TMS320C6713BGLZS20EP [TI]

FLOATING-POINT DIGITAL SIGNAL PROCESSORS; 浮点数字信号处理器
TMS320C6713BGLZS20EP
型号: TMS320C6713BGLZS20EP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

FLOATING-POINT DIGITAL SIGNAL PROCESSORS
浮点数字信号处理器

数字信号处理器
文件: 总131页 (文件大小:1262K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SM320C6713-EP  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
Data Manual  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Literature Number: SGUS049I  
August 2003Revised September 2009  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Contents  
1
FEATURES ......................................................................................................................... 9  
2
3
SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS ..................................... 10  
DEVICE INFORMATION ...................................................................................................... 11  
3.1  
3.2  
3.3  
Description ................................................................................................................. 14  
Device Characteristics .................................................................................................... 16  
Functional Block and CPU (DSP Core) Diagram ..................................................................... 17  
4
5
OVERVIEW ....................................................................................................................... 18  
4.1  
4.2  
4.3  
4.4  
4.5  
CPU (DSP Core) Description ............................................................................................ 18  
Memory Map Summary ................................................................................................... 19  
L2 Memory Structure Expanded ......................................................................................... 21  
Peripheral Register Descriptions ........................................................................................ 22  
Signal Groups Description ................................................................................................ 30  
DEVICE CONFIGURATIONS ................................................................................................ 35  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
Device Configurations at Device Reset ................................................................................. 35  
Peripheral Pin Selection at Device Reset .............................................................................. 36  
Peripheral Selection/Device Configurations Via the DEVCFG Control Register .................................. 36  
Multiplexed Pins ........................................................................................................... 37  
Configuration Examples .................................................................................................. 41  
Debugging Considerations ............................................................................................... 47  
6
7
TERMINAL FUNCTIONS ...................................................................................................... 47  
6.1  
Development Support ..................................................................................................... 54  
Device and Development-Support Tool Nomenclature ............................................................... 55  
6.2  
6.2.1  
Device Development Evolutionary Flow ..................................................................... 55  
Support Tool Development Evolutionary Flow .............................................................. 55  
6.2.2  
6.3  
6.4  
Ordering Nomenclature ................................................................................................... 56  
Documentation Support ................................................................................................... 56  
REGISTER INFORMATION .................................................................................................. 58  
7.1  
7.2  
7.3  
7.4  
7.5  
CPU Control Status Register (CSR) Description ...................................................................... 58  
Cache Configuration (CCFG) Register Description (13B) ........................................................... 59  
Interrupts and Interrupt Selector ......................................................................................... 60  
External Interrupt Sources ............................................................................................... 62  
EDMA Module and EDMA Selector ..................................................................................... 63  
8
9
PLL and PLL Controller ...................................................................................................... 67  
PLL Registers .............................................................................................................. 68  
MULTICHANNEL AUDIO SERIAL PORT (McASP) PERIPHERALS ............................................. 74  
8.1  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
9.8  
9.9  
McASP Block Diagram .................................................................................................... 74  
Multichannel Time Division Multiplexed (TDM) Synchronous Transfer Mode ..................................... 76  
Burst Transfer Mode ...................................................................................................... 76  
Supported Bit Stream Formats for TDM and Burst Transfer Modes ................................................ 77  
Digital Audio Interface Transmitter (DIT) Transfer Mode (Transmitter Only) ...................................... 77  
McASP Flexible Clock Generators ...................................................................................... 78  
McASP Error Handling and Management .............................................................................. 78  
McASP Interrupts and EDMA Events ................................................................................... 79  
I2C ........................................................................................................................... 79  
10  
LOGIC AND POWER SUPPLY .............................................................................................. 81  
2
Contents  
Copyright © 2003–2009, Texas Instruments Incorporated  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
10.1 General-Purpose Input/Output (GPIO) ................................................................................. 81  
10.2 Power-Down Mode Logic ................................................................................................. 82  
10.2.1 Triggering, Wake-Up, and Effects ............................................................................ 82  
10.3 Power-Supply Sequencing ............................................................................................... 83  
10.3.1 System-Level Design Considerations ........................................................................ 84  
10.3.2 Power-Supply Design Considerations ....................................................................... 84  
10.4 Power-Supply Decoupling ................................................................................................ 84  
10.5 IEEE Std 1149.1 JTAG Compatibility Statement ...................................................................... 84  
10.6 EMIF Device Speed ....................................................................................................... 85  
10.7 EMIF Big Endian Mode Correctness (C6713B Only) ................................................................. 86  
10.8 Bootmode ................................................................................................................... 87  
PARAMETRIC INFORMATION ............................................................................................. 88  
11  
11.1 Absolute Maximum Ratings .............................................................................................. 88  
11.2 Recommended Operating Conditions .................................................................................. 88  
11.3 Electrical Characteristics ................................................................................................. 89  
11.4 Parameter Measurement Information ................................................................................... 90  
11.4.1 Timing Information .............................................................................................. 90  
11.4.2 Signal Transition Levels ....................................................................................... 90  
11.4.3 AC Transient Rise/Fall Time Specifications ................................................................. 91  
11.4.4 Timing Parameters and Board Routing Analysis ........................................................... 92  
11.5 Input and Output Clocks .................................................................................................. 93  
11.6 Asynchronous Memory Timing .......................................................................................... 96  
11.7 Synchronous-Burst Memory Timing ..................................................................................... 99  
11.8 Synchronous DRAM Timing ............................................................................................ 100  
11.9 HOLD/HOLDA Timing ................................................................................................... 105  
11.10 BUSREQ Timing ......................................................................................................... 105  
11.11 Reset Timing ............................................................................................................. 106  
11.12 External Interrupt Timing ............................................................................................... 108  
11.13 Multichannel Audio Serial Port (McASP) Timing .................................................................... 109  
11.14 Inter-Integrated Circuits (I2C) Timing .................................................................................. 112  
11.15 Host-Port Interface Timing .............................................................................................. 114  
11.16 Multichannel Buffered Serial Port (McBSP) Timing ................................................................. 118  
Copyright © 2003–2009, Texas Instruments Incorporated  
Contents  
3
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
List of Figures  
4-1  
320C67x™ CPU (DSP Core) Data Paths..................................................................................... 19  
4-2  
L2 Memory Configuration ....................................................................................................... 21  
EDMA Channel Parameter Entries (Six Words) for Each EDMA Event .................................................. 25  
CPU (DSP Core) and Peripheral Signals ..................................................................................... 31  
Peripheral Signals................................................................................................................ 32  
Peripheral Signals................................................................................................................ 33  
Peripheral Signals................................................................................................................ 34  
Peripheral Signals................................................................................................................ 34  
Configuration Example A (Two I2C + Two McASP + GPIO) ............................................................... 42  
Configuration Example B (One I2C + One McBSP + Two McASP + GPIO) ............................................. 43  
Configuration Example C [2 I2C + 1 McBSP + 1 McASP + 1 McASP (DIT) + GPIO] .................................. 44  
Configuration Example D [1 I2C + 2 McBSP + 1 McASP + 1 McASP (DIT) + GPIO + Timers] ....................... 45  
Configuration Example E (1 I2C + HPI + 1 McASP)......................................................................... 46  
Configuration Example F (One McBSP + HPI + One McASP)............................................................. 47  
TMS320C6000™ DSP Device Nomenclature (Including SM320C6713 and C6713B Devices) ....................... 56  
CPU Control Status Register (CPU CSR) .................................................................................... 58  
Cache Configuration (CCFG) Register ........................................................................................ 60  
PLL and Clock Generator Logic................................................................................................ 67  
McASP0 and McASP1 Configuration.......................................................................................... 75  
I2Cx Module Block Diagram .................................................................................................... 80  
GPIO Enable (GPEN) Register (Hex Address: 01B0 0000) ............................................................... 81  
GPIO Direction (GPDIR) Register (Hex Address: 01B0 0004) ............................................................ 81  
Power-Down Mode Logic........................................................................................................ 82  
PWRD Field of the CSR ........................................................................................................ 83  
Schottky Diode Diagram......................................................................................................... 84  
16/8-Bit EMIF Big Endian Mode Correctness Mapping (HD12 = 1) (C6713B Only) .................................... 86  
16/8-Bit EMIF Big Endian Mode Correctness Mapping (HD12 = 0) (C6713B Only) .................................... 87  
Test Load Circuit for AC Timing Measurements ............................................................................. 90  
Input and Output Voltage Reference Levels for AC Timing Measurements.............................................. 90  
Rise and Fall Transition Time Voltage Reference Levels................................................................... 90  
AC Transient Specification Rise Time......................................................................................... 91  
AC Transient Specification Fall Time .......................................................................................... 91  
Board-Level Input/Output Timings ............................................................................................. 93  
CLKIN.............................................................................................................................. 93  
CLKOUT2 ......................................................................................................................... 93  
CLKOUT3 ......................................................................................................................... 94  
4-3  
4-4  
4-5  
4-6  
4-7  
4-8  
5-1  
5-2  
5-3  
5-4  
5-5  
5-6  
6-1  
7-1  
7-2  
8-1  
9-1  
9-2  
10-1  
10-2  
10-3  
10-4  
10-5  
10-6  
10-7  
11-1  
11-2  
11-3  
11-4  
11-5  
11-6  
11-7  
11-8  
11-9  
11-10 ECLKIN ............................................................................................................................ 94  
11-11 ECLKOUT ......................................................................................................................... 95  
11-12 Asynchronous Memory Read................................................................................................... 98  
11-13 Asynchronous Memory Write ................................................................................................... 98  
11-14 SBSRAM Read Timing......................................................................................................... 100  
11-15 SBSRAM Write Timing......................................................................................................... 100  
11-16 SDRAM Read Command (CAS Latency 3) ................................................................................. 102  
11-17 SDRAM Write Command ...................................................................................................... 102  
11-18 SDRAM ACTV Command ..................................................................................................... 103  
11-19 SDRAM DCAB Command ..................................................................................................... 103  
4
List of Figures  
Copyright © 2003–2009, Texas Instruments Incorporated  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
11-20 SDRAM DEAC Command ..................................................................................................... 104  
11-21 SDRAM REFR Command ..................................................................................................... 104  
11-22 SDRAM MRS Command ...................................................................................................... 104  
11-23 HOLD/HOLDA Timing.......................................................................................................... 105  
11-24 BUSREQ......................................................................................................................... 106  
11-25 Reset Timing .................................................................................................................... 107  
11-26 External/NMI Interrupt.......................................................................................................... 108  
11-27 McASP Input Timings .......................................................................................................... 111  
11-28 McASP Output Timings ........................................................................................................ 111  
11-29 I2C Receive ...................................................................................................................... 112  
11-30 I2C Transmit Timings ........................................................................................................... 113  
11-31 HPI Read Timing (HAS Not Used, Tied High) .............................................................................. 116  
11-32 HPI Read Timing (HAS Used) ................................................................................................ 116  
11-33 HPI Write Timing (HAS Not Used, Tied High) .............................................................................. 117  
11-34 HPI Write Timing (HAS Used)................................................................................................. 117  
Copyright © 2003–2009, Texas Instruments Incorporated  
List of Figures  
5
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
List of Tables  
3-1  
3-2  
4-1  
4-2  
4-3  
4-4  
4-5  
4-6  
4-7  
4-8  
4-9  
4-10  
4-11  
4-12  
4-13  
4-14  
4-15  
5-1  
5-2  
5-3  
5-4  
5-5  
5-6  
6-1  
7-1  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
7-8  
7-9  
7-10  
7-11  
8-1  
8-2  
8-3  
8-4  
8-5  
8-6  
8-7  
8-8  
Terminal Assignments for 272-Ball GDP Package (in Order of Ball No.) ................................................ 12  
Characteristics of the C6713 and C6713B Processor....................................................................... 16  
320C6713/13B Memory Map Summary ...................................................................................... 20  
EMIF Registers ................................................................................................................... 22  
L2 Cache Registers .............................................................................................................. 23  
Interrupt Selector Registers..................................................................................................... 23  
Device Registers ................................................................................................................. 24  
EDMA Parameter RAM ......................................................................................................... 24  
EDMA Registers.................................................................................................................. 25  
Quick DMA (QDMA) and Pseudo Registers ................................................................................. 25  
PLL Controller Registers ........................................................................................................ 25  
McASP0 and McASP1 Registers .............................................................................................. 26  
I2C0 and I2C1 Registers ........................................................................................................ 28  
HPI Registers ..................................................................................................................... 28  
Timer 0 and Timer 1 Registers ................................................................................................. 28  
McBSP0 and McBSP1 Registers .............................................................................................. 29  
GPIO Registers................................................................................................................... 29  
Device Configurations Pins at Device Reset (HD[4:3], HD8, HD12 [13B only], and CLKMODE0) ................... 35  
HPI_EN (HD14 Pin) Peripheral Selection (HPI or McASP1, and Select GPIO Pins) .................................. 36  
Device Configuration Register (DEVCFG) [Address Location: 0x019C02000x019C02FF] .......................... 36  
Device Configuration Register (DEVCFG) Selection Bit Descriptions .................................................... 37  
Peripheral Pin Selection Matrix ................................................................................................ 38  
C6713/13B Device Multiplexed/Shared Pins ................................................................................. 38  
320C6713 and C6713B Device Part Numbers (P/Ns) and Ordering Information ....................................... 56  
CPU CSR Bit Field Description ................................................................................................ 59  
CCFG Register Bit Field Description .......................................................................................... 60  
DSP Interrupts .................................................................................................................... 60  
Interrupt Selector ................................................................................................................. 62  
External Interrupt Sources and Peripheral Module Control................................................................. 63  
EDMA Channels.................................................................................................................. 64  
EDMA Selector ................................................................................................................... 65  
EDMA Event Selector Registers (ESEL0 Register (0x01A0 FF00) ....................................................... 66  
EDMA Event Selector Registers—ESEL1 Register (0x01A0 FF04) ...................................................... 66  
EDMA Event Selector Registers—ESEL3 Register (0x01A0 FF0C) ..................................................... 66  
EDMA Event Selection Registers (ESEL0, ESEL1, and ESEL3) Description............................................ 66  
PLL Lock and Reset Times ..................................................................................................... 68  
CLKOUT Signals, Default Settings, and Control ............................................................................. 68  
PLL Clock Frequency Ranges ................................................................................................. 69  
PLL Control/Status Register (PLLCSR) (0x01B7 C100) ................................................................... 70  
PLL Control/Status Register (PLLCSR) Description......................................................................... 70  
PLL Multiplier (PLLM) Control Register (0x01B7 C110) .................................................................... 70  
PLL Multiplier (PLLM) Control Register Description ......................................................................... 71  
PLL Wrapper Divider x Registers (PLLDIV0, PLLDIV1, PLLDIV2, and PLLDIV3)  
(0x01B7 C114, 0x01B7 C118, 0x01B7 C11C, and 0x01B7 C120, respectively) ....................................... 71  
8-9  
8-10  
6
PLL Wrapper Divider x Registers  
(Prescaler Divider D0 and Post-Scaler Dividers D1, D2, and D3) Description .......................................... 71  
Oscillator Divider 1 (OSCDIV1) Register (0x01B7 C124) .................................................................. 72  
List of Tables  
Copyright © 2003–2009, Texas Instruments Incorporated  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
8-11  
10-1  
10-2  
11-1  
11-2  
11-3  
11-4  
11-5  
11-6  
11-7  
11-8  
11-9  
Oscillator Divider 1 (OSCDIV1) Register Description ....................................................................... 73  
Characteristics of the Power-Down Modes ................................................................................... 83  
C6713/13B Example Boards and Maximum EMIF Speed .................................................................. 86  
Board-Level Timings Example (see ) .......................................................................................... 92  
Timing Requirements for CLKIN ............................................................................................... 93  
Switching Characteristics for CLKOUT2 ...................................................................................... 93  
Switching Characteristics for CLKOUT3 ...................................................................................... 94  
Timing Requirements for ECLKIN ............................................................................................. 94  
Switching Characteristics for ECLKOUT ..................................................................................... 95  
Timing Requirements for Asynchronous Memory Cycles .................................................................. 96  
Switching Characteristics for Asynchronous Memory Cycles ............................................................. 96  
Timing Requirements for Synchronous-Burst SRAM Cycles .............................................................. 99  
11-10 Switching Characteristics for Synchronous-Burst SRAM Cycles .......................................................... 99  
11-11 Timing Requirements for Synchronous DRAM Cycles .................................................................... 100  
11-12 Switching Characteristics for Synchronous DRAM Cycles ............................................................... 100  
11-13 Timing Requirements for HOLD/HOLDA Cycles ........................................................................... 105  
11-14 Switching Characteristics for HOLD/HOLDA Cycles ...................................................................... 105  
11-15 Switching Characteristics for BUSREQ Cycles ............................................................................ 105  
11-16 Timing Requirements for RESET ............................................................................................ 106  
11-17 Switching Characteristics For RESET ....................................................................................... 106  
11-18 Timing Requirements for External Interrupts ............................................................................... 108  
11-19 Timing Requirements for McASP ............................................................................................ 109  
11-20 Switching Characteristics for McASP ........................................................................................ 109  
11-21 Timing Requirements for I2C ................................................................................................. 112  
11-22 Switching Characteristics for I2C ............................................................................................. 113  
11-23 Timing Requirements for Host-Port Interface Cycles ..................................................................... 114  
11-24 Switching Characteristics for Host-Port Interface Cycles ................................................................. 115  
11-25 Timing Requirements for McBSP ............................................................................................ 118  
Copyright © 2003–2009, Texas Instruments Incorporated  
List of Tables  
7
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
8
List of Tables  
Copyright © 2003–2009, Texas Instruments Incorporated  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
FLOATING-POINT DIGITAL SIGNAL PROCESSORS  
Check for Samples: SM320C6713-EP  
1
FEATURES  
1
2
• Highest Performance Floating Point Digital  
Signal Processors (DSPs): C6713/C6713B  
• 32 Bit External Memory Interface (EMIF)  
– Glueless Interface to SRAM, EPROM, Flash,  
SBSRAM, and SDRAM  
– 512M Byte Total Addressable External  
Memory Space  
– Eight 32 Bit Instructions/Cycle  
– 32/64 Bit Data Word  
– 200 and 300 MHz Clock Rate  
– 5 Instruction Cycle Times  
– 2400/1800 and 1600/1200 MIPS/MFLOPS  
– Rich Peripheral Set, Optimized for Audio  
– Highly Optimized C/C++ Compiler  
• Enhanced Direct Memory Access (EDMA)  
Controller (16 Independent Channels)  
• 16 Bit Host Port Interface (HPI)  
• Two Multichannel Audio Serial Ports (McASPs)  
– Two Independent Clock Zones Each  
(One TX and One RX)  
– Eight Serial Data Pins Per Port: Individually  
Assignable to any of the Clock Zones  
– Wide Variety of I2S™ and Similar Bit Stream  
Formats  
• Advanced Very Long Instruction Word (VLIW)  
320C67x™ DSP Core  
– Eight Independent Functional Units:  
Two ALUs (Fixed Point)  
Four ALUs (Floating Point and Fixed  
Point)  
– Integrated Digital Audio Interface Transmitter  
(DIT)  
Two Multipliers (Floating Point and Fixed  
Point)  
– Extensive Error Checking and Recovery  
– Load Store Architecture With 32 32-Bit  
General Purpose Registers  
– Instruction Packing Reduces Code Size  
– All Instructions Conditional  
• Two Inter-Integrated Circuit Bus (I2C™ Bus)  
Multi-Master and Slave Interfaces  
• Two Multichannel Buffered Serial Ports:  
– Serial Peripheral Interface (SPI)  
– High Speed TDM Interface  
– AC97 Interface  
• Two 32 Bit General Purpose Timers  
• Dedicated GPIO Module With 16 Pins (External  
Interrupt Capable)  
• Flexible Phase Locked Loop (PLL) Based Clock  
Generator Module  
• IEEE-1149.1 (JTAG)(1) Boundary-Scan  
Compatible  
• 272 Ball, Ball Grid Array Package (GDP)  
• 0.13 μm/6 Level Copper Metal Process  
– CMOS Technology  
• 3.3 V I/Os, 1.26 V Internal  
(1) IEEE Standard 1149.1-1990 Standard-Test-Access Port and  
Boundary Scan Architecture.  
• Instruction Set Features  
– Native Instructions for IEEE 754  
– Byte Addressable (8/16/32 Bit Data)  
– 8 Bit Overflow Protection  
– Saturation; Bit-Field Extract, Set, Clear;  
Bit-Counting; Normalization  
• L1/L2 Memory Architecture  
– 4K Byte L1P Program Cache (Direct-Mapped)  
– 4K Byte L1D Data Cache (2-Way)  
– 256K Byte L2 Memory Total: 64K-Byte L2  
Unified Cache/Mapped RAM, and 192K Byte  
Additional L2 Mapped RAM  
• Device Configuration  
– Boot Mode: HPI, 8/16/32 Bit ROM Boot  
– Endianness: Little Endian, Big Endian  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
320C67x, TMS320C67x, TMS320C6000, eXpressDSP, Code Composer Studio, DSP/BIOS, C6000, XDS, TMS320, PowerPAD, C62x, C67x  
are trademarks of Texas Instruments.  
Copyright © 2003–2009, Texas Instruments Incorporated  
FEATURES  
9
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
2
SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS  
3
break  
• Controlled Baseline  
• One Assembly/Test Site  
• One Fabrication Site  
• Extended Product Life Cycle  
• Extended Product-Change Notification  
• Product Traceability  
• Available in Military (–55°C/125°C) Temperature  
Range(2)  
(2) Custom temperature ranges available  
3
320C67x, TMS320C67x, TMS320C6000, eXpressDSP, Code Composer Studio, DSP/BIOS, C6000, XDS, TMS320, PowerPAD, C62x, C67x  
are trademarks of Texas Instruments.  
10  
SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS  
Submit Documentation Feedback  
Copyright © 2003–2009, Texas Instruments Incorporated  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
3
DEVICE INFORMATION  
GDP 272-BALL BGA PACKAGE  
(BOTTOM VIEW)  
CLKOUT2/  
GP[2]  
Y
W
V
U
T
VSS  
DVDD  
EA19  
CE0  
VSS  
ECLKOUT  
ECLKIN  
VSS  
VSS  
ED18  
ARDY EA2 DVDD EA7  
EA9  
EA14 EA16 EA18  
EA20 VSS  
VSS  
VSS  
BE0  
VSS  
BE2  
ED17  
ED16  
VSS  
AOE/  
SDRAS/  
SSOE  
VSS  
CVDD DVDD  
VSS  
DVDD  
VSS  
DVDD  
AWE/  
SDCAS/ SDWE/  
SSADS SSWE  
VSS  
EA4  
EA3  
EA6  
EA5  
VSS  
EA11 EA13 EA15  
CVDD  
DVDD  
BE1  
CE2  
CE1  
ARE/  
CVDD  
DVDD  
DVDD  
CVDD  
ED20 ED19  
EA8 EA10  
EA12  
EA17  
DVDD  
BE3 CE3  
DVDD CVDD DVDD  
VSS  
CVDD CVDD DVDD VSS  
CVDD CVDD  
ED22 ED21 ED23  
ED24 ED25 DVDD  
DVDD ED27 ED26  
ED28 ED29 ED30  
EA21  
VSS  
VSS ED13 ED15 ED14  
CVDD DVDD ED11 ED12  
R
P
N
M
L
CVDD  
VSS  
VSS  
ED9  
ED6  
VSS  
ED10  
VSS  
VSS  
SCL0 SDA0 ED31  
ED7  
ED4  
ED8  
ED5  
CLKR1/  
AXR0[6]  
FSR1/  
AXR0[7]  
DR1/  
SDA1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS DVDD  
DX1  
AXR0[5]  
CLKX1/  
AMUTE0  
CVDD  
CVDD  
VSS  
CVDD  
CVDD  
CVDD  
FSX1  
CVDD  
ED2  
ED0  
ED3  
ED1  
CLKS0  
AHCLKR0  
K
J
VSS  
VSS  
DR0/  
AXR0[0]  
BUS  
REQ  
HINT/  
GP[1]  
FSR0/  
AFSR0  
DVDD  
HOLD HOLDA  
VSS DVDD  
DX0/  
AXR0[1]  
HHWIL/  
AFSR[1]  
FSX0/  
AFSX0  
HRDY/  
ACLKR[1]  
CLKR0/  
ACLKR0  
H
G
F
VSS  
TOUT0/ TINP0/  
AXR0[2] AXR0[3]  
HCNTL0/ HCNTL1/  
AXR1[3] AXR1[1]  
CLKX0/  
ACLKX0  
HR/W/  
AXR1[0]  
VSS  
VSS  
CVDD  
VSS  
TOUT1/  
AXR0[4]  
TINP1/  
AHCLKX0  
HDS2/  
VSS  
HCS/  
AXR1[1]  
DVDD CVDD  
AXR1[5]  
GP[7]  
VSS  
HD0/  
AXR1[4]  
CLKS1/  
SCL1  
HDS/  
AXR1[6]  
HAS/  
ACLKX1  
VSS  
(EXT_INT7)  
E
D
C
B
A
HD1/  
AXR1[7]  
GP[6]  
(EXT_INT6)  
HD2/  
AFSX1  
DVDD  
VSS  
CVDD CVDD  
RSV  
VSS  
CVDD  
VSS CVDD CVDD DVDD  
VSS  
DVDD  
CLKOUT3  
EMU2  
EMU0  
VSS  
RSV  
GP[5] GP[4]  
(EXT_INT5) (EXT_INT4) CVDD  
AMUTEIN0 AMUTEIN1  
HD14/ HD12/ HD9/  
GP[14] GP[12] GP[9]  
HD4/  
GP[0]  
CLK  
MODE0  
HD6/  
AHCLKR1  
HD3/  
AMUTE1  
VSS  
CVDD VSS  
DVDD  
CVDD  
PLLHV  
RSV  
EMU4 RSV  
NMI  
HD10/  
HD15/  
HD8/  
GP[8]  
HD5/  
AHCLKX1  
TMS  
EMU1 EMU3 RSV EMU5  
RSV  
TRST  
DVDD  
VSS CVDD DVDD VSS  
DVDD  
VSS  
CVDD  
VSS  
19  
VSS  
VSS  
20  
GP[10]  
GP[15]  
HD13/ HD11/  
VSS  
HD7/  
GP[3]  
VSS  
VSS CLKIN CVDD RSV TCK  
TDI  
7
TD0 CVDD CVDD VSS  
DVDD  
17  
RESET  
13  
GP[13] GP[11]  
1
2
3
4
5
6
8
9
10  
11  
12  
14  
15  
16  
18  
Shading denotes the GDP package pin functions that drop out on the PYP package.  
Copyright © 2003–2009, Texas Instruments Incorporated  
DEVICE INFORMATION  
11  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Table 3-1. Terminal Assignments for 272-Ball GDP Package (in Order of Ball No.)  
BALL NO.  
A1  
SIGNAL NAME  
BALL NO.  
C1  
SIGNAL NAME  
VSS  
GP[5](EXT_INT5)/AMUTEIN0  
A2  
VSS  
C2  
GP[4](EXT_INT4)/AMUTEIN1  
A3  
CLKIN  
CVDD  
RSV  
TCK  
TDI  
C3  
CVDD  
A4  
C4  
CLKMODE0  
PLLHV  
VSS  
A5  
C5  
A6  
C6  
A7  
C7  
CVDD  
A8  
TDO  
CVDD  
CVDD  
VSS  
C8  
VSS  
A9  
C9  
VSS  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
B1  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
D1  
DVDD  
EMU4  
RSV (connected directly to CVDD  
)
RSV  
RESET  
VSS  
NMI  
HD14/GP[14]  
HD12/GP[12]  
HD9/GP[9]  
HD6/AHCLKR1  
CVDD  
HD13/GP[13]  
HD11/GP[11]  
DVDD  
HD7/GP[3]  
VSS  
HD4/GP[0]  
HD3/AMUTE1  
DVDD  
VSS  
VSS  
B2  
CVDD  
D2  
GP[6](EXT_INT6)  
EMU2  
B3  
DVDD  
D3  
B4  
VSS  
D4  
VSS  
B5  
RSV  
D5  
CVDD  
B6  
TRST  
TMS  
D6  
CVDD  
B7  
D7  
RSV  
B8  
DVDD  
D8  
VSS  
B9  
EMU1  
EMU3  
D9  
EMU0  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
E1  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
J17  
J18  
J19  
J20  
K1  
CLKOUT3  
CVDD  
RSV (connected directly to VSS  
EMU5  
)
RSV  
DVDD  
VSS  
HD15/GP[15]  
VSS  
CVDD  
CVDD  
HD10/GP[10]  
HD8/GP[8]  
HD5/AHCLKX1  
CVDD  
DVDD  
VSS  
HD2/AFSX1  
DVDD  
VSS  
HD1/AXR1[7]  
HOLD  
CLKS1/SCL1  
VSS  
E2  
HOLDA  
BUSREQ  
HINT/GP[1]  
CVDD  
E3  
GP[7]/(EXP_INT7)  
VSS  
E4  
E17  
E18  
E19  
E20  
F1  
VSS  
HAS/ACLKX1  
HDS1/AXR1[6]  
HD0/AXR1[4]  
TOUT1/AXR0[4]  
TINP1/AHCLKX0  
K2  
VSS  
K3  
CLKS0/AHCLKR0  
CVDD  
K4  
K9  
VSS  
F2  
K10  
VSS  
12  
DEVICE INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Table 3-1. Terminal Assignments for 272-Ball GDP Package (in Order of Ball No.) (continued)  
BALL NO.  
F3  
SIGNAL NAME  
BALL NO.  
K11  
K12  
K17  
K18  
K19  
K20  
L1  
SIGNAL NAME  
DVDD  
CVDD  
CVDD  
VSS  
F4  
VSS  
F17  
F18  
F19  
F20  
G1  
CVDD  
ED0  
ED1  
VSS  
HDS2/AXR1[5]  
VSS  
HCS/AXR1[2]  
TOUT0/AXR0[2]  
TINP0/AXR0[3]  
CLKX0/ACLKX0  
VSS  
FSX1  
G2  
L2  
DX1/AXR0[5]  
CLKX1/AMUTE0  
CVDD  
VSS  
G3  
L3  
G4  
L4  
G17  
G18  
G19  
G20  
H1  
VSS  
L9  
HCNTL0/AXR1[3]  
HCNTL1/AXR1[1]  
HR/W/AXR1[0]  
FSX0/AFSX0  
DX0/AXR0[1]  
CLKR0/ACLKR0  
VSS  
L10  
L11  
L12  
L17  
L18  
L19  
L20  
M1  
VSS  
VSS  
VSS  
CVDD  
ED2  
H2  
H3  
ED3  
H4  
CVDD  
CLKR1/AXR0[6]  
DR1/SDA1  
FSR1/AXR0[7]  
VSS  
H17  
H18  
H19  
H20  
J1  
VSS  
DVDD  
M2  
HRDY/ACLKR1  
HHWIL/AFSR1  
DR0/AXR0[0]  
DVDD  
M3  
M4  
M9  
VSS  
J2  
M10  
M11  
M12  
M17  
M18  
M19  
M20  
U9  
VSS  
J3  
FSR0/AFSR0  
VSS  
VSS  
J4  
VSS  
J9  
VSS  
VSS  
J10  
J11  
J12  
N1  
VSS  
DVDD  
ED4  
VSS  
VSS  
ED5  
SCL0  
VSS  
N2  
SDA0  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
V1  
CVDD  
CVDD  
DVDD  
VSS  
N3  
ED31  
N4  
VSS  
N17  
N18  
N19  
N20  
P1  
VSS  
ED6  
CVDD  
CVDD  
DVDD  
VSS  
ED7  
ED8  
ED28  
P2  
ED29  
EA21  
BE1  
P3  
ED30  
P4  
VSS  
VSS  
P17  
P18  
P19  
P20  
R1  
VSS  
ED20  
ED19  
CVDD  
ED16  
BE3  
ED9  
V2  
VSS  
V3  
ED10  
V4  
DVDD  
V5  
R2  
ED27  
V6  
CE3  
R3  
ED26  
V7  
EA3  
R4  
CVDD  
V8  
EA5  
R17  
CVDD  
V9  
EA8  
Copyright © 2003–2009, Texas Instruments Incorporated  
DEVICE INFORMATION  
13  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Table 3-1. Terminal Assignments for 272-Ball GDP Package (in Order of Ball No.) (continued)  
BALL NO.  
R18  
R19  
R20  
T1  
SIGNAL NAME  
BALL NO.  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
W1  
SIGNAL NAME  
DVDD  
ED11  
ED12  
ED24  
ED25  
DVDD  
VSS  
EA10  
ARE/SDCAS/SSADS  
AWE/SDWE/SSWE  
DVDD  
EA17  
DVDD  
EA  
T2  
T3  
T4  
T17  
T18  
T19  
T20  
U1  
VSS  
CE0  
ED13  
ED15  
ED14  
ED22  
ED21  
ED23  
VSS  
CVDD  
DVDD  
BE0  
VSS  
U2  
W2  
CVDD  
DVDD  
ED17  
VSS  
U3  
W3  
U4  
W4  
U5  
DVDD  
CVDD  
DVDD  
VSS  
W5  
U6  
W6  
CE2  
U7  
W7  
EA4  
U8  
W8  
EA6  
W9  
DVDD  
Y5  
ARDY  
EA2  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
Y1  
AOE/SDRAS/SSOE  
Y6  
VSS  
Y7  
DVDD  
EA7  
DVDD  
EA11  
EA13  
EA15  
VSS  
Y8  
Y9  
EA9  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
ECLKOUT  
ECLKIN  
CLKOUT2/GP[2]  
VSS  
EA19  
CE1  
CVDD  
VSS  
EA14  
EA16  
EA18  
DVDD  
EA20  
VSS  
VSS  
Y2  
VSS  
Y3  
ED18  
BE2  
Y4  
VSS  
3.1 Description  
The TMS320C67x™ DSPs (including the SM320C6713 and SM320C6713B devices) compose the  
floating-point DSP generation in the TMS320C6000™ DSP platform. The C6713 and C6713B devices are  
based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by  
Texas Instruments (TI), making this DSP an excellent choice for multichannel and multifunction  
applications. Throughout the remainder of this document, the SM320C6713 and SM320C6713B are  
referred to as 320C67x or C67x or 13/13B where generic, and where specific, their individual full device  
part numbers are used or abbreviated as C6713, C6713B, 13, or 13B, and so forth.  
Operating at 225 MHz, the C6713/13B delivers up to 1350 million floating-point operations per second  
(MFLOPS), 1800 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to  
450 million multiply-accumulate operations per second (MMACS).  
Operating at 300 MHz, the C6713B delivers up to 1800 million floating-point operations per second  
(MFLOPS), 2400 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to  
600 million multiply-accumulate operations per second (MMACS).  
14  
DEVICE INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
The C6713/13B has a rich peripheral set that includes two multichannel audio serial ports (McASPs), two  
multichannel buffered serial ports (McBSPs), two inter-integrated circuit (I2C) buses, one dedicated  
general-purpose input/output (GPIO) module, two general-purpose timers, a host-port interface (HPI), and  
a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM, and  
asynchronous peripherals.  
The two McASP interface modules each support one transmit and one receive clock zone. Each of the  
McASPs has eight serial data pins that can be individually allocated to any of the two zones. The serial  
port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6713/13B has sufficient  
bandwidth to support all 16 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone  
may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude  
of variations on the Philips Inter-IC Sound (I2S) format.  
In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, and  
CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of  
user data and channel status fields.  
The McASP also provides extensive error-checking and recovery features, such as the bad clock  
detection circuit for each high-frequency master clock, which verifies that the master clock is within a  
programmed frequency range.  
The two I2C ports on the 320C6713/13B allow the DSP to easily control peripheral devices and  
communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP)  
may be used to communicate with serial peripheral interface (SPI™) mode peripheral devices.  
The 320C6713/13B device has two boot modes—from the HPI or from external asynchronous ROM. For  
more detailed information, see the Bootmode section of this data sheet.  
The TMS320C67x DSP generation is supported by the TI eXpressDSP™ set of industry benchmark  
development tools, including a highly optimizing C/C++ Compiler, the Code Composer Studio™ Integrated  
Development Environment (IDE), JTAG-based emulation and real-time debugging, and the DSP/BIOS™  
kernel.  
Copyright © 2003–2009, Texas Instruments Incorporated  
DEVICE INFORMATION  
15  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
3.2 Device Characteristics  
Table 3-2 provides an overview of the C6713/C6713B DSPs. The table shows significant features of each  
device, including the capacity of on-chip RAM, the peripherals, the execution time, and the package type  
with pin count. For more details on the C67x™ DSP device part numbers and part numbering, see  
Table 6-1 and Figure 6-1.  
Table 3-2. Characteristics of the C6713 and C6713B Processor  
C6713/C6713B  
(FLOATING-POINT DSPs)  
INTERNAL CLOCK  
HARDWARE FEATURES  
EMIF  
SOURCE  
GDP  
SYSCLK3 or ECLKIN  
CPU clock frequency  
SYSCLK2  
1 (32 bit)  
EDMA  
(16 channels)  
1
1
2
Peripherals  
HPI (16 bit)  
Not all peripheral pins are available at the  
same time. (For more details, see the  
Device Configurations section.)  
Peripheral performance is dependent on  
chip-level configuration.  
AUXCLK,  
McASPs  
SYSCLK2(1)  
I2Cs  
SYSCLK2  
SYSCLK2  
of SYSCLK2  
SYSCLK2  
2
McBSPs  
2
2
32-bit timers  
GPIO module  
Size (Bytes)  
1
On-chip memory  
264K  
4K-Byte (KB) L1 program (L1P) cache  
4KB L1 data (L1D) cache  
64KB unified L2 cache/mapped RAM  
192KB L2 mapped RAM  
Organization  
CPU ID+CPU Rev ID  
BSDL file  
Control Status Register (CSR[31:16])  
0x0203  
For the C6713/13B BSDL file, contact your field sales representative.  
Frequency  
Time  
MHz  
200  
ns  
5 ns  
1.26 V (C6713/C6713B)  
3.3 V  
Core (V)  
I/O (V)  
Voltage  
Prescaler  
Multiplier  
Postscaler  
/1, /2, /3, ..., /32  
×4, ×5, ×6, ..., ×25  
/1, /2, /3, ..., /32  
Clock generator options  
Package  
27 mm × 27 mm  
272-ball BGA (GDP)  
0.13  
Process technology  
μm  
Product status(2)  
Product preview (PP)  
Advance information (AI)  
Production data (PD)  
PD (13)  
(1) AUXCLK is the McASP internal high-frequency clock source for serial transfers. SYSCLK2 is the McASP system clock used for the clock  
check (high-frequency) circuit.  
(2) PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other  
specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.  
ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and  
other specifications are subject to change without notice.  
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
16  
DEVICE INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
3.3 Functional Block and CPU (DSP Core) Diagram  
C6713/13B Digital Signal Processors  
32  
L1P Cache  
Direct Mapped  
4K Bytes Total  
EMIF  
L2 Cache/  
Memory  
4 Banks  
McASP1  
McASP0  
McBSP1  
McBSP0  
I2C1  
64K Bytes  
Total  
C67xä CPU  
(up to  
Instruction Fetch  
Instruction Dispatch  
Instruction Decode  
Control  
4-Way)  
Registers  
Control  
Logic  
Data Path A  
A Register File  
Data Path B  
Test  
B Register File  
In-Circuit  
Emulation  
(A)  
(A)  
(A)  
(A)  
.L1 .S1(A) .M1 .D1.  
D2 .M2(A) .S2 .L2  
Enhanced  
DMA  
Interrupt  
Control  
Controller  
(16 channel)  
I2C0  
L1D Cache  
2-Way  
L2  
Memory  
192K  
Set Associative  
4K Bytes  
Bytes  
Timer 1  
Timer 0  
Clock Generator and PLL  
Power-Down  
Logic  
x4 through x25 Multiplier  
/1 through /32 Dividers  
GPIO  
HPI  
16  
NOTE A: In addition to fixed-point instructions, these functional units execute floating-point instructions.  
EMIF interfaces to:  
-SDRAM  
McBSPs interface to:  
-SPI control port  
McASPs interface to:  
-I2S multichannel ADC, DAC, codec, DIR  
-DIT: Multiple outputs  
-SBSRAM  
-High-speed TDM codecs  
-AC97 codecs  
-SRAM  
-ROM/flash and  
I/O devices  
-Serial EEPROM  
Copyright © 2003–2009, Texas Instruments Incorporated  
DEVICE INFORMATION  
17  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
4
OVERVIEW  
4.1 CPU (DSP Core) Description  
The 320C6713/13B floating-point digital signal processor is based on the C67x CPU. The CPU fetches  
advanced very-long instruction words (VLIW) (256 bits wide) to supply up to eight 32-bit instructions to the  
eight functional units during every clock cycle. The VLIW architecture features controls by which all eight  
units do not have to be supplied with instructions if they are not ready to execute. The first bit of every  
32-bit instruction determines if the next instruction belongs to the same execute packet as the previous  
instruction, or whether it should be executed in the following clock as a part of the next execute packet.  
Fetch packets are always 256 bits wide; however, the execute packets can vary in size. The  
variable-length execute packets are a key memory-saving feature, distinguishing the C67x CPU from other  
VLIW architectures.  
The CPU features two sets of functional units. Each set contains four units and a register file. One set  
contains functional units .L1, .S1, .M1, and .D1. The other set contains units .D2, .M2, .S2, and .L2. The  
two register files each contain 16 32-bit registers for a total of 32 general-purpose registers. The two sets  
of functional units, along with two register files, compose sides A and B of the CPU (see the Functional  
Block and CPU (DSP Core) Diagram and Figure 4-1). The four functional units on each side of the CPU  
can freely share the 16 registers belonging to that side. Additionally, each side features a single data bus  
connected to all the registers on the other side, by which the two sets of functional units can access data  
from the register files on the opposite side. While register access by functional units on the same side of  
the CPU as the register file can service all the units in a single clock cycle, register access using the  
register file across the CPU supports one read and one write per cycle.  
The C67x CPU executes all C62x instructions. In addition to C62x fixed-point instructions, the six out of  
eight functional units (.L1, .S1, .M1, .M2, .S2, and .L2) also execute floating-point instructions. The  
remaining two functional units (.D1 and .D2) also execute the new LDDW instruction, which loads 64 bits  
per CPU side for a total of 128 bits per cycle.  
Another key feature of the C67x CPU is the load/store architecture, where all instructions operate on  
registers (as opposed to data in memory). Two sets of data-addressing units (.D1 and .D2) are  
responsible for all data transfers between the register files and the memory. The data address driven by  
the .D units allows data addresses generated from one register file to be used to load or store data to or  
from the other register file. The C67x CPU supports a variety of indirect addressing modes using either  
linear- or circular-addressing modes with 5- or 15-bit offsets. All instructions are conditional, and most can  
access any one of the 32 registers. Some registers, however, are singled out to support specific  
addressing or to hold the condition for conditional instructions (if the condition is not automatically true).  
The two .M functional units are dedicated for multiplies. The two .S and .L functional units perform a  
general set of arithmetic, logical, and branch functions with results available every clock cycle.  
The processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a program  
memory. The 32-bit instructions destined for the individual functional units are chained together by 1 bits  
in the least significant bit (LSB) position of the instructions. The instructions that are chained together for  
simultaneous execution (up to eight in total) compose an execute packet. A 0 in the LSB of an instruction  
breaks the chain, effectively placing the instructions that follow it in the next execute packet. If an execute  
packet crosses the fetch-packet boundary (256 bits wide), the assembler places it in the next fetch packet,  
while the remainder of the current fetch packet is padded with NOP instructions. The number of execute  
packets within a fetch packet can vary from one to eight. Execute packets are dispatched to their  
respective functional units at the rate of one per clock cycle and the next 256-bit fetch packet is not  
fetched until all the execute packets from the current fetch packet have been dispatched. After decoding,  
the instructions simultaneously drive all active functional units for a maximum execution rate of eight  
instructions every clock cycle. While most results are stored in 32-bit registers, they can be subsequently  
moved to memory as bytes or half-words as well. All load and store instructions are byte, half-word, or  
word addressable.  
18  
OVERVIEW  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
src1  
.L1(A)  
src2  
dst  
8
8
long dst  
long src  
8
32  
LD1 32 MSB  
ST1  
32  
Register  
File A  
(A0−A15)  
long src  
long dst  
8
Data Path A  
dst  
(A)  
.S1  
src1  
src2  
dst  
.M1(A)  
src1  
src2  
LD1 32 LSB  
DA1  
dst  
src1  
src2  
.D1  
2X  
1X  
src2  
DA2  
.D2 src1  
dst  
LD2 32 LSB  
src2  
.M2(A)  
src1  
dst  
src2  
Register  
File B  
(B0−B15)  
src1  
.S2(A)  
Data Path B  
dst  
8
8
long dst  
long src  
8
32  
32  
LD2 32 MSB  
ST2  
long src  
long dst  
dst  
8
.L2(A)  
src2  
src1  
Control  
Register File  
A. In addition to fixed-point instructions, these functional units execute floating-point instructions.  
Figure 4-1. 320C67x™ CPU (DSP Core) Data Paths  
4.2 Memory Map Summary  
Table 4-1 shows the memory map address ranges of the C6713/13B devices.  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
OVERVIEW  
19  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Table 4-1. 320C6713/13B Memory Map Summary  
MEMORY BLOCK DESCRIPTION  
Internal RAM (L2)  
Internal RAM/Cache  
Reserved  
BLOCK SIZE (BYTES)  
192K  
64K  
HEX ADDRESS RANGE  
0000 0000 0002 FFFF  
0003 0000 0003 FFFF  
0004 0000 017F FFFF  
0180 0000 0183 FFFF  
0184 0000 0185 FFFF  
0186 0000 0187 FFFF  
0188 0000 018B FFFF  
018C 0000 018F FFFF  
0190 0000 0193 FFFF  
0194 0000 0197 FFFF  
0198 0000 019B FFFF  
019C 0000 019C 01FF  
019C 0200 019C 0203  
019C 0204 019F FFFF  
01A0 0000 01A3 FFFF  
01A4 0000 01AF FFFF  
01B0 0000 01B0 3FFF  
01B0 4000 01B3 FFFF  
01B4 0000 01B4 3FFF  
01B4 4000 01B4 7FFF  
01B4 8000 01B4 BFFF  
01B4 C000 01B4 FFFF  
01B5 0000 01B5 3FFF  
01B5 4000 01B7 BFFF  
01B7 C000 01B7 DFFF  
01B7 E000 01BB FFFF  
01BC 0000 01BF FFFF  
01C0 0000 01FF FFFF  
0200 0000 0200 0033  
0200 0034 02FF FFFF  
0300 0000 2FFF FFFF  
3000 0000 33FF FFFF  
3400 0000 37FF FFFF  
3800 0000 3BFF FFFF  
3C00 0000 3C0F FFFF  
3C10 0000 3C1F FFFF  
3C20 0000 7FFF FFFF  
8000 0000 8FFF FFFF  
9000 0000 9FFF FFFF  
A000 0000 AFFF FFFF  
B000 0000 BFFF FFFF  
C000 0000 FFFF FFFF  
24M – 256K  
256K  
128K  
128K  
256K  
256K  
256K  
256K  
256K  
512  
External Memory Interface (EMIF) Registers  
L2 Registers  
Reserved  
HPI Registers  
McBSP 0 Registers  
McBSP 1 Registers  
Timer 0 Registers  
Timer 1 Registers  
Interrupt Selector Registers  
Device Configuration Registers  
Reserved  
4
256K 516  
256K  
768K  
16K  
EDMA RAM and EDMA Registers  
Reserved  
GPIO Registers  
Reserved  
240K  
16K  
I2C0 Registers  
I2C1 Registers  
16K  
Reserved  
16K  
McASP0 Registers  
McASP1 Registers  
Reserved  
16K  
16K  
160K  
8K  
PLL Registers  
Reserved  
264K  
256K  
4M  
Emulation Registers  
Reserved  
QDMA Registers  
Reserved  
52  
16M 52  
720M  
64M  
Reserved  
McBSP0 Data Port  
McBSP1 Data Port  
Reserved  
64M  
64M  
McASP0 Data Port  
McASP1 Data Port  
Reserved  
EMIF CE0(1)  
EMIF CE1(1)  
EMIF CE2(1)  
EMIF CE3(1)  
1M  
1M  
1G + 62M  
256M  
256M  
256M  
256M  
1G  
Reserved  
(1) The number of EMIF address pins (EA[21:2]) limits the maximum addressable memory (SDRAM) to 128MB per CE space.  
20  
OVERVIEW  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
4.3 L2 Memory Structure Expanded  
Figure 4-2 shows the detail of the L2 memory structure.  
L2 Mode  
L2 Memory  
Block Base Address  
0x0000 0000  
000  
001  
010  
011  
111  
192K-Byte RAM  
0x0003 0000  
16K-Byte RAM  
16K-Byte RAM  
0x0003 4000  
0x0003 8000  
16K-Byte RAM  
16K-Byte RAM  
0x0003 C000  
0x0003 FFFF  
Figure 4-2. L2 Memory Configuration  
Copyright © 2003–2009, Texas Instruments Incorporated  
OVERVIEW  
21  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
4.4 Peripheral Register Descriptions  
Table 4-2 through Table 4-15 identify the peripheral registers for the C6713/C6713B devices by their  
register names, acronyms, and hex address or hex address range. For more detailed information on the  
register contents and bit names and their respective descriptions, see the specific peripheral reference  
guide listed in the TMS320C6000 DSP Peripherals Overview Reference Guide (literature number  
SPRU190).  
Table 4-2. EMIF Registers  
HEX ADDRESS RANGE  
0180 0000  
ACRONYM  
GBLCTL  
CECTL1  
CECTL0  
REGISTER NAME  
EMIF global control  
EMIF CE1 space control  
EMIF CE0 space control  
Reserved  
0180 0004  
0180 0008  
0180 000C  
0180 0010  
CECTL2  
CECTL3  
SDCTL  
SDTIM  
SDEXT  
EMIF CE2 space control  
EMIF CE3 space control  
EMIF SDRAM control  
0180 0014  
0180 0018  
0180 001C  
EMIF SDRAM refresh control  
EMIF SDRAM extension  
Reserved  
0180 0020  
0180 00240183 FFFF  
22  
OVERVIEW  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Table 4-3. L2 Cache Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
0184 0000  
0184 4000  
0184 4004  
0184 4010  
0184 4014  
0184 4020  
0184 4024  
0184 4030  
0184 4034  
0184 5000  
0184 5004  
0184 8200  
0184 8204  
0184 8208  
0184 820C  
0184 8240  
0184 8244  
0184 8248  
0184 824C  
0184 8280  
0184 8284  
0184 8288  
0184 828C  
0184 82C0  
0184 82C4  
0184 82C8  
0184 82CC  
0184 82D00185 FFFF  
CCFG  
L2WBAR  
L2WWC  
L2WIBAR  
L2WIWC  
L1PIBAR  
L1PIWC  
L1DWIBAR  
L1DWIWC  
L2WB  
Cache configuration  
L2 writeback base address register  
L2 writeback word count  
L2 writeback-invalidate base address register  
L2 writeback-invalidate word count  
L1P invalidate base address register  
L1P invalidate word count  
L1D writeback-invalidate base address register  
L1D writeback-invalidate word count  
L2 writeback all  
L2WBINV  
MAR0  
L2 writeback-invalidate all  
Memory attribute register 0. Controls CE0 range 8000 0000 80FF FFFF  
Memory attribute register 1. Controls CE0 range 8100 0000 81FF FFFF  
Memory attribute register 2. Controls CE0 range 8200 0000 82FF FFFF  
Memory attribute register 3. Controls CE0 range 8300 0000 83FF FFFF  
Memory attribute register 4. Controls CE1 range 9000 0000 90FF FFFF  
Memory attribute register 5. Controls CE1 range 9100 0000 91FF FFFF  
Memory attribute register 6. Controls CE1 range 9200 0000 92FF FFFF  
Memory attribute register 7. Controls CE1 range 9300 0000 93FF FFFF  
Memory attribute register 8. Controls CE2 range A000 0000 A0FF FFFF  
Memory attribute register 9. Controls CE2 range A100 0000 A1FF FFFF  
Memory attribute register 10. Controls CE2 range A200 0000 A2FF FFFF  
Memory attribute register 11. Controls CE2 range A300 0000 A3FF FFFF  
Memory attribute register 12. Controls CE3 range B000 0000 B0FF FFFF  
Memory attribute register 13. Controls CE3 range B100 0000 B1FF FFFF  
Memory attribute register 14. Controls CE3 range B200 0000 B2FF FFFF  
Memory attribute register 15. Controls CE3 range B300 0000 B3FF FFFF  
Reserved  
MAR1  
MAR2  
MAR3  
MAR4  
MAR5  
MAR6  
MAR7  
MAR8  
MAR9  
MAR10  
MAR11  
MAR12  
MAR13  
MAR14  
MAR15  
Table 4-4. Interrupt Selector Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
Selects which interrupts drive CPU interrupts  
10–15 (INT10INT15)  
019C 0000  
MUXH  
Interrupt multiplexer high  
Selects which interrupts drive CPU interrupts  
49 (INT04INT09)  
019C 0004  
MUXL  
Interrupt multiplexer low  
Sets the polarity of the external interrupts  
(EXT_INT4EXT_INT7)  
019C 0008  
EXTPOL  
External interrupt polarity  
Reserved  
019C 000C019F FFFF  
Copyright © 2003–2009, Texas Instruments Incorporated  
OVERVIEW  
23  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Table 4-5. Device Registers  
HEX ADDRESS RANGE  
019C 0200  
ACRONYM  
DEVCFG  
REGISTER NAME  
COMMENTS  
Allows the user to control peripheral  
selection. This register also offers the user  
control of the EMIF input clock source. For  
more detailed information on the device  
configuration register, see the Device  
Configurations section of this data sheet.  
Device configuration  
Reserved  
019C 0204019F FFFF  
N/A  
Identifies which CPU and defines the silicon  
revision of the CPU. This register also offers  
the user control of device operation. For more  
detailed information on the CPU Control  
Status Register, see the CPU CSR Register  
description section of this data sheet.  
CSR  
CPU control status register  
Table 4-6. EDMA Parameter RAM(1)  
HEX ADDRESS RANGE  
01A0 0000 01A0 0017  
01A0 0018 01A0 002F  
01A0 0030 01A0 0047  
01A0 0048 01A0 005F  
01A0 0060 01A0 0077  
01A0 0078 01A0 008F  
01A0 0090 01A0 00A7  
01A0 00A8 01A0 00BF  
01A0 00C0 01A0 00D7  
01A0 00D8 01A0 00EF  
01A0 00F0 01A0 00107  
01A0 0108 01A0 011F  
01A0 0120 01A0 0137  
01A0 0138 01A0 014F  
01A0 0150 01A0 0167  
01A0 0168 01A0 017F  
01A0 0180 01A0 0197  
01A0 0198 01A0 01AF  
...  
ACRONYM  
REGISTER NAME  
...  
Parameters for Event 0 (6 words) or Reload/Link parameters for other event  
Parameters for Event 1 (6 words) or Reload/Link parameters for other event  
Parameters for Event 2 (6 words) or Reload/Link parameters for other event  
Parameters for Event 3 (6 words) or Reload/Link parameters for other event  
Parameters for Event 4 (6 words) or Reload/Link parameters for other event  
Parameters for Event 5 (6 words) or Reload/Link parameters for other event  
Parameters for Event 6 (6 words) or Reload/Link parameters for other event  
Parameters for Event 7 (6 words) or Reload/Link parameters for other event  
Parameters for Event 8 (6 words) or Reload/Link parameters for other event  
Parameters for Event 9 (6 words) or Reload/Link parameters for other event  
Parameters for Event 10 (6 words) or Reload/Link parameters for other event  
Parameters for Event 11 (6 words) or Reload/Link parameters for other event  
Parameters for Event 12 (6 words) or Reload/Link parameters for other event  
Parameters for Event 13 (6 words) or Reload/Link parameters for other event  
Parameters for Event 14 (6 words) or Reload/Link parameters for other event  
Parameters for Event 15 (6 words) or Reload/Link parameters for other event  
Reload/link parameters for Event 015  
Reload/link parameters for Event 015  
...  
01A0 07E0 01A0 07F7  
01A0 07F8 01A0 07FF  
Reload/link parameters for Event 015  
Scratch pad area (two words)  
(1) The C6713/13B device has 85 EDMA parameters total: 16 Event/Reload parameters and 69 Reload-only parameters.  
For more details on the EDMA parameter RAM six-word parameter entry structure, see Figure 4-3.  
31  
0
EDMA Parameter  
Word 0  
Word 1  
Word 2  
Word 3  
Word 4  
Word 5  
EDMA Channel Options Parameter (OPT)  
EDMA Channel Source Address (SRC)  
OPT  
SRC  
CNT  
DST  
IDX  
Array/Frame Count (FRMCNT)  
Element Count (ELECNT)  
EDMA Channel Destination Address (DST)  
Array/Frame Index (FRMIDX)  
Element Count Reload (ELERLD)  
Element Index (ELEIDX)  
Link Address (LINK)  
RLD  
Figure 4-3. EDMA Channel Parameter Entries (Six Words) for Each EDMA Event  
24  
OVERVIEW  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Table 4-7. EDMA Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
01A0 080001A0 FEFC  
01A0 FF00  
ESEL0  
ESEL1  
Reserved  
EDMA event selector 0  
EDMA event selector 1  
Reserved  
01A0 FF04  
01A0 FF0801A0 FF0B  
01A0 FF0C  
ESEL3  
EDMA event selector 3  
Reserved  
01A0 FF1F01A0 FFDC  
01A0 FFE0  
PQSR  
CIPR  
CIER  
CCER  
ER  
Priority queue status register  
Channel interrupt pending register  
Channel interrupt enable register  
Channel chain enable register  
Event register  
01A0 FFE4  
01A0 FFE8  
01A0 FFEC  
01A0 FFF0  
01A0 FFF4  
EER  
ECR  
ESR  
Event enable register  
Event clear register  
Event set register  
01A0 FFF8  
01A0 FFFC  
01A1 000001A3 FFFF  
Reserved  
Table 4-8. Quick DMA (QDMA) and Pseudo Registers(1)  
HEX ADDRESS RANGE  
ACRONYM  
QOPT  
QSRC  
QCNT  
QDST  
REGISTER NAME  
0200 0000  
0200 0004  
QDMA options parameter  
QDMA source address  
QDMA frame count  
0200 0008  
0200 000C  
QDMA destination address  
QDMA index  
0200 0010  
QIDX  
0200 00140200 001C  
0200 0020  
Reserved  
QSOPT  
QSSRC  
QSCNT  
QSDST  
QSIDX  
QDMA pseudo options  
QDMA pseudo source address  
QDMA pseudo frame count  
QDMA pseudo destination address  
QDMA pseudo index  
0200 0024  
0200 0028  
0200 002C  
0200 0030  
(1) All the QDMA and Pseudo registers are write accessible only.  
Table 4-9. PLL Controller Registers  
HEX ADDRESS RANGE  
ACRONYM  
PLLPID  
REGISTER NAME  
01B7 C000  
Peripheral identification  
(C6713/13B value: 0x00010801 for PLL Controller)  
01B7 C00401B7 C0FF  
01B7 C100  
Reserved  
PLLCSR  
PLL control/status register  
Reserved  
01B7 C10401B7 C10F  
01B7 C110  
PLLM  
PLL multiplier control  
PLL controller divider 0  
PLL controller divider 1  
PLL controller divider 2  
PLL controller divider 3  
01B7 C114  
PLLDIV0  
PLLDIV1  
PLLDIV2  
PLLDIV3  
01B7 C118  
01B7 C11C  
01B7 C120  
Copyright © 2003–2009, Texas Instruments Incorporated  
OVERVIEW  
25  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Table 4-9. PLL Controller Registers (continued)  
HEX ADDRESS RANGE  
01B7 C124  
ACRONYM  
OSCDIV1  
REGISTER NAME  
Oscillator divider 1  
Reserved  
01B7 C12801B7 DFFF  
Table 4-10. McASP0 and McASP1 Registers  
HEX ADDRESS RANGE  
McASP0  
ACRONYM  
REGISTER NAME AND DESCRIPTION  
McASP1  
McASPx receive buffer or McASPx transmit buffer via the peripheral  
data bus. Used when RSEL or XSEL bits = 0 (these bits are located  
in the RFMT or XFMT registers, respectively).  
3C00 00003C00 FFFF  
3C10 00003C10 FFFF  
RBUF/XBUFx  
MCASPPIDx  
Peripheral identification  
[13/13B value: 0x00100101 for McASP0 and for McASP1]  
01B4 C000  
01B5 0000  
01B4 C004  
01B4 C008  
01B4 C00C  
01B4 C010  
01B4 C014  
01B4 C018  
01B5 0004  
01B5 0008  
01B5 000C  
01B5 0010  
01B5 0014  
01B5 0018  
PWRDEMUx  
Power down and emulation management  
Reserved  
Reserved  
PFUNCx  
PDIRx  
PDOUTx  
Pin function  
Pin direction  
Pin data out  
Pin data in/data set  
Read returns: PDIN  
Writes affect: PDSET  
01B4 C01C  
01B5 001C  
PDIN/PDSETx  
01B4 C020  
01B4 C02401B4 C040  
01B4 C044  
01B5 0020  
01B5 002401B5 0040  
01B5 0044  
PDCLRx  
Pin data clear  
Reserved  
GBLCTLx  
AMUTEx  
DLBCTLx  
DITCTLx  
Global control  
Mute control  
01B4 C048  
01B5 0048  
01B4 C04C  
01B5 004C  
Digital loopback control  
DIT mode control  
Reserved  
01B4 C050  
01B5 0050  
01B4 C05401B4 C05C  
01B5 005401B5 005C  
Alias of GBLCTL containing only Receiver Reset bits; allows  
transmit to be reset independently from receive  
01B4 C060  
01B5 0060  
RGBLCTLx  
01B4 C064  
01B4 C068  
01B5 0064  
01B5 0068  
RMASKx  
RFMTx  
Receiver format unit bit mask  
Receive bit stream format  
Receive frame sync control  
Receive clock control  
01B4 C06C  
01B5 006C  
AFSRCTLx  
ACLKRCTLx  
AHCLKRCTLx  
RTDMx  
01B4 C070  
01B5 0070  
01B4 C074  
01B5 0074  
High-frequency receive clock control  
Receive TDM slot 031  
Receiver interrupt control  
Status receiver  
01B4 C078  
01B5 0078  
01B4 C07C  
01B5 007C  
RINTCTLx  
RSTATx  
01B4 C080  
01B5 0080  
01B4 C084  
01B5 0084  
RSLOTx  
Current receive TDM slot  
Receiver clock check control  
Reserved  
01B4 C088  
01B5 0088  
RCLKCHKx  
01B4 C08C01B4 C09C  
01B5 008C01B5 009C  
Alias of GBLCTL containing only Transmitter Reset bits; allows  
transmit to be reset independently from receive  
01B4 C0A0  
01B5 00A0  
XGBLCTLx  
01B4 C0A4  
01B4 C0A8  
01B4 C0AC  
01B4 C0B0  
01B4 C0B4  
01B4 C0B8  
01B4 C0BC  
01B4 C0C0  
01B4 C0C4  
01B4 C0C8  
01B5 00A4  
01B5 00A8  
01B5 00AC  
01B5 00B0  
01B5 00B4  
01B5 00B8  
01B5 00BC  
01B5 00C0  
01B5 00C4  
01B5 00C8  
XMASKx  
XFMTx  
Transmit format unit bit mask  
Transmit bit stream format  
Transmit frame sync control  
Transmit clock control  
AFSXCTLx  
ACLKXCTLx  
AHCLKXCTLx  
XTDMx  
High-frequency Transmit clock control  
Transmit TDM slot 031  
XINTCTLx  
XSTATx  
Transmit interrupt control  
Status transmitter  
XSLOTx  
Current transmit TDM slot  
Transmit clock check control  
XCLKCHKx  
26  
OVERVIEW  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Table 4-10. McASP0 and McASP1 Registers (continued)  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME AND DESCRIPTION  
McASP0  
McASP1  
01B5 00CC01B5 00FC  
01B5 0100  
01B4 C0D001B4 C0FC  
01B4 C100  
Reserved  
DITCSRA0x  
DITCSRA1x  
DITCSRA2x  
DITCSRA3x  
DITCSRA4x  
DITCSRA5x  
DITCSRB0x  
DITCSRB1x  
DITCSRB2x  
DITCSRB3x  
DITCSRB4x  
DITCSRB5x  
DITUDRA0x  
DITUDRA1x  
DITUDRA2x  
DITUDRA3x  
DITUDRA4x  
DITUDRA5x  
DITUDRB0x  
DITUDRB1x  
DITUDRB2x  
DITUDRB3x  
DITUDRB4x  
DITUDRB5x  
Left (even TDM slot) channel status register file  
Left (even TDM slot) channel status register file  
Left (even TDM slot) channel status register file  
Left (even TDM slot) channel status register file  
Left (even TDM slot) channel status register file  
Left (even TDM slot) channel status register file  
Right (odd TDM slot) channel status register file  
Right (odd TDM slot) channel status register file  
Right (odd TDM slot) channel status register file  
Right (odd TDM slot) channel status register file  
Right (odd TDM slot) channel status register file  
Right (odd TDM slot) channel status register file  
Left (even TDM slot) user data register file  
Left (even TDM slot) user data register file  
Left (even TDM slot) user data register file  
Left (even TDM slot) user data register file  
Left (even TDM slot) user data register file  
Left (even TDM slot) user data register file  
Right (odd TDM slot) user data register file  
Right (odd TDM slot) user data register file  
Right (odd TDM slot) user data register file  
Right (odd TDM slot) user data register file  
Right (odd TDM slot) user data register file  
Right (odd TDM slot) user data register file  
Reserved  
01B4 C104  
01B5 0104  
01B4 C108  
01B5 0108  
01B4 C10C  
01B4 C110  
01B5 0108  
01B5 0110  
01B4 C114  
01B5 0114  
01B4 C118  
01B5 0118  
01B4 C11C  
01B4 C120  
01B5 011C  
01B5 0120  
01B4 C124  
01B5 0124  
01B4 C128  
01B5 0128  
01B4 C12C  
01B4 C130  
01B5 012C  
01B5 0130  
01B4 C134  
01B5 0134  
01B4 C138  
01B5 0138  
01B4 C13C  
01B4 C140  
01B5 013C  
01B5 0140  
01B4 C144  
01B5 0144  
01B4 C148  
01B5 0148  
01B4 C14C  
01B4 C150  
01B5 014C  
01B5 0150  
01B4 C154  
01B5 0154  
01B4 C158  
01B5 0158  
01B4 C15C  
01B4 C16001B4 C17C  
01B4 C180  
01B5 015C  
01B5 016001B5 017C  
01B5 0180  
SRCTL0x  
SRCTL1x  
SRCTL2x  
SRCTL3x  
SRCTL4x  
SRCTL5x  
SRCTL6x  
SRCTL7x  
Serializer 0 control  
01B4 C184  
01B5 0184  
Serializer 1 control  
01B4 C188  
01B5 0188  
Serializer 2 control  
01B4 C18C  
01B4 C190  
01B5 018C  
01B5 0190  
Serializer 3 control  
Serializer 4 control  
01B4 C194  
01B5 0194  
Serializer 5 control  
01B4 C198  
01B5 0198  
Serializer 6 control  
01B4 C19C  
01B4 C1A001B4 C1FC  
01B4 C200  
01B5 019C  
01B5 01A001B5 01FC  
01B5 0200  
Serializer 7 control  
Reserved  
XBUF0x  
Transmit buffer for serializer 0 through configuration bus(1)  
Transmit buffer for serializer 1 through configuration bus(1)  
Transmit buffer for serializer 2 through configuration bus(1)  
Transmit buffer for serializer 3 through configuration bus(1)  
Transmit buffer for serializer 4 through configuration bus(1)  
Transmit buffer for serializer 5 through configuration bus(1)  
Transmit buffer for serializer 6 through configuration bus(1)  
Transmit buffer for serializer 7 through configuration bus(1)  
Reserved  
Receive buffer for serializer 0 through configuration bus(2)  
Receive buffer for serializer 1 through configuration bus(2)  
Receive buffer for serializer 2 through configuration bus(2)  
Receive buffer for serializer 3 through configuration bus(2)  
01B4 C204  
01B5 0204  
XBUF1x  
01B4 C208  
01B5 0208  
XBUF2x  
01B4 C20C  
01B4 C210  
01B5 020C  
01B5 0210  
XBUF3x  
XBUF4x  
01B4 C214  
01B5 0214  
XBUF5x  
01B4 C218  
01B5 0218  
XBUF6x  
01B4 C21C  
01B4 C22001B4 C27C  
01B4 C280  
01B5 021C  
01B5 C22001B5 027C  
01B5 0280  
XBUF7x  
RBUF0x  
01B4 C284  
01B5 0284  
RBUF1x  
01B4 C288  
01B5 0288  
RBUF2x  
01B4 C28C  
01B5 028C  
RBUF3x  
(1) The transmit buffers for serializers 07 are accessible to the CPU via the peripheral bus if the XSEL bit = 1 (XFMT register).  
(2) The receive buffers for serializers 07 are accessible to the CPU via the peripheral bus if the RSEL bit = 1 (RFMT register).  
Copyright © 2003–2009, Texas Instruments Incorporated  
OVERVIEW  
27  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Table 4-10. McASP0 and McASP1 Registers (continued)  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME AND DESCRIPTION  
McASP0  
McASP1  
01B5 0290  
01B4 C290  
01B4 C294  
RBUF4x  
RBUF5x  
RBUF5x  
RBUF7x  
Receive buffer for serializer 4 through configuration bus(2)  
Receive buffer for serializer 5 through configuration bus(2)  
Receive buffer for serializer 6 through configuration bus(2)  
Receive buffer for serializer 7 through configuration bus(2)  
Reserved  
01B5 0294  
01B4 C298  
01B5 0298  
01B4 C29C  
01B5 029C  
01B4 C2A001B4 FFFF  
01B5 02A001B5 3FFF  
Table 4-11. I2C0 and I2C1 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME AND DESCRIPTION  
I2Cx own address register  
I2C0  
I2C1  
01B4 0000  
01B4 0004  
01B4 0008  
01B4 000C  
01B4 0010  
01B4 0014  
01B4 0018  
01B4 001C  
01B4 0020  
01B4 0024  
01B4 0028  
01B4 002C  
01B4 0030  
01B4 4000  
01B4 4004  
01B4 4008  
01B4 400C  
01B4 4010  
01B4 4014  
01B4 4018  
01B4 401C  
01B4 4020  
01B4 4024  
01B4 4028  
01B4 402C  
01B4 4030  
I2COARx  
I2CIERx  
I2CSTRx  
I2CCLKLx  
I2CCLKHx  
I2CCNTx  
I2CDRRx  
I2CSARx  
I2CDXRx  
I2CMDRx  
I2CISRCx  
I2Cx interrupt enable register  
I2Cx interrupt status register  
I2Cx clock low-time divider  
I2Cx clock high-time divider  
I2Cx data count  
I2Cx data receive register  
I2Cx slave address register  
I2Cx data transmit register  
I2Cx mode register  
I2Cx interrupt source  
Reserved  
I2CPSCx  
I2Cx prescaler  
I2CPID10  
I2CPID11  
I2Cx peripheral identification 1  
(C6713/13B value: 0x0000 0103)  
01B4 0034  
01B4 4034  
I2CPID20  
I2CPID21  
I2Cx peripheral identification 2  
(C6713/13B value: 0x0000 0005)  
01B4 0038  
01B4 4038  
01B4 003C01B4 3FFF  
01B4 403C01B4 7FFF  
Reserved  
Table 4-12. HPI Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
HPI data register  
COMMENTS  
HPID  
HPIA  
HPIC  
Host read/write access only  
Host read/write access only  
Both Host/CPU read/write access  
HPI address register  
HPI control register  
Reserved  
0188 0000  
0188 0004018B FFFF  
Table 4-13. Timer 0 and Timer 1 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
TIMER 0  
TIMER 1  
Determines the operating mode of the  
timer, monitors the timer status, and  
controls the function of the TOUT pin.  
0194 0000  
0198 0000  
0198 0004  
CTLx  
Timer x control register  
Contains the number of timer input  
clock cycles to count. This number  
controls the TSTAT signal frequency.  
0194 0004  
PRDx  
Timer x period register  
Contains the current value of the  
incrementing counter.  
0194 0008  
0198 0008  
CNTx  
Timer x counter register  
Reserved  
0194 000C0197 FFFF  
0198 000C019B FFFF  
28  
OVERVIEW  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Table 4-14. McBSP0 and McBSP1 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME AND DESCRIPTION  
McBSP0  
McBSP1  
McBSPx data receive register via configuration bus.  
The CPU and EDMA controller can only read this register; they  
cannot write to it.  
018C 0000  
0190 0000  
DRRx  
3000 000033FF FFFF  
018C 0004  
3400 000037FF FFFF  
0190 0004  
DRRx  
DXRx  
DXRx  
SPCRx  
RCRx  
XCRx  
SRGRx  
MCRx  
RCERx  
XCERx  
PCRx  
McBSPx data receive register via peripheral data bus  
McBSPx data transmit register via configuration bus  
McBSPx data transmit register via peripheral data bus  
McBSPx serial port control register  
McBSPx receive control register  
3000 000033FF FFFF  
018C 0008  
3400 000037FF FFFF  
0190 0008  
018C 000C  
0190 000C  
018C 0010  
0190 0010  
McBSPx transmit control register  
018C 0014  
0190 0014  
McBSPx sample rate generator register  
McBSPx multichannel control register  
McBSPx receive channel enable register  
McBSPx transmit channel enable register  
McBSPx pin control register  
018C 0018  
0190 0018  
018C 001C  
0190 001C  
018C 0020  
0190 0020  
018C 0024  
0190 0024  
018C 0028018F FFFF  
0190 00280193 FFFF  
Reserved  
Table 4-15. GPIO Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
01B0 0000  
01B0 0004  
GPEN  
GPDIR  
GPVAL  
GPIO enable  
GPIO direction  
GPIO value  
01B0 0008  
01B0 000C  
Reserved  
01B0 0010  
GPDH  
GPHM  
GPDL  
GPLM  
GPGC  
GPPOL  
GPIO delta high  
GPIO high mask  
GPIO delta low  
GPIO low mask  
GPIO global control  
GPIO interrupt polarity  
Reserved  
01B0 0014  
01B0 0018  
01B0 001C  
01B0 0020  
01B0 0024  
01B0 002801B0 3FFF  
Copyright © 2003–2009, Texas Instruments Incorporated  
OVERVIEW  
29  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
4.5 Signal Groups Description  
CLKIN  
CLKOUT2/GP[2]  
Clock/PLL  
Oscillator  
CLKOUT3  
CLKMODE0  
PLLHV  
RESET  
NMI  
(B)(C)  
GP[7](EXT_INT7)  
(B)(C)  
Reset and  
Interrupts  
GP[6](EXT_INT6)  
(B)(C)  
TMS  
TDO  
GP[5](EXT_INT5)/AMUTEIN0  
(B)(C)  
GP[4](EXT_INT4)/AMUTEIN1  
(B)  
HD4/GP[0]  
TDI  
TCK  
IEEE Standard  
1149.1  
(JTAG)  
TRST  
EMU0  
EMU1  
(A)  
Emulation  
EMU2  
(A)  
EMU3  
(A)  
EMU4  
(A)  
EMU5  
Control/Status  
HPI  
(Host-Port Interface)  
HD15/GP[15]  
HD14/GP[14]  
HAS/ACLKX1  
HR/W/AXR1[0]  
HCS/AXR1[2]  
HDS1/AXR1[6]  
HDS2/AXR1[5]  
HRDY/ACLKR1  
HINT/GP[1]  
HD13/GP[13]  
HD12/GP[12]  
HD11/GP[11]  
HD10/GP[10]  
Control  
HD9/GP[9]  
HD8/GP[8]  
HD7/GP[3]  
Data  
HD6/AHCLKR1  
HD5/AHCLKX1  
HD4/GP[0]  
HCNTL0/AXR1[3]  
HCNTL1/AXR1[1]  
Register Select  
HD3/AMUTE1  
HD2/AFSX1  
HD1/AXR1[7]  
HD0/AXR1[4]  
Half-Word  
Select  
HHWIL/AFSR1  
A. These external pins are applicable to the GDP package only.  
B. The GP[15:0] pins, through interrupt sharing, are external interrupt capable via GPINT0. For more details, see the  
external interrupt sources section of this data sheet. For more details on interrupt sharing, see the TMS320C6000  
DSP Interrupt Selector Reference Guide (literature number SPRU646).  
C. All of these pins are external interrupt sources. For more details see the External Interrupt Sources section of this  
data sheet.  
D. On multiplexed pins, boldface text denotes the active function of the pin for that particular peripheral module.  
Figure 4-4. CPU (DSP Core) and Peripheral Signals  
30  
OVERVIEW  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
GP[7](EXT_INT7)  
GP[6](EXT_INT6)  
GP[5](EXT_INT5)/AMUTEIN0  
GP[4](EXT_INT4)/AMUTEIN1  
HD7/GP[3]  
HD15/GP[15]  
HD14/GP[14]  
HD13/GP[13]  
HD12/GP[12]  
HD11/GP[11]  
HD10/GP[10]  
HD9/GP[9]  
(A)  
GPIO  
CLKOUT2/GP[2]  
HINT/GP[1]  
HD4/GP[0]  
HD8/GP[8]  
General-Purpose Input/Output (GPIO) Port  
TOUT1/AXR0[4]  
TINP1/AHCLKX0  
TOUT0/AXR0[2]  
TINP0/AXR0[3]  
Timer 1  
Timer 0  
Timers  
CLKS1/SCL1  
DR1/SDA1  
SCL0  
SDA0  
I2C1  
I2C0  
I2Cs  
A. The GP[15:0} pins, through interrupt sharing, are external interrupt capable via GPINT0. GP[15:0] are also external  
EDMA event source capable. For more details, see the External Interrupt Sources and External EDMA Event Sources  
sections of this data sheet.  
B. On multiplexed pins, boldface text denotes the active function of the pin for that particular peripheral module.  
Figure 4-5. Peripheral Signals  
Copyright © 2003–2009, Texas Instruments Incorporated  
OVERVIEW  
31  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
ECLKIN  
16  
(A)  
ECLKOUT  
ED[31:16]  
Data  
Memory  
Control  
ARE/SDCAS/SSADS  
16  
AOE/SDRAS/SSOE  
AWE/SDWE/SSWE  
ARDY  
ED[15:0]  
CE3  
CE2  
CE1  
CE0  
Memory Map  
Space Select  
HOLD  
Bus  
Arbitration  
20  
HOLDA  
EA[21:2]  
Address  
BUSREQ  
(A)  
BE3  
BE2(A)  
BE1  
Byte Enables  
BE0  
EMIF  
(External Memory Interface)  
McBSP1  
Transmit  
McBSP0  
Transmit  
CLKX1/AMUTE0  
FSX1  
DX1/AXR0[5]  
CLKX0/ACLKX0  
FSX0/AFSX0  
DX0/AXR0[1]  
CLKR1/AXR0[6]  
FSR1/AXR0[7]  
DR1/SDA1  
CLKR0/ACLKR0  
FSR0/AFSR0  
DR0/AXR0[0]  
Receive  
Clock  
Receive  
Clock  
CLKS1/SCL1  
CLKS0/AHCLKR0  
McBSPs  
(Multichannel Buffered Serial Ports)  
A. These external pins are applicable to the GDP package only.  
B. On multiplexed pins, boldface text denotes the active function of the pin for that particular peripheral module.  
Figure 4-6. Peripheral Signals  
32  
OVERVIEW  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
(Transmit/Receive Data Pins)  
FSR1/AXR0[7]  
CLKR1/AXR0[6]  
DX1/AXR0[5]  
8-Serial Ports  
Flexible  
TOUT1/AXR0[4]  
TINP0/AXR0[3]  
TOUT0/AXR0[2]  
DX0/AXR0[1]  
Partitioning  
Tx, Rx, OFF  
DR0/AXR0[0]  
(Receive Bit Clock)  
(Transmit Bit Clock)  
CLKX0/ACLKX0  
Transmit  
Clock  
Generator  
Receive Clock  
Generator  
CLKR0/ACLKR0  
CLKS0/AHCLKR0  
TINP1/AHCLKX0  
(Receive Master Clock)  
(Transmit Master Clock)  
Transmit  
Clock Check  
Circuit  
Receive Clock  
Check Circuit  
Receive  
Frame Sync  
Transmit  
Frame Sync  
FSR0/AFSR0  
FSX0/AFSX0  
(Receive Frame Sync or  
Left/Right Clock)  
(Transmit Frame Sync or  
Left/Right Clock)  
CLKX1/AMUTE0  
GP[5](EXT_INT5)/AMUTEIN0  
Error Detect  
(see Note A)  
Auto Mute  
Logic  
McASP0  
(Multichannel Audio Serial Port 0)  
A. The McASP Error Detect function detects underruns, overruns, early/late frame syncs, DMA errors, and external mute  
input.  
B. On multiplexed pins, boldface text denotes the active function of the pin for that particular peripheral module.  
C. Boldface and italicized text within parentheses denotes the function of the pins in an audio system.  
Figure 4-7. Peripheral Signals  
Copyright © 2003–2009, Texas Instruments Incorporated  
OVERVIEW  
33  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
(Transmit/Receive Data Pins)  
HD1/AXR1[7]  
HDS1/AXR1[6]  
HDS2/AXR1[5]  
HD0/AXR1[4]  
8-Serial Ports  
Flexible  
Partitioning  
Tx, Rx, OFF  
HCNTL0/AXR1[3]  
HCS/AXR1[2]  
HCNTL1/AXR1[1]  
HR/W/AXR1[0]  
(Receive Bit Clock)  
(Transmit Bit Clock)  
Transmit  
Clock  
Generator  
Receive Clock  
Generator  
HAS/ACLKX1  
HRDY/ACLKR1  
HD6/AHCLKR1  
HD5/AHCLKX1  
(Receive Master Clock)  
(Transmit Master Clock)  
Transmit  
Clock Check  
Circuit  
Receive Clock  
Check Circuit  
Receive  
Frame Sync  
Transmit  
Frame Sync  
HHWIL/AFSR1  
HD2/AFSX1  
(Receive Frame Sync or  
Left/Right Clock)  
(Transmit Frame Sync or  
Left/Right Clock)  
HD3/AMUTE1  
GP[4](EXT_INT4)/AMUTEIN1  
Error Detect  
(see Note A)  
Auto Mute  
Logic  
McASP1  
(Multichannel Audio Serial Port 1)  
A. The McASP Error Detect function detects underruns, overruns, early/late frame syncs, DMA errors, and external mute  
input.  
B. On multiplexed pins, boldface text denotes the active function of the pin for that particular peripheral module.  
C. Boldface and italicized text within parentheses denotes the function of the pins in an audio system.  
Figure 4-8. Peripheral Signals  
34  
OVERVIEW  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
5
DEVICE CONFIGURATIONS  
On the C6713/13B devices, bootmode and certain device configurations/peripheral selections are  
determined at device reset, while other device configurations/peripheral selections are  
software-configurable via the device configurations register (DEVCFG) [address location 0x019C0200]  
after device reset.  
5.1 Device Configurations at Device Reset  
Table 5-1 describes the C6713 and C6713B device configuration pins, which are set up via internal or  
external pullup/pulldown resistors through the HPI data pins (HD[4:3], HD8, HD12 [13B only]), and  
CLKMODE0 pin. These configuration pins must be in the desired state until reset is released. For proper  
device operation, do not oppose the HD [13, 11:9, 7, 1, 0] pins with external pullups/pulldowns at reset.  
For more details on these device configuration pins, see the Terminal Functions table and the Debugging  
Considerations section of this data sheet.  
Table 5-1. Device Configurations Pins at Device Reset (HD[4:3], HD8, HD12 [13B only], and CLKMODE0)(1)  
CONFIGURATION  
GDP  
FUNCTIONAL DESCRIPTION  
PIN  
EMIF Big Endian mode correctness (EMIFBE) [C6713B only]  
For a C6713BGDP:  
0 – The EMIF data will always be presented on the ED[7:0] side of the bus, regardless of the  
endianess mode (Little/Big Endian).  
1 –  
In Little Endian mode (HD8 = 1), the 8-bit or 16-bit EMIF data will be present on the  
ED[7:0] side of the bus.  
In Big Endian mode (HD8 = 0), the 8-bit or 16-bit EMIF data will be present on the  
ED[31:24] side of the bus [default].  
HD12(2)  
C15  
For a C6713BPYP, when Big Endian mode is selected (LENDIAN = 0), for proper device operation the  
EMIFBE pin must be externally pulled low.  
This enhancement is not supported on the C6713 device.  
For proper C6713 device operation, do not oppose the internal pullup (IPU) resistor on this pin.  
This new functionality does not affect systems using the current default value of HD12 = 1. For more  
detailed information on the big endian mode correctness, see the EMIF Big Endian Mode Correctness  
[C6713B only] portion of this data sheet.  
Device Endian mode (LEND)  
HD8  
B17  
0 – System operates in Big Endian mode  
1 – System operates in Little Endian mode (default)  
Bootmode Configuration pins (BOOTMODE)  
00 – HPI boot/Emulation boot  
01 – CE1 width 8-bit, asynchronous external ROM boot with default timings (default mode)  
10 – CE1 width 16-bit, asynchronous external ROM boot with default timings  
11 – CE1 width 32-bit, asynchronous external ROM boot with default timings  
HD[4:3]  
C19, C20  
(BOOTMODE)(2)  
For more detailed information on these bootmode configurations, see the Bootmode section of this  
data sheet.  
Clock generator input clock source select  
0 – Reserved. Do not use.  
CLKMODE0  
C4  
1 – CLKIN square wave [default]  
This pin must be pulled to the correct level even after reset.  
(1) All other HD pins [HD [15, 13:9, 7:5, 2:0] (for 13) or HD [15, 13, 11:9, 7:5, 2:0] (for 13B)] have pullups/pulldowns (IPUs or IPDs). For  
proper device operation of the HD [15, 13:9, 7, 1, 0] (for 13) or HD [13, 11:9, 7, 1, 0] (for 13B), do not oppose these pins with external  
pullups/pulldowns at reset; however, the HD[6, 5, 2] (for 13) or HD[15, 6, 5, 2] (for 13B) pins can be opposed and driven during reset.  
(2) IPD = Internal pulldown, IPU = Internal pullup. To oppose the supply rail on these IPD/IPU signal pins, use external pullup or pulldown  
resistors no greater than 4.4 kΩ and 2.0 kΩ, respectively.  
Copyright © 2003–2009, Texas Instruments Incorporated  
DEVICE CONFIGURATIONS  
35  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
 
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
5.2 Peripheral Pin Selection at Device Reset  
Some C6713/13B peripherals share the same pins (internally MUXed) and are mutually exclusive (that is,  
HPI, general-purpose input/output pins GP[15:8, 3, 1, 0], and McASP1).  
HPI, McASP1, and GPIO peripherals  
The HPI_EN (HD14 pin) is latched at reset. This pin selects whether the HPI peripheral pins or  
McASP1 peripheral pins and GP[15:8, 3, 1, 0] pins are functionally enabled (see Table 5-2).  
Table 5-2. HPI_EN (HD14 Pin) Peripheral Selection (HPI or McASP1, and Select GPIO Pins)(1)  
PERIPHERAL  
PERIPHERAL  
PIN SELECTION  
PINS SELECTED  
DESCRIPTION  
HPI_EN  
(HD14 Pin) [173, C14]  
McASP1 and  
GP[15:8, 3, 1, 0]  
HPI  
HPI_EN = 0  
HPI pins are disabled; McASP1 peripheral pins and GP[15:8, 3, 1, 0] pins  
are enabled. All multiplexed HPI/McASP1 and HPI/GPIO pins function as  
McASP1 and GPIO pins, respectively. To use the GPIO pins, the  
appropriate bits in the GPEN and GPDIR registers need to be configured.  
0
1
ü
HPI_EN = 1  
HPI pins are enabled; McASP1 peripheral pins and GP[15:8, 3, 1, 0] pins  
are disabled [default]. All multiplexed HPI/McASP1 and HPI/GPIO pins  
function as HPI pins.  
ü
(1) The HPI_EN (HD[14]) pin cannot be controlled via software.  
5.3 Peripheral Selection/Device Configurations Via the DEVCFG Control Register  
The device configuration register (DEVCFG) allows the user to control the pin availability of the McBSP0,  
McBSP1, McASP0, I2C1, and timer peripherals. The DEVCFG register also offers the user control of the  
EMIF input clock source and the timer output pins. For more detailed information on the DEVCFG register  
control bits, see Table 5-3 and Table 5-4.  
Table 5-3. Device Configuration Register (DEVCFG) [Address Location: 0x019C02000x019C02FF]  
31  
16  
Reserved(1)  
R/W-0  
15  
5
4
3
2
1
0
Reserved(1)  
R/W-0  
EKSRC  
R/W-0  
TOUT1SEL  
R/W-0  
TOUT0SEL MCBSP0DIS MCBSP1DIS  
R/W-0 R/W-0 R/W-0  
LEGEND: R = Read, W = Write, --n = value at reset  
(1) Do not write non-zero values to these bit locations.  
36  
DEVICE CONFIGURATIONS  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
 
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Table 5-4. Device Configuration Register (DEVCFG) Selection Bit Descriptions  
BIT NO.  
NAME  
DESCRIPTION  
31:5  
Reserved  
Reserved. Do not write non-zero values to these bit locations.  
EMIF input clock source bit.  
Determines which clock signal is used as the EMIF input clock.  
4
3
EKSRC  
0 = SYSCLK3 (from the clock generator) is the EMIF input clock source (default).  
1 = ECLKIN external pin is the EMIF input clock source.  
Timer 1 output (TOUT1) pin function select bit.  
Selects the pin function of the TOUT1/AXR0[4] external pin independent of the rest of the peripheral  
selection bits in the DEVCFG register.  
TOUT1SEL  
0 = The pin functions as a Timer 1 output (TOUT1) pin (default).  
1 = The pin functions as the McASP0 transmit/receive data pin 4 (AXR0[4]). The Timer 1 module  
is still active.  
Timer 0 output (TOUT0) pin function select bit.  
Selects the pin function of the TOUT0/AXR0[2] external pin independent of the rest of the peripheral  
selection bits in the DEVCFG register.  
2
1
0
TOUT0SEL  
MCBSP0DIS  
MCBSP1DIS  
0 = The pin functions as a Timer 0 output (TOUT0) pin (default).  
1 = The pin functions as the McASP0 transmit/receive data pin 2 (AXR0[2]). The Timer 0 module  
is still active.  
Multichannel Buffered Serial Port 0 (McBSP0) disable bit.  
Selects whether McBSP0 or the McASP0 multiplexed peripheral pins are enabled or disabled.  
0 = McBSP0 peripheral pins are enabled, McASP0 peripheral pins (AHCLKR0, ACLKR0,  
ACLKX0, AXR0[0], AXR0[1], AFSR0, and AFSX0) are disabled (default).  
If the McASP0 data pins are available, the McASP0 peripheral is functional for DIT mode only.  
1 = McBSP0 peripheral pins are disabled, McASP0 peripheral pins (AHCLKR0, ACLKR0,  
ACLKX0, AXR0[0], AXR0[1], AFSR0, and AFSX0) are enabled.  
Multichannel Buffered Serial Port 1 (McBSP1) disable bit.  
Selects whether McBSP1 or I2C1 and McASP0 multiplexed peripheral pins are enabled or disabled.  
0 = McBSP1 peripheral pins are enabled, I2C1 peripheral pins (SCL1 and SDA1) and McASP0  
peripheral pins (AXR0[7:5] and AMUTE0) are disabled (default)  
1 = McBSP1 peripheral pins are disabled, I2C1 peripheral pins (SCL1 and SDA1) and McASP0  
peripheral pins (AXR0[7:5] and AMUTE0) are enabled.  
5.4 Multiplexed Pins  
Multiplexed (MUXed) pins are pins that are shared by more than one peripheral and are internally  
multiplexed. Most of these pins are configured by software via the device configuration register  
(DEVCFG), and the others (specifically, the HPI pins) are configured by external pullup/pulldown resistors  
only at reset. The MUXed pins that are configured by software can be programmed to switch  
functionalities at any time. The MUXed pins that are configured by external pullup/pulldown resistors are  
mutually exclusive; only one peripheral has primary control of the function of these pins after reset.  
Table 5-5 summarizes the peripheral pins affected by the HPI_EN (HD14 pin) and DEVCFG register.  
Table 5-6 identifies the multiplexed pins on the C6713/13B devices, shows the default (primary) function  
and the default settings after reset, and describes the pins, registers, etc., necessary to configure the  
specific multiplexed functions.  
Copyright © 2003–2009, Texas Instruments Incorporated  
DEVICE CONFIGURATIONS  
37  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Table 5-5. Peripheral Pin Selection Matrix(1)  
SELECTION BITS  
PERIPHERAL PIN AVAILABILITY  
BIT  
NAME  
BIT  
VAL  
GPIO  
PINS  
(2)  
I2C0  
I2C1  
MCASP0  
MCASP1  
MCBSP0  
MCBSP1 TIMER0  
TIMER1  
HPI  
EMIF  
AHCLKX1  
AHCLKR1  
ACLKX1  
ACLKR1  
AFSX1  
GP[0:1],  
GP[3],  
GP[8:15]  
abc  
Plus:  
GP[2]  
HPI_EN  
(boot config  
pin)  
0
None  
AFSR1  
AMUTE1  
AXR1[0]  
to  
ctrl’d by  
GP2EN bit  
AXR1[7]  
NO  
HPI_EN  
(boot config  
pin)  
GP[0:1],  
GP[3],  
GP[8:15]  
1
0
None  
All  
None  
All  
ACLKX0  
ACLKR0  
AFSX0  
AFSR0  
AHCLKR  
0
MCBSP0DI  
S (DEVCFG  
bit)  
1
None  
AXR0[0]  
AXR0[1]  
NO  
AMUTE0  
AXR0[5]  
AXR0[6]  
AXR0[7]  
0
1
None  
All  
All  
MCBSP1DI  
S (DEVCFG  
bit)  
AMUTE0  
AXR0[5]  
AXR0[6]  
AXR0[7]  
None  
NO  
AXR0[2]  
0
1
0
1
0
TOUT0  
TOUT0SEL  
(DEVCFG  
bit)  
NO  
TOUT0  
AXR0[2]  
NO  
AXR0[4]  
TOUT1  
TOUT1SEL  
(DEVCFG  
bit)  
NO  
TOUT1  
AXR0[4]  
ED[7:0];  
HD8 = 1/0  
HD12 (boot  
config pin)  
ED[7:0} side  
[13BGDP](3)  
[HD8 = 1 (Little)]  
ED[31:24] side  
[HD8 = 0 (Big)]  
1
(1) Gray blocks indicate that the peripheral is not affected by the selection bit.  
(2) The McASP0 pins, AXR0[3] and AHCLKX0, are shared with the timer input pins, TINP0 and TINP1, respectively. See Table 5-6 for  
more detailed information.  
(3) For more detailed information on endianness correction, see the EMIF Big Endian Mode Correctness [C6713B only] section of this data  
sheet.  
Table 5-6. C6713/13B Device Multiplexed/Shared Pins  
MULTIPLEXED PIN  
DEFAULT  
NAME  
GDP  
FUNCTION  
DEFAULT SETTING  
DESCRIPTION  
GP2EN = 0 (GPEN register bit)  
When the CLKOUT2 pin is enabled, the CLK2EN bit in the  
GP[2] function disabled, CLKOUT2 EMIF global control register (GBLCTL) controls the  
enabled  
CLKOUT2 pin.  
CLKOUT2/GP[2]  
Y12 CLKOUT2  
CLK2EN = 0: CLKOUT2 held high  
CLK2EN = 1: CLKOUT2 enabled to clock [default].  
38  
DEVICE CONFIGURATIONS  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Table 5-6. C6713/13B Device Multiplexed/Shared Pins (continued)  
MULTIPLEXED PIN  
DEFAULT  
NAME  
GDP  
FUNCTION  
DEFAULT SETTING  
No Function  
DESCRIPTION  
To use these software-configurable GPIO pins, the  
GPxEN bits in the GP Enable Register and the GPxDIR  
bits in the GP Direction Register must be properly  
configured.  
GPxDIR = 0 (input)  
GP5EN = 0 (disabled)  
GP4EN = 0 (disabled)  
[(GPEN register bits)  
GP[x] function disabled]  
GPxEN = 1:  
GP[x] pin enabled.  
GP[5](EXT_INT5)/AMUTEIN  
0
GP[4](EXT_INT4)/AMUTEIN  
1
C1 GP[5](EXT_INT5)  
C2 GP[4](EXT_INT4)  
GPxDIR = 0: GP[x] pin is an input.  
GPxDIR = 1: GP[x] pin is an output.  
To use AMUTEIN0/1 pin function, the GP[5]/GP[4] pins  
must be configured as an input, the INEN bit set to 1, and  
the polarity through the INPOL bit selected in the  
associated McASP AMUTE register.  
CLKS0/AHCLKR0  
DR0/AXR0[0]  
DX0/AXR0[1]  
FSR0/AFSR0  
FSX0/AFSX0  
CLKR0/ACLKR0  
CLKX0/ACLKX0  
CLKS1/SCL1  
DR1/SDA1  
K3  
By default, McBSP0 peripheral pins are enabled upon  
reset (McASP0 pins are disabled).  
abc  
To enable the McASP0 peripheral pins, the MCBSP0DIS  
bit in the DEVCFG register must be set to 1 (disabling the  
McBSP0 peripheral pins).  
J1  
H2  
MCBSP0DIS = 0  
(DEVCFG register bit)  
McASP0 pins disabled,  
McBSP0 pins enabled  
J3 McBSP0 pin function  
H1  
H3  
G3  
E1  
M2  
By default, McBSP1 peripheral pins are enabled upon  
reset (I2C1 and McASP0 pins are disabled).  
abc  
To enable the I2C1 and McASP0 peripheral pins, the  
MCBSP1DIS bit in the DEVCFG register must be set to 1  
(disabling the McBSP1 peripheral pins).  
MCBSP1DIS = 0  
DX1/AXR0[5]  
FSR1/AXR0[7]  
CLKR1/AXR0[6]  
CLKX1/AMUTE0  
HINT/GP[1]  
L2  
(DEVCFG register bit)  
I2C1 and McASP0 pins  
disabled, McBSP1 pins enabled  
McBSP1 pin function  
M3  
M1  
L3  
J20  
B14  
C14  
A15  
C15  
A16  
B16  
C16  
B17  
A18  
C19  
D20  
HD15/GP[15]  
HD14/GP[14]  
HD13/GP[13]  
HD12/GP[12]  
HD11/GP[11]  
HD10/GP[10]  
HD9/GP[9]  
By default, the HPI peripheral pins are enabled at reset.  
McASP1 peripheral pins and eleven GPIO pins are  
disabled.  
To enable the McASP1 peripheral pins and the eleven  
GPIO pins, an external pulldown resistor must be provided  
on the HD14 pin setting HPI_EN = 0 at reset.  
HD8/GP[8]  
HD7/GP[3]  
HD4/GP[0]  
HD1/AXR1[7]  
HD0/AXR1[4]  
HCNTL1/AXR1[1]  
HCNTL0/AXR1[3]  
HR/W/AXR1[0]  
HDS1/AXR1[6]  
HDS2/AXR1[5]  
HCS/AXR1[2]  
HD6/AHCLKR1  
HD5/AHCLKX1  
HD3/AMUTE1  
HD2/AFSX1  
GP enable register and the GPxDIR bits in the GP  
direction register must be properly configured. To use  
these software-configurable GPIO pins, the GPxEN bits in  
the  
HPI_EN (HD14 pin) = 1  
(HPI enabled)  
McASP1 pins and 11 GPIO pins  
are disabled.  
E20  
HPI  
pin function  
G19  
G18  
G20  
E19  
F18  
F20  
C17  
B18  
C20  
D18  
H20  
H19  
E18  
GPxEN = 1:  
GPxDIR = 0:  
GPxDIR = 1:  
GP[x] pin enabled.  
GP[x] pin is an input.  
GP[x] pin is an output.  
McASP1 pin direction is controlled by the PDIR[x] bits in  
the McASP1PDIR register.  
HHWIL/AFSR1  
HRDY/ACLKR1  
HAS/ACLKX1  
Copyright © 2003–2009, Texas Instruments Incorporated  
DEVICE CONFIGURATIONS  
39  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Table 5-6. C6713/13B Device Multiplexed/Shared Pins (continued)  
MULTIPLEXED PIN  
DEFAULT  
NAME  
GDP  
FUNCTION  
DEFAULT SETTING  
DESCRIPTION  
By default, the Timer 0 input pin is enabled (and a shared  
input until the McASP0 peripheral forces an output).  
abc  
Timer 0  
input function  
McASP0PDIR = 0 (input)  
[specifically AXR0[3] bit]  
TINP0/AXR0[3]  
G2  
McASP0PDIR = 0 input, = 1 output  
By default, the Timer 0 output pin is enabled.  
abc  
To enable the McASP0 AXR0[2] pin, the TOUT0SEL bit in  
the DEVCFG register must be set to 1 (disabling the  
Timer 0 peripheral output pin function).  
abc  
The AXR2 bit in the McASP0PDIR register controls the  
direction (input/output) of the AXR0[2] pin.  
TOUT0SEL = 0 (DEVCFG register  
bit) [TOUT0 pin enabled and  
McASP0 AXR0[2] pin disabled]  
Timer 0  
output function  
TOUT0/AXR0[2]  
G1  
F2  
F1  
McASP0PDIR = 0 input, = 1 output  
By default, the Timer 1 input and McASP0 clock function  
are enabled as inputs.  
abc  
For the McASP0 clock to function as an output:  
McASP0PDIR = 1 (specifically the AHCLKX bit).  
Timer 1  
input function  
McASP0PDIR = 0 (input)  
[specifically AHCLKX bit]  
TINP1/AHCLKX0  
TOUT1/AXR0[4]  
By default, the Timer 1 output pin is enabled.  
abc  
To enable the McASP0 AXR0[4] pin, the TOUT1SEL bit in  
the DEVCFG register must be set to 1 (disabling the  
Timer 1 peripheral output pin function).  
abc  
TOUT1SEL = 0 (DEVCFG register  
bit) [TOUT1 pin enabled and  
McASP0 AXR0[4] pin disabled]  
Timer 1  
output function  
The AXR4 bit in the McASP0PDIR register controls the  
direction (input/output) of the AXR0[4] pin.  
McASP0PDIR = 0 input, = 1 output  
40  
DEVICE CONFIGURATIONS  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
5.5 Configuration Examples  
Figure 5-1 through Figure 5-6 illustrate examples of peripheral selections that are configurable on this  
device.  
ED [31:16],  
32  
ED[15:0]  
CLKIN, CLKOUT3, CLKMODE0,  
PLLHV, TMS, TDO, TDI, TCK,  
Clock,  
20  
System,  
EMU, and  
Reset  
TRST, EMU[5:3,1,0], RESET,  
NMI  
EMIF  
EA[21:2]  
CE[3:0], BE[3:0],  
HOLDA, HOLD,  
BUSREQ, ECLKIN,  
ECLKOUT,  
GP[15:8, 3:1]  
GPIO  
and  
EXT_INT  
ARE/SDCAS/SSADS,  
AWE/SDWE/SSWE,  
AOE/SDRAS/SSOE,  
ARDY  
GP[0],  
GP[4](EXT_INT4)/AMUTEIN1,  
GP[5](EXT_INT5)/AMUTEIN0,  
GP[6](EXT_INT6),  
GP[7](EXT_INT7)  
HPI  
I2C0  
SCL0, SDA0  
AFSX1, AFSR1, ACLKX1,  
ACLKR1, AHCLKR1,  
AHCLKX1, AMUTE1  
SCL1, SDA1  
I2C1  
McASP1  
8
8
AXR1[7:0]  
AXR0[7:0]  
{TINP0/AXR0[3]}  
McASP0  
McBSP1  
AMUTE0,  
TINP1/AHCLKX0,  
AHCLKR0,  
ACLKR0,  
TIMER0  
TIMER1  
ACLKX0, AFSR0,  
AFSX0  
McBSP0  
Shading denotes a peripheral module not available for this configuration.  
DEVCFG Register Value:  
0x0000 000F  
HPI_EN(HD14) = 0  
GP2EN BIT = 1 (enabling GPEN.[2])  
MCBSP0DIS = 1  
MCBSP1DIS = 1  
TOUT0SEL = 1  
TOUT1SEL = 1  
EKSRC = 0  
Figure 5-1. Configuration Example A (Two I2C + Two McASP + GPIO)  
Copyright © 2003–2009, Texas Instruments Incorporated  
DEVICE CONFIGURATIONS  
41  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
32  
20  
ED [31:16],  
ED[15:0]  
CLKIN, CLKOUT3, CLKMODE0,  
PLLHV, TMS, TDO, TDI, TCK,  
TRST, EMU[5:3,1,0], RESET,  
NMI  
Clock,  
System,  
EMU, and  
Reset  
EA[21:2]  
EMIF  
CE[3:0], BE[3:0],  
HOLDA, HOLD,  
BUSREQ, ECLKIN,  
ECLKOUT,  
GP[15:8, 3:1]  
ARE/SDCAS/SSADS,  
AWE/SDWE/SSWE,  
AOE/SDRAS/SSOE,  
ARDY  
GPIO  
and  
EXT_INT  
GP[0],  
GP[4](EXT_INT4)/AMUTEIN1,  
GP[5](EXT_INT5)/AMUTEIN0,  
GP[6](EXT_INT6),  
GP[7](EXT_INT7)  
HPI  
I2C0  
SCL0, SDA0  
AFSX1, AFSR1, ACLKX1,  
ACLKR1, AHCLKR1,  
AHCLKX1, AMUTE1  
I2C1  
McASP1  
8
5
AXR1[7:0]  
AXR0[4:0]  
{TINP0/AXR0[3]}  
McASP0  
DR1, CLKS1,  
CLKR1, CLKX1,  
FSR1, DX1,  
FSX1  
McBSP1  
TINP1/AHCLKX0,  
AHCLKR0,  
ACLKR0,  
ACLKX0, AFSR0,  
AFSX0  
TIMER0  
TIMER1  
McBSP0  
Shading denotes a peripheral module not available for this configuration.  
DEVCFG Register Value:  
0x0000 000E  
HPI_EN(HD14) = 0  
GP2EN BIT = 1 (enabling GPEN.[2])  
MCBSP0DIS = 1  
MCBSP1DIS = 0  
TOUT0SEL = 1  
TOUT1SEL = 1  
EKSRC = 0  
Figure 5-2. Configuration Example B (One I2C + One McBSP + Two McASP + GPIO)  
42  
DEVICE CONFIGURATIONS  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
32  
20  
ED [31:16],  
ED[15:0]  
CLKIN, CLKOUT3, CLKMODE0,  
PLLHV, TMS, TDO, TDI, TCK,  
TRST, EMU[5:3,1,0], RESET,  
NMI  
Clock,  
System,  
EMU, and  
Reset  
EA[21:2]  
EMIF  
CE[3:0], BE[3:0],  
HOLDA, HOLD,  
BUSREQ, ECLKIN,  
ECLKOUT,  
GP[15:8, 3:1]  
ARE/SDCAS/SSADS,  
AWE/SDWE/SSWE,  
AOE/SDRAS/SSOE,  
ARDY  
GPIO  
and  
EXT_INT  
GP[0],  
GP[4](EXT_INT4)/AMUTEIN1,  
GP[5](EXT_INT5)/AMUTEIN0,  
GP[6](EXT_INT6),  
GP[7](EXT_INT7)  
HPI  
I2C0  
SCL0, SDA0  
AFSX1, AFSR1, ACLKX1,  
ACLKR1, AHCLKR1,  
SCL1, SDA1  
I2C1  
McASP1  
AHCLKX1, AMUTE1  
8
AXR1[7:0]  
6
AXR0[7:2]  
{TINP0/AXR0[3]}  
McASP0  
(DIT Mode)  
McBSP1  
AMUTE0,  
TINP1/AHCLKX0  
TIMER0  
TIMER1  
McBSP0  
DR0, CLKS0,  
CLKR0, CLKX0,  
FSR0, DX0,  
FSX0  
Shading denotes a peripheral module not available for this configuration.  
DEVCFG Register Value:  
0x0000 000D  
HPI_EN(HD14) = 0  
GP2EN BIT = 1 (enabling GPEN.[2])  
MCBSP0DIS = 0  
MCBSP1DIS = 1  
TOUT0SEL = 1  
TOUT1SEL = 1  
EKSRC = 0  
Figure 5-3. Configuration Example C [2 I2C + 1 McBSP + 1 McASP + 1 McASP (DIT) + GPIO]  
Copyright © 2003–2009, Texas Instruments Incorporated  
DEVICE CONFIGURATIONS  
43  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
32  
20  
ED [31:16],  
ED[15:0]  
CLKIN, CLKOUT3, CLKMODE0,  
PLLHV, TMS, TDO, TDI, TCK,  
TRST, EMU[5:3,1,0], RESET,  
NMI  
Clock,  
System,  
EMU, and  
Reset  
EA[21:2]  
EMIF  
CE[3:0], BE[3:0],  
HOLDA, HOLD,  
BUSREQ, ECLKIN,  
ECLKOUT,  
GP[15:8, 3:1]  
ARE/SDCAS/SSADS,  
AWE/SDWE/SSWE,  
AOE/SDRAS/SSOE,  
ARDY  
GPIO  
and  
EXT_INT  
GP[0],  
GP[4](EXT_INT4)/AMUTEIN1,  
GP[5](EXT_INT5)/AMUTEIN0,  
GP[6](EXT_INT6),  
GP[7](EXT_INT7)  
HPI  
I2C0  
SCL0, SDA0  
AFSX1, AFSR1, ACLKX1,  
ACLKR1, AHCLKR1,  
AHCLKX1, AMUTE1  
I2C1  
McASP1  
8
3
AXR1[7:0]  
AXR0[4:2]  
{TINP0/AXR0[3]}  
McASP0  
(DIT Mode)  
McBSP1  
DR1, CLKS1,  
CLKR1, CLKX1,  
FSR1, DX1,  
FSX1  
TINP1/AHCLKX0  
TOUT0/AXR0[2]  
TIMER0  
TIMER1  
McBSP0  
DR0, CLKS0,  
CLKR0, CLKX0,  
FSR0, DX0,  
FSX0  
TOUT1/AXR0[4]  
Shading denotes a peripheral module not available for this configuration.  
DEVCFG Register Value:  
0x0000 000C  
HPI_EN(HD14) = 0  
GP2EN BIT = 1 (enabling GPEN.[2])  
MCBSP0DIS = 0  
MCBSP1DIS = 0  
TOUT0SEL = 1  
TOUT1SEL = 1  
EKSRC = 0  
Figure 5-4. Configuration Example D [1 I2C + 2 McBSP + 1 McASP + 1 McASP (DIT) + GPIO + Timers]  
44  
DEVICE CONFIGURATIONS  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
32  
20  
CLKIN, CLKOUT3, CLKMODE0,  
PLLHV, TMS, TDO, TDI, TCK,  
TRST, EMU[5:3,1,0], RESET,  
NMI  
ED [31:16],  
ED[15:0]  
Clock,  
System,  
EMU, and  
Reset  
EA[21:2]  
EMIF  
CE[3:0], BE[3:0],  
HOLDA, HOLD,  
BUSREQ, ECLKIN,  
ECLKOUT,  
CLKOUT2  
ARE/SDCAS/SSADS,  
AWE/SDWE/SSWE,  
AOE/SDRAS/SSOE,  
ARDY  
GPIO  
and  
EXT_INT  
GP[4](EXT_INT4)/AMUTEIN1,  
GP[5](EXT_INT5)/AMUTEIN0,  
GP[6](EXT_INT6),  
GP[7](EXT_INT7)  
16  
HD[15:0]  
HPI  
I2C0  
SCL0, SDA0  
HINT, HHWIL,  
HRDY, HR/W,  
HCNTRL1,  
HCNTRL0, HCS,  
HDS2, HDS1,  
HAS  
I2C1  
McASP1  
SCL1, SDA1  
8
AXR0[7:0],  
{TINP0/AXR0[3]}  
McASP0  
McBSP1  
AMUTE0,  
TINP1/AHCLKX0,  
AHCLKR0,  
ACLKR0,  
TIMER0  
TIMER1  
ACLKX0, AFSR0,  
AFSX0  
McBSP0  
Shading denotes a peripheral module not available for this configuration.  
DEVCFG Register Value:  
0x0000 000F  
HPI_EN(HD14) = 1  
GP2EN BIT = 0 (enabling GPEN.[2])  
MCBSP0DIS = 1  
MCBSP1DIS = 1  
TOUT0SEL = 1  
TOUT1SEL = 1  
EKSRC = 0  
Figure 5-5. Configuration Example E (1 I2C + HPI + 1 McASP)  
Copyright © 2003–2009, Texas Instruments Incorporated  
DEVICE CONFIGURATIONS  
45  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
32  
CLKIN, CLKOUT3, CLKMODE0 ,  
PLLHV, TMS, TDO, TDI, TCK,  
TRST, EMU[5:3,1,0], RESET,  
NMI  
ED [31:16],  
ED[15:0]  
Clock,  
System ,  
EMU, and  
Reset  
20  
EA[21:2]  
EMIF  
CE[3:0], BE[3:0] ,  
HOLDA, HOLD,  
BUSREQ, ECLKIN,  
ECLKOUT,  
CLKOUT2  
ARE/SDCAS/SSADS,  
AWE/SDWE/SSWE,  
AOE/SDRAS/SSOE,  
ARDY  
GPIO  
and  
GP[4](EXT_INT4)/AMUTEIN1,  
GP[5](EXT_INT5)/AMUTEIN0,  
GP[6](EXT_INT6),  
EXT_INT  
GP[7](EXT_INT7)  
16  
HD[15:0]  
I2C0  
HPI  
SCL0, SDA0  
HINT, HHWIL,  
HRDY, HR/W,  
HCNTRL1,  
HCNTRL0, HCS,  
HDS2, HDS1,  
HAS  
I2C1  
McASP1  
5
AXR0[4:0]  
{TINP0/AXR0[3]}  
DR1, CLKS1,  
CLKR1, CLKX1 ,  
FSR1, DX1,  
FSX1  
McASP0  
McBSP1  
TINP1/AHCLKX0,  
AHCLKR0,  
ACLKR0,  
ACLKX0, AFSR0 ,  
AFSX0  
TIMER0  
TIMER1  
McBSP0  
Shading denotes a peripheral module not available for this configuration.  
DEVCFG Register V alue:  
0x0000 000E  
HPI_EN(HD14) = 1  
GP2EN BIT = 0 (enabling GPEN.[2])  
MCBSP0DIS = 1  
MCBSP1DIS = 0  
TOUT0SEL = 1  
TOUT1SEL = 1  
EKSRC = 0  
Figure 5-6. Configuration Example F (One McBSP + HPI + One McASP)  
46  
DEVICE CONFIGURATIONS  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
5.6 Debugging Considerations  
It is recommended that external connections be provided to peripheral selection/device configuration pins,  
including HD[14, 8, 12 (for 13B only), 4, 3], and CLKMODE0. Although internal pullup resistors exist on  
these pins, providing external connectivity adds convenience to the user in debugging and flexibility in  
switching operating modes.  
Internal pullup/pulldown resistors also exist on the nonconfiguration pins on the HPI data bus (HD[15,  
13:9, 7:5, 2:0] (for 13) and HD[15, 13, 11:9, 7:5, 2:0] (for 13B)). For proper device operation of the HD[15,  
13:9, 7, 1, 0] (for13) or HD[13, 11:9, 7, 1, 0] (for 13B), do not oppose the internal pullup/pulldown resistors  
on these non-configuration pins with external pullup/pulldown resistors at reset. If an external controller  
provides signals to these HD[15, 13:9, 7, 1, 0] (for 13) or HD[13, 11:9, 7, 1, 0] (for 13B) non-configuration  
pins, these signals must be driven to the default state of the pins at reset, or not be driven at all. For the  
list of routed out, 3-stated, or not-driven pins recommended for external pullup/pulldown resistors, and  
internal pullup/pulldown resistors for all devices pins, etc., see Terminal Functions. However, the HD[6, 5,  
2] (for 13) or HD[15, 6, 5, 2] (for 13B) non-configuration pins can be opposed and driven during reset.  
For the internal pullup/pulldown resistors for all device pins, see the Terminal Functions table.  
6
TERMINAL FUNCTIONS  
The Terminal Functions table identifies the external signal names, the associated pin (ball) numbers along  
with the mechanical package designator, the pin type (I, O/Z, or I/O/Z), whether the pin has any internal  
pullup/pulldown resistors and a functional pin description. For more detailed information on device  
configuration, peripheral selection, multiplexed/shared pins, and debugging considerations, see the Device  
Configurations section of this data sheet.  
Copyright © 2003–2009, Texas Instruments Incorporated  
TERMINAL FUNCTIONS  
47  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
TERMINAL FUNCTIONS  
PIN  
NO.  
IPD/IPU  
(1)  
SIGNAL NAME  
TYPE  
DESCRIPTION  
(2)  
GDP  
CLOCK/PLL CONFIGURATION  
CLKIN  
A3  
I
IPD  
IPD  
IPD  
Clock input  
Clock output at half of device speed (O/Z) [default] (SYSCLK2 internal signal from the clock generator) or this pin can be programmed  
as GP[2] pin (I/O/Z).  
CLKOUT2/GP[2]  
CLKOUT3  
Y12  
D10  
O/Z  
O
Clock output programmable by OSCDIV1 register in the PLL controller  
Clock generator input clock source select  
0: Reserved, do not use  
CLKMODE0  
PLLHV  
C4  
C5  
I
IPU  
1: CLKIN square wave [default]  
For proper device operation, this pin must be either left unconnected or externally pulled up with a 1-kresistor.  
A(3)  
Analog power (3.3 V) for PLL (PLL filter)  
JTAG EMULATION  
TMS  
TDO  
TDI  
B7  
A8  
A7  
A6  
I
IPU  
IPU  
IPU  
IPU  
JTAG test-port mode select  
JTAG test-port data out  
JTAG test-port data in  
O/Z  
I
I
TCK  
JTAG test-port clock  
JTAG test-port reset. For IEEE Std 1149.1 JTAG compatibility, see the IEEE 1149.1 JTAG Compatibility Statement section of this data  
sheet.  
TRST  
B6  
I
IPD  
EMU5  
EMU4  
EMU3  
EMU2  
B12  
C11  
B10  
D3  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
IPU  
IPU  
IPU  
IPU  
Emulation pin 5. Reserved for future use, leave unconnected.  
Emulation pin 4. Reserved for future use, leave unconnected.  
Emulation pin 3. Reserved for future use, leave unconnected.  
Emulation pin 2. Reserved for future use, leave unconnected.  
Emulation [1:0]  
Select the device functional mode of operation  
Operation: EMU[1:0]:  
00  
01  
10  
11  
Boundary Scan/Functional Mode (see note)  
Reserved  
Reserved  
Emulation/Functional Mode [default] (see the IEEE 1149.1 JTAG Compatibility Statement of this data  
sheet)  
EMU1  
EMU0  
B9  
D9  
I/O/Z  
IPU  
The DSP can be placed in Functional mode when the EMU[1:0] pins are configured for either boundary scan or emulation.  
Note: When the EMU[1:0] pins are configured for boundary scan mode, the internal pulldown (IPD) on the TRST signal must not be  
opposed to operate in functional mode.  
For the boundary scan mode, drive EMU[1:0] and RESET pins low.  
RESETS AND INTERRUPTS  
RESET  
A13  
C13  
E3  
I
I
Device reset. When using boundary scan mode, drive the EMU[1:0] and RESET pins low.  
Nonmaskable interrupt  
NMI  
IPD  
Edge-driven (rising edge)  
GP[7](EXT_INT7)  
GP[6](EXT_INT6)  
General-purpose input/output pins (I/O/Z), which also function as external interrupts  
Edge-driven  
D2  
Polarity independently selected via the external interrupt polarity register bits (EXTPOL.[3:0]), in addition to the GPIO registers.  
I/O/Z  
IPU  
GP[5](EXT_INT5)/  
AMUTEIN0  
C1  
C2  
GP[4] and GP[5] pins also function as AMUTEIN1 McASP1 mute input and AMUTEIN0 McASP0 mute input, respectively, if enabled by  
the INEN bit in the associated McASP AMUTE register.  
GP[4](EXT_INT4)/  
AMUTEIN1  
HOST-PORT INTERFACE (HPI)  
HINT/GP[1]  
J20  
G19  
G18  
O/Z  
IPU  
IPU  
IPU  
Host interrupt (from DSP to host) (O) [default] or this pin can be programmed as a GP[1] pin (I/O/Z)  
Host control: Selects between control, address, or data registers (I) [default] or McASP1 data pin 1 (I/O/Z)  
Host control: Selects between control, address, or data registers (I) [default] or McASP1 data pin 3 (I/O/Z)  
HCNTL1/AXR1[1]  
HCNTL0/AXR1[3]  
I
I
Host half-word select: First or second half-word (not necessarily high or low order) (I) [default] or McASP1 receive frame sync  
or left/right clock (LRCLK) (I/O/Z).  
HHWIL/AFSR1  
HR/W/AXR1[0]  
H20  
G20  
I
I
IPU  
IPU  
Host read or write select (I) [default] or McASP1 data pin 0 (I/O/Z)  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground  
(2) IPD = Internal pulldown, IPU = Internal pullup. [These IPD/IPU signal pins feature a 13-kresistor (approximate) for the IPD or 18-kΩ  
resistor (approximate) for the IPU. An external pullup or pulldown resistor no greater than 4.4 kand 2.0 k, respectively, should be  
used to pull a signal to the opposite supply rail.]  
(3) A = Analog signal  
48  
TERMINAL FUNCTIONS  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SIGNAL NAME  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
TERMINAL FUNCTIONS (continued)  
PIN  
NO.  
IPD/IPU  
(1)  
TYPE  
DESCRIPTION  
(2)  
GDP  
Host-port data pins (I/O/Z) [default] or general-purpose input/output pins (I/O/Z)  
Used for transfer of data, address, and control  
Also controls initialization of DSP modes at reset via pullup/pulldown resistors  
– Device Endian mode (HD8)  
0: Big Endian  
1: Little Endian  
HD15/GP[15]  
HD14/GP[14]  
HD13/GP[13]  
HD12/GP[12]  
HD11/GP[11]  
HD10/GP[10]  
HD9/GP[9]  
B14  
C14  
A15  
C15  
A16  
B16  
C16  
B17  
A18  
– Boot mode (HD[4:3])  
00: HPI boot/emulation boot  
I/O/Z  
IPU  
01: CE1 width 8-bit, asynchronous external ROM boot with default timings (default mode)  
10: CE1 width 16-bit, asynchronous external ROM boot with default timings  
11: CE1 width 32-bit, asynchronous external ROM boot with default timings  
– HPI_EN (HD14)  
HD8/GP[8]  
HD7/GP[3]  
0: HPI disabled, McASP1 enabled  
1: HPI enabled, McASP1 disabled (default)  
Other HD pins (HD [15, 13:9, 7:5, 2:0] have pullups/pulldowns (IPUs/IPDs). For proper device operation, do not oppose these pins  
with external pullups/pulldowns at reset; however, the HD[15, 6, 5, 2] pins can be opposed and driven at reset. For more details, see  
the Device Configurations section of this data sheet.  
HD6/AHCLKR1  
HD5/AHCLKX1  
HD4/GP[0]  
C17  
B18  
C19  
C20  
D18  
D20  
E20  
E18  
F20  
E19  
F18  
H19  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I
IPU  
IPU  
IPD  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPD  
Host-port data pin 6 (I/O/Z) [default] or McASP1 receive high-frequency master clock (I/O/Z)  
Host-port data pin 5 (I/O/Z) [default] or McASP1 transmit high-frequency master clock (I/O/Z)  
Host-port data pin 4 (I/O/Z) [default] or this pin can be programmed as a GP[0] pin (I/O/Z)  
Host-port data pin 3 (I/O/Z) [default] or McASP1 mute output (O/Z)  
HD3/AMUTE1  
HD2/AFSX1  
Host-port data pin 2 (I/O/Z) [default] or McASP1 transmit frame sync or left/right clock (LRCLK) (I/O/Z)  
Host-port data pin 1 (I/O/Z) [default] or McASP1 data pin 7 (I/O/Z)  
HD1/AXR1[7]  
HD0/AXR1[4]  
HAS/ACLKX1  
HCS/AXR1[2]  
HDS1/AXR1[6]  
HDS2/AXR1[5]  
HRDY/ACLKR1  
Host-port data pin 0 (I/O/Z) [default] or McASP1 data pin 4 (I/O/Z)  
Host address strobe (I) [default] or McASP1 transmit bit clock (I/O/Z)  
Host chip select (I) [default] or McASP1 data pin 2 (I/O/Z)  
I
I
Host data strobe 1 (I) [default] or McASP1 data pin 6 (I/O/Z)  
I
Host data strobe 2 (I) [default] or McASP1 data pin 5 (I/O/Z)  
O/Z  
Host ready (from DSP to host) (O) [default] or McASP1 receive bit clock (I/O/Z)  
EMIF—COMMON SIGNALS TO ALL TYPES OF MEMORY(4)  
CE3  
CE2  
CE1  
CE0  
BE3  
BE2  
BE1  
BE0  
V6  
W6  
W18  
V17  
V5  
Memory space enables  
O/Z  
O/Z  
IPU  
IPU  
Enabled by bits 28 through 31 of the word address  
Only one asserted during any external data access  
Byte-enable control  
Y4  
Decoded from the two lowest bits of the internal address  
Byte-write enables for most types of memory  
U19  
V20  
Can be directly connected to SDRAM read and write mask signal (SDQM)  
EMIF—BUS ARBITRATION(4)  
HOLDA  
HOLD  
J18  
J17  
J19  
O/Z  
I
IPU  
IPU  
IPU  
Hold-request-acknowledge to the host  
Hold request from the host  
BUSREQ  
O/Z  
Bus request output  
EMIF—ASYNCHRONOUS/SYNCHRONOUS MEMORY CONTROL(4)  
ECLKIN  
Y11  
Y10  
I
IPD  
IPD  
External EMIF input clock source  
EMIF output clock depends on the EKSRC bit (DEVCFG.[4]) and on EKEN bit (GBLCTL.[5]).  
EKSRC = 0 ECLKOUT is based on the internal SYSCLK3 signal from the clock generator (default).  
EKSRC = 1 ECLKOUT is based on the external EMIF input clock source pin (ECLKIN)  
EKEN = 0 ECLKOUT held low  
ECLKOUT  
O/Z  
EKEN = 1 ECLKOUT enabled to clock (default)  
ARE/SDCAS/  
SSADS  
V11  
O/Z  
IPU  
Asynchronous memory read enable/SDRAM column-address strobe/SBSRAM address strobe  
AOE/SDRAS/ SSOE W10  
O/Z  
O/Z  
I
IPU  
IPU  
IPU  
Asynchronous memory output enable/SDRAM row-address strobe/SBSRAM output enable  
Asynchronous memory write enable/SDRAM write enable/SBSRAM write enable  
Asynchronous memory ready input  
AWE/SDWE/ SSWE  
ARDY  
V12  
Y5  
(4) To maintain signal integrity for the EMIF signals, serial termination resistors should be inserted into all EMIF output signal lines.  
TERMINAL FUNCTIONS  
Copyright © 2003–2009, Texas Instruments Incorporated  
49  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
TERMINAL FUNCTIONS (continued)  
PIN  
NO.  
IPD/IPU  
(1)  
SIGNAL NAME  
TYPE  
DESCRIPTION  
(2)  
GDP  
EMIF—ADDRESS(4)  
EA21  
U18  
Y18  
W17  
Y16  
V16  
Y15  
W15  
Y14  
W14  
V14  
W13  
V10  
Y9  
EA20  
EA19  
EA18  
EA17  
EA16  
EA15  
EA14  
EA13  
EA12  
EA11  
EA10  
EA9  
External address (word, half-word, and byte address)  
The EMIF adjusts the address based on memory width:  
Width Pins Address  
O/Z  
IPU  
32  
16  
8
21:2 21 through 2  
21:2 20 through 1  
21:2 19 through 0  
EA8  
V9  
EA7  
Y8  
For more details on address width adjustments, see the External Memory Interface (EMIF) chapter of the TMS320C6000 Peripherals  
Reference Guide (literature number SPRU190)  
EA6  
W8  
V8  
EA5  
EA4  
W7  
V7  
EA3  
EA2  
Y6  
EMIF—DATA(4)  
ED31  
ED30  
ED29  
ED28  
ED27  
ED26  
ED25  
ED24  
ED23  
ED22  
ED21  
ED20  
ED19  
ED18  
ED17  
ED16  
ED15  
ED14  
ED13  
ED12  
ED11  
ED10  
ED9  
N3  
P3  
P2  
P1  
R2  
R3  
T2  
T1  
U3  
U1  
U2  
V1  
V2  
Y3  
W4  
V4  
I/O/Z  
IPU  
External data pins (ED[31:16] pins applicable to GDP package only)  
T19  
T20  
T18  
R20  
R19  
P20  
P18  
N20  
N19  
N18  
M20  
M19  
L19  
L18  
K19  
K18  
ED8  
ED7  
ED6  
ED5  
ED4  
ED3  
ED2  
ED1  
ED0  
50  
TERMINAL FUNCTIONS  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SIGNAL NAME  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
TERMINAL FUNCTIONS (continued)  
PIN  
NO.  
IPD/IPU  
(1)  
TYPE  
DESCRIPTION  
(2)  
GDP  
MULTICHANNEL AUDIO SERIAL PORT 1 (McASP1)  
GP[4](EXT_INT4)/  
AMUTEIN1  
C2  
I/O/Z  
IPU  
General-purpose input/output pin 4 and external interrupt 4 (I/O/Z) [default] or McASP1 mute input (I/O/Z)  
HD3/AMUTE1  
HRDY/ACLKR1  
HD6/AHCLKR1  
HAS/ACLKX1  
HD5/AHCLKX1  
C20  
H19  
C17  
E18  
B18  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
IPU  
IPU  
IPU  
IPU  
IPU  
Host-port data pin 3 (I/O/Z) [default] or McASP1 mute output (O/Z)  
Host ready (from DSP to host) (O) [default] or McASP1 receive bit clock (I/O/Z)  
Host-port data pin 6 (I/O/Z) [default] or McASP1 receive high-frequency master clock (I/O/Z)  
Host address strobe (I) [default] or McASP 1 transmit bit clock (I/O/Z)  
Host-port data pin 5 (I/O/Z) [default] or McASP1 transmit high-frequency master clock (I/O/Z)  
Host half-word select first or second half-word (not necessarily high or low order) (I) [default] or McASP1 receive frame sync or  
left/right clock (LRCLK) (I/O/Z)  
HHWIL/AFSR1  
H20  
I/O/Z  
IPU  
HD2/AFSX1  
D18  
D20  
E19  
F18  
E20  
G18  
F20  
G19  
G20  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
Host-port data pin 2 (I/O/Z) [default] or McASP1 transmit frame sync or left/right clock (LRCLK) (I/O/Z)  
Host-port data pin 1 (I/O/Z) [default] or McASP1 TX/RX data pin 7 (I/O/Z)  
HD1/AXR1[7]  
HDS1/AXR1[6]  
HDS2/AXR1[5]  
HD0/AXR1[4]  
HCNTL0/AXR1[3]  
HCS/AXR1[2]  
HCNTL1/AXR1[1]  
HR/W/AXR1[0]  
Host data strobe 1 (I) [default] or McASP1 TX/RX data pin 6 (I/O/Z)  
Host data strobe 2 (I) [default] or McASP1 TX/RX data pin 5 (I/O/Z)  
Host-port data pin 0 (I/O/Z) [default] or McASP1 TX/RX data pin 4 (I/O/Z)  
Host control selects between control, address, or data registers (I) [default] or McASP1 TX/RX data pin 3 (I/O/Z)  
Host chip select (I) [default] or McASP1 TX/RX data pin 2 (I/O/Z)  
Host control selects between control, address, or data registers (I) [default] or McASP1 TX/RX data pin 1 (I/O/Z)  
Host read or write select (I) [default] or McASP1 TX/RX data pin 0 (I/O/Z)  
MULTICHANNEL AUDIO SERIAL PORT 0 (McASP0)  
GP[5](EXT_INT5)/  
AMUTEIN0  
C1  
I/O/Z  
IPU  
General-purpose input/output pin 5 and external interrupt 5 (I/O/Z) [default] or McASP0 mute input (I/O/Z)  
CLKX1/AMUTE0  
CLKR0/ACLKR0  
TINP1/AHCLKX0  
CLKX0/ACLKX0  
CLKS0/AHCLKR0  
FSR0/AFSR0  
L3  
H3  
F2  
G3  
K3  
J3  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPU  
IPD  
IPD  
IPD  
IPU  
IPU  
McBSP1 transmit clock (I/O/Z) [default] or McASP0 mute output (O/Z)  
McBSP0 receive clock (I/O/Z) [default] or McASP0 receive bit clock (I/O/Z)  
Timer 1 input (I) [default] or McBSP0 transmit high-frequency master clock (I/O/Z)  
McBSP0 transmit clock (I/O/Z) [default] or McASP0 transmit bit clock (I/O/Z)  
McBSP0 external clock source (as opposed to internal) (I) [default] or McASP0 receive high-frequency master clock (I/O/Z)  
McBSP0 receive frame sync (I/O/Z) [default] or McASP0 receive frame sync or left/right clock (LRCLK) (I/O/Z)  
McBSP0 transmit frame sync (I/O/Z) [default] or McASP0 transmit frame sync or left/right clock (LRCLK) (I/O/Z)  
McBSP1 receive frame sync (I/O/Z) [default] or McASP0 TX/RX data pin 7 (I/O/Z)  
McBSP1 receive clock (I/O/Z) [default] or McASP0 TX/RX data pin 6 (I/O/Z)  
McBSP1 transmit data (O/Z) [default] or McASP0 TX/RX data pin 5 (I/O/Z)  
Timer 1 output (O) [default] or McASP0 TX/RX data pin 4 (I/O/Z)  
FSX0/AFSX0  
H1  
M3  
M1  
L2  
FSR1/AXR0[7]  
CLKR1/AXR0[6]  
DX1/AXR0[5]  
TOUT1/AXR0[4]  
TINP0/AXR0[3]  
TOUT0/AXR0[2]  
DX0/AXR0[1]  
F1  
G2  
G1  
H2  
J1  
Timer 0 input (I) [default] or McASP0 TX/RX data pin 3 (I/O/Z)  
Timer 0 output (O) [default] or McASP0 TX/RX data pin 2 (I/O/Z)  
McBSP0 transmit data (O/Z) [default] or McASP0 TX/RX data pin 1 (I/O/Z)  
McBSP0 receive data (I) [default] or McASP0 TX/RX data pin 0 (I/O/Z)  
TIMER1  
DR0/AXR0[0]  
TOUT1/AXR0[4]  
TINP1/AHCLKX0  
F1  
F2  
O
I
IPD  
IPD  
Timer 1 output (O) [default] or McASP0 TX/RX data pin 4 (I/O/Z)  
Timer 1 input (I) [default] or McBSP0 transmit high-frequency master clock (I/O/Z). This pin defaults as Timer 1 input (I) and McASP  
transmit highfrequency master clock input (I).  
TIMER0  
TOUT0/AXR0[2]  
TINP0/AXR0[3]  
G1  
G2  
O
I
IPD  
IPD  
Timer 0 output (O) [default] or McASP0 TX/RX data pin 2 (I/O/Z)  
Timer 0 input (I) [default] or McASP0 TX/RX data pin 3 (I/O/Z)  
MULTICHANNEL BUFFERED SERIAL PORT 1 (McBSP1)  
McBSP1 external clock source (as opposed to internal) (I) [default] or I2C1 clock (I/O/Z). This pin does not have an internal pullup or  
pulldown. When this pin is used as a McBSP pin, this pin should either be driven externally at all times or be pulled up with a 10-kΩ  
resistor to a valid logic level. Because it is common for some ICs to 3-state their outputs at times, a 10-kpullup resistor may be  
desirable even when an external device is driving the pin.  
CLKS1/SCL1  
E1  
I
CLKR1/AXR0[6]  
CLKX1/AMUTE0  
M1  
L3  
I/O/Z  
I/O/Z  
IPD  
IPD  
McBSP1 receive clock (I/O/Z) [default] or McASP0 TX/RX data pin 6 (I/O/Z)  
McBSP1 transmit clock (I/O/Z) [default] or McASP0 mute output (O/Z)  
McBSP1 receive data (I) [default] or I2C1 data (I/O/Z). This pin does not have an internal pullup or pulldown. When this pin is used as  
a McBSP pin, this pin should either be driven externally at all times or be pulled up with a 10-kresistor to a valid logic level. Because  
it is common for some ICs to 3-state their outputs at times, a 10-kpullup resistor may be desirable even when an external device is  
driving the pin.  
DR1/SDA1  
M2  
I
DX1/AXR0[5]  
FSR1/AXR0[7]  
FSX1  
L2  
M3  
L1  
O/Z  
I/O/Z  
I/O/Z  
IPU  
IPD  
IPD  
McBSP1 transmit data (O/Z) [default] or McASP0 TX/RX data pin 5 (I/O/Z)  
McBSP1 receive frame sync (I/O/Z) [default] or McASP0 TX/RX data pin 7 (I/O/Z)  
McBSP1 transmit frame sync  
Copyright © 2003–2009, Texas Instruments Incorporated  
TERMINAL FUNCTIONS  
51  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
TERMINAL FUNCTIONS (continued)  
PIN  
NO.  
IPD/IPU  
(1)  
SIGNAL NAME  
TYPE  
DESCRIPTION  
(2)  
GDP  
MULTICHANNEL BUFFERED SERIAL PORT 0 (McBSP0)  
CLKS0/AHCLKR0  
CLKR0/ACLKR0  
CLKX0/ACLKX0  
DR0/AXR0[0]  
K3  
H3  
G3  
J1  
I
IPD  
IPD  
IPD  
IPU  
IPU  
IPD  
IPD  
McBSP0 external clock source (as opposed to internal) (I) [default] or McASP0 receive high-frequency master clock (I/O/Z)  
McBSP0 receive clock (I/O/Z) [default] or McASP0 receive bit clock (I/O/Z)  
I/O/Z  
I/O/Z  
I
McBSP0 transmit clock (I/O/Z) [default] or McASP0 transmit bit clock (I/O/Z)  
McBSP0 receive data (I) [default] or McASP0 TX/RX data pin 0 (I/O/Z)  
DX0/AXR0[1]  
H2  
J3  
O/Z  
I/O/Z  
I/O/Z  
McBSP0 transmit data (O/Z) [default] or McASP0 TX/RX data pin 1 (I/O/Z)  
FSR0/AFSR0  
McBSP0 receive frame sync (I/O/Z) [default] or McASP0 receive frame sync or left/right clock (LRCLK) (I/O/Z)  
McBSP0 transmit frame sync (I/O/Z) [default] or McASP0 transmit frame sync or left/right clock (LRCLK) (I/O/Z)  
INTER-INTEGRATED CIRCUIT 1 (I2C1)  
FSX0/AFSX0  
H1  
McBSP1 external clock source (as opposed to internal) (I) [default] or I2C1 clock (I/O/Z). This pin must be externally pulled up. When  
this pin is used as an I2C pin, the value of the pullup resistor depends on the number of devices connected to the I2C bus. For more  
details, see the Philips I2C Specification Revision 2.1 (January 2000).  
CLKS1/SCL1  
DR1/SDA1  
E1  
I/O/Z  
I/O/Z  
McBSP1 receive data (I) [default] or I2C1 data (I/O/Z). This pin must be externally pulled up. When this pin is used as an I2C pin, the  
value of the pullup resistor depends on the number of devices connected to the I2C bus. For more details, see the Philips I2C  
M2  
Specification Revision 2.1 (January 2000).  
INTER-INTEGRATED CIRCUIT 0 (I2C0)  
I2C0 clock. This pin must be externally pulled up. When this pin is used as an I2C pin, the value of the pull-up resistor depends on the  
number of devices connected to the I2C bus. For more details, see the Philips I2C Specification Revision 2.1 (January 2000).  
SCL0  
SDA0  
N1  
N2  
I/O/Z  
I/O/Z  
I2C0 data. This pin must be externally pulled up. When this pin is used as an I2C pin, the value of the pull-up resistor depends on the  
number of devices connected to the I2C bus. For more details, see the Philips I2C Specification Revision 2.1 (January 2000).  
GENERAL-PURPOSE INPUT/OUTPUT (GPIO)  
HD15/GP[15]  
HD14/GP[14]  
HD13/GP[13]  
HD12/GP[12]  
HD11/GP[11]  
HD10/GP[10]  
HD9/GP[9]  
B14  
C14  
A15  
C15  
A16  
B16  
C16  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
Host-port data pins (I/O/Z) [default] or general-purpose input/output pins (I/O/Z) and some function as boot configuration pins at reset.  
Used for transfer of data, address, and control  
Also controls initialization of DSP modes at reset via pullup/pulldown resistors  
abc  
As general-purpose input/output (GP[x]) functions, these pins are software configurable through registers. The GPxEN bits in the GP  
Enable register and the GPxDIR bits in the GP Direction register must be properly configured:  
abc  
GPxEN = 1; GP[x] pin is enabled.  
GPxDIR = 0; GP[x] pin is an input.  
GPxDIR = 1; GP[x] pin is an output.  
abc  
For the functionality description of the Host-port data pins or the boot configuration pins, see the Host-Port Interface (HPI) portion of  
this table.  
HD8/GP[8]  
B17  
I/O/Z  
IPU  
GP[7](EXT_INT7)  
GP[6](EXT_INT6)  
E3  
D2  
I/O/Z  
I/O/Z  
IPU  
IPU  
General-purpose input/output pins (I/O/Z) that also function as external interrupts  
Edge-driven  
GP[5](EXT_INT5)/AM  
UTEIN0  
Polarity independently selected via the External Interrupt Polarity Register bits (EXTPOL.[3:0])  
C1  
C2  
I/O/Z  
I/O/Z  
IPU  
IPU  
abc  
GP[4] and GP[5] pins also function as AMUTEIN1 McASP1 mute input and AMUTEIN0 McASP0 mute input, respectively, if enabled by  
the INEN bit in the associated McASP AMUTE register.  
GP[4](EXT_INT4)/  
AMUTEIN1  
HD7/GP[3]  
A18  
Y12  
J20  
C19  
I/O/Z  
I/O/Z  
O
IPU  
IPD  
IPU  
IPD  
Host-port data pin 7 (I/O/Z) [default] or general-purpose input/output pin 3 (I/O/Z)  
Clock output at half of device speed (O/Z) [default] or this pin can be programmed as GP[2] pin  
Host interrupt (from DSP to host) (O) [default] or this pin can be programmed as a GP[1] pin (I/O/Z)  
Host-port data pin 4 (I/O/Z) [default] or this pin can be programmed as a GP[0] pin (I/O/Z)  
RESERVED FOR TEST  
CLKOUT2/GP[2]  
HINT/GP[1]  
HD4/GP[0]  
I/O/Z  
RSV  
RSV  
RSV  
RSV  
A5  
B5  
O/Z  
A(3)  
O
IPU  
Reserved. (Leave unconnected; do not connect to power or ground.)  
Reserved. (Leave unconnected; do not connect to power or ground.)  
Reserved. (Leave unconnected; do not connect to power or ground.)  
Reserved. (Leave unconnected; do not connect to power or ground.)  
C12  
D7  
O/Z  
IPD  
Reserved. This pin does not have an IPU. For proper C6713 device operation, the D12 pin must be externally pulled down with a  
10-kresistor.  
RSV  
RSV  
RSV  
D12  
A12  
B11  
I
Reserved. For new designs, it is recommended that this pin be connected directly to CVDD (core power). For old designs, this can be  
left unconnected.  
Reserved. For new designs, it is recommended that this pin be connected directly to VSS (ground). For old designs, this pin can be left  
unconneced.  
52  
TERMINAL FUNCTIONS  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SIGNAL NAME  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
TERMINAL FUNCTIONS (continued)  
PIN  
NO.  
IPD/IPU  
(1)  
TYPE  
DESCRIPTION  
(2)  
GDP  
SUPPLY VOLTAGE PINS  
A17  
B3  
B8  
B13  
C10  
D1  
D16  
D19  
F3  
H18  
J2  
M18  
R1  
R18  
T3  
3.3-V supply voltage  
(see the Power-Supply Decoupling section of this data sheet)  
DVDD  
S
U5  
U7  
U12  
U16  
V13  
V15  
V19  
W3  
W9  
W12  
Y7  
Y17  
A4  
A9  
A10  
B2  
B19  
C3  
C7  
C18  
D5  
D6  
D11  
D14  
D15  
F4  
F17  
K1  
K4  
1.26-V supply voltage  
(see the Power-Supply Decoupling section of this data sheet)  
CVDD  
S
K17  
L4  
L17  
L20  
R4  
R17  
U6  
U10  
U11  
U14  
U15  
V3  
V18  
W2  
W19  
Copyright © 2003–2009, Texas Instruments Incorporated  
TERMINAL FUNCTIONS  
53  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
TERMINAL FUNCTIONS (continued)  
PIN  
NO.  
IPD/IPU  
(1)  
SIGNAL NAME  
TYPE  
DESCRIPTION  
(2)  
GDP  
GROUND PINS  
A1  
A2  
A11  
A14  
A19  
A20  
B1  
B4  
B15  
B20  
C6  
C8  
C9  
D4  
D8  
D13  
D17  
E2  
E4  
E17  
F19  
G4  
G17  
H4  
H17  
J4  
J9  
J10  
J11  
J12  
K2  
K9  
K10  
K11  
K12  
K20  
L9  
Ground pins(1). The center thermal balls (J9J12, K9K12, L9L12, M9M12) [shaded] are all tied to ground and act as both electrical  
grounds and thermal relief (thermal dissipation).  
VSS  
GND  
L10  
L11  
L12  
M4  
M9  
M10  
M11  
M12  
M17  
N4  
N17  
P4  
P17  
P19  
T4  
T17  
U4  
U8  
U9  
U13  
U17  
U20  
W1  
W5  
W11  
W16  
W20  
Y1  
Y2  
Y13  
Y19  
Y20  
(1) Shaded pin numbers denote the center thermal balls.  
6.1 Development Support  
TI offers an extensive line of development tools for the TMS320C6000™ DSP platform, including tools to  
evaluate the performance of the processors, generate code, develop algorithm implementations, and fully  
integrate and debug software and hardware modules.  
The following products support development of C6000™ DSP-based applications:  
54  
TERMINAL FUNCTIONS  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Software Development Tools  
Code Composer Studio™ Integrated Development Environment (IDE), including Editor  
C/C++/Assembly Code Generation, and Debug plus additional development tools  
Scalable, Real-Time Foundation Software ( DSP/BIOS™), which provides the basic run-time target  
software needed to support any DSP application.  
Hardware Development Tools  
Extended Development System ( XDS™) Emulator (supports C6000 DSP multiprocessor system  
debug)  
EVM (evaluation module)  
For a complete listing of development-support tools for the TMS320C6000 DSP platform, visit the Texas  
Instruments web site at www.ti.com. For information on pricing and availability, contact the nearest TI field  
sales office or authorized distributor.  
6.2 Device and Development-Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
TMS320™ DSP devices and support tools. Each TMS320 DSP commercial family member has one of  
three prefixes: SMX, TMP, or SM/SMJ. TI recommends two of three possible prefix designators for  
support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development  
from engineering prototypes (SMX/TMDX) through fully qualified production devices/tools  
(SM/SMJ/TMDS).  
6.2.1 Device Development Evolutionary Flow  
SMX  
Preproduction device that is not necessarily representative of the final device  
electrical specifications  
TMP  
Final silicon die that conforms to the device electrical specifications but has not  
completed quality and reliability verification  
SM/SMJ  
Fully qualified production device  
6.2.2 Support Tool Development Evolutionary Flow  
TMDX  
Development-support product that has not yet completed Texas Instruments  
internal qualification testing  
TMDS  
Fully qualified development-support product  
SMX and TMP devices and TMDX development-support tools are shipped with appropriate disclaimers  
describing their limitations and intended uses. Experimental devices (SMX) may not be representative of a  
final product and TI reserves the right to change or discontinue these products without notice.  
SM/SMJ devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI’s standard warranty applies.  
Predictions show that prototype devices (SMX or TMP) have a greater failure rate than the standard  
production devices. TI recommends that these devices not be used in any production system because  
their expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the  
package type (for example, GDP), the temperature range (for example, blank is the default commercial  
temperature range), and the device speed range in megahertz (for example, 20 is 200 MHz).  
Figure 6-1 provides a legend for reading the complete device name for any TMS320C6000 DSP family  
member.  
Copyright © 2003–2009, Texas Instruments Incorporated  
TERMINAL FUNCTIONS  
55  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Table 6-1. 320C6713 and C6713B Device Part Numbers (P/Ns) and Ordering Information(1)  
CORE AND I/O VOLTAGE  
CVDD (CORE) DVDD (I/O)  
OPERATING CASE  
TEMPERATURE  
RANGE  
(2)  
DEVICE ORDERABLE P/N  
DEVICE SPEED  
C6713B  
SM32C6713BGDPA20EP  
SM32C6713BGDPM30EP  
SM32C6713BGDPS20EP  
200 MHz/1200 MFlops  
300 MHz/1800 MFlops  
200 MHz/1200 MFlops  
1.26 V  
1.4V  
3.3 V  
3.3V  
3.3 V  
–40°C to 105°C  
–55°C to 125°C  
–55°C to 105°C  
1.26 V  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
Web site at www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at  
www.ti.com/sc/package  
6.3 Ordering Nomenclature  
(
)
SM 320  
C
6713 GDP  
20  
EP  
PREFIX  
ENHANCED PLASTIC INDICATOR  
SMX= Experimental device  
TMP= Prototype device  
TMS= Qualified device  
SMJ= MIL-PRF-38535, QML  
SM = High Rel (non-38535)  
DEVICE SPEED RANGE  
20 = 200 MHz  
TEMPERATURE RANGE (DEFAULT: 0°C TO 90°C)  
Blank = 0°C to 90°C (commercial temperature)  
A
M
S
= -40°C to 105°C (extended temperature)  
= –55°C to 125°C (extended temperature)  
= -55°C to 105°C (extended temperature)  
DEVICE FAMILY  
320 = TMS320ä DSP family  
PACKAGE TYPE (See Note 1)  
TECHNOLOGY  
GDP = 272-pin plastic BGA  
GFN= 256-pin plastic BGA  
GGP = 352-pin plastic BGA  
GJC= 352-pin plastic BGA  
=
C
CMOS  
GJL=  
352-pin plastic BGA  
GLS= 384-pin plastic BGA  
GLW= 340-pin plastic BGA  
GNY = 384-pin plastic BGA  
GNZ = 352-pin plastic BGA  
GLZ= 532-pin plastic BGA  
GHK = 288-pin plastic MicroStar BGATM  
PYP = 208-pin PowerPADTM  
plastic QFP  
DEVICE  
C6000 DSP:  
C6713  
C6713B  
NOTE (1): BGA = Ball Grid Array  
QFP = Quad Flatpack  
For actual device part numbers (P/Ns) and ordering information, see the Mechanical Data section of this document or  
the TI website (www.ti.com).  
Figure 6-1. TMS320C6000™ DSP Device Nomenclature (Including SM320C6713 and C6713B Devices)  
6.4 Documentation Support  
Extensive documentation supports all the TMS320 DSP family generations of devices from product  
announcement through applications development. The types of documentation available include data  
sheets, such as this document with design specifications complete user’s reference guides for all devices  
and tools, technical briefs, development-support tools, on-line help, and hardware and software  
applications. The following is a brief, descriptive list of support documentation specific to the C6000 DSP  
devices, except where noted, all documents are accessible through the TI web site at www.ti.com.  
TMS320C6000™ CPU and Instruction Set Reference Guide (literature number SPRU189) describes  
the C6000 CPU (DSP core) architecture, instruction set, pipeline, and associated interrupts.  
56  
TERMINAL FUNCTIONS  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
TMS320C6000™ DSP Peripherals Overview Reference Guide [hereafter referred to as the C6000  
PRG Overview] (literature number SPRU190) provides an overview and briefly describes the  
functionality of the peripherals available on the C6000 DSP platform of devices. This document also  
includes a table listing the peripherals available on the C6000 devices along with literature numbers  
and hyperlinks to the associated peripheral documents. These C6713/13B peripherals are similar to  
the peripherals on the TMS320C6711 and TMS320C64x devices; therefore, see the TMS320C6711  
(C6711 or C67x) peripheral information and, in some cases (where indicated), see the TMS320C6711  
(C6711 or C671x) peripheral information and, in some cases (where indicated), see the C64x  
information in the C6000™ PRG Overview (literature number SPRU190).  
TMS320DA6000™ DSP Multichannel Audio Serial Port (McASP) Reference Guide (literature number  
SPRU041) describes the functionality of the McASP peripherals available on the C6713/13B device.  
TMS320C6000™ DSP Software-Programmable Phase-Locked Loop (PLL) Controller Reference Guide  
(literature number SPRU233) describes the functionality of the PLL peripheral available on the  
C6713/13B device.  
TMS320C6000™ DSP Inter-Integrated Circuit (I2C) Module Reference Guide (literature number  
SPRU175) describes the functionality of the I2C peripherals available on the C6713/13B device.  
The PowerPAD ™Thermally-Enhanced Package Technical Brief (literature number SLMA002) focuses  
on the specifics of integrating a PowerPAD package into the printed circuit board (PCB) design to  
make optimum use of the thermal efficiencies designed into the PowerPAD package.  
TMS320C6000™ Technical Brief (literature number SPRU197) gives an introduction to the C62x™/  
C67x™ devices, associated development tools, and third-party support.  
Migrating from TMS320C6211(B)/C6711(B) to TMS320C6713 application report (literature number  
SPRA851) indicates the differences and describes the issues of interest related to the migration from  
the TI TMS320C6211(B)/C6711(B) GFN package to the TMS320C6713 GDP package.  
TMS320C6713, TMS320C6713B Digital Signal Processors Silicon Errata (literature number SPRZ191)  
describes the known exceptions to the functional specifications for particular silicon revisions of the  
TMS320C6713 and TMS320C6713B devices.  
TMS320C6713/12C/11C Power Consumption Summary application report (literature number  
SPRA889) discusses the power consumption for user applications with the TMS320C6713/13B,  
TMS320C6712C/12D, and TMS320C6711C/11D DSP devices.  
Using IBIS Models for Timing Analysis application report (literature number SPRA839) describes how  
to properly use IBIS models to attain accurate timing analysis for a given system.  
The tools support documentation is electronically available within the Code Composer Studio Integrated  
Development Environment (IDE). For a complete listing of C6000 DSP latest documentation, visit the  
Texas Instruments web site at www.ti.com. Also, see the TI web site for the application report, How To  
Begin Development Today With the TMS320C6713 Floating-Point DSP (literature number SPRA809),  
which describes in more detail the similarities/differences between the C6713 and C6711 C6000 DSP  
devices.  
Copyright © 2003–2009, Texas Instruments Incorporated  
TERMINAL FUNCTIONS  
57  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
7
REGISTER INFORMATION  
This section provides the register information for the device.  
7.1 CPU Control Status Register (CSR) Description  
The CPU CSR contains the CPU ID and CPU Revision ID (bits 1631), as well as the status of the device  
power-down modes [PWRD field (bits 1510)], program and data cache control modes, the endian bit  
(EN, bit 8), and the global interrupt enable (GIE, bit 0) and previous GIE (PGIE, bit 1). Figure 7-1 and  
Table 7-1 identify the bit fields in the CPU CSR.  
For more detailed information on the bit fields in the CPU CSR, see the TMS320C6000 DSP Peripherals  
Overview Reference Guide (literature number SPRU190) and the TMS320C6000 CPU and Instruction Set  
Reference Guide (literature number SPRU189).  
31  
24 23  
16  
CPU ID  
R-0x02  
REVISION ID  
R-0x03 [13/13B]  
15  
10  
98  
SAT  
/C-0  
76  
54  
21  
0
PWRD  
R/W-0R  
EN  
R-1R  
PCC  
/W-0  
DCC  
PGIE  
GIE  
R/W-0R  
/W-0 R/W-0  
Legend: R = Readable by the MVC instruction, R/W = Readable/Writeable by the MVC instruction; W = Read/write; -n = value after reset, -x = undefined value after  
reset, C = Clearable by the MVC instruction  
Figure 7-1. CPU Control Status Register (CPU CSR)  
58  
REGISTER INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Table 7-1. CPU CSR Bit Field Description  
Bit NO.  
31:24  
23:16  
15:10  
NAME  
CPU ID  
DESCRIPTION  
CPU ID + REV ID. Read only. Identifies which CPU is used and defines the silicon revision of the CPU.  
CPU ID + REVISION ID (31:16) are combined for a value of: 0x0203 for C6713/13B  
REVISION ID  
PWRD  
Control power-down modes. The values are always read as zero.  
000000 = No power down (default)  
001001 = PD1, wake up by an enabled interrupt  
010001 = PD1, wake up by an enabled or not enabled interrupt  
011010 = PD2, wake up by a device reset  
011100 = PD3, wake up by a device reset  
Others = Reserved  
9
SAT  
Saturate bit.  
Set when any unit performs a saturate. This bit can be cleared only by the MVC instruction and can be set only  
by a functional unit. The set by the a functional unit has priority over a clear (by the MVC instruction) if they  
occur on the same cycle. The saturate bit is set one full cycle (one delay slot) after a saturate occurs. This bit  
will not be modified by a conditional instruction whose condition is false.  
8
EN  
Endian bit. This bit is read-only. Depicts the device endian mode.  
0
1
= Big Endian mode  
= Little Endian mode [default]  
7:5  
PCC  
Program cache control mode.  
L1D, Level 1 program cache  
000/010 = Cache enabled/cache accessed and updated on reads  
All other PCC values are reserved.  
4:2  
1
DCC  
PGIE  
GIE  
Data cache control mode.  
L1D, Level 1 data cache  
000/010 = Cache enabled/2-way cache  
All other DCC values are reserved.  
Previous GIE (global interrupt enable); saves the Global Interrupt Enable (GIE) when an interrupt is taken.  
Allows for proper nesting of interrupts.  
0
1
= Previous GIE value is 0 (default).  
= Previous GIE value is 1.  
0
Global interrupt enable bit.  
Enables (1) or disables (0) all interrupts except the reset interrupt and NMI (nonmaskable interrupt).  
0
1
= Disables all interrupts (except the reset interrupt and NMI) [default].  
= Enables all interrupts (except the reset interrupt and NMI).  
7.2 Cache Configuration (CCFG) Register Description (13B)  
The C6713B device includes an enhancement to the CCFG register. A P bit (CCFG.31) allows the  
programmer to select the priority of accesses to L2 memory originating from the transfer crossbar (TC)  
over accesses originating from the L1D memory system. An important class of TC accesses is EDMA  
transfers, which move data to or from the L2 memory. While the EDMA normally has no issue accessing  
L2 memory because of the high hit rates on the L1D memory system, there are pathological cases where  
certain CPU behavior could block the EDMA from accessing the L2 memory for long enough to cause a  
missed deadline when transferring data to a peripheral such as the McASP or McBSP. This can be  
avoided by setting the P bit to 1 because the EDMA will assume a higher priority than the L1D memory  
system when accessing L2 memory.  
For more detailed information on the P-bit function and for silicon advisories concerning EDMA L2  
memory accesses blocked, see the TMS320C6713, TMS320C6713B Digital Signal Processors Silicon  
Errata (literature number SPRZ191).  
Copyright © 2003–2009, Texas Instruments Incorporated  
REGISTER INFORMATION  
59  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
7
31  
30  
10  
98  
32  
0
P (1)  
R/W-0  
Reserved  
R-x  
IP  
ID  
Reserved  
R-0 0000  
L2MODE  
R/W-000  
W-0  
W-0  
Legend: R = Readable; R/W = Readable/Writeable; -n = value after reset, -x = undefined value after reset  
A: Unlike the C6713 device, the C6713B device includes a P bit.  
A. Unlike the C6713 device, the C6713B device includes a P bit.  
Figure 7-2. Cache Configuration (CCFG) Register  
Table 7-2. CCFG Register Bit Field Description  
BIT NO.  
31  
NAME  
DESCRIPTION  
L1D requestor priority to L2 bit  
P
Reserved  
IP  
P = 0: L1D requests to L2 higher priority than TC requests  
P = 1: TC requests to L2 higher priority than L1D requests  
30:10  
9
Reserved. Read only, writes have no effect.  
Invalidate L1P bit  
0 = Normal L1P operation  
1 = All L1P lines are invalidated  
Invalidate L1D bit  
8
ID  
0 = Normal L1D operation  
1 = All L1D lines are invalidated  
7:3  
Reserved  
Reserved. Read only, writes have no effect.  
L2 operation mode bits (L2MODE)  
000b = L2 cache disabled (All SRAM mode) [256K SRAM]  
001b = 1-way cache (16K L2 cache) / [240K SRAM]  
010b = 2-way cache (32K L2 cache) / [224K SRAM]  
011b = 3-way cache (48K L2 cache) / [208K SRAM]  
111b = 4-way cache (64K L2 cache) / [192K SRAM]  
All others are reserved.  
2:0  
L2MODE  
7.3 Interrupts and Interrupt Selector  
The C67x DSP core supports 16 prioritized interrupts, which are listed in Table 7-3. The highest priority  
interrupt is INT_00 (dedicated to RESET), while the lowest priority is INT_15. The first four interrupts are  
non-maskable and fixed. The remaining interrupts (415) are maskable and default to the interrupt source  
listed in Table 7-3. However, their interrupt source may be reprogrammed to any one of the sources listed  
in Table 7-4 (Interrupt Selector). Table 7-4 lists the selector value corresponding to each of the alternate  
interrupt sources. The selector choice for interrupts 415 is made by programming the corresponding  
fields (listed in Table 7-3) in the MUXH (address 0x019C0000) and MUXL (address 0x019C0004)  
registers.  
Table 7-3. DSP Interrupts  
INTERRUPT  
SELECTOR CONTROL  
REGISTER  
DEFAULT  
SELECTOR VALUE  
(BINARY)  
DEFAULT  
INTERRUPT  
EVENT  
DSP  
INTERRUPT NUMBER  
INT_00  
INT_01  
INT_02  
INT_03  
RESET  
NMI  
Reserved  
Reserved  
60  
REGISTER INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Table 7-3. DSP Interrupts (continued)  
INTERRUPT  
SELECTOR CONTROL  
REGISTER  
DEFAULT  
SELECTOR VALUE  
(BINARY)  
DEFAULT  
INTERRUPT  
EVENT  
DSP  
INTERRUPT NUMBER  
INT_04  
INT_05  
INT_06  
INT_07  
INT_08  
INT_09  
INT_10  
INT_11  
INT_12  
INT_13  
INT_14  
INT_15  
MUXL[4:0]  
MUXL[9:5]  
00100  
00101  
00110  
00111  
01000  
01001  
00011  
01010  
01011  
00000  
00001  
00010  
GPINT4(1)  
GPINT5(1)  
GPINT6(1)  
GPINT7(1)  
EDMAINT  
EMUDTDMA  
SDINT  
MUXL[14:10]  
MUXL[20:16]  
MUXL[25:21]  
MUXL[30:26]  
MUXH[4:0]  
MUXH[9:5]  
EMURTDXRX  
EMURTDXTX  
DSPINT  
MUXH[14:10]  
MUXH[20:16]  
MUXH[25:21]  
MUXH[30:26]  
TINT0  
TINT1  
(1) Interrupt events GPINT4, GPINT5, GPINT6, and GPINT7 are outputs from the GPIO module (GP).  
They originate from the device pins GP[4](EXT_INT4)/AMUTEIN1, GP[5](EXT_INT5)/AMUTEIN0,  
GP[6](EXT_INT6), and GP[7](EXT_INT7). These pins can be used as edge-sensitive EXT_INTx with  
polarity controlled by the External Interrupt Polarity Register (EXTPOL.[3:0]). The corresponding pins  
must first be enabled in the GPIO module by setting the corresponding enable bits in the GP Enable  
Register (GPEN.[7:4]), and configuring them as inputs in the GP Direction Register (GPDIR.[7:4]).  
These interrupts can be controlled through the GPIO module in addition to the simple EXTPOL.[3:0]  
bits. For more information on interrupt control via the GPIO module, see the TMS320C6000™ DSP  
General-Purpose Input/Output (GPIO) Reference Guide (literature number SPRU584).  
Copyright © 2003–2009, Texas Instruments Incorporated  
REGISTER INFORMATION  
61  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Table 7-4. Interrupt Selector  
INTERRUPT SELECTOR VALUE  
(BINARY)  
INTERRUPT EVENT  
MODULE  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
DSPINT  
TINT0  
HPI  
Timer 0  
Timer 1  
EMIF  
TINT1  
SDINT  
GPINT4(1)  
GPINT5(1)  
GPINT6(1)  
GPINT7(1)  
EDMAINT  
EMUDTDMA  
EMURTDXRX  
EMURTDXTX  
XINT0  
GPIO  
GPIO  
GPIO  
GPIO  
EDMA  
Emulation  
Emulation  
Emulation  
McBSP0  
McBSP0  
McBSP1  
McBSP1  
GPIO  
RINT0  
XINT1  
RINT1  
GPINT0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
I2CINT0  
I2CINT1  
Reserved  
Reserved  
Reserved  
Reserved  
AXINT0  
I2C0  
I2C1  
McASP0  
McASP0  
McASP1  
McASP1  
ARINT0  
AXINT1  
ARINT1  
(1) Interrupt events GPINT4, GPINT5, GPINT6, and GPINT7 are outputs from the GPIO module (GP).  
They originate from the device pins GP[4](EXT_INT4)/AMUTEIN1, GP[5](EXT_INT5)/AMUTEIN0,  
GP[6](EXT_INT6), and GP[7](EXT_INT7). These pins can be used as edge-sensitive EXT_INTx with  
polarity controlled by the External Interrupt Polarity Register (EXTPOL.[3:0]). The corresponding pins  
must first be enabled in the GPIO module by setting the corresponding enable bits in the GP Enable  
Register (GPEN.[7:4]), and configuring them as inputs in the GP Direction Register (GPDIR.[7:4]).  
These interrupts can be controlled through the GPIO module in addition to the simple EXTPOL.[3:0]  
bits. For more information on interrupt control via the GPIO module, see the TMS320C6000™ DSP  
General-Purpose Input/Output (GPIO) Reference Guide (literature number SPRU584).  
7.4 External Interrupt Sources  
The C6713/13B device supports many external interrupt sources as indicated in Table 7-5. Control of the  
interrupt source is done by the associated module and is made available by enabling the corresponding  
binary interrupt selector value (see Table 7-4 shaded rows). Because of pin multiplexing and module  
usage, not all external interrupt sources are available at the same time.  
62  
REGISTER INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Table 7-5. External Interrupt Sources and Peripheral Module Control  
PIN NAME  
GP[15]  
GP[14]  
GP[13  
GP[12]  
GP[11]  
GP[10]  
GP[9]  
INTERRUPT EVENT  
GPINT0  
MODULE  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPINT0  
GPINT0  
GPINT0  
GPINT0  
GPINT0  
GPINT0  
GP[8]  
GPINT0  
GP[7]  
GPINT0 or GPINT7  
GPINT0 or GPINT6  
GPINT0 or GPINT5  
GPINT0 or GPINT4  
GPINT0  
GP[6]  
GP[5]  
GP[4]  
GP[3]  
GP[2]  
GPINT0  
GP[1]  
GPINT0  
GP[0]  
GPINT0  
7.5 EDMA Module and EDMA Selector  
The C67x EDMA supports up to 16 EDMA channels. Four of the 16 channels (channels 811) are  
reserved for EDMA chaining, leaving 12 EDMA channels available to service peripheral devices.  
The EDMA selector registers that control the EDMA channels servicing peripheral devices are located at  
addresses 0x01A0FF00 (ESEL0), 0x01A0FF04 (ESEL1), and 0x01A0FF0C (ESEL3). These EDMA  
selector registers control the mapping of the EDMA events to the EDMA channels. Each EDMA event has  
an assigned EDMA selector code (see Table 7-7). By loading each EVTSELx register field with an EDMA  
selector code, users can map any desired EDMA event to any specified EDMA channel. Table 7-6 lists the  
default EDMA selector value for each EDMA channel.  
See Table 7-8 and Table 7-11 for the EDMA Event Selector registers and their associated bit descriptions.  
Copyright © 2003–2009, Texas Instruments Incorporated  
REGISTER INFORMATION  
63  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Table 7-6. EDMA Channels  
EDMA SELECTOR  
CONTROL REGISTER  
DEFAULT SELECTOR  
VALUE (BINARY)  
EDMA CHANNEL  
DEFAULT EDMA EVENT  
0
1
ESEL0[5:0]  
ESEL0[13:8]  
ESEL0[21:16]  
ESEL0[29:24]  
ESEL1[5:0]  
ESEL1[13:8]  
ESEL1[21:16]  
ESEL1[29:24]  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
DSPINT  
TINT0  
2
TINT1  
3
SDINT  
4
GPINT4  
5
GPINT5  
6
GPINT6  
7
GPINT7  
8
TCC8 (Chaining)  
TCC9 (Chaining)  
TCC10 (Chaining)  
TCC11 (Chaining)  
XEVT0  
9
10  
11  
12  
13  
14  
15  
ESEL3[5:0]  
ESEL3[13:8]  
ESEL3[21:16]  
ESEL3[29:24]  
001100  
001101  
001110  
001111  
REVT0  
XEVT1  
REVT1  
64  
REGISTER INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Table 7-7. EDMA Selector  
EDMA SELECTOR CODE  
(BINARY)  
EDMA EVENT  
MODULE  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000011111  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000111111  
DSPINT  
TINT0  
HPI  
TIMER0  
TIMER1  
EMIF  
TINT1  
SDINT  
GPINT4  
GPINT5  
GPINT6  
GPINT7  
GPINT0  
GPINT1  
GPINT2  
GPINT3  
XEVT0  
REVT0  
XEVT1  
REVT1  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
McBSP0  
McBSP0  
McBSP1  
McBSP1  
Reserved  
AXEVTE0  
AXEVTO0  
AXEVT0  
McASP0  
McASP0  
McASP0  
McASP0  
McASP0  
McASP0  
McASP1  
McASP1  
McASP1  
McASP1  
McASP1  
McASP1  
I2C0  
AREVTE0  
AREVTO0  
AREVT0  
AXEVTE1  
AXEVTO1  
AXEVT1  
AREVTE1  
AREVTO1  
AREVT1  
I2CREVT0  
I2CXEVT0  
I2CREVT1  
I2CXEVT1  
GPINT8  
I2C0  
I2C1  
I2C1  
GPIO  
GPINT9  
GPIO  
GPINT10  
GPINT11  
GPINT12  
GPINT13  
GPINT14  
GPINT15  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Reserved  
Copyright © 2003–2009, Texas Instruments Incorporated  
REGISTER INFORMATION  
65  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Table 7-8. EDMA Event Selector Registers (ESEL0 Register (0x01A0 FF00)  
31  
Reserved  
R–0  
30  
29  
28  
27  
EVTSEL3  
24  
23  
Reserved  
R0  
22  
21  
20  
19  
EVTSEL2  
16  
0
R/W00 0011b  
R/W00 0010b  
15  
14  
13  
12  
11  
8
7
6
5
4
3
Reserved  
R–0  
EVTSEL1  
R/W00 0001b  
Reserved  
EVTSEL0  
R/W00 0000b  
R0  
Legend: R = Read only, R/W = Read/write, -n = value at reset  
Table 7-9. EDMA Event Selector Registers—ESEL1 Register (0x01A0 FF04)  
31  
Reserved  
R–0  
30  
29  
28  
27  
EVTSEL7  
24  
23  
Reserved  
R0  
22  
21  
20  
19  
EVTSEL6  
16  
0
R/W00 0111b  
R/W00 0110b  
15  
14  
13  
12  
11  
8
7
6
5
4
3
Reserved  
R–0  
EVTSEL5  
R/W00 0101b  
Reserved  
EVTSEL4  
R/W00 0100b  
R0  
Legend: R = Read only, R/W = Read/write, -n = value at reset  
Table 7-10. EDMA Event Selector Registers—ESEL3 Register (0x01A0 FF0C)  
31  
Reserved  
R–0  
30  
29  
28  
27  
24  
23  
Reserved  
R0  
22  
21  
20  
19  
16  
0
EVTSEL15  
R/W00 1111b  
EVTSEL14  
R/W00 1110b  
15  
14  
13  
12  
11  
8
7
6
5
4
3
Reserved  
R–0  
EVTSEL13  
R/W00 1101b  
Reserved  
EVTSEL12  
R/W00 1100b  
R0  
Legend: R = Read only, R/W = Read/write, -n = value at reset  
Table 7-11. EDMA Event Selection Registers (ESEL0, ESEL1, and ESEL3) Description  
BIT NO.  
NAME  
DESCRIPTION  
31:30  
23:22  
15:14  
7:6  
Reserved  
Reserved. Read only, writes have no effect.  
EDMA event selection bits for channel x. Allows mapping of the EDMA events to the EDMA channels.  
abc  
29:24  
21:16  
13:8  
5:0  
The EVTSEL0 through EVTSEL15 bits correspond to channels 0 to 15, respectively. These EVTSELx  
fields are user selectable. By configuring the EVTSELx fields to the EDMA selector value of the desired  
EDMA sync event number (see Table 7-7), users can map any EDMA event to the EDMA channel.  
abc  
EVTSELx  
For example, if EVTSEL15 is programmed to 00 0001b (the EDMA selector code for TINT0), channel 15  
is triggered by Timer 0 TINT0 events.  
66  
REGISTER INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
8
PLL and PLL Controller  
The 320C6713/13B includes a PLL and a flexible PLL controller peripheral consisting of a prescaler (D0)  
and four dividers (OSCDIV1, D1, D2, and D3). The PLL controller is able to generate different clocks for  
different parts of the system (that is, DSP core, peripheral data bus, external memory interface, McASP,  
and other peripherals). Figure 8-1 shows the PLL, the PLL controller, and the clock generator logic.  
PLLHV  
+3.3 V  
EMI filter  
C1  
C2  
10 mF0 .1 mF  
CLKMODE0  
CLKIN  
PLLOUT  
PLLREF  
DIVIDER D0  
PLLEN (PLL_CSR.[0])  
/1, /2,  
..., /32  
1
0
PLL  
(A)  
DIVIDER D1  
1
0
x4 to x25  
ENA  
Reserved  
CLKOUT3  
/1, /2,  
..., /32  
ENA  
SYSCLK1  
(DSP Core)  
D1EN (PLLDIV1.[15])  
D0EN (PLLDIV0.[15])  
DIVIDER D2(A)  
/1, /2,  
..., /32  
SYSCLK2  
(Peripherals)  
OSCDIV1  
D2EN (PLLDIV2.[15])  
ENA  
/1, /2,  
..., /32  
For Use  
in System  
AUXCLK  
DIVIDER D3  
(Internal Clock Source  
to McASP0 and McASP1)  
ENA  
/1, /2,  
..., /32  
OD1EN (OSCDIV1.[15])  
SYSCLK3  
ENA  
D3EN (PLLDIV3.[15])  
ECLKIN  
(EMIF Clock Input)  
C6713/13B DSPs  
EKSRC Bit  
1
0
(DEVCFG.[4])  
EMIF  
ECLKOUT  
A. Dividers D1 and D2 must never be disabled. Never write a '0' to the D1EN or D2EN bits in the PLLDIV1 and PLLDIV2  
registers.  
B. Place all PLL external components (C1, C2, and the EMI filter) as close to the C67x DSP device as possible. For the  
best performance, TI recommends that all the PLL external components be on a single side of the board without  
jumpers, switches, or components other than the ones shown.  
C. For reduced PLL jitter, maximize the spacing between switching signals and the PLL external components (C1, C2,  
and the EMI filter).  
D. The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, DVDD  
.
E. EMI filter manufacturer TDK part number ACF451832-333, -223, -153, -103. Panasonic part number EXCCET103U.  
Figure 8-1. PLL and Clock Generator Logic  
Copyright © 2003–2009, Texas Instruments Incorporated  
PLL and PLL Controller  
67  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
 
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
8.1 PLL Registers  
The PLL reset time is the amount of wait time needed when resetting the PLL (writing PLLRST = 1), for  
the PLL to properly reset, before bringing the PLL out of reset (writing PLLRST = 0). For the PLL reset  
time value, see Table 8-1. The PLL lock time is the amount of time from when PLLRST = 0 with PLLEN =  
0 (PLL out of reset, but still bypassed) to when the PLLEN bit can be safely changed to 1 (switching from  
bypass to the PLL path); see Table 8-1 and Figure 8-1.  
Under some operating conditions, the maximum PLL lock time may vary from the specified typical value.  
For the PLL lock time values, see Table 8-1.  
Table 8-1. PLL Lock and Reset Times  
MIN  
TYP  
MAX  
UNIT  
μs  
PLL lock time  
PLL reset time  
75  
187.5  
125  
ns  
Table 8-2 shows the C6713/13B device CLKOUT signals, how and by what register control bits they are  
derived, and what is the default settings. For more details on the PLL, see the PLL and Clock Generator  
Logic diagram (Figure 8-1).  
Table 8-2. CLKOUT Signals, Default Settings, and Control  
CLOCK OUTPUT  
SIGNAL NAME  
DEFAULT SETTING  
(ENABLED or DISABLED)  
CONTROL BIT(s)  
(Register)  
DESCRIPTION  
D2EN = 1 (PLLDIV2.[15])  
CK2EN = 1 (EMIF GBLCTL.[3])  
CLKOUT2  
CLKOUT3  
ON (ENABLED)  
ON (ENABLED)  
SYSCLK2 selected [default]  
Derived from CLKIN  
OD1EN = 1 (OSCDIV1.[15])  
SYSCLK3 selected [default].  
To select ECLKIN source:  
EKSRC = 1 (DEVCFG.[4]) and  
EKEN = 1 (EMIF GBLCTL.[5])  
ON (ENABLED);  
derived from SYSCLK3  
EKSRC = 0 (DEVCFG.[4])  
EKEN = 1 (EMIF GBLCTL.[5])  
ECLKOUT  
The input clock (CLKIN) is directly available to the McASP modules as AUXCLK for use as an internal  
high-frequency clock source. The input clock (CLKIN) may also be divided down by a programmable  
divider OSCDIV1 (/1, /2, /3, ..., /32) and output on the CLKOUT3 pin for other use in the system.  
Figure 8-1 shows that the input clock source may be divided down by divider PLLDIV0 (/1, /2, ..., /32) and  
then multiplied up by a factor of x4, x5, x6, and so on, up to x25.  
Either the input clock (PLLEN = 0) or the PLL output (PLLEN = 1) then serves as the high-frequency  
reference clock for the rest of the DSP system. The DSP core clock, the peripheral bus clock, and the  
EMIF clock may be divided down from this high-frequency clock (each with a unique divider). For  
example, with a 30-MHz input if the PLL output is configured for 450 MHz, the DSP core may be operated  
at 225 MHz (/2), while the EMIF may be configured to operate at a rate of 75 MHz (/6). Note that there is  
a specific minimum and maximum reference clock (PLLREF) and output clock (PLLOUT) for the block  
labeled PLL in Figure 8-1, as well as for the DSP core, peripheral bus, and EMIF. The clock generator  
must not be configured to exceed any of these constraints (certain combinations of external clock input,  
internal dividers, and PLL multiply ratios might not be supported). See Table 8-3 for the PLL clocks input  
and output frequency ranges.  
68  
PLL and PLL Controller  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
 
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Table 8-3. PLL Clock Frequency Ranges(1) (2)  
CLOCK SIGNAL  
PLLREF (PLLEN = 1)  
MIN  
12  
MAX  
UNIT  
MHz  
MHz  
MHz  
MHz  
MHz  
100  
PLLOUT  
140  
600  
SYSCLK1  
Device speed (DSP core)  
SYSCLK3 (EKSRC = 0)  
AUXCLK  
100  
50(3)  
(1) SYSCLK2 rate must be exactly half of SYSCLK1.  
(2) See also the Electrical Specification (timing requirements and switching characteristics parameters) in  
the Input and Output Clocks section of this data sheet.  
(3) When the McASP module is not used, the AUXCLK maximum frequency can be any frequency up to  
the CLKIN maximum frequency.  
The EMIF itself may be clocked by an external reference clock via the ECLKIN pin or can be generated  
on-chip as SYSCLK3. SYSCLK3 is derived from divider D3 off of PLLOUT (see Figure 8-1). The EMIF  
clock selection is programmable via the EKSRC bit in the DEVCFG register.  
The settings for the PLL multiplier and each of the dividers in the clock generation block may be  
reconfigured via software at run time. If either the input to the PLL changes due to D0, CLKMODE0, or  
CLKIN, or if the PLL multiplier is changed, then software must enter bypass first and stay in bypass until  
the PLL has had enough time to lock (see electrical specifications). For the programming procedure, see  
the TMS320C6000™ DSP Software-Programmable Phase-Locked Loop (PLL) Controller Reference Guide  
(literature number SPRU233).  
SYSCLK2 is the internal clock source for peripheral bus control. SYSCLK2 (Divider D2) must be  
programmed to be half of the SYSCLK1 rate. For example, if D1 is configured to divide-by-2 mode (/2),  
then D2 must be programmed to divide-by-4 mode (/4). SYSCLK2 is also tied directly to CLKOUT2 pin  
(see Figure 8-1).  
During the programming transition of Divider D1 and Divider D2 (resulting in SYSCLK1 and SYSCLK2  
output clocks, see Figure 8-1), the order of programming the PLLDIV1 and PLLDIV2 registers must be  
observed to ensure that SYSCLK2 always runs at half the SYSCLK1 rate or slower. For example, if the  
divider ratios of D1 and D2 are to be changed from /1, /2 (respectively) to /5, /10 (respectively) then, the  
PLLDIV2 register must be programmed before the PLLDIV1 register. The transition ratios become /1, /2;  
/1, /10; and then /5, /10. If the divider ratios of D1 and D2 are to be changed from /3, /6 to /1, /2, then the  
PLLDIV1 register must be programmed before the PLLDIV2 register. The transition ratios, for this case,  
become /3, /6; /1, /6; and then /1, /2. The final SYSCLK2 rate must be exactly half of the SYSCLK1 rate.  
Note that Divider D1 and Divider D2 must always be enabled (that is, D1EN and D2EN bits are set to 1 in  
the PLLDIV1 and PLLDIV2 registers).  
The PLL Controller registers should be modified only by the CPU or via emulation. The HPI should not be  
used to directly access the PLL Controller registers.  
For detailed information on the clock generator (PLL Controller registers) and the associated software bit  
descriptions, see Table 8-4 through Table 8-11.  
Copyright © 2003–2009, Texas Instruments Incorporated  
PLL and PLL Controller  
69  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Table 8-4. PLL Control/Status Register (PLLCSR) (0x01B7 C100)  
31  
15  
28  
27  
24  
23  
20  
19  
16  
0
Reserved  
R-0  
12  
11  
8
7
6
5
4
3
2
1
Reserved  
Stable Reserved PLLRS Reserv PLLPWRD PLLEN  
T
ed  
N
R-0  
R–x  
R-0  
RW1  
R/W0  
R/W0b  
RW0  
Legend: R = Read only, R/W = Read/write, -n = value at reset  
Table 8-5. PLL Control/Status Register (PLLCSR) Description  
BIT NO.  
NAME  
DESCRIPTION  
Reserved. Read only, writes have no effect.  
31:7  
Reserved  
Clock input stable. This bit indicates if the clock input has stabilized.  
6
5:4  
3
STABLE  
Reserved  
PLLRST  
0: Clock input not yet stable. Clock counter is not finished counting (default).  
1: Clock input stable  
Reserved. Read only, writes have no effect.  
Asserts RESET to PLL  
0: PLL reset released  
1: PLL reset asserted (default)  
Reserved. The user must write a 0 to this bit.  
Select PLL power down  
2
Reserved  
PLLPWRDN  
1
0: PLL operational (default)  
1: PLL placed in power-down state  
PLL mode enable  
0: Bypass mode (default). PLL disabled Divider D0 and PLL are bypassed.  
0
PLLEN  
SYSCLK1/SYSCLK2/SYSCLK3 are divided down directly from input reference clock.  
1: PLL enabled Divider D0 and PLL are not bypassed. SYSCLK1/SYSCLK2/SYSCLK3 are  
divided down from PLL output.  
Table 8-6. PLL Multiplier (PLLM) Control Register (0x01B7 C110)  
31  
15  
28  
27  
24  
Reserved  
R-0  
23  
20  
19  
16  
0
12  
11  
8
7
5
4
Reserved  
R-0  
PLLM  
R/W0 0111  
Legend: R = Read only, R/W = Read/write, -n = value at reset  
70  
PLL and PLL Controller  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Table 8-7. PLL Multiplier (PLLM) Control Register Description  
BIT NO.  
NAME  
DESCRIPTION  
Reserved. Read only, writes have no effect.  
31:5  
Reserved  
PLL multiply mode [default is x7 (0 0111)]  
00000 = Reserved  
00001 = Reserved  
00010 = Reserved  
00011 = Reserved  
00100 = x4  
10000 = x16  
10001 = x17  
10010 = x18  
10011 = x19  
10100 = x20  
00101 = x5  
10101 = x21  
00110 = x6  
10110 = x22  
00111 = x7  
10111 = x23  
4:0  
PLLM  
01000 = x8  
11000 = x24  
01001 = x9  
11001 = x25  
01010 = x10  
11010 = Reserved  
11011 = Reserved  
11100 = Reserved  
11101 = Reserved  
11110 = Reserved  
11111 = Reserved  
01011 = x11  
01100 = x12  
01101 = x13  
01110 = x14  
01111 = x15  
PLLM select values 00000 through 00011 and 11010 through 11111 are not supported.  
Table 8-8. PLL Wrapper Divider x Registers (PLLDIV0, PLLDIV1, PLLDIV2, and PLLDIV3)  
(0x01B7 C114, 0x01B7 C118, 0x01B7 C11C, and 0x01B7 C120, respectively)  
31  
28  
27  
24  
Reserved  
R-0  
23  
20  
19  
16  
0
15  
14  
12  
11  
8
7
5
4
DxEN  
R/W1  
Reserved  
PLLDIVx  
R/Wx xxxx(1)  
R0  
Legend: R = Read only, R/W = Read/write, -n = value at reset  
(1) Default values for the PLLDIV0, PLLDIV1, PLLDIV2, and PLLDIV3 bits are /1 (0 0000), /1 (0 0000), /2 (0 0001), and /2 (0 0001),  
respectively.  
CAUTION  
D1 and D2 should never be disabled. D3 should only be disabled if ECLKIN is used.  
Table 8-9. PLL Wrapper Divider x Registers  
(Prescaler Divider D0 and Post-Scaler Dividers D1, D2, and D3) Description(1)  
BIT NO.  
NAME  
DESCRIPTION  
31:16  
Reserved  
Reserved. Read only, writes have no effect.  
Divider Dx enable (where x denotes 0 through 3).  
0: Divider x disabled. No clock output  
15  
DxEN  
1: Divider x enabled (default)  
These divider-enable bits are device specific and must be set to 1 to enable.  
Reserved. Read only, writes have no effect.  
14:5  
Reserved  
(1) Note that SYSCLK2 must run at half the rate of SYSCLK1. Therefore, the divider ratio of D2 must be two times slower than D1. For  
example, if D1 is set to /2, then D2 must be set to /4.  
Copyright © 2003–2009, Texas Instruments Incorporated  
PLL and PLL Controller  
71  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Table 8-9. PLL Wrapper Divider x Registers  
(Prescaler Divider D0 and Post-Scaler Dividers D1, D2, and D3) Description  
(1)  
(continued)  
BIT NO.  
NAME  
DESCRIPTION  
PLL divider ratio (default values for the PLLDIV0, PLLDIV1, PLLDIV2, and PLLDIV3 bits are /1, /1, /2,  
and /2, respectively).  
00000 = /1  
00001 = /2  
00010 = /3  
00011 = /4  
00100 = /5  
00101 = /6  
00110 = /7  
00111 = /8  
01000 = /9  
01001 = /10  
01010 = /11  
01011 = /12  
01100 = /13  
01101 = /14  
01110 = /15  
01111 = /16  
10000 = /17  
10001 = /18  
10010 = /19  
10011 = /20  
10100 = /21  
10101 = /22  
10110 = /23  
10111 = /24  
11000 = /25  
11001 = /26  
11010 = /27  
11011 = /28  
11100 = /29  
11101 = /30  
11110 = /31  
11111 = /32  
4:0  
PLLDIVx  
Table 8-10. Oscillator Divider 1 (OSCDIV1) Register (0x01B7 C124)  
31  
28  
27  
24  
Reserved  
R-0  
23  
20  
19  
16  
0
15  
14  
12  
11  
8
7
5
4
OD1EN  
R/W1  
Reserved  
OSCDIV1  
R0  
R/W0 0111  
Legend: R = Read only, R/W = Read/write, -n = value at reset  
72  
PLL and PLL Controller  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Table 8-11. Oscillator Divider 1 (OSCDIV1) Register Description  
BIT NO.  
NAME  
DESCRIPTION  
Reserved. Read-only; writes have no effect.  
Oscillator Divider 1 enable.  
0: Oscillator Divider 1 disabled  
31:16  
Reserved  
15  
OD1EN  
1: Oscillator Divider 1 enabled (default)  
14:5  
Reserved  
Reserved. Read only, writes have no effect.  
Oscillator Divider 1 ratio [default is /8 (0 0111)]  
00000 = /1  
10000 = /17  
10001 = /18  
10010 = /19  
10011 = /20  
10100 = /21  
10101 = /22  
10110 = /23  
10111 = /24  
11000 = /25  
11001 = /26  
11010 = /27  
11011 = /28  
11100 = /29  
11101 = /30  
11110 = /31  
11111 = /32  
00001 = /2  
00010 = /3  
00011 = /4  
00100 = /5  
00101 = /6  
00110 = /7  
4:0  
OSCDIV1  
00111 = /8  
01000 = /9  
01001 = /10  
01010 = /11  
01011 = /12  
01100 = /13  
01101 = /14  
01110 = /15  
01111 = /16  
Copyright © 2003–2009, Texas Instruments Incorporated  
PLL and PLL Controller  
73  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
9
MULTICHANNEL AUDIO SERIAL PORT (McASP) PERIPHERALS  
The 320C6713/13B device includes two multichannel audio serial port (McASP) interface peripherals  
(McASP1 and McASP0). The McASP is a serial port optimized for the needs of multichannel audio  
applications. With two McASP peripherals, the 320C6713/13B device is capable of supporting two  
completely independent audio zones simultaneously.  
Each McASP consists of a transmit and receive section. These sections can operate completely  
independently with different data formats, separate master clocks, bit clocks, and frame syncs or  
alternatively, the transmit and receive sections may be synchronized. Each McASP module also includes  
a pool of 16 shift registers that may be configured to operate as either transmit data, receive data, or  
general-purpose I/O (GPIO).  
The transmit section of the McASP can transmit data in either a time division multiplexed (TDM)  
synchronous serial format or in a digital audio interface (DIT) format where the bit stream is encoded for  
S/PDIF, AES-3, IEC-60958, and CP-430 transmission. The receive section of the McASP supports the  
TDM synchronous serial format.  
Each McASP can support one transmit data format (either a TDM format or DIT format) and one receive  
format at a time. All transmit shift registers use the same format and all receive shift registers use the  
same format. However, the transmit and receive formats need not be the same.  
Both the transmit and receive sections of the McASP also support burst mode, which is useful for  
non-audio data (for example, passing control information between two DSPs).  
The McASP peripherals have additional capability for flexible clock generation, and error  
detection/handling, as well as error management.  
9.1 McASP Block Diagram  
Figure 9-1 shows the major blocks along with external signals of the 320C6713/13B McASP1 and  
McASP0 peripherals, and shows the eight serial data [AXR] pins for each McASP. Each McASP also  
includes full general-purpose I/O (GPIO) control, so any pins not needed for serial transfers can be used  
for general-purpose I/O.  
74  
MULTICHANNEL AUDIO SERIAL PORT (McASP) PERIPHERALS  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
Copyright © 2003–2009, Texas Instruments Incorporated  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
McASP0  
McASP1  
Transmit  
Frame Sync  
Generator  
Transmit  
Frame Sync  
Generator  
DIT  
RAM  
DIT  
RAM  
AFSX0  
AFSX1  
Transmit  
Clock Check  
(High-  
Transmit  
Clock Check  
(High-  
Transmit  
Clock  
Generator  
Transmit  
Clock  
Generator  
AHCLKX0  
ACLKX0  
AHCLKX1  
ACLKX1  
Frequency)  
Frequency)  
AMUTE0  
AMUTE1  
Error  
Detect  
Error  
Detect  
AMUTEIN0  
AMUTEIN1  
Receive  
Clock Check  
(High-  
Receive  
Clock Check  
(High-  
Receive  
Clock  
Generator  
Receive  
Clock  
Generator  
AHCLKR0  
ACLKR0  
AHCLKR1  
ACLKR1  
Frequency)  
Frequency)  
Transmit  
Data  
Formatter  
Receive  
Frame Sync  
Generator  
Transmit  
Data  
Formatter  
Receive  
Frame Sync  
Generator  
AFSR0  
AFSR1  
Serializer 0  
Serializer 0  
AXR0[0]  
AXR0[1]  
AXR0[2]  
AXR0[3]  
AXR0[4]  
AXR0[5]  
AXR0[6]  
AXR0[7]  
AXR1[0]  
AXR1[1]  
AXR1[2]  
AXR1[3]  
AXR1[4]  
AXR1[5]  
AXR1[6]  
AXR1[7]  
Serializer 1  
Serializer 2  
Serializer 3  
Serializer 4  
Serializer 5  
Serializer 6  
Serializer 7  
Serializer 1  
Serializer 2  
Serializer 3  
Serializer 4  
Serializer 5  
Serializer 6  
Serializer 7  
Receive  
Data  
Formatter  
Receive  
Data  
Formatter  
GPIO  
Control  
GPIO  
Control  
Figure 9-1. McASP0 and McASP1 Configuration  
Copyright © 2003–2009, Texas Instruments Incorporated  
MULTICHANNEL AUDIO SERIAL PORT (McASP) PERIPHERALS  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
75  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
9.2 Multichannel Time Division Multiplexed (TDM) Synchronous Transfer Mode  
The McASP supports a multichannel TDM synchronous transfer mode for both transmit and receive.  
Within this transfer mode, a wide variety of serial data formats are supported, including formats compatible  
with devices using the Inter-Integrated Sound (IIS) protocol.  
TDM synchronous transfer mode is typically used when communicating between integrated circuits, such  
as between a DSP and one or more ADC, DAC, codec, or S/PDIF receiver devices. In multichannel  
applications, it is typical to find several devices operating synchronized with each other. For example, to  
provide six analog outputs, three stereo DAC devices would be driven with the same bit clock and frame  
sync, but each stereo DAC would use a different McASP serial data pin carrying stereo data (two TDM  
time slots, left and right).  
The TDM synchronous serial transfer mode utilizes several control signals and one or more serial data  
signals:  
A bit clock signal (ACLKX for transmit, ACKLR for receive)  
A frame sync signal (AFSX for transmit, AFSR for receive)  
An (optional) high-frequency master clock (AHCLKX for transmit, AHCLKR for receive) from which the  
bit clock is derived  
One or more serial data pins (AXR for transmit and for receive)  
Except for the optional high-frequency master clock, all of the signals in the TDM synchronous serial  
transfer mode protocol are synchronous to the bit clocks (ACLKX and ACLKR).  
In the TDM synchronous transfer mode, the McASP continually transmits and receives data periodically  
(since audio ADCs and DACs operate at a fixed-data rate). The data is organized into frames, and the  
beginning of a frame is marked by a frame sync pulse on the AFSX, AFSR pin.  
In a typical audio system, one frame is transferred per sample period. To support multiple channels, the  
choices are to either include more time slots per frame (and therefore operate with a higher bit clock) or to  
keep the bit clock period constant and use additional data pins to transfer the same number of channels.  
For example, a particular six-channel DAC might require three McASP serial data pins; transferring two  
channels of data on each serial data pin during each sample period (frame). Another similar DAC may be  
designed to use only a single McASP serial data pin, but clocked three times faster and transferring six  
channels of data per sample period. The McASP is flexible enough to support either type of DAC, but a  
transmitter cannot be configured to do both at the same time.  
For multiprocessor applications, the McASP supports any number of time slots per frame (between 2 and  
32), and includes the ability to disable transfers during specific time slots.  
In addition, to support S/PDIF, AES-3, IEC-60958, and CP-430 receiver chips whose natural block  
(McASP frame) size is 384 samples; the McASP receiver supports a 384 time slot mode. The advantage  
to using the 384 time slot mode is that interrupts may be generated synchronous to the S/PDIF, AES-3,  
IEC-60958, and CP-430 receivers; for example, the last slot interrupt.  
9.3 Burst Transfer Mode  
The McASP also supports a burst transfer mode, which is useful for non-audio data (for example, passing  
control information between two DSPs). Burst transfer mode uses a synchronous serial format similar to  
TDM, except the frame sync is generated for each data word transferred. In addition, frame sync  
generation is not periodic or time driven as in TDM mode, but rather data driven.  
76  
MULTICHANNEL AUDIO SERIAL PORT (McASP) PERIPHERALS  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
Copyright © 2003–2009, Texas Instruments Incorporated  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
9.4 Supported Bit Stream Formats for TDM and Burst Transfer Modes  
The serial data pins support a wide variety of formats. In the TDM and burst synchronous modes, the data  
may be transmitted/received with the following options:  
Time slots per frame: 1 (burst/data driven), or 2,3...32 (TDM/time driven)  
Time slot size: 8, 12, 16, 20, 24, 28, 32 bits per time slot  
Data size: 8, 12, 16, 20, 24, 28, 32 bits (must be less than or equal to time slot)  
Data alignment within time slot: left or right justified  
Bit order: MSB or LSB first  
Unused bits in time slot: Padded with 0, 1 or extended with value of another bit  
Time slot delay from frame sync: 0-, 1-, or 2-bit delay  
The data format can be programmed independently for transmit and receive, and for McASP0 versus  
McASP1. In addition, the McASP can automatically realign the data as processed natively by the DSP  
(any format on a nibble boundary) adjusting the data in hardware to any of the supported serial bit stream  
formats (TDM, burst, and DIT modes). This adjustment reduces the amount of bit manipulation that the  
DSP must perform and simplifies software architecture.  
9.5 Digital Audio Interface Transmitter (DIT) Transfer Mode (Transmitter Only)  
The McASP transmit section may also be configured in DIT mode where it outputs data formatted for  
transmission over an S/PDIF, AES-3, IEC-60958, or CP-430 standard link. These standards encode the  
serial data such that the equivalent of clock and frame sync are embedded within the data stream. DIT  
transfer mode is used as an interconnect between audio components and can transfer multichannel digital  
audio data over a single optical or coaxial cable.  
From an internal DSP standpoint, the McASP operation in DIT transfer mode is similar to the two-time-slot  
TDM mode, but the data transmitted is output as a bi-phase mark encoded bit stream with preamble,  
channel status, user data, validity, and parity automatically stuffed into the bit stream by the McASP  
module. The McASP includes separate validity bits for even/odd subframes and two 384-bit register file  
modules to hold channel status and user data bits.  
DIT mode requires (at a minimum):  
One serial data pin (if the AUXCLK is used as the reference (see Figure 8-1)  
OR  
One serial data pin plus either the AHCLKX or ACLKX pin (if an external clock is needed)  
If additional serial data pins are used, each McASP may be used to transmit multiple encoded bit streams  
(one per pin). However, the bit streams will all be synchronized to the same clock and the user data,  
channel status, and validity information carried by each bit stream will be the same for all bit streams  
transmitted by the same McASP module.  
The McASP can also automatically realign the data as processed by the DSP (any format on a nibble  
boundary) in DIT mode; reducing the amount of bit manipulation that the DSP must perform and  
simplifying software architecture.  
Copyright © 2003–2009, Texas Instruments Incorporated  
MULTICHANNEL AUDIO SERIAL PORT (McASP) PERIPHERALS  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
77  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
9.6 McASP Flexible Clock Generators  
The McASP transmit and receive clock generators are identical. Each clock generator can accept a  
high-frequency master clock input (on the AHCLKX and AHCLKR pins).  
The transmit and receive bit clocks (on the ACLKX and ACLKR pins) can also be sourced externally or  
can be sourced internally by dividing down the high-frequency master clock input (programmable factor /1,  
/2, /3, ... /4096). The polarity of each bit clock is individually programmable.  
The frame sync pins are AFSX (transmit) and AFSR (receive). A typical usage for these pins is to carry  
the left-right clock (LRCLK) signal when transmitting and receiving stereo data. The frame sync signals  
are individually programmable for either internal or external generation, either bit or slot length, and either  
rising or falling edge polarity.  
Some examples of the things that a system designer can use the McASP clocking flexibility for are:  
Input a high-frequency master clock (for example, 512 fS of the receiver) and receive with an internally  
generated bit clock ratio of /8, while transmitting with an internally generated bit clock ratio of /4 or /2.  
(An example application would be to receive data from a DVD at 48 kHz but output up-sampled or  
decoded audio at 96 kHz or 192 kHz.)  
Transmit/receive data based on sample rate (for example, 44.1 kHz) using McASP0 while transmitting  
and receiving at a different sample rate (for example, 48 kHz) on McASP1.  
Use the DSP on-board AUXCLK to supply the system clock when the input source is an A/D converter.  
9.7 McASP Error Handling and Management  
To support the design of a robust audio system, the McASP module includes error-checking capability for  
the serial protocol, data underrun, and data overrun. In addition, each McASP includes a timer that  
continually measures the high-frequency master clock every 32 SYSCLK2 clock cycles. The timer value  
can be read to get a measurement of the high-frequency master clock frequency and has a min-max  
range setting that can raise an error flag if the high-frequency master clock goes out of a specified range.  
The user would read the high-frequency transmit master clock measurement (AHCLKX0 or AHCLKX1) by  
reading the XCNT field of the XCLKCHK register and the user would read the high-frequency receive  
master clock measurement (AHCLKR0 or AHCLKR1) by reading the RCNT field of the RCLKCHK  
register.  
Upon the detection of any one or more of the above errors (software selectable) or the assertion of the  
AMUTE_IN pin, the AMUTE output pin may be asserted to a high or low level (selectable) to immediately  
mute the audio output. In addition, an interrupt may be generated if enabled based on any one or more of  
the error sources.  
78  
MULTICHANNEL AUDIO SERIAL PORT (McASP) PERIPHERALS  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
Copyright © 2003–2009, Texas Instruments Incorporated  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
9.8 McASP Interrupts and EDMA Events  
The McASP transmitter and receiver sections each generate an event on every time slot. This event can  
be serviced by an interrupt or by the EDMA controller.  
When using interrupts to service the McASP, each shift register buffer has a unique address in the McASP  
registers space (see Table 4-1).  
When using the EDMA to service the McASP, the McASP DATA Port space, shown in Table 4-1, is  
accessed. In this case, the address least-significant bits are ignored. Writes to any address in this range  
access the transmitting buffers in order from lowest (serializer 0) to highest (serializer 15), skipping over  
disabled and receiving serializers. Likewise, reads from any address in this space access the receiving  
buffers in the same order but skip over disabled and transmitting buffers.  
9.9 I2C  
Having two I2C modules on the 320C6713/13B simplifies system architecture, since one module may be  
used by the DSP to control local peripherals ICs (DACs, ADCs, etc.) while the other may be used to  
communicate with other controllers in a system or to implement a user interface.  
NOTE  
I2C ports are compatible with Philips I2C Specification Revision 2.1 (January 2000).  
The 320C6713/13B also includes two I2C serial ports for control purposes. Each I2C port supports:  
Fast mode up to 400 Kbps (no fail-safe I/O buffers)  
Noise filter to remove noise 50 ns or less  
7- and 10-bit device addressing modes  
Master (transmit/receive) and slave (transmit/receive) functionality  
Events: DMA, interrupt, or polling  
Slew-rate limited open-drain output buffers  
Figure 9-2 shows a block diagram of the I2Cx module.  
Copyright © 2003–2009, Texas Instruments Incorporated  
MULTICHANNEL AUDIO SERIAL PORT (McASP) PERIPHERALS  
79  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
I2Cx Module  
Clock  
Prescale  
SYSCLK2  
From PLL  
Clock Generator  
I2CPSCx  
Bit Clock  
Generator  
Control  
SCL  
Noise  
Filter  
Own  
Address  
I2C Clock  
I2CCLKHx  
I2CCLKLx  
I2COARx  
I2CSARx  
I2CMDRx  
I2CCNTx  
Slave  
Address  
Mode  
Transmit  
I2CXSRx  
Data  
Count  
Transmit  
Shift  
Transmit  
Buffer  
I2CDXRx  
SDA  
Interrupt/DMA  
I2CIERx  
Noise  
Filter  
I2C Data  
Interrupt  
Enable  
Receive  
Receive  
Buffer  
I2CDRRx  
Interrupt  
Status  
I2CSTRx  
Interrupt  
Source  
Receive  
Shift  
I2CRSRx  
I2CISRCx  
NOTE: Shading denotes control/status registers.  
Figure 9-2. I2Cx Module Block Diagram  
80  
MULTICHANNEL AUDIO SERIAL PORT (McASP) PERIPHERALS  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
Copyright © 2003–2009, Texas Instruments Incorporated  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
10 LOGIC AND POWER SUPPLY  
This section discusses the logic and power-supply configuration of the SM320C6713-EP and  
SM320C6713B-EP.  
10.1 General-Purpose Input/Output (GPIO)  
To use the GP[15:0] software-configurable GPIO pins, the GPxEN bits in the GP enable (GPEN) register  
and the GPxDIR bits in the GP direction (GPDIR) register must be properly configured.  
GPxEN = 1  
GPxDIR = 0  
GPxDIR = 1  
GP[x] pin is enabled.  
GP[x] pin is an input.  
GP[x] pin is an output.  
where x represents one of the 15 through 0 GPIO pins.  
Figure 10-1 shows the GPIO enable bits in the GPEN register for the C6713/13B device. To use any of  
the GPx pins as general-purpose input/output functions, the corresponding GPxEN bit must be set to 1  
(enabled). Default values are device-specific, so refer to Figure 10-1 for the C6713/13B default  
configuration.  
31  
24  
Reserved  
R-0  
23  
16  
15  
14  
13  
12  
11  
10  
9
8
GP15EN  
R/W-0  
GP14EN  
R/W-0  
GP13EN  
R/W-0  
GP12EN  
R/W-0  
GP11EN  
R/W-0  
GP10EN  
R/W-0  
GP9EN  
R/W-0  
GP8EN  
R/W-0  
7
6
5
4
3
2
1
0
GP7EN  
R/W-1  
GP6EN  
R/W-1  
GP5EN  
R/W-1  
GP4EN  
R/W-1  
GP3EN  
R/W-0  
GP2EN  
R/W-0  
GP1EN  
R/W-0  
GP0EN  
R/W-0  
Legend: R/W = Readable/Writeable; -n = value after reset, -x = undefined value after reset  
Figure 10-1. GPIO Enable (GPEN) Register (Hex Address: 01B0 0000)  
Figure 10-2 shows the GPIO direction bits in the GPIO Direction (GPDIR) register. This register  
determines if a given GPIO pin is an input or an output providing the corresponding GPxEN bit is enabled  
(set to 1) in the GPEN register. By default, all the GPIO pins are configured as input pins.  
31  
24  
Reserved  
R-0  
23  
16  
15  
14  
13  
12  
11  
10  
9
8
GP15DIR  
R/W-0  
GP14DIR  
R/W-0  
GP13DIR  
R/W-0  
GP12DIR  
R/W-0  
GP11DIR  
R/W-0  
GP10DIR  
R/W-0  
GP9DIR  
R/W-0  
GP8DIR  
R/W-0  
7
6
5
4
3
2
1
0
GP7DIR  
R/W-0  
GP6DIR  
R/W-0  
GP5DIR  
R/W-0  
GP4DIR  
R/W-0  
GP3DIR  
R/W-0  
GP2DIR  
R/W-0  
GP1DIR  
R/W-0  
GP0DIR  
R/W-0  
Legend: R/W = Readable/Writeable; -n = value after reset, -x = undefined value after reset  
Figure 10-2. GPIO Direction (GPDIR) Register (Hex Address: 01B0 0004)  
Copyright © 2003–2009, Texas Instruments Incorporated  
LOGIC AND POWER SUPPLY  
81  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
 
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
For more detailed information on general-purpose inputs/outputs (GPIOs), see the TMS320C6000 DSP  
General-Purpose Input/Output (GPIO) Reference Guide (literature number SPRU584).  
10.2 Power-Down Mode Logic  
Figure 10-3 shows the power-down mode logic on the C6713/13B.  
CLKOUT2  
Internal Clock Tree  
Clock  
Distribution  
and Dividers  
PD1  
PD2  
IFR  
Power-  
Down  
Logic  
Clock  
PLL  
Internal  
Peripherals  
IER  
CSR  
PWRD  
CPU  
PD3  
320C6713/13B  
CLKIN  
RESET  
A. External input clocks, with the exception of CLKIN and CLKOUT3, are not gated by the power-down mode logic.  
Figure 10-3. Power-Down Mode Logic  
10.2.1 Triggering, Wake-Up, and Effects  
The device includes a programmable PLL which allows software control of PLL bypass via the PLLEN bit  
in the PLLCSR register. With this enhanced functionality come some additional considerations when  
entering power-down modes.  
The power-down modes (PD2 and PD3) function by disabling the PLL to stop clocks to the C6713 device.  
However, if the PLL is bypassed (PLLEN = 0), the device will still receive clocks from the external clock  
input (CLKIN). Therefore, bypassing the PLL makes the power-down modes PD2 and PD3 ineffective.  
The PLL needs to be enabled by writing a “1” to PLLEN bit (PLLCSR.0) before being able to enter either  
PD3 (CSR.11) or PD2 (CSR.10) in order for these modes to have an effect.  
For the TMS320C6713B device it is recommended to use the PLLPWDN bit (PLLCSR.1) to enter a deep  
powerdown state equivalent to PD3 since the PLLPWDN bit takes full advantage of the PLL powerdown  
feature.  
The power-down modes (PD1, PD2 and PD3) and their wake-up methods are programmed by setting the  
PWRD field (bits 1510) of the control status register (CSR). The PWRD field of the CSR is shown in  
Figure 10-4 and described in Table 10-1. When writing to the CSR, all bits of the PWRD field should be  
set at the same time. Logic 0 should be used when writing to the reserved bit (bit 15) of the PWRD field.  
The CSR is discussed in detail in the TMS320C6000 CPU and Instruction Set Reference Guide (literature  
number SPRU189).  
82  
LOGIC AND POWER SUPPLY  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
16  
31  
15  
14  
13  
12  
11  
10  
9
8
0
Enable or  
Non-Enabled  
Interrupt Wake  
Enabled  
Interrupt Wake  
Reserved  
PD3  
PD2  
PD1  
R/W-0  
7
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Legend: R/W-x = Read/write reset value  
Figure 10-4. PWRD Field of the CSR  
A delay of up to nine clock cycles may occur after the instruction that sets the PWRD bits in the CSR  
before the PD mode takes effect. As best practice, NOPs should be padded after the PWRD bits are set in  
the CSR to account for this delay.  
If PD1 mode is terminated by a non-enabled interrupt, the program execution returns to the instruction  
where PD1 took effect. If PD1 mode is terminated by an enabled interrupt, the interrupt service routine will  
be executed first, then the program execution returns to the instruction where PD1 took effect. In the case  
with an enabled interrupt, the GIE bit in the CSR and the NMIE bit in the interrupt enable register (IER)  
must also be set for the interrupt service routine to execute; otherwise, execution returns to the instruction  
where PD1 took effect upon PD1 mode termination by an enabled interrupt.  
PD2 and PD3 modes can only be aborted by device reset. Table 10-1 summarizes all the power-down  
modes.  
Table 10-1. Characteristics of the Power-Down Modes  
PRWD FIELD  
(BITS 1510)  
POWER-DOWN  
MODE  
WAKE-UP METHOD  
EFFECT ON CHIP OPERATION  
000000  
No power down  
Wake by an enabled  
interrupt  
CPU halted (except for the interrupt logic)  
001001  
010001  
PD1  
Power-down mode blocks the internal clock inputs at the  
boundary of the CPU, preventing most of the CPU logic from  
switching. During PD1, EDMA transactions can proceed  
between peripherals and internal memory.  
Wake by an enabled or  
non-enabled interrupt  
PD1  
Output clock from PLL is halted, stopping the internal clock  
structure from switching and resulting in the entire chip being  
halted. All register and internal RAM contents are preserved.  
All functional I/O freeze in the last state when the PLL clock is  
turned off.  
011010  
PD2(1)  
Wake by a device reset  
Input clock to the PLL stops generating clocks. All register and  
internal RAM contents are preserved. All functional I/O freeze  
in the last state when the PLL clock is turned off. Following  
reset, the PLL needs time to relock, just as it does following  
power up. Wake-up from PD3 takes longer than wake-up from  
PD2 because the PLL needs to be relocked, just as it does  
following power up. It is recommended to use the PLLPWDN  
bit (PLLCSR.1) as an alternative to PD3.  
011100  
PD3(1)  
Wake by a device reset  
All others  
Reserved  
(1) When entering PD2 and PD3, all functional I/Os remain in the previous state. However, for peripherals that are asynchronous in nature  
or peripherals with an external clock source, output signals may transition in response to stimulus on the inputs. Under these conditions,  
peripherals will not operate according to specifications.  
10.3 Power-Supply Sequencing  
TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However,  
systems should be designed to ensure that neither supply is powered up for extended periods of time  
(>1 second) if the other supply is below the proper operating voltage.  
Copyright © 2003–2009, Texas Instruments Incorporated  
LOGIC AND POWER SUPPLY  
83  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
10.3.1 System-Level Design Considerations  
System-level design considerations, such as bus contention, may require supply sequencing to be  
implemented. In this case, the core supply should be powered up before, and powered down after, the I/O  
buffers. This is to ensure that the I/O buffers receive valid inputs from the core before the output buffers  
are powered up, thus preventing bus contention with other chips on the board.  
10.3.2 Power-Supply Design Considerations  
A dual-power supply with simultaneous sequencing can be used to eliminate the delay between core and  
I/O power up. A Schottky diode can also be used to tie the core rail to the I/O rail (see Figure 10-5).  
I/O Supply  
DV  
DD  
Schottky  
Diode  
C6000  
DSP  
Core Supply  
CV  
DD  
V
SS  
GND  
Figure 10-5. Schottky Diode Diagram  
Core and I/O supply voltage regulators should be located close to the DSP (or DSP array) to minimize  
inductance and resistance in the power delivery path. Additionally, when designing for high-performance  
applications utilizing the C6000 platform of DSPs, the printed circuit board (PCB) should include separate  
power planes for core, I/O, and ground, all bypassed with high-quality low-ESL/ESR capacitors.  
10.4 Power-Supply Decoupling  
To properly decouple the supply planes from system noise, place as many capacitors (caps) as possible  
close to the DSP. Assuming 0603 caps, the user should be able to fit a total of 60 caps—30 for the core  
supply and 30 for the I/O supply. These caps need to be close (no more than 1.25-cm maximum distance)  
to the DSP to be effective. Physically smaller caps are better, such as 0402, but the size needs to be  
evaluated from a yield/manufacturing point-of-view. Parasitic inductance limits the effectiveness of the  
decoupling capacitors; therefore, physically smaller capacitors should be used while maintaining the  
largest available capacitance value. As with the selection of any component, verification of capacitor  
availability over the product’s production lifetime needs to be considered.  
10.5 IEEE Std 1149.1 JTAG Compatibility Statement  
The 320C6713/13B DSP requires that both TRST and RESET resets be asserted upon power up to be  
properly initialized. While RESET initializes the DSP core, TRST initializes the DSP emulation logic. Both  
resets are required for proper operation.  
NOTE  
TRST is synchronous and must be clocked by TCLK; otherwise, BSCAN may not respond  
as expected after TRST is asserted.  
84  
LOGIC AND POWER SUPPLY  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
While both TRST and RESET need to be asserted upon power-up, only RESET needs to be released for  
the DSP to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG port  
interface and DSP emulation logic in the reset state.  
TRST only needs to be released when it is necessary to use a JTAG controller to debug the DSP or  
exercise the DSP boundary scan functionality.  
The TMS320C6713B DSP includes an internal pulldown (IPD) on the TRST pin to ensure that TRST will  
always be asserted upon power up and the DSP’s internal emulation logic will always be properly  
initialized when this pin is not routed out. JTAG controllers from Texas Instruments actively drive TRST  
high. However, some third-party JTAG controllers may not drive TRST high but expect the use of an  
external pullup resistor on TRST. When using this type of JTAG controller, assert TRST to initialize the  
DSP after powerup and externally drive TRST high before attempting any emulation or boundary scan  
operations.  
Following the release of RESET, the low-to-high transition of TRST must be “seen” to latch the state of  
EMU1 and EMU0. The EMU[1:0] pins configure the device for either boundary scan mode or emulation  
mode. For more detailed information, see the terminal functions section of this data sheet.  
NOTE  
Note: The DESIGNWARNING section of the TMS320C6713B BSDL file contains  
information and constraints regarding proper device operation while in boundary scan  
mode.  
For more detailed information on the C6713B JTAG emulation, see the TMS320C6000 DSP Designing for  
JTAG Emulation Reference Guide (literature number SPRU641).  
10.6 EMIF Device Speed  
The maximum EMIF speed on the C6713/13B device is 100 MHz. TI recommends utilizing I/O buffer  
information specification (IBIS) to analyze all ac timings to determine if the maximum EMIF speed is  
achievable for a given board layout. To properly use IBIS models to attain accurate timing analysis for a  
given system, see the application report Using IBIS Models for Timing Analysis (literature number  
SPRA839).  
For ease of design evaluation, Table 10-2 contains IBIS simulation results showing the maximum  
EMIF-SDRAM interface speeds for the given example boards (TYPE) and SDRAM speed grades. Timing  
analysis should be performed to verify that all ac timings are met for the specified board layout. Other  
configurations are also possible, but again, timing analysis must be done to verify proper ac timings.  
To maintain signal integrity, serial termination resistors should be inserted into all EMIF output signal lines  
(see the Terminal Functions table for the EMIF output signals).  
Copyright © 2003–2009, Texas Instruments Incorporated  
LOGIC AND POWER SUPPLY  
85  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Table 10-2. C6713/13B Example Boards and Maximum EMIF Speed  
BOARD CONFIGURATION  
EMIF INTERFACE  
COMPONENTS  
MAXIMUM ACHIEVABLE  
EMIF-SDRAM  
INTERFACE SPEED  
SDRAM SPEED GRADE  
TYPE  
BOARD TRACE  
143-MHz 32-bit SDRAM (7)  
166-MHz 32-bit SDRAM (6)  
183-MHz 32-bit SDRAM (55)  
200-MHz 32-bit SDRAM (5)  
125-MHz 16-bit SDRAM (8E)  
133-MHz 16-bit SDRAM (75)  
143-MHz 16-bit SDRAM (7E)  
167-MHz 16-bit SDRAM (6A)  
167-MHz 16-bit SDRAM (6)  
100 MHz  
1- to 3-in traces with  
proper termination  
resistors;  
1-Load  
Short  
Traces  
For short traces, SDRAM data  
output hold time on these SDRAM  
speed grades cannot meet EMIF  
input hold time requirement.(1)  
One bank of  
one 32-bit SDRAM  
Trace impedance ~50 Ω  
100 MHz  
100 MHz  
100 MHz  
100 MHz  
100 MHz  
1.2 to 3 in from EMIF to  
each load, with proper  
termination resistors;  
Trace impedance ~78 Ω  
2-Loads  
Short  
Traces  
One bank of  
two 16-bit SDRAMs  
For short traces, EMIF cannot  
meet SDRAM input hold  
requirement.(1)  
125-MHz 16-bit SDRAM (8E)  
1.2 to 3 inches from EMIF  
to each load, with proper  
termination resistors;  
133-MHz 16-bit SDRAM (75)  
143-MHz 16-bit SDRAM (7E)  
167-MHz 16-bit SDRAM (6A)  
100 MHz  
100 MHz  
100 MHz  
3-Loads  
Short  
Traces  
One bank of  
two 16-bit SDRAMs  
One bank of buffer  
Trace impedance ~78 Ω  
For short traces, EMIF cannot  
meet SDRAM input hold  
requirement.(1)  
167-MHz 16-bit SDRAM (6)  
143-MHz 32-bit SDRAM (7)  
166-MHz 32-bit SDRAM (6)  
183-MHz 32-bit SDRAM (55)  
83 MHz  
83 MHz  
83 MHz  
One bank of  
one 32-bit-bit SDRAM,  
One bank of  
one 32-bit-bit SDRAM,  
One bank of buffer  
3-Loads  
Long Traces  
4 to 7 in from EMIF;  
Trace impedance ~63 Ω  
SDRAM data output hold time  
cannot meet EMIF input hold  
requirement.(1)  
200-MHz 32-bit SDRAM (5)  
(1) Results are based on IBIS simulations for the given example boards (TYPE). Timing analysis should be performed to determine if timing  
requirements can be met for the particular system.  
10.7 EMIF Big Endian Mode Correctness (C6713B Only)  
The HD8 pin device endian mode (LENDIAN) selects the endian mode of operation (Little or Big Endian).  
For the C6713/13B device Little Endian is the default setting.  
The C6713B HD12 pin (EMIF Big Endian Mode Correctness) [EMIFBE] enhancement allows the flexibility  
to change the EMIF data placement on the EMIF bus.  
When using the default setting of HD12 = 1 for the C6713B, the EMIF will present 8-bit or 16-bit data on  
the ED[7:0] side of the bus if using Little Endian mode (HD8 = 1), and to the ED[31:24] side of the bus if  
using Big Endian mode. Figure 10-6 shows the mapping of 16-bit and 8-bit C6713B devices.  
abc  
EMIF DATA LINES (PINS) WHERE DATA PRESENT  
ED[31:24] (BE3)  
ED[23:16] (BE2)  
32-Bit Device in Any Endianness Mode  
16-Bit Device in Big Endianness Mode 16-Bit Device in Little Endianness Mode  
ED[15:8] (BE1)  
ED[7:0] (BE0)  
8-Bit Device in  
8-Bit Device in  
Big Endianness Mode  
Little Endianness Mode  
Figure 10-6. 16/8-Bit EMIF Big Endian Mode Correctness Mapping (HD12 = 1) (C6713B Only)  
When HD12 = 0 for the C6713B, enabling EMIF endianness correction, the EMIF will present 8-bit or  
16-bit data on the ED[7:0] side of the bus, regardless of the endianess mode (see Figure 10-7)  
86  
LOGIC AND POWER SUPPLY  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
abc  
EMIF DATA LINES (PINS) WHERE DATA PRESENT  
ED[23:16] (BE2) ED[15:8] (BE1)  
32-Bit Device in Any Endianness Mode  
16-Bit Device in Any Endianness Mode  
ED[31:24] (BE3)  
ED[7:0] (BE0)  
8-Bit Device in  
Any Endianness Mode  
Figure 10-7. 16/8-Bit EMIF Big Endian Mode Correctness Mapping (HD12 = 0) (C6713B Only)  
This new C6713B endianness correction functionality does not affect systems using the default value of  
HD12 = 1.  
This new C6713B feature does not affect systems operating in Little Endian mode.  
10.8 Bootmode  
The C6713/13B device resets using the active-low signal RESET and the internal reset signal. While  
RESET is low, the internal reset is also asserted and the device is held in reset and is initialized to the  
prescribed reset state. Refer to Reset Timing for reset timing characteristics and states of device pins  
during reset. The release of the internal reset signal (see the Reset phase 3 discussion in the RESET  
Timing section of this data sheet) starts the processor running with the prescribed device configuration  
and boot mode.  
The C6713/13B has three types of boot modes:  
Host boot  
If host boot is selected, upon release of internal reset, the CPU is internally stalled while the remainder  
of the device is released. During this period, an external host can initialize the CPU memory space as  
necessary through the host interface, including internal configuration registers, such as those that  
control the EMIF or other peripherals. Once the host is finished with all necessary initialization, it must  
set the DSPINT bit in the HPIC register to complete the boot process. This transition causes the boot  
configuration logic to bring the CPU out of the stalled state. The CPU then begins execution from  
address 0. The DSPINT condition is not latched by the CPU, because it occurs while the CPU is still  
internally stalled. Also, DSPINT brings the CPU out of the stalled state only if the host boot process is  
selected. All memory may be written to and read by the host. This allows for the host to verify what it  
sends to the DSP if required. After the CPU is out of the stalled state , the CPU needs to clear the  
DSPINT; otherwise, no more DSPINTs can be received.  
Emulation boot  
Emulation boot mode is a variation of host boot. In this mode, it is not necessary for a host to load  
code or to set DSPINT to release the CPU from the stalled state. Instead, the emulator will set DSPINT  
if it has not been previously set so that the CPU can begin executing code from address 0. Before  
beginning execution, the emulator sets a breakpoint at address 0. This prevents the execution of  
invalid code by halting the CPU before executing the first instruction. Emulation boot is a good tool in  
the debug phase of development.  
EMIF boot (using default ROM timings)  
Upon the release of internal reset, the 1K-Byte ROM code located in the beginning of CE1 is copied to  
address 0 by the EDMA using the default ROM timings, while the CPU is internally stalled. The data  
should be stored in the endian format that the system is using. The boot process also lets you choose  
the width of the ROM. In this case, the EMIF automatically assembles consecutive 8-bit bytes or 16-bit  
half-words to form the 32-bit instruction words to be copied. The transfer is automatically done by the  
EDMA as a single-frame block transfer from the ROM to address 0. After completion of the block  
transfer, the CPU is released from the stalled state and start running from address 0.  
Copyright © 2003–2009, Texas Instruments Incorporated  
LOGIC AND POWER SUPPLY  
87  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
11 PARAMETRIC INFORMATION  
11.1 Absolute Maximum Ratings(1)  
over operating case temperature range (unless otherwise noted)  
VALUE  
–0.3 to 1.8  
UNIT  
(2)  
Supply voltage range, CVDD  
V
V
V
V
(2)  
Supply voltage range, DVDD  
–0.3 to 4  
Input voltage range  
Output voltage range  
A version  
0.3 to DVDD + 0.5  
0.3 to DVDD + 0.5  
–40 to 105  
°C  
Operating case temperature range TC  
S version  
–55 to 105  
M version(3)  
–55 to 125  
Storage temperature range, Tstg  
–60 to 150  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS  
.
(3) Long-term high temperature storage and/or extended use at maximum recommended operating conditions may result in a reduction of  
overall device life. See http://ti.com/ep_quality for additional information on enhanced product packaging.  
11.2 Recommended Operating Conditions(1)  
MIN NOM  
MAX UNIT  
CVDD  
DVDD  
Supply voltage, core referenced to VSS  
Supply voltage, I/O referenced to VSS  
1.20  
3.13  
1.26  
3.3  
1.32  
3.47  
1.32  
2.75  
V
V
V
V
V(C – D) Maximum supply voltage difference, CVDD DVDD  
V(D – C) Maximum supply voltage difference, DVDD CVDD  
All signals except CLKS1/SCL1, DR1/SDA1, SCL0, SDA0, and  
RESET  
2
2
High-level  
input voltage  
VIH  
V
CLKS1/SCL1, DR1/SDA1, SCL0, SDA0, and RESET  
All signals except CLKS1/SCL1, DR1/SDA1, SCL0, SDA0, and  
RESET  
0.8  
Low-level  
input voltage  
VIL  
V
CLKS1/SCL1, DR1/SDA1, SCL0, SDA0, and RESET  
0.3 ×  
DVDD  
All signals except ECLKOUT, CLKOUT2, CLKOUT3,  
CLKS1/SCL1, DR1/SDA1, SCL0, and SDA0  
–8  
–16  
–8  
C6713(2)  
High-level  
output  
ECLKOUT, CLKOUT2, and CLKOUT3  
IOH  
mA  
All signals except ECLKOUT, CLKOUT2, CLKS1/SCL1,  
DR1/SDA1, SCL0, and SDA0  
current  
C6713B(2)  
ECLKOUT and CLKOUT2  
–16  
8
All signals except ECLKOUT, CLKOUT2, CLKOUT3,  
CLKS1/SCL1, DR1/SDA1, SCL0, and SDA0  
C6713(2)  
ECLKOUT, CLKOUT2, and CLKOUT3  
16  
3
Low-level  
output  
current  
CLKS1/SCL1, DR1/SDA1, SCL0, and SDA0  
IOL  
mA  
V
All signals except ECLKOUT, CLKOUT2, CLKS1/SCL1,  
DR1/SDA1, SCL0, and SDA0  
8
C6713B(2)  
ECLKOUT and CLKOUT2  
16  
3
4(3)  
CLKS1/SCL1, DR1/SDA1, SCL0, and SDA0  
VOS  
Maximum voltage during overshoot (See Figure 11-4)  
(1) The core supply should be powered up before, and powered down after, the I/O supply. Systems should be designed to ensure that  
neither supply is powered up for an extended period of time if the other supply is below the proper operating voltage.  
(2) Refers to dc (or steady state) currents only; actual switching currents are higher. For more details, see the device-specific IBIS models.  
(3) The absolute maximum ratings should not be exceeded for more than 30% of the cycle period.  
88  
PARAMETRIC INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
(1)  
Recommended Operating Conditions  
(continued)  
MIN NOM  
MAX UNIT  
VUS  
Maximum voltage during undershoot (See Figure 11-5)  
–0.7(3)  
V
A version  
Operating case temperature S version  
M version  
–40  
–55  
–55  
105  
TC  
105  
°C  
125  
11.3 Electrical Characteristics(1)  
over recommended ranges of supply voltage and operating case temperature (unless otherwise noted)  
PARAMETER  
All signals except SCL1, SDA1,  
TEST CONDITIONS  
IOH = MAX  
MIN  
TYP  
MAX UNIT  
High-level output  
voltage  
VOH  
2.4  
V
SCL0, and SDA0  
All signals except SCL1, SDA1,  
SCL0, and SDA0  
IOL = MAX  
IOL = MAX  
0.4  
V
Low-level output  
voltage  
VOL  
SCL1, SDA1, SCL0, and SDA0  
0.4  
All signals except SCL1, SDA1,  
SCL0, and SDA0  
±170  
II  
Input current  
VI = VSS to DVDD  
VO = DVDD or 0 V  
μA  
SCL1, SDA1, SCL0, and SDA0  
±10  
All signals except SCL1, SDA1,  
SCL0, and SDA0  
±170  
IOZ  
Off-state output current  
μA  
SCL1, SDA1, SCL0, and SDA0  
±10  
13GDPA, CVDD = 1.4 V,  
CPU clock = 300 MHz  
945  
560  
75  
IDD2V Core supply current(2)  
IDD3V I/O supply current(2)  
mA  
13GDPA, CVDD = 1.26 V,  
CPU clock = 200 MHz  
C6713/13B, DVDD = 3.3 V,  
EMIF speed = 100 MHz  
mA  
CI  
Input capacitance  
Output capacitance  
7
7
pF  
pF  
Co  
(1) For test conditions shown as MIN, MAX, or NOM, use the appropriate value specified in the recommended operating conditions table.  
(2) Measured with average activity (50% high/50% low power) at 25°C case temperature and 100-MHz EMIF. This model represents a  
device performing high-DSP-activity operations 50% of the time, and the remainder performing low-DSP-activity operations. The  
high/low-DSP-activity models are defined as follows:  
High DSP activity model:  
CPU: 8 instructions/cycle with 2 LDDW instructions [L1 data memory: 128 bits/cycle via LDDW instructions; L1 program memory: 256  
bits/cycle; L2/EMIF EDMA: 50% writes, 50% reads to/from SDRAM (50% bit switching)]  
McBSP: 2 channels at E1 rate  
Timers: 2 timers at maximum rate  
Low DSP activity model:  
CPU: 2 instructions/cycle with 1 LDH instruction [L1 data memory: 16 bits/cycle; L1 program memory: 256 bits per 4 cycles; L2/EMIF  
EDMA: None]  
McBSP: 2 channels at E1 rate  
Timers: 2 timers at maximum rate  
The actual current draw is highly application dependent. For more details on core and I/O activity, refer to the TMS320C6713/12C/11C  
Power Consumption Summary application report (literature number SPRA889).  
Copyright © 2003–2009, Texas Instruments Incorporated  
PARAMETRIC INFORMATION  
89  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
11.4 Parameter Measurement Information  
11.4.1 Timing Information  
www.ti.com  
Tester Pin Electronics  
Data Sheet Timing Reference Point  
42  
3.5 nH  
Output  
Under  
Test  
Transmission Line  
Z0 = 50  
(see Note A)  
Device Pin  
(see Note 1)  
4.0 pF  
1.85 pF  
NOTE A: The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects  
must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line  
effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer)  
from the data-sheet timings.  
Input requirements in this data sheet are tested with an input slew rate of <4 V per nanosecond (4 V/ns) at the device pin.  
Figure 11-1. Test Load Circuit for AC Timing Measurements  
11.4.2 Signal Transition Levels  
All input and output timing parameters are referenced to 1.5 V for both 0 and 1 logic levels.  
V
ref  
= 1.5 V  
Figure 11-2. Input and Output Voltage Reference Levels for AC Timing Measurements  
All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks, VOL MAX  
and VOH MIN for output clocks.  
V
ref  
= V MIN (or V MIN)  
IH OH  
V
ref  
= V MAX (or V MAX)  
IL OL  
Figure 11-3. Rise and Fall Transition Time Voltage Reference Levels  
90  
PARAMETRIC INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
11.4.3 AC Transient Rise/Fall Time Specifications  
Figure 11-4 and Figure 11-5 show the AC transient specifications for rise and fall time. For device-specific  
information on these values, refer to the Recommended Operating Conditions section of this data sheet.  
t = 0.3 t (max)  
c
V
OS  
(max)  
Minimum  
Risetime  
V
IH  
(min)  
Waveform  
Valid Region  
Ground  
t
c
= the peripheral cycle time.  
Figure 11-4. AC Transient Specification Rise Time  
t = 0.3 t (max)  
c
V
IL  
(max)  
V
US  
(max)  
Ground  
t
c
= the peripheral cycle time.  
Figure 11-5. AC Transient Specification Fall Time  
Copyright © 2003–2009, Texas Instruments Incorporated  
PARAMETRIC INFORMATION  
91  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
 
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
11.4.4 Timing Parameters and Board Routing Analysis  
The timing parameter values specified in this data sheet do not include delays by board routings. As a good  
board design practice, such delays must always be taken into account. Timing values may be adjusted by  
increasing/decreasing such delays. TI recommends utilizing the available I/O buffer information specification  
(IBIS) models to analyze the timing characteristics correctly. To properly use IBIS models to attain accurate  
timing analysis for a given system, see the Using IBIS Models for Timing Analysis application report (literature  
number SPRA839). If needed, external logic hardware such as buffers may be used to compensate any timing  
differences.  
For inputs, timing is most impacted by the round-trip propagation delay from the DSP to the external device and  
from the external device to the DSP. This round-trip delay tends to negatively impact the input setup time margin,  
but also tends to improve the input hold time margins (see Table 11-1 and Figure 11-6).  
Figure 11-6 represents a general transfer between the DSP and an external device. The figure also represents  
board route delays and how they are perceived by the DSP and the external device.  
Table 11-1. Board-Level Timings Example (see  
Figure 11-6)  
NO.  
1
DESCRIPTION  
Clock route delay  
2
Minimum DSP hold time  
3
Minimum DSP setup time  
External device hold time requirement  
External device setup time requirement  
Control signal route delay  
External device hold time  
4
5
6
7
8
External device access time  
DSP hold time requirement  
DSP setup time requirement  
Data route delay  
9
10  
11  
ECLKOUT  
(Output from DSP)  
1
ECLKOUT  
(Input to External Device)  
2
Control Signals(A)  
(Output from DSP)  
3
4
5
6
Control Signals  
(Input to External Device)  
7
8
Data Signals(B)  
(Output from External Device)  
9
10  
Data Signals(B)  
(Input to DSP)  
11  
NOTES A: Control signals include data for writes.  
B: Data signals are generated during reads from an external device.  
Figure 11-6. Board-Level Input/Output Timings  
92  
PARAMETRIC INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
11.5 Input and Output Clocks  
Table 11-2. Timing Requirements for CLKIN(1) (2) (3)  
See Figure 11-7  
PLL MODE  
(PLLEN = 1)  
BYPASS MODE  
(PLLEN = 0)  
NO.  
UNIT  
MIN  
5
MAX  
MIN  
6.7  
MAX  
tc(CLKIN)  
GDP-200  
GDP-300  
83.3  
83.3  
1
Cycle time, CLKIN  
ns  
4
6.7  
2
3
4
tw(CLKINH)  
tw(CLKINL)  
tt(CLKIN)  
Pulse duration, CLKIN high  
Pulse duration, CLKIN low  
Transition time, CLKIN  
0.4C  
0.4C  
0.4C  
0.4C  
ns  
ns  
ns  
5
5
(1) The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN.  
(2) C = CLKIN cycle time in nanoseconds (ns). For example, when CLKIN frequency is 40 MHz, use C = 25 ns.  
(3) See the PLL and PLL Controller section of this data sheet.  
1
4
2
CLKIN  
3
4
Figure 11-7. CLKIN  
Table 11-3. Switching Characteristics for CLKOUT2(1) (2)  
over recommended operating conditions (see Figure 11-8)  
NO.  
1
PARAMETER  
Cycle time, CLKOUT2  
MIN  
C2 – 0.8  
MAX  
UNIT  
ns  
tc(CKO2)  
tw(CKO2H)  
tw(CKO2L)  
tt(CKO2)  
C2 + 0.8  
(C2/2) + 0.8  
(C2/2) + 0.8  
2
2
Pulse duration, CLKOUT2 high  
Pulse duration, CLKOUT2 low  
Transition time, CLKOUT2  
(C2/2) – 0.8  
(C2/2) – 0.8  
ns  
3
ns  
4
ns  
(1) The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN.  
(2) C2 = CLKOUT2 period in ns. CLKOUT2 period is determined by the PLL controller output SYSCLK2 period, which must be set to CPU  
period divide-by-2.  
1
4
2
CLKOUT2  
3
4
Figure 11-8. CLKOUT2  
Copyright © 2003–2009, Texas Instruments Incorporated  
PARAMETRIC INFORMATION  
93  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
 
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Table 11-4. Switching Characteristics for CLKOUT3(1) (2)  
over recommended operating conditions (see Figure 11-9)  
6713  
MIN  
C3 – 0.6  
6713B  
MIN  
C3 – 0.9  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
1
2
3
4
5
tc(CKO3)  
tw(CKO3H)  
tw(CKO3L)  
tt(CKO3)  
Cycle time, CLKOUT3  
C3 + 0.6  
C3 + 0.9  
ns  
ns  
ns  
ns  
ns  
Pulse duration, CLKOUT3 high  
Pulse duration, CLKOUT3 low  
Transition time, CLKOUT3  
(C3/2) – 0.6 (C3/2) + 0.6 (C3/2) – 0.9 (C3/2) + 0.9  
(C3/2) – 0.6 (C3/2) + 0.6 (C3/2) – 0.9 (C3/2) + 0.9  
2
3
td(CLKINH-CKO3V) Delay time, CLKIN high to CLKOUT3 valid  
1.5  
6.5  
1.5  
7.5  
(1) The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN.  
(2) C3 = CLKOUT3 period in ns. CLKOUT3 period is a divide-down of the CPU clock, configurable via the RATIO field in the PLLDIV3  
register.  
CLKIN  
5
1
5
4
3
CLKOUT3  
2
4
Figure 11-9. CLKOUT3  
Table 11-5. Timing Requirements for ECLKIN(1)  
See Figure 11-10  
NO.  
MIN  
10  
MAX  
UNIT  
ns  
1
2
3
4
tc(EKI)  
Cycle time, ECLKIN  
tw(EKIH)  
tw(EKIL)  
tt(EKI)  
Pulse duration, ECLKIN high  
Pulse duration, ECLKIN low  
Transition time, ECLKIN  
4.5  
4.5  
ns  
ns  
3
ns  
(1) The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN.  
1
4
2
ECLKIN  
3
4
Figure 11-10. ECLKIN  
94  
PARAMETRIC INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
 
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Table 11-6. Switching Characteristics for ECLKOUT(1) (2) (3)  
over recommended operating conditions (see Figure 11-11)  
NO.  
1
PARAMETER  
Cycle time, ECLKOUT  
MIN  
E – 0.9  
MAX  
E + 0.9  
EH + 0.9  
EL + 0.9  
2
UNIT  
ns  
tc (EKO)  
tw (EKOH)  
tw (EKOL)  
tt (EKO)  
2
Pulse duration, ECLKOUT high  
Pulse duration, ECLKOUT low  
Transition time, ECLKOUT  
EH – 0.9  
EL – 0.9  
ns  
3
ns  
4
ns  
5
td (EKIH-EKOH) Delay time, ECLKIN high to ECLKOUT high  
td (EKIL-EKOL) Delay time, ECLKIN low to ECLKOUT low  
1
1
6.5  
ns  
6
6.5  
ns  
(1) The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN.  
(2) E = ECLKIN period in ns  
(3) EH is the high period of ECLKIN in ns and EL is the low period of ECLKIN in ns.  
ECLKIN  
6
1
4
4
2
5
3
ECLKOUT  
Figure 11-11. ECLKOUT  
Copyright © 2003–2009, Texas Instruments Incorporated  
PARAMETRIC INFORMATION  
95  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
11.6 Asynchronous Memory Timing  
Table 11-7. Timing Requirements for Asynchronous Memory Cycles(1) (2) (3)  
See Figure 11-12 and Figure 11-13  
NO.  
MIN  
6.5  
1
MAX  
UNIT  
ns  
3
4
6
7
tsu(EDV-AREH)  
th(AREH-EDV)  
tsu(ARDY-EKOH)  
th(EKOH-ARDY)  
Setup time, EDx valid before ARE high  
Hold time, EDx valid after ARE high  
Setup time, ARDY valid before ECLKOUT high  
ARDY valid after ECLKOUT high  
ns  
3
ns  
2.3  
ns  
(1) To ensure data setup time, simply program the strobe width wide enough. ARDY is internally synchronized. The ARDY signal is  
recognized in the cycle for which the setup and hold time is met. To use ARDY as an asynchronous input, the pulse width of the ARDY  
signal should be wide enough (for example, pulse width = 2E) to ensure setup and hold time is met.  
(2) RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters  
are programmed via the EMIF CE space control registers.  
(3) E = ECLKOUT period in ns  
Table 11-8. Switching Characteristics for Asynchronous Memory Cycles(1) (2) (3)  
over recommended operating condition (see Figure 11-12 and Figure 11-13)  
NO.  
1
PARAMETER  
MIN  
RS*E – 1.7  
RH*E – 1.7  
1.5  
MAX UNIT  
tosu(SELV-AREL)  
toh(AREH-SELIV)  
td(EKOH-AREV)  
Output setup time, select signals valid to ARE low  
Output hold time, ARE high to select signals invalid  
Delay time, ECLKOUT high to ARE valid  
ns  
ns  
2
5
7
7
ns  
ns  
ns  
ns  
ns  
8
tosu(SELV-AWEL) Output setup time, select signals valid to AWE low  
WS*E – 1.7  
WH*E – 1.7  
1.5  
9
toh(AWEH-SELIV) Output hold time, AWE high to select signals and EDx invalid  
10  
11  
td(EKOH-AWEV)  
tosu(EDV-AWEL)  
Delay time, ECLKOUT high to AWE valid  
Output setup time, ED valid to AWE low  
(WS – 1)*E – 1.7  
(1) RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters  
are programmed via the EMIF CE space control registers.  
(2) E = ECLKOUT period in ns  
(3) Select signals include CEx, BE[3:0], EA[21:2], and AOE.  
96  
PARAMETRIC INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Setup = 2S  
trobe = 3  
Not Ready  
Hold = 2  
ECLKOUT  
CEx  
1
1
1
2
2
2
BE[3:0]  
EA[21:2]  
BE  
Address  
3
4
ED[31:0]  
1
2
5
Read Data  
AOE/SDRAS/SSOE(A)  
5
ARE/SDCAS/SSADS(A)  
AWE/SDWE/SSWE(A)  
77  
6
6
ARDY  
NOTE A: AOE/SDRAS/SSOE, ARE/SDCAS/SSADS, and AWE/SDWE/SSWE operate as AOE (identified under select signals), ARE, and AWE,  
respectively, during asynchronous memory accesses.  
Figure 11-12. Asynchronous Memory Read  
Copyright © 2003–2009, Texas Instruments Incorporated  
PARAMETRIC INFORMATION  
97  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Setup = 2  
Hold = 2  
Strobe = 3  
Not Ready  
ECLKOUT  
8
9
9
9
9
CEx  
8
BE[3:0]  
BE  
8
EA[21:2]  
Address  
Write Data  
11  
ED[31:0]  
AOE/SDRAS/SSOE(A)  
ARE/SDCAS/SSADS(A)  
10  
10  
AWE/SDWE/SSWE(A)  
7
7
6
6
ARDY  
NOTE A: AOE/SDRAS/SSOE, ARE/SDCAS/SSADS, and AWE/SDWE/SSWE operate as AOE (identified under select signals), ARE, and AWE,  
respectively, during asynchronous memory accesses.  
Figure 11-13. Asynchronous Memory Write  
98  
PARAMETRIC INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
11.7 Synchronous-Burst Memory Timing  
Table 11-9. Timing Requirements for Synchronous-Burst SRAM Cycles(1)  
See Figure 11-14  
NO.  
MIN  
1.5  
MAX  
UNIT  
ns  
6
7
tsu(EDV-EKOH) Setup time, read EDx valid before ECLKOUT high  
th(EKOH-EDV) Hold time, read EDx valid after ECLKOUT high  
2.5  
ns  
(1) The C6713/13B SBSRAM interface takes advantage of the internal burst counter in the SBSRAM. Accesses default to incrementing  
4-word bursts, but random bursts and decrementing bursts are done by interrupting bursts in progress. All burst types can sustain  
continuous data flow.  
Table 11-10. Switching Characteristics for Synchronous-Burst SRAM Cycles(1) (2)  
over recommended operating conditions (see Figure 11-14 and Figure 11-15)  
NO.  
1
PARAMETER  
Delay time, ECLKOUT high to CEx valid  
Delay time, ECLKOUT high to BEx valid  
MIN  
MAX  
UNIT  
ns  
td (EKOH-CEV)  
td (EKOH-BEV)  
1.2  
7
7
2
ns  
3
td (EKOH-BEIV) Delay time, ECLKOUT high to BEx invalid  
td (EKOH-EAV) Delay time, ECLKOUT high to EAx valid  
1.2  
ns  
4
7
ns  
5
td (EKOH-EAIV) Delay time, ECLKOUT high to EAx invalid  
1.2  
1.2  
1.2  
ns  
8
td (EKOH-ADSV) Delay time, ECLKOUT high to ARE/SDCAS/SSADS valid  
7
7
7
ns  
9
td (EKOH-OEV)  
td (EKOH-EDV)  
Delay time, ECLKOUT high to AOE/SDRAS/SSOE valid  
Delay time, ECLKOUT high to EDx valid  
ns  
10  
11  
12  
ns  
td (EKOH-EDIV) Delay time, ECLKOUT high to EDx invalid  
1.2  
1.2  
ns  
td (EKOH-WEV) Delay time, ECLKOUT high to AWE/SDWE/SSWE valid  
7
ns  
(1) The C6713/13B SBSRAM interface takes advantage of the internal burst counter in the SBSRAM. Accesses default to incrementing  
4-word bursts, but random bursts and decrementing bursts are done by interrupting bursts in progress. All burst types can sustain  
continuous data flow.  
(2) ARE/SDCAS/SSADS, AOE/SDRAS/SSOE, and AWE/SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during  
SBSRAM accesses.  
ECLKOUT  
1
2
1
CEx  
3
BE[3:0]  
BE1  
BE2  
BE3  
EA  
BE4  
4
5
EA[21:2]  
ED[31:0]  
6
7
Q1  
Q2  
Q3  
Q4  
8
8
ARE/SDCAS/SSADS(1)  
9
9
(1)  
AOE/SDRAS/SSOE  
(1)  
AWE/SDWE/SSWE  
NOTE (1): ARE/SDCAS/SSADS, AOE/SDRAS/SSOE, and AWE/SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during SBSRAM accesses.  
Figure 11-14. SBSRAM Read Timing  
Copyright © 2003–2009, Texas Instruments Incorporated  
PARAMETRIC INFORMATION  
99  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
ECLKOUT  
1
1
3
CEx  
2
BE[3:0]  
EA[21:2]  
ED[31:0]  
BE1B  
E2  
Q2  
BE3B  
5
E4  
Q4  
4
EA  
10  
Q1  
11  
Q3  
8
8
(A)  
ARE/SDCAS/SSADS  
(A)  
AOE/SDRAS/SSOE  
AWE/SDWE/SSWE(A)  
12  
12  
NOTE A: ARE/SDCAS/SSADS, AOE/SDRAS/SSOE, and AWE/SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during SBSRAM accesses.  
Figure 11-15. SBSRAM Write Timing  
11.8 Synchronous DRAM Timing  
Table 11-11. Timing Requirements for Synchronous DRAM Cycles(1)  
See Figure 11-16  
NO.  
6
MIN  
1.5  
MAX  
UNIT  
ns  
tsu(EDV-EKOH) Setup time, read EDx valid before ECLKOUT high  
th(EKOH-EDV) Hold time, read EDx valid after ECLKOUT high  
7
2.5  
ns  
(1) The C6713/13B SDRAM interface takes advantage of the internal burst counter in the SDRAM. Accesses default to incrementing 4-word  
bursts, but random bursts and decrementing bursts are done by interrupting bursts in progress. All burst types can sustain continuous  
data flow.  
Table 11-12. Switching Characteristics for Synchronous DRAM Cycles(1) (2)  
over recommended operating conditions (see Figure 11-16Figure 11-22)  
NO.  
1
PARAMETER  
Delay time, ECLKOUT high to CEx valid  
Delay time, ECLKOUT high to BEx valid  
Delay time, ECLKOUT high to BEx invalid  
Delay time, ECLKOUT high to EAx valid  
Delay time, ECLKOUT high to EAx invalid  
MIN  
MAX  
UNIT  
ns  
td(EKOH-CEV)  
td(EKOH-BEV)  
td(EKOH-BEIV)  
td(EKOH-EAV)  
td(EKOH-EAIV)  
1.5  
7
7
2
ns  
3
1.5  
ns  
4
7
ns  
5
1.5  
1.5  
ns  
8
td(EKOH-CASV) Delay time, ECLKOUT high to ARE/SDCAS/SSADS valid  
7
7
ns  
9
td(EKOH-EDV)  
td(EKOH-EDIV)  
td(EKOH-WEV)  
td(EKOH-RAV)  
Delay time, ECLKOUT high to EDX valid  
ns  
10  
11  
12  
Delay time, ECLKOUT high to EDx invalid  
1.5  
1.5  
1.5  
ns  
Delay time, ECLKOUT high to AWE/SDWE/SSWE valid  
Delay time, ECLKOUT high to AOE/SDRAS/SSOE valid  
7
7
ns  
ns  
(1) The C6713/13B SDRAM interface takes advantage of the internal burst counter in the SDRAM. Accesses default to incrementing 4-word  
bursts, but random bursts and decrementing bursts are done by interrupting bursts in progress. All burst types can sustain continuous  
data flow.  
(2) ARE/SDCAS/SSADS, AWE/SDWE/SSWE and AOE/SDRAS/SSOE operate as SDCAS, SWE, and SDRAS, respectively, during SDRAM  
accesses.  
100  
PARAMETRIC INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
READ  
ECLKOUT  
CEx  
1
4
1
2
3
BE[3:0]  
BE1  
BE2B  
E3  
BE4  
5
5
5
Bank  
EA[21:13]  
EA[11:2]  
4
Column  
4
EA12  
6
7
ED[31:0]  
D1  
D2  
D3  
D4  
(A)  
AOE/SDRAS/SSOE  
8
8
(A)  
(A)  
ARE/SDCAS/SSADS  
AWE/SDWE/SSWE  
NOTE A: ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM accesses.  
Figure 11-16. SDRAM Read Command (CAS Latency 3)  
Copyright © 2003–2009, Texas Instruments Incorporated  
PARAMETRIC INFORMATION  
101  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
WRITE  
ECLKOUT  
1
1
2
5
5
5
9
CEx  
3
2
BE[3:0]  
EA[21:13]  
EA[11:2]  
EA12  
BE1  
BE2  
BE3  
BE4  
4
4
4
9
Bank  
Column  
10  
ED[31:0]  
D1  
D2  
D3  
D4  
AOE/SDRAS/SSOE(A)  
8
8
(A)  
ARE/SDCAS/SSADS  
11  
11  
AWE/SDWE/SSWE(A)  
NOTE A: ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM accesses.  
Figure 11-17. SDRAM Write Command  
ACTV  
ECLKOUT  
1
1
CEx  
BE[3:0]  
4
5
5
5
Bank Activate  
EA[21:13]  
EA[11:2]  
4
Row Address  
4
Row Address  
EA12  
ED[31:0]  
12  
12  
(A)  
AOE/SDRAS/SSOE  
ARE/SDCAS/SSADS(A)  
AWE/SDWE/SSWE(A)  
NOTE A: ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM accesses.  
Figure 11-18. SDRAM ACTV Command  
102  
PARAMETRIC INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
DCAB  
ECLKOUT  
1
1
CEx  
BE[3:0]  
EA[21:13, 11:2]  
4
12  
11  
5
12  
11  
EA12  
ED[31:0]  
AOE/SDRAS/SSOE (A)  
ARE/SDCAS/SSADS (A)  
(A)  
AWE/SDWE/SSWE  
NOTE A: ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM accesses.  
Figure 11-19. SDRAM DCAB Command  
DEAC  
ECLKOUT  
1
1
CEx  
BE[3:0]  
4
5
EA[21:13]  
EA[11:2]  
Bank  
4
5
EA12  
ED[31:0]  
12  
11  
12  
11  
(A)  
AOE/SDRAS/SSOE  
ARE/SDCAS/SSADS  
(A)  
AWE/SDWE/SSWE(A)  
NOTE A: ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM accesses.  
Figure 11-20. SDRAM DEAC Command  
Copyright © 2003–2009, Texas Instruments Incorporated  
PARAMETRIC INFORMATION  
103  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
REFR  
ECLKOUT  
1
1
CEx  
BE[3:0]  
EA[21:2]  
EA12  
ED[31:0]  
12  
8
12  
8
(A)  
AOE/SDRAS/SSOE  
ARE/SDCAS/SSADS(A)  
(A)  
AWE/SDWE/SSWE  
NOTE A: ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM accesses.  
Figure 11-21. SDRAM REFR Command  
MRS  
ECLKOUT  
1
4
1
5
CEx  
BE[3:0]  
EA[21:2]  
ED[31:0]  
MRS value  
12  
8
12  
8
(A)  
AOE/SDRAS/SSOE  
ARE/SDCAS/SSADS  
(A)  
(A)  
11  
11  
AWE/SDWE/SSWE  
NOTE A: ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE operate as SDCAS, SDWE, and SDRAS, respectively, during SDRAM accesses.  
Figure 11-22. SDRAM MRS Command  
104  
PARAMETRIC INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
11.9 HOLD/HOLDA Timing  
Table 11-13. Timing Requirements for HOLD/HOLDA Cycles(1)  
See Figure 11-23  
NO.  
MIN  
MAX  
UNIT  
3
th(HOLDAL-HOLDL) Hold time, HOLD low after HOLDA low  
E
ns  
(1) E = ECLKOUT period in ns  
Table 11-14. Switching Characteristics for HOLD/HOLDA Cycles(1) (2)  
over recommended operating conditions (see Figure 11-23)  
6713  
MIN  
6713B  
NO.  
PARAMETER  
UNIT  
MAX  
MIN  
2E  
0
MAX  
(3)  
(3)  
1
2
4
5
td(HOLDL-EMHZ)  
td(EMHZ-HOLDAL)  
td(HOLDH-EMLZ)  
td(EMLZ-HOLDAH)  
Delay time, HOLD low to EMIF Bus high impedance  
Delay time, EMIF Bus high impedance to HOLDA low  
Delay time, HOLD high to EMIF Bus low impedance  
Delay time, EMIF Bus low impedance to HOLDA high  
2E  
–0.1  
2E  
ns  
ns  
ns  
ns  
2E  
7E  
2E  
2E  
7E  
2E  
2E  
0
–1.5  
(1) E = ECLKOUT period in ns  
(2) EMIF bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE/SDCAS/SSADS, AOE/SDRAS/SSOE, and AWE/SDWE/SSWE.  
(3) All pending EMIF transactions are allowed to complete before HOLDA is asserted. If no bus transactions are occurring, then the  
minimum delay time can be achieved. Also, bus hold can be indefinitely delayed by setting NOHOLD = 1.  
External Requestor  
Owns Bus  
DSP Owns Bus  
DSP Owns Bus  
3
HOLD  
HOLDA  
25  
1
4
EMIF Bus(A)  
C6713/13BC  
6713/13B  
NOTE A: EMIF bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE/SDCAS/SSADS, AWE/SDWE/SSWE, and AOE/SDRAS/SSOE.  
Figure 11-23. HOLD/HOLDA Timing  
11.10 BUSREQ Timing  
Table 11-15. Switching Characteristics for BUSREQ Cycles  
over recommended operating conditions (see Figure 11-24)  
NO.  
PARAMETER  
MIN  
MAX UNIT  
1
td(EKOH-BUSRV)  
Delay time, ECLKOUT high to BUSREQ valid  
1.5  
7.2  
ns  
ECLKOUT  
1
1
BUSREQ  
Figure 11-24. BUSREQ  
Copyright © 2003–2009, Texas Instruments Incorporated  
PARAMETRIC INFORMATION  
105  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
11.11 Reset Timing  
(1) (2)  
Table 11-16. Timing Requirements for RESET  
See Figure 11-25  
NO.  
MIN  
100  
2P  
MAX UNIT  
1
tw(RST)  
tsu(HD)  
th(HD)  
Pulse duration, RESET  
ns  
ns  
ns  
13  
14  
Setup time, HD boot configuration bits valid before RESET high(3)  
Hold time, HD boot configuration bits valid after RESET high(3)  
2P  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 300 MHz, use P = 3.3 ns.  
(2) For the C6713/13B device, the PLL is bypassed immediately after the device comes out of reset. The PLL controller can be  
programmed to change the PLL mode in software. For more detailed information on the PLL controller, see the TMS320C6000 DSP  
Phase-Lock Loop (PLL) Controller Peripheral Reference Guide (literature number SPRU233).  
(3) The boot and device configurations bits are latched asynchronously when RESET is transitioning high. The boot and device  
configurations bits consist of HD[14, 8, 4:3].  
(1)  
Table 11-17. Switching Characteristics For RESET  
over recommended operating conditions (see Figure 11-25)  
NO.  
PARAMETER  
MIN  
MAX UNIT  
512 x  
CLKIN  
period  
Delay time, external RESET high to internal reset high and all  
signal groups valid(2) (3)  
2
td(RSTH-ZV)  
CLKMODE0 = 1  
ns  
3a  
3b  
4
td(RSTL-ECKOL)  
td(RSTL-ECKOL)  
td(RSTH-ECKOV)  
td(RSTL-CKO2IV)  
td(RSTL-CKO2IV)  
td(RSTH-CKO2V)  
td(RSTL-CKO3L)  
td(RSTH-CKO3V)  
td(RSTL-EMIFZHZ)  
td(RSTL-EMIFLIV)  
td(RSTL-Z1HZ)  
Delay time, RESET low to ECLKOUT low (6713)  
Delay time, RESET low to ECLKOUT high impedance (6713B)  
Delay time, RESET high to ECLKOUT valid  
0
0
ns  
ns  
6P  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5a  
5b  
6
Delay time, RESET low to CLKOUT2 invalid (6713)  
Delay time, RESET low to CLKOUT2 high impedance (6713B)  
Delay time, RESET high to CLKOUT2 valid  
0
0
6P  
6P  
7
Delay time, RESET low to CLKOUT3 low  
0
8
Delay time, RESET high to CLKOUT3 valid  
9
Delay time, RESET low to EMIF Z group high impedance(3)  
Delay time, RESET low to EMIF low group (BUSREQ) invalid(3)  
Delay time, RESET low to Z group 1 high impedance(3)  
Delay time, RESET low to Z group 2 high impedance(3)  
0
0
0
0
10  
11  
12  
td(RSTL-Z2HZ)  
(1) P = 1/CPU clock frequency in ns. Note that while internal reset is asserted low, the CPU clock (SYSCLK1) period is equal to the input  
clock (CLKIN) period multiplied by 8. For example, if the CLKIN period is 20 ns, the CPU clock (SYSCLK1) period is 20 ns x 8 = 160 ns.  
Therefore, P = SYSCLK1 = 160 ns while internal reset is asserted.  
(2) The internal reset is stretched exactly 512 x CLKIN cycles if CLKIN is used (CLKMODE0 = 1). If the input clock (CLKIN) is not stable  
when RESET is deasserted, the actual delay time may vary.  
(3) EMIF Z group consists of EA[21:2], ED[31:0], CE[3:0], BE[3:0], ARE/SDCAS/SSADS, AWE/SDWE/SSWE, AOE/SDRAS/SSOE, and  
HOLDA.  
EMIF low group consists of BUSREQ.  
Z group 1 consists of CLKR0/ACLKR0, CLKR1/AXR0[6], CLKX0/ACLKX0, CLKX1/AMUTE0, FSR0/AFSR0, FSR1/AXR0[7],  
FSX0/AFSX0, FSX1, DX0/AXR0[1], DX1/AXR0[5], TOUT0/AXR0[2], TOUT1/AXR0[4], SDA0, and SCL0.  
Z group 2 consists of all other HPI, McASP0/1, GPIO, and I2C1 signals.  
106  
PARAMETRIC INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Phase 1  
Phase 2  
Phase 3  
CLKIN  
ECLKIN  
1
RESET  
2
Internal Reset  
Internal SYSCLK1  
Internal SYSCLK2  
Internal SYSCLK3  
3
5
4
6
6713 ECLKOUT  
6713B ECLKOUT  
6713 CLKOUT2  
6713B CLKOUT2  
CLKOUT3  
7
8
9
2
2
(A)  
EMIF Z Group  
10  
11  
12  
(A)  
EMIF Low Group  
2
2
(A)  
Z Group 1  
(A)  
Z Group 2  
14  
Boot and  
Device  
13  
Configuration  
Pins(B)  
NOTES A: EMIF Z group consists of EA[21:2], ED[31:0], CE[3:0], BE[3:0], ARE/SDCAS/SSADS, AWE/SDWE/SSWE, AOE/SDRAS/SSOE, and HOLDA.  
EMIF low group consists of BUSREQ.  
Z group 1 consists of CLKR0/ACLKR0, CLKR1/AXR0[6], CLKX0/ACLKX0, CLKX1/AMUTE0, FSR0/AFSR0, FSR1/AXR0[7], FSX0/AFSX0, FSX1,  
DX0/AXR0[1], DX1/AXR0[5], TOUT0/AXR0[2], TOUT1/AXR0[4], SDA0, and SCL0.  
Z group 2 consists of All other HPI, McASP0/1, GPIO, and I2C1 signals.  
B: Boot and device configurations consist of: HD[14, 8, 4:3].  
Figure 11-25. Reset Timing  
Reset Phase 1: The RESET pin is asserted. During this time, all internal clocks are running at the CLKIN  
frequency divide-by-8. The CPU is also running at the CLKIN frequency divide-by-8.  
Reset Phase 2: The RESET pin is deasserted but the internal reset is stretched. During this time, all internal  
clocks are running at the CLKIN frequency divide-by-8. The CPU is also running at the CLKIN frequency  
divide-by-8.  
Reset Phase 3: Both the RESET pin and internal reset are deasserted. During this time, all internal clocks are  
running at their default divide-down frequency of CLKIN. The CPU clock (SYSCLK1) is running at CLKIN  
frequency. The peripheral clock (SYSCLK2) is running at CLKIN frequency divide-by-2. The EMIF internal clock  
source (SYSCLK3) is running at CLKIN frequency divide-by-2. SYSCLK3 is reflected on the ECLKOUT pin  
(when EKSRC bit = 0 [default]). CLKOUT3 is running at CLKIN frequency divide-by-8.  
Copyright © 2003–2009, Texas Instruments Incorporated  
PARAMETRIC INFORMATION  
107  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
11.12 External Interrupt Timing  
Table 11-18. Timing Requirements for External Interrupts(1)  
See Figure 11-26  
NO.  
MIN  
2P  
4P  
2P  
4P  
MAX  
UNIT  
ns  
Width of the NMI interrupt pulse low  
Width of the EXT_INT interrupt pulse low  
Width of the NMI interrupt pulse high  
Width of the EXT_INT interrupt pulse high  
1
2
tw(ILOW)  
ns  
ns  
tw(IHIGH)  
ns  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 300 MHz, use P = 3.3 ns.  
2
1
EXT_INT, NMI  
Figure 11-26. External/NMI Interrupt  
108  
PARAMETRIC INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
11.13 Multichannel Audio Serial Port (McASP) Timing  
Table 11-19. Timing Requirements for McASP  
See Figure 11-27 and Figure 11-28  
6713  
MIN  
20  
6713B  
MIN MAX  
NO.  
UNIT  
MAX  
1
2
tc(AHCKRX)  
tw(AHCKRX)  
Cycle time, AHCLKR/X  
20  
ns  
ns  
Pulse duration, AHCLKR/X high or low  
7.5  
7.5  
Greater of  
2P(1) or 33  
3
4
tc(ACKRX)  
tw(ACKRX)  
Cycle time, ACLKR/X  
ACLKR/X ext  
33  
ns  
Pulse duration, ACLKR/X high or low  
ACLKR/X ext  
ACLKR/X int  
ACLKR/X ext  
ACLKR/X int  
ACLKR/X ext  
ACLKR/X int  
ACLKR/X ext  
ACLKR/X int  
ACLKR/X ext  
14  
14  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6
Setup time, AFSR/X input valid before  
ACLKR/X latches data  
5
6
7
8
tsu(AFRXC-ACKRX)  
th(ACKRX-AFRX)  
tsu(AXR-ACKRX)  
th(ACKRX-AXR)  
3
3
0
3
0
Hold time, AFSR/X input valid after  
ACLKR/X latches data  
3
10.2  
6
8
Setup time, AXR input valid before ACLKR/X  
latches data  
3
1
1
Hold time, AXR input valid after ACLKR/X  
latches data  
3
3
(1) P = SYSCLK2 period  
Table 11-20. Switching Characteristics for McASP(1)  
over recommended operating conditions (see Figure 11-27 and Figure 11-28)  
NO.  
9
PARAMETER  
Cycle time, AHCLKR/X  
MIN  
20  
MAX UNIT  
tc(AHCKRX)  
tw(AHCKRX)  
tc(ACKRX)  
ns  
ns  
10  
Pulse duration, AHCLKR/X high or low  
(AH/2) – 2.5  
Greater of  
2P(2) or 33  
11  
12  
Cycle time, ACLKR/X  
ACLKR/X int  
ns  
ns  
tw(ACKRX)  
Pulse duration, ACLKR/X high or low  
ACLKR/X int  
ACLKR/X int  
ACLKR/X ext  
ACLKR/X int  
ACLKR/X ext  
ACLKR/X int  
ACLKR/X ext  
(AH/2) – 2.5  
–1  
0
5
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
Delay time, ACLKR/X transmit edge to AFSX/R  
output valid  
13  
14  
15  
td(ACKRX-AFRX)  
–1  
0
td(ACKX-AXRV)  
Delay time, ACLKX transmit edge to AXR output valid  
10  
10  
10  
–1  
–1  
Disable time, AXR high impedance following last data  
bit from ACLKR/X transmit edge  
tdis(ACKRXAXRHZ)  
(1) AH = AHCLKR/X period in ns; A = ACLKR/X period in ns  
(2) P = SYSCLK2 period  
Copyright © 2003–2009, Texas Instruments Incorporated  
PARAMETRIC INFORMATION  
109  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
2
1
2
AHCLKR/X (Falling Edge Polarity)  
AHCLKR/X (Rising Edge Polarity)  
4
3
4
ACLKR/X (Falling Edge Polarity)  
ACLKR/X (Rising Edge Polarity)  
6
5
AFSR/X (Bit Width, 0 Bit Delay)  
AFSR/X (Bit Width, 1 Bit Delay)  
AFSR/X (Bit Width, 2 Bit Delay)  
AFSR/X (Slot Width, 0 Bit Delay)  
AFSR/X (Slot Width, 1 Bit Delay)  
AFSR/X (Slot Width, 2 Bit Delay)  
8
7
AXR[n] (Data In/Receive)  
A0 A1  
A30A 31 B0 B1  
B30B 31 C0 C1 C2 C3  
C31  
Figure 11-27. McASP Input Timings  
110  
PARAMETRIC INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
10  
10  
9
AHCLKR/X (Falling Edge Polarity)  
AHCLKR/X (Rising Edge Polarity)  
12  
11  
12  
ACLKR/X (Falling Edge Polarity)  
ACLKR/X (Rising Edge Polarity)  
13  
13  
13  
13  
AFSR/X (Bit Width, 0 Bit Delay)  
AFSR/X (Bit Width, 1 Bit Delay)  
AFSR/X (Bit Width, 2 Bit Delay)  
AFSR/X (Slot Width, 0 Bit Delay)  
AFSR/X (Slot Width, 1 Bit Delay)  
AFSR/X (Slot Width, 2 Bit Delay)  
AXR[n] (Data Out/Transmit)  
13  
13  
13  
14  
14  
14  
14  
15  
14  
14  
A0 A1  
A30A 31 B0 B1  
B30B 31 C0 C1 C2 C3  
C31  
Figure 11-28. McASP Output Timings  
Copyright © 2003–2009, Texas Instruments Incorporated  
PARAMETRIC INFORMATION  
111  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
11.14 Inter-Integrated Circuits (I2C) Timing  
Table 11-21. Timing Requirements for I2C(1)  
See Figure 11-29  
STANDARD  
MODE  
FAST  
MODE  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
1
2
tc(SCL)  
Cycle time, SCL  
10  
2.5  
μs  
μs  
Setup time, SCL high before SDA low (for a repeated  
START condition)  
tsu(SCLH-SDAL)  
4.7  
4
0.6  
0.6  
Hold time, SCL low after SDA low (for a START and a  
repeated START condition)  
3
th(SCLL-SDAL)  
μs  
4
5
6
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL low  
Pulse duration, SCL high  
4.7  
4
1.3  
0.6  
100(2)  
μs  
μs  
ns  
tsu(SDAV-SDLH) Setup time, SDA valid before SCL high  
250  
Hold time,  
th(SDA-SDLL)  
7
8
0(3)  
0(3)  
0.9(4)  
μs  
μs  
SDA valid after SCL low (for I2C bus devices)  
Pulse duration,  
tw(SDAH)  
4.7  
1.3  
SDA high between STOP and START conditions  
(5)  
9
tr(SDA)  
tr(SCL)  
tf(SDA)  
tf(SCL)  
Rise time, SDA  
Rise time, SCL  
Fall time, SDA  
Fall time, SCL  
1000 20 + 0.1Cb  
300  
300  
300  
300  
ns  
ns  
ns  
ns  
(5)  
(5)  
(5)  
10  
11  
12  
1000 20 + 0.1Cb  
300 20 + 0.1Cb  
300 20 + 0.1Cb  
Setup time,  
13  
tsu(SCLH-SDAH)  
tw( SP)  
4
0.6  
0
μs  
SCL high before SDA high (for STOP condition)  
14  
15  
Pulse duration, spike (must be suppressed)  
Capacitive load for each bus line  
50  
ns  
(5)  
Cb  
400  
400  
pF  
(1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down.  
(2) A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tsu (SDASCLH) 250 ns must then  
be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch  
the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu (SDASCLH) = 1000 + 250 = 1250 ns  
(according to the standard-mode I2C-bus specification) before the SCL line is released.  
(3) A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIH min of the SCL signal) to bridge the  
undefined region of the falling edge of SCL.  
(4) The maximum th(SDASCLL) has only to be met if the device does not stretch the low period [tw(SCLL)] of the SCL signal.  
(5) Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall times are allowed.  
11  
9
SDA  
SCL  
6
8
14  
4
13  
5
10  
1
12  
3
2
7
3
Stop  
Start  
Repeated  
Start  
Stop  
Figure 11-29. I2C Receive  
112  
PARAMETRIC INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Table 11-22. Switching Characteristics for I2C(1)  
over recommended operating conditions (see Figure 11-30)  
STANDARD  
MODE  
FAST  
MODE  
NO.  
PARAMETER  
MIN  
MAX  
MIN  
MAX UNIT  
16  
tc(SCL)  
Cycle time, SCL  
10  
2.5  
μs  
Delay time, SCL high to SDA low (for a repeated START  
condition)  
17  
18  
td(SCLH-SDAL)  
4.7  
4
0.6  
0.6  
μs  
μs  
Delay time, SDA low to SCL low (for a START and a repeated  
START condition)  
td(SDAL-SCLL)  
19  
20  
21  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL low  
Pulse duration, SCL high  
4.7  
4
1.3  
0.6  
μs  
μs  
ns  
td(SDAV-SDLH) Delay time, SDA valid to SCL high  
250  
100  
Valid time,  
tv(SDLL-SDAV)  
22  
23  
0
0
0.9  
μs  
μs  
SDA valid after SCL low (for I2C bus devices)  
Pulse duration,  
tw(SDAH)  
4.7  
1.3  
SDA high between STOP and START conditions  
(1)  
24  
25  
26  
27  
tr(SDA)  
tr(SCL)  
tf(SDA)  
tf(SCL)  
Rise time, SDA  
Rise time, SCL  
Fall time, SDA  
Fall time, SCL  
1000 20 + 0.1Cb  
300  
300  
300  
300  
ns  
ns  
ns  
ns  
(1)  
(1)  
(1)  
1000 20 + 0.1Cb  
300 20 + 0.1Cb  
300 20 + 0.1Cb  
Delay time,  
SCL high to SDA high (for STOP condition)  
28  
30  
td(SCLH-SDAH)  
Cb  
4
0.6  
μs  
Capacitance for each I2C pin  
10  
10  
pF  
(1) Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed.  
26  
24  
SDA  
21  
23  
19  
28  
20  
25  
SCL  
16  
27  
18  
17  
22  
18  
Stop  
Start  
Repeated  
Start  
Stop  
Figure 11-30. I2C Transmit Timings  
Copyright © 2003–2009, Texas Instruments Incorporated  
PARAMETRIC INFORMATION  
113  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
 
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
11.15 Host-Port Interface Timing  
Table 11-23. Timing Requirements for Host-Port Interface Cycles(1) (2)  
See Figure 11-31Figure 11-34  
6713  
6713B  
MIN MAX  
NO.  
UNIT  
MIN  
MAX  
1
2
tsu(SELV-HSTBL) Setup time, select signals valid before HSTROBE low(3)  
5
5
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
th(HSTBL-SELV)  
Hold time, select signals valid after HSTROBE low(3)  
Pulse duration, HSTROBE low (host read access)  
Pulse duration, HSTROBE low (host write access)  
Pulse duration, HSTROBE high between consecutive accesses  
Setup time, select signals valid before HAS low(3)  
Hold time, select signals valid after HAS low(3)  
4
10P + 5.8  
4P  
4P  
4P  
5
3
tw(HSTBL)  
4P  
4P  
5
4
tw(HSTBH)  
10  
11  
12  
13  
tsu(SELV-HASL)  
th(HASL-SELV)  
tsu(HDV-HSTBH)  
th(HSTBH-HDV)  
3
3
Setup time, host data valid before HSTROBE high  
Hold time, host data valid after HSTROBE high  
5
5
3
3
Hold time, HSTROBE low after HRDY low. HSTROBE should not  
14  
th(HRDYL-HSTBL) be inactivated until HRDY is active (low); otherwise, HPI writes will  
not complete properly.  
2
2
ns  
18  
19  
tsu(HASL-HSTBL) Setup time, HAS low before HSTROBE low  
2
2
2
2
ns  
ns  
th(HSTBL-HASL)  
Hold time, HAS low after HSTROBE low  
(1) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
(2) P = 1/CPU clock frequency in ns. For example, when running parts at 300 MHz, use P = 3.3 ns.  
(3) Select signals include HCNTL[1:0], HR/W, and HHWIL.  
114  
PARAMETRIC INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Table 11-24. Switching Characteristics for Host-Port Interface Cycles(1) (2)  
over recommended operating conditions (see Figure 11-31Figure 11-34)  
6713  
MIN  
6713B  
NO.  
PARAMETER  
UNIT  
MAX  
15  
MIN  
1
MAX  
12  
(3)  
5
6
td(HCS-HRDY)  
Delay time, HCS to HRDY  
Delay time, HSTROBE low to HRDY high(4)  
1
3
ns  
ns  
td(HSTBL-HRDYH)  
td(HSTBL-HDLZ)  
15  
3
12  
Delay time, HSTROBE low to HD low impedance for an  
HPI read  
7
2
2
ns  
8
td(HDV-HRDYL)  
toh(HSTBH-HDV)  
td(HSTBH-HDHZ)  
td(HSTBL-HDV)  
td(HSTBH-HRDYH)  
Delay time, HD valid to HRDY low  
2P – 4  
2P – 4  
ns  
ns  
ns  
ns  
ns  
9
Output hold time, HD valid after HSTROBE high  
Delay time, HSTROBE high to HD high impedance  
Delay time, HSTROBE low to HD valid  
3
2
3
3
12  
12  
3
3
3
3
12  
12  
15  
16  
17  
10P + 5.8  
15  
12.5  
12  
Delay time, HSTROBE high to HRDY high(5)  
(1) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
(2) P = 1/CPU clock frequency in ns. For example, when running parts at 300 MHz, use P = 3.3 ns.  
(3) HCS enables HRDY, and HRDY is always low when HCS is high. The case where HRDY goes high when HCS falls indicates that HPI  
is busy completing a previous HPID write or READ with autoincrement.  
(4) This parameter is used during an HPID read. At the beginning of the first half-word transfer on the falling edge of HSTROBE, the HPI  
sends the request to the EDMA internal address generation hardware, and HRDY remains high until the EDMA internal address  
generation hardware loads the requested data into HPID.  
(5) This parameter is used after the second half-word of an HPID write or autoincrement read. HRDY remains low if the access is not an  
HPID write or autoincrement read. Reading or writing to HPIC or HPIA does not affect the HRDY signal.  
HAS  
1
1
1
1
2
2
2
2
2
2
HCNTL[1:0]  
HR/W  
1
1
HHWIL  
4
3
3
(A)  
HSTROBE  
HCS  
15  
9
15  
9
7
16  
HD[15:0] (output)  
HRDY (case 1)  
HRDY (case 2)  
5
5
1st halfword2  
nd halfword  
5
8
8
17  
17  
6
NOTE A: HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 11-31. HPI Read Timing (HAS Not Used, Tied High)  
Copyright © 2003–2009, Texas Instruments Incorporated  
PARAMETRIC INFORMATION  
115  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
(A)  
HAS  
19  
11  
19  
11  
10  
10  
10  
10  
HCNTL[1:0]  
11  
11  
11  
11  
10  
HR/W  
10  
HHWIL  
4
3
HSTROBE(B)  
18  
18  
HCS  
15  
15  
7
9
16  
9
17  
17  
HD[15:0] (output)  
1st half-word  
2nd half-word  
5
8
8
5
5
HRDY (case 1)  
HRDY (case 2)  
NOTES A: For correct operation, strobe the HAS signal only once per HSTROBE active cycle.  
B: HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 11-32. HPI Read Timing (HAS Used)  
HAS  
1
1
2
2
2
2
2
2
3
HCNTL[1:0]  
HR/W  
1
1
1
1
HHWIL  
3
4
HSTROBE(A)  
HCS  
14  
12  
12  
13  
13  
HD[15:0] (input)  
HRDY  
17  
1st halfword  
2nd halfword  
5
5
NOTE A: HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 11-33. HPI Write Timing (HAS Not Used, Tied High)  
116  
PARAMETRIC INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
(A)  
HAS  
19  
11  
19  
11  
10  
10  
10  
10  
HCNTL[1:0]  
HR/W  
11  
11  
11  
10  
11  
10  
HHWIL  
3
4
(B)  
14  
HSTROBE  
18  
12  
18  
HCS  
12  
13  
13  
HD[15:0] (input)  
HRDY  
1st half-word  
2nd half-word  
5
5
17  
NOTES A: For correct operation, strobe the HAS signal only once per HSTROBE active cycle.  
B: HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 11-34. HPI Write Timing (HAS Used)  
Copyright © 2003–2009, Texas Instruments Incorporated  
PARAMETRIC INFORMATION  
117  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
11.16 Multichannel Buffered Serial Port (McBSP) Timing  
Table 11-25. Timing Requirements for McBSP(1) (2)  
See  
NO.  
PARAMETER  
Cycle time, CLKR/X  
Pulse duration, CLKR/X high or CLKR/X low CLKR/X ext  
MIN  
2P(3)  
0.5 * tc(CKRX) – 1(4)  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
3
tc(CKRX)  
tw(CKRX)  
CLKR/X ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
9
1
6
3
8
0
3
4
9
1
6
3
Setup time, external FSR high before CLKR  
low  
5
6
tsu(FRH-CKRL)  
th(CKRL-FRH)  
tsu(DRV-CKRL)  
th(CKRL-DRV)  
tsu(FXH-CKXL)  
th(CKXL-FXH)  
Hold time, external FSR high after CLKR low  
Setup time, DR valid before CLKR low  
Hold time, DR valid after CLKR low  
7
8
Setup time, external FSX high before CLKX  
low  
10  
11  
Hold time, external FSX high after CLKX low  
(1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also  
inverted.  
(2) P = 1/CPU clock frequency in ns. For example, when running parts at 300 MHz, use P = 3.3 ns.  
(3) The minimum CLKR/X period is twice the CPU cycle time (2P) and not faster than 75 Mbps (13.3 ns). This means that the maximum bit  
rate for communications between the McBSP and other devices is 75 Mbps for 167-MHz and 225-MHz CPU clocks or 50 Mbps for  
100-MHz CPU clock; where the McBSP is either the master or the slave. Care must be taken to ensure that the ac timings specified in  
this data sheet are met. The maximum bit rate for McBSP-to-McBSP communications is 67 Mbps; therefore, the minimum CLKR/X clock  
cycle is either twice the CPU cycle time (2P), or 15 ns (67 MHz), whichever value is larger. For example, when running parts at  
150 MHz (P = 6.7 ns), use 15 ns as the minimum CLKR/X clock cycle (by setting the appropriate CLKGDV ratio or external clock  
source). When running parts at 60 MHz (P = 16.67 ns), use 2P = 33 ns (30 MHz) as the minimum CLKR/X clock cycle. The maximum  
bit rate for McBSP-to-McBSP communications applies when the serial port is a master of the clock and frame syncs (with CLKR  
connected to CLKX, FSR connected to FSX, CLKXM = FSXM = 1, and CLKRM = FSRM = 0) in data delay 1 or 2 mode (R/XDATDLY =  
01b or 10b) and the other device the McBSP communicates to is a slave.  
(4) This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.  
118  
PARAMETRIC INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Table 11-26. Switching Characteristics for McBSP  
over recommended operating conditions (see )  
6713  
MIN  
6713B  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
Delay time, CLKS high to CLKR/X high for  
internal CLKR/X generated from CLKS input  
1
2
3
td(CKSH-CKRXH)  
tc(CKRX)  
1.8  
2P  
10  
1.8  
2P  
10  
ns  
ns  
ns  
Cycle time, CLKR/X  
CLKR/X int  
Pulse duration, CLKR/X high or  
CLKR/X low  
tw(CKRX)  
CLKR/X int  
CLKRint  
C – 1  
C + 1  
3
C – 1  
C + 1  
3
Delay time, CLKR high to internal  
FSR valid  
4
9
td(CKRH-FRV)  
td(CKXH-FXV)  
–2  
–2  
ns  
CLKX int  
CLKX ext  
CLKX int  
–2  
2
3
9
4
–2  
2
3
9
4
ns  
ns  
ns  
Delay time, CLKX high to internal  
FSX valid  
Disable time, DX high impedance  
following last data bit from CLKX  
high  
–1  
–1  
12  
13  
tdis(CKXH-DXHZ)  
CLKX ext  
1.5  
10  
1.5  
10  
ns  
CLKX int  
CLKX ext  
FSX int  
–3.2 + D1  
0.5 + D1  
–1.5  
4 + D2  
10 + D2  
4.5  
–3.2 + D1  
4 + D2  
10 + D2  
7.5  
ns  
ns  
ns  
td(CKXH-DXV)  
Delay time, CLKX high to DX valid  
Delay time, FSX high to DX valid  
0.5 + D1  
–1  
14  
td(FXH-DXV)  
ONLY applies when in data delay 0  
(XDATDLY = 00b) mode  
FSX ext  
2
9
2
11.5  
ns  
CLKS  
1
2
3
3
CLKR  
FSR (int)  
FSR (ext)  
DR  
4
4
5
6
7
8
Bit(n-1)  
(n-2)  
(n-3)  
2
3
3
CLKX  
9
FSX (int)  
11  
10  
FSX (ext)  
FSX (XDATDLY=00b)  
13  
13  
14  
13  
12  
Bit 0  
DX  
Bit(n-1)  
(n-2)  
(n-3)  
Figure 11-35. McBSP Timings  
Copyright © 2003–2009, Texas Instruments Incorporated  
PARAMETRIC INFORMATION  
119  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Table 11-27. Timing Requirements for FSR When GSYNC = 1  
See  
NO.  
MIN  
4
MAX UNIT  
1
2
tsu(FRH-CKSH)  
th(CKSH-FRH)  
Setup time, FSR high before CLKS high  
Hold time, FSR high after CLKS high  
ns  
ns  
4
CLKS  
1
2
FSR external  
CLKR/X (no need to resync)  
CLKR/X (needs resync)  
Figure 11-36. FSR Timing When GSYNC = 1  
Table 11-28. Timing Requirements for McBSP as SPI Master or Slave:  
CLKSTP = 10b, CLKXP = 0  
See  
MASTER  
SLAVE  
NO.  
UNIT  
MAX  
MIN  
12  
4
MAX  
MIN  
2 – 6P  
4
5
tsu(DRV-CKXL)  
th(CKXL-DRV)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
ns  
ns  
5 + 12P  
120  
PARAMETRIC INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Table 11-29. Switching Characteristics for McBSP as SPI Master or Slave:  
CLKSTP = 10b, CLKXP = 0  
over recommended operating conditions (see )  
6713  
6713B  
NO.  
PARAMETER  
MASTER  
SLAVE  
MIN  
MASTER  
MIN MAX  
SLAVE  
MIN MAX  
UNIT  
MIN MAX  
MAX  
1
2
3
Hold time, FSX low after CLKX  
low  
ns  
ns  
ns  
th(CKXL-FXL)  
T – 2 T + 3  
L – 2 L + 3  
T – 2 T + 3  
Delay time, FSX low to CLKX  
high  
td(FXL-CKXH)  
td(CKXH-DXV)  
L – 2  
–3  
L + 3  
4
Delay time, CLKX high to DX  
valid  
–3  
4
6P + 2 10P + 17  
6P + 2 10P + 17  
Disable time, DX high  
impedance following last data  
bit from CLKX low  
6
tdis(CKXL-DXHZ)  
L – 4 L + 3  
L – 2  
L + 3  
ns  
Disable time, DX high  
impedance following last data  
bit from FSX high  
2P +  
7
8
tdis(FXH-DXHZ)  
td(FXL-DXV)  
CLKX  
6P + 17  
1.5  
2P + 3  
4P + 2  
6P + 17  
8P + 17  
ns  
ns  
Delay time, FSX low to DX valid  
4P + 2  
8P + 17  
1
2
8
FSX  
7
6
3
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
(n-4)  
4
5
Bit 0  
(n-2)  
(n-3)  
Figure 11-37. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
Table 11-30. Timing Requirements for McBSP as SPI Master or Slave:  
CLKSTP = 11b, CLKXP = 0  
See  
MASTER  
SLAVE  
MIN MAX  
NO.  
PARAMETER  
UNIT  
MIN  
12  
4
MAX  
4
5
tsu(DRV-CKXH) Setup time, DR valid before CLKX high  
th(CKXH-DRV) Hold time, DR valid after CLKX high  
2 – 6P  
ns  
ns  
5 + 12P  
Copyright © 2003–2009, Texas Instruments Incorporated  
PARAMETRIC INFORMATION  
121  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Table 11-31. Switching Characteristics for McBSP as SPI Master or Slave:  
CLKSTP = 11b, CLKXP = 0  
over recommended operating conditions (see )  
6713  
6713B  
NO.  
PARAMETER  
MASTER  
SLAVE  
MIN  
MASTER  
SLAVE  
MIN MAX  
UNIT  
MIN  
MAX  
MAX  
MIN  
MAX  
Hold time, FSX low after  
CLKX low  
1
2
3
th(CKXL-FXL)  
td(FXL-CKXH)  
td(CKXL-DXV)  
L – 2 L + 3  
L – 2  
L + 3  
ns  
ns  
ns  
Delay time, FSX low to  
CLKX high  
T – 2 T + 3  
T – 2  
–3  
T + 3  
4
Delay time, CLKX low to DX  
valid  
–3  
4
4
6P + 2  
10P + 17  
10P + 17  
6P + 2 10P + 17  
6P + 3 10P + 17  
Disable time, DX high  
tdis(CKXL-DXHZ) impedance following last  
data bit from CLKX low  
6P +  
1.5  
6
7
– 4  
– 2  
4
ns  
ns  
Delay time, FSX low to DX  
valid  
td(FXL-DXV)  
H – 2 H + 4 4P + 2  
8P + 17 H – 2 H + 6.5 4P + 2  
8P + 17  
CLKX  
1
2
7
FSX  
6
3
DX  
DR  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-3)  
(n-4)  
4
5
Bit 0  
Bit(n-1)  
(n-2)  
(n-4)  
Figure 11-38. McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
122  
PARAMETRIC INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
Table 11-32. Timing Requirements for McBSP as SPI Master or Slave:  
CLKSTP = 10b, CLKXP = 1  
See  
MASTER  
SLAVE  
NO.  
UNIT  
MIN  
12  
4
MAX  
MIN  
2 – 6P  
MAX  
4
5
tsu(DRV-CKXH)  
th(CKXH-DRV)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
ns  
ns  
5 + 12P  
Table 11-33. Switching Characteristics for McBSP as SPI Master or Slave:  
CLKSTP = 10b, CLKXP = 1  
over recommended operating conditions (see )  
6713  
6713B  
NO.  
PARAMETER  
MASTER  
SLAVE  
MIN  
MASTER  
MIN MAX  
SLAVE  
MIN MAX  
UNIT  
MIN MAX  
MAX  
Hold time, FSX low after CLKX  
high  
ns  
ns  
ns  
ns  
1
th (CKXH-FXL)  
T – 2 T + 3  
H +  
T – 2 T + 3  
H – 2 H + 3  
2
3
td (FXL-CKXL)  
td (CKXL-DXV)  
Delay time, FSX low to CLKX low H – 2  
3
Delay time, CLKX low to DX valid  
Disable time, DX high impedance  
tdis (CKXH-DXHZ) following last data bit from CLKX  
high  
–3  
4
6P + 2 10P + 17  
–3  
4 6P + 2 10P + 17  
H –  
3.6  
H +  
3
6
H – 2 H + 3  
Disable time, DX high impedance  
following last data bit from FSX  
high  
2P +  
7
8
tdis (FXH-DXHZ)  
td (FXL-DXV)  
CLKX  
6P + 17  
1.5  
2P + 3  
4P + 2  
6P + 17  
8P + 17  
ns  
ns  
Delay time, FSX low to DX valid  
4P + 2  
8P + 17  
1
2
8
FSX  
7
6
3
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 11-39. McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
Table 11-34. Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
See  
MASTER  
SLAVE  
MIN MAX  
NO.  
UNIT  
MIN  
12  
4
MAX  
4
5
tsu(DRV-CKXH) Setup time, DR valid before CLKX high  
th(CKXH-DRV) Hold time, DR valid after CLKX high  
2 – 6P  
5 + 12P  
ns  
ns  
Copyright © 2003–2009, Texas Instruments Incorporated  
PARAMETRIC INFORMATION  
123  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
Table 11-35. Switching Characteristics for McBSP as SPI Master or Slave:  
CLKSTP = 11b, CLKXP = 1  
over recommended operating conditions (see )  
6713  
6713B  
NO.  
PARAMETER  
MASTER  
SLAVE  
MIN  
MASTER  
MAX MIN MAX  
SLAVE  
MIN  
UNIT  
MIN MAX  
MAX  
Hold time, FSX low after CLKX  
high  
H –  
2
H +  
3
H –  
2
ns  
1
2
3
th(CKXH-FXL)  
td(FXL-CKXL)  
td(CKXH-DXV)  
T + 3  
H + 3  
4
Delay time, FSX low to CLKX low T – 2 T + 3  
Delay time, CLKX high to DX  
valid  
T – 2  
ns  
ns  
–3  
4
6P + 2 10P + 17  
–3  
6P + 2 10P + 17  
6P + 3 10P + 17  
Disable time, DX high impedance  
tdis(CKXH-DXHZ) following last data bit from CLKX  
high  
6P +  
6
7
– 3.6  
4
10P + 17  
1.5  
– 2  
4
ns  
ns  
td(FXL-DXV)  
Delay time, FSX low to DX valid  
L – 2 L + 4  
4P + 2  
8P + 17 L – 2 L + 6.5 4P + 2  
8P + 17  
CLKX  
1
2
FSX  
DX  
7
6
3
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
DR  
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 11-40. McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
124  
PARAMETRIC INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
11.17 Timer Timing  
Table 11-36. Timing Requirements for Timer Inputs  
See  
NO.  
MIN  
2P  
MAX  
UNIT  
ns  
1
2
tw(TINPH)  
tw(TINPL)  
Pulse duration, TINP high  
Pulse duration, TINP low  
2P  
ns  
Table 11-37. Switching Characteristics for Timer Inputs  
over recommended operating conditions (see )  
NO.  
PARAMETER  
MIN MAX  
4P – 3  
UNIT  
ns  
3
4
tw(TOUTH)  
tw(TOUTL)  
Pulse duration, TOUT high  
Pulse duration, TOUT low  
4P – 3  
ns  
2
1
TINPx  
4
3
TOUTx  
Figure 11-41. Timer  
Copyright © 2003–2009, Texas Instruments Incorporated  
PARAMETRIC INFORMATION  
125  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
11.18 General-Purpose Input/Output (GPIO) Port Timing  
Table 11-38. Timing Requirements for GPIO Inputs  
See  
NO.  
1
MIN  
4P  
MAX  
UNIT  
ns  
tw(GPIH)  
tw(GPIL)  
Pulse duration, GPIx high  
Pulse duration, GPIx low  
2
4P  
ns  
Table 11-39. Switching Characteristics for GPIO Inputs  
over recommended operating conditions (see )  
NO.  
PARAMETER  
MIN  
12P – 3  
12P – 3  
MAX UNIT  
3
4
tw(GPOH)  
tw(GPOL)  
Pulse duration, GPOx high  
Pulse duration, GPOx low  
ns  
ns  
2
1
GPIx  
4
3
GPOx  
Figure 11-42. GPIO Port Timing  
126  
PARAMETRIC INFORMATION  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
www.ti.com  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
11.19 JTAG Test Port Timing  
Table 11-40. Timing Requirements for JTAG Test Port  
See  
NO.  
MIN  
MAX  
UNIT  
1
tc(TCK)  
Cycle time, TCK  
35  
ns  
tsu(TDIV-  
TCKH)  
3
4
Setup time, TDI/TMS/TRST valid before TCK high  
10  
7
ns  
ns  
th(TCKH-TDIV) Hold time, TDI/TMS/TRST valid after TCK high  
Table 11-41. Switching Characteristics for JTAG Test Port  
over recommended operating conditions (see )  
NO.  
PARAMETER  
td(TCKL-TDOV) Delay time, TCK low to TDO valid  
MIN  
MAX UNIT  
15 ns  
2
0
1
TCK  
TDO  
2
2
4
3
TDI/TMS/TRST  
Figure 11-43. JTAG Test-Port Timing  
Copyright © 2003–2009, Texas Instruments Incorporated  
PARAMETRIC INFORMATION  
127  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
SM320C6713-EP  
SM320C6713B-EP  
SGUS049IAUGUST 2003REVISED SEPTEMBER 2009  
www.ti.com  
12 MECHANICAL DATA  
12.1 Mechanical Information  
The following table shows the thermal resistance characteristics for the GDP package.  
Table 12-1. Thermal Resistance Characteristics (S-PBGA Package) for GDP  
Air Flow  
(m/s)  
NO  
°C/W  
Two Signals, Two Planes (4-Layer Board)  
1
2
3
4
5
6
7
8
9
RθJC  
PsiJT  
RθJB  
RθJA  
RθJA  
RθJA  
RθJA  
RθJA  
PsiJB  
Junction-to-case  
9.7  
1.5  
19  
22  
21  
20  
19  
18  
16  
N/A  
0.0  
N/A  
0.0  
0.5  
1.0  
2.0  
4.0  
0.0  
Junction-to-package top  
Junction-to-board  
Junction-to-free air  
Junction-to-free air  
Junction-to-free air  
Junction-to-free air  
Junction-to-free air  
Junction-to-board  
12.2 Packaging Information  
For proper device thermal performance, the thermal pad must be soldered to an external ground thermal  
plane. The following packaging information and addendum reflect the most current released data available  
for the designated device(s). This data is subject to change without notice and without revision of this  
document.  
128  
MECHANICAL DATA  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): SM320C6713-EP  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Aug-2009  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
Drawing  
GDP  
GDP  
GDP  
GDP  
GDP  
GDP  
GDP  
GDP  
SM320C6713GDPS20EP  
SM32C6713BGDPA20EP  
SM32C6713BGDPM30EP  
SM32C6713BGDPS20EP  
V62/04603-02XA  
OBSOLETE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
272  
272  
272  
272  
272  
272  
272  
272  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
SNPB  
Call TI  
Call TI  
Call TI  
SNPB  
Call TI  
Call TI  
40  
1
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Call TI  
40  
40  
40  
1
V62/04603-03XA  
V62/04603-04XA  
V62/4603-04XA  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MPBG274 – MAY 2002  
GDP (S–PBGA–N272)  
PLASTIC BALL GRID ARRAY  
27,20  
26,80  
24,20  
23,80  
SQ  
SQ  
24,13 TYP  
1,27  
0,635  
Y
W
V
U
T
R
P
N
M
L
1,27  
K
J
H
G
F
0,635  
A1 Corner  
E
D
C
B
A
1
3
5
7
8
9
11 13 15 17 19  
10 12 14 16 18 20  
2
4
6
1,22  
1,12  
Bottom View  
2,57 MAX  
Seating Plane  
0,15  
0,90  
0,60  
0,65  
0,57  
0,10  
0,70  
0,50  
4204396/A 04/02  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MO-151  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
Automotive  
www.ti.com/automotive  
www.ti.com/communications  
Communications and  
Telecom  
DSP  
dsp.ti.com  
Computers and  
Peripherals  
www.ti.com/computers  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Consumer Electronics  
Energy  
www.ti.com/consumer-apps  
www.ti.com/energy  
Logic  
Industrial  
www.ti.com/industrial  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Medical  
www.ti.com/medical  
microcontroller.ti.com  
www.ti-rfid.com  
Security  
www.ti.com/security  
Space, Avionics &  
Defense  
www.ti.com/space-avionics-defense  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2010, Texas Instruments Incorporated  

相关型号:

TMS320C6713BGNY20EP

FLOATING-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6713BGNYA20EP

FLOATING-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6713BGNYM20EP

FLOATING-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6713BGNYS20EP

FLOATING-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6713BGNZ20EP

FLOATING-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6713BGNZA20EP

FLOATING-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6713BGNZM20EP

FLOATING-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6713BGNZS20EP

FLOATING-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6713BPYP167

FLOATING-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6713BPYP200

FLOATING-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6713BPYP20EP

FLOATING-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C6713BPYP225

FLOATING-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI