  
TRST (with internal pulldown)  
TMS, TCK, TDI (with internal pullups)  
X2/CLKIN  
– 500  
– 20  
– 10  
– 500  
– 50  
– 10  
I
High-impedance output current (V  
= 5.25 V)  
DD  
µA  
µA  
OZ  
20  
800  
10  
I
I
Input current (V = V  
to V  
)
DD  
I
SS  
50  
All other inputs  
10  
f = 40 MHz,  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= 5.25 V  
= 5.25 V  
= 5.25 V  
= 5.25 V  
= 5.25 V  
= 5.25 V  
= 5.25 V  
= 5.25 V  
60  
67  
x
f = 57 MHz,  
x
I
Supply current, core CPU  
mA  
DD(core)  
f = 80 MHz,  
x
94  
f = 100 MHz,  
x
110  
40  
f = 40 MHz,  
x
f = 57 MHz,  
x
45  
I
I
Supply current, pins  
mA  
DD(pins)  
f = 80 MHz,  
x
63  
f = 100 MHz,  
x
75  
IDLE2, divide-by-two clock mode, clocks  
shut off  
Supply current, standby  
5
µA  
DD(standby)  
C
C
Input capacitance  
Output capacitance  
15  
15  
pF  
pF  
i
o
Typical values are at V  
DD  
= 5 V, T = 25°C, unless otherwise specified.  
A
NOTE 4: Figure 9 shows the test load circuit and Figure 10 and Figure 11 show the voltage reference levels.  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
absolute maximum ratings over specified temperature range (unless otherwise noted) (’320LC5x  
only)  
Supply voltage range, V  
(see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 5 V  
DD  
Input voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 5 V  
I
Output voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 5 V  
O
Operating ambient temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40° to 85°C  
A
Operating case temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 85°C  
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55° to 150°C  
C
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated in the “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 3: All voltage values are with respect to V  
.
SS  
recommended operating conditions (’320LC5x only)  
MIN  
NOM  
3.3  
0
MAX  
3.47  
UNIT  
V
3.13  
V
V
Supply voltage  
Supply voltage  
DD  
V
SS  
X2/CLKIN, CLKIN2  
2.5  
2.0  
1.8  
V
DD  
V
DD  
V
DD  
+ 0.3  
+ 0.3  
+ 0.3  
CLKX, CLKR, TCLKX, TCLKR  
All other inputs  
V
V
High-level input voltage  
Low-level input voltage  
IH  
IL  
X2/CLKIN, CLKIN2, CLKX,  
CLKR, TCLKX, TCLKR  
0.3  
0.3  
0.5  
0.6  
V
V
All other inputs  
V
– 300  
µA  
mA  
°C  
°C  
I
I
High-level output current  
Low-level output current  
OH  
2
OL  
0
85  
85  
T
Operating case temperature  
Operating ambient temperature  
C
40  
T
A
This I  
may be exceeded when using a 1-kpulldown resistor on the TDM serial port TADD output; however, this output still meets V  
OH  
OH  
specifications under these conditions.  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (’320LC5x only)  
PARAMETER  
TEST CONDITIONS  
= 300 µA  
MIN  
TYP  
MAX  
UNIT  
I
I
I
I
2.0  
High-level output voltage  
(see Note 4)  
OH  
OH  
OL  
OL  
V
V
V
OH  
= 20 µA  
= 2 mA  
= 20 µA  
V
– 0.3  
DD  
0.4  
20  
Low-level output voltage  
(see Note 4)  
V
OL  
0.3  
BR (with internal pullup)  
500  
High-impedance output current  
I
µA  
OZ  
(V  
DD  
= 3.47 V)  
All other 3-state outputs  
20  
10  
20  
800  
10  
TRST(with internal pulldown)  
TMS, TCK, TDI pins (with internal pullups)  
500  
50  
X2/CLKIN (oscillator enabled)  
X2/CLKIN (oscillator disabled)  
All other inputs  
50  
10  
10  
I
I
Input current (V = V  
to V )  
DD  
µA  
I
SS  
10  
10  
f = 40 MHz,  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= 3.47 V  
= 3.47 V  
= 3.47 V  
= 3.47 V  
= 3.47 V  
= 3.47 V  
26  
33  
53  
18  
22  
35  
x
I
Supply current, core CPU  
f = 50 MHz,  
x
mA  
DD(core)  
f = 80 MHz,  
x
f = 40 MHz,  
x
I
I
Supply current, pins  
f = 50 MHz,  
x
mA  
DD(pins)  
f = 80 MHz,  
x
IDLE2, divide-by-two clock mode, clocks  
shut off  
Supply current, standby  
5
µA  
DD(standby)  
C
C
Input capacitance  
Output capacitance  
15  
15  
pF  
pF  
i
o
All typical values are at V  
= 3.3 V, T = 25°C.  
A
DD  
Values derived from characterization data and not tested  
NOTE 4: Figure 9 shows the test load circuit and Figure 10 and Figure 11 show the voltage reference levels.  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
PARAMETER MEASUREMENT INFORMATION  
I
OL  
Output  
Under  
Test  
50 Ω  
Tester Pin  
Electronics  
V
Load  
C
T
I
OH  
Where:  
I
I
V
=
=
=
=
2 mA (all outputs) minimum  
300 µA (all outputs) minimum  
1.5 V  
OL  
OH  
LOAD  
T
C
80-pF typical load circuit capacitance  
Figure 9. Test Load Circuit  
signal transition levels  
The data in this section is shown for both the 5-V version (’C5x) and the 3.3-V version (’LC5x). In each case,  
the 5-V data is shown followed by the 3.3-V data in parentheses. TTL-output levels are driven to a minimum  
logic-high level of 2.4 V (2 V) and to a maximum logic-low level of 0.6 V (0.4 V). Figure 10 shows the TTL-level  
outputs.  
2.4 V (2 V)  
2 V (1.6 V)  
1 V (0.8 V)  
0.6 V (0.4 V)  
Figure 10. TTL-Level Outputs  
TTL-output transition times are specified as follows:  
For a high-to-low transition, the level at which the output is said to be no longer high is 2 V (1.6 V), and the  
level at which the output is said to be low is 1 V (0.8 V).  
For a low-to-high transition, the level at which the output is said to be no longer low is 1 V (0.8 V), and the  
level at which the output is said to be high is 2 V (1.6 V).  
Figure 11 shows the TTL-level inputs.  
2 V (1.8 V)  
0.8 V (0.6 V)  
Figure 11. TTL-Level Inputs  
TTL-compatible input transition times are specified as follows:  
For a high-to-low transition on an input signal, the level at which the input is said to be no longer high is  
2 V (1.8 V), and the level at which the input is said to be low is 0.8 V (0.6 V).  
For a low-to-high transition on an input signal, the level at which the input is said to be no longer low is  
0.8 V (0.6 V), and the level at which the input is said to be high is 2 V (1.8 V).  
49  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
PARAMETER MEASUREMENT INFORMATION  
timing parameter symbology  
Timing parameter symbols used are created in accordance with JEDEC Standard 100-A. To shorten the  
symbols, some of the pin names and other related terminology have been abbreviated as follows:  
Lowercase subscripts and their meanings:  
Letters and symbols and their meanings:  
a
access time  
H
L
High  
c
cycle time (period)  
delay time  
Low  
d
V
Z
Valid  
dis  
en  
f
disable time  
High impedance  
enable time  
fall time  
h
hold time  
r
rise time  
su  
t
setup time  
transition time  
valid time  
v
w
X
pulse duration (width)  
Unknown, changing, or don’t care level  
50  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
CLOCK CHARACTERISTICS AND TIMING  
The ’C5x can use either its internal oscillator or an external frequency source for a clock. The clock mode is  
determined by the clock mode pins (CLKMD1, CLKMD2, and CLKMD3). Table 9 shows the standard clock  
options available on the ’C50, ’LC50, ’C51, ’LC51, ’C52, ’LC52, ’C53, ’LC53, ’C53S, and ’LC53S. For these  
devices, the CLKIN2 pin functions as the external frequency input when using the PLL options. An expanded  
set of clock options is shown in Table 10 and is available on the ’LC56, ’C57S, and ’LC57 devices. For these  
devices, X2/CLKIN functions as the external frequency input when using the PLL options.  
Table 9. Standard Clock Options  
CLKMD1  
CLKMD2  
CLOCK SOURCE  
PLL clock generator option  
1
0
0
1
Reserved for test purposes  
Externaldivide-by-twooptionorinternaldivide-by-two clockoption  
with an external crystal  
1
0
1
0
External divide-by-two option with the internal oscillator disabled  
PLL multiply-by-one option on ’C50, ’C51, ’C53, ’C53S devices, PLL multiply-by-two option on  
’C52 device  
Table 10. PLL Clock Option for ’LC56, ’C57S, and ’LC57  
CLKMD1  
CLKMD2  
CLKMD3  
CLOCK SOURCE  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
PLL multiply-by-three  
PLL multiply-by-four  
PLL multiply-by-five  
PLL multiply-by-nine  
External divide-by-two option with oscillator disabled  
PLL multiply-by-two  
PLL multiply-by-one  
External/Internal divide-by-two with oscillator enabled  
51  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
internal divide-by-two clock option with external crystal  
The internal oscillator is enabled by connecting a crystal across X1 and X2/CLKIN. The frequency of CLKOUT1  
is one-half of the crystal’s oscillating frequency. The crystal should be in either fundamental or overtone  
operation and parallel resonant, with an effective series resistance of 30 and a power dissipation of 1 mW;  
it should be specified at a load capacitance of 20 pF. Overtone crystals require an additional tuned-LC circuit.  
Figure 12 shows an external crystal (fundamental frequency) connected to the on-chip oscillator.  
recommended operating conditions for internal divide-by-two clock option  
MIN NOM  
MAX  
40.96  
57.14  
80  
UNIT  
0
0
0
0
0
0
0
TMS320C5x-40  
TMS320C5x-57  
TMS320C5x-80  
TMS320C5x-100  
TMS320LC5x-40  
TMS320LC5x-50  
TMS320LC5x-80  
MHz  
f
Input clock frequency  
100  
40  
clk  
50  
MHz  
pF  
80  
C1, C2 Load capacitance  
10  
This device utilizes a fully static design and, therefore, can operate with input clock cycle time (t  
) approaching . The device is characterized  
c(CI)  
at frequencies approaching 0 Hz, but is tested at f = 6.7 MHz to meet device test time requirements.  
clk  
’320C51, ’320C52 currently available at this clock speed  
X1  
X2/CLKIN  
Crystal  
C1  
C2  
Figure 12. Internal Clock Option  
52  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
external divide-by-two clock option  
An external frequency source can be used by injecting the frequency directly into X2/CLKIN with X1 left  
unconnected. Refer to Table 9 and Table 10 for appropriate configuration of the CLKMD1, CLKMD2 and  
CLKMD3 pins to generate the external divide-by-2 clock option. The external frequency injected must conform  
to the specifications listed in the timing requirements table.  
switching characteristics over recommended operating conditions [H = 0.5 t  
(see Figure 13)  
] (’320C5x only)  
c(CO)  
’320C5x-40  
’320C5x-57  
PARAMETER  
UNIT  
MIN  
48.8 2t  
3
TYP  
MAX  
MIN  
TYP  
MAX  
t
t
t
t
t
t
Cycle time, CLKOUT1  
35 2t  
3
ns  
ns  
ns  
ns  
ns  
ns  
c(CO)  
c(CI)  
11  
c(CI)  
11  
Delay time, X2/CLKIN high to CLKOUT1 high/low  
Fall time, CLKOUT1  
20  
20  
d(CIH-COH/L)  
f(CO)  
5
5
5
5
Rise time, CLKOUT1  
r(CO)  
Pulse duration, CLKOUT1 low  
Pulse duration, CLKOUT1 high  
H – 3  
H – 3  
H
H
H + 2 H – 3  
H + 2 H – 3  
H
H
H + 2  
H + 2  
w(COL)  
w(COH)  
’320C5x-80  
’320C5x-100  
PARAMETER  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
t
t
t
t
t
t
Cycle time, CLKOUT1  
25 2t  
20 2t  
ns  
ns  
ns  
ns  
ns  
ns  
c(CO)  
c(CI)  
9
c(CI)  
9
Delay time, X2/CLKIN high to CLKOUT1 high/low  
Fall time, CLKOUT1  
1
18  
1
18  
d(CIH-COH/L)  
f(CO)  
4
4
4
4
Rise time, CLKOUT1  
r(CO)  
Pulse duration, CLKOUT1 low  
Pulse duration, CLKOUT1 high  
H – 3  
H – 3  
H
H
H + 2 H – 3  
H + 2 H – 3  
H
H
H + 2  
H + 2  
w(COL)  
w(COH)  
switching characteristics over recommended operating conditions [H = 0.5 t  
(see Figure 13)  
] (’320LC5x only)  
c(CO)  
’320LC5x-40  
’320LC5x-50  
’320LC5x-80  
UNIT  
UNIT  
ns  
PARAMETER  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
t
t
Cycle time, CLKOUT1  
50 2t  
40 2t  
25 2t  
c(CO)  
c(CI)  
c(CI)  
c(CI)  
Delay time, X2/CLKIN high to  
CLKOUT1 high/low  
3
11  
20  
3
11  
20  
1
9
18  
ns  
d(CIH-COH/L)  
t
t
t
t
Fall time, CLKOUT1  
5
5
5
5
4
4
ns  
ns  
ns  
ns  
f(CO)  
Rise time, CLKOUT1  
r(CO)  
Pulse duration, CLKOUT1 low  
Pulse duration, CLKOUT1 high  
H – 3  
H – 3  
H
H
H + 2 H – 3  
H + 2 H – 3  
H
H
H + 2 H – 3  
H + 2 H – 3  
H
H
H + 2  
H + 2  
w(COL)  
w(COH)  
This device utilizes a fully static design and, therefore, can operate with t  
approaching infinity. The device is characterized at frequencies  
c(Cl)  
approaching 0 Hz but is tested at t  
c(CO)  
= 300 ns to meet device test time requirements.  
53  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
timing requirements over recommended ranges of supply voltage and operating ambient-air  
temperature (’320C5x only) (see Figure 13)  
’320C5x-40  
’320C5x-57  
’320C5x-80  
’320C5x-100  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
t
t
t
t
t
Cycle time, X2/CLKIN  
24.4  
17.5  
12.5  
10  
ns  
ns  
ns  
ns  
ns  
c(CI)  
Fall time, X2/CLKIN  
5
5
4
4
f(CI)  
Rise time, X2/CLKIN  
5
5
4
4
r(CI)  
Pulse duration, X2/CLKIN low  
Pulse duration, X2/CLKIN high  
11  
11  
8
8
5
5
5
5
w(CIL)  
w(CIH)  
timing requirements over recommended ranges of supply voltage and operating ambient-air  
temperature (’320LC5x only) (see Figure 13)  
’320LC5x-80  
’320LC5x-40  
’320LC5x-50  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
t
t
t
t
t
Cycle time, X2/CLKIN  
25  
20  
12.5  
ns  
ns  
ns  
ns  
ns  
c(CI)  
Fall time, X2/CLKIN  
5
5
4
f(CI)  
Rise time, X2/CLKIN  
5
5
4
r(CI)  
Pulse duration, X2/CLKIN low  
Pulse duration, X2/CLKIN high  
11  
11  
9
9
5
5
w(CIL)  
w(CIH)  
This device utilizes a fully static design and, therefore, can operate with t  
approaching . The device is characterized at frequencies  
c(Cl)  
= 150 ns to meet device test time requirements.  
approaching 0 Hz, but is tested at a minimum of t  
c(Cl)  
Values derived from characterization data and not tested  
t
r(CI)  
t
t
f(CI)  
w(CIH)  
t
t
w(CIL)  
c(CI)  
CLKIN  
t
t
f(CO)  
c(CO)  
t
t
r(CO)  
w(COH)  
t
t
d(CIH-COH/L)  
w(COL)  
CLKOUT1  
Figure 13. External Divide-by-Two Clock Timing  
54  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
PLL clock generator option  
An external frequency source can be used by injecting the frequency directly into CLKIN2 with X1 left  
unconnected and X2 connected to V . This external frequency is multiplied by the factors shown in Table 9  
DD  
and Table 10 to generate the internal machine cycle. The multiply-by-one option is available on the ’C50, ’LC50,  
’C51, ’LC51, ’C53, ’LC53, ’C53S and ’LC53S. The multiply-by-two option is available on the ’C52 and ’LC52.  
Multiplication factors of 1, 2, 3, 4, 5, and 9 are available on the ’LC56, ’LC57, ’C57S and ’LC57S. Refer to Table 9  
and Table 10 for appropriate configuration of the CLKMD1, CLKMD2 and CLKMD3 pins to generate the desired  
PLL multiplication factor. The external frequency injected must conform to the specifications listed in the timing  
requirements table.  
switching characteristics over recommended operating conditions [H = 0.5 t  
(see Figure 14)  
] (’320C5x only)  
c(CO)  
’320C5x-40  
TYP  
’320C5x-57  
TYP  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
t
t
t
t
t
Cycle time, CLKOUT1  
48.8  
75  
35  
75  
ns  
ns  
ns  
ns  
ns  
c(CO)  
Fall time, CLKOUT1  
5
5
5
5
f(CO)  
Rise time, CLKOUT1  
r(CO)  
Pulse duration, CLKOUT1 low  
Pulse duration, CLKOUT1 high  
H – 3  
H
H
H + 2  
H – 3  
H
H
H + 2  
w(COL)  
w(COH)  
H – 3  
H + 2  
H – 3  
H + 2  
Delay time, CLKIN2 high to CLKOUT1  
high  
t
2
9
16  
2
9
16  
ns  
ns  
d(C2H-COH)  
d(TP)  
Delay time, transitory phase—PLL  
t
1000t  
c(C2)  
1000t  
c(C2)  
synchronized after CLKIN2 supplied  
’320C5x-80  
TYP  
’320C5x-100  
TYP  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
t
t
t
t
t
Cycle time, CLKOUT1  
25  
55  
20  
45  
ns  
ns  
ns  
ns  
ns  
c(CO)  
Fall time, CLKOUT1  
4
4
4
4
f(CO)  
Rise time, CLKOUT1  
r(CO)  
Pulse duration, CLKOUT1 low  
Pulse duration, CLKOUT1 high  
H – 3  
H
H
H + 2  
H – 3  
H
H
H + 2  
w(COL)  
w(COH)  
H – 3  
H + 2  
H – 3  
H + 2  
Delay time, CLKIN2 high to CLKOUT1  
high  
t
1
8
15  
1
8
15  
ns  
ns  
d(C2H-COH)  
d(TP)  
Delay time, transitory phase—PLL  
t
1000t  
c(C2)  
1000t  
c(C2)  
synchronized after CLKIN2 supplied  
Values assured by design and not tested  
On the TMS320C57S devices, CLKIN2 functions as the PLL clock input.  
55  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
switching characteristics over recommended operating conditions [H = 0.5 t  
(see Figure 14)  
] (’320LC5x only)  
c(CO)  
’320LC5x-40  
TYP  
’320LC5x-50  
TYP  
’320LC5x-80  
TYP  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Cycle time,  
CLKOUT1  
55  
t
t
50  
75  
40  
75  
25  
ns  
c(CO)  
Delay time,  
CLKIN2 high to  
CLKOUT1 high  
2
9
16  
2
9
16  
1
8
15  
ns  
d(C2H-COH)  
Fall time,  
CLKOUT1  
t
t
t
t
5
5
5
5
4
4
ns  
ns  
ns  
ns  
f(CO)  
Rise time,  
CLKOUT1  
r(CO)  
Pulse duration,  
CLKOUT1 low  
H – 3  
H
H
H + 2  
H – 3  
H
H
H + 2  
H – 3  
H
H
H + 2  
w(COL)  
w(COH)  
Pulse duration,  
CLKOUT1 high  
H – 3  
H + 2  
H – 3  
H + 2  
H – 3  
H + 2  
Delay time,  
transitory  
phase—PLL  
synchronized  
after CLKIN2  
supplied  
t
1000t  
c(C2)  
1000t  
c(C2)  
1000t  
c(C2)  
ns  
d(TP)  
§
Clocks can only be stopped while executing IDLE2 when using the PLL clock generator option.  
Values assured by design and not tested  
On the ’LC56, ’LC57, and ’LC57S devices, CLKIN2 functions as the PLL clock input.  
56  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
timing requirements over recommended ranges of supply voltage and operating ambient-air  
temperature (’320C5x only) (see Figure 14)  
’320C5x-40  
’320C5x-57  
UNIT  
MIN  
48.8  
97.6  
MAX  
MIN  
35  
MAX  
Multiply-by-one  
75  
75  
ns  
ns  
ns  
ns  
ns  
ns  
t
Cycle time, CLKIN2  
c(C2)  
§
Multiply-by-two  
150  
70  
150  
t
t
t
t
Fall time, CLKIN2  
5
5
5
5
f(C2)  
Rise time, CLKIN2  
r(C2)  
Pulse duration, CLKIN2 low  
Pulse duration, CLKIN2 high  
15  
15  
t
t
15  
15  
11  
11  
t
t
11  
11  
w(C2L)  
w(C2H)  
c(C2)  
c(C2)  
c(C2)  
c(C2)  
’320C5x-80  
’320C5x-100  
UNIT  
MIN  
25  
MAX  
MIN  
20  
MAX  
Multiply-by-one  
75  
75  
ns  
ns  
ns  
ns  
ns  
ns  
t
Cycle time, CLKIN2  
c(C2)  
§
Multiply-by-two  
50  
150  
40  
110  
t
t
t
t
Fall time, CLKIN2  
4
4
4
4
f(C2)  
Rise time, CLKIN2  
r(C2)  
Pulse duration, CLKIN2 low  
Pulse duration, CLKIN2 high  
8
8
t
t
–8  
–8  
7
7
t
t
–7  
–7  
w(C2L)  
w(C2H)  
c(C2)  
c(C2)  
c(C2)  
c(C2)  
timing requirements over recommended ranges of supply voltage and operating ambient-air  
temperature (’320LC5x only) (see Figure 14)  
’320LC5x-40  
’320LC5x-50  
’320LC5x-80  
UNIT  
MIN  
50  
MAX  
MIN  
40  
MAX  
MIN  
25  
MAX  
Multiply-by-one  
75  
75  
37.5  
110  
ns  
ns  
ns  
ns  
ns  
ns  
t
Cycle time, CLKIN2  
c(C2)  
§
Multiply-by-two  
100  
150  
80  
150  
50  
t
t
t
t
Fall time, CLKIN2  
5
5
5
5
4
4
f(C2)  
Rise time, CLKIN2  
r(C2)  
Pulse duration, CLKIN2 low  
Pulse duration, CLKIN2 high  
15  
15  
t
t
– 15  
– 15  
13  
13  
t
t
– 13  
– 13  
8
8
t
t
– 8  
– 8  
w(C2L)  
w(C2H)  
c(C2)  
c(C2)  
c(C2)  
c(C2)  
c(C2)  
c(C2)  
Not available on ’C52, ’LC52  
Clocks can be stopped only while executing IDLE2 when using the PLL clock generator option. The t  
restarting clock from IDLE2 in this mode.  
(the transitory phase) occurs when  
d(TP)  
§
Available on ’C52, ’LC52, ’LC56, ’C57S, ’LC57, and ’LC57S  
Values derived from characterization data and not tested  
t
t
w(C2L)  
f(C2)  
t
w(C2H)  
t
r(C2)  
t
c(C2)  
CLKIN2  
t
w(COH)  
t
d(C2H-COH)  
t
f(CO)  
t
c(CO)  
t
r(CO)  
t
w(COL)  
t
d(TP)  
Unstable  
CLKOUT1  
Figure 14. PLL Clock Generator Timing  
57  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
MEMORY AND PARALLEL I/O INTERFACE READ  
switching characteristics over recommended operating conditions [H = 0.5t  
(see Figure 15)  
] (’320C5x only)  
c(CO)  
’320C5x-40  
MIN MAX  
’320C5x-57  
MIN MAX  
’320C5x-80  
MIN MAX  
’320C5x-100  
MIN MAX  
PARAMETER  
UNIT  
Setup time, address valid before  
RD low  
t
t
H – 10  
0
H – 10  
0
H – 7  
0
H – 6  
0
ns  
ns  
su(AV-RDL)  
Hold time, address valid after RD  
h(RDH-AV)  
high  
§¶#  
t
t
Pulse duration, RD low  
H – 2 H + 2  
H – 2  
H – 2 H + 2  
H – 2  
H – 2 H + 2  
H – 2  
H – 2 H + 2  
H – 2  
ns  
ns  
w(RDL)  
§¶#  
Pulse duration, RD high  
w(RDH)  
Delay time, CLKOUT1 to STRB  
§¶  
t
– 1  
3
1
– 2  
2
1
– 2  
2
1
– 2  
2
1
ns  
d(CO-ST)  
rising or falling edge  
Delay time, CLKOUT1 to RD rising  
t
t
– 3  
– 3  
– 3  
– 3  
ns  
ns  
d(CO-RD)  
§¶  
or falling edge  
Delay time, RD high to WE low  
2H – 5  
2H – 5  
2H – 4  
2H – 4  
d(RDH-WEL)  
switching characteristics over recommended operating conditions [H = 0.5t  
(see Figure 15)  
] (’320LC5x only)  
c(CO)  
’320LC5x-40  
’320LC5x-50  
’320LC5x-80  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
t
t
t
t
t
t
t
Setup time, address valid before RD low  
H – 10  
0
H – 7  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(AV-RDL)  
h(RDH-AV)  
w(RDL)  
Hold time, address valid after RD high  
§¶#  
Pulse duration, RD low  
Pulse duration, RD high  
H – 2  
H – 2  
2H – 5  
– 2  
H + 2  
H – 2  
H – 2  
2H – 4  
– 3  
H + 2  
§¶#  
w(RDH)  
Delay time, RD high to WE low  
Delay time, CLKOUT1 to RD rising or falling edge  
Delay time, CLKOUT1 to STRB rising or falling edge  
d(RDH-WEL)  
d(CO-RD)  
d(CO-ST)  
§¶  
2
4
1
2
§¶  
0
– 2  
A0A15, PS, DS, IS, R/W, and BR timings all are included in timings referenced as address.  
See Figure 16 for address bus timing variation with load capacitance.  
These timings are for the cycles following the first cycle after reset, which is always seven wait states.  
Values are derived from characterization data and not tested.  
§
#
Timings are valid for zero wait-state cycles only.  
58  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
timing requirements over recommended ranges of supply voltage and operating ambient-air  
temperature [H = 0.5t  
] (’320C5x only) (see Figure 15)  
c(CO)  
’320C5x-40  
’320C5x-57  
’320C5x-80  
’320C5x-100  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Access time, read data from  
address valid  
t
t
2H – 18  
2H – 15  
2H – 10  
2H – 10  
ns  
ns  
a(RDAV)  
Access time, read data after RD  
low  
H – 10  
H – 10  
H – 7  
H – 6  
a(RDL-RD)  
Setup time, read data before RD  
high  
t
t
10  
0
10  
0
7
0
6
0
ns  
ns  
su(RD-RDH)  
Holdtime, readdataafterRDhigh  
h(RDH-RD)  
timing requirements over recommended ranges of supply voltage and operating ambient-air  
temperature [H = 0.5t ] (’320LC5x only) (see Figure 15)  
c(CO)  
’320LC5x-40  
’320LC5x-50  
’320LC5x-80  
UNIT  
MIN  
MAX  
MIN  
MAX  
t
t
t
t
Access time, read data from address valid  
Setup time, read data before RD high  
Hold time, read data after RD high  
Access time, read data after RD low  
2H – 17  
2H – 10  
ns  
ns  
ns  
ns  
a(RDAV)  
10  
0
7
0
su(RD-RDH)  
h(RDH-RD)  
a(RDL-RD)  
H – 10  
H – 7  
See Figure 16 for address bus timing variation with load capacitance.  
59  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
MEMORY AND PARALLEL I/O INTERFACE WRITE  
switching characteristics over recommended operating conditions [H = 0.5t  
(see Figure 15)  
] (’320C5x only)  
c(CO)  
’320C5x-40  
MIN MAX  
’320C5x-57  
MIN MAX  
’320C5x-80  
MIN MAX  
’320C5x-100  
MIN MAX  
PARAMETER  
UNIT  
Setup time, address valid  
before WE low  
t
t
t
t
H – 5  
H – 5  
H – 4  
H – 3  
ns  
ns  
ns  
ns  
su(AV-WEL)  
su(WDV-WEH)  
h(WEH-AV)  
Setup time, write data  
valid before WE high  
§¶  
2H  
§¶  
2H  
§¶  
§¶  
2H  
2H – 20  
2H – 20  
2H – 14  
2H  
2H – 14  
Hold time, address valid  
H – 7  
H – 10  
H – 10  
H – 7  
after WE high  
Holdtime,writedatavalid  
after WE high  
§
§
§
§
§
§
H + 7  
H – 5 H + 10  
H – 5 H + 10  
H – 4  
H + 7  
H – 4  
h(WEH-WDV)  
§¶  
t
t
Pulseduration,WElow  
2H – 2 2H + 2  
2H – 2  
2H – 2 2H + 2  
2H – 2  
2H – 2  
2H – 2  
2H + 2  
2H – 2  
2H – 2  
2H + 2  
ns  
ns  
w(WEL)  
§
Pulseduration, WEhigh  
w(WEH)  
Delay time, CLKOUT1 to  
STRB rising or falling  
edge  
t
– 1  
3
4
– 2  
2
3
– 2  
2
3
– 2  
2
3
ns  
d(CO-ST)  
§
Delay time, CLKOUT1 to  
t
t
t
0
– 1  
– 1  
– 1  
ns  
ns  
ns  
d(CO-WE)  
§
WErisingorfallingedge  
Delay time, WE high to  
RD low  
3H – 10  
3H – 10  
3H – 7  
3H – 7  
d(WEH-RDL)  
en(WEL-BUd)  
Enable time, WE low to  
data bus driven  
§
– 5  
§
– 5  
§
– 4  
§
– 4  
switching characteristics over recommended operating conditions [H = 0.5t  
(see Figure 15)  
] (’320LC5x only)  
c(CO)  
’320LC5x-40  
’320LC5x-50  
’320LC5x-80  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
t
t
t
t
t
t
t
t
t
t
Setup time, address valid before WE low  
H – 7  
H – 4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(AV-WEL)  
su(WDV-WEH)  
h(WEH-AV)  
h(WEH-WDV)  
w(WEL)  
#
§¶  
§¶  
2H  
Setup time, write data valid before WE high  
2H – 20  
2H  
2H – 14  
H – 7  
Hold time, address valid after WE high  
H – 10  
§
§
Hold time, write data valid after WE high  
H – 5  
2H – 4  
2H – 2  
3H – 10  
0
H + 10  
H – 4  
2H – 4  
2H – 2  
3H – 7  
– 2  
H + 7  
¶§  
Pulse duration, WE low  
2H + 2  
2H + 2  
Pulse duration, WE high  
w(WEH)  
Delay time, WE high to RD low  
Delay time, CLKOUT1 to STRB rising or falling edge  
d(WEH-RDL)  
d(CO-ST)  
4
4
2
3
Delay time, CLKOUT1 to WE rising or falling edge  
0
– 1  
d(CO-WE)  
en(WE-BUd)  
§
– 5  
§
– 4  
Enable time, WE to data bus driven  
A0A15, PS, DS, IS, R/W, and BR timings are all included in timings referenced as address.  
See Figure 16 for address bus timing variation with load capacitance.  
Values derived from characterization data and not tested  
This value holds true for zero wait states or one software wait state only.  
STRBandWEedgesare0–4nsfromCLKOUT1edgesonwrites. Risingandfallingedgesofthesesignalstrackeachother;toleranceofresulting  
§
#
pulsewidths is ±2 ns, not ±4 ns.  
60  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
MEMORY AND PARALLEL I/O INTERFACE WRITE (CONTINUED)  
A0A15  
R/W  
VALID  
VALID  
t
h(RDH-AV)  
t
su(AV-WEL)  
t
h(WEH-AV)  
t
a(RDAV)  
t
a(RDL-RD)  
t
su(RD-RDH)  
t
t
h(WEH-WDV)  
en(WEL-BUd)  
t
h(RDH-RD)  
DATA  
RD  
VALID  
VALID  
t
su(AV-RDL)  
t
su(WDV-WEH)  
t
d(RDH-WEL)  
t
t
w(RDH)  
d(WEH-RDL)  
t
w(WEL)  
t
w(RDL)  
t
w(WEH)  
WE  
t
d(CO-RD)  
STRB  
t
t
d(CO-ST)  
d(CO-WE)  
CLKOUT1  
NOTES: A. All timings are for 0 wait states. However, external writes always require two cycles to prevent external bus conflicts. The diagram  
illustratesaone-cyclereadandatwo-cyclewriteandisnotdrawntoscale.Allexternalwritesimmediatelyprecededbyanexternal  
read or immediately followed by an external read require three machine cycles.  
B. Refer to Appendix B of TMS320C5x User’s Guide (literature number SPRU056) for logical timings of external interface.  
Figure 15. Memory and Parallel I/O Interface Read and Write Timing  
61  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
MEMORY AND PARALLEL I/O INTERFACE WRITE (CONTINUED)  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
10 15 20 25  
30 35 40  
45 50 55  
60 65 70 75  
80 85 90  
95 100  
Change in Load Capacitance – pF  
Figure 16. Address Bus Timing Variation With Load Capacitance  
62  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
READY TIMING FOR EXTERNALLY-GENERATED WAIT STATES  
timing requirements over recommended ranges of supply voltage and operating ambient-air  
temperature (see Note 5) (see Figure 17 and Figure 18)  
’320C5x-40  
’320C5x-80  
’320LC5x-80  
’320C5x-57  
’320LC5x-40  
’320LC5x-50  
’320C5x-100  
UNIT  
MIN  
10  
MAX  
MIN  
MAX  
MIN  
MAX  
t
t
t
t
t
t
Setup time, READY before CLKOUT1 rising edge  
Setup time, READY before RD falling edge  
Hold time, READY after CLKOUT1 rising edge  
Hold time, READY after RD falling edge  
Hold time, READY after WE falling edge  
Valid time, READY after WE falling edge  
7
6
ns  
ns  
ns  
ns  
ns  
ns  
su(RY-COH)  
su(RY-RDL)  
h(COH-RYH)  
h(RDL-RY)  
h(WEL-RY)  
v(WEL-RY)  
10  
7
0
6
0
0
0
0
0
H + 5  
H + 4  
H + 3  
H – 15  
H – 10  
H – 8  
NOTE 5: The external READY input is sampled only after the internal software wait states are completed.  
CLKOUT1  
t
su(RY-COH)  
t
su(RY-COH)  
A0A15  
t
h(COH-RYH)  
READY  
t
Wait State  
Generated  
by READY  
su(RY-RDL)  
Wait State  
Generated  
Internally  
RD  
t
h(RDL-RY)  
Figure 17. Ready Timing for Externally-Generated Wait States During an External Read Cycle  
CLKOUT1  
t
h(COH-RYH)  
A0A15  
READY  
t
su(RY-COH)  
t
v(WEL-RY)  
t
h(WEL-RY)  
WE  
Wait State Generated by READY  
Figure 18. Ready Timing for Externally-Generated Wait States During an External Write Cycle  
63  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
RESET, INTERRUPT, AND BIO  
timing requirements over recommended ranges of supply voltage and operating ambient-air  
temperature [H = 0.5t ] (see Figure 19)  
c(CO)  
’320C5x-40  
’320C5x-57  
’320LC5x-40  
’320LC5x-50  
’320C5x-80  
’320C5x-100  
’320LC5x-80  
UNIT  
MIN  
MAX  
MIN  
MAX  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Setup time, INT1–INT4, NMI before CLKOUT1 low  
Setup time, RS before CLKOUT1 low  
Setup time, RS before X2/CLKIN low  
15  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(IN-COL)  
su(RS-COL)  
su(RS-CIL)  
su(BI-COL)  
h(COL-IN)  
h(COL-BI)  
w(INL)SYN  
w(INH)SYN  
w(INL)ASY  
w(INH)ASY  
w(RSL)  
10 2H – 5  
15 2H – 5  
10  
15  
0
7
10  
0
Setup time, BIO before CLKOUT1 low  
Hold time, INT1–INT4, NMI after CLKOUT1 low  
Hold time, BIO after CLKOUT1 low  
0
0
§
§
§
§
§
§
§
§
Pulse duration, INT1–INT4, NMI low, synchronous  
4H + 15  
2H + 15  
6H + 15  
4H + 15  
4H + 10  
2H + 10  
6H + 10  
4H + 10  
Pulse duration, INT1–INT4, NMI high, synchronous  
Pulse duration, INT1–INT4, NMI low, asynchronous  
Pulse duration, INT1–INT4, NMI high, asynchronous  
Pulse duration, RS low  
12H  
15  
12H  
10  
Pulse duration, BIO low, synchronous  
w(BIL)SYN  
w(BIL)ASY  
d(RSH)  
Pulse duration, BIO low, asynchronous  
H + 15  
34H  
H + 10  
34H  
Delay time, RS high to reset vector fetch  
These parameters must be met to use the synchronous timings. Both reset and the interrupts can operate asynchronously. The pulse durations  
require an extra half-cycle to ensure internal synchronization.  
Values derived from characterization data and not tested  
§
If in IDLE2, add 4H to these timings.  
X2/CLKIN  
t
su(RS-CIL)  
t
d(RSH)  
t
w(RSL)  
RS  
t
su(RS-COL)  
t
su(BI-COL)  
CLKOUT1  
t
w(BIL)SYN  
BIO  
t
h(COL-BI)  
A0A15  
INT4INT1  
t
t
su(IN-COL)  
h(COL-IN)  
t
su(IN-COL)  
t
w(INL)SYN  
t
w(INH)SYN  
Figure 19. Reset, Interrupt, and BIO Timings  
64  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
INSTRUCTION ACQUISITION (IAQ), INTERRUPT ACKNOWLEDGE (IACK),  
EXTERNAL FLAG (XF), AND TOUT (SEE NOTE 6)  
switching characteristics over recommended operating conditions [H = 0.5t  
] (see Figure 20)  
c(CO)  
’320C5x-40  
’320C5x-57  
’320LC5x-40  
’320LC5x-50  
’320C5x-80  
’320C5x-100  
’320LC5x-80  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
t
t
t
t
t
t
t
t
t
Setup time, address valid before IAQ low  
Hold time, address valid after IAQ low  
Pulse duration, IAQ low  
H – 12  
H – 10  
H – 10  
H – 9  
H – 7  
H – 7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(AV-IQL)  
h(IQL-AV)  
w(IQL)  
Delay time, CLKOUT1 falling edge to TOUT  
– 6  
6
– 6  
6
9
d(CO-TU)  
su(AV-IKL)  
h(IKL-AV)  
w(IKL)  
§
Setup time, address valid before IACK low  
Hold time, address valid after IACK low  
Pulse duration, IACK low  
H – 12  
H – 10  
H – 10  
H – 9  
H – 7  
H – 7  
Pulse duration, TOUT high  
2H – 12  
0
2H – 9  
0
w(TUH)  
Delay time, XF valid after CLKOUT1  
12  
d(CO-XFV)  
IAQ goes low during an instruction acquisition. It goes low only on the first cycle of the read when wait states are used. The falling edge should  
be used to latch the valid address. The AVIS bit in the PMST register must be set to zero for the address to be valid when the instruction being  
addressed resides in on-chip memory.  
§
Valid only if the external address reflects the current instruction activity (that is, code is executing on chip with no external bus cycles and AVIS  
is on or code is executing off chip)  
IACK goes low during the fetch of the first word of the interrupt vector. It goes low only on the first cycle of the read when wait states are used.  
Address pins A1A4 can be decoded at the falling edge to identify the interrupt being acknowledged. The AVIS bit in the PMST register must  
be set to zero for the address to be valid when the vectors reside in on-chip memory.  
NOTE 6: IAQ pin is not present on 100-pin packages.  
IACK pin is not present on 100-pin and 128-pin packages.  
65  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
INSTRUCTION ACQUISITION (IAQ), INTERRUPT ACKNOWLEDGE (IACK),  
EXTERNAL FLAG (XF), AND TOUT (SEE NOTE 6) (CONTINUED)  
t
h(IQL-AV)  
ADDRESS  
t
su(AV-IQL)  
t
w(IQL)  
IAQ  
t
h(IKL-AV)  
t
su(AV-IKL)  
IACK  
t
w(IKL)  
STRB  
CLKOUT1  
t
d(CO-XFV)  
t
d(CO-TU)  
t
d(CO-TU)  
XF  
TOUT  
t
w(TUH)  
IAQ and IACK are not affected by wait states.  
Figure 20. IAQ, IACK, and XF Timings Example With Two External Wait States  
66  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
EXTERNAL DMA  
switching characteristics over recommended operating conditions [H = 0.5t  
(see Figure 21)  
] (see Note 7)  
c(CO)  
’320C5x-40  
’320C5x-80  
’320LC5x-80  
’320C5x-57  
’320LC5x-40  
’320LC5x-50  
’320C5x-100  
PARAMETER  
UNIT  
MIN  
4H  
MAX  
MIN  
4H  
MAX  
MIN  
4H  
MAX  
t
t
t
t
t
t
t
t
t
t
t
t
Delay time, HOLD low to HOLDA low  
Delay time, HOLD high before HOLDA high  
Address high-impedance before HOLDA low  
Enable time, HOLDA high to address driven  
Delay time, XBR low to IAQ low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(HOL-HAL)  
d(HOH-HAH)  
h(AZ-HAL)  
en(HAH-Ad)  
d(XBL-IQL)  
d(XBH-IQH)  
d(XSL-RDV)  
h(XSH-RD)  
en(IQL-RDd)  
h(XRL-DZ)  
h(IQH-DZ)  
2H  
2H  
2H  
§
§
§
§
§
§
H – 15  
H – 10  
H – 8  
H – 3  
4H  
§
§
§
§
§
§
H – 5  
H – 4  
§
§
§
§
§
§
4H  
6H  
4H  
6H  
6H  
Delay time, XBR high to IAQ high  
2H  
4H  
2H  
4H  
2H  
4H  
Delay time, read data valid after XSTRB low  
Hold time, read data valid after XSTRB high  
40  
29  
25  
0
§
0
§
0
§
§
§
§
§
§
§
§
§
§
2H  
Enable time, IAQ low to read data driven  
0
0
2H  
15  
H
0
0
2H  
10  
H
0
0
§
§
§
Hold time, XR/W low to data high impedance  
Hold time, IAQ high to data high impedance  
Enable time, data from XR/W going high  
8
§
H
2
§
4
3
en(D-XRH)  
HOLD is not acknowledged until current external access request is complete.  
This parameter includes all memory control lines.  
Values derived from characterization data and not tested  
This parameter refers to the delay between the time the condition (IAQ = 0 and XR/W = 1) is satisfied and the time that the ’C5x data linesbecome  
valid.  
§
NOTE 7: X preceding a name refers to external drive of the signal.  
timing requirements over recommended ranges of supply voltage and operating ambient-air  
temperature (see Note 7) (see Figure 21)  
’320C5x-40  
’320C5x-80  
’320LC5x-80  
’320C5x-57  
’320LC5x-40  
’320LC5x-50  
’320C5x-100  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
#
§
§
§
t
t
t
t
t
t
t
t
t
t
Delay time, HOLDA low to XBR low  
0
0
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(HAL-XBL)  
d(IQL-XSL)  
su(AV-XSL)  
su(DV-XSL)  
h(XSL-D)  
#
§
§
§
Delay time, IAQ low to XSTRB low  
Setup time, Xaddress valid before XSTRB low  
Setup time, Xdata valid before XSTRB low  
Hold time, Xdata hold after XSTRB low  
Hold time, write Xaddress hold after XSTRB low  
Pulse duration, XSTRB low  
15  
15  
15  
15  
45  
45  
20  
0
12  
12  
12  
12  
40  
40  
20  
0
10  
10  
10  
10  
35  
35  
18  
0
h(XSL-WA)  
w(XSL)  
Pulse duration, XSTRB high  
w(XSH)  
Setup time, R/W valid before XSTRB low  
Hold time, read Xaddress after XSTRB high  
su(RW-XSL)  
h(XSH-RA)  
§
#
Values derived from characterization data and not tested  
XBR, XR/W, and XSTRB lines must be pulled up with a 10-kresistor to be certain that they are in an inactive high state during the transition  
period between the ’C5x driving them and the external circuit driving them.  
NOTE 7: X preceding a name refers to external drive of the signal.  
67  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
EXTERNAL DMA (CONTINUED)  
HOLD  
t
d(HOH-HAH)  
t
d(HOL-HAL)  
HOLDA  
t
en(HAH-Ad)  
t
h(AZ-HAL)  
ADDRESS  
BUS/  
CONTROL  
SIGNALS  
t
d(HAL-XBL)  
XBR  
IAQ  
t
d(XBL-IQL)  
t
d(XBH-IQH)  
t
d(IQL-XSL)  
XSTRB  
XR/W  
t
w(XSH)  
t
w(XSL)  
t
su(RW-XSL)  
t
h(XRL-DZ)  
t
h(XSH-RA)  
t
h(XSH-RD)  
t
su(AV-XSL)  
t
en(IQL-RDd)  
XADDRESS  
t
su(AV-XSL)  
t
t
d(XSL-RDV)  
h(XSL-WA)  
t
h(IQH-DZ)  
DATA(RD)  
t
t
en(IQL-RDd)  
en(D-XRH)  
t
h(XSL-D)  
t
su(DV-XSL)  
XDATA(WR)  
Figure 21. External DMA Timing  
68  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
SERIAL-PORT RECEIVE TIMING  
timing requirements over recommended ranges of supply voltage and operating ambient-air  
temperature [H = 0.5t ] (see Figure 22)  
c(CO)  
’320C5x-40  
’320C5x-57  
’320LC5x-40  
’320LC5x-50  
’320C5x-80  
’320LC5x-80  
’320C5x-100  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
t
t
t
t
t
t
t
t
Cycle time, serial-port clock  
5.2H  
5.2H  
5.2H  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
c(SCK)  
§
§
§
§
§
§
Fall time, serial-port clock  
8
6
6
f(SCK)  
Rise time, serial-port clock  
8
6
6
r(SCK)  
2.1H  
2.1H  
2.1H  
Pulse duration, serial-port clock low/high  
Setup time, FSR before CLKR falling edge  
Setup time, DR before CLKR falling edge  
Hold time, FSR after CLKR falling edge  
Hold time, DR valid after CLKR falling edge  
w(SCK)  
10  
10  
10  
10  
7
7
7
7
6
6
6
6
su(FS-CK)  
su(DR-CK)  
h(CK-FS)  
h(CK-DR)  
Values ensured by design but not tested  
The serial-port design is fully static and, therefore, can operate with t  
of 0 Hz but tested at a much higher frequency to minimize test time.  
Values derived from characterization data and not tested  
approaching . It is characterized approaching an input frequency  
c(SCK)  
§
t
c(SCK)  
t
f(SCK)  
t
w(SCK)  
CLKR  
t
t
r(SCK)  
h(CK-FS)  
t
w(SCK)  
t
su(FS-CK)  
t
su(DR-CK)  
FSR  
t
h(CK-DR)  
DR  
Bit  
1
2
7/15  
8/16  
Figure 22. Serial-Port Receive Timing  
69  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
SERIAL-PORT TRANSMIT TIMING, EXTERNAL CLOCKS, AND EXTERNAL FRAMES  
switching characteristics over recommended operating conditions (see Note 8) (see Figure 23)  
PARAMETER  
Delay time, DX valid after CLKX high  
MIN  
MAX  
UNIT  
ns  
t
t
t
25  
d(CXH-DXV)  
dis(CXH-DX)  
h(CXH-DXV)  
40  
Disable time, DX invalid after CLKX high  
Hold time, DX valid after CLKX high  
ns  
– 5  
ns  
timing requirements over recommended ranges of supply voltage and operating ambient-air  
temperature [H = 0.5t ] (see Note 8) (see Figure 23)  
c(CO)  
’320C5x-40  
’320C5x-80  
’320LC5x-80  
’320C5x-57  
’320LC5x-40  
’320LC5x-50  
’320C5x-100  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
t
t
t
t
t
t
t
Cycle time, serial-port clock  
5.2H  
§
5.2H  
§
5.2H  
§
ns  
ns  
ns  
ns  
ns  
ns  
ns  
c(SCK)  
Fall time, serial-port clock  
8
8
6
6
6
6
f(SCK)  
Rise time, serial-port clock  
r(SCK)  
2.1H  
7
6
Pulse duration, serial-port clock low/high  
Delay time, FSX high after CLKX high  
Hold time, FSX low after CLKX low  
Hold time, FSX low after CLKX high  
2.1H  
2.1H  
w(SCK)  
2H – 8  
2H – 8  
2H – 5  
d(CXH-FXH)  
h(CXL-FXL)  
h(CXH-FXL)  
10  
2H – 5  
2H – 8  
2H – 8  
§
Values derived from characterization data and not tested  
Values ensured by design but not tested  
The serial-port design is fully static and, therefore, can operate with t  
of 0 Hz but tested at a much higher frequency to minimize test time.  
approaching . It is characterized approaching an input frequency  
c(SCK)  
If the FSX pulse does not meet this specification, the first bit of serial data is driven on the DX pin until the falling edge of FSX. After the falling  
edgeofFSX,dataisshiftedoutontheDXpin.Thetransmitbufferemptyinterruptisgeneratedwhenthet  
is met.  
andt  
specification  
h(CXH-FXL)  
h(CXL-FXL)  
NOTE 8: Internal clock with external FSX and vice versa are also allowable. However, FSX timings to CLKX always are defined depending on  
the source of FSX, and CLKX timings always are dependent on the source of CLKX. Specifically, the relationship of FSX to CLKX is  
independent of the source of CLKX.  
t
c(SCK)  
t
f(SCK)  
t
w(SCK)  
CLKX  
FSX  
t
t
d(CXH-FXH)  
r(SCK)  
t
h(CXH-FXL)  
t
w(SCK)  
t
h(CXL-FXL)  
t
d(CXH-DXV)  
t
dis(CXH-DX)  
t
h(CXH-DXV)  
DX  
BIt  
1
2
7/15  
8/16  
Figure 23. Serial-Port Transmit Timing of External Clocks and External Frames  
70  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
SERIAL-PORT TRANSMIT TIMING, INTERNAL CLOCKS, AND INTERNAL FRAMES  
(SEE NOTE 8)  
switching characteristics over recommended operating conditions [H = 0.5t  
] (see Figure 24)  
c(CO)  
’320C5x-40  
’320C5x-57  
’320LC5x-40  
’320LC5x-50  
’320C5x-80  
’320C5x-100  
’320LC5x-80  
PARAMETER  
UNIT  
MIN  
TYP  
MAX  
25  
MIN  
TYP  
MAX  
18  
t
t
t
t
t
t
t
t
Delay time, CLKX rising edge to FSX  
Delay time, CLKX rising edge to DX  
Disable time, CLKX rising edge to DX  
Cycle time, serial-port clock  
– 5  
– 4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(CX-FX)  
d(CX-DX)  
dis(CX-DX)  
c(SCK)  
25  
18  
40  
29  
8H  
5
8H  
4
Fall time, serial-port clock  
f(SCK)  
Rise time, serial-port clock  
5
4
r(SCK)  
Pulse duration, serial-port clock low/high  
Hold time, DX valid after CLKX high  
4H – 20  
– 5  
4H – 14  
– 4  
w(SCK)  
h(CXH-DXV)  
Values derived from characterization data and not tested  
NOTE 8: Internal clock with external FSX and vice versa are also allowable. However, FSX timings to CLKX always are defined depending on  
the source of FSX, and CLKX timings always are dependent on the source of CLKX. Specifically, the relationship of FSX to CLKX is  
independent of the source of CLKX.  
t
c(SCK)  
t
f(SCK)  
t
w(SCK)  
CLKX  
FSX  
t
d(CX-FX)  
t
t
w(SCK)  
r(SCK)  
t
d(CX-FX)  
t
d(CX-DX)  
t
dis(CX-DX)  
t
h(CXH-DXV)  
DX  
Bit  
1
2
7 /15  
8/16  
Figure 24. Serial-Port Transmit Timing of Internal Clocks and Internal Frames  
71  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
SERIAL-PORT RECEIVE TIMING IN TDM MODE  
timing requirements over recommended ranges of supply voltage and operating ambient-air  
temperature [H = 0.5t ] (see Figure 25)  
c(CO)  
’320C5x-40  
’320C5x-57  
’320LC5x-40  
’320LC5x-50  
’320C5x-80  
’320LC5x-80  
’320C5x-100  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
§
t
t
t
t
t
t
t
t
t
t
Cycle time, serial-port clock  
5.2H  
5.2H  
5.2H  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
c(SCK)  
Fall time, serial-port clock  
8
8
8
8
8
8
f(SCK)  
Rise time, serial-port clock  
r(SCK)  
2.1H  
2.1H  
2.1H  
Pulse duration, serial-port clock low/high  
Setup time, TDAT before TCLK rising edge  
Hold time, TDAT after TCLK rising edge  
Setup time, TADD before TCLK rising edge  
w(SCK)  
30  
– 3  
20  
21  
– 2  
12  
18  
– 2  
10  
su(TD-TCH)  
h(TCH-TD)  
su(TA-TCH)  
h(TCH-TA)  
su(TF-TCH)  
h(TCH-TF)  
#
#
Hold time, TADD after TCLK rising edge  
– 3  
10  
– 2  
10  
– 2  
10  
§
Setup time, TFRM before TCLK rising edge  
§
Hold time, TFRM after TCLK rising edge  
10  
10  
10  
Values ensured by design and are not tested  
The serial-port design is fully static and, therefore, can operate with t  
of 0 Hz but tested at a much higher frequency to minimize test time.  
TFRM timing and waveforms shown in Figure 25 are for external TFRM. TFRM also can be configured as internal. The TFRM internal case is  
illustrated in the transmit timing diagram in Figure 26.  
Values derived from characterization data and not tested  
approaching . It is characterized approaching an input frequency  
c(SCK)  
§
#
These parameters apply only to the first bits in the serial bit string.  
t
t
w(SCK)  
t
f(SCK)  
t
r(SCK)  
w(SCK)  
TCLK  
TDAT  
TADD  
TFRM  
t
su(TD-TCH)  
t
c(SCK)  
B15  
t
h(TCH-TD)  
B13  
B1  
B0  
B0  
B14  
su(TA-TCH)  
B12 B8  
B7  
B2  
t
t
h(TCH-TA)  
t
h(TCH-TA)  
A1  
A0  
A2  
A3  
A7  
t
su(TF-TCH)  
t
h(TCH-TF)  
Figure 25. Serial-Port Receive Timing in TDM Mode  
72  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
SERIAL-PORT TRANSMIT TIMING IN TDM MODE  
switching characteristics over recommended operating conditions [H = 0.5t  
] (see Figure 26)  
c(CO)  
’320C5x-40  
’320C5x-80  
’320LC5x-80  
’320C5x-57  
’320LC5x-40  
’320LC5x-50  
’320C5x-100  
PARAMETER  
UNIT  
MIN  
0
MAX  
MIN  
0
MAX  
MIN  
MAX  
t
t
t
Hold time, TDAT/TADD valid after TCLK rising edge  
0
ns  
ns  
ns  
h(TCH-TDV)  
d(TCH-TFV)  
d(TC-TDV)  
Delay time, TFRM valid after TCLK rising edge  
Delay time, TCLK to valid TDAT/TADD  
H
3H + 10  
20  
H
3H + 7  
15  
3H + 5  
12  
TFRM timing and waveforms shown in Figure 28 are for internal TFRM. TFRM can also be configured as external. The TFRM external case is  
illustrated in the receive timing diagram in Figure 27.  
timing requirements over recommended ranges of supply voltage and operating ambient-air  
temperature [H = 0.5t ] (see Figure 26)  
c(CO)  
’320C5x-40  
’320C5x-80  
’320LC5x-80  
’320C5x-57  
’320LC5x-40  
’320LC5x-50  
’320C5x-100  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
5.2H  
§
8H  
5.2H  
§
8H  
5.2H  
§
8H  
t
t
t
Cycle time, serial-port clock  
Fall time, serial-port clock  
Rise time, serial-port clock  
ns  
ns  
ns  
c(SCK)  
f(SCK)  
r(SCK)  
8#  
8#  
6#  
6#  
5#  
5#  
Pulse duration, serial-port clock low/  
high  
2.1H  
2.1H  
2.1H  
t
ns  
w(SCK)  
§
Values ensured by design and are not tested  
When SCK is generated internally  
The serial-port design is fully static and, therefore, can operate with t  
approaching . It is characterized approaching an input frequency  
c(SCK)  
of 0 Hz but tested as a much higher frequency to minimize test time.  
Values derived from characterization data and not tested  
#
t
f(SCK)  
t
w(SCK)  
t
w(SCK)  
t
r(SCK)  
TCLK  
t
c(SCK)  
t
d(TC-TDV)  
B15  
TDAT  
TADD  
B0  
h(TCH-TDV)  
B14  
B13  
A2  
B12  
A3  
B8 B7  
B2  
B1  
B0  
t
t
h(TCH-TDV)  
d(TC-TDV)  
t
A1  
A7  
t
d(TCH-TFV)  
A0  
t
d(TCH-TFV)  
TFRM  
Figure 26. Serial-Port Transmit Timing in TDM Mode  
73  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
BUFFERED SERIAL-PORT RECEIVE TIMING  
timing requirements over recommended ranges of supply voltage and operating ambient-air  
temperature [H = 0.5t ] (see Figure 27)  
c(CO)  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
t
t
t
t
Cycle time, serial-port clock  
25  
c(SCK)  
Fall time, serial-port clock  
6
ns  
f(SCK)  
Rise time, serial-port clock  
6
ns  
r(SCK)  
Pulse duration, serial-port clock low/high  
Setup time, FSR before CLKR falling edge  
Setup time, DR before CLKR falling edge  
Hold time, FSR after CLKR falling edge  
Hold time, DR after CLKR falling edge  
12  
2
ns  
w(SCK)  
ns  
su(FS-CK)  
su(DR-CK)  
h(CK-FS)  
h(CK-DR)  
0
ns  
§
12  
15  
t
ns  
c(SCK)  
ns  
The serial-port design is fully static and, therefore, can operate with t  
of 0 Hz but tested at a much higher frequency to minimize test time.  
Values derived from characterization data and not tested  
approaching . It is characterized approaching an input frequency  
c(SCK)  
§
First bit is read when FSR is sampled low by CLKR clock.  
t
c(SCK)  
t
f(SCK)  
t
w(SCK)  
CLKR  
t
t
r(SCK)  
h(CK-FS)  
t
w(SCK)  
t
su(FS-CK)  
t
su(DR-CK)  
FSR  
t
h(CK-DR)  
DR  
Bit  
1
2
7/15  
8/16  
Figure 27. Buffered Serial-Port Receive Timing  
74  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
BUFFERED SERIAL-PORT TRANSMIT TIMING OF EXTERNAL FRAMES (SEE NOTES 9 AND 10)  
switching characteristics over recommended operating conditions (see Figure 28)  
PARAMETER  
MIN  
5
MAX  
21  
UNIT  
ns  
t
t
t
t
t
Delay time, DX valid after CLKX rising edge  
d(CXH-DXV)  
Disable time, DX invalid after CLKX rising edge  
Disable time in PCM mode, DX invalid after CLKX rising edge  
Enable time in PCM mode, DX valid after CLKX rising edge  
Hold time, DX valid after CLKX rising edge  
5
15  
ns  
dis(CXH-DX)  
15  
ns  
dis(CXH-DX)PCM  
en(CXH-DX)PCM  
h(CXH-DXV)  
21  
5
ns  
20  
ns  
timing requirements over recommended operating conditions (see Figure 28)  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
t
t
Cycle time, serial-port clock  
25  
c(SCK)  
Fall time, serial-port clock  
4
4
ns  
f(SCK)  
Rise time, serial-port clock  
ns  
r(SCK)  
Pulse duration, serial-port clock low/high  
Setup time, FSX before CLKX falling edge  
Hold time, FSX after CLKX falling edge  
8.5  
5
ns  
w(SCK)  
ns  
su(FX-CXL)  
h(CXL-FX)  
§
–5  
5
t
ns  
c(SCK)  
The serial-port design is fully static and, therefore, can operate with t  
of 0 Hz but tested at a much higher frequency to minimize test time.  
Values derived from characterization data and not tested  
If the FSX pulse does not meet this specification, the first bit of the serial data is driven on the DX pin until FSX goes low (sampled on falling edge  
of CLKX). After falling edge of the FSX, data is shifted out on the DX pin.  
approaching . It is characterized approaching an input frequency  
c(SCK)  
§
NOTE 9: Internal clock with external FSX and vice versa are also allowable. However, FSX timings to CLKX always are defined depending on  
the source of FSX, and CLKX timings always are dependent upon the source of CLKX. Specifically, the relationship of FSX to CLKX  
is independent of the source of CLKX. External FSX timings are obtained from the “timing requirements over recommended operating  
conditions” table listed in the “Buffered Serial-Port Transmit Timing of External Frames” section and internal FSX timings are obtained  
fromtheswitchingcharacteristicsoverrecommendedoperatingconditionstablelistedundertheBufferedSerial-PortTransmitTiming  
ofInternalFrameandInternalClocksection. InternalCLKXtimingsareobtainedfromtheswitchingcharacteristicsoverrecommended  
operating conditions” table listed under the “Buffered Serial-Port Transmit Timing of Internal Frame and Internal Clock” section and  
external CLKX timings are obtained from the “timing requirements over recommended operating conditions” table in the “Buffered  
Serial-Port Transmit Timing of External Frames” section.  
NOTE 10: Timings for CLKX and FSX are given with polarity bits (CLKP and FSP) set to 0  
t
c(SCK)  
t
f(SCK)  
t
w(SCK)  
CLKX  
t
t
r(SCK)  
su(FX-CXL)  
t
h(CXL-FX)  
t
w(SCK)  
FSX  
t
d(CXH-DXV)  
t
dis(CXH-DX)  
t
h(CXH-DXV)  
DX BIt  
1
2
7/15  
8/16  
Figure 28. Buffered Serial-Port Transmit Timing of External Clocks and External Frames  
75  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
BUFFERED SERIAL-PORT TRANSMIT TIMING OF INTERNAL FRAME AND INTERNAL CLOCK  
(SEE NOTES 9 AND 10)  
switching characteristics over recommended operating conditions [H = 0.5t  
] (see Figure 29)  
c(CO)  
PARAMETER  
MIN  
MAX  
10  
10  
10  
8
UNIT  
ns  
t
t
t
t
t
t
t
t
t
Delay time, FSX high after CLKX rising edge  
Delay time, FSX low after CLKX rising edge  
Delay time, DX valid after CLKX rising edge  
Disable time, DX invalid after CLKX rising edge  
Disable time in PCM mode, DX invalid after CLKX rising edge  
Enable time in PCM mode, DX valid after CLKX rising edge  
Cycle time, serial-port clock  
d(CXH-FXH)  
d(CXH-FXL)  
d(CXH-DXV)  
dis(CXH-DX)  
dis(CXH-DX)PCM  
en(CXH-DX)PCM  
c(SCK)  
ns  
5
4
ns  
ns  
10  
ns  
16  
ns  
2H  
62H  
ns  
Fall time, serial-port clock  
4
4
ns  
f(SCK)  
Rise time, serial-port clock  
ns  
r(SCK)  
t
t
Pulse duration, serial-port clock low/high  
Hold time, DX valid after CLKX rising edge  
H–4  
4
ns  
ns  
w(SCK)  
8
h(CXH-DXV)  
Values derived from characterization data and not tested  
NOTES: 9. Internal clock with external FSX and vice versa are also allowable. However, FSX timings to CLKX always are defined depending  
on the source of FSX, and CLKX timings always are dependent upon the source of CLKX. Specifically, the relationship of FSX to  
CLKX is independent of the source of CLKX. External FSX timings are obtained from the “timing requirements over recommended  
operating conditions” table listed in the “Buffered Serial-Port Transmit Timing of External Frames” section and internal FSX timings  
areobtainedfromtheswitchingcharacteristicsoverrecommendedoperatingconditionstablelistedundertheBufferedSerial-Port  
TransmitTimingofInternalFrameandInternalClocksection. InternalCLKXtimingsareobtainedfromtheswitchingcharacteristics  
over recommended operating conditions” table listed under the “Buffered Serial-Port Transmit Timing of Internal Frame and Internal  
ClocksectionandexternalCLKXtimingsareobtainedfromthetimingrequirementsoverrecommendedoperatingconditionstable  
in the “Buffered Serial-Port Transmit Timing of External Frames” section.  
10. Timings for CLKX and FSX are given with polarity bits (CLKP and FSP) set to 0.  
t
c(SCK)  
t
t
f(SCK)  
d(CXH-FXH)  
t
w(SCK)  
CLKX  
FSX  
t
t
w(SCK)  
r(SCK)  
t
d(CXH-FXL)  
t
d(CXH-DXV)  
t
dis(CXH-DX)  
t
h(CXH-DXV)  
DX  
Bit  
1
2
7 /15  
8/16  
Figure 29. Buffered Serial-Port Transmit Timing of Internal Clocks and Internal Frames  
76  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
HOST PORT INTERFACE (TMS320C57S, TMS320LC57 ONLY)  
switching characteristics over recommended operating conditions [H = 0.5t  
and 12) (see Figure 30 through Figure 33)  
] (See Notes 11  
c(CO)  
PARAMETER  
Delay time, DS low to HD valid  
Delay time, HDS falling to HD valid for first byte of a subsequent read:  
MIN  
MAX  
UNIT  
t
5
ns  
d(DSL-HDV)  
d(HEL-HDV1)  
† ‡  
Case 1: Shared-access mode if t  
Case 2: Shared-access mode if t  
< 7H  
> 7H  
7H+20–t  
40–t  
w(HDS)h  
w(HDS)h  
w(DSH)  
20  
t
ns  
Case 3: Host-only mode if t  
Case 4: Host-only mode if t  
< 7H  
> 7H  
w(HDS)h  
w(HDS)h  
w(DSH)  
20  
t
t
t
t
t
t
t
Delay time, DS low to HD valid, second byte  
Delay time, DS high to HRDY high  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(DSL-HDV2)  
d(DSH-HYH)  
su(HDV-HYH)  
h(DSH-HDV)  
d(COH-HYH)  
d(DSH-HYL)  
d(COH-HTX)  
Setup time, HD valid before HRDY rising edge  
Hold time, HD valid after DS rising edge  
Delay time, CLKOUT rising edge to HRDY high  
Delay time, HDS or HCS high to HRDY low  
3H–10  
0
§
12  
10  
12  
10  
Delay time, CLKOUT rising edge to HINT change  
Host-only mode timings apply for read accesses to HPIC or HPIA, write accesses to BOB, and resetting DSPINT or HINT to 0 in shared-access  
mode. HRDY does not go low for these accesses.  
Shared-access mode timings are met automatically if HRDY is used.  
HD release  
§
NOTES: 11. SAM = shared-access mode, HOM = host-only mode  
HAD stands for HCNTRL0, HCNTRL1, and HR/W.  
HDS refers to either HDS1 or HDS2.  
DS refers to the logical OR of HCS and HDS.  
12. On host-read accesses to the HPI, the setup time of HD before DS rising edge depends on the host waveforms and cannot be  
specified here.  
timing requirements over recommended operating conditions [H = 0.5t  
(see Figure 30 through Figure 33)  
] (See Note 11)  
c(CO)  
MIN  
10  
MAX  
UNIT  
ns  
#
Setup time, HAD/HBIL valid before HAS or DS falling edge  
t
t
t
t
t
su(HBV-DSL)  
h(DSL-HBV)  
su(HSL-DSL)  
w(DSL)  
#
Hold time, HAD/HBIL valid after HAS or DS falling edge  
Setup time, HAS low before DS falling edge  
Pulse duration, DS low  
10  
ns  
10  
ns  
25  
ns  
Pulse duration, DS high  
10  
ns  
w(DSH)  
Cycle time, DS rising edge to next DS rising edge:  
Case 1: When using HRDY (see Figure 32)  
Case 2a: SAM accesses and HOM active writes to DSPINT or HINT without using HRDY 10H  
(see Figure 30 and Figure 31)  
50  
t
ns  
c(DSH-DSH)  
Case 2b: When not using HRDY for other HOM accesses  
Setup time, HD valid before DS rising edge  
Hold time, HD valid after DS rising edge  
50  
10  
0
t
t
ns  
ns  
su(HDV-DSH)  
h(DSH-HDV)  
A host not using HRDY must meet the 10 H requirement all the time unless a software handshake is used to change the access rate according  
to the HPI mode.  
#
When HAS is tied to V , timing is referenced to DS.  
DD  
NOTE 11: SAM = shared-access mode, HOM = host-only mode  
HAD stands for HCNTRL0, HCNTRL1, and HR/W.  
HDS refers to either HDS1 or HDS2.  
DS refers to the logical OR of HCS and HDS.  
77  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
HOST PORT INTERFACE (TMS320C57S, TMS320LC57 ONLY) (CONTINUED)  
FIRST BYTE  
SECOND BYTE  
Valid  
Valid  
Valid  
HAD  
t
h(DSL-HBV)  
t
h(DSL-HBV)  
t
su(HBV-DSL)  
t
su(HBV-DSL)  
HBIL  
t
t
w(DSH)  
w(DSH)  
t
w(DSL)  
t
w(DSL)  
HCS  
HDS  
t
c(DSH-DSH)  
t
d(DSL-HDV2)  
Valid  
t
d(HEL-HDV1)  
t
h(DSH-HDV)  
t
h(DSH-HDV)  
t
d(DSL-HDV)  
HD  
READ  
Valid  
t
t
su(HDV-DSH)  
su(HDV-DSH)  
t
t
h(DSH-HDV)  
h(DSH-HDV)  
HD  
WRITE  
Valid  
Valid  
Figure 30. Read/Write Access Timings Without HRDY or HAS  
78  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
HOST PORT INTERFACE (TMS320C57S, TMS320LC57 ONLY) (CONTINUED)  
FIRST BYTE  
SECOND BYTE  
HAS  
t
su(HSL-DSL)  
t
h(DSL-HBV)  
Valid  
Valid  
Valid  
HAD  
HBIL  
t
su(HBV-DSL)  
t
c(DSH-DSH)  
t
w(DSH)  
t
c(DSH-DSH)  
t
w(DSL)  
HCS  
HDS  
t
d(HEL-HDV1)  
t
d(DSL-HDV2)  
Valid  
t
h(DSH-HDV)  
t
h(DSH-HDV)  
t
d(DSL-HDV)  
t
HD  
READ  
Valid  
t
su(HDV-DSH)  
su(HDV-DSH)  
t
h(DSH-HDV)  
t
h(DSH-HDV)  
HD  
WRITE  
Valid  
Valid  
Figure 31. Read/Write Access Timings Using HAS Without HRDY  
79  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
HOST PORT INTERFACE (TMS320C57S, TMS320LC57 ONLY) (CONTINUED)  
FIRST BYTE  
SECOND BYTE  
HAS  
t
su(HSL-DSL)  
t
su(HBV-DSL)  
t
h(DSL-HBV)  
HAD  
t
h(DSL-HBV)  
t
su(HBV-DSL)  
HBIL  
t
c(DSH-DSH)  
t
w(DSH)  
t
w(DSL)  
HCS  
HDS  
t
su(HDV-HYH)  
t
d(DSH-HYH)  
HRDY  
t
d(DSH-HYL)  
Valid  
t
d(DSL-HDV2)  
Valid  
t
d(HEL-HDV1)  
t
h(DSH-HDV)  
t
h(DSH-HDV)  
t
d(DSL-HDV)  
HD  
READ  
t
su(HDV-DSH)  
t
su(HDV-DSH)  
t
h(DSH-HDV)  
t
h(DSH-HDV)  
HD  
WRITE  
Valid  
Valid  
t
d(COH-HYH)  
CLKOUT  
HINT  
t
d(COH-HTX)  
When HAS is tied to V  
DD  
Figure 32. Read/Write Access Timing With HRDY  
80  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
HOST PORT INTERFACE (TMS320C57S, TMS320LC57 ONLY) (CONTINUED)  
HCS  
t
d(DSH-HYL)  
HRDY  
HDS  
t
d(DSH-HYH)  
Figure 33. HRDY Signal When HCS Is Always Low  
81  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
MECHANICAL DATA  
PQ (S-PQFP-G132)  
PLASTIC QUAD FLATPACK  
17  
1 132  
117  
18  
116  
0.012 (0,30)  
0.008 (0,20)  
0.006 (0,15)  
M
0.800  
(20,32)  
SQ  
0.025 (0,635)  
84  
0.006  
(0,16)  
NOM  
50  
0.150 (3,81)  
0.130 (3,30)  
51  
83  
0.966 (24,54)  
0.934 (23,72)  
1.090 (27,69)  
1.070 (27,18)  
1.112 (28,25)  
1.088 (27,64)  
SQ  
SQ  
SQ  
Gage Plane  
0.010 (0,25)  
0.020  
(0,51) MIN  
0°8°  
0.046 (1,17)  
0.036 (0,91)  
Seating Plane  
0.004 (0,10)  
0.180 (4,57) MAX  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MO-069  
Thermal Resistance Characteristics  
PARAMETER  
°C/W  
R
35  
ΘJA  
ΘJC  
R
8.5  
82  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
MECHANICAL DATA  
PBK (S-PQFP-G128)  
PLASTIC QUAD FLATPACK  
0,23  
0,40  
96  
M
0,07  
64  
0,13  
65  
97  
128  
33  
0,13 NOM  
1
32  
Gage Plane  
11,60 TYP  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040279-3/B 10/94  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
Thermal Resistance Characteristics  
PARAMETER  
°C/W  
R
58  
ΘJA  
ΘJC  
R
10  
83  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
MECHANICAL DATA  
PJ (R-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,40  
M
0,65  
0,13  
0,20  
80  
51  
81  
50  
14,20 18,00  
13,80 17,20  
12,35 TYP  
100  
31  
1
30  
0,15 NOM  
18,85 TYP  
20,20  
19,80  
24,00  
23,20  
Gage Plane  
0,25  
0,10 MIN  
0°10°  
2,70 TYP  
1,10  
0,70  
Seating Plane  
3,10 MAX  
0,15  
4040012/B 10/94  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Contact field sales office to determine if a tighter coplanarity requirement is available for this package.  
Thermal Resistance Characteristics  
PARAMETER  
°C/W  
R
78  
ΘJA  
ΘJC  
R
13  
84  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
MECHANICAL DATA  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,50  
75  
M
0,08  
0,17  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 10/94  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MO-136  
Thermal Resistance Characteristics  
PARAMETER °C/W  
R
R
58  
10  
ΘJA  
ΘJC  
85  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320C5x, TMS320LC5x  
DIGITAL SIGNAL PROCESSORS  
SPRS030A – APRIL 1995 – REVISED APRIL 1996  
MECHANICAL DATA  
PGE (S-PQFP-G144)  
PLASTIC QUAD FLATPACK  
108  
73  
109  
72  
0,27  
0,17  
M
0,08  
0,50  
0,13 NOM  
144  
37  
1
36  
Gage Plane  
17,50 TYP  
20,20  
19,80  
SQ  
SQ  
0,25  
0,05 MIN  
22,20  
21,80  
0°7°  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040147/B 10/94  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MO-136  
Thermal Resistance Characteristics  
PARAMETER  
°C/W  
R
40  
ΘJA  
ΘJC  
R
9.9  
86  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Nov-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
LQFP  
BQFP  
BQFP  
BQFP  
BQFP  
BQFP  
BQFP  
BQFP  
BQFP  
Drawing  
PBK  
PQ  
TMP320LBC57PBK80  
TMS320BC51PQ  
OBSOLETE  
OBSOLETE  
NRND  
128  
132  
132  
132  
132  
132  
132  
132  
132  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
TMS320BC51PQ100  
TMS320BC51PQ57  
TMS320BC51PQ80  
TMS320BC51PQA  
PQ  
36  
36  
36  
CU SNPB  
CU SNPB  
CU SNPB  
Call TI  
Level-4-220C-72HR  
Level-4-220C-72HR  
Level-4-220C-72HR  
Call TI  
NRND  
PQ  
NRND  
PQ  
OBSOLETE  
NRND  
PQ  
TMS320BC51PQA57  
TMS320BC51PQA80  
TMS320BC51PQA80G4  
PQ  
36  
36  
CU SNPB  
CU SNPB  
Level-4-220C-72HR  
Level-4-220C-72HR  
NRND  
PQ  
OBSOLETE  
PQ  
Green (RoHS & CU NIPDAU Level-4-260C-72HR  
no Sb/Br)  
TMS320BC51PZ  
OBSOLETE  
NRND  
LQFP  
LQFP  
PZ  
PZ  
100  
100  
TBD  
Call TI  
Call TI  
TMS320BC51PZ100  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TMS320BC51PZ57  
TMS320BC51PZ80  
TMS320BC51PZA  
TMS320BC51PZA57  
NRND  
NRND  
LQFP  
LQFP  
LQFP  
LQFP  
PZ  
PZ  
PZ  
PZ  
100  
100  
100  
100  
90  
90  
TBD  
TBD  
TBD  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
OBSOLETE  
NRND  
Call TI  
Call TI  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TMS320BC52PJ  
TMS320BC52PJ100  
TMS320BC52PJ57  
OBSOLETE  
NRND  
QFP  
QFP  
QFP  
PJ  
PJ  
PJ  
100  
100  
100  
TBD  
TBD  
Call TI  
Call TI  
66  
CUCU NIPDAU Level-4-220C-72HR  
NRND  
66 Green (RoHS & CUCU NIPDAU Level-4-260C-72HR  
no Sb/Br)  
TMS320BC52PJ80  
NRND  
QFP  
PJ  
100  
66 Green (RoHS & CUCU NIPDAU Level-4-260C-72HR  
no Sb/Br)  
TMS320BC52PJA  
OBSOLETE  
NRND  
QFP  
QFP  
PJ  
PJ  
100  
100  
TBD  
Call TI  
Call TI  
TMS320BC52PJA57  
66 Green (RoHS & CUCU NIPDAU Level-4-260C-72HR  
no Sb/Br)  
TMS320BC52PJA57G4  
NRND  
QFP  
PJ  
100  
66 Green (RoHS & CUCU NIPDAU Level-4-260C-72HR  
no Sb/Br)  
TMS320BC52PZ  
OBSOLETE  
NRND  
LQFP  
LQFP  
PZ  
PZ  
100  
100  
TBD  
Call TI  
Call TI  
TMS320BC52PZ100  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TMS320BC52PZ57  
TMS320BC52PZ80  
NRND  
NRND  
LQFP  
LQFP  
PZ  
PZ  
100  
100  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TMS320BC52PZA  
TMS320BC52PZA57  
TMS320BC53PQ  
OBSOLETE  
NRND  
LQFP  
LQFP  
BQFP  
BQFP  
BQFP  
BQFP  
BQFP  
LQFP  
LQFP  
PZ  
PZ  
PQ  
PQ  
PQ  
PQ  
PQ  
PZ  
PZ  
100  
100  
132  
132  
132  
132  
132  
100  
100  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
90  
CU NIPDAU Level-1-220C-UNLIM  
OBSOLETE  
NRND  
Call TI  
CU SNPB  
CU SNPB  
Call TI  
Call TI  
TMS320BC53PQ57  
TMS320BC53PQ80  
TMS320BC53PQA  
TMS320BC53PQA57  
TMS320BC53SPZ  
TMS320BC53SPZ57  
36  
36  
Level-4-220C-72HR  
Level-4-220C-72HR  
Call TI  
NRND  
OBSOLETE  
NRND  
36  
CU SNPB  
Call TI  
Level-4-220C-72HR  
Call TI  
OBSOLETE  
NRND  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Nov-2005  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
no Sb/Br)  
TMS320BC53SPZ80  
TMS320BC57SPGE57  
TMS320BC57SPGE80  
NRND  
NRND  
NRND  
LQFP  
LQFP  
LQFP  
PZ  
100  
144  
144  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PGE  
PGE  
60 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
60 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TMS320C50PGE  
OBSOLETE  
NRND  
LQFP  
LQFP  
PGE  
PGE  
144  
144  
TBD  
Call TI  
Call TI  
TMS320C50PGE57  
60 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TMS320C50PGE80  
TMS320C50PGEA57  
NRND  
NRND  
LQFP  
LQFP  
PGE  
PGE  
144  
144  
60 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
60 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TMS320C50PQ  
OBSOLETE  
NRND  
BQFP  
BQFP  
PQ  
PQ  
132  
132  
TBD  
Call TI  
Call TI  
TMS320C50PQ57  
36 Green (RoHS & CU NIPDAU Level-4-260C-72HR  
no Sb/Br)  
TMS320C50PQ80  
TMS320C50PQA  
TMS320C50PQA57  
TMS320C51PQ  
NRND  
BQFP  
BQFP  
BQFP  
BQFP  
BQFP  
BQFP  
BQFP  
BQFP  
BQFP  
BQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
QFP  
PQ  
PQ  
PQ  
PQ  
PQ  
PQ  
PQ  
PQ  
PQ  
PQ  
PZ  
PZ  
PZ  
PZ  
PZ  
PJ  
132  
132  
132  
132  
132  
132  
132  
132  
132  
132  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
132  
132  
36  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
CU NIPDAU Level-4-220C-72HR  
Call TI Call TI  
CU NIPDAU Level-4-220C-72HR  
OBSOLETE  
NRND  
36  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
TMS320C51PQ100  
TMS320C51PQ57  
TMS320C51PQ80  
TMS320C51PQA  
TMS320C51PQA57  
TMS320C51PQA80  
TMS320C51PZ  
TMS320C51PZ100  
TMS320C51PZ57  
TMS320C51PZ80  
TMS320C51PZA  
TMS320C52PJ  
TMS320C52PJ100  
TMS320C52PJ57  
TMS320C52PJ80  
TMS320C52PJA  
TMS320C52PJA57  
TMS320C52PZ  
QFP  
PJ  
QFP  
PJ  
QFP  
PJ  
QFP  
PJ  
QFP  
PJ  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
BQFP  
BQFP  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
PQ  
PQ  
TMS320C52PZ100  
TMS320C52PZ57  
TMS320C52PZ80  
TMS320C52PZA  
TMS320C52PZA57  
TMS320C53PQ  
TMS320C53PQ57  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Nov-2005  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
BQFP  
BQFP  
LQFP  
BQFP  
BQFP  
LQFP  
LQFP  
LQFP  
LQFP  
Drawing  
TMS320C53PQ80  
TMS320C53PQA  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
NRND  
PQ  
132  
132  
100  
132  
132  
100  
100  
100  
100  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
PQ  
Call TI  
TMS320C53SPZ  
PZ  
Call TI  
Call TI  
TMS320LBC51PQ57  
TMS320LBC51PQA57  
TMS320LBC51PZ  
TMS320LBC51PZ57  
TMS320LBC51PZA  
TMS320LBC51PZA57  
PQ  
Call TI  
Call TI  
PQ  
36  
CU SNPB  
Call TI  
Level-4-220C-72HR  
Call TI  
OBSOLETE  
OBSOLETE  
OBSOLETE  
NRND  
PZ  
PZ  
Call TI  
Call TI  
PZ  
Call TI  
Call TI  
PZ  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TMS320LBC52PJ  
TMS320LBC52PJ57  
TMS320LBC52PJA  
TMS320LBC52PJA57  
TMS320LBC52PZ57  
TMS320LBC52PZA57  
OBSOLETE  
NRND  
QFP  
QFP  
PJ  
PJ  
PJ  
PJ  
PZ  
PZ  
100  
100  
100  
100  
100  
100  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
CU SNPB  
Call TI  
Call TI  
66  
Level-4-220C-72HR  
Call TI  
OBSOLETE  
OBSOLETE  
NRND  
QFP  
QFP  
CU SNPB  
Level-4-220C-72HR  
LQFP  
LQFP  
90  
CU NIPDAU Level-1-220C-UNLIM  
NRND  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TMS320LBC53PQ  
TMS320LBC53PQ57  
TMS320LBC53SPZ  
TMS320LBC53SPZ57  
TMS320LBC53SPZ80  
TMS320LBC53SPZA57  
OBSOLETE  
NRND  
BQFP  
BQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PQ  
PQ  
PZ  
PZ  
PZ  
PZ  
132  
132  
100  
100  
100  
100  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
CU SNPB  
Call TI  
Call TI  
36  
90  
Level-4-220C-72HR  
Call TI  
OBSOLETE  
OBSOLETE  
NRND  
Call TI  
Call TI  
CU NIPDAU Level-1-220C-UNLIM  
NRND  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TMS320LBC56PZ57  
TMS320LBC56PZ80  
NRND  
NRND  
LQFP  
LQFP  
PZ  
PZ  
100  
100  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TMS320LBC57PBK57  
TMS320LBC57PBK80  
TMS320LBC57PGE57  
NRND  
NRND  
NRND  
LQFP  
LQFP  
LQFP  
PBK  
PBK  
PGE  
128  
128  
144  
90  
90  
TBD  
TBD  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
60 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TMS320LBC57PGE80  
NRND  
LQFP  
PGE  
144  
60 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TMS320LC50PQ  
TMS320LC50PQ50  
TMS320LC50PQ57  
TMS320LC50PQA  
TMS320LC51PZ  
OBSOLETE  
NRND  
BQFP  
BQFP  
BQFP  
BQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PQ  
PQ  
PQ  
PQ  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
132  
132  
132  
132  
100  
100  
100  
100  
100  
100  
100  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
36  
36  
36  
CU SNPB  
Level-4-220C-72HR  
NRND  
CU NIPDAU Level-4-220C-72HR  
CU NIPDAU Level-4-220C-72HR  
NRND  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
TMS320LC51PZ57  
TMS320LC52PZ  
TMS320LC52PZ57  
TMS320LC52PZA  
TMS320LC53SPZ  
TMS320LC53SPZ50  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Nov-2005  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 4  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

TMS320BC51PQ100

DIGITAL SIGNAL PROCESSORS
TI

TMS320BC51PQ57

DIGITAL SIGNAL PROCESSORS
TI

TMS320BC51PQ80

DIGITAL SIGNAL PROCESSORS
TI

TMS320BC51PQA

DIGITAL SIGNAL PROCESSORS
TI

TMS320BC51PQA57

DIGITAL SIGNAL PROCESSORS
TI

TMS320BC51PQA80

DIGITAL SIGNAL PROCESSORS
TI

TMS320BC51PQA80G4

DIGITAL SIGNAL PROCESSORS
TI

TMS320BC51PQL-20

16-BIT, 40MHz, OTHER DSP, PQFP132, 20 X 20 X 3.80 MM, BUMPERED, QFP-132
TI

TMS320BC51PQL-28.6

16-BIT, 57.2MHz, OTHER DSP, PQFP132, 20 X 20 X 3.80 MM, BUMPERED, QFP-132
TI

TMS320BC51PQL-40

16-BIT, 80MHz, OTHER DSP, PQFP132, 20 X 20 X 3.80 MM, BUMPERED, QFP-132
TI

TMS320BC51PQL-50

16-BIT, 100MHz, OTHER DSP, PQFP132, 20 X 20 X 3.80 MM, BUMPERED, QFP-132
TI

TMS320BC51PQL100

16-BIT, 100MHz, OTHER DSP, PQFP132
TI