TMS320C10FNA [TI]

DIGITAL SIGNAL PROCESSORS; 数字信号处理器
TMS320C10FNA
型号: TMS320C10FNA
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DIGITAL SIGNAL PROCESSORS
数字信号处理器

数字信号处理器
文件: 总146页 (文件大小:1145K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320C1x  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
Performance Up to 8.77 MIPs  
Commercial and Military Versions Available  
All TMS320C1x Devices are Object Code  
Operating Free-Air Temperature  
. . . 0°C to 70°C  
Compatible  
144/256-Word On-Chip Data RAM  
Packaging: DIP, PLCC, Quad Flatpack, and  
1.5K/4K/8K-Word On-Chip Program ROM  
CER-QUAD  
4K-Word On-Chip Program EPROM  
CMOS Technology:  
(TMS320E14/P14/E15/P15/E17/P17)  
Device  
Cycle Time  
One-Time Programmable (OTP)  
— TMS320C10 . . . . . . . . . . . . . . . . . . . 200-ns  
— TMS320C10-14 . . . . . . . . . . . . . . . . 280-ns  
— TMS320C10-25 . . . . . . . . . . . . . . . . 160-ns  
— TMS320C14 . . . . . . . . . . . . . . . . . . . 160-ns  
— TMS320E14 . . . . . . . . . . . . . . . . . . . 160-ns  
— TMS320P14 . . . . . . . . . . . . . . . . . . . 160-ns  
— TMS320C15 . . . . . . . . . . . . . . . . . . . 200-ns  
— TMS320C15-25 . . . . . . . . . . . . . . . . 160-ns  
— TMS320E15 . . . . . . . . . . . . . . . . . . . 200-ns  
— TMS320E15-25 . . . . . . . . . . . . . . . . 160-ns  
— TMS320LC15 . . . . . . . . . . . . . . . . . . 250-ns  
— TMS320P15 . . . . . . . . . . . . . . . . . . . 200-ns  
— TMS320C16 . . . . . . . . . . . . . . . . . . . 114-ns  
— TMS320C17 . . . . . . . . . . . . . . . . . . . 200-ns  
— TMS320E17 . . . . . . . . . . . . . . . . . . . 200-ns  
— TMS320LC17 . . . . . . . . . . . . . . . . . . 278-ns  
— TMS320P17 . . . . . . . . . . . . . . . . . . . 200-ns  
Versions Available (TMS320P14/P15/P17)  
EPROM Code Protection for Copyright  
Security  
4K / 64K-Word Total External Memory at  
Full Speed  
32-Bit ALU/Accumulator  
16 × 16-Bit Multiplier With a 32-Bit Product  
0 to 16-Bit Barrel Shifter  
Eight Input/Output Channels  
Dual-Channel Serial Port  
Simple Memory and I/O Interface  
5-V and 3.3-V Versions Available  
(TMS320LC15/LC17)  
introduction  
TheTMS32010digitalsignalprocessor(DSP), introducedin1983, wasthefirstDSPintheTMS320family. From  
it has evolved this TMS320C1x generation of 16-bit DSPs. All C1x DSPs are object code compatible with the  
TMS32010 DSP. The C1x DSPs combine the flexibility of a high-speed controller with the numerical capability  
of an array processor, thereby offering an inexpensive alternative to multichip bit-slice processors. The highly  
paralleled architecture and efficient instruction set provide speed and flexibility to produce a CMOS  
microprocessorgenerationcapableofexecutingupto8.77MIPS(millioninstructionspersecond)(C16). These  
C1x devices utilize a modified Harvard architecture to optimize speed and flexibility, implementing functions in  
hardware that other processors implement through microcode or software.  
The C1x generation’s powerful instruction set, inherent flexibility, high-speed number-handling capabilities,  
reduced power consumption, and innovative architecture have made these cost-effective DSPs the ideal  
solution for many telecommunications, computer, commercial, industrial, and military applications.  
This data sheet provides detailed design documentation for the C1x DSPs. It facilitates the selection of devices  
best suited for various user applications by providing specifications and special features for each C1x DSP.  
This data sheet is arranged as follows: introduction, quick reference table of device parameters and packages,  
summary overview of each device, architecture overview, and the C1x device instruction set summary. These  
are followed by data sheets for each C1x device providing available package styles, terminal function tables,  
block diagrams, and electrical and timing parameters. An index is provided to facilitate data sheet usage.  
PRODUCTION DATA information is current as of  
Copyright 1991, Texas Instruments Incorporated  
publication date. Products conform to specifications  
per the terms of Texas Instruments standard warranty.  
Production processing does not necessarily include  
testing of all parameters.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
1
TMS320C1x  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
Table1providesanoverviewofC1xprocessorswithcomparisonsofmemory, I/O, cycletiming, militarysupport,  
and package types. For specific availability, contact the nearest TI Field Sales Office.  
Table 1. TMS320C1x Device Overview  
MEMORY  
ROM EPROM  
I/O  
CYCLE  
(ns)  
200  
280  
160  
160  
160  
160  
200  
160  
200  
160  
250  
200  
114  
PACKAGE (1)  
DEVICE  
RAM  
144  
144  
144  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
PROG.  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
64K  
SERIAL PARALLEL  
DIP  
40  
40  
40  
PLCC  
44  
44  
44  
68  
CER-QUAD  
TMS320C10 (2)  
TMS320C10-14  
TMS320C10-25  
TMS320C14 (3)  
TMS320E14 (3)  
1.5K  
1.5K  
1.5K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
1
8 × 16  
8 × 16  
8 × 16  
7 × 16 (4)  
7 × 16 (4)  
7 × 16 (4)  
8 × 16  
1
68 CER  
TMS320P14  
1
68  
44  
44  
TMS320C15 (3)  
TMS320C15-25  
TMS320E15 (3)  
TMS320E15-25  
TMS320LC15  
4K  
4K  
2
40  
40  
40  
40  
40  
40  
8 × 16  
8 × 16  
44 CER  
44 CER  
8 × 16  
4K  
8 × 16  
44  
44  
TMS320P15  
8 × 16  
TMS320C16  
8K  
4K  
8 × 16  
64 QFP  
TMS320C17  
6 × 16 (5)  
6 × 16 (5)  
6 × 16 (5)  
6 × 16 (5)  
200  
200  
278  
200  
40  
40  
40  
40  
44  
TMS320E17 (5)  
TMS320LC17 (5)  
2
44 CER  
4K  
2
44  
44  
TMS320P17 (5)  
2
One-time programmable (OTP) device is in a windowless plastic package and cannot be erased.  
NOTES: 1. DIP = dual in-line package. PLCC = plastic-leaded chip carrier. CER = ceramic-leaded chip carrier. QFP = plastic quad flat pack.  
2. Military version available.  
3. Military versions planned; contact nearest TI Field Sales Office for availability.  
4. On-chip 16-bit I/O, four capture inputs, and six compare outputs are available.  
5. On-chip 16-bit coprocessor interface is optional by pin selection.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
2
TMS320C1x  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
description  
TMS320C10  
The C10 provides the core CPU used in all other C1x devices. Its microprocessor operates at 5 MIPS. It  
provides a parallel I/O of 8 × 16 bits. Three versions with cycle times of 160, 200, and 280 ns are available as  
illustrated in Table 1. The C10 versions are offered in plastic 40-pin DIP or a 44-lead PLCC packages.  
TMS320C14/E14/P14  
The C14/E14/P14 devices, using the C10 core CPU, offer expanded on-chip RAM, and ROM or EPROM  
(E14/P14), 16 pins of bit selectable parallel I/O, an I/O mapped asynchronous serial port, four 16-bit timers, and  
external/internal interrupts. The C14 devices can provide for microcomputer/microprocessor operating modes.  
Three versions with cycle times of 160-ns are available as illustrated in Table 1. These devices are offered in  
68-pin plastic PLCC or ceramic CER-QUAD packages.  
TMS320C15/E15/P15  
The C15/E15/P15 devices are a version of the C10, offering expanded on-chip RAM, and ROM or EPROM  
(E15/P15). The P15 is a one-time programmable (OTP), windowless EPROM version. These devices can  
operate in the microcomputer or microprocessor modes. Five versions are available with cycle times of 160 to  
200 ns (see Table 1). These devices are offered in 40-pin DIP, 44-pin PLCC, or 44-pin ceramic packages.  
TMS320LC15  
The LC15 is a low-power version of the C15, utilizing a V  
requirementreductionoverthetypical5-VC1xdevice. Itoperatesatacycletimeof250ns. Thedeviceisoffered  
of only 3.3-V. This feature results in a 2.3: 1 power  
DD  
in 40-pin DIP or 44-lead PLCC packages.  
TMS320C16  
The C16 offers on-chip RAM of 256-words, an expanded program memory of 64K-words, and a fast instruction  
cycle time of 114 ns (8.77 MIPS). It is offered in a 64-pin quad flat-pack package.  
TMS320C17/E17/P17  
The C17/E17/P17 versions consist of five major functional units: the C15 microcomputer, a system control  
register, a full-duplex dual channel serial port, µ-law/A-law companding hardware, and a coprocessor port. The  
dual-channel serial port is capable of full-duplex serial communication and offers direct interface to two  
combo-codecs. The hardware companding logic can operate in either µ-law or A-law format with either  
sign-magnitude or twos complement numbers in either serial or parallel modes. The coprocessor port allows  
the C17/E17/P17 to act as a slave microcomputer or as a master to a peripheral microcomputer.  
The P17 utilizes a one-time programmable (OTP) windowless EPROM version of the E17.  
TMS320LC17  
The LC17 is a low-power version of the C17, utilizing a V  
2.3: 1 power requirement reduction over the typical 5-V C1x device. It operates at a cycle time of 278 ns.  
of only 3.3-V. This feature results in a  
DD  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
3
TMS320C1x  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
TMS320C10/C15/LC15/P15  
N/JD Packages  
TMS320C17/E17/LC17/P17  
N/JD Packages  
TMS320C10/C15/E15/LC15/P15  
FN/FZ Packages  
(Top View)  
(Top View)  
(Top View)  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
A1/PA1  
A0/PA0  
MC/MP  
RS  
PA1/RBLE  
PA0/HI/LO  
MC  
1
A2/PA2  
A3  
1
PA2/TBLF  
FSR  
2
2
3
A4  
3
FSX  
RS  
4
A5  
4
FR  
6
5 4 3 2 1 44 43 42 41 40  
INT  
EXINT  
CLKOUT  
X1  
5
A6  
5
DX1  
CLKOUT  
X1  
6
A7  
6
DX0  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
CLKOUT  
X1  
7
A7  
7
A8  
7
SCLK  
DR1  
8
A8  
X2/CLKIN  
BIO  
X2/CLKIN  
BIO  
8
MEN  
DEN  
WE  
8
X2/CLKIN  
BIO  
9
MEN  
DEN  
WE  
9
9
DEN/RD  
WE/WR  
10  
11  
12  
13  
14  
15  
16  
17  
V
V
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
NC  
SS  
SS  
D8  
D8/LD8  
V
V
V
V
CC  
CC  
SS  
CC  
D9  
D9/LD9  
A9  
DR0  
A9  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D7  
D10/Ld10  
D11/LD11  
D12/LD12  
D13/LD13  
D14/LD14  
D15/LD15  
D7/LD7  
A10  
A11  
D0  
D1  
D2  
D3  
D4  
D5  
XF  
A10  
A11  
D0  
MC/PM  
D0/LD0  
D1/LD1  
D2/LD2  
D3/LD3  
D4/LD4  
D5/LD5  
D10  
D11  
D12  
D1  
17 24  
18 23  
19 22  
20 21  
18 19 20 21 22 23 24 25 26 27 28  
D6  
D6/LD6  
20 21  
TMS320C14/E14/P14  
FN/FZ Packages  
(Top View)  
TMS320C16  
PG Package  
(Top View)  
64636261605958575655545352  
NC  
RS  
1
2
3
4
5
6
7
8
9
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
NC  
NC  
A0/PA0  
A1/PA1  
A2/PA2  
9
8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61  
X1  
X2/CLKIN  
TCLK/CLKR  
TCLK2/CLKX  
D4  
D5  
D6  
D7  
IOP0  
IOP1  
IOP2  
IOP3  
IOP4  
IOP5  
D8  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
V
V
V
V
SS  
SS  
SS  
SS  
A8  
A7  
A6  
WE  
REN  
RS  
A3  
A4  
A5  
A6  
CLKOUT  
D15 10  
D14 11  
NC 12  
D13 13  
D12 14  
D11 15  
D10 16  
V
A7  
SS  
A8  
A9  
INT  
CLKOUT  
A5  
A10  
A11  
A12  
A13  
A14  
A4  
D9  
NMI/MC/MP  
WDT  
CLKIN  
A3  
RXD/DATA  
TXD/CLK  
D10  
IOP6  
IOP7  
17  
D9  
NC 18  
NC  
19  
NC  
20212223242526272829303132  
TMS320C17/E17  
FN/FZ Packages  
(Top View)  
A2  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
6
5 4 3 2 1 44 43 42 41 40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
CLKOUT  
7
DX0  
X1  
X2/CLKIN  
BIO  
SCLK  
DR1  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
DEN/RD  
NC  
WE/WR  
V
V
SS  
CC  
DR0  
D8  
D9  
XF  
D10  
D11  
D12  
MC/PM  
D0/LD0  
V
SS  
18 19 20 21 22 23 24 25 26 27 28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
4
TMS320C1x  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
architecture  
The C1x DSPs use a modified Harvard architecture for speed and flexibility. In a strict Harvard architecture,  
program and data memory lie in two separate spaces, permitting a full overlap of instruction fetch and one-cycle  
execution. The C1x DSPs modification allows transfers between program and data spaces, thereby increasing  
the flexibility of the device. This modification permits coefficients stored in program memory to be read into the  
RAM, eliminating the need for a separate coefficient ROM.  
32-bit accumulator  
All C1x devices contain a 32-bit ALU and accumulator for support of double-precision, twos-complement  
arithmetic. The ALU is a general-purpose arithmetic unit that operates on 16-bit words taken from the data RAM  
or derived from immediate instructions. In addition to the usual arithmetic instructions, the ALU can perform  
Boolean operations, providing the bit manipulation ability required of a high-speed controller. The accumulator  
stores the output from the ALU and is often an input to the ALU. It operates with a 32-bit word length. The  
accumulator is divided into a high-order word (bits 31 through 16) and a low-order word (bits 15 through 0).  
Instructions are provided for storing the high- and low-order accumulator words in memory.  
shifters  
Two shifters are available for manipulating data. The ALU barrel shifter performs a left-shift of 0 to 16 places  
on data memory words loaded into the ALU. This shifter extends the high-order bit of the data word and zero-fills  
the low-order bits for twos-complement arithmetic. The accumulator parallel shifter performs a left-shift of 0, 1  
or 4 places on the entire accumulator and places the resulting high-order accumulator bits into data RAM. Both  
shifters are useful for scaling and bit extraction.  
16 × 16-bit parallel multiplier  
The multiplier performs a 16 × 16-bit twos-complement multiplication with a 32-bit result in a single instruction  
cycle. The multiplier consists of three units: the T Register, P Register, and a multiplier array. The 16-bit T  
Register stores the multiplicand, and the P Register stores the 32-bit product. Multiplier values either come from  
the data memory or are derived immediately from the MPYK (multiply immediate) instruction word. The fast  
on-chip multiplier allows the device to perform fundamental operations such as convolution, correlation, and  
filtering.  
data and program memory  
Since the C1x devices use a Harvard type architecture, data and program memory reside in two separate  
spaces. These DSP devices have 144-or 256-words of on-chip data RAM and 1.5K- to 8K-words of on-chip  
program ROM. On-chip program EPROM of 4K-words is provided in the E14/E15/E17 devices. An on-chip  
one-time programmable 4K-word EPROM is provided in the P14/P15/P17 devices. The EPROM cell utilizes  
standard PROM programmers and is programmed identically to a 64K CMOS EPROM (TMS27C64).  
(Reference Table 1.)  
program memory expansion  
AllC1xdevicesexcepttheC17/E17/LC17/P17devicesarecapableofexecutingfromoff-chipexternalmemory  
at full speed for those applications requiring external program memory space. This allows for external  
RAM-based systems to provide multiple functionality. The C17/E17/LC17/P17 devices provide no external  
memory expansion. (Reference Table 1.)  
microcomputer/microprocessor operating modes  
All devices except the x17 offer two modes of operation defined by the state of the MC/MP pin: the  
microcomputer mode (MC/MP = 1) or the microprocessor mode (MC/MP = 0 ). In the microcomputer mode,  
on-chip ROM is mapped into the program memory space. In the microprocessor mode, all words of progam  
memory are external.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
5
TMS320C1x  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
interrupts and subroutines  
All devices except the C16 contain a four-level stack for saving the contents of the program counter during  
interrupts and subroutine calls. Because of the larger 64K program space, the C16’s hardware stack has been  
increased to eight levels. Instructions are available for saving the device’s complete context. PUSH and POP  
instructionspermit a level of nesting restricted only by the amount of available RAM. The interrupts used in these  
devices are maskable.  
input/output  
The 16-bit parallel data bus can be utilized to perform I/O functions in two cycles. The I/O ports are addressed  
by the three LSBs on the address lines. In addition, a polling input for bit test and jump operations (BIO) and  
an interrupt pin (INT) have been incorporated for multitasking. The bit selectable I/O of the C14 is suitable for  
microcontroller applications.  
serial port (TMS320C17/E17)  
Two of the I/O ports on the C17/E17 are dedicated to the serial port and companding hardware. I/O port 0 is  
dedicated to control register 0, which controls the serial port, interrupts, and companding hardware. I/O port 1  
accesses control register 1, as well as both serial port channels, and companding hardware. The six remaining  
I/O ports are available for external parallel interfaces.  
serial port (TMS320C14/E14)  
The C14/E14 devices include one I/O-mapped serial port that operates asynchronously. I/O-mapped control  
registers are used to configure port parameters such as inter-processor communication protocols and baud  
rate.  
companding hardware (TMS320C17/E17)  
On-chip hardware enables the C17/E17 to compand (COMpress/exPAND) data in either µ-law or A-law format.  
The companding logic operation is configured via the system control register. Data may be companded in either  
serial mode for operation on serial port data (converting between linear and logarithmic PCM) or a parallel mode  
for computation inside the device. The C17/E17 allows the hardware companding logic to operate with either  
sign-magnitude or twos-complement numbers.  
coprocessor port (TMS320C17/E17)  
The coprocessor port on the C17/E17 provides a direct connection to most microcomputers and  
microprocessors. The port is accessed through I/O port 5 using IN and OUT instructions. The coprocessor  
interface allows the device to act as a peripheral (slave) microcomputer to a microprocessor, or as a master to  
a peripheral microcomputer. In the microcomputer mode, the 16 data lines are used for the 6 parallel 16-bit I/O  
ports. In the coprocessor mode, the 16-bit parallel port is reconfigured to operate as a 16-bit latched bus  
interface. For peripheral transfer, an 8-bit or 16-bit length of the coprocessor port can be selected.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
6
TMS320C1x  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
instruction set  
A comprehensive instruction set supports both numeric-intensive operations, such as signal processing, and  
general-purpose operations, such as high-speed control. All of theC1x devices are object-code compatible and  
use the same 60 instructions. The instruction set consists primarily of single-cycle single-word instructions,  
permitting execution rates of more than six million instructions per second. Only infrequently used branch and  
I/O instructions are multicycle. Instructions that shift data as part of an arithmetic operation execute in a single  
cycle and are useful for scaling data in parallel with other operations.  
NOTE  
The BIO pin on other C1x devices is not available for use in the C14/E14/P14. An attempt to execute the  
BIOZ (Branch on BIO low) instruction will result in a two cycle NOP action.  
Three main addressing modes are available with the instruction set: direct, indirect, and immediate addressing.  
direct addressing  
In direct addressing, seven bits of the instruction word concatenated with the 1-bit data page pointer form the  
data memory address. This implements a paging scheme in which the first page contains 128 words, and the  
second page contains up to 128 words.  
indirect addressing  
Indirectaddressingformsthedatamemoryaddressfromtheleast-significanteightbitsofoneofthetwoauxiliary  
registers, AR0-AR1. The Auxiliary Register Pointer (ARP) selects the current auxiliary register. The auxiliary  
registers can be automatically incremented or decremented and the ARP changed in parallel with the execution  
of any indirect instruction to permit single-cycle manipulation of data tables. Indirect addressing can be used  
with all instructions requiring data operands, except for the immediate operand instructions.  
immediate addressing  
Immediate instructions derive data from part of the instruction word rather than from the data RAM. Some useful  
immediate instructions are multiply immediate (MPYK), load accumulator immediate (LACK), and load auxiliary  
register immediate (LARK).  
instruction set summary  
Table 2 lists the symbols and abbreviations used in Table 3, the instruction set summary. Table 3contains a short  
description and the opcode for each C1x instruction. The summary is arranged according to function and  
alphabetized within each functional group.  
Table 2. Instruction Symbols  
SYMBOL  
MEANING  
ACC  
D
M
Accumulator  
Data memory address field  
Addressing mode bit  
K
Immediate operand field  
PA  
R
S
3-bit port address field  
1-bit operand field specifying auxiliary register  
4-bit left-shift code  
X
3-bit accumulator left-shift field  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
7
TMS320C1x  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
Table 3. TMS320C1x Instruction Set Summary  
ACCUMULATOR INSTRUCTIONS  
OPCODE  
NO.  
CYCLES  
NO.  
WORDS  
MNEMONIC  
DESCRIPTION  
INSTRUCTION REGISTER  
15 14 13 12 11 10  
9
1
8
1
7
6
0
5
0
4
0
3
2
0
1
0
0
0
ABS  
Absolute value of accumulator  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
1
0
1
1
1
1
0
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
0
1
1
1
1
1
0
0
0
1
1
0
0
1
1
1
1
D
S
ADD  
Add to accumulator with shift  
M
M
M
M
M
D
ADDH  
ADDS  
AND  
Add to high-order accumulator bits  
Add to accumulator with no sign extension  
AND with accumulator  
0
0
1
0
0
0
0
0
0
0
1
1
D
D
D
S
LAC  
Load accumulator with shift  
K
D
D
LACK  
OR  
Load accumulator immediate  
1
1
1
0
1
0
1
1
0
0
OR with accumulator  
M
M
M
M
M
M
M
M
1
X
SACH  
SACL  
SUB  
Store high-order accumulator bits with shift  
Store low-order accumulator bits  
Subtract from accumulator with shift  
Conditional subtract (for divide)  
D
D
D
0
0
0
S
SUBC  
SUBH  
SUBS  
XOR  
ZAC  
0
0
0
1
1
0
0
1
0
0
0
1
1
1
0
1
1
0
1
0
1
0
0
1
0
1
1
0
D
D
D
Subtract from high-order accumulator bits  
Subtract from accumulator with no sign extension  
Exclusive OR with accumulator  
Zero accumulator  
0
0
0
1
0
0
1
ZALH  
ZALS  
Zero accumulator and load high-order bits  
Zero accumulator and load low-order bits with no sign extension  
M
M
D
D
AUXILIARY REGISTER AND DATA PAGE POINTER INSTRUCTIONS  
OPCODE  
INSTRUCTION REGISTER  
NO.  
CYCLES  
NO.  
WORDS  
MNEMONIC  
DESCRIPTION  
15 14 13 12 11 10  
9
0
0
0
1
1
0
0
8
R
R
0
7
6
5
4
3
2
1
0
D
LAR  
Load auxiliary register  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
0
1
1
1
1
0
0
0
0
1
1
0
0
M
K
LARK  
LARP  
LDP  
Load auxiliary register immediate  
Load auxiliary register pointer immediate  
Load data memory page pointer  
Load data memory page pointer immediate  
Modify auxiliary register and pointer  
Store auxiliary register  
1
M
0
0
0
0
0
0
0
0
0
0
0
0
K
K
D
1
LDPK  
MAR  
SAR  
0
0
D
D
0
M
M
R
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
8
TMS320C1x  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
Table 3. TMS320C1x Instruction Set Summary (continued)  
BRANCH INSTRUCTIONS  
OPCODE  
NO.  
CYCLES  
NO.  
WORDS  
MNEMONIC  
DESCRIPTION  
INSTRUCTION REGISTER  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
1
0
1
1
0
1
1
1
0
1
0
1
1
1
1
0
0
1
1
1
0
1
0
0
0
0
0
0
0
0
B
Branch unconditionally  
2
2
2
2
BRANCH ADDRESS  
0
0
0
1
1
1
1
0
1
0
1
0
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BANZ  
Branch on auxiliary register not zero  
BRANCH ADDRESS  
0
0
0
0
0
BGEZ  
Branch if accumulator 0  
2
2
BRANCH ADDRESS  
0
0
0
0
0
BGZ  
Branch if accumulator > 0  
2
2
2
2
BRANCH ADDRESS  
0
0
0
0
0
Branch on BIO = 0  
BIOZ  
BRANCH ADDRESS  
0
0
0
0
0
BLEZ  
BLZ  
Branch if accumulator 0  
2
2
2
2
BRANCH ADDRESS  
0
0
0
0
0
Branch if accumulator < 0  
BRANCH ADDRESS  
0
0
0
0
0
BNZ  
BV  
Branch if accumulator 0  
Branch on overflow  
2
2
2
2
BRANCH ADDRESS  
0
0
0
0
0
BRANCH ADDRESS  
0
0
0
0
0
BZ  
Branch if accumulator = 0  
2
2
2
1
BRANCH ADDRESS  
1
1
1
0
1
0
1
0
1
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
CALA  
CALL  
Call subroutine from accumulator  
Call subroutine immediately  
2
2
2
1
BRANCH ADDRESS  
1
1
1
1
1
0
0
0
1
1
0
1
RET  
Return from subroutine or interrupt routine  
T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS  
OPCODE  
INSTRUCTION REGISTER  
NO.  
CYCLES  
NO.  
WORDS  
MNEMONIC  
DESCRIPTION  
15 14 13 12 11 10  
9
1
1
0
1
0
8
1
0
0
1
1
7
6
5
4
3
2
1
0
APAC  
LT  
Add P register to accumulator  
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
1
0
1
1
0
0
0
1
1
1
1
Load T Register  
M
M
M
M
D
D
D
D
LTA  
LTA combines LT and APAC into one instruction  
LTD combines LT, APAC, and DMOV into one instruction  
Multiply with T register, store product in P register  
LTD  
MPY  
Multiply T register with immediate operand; store product  
in P register  
MPYK  
1
1
1
0
0
K
PAC  
Load accumulator from P register  
1
1
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
0
1
0
1
0
0
0
SPAC  
Subtract P register from accumulator  
This instruction is a NOP on the 320C14/E14/P14.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
9
TMS320C1x  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
Table 3. TMS320C1x Instruction Set Summary (concluded)  
CONTROL INSTRUCTIONS  
OPCODE  
NO.  
NO.  
MNEMONIC  
DESCRIPTION  
INSTRUCTION REGISTER  
CYCLES  
WORDS  
15 14 13 12 11 10  
9
1
1
1
1
1
1
1
1
0
8
1
1
1
1
1
1
1
1
0
7
1
6
0
0
5
0
0
4
0
0
3
2
0
0
1
0
1
0
1
0
DINT  
EINT  
LST  
Disable interrupt  
Enable interrupt  
Load status register  
No operation  
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
0
1
0
D
M
1
NOP  
POP  
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
1
1
1
0
1
1
0
0
0
0
0
1
1
0
1
0
0
1
POP stack to accumulator  
PUSH stack from accumulator  
Reset overflow mode  
Set overflow mode  
1
PUSH  
ROVM  
SOVM  
SST  
1
1
1
1
D
Store status register  
M
I/O AND DATA MEMORY OPERATIONS  
OPCODE  
INSTRUCTION REGISTER  
NO.  
CYCLES  
NO.  
WORDS  
MNEMONIC  
DESCRIPTION  
15 14 13 12 11 10  
9
0
8
7
6
5
4
3
2
1
0
D
DMOV  
IN  
Copy contents of data memory location into next higher location  
Input data from port  
1
2
2
3
3
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
0
0
1
1
0
1
0
1
0
1
M
M
M
M
M
PA  
PA  
D
D
OUT  
TBLR  
TBLW  
Output data to port  
D
D
Table read from program memory to data RAM  
Table write from data RAM to program memory  
1
1
1
0
1
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
10  
TMS320C10, TMS320C10-14, TMS320C10-25  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
Key Features: TMS320C10  
+5 V  
GND  
Instruction Cycle Timing  
— 160-ns (TMS320C10-25)  
— 200-ns (TMS32010)  
— 280-ns (TMS320C10-14)  
144-Word RAM  
Interrupt  
Data (16)  
144 Words of On-Chip Data RAM  
1.5K Words On-Chip Program ROM  
1.5K-Word ROM  
32-Bit ALU/ACC  
Multiplier  
External Memory Expansion up to 4K  
Words at Full Speed  
16 × 16-Bit Multiplier With 32-Bit Product  
0 to 16-Bit Barrel Shifter  
Address (12)  
Shifters  
On-Chip Clock Oscillator  
Device Packaging:  
— 40-Pin DIP  
— 44-Lead PLCC  
Single 5-V Supply  
Operating Free-Air Temperature Range  
. . . 0°C to 70°C  
TMS320C10  
N/JD Package  
TMS320C10  
FN/FZ Package  
(Top View)  
(Top View)  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
1
A1/PA1  
A0/PA0  
MC/MP  
RS  
INT  
CLKOUT  
X1  
A2/PA2  
A3  
A4  
A5  
A6  
A7  
A8  
MEN  
DEN  
WE  
2
3
6
5 4 3 2 1 44 43 42 41 40  
4
5
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
7
CLKOUT  
X1  
X2/CLKIN  
BIO  
A7  
A8  
MEN  
DEN  
WE  
6
8
7
9
8
X2/CLKIN  
BIO  
10  
11  
12  
13  
9
NC  
10  
11  
12  
13  
14  
15  
16  
17  
V
SS  
V
V
SS  
CC  
D8  
D9  
V
CC  
A9  
D8  
A9  
D9 14  
D10 15  
D11 16  
D12 17  
A10  
A11  
D0  
D10  
D11  
D12  
D13  
D14  
D15  
D7  
A10  
A11  
D0  
D1  
D2  
D3  
D4  
D5  
D1  
18 19 20 21 22 23 24 25 26 27 28  
18 23  
19 22  
20 21  
D6  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
11  
TMS320C10, TMS320C10-14, TMS320C10-25  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
TERMINAL FUNCTIONS  
NAME  
A11-A0/PA2-PA0  
I/O  
DEFINITION  
O
I
External address bus. I/O port address multiplexed over PA2-PA0.  
External polling input  
BIO  
CLKOUT  
D15-D0  
DEN  
O
System clock output, 1/4 crystal/CLKIN frequency  
16-bit parallel data bus  
I/O  
O
I
Data enable for device input data on D15-D0  
External interrupt input  
INT  
MC/MP  
MEN  
NC  
I
Memory mode select pin. High selects microcomputer mode. Low selects microprocessor mode.  
Memory enable indicates that D15-D0 will accept external memory instruction.  
No connection  
O
O
I
RS  
Reset for initializing the device  
V
V
I
+ 5 V supply  
CC  
I
Ground  
SS  
WE  
O
O
I
Write enable for device output data on D15-D0  
Crystal output for internal oscillator  
X1  
X2/CLKIN  
Crystal input internal oscillator or external system clock input  
Input/Output/High-impedance state.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
12  
TMS320C10, TMS320C10-14, TMS320C10-25  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
functional block diagram  
X1  
CLKOUT  
X2/CLKIN  
16  
Program Bus  
12 LSB  
WE  
DEN  
MEN  
BIO  
MUX  
12  
12  
12  
MC/MP  
INT  
PC (12)  
RS  
12  
12  
Instruction  
3
3
16  
A11-A0/  
PA2-PA0  
Program  
ROM/EPROM  
D15-D0  
Stack  
4 × 12  
(1.5K Words)  
Program Bus  
16  
16  
16  
Data Bus  
16  
7
16  
AR0 (16)  
AR1 (16)  
DP  
T(16)  
ARP  
Shifter  
(0–16)  
16  
8
Multiplier  
8
P(32)  
32  
MUX  
8
32  
32  
MUX  
32  
Address  
Data RAM  
(144 Words)  
Legend:  
ALU (32)  
ACC = Accumulator  
Data  
32  
ALU = Arithmetic Logic Unit  
ARP = Auxiliary Register Pointer  
AR0 = Auxiliary Register 0  
AR1 = Auxiliary Register 1  
DP = Data Page Pointer  
ACC (32)  
32  
32  
P
= P Register  
PC = Program Counter  
= T Register  
T
Shifter (0,1,4)  
16  
16  
16  
Data Bus  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
13  
TMS320C10, TMS320C10-14, TMS320C10-25  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
electrical specifications  
This section contains the electrical specifications for all speed versions of the C10 Digital Signal Processors,  
including test parameter measurement information.  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range V  
(see Note 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
CC  
Input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
Output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 mW  
Operating free-air temperature: L suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C  
°
°
Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 C to 150 C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and  
functionaloperation of the device at these or any other conditions beyond those indicated in the “Recommended Operating Conditions” section of  
this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 6: All voltage values are with respect to V  
SS.  
recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
V
V
Supply voltage  
Supply voltage  
4.5  
5
0
5.25  
V
V
CC  
SS  
CLKIN  
3
2
V
High-level input voltage  
Low-level input voltage  
V
IH  
IL  
All remaining inputs  
MC/MP  
V
0.6  
0.8  
V
V
All remaining inputs  
V
I
I
High-level output current, all outputs  
Low-level output current  
–300  
2
µA  
mA  
OH  
OL  
L suffix  
A suffix  
0
70  
85  
°C  
°C  
Operating free-air temperature  
T
A
– 40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
14  
TMS320C10, TMS320C10-14, TMS320C10-25  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
electrical characteristics over specified temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
I
I
I
= MAX  
2.4  
3
OH  
OH  
OL  
V
OH  
High-level output voltage  
V – 0.4  
CC  
= 20 µA (see Note 7)  
V
I
Low-level output voltage  
Off-state output current  
= MAX  
0.3  
0.5  
20  
V
OL  
V
V
= 2.4 V  
= 0.4 V  
O
V
= MAX  
CC  
µA  
µA  
OZ  
20  
±20  
±50  
O
All inputs except CLKIN  
CLKIN  
I
I
Input current  
V
= V to V  
SS CC  
CC  
25  
15  
25  
10  
Data bus  
All others  
Data bus  
All others  
C
C
Input capacitance  
Output capacitance  
pF  
pF  
i
f = 1 MHz, all other pins 0 V  
o
All typical values are at V  
= 5 V, T = 25°C.  
A
CC  
Values derived from characterization data and not tested.  
NOTE 7: This voltage specification is included for interface to HC logic. However, note that all of the other timing parameters defined in this data  
sheet are specified for TTL logic levels and will differ for HC logic levels.  
INTERNAL CLOCK OPTION  
X1  
X2/CLKIN  
Crystal  
C1  
C2  
Figure 1. Internal Clock Option  
PARAMETER MEASUREMENT INFORMATION  
2.15 V  
R
= 825 Ω  
L
From Output  
Under Test  
Test  
Point  
C
= 100 pF  
L
Figure 2. Test Load Circuit  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
15  
TMS320C10, TMS320C10-25  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
electrical characteristics over specified temperature range (unless otherwise noted)  
TEST CONDITIONS  
(SEE FIGURE 2)  
TYP  
PARAMETER  
MIN  
MAX  
UNIT  
TMS320C10  
TMS320C10-25  
All typical values are at T = 70°C and are used for thermal resistance calculations.  
f = 20.5 MHz, V = 5.5 V, T = – 40°C to 85°C  
33  
40  
55  
65  
CC  
f = 25.6 MHz, V  
A
I
Supply current  
CC  
mA  
= 5.5 V T = – 0°C to 70°C  
CC  
A
A
I
characteristics are inversely proportional to temperature. For I dependence on temperature, frequency, and loading.  
CC  
CC  
CLOCK CHARACTERISTICS AND TIMING  
The C10/C10-25 can use either its internal oscillator or an external frequency source for a clock.  
internal clock option  
The internal oscillator is enabled by connecting a crystal across X1 and X2/CLKIN (see Figure 1). The frequency  
of CLKOUT is one-fourth the crystal fundamental frequency. The crystal should be fundamental mode, and  
parallel resonant, with an effective series resistance of 30 ohms, a power dissipation of 1 mW, and should be  
specified at a load capacitance of 20 pF.  
PARAMETER  
TMS320C10  
TMS320C10-25  
TEST CONDITIONS  
= – 40°C to 85°C  
MIN  
6.7  
NOM  
MAX  
20.5  
25.6  
UNIT  
T
A
Crystal frequency, f  
MHz  
x
T
= 0°C to 70°C  
6.7  
A
C1, C2  
T
A
= – 40°C to 85°C  
10  
pF  
external clock option  
An external frequency source can be used by injecting the frequency directly into X2/CLKIN with X1 left  
unconnected. The external frequency injected must conform to the specifications listed in the table below.  
switching characteristics over recommended operating conditions  
TMS320C10  
NOM  
TMS320C10-25  
NOM MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
156.25  
§
t
t
t
t
t
t
CLKOUT cycle time  
CLKOUT rise time  
CLKOUT fall time  
195.12  
200  
160  
ns  
ns  
ns  
ns  
ns  
ns  
c(C)  
10  
10  
r(C)  
R
L
L
= 825 ,  
8
8
f(C)  
C
= 100 pF  
(see Figure 2)  
Pulse duration, CLKOUT low  
Pulse duration, CLKOUT high  
Delay time, CLKINto CLKOUT↓  
92  
90  
72  
70  
w(CL)  
w(CH)  
d(MCC)  
25  
60  
50  
25  
§
t
is the cycle time of CLKOUT, i.e., 4t  
c(MC)  
(4 times CLKIN cycle time if an external oscillator is used).  
c(C)  
Values derived from characterization data and not tested.  
timing requirements over recommended operating conditions  
TMS320C10  
TMS320C10-25  
NOM  
UNIT  
MIN  
NOM  
MAX  
MIN  
MAX  
t
t
t
t
t
t
Master clock cycle time  
48.78  
50  
150 39.06  
40  
150  
10  
ns  
ns  
ns  
ns  
ns  
ns  
c(MC)  
Rise time, master clock input  
Fall time, master clock input  
Pulse duration, master clock  
Pulse duration, master clock low  
Pulse duration, master clock high  
5
5
10  
5
5
r(MC)  
10  
10  
f(MC)  
0.4t  
c(MC)  
0.6t  
c(MC)  
0.45t  
c(MC)  
0.55t  
w(MCP)  
w(MCL)  
w(MCH)  
c(MC)  
20  
20  
15  
15  
Values derived from characterization data and not tested.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
16  
TMS320C10, TMS320C10-25  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
MEMORY AND PERIPHERAL INTERFACE TIMING  
switching characteristics over recommended operating conditions  
TMS320C10  
TYP  
TMS320C10-25  
TYP  
TEST  
CONDITIONS  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
Delay time, CLKOUTto  
address bus valid  
t
t
t
t
t
10  
50  
10  
40  
ns  
d1  
d2  
d3  
d4  
d5  
Delay time, CLKOUT↓  
to MEN↓  
1/4t  
– 5  
1/4t  
c(C)  
+ 15 1/4t  
– 5  
– 5  
1/4t  
+ 12  
ns  
ns  
ns  
ns  
c(C)  
c(C)  
c(C)  
12  
+ 12  
Delay time, CLKOUT↓  
to MEN↑  
–10  
–10  
15  
Delay time, CLKOUT↓  
to DEN↓  
1
1/4t  
c(C)  
– 5  
/ t  
4 c(C)  
+ 15 1/4t  
c(C)  
1/4t  
c(C)  
12  
+ 12  
Delay time, CLKOUT↓  
to DEN↑  
–10  
–10  
15  
t
t
Delay time, CLKOUTto WE↓  
Delay time, CLKOUTto WE↑  
1/2t  
c(C)  
– 5  
1/2t  
1/4t  
+ 15 1/2t  
–5  
1/2t  
ns  
ns  
d6  
c(C)  
c(C)  
c(C)  
R
= 825 Ω  
= 100 pF,  
L
C
–10  
–10  
L
15  
12  
d7  
(see Figure 2)  
Delay time, CLKOUTto data  
bus OUT valid  
t
t
t
t
t
t
+ 65  
c(C)  
1/4t  
c(C)  
+ 52  
ns  
ns  
ns  
ns  
ns  
ns  
d8  
Time after CLKOUTthat data  
bus starts to be driven  
– 5  
– 5  
1/4t  
1/4t  
d9  
c(C)  
c(C)  
Time after CLKOUTthat data  
bus stops being driven  
1/4t  
c(C)  
+ 40  
1/4t  
c(C)  
+ 40  
d10  
Data bus OUT valid after  
CLKOUT↓  
1/4t  
10  
45  
1/4t  
10  
35  
v
c(C)  
c(C)  
Address hold time after WE,  
MEN, or DEN(see Note 8)  
–10  
–10  
h(A-WMD)  
su(A-MD)  
Address bus setup time prior  
to MENor DEN↓  
1/4t  
1/4t  
c(C)  
c(C)  
Values derived from characterization data and not tested.  
NOTE 8: For interfacing I/O devices, see Figure 3.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
17  
TMS320C10, TMS320C10-25  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
timing requirements over recommended operating conditions  
TMS320C10  
TMS320C10-25  
NOM MAX  
TEST CONDITION  
UNIT  
MIN  
NOM MAX MIN  
t
t
Setup time, data bus valid prior to CLKOUT↓  
50  
40  
ns  
R
C
= 825 ,  
= 100 pF  
su(D)  
L
L
Hold time, data bus held valid after CLKOUT↓  
(see Note 9)  
0
0
ns  
(see Figure 2)  
h(D)  
NOTE 9: Data may be removed from the data bus upon MENor DENpreceding CLKOUT.  
SUGGESTED I/O DECODE CIRCUIT  
The circuit shown in Figure 3 is a design example for interfacing I/O devices to the C10/C10-25. This circuit  
decodes the address for output operations using the OUT instruction. The same circuit can be used to decode  
input and output operations if the inverter (’ALS04) is replaced with a NAND gate and both DEN and WE are  
connected. Inputs and outputs can be decoded at the same port provided the output of the decoder (’AS137)  
is gated with the appropriate signal (DEN or WE) to select read or write (using an ’ALS32). Access times can  
beincreasedwhenthecircuitshowninFigure3isrepeatedtosupportINinstructionswithDENconnectedrather  
than WE.  
The table write (TBLW) function requires a different circuit. A detailed discussion of an example circuit for this  
function is described in the application report, “Interfacing External Memory to the TMS32010”, published in the  
book, Digital Signal Processing Applications with the TMS320 Family (SPRA012A).  
TMS320C10  
WE  
74AS137  
74ALS04  
15  
14  
13  
12  
11  
10  
9
32  
4
GL  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
2
1
2
A
B
PA0  
PA1  
PA2  
1
40  
3
C
6
5
G1  
G2  
V
CC  
I/O Device  
7
Figure 3. I/O Decode Circuit  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
18  
TMS320C10, TMS320C10-25  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
RESET (RS) TIMING  
switching characteristics over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
825 ,  
MIN  
TYP  
1/2t  
MAX  
UNIT  
R
t
t
Delay time, DEN, WE, and MENfrom RS  
Data bus disable time after RS  
+50†  
ns  
L
d11  
c(C)  
c(C)  
C
= 100 pF,  
L
+50  
1/4t  
ns  
dis(R)  
(see Figure 2)  
Values derived from characterization data and not tested.  
timing requirements over recommended operating conditions  
TMS320C10  
TMS320C10-25  
NOM  
UNIT  
PARAMETER  
MIN  
NOM  
MAX  
MIN  
MAX  
t
t
Reset (RS) setup time prior to CLKOUT (see Note 10)  
50  
40  
ns  
ns  
su(R)  
RS pulse duration  
5t  
c(C)  
5t  
c(C)  
w(R)  
NOTE 10: RS can occur anytime during a clock cycle. Time given is minimum to ensure synchronous operation.  
INTERRUPT (INT) TIMING  
timing requirements over recommended operating conditions  
TMS320C10  
NOM  
TMS320C10-25  
UNIT  
MIN  
MAX  
MIN  
NOM  
MAX  
t
t
t
Fall time, INT  
15  
15  
ns  
ns  
ns  
f(INT)  
Pulse duration, INT  
t
t
w(INT)  
su(INT)  
c(C)  
c(C)  
Setup time, INTbefore CLKOUT↓  
50  
40  
IO (BIO) TIMING  
timing requirements over recommended operating conditions  
TMS320C10  
TMS320C10-25  
NOM  
UNIT  
MIN  
NOM  
MAX  
MIN  
MAX  
t
t
t
Fall time, BIO  
15  
15  
ns  
ns  
ns  
f(IO)  
Pulse duration, BIO  
t
t
w(IO)  
su(IO)  
c(C)  
c(C)  
Setup time, BIObefore CLKOUT↓  
50  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
19  
TMS320C10-14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
electrical characteristics over specified temperature range (unless otherwise noted)  
PARAMETER  
Supply current  
All typical values are at T = 70°C and are used for thermal resistance calculations.  
TEST CONDITIONS  
MIN  
TYP  
28  
MAX  
UNIT  
I
f = 14.4, MHz, V = 5.5 V, T = 0°C to 70°C  
65  
mA  
CC  
CC  
A
A
I
characteristics are inversely proportional to temperature; i.e., I decreases approximately linearly with temperature.  
CC  
CC  
CLOCK CHARACTERISTICS AND TIMING  
The TMS320C10-14 can use either its internal oscillator or an external frequency source for a clock.  
internal clock option  
The internal oscillator is enabled by connecting a crystal across X1 and X2/CLKIN (see Figure 1). The frequency  
of CLKOUT is one-fourth the crystal fundamental frequency. The crystal should be fundamental mode, and  
parallel resonant, with an effective series resistance of 30 ohms, a power dissipation of 1 mW, and be specified  
at a load capacitance of 20 pF.  
PARAMETER  
Crystal frequency, f  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
MHz  
pF  
T
= 0°C to 70°C  
= 0°C to 70°C  
6.7  
14.4  
x
A
C1, C2  
T
10  
A
external clock option  
An external frequency source can be used by injecting the frequency directly into X2/CLKIN with X1 left  
unconnected. The external frequency injected must conform to the specifications listed in the table below.  
switching characteristics over recommended operating conditions  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
§
t
t
t
CLKOUT cycle time  
CLKOUT rise time  
CLKOUT fall time  
277.78  
ns  
c(C)  
r(C)  
f(C)  
10  
8
ns  
ns  
R
= 825 ,  
= 100 pF,  
L
C
L
t
t
t
Pulse duration, CLKOUT low  
Pulse duration, CLKOUT high  
Delay time, CLKINto CLKOUT↓  
(see Figure 2)  
131  
129  
ns  
ns  
ns  
w(CL)  
w(CH)  
d(MCC)  
25  
60  
§ t  
is the cycle time of CLKOUT, i.e., 4t  
c(MC)  
(4 times CLKIN cycle time if an external oscillator is used).  
c(C)  
Values derived from characterization data and not tested.  
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
t
t
t
t
t
t
Master clock cycle time  
69.5  
150  
ns  
c(MC)  
10  
10  
Rise time, master clock input  
Fall time, master clock input  
Pulse duration, master clock  
Pulse duration, master clock low, t  
5
ns  
ns  
ns  
ns  
ns  
r(MC)  
5
f(MC)  
0.4t  
c(MC)  
0.6t  
c(MC)  
w(MCP)  
w(MCL)  
w(MCH)  
= 50 ns  
20  
20  
c(MC)  
Pulse duration, master clock high, t  
= 50 ns  
c(MC)  
Values derived from characterization data and not tested.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
20  
TMS320C10-14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
MEMORY AND PERIPHERAL INTERFACE TIMING  
switching characteristics over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
ns  
10  
t
t
t
t
t
t
t
t
t
t
t
Delay time, CLKOUTto address bus valid  
Delay time, CLKOUTto MEN↓  
50  
d1  
d2  
d3  
d4  
d5  
d6  
d7  
d8  
d9  
d10  
v
1/ t  
4 c(C)  
– 5  
– 5  
– 5  
1/ t  
4 c(C)  
+15  
ns  
–10  
Delay time, CLKOUTto MEN↑  
15  
+15  
ns  
1
Delay time, CLKOUTto DEN↓  
1/ t  
4 c(C)  
/ t  
4 c(C)  
ns  
–10  
Delay time, CLKOUTto DEN↑  
15  
+15  
ns  
Delay time, CLKOUTto WE↓  
1/ t  
2 c(C)  
1/ t  
2 c(C)  
ns  
R
C
= 825 ,  
= 100 pF  
L
L
–10  
Delay time, CLKOUTto WE↑  
15  
+ 65  
ns  
(see Figure 2)  
Delay time, CLKOUTto data bus OUT valid  
Time after CLKOUTthat data bus starts to be driven  
Time after CLKOUTthat data bus stops being driven  
Data bus OUT valid after CLKOUT↓  
1/4t  
c(C)  
ns  
1/4t  
– 5  
ns  
c(C)  
1/4t  
c(C)  
+ 40  
ns  
1/4t  
– 10  
– 45  
ns  
c(C)  
Address hold time after WE, MEN, or DEN↑  
–10  
t
t
ns  
ns  
h(A-WMD)  
su(A-MD)  
(see Note 8)  
Address bus setup time prior to MENor DEN↓  
1/4t  
c(C)  
Values derived from characterization data and not tested.  
NOTE 8: For interfacing I/O devices, see Figure 3.  
timing requirements over recommended operating conditions  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
R
C
= 825 ,  
= 100 pF  
t
t
Setup time, data bus valid prior to CLKOUT↓  
50  
ns  
L
L
su(D)  
Hold time, data bus held valid after CLKOUT(see Note 9)  
0
ns  
(see Figure 2)  
h(D)  
NOTE 9: Data may be removed from the data bus upon MENor DENpreceding CLKOUT.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
21  
TMS320C10-14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
RESET (RS) TIMING  
switching characteristics over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1/2t  
MAX  
UNIT  
R
L
L
= 825 ,  
t
t
Delay time, DEN, WE, and MENfrom RS  
+ 50  
ns  
d11  
c(C)  
1/4t  
C
= 100 pF  
Data bus disable time after RS  
+ 50  
ns  
(see Figure 2)  
dis(R)  
c(C)  
Values were derived from characterization data and not tested.  
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
t
t
Reset (RS) setup time prior to CLKOUT (see Note 10)  
RS pulse duration  
50  
ns  
su(R)  
5t  
c(C)  
ns  
w(R)  
NOTE 10: RS can occur anytime during a clock cycle. Time given is minimum to ensure synchronous operation.  
INTERRUPT (INT) TIMING  
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
t
t
t
Fall time, INT  
15  
ns  
f(INT)  
Pulse duration, INT  
t
ns  
ns  
w(INT)  
su(INT)  
c(C)  
Setup time, INTbefore CLKOUT↓  
50  
IO (BIO) TIMING  
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
t
t
t
Fall time, BIO  
15  
ns  
f(IO)  
Pulse duration, BIO  
t
ns  
ns  
w(IO)  
su(IO)  
c(C)  
Setup time, BIObefore CLKOUT↓  
50  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
22  
TMS320C10, TMS320C10-14, TMS320C10-25  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
TIMING DIAGRAMS  
Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2 volts, unless  
otherwise noted.  
clock timing  
t
t
r(MC)  
w(MCH)  
t
w(MCP)  
t
c(MC)  
X2/CLKIN  
CLKOUT  
t
w(MCL)  
t
f(MC)  
t
w(CH)  
t
d(MCC)  
t
t
r(C)  
f(C)  
t
w(CL)  
t
c(C)  
are referenced to an intermediate level of 1.5 V on the CLKIN waveform.  
t
and t  
w(MCP)  
d(MCC)  
memory read timing  
t
c(C)  
CLKOUT  
t
d2  
t
d3  
MEN  
t
su(A-MD)  
t
h(A-WMD)  
t
d1  
A11-A0  
Address Bus Valid  
t
su(D)  
t
h(D)  
Instruction Valid  
D15-D0  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
23  
TMS320C10, TMS320C10-14, TMS320C10-25  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
TBLR instruction timing  
CLKOUT  
t
d2  
t
d3  
t
d3  
2
MEN  
1
3
7
4
8
t
d1  
A11-A0  
5
6
t
h(D)  
t
su(D)  
9
10  
11  
12  
D15-D0  
Legend:  
1. TBLR Instruction Prefetch  
2. Dummy Prefetch  
3. Data Fetch  
4. Next Instruction Prefetch  
5. Address Bus Valid  
6. Address Bus Valid  
7. Address Bus Valid  
8. Address Bus Valid  
9. Instruction Valid  
10. Instruction Valid  
11. Data Input Valid  
12. Instruction Valid  
TBLW instruction timing  
CLKOUT  
MEN  
1
2
3
7
A11-A0  
4
5
6
t
t
d7  
d6  
WE  
t
d8  
t
d10  
t
d9  
t
v
D15-D0  
8
9
10  
11  
Legend:  
1. TBLW Instruction Prefetch  
2. Dummy Prefetch  
3. Next Instruction Prefetch  
4. Address Bus Valid  
5. Address Bus Valid  
6. Address Bus Valid  
7. Address Bus Valid  
8. Instruction Valid  
9. Instruction Valid  
10. Data Output Valid  
11. Instruction Valid  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
24  
TMS320C10, TMS320C10-14, TMS320C10-25  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
IN instruction timing  
CLKOUT  
MEN  
A11-A0  
DEN  
1
2
t
su(A-MD)  
4
t
su(D)  
t
3
5
t
d5  
d4  
t
h(D)  
D15-D0  
6
7
8
Legend:  
1. IN Instruction Prefetch  
2. Next Instruction Prefetch  
3. Address Bus Valid  
5. Address Bus Valid  
6. Instruction Valid  
7. Data Input Valid  
8. Instruction Valid  
4. Peripheral Address Valid  
OUT instruction timing  
CLKOUT  
MEN  
A11-A0  
WE  
1
3
2
5
4
t
t
d6  
d7  
t
d9  
t
d10  
t
d8  
t
v
7
6
8
D15-D0  
Legend:  
1. OUT Instruction Prefetch  
2. Next Instruction Prefetch  
3. Address Bus Valid  
5. Address Bus Valid  
6. Instruction Valid  
7. Data Output Valid  
8. Instruction Valid  
4. Peripheral Address Valid  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
25  
TMS320C10, TMS320C10-14, TMS320C10-25  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
reset timing  
CLKOUT  
t
su(R)  
t
su(R)  
RS  
t
w(R)  
DEN  
WE  
MEN  
(see  
Note E)  
Data In From  
PC ADDR PC+1  
Data In From  
PC ADDR 0  
t
d11  
t
dis(R)  
Data  
Out  
Data Shown Relative to WE  
D15-D0  
MEN  
AB = PC+1  
AB = Address Bus  
AB = PC  
Address  
Bus  
AB = PC = 0  
AB = PC+1  
NOTES: A. RS forces DEN, WE, and MEN high and places data bus D0 through D15 in a high-impedance state. AB outputs (and program count-  
er) are synchronously cleared to zero after the next complete CLK cycle from RS.  
B. RS must be maintained for a minimum of five clock cycles.  
C. Resumption of normal program will commence after one complete CLK cycle from RS.  
D. Due to the synchronization action on RS, time to execute the function can vary dependent upon when RSor RSoccur in the CLK  
cycle.  
E. Diagram shown is for definition purpose only. DEN, WE, and MEN are mutually exclusive.  
F. During a write cycle, RS may produce an invalid write address.  
interrupt timing  
CLKOUT  
t
su(INT)  
INT  
t
f(INT)  
t
w(INT)  
BIO timing  
CLKOUT  
t
su(IO)  
BIO  
t
f(IO)  
t
w(IO)  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
26  
TMS320C10, TMS320C10-14, TMS320C10-25  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
TYPICAL POWER VS. FREQUENCY GRAPHS  
52  
46  
40  
34  
28  
22  
16  
10  
T
= – 40°C  
= 85°C  
A
T
A
V
CC  
V
CC  
V
CC  
= 5.5 V  
= 5.0 V  
= 4.5 V  
T
A
= – 40°C  
= 85°C  
T
A
T
A
= – 40°C  
= 85°C  
T
A
1.2  
4
8
12  
16  
20  
24  
28  
f
- Crystal Frequency - MHz  
x
(a) – 40°C to 85°C Temperature Range  
42  
36  
30  
24  
18  
12  
6
With Load  
Without Load  
0
1.2  
4
8
12  
16  
20  
24  
28  
f
- Crystal Frequency - MHz  
x
(b) Voltage = 5 V; Temperature = 25°C  
Figure 4. Typical CMOS I  
vs Frequency  
CC  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
27  
TMS320C14, TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
Key Features: TMS320C14/E14/P14  
+5 V  
GND  
160-ns Instruction Cycle  
256 Words of On-Chip Data RAM  
256-Word RAM  
Interrupt  
4K Words of On-Chip Program ROM  
Data (16)  
(TMS320C14)  
8K-Word ROM/  
EPROM  
4K Words of On-Chip Program EPROM  
(TMS320E14/P14)  
32-Bit ALU/ACC  
One-Time Programmable (OTP) Windowless  
EPROM Version Available (320P14)  
Multiplier  
Shifters  
Address (12)  
EPROM Code Protection for Copyright Security  
External Memory Expansion up to 4K-Words  
at Full Speed (Microprocessor Mode)  
16 × 16-Bit Multipler With 32-Bit Product  
0 to 16-Bit Barrel Shifter  
Seven Input and Seven Output External Ports  
Bit Selectable I/O Port (16 Pins)  
TMS320C14, TMS320E14/P14  
FN/FZ Packages  
16-Bit Bidirectional Data Bus With Greater than  
(Top View)  
50-Mbps Transfer Rate  
Asynchronous Serial Port  
15 Internal/External Interrupts  
Event Manager With Capture Inputs and  
9
8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61  
Compare Outputs  
TCLK/CLKR  
TCLK2/CLKX  
D4  
D5  
D6  
D7  
IOP0  
IOP1  
IOP2  
IOP3  
IOP4  
IOP5  
D8  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
Four Independent Timers [Watchdog,  
A8  
A7  
A6  
WE  
REN  
RS  
General Purpose (2), Serial Port]  
Four-Level Hardware Stack  
Packaging: 68-Pin PLCC (FN Suffix)  
INT  
CLKOUT  
A5  
or CLCC (FZ Suffix)  
Single 5-V Supply  
A4  
D9  
NMI/MC/MP  
WDT  
CLKIN  
A3  
RXD/DATA  
TXD/CLK  
D10  
IOP6  
IOP7  
Operating Free-Air Temperature  
. . . 0°C to 70°C  
A2  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
28  
TMS320C14, TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
introduction  
The C14/E14/P14 are 16/32-bit single-chip digital signal processing (DSP) microcontrollers that combine the  
high performance of a DSP with on-chip peripherals. With a 160-ns instruction cycle, these devices are capable  
of executing up to 6.4 million instructions per second (MIPS). The C14/E14/P14 DSPs are ideal for applications  
such as automotive control systems, computer peripherals, industrial controls, and military command/control  
system applications.  
Control-specific on-chip peripherals include: An event manager with 6 channel PWM D/A/, 6-bit I/O pins, an  
asynchronous serial port, four 16-bit timers, and internal/external interrupts.  
With 4K-words of on-chip ROM, the C14 is a mask programmable device. Code is provided by the customer,  
and TI incorporates the customer’s code into the photomask. It is offered in a 68-pin plastic chip carrier package  
(FN suffix), rated for operation from 0°C to 70°C.  
The E14 is provided with a 4K-word on-chip EPROM. This EPROM version is excellent for prototyping and for  
customized applications. It is programmable with standard EPROM programmers. It is offered in a 68-pin  
(windowed) cerquad package (FZ suffix), rated for operation from 0°C to 70°C.  
The P14 features a one-time programmable 4K-word on-chip EPROM. The P14 is provided in an  
unprogrammed state and is programmed as if it were a blank E14. It is offered in a low-cost,  
volume-production-oriented, 68-pin plastic leaded chip carrier (PLCC) package (FN suffix), rated for operation  
from 0°C to 70°C.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
29  
TMS320C14, TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
Each device can execute programs form either internal (MC/MP=0) or external program memory (MC/MP=1).  
For proprietary code security, the E14 and P14 incorporate an EPROM protect bit (RBIT). If this bit is  
programmed, the device’s internal program memory cannot be accessed by any external means.  
TERMINAL FUNCTIONS  
PIN  
DESCRIPTION  
I/O/Z  
NAME  
NO.  
ADDRESS/DATA BUSES  
A11  
A10  
A9  
5
O/Z  
Programmemory address bus A11 (MSB) through A0 (LSB) and port addresses PA2 (MSB) through  
PA0 (LSB). Addresses A11 through A0 are always active and never go to high impedance except  
during reset. During execution of the IN and OUT instructions, pins 26, 27, and 28 carry the port  
addresses. Pins A3 through A11 are held high when port accesses are made on pins PA0 through  
PA2.  
6
9
A8  
12  
13  
14  
20  
21  
25  
26  
27  
28  
A7  
A6  
A5  
A4  
A3  
A2/PA2  
A1/PA1  
A0/PA0  
D15 MSB  
D14  
D13  
D12  
D11  
D10  
D9  
35  
36  
39  
40  
43  
46  
49  
50  
57  
58  
59  
60  
61  
62  
63  
64  
I/O/Z  
Parallel data bus D15 (MSB) through D0 (LSB). The data bus is always in the high-impedance state  
except when WE is active (low). The data bus is also active when internal peripherals are written to.  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0 LSB  
INTERRUPT AND MISCELLANEOUS SIGNALS  
INT  
18  
22  
I
I
External interrupt input. The interrupt signal is generated by a high-to-low transition on this pin.  
NMI/MC/MP  
Non-maskable interrupt. When this pin is brought low, the device is interrupted irrespective of the  
state of the INTM bit in status register ST.  
Microcomputer/microprocessor select. This pin is also sampled when RS is low. If high during reset,  
internal program memory is selected. If low during reset, external memory will be selected.  
WE  
REN  
RS  
15  
16  
17  
O
O
I
Write enable. When active low, WE indicates that device will output data on the bus.  
Read enable. When active low, REN indicates that device will accept data from the bus.  
Reset. When this pin is low, the device is reset and PC is set to zero.  
Continued next page.  
Input/Output/High-impedance state.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
30  
TMS320C10-14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
TERMINAL FUNCTIONS (concluded)  
PIN  
DESCRIPTION  
I/O/Z  
NAME  
NO.  
19  
SUPPLY/OSCILLATOR SIGNALS  
CLKOUT  
O
I
System clock output (one fourth CLKIN frequency).  
V
V
4,33  
3,34  
24  
5-V supply pins.  
CC  
I
Ground pins.  
SS  
CLKIN  
I
Master clock input from external clock source.  
SERIAL PORT AND TIMER SIGNALS  
RXD  
48  
47  
10  
11  
23  
I
O/Z  
I
Asynchronous mode receive input.  
TXD  
Asynchronous mode transmit output.  
TCLK1  
TCLK2  
WDT  
Timer 1 clock. If external clock is selected, it serves as clock input to Timer 1.  
Timer 2 clock. If external clock is selected, it serves as clock input to Timer 2.  
Watchdog timer output. An active low is generated on this pin when the watchdog timer times out.  
BIT I/O PINS  
I
O
IOP15  
IOP14  
IOP13  
IOP12  
IOP11  
IOP10  
IOP9  
IOP8  
IOP7  
IOP6  
IOP5  
IOP4  
IOP3  
IOP2  
IOP1  
IOP0  
MSB  
29  
30  
31  
32  
37  
38  
41  
42  
44  
45  
51  
52  
53  
54  
55  
56  
I/O  
16 bit I/O lines that can be individually configured as inputs or outputs and also individually set or  
reset  
when configured as outputs.  
LSB  
COMPARE AND CAPTURE SIGNALS  
8
7
2
1
O
I
Compareoutputs. Thestatesofthesepinsaredeterminedbythecombinationofcompareandaction  
registers.  
CMP0  
CMP1  
CMP2  
CMP3  
68  
67  
Capture inputs. A transition on these pins causes the timer register to be captured in FIFO stack.  
CAP0  
CAP1  
CMP4/CAP2  
CMP5/CAP3  
66  
65  
I/O  
I/O  
This pin can be configured as compare output or capture input.  
This pin can be configured as compare output or capture input.  
Input/Output/High-impedance state.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
31  
TMS320C14, TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
functional block diagram  
CLKIN CLKOUT  
12 LSB  
16  
WE  
MUX  
16  
12  
REN  
RS  
Watchdog Timer  
WDT  
12  
PC (12)  
12  
Instruction  
Timers  
1.2  
12  
TCLK1.2  
16  
Program  
ROM/EPROM  
(4K Words)  
16  
12  
A0-A11  
PA0-PA2  
16  
Stack  
4 × 12  
3
D15-D0  
Program Bus  
NMI/  
MC/MP  
INT  
Interrupt  
Controller  
16  
16  
BSR  
16  
16  
16  
Data Bus  
16  
6
CMP0-CMP3  
CMPR  
(6)  
ACT  
(6)  
16  
16  
16  
T(16)  
7
1
CMP4, 5 /  
CAP2, 3  
16  
AR0 (16)  
AR1 (16)  
DP  
ARP  
16  
Multiplier  
P(32)  
4 × 16  
FIFO  
Stack  
(4)  
16  
16  
CAP  
Detect  
(4)  
4
8
8
CAP0,1  
MUX  
32  
32  
Shifter  
(0–16)  
8
Serial  
Port  
Timer  
Serial  
MUX  
32  
Port  
16  
32  
Controller  
Address  
Data  
9
9
TXD  
RXD  
TBR TSR  
RBR RSR  
ALU (32)  
32  
(256 Words)  
Data  
IOP  
IOP0-IOP15  
ACC (32)  
32  
32  
Legend:  
ACC = Accumulator  
ACT = Action Register  
ALU = Arithmetic Logic Unit  
ARP = Auxiliary Register Point  
AR0 = Auxiliary Register 0  
AR1 = Auxiliary Register 1  
BSR = Bank Select Register  
CAP = Capture  
DP = Data Page Pointer  
IOP = Input/Output Port  
(Bit Selectable)  
PC = Program Counter  
P = P Register  
RBR = Receive Buffer Register  
RSR = Receive Shift Register  
T = T Register  
TBR = Transmit Buffer Register  
TSR = Transmit Shift Register  
Shifter (0,1,4)  
16  
16  
16  
Data Bus  
CMPR = Compare Register  
architecture  
The C1x family utilizes a modified Harvard architecture for speed and flexibility. In a strict Harvard architecture,  
program and data memory lie in two separate spaces, permitting a full overlap of instruction fetch and execution.  
The C1x family’s modification of a Harvard architecture allows transfers between program and data spaces,  
thereby increasing the flexibility of the device. This modification permits coefficients stored in program memory  
to be read into the RAM, eliminating the need for a separate coefficient ROM. It also makes available immediate  
instructions and subroutines based on computed values.  
32-bit ALU/accumulator  
The C14/E14/P14 devices contain a 32-bit ALU and accumulator for support of double-precision,  
twos-complement arithmetic. The ALU is a general-purpose arithmetic unit that operates on 16-bit words taken  
from the data RAM or derived from immediate instructions. In addition to the usual arithmetic instructions, the  
ALU can perform Boolean operations, providing the bit manipulation ability required of a high-speed controller.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
32  
TMS320C14, TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
The accumulator stores the output from the ALU and is often an input to the ALU. It operates with a 32-bit  
wordlength. The accumulator is divided into a high-order word (bits 31 through 16) and a low-order word (bits  
15 through 0). Instructions are provided for storing the high- and low- order accumulator words in memory.  
shifters  
Two shifters are available for manipulating data. The ALU barrel shifter performs a left-shift of 0 to16 places on  
data memory words loaded into the ALU. This shifter extends the high-order bit of the data word and zero-fills  
the low-order bits for twos-complement arithmetic. The accumulator parallel shifter performs a left-shift of 0, 1,  
or 4 places on the entire accumulator and places the resulting high-order accumulator bits into data RAM. Both  
shifters are useful for scaling and bit extraction  
16 × 16-bit parallel multiplier  
The multiplier performs a 16 × 16-bit twos-complement multiplication with a 32-bit result in a single instruction  
cycle. The multiplier consists of three units: the T Register, P Register, and the multiplier array. The 16-bit T  
Register temporarily stores the multiplicand; the P Register stores the 32-bit product. Multiplier values either  
come from the data memory or are derived immediately from the MPYK (multiply immediate) instruction word.  
Thefaston-chipmultiplierallowsthedevicetoperformfundamentaloperationssuchasconvolution, correlation,  
and filtering.  
data and program memory  
Since the C14/E14/P14 devices use a Harvard architecture, data and program memory reside in two separate  
spaces. These devices have 256 words of on-chip data RAM and 4K words of on-chip program ROM (C14)  
or EPROM (E14 and the OTP P14). The EPROM cell utilizes standard PROM programmers and is  
programmed identically to a 64K-bit CMOS EPROM (TMS27C64).  
program memory expansion  
TheC1xdevicesarecapableofexecutingupto4Kwordsofexternalmemoryatfullspeedforthoseapplications  
requiring external program memory space. This allows for external RAM-based systems to provide multiple  
functionality.  
microcomputer/microprocessor operating modes  
The C14/E14/P14devicesoffertwomodesofoperationdefinedbythestateoftheNMI/MC/MPpinduringreset:  
the microcomputer mode (NMI/MC/MP is high) or the microprocessor mode (NMI/MC/MP is low). In the  
microcomputer mode, the on-chip ROM is mapped into the program memory space. In the microprocessor  
mode, all 4K words of memory are external.  
interrupts and subroutines  
The C14/E14/P14 devices contain a four-level hardware stack for saving the contents of the program counter  
during interrupts and subroutine calls. Instructions are available for saving the complete context of the device.  
PUSH and POP instructions permit a level of nesting restricted only by the amount of available RAM. The  
C14/E14/P14 have a total of 15 internal/external interrupts. Fourteen of these are maskable; NMI is the  
fifteenth.  
input/output  
The16-bitparalleldatabuscanbeutilizedtoaccessexternalperipherals. However, onlythelowerthreeaddress  
lines are active. The upper nine address lines are driven high.  
bit I/O  
The C14/E14/P14 has 16 pins of bit I/O that can be individually configured as inputs or outputs. Each of the  
pins can be set or cleared without affecting the others. The input pins can also detect and match patterns and  
generate a maskable interrupt signal to the CPU.  
serial port  
The C14/E14/P14 includes an I/O-mapped asynchronous serial port.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
33  
TMS320C14, TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
event manager  
An event manager is included that provides up to four capture inputs and up to six compare outputs. This  
peripheraloperateswiththetimers toprovideaformofprogrammableeventlogging/detection. Thesixcompare  
outputs can also be configured to produce six channels of high precision PWM.  
timers 1 and 2  
Two identical 16-bit timers are provided for general purpose applications. Both timers include a 16-bit period  
register and buffer latch, and can generate a maskable interrupt.  
serial port timer  
Theserialporttimerisa16-bittimerprimarilyintendedforbaudrategenerationfortheserialport. Itsarchitecture  
is the same as timers 1 and 2, therefore it can serve as a general purpose timer if not needed for serial  
communication.  
watchdog timer  
The C14/E14/P14 contain a 16-bit watchdog timer that can produce a timeout (WDT) signal for various  
applications such as software development and event monitoring. The watchdog timer also generates, at the  
point of the timeout, a maskable interrupt signal to the CPU.  
instruction set  
A comprehensive instruction set supports both numeric-intensive operations, such as signal processing, and  
general-purpose operations, such as high-speed control. All of the first-generation devices are object-code  
compatible and use the same 60 instructions. The instruction set consists primarily of single-cycle single-word  
instructions, permitting execution rates of more than six million instructions per second. Only infrequently used  
branch and I/O instructions are multicycle. Instructions that shift data as part of an arithmetic operation execute  
in a single cycle and are useful for scaling data in parallel with other operations.  
NOTE  
The BIO pin on other C1x devices is not available for use in the C14/E14/P14 devices. An attempt to  
execute the BIOZ (Branch on BIO low) instruction will result in a two cycle NOP action.  
Three main addressing modes are available with the instruction set: direct, indirect, and immediate addressing.  
direct addressing  
In direct addressing, seven bits of the instruction word concatenated with the 1-bit data page pointer from the  
data memory address. This implements a paging scheme in which each page contains 128 words.  
indirect addressing  
Indirect addressing forms the data memory address from the least-significant eight bits of one of the two  
auxiliary registers, AR0 and AR1. The Auxiliary Register Pointer (ARP) selects the current auxiliary register. The  
auxiliary registers can be automatically incremented or decremented and the ARP changed in parallel with the  
execution of any indirect instruction to permit single-cycle manipulation of data tables. Indirect addressing can  
be used with all instructions requiring data operands, except for the immediate operand instructions.  
immediate addressing  
Immediate instructions derive data from part of the instruction word rather than from part of the data RAM. Some  
useful immediate instructions are multiply immediate (MPYK), load accumulator immediate (LACK), and load  
auxiliary register immediate (LARK).  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
34  
TMS320C14, TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
electrical specifications  
This section contains all the electrical specifications for the C14/E14/P14 devices, including test parameter  
measurement information. Parameters with  
programming mode.  
subscripts apply only to the E14 and P14 in the EPROM  
PP  
absolute maximum ratings over specified temperature range (unless otherwise noted)  
Supply voltage range, V  
(see Note 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
CC  
PP  
Supply voltage range, V (see Note 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 14 V  
Input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 14 V  
Output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 W  
°
°
°
°
Air temperature range above operating device: L version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 C to 70 C  
Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 C + 150 C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and  
functionaloperation of the device at these or any other conditions beyond those indicated in the “Recommended Operating Conditions” section of  
this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 6: All voltage values are with respect to V  
.
SS  
recommended operating conditions  
MIN  
4.75  
NOM  
5
MAX  
5.25  
UNIT  
V
Operating voltage  
Fast programming  
5.75  
6
6.25  
V
V
CC  
Supply voltage  
SNAP! Pulse programming  
6.25  
6.5  
12.5  
13  
0
6.75  
V
V
PP  
V
PP  
V
SS  
Supply voltage for Fast programming (see Note 11)  
Supply voltage for SNAP! Pulse programming (see Note 11)  
Supply voltage  
12.25  
12.75  
12.75  
13.25  
V
V
V
CLKIN, CAP0, CAP1, CMP4/CAP2, CMP5/CAP3, RS  
All remaining inputs  
3
2
V
IH  
High-level input voltage  
V
V
Low-level input voltage, all inputs  
High-leveloutputcurrent, alloutputs  
Low-level output current, all outputs  
Operating free-air temperature  
0.8  
300  
2
V
IL  
I
I
µA  
mA  
OH  
OL  
°
C
T
A
0
70  
NOTE 11:  
V
can be applied only to programming pins designed to accept V as an input. During programming the total supply current  
PP  
PP  
is I  
+ I  
PP CC  
.
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
35  
TMS320C14, TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
electrical characteristics over specified temperature range (unless otherwise noted)  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
I
I
I
= MAX  
2.4  
3
V
V
V
OH  
OH  
OL  
V
High-level output voltage  
Low-level output voltage  
Off-state output voltage  
OH  
– 0.4  
CC  
= 20 µA (see Note 7)  
V
V
OL  
= MAX  
0.3  
0.5  
20  
V
V
= 2.4 V  
= 0.4 V  
O
I
V
= MAX  
µA  
µA  
OZ  
CC  
V = V  
20  
±20  
±50  
90  
O
All other inputs except CLKIN  
CLKIN  
I
I
Input current  
to V  
CC  
I
SS  
§
I
I
Supply current  
f = 25.6 MHz, V  
= 5.25 V, T = 0°C to 70°C  
70  
30  
mA  
CC  
CC  
= 5.5 V  
A
V
V
supply current  
supply current  
V
= V  
100  
µA  
PP1  
PP  
PP  
PP  
CC  
= 13 V  
PP  
I
V
50  
mA  
pF  
PP2  
(during program pulse)  
Data bus  
25  
15  
25  
10  
C
C
Input capacitance  
I
All others  
Data bus  
All others  
f = 1 MHz, All other pins 0 V  
Output  
capacitance  
pF  
O
§
All typical values are at V  
= 5 V, T = 25°C, except I  
at 70°C.  
CC  
CC  
Values derived from characterization data and not tested.  
characteristics are inversely proportional to temperature.  
A
I
CC  
NOTE 7: This voltage specification is included for interface to HC logic. However, note that all of the other timing parameters defined in this data  
sheet are specified for TTL logic levels and will differ for HC logic levels.  
PARAMETER MEASUREMENT INFORMATION  
2.15 V  
R
= 825 Ω  
L
From Output  
Under Test  
Test  
Point  
C
= 100 pF  
L
Figure 5. Test Load Circuit  
EXTERNAL CLOCK REQUIREMENTS  
The TMS320C14/E14/P14 use an external frequency source for a clock. This source is applied to the CLKIN  
pin, and must conform to the specifications in the table below.  
PARAMETERS  
Input clock frequency  
TEST CONDITIONS  
= 0°C to 70°C  
MIN  
NOM  
MAX  
UNIT  
CLKIN  
T
6.7  
25.6  
MHz  
A
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
36  
TMS320C14, TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
CLOCK TIMING  
switching characteristics over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
ns  
t
t
t
t
t
t
CLKOUT cycle time  
156.25  
600  
c(C)  
CLKOUT rise time  
10  
ns  
r(C)  
R
= 825 ,  
= 100 pF,  
L
8
72  
70  
45  
CLKOUT fall time  
ns  
f(C)  
C
L
(see Figure 2)  
Pulse duration, CLKOUT low  
Pulse duration, CLKOUT high  
Delay time CLKINto CLKOUT↓  
ns  
w(CL)  
w(CH)  
d(MCC)  
ns  
ns  
Values were derived from characterization data and not tested.  
timing requirements over recommended operating conditions  
MIN  
NOM  
40  
MAX  
UNIT  
t
t
t
t
t
t
Master clock cycle time  
39.06  
150  
ns  
c(MC)  
Rise time, master clock input  
Fall time, master clock input  
Pulse duration, master clock  
Pulse duration, master clock low  
Pulse duration, master clock high  
5
5
10  
10  
ns  
ns  
ns  
ns  
ns  
r(MC)  
f(MC)  
0.45t  
c(MC)  
0.55t  
c(MC)  
w(MCP)  
w(MCL)  
w(MCH)  
15  
130  
130  
15  
Values were derived from characterization data and not tested.  
is the cycle time of CLKOUT, i.e., 4t (4 times CLKIN cycle time if an external oscillator is used).  
t
c(C)  
c(MC)  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
37  
TMS320C14, TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
MEMORY READ AND INSTRUCTION TIMING  
switching characteristics over recommended operating conditions  
TEST  
CONDITIONS  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
t
t
t
t
t
t
t
t
t
t
t
t
Address bus valid before REN↓  
Address bus valid before WE↓  
Address bus valid after RENor WE↑  
Data starts being driven before WE↓  
Data valid prior to WE↓  
0.25 t  
39  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(A)R  
c(C)  
c(C)  
0.50 t  
su(A)W  
h(A)  
5
0.25 t  
en(D)W  
su(D)W  
h(D)W  
c(C)  
0.25 t  
0.25 t  
45  
10  
R
= 825 ,  
= 100 pF,  
c(C)  
c(C)  
L
C
L
Data valid after WE↑  
(see Figure 2)  
Data in high impedance after WE↑  
WE-low duration  
0.25 t  
c(C)  
+ 25  
dis(D)W  
w(WEL)  
w(RENL)  
rec(WE)  
rec(REN)  
d(WE-CLK)  
0.50 t  
0.75 t  
15  
15  
c(C)  
c(C)  
REN-low duration  
Write recovery time, time between WEand REN↓  
Read recovery time, time between RENand WE↓  
Time from WEto CLKOUT↑  
0.25 t  
–5  
c(C)  
0.50 t  
0.50 t  
10  
15  
c(C)  
c(C)  
Values were derived from characterization data and not tested.  
timing requirements over recommended operating conditions  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
ns  
t
t
Data set-up prior to REN↑  
Data hold after REN↑  
52  
0
su(D)R  
ns  
h(D)R  
R
= 825 ,  
= 100 pF,  
L
Access time for read cycle data  
valid after valid address  
C
L
t
t
90  
ns  
a(A)  
c(C)  
(see Figure 2)  
t
t
Access time for read cycle from REN↓  
Data in high impedance after REN↑  
0.75 t  
60  
ns  
ns  
oe(REN)  
c(C)  
0.25 t  
dis(D)R  
c(C)  
RESET (RS) TIMING  
switching characteristics over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
t
t
Delay from RSto RENand WE↑  
0.75 t  
+ 20  
ns  
d(RS-RW)  
c(C)  
Delay from RSto REN and  
WE into high impedance  
1.25 t  
ns  
R
= 825 ,  
= 100 pF,  
dis(RS-RW)  
c(C)  
L
C
L
t
t
t
Data bus disable after RS↓  
Address bus disable after RS↓  
Address bus enable after RS↑  
1.25 t  
ns  
ns  
ns  
(see Figure 2)  
dis(RS-DB)  
dis(RS-AB)  
en(RS-AB)  
c(C)  
c(C)  
c(C)  
t
t
timing requirements over recommended operating conditions  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
R
= 825 ,  
= 100 pF,  
t
t
RS setup prior to CLKOUT(see Note 10)  
60  
ns  
L
su(RS)  
C
L
RS pulse duration  
5t  
ns  
w(RS)  
c(C)  
(see Figure 2)  
NOTE 10: RS can occur anytime during the clock cycle. Time given is minimum to ensure synchronous operation.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
38  
TMS320C14, TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
MICROCOMPUTER/MICROPROCESSOR MODE (NMI/MC/MP)  
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
t
Hold time after RS high  
t
ns  
h(MC/MP)  
c(C)  
Values were derived from characterization data and not tested.  
Hold time to put device in microprocessor mode.  
INTERRUPT (INT)/NONMASKABLE INTERRUPT (NMI)  
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
ns  
t
t
t
t
t
t
Fall time, INT  
15  
15  
f(INT)  
Fall time, NMI  
ns  
f(NMI)  
Pulse duration, INT  
t
t
ns  
w(INT)  
w(NMI)  
su(INT)  
su(NMI)  
c(C)  
Pulse duration, NMI  
ns  
c(C)  
60  
Setup time, INT before CLKOUT low (see Note 12)  
Setup time, NMI before CLKOUT low (see Note 12)  
ns  
60  
ns  
NOTE 12: INT and NMI are synchronous inputs and can occur at any time during the cycle. NMI and INT are edge triggered only.  
BIT I/O TIMING  
switching characteristics over recommended operating conditions  
PARAMETER  
Rise and fall time outputs  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
20  
R
= 825 ,  
= 100 pF,  
t
t
ns  
L
rfo(IOP)  
C
L
CLKOUT low to data valid outputs  
0.75 t  
+80  
ns  
d(IOP)  
c(C)  
(see Figure 2)  
timing requirements over recommended operating conditions  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
20  
t
t
t
Rise and fall time inputs  
ns  
rfl(IOP)  
su(IOP)  
w(IOP)  
R
C
= 825 ,  
= 100 pF,  
L
L
Data setup time before CLKOUT time  
Input pulse duration  
40  
ns  
ns  
(see Figure 2)  
t
c(C)  
GENERAL PURPOSE TIMERS  
timing requirements over recommended operating conditions  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
ns  
t
t
t
t
t
TCLK1, TCLK2 rise time  
TCLK1, TCLK2 fall time  
TCLK1, TCLK2 low time  
TCLK1, TCLK2 high time  
Input pulse duration  
20  
20  
r(TIM)  
ns  
f(TIM)  
R
= 825 ,  
= 100 pF,  
L
C
L
t
t
+20  
+20  
+40  
ns  
wl(TIM)  
wh(TIM)  
clk(TIM)  
c(C)  
c(C)  
c(C)  
(see Figure 2)  
ns  
2t  
ns  
Values were derived from characterization data and not tested.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
39  
TMS320C14, TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
WATCHDOG TIMER TIMING  
switching characteristics over recommended operating conditions  
PARAMETER  
Fall time, WDT  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
ns  
20  
t
t
t
f(WDT)  
d(WDT)  
w(WDT)  
R
C
= 825 ,  
= 100 pF,  
L
L
CLKOUT to WDT valid  
0.25 t  
)+20  
ns  
c(C  
(see Figure 2)  
WDT output pulse duration  
7 t  
)
ns  
c(C  
EVENT MANAGER TIMER  
switching characteristics over recommended operating conditions  
PARAMETER  
Fall time, CMP0-CMP5  
Rise time, CMP0-CMP5  
TEST CONDITIONS  
MIN  
NOM  
NOM  
MAX  
UNIT  
R
= 825 ,  
= 100 pF,  
t
t
20  
20  
ns  
L
f(CMP)  
C
L
ns  
(see Figure 2)  
r(CMP)  
timing requirements over recommended operating conditions  
TEST CONDITIONS  
MIN  
+20  
c(C)  
MAX  
UNIT  
R
= 825 ,  
= 100 pF,  
L
t
t
CAP0-CAP3 input pulse duration  
t
ns  
w(CAP)  
C
L
20  
Capture input setup time before CLKOUT low  
(see Figure 2)  
ns  
su(CAP)  
Values were derived from characterization data and not tested.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
40  
TMS320C14, TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
TIMING DIAGRAMS  
Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2 volts, unless  
otherwise noted.  
clock timing  
t
t
r(MC)  
w(MCH)  
t
w(MCP)  
t
c(MC)  
X2/CLKIN  
CLKOUT  
t
w(MCL)  
t
f(MC)  
t
w(CH)  
t
d(MCC)  
t
t
r(C)  
f(C)  
t
w(CL)  
t
c(C)  
are referenced to an intermediate level of 1.5 V on the CLKIN waveform.  
t
and t  
w(MCP)  
d(MCC)  
memory read timing  
REN  
t
w(RENL)  
t
oe(REN)  
t
h(A)  
t
su(A)R  
A11-A0  
D15-D0  
Address Bus Valid  
t
a(A)  
t
su(D)R  
t
h(D)R  
Instruction Input Valid  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
41  
TMS320C14, TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
TBLR instruction timing  
REN  
1
2
3
4
8
t
su(A)R  
A11-A0  
D15-D0  
5
6
7
t
h(D)R  
t
a(A)  
t
su(D)R  
9
10  
11  
12  
Legend:  
1. TBLR Instruction Prefetch  
2. Dummy Prefetch  
3. Data Fetch  
4. Next Instruction Prefetch  
5. Address Bus Valid  
6. Address Bus Valid  
7. Address Bus Valid  
8. Address Bus Valid  
9. Instruction Input Valid  
10. Instruction Input Valid  
11. Data Input Valid  
12. Instruction Input Valid  
TBLW instruction timing  
REN  
1
4
2
3
7
A11-A0  
WE  
5
6
en(D)W  
t
t
w(WEL)  
t
su(D)W  
t
dis(D)W  
t
h(D)W  
10  
D15-D0  
8
9
11  
Data valid prior to WE↓  
Legend:  
1. TBLW Instruction Prefetch  
2. Dummy Prefetch  
3. Next Instruction Prefetch  
4. Address Bus Valid  
5. Address Bus Valid  
6. Address Bus Valid  
7. Address Bus Valid  
8. Instruction Input Valid  
9. Instruction Input Valid  
10. Data Output Valid  
11. Instruction Input Valid  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
42  
TMS320C14, TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
IN instruction timing  
REN  
1
2
3
6
t
su(A)R  
A11-A0  
4
5
t
su(D)R  
t
a(A)  
t
h(D)R  
D15-D0  
7
8
9
Legend:  
1. IN Instruction Prefetch  
2. Data Fetch  
3. Next Instruction Prefetch  
4. Address Bus Valid  
5. Peripheral Address Valid  
6. Address Bus Valid  
7. Instruction Input Valid  
8. Data Input Valid  
9. Instruction Input Valid  
OUT instruction timing  
REN  
1
2
3
4
5
A11-A0  
t
en(D)W  
WE  
t
w(WEL)  
D15-D0  
6
7
t
dis(D)W  
t
su(D)W  
t
h(D)W  
Legend:  
1. OUT Instruction Prefetch  
2. Next Instruction Prefetch  
3. Address Bus Valid  
5. Address Bus Valid  
6. Instruction Input Valid  
7. Data Output Valid  
4. Peripheral Address Valid  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
43  
TMS320C14, TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
reset timing  
CLKOUT  
t
su(RS)  
t
su(RS)  
t
dis(RS-RW)  
RS  
t
w(RS)  
REN  
WE  
(see  
Note E)  
t
d(RS-RW)  
t
en(RS-AB)  
t
dis(RS-DB)  
Data Shown Relative To WE  
Data Out  
D15-D0  
Data In From  
PC ADDR 0  
Data In From  
PC ADDR PC+1  
t
dis(RS-AB)  
AB = PC+1  
ADDRESS  
BUS  
AB = PC  
AB = PC = 0  
AB = Address Bus  
NOTES: A. RS forces REN, and WE high and then places data bus D0-D15, REN, WE, and address bus A0-A11 in a high-impedance state.  
AB outputs (and program counter) are synchronously cleared to zero after the next complete CLK cycle from RS.  
B. RS must be maintained for a minimum of five clock cycles.  
C. Resumption of normal program will commence after one complete CLK cycle from RS.  
D. Due to the synchronization action on RS, time to execute the function can vary dependent upon when RSor RSoccur in the CLK  
cycle.  
E. Diagram shown is for definition purpose only. WE and REN are mutually exclusive.  
microcomputer/microprocessor mode timing  
CLKOUT  
RS  
t
h(MC/MP)  
NMI/MC/MP  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
44  
TMS320C14, TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
interrupt timing  
CLKOUT  
t
, t  
su(INT) su(NMI)  
NMI or INT  
t
, t  
f(INT) f(NMI)  
t
, t  
w(INT) w(NMI)  
bit I/O timing  
CLKOUT  
IOP15-IOP0  
(Output)  
t
rfo(IOP)  
t
su(IOP)  
IOP15-IOP0  
(Input)  
t
w(IOP)  
t
rfI(IOP)  
general purpose timers  
t
clk(TIM)  
TCLK1, TCLK2  
t
wh(TIM)  
t
f(TIM)  
t
r(TIM)  
t
wl(TIM)  
watchdog timer  
CLKOUT  
t
d(WDT)  
t
w(WDT)  
WDT  
t
f(WDT)  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
45  
TMS320C14, TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
event manager  
CLKOUT  
t
su(CAP)  
CAP3-CAP0  
CMP5-CMP0  
t
w(CAP)  
t
/ t  
f(CMP) r(CMP)  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
46  
TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
PROGRAMMING THE TMS320E14/P14 EPROM CELL  
The E14 and P14 include a 4K × 16-bit industry-standard EPROM cell for prototyping and low-volume  
production. The C14 with a 4K-word masked ROM then provides a migration path for cost-effective production.  
An EPROM adapter socket (part # TMDX3270110), shown in Figure 5, is available to provide 68-pin to 28-pin  
conversion for programming the E14 and P14.  
Key features of the EPROM cell include the normal programming operation as well as verification. The EPROM  
cell also includes a code protection feature that allows code to be protected against copyright violations.  
The E14/P14 EPROM cells are programmed using the same family and device codes as the TMS27C64 8K  
× 8-bit EPROM. The TMS27C64 EPROM series are ultraviolet-light erasable, electrically programmable,  
read-only memories, fabricated using HVCMOS technology. They are pin compatible with existing 28-pin ROMs  
andEPROMs. TheseEPROMsoperatefroma5-Vsupplyinthereadmode;however, a12.5-Vsupplyisneeded  
forprogramming. AllprogrammingsignalsareTTLlevel. Forprogrammingoutsidethesystem, existingEPROM  
programmers can be used. Locations may be programmed singly, in blocks, or at random.  
Figure 5. EPROM Adapter Socket  
The E14/P14 devices use 13 address lines to address the 4K-word memory in byte format (8K-byte memory).  
In word format, the most-significant byte of each word is assigned an even address and the least-significant byte  
an odd address in the byte format. Programming information should be downloaded to EPROM programmer  
memory in a high-byte to low-byte order for proper programming of the devices (see Figure 6).  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
47  
TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
TMS320C14 On-Chip  
Program Memory  
(Word Format)  
TMS320E14 and  
TMS320P14 On-  
Chip  
EPROM  
Programmer  
Memory  
Program Memory  
(Byte Format)  
Byte Format with  
Adapter Socket  
34h  
12h  
78h  
56h  
BCh  
9Ah  
FOh  
DEh  
.
0(0000h)  
12h  
34h  
56h  
78h  
9Ah  
BCh  
DEh  
FOh  
.
0(0000h)  
1(000Ah)  
2(0002h)  
3(0003h)  
1234h  
5678h  
9ABCh  
DEFOh  
.
.
.
0(0000h)  
1(0001h)  
2(0002h)  
3(0003h)  
4(0004h)  
5(0005h)  
6(0006h)  
7(0007h)  
.
1(0001h)  
2(0002h)  
3(0003h)  
4(0004h)  
5(0005h)  
6(0006h)  
7(0007h)  
.
.
.
.
4095(0FFh)  
.
.
.
.
.
.
.
.
8191(1FFFh)  
Figure 6. Programming Data Format  
Figure 7 shows the wiring conversion to program the E14 and P14 using the 28-pin pinout of the TMS27C64.  
The table of pin nomenclature provides a description of the TMS27C64 pins.  
CAUTION  
The E14 and P14 do not support the signature mode available with some EPROM programmers.  
The signature mode places high voltage (12.5 V ) on pin A9. The E14 and P14 EPROM cells are  
dc  
not designed for this feature and will be damaged if subjected to it. A 3.9 kresistor is standard  
on the TI programmer socket between pin A9 and programmer. This protects the device from  
unintentional use of the signature mode.  
1
2
3
4
5
6
7
8
9
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
V
CC  
PP  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
PGM  
EPT  
A8  
9
8
7
6
5
4
3
2
1 68 67 66 65 64 63 62 61  
3.9 k Ω  
A9  
A10  
A11  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
A11  
G
A10  
E
A1  
A0  
Q8  
Q7  
Q6  
Q5  
Q4  
A12  
PGM  
EPT  
10  
A0  
11  
12  
13  
14  
Q1  
V
Q2  
PP  
TMS320E14  
TMS320P14  
Q3  
E
GND  
TMS27C64 Pinout  
G
CLKIN  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
Figure 7. TMS320E14/P14 EPROM Programming Conversion to TMS27C64 EPROM Pinout  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
48  
TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
TERMINAL FUNCTIONS (TMS320E14/P14)  
NAME  
I/O  
DEFINITION  
On-chip EPROM programming address lines  
A12(MSB)-A0(LSB)  
I
CLKIN  
I
Clock oscillator input  
E
I
EPROM chip enable  
EPT  
I
EPROM test mode select  
G
I
EPROM output enable  
GND  
PGM  
I
Ground  
I
EPROM write/program select  
Data lines for byte-wide programming of on-chip 8K bytes of EPROM  
Reset for initializing the device  
5-V to 6.5-V power supply  
12.5-V to 13-V power supply  
Q8(MSB)-Q1(LSB)  
RS  
I/O  
I
I
I
V
CC  
V
PP  
Table 4 shows the programming levels required for programming, verifying, reading, and protecting the EPROM  
cell.  
Table 4. TMS320E14/P14 Programming Mode Levels  
SIGNAL  
NAME  
TMS320E14/P14  
PIN  
TMS27C64  
PIN  
PROGRAM  
VERIFY  
EPROM  
PROTECT  
PROTECT  
VERIFY  
PROGRAM  
READ  
E
19  
23  
20  
22  
27  
1
V
V
V
V
V
V
V
V
IL  
IL  
PULSE  
IL  
PULSE  
IH  
IL  
G
V
IH  
IH  
IL  
PGM  
16  
PULSE  
V
IH  
V
IH  
V
IH  
IH  
V
PP  
18  
V
PP  
V
PP  
V
V
V
PP  
V
V
CC  
CCP  
V
4,33  
3,34  
24  
28  
14  
14  
26  
V
CCP  
V
CCP  
V
CCP  
CC  
CC  
CCP  
V
SS  
V
V
V
SS  
V
SS  
V
SS  
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
PP  
SS  
SS  
PP  
CLKIN  
EPT  
V
V
V
V
17  
V
V
V
V
42, 41, 38, 37,  
32-29  
Q1-Q8  
11–13, 15-19,  
Data In  
ADDR  
Data Out  
ADDR  
Data Out  
ADDR  
Q
= PULSE  
X
Q
= RBIT  
X
8
8
2, 23, 21, 24,  
25, 3  
A12-A7  
15, 11, 10, 8, 7, 2  
A6  
A5  
1
4
5
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
X
X
V
IL  
68  
67  
X
A4  
6
V
IH  
X
X
A3-A0  
66, 65, 56, 55  
7-10  
X
Signal names shown for E14/P14 EPROM programming mode only.  
Legend:  
V
IH  
=
= TTL high level; V = TTL low level; ADDR = byte address bit; V  
= 12.5 V ± 0.25 V (FAST) or 13 V ± 0.25 V (SNAP! Pulse).  
PP  
IL  
V
CC  
5 V ± 0.25 V; X = don’t care; PULSE = low-going TTL pulse.  
D
= byte to be programmed at ADDR; Q  
= byte stored at ADDR.; RBIT = ROM protect bit  
IN  
OUT  
= 6 V ± 0.25 V (FAST) or 6.5 V ± 0.25 V (SNAP! Pulse).  
V
CCP  
programming  
Since every memory in the cell is at a logic high, the programming operation reprograms selected bits to low.  
Oncethe320E14isprogrammed, thesebitscanonlybeerasedusingultravioletlight. Thecorrectbyteisplaced  
on the data bus with V set to the 12.5-V level. The PGM pin is then pulsed low to program in the zeros.  
PP  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
49  
TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
erasure  
Before programming, the E14 must be erased by exposing it to ultraviolet light. The recommended minimum  
2
2
exposure dose (UV-intensity × exposure-time) is 15 Ws/cm . A typical 12-mWs/cm , filterless UV lamp will  
erase the device in 21 minutes. The lamp should be located about 2.5 cm above the chip during erasure. After  
exposure, all bits are in the high state.  
verify/read  
To verify correct programming, the EPROM cell can be read using either the verify or read line definitions shown  
in Table 5, assuming the inhibit bit (RBIT) has not been programmed.  
program inhibit  
Programming may be inhibited by maintaining a high level input on the E pin or PGM pin.  
standard programming procedure  
Before programming, the E14 must first be completely erased. The device can then be programmed with the  
correct code. It is advisable to program unused sections with zeros as a further security measure. After the  
programming is complete, the code programmed into the cell should be verified. If the cell passes verification,  
the next step is to program the ROM protect bit (RBIT). Once the RBIT programming is verified, an opaque label  
should be placed over the window to protect the EPROM cell from inadvertent erasure by ambient light. At this  
point, the programming is complete, and the device is ready to be placed into its destination circuit.  
Refer to other appendices of the TMS320C1x User’s Guide for additional information on EPROM programming.  
recommended timing requirements for programming: V  
= 6 V and V  
= 12.5 V (FAST) or  
CC  
PP  
V
= 6.5 V and V = 13 V (SNAP! PULSE), T = 25°C (see Note 13)  
CC  
PP A  
MIN  
0.95  
95  
2.85  
2
NOM  
1
MAX  
1.05  
UNIT  
ms  
µs  
Fast programming algorithm  
SNAP! Pulse programming algorithm  
Fast programming only  
t
w(PGM)  
Initial program pulse duration  
100  
105  
t
t
t
t
t
t
t
t
t
Final pulse duration  
Address setup time  
E setup time  
78.75  
ms  
µs  
w(FPGM)  
su(A)  
2
µs  
su(E)  
G setup time  
2
µs  
su(G)  
Data setup time  
2
µs  
su(D)  
V
V
setup time  
setup time  
2
µs  
su(VPP)  
su(VCC)  
h(A)  
PP  
2
µs  
CC  
Address hold time  
Data hold time  
0
µs  
2
µs  
h(D)  
NOTE 13: For all switching characteristics and timing measurements, input pulse levels are 0.4 V to 2.4 V and V  
programming.  
= 12.5 V ± 0.5 V during  
PP  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
50  
TMS320E14, TMS320P14  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
program cycle timing  
Verify  
Program  
V
V
V
V
IH  
A12-A0  
Q8-Q1  
Address Stable  
su(A)  
Address N+1  
IL  
t
t
h(A)  
/V  
IH OH  
Data Out  
Valid  
Data In Stable  
t
HI-Z  
/V  
IL OL  
t
dis(G)  
su(D)  
V
PP  
V
PP  
t
t
su(VPP)  
su(VCC)  
V
V
CC  
CCP  
V
CC  
V
CC  
V
IH  
V
IL  
V
IH  
E
t
t
h(D)  
su(E)  
PGM  
t
en(G)  
V
IL  
t
t
w(FPGM)  
su(G)  
V
V
IH  
G
and t  
IL  
t
) are characteristics of the device but must be accommodated by the programmer.  
en(G  
dis(G)  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
51  
TMS320C15, TMS320E15, TMS320LC15, TMS320P15  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
Key Features: TM320C15/E15/LC15/P15  
+5 V  
or  
Instruction Cycle Timing:  
— 160-ns (TMS320C15-25/E15-25)  
— 200-ns (TMS320C15/E15/P15)  
— 250-ns (TMS320LC15)  
+3.3 V  
GND  
256 Words of On-Chip Data RAM  
256-Word RAM  
Interrupt  
Data (16)  
4K Words of On-Chip Program ROM  
4K-Word ROM/EPROM  
32-Bit ALU/ACC  
Multiplier  
(TMS320C15/C15-25/LC15)  
4K Words of On-Chip Program EPROM  
(TMS320E15/E15-25)  
One-Time Programmable (OTP) Windowless  
Address (12)  
EPROM Version Available (TMS320P15)  
Shifters  
EPROM Code Protection for Copyright Security  
External Memory up to 4K-Words at Full Speed  
16 × 16-Bit Multiplier With 32-Bit Product  
0 to 16-Bit Barrel Shifter  
On-Chip Clock Oscillator  
3.3-V Low-Power Version Available (TMS320LC15)  
Device Packaging:  
— 40-Pin Dip (All Devices)  
— 44-Lead PLCC (TMS320C15/C15-25/LC15/P15)  
— 44-Lead-QUAD (TMS320E15/E15-25)  
TMS320C15/E15/LC15/P15  
N/JD Package  
TMS320C15/E15/LC15/P15  
FN/FZ Package  
(Top View)  
(Top View)  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
1
A1/PA1  
A0/PA0  
MC/MP  
RS  
INT  
CLKOUT  
X1  
A2/PA2  
A3  
A4  
A5  
A6  
A7  
A8  
MEN  
DEN  
WE  
2
3
6
5 4 3 2 1 44 43 42 41 40  
4
5
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
7
CLKOUT  
X1  
X2/CLKIN  
BIO  
A7  
A8  
MEN  
DEN  
WE  
6
8
7
9
8
X2/CLKIN  
BIO  
10  
11  
12  
13  
9
NC  
10  
11  
12  
13  
14  
15  
16  
17  
V
SS  
V
V
SS  
CC  
D8  
D9  
V
CC  
A9  
D8  
A9  
D9 14  
D10 15  
D11 16  
D12 17  
A10  
A11  
D0  
D10  
D11  
D12  
D13  
D14  
D15  
D7  
A10  
A11  
D0  
D1  
D2  
D3  
D4  
D5  
D1  
18 19 20 21 22 23 24 25 26 27 28  
18 23  
19 22  
20 21  
D6  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
52  
TMS320C15, TMS320E15, TMS320LC15, TMS320P15  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
functional block diagram  
X1  
CLKOUT  
X2/CLKIN  
16  
Program Bus  
12 LSB  
WE  
DEN  
MEN  
BIO  
MUX  
12  
12  
12  
MC/MP  
INT  
PC (12)  
RS  
12  
Instruction  
12  
3
3
16  
A11-A0/  
PA2-PA0  
Program  
ROM/EPROM  
(4K Words)  
D15-D0  
Stack  
4 × 12  
Program Bus  
16  
16  
16  
Data Bus  
16  
7
16  
AR0 (16)  
AR1 (16)  
DP  
T(16)  
ARP  
Shifter  
(0–16)  
16  
8
Multiplier  
8
P(32)  
32  
MUX  
8
32  
32  
MUX  
32  
Address  
Data RAM  
(256 Words)  
Legend:  
ALU (32)  
ACC = Accumulator  
Data  
32  
ALU = Arithmetic Logic Unit  
ARP = Auxiliary Register Pointer  
AR0 = Auxiliary Register 0  
AR1 = Auxiliary Register 1  
DP = Data Page Pointer  
ACC (32)  
32  
32  
P
= P Register  
PC = Program Counter  
= T Register  
T
Shifter (0,1,4)  
16  
16  
16  
Data Bus  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
53  
TMS320C15, TMS320E15, TMS320LC15, TMS320P15  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
TERMINAL FUNCTIONS (TMS320C15/E15/LC15/P15)  
NAME  
A11-A0/PA2-PA0  
I/O  
DEFINITION  
O
I
External address bus. I/O port address multiplexed over PA2-PA0.  
External polling input  
BIO  
CLKOUT  
D15-D0  
DEN  
O
System clock output, 1/4 crystal/CLKIN frequency  
16-bit parallel data bus  
I/O  
O
I
Data enable for device input data on D15-D0  
External interrupt input  
INT  
MC/MP  
MEN  
NC  
I
Memory mode select pin. High selects microcomputer mode. Low selects microprocessor mode.  
Memory enable indicates that D15-D0 will accept external memory instruction.  
No connection  
O
O
I
RS  
Reset for initializing the device  
V
V
I
+ 5 V supply  
CC  
I
Ground  
SS  
WE  
O
O
I
Write enable for device output data on D15-D0  
Crystal output for internal oscillator  
X1  
X2/CLKIN  
Crystal input internal oscillator or external system clock input  
See EPROM programming section.  
Input/Output/High-impedance state.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
54  
TMS320C15, TMS320E15, TMS320P15  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
electrical specifications  
This section contains the electrical specifications for the C15/E15/P15 digital signal processors, including test  
parameter measurement information. Parameters with  
programming mode (see Note 11).  
subscripts apply only to the E15/P15 in the EPROM  
PP  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
Supply voltage range, V  
(see Note 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 14 V  
CC  
PP  
Input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 14 V  
Output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 mW  
Operating free-air temperature: L suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C  
°
°
Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 C to 150 C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and  
functionaloperation of the device at these or any other conditions beyond those indicated in the “Recommended Operating Conditions” section of  
this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 6: All voltage values are with respect to V  
SS.  
recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
EPROM devices  
All other devices  
4.75  
4.5  
5
5
5.25  
5.5  
V
V
V
CC  
Supply voltage  
V
V
Supply voltage (see Note 11)  
Supply voltage  
12.25  
12.5  
0
12.75  
V
PP  
V
SS  
CLKIN  
3
2
V
V
V
High-level input voltage  
IH  
All remaining inputs  
MC/MP  
V
0.6  
0.8  
V
Low-level input voltage  
IL  
All remaining inputs  
V
I
I
High-level output current, all outputs  
– 300  
2
µA  
mA  
OH  
Low-level output current (All outputs except for TMS320LC15)  
OL  
L suffix  
Operating free-air temperature  
A suffix  
0
70  
85  
°C  
°C  
T
A
– 40  
NOTE 11: V  
PP  
can be applied only to programming pins designed to accept V  
+ I .  
as an input. During programming the total supply current is  
PP  
I
PP CC  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
55  
TMS320C15, TMS320E15, TMS320P15  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
electrical characteristics over specified temperature range (unless otherwise noted)  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
I
I
I
= MAX  
2.4  
3
V
V
OH  
OH  
OL  
V
High-level output voltage  
OH  
= 20 µA (see Note 8)  
V
– 0.4  
CC  
V
OL  
Low-level output voltage  
Off-state output current  
= MAX  
0.3  
0.5  
20  
V
V
V
= 2.4 V  
= 0.4 V  
O
I
V
= MAX  
OZ  
CC  
µA  
20  
±20  
±50  
55  
O
All inputs except CLKIN  
CLKIN  
I
I
Input current  
V = V  
to V  
SS CC  
I
µA  
TMS320C15  
TMS320C15-25 f = 25.6 MHz, V  
TMS320E15 f = 20.5 MHz, V  
f = 20.5 MHz, V  
= 5.5 V, T = 0°C to 70°C  
45  
50  
55  
65  
CC  
CC  
CC  
CC  
A
= 5.5 V, T = 0°C to 70°C  
65  
A
I
Supply current  
CC  
mA  
= 5.25 V, T = – 40°C to 85°C  
75  
A
TMS320E15-25 f = 25.6 MHz, V  
= 5.25 V, T = 0°C to 70°C  
85  
A
25  
15  
25  
10  
Data bus  
All other  
C
C
Input capacitance  
Output capacitance  
i
pF  
pF  
f =  
1 MHz, all other pins 0 V  
Data bus  
All others  
o
All typical values are at V  
= 5 V, T = 70°C and are used for thermal resistance calculations.  
A
CC  
characteristics are inversely proportional to temperature. For I  
I
dependence on temperature, frequency, and loading, see Figure 3.  
CC  
CC  
NOTE 7: This voltage specification is included for interface to HC logic. However, note that all of the other timing parameters defined in this data  
sheet are specified for TTL logic levels and will differ for HC logic levels.  
CLOCK CHARACTERISTICS AND TIMING  
The TMS320C15/E15/P15 can use either its internal oscillator or an external frequency source for a clock.  
internal clock option  
The internal oscillator is enabled by connecting a crystal across X1 and X2/CLKIN (see Figure 1). The frequency  
of CLKOUT is one-fourth the crystal fundamental frequency. The crystal should be fundamental mode, and  
parallel resonant, with an effective series resistance of 30 ohms, a power dissipation of 1 mW, and should be  
specified at a load capacitance of 20 pF.  
PARAMETER  
TMS320C15  
TEST CONDITIONS  
MIN  
6.7  
6.7  
6.7  
NOM  
MAX  
20.5  
20.5  
25.6  
UNIT  
T
= 0°C to 70°C  
= – 40°C to 85°C  
= 0°C to 70°C  
= 0°C to 70°C  
A
Crystal frequency, f  
MHz  
TMS320E15/P15  
T
A
x
TMS320C15-25/E15-25  
T
A
C1, C2  
T
A
10  
pF  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
56  
TMS320C15, TMS320E15, TMS320P15  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
external clock option  
An external frequency source can be used by injecting the frequency directly into X2/CLKIN with X1 left  
unconnected. The external frequency injected must conform to the specifications listed in the table below.  
switching characteristics over recommended operating conditions  
TMS320C15/E15/P15  
TMS320C15-25/E15-25  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
195.12  
NOM  
MAX  
MIN  
NOM  
MAX  
t
t
t
CLKOUT cycle time  
CLKOUT rise time  
CLKOUT fall time  
200  
156.25  
160  
ns  
ns  
ns  
c(C)  
r(C)  
f(C)  
10  
8
10  
8
R
L
L
= 825 ,  
C
= 100 pF  
(see Figure 2)  
t
t
t
Pulse duration, CLKOUT low  
Pulse duration, CLKOUT high  
Delay time, CLKINto CLKOUT↓  
92  
90  
72  
70  
ns  
ns  
ns  
w(CL)  
w(CH)  
d(MCC)  
25  
25  
50  
60  
Values derived from characterization data and not tested.  
is the cycle time of CLKOUT, i.e., 4t (4 times CLKIN cycle time if an external oscillator is used).  
t
c(C)  
c(MC)  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
57  
TMS320C15, TMS320E15, TMS320P15  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
timing requirements over recommended operating conditions  
TMS320C15/E15/P15  
MIN NOM MAX  
48.78 50 150  
TMS320C15-25/E15-25  
UNIT  
MIN  
NOM  
MAX  
t
t
t
t
t
t
Master clock cycle time  
39.06  
40  
150  
ns  
ns  
ns  
ns  
ns  
ns  
c(MC)  
Rise time, master clock input  
Fall time, master clock input  
Pulse duration, master clock  
Pulse duration, master clock low  
Pulse duration, master clock high  
5
5
10  
10  
5
5
10  
r(MC)  
10  
f(MC)  
0.4t  
c(MC)  
0.6t  
c(MC)  
0.45t  
c(MC)  
0.55t  
c(MC)  
w(MCP)  
w(MCL)  
20  
20  
15  
15  
w(MCH)  
Values derived from characterization data and not tested.  
MEMORY AND PERIPHERAL INTERFACE TIMING  
switching characteristics over recommended operating conditions  
TMS320C15/E15/P15  
TMS320C15-25/E15-25  
NOM MAX  
TEST  
CONDITIONS  
PARAMETER  
UNIT  
MIN NOM MAX MIN  
Delay time, CLKOUTto  
address bus valid  
10  
t
d1  
50 10  
40  
ns  
t
d2  
t
d3  
t
d4  
t
d5  
t
d6  
t
d7  
Delay time, CLKOUTto MEN↓  
Delay time, CLKOUTto MEN↑  
Delay time, CLKOUTto DEN↓  
Delay time, CLKOUTto DEN↑  
Delay time, CLKOUTto WE↓  
Delay time, CLKOUTto WE↑  
1/4t (C) – 5  
1/4t  
1/4t  
1/2t  
+15 1/4t  
15 –10  
– 5  
– 5  
– 5  
1/4t  
c(C)  
+12  
12  
ns  
ns  
ns  
ns  
ns  
ns  
c
c(C)  
c(C)  
c(C)  
c(C)  
–10  
1
1/4t  
–10  
– 5  
– 5  
+15  
/ t  
4 c(C)  
1/ t  
4 c(C)  
+12  
12  
c(C)  
15 –10  
1/2t  
–10  
+15 1/2t  
15 –10  
1/2t  
+12  
12  
c(C)  
c(C)  
c(C)  
Delay time, CLKOUTto data bus  
OUT valid  
+52  
t
1/4t  
+65  
1/4t  
ns  
ns  
d8  
d9  
c(C)  
c(C)  
R
C
= 825 ,  
= 100 pF  
L
L
Time after CLKOUTthat data bus  
starts to be driven  
– 5  
– 5  
t
1/4t  
1/4t  
c(C)  
c(C)  
(see Figure 2)  
Time after CLKOUTthat  
data bus stops being driven  
(TMS320C15/C15-25 only)  
t
1/4t  
+ 40  
1/4t  
c(C)  
+ 40  
ns  
ns  
d10  
d10  
c(C)  
Time after CLKOUTthat  
data bus stops being driven  
(TMS320E15/E15-25 only)  
t
1/4t  
+ 70  
1/4t +70  
c(C)  
c(C)  
t
t
Data bus OUT valid after CLKOUT↓  
1/4t  
– 10  
1/4t  
– 10  
35  
ns  
ns  
v
c(C)  
c(C)  
Address hold time after WE, MEN,  
or DEN(see Note 15)  
2
2
0
0
h(A-WMD)  
Address bus setup time prior to  
DEN↓  
t
1/4t  
45  
1/4t  
ns  
su(A-MD)  
c(C)  
c(C)  
Values derived from characterization data and not tested.  
NOTE 14: Address bus will be valid upon WE, MEN, or DEN.  
timing requirements over recommended operating conditions  
TMS320C15/E15/P15  
TMS320C15-25/E15-25  
TEST  
CONDITIONS  
UNIT  
ns  
MIN  
NOM  
MAX  
MIN  
NOM  
MAX  
Setup time, data bus valid prior to CLKOU-  
T↓  
R
C
= 825 ,  
= 100 pF  
(see Figure 2)  
L
L
t
t
50  
40  
su(D)  
Hold time, data bus held valid after  
CLKOUT(see Note 9)  
0
0
ns  
h(D)  
NOTE 9: Data may be removed from the data bus upon MENor DENpreceding CLKOUT.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
58  
TMS320C15, TMS320E15, TMS320P15  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
RESET (RS) TIMING  
switching characteristics over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1/ t  
MAX  
UNIT  
+ 50  
R
L
L
= 825 ,  
t
t
Delay time, DEN, WE, and MENfrom RS  
ns  
d11  
2 c(C)  
1/ t  
C
= 100 pF  
+ 50  
Data bus disable time after RS  
ns  
dis(R)  
(see Figure 2)  
4 c(C)  
Values derived from characterization data and not tested.  
timing requirements over recommended operating conditions  
TMS320C15/E15/P15  
MIN NOM MAX  
TMS320C15-25/E15-25  
MIN NOM MAX  
UNIT  
t
t
Reset (RS) setup time prior to CLKOUT (see Note 10)  
RS pulse duration  
50  
40  
ns  
ns  
su(R)  
5t  
5t  
c(C)  
w(R)  
c(C)  
NOTE 10: RS can occur anytime during a clock cycle. Time given is minimum to ensure synchronous operation.  
INTERRUPT (INT) TIMING  
timing requirements over recommended operating conditions  
TMS320C15/E15/P15  
TMS320C15-25/E15-25  
UNIT  
MIN  
NOM  
MAX  
MIN  
NOM  
MAX  
t
t
t
Fall time, INT  
15  
15  
ns  
ns  
ns  
f(INT)  
Pulse duration, INT  
t
t
w(INT)  
su(INT)  
c(C)  
50  
c(C)  
40  
Setup time, INTbefore CLKOUT↓  
IO (BIO) TIMING  
timing requirements over recommended operating conditions  
TMS320C15/E15/P15  
TMS320C15-25/E15-25  
UNIT  
MIN  
NOM  
MAX  
MIN  
NOM  
MAX  
t
t
t
Fall time, BIO  
15  
15  
ns  
ns  
ns  
f(IO)  
Pulse duration, BIO  
t
t
w(IO)  
su(IO)  
c(C)  
c(C)  
Setup time, BIObefore CLKOUT↓  
50  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
59  
TMS320C15, TMS320E15, TMS320P15  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
TIMING DIAGRAMS  
Timingmeasurementsarereferencedtoandfromalowvoltageof0.8voltsandahighvoltageof2.0volts, unless  
otherwise noted.  
clock timing  
t
t
r(MC)  
w(MCH)  
t
w(MCP)  
t
c(MC)  
X2/CLKIN  
CLKOUT  
t
w(MCL)  
t
f(MC)  
t
w(CH)  
t
d(MCC)  
t
t
r(C)  
f(C)  
t
w(CL)  
t
c(C)  
are referenced to an intermediate level of 1.5 V on the CLKIN waveform.  
t
and t  
w(MCP)  
d(MCC)  
memory read timing  
t
c(C)  
CLKOUT  
t
d2  
t
d3  
MEN  
t
su(A-MD)  
t
h(A-WMD)  
t
d1  
A11-A0  
Address Bus Valid  
t
su(D)  
t
h(D)  
Instruction Valid  
D15-D0  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
60  
TMS320C15, TMS320E15, TMS320P15  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
TBLR instruction timing  
CLKOUT  
t
d2  
t
d3  
t
d3  
2
MEN  
1
3
7
4
8
t
d1  
A11-A0  
5
6
t
h(D)  
t
su(D)  
9
10  
11  
12  
D15-D0  
Legend:  
1. TBLR Instruction Prefetch  
2. Dummy Prefetch  
3. Data Fetch  
4. Next Instruction Prefetch  
5. Address Bus Valid  
6. Address Bus Valid  
7. Address Bus Valid  
8. Address Bus Valid  
9. Instruction Valid  
10. Instruction Valid  
11. Data Input Valid  
12. Instruction Valid  
TBLW instruction timing  
CLKOUT  
MEN  
1
4
2
5
3
7
A11-A0  
6
t
d6  
t
d7  
WE  
t
d8  
t
v
t
t
d10  
d9  
D15-D0  
8
9
10  
11  
Legend:  
1. TBLW Instruction Prefetch  
2. Dummy Prefetch  
3. Next Instruction Prefetch  
4. Address Bus Valid  
5. Address Bus Valid  
6. Address Bus Valid  
7. Address Bus Valid  
8. Instruction Valid  
9. Instruction Valid  
10. Data Output Valid  
11. Instruction Valid  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
61  
TMS320C15, TMS320E15, TMS320P15  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
IN instruction timing  
CLKOUT  
MEN  
1
2
5
t
su(A-MD)  
4
t
su(D)  
t
A11-A0  
3
t
d5  
d4  
DEN  
t
h(D)  
D15-D0  
6
7
8
Legend:  
1. IN Instruction Prefetch  
2. Next Instruction Prefetch  
3. Address Bus Valid  
5. Address Bus Valid  
6. Instruction Valid  
7. Data Input Valid  
8. Instruction Valid  
4. Peripheral Address Valid  
OUT instruction timing  
CLKOUT  
MEN  
A11-A0  
WE  
1
3
2
4
5
t
t
d6  
d7  
t
d9  
t
d10  
t
d8  
t
v
7
6
8
D15-D0  
Legend:  
1. IN Instruction Prefetch  
2. Next Instruction Prefetch  
3. Address Bus Valid  
5. Address Bus Valid  
6. Instruction Valid  
7. Data Output Valid  
8. Instruction Input Valid  
4. Peripheral Address Valid  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
62  
TMS320C15, TMS320E15, TMS320P15  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
reset timing  
CLKOUT  
t
su(R)  
t
su(R)  
RS  
t
w(R)  
DEN  
WE  
MEN  
see  
Note E  
Data In From  
PC ADDR PC+1  
Data In From  
PC ADDR 0  
t
d11  
t
dis(R)  
Data Shown Relative to WE  
D15-D0  
MEN  
AB = PC+1  
AB = Address Bus  
AB = PC  
Address  
Bus  
AB = PC = 0  
AB = PC+1  
NOTES: A. RS forces DEN, WE, and MEN high and places data bus D0 through D15 in a high-impedance state. AB outputs (and program count-  
er) are synchronously cleared to zero after the next complete CLK cycle from RS.  
B. RS must be maintained for a minimum of five clock cycles.  
C. Resumption of normal program will commence after one complete CLK cycle from RS.  
D. Due to the synchronization action on RS, time to execute the function can vary dependent upon when RSor RSoccur in the CLK  
cycle.  
E. Diagram shown is for definition purpose only. DEN, WE, and MEN are mutually exclusive.  
F. During a write cycle, RS may produce an invalid write address.  
interrupt timing  
CLKOUT  
t
su(INT)  
INT  
t
f(INT)  
t
w(INT)  
BIO timing  
CLKOUT  
t
su(IO)  
BIO  
t
f(IO)  
t
w(IO)  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
63  
TMS320E15, TMS320P15  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
absolute maximum ratings over specified temperature range (unless otherwise noted)  
Supply voltage range, V  
(see Note 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 14 V  
PP  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and  
functionaloperation of the device at these or any other conditions beyond those indicated in the “Recommended Operating Conditions” section of  
this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 6: All voltage values are with respect to V  
.
SS  
recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
V
Supply voltage (see Note 11)  
can be applied only to programming pins designed to accept V  
12.25  
12.5  
12.75  
V
PP  
NOTE 11:  
V
as an input. During programming the total supply current is  
PP  
PP  
+ I  
I
.
PP CC  
electrical characteristics over specified temperature range (unless otherwise noted)  
PARAMETER  
supply current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
100  
50  
UNIT  
V
I
I
V
V
= V  
5.5 V  
PP1 PP  
PP  
PP  
CC  
= 12.75 V  
V
supply current (during program pulse)  
V
30  
V
PP2 PP  
All typical values except for I  
CC  
are at V  
= 5 V, T = 25°C.  
CC A  
recommended timing requirements for programming, T = 25°C, V  
= 6, V  
= 12.5 V,  
A
CC  
PP  
(see Note 13)  
MIN  
NOM  
MAX  
1.05  
63  
UNIT  
ms  
ms  
µs  
t
t
t
t
t
Initial program pulse duration  
Final pulse duration  
Address setup time  
E setup time  
0.95  
3.8  
2
1
w(IPGM)  
w(FPGM)  
su(A)  
2
µs  
su(E)  
G setup time  
2
µs  
su(G)  
Output disable time from G (see Note  
15)  
§
§
t
0
130  
ns  
dis(G)  
t
t
t
t
t
t
Output enable time from G  
Data setup time  
0
2
2
2
0
2
150  
ns  
µs  
µs  
µs  
µs  
µs  
en(G)  
su(D)  
V
V
setup time  
setup time  
su(VPP)  
su(VCC)  
h(A)  
PP  
CC  
Address hold time  
Data hold time  
h(D)  
§
Values derived from characterization data and not tested.  
NOTES: 13. For all switching characteristics and timing measurements, input pulse levels are 0.4 V to 2.4 V and V  
programming.  
= 12.5 V ± 0.5 V during  
PP  
15. Common test conditions apply for t  
except during programming.  
dis(G)  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
64  
TMS320E15, TMS320P15  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
PROGRAMMING THE TMS320E15/P15 EPROM CELL  
E15/P15 devices include a 4K × 16-bit industry-standard EPROM cell for prototyping, early field testing, and  
low-volume production. In conjunction with this EPROM, the E15/P15 with a 4K-word masked ROM, then,  
provide more migration paths for cost-effective production.  
EPROM adapter sockets are available that provide pin-to-pin conversions for programming any E15/P15  
devices. One adapter socket (part number RTC/PGM320C-06), shown in Figure 8, converts a 40-pin DIPdevice  
into an equivalent 28-pin device. Another socket (part number RTC/PGM320A-06), not shown, permits 44- to  
28-pin conversion.  
Figure 8. EPROM Adapter Socket (40-pin to 28-pin DIP Conversion)  
Key features of the EPROM cell include the normal programming operation as well as verification. The EPROM  
cell also includes a code protection feature that allows code to be protected against copyright violations.  
The E15/P15 EPROM cell is programmed using the same family and device pinout codes as the TMS27C64  
8K × 8-bit EPROM. The TMS27C64 EPROM series are unltraviolet-light erasable, electrically programmable,  
read-only memories, fabricated using HVCMOS technology. They are pin-compatible with existing 28-pin  
ROMs and EPROMs. These EPROMs operate from a single 5-V supply in the read mode; however, a 12.5-V  
supplyisneededforprogramming. AllprogrammingsignalsareTTLlevel. Forprogrammingoutsidethesystem,  
existing EPROM programmers can be used. Locations may be programmed singly, in blocks, or at random.  
Figure 9 shows the wiring conversion to program the E15/P15 using the 28-pin pinout of the TMS27C64.  
Table 5 on pin nomenclature provides a description of the TMS27C64 pins. The code to be programmed into  
the device should be in serial mode. The E15/P15 devices use 13 address lines to address 4K-word memory  
in byte format.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
65  
TMS320E15, TMS320P15  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
A1  
1
2
3
4
A2  
A3  
A4 38  
A5 37  
40  
39  
A0(LSB)  
VPP  
RS  
28  
27  
26  
25  
24  
23 A11  
22 G  
21 A10  
20 E  
19  
18  
17  
16  
15  
V
5
6
7
8
V
1
2
3
4
5
6
7
8
9
EPT  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
A6  
A7  
A8  
CC  
PP  
PGM  
EPT  
A8  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0 10  
Q1 11  
Q2 12  
Q3 13  
GND 14  
CLKIN  
3.9 kΩ  
A9  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GND  
Q1(LSB)  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
Q8(MSB)  
V
CC  
A9  
A10  
A11  
Q8  
Q7  
Q6  
Q5  
Q4  
(MSB)A12  
E
G
PGM  
TMS27C64  
PINOUT  
TMS27C64  
PINOUT  
TMS320E15/P15  
CAUTION  
Although acceptable by some EPROM programmers, the signature mode cannot be used on any E1x  
device. The signature mode will input a high-level voltage (12.5 V ) onto pin A9. Since this pin is not  
dc  
designed for high voltage, the cell will be damaged. To prevent an accidental application of voltage,  
Texas Instruments has inserted a 3.9 kresistor between pin A9 of the TI programmer socket and the  
programmer itself.  
Pin Nomenclature (TMS320E15/P15)  
NAME  
A0-A12  
I/O  
DEFINITION  
I
On-chip EPROM programming address lines  
Clock oscillator input  
CLKIN  
E
I
I
EPROM chip select  
EPT  
G
GND  
PGM  
Q1-Q8  
RS  
I
I
I
I
EPROM test mode select  
EPROM read/verify select  
Ground  
EPROM write/program select  
Data lines for byte-wide programming of on-chip 8K bytes of EPROM  
Reset for initializing the device  
5-V power supply  
I/O  
I
I
I
V
CC  
V
PP  
12.5-V power supply  
Figure 9. TMS320E15/P15 EPROM Programming Conversion to TMS27C64 EPROM Pinout  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
66  
TMS320E15, TMS320P15  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
Table 5 shows the programming levels required for programming, verifying, reading, and protecting the EPROM cell.  
Table 5. TMS320E15/P15 Programming Mode Levels  
SIGNAL NAME TMS320E15 PIN TMS27C64 PIN PROGRAM  
VERIFY  
READ  
PROTECT VERIFY EPROM PROTECT  
E
G
25  
20  
V
V
V
V
V
V
IH  
V
IH  
V
IH  
IL  
IL  
PULSE  
IL  
PULSE  
IL  
24  
22  
V
IH  
IL  
PGM  
23  
27  
PULSE  
V
IH  
V
IH  
V
IH  
V
3
1
V
V
V
CC  
V
CC  
V
CC  
V
CC  
+ 1  
+ 1  
V
PP  
PP  
PP  
CC  
PP  
+ 1  
V
CC  
30  
28  
V
CC  
V
V
CC  
V
10  
14  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
V
V
V
V
V
V
V
SS  
SS  
SS  
CLKIN  
RS  
8
14  
SS  
SS  
PP  
SS  
SS  
PP  
4
5
14  
EPT  
26  
Q1-Q8  
A0-A3  
A4  
11-18  
2, 1, 40, 39  
38  
11-13, 15-19  
D
Q
Q
OUT  
Q8=RBIT  
Q8=PULSE  
X
IN  
OUT  
10-7  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
X
X
X
6
V
IH  
A5  
37  
5
X
A6  
36  
4
V
IL  
X
X
X
A7-A9  
A10-A12  
35, 34, 29  
28-26  
3, 25, 24  
21, 23, 2  
X
X
Legend:  
V
V
= TTL high level; V = TTL low level; ADDR = byte address bit  
IL  
PP  
IH  
= 12.5 V ± 0.25 V; V  
= 5 V ± 0.25 V; X = don’t care  
CC  
PULSE = low-going TTL level pulse; D = byte to be programmed at ADDR  
Q
IN  
= byte stored at ADDR; RBIT = ROM protect bit.  
OUT  
programming  
Since every memory bit in the cell is a logic 1, the programming operation reprograms certain bits to 0. Once  
programmed, these bits can only be erased using ultraviolet light. The correct byte is placed on the data bus  
with V set to the 12.5 V level. The PGM pin is then pulsed low to program in the zeros.  
PP  
erasure  
Before programming, the device must be erased by exposing it to ultraviolet light. The recommended minimum  
2
2
exposuredose(UV-intensity× exposure-time)is15Ws/cm . Atypical12-mW/cm , filterlessUVlampwillerase  
the device in 21 minutes. The lamp should be located about 2.5 cm above the chip during erasure. After  
exposure, all bits are in the high state.  
verify/read  
To verify correct programming, the EPROM cell can be read using either the verify or read line definitions shown  
in Table 5, assuming the inhibit bit has not been programmed.  
program inhibit  
Programming may be inhibited by maintaining a high level input on the E pin or PGM pin.  
read  
The EPROM contents may be read independent of the programming cycle, provided the RBIT (ROM protect  
bit) has not been programmed. The read is accomplished by setting E to zero and pulsing G low. The contents  
of the EPROM location selected by the value on the address inputs appear on Q8-Q1.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
67  
TMS320E15, TMS320P15  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
output disable  
DuringtheEPROMprogrammingprocess, theEPROMdataoutputsmaybedisabled, ifdesired, byestablishing  
the output disable state. This state is selected by setting G and E pins high. While output disable is selected,  
Q8-Q1are placed in the high-impedance state.  
EPROM protection  
To protect the proprietary algorithms existing in the code programmed on-chip, the ability to read or verify code  
from external accesses can be completely disabled. Programming the RBIT disables external access of the  
EPROM cell and disables the microprocessor mode, making it impossible to access the code resident in the  
EPROM cell. The only way to remove this protection is to erase the entire EPROM cell, thus removing the  
proprietary information. The signal requirements for programming this bit are shown in Table 5. The cell can be  
determined as protected by verifying the programming of the RBIT shown in the table.  
standard programming procedure  
Before programming, the device must first be completely erased. Then the device can be programmed with the  
correct code. It is advisable to program unused sections with zeroes as a further security measure. After the  
programming is complete, the code programmed into the cell should be verified. If the cell passes verification,  
the next step is to program the ROM protect bit (RBIT). Once the RBIT programming is verified, an opaque label  
should be placed over the window to protect the EPROM cell from inadvertent erasure by ambient light. At this  
point, the programming is complete, and the device is ready to be placed into its destination circuit.  
program cycle timing  
Verify  
Program  
V
V
V
V
IH  
A12-A0  
Q8-Q1  
Address Stable  
HI-Z  
Address N+1  
IL  
t
t
su(A)  
h(A)  
/V  
IH OH  
Data Out  
Valid  
Data In Stable  
/V  
IL OL  
t
t
t
dis(G)  
su(D)  
V
PP  
V
PP  
V
V
CC  
su(VPP)  
su(VCC)  
+1  
CC  
CC  
V
CC  
V
t
V
IH  
V
IL  
V
IH  
E
t
su(E)  
t
h(D)  
PGM  
G
t
su(G)  
V
IL  
V
IH  
V
IL  
t
t
en(G)  
w(IPGM)  
t
w(FPGM)  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
68  
TMS320LC15  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
absolute maximum ratings over specified temperature range (unless otherwise noted)  
Supply voltage range, V  
(see Note 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4.6 V  
CC  
Input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
Output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
+ 0.5  
+ 0.5  
CC  
CC  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 mW  
Air temperature range above operating devices: L version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to +150°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and  
functionaloperation of the device at these or any other conditions beyond those indicated in the “Recommended Operating Conditions” section of  
this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 6: All voltage values are with respect to V  
.
SS  
recommended operating conditions  
MIN  
NOM  
3.3  
0
MAX  
UNIT  
V
V
V
Supply voltage  
Supply voltage  
3.0  
3.6  
CC  
V
SS  
All inputs except CLKIN  
CLKIN  
2.0  
2.5  
V
V
IH  
High-level input voltage  
V
V
Low-level input voltage  
All inputs  
0.55  
300  
1.5  
V
IL  
I
I
High-level output current (all outputs)  
Low-level output current (all outputs)  
µA  
mA  
°C  
°C  
OH  
OL  
L version  
A version  
0
70  
T
A
Operating free-air temperature  
40  
85  
electrical characteristics over specified temperature range (unless otherwise noted)  
TYP  
PARAMETER  
High-level output voltage  
Low-level output voltage  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
I
I
I
= MAX  
2.0  
V
V
V
OH  
OH  
OL  
V
OH  
– 0.4  
CC  
= 20 µA (see Note 7)  
V
V
OL  
= MAX  
0.5  
20  
V
V
V
= V  
= V  
CC = MAX,  
O
CC  
SS  
µA  
µA  
I
Off-state ouput current  
Input current  
OZ  
I
–20  
±20  
±50  
O
V = V  
to V  
to V  
All inputs except CLKIN  
CLKIN  
I
SS  
SS  
CC  
CC  
I
V = V  
I
25  
15  
25  
10  
Data bus  
All others  
Data bus  
All others  
pF  
pF  
C
C
Input capacitance  
Output capacitance  
i
f = 1 MHz, All other pins 0 V  
o
All typical values are at V  
= 3.3 V, T = 25°C.  
A
CC  
Values derived from characterization data and not tested.  
NOTE 7: This voltage specification is included for interface to HC logic. However, note that all of the other timing parameters defined in this data  
sheet are specified for TTL logic levels and will differ for HC logic levels.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
69  
TMS320LC15  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
N Package  
(Top View)  
FN Package  
(Top View)  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
1
A1/PA1  
A0/PA0  
MC/MP  
RS  
INT  
CLKOUT  
X1  
A2/PA2  
A3  
A4  
A5  
A6  
A7  
A8  
MEN  
DEN  
WE  
2
3
6
5 4 3 2 1 44 43 42 41 40  
4
5
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
7
CLKOUT  
X1  
X2/CLKIN  
BIO  
A7  
A8  
MEN  
DEN  
WE  
6
8
7
9
8
X2/CLKIN  
BIO  
10  
11  
12  
13  
9
NC  
10  
11  
12  
13  
14  
15  
16  
17  
V
SS  
V
V
SS  
CC  
D8  
D9  
V
CC  
A9  
D8  
A9  
D9 14  
D10 15  
D11 16  
D12 17  
A10  
A11  
D0  
D10  
D11  
D12  
D13  
D14  
D15  
D7  
A10  
A11  
D0  
D1  
D2  
D3  
D4  
D5  
D1  
18 19 20 21 22 23 24 25 26 27 28  
18 23  
19 22  
20 21  
D6  
INTERNAL CLOCK OPTION  
320LC15  
X1  
X2/CLKIN  
Crystal  
C1  
C2  
PARAMETER MEASUREMENT INFORMATION  
1.75 V  
R
= 825 Ω  
L
From Output  
Under Test  
Test  
Point  
C
= 100 pF  
L
Figure 10. Test Load Circuit  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
70  
TMS320LC15  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
CLOCK CHARACTERISTICS AND TIMING  
The LC15 can use either its internal oscillator or an external frequency source for a clock.  
internal clock option  
The internal oscillator is enabled by connecting a crystal across X1 and X2/CLKIN (see Figure 1). The frequency  
of CLKOUT is one-fourth the crystal fundamental frequency. The crystal should be fundamental mode, and  
parallel resonant, with an effective series resistance of 30 ohms, a power dissipation of 1 mW, and be specified  
at a load capacitance of 20 pF.  
PARAMETER  
Crystal frequency f  
TEST CONDITIONS  
= – 40°C to 85°C  
MIN  
NOM  
MAX  
UNIT  
MHz  
pF  
4.0  
16  
x
T
A
C1, C2  
10  
external clock option  
An external frequency source can be used by injecting the frequency directly into X2/CLKIN with X1 left  
unconnected. The external frequency injected must conform to the specifications listed in the table below.  
switching characteristics over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
ns  
t
t
t
t
t
t
CLKOUT cycle time  
CLKOUT rise time  
CLKOUT fall time  
250  
1000  
c(C)  
R
= 825 ,  
10  
ns  
r(C)  
L
C
= 100 pF,  
L
8
ns  
f(C)  
Pulse duration, CLKOUT low  
(see Figure 2)  
117  
115  
ns  
w(CL)  
ns  
w(CH) Pulse duration, CLKOUT high  
Delay time, CLKINto CLKOUT↓  
20  
70  
ns  
d(MCC)  
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
ns  
t
t
t
t
t
t
Master clock cycle time  
62.5  
150  
c(MC)  
Rise time, master clock input  
Fall time, master clock input  
Pulse duration, master clock  
Pulse duration, master clock low at t  
5
10  
ns  
r(MC)  
5
10  
ns  
f(MC)  
0.4t  
0.6t  
c(MC)  
ns  
w(MCP)  
w(MCL)  
w(MCH)  
c(MC)  
min  
26  
26  
ns  
c(MC)  
Pulse duration, master clock high at t  
min  
ns  
c(MC)  
t
is the cycle time of CLKOUT, i.e., 4t  
c(MC)  
(4 times CLKIN cycle time if an external oscillator is used)  
c(C)  
Values derived from characterization data and not tested.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
71  
TMS320LC15  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
electrical characteristics over specified temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
f = 16.0 MHz, V = 3.6 V, T = 0°C to 70°C  
MIN  
TYP  
MAX  
UNIT  
I
15  
20  
mA  
CC  
CC  
A
All typical values are at T = 70°C and are used for thermal resistance calculations.  
A
I
characteristics are inversely proportional to temperature. For I  
CC  
dependence on frequency, see figure below.  
CC  
§
typical power vs. frequency graph (outputs unloaded)  
20.0  
15.0  
10.0  
5.0  
V
= 3.5 V  
CC  
V
= 3 V  
CC  
0.0  
16  
12  
14  
0
2
4
6
8
10  
CLKIN Frequency, MHz  
40°C to 85°C Temperature Range  
§
Device operation is not guaranteed below 4 MHz CLKIN.  
Graph is for device in RESET; i.e., only clock-out is driven.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
72  
TMS320LC15  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
MEMORY AND PERIPHERAL INTERFACE TIMING  
switching characteristics over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
t
t
Delay time CLKOUTto address bus valid  
Delay time CLKOUTto MEN↓  
75  
d1  
1/4 t  
–10  
–5  
–5  
–5  
1/4 t  
1/4 t  
1/2 t  
1/4 t  
1/4 t  
+25  
30  
d2  
c(C)  
c(C)  
c(C)  
c(C)  
c(C)  
c(C)  
t
d3  
Delay time CLKOUTto MEN↑  
t
d4  
Delay time CLKOUTto DEN↓  
1/4 t  
+25  
30  
c(C)  
t
d5  
Delay time CLKOUTto DEN↑  
–10†  
t
d6  
Delay time CLKOUTto WE↓  
1/2 t  
+25  
30  
R
= 825,  
= 100 pF,  
c(C)  
L
C
L
–10  
t
t
t
t
t
t
t
Delay time CLKOUTto WE↑  
d7  
(see Figure 2)  
Delay time CLKOUTto data bus OUT valid  
Time after CLKOUTthat data bus starts to be driven  
Time after CLKOUTthat data bus stops being driven  
Data bus OUT valid after CLKOUT↓  
Address hold time after WE, MEN, or DEN(see Note 14)  
Address bus setup time to DEN↓  
+75  
d8  
–5  
1/4 t  
d9  
c(C)  
c(C)  
+60  
d10  
1/4 t  
0
–10  
v
h(A-WMD)  
su(A-MD)  
– 4  
Values derived from characterization data and not tested.  
NOTE 14: Address bus will be valid upon WE, MEN, or DEN.  
timing requirements over recommended operating conditions  
TEST CONDITIONS  
MIN  
56  
0
NOM  
MAX  
UNIT  
ns  
R
= 825,  
= 100 pF,  
t
t
Setup time data bus valid prior to CLKOUT↓  
L
su(D)  
C
L
Hold time, data bus held valid after CLKOUT(see Note 9)  
ns  
(see Figure 2)  
h(D)  
NOTE 9: Data may be removed from the data bus upon MENor DENpreceding CLKOUT.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
73  
TMS320LC15  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
RESET (RS) TIMING  
switching characteristics over recommended operating conditions  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
ns  
R
= 825,  
= 100 pF,  
t
t
Delay time, DEN, WE, and MENfrom RS  
1/2t  
c(C)  
1/4t  
+75  
L
d11  
C
L
Data bus disable time after RS  
+75  
c(C)  
ns  
(see Figure 2)  
dis(R)  
These parameters do not apply to this device.  
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
ns  
t
t
Reset (RS) setup time prior to CLKOUT (see Note 10)  
RS pulse duration  
85  
su(R)  
5t  
c(C)  
ns  
w(R)  
NOTE 10: RS can occur anytime during a clock cycle. Time given is minimum to ensure synchronous operation.  
INTERRUPT (INT) TIMING  
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
ns  
t
t
t
Fall time, INT  
15  
F(INT)  
w(INT)  
su(INT)  
Pulse duration, INT  
t
ns  
c(C)  
85  
Setup time, INTbefore CLKOUT↓  
ns  
I/O (BIO) TIMING  
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
ns  
t
t
t
Fall time BIO  
15  
f(IO)  
Pulse duration BIO  
t
ns  
w(IO)  
su(IO)  
c(C)  
85  
Setup time BIObefore CLKOUT↓  
ns  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
74  
TMS320LC15  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
clock timing  
t
t
r(MC)  
w(MCH)  
t
w(MCP)  
t
c(MC)  
X2/CLKIN  
t
w(MCL)  
t
f(MC)  
t
w(CH)  
t
d(MCC)  
CLKOUT  
t
t
r(C)  
f(C)  
t
w(CL)  
t
c(C)  
are referenced to an intermediate level of 1.5 V on the CLKIN waveform.  
t
and t  
w(MCP)  
d(MCC)  
IN instruction timing  
CLKOUT  
MEN  
PA2-PA0  
DEN  
1
2
5
t
su(A-MD)  
4
t
su(D)  
t
3
t
d5  
d4  
t
h(D)  
D15-D0  
6
7
8
Legend:  
1. IN Instruction Prefetch  
2. Next Instruction Prefetch  
3. Address Bus Valid  
5. Address Bus Valid  
6. Instruction Valid  
7. Data Input Valid  
8. Instruction Valid  
4. Peripheral Address Valid  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
75  
TMS320LC15  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
OUT instruction timing  
CLKOUT  
MEN  
1
3
2
5
4
PA2-PA0  
t
t
d6  
d7  
WE  
t
d9  
t
d10  
t
d8  
t
v
7
6
8
D15-D0  
Legend:  
1. OUT Instruction Prefetch  
2. Next Instruction Prefetch  
3. Address Bus Valid  
5. Address Bus Valid  
6. Instruction Valid  
7. Data Output Valid  
8. Instruction Valid  
4. Peripheral Address Valid  
external memory read timing  
t
c(C)  
CLKOUT  
t
d2  
t
d3  
MEN  
t
su(A-MD)  
t
h(A-WMD)  
t
d1  
A11-A0  
Address Bus Valid  
t
su(D)  
t
h(D)  
Instruction Valid  
D15-D0  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
76  
TMS320LC15  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
TBLR instruction timing  
CLKOUT  
MEN  
t
d2  
t
d3  
t
d3  
2
1
3
7
4
8
t
d1  
A11-A0  
5
6
t
h(D)  
t
su(D)  
9
10  
11  
12  
D15-D0  
Legend:  
1. TBLR Instruction Prefetch  
2. Dummy Prefetch  
3. Data Fetch  
7. Address Bus Valid  
8. Address Bus Valid  
9. Instruction Valid  
4. Next Instruction Prefetch  
5. Address Bus Valid  
6. Address Bus Valid  
10. Instruction Valid  
11. Data Input Valid  
12. Instruction Valid  
TBLW instruction timing  
CLKOUT  
MEN  
1
4
2
3
7
A11-A0  
WE  
5
6
t
d6  
t
d7  
t
d10  
t
d8  
t
t
v
d9  
D15-D0  
8
9
10  
11  
Legend:  
1. TBLW Instruction Prefetch  
2. Dummy Prefetch  
3. Next Instruction Prefetch  
7. Address Bus Valid  
8. Instruction Valid  
9. Instruction Valid  
4. Address Bus Valid  
5. Address Bus Valid  
6. Address Bus Valid  
10. Data Output Valid  
11. Instruction Valid  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
77  
TMS320LC15  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
reset timing  
CLKOUT  
t
su(R)  
t
su(R)  
RS  
t
w(R)  
DEN  
WE  
MEN  
(see  
Note E)  
Data In From  
PC ADDR PC+1  
Data In From  
PC ADDR 0  
t
d11  
t
dis(R)  
Data Shown Relative To WE  
D15-D0  
MEN  
AB = PC+1  
AB = Address Bus  
AB = PC  
ADDRESS  
BUS  
AB = PC = 0  
AB = PC+1  
NOTES: A. RS forces DEN, WE, and MEN high and places data bus D0 through D15 in a high-impedance state. AB outputs (and program count-  
er) are synchronously cleared to zero after the next complete CLK cycle from RS.  
B. RS must be maintained for a minimum of five clock cycles.  
C. Resumption of normal program will commence after one complete CLK cycle from RS.  
D. Due to the synchronization action on RS, time to execute the function can vary dependent upon when RSor RSoccur in the CLK  
cycle.  
E. Diagram shown is for definition purpose only. DEN, WE, and MEN are mutually exclusive.  
F. During a write cycle, RS may produce an invalid write address.  
interrupt timing  
CLKOUT  
t
su(INT)  
INT  
t
f(INT)  
t
w(INT)  
BIO timing  
CLKOUT  
t
su(IO)  
BIO  
t
f(IO)  
t
w(IO)  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
78  
TMS320C16  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
+5 V  
GND  
Key Features: TMS320C16  
114-ns Instruction Cycle Time  
256 Words of On-Chip Data RAM  
8K Words of On-Chip Program ROM  
256-Word RAM  
Interrupt  
Data (16)  
64K Words Total External Memory at  
8K-Word ROM  
32-Bit ALU/ACC  
8-Level Stack  
Multiplier  
Full Speed  
8 Level Stack  
32-Bit ALU/Accumulator  
16 × 16-Bit Multiplier With 32-Bit Product  
16-Bit Barrel Shifter  
Address (12)  
Eight Input and Eight Output Channels  
Shifters  
Simple Memory and I/O Interface:  
— Memory Write Enable Signal MWE  
— I/O Write Enable Signal IOWE  
Single 5-V Supply  
64-Pin Quad Flatpack (PG Suffix)  
PG Package  
(Top View)  
Operating Free-Air Temperature Range  
. . . 0°C to 70°C  
64 63 62 61 60 59 58 57 56 55 54 53 52  
1
2
3
4
5
6
7
8
51  
50  
49  
48  
47  
46  
45  
44  
NC  
RS  
X1  
NC  
NC  
A0/PA0  
A1/PA1  
A2/PA2  
A3  
A4  
A5  
A6  
X2/CLKIN  
V
SS  
V
SS  
V
SS  
V
SS  
9
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
CLKOUT  
D15  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
V
A7  
SS  
D14  
NC  
D13  
D12  
D11  
D10  
D9  
NC  
NC  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
NC  
20 21 22 23 24 25 26 27 28 29 30 31 32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
79  
TMS320C16  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
TERMINAL FUNCTIONS  
PIN  
DESCRIPTION  
I/O/Z  
NAME  
NO.  
ADDRESS/DATA BUSES  
A15 MSB  
A14  
32  
34  
35  
36  
37  
38  
39  
40  
41  
43  
44  
45  
46  
47  
48  
49  
I/O/Z  
Programmemory address bus A15 (MSB) through A0 (LSB) and port addresses PA2 (MSB) through  
PA0 (LSB). Addresses A15 through A0 are always active and never go to high impedance. During  
executionoftheINandOUTinstructions, pinsA2throughA0carrytheportaddresses. (Addresspins  
A15 through A3 are always driven low on IN and OUT instruction.  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2/PA2  
A1/PA1  
A0/PA0  
D15 MSB  
D14  
D13  
D12  
D11  
D10  
D9  
10  
11  
13  
14  
15  
16  
17  
20  
21  
22  
23  
25  
27  
28  
30  
31  
I/O/Z  
Parallel data bus D15 (MSB) through D0 (LSB). The data bus is always in the high-impedance state  
except when IOWE or MWE are active (low).  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0 LSB  
Input/Output/High-impedance state.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
80  
TMS320C16  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
TERMINAL FUNCTIONS (concluded)  
PIN  
DESCRIPTION  
I/O/Z  
NAME  
NO.  
INTERRUPT AND MISCELLANEOUS SIGNALS  
External polling input. Polled by BIOZ instruction. If low, the device branches to the address  
specified by the instruction.  
BIO  
64  
I
Data enable for device input data. When active (low), IOEN indicates that the device will  
accept data from the data bus. IOEN is active only during the IN instruction. When IOEN is  
active, MEN, IOWE, and MWE will always be inactive (high).  
IOEN  
IOWE  
INT  
54  
52  
63  
62  
O
O
I
Write enable for device output data. When active (low), IOWE indicates that data will be  
outputfromthedeviceonthedatabus.IOWEisactiveonlyduringtheOUTinstruction.When  
IOWE is active, MEN, IOEN, and MWE will always be inactive (high).  
External interrupt input. The interrupt signal is generated by applying a negative-going edge  
to the INT pin. The edge is used to latch the interrupt flag register (INTF) until an interrupt  
is granted by the device. An active low level will also be sensed.  
Memory mode select pin. High selects the microcomputer mode, in which 8K words of  
on-chip program memory are available. A low on MC/MP pin enables the microprocessor  
mode. In this mode, the entire memory space is external; i.e., addresses 0 through 65535.  
MC/MP  
I
Memory enable. MEN is an active (low) control signal generated by the device to enable  
instruction fetches from program memory. MEN will be active on instructions fetched from  
both internal and external memory. When MEN is active, MWE, IOWE, and IOEN will be  
inactive (high).  
MEN  
56  
O
Write enable for device output data. When active (low), MWE indicates that data will be  
output from the device on the data bus. MWE is active only during the TBLW instruction.  
When MWE is active, MEN, IOEN, and IOWE will always be inactive (high).  
MWE  
NC  
53  
O
1, 12, 18, 19,  
24, 29, 33,  
50, 51, 55  
No connection.  
Schmitt-triggered input for initializing the device. When held active for a minimum of five  
clock cycles. IOEN, IOWE, MWE, and MEN are forced high; and, the data bus (D15 through  
D0) is not driven. The program counter (PC) and the address bus (A15 through A0) are then  
synchronously cleared after the next complete clock cycle from the falling edge of RS. Reset  
also disables the interrupt, clears the interrupt flag register, and leaves the overflow mode  
register unchanged. The device can be held in the reset state indefinitely.  
RS  
2
I
SUPPLY/OSCILLATOR SIGNALS  
PIN  
I/O/Z  
DESCRIPTION  
NAME  
CLKOUT  
NO.  
9
O
I
System clock output (one-fourth crystal/CLKIN frequency).  
5-V suppy pins.  
26, 57, 58,  
59, 60  
V
V
DD  
5, 6, 7, 8,  
42, 61  
I
O
I
Ground pins.  
SS  
Crystal output pin for internal oscillator. If the internal oscillator is not used, this pin should  
be left unconnected.  
X1  
3
4
Input pin to the internal oscillator (X2) from the crystal. Alternatively, an input pin for an  
external oscillator (CLKIN).  
X2/CLKIN  
Input/Output/High-impedance state.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
81  
TMS320C16  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
functional block diagram  
CLKOUT X1 X2/CLKIN  
Program Bus  
16 LSB  
IOEN  
16  
MWE  
IOWE  
MEN  
BIO  
MUX  
16  
16  
MC/MP  
INT  
PC (16)  
16  
RS  
Instruction  
16  
16  
A15-A0/  
PA2-PA0  
Program  
ROM  
D15-D0  
(8K Words)  
Stack  
8 × 16  
3
Program Bus  
16  
16  
Data Bus  
7
16  
16  
16  
AR0 (16)  
AR1 (16)  
ARP  
DP  
T(16)  
Shifter  
(0–16)  
16  
8
Multiplier  
8
P(32)  
32  
MUX  
8
32  
32  
MUX  
32  
Address  
Data RAM  
(256 Words)  
ALU (32)  
DATA  
Legend:  
ACC= Accumulator  
32  
ARP= Auxiliary Register Pointer  
AR0 = Auxiliary Register 0  
AR1 = Auxiliary Register 1  
ACC (32)  
32  
32  
DP  
P
=
=
=
=
Data Page Pointer  
P Register  
PC  
T
Program Counter  
T Register  
Shifter (0,1,4)  
16  
16  
16  
Data Bus  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
82  
TMS320C16  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
(see Note 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
CC  
Input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
Output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 W  
Operating free-air temperature: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
°
°
Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 C to 150 C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and  
functionaloperation of the device at these or any other conditions beyond those indicated in the “Recommended Operating Conditions” section of  
this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 6: All voltage values are with respect to V  
SS.  
recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
V
V
Supply voltage  
Supply voltage  
4.75  
5
0
5.25  
V
V
CC  
SS  
All inputs except CLKIN  
CLKIN  
2
3
V
V
High-level input voltage  
Low-level input voltage  
IH  
IL  
V
All inputs except MC/MP  
MC/MP  
0.8  
0.6  
V
V
V
I
I
High-level output current, all outputs  
Low-level output current  
–300  
2
µA  
mA  
OH  
OL  
T
A
Operating free-air temperature  
0
70  
°C  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
High-level output voltage  
Low-level output voltage  
Off-state output current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
I
I
= MAX  
= 20 µA  
= MAX  
2.4  
3
OH  
OH  
OL  
V
V
V
OH  
V
CC  
– 0.4  
V
I
0.3  
0.5  
20  
OL  
V
V
= 2.4 V  
= 0.4 V  
O
V
= MAX  
µA  
CC  
OZ  
20  
±20  
±50  
75  
O
All inputs except CLKIN  
CLKIN  
I
I
V
= V  
to V  
CC  
µA  
mA  
pF  
Input current  
CC  
SS  
I
Supply current  
f = 35 MHz, V  
CC  
= 5.25 V  
60  
25  
15  
25  
10  
CC  
Data bus  
All others  
Data bus  
All others  
C
C
Input capacitance  
Output capacitance  
i
f = 1 MHz, all other pins 0 V  
pF  
o
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
83  
TMS320C16  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
internal clock option  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
MHz  
pF  
Crystal frequency, f  
T
= 0°C to 70°C  
= 0°C to 70°C  
6.7  
35.1  
x
A
C1, C2  
T
10  
A
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
t
t
t
t
t
t
Master clock cycle time  
28.49  
28.57  
150  
ns  
c(MC)  
Rise time, master clock input  
Fall time, master clock input  
Pulse duration, master clock  
Pulse duration, master clock low  
Pulse duration, master clock high  
5
5
10  
10  
ns  
ns  
ns  
ns  
ns  
r(MC)  
f(MC)  
0.45t  
0.55t  
c(C)  
w(MCP)  
w(MCL)  
w(MCH)  
c(C)  
10  
10  
switching characteristics over recommended operating conditions  
PARAMETER  
MIN  
NOM  
114.3  
10  
MAX  
UNIT  
ns  
t
t
t
t
t
t
CLKOUT cycle time  
113.96  
600  
c(C)  
CLKOUT rise time  
ns  
r(C)  
CLKOUT fall time  
8
ns  
f(C)  
Pulse duration, CLKOUT low  
Pulse duration, CLKOUT high  
Delay time, CLKINto CLKOUT↓  
49  
47  
ns  
w(CL)  
w(CH)  
d(MCC)  
ns  
5
50  
ns  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
84  
TMS320C16  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
MEMORY AND PERIPHERAL INTERFACE TIMING  
switching characteristics over recommended operating conditions  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Delay time, MEN, MWE, IOEN, IOWE, to next address bus valid  
Delay time, CLKOUTto MEN↓  
0
35  
d1  
1
1
1
1
1
1
/ t  
– 5  
– 5  
– 5  
/ t +12  
4 c(C)  
d2  
4 c(C)  
– 3  
Delay time, CLKOUTto MEN↑  
6
d3  
Delay time, CLKOUTto IOEN↓  
/ t  
/ t  
4 c(C)  
+12  
+12  
d4  
4 c(C)  
Delay time, CLKOUTto IOEN↑  
– 3  
6
d5  
Delay time, CLKOUTto MWE, IOWE↓  
/ t  
/ t  
2 c(C)  
d6  
2 c(C)  
Delay time, CLKOUTto MWE, IOWE↑  
– 3  
6
d7  
Delay time, MWE, IOwE, data bus out valid  
Delay time, CLKOUTto data bus starts to be driven  
Delay time, MEN, to data bus starts to be driven  
Delay time, CLKOUTto data bus stops being driven  
Delay time, MWE, IOWE, data bus stops being driven  
Data bus OUT valid after MWE, IOWE↑  
0
d8  
1
/ t  
4 c(C)  
– 5  
d9(CLK)  
d9(MEN)  
d10(CLK)  
d10(WE)  
v
1
/ t  
4 c(C)  
15  
20  
5
0
5
10  
2
Address bus hold time after MWE, MEN, IOWE, or IOEN↑  
Address bus setup time prior to MEN, IOEN↓  
h(A-WMD)  
su(A-MD)  
timing requirements over recommended operating conditions  
MIN  
MAX  
UNIT  
t
t
Setup time, data bus valid prior to MEN, IOEN↑  
Hold time, data bus held valid after MEN, IOEN↑  
35  
ns  
su(D)  
0
ns  
h(D)  
RESET (RS) TIMING  
switching characteristics over recommended operating conditions  
PARAMETER  
MIN  
MAX  
UNIT  
1
t
t
Delay time, IOEN, IOWE, MWE, and MENfrom RS  
/ t  
2 c(C)  
+50  
+50  
ns  
d11  
1
Data bus disable time after RS  
/ t  
4 c(C)  
ns  
dis(R)  
timing requirements over recommended operating conditions  
MIN  
MAX  
UNIT  
ns  
t
t
Reset (RS) setup time prior to CLKOUT  
RS pulse duration  
30  
su(R)  
5t  
c(C)  
ns  
w(R)  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
85  
TMS320C16  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
INTERRUPT (INT) TIMING  
timing requirements over recommended operating conditions  
MIN  
MAX  
UNIT  
t
t
t
Fall time, INT  
15  
ns  
f(INT)  
Pulse duration, INT  
t
ns  
ns  
w(INT)  
su(INT)  
c(C)  
Setup time, INTbefore CLKOUT↓  
30  
IO (BIO) TIMING  
timing requirements over recommended operating conditions  
MIN  
MAX  
UNIT  
t
t
t
Fall time, BIO  
15  
ns  
f(IO)  
Pulse duration, BIO  
t
ns  
ns  
w(IO)  
su(IO)  
c(C)  
Setup time, BIObefore CLKOUT↓  
30  
TIMING DIAGRAMS  
Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless  
otherwise noted.  
clock timing  
t
t
r(MC)  
w(MCH)  
t
w(MCP)  
t
c(MC)  
X2/CLKIN  
CLKOUT  
t
w(MCL)  
t
f(MC)  
t
w(CH)  
t
d(MCC)  
t
t
r(C)  
f(C)  
t
w(CL)  
t
c(C)  
t
and t  
are referenced to an intermediate level of 1.5 V on the CLKIN waveform.  
w(MCP)  
d(MCC)  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
86  
TMS320C16  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
memory read timing  
t
c(C)  
CLKOUT  
t
d2  
t
d3  
MEN  
t
su(A-MD)  
t
h(A-WMD)  
t
d1  
A15-A0  
Address Bus Valid  
t
su(D)  
t
h(D)  
Instruction Input Valid  
D15-D0  
IN instruction timing  
CLKOUT  
MEN  
1
2
5
t
su(A-MD)  
A15-A0  
3
4
t
su(D)  
t
d4  
t
d5  
IOEN  
t
h(D)  
D15-D0  
6
7
8
Legend:  
1. IN instruction prefetch  
2. Next instruction prefetch  
3. Address bus valid  
5. Address bus valid  
6. Instruction input valid  
7. Data input valid  
4. Peripheral address valid  
8. Instruction input valid  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
87  
TMS320C16  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
OUT instruction timing  
CLKOUT  
MEN  
1
3
2
5
t
d6  
4
A15-A0  
IOWE  
t
d8  
t
d7  
t
d10(WE)  
t
d9(MEN)  
t
v
t
t
d10(CLK)  
8
d9(CLK)  
D15-D0  
6
7
Legend:  
1. OUT instruction prefetch  
2. Next instruction prefetch  
3. Address bus valid  
5. Address bus valid  
6. Instruction valid  
7. Data output valid  
8. Instruction valid  
4. Peripheral address valid  
TBLR instruction timing  
CLKOUT  
t
d2  
t
d3  
MEN  
t
d1  
A15-A0  
t
h(D)  
t
su(D)  
D15-D0  
TBLW instruction timing  
CLKOUT  
MEN  
t
d6  
A15-A0  
t
d8  
t
d7  
MWE  
t
t
d10(WE)  
t
d9(MEN)  
t
v
t
d10(CLK)  
8
d9(CLK)  
D15-D0  
6
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
88  
TMS320C16  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
reset timing  
CLKOUT  
t
su(R)  
t
su(R)  
RS  
t
w(R)  
IOEN, IOWE  
(see  
MEN, MWE  
D15-D0  
MEN  
Data In From  
PC ADDR PC+1  
Data In From  
PC ADDR 0  
Note E)  
t
d11  
t
dis(R)  
Data  
Out  
Data Shown Relative To IOWE  
AB = PC+1  
AB = Address Bus  
AB = PC  
Address  
Bus  
AB = PC = 0  
AB = PC+1  
NOTES: A. RS forces IOEN, IOWE, MWE, and MEN high and places data bus D0 through D15 in a high-impedance state. AB outputs (and  
program counter) are synchronously cleared to zero after the next complete CLK cycle from RS.  
B. RS must be maintained for a minimum of five clock cycles.  
C. Resumption of normal program will commence after one complete CLK cycle from RS.  
D. Due to the synchronization action on RS, time to execute the function can vary dependent upon when RSor RSoccur in the CLK  
cycle.  
E. Diagram shown is for definition purpose only. IOEN, IOWE, MWE, and MEN are mutually exclusive.  
F. During a write cycle, RS may produce an invalid write address.  
interrupt timing  
CLKOUT  
t
su(INT)  
INT  
t
f(INT)  
t
w(INT)  
BIO timing  
CLKOUT  
t
su(IO)  
BIO  
t
f(IO)  
t
w(IO)  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
89  
TMS320C16  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
design considerations for interfacing to SRAM, EPROM and peripherals  
The C16 differs somewhat from the other members of the C1x family of digital signal processors (DSPs).  
Additional control signals are available for easier interface to external memory or peripherals, and the memory  
write cycle timings have been changed.  
The discussion here will center around changes in t and its impact upon SRAM, EPROM and  
v
peripherals/latches interfaces.  
Access time requirements for interface may be defined relative to :  
1. Valid address (t );  
a
2. MEN/IOEN, [(t  
];  
a(MEN)  
Figure 11 and the following examples summarize these timings at 35 MHz CLKIN.  
t
c(C)  
t
w(CH)  
t
f(C)  
CLKOUT  
MEN  
t (CLKOUT)  
a
t
t
d2  
d1  
t
a(MEN)  
t
a
A15-A0  
D15-D0  
t
su(D)  
Figure 11.  
where:  
t
t
: (access time from address valid) = t  
– t – t  
= 44.3 ns  
su(D)  
a
c(C)  
d1  
: (access time from MEN valid) = t  
– t – t  
+ t = 35.73 ns  
a(MEN)  
c(C)  
d2  
su(D) d3  
and where (for 35 MHz CLKIN):  
t
t
t
t
t
t
= 114.3 ns  
= 35 ns  
= [1/4 × (114.3) + 12] ns  
c(C)  
d1  
d2  
= 35 ns  
su(D)  
= 47 ns nominal  
= 8 ns nominal  
w(CH)  
f(C)  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
90  
TMS320C16  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
In addition to the above timings, t must be taken into account. t is the time that the data bus is  
v
v
guaranteed to be held after the rising edge of MWE or IOWE. In other C1x devices, the value of t was  
v
referenced to CLKOUTand not WE(see Figure 12). For the C16, t is a minimum of 5 ns. This implies  
v
that MWE and IOWE must be tied directly to the external device. If required, decode logic must be added  
to an input other than the read/write input — for example, the chip select on SRAMs. If the external device  
does not have two inputs, then transparent latches must be added to extend the time data is held on the  
data bus. These latches must be off the bus prior to the next instruction (see Figure 12).  
CLKOUT  
MWE or IOWE  
t
v
t
d10  
D15-D0  
Figure 12.  
where:  
t = 5 ns (min)  
v
d10  
t
= 15 ns (max)  
There is a potential for bus conflict on the prefetch and execution of a TBLW or an OUT instruction. Figure 13  
details the timings to be considered. In addition to the timings for the C16, timing definitions for interface are  
also included.  
Dummy Prefetch Cycle  
CLKOUT  
TBLW or OUT Execution  
t
ddeco  
MEN  
t
dmemh  
CE  
D15-D0  
Memory Driven Data  
t
d9(MEN)  
t
conf  
D15-D0  
DSP Driven Data  
Figure 13.  
where:  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
91  
TMS320C16  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
t
(data bus conflict time) = t  
+ t  
– t  
dmemh d9(MEN)  
conf  
ddeco  
with:  
t
t
t
t
: decode delay time to make the CE or OE signal  
: memory data hold time from CE or OE  
: delay time, MEN to data bus starts being driven  
ddeco  
dmemh  
d9  
: (at 35 MHz CLKIN) = [1/4t  
] = [1/4(114.3)] = 28.58 ns  
d9  
c(C)  
If t  
If t  
is less than or equal to zero, data bus conflict does not occur.  
is greater than zero, data conflict occurs.  
conf  
conf  
Note that the following discussion is for CLKIN of 35 MHz.  
static memory with output enable and write enable/chip select  
The following SRAMs are able to interface directly to the C16, needing only to directly connect the C16 memory  
control signals MEN and MWE to the memory. Device select decode is accomplished with address decode and  
then input to the device chip select.  
PRODUCT  
t
t
t
dconf  
ddeco  
dmemh  
UNITS  
TC55645-35  
TC55328-35  
TMS6789-35  
TC5588-35  
0
0
0
0
0
15  
15  
8
10  
10  
–13.58  
–13.58  
–20.58  
–18.58  
–18.58  
ns  
ns  
ns  
ns  
ns  
TMS6716-35  
MWE  
MEN  
WE  
OE  
SRAM With OE  
CS  
TMS320C16  
ALS138  
(Decoder)  
A15-AXX  
ADDR  
DATA  
D15-D0  
Figure 14.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
92  
TMS320C16  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
static memory with chip enable and write enable  
Without a separate output enable, a faster SRAM is required. Logic is added to decode address and memory  
control to perform a read/write cycle. The MWE signal is directly connected to the WE input of the SRAM to meet  
the t specification (see Figure 15).  
v
Product  
t
t
t
dconf  
ddeco  
7.5  
dmemh  
Units  
ns  
CY7C164-25  
10  
– 11.08  
Programmable  
Logic  
MWE  
WE  
CE  
7.5 ns  
MEN  
TMS320C16  
SRAM With CE  
ADDR  
A15-AXX  
DATA  
D15-D0  
Figure 15.  
EPROM interface  
The following high-speed EPROMs can be used directly:  
Product  
t
t
t
dconf  
ddeco  
dmemh  
Units  
CY7C291-35  
TMS27C291-35  
0
0
25  
25  
– 3.58  
– 3.58  
ns  
ns  
MEN  
CS1  
CS2  
V
CC  
Fast EPROM  
TMS27C291-35  
TMS320C16  
CS3  
ADDR  
Decoder  
7.5 ns  
A15-AXX  
DATA  
D15-D0  
Figure 16.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
93  
TMS320C16  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
interfacing latches to the TMS320C16  
As with the previous devices, the memory control signal must be directly connected to the latch and the latch  
needs to have a separate chip select. There are several devices with this feature, including the SN74ALS996.  
The SN74ALS996 is an 8-bit D-type edge-triggered read-back latch with three-state outputs, connected to the  
C16 as illustrated in Figure 17.  
D15-D0  
D15-D0  
IOWE  
IOEN  
CLK  
RD  
TMS320C16  
ALS996A x 2  
ALS 138  
Decoder  
A2  
A1  
A0  
EN  
Figure 17.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
94  
TMS320C17, TMS320E17, TMS320LC17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
Key Features: TMS320C17/E17/LC17/P17  
Dua-Channel  
Serial Port  
200-ns Instruction Cycle Timing  
Interrupt  
(TMS320C17/E17/P17)  
Data (16)  
Coprocessor  
Interface  
278-ns Instruction Cycle Timing  
320C17  
(TMS320LC17)  
Serial Interface  
or  
320E17  
µ-Law/A-Law  
Hardware  
256 Words of On-Chip Data RAM  
4K Words of On-Chip Program ROM  
Address (3)  
(TMS320C17/LC17)  
Timer  
4K Words of On-Chip Program EPROM  
(TMS320E17/P17)  
One-Time Programmable (OTP) Windowless  
Device Packaging:  
EPROM Version Available (TMS320P17)  
— 40-Pin DIP (All Devices)  
— 44-Lead PLCC (TMS320C17/LC17/P17  
— 44-Lead CER-QUAD (TMS320E17)  
EPROM Code Protection for Copyright Security  
Dual-Channel Serial Port for Full-Duplex Serial  
3.3 -V Low-Power Version Available  
Communication  
(TMS320LC17)  
Serial Port Timer for Standalone Serial  
Operating Free-Air Temperature Range  
. . . 0°C to 70°C  
Communication  
On-Chip Companding Hardware for µ-law/A-law  
16-Bit Coprocessor Interface for Common  
PCM Conversions  
4/8/16/32-Bit Microcomputers/Microprocessors  
TMS320C17/E17/LC17/P17  
N/JD Package  
TMS320C17, TMS320E17  
FN/FZ Packages  
(Top View)  
(Top View)  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1
PA1/RBLE  
PA0/HI/LO  
MC  
PA2/TBLF  
FSR  
FSX  
FR  
DX1  
DX0  
SCLK  
DRI  
DEN/RD  
WE/RD  
2
3
4
6 5 4 3 2 1 44 43 42 41 40  
RS  
5
EXINT  
CLKOUT  
X1  
X2/CLKIN  
BIO  
7
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
CLKOUT  
X1  
X2/CLKIN  
BIO  
DX0  
SCLK  
DR1  
DEN/RD  
WE/WR  
6
8
7
9
8
10  
11  
12  
13  
14  
15  
16  
17  
9
NC  
10  
11  
12  
13  
14  
15  
16  
V
SS  
V
V
SS  
CC  
D8/LD8  
D9/LD9  
V
CC  
D8  
D9  
D10  
D11  
D12  
DR0  
XF  
MC/PM  
D0/LD0  
DR0  
XF  
D10/LD10  
D11/LD11  
D12/LD12  
D13/LD13  
D14/LD14  
D15/LD15  
D7/LD7  
MC/PM  
D0/LD0  
D1/LD1  
D2/LD2  
D3/LD3  
D4/LD4  
D5/LD5  
V
SS  
18 19 20 21 22 23 24 25 26 27 28  
17 24  
18 23  
19 22  
20 21  
D6/LD6  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
95  
TMS320C17, TMS320E17, TMS320LC17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
architecture  
The C17/E17/LC17/P17 consists of five major functional units: the C15 microcomputer, a system control  
register, a full-duplex dual-channel serial port, companding hardware, and a coprocessor port.  
Three of the I/O ports are used by the serial port, companding hardware, and the coprocessor port. Their  
operation is determined by the 32 bits of the system control register (see Table 6 for the control register bit  
definitions). Port0accessescontrolregister0andconsistsofthelower16registerbits(CR15-CR0), andisused  
to control the interrupts, serial port connections, and companding hardware operation. Port 1 accesses control  
register 1, consisting of the upper 16 control bits (CR31-CR16), as well as both serial port channels, the  
companding hardware, and the coprocessor port channels. Communication with the control register is via IN  
and OUT instructions to ports 0 and 1.  
Interrupts fully support the serial port interface. Four maskable interrupts (EXINT, FR, FSX, and FSR) are  
mapped into I/O port 0 via control register 0. When disabled, these interrupts may be used as single-bit logic  
inputs polled by software.  
serial port  
The dual-channel serial port is capable of full-duplex serial communication and offers direct interface to two  
combo-codecs. Two receive and two transmit registers are mapped into I/O port 1, and operate with 8-bit data  
samples. Internal and external framing signals for serial port transfers (MSB first) are selected via the system  
control register. The serial port clock, SCLK, provides the bit timing for transfers with the serial port, and may  
be either an input or output. As an input, an external clock provides the timing for data transfers and framing  
pulse synchronization. As an output, SCLK provides the timing for standalone serial communication and is  
derived from the C17/E17/P17 system clock, X2/CLKIN, and system control register bits CR27-CR24  
(see Table 7 for the available divide ratios). The internal framing (FR) pulse frequency is derived from the serial  
port clock (SCLK) and system control register bits CR23-CR16. This framing pulse signal provides framing  
pulses for combo-codecs, for a sample clock for voice-band systems, or for a timer used in control applications.  
µ-law/A-law companding hardware  
The C17/E17/LC17/P17 features hardware companding logic and can operate in either µ-law or A-law format  
with either sign-magnitude or twos-complement numbers. Data may be companded in either a serial mode for  
operation on serial port data or a parallel mode for computation inside the device. The companding logic  
operation is selected through CR14. No bias is required when operating in twos-complement. A bias of 33 is  
required for sign-magnitude in µ-law companding. Upon reset, the device is programmed to operate in  
sign-magnitude mode. This mode can be changed by modifying control bit 29 (CR29) in control register 1. For  
further information on companding, see the TCM29C13/TCM29C14/TCM29C16/TCM29C17 Combined  
Single-Chip PCM Codec and Filter Data Sheet, and the application report, “Companding Routines for the  
TMS32010/TMS32020,” in the book Digital Signal Processing Applications with the TMS320 Family  
(SPRA012A), both documents published by Texas Instruments.  
In the serial mode, sign-magnitude linear PCM (13 magnitude bits plus 1 sign bit for µ-law format or 12  
magnitude bits plus 1 sign bit for A-law format) is compressed to 8-bit sign-magnitude logarithmic PCM by the  
encoder and sent to the transmit register for transmission on an active framing pulse. The decoder converts 8-bit  
sign-magnitude log PCM from the serial port receive registers to sign-magnitude linear PCM.  
In the parallel mode, the serial port registers are disabled to allow parallel data from internal memory to be  
encoded or decoded for computation inside the device. In the parallel encode mode, the encoder is enabled  
and a 14-bit sign-magnitude value written to port 1. The encoded value is returned with an IN instruction from  
port 1. In the parallel decode mode, the decoder is enabled and an 8-bit sign-magnitude log PCM value is written  
to port 1. On the successive IN instruction from port 1, the decoded value is returned. At least one instruction  
should be inserted between an OUT and the successive IN when companding is performed with  
twos-complement values.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
96  
TMS320C17, TMS320E17, TMS320LC17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
Table 6. Control Register Configuration  
FR  
Pulse  
Widt  
h
Port 1 Port 0  
Frame Counter Modulus  
Interrupt Mask Bits  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
I/O  
Control  
Serial Clock  
Prescale Control  
Serial-Port Configuration  
Companding Hardware Control  
Interrupt Flags  
Reserved  
BIT  
0
DESCRIPTION AND CONFIGURATION  
EXINT Interrupt flag  
FSR interrupt flag  
1
FSX interrupt flag  
2
FR interrupt flag  
3
4
EXINT interrupt enable mask. When set to logic 1, an interrupt on EXINT activates device interrupt circuitry.  
FSR interrupt enable mask. Same as EXINT control.  
5
6
FSX interrupt enable mask. Same as EXINT control.  
7
FR interrupt enable mask. Same as EXINT control.  
0 = port 1 connects to either serial-port registers or companding hardware.  
1 = port 1 accesses CR31-CR16.  
8
Port 1 configuration control:  
0 = serial-port data transfers controlled by active FR.  
9
External framing enable:  
XF external logic output flag latch  
0 = Parallel companding mode; serial port disabled.  
1 = serial-port data transfers controlled by active FSX/FSR.  
10  
11  
Serial-port enable:  
1 = serial companding mode; serial port registers enabled.  
0 = disabled.  
12  
13  
14  
15  
µ-law/A-law encoder enable:  
1 = data written to port 1 is µ-law or A-law encoded.  
0 = disabled.  
1 = data written to port 1 is µ-law or A-law decoded.  
µ-law/A-law decoder enable:  
0 = companding hardware performs µ-law conversion.  
1 = companding hardware performs A-law conversion.  
µ-law/A-law decoder encode/decoded select:  
0 = SCLK is an output, derived from the prescaler in timing logic.  
1 = SCLK is an input that provides the clock for serial port and frame counter in timing logic.  
Serial clock control:  
23-16  
27-24  
Frame counter modulus. Controls FR frequency = SCLK/(CNT + 2) where CNT is binary value fo CR23-CR16  
SCLK prescale cotnrol bits. (See Table 7 for divide ratios.)  
0 = fixed-data rate; FR is 1 SCLK cycle wide.  
1 = variable-data rate; FR is 8 SCLK cycles wide.  
FR pulse-width control:  
28  
29  
0 = sign-magnitude companding  
1 = twos-complement companding  
Two’s-complement µ-law/A-law conversion enable:  
0 = 8-bit byte length  
1 = 16-bit word length  
30  
31  
8/16-bit length coprocessor mode select:  
Reserved for future expansion: Should be set to zero.  
Interrupt flag is cleared by writing a logic 1 to the bit with an OUT instruction to port 0.  
All ones in CR23-CR16 indicate a degenerative state and should be avoided. Bits are operational whether SCLK is an input or an output.  
CNT must be greater than 7.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
97  
TMS320C17, TMS320E17, TMS320LC17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
Table 7. Serial Clock (SCLK) Divide Ratios (X2/CLKIN = 20.48 MHz)  
CR27  
CR26  
CR25  
CR24  
DIVIDE RATIO  
SCLK FREQUENCY  
UNIT  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
0
0
0
0
1
1
1
1
0
0
0
1
0
0
0
1
0
0
1
0
0
0
1
0
0
1
0
0
0
1
0
0
32  
28  
24  
20  
16  
14  
12  
10  
0.640  
0.731  
0.853  
1.024  
1.280  
1.463  
1.706  
2.048  
The specification for µ-law and A-law log PCM coding is part of the CCITT G.711 recommendation. The  
followingdiagramshowsaC17/E17/P17interfacetotwocodecsasusedforµ-laworA-lawcompandingformat.  
TMS320C17/E17/P17  
TCM29C13  
Analog Out  
Analog In  
DX0  
DR0  
SCLK  
FR  
PCM In  
PCM Out  
CLKR/X  
FSX  
V
V
SS  
CC  
+5 V  
FSR  
MC  
MC/PM  
TCM29C13  
PCM In  
X2  
X1  
Analog Out  
Analog In  
DX1  
DR1  
PCM Out  
CLKR/X  
FSX  
FSR  
coprocessor port  
The coprocessor port, accessed through I/O port 5 using IN and OUT instructions, provides a direct connection  
to most 4/8-bit microcomputers and 16/32-bit micorprocessors. The coprocessor interface allows the  
C17/E17/P17 to act as a peripheral (slave) microcomputer to a microprocessor, or a master to a peripheral  
microcomputer such as TMS7042. The coprocessor port is enabled by setting MC/PM and MC low. The  
microcomputer mode is enabled by setting these two pins high. (Note that MC/PM MC is undefined.)  
In the microcomputer mode, the 16 data lines are used for the 6 parallel 16-bit I/O ports.  
Inthecoprocessormode, the16-bitcoprocessorportisreconfiguredtooperateasa16-bitlatchedbusinterface.  
Control bit 30 (CR30) in control register 1 is used to configure the coprocessor port to either an 8-bit or a 16-bit  
length. When CR30 is high, the coprocessor port is 16 bits wide thereby making all 16 bits of the data port  
available for 16-bit transfers to 16 and 32-bit microprocessors. When CR30 is low, the port is 8-bits wide and  
mappedtothelowbyteofthedataportforinterfacingto8-bitmicrocomputers. Whenoperatinginthe8-bitmode,  
both halves of the 16-bit latch can be addressed using the HI/LO pin, thus allowing 16-bit transfers over 8 data  
lines. When not in the coprocessor mode, port 5 can be used as a generic I/O port.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
98  
TMS320C17, TMS320E17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
coprocessor port (continued)  
The external processor recognizes the coprocessor interface in which both processors run asynchronously as  
a memory-mapped I/O operation. The external processor lowers the WR line and places data on the bus. It next  
raises the WR line to clock the data into the on-chip latch. The rising edge of WR automatically creates an  
interrupt to the C17/E17/P17, and the falling edge of WR clears the RBLE (receive buffer latch empty) flag.  
When the C17/E17/P17 reads the coprocessor port, it causes the RBLE signal to transition to a logic low state  
that clears the data in the latch, and allows the interrupt condition to be cleared internally. Likewise, the external  
processorreadsformthelatchbydrivingtheRDlineactivelow, thusenablingtheoutputlatchtodrivethelatched  
data. When the data has been read, the external device will again bring the RD line high. This activates the BIO  
line to signal that the transfer is complete and the latch is available for the next transfer. The falling edge of RD  
resets the TBLF (transmit buffer latch full) flag. Note that the EXINT and BIO lines are reserved for coprocessor  
interface and cannot be driven externally when in the coprocessor mode.  
An example of the use of a coprocessor interface is shown in Figure 18, in which the C17/E17/P17 are DSPs  
interfaced to the TMS70C42, an 8-bit microcontroller.  
TMS320C17/E17/P17  
TMS70C42  
3
MC  
27  
2
MC/PM  
HI/LO  
6
17  
CLKOUT  
XTAL2  
31  
1
7
6
WR  
A1  
A0  
RBLE  
32  
40  
9
8
RD  
A3  
A2  
TBLF  
19  
20  
21  
22  
23  
24  
25  
26  
19  
20  
21  
22  
23  
24  
26  
27  
LD7  
LD6  
LD5  
LD4  
LD3  
LD2  
LD1  
LD0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 18. Coprocessor Interface  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
99  
TMS320C17, TMS320E17, TMS320LC17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
TERMINAL FUNCTIONS  
I/O  
NAME  
DEFINITION  
BIO  
I
External polling input  
CLKOUT  
O
System clock output, 1/4 crystal/CLKIN frequency  
16-bit parallel data bus/data lines for coprocessor latch  
Data enable for device input data/external read for output latch  
Serial-port receive-channel inputs  
D15/LD15-D0/LD0  
DEN/RD  
DR1, DR0  
DX1, DX0  
EXINT  
I/O  
I/O  
I
O
I
Serial-port transmit-channel outputs  
External interrupt input  
FR  
O
I
Internal serial-port framing output  
FSR  
External serial-port receive framing input  
External serial-port transmit framing input  
Microcomputer select (must be same state as MC/PM)  
Microcomputer/peripheral coprocessor select (must be same state as MC)  
I/O port address output/latch byte select pin  
I/O port address output/receive buffer latch empty flag  
I/O port address output/transmit buffer latch full flag  
Reset for initializing the device  
FSX  
I
MC  
I
MC/PM  
PA0/HI/LO  
PA1/RBLE  
PA2/TBLF  
RS  
I
I/O  
O
O
I
SCLK  
I/O  
I
Serial-port clock  
V
V
+ 5 V Supply  
CC  
I
Ground  
SS  
WE/WR  
X1  
O
O
I
Write enable for device output data/external write for input latch  
Crystal output for internal oscillator  
X2/CLKIN  
XF  
Crystal input for internal oscillator or external oscillator system clock input  
External-flag output pin  
O
See EPROM programming section.  
Input/Output/High-impedance state.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
100  
TMS320C17, TMS320E17, TMS320LC17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
functional block diagram  
FSR  
INT/EXINT  
FSX  
FR  
CLKOUT  
X2/CLKIN  
X1  
Program Bus  
Interrupt Latch and  
Multiplexer  
16  
12 LSB  
MC  
MC/PM  
WR/WE  
RD/DEN  
BIO  
MUX  
12  
12  
12  
Serial-port Timing and  
Framing Control  
RS  
PC (12)  
12  
HI/LO  
RBLE  
TBLF  
Instruction  
16  
SCLK  
3
3
12  
Program  
ROM/EPROM  
(4K Words)  
D15-D0  
PA2–PA0  
Data Latch  
Data Latch  
Stack  
4 × 12  
Program Bus  
16  
16  
MUX  
Data Bus  
16  
16  
16  
7
16  
16  
16  
16  
System Control  
AR0 (16)  
AR1 (16)  
ARP  
DP  
T(16)  
16  
Shifter (0–16)  
Register  
16  
16  
Multiplier  
XF  
8
8
µ-Law/A-Law  
16  
Encoder  
P(32)  
32  
8
MUX  
8
14  
32  
32  
8
MUX  
µ-Law/A-Law  
Address  
Decoder  
MUX  
32  
8
8
Data RAM  
(256 Words)  
8
MUX  
8
ALU (32)  
8
Data  
32  
TR0/TS0  
TR1/TS1  
DX0  
DX1  
Legend:  
ACC  
PC  
=
=
=
=
=
=
=
=
=
=
Accumulator  
Program Counter  
Auxiliary Register Pointer  
P Register  
Auxiliary Register 0  
T Register  
Auxiliary Register 1  
Transmit Register  
Data Page Pointer  
Receive Register  
ACC (32)  
RR0/RS0  
RR1/RS1  
DR0  
DR1  
ARP  
P
AR0  
T
AR1  
TR  
DP  
32  
32  
Shifter (0,1, 4)  
16  
RR  
16  
16  
Data Bus  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
101  
TMS320C17, TMS320E17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
electrical specifications  
This section contains the electrical specifications for all versions of the C17/E17/P17 digital signal processors,  
including test parameter measurement information. Parameters with  
in the EPROM programming mode (see Note 11).  
subscripts apply only to the E17/P17  
PP  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V , except for the 320LC17 (see Note 6) . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
CC  
PP  
Supply voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 14 V  
Input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 14 V  
Output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 W  
Operating free-air temperature: L suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C  
°
°
Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 C to 150 C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and  
functionaloperation of the device at these or any other conditions beyond those indicated in the “Recommended Operating Conditions” section of  
this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 6: All voltage values are with respect to V  
SS.  
recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
EPROM devices  
All other devices  
4.75  
4.5  
5
5
5.25  
5.5  
V
V
V
CC  
Supply voltage  
V
V
Supply voltage (see Note 11)  
Supply voltage  
12.25  
12.5  
0
12.75  
V
PP  
V
SS  
All inputs except CLKIN  
CLKIN  
2
3
V
V
V
High-level input voltage  
Low-level input voltage  
IH  
V
All inputs except MC/MP  
MC/MP  
0.8  
0.6  
V
IL  
V
I
I
High-level output current, all outputs  
Low-level output current (All outputs)  
–300  
2
µA  
mA  
OH  
OL  
L suffix  
A suffix  
0
70  
85  
°C  
°C  
T
A
Operating free-air temperature  
– 40  
NOTE 11:  
V
PP  
is I  
can be applied only to programming pins designed to accept V as an input. During programming the total supply current  
PP  
PP CC  
+ I  
.
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
102  
TMS320C17, TMS320E17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
electrical characteristics over specified temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
65  
UNIT  
TMS320C17  
f = 20.5 MHz, V  
f = 25.6 MHz, V  
= 5.5 V, T = 0°C to 70°C  
50  
55  
CC  
CC  
A
I
Supply current  
mA  
CC  
TMS320E17/P1  
7
= 5.5 V, T = – 40°C to 85°C  
75  
A
All typical values are at T = 70°C and are used for thermal resistance calculations.  
A
I
characteristics are inversely proportional to temperature. For I dependance on temperature, frequency, and loading, see Figure 3.  
CC  
CC  
CLOCK CHARACTERISTICS AND TIMING  
The C17/E17/P17 can use either its internal oscillator or an external frequency source for a clock.  
internal clock option  
The internal oscillator is enabled by connecting a crystal across X1 and X2/CLKIN (see Figure 1). The frequency  
of CLKOUT is one-fourth the crystal fundamental frequency. The crystal should be fundamental mode, and  
parallel resonant, with an effective series resistance of 30 ohms, a power dissipation of 1 mW, and should be  
specified at a load capacitance of 20 pF.  
PARAMETER  
Crystal frequency, f  
TEST CONDITIONS  
= 0°C to 70°C  
MIN NOM  
MAX  
20.5  
20.5  
UNIT  
x
MHz  
TMS320C17  
T
A
6.7  
6.7  
TMS320E17/P1  
7
T = – 40°C to 85°C  
A
C1, C2  
T
A
= 0°C to 70°C  
10  
pF  
external clock option  
An external frequency source can be used by injecting the frequency directly into X2/CLKIN with X1 left  
unconnected. The external frequency injected must conform to the specifications listed in the table below.  
switching characteristics over recommended operating conditions  
PARAMETER  
CLKOUT cycle time  
CLKOUT rise time  
CLKOUT fall time  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
ns  
§
t
t
t
t
t
t
195.12  
200  
c(C)  
10  
ns  
r(C)  
R
C
= 825 ,  
= 100 pF  
L
L
8
ns  
f(C)  
(see Figure 2)  
Pulse duration, CLKOUT low  
Pulse duration, CLKOUT high  
Delay time, CLKINto CLKOUT↓  
92  
90  
ns  
w(CL)  
w(CH)  
d(MCC)  
ns  
25  
60  
ns  
§ t  
c(C)  
is the cycle time of CLKOUT, i.e., 4t  
c(MC)  
(4 times CLKIN cycle time if an external oscillator is used).  
Values derived from characterization data and not tested.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
103  
TMS320C17, TMS320E17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
t
t
t
t
t
t
Master clock cycle time  
48.78  
50  
150  
ns  
c(MC)  
Rise time, master clock input  
Fall time, master clock input  
Pulse duration, master clock  
Pulse duration, master clock low  
Pulse duration, master clock high  
5
5
10  
10  
ns  
ns  
ns  
ns  
ns  
r(MC)  
f(MC)  
0.45t  
c(MC)  
0.6t  
c(MC)  
w(MCP)  
w(MCL)  
w(MCH)  
20  
20  
Values derived from characterization data and not tested.  
MEMORY AND PERIPHERAL INTERFACE TIMING  
switching characteristics over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
t
t
t
t
t
t
t
t
t
Delay time, CLKOUTto address bus valid  
10  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d1  
d4  
d5  
d6  
d7  
d8  
d9  
d10  
v
Delay time, CLKOUTto DEN↓  
1/4t  
– 5  
1/4t + 15  
c(C)  
c(C)  
Delay time, CLKOUTto DEN↑  
–10  
1/2t  
15  
+ 15  
Delay time, CLKOUTto WE↓  
– 5  
1/2t  
1/4t  
1/4t  
c(C)  
c(C)  
15  
+ 65  
–10  
Delay time, CLKOUTto WE↑  
R
= 825 Ω  
= 100 pF,  
L
Delay time, CLKOUTto data bus OUT valid  
Time after CLKOUTthat data bus starts to be driven  
Time after CLKOUTthat data bus stops bieng driven  
Data bus OUT valid after CLKOUT↓  
c(C)  
C
L
(see Figure 2)  
– 5  
1/4t  
c(C)  
+70  
c(C)  
1/4t  
10  
45  
c(C)  
Address hold time after WE, or DEN↑  
(see Note 14)  
t
t
0
2
ns  
ns  
h(A-WMD)  
su(A-MD)  
Address bus setup time prior to DEN↓  
1/4t  
c(C)  
Values derived from characterization data and not tested.  
NOTE 14: Address bus will be valid upon WE, MEN, or DEN.  
timing requirements over recommended operating conditions  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
t
t
Setup time, data bus valid prior to CLKOUT↓  
50  
ns  
su(D)  
R
C
= 825 ,  
= 100 pF  
L
L
Hold time, data bus held valid after CLKOUT↓  
(see Note 16)  
0
ns  
(see Figure 2)  
h(D)  
NOTE 16: Data may be removed from the data bus upon DENpreceding CLKOUT.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
104  
TMS320C17, TMS320E17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
RESET (RS) TIMING  
switching characteristics over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1/2t  
MAX  
UNIT  
ns  
t
t
Delay time, DEN, and WEfrom RS  
Data bus disable time after RS  
+50†  
d11  
c(C)  
c(C)  
R
825 ,  
= 100 pF,  
+50  
L
1/4t  
ns  
dis(R)  
C
L
t
Delay time from RSto high-impedance SCLK  
Delay time from RSto high-impedance DX1, DX0  
200  
ns  
(see Figure 2)  
d12  
d13  
t
200  
ns  
Values derived form characterization data and not tested.  
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
t
t
Reset (RS) setup time prior to CLKOUT (see Note 10)  
RS pulse duration  
50  
ns  
su(R)  
5t  
c(C)  
ns  
w(R)  
NOTE 10: RS can occur anytime during a clock cycle. Time given is minimum to ensure synchronous operation.  
INTERRUPT (EXINT) TIMING  
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
t
t
t
Fall time, EXINT  
15  
ns  
f(INT)  
Pulse duration, EXINT  
t
ns  
ns  
w(INT)  
su(INT)  
c(C)  
Setup time, EXINTbefore CLKOUT↓  
50  
IO (BIO) TIMING  
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
t
t
t
Fall time, BIO  
15  
ns  
f(IO)  
Pulse duration, BIO  
t
ns  
ns  
w(IO)  
su(IO)  
c(C)  
Setup time, BIObefore CLKOUT↓  
50  
switching characteristics over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R
825 , C = 100 pF,  
(see Figure 2)  
L
L
5
t
Delay time CLOCKOUTto valid XF  
115  
ns  
d(XF)  
Values derived form characterization data and not tested.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
105  
TMS320C17, TMS320E17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
SERIAL PORT TIMING  
switching characteristics over recommended operating conditions  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
ns  
t
t
t
t
Internal framing (FR) delay from SCLK rising edge  
DX bit 1 valid before SCLK falling edge  
DX bit 2 valid before SCLK falling edge  
DX hold time after SCLK falling edge  
70  
d(CH-FR)  
d(DX1-XL)  
d(DX2-XL)  
h(DX)  
20  
20  
ns  
ns  
t
/2  
ns  
c(SCLK)  
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
t
t
t
t
t
t
t
t
Serial port clock (SCLK) cycle time (see Note 17)  
Serial port clock (SCLK) fall time  
390  
4770  
ns  
c(SCLK)  
f(SCLK)  
r(SCLK)  
w(SCLKL)  
w(SCLKH)  
su(FS)  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial port clock (SCLK) rise time  
Serial port clock (SCLK) low-pulse duration (see Note 17)  
Serial port clock (SCLK) high-pulse duration (see Note 17)  
FSX/FSR setup time before SCLK falling edge  
DR setup time before SCLK falling edge  
185  
185  
100  
20  
2500  
2500  
su(DR)  
DR hold time after SCLK falling edge  
20  
h(DR)  
Values derived from characterization data and not tested.  
NOTES: 17. Minimum cycle time is 2t where t is CLKOUT cycle time.  
c(C)  
c(C)  
18. The duty cycle of the serial port clock must be within 45 to 55 percent.  
COPROCESSOR INTERFACE TIMING  
switching characteristics over recommended operating conditions  
PARAMETER  
MIN  
NOM  
MAX  
75  
UNIT  
ns  
t
t
t
t
RD low to TBLF high  
WR low to RBLE high  
RD low to data valid  
d(R-A)  
d(W-A)  
a(RD)  
h(RD)  
75  
ns  
80  
ns  
Data hold time after RD high  
25  
ns  
timing requirements over recommended operating conditions  
MIN  
25  
40  
30  
25  
80  
60  
NOM  
MAX  
UNIT  
ns  
t
t
t
t
t
t
HI/LO hold time after WR or RD high  
HI/LO setup time after WR or RD low  
Data setup time prior to WR high  
Data hold time after WR high  
RD low-pulse duration  
h(HL)  
ns  
su(HL)  
su(WR)  
h(WR)  
w(RDL)  
w(WRL)  
ns  
ns  
ns  
WR low-pulse duration  
ns  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
106  
TMS320C17, TMS320E17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
TIMING DIAGRAMS  
Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2 volts, unless  
otherwise noted.  
clock timing  
t
t
r(MC)  
w(MCH)  
t
w(MCP)  
t
c(MC)  
X2/CLKIN  
CLKOUT  
t
w(MCL)  
t
f(MC)  
t
w(CH)  
t
d(MCC)  
t
t
r(C)  
f(C)  
t
w(CL)  
t
c(C)  
are referenced to an intermediate level of 1.5 V on the CLKIN waveform.  
t
and t  
w(MCP)  
d(MCC)  
memory read timing  
t
c(C)  
CKKOUT  
t
d2  
t
d3  
MEN  
t
su(A-MD)  
t
h(A–WMD)  
t
d1  
A11-A0  
Address Bus Valid  
t
su(D)  
t
h(D)  
Instruction Input Valid  
D15-D0  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
107  
TMS320C17, TMS320E17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
IN instruction timing  
CLKOUT  
MEN  
1
2
5
t
su(A-MD)  
4
t
su(D)  
t
A11-A0  
3
t
d5  
d4  
DEN  
t
h(D)  
D15-D0  
6
7
8
Legend:  
1. IN Instruction Prefetch  
2. Next Instruction Prefetch  
3. Address Bus Valid  
5. Address Bus Valid  
6. Instruction Input Valid  
7. Data Input Valid  
8. Instruction Valid  
4. Peripheral Address Valid  
OUT instruction timing  
CLKOUT  
MEN  
A11-A0  
WE  
1
3
2
5
4
t
t
d6  
d7  
t
d9  
t
d10  
t
d8  
t
v
7
6
8
D15-D0  
Legend:  
1. OUT Instruction Prefetch  
2. Next Instruction Prefetch  
3. Address Bus Valid  
5. Address Bus Valid  
6. Instruction Input Valid  
7. Data Output Valid  
8. Instruction Valid  
4. Peripheral Address Valid  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
108  
TMS320C17, TMS320E17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
reset timing  
CLKOUT  
RS  
t
su(R)  
t
su(R)  
t
w(R)  
DEN  
WE  
t
d11  
t
dis(R)  
Data  
Out  
D15-D0  
t
t
d12  
SCLK  
d13  
DX1, DX0  
PA = Port Address PC3 = 3 LSB of PC  
Valid Valid  
PC = 0  
PC = 1  
PA = PC3 = 0  
PA = PC3 + 1 = 1  
PA2-PA0  
interrupt timing  
CLKOUT  
t
su(INT)  
INT  
t
f(INT)  
t
w(INT)  
BIO timing  
CLKOUT  
t
su(IO)  
BIO  
t
f(IO)  
t
w(IO)  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
109  
TMS320C17, TMS320E17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
XF timing  
CLKOUT  
PA2-PA0  
1
t
d7  
t
d6  
WE  
t
d9  
2
t
d10  
t
v
t
d8  
D15-D0  
XF  
3
4
t
d(XF)  
XF Valid  
Legend:  
1. Port Address Valid  
2. Out Opcode Valid  
3. Port Data Valid  
4. Next Instruction Opcode Valid  
external framing: transmit timing  
t
r(SCLK)  
t
w(SCLKH)  
SCLK  
1
2
3
8
t
su(FS)  
t
w(SCLKL)  
t
su(FS)  
t
t
f(SCLK)  
FSX  
t
h(DX)  
t
d(DX1-CL)  
d(DX2-CL)  
1
2
DX1, DX0  
3
8
NOTES: A. Data valid on transmit output until SCLK rises.  
B. The most significant bit is shifted first.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
110  
TMS320C17, TMS320E17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
external framing: receive timing  
SCLK  
1
2
3
8
t
su(FS)  
t
su(FS)  
FSR  
t
su(DR)  
t
h(DR)  
DR1, DR0  
1
2
3
8
NOTE: The most significant bit is shifted first.  
internal framing: variable-data rate  
SCLK  
t
t
d(CH-FR)  
d(CH-FR)  
FR  
t
d(DX2-CL)  
t
d(DX1-CL)  
1
2
3
8
DX1, DX0  
t
su(DR)  
t
h(DR)  
1
2
3
8
DR1, DR0  
NOTE: The most significant bit is shifted first.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
111  
TMS320C17, TMS320E17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
internal framing: fixed-data rate  
K
t
d(CH-FR)  
t
d(CH-FR)  
R
0
t
d(DX2-CL)  
1
2
3
8
t
d(DX1-CL)  
t
h(DR)  
1
2
3
8
0
t
su(DR)  
NOTE: The most significant bit is shifted first.  
coprocessor timing: external write to coprocessor port  
HI/LO  
t
w(WRL)  
t
w(WRL)  
t
t
h(HL)  
t
su(HL)  
t
t
h(HL)  
su(HL)  
WR  
DATA IN  
RBLE  
t
h(WR)  
h(WR)  
t
t
su(WR)  
Valid  
su(WR)  
Valid  
t
)
d(W-A  
Only necessary for operation of 8-bit mode  
constructing 16-bit data  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
112  
TMS320C17, TMS320E17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
coprocessor timing: external read to coprocessor port  
HI/LO  
t
w(RDL)  
su(HL)  
t
t
w(RDL)  
su(HL)  
t
h(HL)  
t
h(HL)  
t
RD  
t
t
h(RD)  
h(RD)  
t
t
a(RD)  
a(RD)  
DATA  
OUT  
Valid  
Valid  
t
d(R-A)  
TBLF  
Only necessary for operation of 8-bit mode  
constructing 16-bit data  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
113  
TMS320E17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
EPROM PROGRAMMING  
absolute maximum ratings over specified temperature range (unless otherwise noted)  
Supply voltage range, V (see Note 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 14 V  
PP  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and  
functionaloperation of the device at these or any other conditions beyond those indicated in the “Recommended Operating Conditions” section of  
this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 6: All voltage values are with respect to GND.  
recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
V
PP  
Supply voltage (see Note 11)  
12.5  
12.75  
V
NOTE 11: V  
can be applied only to programming pins designed to accept V as an input. During programming the total supply current  
PP  
PP CC  
PP  
is I  
+ I  
.
electrical characteristics over specified temperature range (unless otherwise noted)  
PARAMETER  
supply current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
100  
50  
UNIT  
µA  
I
I
V
V
V
V
= V  
= 5.5 V  
PP1  
PP  
PP  
CC  
= 12.75 V, V  
supply current (during program pulse)  
= 5.5 V  
30  
mA  
PP2  
PP  
PP  
CC  
recommended timing requirements for programming, T = 25°C, V  
= 6 V, V  
= 12.5 V,  
A
CC  
PP  
(see Note 13)  
MIN  
0.95  
3.8  
2
NOM  
MAX  
UNIT  
ms  
ms  
µs  
t
t
t
t
t
t
t
t
t
t
t
t
Initial program pulse duration  
Final pulse duration  
1
1.05  
63  
w(IPGM)  
w(FPGM)  
su(A)  
Address setup time  
E setup time  
2
µs  
su(E)  
G setup time  
2
µs  
su(G)  
Output disable time from G (see Note 15)  
Output enable time from G  
Data setup time  
0
130  
ns  
dis(G)  
en(G)  
150  
ns  
2
2
2
0
2
µs  
su(D)  
V
V
setup time  
setup time  
µs  
su(VPP)  
su(VCC)  
h(A)  
PP  
µs  
CC  
Address hold time  
Data hold time  
µs  
µs  
h(D)  
Values derived from characterization data and not tested.  
NOTES: 13. For all switching characteristics and timing measurements, input pulse levels are 0.4 V to 2.4 V and V  
programming.  
= 12.5 V ± 0.25 V during  
PP  
15. Common test conditions apply for t  
except during programming.  
dis(G)  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
114  
TMS320E17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
PROGRAMMING THE TMS320E17/P17 EPROM CELL  
Each E17/P17 devices include a 4K × 16-bit industry-standard EPROM cell for prototyping, early field testing,  
and low-volume production. In conjunction with this EPROM, the TMS320C17 with a 4K-word masked ROM,  
then, provides more migration paths for cost-effective production.  
Note: The TMS320P17 is a one-time programmable (OTP) EPROM device.  
EPROM adapter sockets are available that provide pin-to-pin conversions for programming any E17/P17  
devices. One adapter socket (part number RTC/PGM320C-06), shown in Figure 19, converts a 40-pin DIP into  
an equivalent 28-pin device. Another socket (part number RTC/PGM320C-06), not shown, permits 44- to 28-pin  
conversion.  
Figure 19. EPROM Adapter Socket (40-Pin to 28-Pin DIP Conversion)  
Key features of the EPROM cell include the normal programming operation as well as verification. The EPROM  
cell also includes a code protection feature that allows code to be protected against copyright violations.  
The E17/P17 EPROM cell is programmed using the same family and device pinout codes as the TMS27C64  
8K × 8-bit EPROM. The TMS27C64 EPROM series are unltraviolet-light erasable, electrically programmable,  
read-only memories, fabricated using HVCMOS technology. They are pin-compatible with existing 28-pin  
ROMs and EPROMs. These EPROMs operate from a single 5-V supply in the read mode; however, a 12.5-V  
supplyisneededforprogramming. AllprogrammingsignalsareTTLlevel. Forprogrammingoutsidethesystem,  
existing EPROM programmers can be used. Locations may be programmed singly, in blocks, or at random.  
Figure 20 shows the wiring conversion to program the E17/P17 using the 28-pin pinout of the TMS27C64.  
Table 8 on pin nomenclature provides a description of the TMS27C64 pins. The code to be programmed into  
the device should be in serial mode. The E17/P17 devices use 13 address lines to address 4K-word memory  
in byte format.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
115  
TMS320E17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
A1  
1
2
3
4
A2  
A3  
A4 38  
A5 37  
40  
39  
A0(LSB)  
VPP  
RS  
28  
27  
26  
25  
24  
23 A11  
22 G  
21 A10  
20 E  
19  
18  
17  
16  
15  
V
5
6
7
8
V
1
2
3
4
5
6
7
8
9
EPT  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
A6  
A7  
A8  
CC  
PP  
PGM  
EPT  
A8  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0 10  
Q1 11  
Q2 12  
Q3 13  
GND 14  
CLKIN  
3.9 kΩ  
A9  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GND  
Q1(LSB)  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
Q8(MSB)  
V
CC  
A9  
A10  
A11  
Q8  
Q7  
Q6  
Q5  
Q4  
(MSB)A12  
E
G
PGM  
TMS27C64  
PINOUT  
TMS27C64  
PINOUT  
TMS320E17/P17  
CAUTION  
Although acceptable by some EPROM programmers, the signature mode cannot be used on any  
TMS320E1x device. The signature mode will input a high-level voltage (12.5 V ) onto pin A9. Since this  
dc  
pin is not designed for high voltage, the cell will be damaged. To prevent an accidental application of  
voltage, Texas Instruments has inserted a 3.9 kresistor between pin A9 of the TI programmer socket  
and the programmer itself.  
Pin Nomenclature (TMS320E17/P17)  
NAME  
A0-A12  
I/O  
DEFINITION  
I
On-chip EPROM programming address lines  
Clock oscillator input  
CLKIN  
E
I
I
EPROM chip select  
EPT  
G
GND  
PGM  
Q1-Q8  
RS  
I
I
I
I
EPROM test mode select  
EPROM read/verify select  
Ground  
EPROM write/program select  
Data lines for byte-wide programming of on-chip 8K bytes of EPROM  
Reset for initializing the device  
5-V power supply  
I/O  
I
I
I
V
CC  
V
PP  
12.5-V power supply  
Figure 20. TMS320E17/P17 EPROM Programming Conversion to TMS27C64 EPROM Pinout  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
116  
TMS320E17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
Table 8 shows the programming levels required for programming, verifying, reading, and protecting the EPROM cell.  
Table 8. TMS320E17/P17 Programming Mode Levels  
SIGNAL NAME TMS320E17 PIN TMS27C64 PIN PROGRAM  
VERIFY  
READ  
PROTECT VERIFY EPROM PROTECT  
E
G
25  
20  
V
V
V
V
V
V
IH  
V
IH  
V
IH  
IL  
IL  
PULSE  
IL  
PULSE  
IL  
24  
22  
V
IH  
IL  
PGM  
23  
27  
PULSE  
V
IH  
V
IH  
V
IH  
V
3
1
V
V
V
CC  
V
CC  
V
CC  
V
CC  
+ 1  
+ 1  
V
PP  
PP  
PP  
CC  
PP  
+ 1  
V
CC  
30  
28  
V
CC  
V
V
CC  
V
10  
14  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
V
V
V
V
V
V
V
SS  
SS  
SS  
CLKIN  
RS  
8
14  
SS  
SS  
PP  
SS  
SS  
PP  
4
5
14  
EPT  
26  
Q1-Q8  
A0-A3  
A4  
11-18  
2, 1, 40, 39  
38  
11-13, 15-19  
D
Q
Q
OUT  
Q8=RBIT  
Q8=PULSE  
X
IN  
OUT  
10-7  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
ADDR  
X
X
X
6
V
IH  
A5  
37  
5
X
A6  
36  
4
V
IL  
X
X
X
A7-A9  
A10-A12  
35, 34, 29  
28-26  
3, 25, 24  
21, 23, 2  
X
X
Legend:  
V
V
= TTL high level; V = TTL low level; ADDR = byte address bit  
IL  
PP  
IH  
= 12.5 V ± 0.25 V; V  
= 5 V ± 0.25 V; X = don’t care  
CC  
PULSE = low-going TTL level pulse; D = byte to be programmed at ADDR  
Q
IN  
= byte stored at ADDR; RBIT = ROM protect bit.  
OUT  
programming  
Since every memory bit in the cell is a logic 1, the programming operation reprograms certain bits to 0. Once  
programmed, these bits can be erased only by using ultraviolet light. The correct byte is placed on the data bus  
with V set to the 12.5 V level. The PGM pin is then pulsed low to program in the zeroes.  
PP  
erasure  
Before programming, the device must be erased by exposing it to ultraviolet light. The recommended minimum  
2
2
exposuredose(UV-intensity× exposure-time)is15Ws/cm . Atypical12-mW/cm , filterlessUVlampwillerase  
the device in 21 minutes. The lamp should be located about 2.5 cm above the chip during erasure. After  
exposure, all bits are in the high state.  
verify/read  
To verify correct programming, the EPROM cell can be read using either the verify or read line definitions shown  
in Table 8 assuming the inhibit bit has not been programmed.  
program inhibit  
Programming may be inhibited by maintaining a high level input on the E pin or PGM pin.  
read  
The EPROM contents may be read independent of the programming cycle, provided the RBIT (ROM protect  
bit) has not been programmed. The read is accomplished by setting E to zero and pulsing G low. The contents  
of the EPROM location selected by the value on the address inputs appear on Q8-Q1.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
117  
TMS320E17, TMS320P17  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
output disable  
DuringtheEPROMprogrammingprocess, theEPROMdataoutputsmaybedisabled, ifdesired, byestablishing  
the output disable state. This state is selected by setting G and E pins high. While output disable is selected,  
Q8-Q1are placed in the high-impedance state.  
EPROM protection  
To protect the proprietary algorithms existing in the code programmed on-chip, the ability to read or verify code  
from external accesses can be completely disabled. Programming the RBIT disables external access of the  
EPROM cell, making it impossible to access the code resident in the EPROM cell. The only way to remove this  
protectionistoerasetheentireEPROMcell, thusremovingtheproprietaryinformation. Thesignalrequirements  
for programming this bit are shown in Table 8. The cell can be determined as protected by verifying the  
programming of the RBIT shown in the table.  
standard programming procedure  
Before programming, the device must first be completely erased. The device can then be programmed with the  
correct code. It is advisable to program unused sections with zeroes as a further security measure. After the  
programming is complete, the code programmed into the cell should be verified. If the cell passes verification,  
the next step is to program the ROM protect bit (RBIT). Once the RBIT programming is verified, an opaque label  
should be placed over the window to protect the EPROM cell from inadvertent erasure by ambient light. At this  
point, the programming is complete, and the device is ready to be placed into its destination circuit.  
program cycle timing  
Verify  
Program  
V
V
V
V
IH  
A12-A0  
Q8-Q1  
Address Stable  
HI-Z  
Address N+1  
IL  
t
t
su(A)  
h(A)  
/V  
IH OH  
Data Out  
Valid  
Data In Stable  
/V  
IL OL  
t
t
t
dis(G)  
su(D)  
V
PP  
V
PP  
V
V
CC  
su(VPP)  
su(VCC)  
+1  
CC  
CC  
V
CC  
V
t
V
IH  
V
IL  
V
IH  
E
t
su(E)  
t
h(D)  
PGM  
G
t
su(G)  
V
IL  
t
w(IPGM)  
t
t
en(G)  
w(FPGM)  
V
V
IH  
IL  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
118  
TMS320LC17  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
absolute maximum ratings over specified temperature range (unless otherwise noted)  
Supply voltage range, V  
(see Note 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4.6 V  
CC  
Input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
Output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
to 0.5 V  
to 0.5 V  
CC  
CC  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 mW  
Air temperature range above operating devices: L version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to +150°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and  
functionaloperation of the device at these or any other conditions beyond those indicated in the “Recommended Operating Conditions” section of  
this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 6: All voltage values are with respect to V  
.
SS  
recommended operating conditions  
MIN  
NOM  
3.3  
0
MAX  
UNIT  
V
V
V
Supply voltage  
Supply voltage  
3.0  
3.6  
CC  
V
SS  
All inputs except CLKIN  
CLKIN  
2.0  
2.5  
V
V
IH  
High-level input voltage  
V
V
Low-level input voltage  
All inputs  
0.55  
300  
1.5  
V
IL  
I
I
High-level output current (all outputs)  
Low-level output current (all outputs)  
µA  
mA  
°C  
°C  
OH  
OL  
L version  
A version  
0
70  
T
A
Operating free-air temperature  
40  
85  
electrical characteristics over specified temperature range (unless otherwise noted)  
§
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
I
I
I
= MAX  
2.0  
V
V
V
OH  
OH  
OL  
V
High-level output voltage  
OH  
0.4  
CC  
= 20 µA (see Note 19)  
V
V
I
Low-level output voltage  
Off-state ouput current  
= MAX  
0.5  
20  
OL  
V
V
V
= V  
= V  
CC = MAX,  
O
CC  
SS  
µA  
µA  
OZ  
–20  
±20  
±50  
O
V = V  
to V , All inputs except CLKIN  
CC  
I
SS  
SS  
I
I
Input current  
V = V  
to V , CLKIN  
CC  
I
25  
15  
25  
10  
Data bus  
All others  
Data bus  
All others  
C
C
Input capacitance  
Output capacitance  
i
pF  
pF  
f = 1 MHz, All other pins 0 V  
o
§
All typical values are at V  
= 3.3 V, T = 25°C.  
A
CC  
Values derived from characterization data and not tested.  
NOTE 19: This voltage specification is included for interface to HC logic. All other timing parameters defined in this data sheet are specified for  
the test load circuit shown in Figure 2.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
119  
TMS320LC17  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
TMS320LC17  
FN PACKAGE  
(TOP VIEW)  
TMS320LC17  
N PACKAGE  
(TOP VIEW)  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
1
PA1/RBLE  
PA0/HI/LO  
MC  
PA2/TBLF  
FSR  
FSX  
FR  
DX1  
DX0  
SCLK  
DR1  
DEN/RD  
WE/WR  
2
3
4
RS  
5
EXINT  
CLKOUT  
X1  
X2/CLKIN  
BIO  
6
5
4
3
2
1 44 43 42 41 40  
6
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
7
CLKOUT  
X1  
X2/CLKIN  
BIO  
DX0  
SLCK  
DR1  
DEN/RD  
WE/WR  
7
8
8
9
9
10  
11  
12  
13  
10  
11  
12  
13  
14  
15  
16  
17  
V
SS  
NC  
D8/LD8  
D9/LD9  
V
CC  
V
V
SS  
CC  
DR0  
XF  
DR0  
XF  
MC/PM  
D0/LD0  
D8/LD8  
D10/LD10  
D11/LD11  
D12/LD12  
D13/LD13  
D14/LD14  
D15/LD15  
D7/LD7  
D9/LD9 14  
D10/LD10 15  
D11/LD11 16  
D12/LD12 17  
MC/PM  
D0/LD0  
D1/LD1  
D2/LD2  
D3/LD3  
D4/LD4  
D5/LD5  
V
SS  
18 19 20 21 22 23 24 25 26 27 28  
18 23  
19 22  
20 21  
D6/LD6  
electrical characteristics over specified ranges (unless otherwise noted)  
PARAMETER  
Supply current  
All typical values are at T = 70°C and are used for thermal resistance calculations.  
TEST CONDITIONS  
MIN  
TYP  
MAX  
20  
UNIT  
mA  
I
f = 14.4 MHz, V = 3.6 V, T = 0°C to 70°C  
15  
CC  
CC  
A
A
I
characteristics are inversely proportional to temperature. For I dependence on frequency, see Figure 3.  
CC  
CC  
clock characteristics and timing  
The TMS320LC17 can use either its internal oscillator or an external frequency source for a clock.  
internal clock option  
TheinternaloscillatorisenabledbyconnectingacrystalacrossX1andX2/CLKIN(see Figure1). Thefrequency  
of CLKOUT is one-fourth the crystal fundamental frequency. The crystal should be fundamental mode, and  
parallel resonant, with an effective series resistance of 30 ohms, a power dissipation of 1 mW, and be specified  
at a load capacitance of 20 pF.  
PARAMETER  
TEST CONDITIONS  
= – 40°C to 85°C  
MIN  
NOM  
MAX  
UNIT  
MHz  
pF  
Crystal frequency f  
C1, C2  
4.0  
14.4  
x
T
A
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
120  
TMS320LC17  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
external clock option  
An external frequency source can be used by injecting the frequency directly into X2/CLKIN with X1 left  
unconnected. The external frequency injected must conform to the specifications listed in the table below.  
switching characteristics over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
§
t
t
t
t
t
t
CLKOUT cycle time  
CLKOUT rise time  
CLKOUT fall time  
277.78  
1000  
ns  
c(C)  
10  
ns  
ns  
ns  
ns  
ns  
r(C)  
R
= 825 ,  
= 100 pF,  
L
8
f(C)  
C
L
Pulse duration, CLKOUT low  
(see Figure 2)  
131  
129  
w(CL)  
w(CH) Pulse duration, CLKOUT high  
Delay time CLKINto CLKOUT↓  
25  
75  
d(MCC)  
§
t
is the cycle time of CLKOUT, i.e., 4t  
(4 times CLKIN cycle time if an external oscillator is used).  
c(C)  
c(MC)  
Values derived from characterization data and not tested  
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
ns  
t
t
t
t
t
t
Master clock cycle time  
69.5  
150  
c(MC)  
Rise time, master clock input  
Fall time, master clock input  
Pulse duration, master clock  
Pulse duration, master clock low at t  
5
10  
10  
ns  
r(MC)  
5
ns  
f(MC)  
0.4t  
)
0.6t  
)
ns  
w(MCP)  
w(MCL)  
w(MCH)  
c(MC  
c(MC  
min  
30  
30  
ns  
c(MC)  
Pulse duration, master clock high at t  
c(MC)  
min  
ns  
Values derived from characterization data and not tested.  
MEMORY AND PERIPHERAL INTERFACE TIMING  
switching characteristics over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
ns  
10  
t
t
t
t
t
t
t
t
t
t
t
Delay time CLKOUTto address bus valid  
Delay time CLKOUTto DEN↓  
100  
d1  
1/4 t  
–10  
–5  
1/4 t  
1/2 t  
1/4 t  
+25  
30  
ns  
d4  
c(C)  
c(C)  
c(C)  
Delay time CLKOUTto DEN↑  
ns  
d5  
Delay time CLKOUTto WE↓  
1/2 t  
–5  
+25  
30  
ns  
d6  
c(C)  
R
= 825 ,  
= 100 pF,  
L
Delay time CLKOUTto WE↑  
–10  
ns  
d7  
C
L
Delay time CLKOUTto data bus OUT valid  
Time after CLKOUTthat data bus starts to be driven  
Time after CLKOUTthat data bus stops being driven  
Data bus OUT valid after CLKOUT↓  
+130  
c(C)  
ns  
(see Figure 2)  
d8  
1/4 t  
–5  
ns  
d9  
c(C)  
c(C)  
1/4 t  
+90  
c(C)  
ns  
d10  
1/4 t  
0
–10  
ns  
v
Address hold time after WE, MEN, or DEN(see Note 14)  
Address bus setup time or DEN↓  
ns  
h(A-WMD)  
su(A-MD)  
0
ns  
Values derived from characterization data and not tested.  
NOTE 14: Address bus will be valid upon WE, MEN, or DEN.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
121  
TMS320LC17  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
timing requirements over recommended operating conditions  
TEST CONDITIONS  
MIN  
80  
0
NOM  
MAX  
UNIT  
ns  
R
= 825 ,  
= 100 pF,  
L
t
t
Setup time data bus valid prior to CLKOUT↓  
su(D)  
C
L
Hold time data bus held valid after CLKOUT(see Note 9)  
(see Figure 2)  
ns  
h(D)  
NOTE 9: Data may be removed from the data bus upon MENor DENpreceding CLKOUT.  
RESET (RS) TIMING  
switching characteristics over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
1/2t  
MAX  
UNIT  
ns  
t
t
t
t
Delay time DEN, WE, and MENfrom RS  
Data bus disable time after RS  
+75  
+75  
d11  
c(C)  
c(C)  
R
= 825 ,  
= 100 pF,  
L
1/4t  
ns  
dis(R)  
d12  
C
L
Delay time from RSto high-impedance SCLK  
Delay time from RSto high-impedance DX1, DX0  
200  
200  
ns  
(see Figure 2)  
ns  
d13  
These values were derived from characterization data and not tested.  
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
ns  
t
t
Reset (RS) setup time prior to CLKOUT (see Note 10)  
RS pulse duration  
85  
su(R)  
5t  
c(C)  
ns  
w(R)  
NOTE 10: RS can occur anytime during a clock cycle. Time given is minimum to ensure synchronous operation.  
INTERRUPT (EXINT) TIMING  
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
ns  
t
t
t
Fall time EXINT  
15  
f(INT)  
Pulse duration EXINT  
t
ns  
w(INT)  
su(INT)  
c(C)  
85  
Setup time EXINTbefore CLKOUT↓  
ns  
I/O (BIO) TIMING  
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
ns  
t
t
t
Fall time BIO  
15  
f(IO)  
Pulse duration BIO  
t
ns  
w(IO)  
su(IO)  
c(C)  
85  
Setup time BIObefore CLKOUT↓  
ns  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
122  
TMS320LC17  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
I/O (BIO) TIMING  
switching characteristics over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
R
C
= 825 ,  
= 100 pF,  
L
L
5
t
Delay time CLKOUTto valid XF  
115  
ns  
d(XF)  
(see Figure 2)  
Values derived from characterization data and not tested.  
SERIAL PORT TIMING  
switching characteristics over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
ns  
t
t
t
t
Internal framing (FR) delay from SCLK rising edge  
DX bit 1 valid before SCLK falling edge  
DX bit 2 valid before SCLK falling edge  
DX hold time after SCLK falling edge  
120  
d(CH-FR)  
d(DX1-CL)  
d(DX2-CL)  
h(DX)  
20  
20  
ns  
ns  
t
/2  
ns  
c(SCLK)  
timing requirements over recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
ns  
t
t
t
t
t
t
t
t
Serial port clock (SCLK) cycle time  
Serial port clock (SCLK) fall time  
Serial port clock (SCLK) rise time  
555  
8000  
c(SCLK)  
f(SCLK)  
r(SCLK)  
w(SCLK)  
w(SCLKH)  
su(FS)  
30  
30  
ns  
ns  
§
Serial port clock (SCLK) low, pulse duration  
250  
250  
130  
20  
4400  
4400  
ns  
§
Serial port clock (SCLK) high, pulse duration  
FSX/FSR setup time before SCLK falling edge  
DR setup time before SCLK falling edge  
DR hold time after SCLK falling edge  
ns  
ns  
ns  
su(DR)  
20  
ns  
h(DR)  
§
Values derived from characterization data and not tested.  
Minimum cycle time is 2t  
where t  
is CLKOUT cycle time.  
c(C)  
The duty cycle of the serial port clock must be within 45 to 55%.  
c(C)  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
123  
TMS320LC17  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
COPROCESSOR INTERFACE TIMING  
switching characteristics over recommended operating conditions  
MIN  
NOM  
MAX  
150  
150  
150  
UNIT  
ns  
t
t
t
t
RD low to TBLF high  
WR low to RBLF high  
RD low to data valid  
d(R-A)  
d(W-A)  
a(RD)  
h(RD)  
ns  
ns  
Data hold time after RD high  
25  
timing requirements over recommended operating conditions  
MIN  
25  
NOM  
MAX  
UNIT  
ns  
t
t
t
t
t
t
HI/RD hold time after WR or RD high  
HI/RD setup time prior to WR or RD low  
Data setup time prior to WR high  
Data hold time after WR high  
Pulse duration, RD low  
h(HL)  
40  
ns  
su(HL)  
su(WR)  
h(WR)  
w(RDL)  
w(WRL)  
50  
ns  
35  
ns  
150  
150  
ns  
Pulse duration, WR low  
ns  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
124  
TMS320LC17  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
clock timing  
t
t
r(MC)  
w(MCH)  
t
w(MCP)  
t
c(MC)  
X2/CLKIN  
t
w(MCL)  
t
f(MC)  
t
w(CH)  
t
d(MCC)  
CLKOUT  
t
t
r(C)  
f(C)  
t
w(CL)  
t
c(C)  
are referenced to an intermediate level of 1.5 V on the CLKIN waveform.  
t
and t  
w(MCP)  
d(MCC)  
IN instruction timing  
CLKOUT  
MEN  
PA2-PA0  
DEN  
1
2
5
t
su(A-MD)  
4
t
su(D)  
t
3
t
d5  
d4  
t
h(D)  
D15-D0  
6
7
8
Legend:  
1. IN Instruction Prefetch  
2. Next Instruction Prefetch  
3. Address Bus Valid  
5. Address Bus Valid  
6. Instruction Valid  
7. Data Input Valid  
8. Instruction Valid  
4. Peripheral Address Valid  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
125  
TMS320LC17  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
OUT instruction timing  
CLKOUT  
MEN  
1
3
2
5
4
PA2-PA0  
t
t
d6  
d7  
WE  
t
d9  
t
d10  
t
d8  
t
v
7
6
8
D15-D0  
Legend:  
1. OUT Instruction Prefetch  
2. Next Instruction Prefetch  
3. Address Bus Valid  
5. Address Bus Valid  
6. Instruction Valid  
7. Data Output Valid  
8. Instruction Valid  
4. Peripheral Address Valid  
reset timing  
CLKOUT  
RS  
t
su(R)  
t
su(R)  
t
w(R)  
DEN  
WE  
t
d11  
t
dis(R)  
Data  
Out  
D15-D0  
t
t
d12  
SCLK  
d13  
DX1, DX0  
PC = 0  
PA = PC3 = 0  
PC = 1  
PA = Port Address PC3 = 3 LSB of PC  
Valid Valid  
PA = PC3 + 1 = 1  
PA2-PA0  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
126  
TMS320LC17  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
interrupt timing  
CLKOUT  
t
su(INT)  
INT  
t
f(INT)  
t
w(INT)  
BIO timing  
CLKOUT  
t
su(IO)  
BIO  
t
f(IO)  
t
w(IO)  
XF timing  
CLKOUT  
PA2-PA0  
WE  
1
t
d7  
t
d6  
t
d9  
2
t
d10  
t
v
t
d8  
D15-D0  
3
4
t
d(XF)  
XF  
XF Valid  
Legend:  
1. Port Address Valid  
2. Out Opcode Valid  
3. Port Data Valid  
4. Next Instruction Opcode Valid  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
127  
TMS320LC17  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
external framing: transmit timing  
t
r(SCLK)  
t
w(SCLKH)  
8
SCLK  
1
2
3
t
su(FS)  
t
w(SCLKL)  
t
su(FS)  
t
t
f(SCLK)  
FSX  
t
h(DX)  
t
d(DX1-CL)  
d(DX2-CL)  
1
2
DX1, DX0  
3
8
NOTES: A. Data valid on transmit output until SCLK rises.  
B. The most significant bit is shifted first.  
external framing: receive timing  
SCLK  
1
2
3
8
t
su(FS)  
t
su(FS)  
FSR  
t
su(DR)  
t
h(DR)  
DR1, DR0  
1
2
3
8
NOTE B: The most significant bit is shifted first.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
128  
TMS320LC17  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
internal framing: variable-data rate  
SCLK  
t
t
d(CH-FR)  
d(CH-FR)  
FR  
t
h(DX)  
2
t
d(DX2-CL)  
t
d(DX1-CL)  
1
3
8
DX1, DX0  
DR1, DR0  
t
su(DR)  
t
h(DR)  
1
2
3
8
NOTE: The most significant bit is shifted first.  
internal framing: fixed-data rate  
SCLK  
t
d(CH-FR)  
t
d(CH-FR)  
FR  
t
d(DX2-CL)  
t
h(DX)  
2
1
3
8
DX1, DX0  
t
d(DX1-CL)  
t
h(DR)  
1
2
3
8
DR1, DR0  
t
su(DR)  
NOTE: The most significant bit is shifted first.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
129  
TMS320LC17  
DIGITAL SIGNAL PROCESSOR  
SPRS009CJANUARY 1987REVISED JULY 1991  
coprocessor timing: external write to coprocessor port  
HI/LO  
t
w(WRL)  
t
w(WRL)  
t
t
h(HL)  
t
su(HL)  
t
t
h(HL)  
su(HL)  
WR  
t
h(WR)  
h(WR)  
t
t
su(WR)  
Valid  
su(WR)  
Valid  
DATA IN  
t
d(W-A)  
RBLE  
Only necessary for operation of 8-bit mode  
constructing 16-bit data  
coprocessor timing: external read to coprocessor port  
HI/LO  
t
w(RDL)  
su(HL)  
t
t
w(RDL)  
su(HL)  
t
h(HL)  
t
h(HL)  
t
RD  
t
t
h(RD)  
h(RD)  
t
t
a(RD)  
a(RD)  
DATA  
OUT  
Valid  
Valid  
t
d(R-A)  
TBLF  
Only necessary for operation of 8-bit mode  
constructing 16-bit data  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
130  
TMS320C1x  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
THERMAL RESISTANCE CHARACTERISTICS  
Commercial Devices  
Device/Package Thermal Resistance  
Junction To Case  
R
(°C/W)  
θJC  
DEVICE  
PDIP (N)  
CDIP (JD)  
PLCC (FN)  
CLCC (FZ)  
QFP (PG)  
TMS320C10  
TMS320C10-14  
TMS320C10-25  
TMS320C14  
TMS320E14  
TMS320P14  
TMS320C15  
TMS320C15-25  
TMS320E15  
TMS320E15-25  
TMS320LC15  
TMS320P15  
TMS320C16  
TMS320C17  
TMS320E17  
TMS320LC17  
TMS320P17  
26  
26  
26  
17  
17  
17  
11  
8
11  
17  
17  
26  
26  
8
8
8
8
26  
13  
17  
13  
25  
26  
17  
8
8
26  
13  
17  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
131  
TMS320C1x  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
THERMAL RESISTANCE CHARACTERISTICS  
Commercial Devices  
Device/Package Thermal Resistance  
Junction To Ambient  
R
(°C/W)  
θJA  
DEVICE  
PDIP (N)  
CDIP (JD)  
PLCC (FN)  
CLCC (FZ)  
QFP (PG)  
TMS320C10  
TMS320C10-14  
TMS320C10-25  
TMS320C14  
TMS320E14  
TMS320P14  
TMS320C15  
TMS320C15-25  
TMS320E15  
TMS320E15-25  
TMS320LC15  
TMS320P15  
TMS320C16  
TMS320C17  
TMS320E17  
TMS320LC17  
TMS320P17  
84  
84  
84  
60  
60  
60  
46  
49  
46  
60  
60  
84  
84  
40  
40  
64  
64  
84  
40  
60  
55  
120  
84  
60  
40  
64  
84  
40  
60  
55  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
132  
TMS320C1x  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
MECHANICAL DATA  
40-pin plastic dual-in-line package  
53,1 (2.090) Max  
40  
21  
21  
Either or Both  
Index Marks  
15,24  
0,25  
(0.600  
0.010)  
C
L
C
L
1
0,51  
(0.020)  
Min  
5,08  
(0.200)  
Max  
Seating Plane  
105°  
90°  
2,92 (0.115)  
Min  
0,457 ± 0,076  
(0.018 ± 0.003)  
0,28 ± 0,08  
(0.011 ± 0.003)  
0,84  
(0.033)  
Min  
2,41 (0.095)  
1,40 (0.055)  
2,54 (0.100) T.P.  
Pin Spacing  
1,52  
(0.060)  
Nom  
(See Note A)  
ALL DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES  
NOTE A: Each pin centerline is located within 0,254 (0.010) of its true longitudinal position.  
40-pin windowed ceramic dual-in-line package  
51,31 (2.020) Max  
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21  
15,0 (0.590)  
Nom  
Index Dot  
15,24  
(0.600  
0,25  
0.010)  
1
2
3
4
5
6
7
8
9
11  
10  
12 13 14 15 16 17 18 19 20  
4,70 (0.185)  
C
C
L
L
0,508 (0.020)  
Min  
Max  
Seating  
Plane  
105°  
90°  
1,27  
(0.050  
0,254  
0.010)  
1,27  
(0.050  
0,508  
0.020)  
2,54 (0.100) T.P.  
Pin Spacing  
(see Note A)  
3,81  
(0.150  
0,762  
0.030)  
0,25(0.010)  
Nom  
0,457  
0,076  
(0.018  
0.003)  
ALL DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES  
NOTE A: Each pin centerline is located within 0,254 (0.010) of its true longitudinal position.  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
133  
TMS320C1x  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
44-lead plastic chip carrier (FN suffix)  
16,66 (0.656)  
16,51 (0.650)  
17,65 (0.695)  
17,40 (0.685)  
Index  
Dot  
1,14 (0.045) × 45° Typ  
4,57 (0.180)  
16,66 (0.656)  
16,51 (0.650)  
4,19 (0.165)  
17,65 (0.695)  
17,40 (0.685)  
3,05 (0.120)  
2,29 (0.090)  
0,51  
(0.020)  
Min  
0,533 (0.021)  
0,330 (0.013)  
16,00 (0.630)  
14,99 (0.590)  
1,27  
(0.050)  
Typ  
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
134  
TMS320C1x  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
64-pin quad flat pack (PG suffix) (TMS320C16)  
24,0 (0.945)  
23,2 (0.913)  
20,0 (0.787) Nom  
51  
33  
52  
32  
18,0 (0.709)  
17,2 (0.677)  
14,0  
(0.552)  
Nom  
64  
20  
1
19  
1,0 (0.039) Typ  
C
C
L
L
0,35 (0.0014) Typ  
0,20 (0.008)  
0,10 (0.004)  
3,10 (0.122) Max  
1,0 (0.040)  
0,6 (0.024)  
0,1 (0.004) Min  
0°-10°  
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
135  
TMS320C1x  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
MECHANICAL DATA  
68-lead plastic chip carrier package (FN suffix)  
1,35 (0.053)  
45°  
1,19 (0.047)  
0,25 (0.010) R Max  
in 3 places  
2,79 (0.110)  
2,41 (0.095)  
24,33 (0.956)  
24,13 (0.950)  
(see Note A)  
4,50 (0.177)  
4,24 (0.167)  
25,27 (0.995)  
25,02 (0.985)  
23,62 (0.930)  
23,11 (0.910)  
(At Seating Plane)  
1,27 (0.050) T.P.  
(see Note B)  
24,33 (0.956)  
24,13 (0.950)  
(see Note A)  
1,22 (0.048)  
1,07 (0.042)  
45°  
0,94 (0.037)  
0,69 (0.027)  
R
25,27 (0.995)  
25,02 (0.985)  
Seating Plane  
0,81 (0.032)  
0,66 (0.026)  
1,52 (0.060) Min  
0,64  
(0.025)  
Min  
0,51 (0.020)  
0,36 (0.014)  
Lead Detail  
NOTES: A. Centerline of center pin, each side, is within 0,10 (0.004) of package centerline as determined by this deminsion.  
B. Location of each pin is within 0,27 (0.005) of true position with respect to center pin on each side.  
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
136  
TMS320C1x  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
MECHANICAL DATA  
68-lead ceramic chip carrier package (FZ suffix)  
4,57 (0.180)  
3,94 (0.155)  
A
(see Note A)  
3,55 (0.140)  
3,05 (0.120)  
B
1.02 (0.040) × 45°  
1,27 (0.05) Typ  
(see Note B)  
0,81 (0.032)  
0,66 (0.026)  
C
0,51 (0.020)  
(at Seating  
A
B
0,36 (0.014)  
Plane)  
0,64 (0.025) R Max  
Typ, 3 Places  
1.016 (0.040) Min  
Optional  
EPROM Window  
3,05 (0.120)  
2,29 (0.090)  
Seating Plane  
(see Note C)  
A
B
C
MIN  
12,32  
MAX  
MIN  
MAX  
MIN  
MAX  
12,57  
10,92  
11,56  
10,41  
10.92  
M0-087AA  
28  
44  
68  
(0.485) (0.495) (0.430) (0.455) (0.410) (0.430)  
17,40 17,65 16,00 16,64 15,49 16,00  
(0.685) (0.695) (0.630) (0.655) 0.610) (0.630)  
25,02 25,27 23,62 24,26 23.11 23,62  
(0.985) (0.995) (0.930) (0.955) (0.910) (0.930)  
M0-087AB  
M0-087AD  
NOTES: A. Centerline of center pin each side is within 0,10 (0.004) of package centerline as determined by dimension B.  
B. Location of each pin is within 0,27 (0.005) of true position with respect to center pin on each side.  
C. The lead contact points are planar within 0,15 (0.006)  
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
137  
TMS320C1x  
DIGITAL SIGNAL PROCESSORS  
SPRS009CJANUARY 1987REVISED JULY 1991  
INDEX  
accumulator/ALU . . . . . . . . . . . . . . . . . . . . . . 5  
key features (TMS320C1x) . . . . . . . . . . . . . . 1  
TMS320C10 . . . . . . . . . . . . . . . . . . . . . . . 11  
TMS320C14 . . . . . . . . . . . . . . . . . . . . . . . 28  
TMS320C15 . . . . . . . . . . . . . . . . . . . . . . . 52  
TMS320C16 . . . . . . . . . . . . . . . . . . . . . . . 79  
TMS320C17 . . . . . . . . . . . . . . . . . . . . . . . 95  
architecture (TMS320C1x family) . . . . . . 5, 6  
TMS320C14 . . . . . . . . . . . . . . . . . . . . . . . 32  
TMS320C17 . . . . . . . . . . . . . . . . . . . . . . . 96  
functional block diagram  
TMS320C10 . . . . . . . . . . . . . . . . . . . . . . . 13  
TMS320C14 . . . . . . . . . . . . . . . . . . . . . . . 32  
TMS320C15 . . . . . . . . . . . . . . . . . . . . . . . 53  
TMS320C16 . . . . . . . . . . . . . . . . . . . . . . . 82  
TMS320C17 . . . . . . . . . . . . . . . . . . . . . . . 95  
mechanical data . . . . . . . . . . . . . . . 133 – 137  
memory (TMS320C1x) . . . . . . . . . . . . . 2, 3, 5  
TMS320C10 . . . . . . . . . . . . . . . . . . . . . . . 11  
TMS320C14 . . . . . . . . . . . . . . . . . . . . . . . 28  
TMS320C15 . . . . . . . . . . . . . . . . . . . . . . . 52  
TMS320C16 . . . . . . . . . . . . . . . . . . . . . . . 79  
TMS320C17 . . . . . . . . . . . . . . . . . . . . . . . 95  
codec interface  
TMS320C17 . . . . . . . . . . . . . . 3, 6, 96 – 98  
companding hardware  
TMS320C17 . . . . . . . . . . . . . . . . . . 3, 96, 97  
control register  
TMS320C17 . . . . . . . . . . . . . . . . . . . . . . . 97  
coprocessor interface . . . . . . . . . . . . . . . . . 98  
microcomputer/microprocessor mode . . 5, 33  
microcomputer/coprocessor . . . . . . . . . . 7, 98  
multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
data memory . . . . . . . . . . . . . . . . . . 2, 3, 5, 33  
description  
package types (TMS320C1x) . . . . . . . . . . . . 4  
pinout/nomenclature  
TMS320C10 . . . . . . . . . . . . . . . . . . . 2, 3, 11  
TMS320C14 . . . . . . . . . . . . . . . 2, 3, 28, 29  
TMS320C15 . . . . . . . . . . . . . . . . . . . 2, 3, 52  
TMS320LC15 . . . . . . . . . . . . . . . . . . 2, 3, 70  
TMS320C16 . . . . . . . . . . . . . . . . . . . 2, 3, 79  
TMS320C17 . . . . . . . . . . . . . . . . . . . 2, 3, 95  
TMS320LC17 . . . . . . . . . . . . . . . . . 2, 3, 120  
TMS320C10 . . . . . . . . . . . . . . . . . . . . . 4, 11  
TMS320C14 . . . . . . . . . . . . . . . . . . . . . 4, 28  
TMS320C15 . . . . . . . . . . . . . . . . . . . . . 4, 52  
TMS320LC15 . . . . . . . . . . . . . . . . . . . . 4, 70  
TMS320C16 . . . . . . . . . . . . . . . . . . . . . 4, 79  
TMS320C17 . . . . . . . . . . . . . . . . . . . . . 4, 95  
TMS320LC17 . . . . . . . . . . . . . . . . . . . 4, 120  
electrical specifications  
serial port  
TMS320C10 . . . . . . . . . . . . . . . . . . . . . . . 14  
TMS320C14 . . . . . . . . . . . . . . . . . . . . . . . 35  
TMS320C15 . . . . . . . . . . . . . . . . . . . . . . . 55  
TMS320LC15 . . . . . . . . . . . . . . . . . . . . . . 69  
TMS320C16 . . . . . . . . . . . . . . . . . . . . . . . 83  
TMS320C17 . . . . . . . . . . . . . . . . . . . . . . 102  
TMS320LC17 . . . . . . . . . . . . . . . . . . . . . 120  
TMS320C17/E17 . . . . . . . . . . . . . . . . . 6, 96  
shifters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
terminal functions  
TMS320C10 . . . . . . . . . . . . . . . . . . . . . . . 12  
TMS320C14 . . . . . . . . . . . . . . . . . . . . . . . 30  
TMS320C15 . . . . . . . . . . . . . . . . . . . . . . . 54  
TMS320C16 . . . . . . . . . . . . . . . . . . . . . . . 80  
TMS320C17 . . . . . . . . . . . . . . . . . . . . . . 100  
EPROM programming  
TMS320E14/P14 . . . . . . . . . . . . . . . . . . . 47  
TMS320E15/P15 . . . . . . . . . . . . . . . . . . . 65  
TMS320E17/P17 . . . . . . . . . . . . . . . . . . 114  
thermal data . . . . . . . . . . . . . . . . . 27, 131, 132  
timing diagrams  
framing pulses  
TMS320C10 . . . . . . . . . . . . . . . . . . . 23 – 26  
TMS320C14 . . . . . . . . . . . . . . . 41 – 46, 51  
TMS320C15 . . . . . . . . . . . . . . . 60 – 63, 68  
TMS320LC15 . . . . . . . . . . . . . . . . . . 75 – 78  
TMS320C16 . . . . . . . . . . . . . . . . . . . 86 – 91  
TMS320C17 . . . . . . . . . . . . 107 – 113, 118  
TMS320LC17 . . . . . . . . . . . . . . . 125 – 130  
TMS320C17/LC17/E17/P17 . . . . . . . . . 97  
instruction set . . . . . . . . . . . . . . . . . . . . . . . . . 7  
interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 33  
interfacing to SRAM/EPROM/peripherals  
TMS320C16 . . . . . . . . . . . . . . . . . . . . . . . 90  
I/O channels . . . . . . . . . . . . 2, 3, 6, 28, 79, 95  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77001  
138  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Dec-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
CDIP SB  
JLCC  
Drawing  
5962-8763308QA  
5962-8763308YA  
SMJ320C15-25FJM  
SMJ320C15-25JDM  
TMS320C10FNA  
TMS320C10FNL  
TMS320C10FNL25  
TMS320C10NA  
TMS320C10NL  
ACTIVE  
ACTIVE  
JD  
40  
44  
44  
40  
44  
44  
44  
40  
40  
40  
0
1
1
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
CU SNPB  
CU SNPB  
CU SNPB  
CU SNPB  
CU SNPB  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
CU SNPB  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Level-NC-NC-NC  
Level-NC-NC-NC  
Level-NC-NC-NC  
Level-NC-NC-NC  
Call TI  
FJ  
ACTIVE  
JLCC  
FJ  
ACTIVE  
CDIP SB  
JD  
OBSOLETE  
OBSOLETE  
NRND  
PLCC  
PLCC  
PDIP  
PDIP  
PDIP  
FN  
FN  
N
Level-3-220C-168HR  
Level-3-220C-168HR  
Level-NC-NC-NC  
Level-NC-NC-NC  
Level-NC-NC-NC  
Call TI  
26  
OBSOLETE  
NRND  
N
9
9
TMS320C10NL-25  
TMS320C10NL25  
TMS320C14FNL  
TMS320C15FNA  
TMS320C15FNL  
TMS320C15FNL25  
TMS320C15NA  
TMS320C15NL  
NRND  
N
OBSOLETE  
NRND  
PLCC  
PLCC  
PLCC  
PLCC  
PDIP  
PDIP  
PDIP  
PLCC  
QFP  
FN  
FN  
FN  
FN  
N
68  
44  
44  
44  
40  
40  
40  
40  
44  
64  
44  
40  
44  
40  
68  
44  
44  
40  
40  
40  
44  
44  
44  
40  
40  
Call TI  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
Call TI  
Call TI  
Call TI  
Call TI  
N
Call TI  
TMS320C15NL-25  
TMS320C15NL25  
TMS320C15PEL  
TMS320C16PGL  
TMS320C17FNL  
TMS320C17NL  
N
Call TI  
NL  
PE  
PG  
FN  
N
Call TI  
Call TI  
QFP  
Call TI  
PLCC  
PDIP  
PLCC  
PDIP  
PLCC  
PLCC  
PLCC  
PDIP  
PDIP  
PDIP  
PLCC  
PLCC  
PLCC  
PDIP  
PDIP  
Call TI  
Call TI  
TMS320LC15FNL  
TMS320LC15NL  
TMS320P14FNL  
TMS320P15FNL  
TMS320P15FNL25  
TMS320P15NA  
FN  
N
Call TI  
Call TI  
FN  
FN  
FN  
N
Level-3-220C-168HR  
Call TI  
Call TI  
Call TI  
TMS320P15NL  
N
Call TI  
TMS320P15NL25  
TMS320P17FNA  
TMS320P17FNL  
TMS320P17FNLR  
TMS320P17NL  
N
Call TI  
FN  
FN  
FN  
N
Call TI  
Call TI  
Call TI  
Call TI  
TMS320SS16NL  
N
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
Eco Plan  
5-Dec-2005  
(2)  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MCDI005 – JANUARY 1998  
JD (R-CDIP-T**)  
CERAMIC SIDE-BRAZE DUAL-IN-LINE PACKAGE  
24 PINS SHOWN  
A
24  
13  
0.590 (15,00)  
TYP  
1
12  
0.065 (1,65)  
0.045 (1,14)  
0.175 (4,45)  
0.140 (3,56)  
0.620 (15,75)  
0.590 (14,99)  
0.075 (1,91) MAX (4 Places)  
Seating Plane  
0.020 (0,51) MIN  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.125 (3,18) MIN  
0.100 (2,54)  
0.012 (0,30)  
0.008 (0,20)  
PINS **  
24  
28  
1.450  
40  
48  
52  
DIM  
1.250  
2.050  
2.435  
2.650  
A MAX  
(31,75) (36,83) (52,07) (61,85) (67,31)  
4040087/B 04/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package is hermetically sealed with a metal lid.  
D. The terminals are gold-plated.  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MPDI008 – OCTOBER 1994  
N (R-PDIP-T**)  
PLASTIC DUAL-IN-LINE PACKAGE  
24 PIN SHOWN  
A
24  
13  
0.560 (14,22)  
0.520 (13,21)  
1
12  
0.060 (1,52) TYP  
0.200 (5,08) MAX  
0.020 (0,51) MIN  
0.610 (15,49)  
0.590 (14,99)  
Seating Plane  
0.100 (2,54)  
0.125 (3,18) MIN  
0.010 (0,25) NOM  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
PINS **  
M
24  
28  
32  
40  
48  
52  
DIM  
1.270  
1.450  
1.650  
2.090  
2.450  
2.650  
A MAX  
(32,26) (36,83) (41,91) (53,09) (62,23) (67,31)  
1.230  
1.410  
1.610  
2.040  
2.390  
2.590  
A MIN  
(31,24) (35,81) (40,89) (51,82) (60,71) (65,79)  
4040053/B 04/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-011  
D. Falls within JEDEC MS-015 (32 pin only)  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MPLC004A – OCTOBER 1994  
FN (S-PQCC-J**)  
PLASTIC J-LEADED CHIP CARRIER  
20 PIN SHOWN  
Seating Plane  
0.004 (0,10)  
0.180 (4,57) MAX  
0.120 (3,05)  
D
0.090 (2,29)  
D1  
0.020 (0,51) MIN  
3
1
19  
0.032 (0,81)  
0.026 (0,66)  
4
18  
D2/E2  
D2/E2  
E
E1  
8
14  
0.021 (0,53)  
0.013 (0,33)  
0.050 (1,27)  
9
13  
0.007 (0,18)  
M
0.008 (0,20) NOM  
D/E  
D1/E1  
D2/E2  
NO. OF  
PINS  
**  
MIN  
0.385 (9,78)  
MAX  
MIN  
MAX  
MIN  
MAX  
0.395 (10,03)  
0.350 (8,89)  
0.356 (9,04)  
0.141 (3,58)  
0.191 (4,85)  
0.291 (7,39)  
0.341 (8,66)  
0.169 (4,29)  
0.219 (5,56)  
0.319 (8,10)  
0.369 (9,37)  
20  
28  
44  
52  
68  
84  
0.485 (12,32) 0.495 (12,57) 0.450 (11,43) 0.456 (11,58)  
0.685 (17,40) 0.695 (17,65) 0.650 (16,51) 0.656 (16,66)  
0.785 (19,94) 0.795 (20,19) 0.750 (19,05) 0.756 (19,20)  
0.985 (25,02) 0.995 (25,27) 0.950 (24,13) 0.958 (24,33) 0.441 (11,20) 0.469 (11,91)  
1.185 (30,10) 1.195 (30,35) 1.150 (29,21) 1.158 (29,41) 0.541 (13,74) 0.569 (14,45)  
4040005/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-018  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MQFP008 – JULY 1998  
PG (R-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,45  
0,25  
M
0,20  
1,00  
51  
33  
52  
32  
14,20 18,00  
13,80 17,20  
12,00 TYP  
64  
20  
1
19  
0,15 NOM  
18,00 TYP  
20,20  
19,80  
24,00  
23,20  
Gage Plane  
0,25  
0,10 MIN  
2,70 TYP  
0°10°  
1,10  
0,70  
Seating Plane  
3,10 MAX  
0,10  
4040101/B 03/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Contact field sales office to determine if a tighter coplanarity requirement is available for this package.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

TI

TMS320C10FNL

DIGITAL SIGNAL PROCESSORS
TI

TMS320C10FNL-25

16-Bit Digital Signal Processor
ETC

TMS320C10FNL14

16-Bit Digital Signal Processor
ETC

TMS320C10FNL25

DIGITAL SIGNAL PROCESSORS
TI

TMS320C10FNLR25

DIGITAL SIGNAL PROCESSORS
TI

TMS320C10N

16-BIT, 20.5MHz, OTHER DSP, PDIP40
TI

TMS320C10NA

DIGITAL SIGNAL PROCESSORS
TI

TMS320C10NL

DIGITAL SIGNAL PROCESSORS
TI

TMS320C10NL-14

16-Bit Digital Signal Processor
ETC

TMS320C10NL-25

DIGITAL SIGNAL PROCESSORS
TI

TMS320C10NL25

DIGITAL SIGNAL PROCESSORS
TI