TMS320C6211PJ150 [TI]

FIXED-POINT DIGITAL SIGNAL PROCESSORS; 定点数字信号处理器
TMS320C6211PJ150
型号: TMS320C6211PJ150
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

FIXED-POINT DIGITAL SIGNAL PROCESSORS
定点数字信号处理器

数字信号处理器
文件: 总87页 (文件大小:1251K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢄ ꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
D
D
Excellent Price/Performance Digital Signal  
Processors (DSPs): TMS320C62x  
(TMS320C6211 and TMS320C6211B)  
− Eight 32-Bit Instructions/Cycle  
− C6211, C6211B, C6711, and C6711B are  
Pin-Compatible  
− 150-, 167-MHz Clock Rates  
− 6.7-, 6-ns Instruction Cycle Time  
1200, 1333 MIPS  
D
Device Configuration  
− Boot Mode: HPI, 8-, 16-, and 32-Bit ROM  
Boot  
− Endianness: Little Endian, Big Endian  
D
32-Bit External Memory Interface (EMIF)  
− Glueless Interface to Asynchronous  
Memories: SRAM and EPROM  
− Glueless Interface to Synchronous  
Memories: SDRAM and SBSRAM  
− 512M-Byte Total Addressable External  
Memory Space  
− Extended Temperature Device (C6211B)  
VelociTIAdvanced Very Long Instruction  
Word (VLIW) C62xDSP Core (C6211/11B)  
− Eight Highly Independent Functional  
Units:  
D
D
D
Enhanced Direct-Memory-Access (EDMA)  
Controller (16 Independent Channels)  
16-Bit Host-Port Interface (HPI)  
− Access to Entire Memory Map  
− Six ALUs (32-/40-Bit)  
− Two 16-Bit Multipliers (32-Bit Results)  
− Load-Store Architecture With 32 32-Bit  
General-Purpose Registers  
− Instruction Packing Reduces Code Size  
− All Instructions Conditional  
Two Multichannel Buffered Serial Ports  
(McBSPs)  
− Direct Interface to T1/E1, MVIP, SCSA  
Framers  
− ST-Bus-Switching Compatible  
− Up to 256 Channels Each  
− AC97-Compatible  
− Serial-Peripheral-Interface (SPI)  
Compatible (Motorola)  
D
D
Instruction Set Features  
− Byte-Addressable (8-, 16-, 32-Bit Data)  
− 8-Bit Overflow Protection  
− Saturation  
− Bit-Field Extract, Set, Clear  
− Bit-Counting  
D
D
Two 32-Bit General-Purpose Timers  
− Normalization  
Flexible Phase-Locked-Loop (PLL) Clock  
Generator  
L1/L2 Memory Architecture  
− 32K-Bit (4K-Byte) L1P Program Cache  
(Direct Mapped)  
− 32K-Bit (4K-Byte) L1D Data Cache  
(2-Way Set-Associative)  
D
D
D
D
IEEE-1149.1 (JTAG )  
Boundary-Scan-Compatible  
256-Pin Ball Grid Array (BGA) Package  
(GFN and ZFN Suffixes)  
− 512K-Bit (64K-Byte) L2 Unified Mapped  
RAM/Cache  
0.18-µm/5-Level Metal Process  
− CMOS Technology  
(Flexible Data/Program Allocation)  
3.3-V I/Os, 1.8-V Internal  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
TMS320C62x, VelociTI, and C62x are trademarks of Texas Instruments.  
Motorola is a trademark of Motorola, Inc.  
All trademarks are the property of their respective owners.  
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.  
ꢀꢤ  
Copyright 2004, Texas Instruments Incorporated  
ꢠ ꢤ ꢡ ꢠꢙ ꢚꢮ ꢜꢛ ꢟ ꢧꢧ ꢥꢟ ꢝ ꢟ ꢞ ꢤ ꢠ ꢤ ꢝ ꢡ ꢩ  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
Table of Contents  
revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
GFN and ZFN BGA packages (bottom view) . . . . . . . . . . . . 4  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
device characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
device compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
functional block and CPU (DSP core) diagram . . . . . . . . . . . 8  
CPU (DSP core) description . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
memory map summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
peripheral register descriptions . . . . . . . . . . . . . . . . . . . . . . . 12  
PWRD bits in CPU CSR register description . . . . . . . . . . . 17  
EDMA channel synchronization events . . . . . . . . . . . . . . . . 18  
interrupt sources and interrupt selector . . . . . . . . . . . . . . . . 19  
signal groups description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
terminal functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
documentation support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
clock PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
power-down logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
power-supply sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
IEEE 1149.1 JTAG compatibility statement . . . . . . . . . . . . . 40  
EMIF device speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
bootmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
absolute maximum ratings over operating case  
temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
recommended operating conditions . . . . . . . . . . . . . . . . 42  
electrical characteristics over recommended ranges of  
supply voltage and operating case temperature . 42  
parameter measurement information . . . . . . . . . . . . . . . 43  
signal transition levels . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
timing parameters and board routing analysis . . . . . . 44  
input and output clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
asynchronous memory timing . . . . . . . . . . . . . . . . . . . . . 49  
synchronous-burst memory timing . . . . . . . . . . . . . . . . . 52  
synchronous DRAM timing . . . . . . . . . . . . . . . . . . . . . . . . 54  
HOLD/HOLDA timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
BUSREQ timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
reset timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
external interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
host-port interface timing . . . . . . . . . . . . . . . . . . . . . . . . . 65  
multichannel buffered serial port timing . . . . . . . . . . . . . 69  
timer timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
JTAG test-port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
REVISION HISTORY  
This data sheet revision history highlights the technical changes made to the SPRS073K device-specific data  
sheet to make it an SPRS073L revision.  
Scope: Applicable updates to the C62x device family, specifically relating to the C6211 and C6211B devices,  
have been incorporated.  
PAGE(S)  
ADDITIONS/CHANGES/DELETIONS  
NO.  
Global:  
Added “ZFN” mechanical packaging information  
3
Moved the Revision History to the front of the document  
31  
Device Support, Device and Development-Support Tool Nomenclature section:  
Updated the “To designate the stages in the product development cycle...” paragraph  
Updated the “TMX and TMP devices...” paragraph  
Added “The ZFN package, like the GFN package, is ...” paragraph  
32  
Figure 4. TMS320C6000DSP Device Nomenclature (Including the TMS320C6211 and TMS320C6211B Devices):  
Deleted the “TMS320C6211/C6211B Device Part Numbers (P/Ns) and Ordering Information” table and associated  
paragraph  
Added “ZFN” package and associated footnote  
Added the “For actual device part numbers (P/Ns) and ordering information, ...” footnote  
82, 83  
Mechanical Data section:  
Deleted the “GFN (S-PBGA-N256)” mechanical data package diagram; now an automated merge process  
Added “thermal resistance characteristics (S-PBGA package) for ZFN” table  
Added new “Packaging Information” title and lead-in sentence  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
GFN and ZFN BGA packages (bottom view)  
GFN and ZFN 256-PIN BALL GRID ARRAY (BGA) PACKAGES  
(BOTTOM VIEW)  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13  
12  
15  
17  
19  
2
4
6
8
10  
14  
16  
18  
20  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
description  
The TMS320C62xDSPs (including the TMS320C6211/C6211B devices) compose one of the fixed-point DSP  
families in the TMS320C6000DSP platform. The TMS320C6211 (C6211) and TMS320C6211B (C6211B)  
devices are based on the high-performance, advanced VelociTIvery-long-instruction-word (VLIW)  
architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and  
multifunction applications.  
With performance of up to 1333 million instructions per second (MIPS) at a clock rate of 167 MHz, the  
C6211/C6211B device offers cost-effective solutions to high-performance DSP programming challenges. The  
C6211/C6211B DSP possesses the operational flexibility of high-speed controllers and the numerical capability  
of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly  
independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high  
degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6211/C6211B can produce two  
multiply-accumulates (MACs) per cycle for a total of 333 million MACs per second (MMACS). The  
C6211/C6211B DSP also has application-specific hardware logic, on-chip memory, and additional on-chip  
peripherals.  
The C6211/C6211B uses a two-level cache-based architecture and has a powerful and diverse set of  
peripherals. The Level 1 program cache (L1P) is a 32-Kbit direct mapped cache and the Level 1 data cache  
(L1D) is a 32-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 512-Kbit memory  
space that is shared between program and data space. L2 memory can be configured as mapped memory,  
cache, or combinations of the two.The peripheral set includes two multichannel buffered serial ports (McBSPs),  
two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF)  
capable of interfacing to SDRAM, SBSRAM and asynchronous peripherals.  
The C6211/C6211B has a complete set of development tools which includes: a new C compiler, an assembly  
optimizer to simplify programming and scheduling, and a Windowsdebugger interface for visibility into source  
code execution.  
TMS320C6000 is a trademark of Texas Instruments.  
Windows is a registered trademark of the Microsoft Corporation.  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
device characteristics  
Table 1 provides an overview of the C6211/C6211B DSP. The table shows significant features of each device,  
including the capacity of on-chip RAM, the peripherals, the execution time, and the package type with pin count.  
For more details on the C6000DSP device part numbers and part numbering, see Figure 4.  
Table 1. Characteristics of the C6211/C6211B Processors  
C6211  
(FIXED-POINT DSP)  
C6211B  
(FIXED-POINT DSP)  
HARDWARE FEATURES  
EMIF  
1
1
(Clock source = ECLKIN)  
EDMA  
(Internal clock source =  
CPU clock frequency)  
1
1
2
1
1
2
HPI  
Peripherals  
McBSPs  
(Internal clock source =  
CPU/2 clock frequency)  
32-Bit Timers  
(Internal clock source =  
CPU/4 clock frequency)  
2
2
Size (Bytes)  
72K  
72K  
On-Chip  
Memory  
4K-Byte (4KB) L1 Program (L1P) Cache  
4KB L1 Data (L1D) Cache  
4K-Byte (4KB) L1 Program (L1P) Cache  
4KB L1 Data (L1D) Cache  
Organization  
64KB Unified Mapped RAM/Cache (L2)  
64KB Unified Mapped RAM/Cache (L2)  
CPU ID+  
CPU Rev ID  
Control Status Register  
(CSR.[31:16])  
0x0002  
0x0002  
Frequency  
MHz  
167, 150  
167, 150  
6 ns (C6211B-167)  
6.7 ns (C6211B-150)  
6.7 ns (C6211BGFNA-150)  
6 ns (C6211-167)  
6.7 ns (C6211-150)  
Cycle Time  
ns  
Core (V)  
1.8  
3.3  
1.8  
3.3  
Voltage  
I/O (V)  
PLL Options  
CLKIN frequency multiplier  
27 x 27 mm  
Bypass (x1), x4  
256-Pin BGA (GFN)  
Bypass (x1), x4  
256-Pin BGA (GFN and ZFN)  
BGA Packages  
Process  
Technology  
µm  
0.18 µm  
0.18 µm  
Product Status  
Product Preview (PP)  
Advance Information (AI)  
Production Data (PD)  
PD  
PD  
C6000 is a trademark of Texas Instruments.  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
device compatibility  
The TMS320C6211/C6211B and C6711/C6711B devices are pin-compatible and have the same peripheral set;  
thus, making new system designs easier and providing faster time to market. The following list summarizes the  
device characteristic differences among the C6211, C6211B, C6711, and C6711B devices:  
D
D
The C6211 and C6211B devices have a fixed-point C62x CPU, while the C6711 and C6711B devices have  
a floating-point C67x CPU.  
The C6211/C6211B device runs at -167 and -150 MHz clock speeds (with a C6211BGFNA extended  
temperature device that also runs at -150 MHz), while the C6711/C6711B device runs at -150 and -100 MHz  
(with a C6711BGFNA extended temperature device that also runs at -100 MHz).  
For a more detailed discussion on the similarities/differences between the C6211 and C6711 devices, see the  
How to Begin Development Today with the TMS320C6211 DSP and How to Begin Development with the  
TMS320C6711 DSP application reports (literature number SPRA474 and SPRA522, respectively).  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
functional block and CPU (DSP core) diagram  
C6211/C6211B Digital Signal Processors  
SDRAM  
External  
SBSRAM  
32  
Memory  
Interface  
(EMIF)  
L1P Cache  
Direct Mapped  
4K Bytes Total  
SRAM  
ROM/FLASH  
I/O Devices  
Timer 0  
Timer 1  
C6000CPU (DSP Core)  
Instruction Fetch  
Control  
L2  
Registers  
Instruction Dispatch  
Instruction Decode  
Memory  
4 Banks  
64K Bytes  
Total  
Enhanced  
DMA  
Controller  
(16 channel)  
Control  
Logic  
Multichannel  
Buffered  
Serial Port 1  
(McBSP1)  
Data Path A  
Data Path B  
Framing Chips:  
H.100, MVIP,  
SCSA, T1, E1  
AC97 Devices,  
SPI Devices,  
Codecs  
Test  
A Register File  
B Register File  
In-Circuit  
Emulation  
Multichannel  
Buffered  
Serial Port 0  
(McBSP0)  
Interrupt  
Control  
.L1 .S1 .M1 .D1  
.D2 .M2 .S2 .L2  
L1D Cache  
2-Way Set  
Associative  
4K Bytes Total  
Host Port  
Interface  
(HPI)  
16  
Power-Down  
Logic  
PLL  
(x1, x4)  
Boot  
Configuration  
Interrupt  
Selector  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
CPU (DSP core) description  
The CPU fetches VelociTIadvanced very-long instruction words (VLIW) (256 bits wide) to supply up to eight  
32-bit instructions to the eight functional units during every clock cycle. The VelociTIVLIW architecture  
features controls by which all eight units do not have to be supplied with instructions if they are not ready to  
execute. The first bit of every 32-bit instruction determines if the next instruction belongs to the same execute  
packet as the previous instruction, or whether it should be executed in the following clock as a part of the next  
execute packet. Fetch packets are always 256 bits wide; however, the execute packets can vary in size. The  
variable-length execute packets are a key memory-saving feature, distinguishing the C62x CPU from other  
VLIW architectures.  
The CPU features two sets of functional units. Each set contains four units and a register file. One set contains  
functional units .L1, .S1, .M1, and .D1; the other set contains units .D2, .M2, .S2, and .L2. The two register files  
each contain 16 32-bit registers for a total of 32 general-purpose registers. The two sets of functional units, along  
with two register files, compose sides A and B of the CPU (see the functional block and CPU diagram and  
Figure 1). The four functional units on each side of the CPU can freely share the 16 registers belonging to that  
side. Additionally, each side features a single data bus connected to all the registers on the other side, by which  
the two sets of functional units can access data from the register files on the opposite side. While register access  
by functional units on the same side of the CPU as the register file can service all the units in a single clock cycle,  
register access using the register file across the CPU supports one read and one write per cycle.  
Another key feature of the C62x CPU is the load/store architecture, where all instructions operate on registers  
(as opposed to data in memory). Two sets of data-addressing units (.D1 and .D2) are responsible for all data  
transfers between the register files and the memory. The data address driven by the .D units allows data  
addresses generated from one register file to be used to load or store data to or from the other register file. The  
C62x CPU supports a variety of indirect addressing modes using either linear- or circular-addressing modes  
with 5- or 15-bit offsets. All instructions are conditional, and most can access any one of the 32 registers. Some  
registers, however, are singled out to support specific addressing or to hold the condition for conditional  
instructions (if the condition is not automatically “true”). The two .M functional units are dedicated for multiplies.  
The two .S and .L functional units perform a general set of arithmetic, logical, and branch functions with results  
available every clock cycle.  
The processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a program memory.  
The 32-bit instructions destined for the individual functional units are “linked” together by “1” bits in the least  
significant bit (LSB) position of the instructions. The instructions that are “chained” together for simultaneous  
execution (up to eight in total) compose an execute packet. A “0” in the LSB of an instruction breaks the chain,  
effectively placing the instructions that follow it in the next execute packet. If an execute packet crosses the  
fetch-packet boundary (256 bits wide), the assembler places it in the next fetch packet, while the remainder of  
the current fetch packet is padded with NOP instructions. The number of execute packets within a fetch packet  
can vary from one to eight. Execute packets are dispatched to their respective functional units at the rate of one  
per clock cycle and the next 256-bit fetch packet is not fetched until all the execute packets from the current fetch  
packet have been dispatched. After decoding, the instructions simultaneously drive all active functional units  
for a maximum execution rate of eight instructions every clock cycle. While most results are stored in 32-bit  
registers, they can be subsequently moved to memory as bytes or half-words as well. All load and store  
instructions are byte-, half-word, or word-addressable.  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
CPU (DSP core) description (continued)  
src1  
src2  
.L1  
dst  
long dst  
long src  
8
8
32  
ST1  
8
long src  
long dst  
dst  
Register  
File A  
Data Path A  
.S1  
src1  
(A0−A15)  
src2  
dst  
src1  
.M1  
src2  
LD1  
dst  
src1  
src2  
.D1  
.D2  
DA1  
2X  
1X  
src2  
src1  
dst  
DA2  
LD2  
src2  
.M2  
.S2  
src1  
dst  
src2  
Register  
File B  
(B0−B15)  
Data Path B  
src1  
dst  
long dst  
long src  
8
32  
8
ST2  
8
long src  
long dst  
dst  
.L2  
src2  
src1  
Control  
Register  
File  
Figure 1. TMS320C62xCPU (DSP Core) Data Paths  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
memory map summary  
Table 2 shows the memory map address ranges of the C6211/C6211B devices. Internal memory is always  
located at address 0 and can be used as both program and data memory. The C6211/C6211B configuration  
registers for the common peripherals are located at the same hex address ranges. The external memory  
address ranges in the C6211/C6211B devices begin at the address location 0x8000 0000.  
Table 2. TMS320C6211/C6211B Memory Map Summary  
MEMORY BLOCK DESCRIPTION  
Internal RAM (L2)  
BLOCK SIZE (BYTES)  
HEX ADDRESS RANGE  
0000 0000 – 0000 FFFF  
0001 0000 – 017F FFFF  
0180 0000 – 0183 FFFF  
0184 0000 – 0187 FFFF  
0188 0000 – 018B FFFF  
018C 0000 – 018F FFFF  
0190 0000 – 0193 FFFF  
0194 0000 – 0197 FFFF  
0198 0000 – 019B FFFF  
019C 0000 – 019F FFFF  
01A0 0000 – 01A3 FFFF  
01A4 0000 – 01FF FFFF  
0200 0000 – 0200 0033  
0200 0034 – 2FFF FFFF  
3000 0000 – 3FFF FFFF  
4000 0000 – 7FFF FFFF  
8000 0000 – 8FFF FFFF  
9000 0000 – 9FFF FFFF  
A000 0000 – AFFF FFFF  
B000 0000 – BFFF FFFF  
C000 0000 – FFFF FFFF  
64K  
24M – 64K  
256K  
Reserved  
External Memory Interface (EMIF) Registers  
L2 Registers  
256K  
HPI Registers  
256K  
McBSP 0 Registers  
McBSP 1 Registers  
Timer 0 Registers  
256K  
256K  
256K  
Timer 1 Registers  
256K  
Interrupt Selector Registers  
EDMA RAM and EDMA Registers  
Reserved  
256K  
256K  
6M – 256K  
52  
QDMA Registers  
Reserved  
736M – 52  
256M  
1G  
McBSP 0/1 Data  
Reserved  
EMIF CE0  
EMIF CE1  
EMIF CE2  
EMIF CE3  
256M  
256M  
256M  
256M  
1G  
Reserved  
The number of EMIF address pins (EA[21:2]) limits the maximum addressable memory (SDRAM) to 128MB per CE space. To get 256MB of  
addressable memory, additional general-purpose output pin or external logic is required.  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
peripheral register descriptions  
Table 3 through Table 13 identify the peripheral registers for the C6211/C6211B device by their register names,  
acronyms, and hex address or hex address range. For more detailed information on the register contents, bit  
names, and their descriptions, see the TMS320C6000 DSP Peripherals Overview Reference Guide (literature  
number SPRU190).  
Table 3. EMIF Registers  
HEX ADDRESS RANGE  
0180 0000  
ACRONYM  
GBLCTL  
CECTL1  
CECTL0  
REGISTER NAME  
EMIF global control  
EMIF CE1 space control  
EMIF CE0 space control  
Reserved  
0180 0004  
0180 0008  
0180 000C  
0180 0010  
CECTL2  
CECTL3  
SDCTL  
SDTIM  
SDEXT  
EMIF CE2 space control  
EMIF CE3 space control  
EMIF SDRAM control  
EMIF SDRAM refresh control  
EMIF SDRAM extension  
Reserved  
0180 0014  
0180 0018  
0180 001C  
0180 0020  
0180 0024 − 0183 FFFF  
Table 4. L2 Cache Registers  
HEX ADDRESS RANGE  
0184 0000  
ACRONYM  
CCFG  
REGISTER NAME  
Cache configuration register  
0184 4000  
L2FBAR  
L2FWC  
L2CBAR  
L2CWC  
L1PFBAR  
L1PFWC  
L1DFBAR  
L1DFWC  
L2FLUSH  
L2CLEAN  
MAR0  
L2 flush base address register  
0184 4004  
L2 flush word count register  
0184 4010  
L2 clean base address register  
0184 4014  
L2 clean word count register  
0184 4020  
L1P flush base address register  
0184 4024  
L1P flush word count register  
0184 4030  
L1D flush base address register  
0184 4034  
L1D flush word count register  
0184 5000  
L2 flush register  
0184 5004  
L2 clean register  
0184 8200  
Controls CE0 range 8000 0000 − 80FF FFFF  
Controls CE0 range 8100 0000 − 81FF FFFF  
Controls CE0 range 8200 0000 − 82FF FFFF  
Controls CE0 range 8300 0000 − 83FF FFFF  
Controls CE1 range 9000 0000 − 90FF FFFF  
Controls CE1 range 9100 0000 − 91FF FFFF  
Controls CE1 range 9200 0000 − 92FF FFFF  
Controls CE1 range 9300 0000 − 93FF FFFF  
Controls CE2 range A000 0000 − A0FF FFFF  
Controls CE2 range A100 0000 − A1FF FFFF  
Controls CE2 range A200 0000 − A2FF FFFF  
Controls CE2 range A300 0000 − A3FF FFFF  
Controls CE3 range B000 0000 − B0FF FFFF  
Controls CE3 range B100 0000 − B1FF FFFF  
Controls CE3 range B200 0000 − B2FF FFFF  
Controls CE3 range B300 0000 − B3FF FFFF  
Reserved  
0184 8204  
MAR1  
0184 8208  
MAR2  
0184 820C  
0184 8240  
MAR3  
MAR4  
0184 8244  
MAR5  
0184 8248  
MAR6  
0184 824C  
0184 8280  
MAR7  
MAR8  
0184 8284  
MAR9  
0184 8288  
MAR10  
MAR11  
MAR12  
MAR13  
MAR14  
MAR15  
0184 828C  
0184 82C0  
0184 82C4  
0184 82C8  
0184 82CC  
0184 82D0 − 0187 FFFF  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
peripheral register descriptions (continued)  
Table 5. EDMA Registers  
HEX ADDRESS RANGE  
01A0 FF9C − 01A0 FFDC  
01A0 FFE0  
ACRONYM  
REGISTER NAME  
Reserved  
PQSR  
CIPR  
CIER  
CCER  
ER  
Priority queue status register  
Channel interrupt pending register  
Channel interrupt enable register  
Channel chain enable register  
Event register  
01A0 FFE4  
01A0 FFE8  
01A0 FFEC  
01A0 FFF0  
01A0 FFF4  
EER  
ECR  
ESR  
Event enable register  
Event clear register  
01A0 FFF8  
01A0 FFFC  
Event set register  
01A1 0000 − 01A3 FFFF  
Reserved  
Table 6. EDMA Parameter RAM  
HEX ADDRESS RANGE  
01A0 0000 − 01A0 0017  
01A0 0018 − 01A0 002F  
01A0 0030 − 01A0 0047  
01A0 0048 − 01A0 005F  
01A0 0060 − 01A0 0077  
01A0 0078 − 01A0 008F  
01A0 0090 − 01A0 00A7  
01A0 00A8 − 01A0 00BF  
01A0 00C0 − 01A0 00D7  
01A0 00D8 − 01A0 00EF  
01A0 00F0 − 01A0 00107  
01A0 0108 − 01A0 011F  
01A0 0120 − 01A0 0137  
01A0 0138 − 01A0 014F  
01A0 0150 − 01A0 0167  
01A0 0168 − 01A0 017F  
01A0 0180 − 01A0 0197  
01A0 0198 − 01A0 01AF  
...  
ACRONYM  
REGISTER NAME  
Parameters for Event 0 (6 words)  
Parameters for Event 1 (6 words)  
Parameters for Event 2 (6 words)  
Parameters for Event 3 (6 words)  
Parameters for Event 4 (6 words)  
Parameters for Event 5 (6 words)  
Parameters for Event 6 (6 words)  
Parameters for Event 7 (6 words)  
Parameters for Event 8 (6 words)  
Parameters for Event 9 (6 words)  
Parameters for Event 10 (6 words)  
Parameters for Event 11 (6 words)  
Parameters for Event 12 (6 words)  
Parameters for Event 13 (6 words)  
Parameters for Event 14 (6 words)  
Parameters for Event 15 (6 words)  
Reload/link parameters for Event M (6 words)  
Reload/link parameters for Event N (6 words)  
...  
01A0 07E0 − 01A0 07F7  
01A0 07F8 − 01A0 07FF  
Reload/link parameters for Event Z (6 words)  
Scratch pad area (2 words)  
The C6211/C6211B device has sixty-nine parameter sets [six (6) words each] that can be used to reload/link EDMA transfers.  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
peripheral register descriptions (continued)  
Table 7. Quick DMA (QDMA) and Pseudo Registers  
HEX ADDRESS RANGE  
0200 0000  
ACRONYM  
QOPT  
QSRC  
QCNT  
QDST  
QIDX  
REGISTER NAME  
QDMA options parameter register  
QDMA source address register  
QDMA frame count register  
QDMA destination address register  
QDMA index register  
0200 0004  
0200 0008  
0200 000C  
0200 0010  
0200 0014 − 0200 001C  
0200 0020  
Reserved  
QSOPT  
QSSRC  
QSCNT  
QSDST  
QSIDX  
QDMA pseudo options register  
0200 0024  
QDMA pseudo source address register  
QDMA pseudo frame count register  
QDMA pseudo destination address register  
QDMA pseudo index register  
0200 0028  
0200 002C  
0200 0030  
All the QDMA and Pseudo registers are write-accessible only  
Table 8. Interrupt Selector Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
Selects which interrupts drive CPU interrupts  
10−15 (INT10−INT15)  
019C 0000  
MUXH  
Interrupt multiplexer high  
Selects which interrupts drive CPU interrupts 4−9  
(INT04−INT09)  
019C 0004  
MUXL  
Interrupt multiplexer low  
Sets the polarity of the external interrupts  
(EXT_INT4−EXT_INT7)  
019C 0008  
EXTPOL  
External interrupt polarity  
Reserved  
019C 000C − 019F FFFF  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
peripheral register descriptions (continued)  
Table 9. McBSP 0 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
The CPU and DMA/EDMA  
controller can only read this  
register; they cannot write to  
it.  
018C 0000  
DRR0  
McBSP0 data receive register via Peripheral Bus  
0x3000 0000 − 0x33FF FFFF  
018C 0004  
DRR0  
DXR0  
DXR0  
SPCR0  
RCR0  
XCR0  
SRGR0  
MCR0  
RCER0  
XCER0  
PCR0  
McBSP0 data receive register via EDMA Bus  
McBSP0 data transmit register via Peripheral Bus  
McBSP0 data transmit register via EDMA Bus  
McBSP0 serial port control register  
McBSP0 receive control register  
0x3000 0000 − 0x33FF FFFF  
018C 0008  
018C 000C  
018C 0010  
McBSP0 transmit control register  
018C 0014  
McBSP0 sample rate generator register  
McBSP0 multichannel control register  
McBSP0 receive channel enable register  
McBSP0 transmit channel enable register  
McBSP0 pin control register  
018C 0018  
018C 001C  
018C 0020  
018C 0024  
018C 0028 − 018F FFFF  
Reserved  
Table 10. McBSP 1 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
The CPU and DMA/EDMA  
controller can only read this  
register; they cannot write to  
it.  
0190 0000  
DRR1  
Data receive register via Peripheral Bus  
0x3400 0000 − 0x37FF FFFF  
0190 0004  
DRR1  
DXR1  
DXR1  
SPCR1  
RCR1  
XCR1  
SRGR1  
MCR1  
RCER1  
XCER1  
PCR1  
McBSP1 data receive register via EDMA Bus  
McBSP1 data transmit register via Peripheral Bus  
McBSP1 data transmit register via EDMA Bus  
McBSP1 serial port control register  
McBSP1 receive control register  
0x3400 0000 − 0x37FF FFFF  
0190 0008  
0190 000C  
0190 0010  
McBSP1 transmit control register  
0190 0014  
McBSP1 sample rate generator register  
McBSP1 multichannel control register  
McBSP1 receive channel enable register  
McBSP1 transmit channel enable register  
McBSP1 pin control register  
0190 0018  
0190 001C  
0190 0020  
0190 0024  
0190 0028 − 0193 FFFF  
Reserved  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
peripheral register descriptions (continued)  
Table 11. Timer 0 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
Determines the operating mode of the timer,  
monitors the timer status, and controls the function  
of the TOUT pin.  
0194 0000  
CTL0  
Timer 0 control register  
Contains the number of timer input clock cycles to  
count. This number controls the TSTAT signal  
frequency.  
0194 0004  
PRD0  
Timer 0 period register  
Contains the current value of the incrementing  
counter.  
0194 0008  
CNT0  
Timer 0 counter register  
Reserved  
0194 000C − 0197 FFFF  
Table 12. Timer 1 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
Determines the operating mode of the timer,  
monitors the timer status, and controls the function  
of the TOUT pin.  
0198 0000  
CTL1  
Timer 1 control register  
Contains the number of timer input clock cycles to  
count. This number controls the TSTAT signal  
frequency.  
0198 0004  
PRD1  
Timer 1 period register  
Contains the current value of the incrementing  
counter.  
0198 0008  
CNT1  
Timer 1 counter register  
Reserved  
0198 000C − 019B FFFF  
Table 13. HPI Registers  
HEX ADDRESS RANGE  
ACRONYM  
HPID  
HPIA  
REGISTER NAME  
HPI data register  
COMMENTS  
Host read/write access only  
Host read/write access only  
Both Host/CPU read/write access  
HPI address register  
HPI control register  
Reserved  
0188 0000  
HPIC  
0188 0001 − 018B FFFF  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
PWRD bits in CPU CSR register description  
Table 14 identifies the PWRD field (bits 15−10) in the CPU CSR register. These bits control the device  
power-down modes. For more detailed information on the PWRD bit field of the CPU CSR register, see the  
TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189).  
Table 14. PWRD field bits in the CPU CSR Register  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
The PWRD field (bits 15−10 in the CPU CSR)  
controls the device power-down modes.  
CSR  
Control status register  
Accessible by writing a value to the CSR register.  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
EDMA channel synchronization events  
The C62x EDMA supports up to 16 EDMA channels. Four of the sixteen channels (channels 8−11) are reserved  
for EDMA chaining, leaving 12 EDMA channels available to service peripheral devices. Table 15 lists the source  
of synchronization events associated with each of the programmable EDMA channels. For the C6211/11B, the  
association of an event to a channel is fixed; each of the EDMA channels has one specific event associated  
with it. For more detailed information on the EDMA module, associated channels, and event-transfer chaining,  
see the TMS320C6000 DSP Enhanced Direct Memory Access (EDMA) Controller Reference Guide (literature  
number SPRU234).  
Table 15. TMS320C6211/C6211B EDMA Channel Synchronization Events  
EDMA  
CHANNEL  
EVENT NAME  
EVENT DESCRIPTION  
Host-port interface (HPI)-to-DSP interrupt  
0
1
2
3
4
5
6
7
DSP_INT  
TINT0  
Timer 0 interrupt  
TINT1  
Timer 1 interrupt  
SD_INT  
EMIF SDRAM timer interrupt  
External interrupt pin 4  
EXT_INT4  
EXT_INT5  
EXT_INT6  
EXT_INT7  
EDMA_TCC8  
EDMA_TCC9  
EDMA_TCC10  
EDMA_TCC11  
XEVT0  
External interrupt pin 5  
External interrupt pin 6  
External interrupt pin 7  
8
9
EDMA transfer complete code (TCC) 1000b interrupt  
EDMA TCC 1001b interrupt  
EDMA TCC 1010b interrupt  
EDMA TCC 1011b interrupt  
McBSP0 transmit event  
McBSP0 receive event  
10  
11  
12  
13  
14  
15  
REVT0  
XEVT1  
McBSP1 transmit event  
McBSP1 receive event  
REVT1  
EDMA channels 8 through 11 are used for transfer chaining only. For more detailed information on event-transfer chaining, see the  
TMS320C6000 DSP Enhanced Direct Memory Access (EDMA) Controller Reference Guide (literature number SPRU234).  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
interrupt sources and interrupt selector  
The C62x DSP core supports 16 prioritized interrupts, which are listed in Table 16. The highest-priority interrupt  
is INT_00 (dedicated to RESET) while the lowest-priority interrupt is INT_15. The first four interrupts  
(INT_00−INT_03) are non-maskable and fixed. The remaining interrupts (INT_04−INT_15) are maskable and  
default to the interrupt source specified in Table 16. The interrupt source for interrupts 4−15 can be programmed  
by modifying the selector value (binary value) in the corresponding fields of the Interrupt Selector Control  
registers: MUXH (address 0x019C0000) and MUXL (address 0x019C0004).  
Table 16. C6211/C6211B DSP Interrupts  
INTERRUPT  
CPU  
INTERRUPT  
NUMBER  
SELECTOR  
VALUE  
(BINARY)  
INTERRUPT  
EVENT  
SELECTOR  
CONTROL  
REGISTER  
INTERRUPT SOURCE  
INT_00  
INT_01  
INT_02  
INT_03  
INT_04  
INT_05  
INT_06  
INT_07  
INT_08  
INT_09  
INT_10  
RESET  
NMI  
Reserved  
Reserved  
EXT_INT4  
EXT_INT5  
EXT_INT6  
EXT_INT7  
EDMA_INT  
Reserved  
SD_INT  
Reserved  
Reserved  
DSP_INT  
TINT0  
Reserved. Do not use.  
Reserved. Do not use.  
MUXL[4:0]  
MUXL[9:5]  
MUXL[14:10]  
MUXL[20:16]  
MUXL[25:21]  
MUXL[30:26]  
MUXH[4:0]  
MUXH[9:5]  
MUXH[14:10]  
MUXH[20:16]  
MUXH[25:21]  
MUXH[30:26]  
00100  
00101  
00110  
00111  
01000  
01001  
00011  
01010  
01011  
00000  
00001  
00010  
01100  
01101  
01110  
01111  
10000 − 11111  
External interrupt pin 4  
External interrupt pin 5  
External interrupt pin 6  
External interrupt pin 7  
EDMA channel (0 through 15) interrupt  
None, but programmable  
EMIF SDRAM timer interrupt  
None, but programmable  
None, but programmable  
Host-port interface (HPI)-to-DSP interrupt  
Timer 0 interrupt  
INT_11  
INT_12  
INT_13  
INT_14  
INT_15  
TINT1  
Timer 1 interrupt  
XINT0  
McBSP0 transmit interrupt  
McBSP0 receive interrupt  
McBSP1 transmit interrupt  
McBSP1 receive interrupt  
Reserved. Do not use.  
RINT0  
XINT1  
RINT1  
Reserved  
Interrupts INT_00 through INT_03 are non-maskable and fixed.  
Interrupts INT_04 through INT_15 are programmable by modifying the binary selector values in the Interrupt Selector Control  
registers fields. Table 16 shows the default interrupt sources for Interrupts INT_04 through INT_15. For more detailed  
information on interrupt sources and selection, see the TMS320C6000 DSP Interrupt Selector Reference Guide (literature  
number SPRU646).  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
signal groups description  
CLKIN  
CLKOUT2  
RESET  
NMI  
CLKOUT1  
EXT_INT7  
EXT_INT6  
EXT_INT5  
EXT_INT4  
Reset and  
Interrupts  
CLKMODE0  
Clock/PLL  
PLLV  
PLLG  
PLLF  
TMS  
TDO  
TDI  
RSV5  
RSV4  
RSV3  
RSV2  
RSV1  
RSV0  
TCK  
IEEE Standard  
1149.1  
(JTAG)  
Emulation  
TRST  
EMU0  
EMU1  
EMU2  
EMU3  
EMU4  
EMU5  
Reserved  
Control/Status  
HPI  
16  
(Host-Port Interface)  
HD[15:0]  
Data  
HAS  
HCNTL0  
HCNTL1  
HR/W  
HCS  
HDS1  
HDS2  
HRDY  
HINT  
Register Select  
Control  
Half-Word  
Select  
HHWIL  
Figure 2. CPU (DSP Core) and Peripheral Signals  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
signal groups description (continued)  
32  
ED[31:0]  
Data  
ECLKIN  
ECLKOUT  
Memory  
Control  
ARE/SDCAS/SSADS  
CE3  
CE2  
CE1  
CE0  
AOE/SDRAS/SSOE  
AWE/SDWE/SSWE  
ARDY  
Memory Map  
Space Select  
20  
EA[21:2]  
Address  
HOLD  
HOLDA  
Bus  
Arbitration  
BE3  
BE2  
BE1  
BE0  
BUSREQ  
Byte Enables  
EMIF  
(External Memory Interface)  
TOUT1  
TINP1  
TOUT0  
TINP0  
Timer 1  
Timer 0  
Timers  
McBSP1  
Transmit  
McBSP0  
Transmit  
CLKX1  
FSX1  
DX1  
CLKX0  
FSX0  
DX0  
CLKR1  
FSR1  
DR1  
CLKR0  
FSR0  
DR0  
Receive  
Clock  
Receive  
Clock  
CLKS1  
CLKS0  
McBSPs  
(Multichannel Buffered Serial Ports)  
Figure 3. Peripheral Signals  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
Terminal Functions  
SIGNAL  
NAME  
IPD/  
IPU  
DESCRIPTION  
TYPE  
NO.  
A3  
CLOCK/PLL  
CLKIN  
I
IPD  
IPD  
Clock Input  
Clock output at device speed  
The CLK1EN bit in the EMIF GBLCTL register controls the CLKOUT1 pin.  
CLKOUT1  
D7  
O
CLK1EN = 0:  
CLK1EN = 1:  
CLKOUT1 is disabled  
CLKOUT1 enabled to clock [default]  
Clock output at half of device speed  
When the CLKOUT2 pin is enabled, the CLK2EN bit in the EMIF global control register  
(GBLCTL) controls the CLKOUT2 pin.  
CLKOUT2  
Y12  
C4  
O
I
IPD  
IPU  
CLK2EN = 0:  
CLK2EN = 1:  
CLKOUT2 is disabled  
CLKOUT1 enabled to clock [default]  
Clock mode select  
CLKMODE0  
Selects whether the CPU clock frequency = input clock frequency x4 or x1  
§
A
A
A
PLLV  
A4  
C6  
B5  
PLL analog V  
connection for the low-pass filter  
CC  
§
PLLG  
PLL analog GND connection for the low-pass filter  
PLL low-pass filter connection to external components and a bypass capacitor  
JTAG EMULATION  
PLLF  
TMS  
TDO  
TDI  
B7  
A8  
I
IPU  
IPU  
IPU  
IPU  
IPD  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
JTAG test-port mode select  
O/Z  
JTAG test-port data out  
A7  
I
I
I
JTAG test-port data in  
TCK  
A6  
JTAG test-port clock  
TRST  
EMU5  
EMU4  
EMU3  
EMU2  
EMU1  
EMU0  
B6  
JTAG test-port reset  
B12  
C11  
B10  
D10  
B9  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
Emulation pin 5. Reserved for future use, leave unconnected.  
Emulation pin 4. Reserved for future use, leave unconnected.  
Emulation pin 3. Reserved for future use, leave unconnected.  
Emulation pin 2. Reserved for future use, leave unconnected.  
#
Emulation pin 1  
Emulation pin 0  
#
D9  
RESETS AND INTERRUPTS  
Device reset  
Nonmaskable interrupt  
Edge-driven (rising edge)  
Any noise on the NMI pin may trigger an NMI interrupt; therefore, if the NMI pin is not used, it is  
recommended that the NMI pin be grounded versus relying on the IPD.  
RESET  
NMI  
A13  
C13  
I
I
IPU  
IPD  
EXT_INT7  
EXT_INT6  
EXT_INT5  
EXT_INT4  
E3  
D2  
C1  
C2  
External interrupts  
Edge-driven  
I
IPU  
Polarity independently selected via the External Interrupt Polarity Register bits  
(EXTPOL.[3:0])  
HOST-PORT INTERFACE (HPI)  
HINT  
J20  
G19  
G18  
H20  
G20  
O
I
IPU  
IPU  
IPU  
IPU  
IPU  
Host interrupt (from DSP to host)  
HCNTL1  
HCNTL0  
HHWIL  
HR/W  
Host control − selects between control, address, or data registers  
Host control − selects between control, address, or data registers  
Host half-word select − first or second half-word (not necessarily high or low order)  
Host read or write select  
I
I
I
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
§
PLLV and PLLG are not part of external voltage supply or ground. See the CLOCK/PLL documentation for information on how to connect these  
pins.  
#
A = Analog signal (PLL Filter)  
The EMU0 and EMU1 pins are internally pulled up with 30-kresistors; therefore, for emulation and normal operation, no external  
pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ  
resistor.  
Terminal Functions (Continued)  
SIGNAL  
NAME  
IPD/  
IPU‡  
TYPE  
DESCRIPTION  
HOST-PORT INTERFACE (HPI) (CONTINUED)  
NO.  
HD15  
B14  
C14  
A15  
C15  
A16  
B16  
C16  
B17  
A18  
C17  
B18  
C19  
C20  
D18  
D20  
E20  
E18  
F20  
E19  
F18  
H19  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPD  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPD  
HD14  
HD13  
HD12  
HD11  
HD10  
HD9  
Host-port data  
Used for transfer of data, address, and control  
Also controls initialization of DSP modes at reset via pullup/pulldown resistors  
− Device Endian mode  
HD8: 0 – Big Endian  
HD8  
I/O/Z  
1 − Little Endian  
HD7  
− Boot mode  
HD[4:3]: 00 – HPI boot  
01 − 8-bit ROM boot with default timings  
HD6  
HD5  
10 − 16-bit ROM boot with default timings  
11 − 32-bit ROM boot with default timings  
HD4  
HD3  
HD2  
HD1  
HD0  
HAS  
HCS  
HDS1  
HDS2  
HRDY  
I
I
Host address strobe  
Host chip select  
I
Host data strobe 1  
I
Host data strobe 2  
O
Host ready (from DSP to host)  
EMIF − CONTROL SIGNALS COMMON TO ALL TYPES OF MEMORY  
CE3  
CE2  
CE1  
CE0  
BE3  
BE2  
BE1  
BE0  
V6  
W6  
W18  
V17  
V5  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
IPU  
Memory space enables  
IPU  
Enabled by bits 28 through 31 of the word address  
Only one asserted during any external data access  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
Byte-enable control  
Y4  
Decoded from the two lowest bits of the internal address  
Byte-write enables for most types of memory  
Can be directly connected to SDRAM read and write mask signal (SDQM)  
U19  
V20  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
Terminal Functions (Continued)  
SIGNAL  
IPD/  
TYPE  
DESCRIPTION  
IPU  
NAME  
NO.  
EMIF − BUS ARBITRATION  
Hold-request-acknowledge to the host  
Hold request from the host  
HOLDA  
J18  
J17  
J19  
O
I
IPU  
IPU  
IPU  
HOLD  
BUSREQ  
O
Bus request output  
EMIF − ASYNCHRONOUS/SYNCHRONOUS DRAM/SYNCHRONOUS BURST SRAM MEMORY CONTROL  
ECLKIN  
Y11  
Y10  
I
IPD  
IPD  
EMIF input clock  
ECLKOUT  
O
EMIF output clock (based on ECLKIN)  
ARE/SDCAS/  
SSADS  
V11  
O/Z  
O/Z  
IPU  
IPU  
Asynchronous memory read enable/SDRAM column-address strobe/SBSRAM address strobe  
Asynchronous memory output enable/SDRAM row-address strobe/SBSRAM output enable  
Asynchronous memory write enable/SDRAM write enable/SBSRAM write enable  
AOE/SDRAS/  
SSOE  
W10  
AWE/SDWE/  
SSWE  
V12  
Y5  
O/Z  
I
IPU  
IPU  
ARDY  
Asynchronous memory ready input  
EMIF − ADDRESS  
EA21  
EA20  
EA19  
EA18  
EA17  
EA16  
EA15  
EA14  
EA13  
EA12  
EA11  
EA10  
EA9  
U18  
Y18  
W17  
Y16  
V16  
Y15  
W15  
Y14  
W14  
V14  
W13  
V10  
Y9  
O/Z  
IPU  
EMIF external address  
EA8  
V9  
EA7  
Y8  
EA6  
W8  
V8  
EA5  
EA4  
W7  
V7  
EA3  
EA2  
Y6  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
Terminal Functions (Continued)  
SIGNAL  
NAME  
IPD/  
IPU‡  
TYPE  
DESCRIPTION  
NO.  
EMIF − DATA  
ED31  
N3  
P3  
ED30  
ED29  
ED28  
ED27  
ED26  
ED25  
ED24  
ED23  
ED22  
ED21  
ED20  
ED19  
ED18  
ED17  
ED16  
ED15  
ED14  
ED13  
ED12  
ED11  
ED10  
ED9  
P2  
P1  
R2  
R3  
T2  
T1  
U3  
U1  
U2  
V1  
V2  
Y3  
W4  
V4  
I/O/Z  
IPU  
External data  
T19  
T20  
T18  
R20  
R19  
P20  
P18  
N20  
N19  
N18  
M20  
M19  
L19  
L18  
K19  
K18  
ED8  
ED7  
ED6  
ED5  
ED4  
ED3  
ED2  
ED1  
ED0  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
Terminal Functions (Continued)  
SIGNAL  
NAME  
IPD/  
IPU‡  
TYPE  
DESCRIPTION  
NO.  
TIMER 1  
Timer 1 or general-purpose output  
Timer 1 or general-purpose input  
TIMER 0  
TOUT1  
F1  
F2  
O
I
IPD  
IPD  
TINP1  
TOUT0  
TINP0  
G1  
G2  
O
I
IPD  
IPD  
Timer 0 or general-purpose output  
Timer 0 or general-purpose input  
MULTICHANNEL BUFFERED SERIAL PORT 1 (McBSP1)  
CLKS1  
CLKR1  
CLKX1  
DR1  
E1  
M1  
L3  
I
IPD  
IPD  
IPD  
IPU  
IPU  
IPD  
IPD  
External clock source (as opposed to internal)  
Receive clock  
I/O/Z  
I/O/Z  
I
Transmit clock  
M2  
L2  
Receive data  
DX1  
O/Z  
I/O/Z  
I/O/Z  
Transmit data  
FSR1  
FSX1  
M3  
L1  
Receive frame sync  
Transmit frame sync  
MULTICHANNEL BUFFERED SERIAL PORT 0 (McBSP0)  
CLKS0  
CLKR0  
CLKX0  
DR0  
K3  
H3  
G3  
J1  
I
IPD  
IPD  
IPD  
IPU  
IPU  
IPD  
IPD  
External clock source (as opposed to internal)  
Receive clock  
I/O/Z  
I/O/Z  
I
Transmit clock  
Receive data  
DX0  
H2  
J3  
O/Z  
I/O/Z  
I/O/Z  
Transmit data  
FSR0  
FSX0  
Receive frame sync  
H1  
Transmit frame sync  
RESERVED FOR TEST  
RSV0  
RSV1  
RSV2  
RSV3  
RSV4  
RSV5  
C12  
D12  
A5  
O
O
O
O
O
O
IPU  
IPU  
IPU  
Reserved (leave unconnected, do not connect to power or ground)  
Reserved (leave unconnected, do not connect to power or ground)  
Reserved (leave unconnected, do not connect to power or ground)  
Reserved (leave unconnected, do not connect to power or ground)  
Reserved (leave unconnected, do not connect to power or ground)  
Reserved (leave unconnected, do not connect to power or ground)  
D3  
N2  
Y20  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
Terminal Functions (Continued)  
SIGNAL  
NAME  
TYPE  
DESCRIPTION  
SUPPLY VOLTAGE PINS  
NO.  
A17  
B3  
B8  
B13  
C5  
C10  
D1  
D16  
D19  
F3  
H18  
J2  
M18  
N1  
R1  
DV  
S
3.3-V supply voltage  
DD  
R18  
T3  
U5  
U7  
U12  
U16  
V13  
V15  
V19  
W3  
W9  
W12  
Y7  
Y17  
A9  
A10  
A12  
B2  
B19  
C3  
CV  
S
1.8-V supply voltage  
DD  
C7  
C18  
D5  
D6  
D11  
D14  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
Terminal Functions (Continued)  
SIGNAL  
TYPE  
DESCRIPTION  
SUPPLY VOLTAGE PINS (CONTINUED)  
NAME  
NO.  
D15  
F4  
F17  
K1  
K4  
K17  
L4  
L17  
L20  
R4  
CV  
S
1.8-V supply voltage  
DD  
R17  
U6  
U10  
U11  
U14  
U15  
V3  
V18  
W2  
W19  
GROUND PINS  
A1  
A2  
A11  
A14  
A19  
A20  
B1  
B4  
B11  
B15  
B20  
C8  
V
SS  
GND  
Ground pins  
C9  
D4  
D8  
D13  
D17  
E2  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
Terminal Functions (Continued)  
SIGNAL  
NAME  
TYPE  
DESCRIPTION  
GROUND PINS (CONTINUED)  
NO.  
E4  
E17  
F19  
G4  
G17  
H4  
H17  
J4  
K2  
K20  
M4  
M17  
N4  
N17  
P4  
P17  
P19  
T4  
V
SS  
GND  
Ground pins  
T17  
U4  
U8  
U9  
U13  
U17  
U20  
W1  
W5  
W11  
W16  
W20  
Y1  
Y2  
Y13  
Y19  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
development support  
TI offers an extensive line of development tools for the TMS320C6000DSP platform, including tools to  
evaluate the performance of the processors, generate code, develop algorithm implementations, and fully  
integrate and debug software and hardware modules.  
The following products support development of C6000DSP-based applications:  
Software Development Tools:  
Code Composer StudioIntegrated Development Environment (IDE): including Editor  
C/C++/Assembly Code Generation, and Debug plus additional development tools  
Scalable, Real-Time Foundation Software (DSP/BIOS), which provides the basic run-time target software  
needed to support any DSP application.  
Hardware Development Tools:  
Extended Development System (XDS) Emulator (supports C6000DSP multiprocessor system debug)  
EVM (Evaluation Module)  
For a complete listing of development-support tools for the TMS320C6000DSP platform, visit the Texas  
Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL) and select  
“Find Development Tools”. For device-specific tools, under “Semiconductor Products”, select “Digital Signal  
Processors”, choose a product family, and select the particular DSP device. For information on pricing and  
availability, contact the nearest TI field sales office or authorized distributor.  
Code Composer Studio, DSP/BIOS, and XDS are trademarks of Texas Instruments.  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
device and development-support tool nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP  
devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or  
TMS (e.g., TMS320C6211GFN167). Texas Instruments recommends two of three possible prefix designators  
for support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development  
from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).  
Device development evolutionary flow:  
TMX Experimental device that is not necessarily representative of the final device’s electrical specifications  
TMP Final silicon die that conforms to the device’s electrical specifications but has not completed quality  
and reliability verification  
TMS Fully qualified production device  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification  
testing.  
TMDS Fully qualified development-support product  
TMX and TMP devices and TMDX development-support tools are shipped with the following disclaimer:  
“Developmental product is intended for internal evaluation purposes.”  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability  
of the device have been demonstrated fully. TI’s standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, GFN), the temperature range (for example, blank is the default commercial temperature range),  
and the device speed range in megahertz (for example, -167 is 167 MHz).  
The ZFN package, like the GFN package, is a 256-ball plastic BGA only with Pb-free balls. For device part  
numbers and further ordering information for TMS320C6211/6211B in the GFN and ZFN, package types, see  
the TI website (http://www.ti.com) or contact your TI sales representative.  
TMS320 is a trademark of Texas Instruments.  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
device and development-support tool nomenclature (continued)  
(
)
TMS 320  
C
6211 GFN  
167  
PREFIX  
DEVICE SPEED RANGE  
TMX= Experimental device  
TMP= Prototype device  
100 MHz  
120 MHz  
150 MHz  
167 MHz  
200 MHz  
233 MHz  
250 MHz  
300 MHz  
TMS= Qualified device  
SMJ = MIL-PRF-38535, QML  
SM = High Rel (non-38535)  
TEMPERATURE RANGE (DEFAULT: 0°C TO 90°C)  
Blank = 0°C to 90°C, commercial temperature  
A
= −40°C to 105°C, extended temperature  
DEVICE FAMILY  
32 or 320 = TMS320DSP family  
‡  
PACKAGE TYPE  
GDP = 272-pin plastic BGA  
GFN = 256-pin plastic BGA  
TECHNOLOGY  
GGP = 352-pin plastic BGA  
C = CMOS  
GJC = 352-pin plastic BGA  
GJL = 352-pin plastic BGA  
GLS = 384-pin plastic BGA  
GLW = 340-pin plastic BGA  
GNY = 384-pin plastic BGA  
GNZ = 352-pin plastic BGA  
GLZ = 532-pin plastic BGA  
GHK = 288-pin plastic MicroStar BGAt  
PYP = 208-pin PowerPADt plastic QFP  
ZFN = 256-pin plastic BGA, with Pb-free soldered balls  
§
DEVICE  
C6000 DSPs:  
C6201  
C6211B DM641 C6712  
C6202  
C6411  
DM642 C6712C  
C6202B C6412  
C6203B C6414  
C6204  
C6205  
C6211  
C6701  
C6711  
C6712D  
C6713  
C6415  
C6416  
C6711B C6713B  
C6711C  
DM640 C6711D  
BGA  
QFP  
=
=
Ball Grid Array  
Quad Flatpack  
§
The ZFN mechanical package designator represents the version of the GFN with Pb−Free soldered balls.  
For actual device part numbers (P/Ns) and ordering information, see the Mechanical Data section of this  
document or the TI website (www.ti.com).  
Figure 4. TMS320C6000DSP Device Nomenclature (Including the TMS320C6211  
and TMS320C6211B Devices)  
MicroStar BGA is a trademark of Texas Instruments.  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
documentation support  
Extensive documentation supports all TMS320DSP family generations of devices from product  
announcement through applications development. The types of documentation available include: data sheets,  
such as this document, with design specifications; complete user’s reference guides for all devices and tools;  
technical briefs; development-support tools; on-line help; and hardware and software applications. The  
following is a brief, descriptive list of support documentation specific to the C6000DSP devices:  
For device-specific datasheets and related documentation, visit the TI web site at: http://www.ti.com.  
The TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189) describes the  
C6000CPU (DSP core) architecture, instruction set, pipeline, and associated interrupts.  
The TMS320C6000 DSP Peripherals Overview Reference Guide (literature number SPRU190) provides an  
overview and briefly describes the functionality of the peripherals available on the C6000DSP platform of  
devices. This document also includes a table listing the peripherals available on the C6000 devices along with  
literature numbers and hyperlinks to the associated peripheral documents.  
The TMS320C6000 Technical Brief (literature number SPRU197) gives an introduction to the  
TMS320C62x/TMS320C67xdevices, associated development tools, and third-party support.  
The TMS320C6000 DSP Interrupt Selector Reference Guide (literature number SPRU646) describes the  
interrupt selector, interrupt selector registers, and the available interrupts in the TMS320C6000 DSPs.  
The TMS320C6000 DSP Enhanced Direct Memory Access (EDMA) Controller Reference Guide (literature  
number SPRU234) describes the operation of the enhanced direct memory access (EDMA) controller in the  
TMS320C6000 DSPs.  
The TMS320C62x/C67x Power Consumption Summary application report (literature number SPRA486)  
discusses the power consumption for user applications with the TMS320C6211 and TMS320C6211B DSP  
devices.  
The TMS320C6211/TMS320C6211B Digital Signal Processors Silicon Errata (literature number SPRZ154)  
describes the known exceptions to the functional specifications for the TMS320C6211 and TMS320C6211B  
DSP devices.  
The Using IBIS Models for Timing Analysis application report (literature number SPRA839) describes how to  
properly use IBIS models to attain accurate timing analysis for a given system.  
The tools support documentation is electronically available within the Code Composer StudioIntegrated  
Development Environment (IDE). For a complete listing of C6000DSP latest documentation, visit the Texas  
Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL).  
See the Worldwide Web URL for the application reports How To Begin Development Today with the  
TMS320C6211 DSP (literature number SPRA474) and How To Begin Development with the TMS320C6711  
DSP (literature number SPRA522), which describe in more detail the similarities/differences between the C6211  
and C6711 C6000DSP devices.  
TMS320C67x is a trademark of Texas Instruments.  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
clock PLL  
All of the internal C62xclocks are generated from a single source through the CLKIN pin. This source clock  
either drives the PLL, which multiplies the source clock in frequency to generate the internal CPU clock, or  
bypasses the PLL to become the internal CPU clock.  
To use the PLL to generate the CPU clock, the external PLL filter circuit must be properly designed. Figure 5  
shows the external PLL circuitry for either x1 (PLL bypass) or x4 PLL multiply modes. Figure 6 shows the  
external PLL circuitry for a system with ONLY x1 (PLL bypass) mode.  
To minimize the clock jitter, a single clean power supply should power both the C62xdevice and the external  
clock oscillator circuit. Noise coupling into PLLF will directly impact PLL clock jitter. The minimum CLKIN rise  
and fall times should also be observed. For the input clock timing requirements, see the input and output clocks  
electricals section.  
Rise/fall times, duty cycles (high/low pulse durations), and the load capacitance of the external clock source  
must meet the DSP requirements in this data sheet (see the electrical characteristics over recommended  
ranges of suppy voltage and operating case temperature table and the input and output clocks electricals  
section). Table 17 lists some examples of compatible CLKIN external clock sources.  
Table 17. Compatible CLKIN External Clock Sources  
COMPATIBLE PARTS FOR  
EXTERNAL CLOCK SOURCES (CLKIN)  
PART NUMBER  
MANUFACTURER  
JITO-2  
STA series, ST4100 series  
SG-636  
Fox Electronix  
SaRonix Corporation  
Epson America  
Oscillators  
342  
Corning Frequency Control  
Integrated Circuit Systems  
PLL  
MK1711-S, ICS525-02  
3.3V  
PLLV  
Internal to  
PLL  
C6211/C6211B  
CLKMODE0  
PLLMULT  
CLKIN  
C4  
C3  
PLLCLK  
0.1 mF  
10 mF  
CLKIN  
1
0
CPU  
CLOCK  
LOOP FILTER  
Available Multiply Factors  
CPU Clock  
Frequency  
f(CPUCLOCK)  
PLL Multiply  
Factors  
C2  
CLKMODE0  
(For C1, C2, and R1 values, see Table 18.)  
0
1
x1(BYPASS)  
x4  
1 x f(CLKIN)  
4 x f(CLKIN)  
C1  
R1  
NOTES: A. Keep the lead length and the number of vias between the PLLF pin, the PLLG pin, and R1, C1, and C2 to a minimum. In addition,  
place all PLL external components (R1, C1, C2, C3, C4, and the EMI Filter) as close to the C6000 device as possible. For the best  
performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or  
components other than the ones shown.  
B. For reduced PLL jitter, maximize the spacing between switching signals and the PLL external components (R1, C1, C2, C3, C4,  
and the EMI filter).  
C. The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, DV  
D. EMI filter manufacturer: TDK part number ACF451832-333, 223, 153, 103. Panasonic part number EXCCET103U.  
.
DD  
Figure 5. External PLL Circuitry for Either PLL x4 Mode or x1 (Bypass) Mode  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
clock PLL (continued)  
3.3V  
PLLV  
Internal to  
PLL  
C6211/C6211B  
CLKMODE0  
CLKIN  
PLLMULT  
CLKIN  
PLLCLK  
1
0
LOOP FILTER  
CPU  
CLOCK  
NOTES: A. For a system with ONLY PLL x1 (bypass) mode, short the PLLF terminal to the PLLG terminal.  
B. The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, DV  
.
DD  
Figure 6. External PLL Circuitry for x1 (Bypass) Mode Only  
Table 18. C6211/C6211B PLL Component Selection  
CPU CLOCK  
FREQUENCY  
(CLKOUT1)  
CLKIN  
RANGE  
(MHz)  
CLKOUT2  
RANGE  
(MHz)  
TYPICAL  
R1 [ 1%]  
C1 [ 10%]  
(nF)  
C2 [ 10%]  
CLKMODE  
LOCK TIME  
()  
(pF)  
(µs)  
RANGE (MHz)  
x4  
16.3−41.6  
65−167  
32.5−83  
60.4  
27  
560  
75  
Under some operating conditions, the maximum PLL lock time may vary as much as 150% from the specified typical value. For example, if the  
typical lock time is specified as 100 µs, the maximum value may be as long as 250 µs.  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
power-down mode logic  
Figure 7 shows the power-down mode logic on the C6211/C6211B.  
CLKOUT1  
CLKOUT2  
Internal Clock Tree  
Clock  
Distribution  
and Dividers  
PD1  
PD2  
IFR  
Power-  
Down  
Logic  
Clock  
PLL  
Internal  
Peripherals  
IER  
CSR  
PWRD  
CPU  
PD3  
TMS320C6211/C6211B  
CLKIN  
RESET  
External input clocks, with the exception of CLKIN, are not gated by the power-down mode logic.  
Figure 7. Power-Down Mode Logic  
triggering, wake-up, and effects  
The power-down modes and their wake-up methods are programmed by setting the PWRD field (bits 15−10)  
of the control status register (CSR). The PWRD field of the CSR is shown in Figure 8 and described in Table 19.  
When writing to the CSR, all bits of the PWRD field should be set at the same time. Logic 0 should be used when  
“writing” to the reserved bit (bit 15) of the PWRD field. The CSR is discussed in detail in the TMS320C6000 CPU  
and Instruction Set Reference Guide (literature number SPRU189).  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
31  
16  
15  
14  
13  
12  
11  
PD2  
R/W-0  
10  
9
8
0
Enable or  
Non-Enabled  
Interrupt Wake  
Enabled  
Interrupt Wake  
Reserved  
R/W-0  
PD3  
PD1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7
Legend: R/W−x = Read/write reset value  
NOTE: The shadowed bits are not part of the power-down logic discussion and therefore are not covered here. For information on these other  
bit fields in the CSR register, see the TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189).  
Figure 8. PWRD Field of the CSR Register  
A delay of up to nine clock cycles may occur after the instruction that sets the PWRD bits in the CSR before the  
PD mode takes effect. As best practice, NOPs should be padded after the PWRD bits are set in the CSR to account  
for this delay.  
If PD1 mode is terminated by a non-enabled interrupt, the program execution returns to the instruction where  
PD1 took effect. If PD1 mode is terminated by an enabled interrupt, the interrupt service routine with be executed  
first, then the program execution returns to the instruction where PD1 took effect. In the case with an enabled  
interrupt, the GIE bit in the CSR and the NMIE bit in the interrupt enable register (IER) must also be set in order  
for the interrupt service routine to execute; otherwise, execution returns to the instruction where PD1 took effect  
upon PD1 mode termination by an enabled interrupt.  
PD2 and PD3 modes can only be aborted by device reset. Table 19 summarizes all the power-down modes.  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
Table 19. Characteristics of the Power-Down Modes  
PRWD FIELD  
(BITS 15−10)  
POWER-DOWN  
WAKE-UP METHOD  
EFFECT ON CHIP’S OPERATION  
MODE  
000000  
001001  
No power-down  
CPU halted (except for the interrupt logic)  
PD1  
Wake by an enabled interrupt  
Power-down mode blocks the internal clock inputs at the  
boundary of the CPU, preventing most of the CPU’s logic from  
switching. During PD1, EDMA transactions can proceed  
between peripherals and internal memory.  
Wake by an enabled or  
non-enabled interrupt  
010001  
011010  
PD1  
Output clock from PLL is halted, stopping the internal clock  
structure from switching and resulting in the entire chip being  
halted. All register and internal RAM contents are preserved. All  
functional I/O “freeze” in the last state when the PLL clock is  
turned off.  
PD2  
Wake by a device reset  
Input clock to the PLL stops generating clocks. All register and  
internal RAM contents are preserved. All functional I/O “freeze” in  
the last state when the PLL clock is turned off. Following reset, the  
PLL needs time to re-lock, just as it does following power-up.  
Wake-up from PD3 takes longer than wake-up from PD2 because  
the PLL needs to be re-locked, just as it does following power-up.  
PD3  
011100  
Wake by a device reset  
All others  
Reserved  
When entering PD2 and PD3, all functional I/O remains in the previous state. However, for peripherals which are asynchronous in nature or  
peripherals with an external clock source, output signals may transition in response to stimulus on the inputs. Under these conditions,  
peripherals will not operate according to specifications.  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
power-supply sequencing  
TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However,  
systems should be designed to ensure that neither supply is powered up for extended periods of time if the other  
supply is below the proper operating voltage.  
system-level design considerations  
System-level design considerations, such as bus contention, may require supply sequencing to be  
implemented. In this case, the core supply should be powered up at the same time as, or prior to (and powered  
down after), the I/O buffers. This is to ensure that the I/O buffers receive valid inputs from the core before the  
output buffers are powered up, thus, preventing bus contention with other chips on the board.  
power-supply design considerations  
For systems using the C6000DSP platform of devices, the core supply may be required to provide in excess  
of 2 A per DSP until the I/O supply is powered up. This extra current condition is a result of uninitialized logic  
within the DSP(s) and is corrected once the CPU sees an internal clock pulse. With the PLL enabled, as the  
I/O supply is powered on, a clock pulse is produced stopping the extra current draw from the supply. With the  
PLL disabled, as many as five external clock cycle pulses may be required to stop this extra current draw. A  
normal current state returns once the I/O power supply is turned on and the CPU sees a clock pulse. Decreasing  
the amount of time between the core supply power up and the I/O supply power up can minimize the effects  
of this current draw.  
A dual-power supply with simultaneous sequencing, such as available with TPS563xx controllers or PT69xx  
plug-in power modules, can be used to eliminate the delay between core and I/O power up [see the Using the  
TPS56300 to Power DSPs application report (literature number SLVA088)]. A Schottky diode can also be used  
to tie the core rail to the I/O rail, effectively pulling up the I/O power supply to a level that can help initialize the  
logic within the DSP.  
Core and I/O supply voltage regulators should be located close to the DSP (or DSP array) to minimize  
inductance and resistance in the power delivery path. Additionally, when designing for high-performance  
applications utilizing the C6000platform of DSPs, the PC board should include separate power planes for  
core, I/O, and ground, all bypassed with high-quality low-ESL/ESR capacitors.  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
IEEE 1149.1 JTAG compatibility statement  
The TMS320C6211/C6211B DSP requires that both TRST and RESET resets be asserted upon power up to  
be properly initialized. While RESET initializes the DSP core, TRST initializes the DSP’s emulation logic. Both  
resets are required for proper operation.  
While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for the  
DSP to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG port interface  
and DSP’s emulation logic in the reset state.  
TRST only needs to be released when it is necessary to use a JTAG controller to debug the DSP or exercise  
the DSP’s boundary scan functionality.  
For maximum reliability, the TMS320C6211/C6211B DSP includes an internal pulldown (IPD) on the TRST pin  
to ensure that TRST will always be asserted upon power up and the DSP’s internal emulation logic will always  
be properly initialized.  
JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers  
may not drive TRST high but expect the use of an external pullup resistor on TRST.  
When using this type of JTAG controller, assert TRST to initialize the DSP after powerup and externally drive  
TRST high before attempting any emulation or boundary scan operations. Following the release of RESET, the  
low-to-high transition of TRST must be “seen” to latch the state of EMU1 and EMU0. The EMU[1:0] pins  
configure the device for either Boundary Scan mode or Emulation mode. For more detailed information, see  
the terminal functions section of this data sheet.  
EMIF device speed  
TI recommends utilizing the input/output buffer information specification (IBIS) models to analyze all AC timings.  
To properly use IBIS models to attain accurate timing analysis for a given system, see the Using IBIS Models  
for Timing Analysis application report (literature number SPRA839).  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
bootmode  
The C62xdevice resets using the active-low signal RESET signal (for the C6211/C6211B device, the RESET  
signal is the same as the internal reset signal). While RESET is low, the internal reset is also asserted and the  
device is held in reset and is initialized to the prescribed reset state. Refer to reset timing for reset timing  
characteristics and states of device pins during reset. The release of the internal reset signal (see the Reset  
Phase 3 discussion in the Reset Timing section of this data sheet) starts the processor running with the  
prescribed device configuration and boot mode.  
The C6211/C6211B has three types of boot modes:  
D
Host boot  
If host boot is selected, upon release of internal reset, the CPU is internally “stalled” while the remainder of  
the device is released. During this period, an external host can initialize the CPU’s memory space as  
necessary through the host interface, including internal configuration registers, such as those that control  
the EMIF or other peripherals. Once the host is finished with all necessary initialization, it must set the  
DSPINT bit in the HPIC register to complete the boot process. This transition causes the boot configuration  
logic to bring the CPU out of the “stalled” state. The CPU then begins execution from address 0. The DSPINT  
condition is not latched by the CPU, because it occurs while the CPU is still internally “stalled”. Also, DSPINT  
brings the CPU out of the “stalled” state only if the host boot process is selected. All memory may be written  
to and read by the host. This allows for the host to verify what it sends to the DSP if required. After the CPU is  
out of the “stalled” state, the CPU needs to clear the DSPINT, otherwise, no more DSPINTs can be received.  
D
D
Emulation boot  
Emulation boot mode is a variation of host boot. In this mode, it is not necessary for a host to load code or to  
set DSPINT to release the CPU from the “stalled” state. Instead, the emulator will set DSPINT if it has not  
been previously set so that the CPU can begin executing code from address 0. Prior to beginning execution,  
the emulator sets a breakpoint at address 0. This prevents the execution of invalid code by halting the CPU  
prior to executing the first instruction. Emulation boot is a good tool in the debug phase of development.  
EMIF boot (using default ROM timings)  
Upon the release of internal reset, the 1K-Byte ROM code located in the beginning of CE1 is copied to  
address 0 by the EDMA using the default ROM timings, while the CPU is internally “stalled”. The data should  
be stored in the endian format that the system is using. The boot process also lets you choose the width of  
the ROM. In this case, the EMIF automatically assembles consecutive 8-bit bytes or 16-bit half-words to  
form the 32-bit instruction words to be copied. The transfer is automatically done by the EDMA as a  
single-frame block transfer from the ROM to address 0. After completion of the block transfer, the CPU is  
released from the “stalled” state and start running from address 0.  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
absolute maximum ratings over operating case temperature range (unless otherwise noted)  
Supply voltage range, CV  
Supply voltage range, DV  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to 2.3 V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4 V  
DD  
DD  
Input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4 V  
Output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4 V  
Operating case temperature ranges, T :(default) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0_C to 90_C  
C
(A version) [C6211BGFNA only] . . . . . . . . . . . . . . −40_C to105_C  
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65_C to 150_C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
SS  
.
recommended operating conditions  
MIN NOM  
MAX UNIT  
CV  
DV  
Supply voltage, Core  
Supply voltage, I/O  
Supply ground  
1.71  
3.14  
0
1.8  
3.3  
0
1.89  
3.46  
0
V
V
DD  
DD  
V
V
V
V
SS  
High-level input voltage  
Low-level input voltage  
2
V
IH  
IL  
0.8  
−4  
−8  
4
V
All signals except CLKOUT1, CLKOUT2, and ECLKOUT  
CLKOUT1, CLKOUT2, and ECLKOUT  
All signals except CLKOUT1, CLKOUT2, and ECLKOUT  
CLKOUT1, CLKOUT2, and ECLKOUT  
Default  
mA  
mA  
mA  
mA  
_C  
_C  
I
I
High-level output current  
Low-level output current  
Operating case temperature  
OH  
OL  
8
0
90  
105  
T
C
A version (C6211BGFNA only)  
−40  
electrical characteristics over recommended ranges of supply voltage and operating case  
temperature (unless otherwise noted)  
PARAMETER  
High-level output voltage  
Low-level output voltage  
Input current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
DV  
DV  
= MIN,  
= MIN,  
I
= MAX  
= MAX  
2.4  
OH  
DD  
DD  
OH  
OL  
I
0.4  
150  
10  
V
OL  
I
I
V = V  
I SS  
to DV  
DD  
uA  
uA  
mA  
mA  
mA  
mA  
mA  
mA  
pF  
I
Off-state output current  
V
= DV  
or 0 V  
= NOM, CPU clock = 150 MHz  
= NOM, CPU clock = 150 MHz  
= NOM, CPU clock = 150 MHz  
OZ  
O DD  
C6211, CV  
DD  
270  
270  
220  
220  
60  
Supply current, CPU + CPU memory  
I
I
I
DD2V  
§
access  
C6211B, CV  
DD  
C6211, CV  
DD  
§
Supply current, peripherals  
DD2V  
DD3V  
C6211B, CV  
= NOM, CPU clock = 150 MHz  
= NOM, CPU clock = 150 MHz  
DD  
C6211, DV  
DD  
§
Supply current, I/O pins  
C6211B, DV  
DD  
= NOM, CPU clock = 150 MHz  
60  
C
C
Input capacitance  
Output capacitance  
7
7
i
pF  
o
§
For test conditions shown as MIN, MAX, or NOM, use the appropriate value specified in the recommended operating conditions table.  
Measured with average activity (50% high/50% low power). For more details on CPU, peripheral, and I/O activity, refer to the TMS320C62x/C67x  
Power Consumption Summary application report (literature number SPRA486).  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
PARAMETER MEASUREMENT INFORMATION  
I
OL  
Tester Pin  
Electronics  
Output  
Under  
Test  
50 Ω  
V
comm  
C
T
I
OH  
Where:  
I
I
V
=
=
=
=
2 mA  
2 mA  
0.8 V  
OL  
OH  
comm  
T
C
10−15-pF typical load-circuit capacitance  
Figure 9. Test Load Circuit for AC Timing Measurements  
signal transition levels  
All input and output timing parameters are referenced to 1.5 V for both “0” and “1” logic levels.  
V
ref  
= 1.5 V  
Figure 10. Input and Output Voltage Reference Levels for ac Timing Measurements  
All rise and fall transition timing parameters are referenced to V MAX and V MIN for input clocks, and  
IL  
IH  
V
MAX and V  
MIN for output clocks.  
OL  
OH  
V
ref  
= V MIN (or V  
IH OH  
MIN)  
V
ref  
= V MAX (or V  
IL OL  
MAX)  
Figure 11. Rise and Fall Transition Time Voltage Reference Levels  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
PARAMETER MEASUREMENT INFORMATION (CONTINUED)  
timing parameters and board routing analysis  
The timing parameter values specified in this data sheet do not include delays by board routings. As a good  
board design practice, such delays must always be taken into account. Timing values may be adjusted by  
increasing/decreasing such delays. TI recommends utilizing the available I/O buffer information specification  
(IBIS) models to analyze the timing characteristics correctly. If needed, external logic hardware such as buffers  
may be used to compensate any timing differences. For example:  
D
D
In typical boards with the C6211B commercial temperature device, the routing delay improves the external  
memory’s ability to meet the DSP’s EMIF data input hold time requirement [t ].  
h(EKOH-EDV)  
In some boards with the C6211BGFNA extended temperature device, the routing delay improves the  
external memory’s ability to meet the DSP’s EMIF data input hold time requirement [t ]. In  
h(EKOH-EDV)  
addition, it may be necessary to add an extra delay to the input clock of the external memory to robustly  
meet the DSP’s data input hold time requirement. If the extra delay approach is used, memory bus  
frequency adjustments may be needed to ensure the DPS’s input setup time requirement [t  
is still maintained.  
]
su(EDV-EKOH)  
For inputs, timing is most impacted by the round-trip propagation delay from the DSP to the external device and  
from the external device to the DSP. This round-trip delay tends to negatively impact the input setup time margin,  
but also tends to improve the input hold time margins (see Table 20 and Figure 12).  
Figure 12 represents a general transfer between the DSP and an external device. The figure also represents  
board route delays and how they are perceived by the DSP and the external device.  
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
PARAMETER MEASUREMENT INFORMATION (CONTINUED)  
Table 20. IBIS Timing Parameters Example (see Figure 12)  
NO.  
1
DESCRIPTION  
Clock route delay  
2
Minimum DSP hold time  
3
Minimum DSP setup time  
External device hold time requirement  
External device setup time requirement  
Control signal route delay  
External device hold time  
4
5
6
7
8
External device access time  
DSP hold time requirement  
DSP setup time requirement  
Data route delay  
9
10  
11  
ECLKOUT  
(Output from DSP)  
1
ECLKOUT  
(Input to External Device)  
2
3
Control Signals  
(Output from DSP)  
4
5
6
Control Signals  
(Input to External Device)  
7
8
Data Signals  
(Output from External Device)  
9
10  
11  
Data Signals  
(Input to DSP)  
† Control signals include data for Writes.  
‡ Data signals are generated during Reads from an external device.  
Figure 12. IBIS Input/Output Timings  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
INPUT AND OUTPUT CLOCKS  
†‡  
timing requirements for CLKIN (see Figure 13)  
−150  
CLKMODE = x4 CLKMODE = x1  
−167  
CLKMODE = x4 CLKMODE = x1  
NO.  
UNIT  
MIN  
26.7  
0.4C  
0.4C  
MAX  
MIN  
6.7  
MAX  
MIN  
24  
MAX  
MIN  
6
MAX  
1
2
3
4
t
t
t
t
Cycle time, CLKIN  
ns  
ns  
ns  
ns  
c(CLKIN)  
w(CLKINH)  
w(CLKINL)  
t(CLKIN)  
Pulse duration, CLKIN high  
Pulse duration, CLKIN low  
Transition time, CLKIN  
0.45C  
0.45C  
0.4C  
0.4C  
0.45C  
0.45C  
5
1
5
1
The reference points for the rise and fall transitions are measured at V MAX and V MIN.  
C = CLKIN cycle time in ns. For example, when CLKIN frequency is 40 MHz, use C = 25 ns.  
IL  
IH  
1
4
2
CLKIN  
3
4
Figure 13. CLKIN Timings  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
INPUT AND OUTPUT CLOCKS (CONTINUED)  
†‡§  
switching characteristics over recommended operating conditions for CLKOUT1  
(see Figure 14)  
−150  
−167  
NO.  
PARAMETER  
UNIT  
CLKMODE = x4  
CLKMODE = x1  
MIN  
MAX  
P + 0.7  
MIN  
MAX  
1
2
3
4
t
t
t
t
Cycle time, CLKOUT1  
P − 0.7  
P − 0.7  
P + 0.7  
ns  
ns  
ns  
ns  
c(CKO1)  
w(CKO1H)  
w(CKO1L)  
t(CKO1)  
Pulse duration, CLKOUT1 high  
Pulse duration, CLKOUT1 low  
Transition time, CLKOUT1  
(P/2) − 0.7 (P/2 ) + 0.7 PH − 0.7 PH + 0.7  
(P/2) − 0.7 (P/2 ) + 0.7  
2
PL − 0.7 PL + 0.7  
2
§
The reference points for the rise and fall transitions are measured at V  
P = 1/CPU clock frequency in nanoseconds (ns)  
PH is the high period of CLKIN in ns and PL is the low period of CLKIN in ns.  
MAX and V MIN.  
OH  
OL  
1
4
2
CLKOUT1  
3
4
Figure 14. CLKOUT1 Timings  
†‡  
switching characteristics over recommended operating conditions for CLKOUT2 (see Figure 15)  
−150  
−167  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
2
3
4
t
t
t
t
Cycle time, CLKOUT2  
2P − 0.7 2P + 0.7  
ns  
ns  
ns  
ns  
c(CKO2)  
w(CKO2H)  
w(CKO2L)  
t(CKO2)  
Pulse duration, CLKOUT2 high  
Pulse duration, CLKOUT2 low  
Transition time, CLKOUT2  
P − 0.7  
P − 0.7  
P + 0.7  
P + 0.7  
2
The reference points for the rise and fall transitions are measured at V  
P = 1/CPU clock frequency in ns  
MAX and V  
MIN.  
OL  
OH  
1
4
2
CLKOUT2  
3
4
Figure 15. CLKOUT2 Timings  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
INPUT AND OUTPUT CLOCKS (CONTINUED)  
timing requirements for ECLKIN (see Figure 16)  
−150  
−167  
NO.  
UNIT  
MIN  
MAX  
1
2
3
4
t
t
t
t
Cycle time, ECLKIN  
10  
4.5  
4.5  
ns  
ns  
ns  
ns  
c(EKI)  
Pulse duration, ECLKIN high  
Pulse duration, ECLKIN low  
Transition time, ECLKIN  
w(EKIH)  
w(EKIL)  
t(EKI)  
2.2  
The reference points for the rise and fall transitions are measured at V MAX and V MIN.  
IL IH  
1
4
2
ECLKIN  
3
4
Figure 16. ECLKIN Timings  
‡§¶  
switching characteristics over recommended operating conditions for ECLKOUT  
(see Figure 17)  
−150  
−167  
NO.  
PARAMETER  
UNIT  
MIN  
E − 0.7  
MAX  
1
2
3
4
5
6
t
t
t
t
t
t
Cycle time, ECLKOUT  
E + 0.7  
ns  
ns  
ns  
ns  
ns  
ns  
c(EKO)  
Pulse duration, ECLKOUT high  
EH − 0.7 EH + 0.7  
EL − 0.7 EL + 0.7  
2
w(EKOH)  
w(EKOL)  
Pulse duration, ECLKOUT low  
Transition time, ECLKOUT  
t(EKO)  
Delay time, ECLKIN high to ECLKOUT high  
Delay time, ECLKIN low to ECLKOUT low  
1
1
7
7
d(EKIH-EKOH)  
d(EKIL-EKOL)  
§
The reference points for the rise and fall transitions are measured at V  
E = ECLKIN period in ns  
EH is the high period of ECLKIN in ns and EL is the low period of ECLKIN in ns.  
MAX and V MIN.  
OH  
OL  
ECLKIN  
6
1
4
4
2
5
3
ECLKOUT  
Figure 17. ECLKOUT Timings  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
ASYNCHRONOUS MEMORY TIMING  
†‡§  
timing requirements for asynchronous memory cycles  
(see Figure 18−Figure 19)  
C6211B−150  
C6211−150  
C6211B−167  
C6211BGFNA−150  
C6211−167  
NO.  
UNIT  
MIN MAX  
MIN  
9
MAX  
3
4
6
7
t
t
t
t
Setup time, EDx valid before ARE high  
Hold time, EDx valid after ARE high  
9
1
3
1
ns  
ns  
ns  
ns  
su(EDV-AREH)  
h(AREH-EDV)  
su(ARDY-EKOH)  
h(EKOH-ARDY)  
2
Setup time, ARDY valid before ECLKOUT high  
Hold time, ARDY valid after ECLKOUT high  
3
2
To ensure data setup time, simply program the strobe width wide enough. ARDY is internally synchronized. The ARDY signal is recognized in  
the cycle for which the setup and hold time is met. To use ARDY as an asynchronous input, the pulse width of the ARDY signal should be wide  
enough (e.g., pulse width = 2E) to ensure setup and hold time is met.  
§
RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters are  
programmed via the EMIF CE space control registers.  
E = ECLKOUT period in ns  
switching characteristics over recommended operating conditions for asynchronous memory  
‡§¶  
cycles for C6211 and C6211B  
(see Figure 18−Figure 19)  
C6211−150  
C6211−167  
C6211B−150  
C6211B−167  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
RS * E − 3  
RH * E − 3  
1.5  
MAX  
1
2
t
t
t
t
t
t
Output setup time, select signals valid to ARE low  
Output hold time, ARE high to select signals invalid  
Delay time, ECLKOUT high to ARE vaild  
RS * E − 3  
ns  
ns  
ns  
ns  
ns  
ns  
osu(SELV-AREL)  
oh(AREH-SELIV)  
d(EKOH-AREV)  
osu(SELV-AWEL)  
oh(AWEH-SELIV)  
d(EKOH-AWEV)  
RH * E − 3  
1.5  
5
8
8
8
Output setup time, select signals valid to AWE low  
Output hold time, AWE high to select signals invalid  
Delay time, ECLKOUT high to AWE vaild  
WS * E − 3  
WH * E − 3  
1.5  
WS * E − 3  
WH * E − 3  
1.2  
9
10  
8
8
RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters are  
programmed via the EMIF CE space control registers.  
E = ECLKOUT period in ns  
§
Select signals include: CEx, BE[3:0], EA[21:2], AOE; and for writes, include ED[31:0].  
switching characteristics over recommended operating conditions for asynchronous memory  
‡§¶  
cycles for C6211BGFNA  
(see Figure 18−Figure 19)  
C6211BGFNA−150  
NO.  
PARAMETER  
UNIT  
MIN  
RS * E − 3  
RH * E − 3  
1.5  
MAX  
1
2
t
t
t
t
t
t
Output setup time, select signals valid to ARE low  
Output hold time, ARE high to select signals invalid  
Delay time, ECLKOUT high to ARE vaild  
ns  
ns  
ns  
ns  
ns  
ns  
osu(SELV-AREL)  
oh(AREH-SELIV)  
d(EKOH-AREV)  
osu(SELV-AWEL)  
oh(AWEH-SELIV)  
d(EKOH-AWEV)  
5
8
8
Output setup time, select signals valid to AWE low  
Output hold time, AWE high to select signals invalid  
Delay time, ECLKOUT high to AWE vaild  
WS * E − 3  
WH * E − 3  
1
9
10  
8
RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters are  
programmed via the EMIF CE space control registers.  
§
E = ECLKOUT period in ns  
Select signals include: CEx, BE[3:0], EA[21:2], AOE; and for writes, include ED[31:0].  
49  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
ASYNCHRONOUS MEMORY TIMING (CONTINUED)  
Setup = 2  
Strobe = 3  
Not Ready  
Hold = 2  
ECLKOUT  
CEx  
1
1
1
2
2
2
BE[3:0]  
EA[21:2]  
BE  
Address  
3
4
ED[31:0]  
1
5
2
5
Read Data  
AOE/SDRAS/SSOE  
ARE/SDCAS/SSADS  
AWE/SDWE/SSWE  
7
7
6
6
ARDY  
AOE/SDRAS/SSOE, ARE/SDCAS/SSADS, and AWE/SDWE/SSWE operate as AOE (identified under select signals), ARE, and AWE,  
respectively, during asynchronous memory accesses.  
Figure 18. Asynchronous Memory Read Timing  
50  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
ASYNCHRONOUS MEMORY TIMING (CONTINUED)  
Setup = 2  
Hold = 2  
Strobe = 3  
Not Ready  
ECLKOUT  
CEx  
8
8
8
8
9
9
9
9
BE[3:0]  
BE  
EA[21:2]  
ED[31:0]  
Address  
Write Data  
AOE/SDRAS/SSOE  
ARE/SDCAS/SSADS  
10  
10  
AWE/SDWE/SSWE  
7
7
6
6
ARDY  
AOE/SDRAS/SSOE, ARE/SDCAS/SSADS, and AWE/SDWE/SSWE operate as AOE (identified under select signals), ARE, and AWE,  
respectively, during asynchronous memory accesses.  
Figure 19. Asynchronous Memory Write Timing  
51  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
SYNCHRONOUS-BURST MEMORY TIMING  
timing requirements for synchronous-burst SRAM cycles (see Figure 20)  
C6211−150  
C6211−167  
C6211B−150  
C6211B−167  
C6211BGFNA−150  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Setup time, read EDx valid before  
ECLKOUT high  
6
7
t
t
2.5  
2.5  
2.5  
ns  
ns  
su(EDV-EKOH)  
Hold time, read EDx valid after  
ECLKOUT high  
1
2.5  
2
h(EKOH-EDV)  
The C6211/C6211B SBSRAM interface takes advantage of the internal burst counter in the SBSRAM. Accesses default to incrementing 4-word  
bursts, but random bursts and decrementing bursts are done by interrupting bursts in progress. All burst types can sustain continuous data flow.  
switching characteristics over recommended operating conditions for synchronous-burst SRAM  
†‡  
cycles (see Figure 20 and Figure 21)  
C6211−150  
C6211−167  
C6211B−150  
C6211B−167  
C6211BGFNA−150  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Delay time, ECLKOUT high to CEx  
valid  
1
2
t
t
t
t
t
t
t
t
t
t
1.5  
6.5  
6.5  
1
6.5  
1.2  
6.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(EKOH-CEV)  
d(EKOH-BEV)  
d(EKOH-BEIV)  
d(EKOH-EAV)  
d(EKOH-EAIV)  
d(EKOH-ADSV)  
d(EKOH-OEV)  
d(EKOH-EDV)  
d(EKOH-EDIV)  
d(EKOH-WEV)  
Delay time, ECLKOUT high to BEx  
valid  
6.5  
6.5  
6.5  
6.5  
Delay time, ECLKOUT high to BEx  
invalid  
3
1.5  
1
1.2  
Delay time, ECLKOUT high to EAx  
valid  
4
6.5  
Delay time, ECLKOUT high to EAx  
invalid  
5
1.5  
1.5  
1.5  
1
1
1
1.2  
1.2  
1.2  
Delay time, ECLKOUT high to  
ARE/SDCAS/SSADS valid  
8
6.5  
6.5  
7
6.5  
6.5  
7
6.5  
6.5  
7
Delay time, ECLKOUT high to  
AOE/SDRAS/SSOE valid  
9
Delay time, ECLKOUT high to EDx  
valid  
10  
11  
12  
Delay time, ECLKOUT high to EDx  
invalid  
1.5  
1.5  
1
1
1.2  
1.2  
Delay time, ECLKOUT high to  
AWE/SDWE/SSWE valid  
6.5  
6.5  
6.5  
The C6211/C6211B SBSRAM interface takes advantage of the internal burst counter in the SBSRAM. Accesses default to incrementing 4-word  
bursts, but random bursts and decrementing bursts are done by interrupting bursts in progress. All burst types can sustain continuous data flow.  
ARE/SDCAS/SSADS, AOE/SDRAS/SSOE, and AWE/SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during SBSRAM  
accesses.  
52  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
SYNCHRONOUS-BURST MEMORY TIMING (CONTINUED)  
ECLKOUT  
1
1
CEx  
2
3
BE1  
BE2  
BE3  
EA  
BE4  
7
BE[3:0]  
4
5
EA[21:2]  
ED[31:0]  
6
Q1  
Q2  
Q3  
Q4  
8
8
ARE/SDCAS/SSADS  
9
9
AOE/SDRAS/SSOE  
AWE/SDWE/SSWE  
ARE/SDCAS/SSADS, AOE/SDRAS/SSOE, and AWE/SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during SBSRAM  
accesses.  
Figure 20. SBSRAM Read Timing  
ECLKOUT  
1
2
1
3
CEx  
BE[3:0]  
BE1  
BE2  
Q2  
BE3  
5
BE4  
Q4  
4
EA[21:2]  
ED[31:0]  
EA  
10  
11  
12  
Q1  
Q3  
8
8
ARE/SDCAS/SSADS  
AOE/SDRAS/SSOE  
12  
AWE/SDWE/SSWE  
ARE/SDCAS/SSADS, AOE/SDRAS/SSOE, and AWE/SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during SBSRAM  
accesses.  
Figure 21. SBSRAM Write Timing  
53  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
SYNCHRONOUS DRAM TIMING  
timing requirements for synchronous DRAM cycles (see Figure 22)  
C6211−150  
C6211−167  
C6211B−150  
C6211B−167  
C6211BGFNA−150  
NO.  
UNIT  
MIN MAX  
MIN  
MAX  
MIN MAX  
Setup time, read EDx valid before  
ECLKOUT high  
6
7
t
t
2.5  
1
2.5  
2.5  
ns  
ns  
su(EDV-EKOH)  
Hold time, read EDx valid after  
ECLKOUT high  
2.5  
2
h(EKOH-EDV)  
The C6211/C6211B SDRAM interface takes advantage of the internal burst counter in the SDRAM. Accesses default to incrementing 4-word  
bursts, but random bursts and decrementing bursts are done by interrupting bursts in progress. All burst types can sustain continuous data flow.  
switching characteristics over recommended operating conditions for synchronous DRAM  
†‡  
cycles (see Figure 22−Figure 28)  
C6211−150  
C6211−167  
C6211B−150  
C6211B−167  
C6211BGFNA−150  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Delay time, ECLKOUT high to CEx  
valid  
1
2
t
t
t
t
t
t
t
t
t
t
1.5  
6.5  
6.5  
1
6.5  
1.2  
6.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(EKOH-CEV)  
d(EKOH-BEV)  
d(EKOH-BEIV)  
d(EKOH-EAV)  
d(EKOH-EAIV)  
d(EKOH-CASV)  
d(EKOH-EDV)  
d(EKOH-EDIV)  
d(EKOH-WEV)  
d(EKOH-RAS)  
Delay time, ECLKOUT high to BEx  
valid  
6.5  
6.5  
6.5  
6.5  
Delay time, ECLKOUT high to BEx  
invalid  
3
1.5  
1
1.2  
Delay time, ECLKOUT high to EAx  
valid  
4
6.5  
Delay time, ECLKOUT high to EAx  
invalid  
5
1.5  
1.5  
1
1
1.2  
1.2  
Delay time, ECLKOUT high to  
ARE/SDCAS/SSADS valid  
8
6.5  
7
6.5  
7
6.5  
7
Delay time, ECLKOUT high to EDx  
valid  
9
Delay time, ECLKOUT high to EDx  
invalid  
10  
11  
12  
1.5  
1.5  
1.5  
1
1
1
1.2  
1.2  
1.2  
Delay time, ECLKOUT high to  
AWE/SDWE/SSWE valid  
6.5  
6.5  
6.5  
6.5  
6.5  
6.5  
Delay time, ECLKOUT high to  
AOE/SDRAS/SSOE valid  
The C6211/C6211B SDRAM interface takes advantage of the internal burst counter in the SDRAM. Accesses default to incrementing 4-word  
bursts, but random bursts and decrementing bursts are done by interrupting bursts in progress. All burst types can sustain continuous data flow.  
ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM  
accesses.  
54  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
READ  
ECLKOUT  
CEx  
1
1
2
3
BE[3:0]  
BE1  
BE2  
BE3  
BE4  
4
5
5
5
Bank  
EA[21:13]  
EA[11:2]  
4
Column  
4
EA12  
6
7
D2  
ED[31:0]  
D1  
D3  
D4  
AOE/SDRAS/SSOE  
8
8
ARE/SDCAS/SSADS  
AWE/SDWE/SSWE  
ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM  
accesses.  
Figure 22. SDRAM Read Command (CAS Latency 3)  
55  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
WRITE  
ECLKOUT  
CEx  
1
2
4
4
4
9
2
4
5
5
5
9
3
BE[3:0]  
BE1  
Bank  
BE2  
BE3  
BE4  
EA[21:13]  
Column  
EA[11:2]  
EA12  
10  
ED[31:0]  
D1  
D2  
D3  
D4  
AOE/SDRAS/SSOE  
ARE/SDCAS/SSADS  
8
8
11  
11  
AWE/SDWE/SSWE  
ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM  
accesses.  
Figure 23. SDRAM Write Command  
56  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
ACTV  
ECLKOUT  
1
1
CEx  
BE[3:0]  
4
5
5
5
Bank Activate  
EA[21:13]  
EA[11:2]  
4
Row Address  
4
Row Address  
EA12  
ED[31:0]  
12  
12  
AOE/SDRAS/SSOE  
ARE/SDCAS/SSADS  
AWE/SDWE/SSWE  
ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM  
accesses.  
Figure 24. SDRAM ACTV Command  
DCAB  
ECLKOUT  
1
1
CEx  
BE[3:0]  
EA[21:13, 11:2]  
4
12  
11  
5
12  
11  
EA12  
ED[31:0]  
AOE/SDRAS/SSOE  
ARE/SDCAS/SSADS  
AWE/SDWE/SSWE  
ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM  
accesses.  
Figure 25. SDRAM DCAB Command  
57  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
DEAC  
ECLKOUT  
1
1
CEx  
BE[3:0]  
4
5
EA[21:13]  
EA[11:2]  
Bank  
4
5
EA12  
ED[31:0]  
12  
11  
12  
11  
AOE/SDRAS/SSOE  
ARE/SDCAS/SSADS  
AWE/SDWE/SSWE  
ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM  
accesses.  
Figure 26. SDRAM DEAC Command  
REFR  
ECLKOUT  
1
1
CEx  
BE[3:0]  
EA[21:2]  
EA12  
ED[31:0]  
12  
8
12  
8
AOE/SDRAS/SSOE  
ARE/SDCAS/SSADS  
AWE/SDWE/SSWE  
ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM  
accesses.  
Figure 27. SDRAM REFR Command  
58  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
MRS  
ECLKOUT  
1
1
5
CEx  
BE[3:0]  
4
EA[21:2]  
ED[31:0]  
MRS value  
12  
8
12  
8
AOE/SDRAS/SSOE  
ARE/SDCAS/SSADS  
11  
11  
AWE/SDWE/SSWE  
ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM  
accesses.  
Figure 28. SDRAM MRS Command  
59  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
HOLD/HOLDA TIMING  
timing requirements for the HOLD/HOLDA cycles (see Figure 29)  
−150  
−167  
NO.  
UNIT  
MIN MAX  
3
t
Output hold time, HOLD low after HOLDA low  
E
ns  
oh(HOLDAL-HOLDL)  
E = ECLKIN period in ns  
†‡  
switching characteristics over recommended operating conditions for the HOLD/HOLDA cycles  
(see Figure 29)  
−150  
−167  
NO.  
PARAMETER  
UNIT  
MIN  
2E  
0
MAX  
§
1
2
4
5
t
t
t
t
Delay time, HOLD low to EMIF Bus high impedance  
Delay time, EMIF Bus high impedance to HOLDA low  
Delay time, HOLD high to EMIF Bus low impedance  
Delay time, EMIF Bus low impedance to HOLDA high  
ns  
ns  
ns  
ns  
d(HOLDL-EMHZ)  
d(EMHZ-HOLDAL)  
d(HOLDH-EMLZ)  
d(EMLZ-HOLDAH)  
2E  
7E  
2E  
2E  
0
§
E = ECLKIN period in ns  
EMIF Bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE/SDCAS/SSADS, AOE/SDRAS/SSOE, and AWE/SDWE/SSWE.  
All pending EMIF transactions are allowed to complete before HOLDA is asserted. If no bus transactions are occurring, then the minimum delay  
time can be achieved. Also, bus hold can be indefinitely delayed by setting NOHOLD = 1.  
External Requestor  
DSP Owns Bus  
DSP Owns Bus  
Owns Bus  
3
HOLD  
2
5
HOLDA  
1
C6211/C6211B  
4
EMIF Bus  
C6211/C6211B  
EMIF Bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE/SDCAS/SSADS, AOE/SDRAS/SSOE, and AWE/SDWE/SSWE.  
Figure 29. HOLD/HOLDA Timing  
60  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
BUSREQ TIMING  
switching characteristics over recommended operating conditions for the BUSREQ cycles  
(see Figure 30)  
−150  
−167  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
t
Delay time, ECLKOUT high to BUSREQ valid  
1.5  
11  
ns  
d(EKOH-BUSRV)  
ECLKOUT  
BUSREQ  
1
1
Figure 30. BUSREQ Timing  
61  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
RESET TIMING  
timing requirements for reset (see Figure 31)  
−150  
−167  
NO.  
UNIT  
MIN  
MAX  
Width of the RESET pulse (PLL stable)  
10P  
250  
2P  
ns  
µs  
ns  
ns  
1
t
w(RST)  
§
Width of the RESET pulse (PLL needs to sync up)  
Setup time, HD boot configuration bits valid before RESET high  
14  
15  
t
t
su(HD)  
Hold time, HD boot configuration bits valid after RESET high  
2P  
h(HD)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
This parameter applies to CLKMODE x1 when CLKIN is stable, and applies to CLKMODE x4 when CLKIN and PLL are stable.  
This parameter applies to CLKMODE x4 only (it does not apply to CLKMODE x1). The RESET signal is not connected internally to the clock PLL  
circuit. The PLL, however, may need up to 250 µs to stabilize following device power up or after PLL configuration has been changed. During  
that time, RESET must be asserted to ensure proper device operation. See the clock PLL section for PLL lock times.  
HD[4:3] are the boot configuration pins during device reset.  
†#||  
switching characteristics over recommended operating conditions during reset  
(see Figure 31)  
−150  
−167  
NO.  
PARAMETER  
UNIT  
MAX  
MIN  
2
3
t
t
t
t
t
t
t
t
t
t
t
t
Delay time, RESET low to ECLKIN synchronized internally  
Delay time, RESET high to ECLKIN synchronized internally  
Delay time, RESET low to EMIF Z group high impedance  
Delay time, RESET high to EMIF Z group valid  
Delay time, RESET low to EMIF high group invalid  
Delay time, RESET high to EMIF high group valid  
Delay time, RESET low to EMIF low group invalid  
Delay time, RESET high to EMIF low group valid  
Delay time, RESET low to high group invalid  
2P + 3E  
2P + 3E  
2P + 3E  
3P + 4E  
3P + 4E  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(RSTL-ECKI)  
d(RSTH-ECKI)  
4
d(RSTL-EMIFZHZ)  
d(RSTH-EMIFZV)  
d(RSTL-EMIFHIV)  
d(RSTH-EMIFHV)  
d(RSTL-EMIFLIV)  
d(RSTH-EMIFLV)  
d(RSTL-HIGHIV)  
d(RSTH-HIGHV)  
d(RSTL-ZHZ)  
5
3P + 4E  
3P + 4E  
3P + 4E  
4P  
6
2P + 3E  
2P + 3E  
2P  
7
8
9
10  
11  
12  
13  
Delay time, RESET high to high group valid  
Delay time, RESET low to Z group high impedance  
Delay time, RESET high to Z group valid  
2P  
2P  
d(RSTH-ZV)  
#
||  
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
E = ECLKIN period in ns  
EMIF Z group consists of:  
EA[21:2], ED[31:0], CE[3:0], BE[3:0], ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE  
EMIF high group consists of: HOLDA  
EMIF low group consists of: BUSREQ  
High group consists of:  
Z group consists of:  
HRDY and HINT  
HD[15:0], CLKX0, CLKX1, FSX0, FSX1, DX0, DX1, CLKR0, CLKR1, FSR0, FSR1, TOUT0, and TOUT1.  
62  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
RESET TIMING (CONTINUED)  
CLKOUT1  
CLKOUT2  
1
15  
14  
RESET  
2
4
6
8
3
§
ECLKIN  
5
7
EMIF Z Group  
EMIF High Group  
9
EMIF Low Group  
High Group  
10  
12  
11  
13  
Z Group  
HD[8, 4:3]  
§
ECLKIN should be provided during reset in order to drive EMIF signals to the correct reset values. ECLKOUT continues to clock as long as  
ECLKIN is provided.  
EMIF Z group consists of:  
EA[21:2], ED[31:0], CE[3:0], BE[3:0], ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE  
EMIF high group consists of: HOLDA  
EMIF low group consists of: BUSREQ  
High group consists of:  
Z group consists of:  
HD[8, 4:3] are the endianness and boot configuration pins during device reset.  
HRDY and HINT  
HD[15:0], CLKX0, CLKX1, FSX0, FSX1, DX0, DX1, CLKR0, CLKR1, FSR0, FSR1, TOUT0, and TOUT1.  
Figure 31. Reset Timing  
63  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2005  
EXTERNAL INTERRUPT TIMING  
timing requirements for external interrupts (see Figure 32)  
−150  
−167  
NO.  
UNIT  
MIN  
MAX  
1
2
t
t
Width of the interrupt pulse low  
Width of the interrupt pulse high  
2P  
2P  
ns  
ns  
w(ILOW)  
w(IHIGH)  
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
2
1
EXT_INT, NMI  
Figure 32. External/NMI Interrupt Timing  
64  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2004  
HOST-PORT INTERFACE TIMING  
†‡  
timing requirements for host-port interface cycles [C6211] (see Figure 33, Figure 34, Figure 35,  
and Figure 36)  
C6211−150  
C6211−167  
NO.  
UNIT  
MIN  
5
MAX  
§
1
2
t
t
t
t
t
t
t
t
Setup time, select signals valid before HSTROBE low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(SELV-HSTBL)  
h(HSTBL-SELV)  
w(HSTBL)  
§
Hold time, select signals valid after HSTROBE low  
4
3
Pulse duration, HSTROBE low  
4P  
4P  
5
4
Pulse duration, HSTROBE high between consecutive accesses  
w(HSTBH)  
§
Setup time, select signals valid before HAS low  
10  
11  
12  
13  
su(SELV-HASL)  
h(HASL-SELV)  
su(HDV-HSTBH)  
h(HSTBH-HDV)  
§
Hold time, select signals valid after HAS low  
3
Setup time, host data valid before HSTROBE high  
Hold time, host data valid after HSTROBE high  
5
3
Hold time, HSTROBE low after HRDY low. HSTROBE should not be inactivated  
until HRDY is active (low); otherwise, HPI writes will not complete properly.  
14  
t
2
ns  
h(HRDYL-HSTBL)  
18  
19  
t
t
Setup time, HAS low before HSTROBE low  
Hold time, HAS low after HSTROBE low  
2
2
ns  
ns  
su(HASL-HSTBL)  
h(HSTBL-HASL)  
§
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
Select signals include: HCNTL[1:0], HR/W, and HHWIL.  
switching characteristics over recommended operating conditions during host-port interface  
†‡  
cycles [C6211] (see Figure 33, Figure 34, Figure 35, and Figure 36)  
C6211−150  
C6211−167  
NO.  
PARAMETER  
UNIT  
MIN MAX  
5
6
t
t
t
t
t
t
t
t
t
Delay time, HCS to HRDY  
1
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(HCS-HRDY)  
#
Delay time, HSTROBE low to HRDY high  
3
d(HSTBL-HRDYH)  
d(HSTBL-HDLZ)  
d(HDV-HRDYL)  
oh(HSTBH-HDV)  
d(HSTBH-HDHZ)  
d(HSTBL-HDV)  
d(HSTBH-HRDYH)  
d(HASL-HRDYH)  
7
Delay time, HSTROBE low to HD low impedance for an HPI read  
Delay time, HD valid to HRDY low  
2
8
2P − 4  
2P  
15  
15  
15  
15  
15  
9
Output hold time, HD valid after HSTROBE high  
Delay time, HSTROBE high to HD high impedance  
Delay time, HSTROBE low to HD valid  
3
3
3
3
3
15  
16  
17  
20  
||  
Delay time, HSTROBE high to HRDY high  
Delay time, HAS low to HRDY high  
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
HCS enables HRDY, and HRDY is always low when HCS is high. The case where HRDY goes high when HCS falls indicates that HPI is busy  
completing a previous HPID write or READ with autoincrement.  
#
||  
This parameter is used during an HPID read. At the beginning of the first half-word transfer on the falling edge of HSTROBE, the HPI sends the  
request to the EDMA internal address generation hardware, and HRDY remains high until the EDMA internal address generation hardware loads  
the requested data into HPID.  
This parameter is used after the second half-word of an HPID write or autoincrement read. HRDY remains low if the access is not an HPID write  
or autoincrement read. Reading or writing to HPIC or HPIA does not affect the HRDY signal.  
65  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2004  
HOST-PORT INTERFACE TIMING (CONTINUED)  
†‡  
timing requirements for host-port interface cycles [C6211BGFNA/C6211B] (see Figure 33,  
Figure 34, Figure 35, and Figure 36)  
C6211B−150  
C6211B−167  
C6211BGFNA−150  
NO.  
UNIT  
MIN  
5
MAX  
§
1
2
t
t
t
t
t
t
t
t
Setup time, select signals valid before HSTROBE low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(SELV-HSTBL)  
h(HSTBL-SELV)  
w(HSTBL)  
§
Hold time, select signals valid after HSTROBE low  
4
3
Pulse duration, HSTROBE low  
4P  
4P  
5
4
Pulse duration, HSTROBE high between consecutive accesses  
w(HSTBH)  
§
Setup time, select signals valid before HAS low  
10  
11  
12  
13  
su(SELV-HASL)  
h(HASL-SELV)  
su(HDV-HSTBH)  
h(HSTBH-HDV)  
§
Hold time, select signals valid after HAS low  
3
Setup time, host data valid before HSTROBE high  
Hold time, host data valid after HSTROBE high  
5
3
Hold time, HSTROBE low after HRDY low. HSTROBE should not be  
inactivated until HRDY is active (low); otherwise, HPI writes will not  
complete properly.  
14  
t
2
ns  
h(HRDYL-HSTBL)  
18  
19  
t
t
Setup time, HAS low before HSTROBE low  
Hold time, HAS low after HSTROBE low  
2
2
ns  
ns  
su(HASL-HSTBL)  
h(HSTBL-HASL)  
§
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
Select signals include: HCNTL[1:0], HR/W, and HHWIL.  
switching characteristics over recommended operating conditions during host-port interface  
†‡  
cycles [C6211BGFNA/C6211B] (see Figure 33, Figure 34, Figure 35, and Figure 36)  
C6211B−150  
C6211BGFNA−150  
C6211B−167  
NO.  
PARAMETER  
UNIT  
MIN  
1
MAX  
13  
MIN MAX  
5
6
t
t
Delay time, HCS to HRDY  
1
3
12  
12  
ns  
ns  
d(HCS-HRDY)  
#
Delay time, HSTROBE low to HRDY high  
3
13  
d(HSTBL-HRDYH)  
Delay time, HSTROBE low to HD low impedance for  
an HPI read  
7
t
2
2
ns  
d(HSTBL-HDLZ)  
8
t
t
t
t
t
t
Delay time, HD valid to HRDY low  
2P − 4  
2P  
13  
13  
13  
13  
13  
2P − 4  
2P  
12  
12  
12  
12  
12  
ns  
ns  
ns  
ns  
ns  
ns  
d(HDV-HRDYL)  
oh(HSTBH-HDV)  
d(HSTBH-HDHZ)  
d(HSTBL-HDV)  
d(HSTBH-HRDYH)  
d(HASL-HRDYH)  
9
Output hold time, HD valid after HSTROBE high  
Delay time, HSTROBE high to HD high impedance  
Delay time, HSTROBE low to HD valid  
3
3
3
3
3
3
3
3
3
3
15  
16  
17  
20  
||  
Delay time, HSTROBE high to HRDY high  
Delay time, HAS low to HRDY high  
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
HCS enables HRDY, and HRDY is always low when HCS is high. The case where HRDY goes high when HCS falls indicates that HPI is busy  
completing a previous HPID write or READ with autoincrement.  
#
||  
This parameter is used during an HPID read. At the beginning of the first half-word transfer on the falling edge of HSTROBE, the HPI sends the  
request to the EDMA internal address generation hardware, and HRDY remains high until the EDMA internal address generation hardware loads  
the requested data into HPID.  
This parameter is used after the second half-word of an HPID write or autoincrement read. HRDY remains low if the access is not an HPID write  
or autoincrement read. Reading or writing to HPIC or HPIA does not affect the HRDY signal.  
66  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2004  
HOST-PORT INTERFACE TIMING (CONTINUED)  
HAS  
HCNTL[1:0]  
HR/W  
1
1
1
1
2
2
2
2
2
2
1
1
HHWIL  
4
3
3
HSTROBE  
HCS  
15  
9
15  
9
7
16  
HD[15:0] (output)  
HRDY (case 1)  
HRDY (case 2)  
5
5
1st halfword  
2nd halfword  
5
8
8
17  
17  
6
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 33. HPI Read Timing (HAS Not Used, Tied High)  
HAS  
19  
11  
19  
11  
10  
10  
10  
10  
HCNTL[1:0]  
HR/W  
11  
11  
11  
11  
10  
10  
HHWIL  
4
3
HSTROBE  
18  
18  
HCS  
15  
15  
7
9
16  
9
17  
17  
HD[15:0] (output)  
HRDY (case 1)  
HRDY (case 2)  
1st half-word  
2nd half-word  
5
8
8
5
5
20  
For correct operation, strobe the HAS signal only once per HSTROBE active cycle.  
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 34. HPI Read Timing (HAS Used)  
67  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2004  
HOST-PORT INTERFACE TIMING (CONTINUED)  
HAS  
HCNTL[1:0]  
HR/W  
1
1
2
2
2
2
3
1
1
1
1
2
2
HHWIL  
3
4
14  
HSTROBE  
HCS  
HD[15:0] (input)  
HRDY  
12  
12  
13  
2nd halfword  
13  
17  
1st halfword  
5
5
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 35. HPI Write Timing (HAS Not Used, Tied High)  
HAS  
19  
11  
19  
11  
11  
11  
10  
10  
10  
10  
10  
10  
HCNTL[1:0]  
HR/W  
11  
11  
HHWIL  
3
4
14  
HSTROBE  
18  
12  
18  
HCS  
HD[15:0] (input)  
HRDY  
12  
13  
13  
1st half-word  
2nd half-word  
5
5
17  
For correct operation, strobe the HAS signal only once per HSTROBE active cycle.  
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 36. HPI Write Timing (HAS Used)  
68  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2004  
MULTICHANNEL BUFFERED SERIAL PORT TIMING  
†‡  
timing requirements for McBSP (see Figure 37)  
−150  
−167  
NO.  
UNIT  
MIN  
MAX  
§
2
3
t
t
Cycle time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
2P  
ns  
ns  
c(CKRX)  
Pulse duration, CLKR/X high or CLKR/X low  
0.5t  
c(CKRX)  
− 1  
20  
1
w(CKRX)  
5
6
t
t
t
t
t
t
Setup time, external FSR high before CLKR low  
Hold time, external FSR high after CLKR low  
Setup time, DR valid before CLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
su(FRH-CKRL)  
h(CKRL-FRH)  
su(DRV-CKRL)  
h(CKRL-DRV)  
su(FXH-CKXL)  
h(CKXL-FXH)  
6
3
22  
3
7
3
8
Hold time, DR valid after CLKR low  
4
23  
1
10  
11  
Setup time, external FSX high before CLKX low  
Hold time, external FSX high after CLKX low  
6
3
§
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted.  
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
The minimum CLKR/X period is twice the CPU cycle time (2P). This means that the maximum bit rate for communications between the McBSP  
and other device is 83 Mbps for 167 MHz CPU clock or 75 Mbps for 150 MHz CPU clock; where the McBSP is either the master or the slave.  
Care must be taken to ensure that the AC timings specified in this data sheet are met. The maximum bit rate for McBSP-to-McBSP  
communications is 33 Mbps; therefore, the minimum CLKR/X clock cycle is either twice the CPU cycle time (2P), or 30 ns (33 MHz), whichever  
value is larger. For example, when running parts at 167 MHz (P = 6 ns), use 30 ns as the minimum CLKR/X clock cycle (by setting the appropriate  
CLKGDV ratio or external clock source). When running parts at 60 MHz (P = 16.67 ns), use 2P = 33 ns (30 MHz) as the minimum CLKR/X clock  
cycle. The maximum bit rate for McBSP-to-McBSP communications applies when the serial port is a master of the clock and frame syncs (with  
CLKR connected to CLKX, FSR connected to FSX, CLKXM = FSXM = 1, and CLKRM = FSRM = 0) in data delay 1 or 2 mode (R/XDATDLY =  
01b or 10b) and the other device the McBSP communicates to is a slave.  
69  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2004  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡  
switching characteristics over recommended operating conditions for McBSP (see Figure 37)  
−150  
−167  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from  
CLKS input  
1
t
4
26  
ns  
d(CKSH-CKRXH)  
§¶  
2
3
4
t
t
t
Cycle time, CLKR/X  
CLKR/X int  
CLKR/X int  
CLKR int  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
2P  
ns  
ns  
ns  
c(CKRX)  
#
#
Pulse duration, CLKR/X high or CLKR/X low  
Delay time, CLKR high to internal FSR valid  
C − 1  
C + 1  
w(CKRX)  
11  
11  
3
3
3
9
4
9
d(CKRH-FRV)  
9
t
t
t
Delay time, CLKX high to internal FSX valid  
ns  
ns  
ns  
d(CKXH-FXV)  
dis(CKXH-DXHZ)  
d(CKXH-DXV)  
−9  
3
Disable time, DX high impedance following last data bit  
from CLKX high  
12  
13  
||  
||  
−9+ D1  
3 + D1  
4 + D2  
Delay time, CLKX high to DX valid  
Delay time, FSX high to DX valid  
||  
||  
19 + D2  
FSX int  
FSX ext  
−1  
3
3
9
14  
t
ns  
d(FXH-DXV)  
ONLY applies when in data  
delay 0 (XDATDLY = 00b) mode  
§
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted.  
Minimum delay times also represent minimum output hold times.  
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
The minimum CLKR/X period is twice the CPU cycle time (2P). This means that the maximum bit rate for communications between the McBSP  
and other device is 83 Mbps for 167 MHz CPU clock or 75 Mbps for 150 MHz CPU clock; where the McBSP is either the master or the slave.  
Care must be taken to ensure that the AC timings specified in this data sheet are met. The maximum bit rate for McBSP-to-McBSP  
communications is 33 Mbps; therefore, the minimum CLKR/X clock cycle is either twice the CPU cycle time (2P), or 30 ns (33 MHz), whichever  
value is larger. For example, when running parts at 167 MHz (P = 6 ns), use 30 ns as the minimum CLKR/X clock cycle (by setting the appropriate  
CLKGDV ratio or external clock source). When running parts at 60 MHz (P = 16.67 ns), use 2P = 33 ns (30 MHz) as the minimum CLKR/X clock  
cycle. The maximum bit rate for McBSP-to-McBSP communications applies when the serial port is a master of the clock and frame syncs (with  
CLKR connected to CLKX, FSR connected to FSX, CLKXM = FSXM = 1, and CLKRM = FSRM = 0) in data delay 1 or 2 mode (R/XDATDLY =  
01b or 10b) and the other device the McBSP communicates to is a slave.  
#
C = H or L  
S = sample rate generator input clock = 2P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see ¶ footnote above).  
Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.  
If DXENA = 0, then D1 = D2 = 0  
||  
If DXENA = 1, then D1 = 2P, D2 = 4P  
70  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2004  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
CLKS  
1
2
3
3
CLKR  
4
4
FSR (int)  
5
6
FSR (ext)  
7
8
DR  
Bit(n-1)  
(n-2)  
(n-3)  
2
3
3
CLKX  
9
FSX (int)  
11  
10  
FSX (ext)  
FSX (XDATDLY=00b)  
13  
(n-2)  
14  
13  
12  
DX  
Bit 0  
Bit(n-1)  
(n-3)  
Figure 37. McBSP Timings  
71  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2004  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
timing requirements for FSR when GSYNC = 1 (see Figure 38)  
−150  
−167  
NO.  
UNIT  
MIN  
MAX  
1
2
t
t
Setup time, FSR high before CLKS high  
Hold time, FSR high after CLKS high  
4
4
ns  
ns  
su(FRH-CKSH)  
h(CKSH-FRH)  
CLKS  
1
2
FSR external  
CLKR/X (no need to resync)  
CLKR/X (needs resync)  
Figure 38. FSR Timing When GSYNC = 1  
72  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2004  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡  
timing requirements for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 0 (see Figure 39)  
−150  
−167  
NO.  
UNIT  
MASTER  
SLAVE  
MIN MAX  
MIN  
26  
4
MAX  
4
5
t
t
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
2 − 6P  
ns  
ns  
su(DRV-CKXL)  
6 + 12P  
h(CKXL-DRV)  
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
switching characteristics over recommended operating conditions for McBSP as SPI master or  
†‡  
slave: CLKSTP = 10b, CLKXP = 0 (see Figure 39)  
−150  
−167  
NO.  
PARAMETER  
UNIT  
§
MASTER  
SLAVE  
MIN  
MIN MAX  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX low  
T − 9 T + 9  
L − 9 L + 9  
ns  
ns  
ns  
h(CKXL-FXL)  
d(FXL-CKXH)  
d(CKXH-DXV)  
#
Delay time, FSX low to CLKX high  
Delay time, CLKX high to DX valid  
−9  
9
6P + 4 10P + 20  
Disable time, DX high impedance following last data bit from  
CLKX low  
6
t
L − 9 L + 9  
ns  
dis(CKXL-DXHZ)  
Disable time, DX high impedance following last data bit from  
FSX high  
7
8
t
t
2P + 3  
4P + 2  
6P + 20  
8P + 20  
ns  
ns  
dis(FXH-DXHZ)  
Delay time, FSX low to DX valid  
d(FXL-DXV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = Sample rate generator input clock = 2P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
#
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
73  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2004  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
CLKX  
FSX  
1
2
8
7
6
3
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 39. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
74  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2004  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡  
timing requirements for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 0 (see Figure 40)  
−150  
−167  
NO.  
UNIT  
MASTER  
SLAVE  
MIN MAX  
MIN  
26  
4
MAX  
4
5
t
t
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
2 − 6P  
ns  
ns  
su(DRV-CKXH)  
6 + 12P  
h(CKXH-DRV)  
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
switching characteristics over recommended operating conditions for McBSP as SPI master or  
†‡  
slave: CLKSTP = 11b, CLKXP = 0 (see Figure 40)  
−150  
−167  
NO.  
PARAMETER  
UNIT  
§
MASTER  
SLAVE  
MIN  
MIN MAX  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX low  
L − 9 L + 9  
T − 9 T + 9  
ns  
ns  
ns  
h(CKXL-FXL)  
d(FXL-CKXH)  
d(CKXL-DXV)  
#
Delay time, FSX low to CLKX high  
Delay time, CLKX low to DX valid  
−9  
9
6P + 4 10P + 20  
6P + 3 10P + 20  
Disable time, DX high impedance following last data bit from  
CLKX low  
6
t
−9  
9
ns  
ns  
dis(CKXL-DXHZ)  
7
t
Delay time, FSX low to DX valid  
H − 9 H + 9  
4P + 2  
8P + 20  
d(FXL-DXV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = Sample rate generator input clock = 2P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
#
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
CLKX  
1
2
7
FSX  
DX  
6
3
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-3)  
(n-4)  
4
5
DR  
Bit 0  
(n-2)  
(n-4)  
Figure 40. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
75  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2004  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡  
timing requirements for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 1 (see Figure 41)  
−150  
−167  
NO.  
UNIT  
MASTER  
SLAVE  
MIN MAX  
MIN  
26  
4
MAX  
4
5
t
t
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
2 − 6P  
ns  
ns  
su(DRV-CKXH)  
6 + 12P  
h(CKXH-DRV)  
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
switching characteristics over recommended operating conditions for McBSP as SPI master or  
†‡  
slave: CLKSTP = 10b, CLKXP = 1 (see Figure 41)  
−150  
−167  
NO.  
PARAMETER  
UNIT  
§
MASTER  
SLAVE  
MIN  
MIN MAX  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX high  
T − 9 T + 9  
H − 9 H + 9  
ns  
ns  
ns  
h(CKXH-FXL)  
d(FXL-CKXL)  
d(CKXL-DXV)  
#
Delay time, FSX low to CLKX low  
Delay time, CLKX low to DX valid  
−9  
9
6P + 4 10P + 20  
Disable time, DX high impedance following last data bit from  
CLKX high  
6
t
H − 9 H + 9  
ns  
dis(CKXH-DXHZ)  
Disable time, DX high impedance following last data bit from  
FSX high  
7
8
t
t
2P + 3  
4P + 2  
6P + 20  
8P + 20  
ns  
ns  
dis(FXH-DXHZ)  
Delay time, FSX low to DX valid  
d(FXL-DXV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = Sample rate generator input clock = 2P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
#
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
76  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2004  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
CLKX  
FSX  
1
2
7
6
8
3
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 41. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
77  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2004  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡  
timing requirements for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 1 (see Figure 42)  
−150  
−167  
NO.  
UNIT  
MASTER  
SLAVE  
MIN MAX  
MIN  
26  
4
MAX  
4
5
t
t
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
2 − 6P  
ns  
ns  
su(DRV-CKXH)  
6 + 12P  
h(CKXH-DRV)  
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
switching characteristics over recommended operating conditions for McBSP as SPI master or  
†‡  
slave: CLKSTP = 11b, CLKXP = 1 (see Figure 42)  
−150  
−167  
NO.  
PARAMETER  
UNIT  
§
MASTER  
SLAVE  
MIN  
MIN MAX  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX high  
H − 9 H + 9  
T − 9 T + 9  
ns  
ns  
ns  
h(CKXH-FXL)  
d(FXL-CKXL)  
d(CKXH-DXV)  
#
Delay time, FSX low to CLKX low  
Delay time, CLKX high to DX valid  
−9  
9
6P + 4 10P + 20  
6P + 3 10P + 20  
Disable time, DX high impedance following last data bit from  
CLKX high  
6
t
−9  
9
ns  
ns  
dis(CKXH-DXHZ)  
7
t
Delay time, FSX low to DX valid  
L − 9 L + 9  
4P + 2  
8P + 20  
d(FXL-DXV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = Sample rate generator input clock = 2P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
#
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
78  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2004  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
CLKX  
FSX  
DX  
1
2
7
6
3
Bit 0  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
DR  
(n-2)  
(n-3)  
(n-4)  
Figure 42. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
79  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢍꢎ  
ꢔꢌ  
ꢀꢕ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2004  
TIMER TIMING  
timing requirements for timer inputs (see Figure 43)  
−150  
−167  
NO.  
UNIT  
MIN  
MAX  
1
2
t
t
Pulse duration, TINP high  
Pulse duration, TINP low  
2P  
2P  
ns  
ns  
w(TINPH)  
w(TINPL)  
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
switching characteristics over recommended operating conditions for timer outputs  
(see Figure 43)  
−150  
−167  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
3
4
t
t
Pulse duration, TOUT high  
Pulse duration, TOUT low  
4P−3  
4P−3  
ns  
ns  
w(TOUTH)  
w(TOUTL)  
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
2
1
TINPx  
4
3
TOUTx  
Figure 43. Timer Timing  
80  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2004  
JTAG TEST-PORT TIMING  
timing requirements for JTAG test port (see Figure 44)  
−150  
−167  
NO.  
UNIT  
MIN  
35  
10  
9
MAX  
1
3
4
t
t
t
Cycle time, TCK  
ns  
ns  
ns  
c(TCK)  
Setup time, TDI/TMS/TRST valid before TCK high  
Hold time, TDI/TMS/TRST valid after TCK high  
su(TDIV-TCKH)  
h(TCKH-TDIV)  
switching characteristics over recommended operating conditions for JTAG test port  
(see Figure 44)  
−150  
−167  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
2
t
Delay time, TCK low to TDO valid  
–3  
18  
ns  
d(TCKL-TDOV)  
1
TCK  
TDO  
2
2
4
3
TDI/TMS/TRST  
Figure 44. JTAG Test-Port Timing  
81  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢄꢈꢈ ꢉ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢊ  
ꢋ ꢌ ꢍꢎꢏ ꢐꢑ ꢒꢌ ꢓ ꢀ ꢏ ꢌ ꢔꢌ ꢀꢕꢖ ꢂ ꢌ ꢔꢓ ꢕꢖ ꢑ ꢗꢒ ꢆꢎꢂ ꢂꢒ ꢗꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2004  
MECHANICAL DATA  
The following tables show the thermal resistance characteristics for the GFN and ZFN mechanical packages.  
thermal resistance characteristics (S-PBGA package) for GFN  
NO  
1
°C/W  
6.4  
Air Flow (m/s)  
RΘ  
RΘ  
RΘ  
RΘ  
RΘ  
Junction-to-case  
N/A  
0.0  
0.5  
1.0  
2.0  
JC  
JA  
JA  
JA  
JA  
2
Junction-to-free air  
Junction-to-free air  
Junction-to-free air  
Junction-to-free air  
25.5  
23.1  
22.3  
21.2  
3
4
5
m/s = meters per second  
thermal resistance characteristics (S-PBGA package) for ZFN  
NO  
°C/W  
6.4  
Air Flow (m/s)  
1
2
3
4
5
RΘ  
RΘ  
RΘ  
RΘ  
RΘ  
Junction-to-case  
N/A  
0.0  
0.5  
1.0  
2.0  
JC  
JA  
JA  
JA  
JA  
Junction-to-free air  
Junction-to-free air  
Junction-to-free air  
Junction-to-free air  
25.5  
23.1  
22.3  
21.2  
m/s = meters per second  
82  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
 
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢄ ꢈꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢄꢈꢈꢊ  
ꢋ ꢌꢍ ꢎꢏꢐꢑꢒ ꢌ ꢓꢀ ꢏꢌ ꢔꢌ ꢀꢕꢖ ꢂꢌ ꢔ ꢓꢕꢖ ꢑꢗ ꢒ ꢆꢎ ꢂ ꢂꢒ ꢗ ꢂ  
SPRS073L − AUGUST 1998 − REVISED JUNE 2004  
packaging information  
The following packaging information and addendum reflect the most current released data available for the  
designated device(s). This data is subject to change without notice and without revision of this document.  
83  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Nov-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
BGA  
BGA  
BGA  
Drawing  
TMS320C6211BGFN150  
TMS320C6211BGFN167  
TMS320C6211BZFN150  
ACTIVE  
ACTIVE  
ACTIVE  
GFN  
256  
256  
256  
40  
40  
40  
TBD  
TBD  
SNPB  
SNPB  
Level-4-220C-72HR  
Level-4-220C-72HR  
Level-4-260C-72HR  
GFN  
ZFN  
Pb-Free  
(RoHS)  
SNAGCU  
TMS320C6211BZFN167  
TMS320C6211GFN150  
TMS320C6211GFN167  
TMS32C6211BGFNA150  
TMX320C6211GFN  
ACTIVE  
OBSOLETE  
OBSOLETE  
ACTIVE  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
ZFN  
GFN  
GFN  
GFN  
GFN  
GFN  
256  
256  
256  
256  
256  
256  
40  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
SNPB  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
40  
Level-4-220C-72HR  
Call TI  
OBSOLETE  
OBSOLETE  
TMX320C6211GFN21  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MBGA002C – JANUARY 1995 – REVISED MARCH 2002  
GFN (S-PBGA-N256)  
PLASTIC BALL GRID ARRAY  
27,20  
26,80  
24,70  
23,80  
SQ  
SQ  
24,13 TYP  
1,27  
0,635  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
A1 Corner  
1
3
5
7
9
11 13 15 17 19  
10 12 14 16 18 20  
2
4
6
8
Bottom View  
2,32 MAX  
1,17 NOM  
Seating Plane  
0,15  
0,90  
0,60  
0,40  
0,30  
M
0,15  
0,70  
0,50  
4040185-2/D 02/02  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MO-151  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

TMS320C6211PJ167

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TMS320C6211PJA100

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TMS320C6211PJA120

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TMS320C6211PJA150

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TMS320C6211PJA167

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TMS320C6211PQ100

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TMS320C6211PQ120

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TMS320C6211PQ150

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TMS320C6211PQ167

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TMS320C6211PQA100

FIXED-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI