TMS320DM643AZDK5 [TI]

Video/Imaging Fixed-Point Digital Signal Processor; 视频/影像定点数字信号处理器
TMS320DM643AZDK5
型号: TMS320DM643AZDK5
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Video/Imaging Fixed-Point Digital Signal Processor
视频/影像定点数字信号处理器

数字信号处理器
文件: 总164页 (文件大小:1170K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
TMS320DM643  
Video/Imaging Fixed-Point Digital Signal Processor  
Check for Samples: TMS320DM643  
1 TMS320DM643 Video/Imaging Fixed-Point Digital Signal Processor  
1234  
Synchronous Memories (SDRAM, SBSRAM,  
ZBT SRAM, and FIFO)  
– 1024M-Byte Total Addressable External  
Memory Space  
• Enhanced Direct-Memory-Access (EDMA)  
Controller (64 Independent Channels)  
• High-Performance Digital Media Processor  
– 2-, 1.67-ns Instruction Cycle Time  
– 500-, 600-MHz Clock Rate  
– Eight 32-Bit Instructions/Cycle  
– 4000, 4800 MIPS  
– Fully Software-Compatible With C64x™  
• 10/100 Mb/s Ethernet MAC (EMAC)  
– IEEE 802.3 Compliant  
• VelociTI.2™ Extensions to VelociTI™  
Advanced Very-Long-Instruction-Word (VLIW)  
TMS320C64x™ DSP Core  
– Media Independent Interface (MII)  
– 8 Independent Transmit (TX) Channels and 1  
Receive (RX) Channel  
– Eight Highly Independent Functional Units  
With VelociTI.2™ Extensions:  
• Management Data Input/Output (MDIO)  
• Two Configurable Video Ports (VP1, VP2)  
Six ALUs (32-/40-Bit), Each Supports  
Single 32-Bit, Dual 16-Bit, or Quad 8-Bit  
Arithmetic per Clock Cycle  
– Providing a Glueless I/F to Common Video  
Decoder and Encoder Devices  
Two Multipliers Support Four 16 x 16-Bit  
Multiplies (32-Bit Results) per Clock  
Cycle or Eight 8 x 8-Bit Multiplies (16-Bit  
Results) per Clock Cycle  
– Supports Multiple Resolutions/Video Stds  
• VCXO Interpolated Control Port (VIC)  
– Supports Audio/Video Synchronization  
• Host-Port Interface (HPI) [32-/16-Bit]  
• Multichannel Audio Serial Port (McASP)  
– Eight Serial Data Pins  
– Load-Store Architecture With Non-Aligned  
Support  
– 64 32-Bit General-Purpose Registers  
– Instruction Packing Reduces Code Size  
– All Instructions Conditional  
– Wide Variety of I2S and Similar Bit Stream  
Format  
• Instruction Set Features  
– Integrated Digital Audio I/F Transmitter  
Supports S/PDIF, IEC60958-1, AES-3, CP-430  
Formats  
– Byte-Addressable (8-/16-/32-/64-Bit Data)  
– 8-Bit Overflow Protection  
– Bit-Field Extract, Set, Clear  
• Inter-Integrated Circuit ( I2C Bus™)  
• Multichannel Buffered Serial Port  
– CLKS Input Not Supported  
– Normalization, Saturation, Bit-Counting  
– VelociTI.2™ Increased Orthogonality  
• L1/L2 Memory Architecture  
• Three 32-Bit General-Purpose Timers  
• Sixteen General-Purpose I/O (GPIO) Pins  
• Flexible PLL Clock Generator  
– 128K-Bit (16K-Byte) L1P Program Cache  
(Direct Mapped)  
– 128K-Bit (16K-Byte) L1D Data Cache (2-Way  
Set-Associative)  
• IEEE-1149.1 (JTAG) Boundary-  
Scan-Compatible  
– 2M-Bit (256K-Byte) L2 Unified Mapped  
RAM/Cache (Flexible RAM/Cache  
Allocation)  
• 548-Pin Ball Grid Array (BGA) Package  
(GDK and ZDK Suffixes), 0.8-mm Ball Pitch  
• 548-Pin Ball Grid Array (BGA) Package  
(GNZ and ZNZ Suffixes), 1.0-mm Ball Pitch  
• 0.13-µm/6-Level Cu Metal Process (CMOS)  
• 3.3-V I/O, 1.2-V Internal (-500)  
• 3.3-V I/O, 1.4-V Internal (-600)  
• Endianess: Little Endian, Big Endian  
• 64-Bit External Memory Interface (EMIF)  
– Glueless Interface to Asynchronous  
Memories (SRAM and EPROM) and  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Windows is a registered trademark of Microsoft Corporation.  
2
3
4
I2C Bus is a trademark of Philips Electronics N.V.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2005–2010, Texas Instruments Incorporated  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
The TMS320C64x™ DSPs (including the TMS320DM643 device) are the highest-performance fixed-point  
DSP generation in the TMS320C6000™ DSP platform. The TMS320DM643 (DM643) device is based on  
the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW)  
architecture (VelociTI.2™) developed by Texas Instruments (TI), making these DSPs an excellent choice  
for digital media applications. The C64x™ is a code-compatible member of the C6000™ DSP platform.  
With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the  
DM643 device offers cost-effective solutions to high-performance DSP programming challenges. The  
DM643 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of  
array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length  
and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic  
units (ALUs)—with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units  
include new instructions to accelerate the performance in video and imaging applications and extend the  
parallelism of the VelociTI™ architecture. The DM643 can produce four 16-bit multiply-accumulates  
(MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for  
a total of 4800 MMACS. The DM643 DSP also has application-specific hardware logic, on-chip memory,  
and additional on-chip peripherals similar to the other C6000™ DSP platform devices.  
The DM643 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals.  
The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is  
a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit memory  
space that is shared between program and data space. L2 memory can be configured as mapped  
memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports; a  
10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO  
interpolated control port (VIC); one multichannel buffered audio serial port (McASP0); an inter-integrated  
circuit (I2C) Bus module; one multichannel buffered serial port (McBSP); three 32-bit general-purpose  
timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose  
input/output port (GP0) with programmable interrupt/event generation modes; and a 64-bit glueless  
external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous  
memories and peripherals.  
The DM643 device has two configurable video port peripherals (VP1 and VP2). These video port  
peripherals provide a glueless interface to common video decoder and encoder devices. The DM643  
video port peripherals support multiple resolutions and video standards (e.g., CCIR601, ITU-BT.656,  
BT.1120, SMPTE 125M, 260M, 274M, and 296M).  
These two video port peripherals are configurable and can support either video capture and/or video  
display modes. Each video port consists of two channels — A and B with a 5120-byte capture/display  
buffer that is splittable between the two channels.  
For more details on the Video Port peripherals, see the TMS320C64x DSP Video Port/VCXO Interpolated  
Control (VIC) Port Reference Guide (literature number SPRU629).  
The McASP0 port supports one transmit and one receive clock zone, with eight serial data pins which can  
be individually allocated to any of the two zones. The serial port supports time-division multiplexing on  
each pin from 2 to 32 time slots. The DM643 has sufficient bandwidth to support all 8 serial data pins  
transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on  
multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC  
Sound (I2S) format.  
In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3,  
CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of  
user data and channel status fields.  
McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection  
circuit for each high-frequency master clock which verifies that the master clock is within a programmed  
frequency range.  
2
TMS320DM643 Video/Imaging Fixed-Point Digital Signal Processor  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits  
to up to 16-bits. The output of the VIC is a single bit interpolated D/A output.For more details on the VIC  
port, see the TMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide  
(literature number SPRU629).  
The ethernet media access controller (EMAC) provides an efficient interface between the DM643 DSP  
core processor and the network. The DM643 EMAC support both 10Base-T and 100Base-TX, or  
10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality  
of service (QOS) support. The DM643 EMAC makes use of a custom interface to the DSP core that  
allows efficient data transmission and reception.For more details on the EMAC, see the TMS320C6000  
DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module  
Reference Guide (literature number SPRU628).  
The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to  
enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the  
MDIO module transparently monitors its link state by reading the PHY status register. Link change events  
are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link  
status of the device without continuously performing costly MDIO accesses. For more details on the  
MDIO, see the TMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data  
Input/Output (MDIO) Module Reference Guide (literature number SPRU628).  
The I2C0 port on the TMS320DM643 allows the DSP to easily control peripheral devices and  
communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP)  
may be used to communicate with serial peripheral interface (SPI) mode peripheral devices.  
The DM643 has a complete set of development tools which includes: a new C compiler, an assembly  
optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into  
source code execution.  
1.1 Device Compatibility  
The DM643 device is a code-compatible member of the C6000™ DSP platform.  
The C64x™ DSP generation of devices has a diverse and powerful set of peripherals.  
For more detailed information on the device compatibility and similarities/differences among the DM642  
and other C64x™ devices, see the TMS320DM642 Technical Overview (literature number SPRU615).  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643 Video/Imaging Fixed-Point Digital Signal Processor  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
3
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
1.2 Functional Block Diagram  
Figure 1-1 shows the functional block diagram of the DM643 device.  
64  
SDRAM  
TMS320DM643  
EMIF A  
SBSRAM  
Timer 2  
L1P Cache  
Direct-Mapped  
16K Bytes Total  
ZBT SRAM  
Timer 1  
FIFO  
Timer 0  
SRAM  
VCXO  
C64x DSP Core  
Interpolated  
ROM/FLASH  
I/O Devices  
Control Port  
(VIC)  
Instruction Fetch  
Control  
Registers  
Video Port 2  
(VP2)  
Instruction Dispatch  
Advanced Instruction Packet  
Control  
Logic  
Instruction Decode  
(A)  
McBSP0  
Data Path A  
Data Path B  
Test  
McASP0  
Control  
A Register File  
A31−A16  
B Register File  
B31−B16  
Advanced  
In-Circuit  
Emulation  
A15−A0  
B15−B0  
Video Port 1  
(VP1)  
Enhanced  
DMA  
Controller  
(EDMA)  
L2  
.L1 .S1 .M1 .D1  
.D2 .M2 .S2 .L2  
Interrupt  
Control  
OR  
Cache  
Memory  
256K  
8/10-bit VP1  
AND  
Bytes  
See Note (B)  
McASP0  
Data  
L1D Cache 2-Way Set-Associative  
16K Bytes Total  
Power-Down  
Logic  
PLL  
(x1, x6, x12)  
HPI32  
OR  
HPI16  
AND/OR  
EMAC  
MDIO  
16  
16  
GP0  
I2C0  
Boot Configuration  
A. McBSP: AC97 Devices; SPI Devices; Codecs  
B. The Video Port 1 (VP1) peripheral is muxed with the McASP0 data pins. The HPI(32/16) peripheral is muxed with the EMAC and MDIO  
peripherals. For more details on the multiplexed pins of these peripherals, see the Device Configurations section of this data sheet.  
Figure 1-1. Functional Block Diagram  
4
TMS320DM643 Video/Imaging Fixed-Point Digital Signal Processor  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
 
 
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
1
TMS320DM643 Video/Imaging Fixed-Point Digital  
Signal Processor ........................................ 1  
1.1 Device Compatibility ................................. 3  
1.2 Functional Block Diagram ............................ 4  
Device Overview ........................................ 6  
5
DM643 Peripheral Information and Electrical  
Specifications .......................................... 64  
5.1 Parameter Information .............................. 64  
5.2  
Recommended Clock and Control Signal Transition  
Behavior ............................................ 66  
2
5.3 Power Supplies ..................................... 66  
2.1 Device Characteristics ............................... 6  
2.2 CPU (DSP Core) Description ........................ 6  
2.3 Memory Map Summary ............................. 13  
2.4 Bootmode ........................................... 16  
2.5 Pin Assignments .................................... 16  
2.6 Development ........................................ 46  
Device Configurations ................................ 49  
3.1 Configurations at Reset ............................ 49  
3.2 Configurations After Reset ......................... 50  
3.3 Peripheral Configuration Lock ...................... 53  
3.4 Device Status Register Description ................ 55  
3.5 Multiplexed Pin Configurations ..................... 56  
3.6 Debugging Considerations ......................... 58  
5.4  
Enhanced Direct Memory Access (EDMA)  
Controller ........................................... 71  
5.5 Interrupts ............................................ 75  
5.6 Reset ............................................... 77  
5.7 Clock PLL ........................................... 80  
5.8 External Memory Interface (EMIIF) ................. 86  
5.9  
Multichannel Audio Serial Port (McASP0) Peripheral  
3
..................................................... 102  
5.10 Inter-Integrated Circuit (I2C) ...................... 110  
5.11 Host-Port Interface (HPI) .......................... 116  
5.12 Multichannel Buffered Serial Port (McBSP) ....... 122  
5.13 Video Port ......................................... 130  
5.14 VCXO Interpolated Control (VIC) ................. 138  
5.15 Ethernet Media Access Controller (EMAC) ....... 140  
5.16 Management Data Input/Output (MDIO) .......... 146  
5.17 Timer .............................................. 148  
5.18 General-Purpose Input/Output (GPIO) ............ 150  
5.19 JTAG .............................................. 153  
3.7 Configuration Examples ............................ 58  
4
Device Operating Conditions ....................... 62  
4.1  
Absolute Maximum Ratings Over Operating Case  
Temperature Range  
(Unless Otherwise Noted) ................................. 62  
4.2 Recommended Operating Conditions .............. 62  
6
7
Revision History ...................................... 155  
Mechanical Data ...................................... 156  
7.1 Thermal Data ...................................... 156  
7.2 Packaging Information ............................ 157  
4.3  
Electrical Characteristics Over Recommended  
Ranges of Supply Voltage and Operating Case  
Temperature (Unless Otherwise Noted) ............ 63  
Copyright © 2005–2010, Texas Instruments Incorporated  
Contents  
5
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
2 Device Overview  
2.1 Device Characteristics  
Table 2-1 provides an overview of the DM643 DSP. The table shows significant features of the DM643  
device, including the capacity of on-chip RAM, the peripherals, the CPU frequency, and the package type  
with pin count.  
Table 2-1. Characteristics of the DM643 Processor  
HARDWARE FEATURES  
DM643  
EMIFA (64-bit bus width)  
(clock source = AECLKIN)  
1
EDMA (64 independent channels)  
McASP0 (uses Peripheral Clock [AUXCLK])  
I2C0 (uses Peripheral Clock)  
1
1
1
Peripherals  
HPI (32- or 16-bit user selectable)  
1 (HPI16 or HPI32)  
McBSP  
Not all peripherals pins are  
available at the same time  
(For more detail, see the  
Device Configuration  
section).  
1
(internal clock source = CPU/4 clock frequency)  
Configurable Video Ports (VP1 and VP2)  
10/100 Ethernet MAC (EMAC)  
2
1
1
1
Management Data Input/Output (MDIO)  
VCXO Interpolated Control Port (VIC)  
32-Bit Timers  
(internal clock source = CPU/8 clock frequency)  
3
General-Purpose Input/Output Port (GP0)  
Size (Bytes)  
16  
288K  
16K-Byte (16KB) L1 Program (L1P) Cache  
16KB L1 Data (L1D) Cache  
On-Chip Memory  
Organization  
256KB Unified Mapped RAM/Cache (L2)  
CPU ID + CPU Rev ID  
JTAG BSDL_ID  
Frequency  
Control Status Register (CSR.[31:16])  
JTAGID register (address location: 0x01B3F008)  
MHz  
0x0C01  
0x0007902F  
500, 600  
2 ns (DM643-500)  
[500 MHz CPU, 100 MHz EMIF(1)  
1.67 ns (DM643-600)  
]
]
Cycle Time  
Voltage  
ns  
[600 MHz CPU, 133 MHz EMIF(1)  
1.2 V (-500)  
1.4 V (-600)  
Core (V)  
I/O (V)  
3.3 V  
PLL Options  
CLKIN frequency multiplier  
23 x 23 mm  
Bypass (x1), x6, x12  
548-Pin BGA (GDK and ZDK)  
548-Pin BGA (GNZ and ZNZ)  
0.13 µm  
BGA Package  
27 x 27 mm  
Process Technology  
Product Status(2)  
µm  
Product Preview (PP), Advance Information (AI),  
or Production Data (PD)  
PD  
(1) On this DM64x™ device, the rated EMIF speed affects only the SDRAM interface on the EMIF. For more detailed information, see the  
EMIF device speed portion of this data sheet.  
(2) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
2.2 CPU (DSP Core) Description  
The CPU fetches VelociTI™ advanced very-long instruction words (VLIWs) (256 bits wide) to supply up to  
eight 32-bit instructions to the eight functional units during every clock cycle. The VelociTI™ VLIW  
architecture features controls by which all eight units do not have to be supplied with instructions if they  
are not ready to execute. The first bit of every 32-bit instruction determines if the next instruction belongs  
6
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
 
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
to the same execute packet as the previous instruction, or whether it should be executed in the following  
clock as a part of the next execute packet. Fetch packets are always 256 bits wide; however, the execute  
packets can vary in size. The variable-length execute packets are a key memory-saving feature,  
distinguishing the C64x CPUs from other VLIW architectures. The C64x™ VelociTI.2™ extensions add  
enhancements to the TMS320C62x™ DSP VelociTI™ architecture. These enhancements include:  
Register file enhancements  
Data path extensions  
Quad 8-bit and dual 16-bit extensions with data flow enhancements  
Additional functional unit hardware  
Increased orthogonality of the instruction set  
Additional instructions that reduce code size and increase register flexibility  
The CPU features two sets of functional units. Each set contains four units and a register file. One set  
contains functional units .L1, .S1, .M1, and .D1; the other set contains units .D2, .M2, .S2, and .L2. The  
two register files each contain 32 32-bit registers for a total of 64 general-purpose registers. In addition to  
supporting the packed 16-bit and 32-/40-bit fixed-point data types found in the C62x™ VelociTI™ VLIW  
architecture, the C64x™ register files also support packed 8-bit data and 64-bit fixed-point data types. The  
two sets of functional units, along with two register files, compose sides A and B of the CPU [see the  
functional block and CPU (DSP core) diagram, and Figure 2-1]. The four functional units on each side of  
the CPU can freely share the 32 registers belonging to that side. Additionally, each side features a "data  
cross path"—a single data bus connected to all the registers on the other side, by which the two sets of  
functional units can access data from the register files on the opposite side. The C64x CPU pipelines  
data-cross-path accesses over multiple clock cycles. This allows the same register to be used as a  
data-cross-path operand by multiple functional units in the same execute packet. All functional units in the  
C64x CPU can access operands via the data cross path. Register access by functional units on the same  
side of the CPU as the register file can service all the units in a single clock cycle. On the C64x CPU, a  
delay clock is introduced whenever an instruction attempts to read a register via a data cross path if that  
register was updated in the previous clock cycle.  
In addition to the C62x™ DSP fixed-point instructions, the C64x™ DSP includes a comprehensive  
collection of quad 8-bit and dual 16-bit instruction set extensions. These VelociTI.2™ extensions allow the  
C64x CPU to operate directly on packed data to streamline data flow and increase instruction set  
efficiency. This is a key factor for video and imaging applications.  
Another key feature of the C64x CPU is the load/store architecture, where all instructions operate on  
registers (as opposed to data in memory). Two sets of data-addressing units (.D1 and .D2) are  
responsible for all data transfers between the register files and the memory. The data address driven by  
the .D units allows data addresses generated from one register file to be used to load or store data to or  
from the other register file. The C64x .D units can load and store bytes (8 bits), half-words (16 bits), and  
words (32 bits) with a single instruction. And with the new data path extensions, the C64x .D unit can load  
and store doublewords (64 bits) with a single instruction. Furthermore, the non-aligned load and store  
instructions allow the .D units to access words and doublewords on any byte boundary. The C64x CPU  
supports a variety of indirect addressing modes using either linear- or circular-addressing with 5- or 15-bit  
offsets. All instructions are conditional, and most can access any one of the 64 registers. Some registers,  
however, are singled out to support specific addressing modes or to hold the condition for conditional  
instructions (if the condition is not automatically "true").  
The two .M functional units perform all multiplication operations. Each of the C64x .M units can perform  
two 16 × 16-bit multiplies or four 8 × 8-bit multiplies per clock cycle. The .M unit can also perform 16 ×  
32-bit multiply operations, dual 16 × 16-bit multiplies with add/subtract operations, and quad 8 × 8-bit  
multiplies with add operations. In addition to standard multiplies, the C64x .M units include bit-count,  
rotate, Galois field multiplies, and bidirectional variable shift hardware.  
The two .S and .L functional units perform a general set of arithmetic, logical, and branch functions with  
results available every clock cycle. The arithmetic and logical functions on the C64x CPU include single  
32-bit, dual 16-bit, and quad 8-bit operations.  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
7
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
The processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a program  
memory. The 32-bit instructions destined for the individual functional units are "linked" together by "1" bits  
in the least significant bit (LSB) position of the instructions. The instructions that are "chained" together for  
simultaneous execution (up to eight in total) compose an execute packet. A "0" in the LSB of an  
instruction breaks the chain, effectively placing the instructions that follow it in the next execute packet. A  
C64x™ DSP device enhancement now allows execute packets to cross fetch-packet boundaries. In the  
TMS320C62x™/TMS320C67x™ DSP devices, if an execute packet crosses the fetch-packet boundary  
(256 bits wide), the assembler places it in the next fetch packet, while the remainder of the current fetch  
packet is padded with NOP instructions. In the C64x™ DSP device, the execute boundary restrictions  
have been removed, thereby, eliminating all of the NOPs added to pad the fetch packet, and thus,  
decreasing the overall code size. The number of execute packets within a fetch packet can vary from one  
to eight. Execute packets are dispatched to their respective functional units at the rate of one per clock  
cycle and the next 256-bit fetch packet is not fetched until all the execute packets from the current fetch  
packet have been dispatched. After decoding, the instructions simultaneously drive all active functional  
units for a maximum execution rate of eight instructions every clock cycle. While most results are stored in  
32-bit registers, they can be subsequently moved to memory as bytes, half-words, or doublewords. All  
load and store instructions are byte-, half-word-, word-, or doubleword-addressable.  
For more details on the C64x CPU functional units enhancements, see the following documents:  
TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189)  
TMS320C64x Technical Overview (literature number SPRU395)  
8
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
src1  
.L1  
src2  
dst  
8
long dst  
long src  
8
8
32 MSBs  
32 LSBs  
ST1b (Store Data)  
ST1a (Store Data)  
long src  
long dst  
dst  
8
Register  
File A  
(A0−A31)  
src1  
.S1  
Data Path A  
src2  
(A)  
(A)  
long dst  
dst  
src1  
.M1  
src2  
32 MSBs  
32 LSBs  
LD1b (Load Data)  
LD1a (Load Data)  
dst  
DA1 (Address)  
src1  
.D1  
.D2  
src2  
2X  
1X  
src2  
src1  
dst  
DA2 (Address)  
32 LSBs  
32 MSBs  
LD2a (Load Data)  
LD2b (Load Data)  
src2  
src1  
dst  
.M2  
(A)  
(A)  
long dst  
Register  
File B  
(B0− B31)  
src2  
Data Path B  
.S2  
src1  
dst  
8
8
long dst  
long src  
8
32 MSBs  
32 LSBs  
ST2a (Store Data)  
ST2b (Store Data)  
8
long src  
long dst  
dst  
src2  
.L2  
src1  
Control Register  
File  
A. For the .M functional units, the long dst is 32 MSBs and the dst is 32 LSBs.  
Figure 2-1. TMS320C64x™ CPU (DSP Core) Data Paths  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
9
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
2.2.1 CPU Core Registers  
Table 2-2. L2 Cache Registers (C64x)  
HEX ADDRESS RANGE  
0184 0000  
ACRONYM  
REGISTER NAME  
Cache configuration register  
Reserved  
COMMENTS  
CCFG  
0184 0004 – 0184 0FFC  
0184 1000  
EDMAWEIGHT L2 EDMA access control register  
0184 1004 – 0184 1FFC  
0184 2000  
Reserved  
L2ALLOC0  
L2ALLOC1  
L2ALLOC2  
L2ALLOC3  
L2 allocation register 0  
0184 2004  
L2 allocation register 1  
0184 2008  
L2 allocation register 2  
0184 200C  
L2 allocation register 3  
0184 2010 – 0184 3FFC  
0184 4000  
Reserved  
L2WBAR  
L2WWC  
L2WIBAR  
L2WIWC  
L2IBAR  
L2IWC  
L2 writeback base address register  
L2 writeback word count register  
L2 writeback invalidate base address register  
L2 writeback invalidate word count register  
L2 invalidate base address register  
L2 invalidate word count register  
L1P invalidate base address register  
L1P invalidate word count register  
L1D writeback invalidate base address register  
L1D writeback invalidate word count register  
Reserved  
0184 4004  
0184 4010  
0184 4014  
0184 4018  
0184 401C  
0184 4020  
L1PIBAR  
L1PIWC  
L1DWIBAR  
L1DWIWC  
0184 4024  
0184 4030  
0184 4034  
0184 4038 – 0184 4044  
0184 4048  
L1DIBAR  
L1DIWC  
L1D invalidate base address register  
L1D invalidate word count register  
Reserved  
0184 404C  
0184 4050 – 0184 4FFC  
0184 5000  
L2WB  
L2 writeback all register  
0184 5004  
L2WBINV  
L2 writeback invalidate all register  
Reserved  
0184 5008 – 0184 7FFC  
MAR0 to  
MAR127  
0184 8000 – 0184 81FC  
Reserved  
0184 8200  
0184 8204  
0184 8208  
0184 820C  
0184 8210  
0184 8214  
0184 8218  
0184 821C  
0184 8220  
0184 8224  
0184 8228  
0184 822C  
0184 8230  
0184 8234  
0184 8238  
0184 823C  
0184 8240  
0184 8244  
MAR128  
MAR129  
MAR130  
MAR131  
MAR132  
MAR133  
MAR134  
MAR135  
MAR136  
MAR137  
MAR138  
MAR139  
MAR140  
MAR141  
MAR142  
MAR143  
MAR144  
MAR145  
Controls EMIFA CE0 range 8000 0000 – 80FF FFFF  
Controls EMIFA CE0 range 8100 0000 – 81FF FFFF  
Controls EMIFA CE0 range 8200 0000 – 82FF FFFF  
Controls EMIFA CE0 range 8300 0000 – 83FF FFFF  
Controls EMIFA CE0 range 8400 0000 – 84FF FFFF  
Controls EMIFA CE0 range 8500 0000 – 85FF FFFF  
Controls EMIFA CE0 range 8600 0000 – 86FF FFFF  
Controls EMIFA CE0 range 8700 0000 – 87FF FFFF  
Controls EMIFA CE0 range 8800 0000 – 88FF FFFF  
Controls EMIFA CE0 range 8900 0000 – 89FF FFFF  
Controls EMIFA CE0 range 8A00 0000 – 8AFF FFFF  
Controls EMIFA CE0 range 8B00 0000 – 8BFF FFFF  
Controls EMIFA CE0 range 8C00 0000 – 8CFF FFFF  
Controls EMIFA CE0 range 8D00 0000 – 8DFF FFFF  
Controls EMIFA CE0 range 8E00 0000 – 8EFF FFFF  
Controls EMIFA CE0 range 8F00 0000 – 8FFF FFFF  
Controls EMIFA CE1 range 9000 0000 – 90FF FFFF  
Controls EMIFA CE1 range 9100 0000 – 91FF FFFF  
10  
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 2-2. L2 Cache Registers (C64x) (continued)  
HEX ADDRESS RANGE  
0184 8248  
0184 824C  
0184 8250  
0184 8254  
0184 8258  
0184 825C  
0184 8260  
0184 8264  
0184 8268  
0184 826C  
0184 8270  
0184 8274  
0184 8278  
0184 827C  
0184 8280  
0184 8284  
0184 8288  
0184 828C  
0184 8290  
0184 8294  
0184 8298  
0184 829C  
0184 82A0  
0184 82A4  
0184 82A8  
0184 82AC  
0184 82B0  
0184 82B4  
0184 82B8  
0184 82BC  
0184 82C0  
0184 82C4  
0184 82C8  
0184 82CC  
0184 82D0  
0184 82D4  
0184 82D8  
0184 82DC  
0184 82E0  
0184 82E4  
0184 82E8  
0184 82EC  
0184 82F0  
0184 82F4  
0184 82F8  
0184 82FC  
ACRONYM  
MAR146  
MAR147  
MAR148  
MAR149  
MAR150  
MAR151  
MAR152  
MAR153  
MAR154  
MAR155  
MAR156  
MAR157  
MAR158  
MAR159  
MAR160  
MAR161  
MAR162  
MAR163  
MAR164  
MAR165  
MAR166  
MAR167  
MAR168  
MAR169  
MAR170  
MAR171  
MAR172  
MAR173  
MAR174  
MAR175  
MAR176  
MAR177  
MAR178  
MAR179  
MAR180  
MAR181  
MAR182  
MAR183  
MAR184  
MAR185  
MAR186  
MAR187  
MAR188  
MAR189  
MAR190  
MAR191  
REGISTER NAME  
COMMENTS  
Controls EMIFA CE1 range 9200 0000 – 92FF FFFF  
Controls EMIFA CE1 range 9300 0000 – 93FF FFFF  
Controls EMIFA CE1 range 9400 0000 – 94FF FFFF  
Controls EMIFA CE1 range 9500 0000 – 95FF FFFF  
Controls EMIFA CE1 range 9600 0000 – 96FF FFFF  
Controls EMIFA CE1 range 9700 0000 – 97FF FFFF  
Controls EMIFA CE1 range 9800 0000 – 98FF FFFF  
Controls EMIFA CE1 range 9900 0000 – 99FF FFFF  
Controls EMIFA CE1 range 9A00 0000 – 9AFF FFFF  
Controls EMIFA CE1 range 9B00 0000 – 9BFF FFFF  
Controls EMIFA CE1 range 9C00 0000 – 9CFF FFFF  
Controls EMIFA CE1 range 9D00 0000 – 9DFF FFFF  
Controls EMIFA CE1 range 9E00 0000 – 9EFF FFFF  
Controls EMIFA CE1 range 9F00 0000 – 9FFF FFFF  
Controls EMIFA CE2 range A000 0000 – A0FF FFFF  
Controls EMIFA CE2 range A100 0000 – A1FF FFFF  
Controls EMIFA CE2 range A200 0000 – A2FF FFFF  
Controls EMIFA CE2 range A300 0000 – A3FF FFFF  
Controls EMIFA CE2 range A400 0000 – A4FF FFFF  
Controls EMIFA CE2 range A500 0000 – A5FF FFFF  
Controls EMIFA CE2 range A600 0000 – A6FF FFFF  
Controls EMIFA CE2 range A700 0000 – A7FF FFFF  
Controls EMIFA CE2 range A800 0000 – A8FF FFFF  
Controls EMIFA CE2 range A900 0000 – A9FF FFFF  
Controls EMIFA CE2 range AA00 0000 – AAFF FFFF  
Controls EMIFA CE2 range AB00 0000 – ABFF FFFF  
Controls EMIFA CE2 range AC00 0000 – ACFF FFFF  
Controls EMIFA CE2 range AD00 0000 – ADFF FFFF  
Controls EMIFA CE2 range AE00 0000 – AEFF FFFF  
Controls EMIFA CE2 range AF00 0000 – AFFF FFFF  
Controls EMIFA CE3 range B000 0000 – B0FF FFFF  
Controls EMIFA CE3 range B100 0000 – B1FF FFFF  
Controls EMIFA CE3 range B200 0000 – B2FF FFFF  
Controls EMIFA CE3 range B300 0000 – B3FF FFFF  
Controls EMIFA CE3 range B400 0000 – B4FF FFFF  
Controls EMIFA CE3 range B500 0000 – B5FF FFFF  
Controls EMIFA CE3 range B600 0000 – B6FF FFFF  
Controls EMIFA CE3 range B700 0000 – B7FF FFFF  
Controls EMIFA CE3 range B800 0000 – B8FF FFFF  
Controls EMIFA CE3 range B900 0000 – B9FF FFFF  
Controls EMIFA CE3 range BA00 0000 – BAFF FFFF  
Controls EMIFA CE3 range BB00 0000 – BBFF FFFF  
Controls EMIFA CE3 range BC00 0000 – BCFF FFFF  
Controls EMIFA CE3 range BD00 0000 – BDFF FFFF  
Controls EMIFA CE3 range BE00 0000 – BEFF FFFF  
Controls EMIFA CE3 range BF00 0000 – BFFF FFFF  
MAR192 to  
MAR255  
0184 8300 – 0184 83FC  
Reserved  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
11  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 2-2. L2 Cache Registers (C64x) (continued)  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
0184 8400 – 0187 FFFF  
Reserved  
12  
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
2.3 Memory Map Summary  
Table 2-3 shows the memory map address ranges of the DM643 device. Internal memory is always  
located at address 0 and can be used as both program and data memory. The external memory address  
ranges in the DM643 device begin at the hex address location 0x8000 0000 for EMIFA.  
Table 2-3. TMS320DM643 Memory Map Summary  
BLOCK SIZE  
MEMORY BLOCK DESCRIPTION  
Internal RAM (L2)  
HEX ADDRESS RANGE  
(BYTES)  
256K  
768K  
23M  
0000 0000 – 0003 FFFF  
0004 0000 – 000F FFFF  
0010 0000 – 017F FFFF  
0180 0000 – 0183 FFFF  
0184 0000 – 0187 FFFF  
0188 0000 – 018B FFFF  
018C 0000 – 018F FFFF  
0190 0000 – 0193 FFFF  
0194 0000 – 0197 FFFF  
0198 0000 – 019B FFFF  
019C 0000 – 019F FFFF  
01A0 0000 – 01A3 FFFF  
01A4 0000 – 01AB FFFF  
01AC 0000 – 01AF FFFF  
01B0 0000 – 01B3 EFFF  
01B3 F000 – 01B3 FFFF  
01B4 0000 – 01B4 3FFF  
01B4 4000 – 01B4 BFFF  
01B4 C000 – 01B4 FFFF  
01B5 0000 – 01B7 FFFF  
01B8 0000 – 01BB FFFF  
01BC 0000 – 01BF FFFF  
01C0 0000 – 01C3 FFFF  
01C4 0000 – 01C4 3FFF  
01C4 4000 – 01C4 7FFF  
01C4 8000 – 01C4 BFFF  
01C4 C000 – 01C4 FFFF  
01C5 0000 – 01C7 FFFF  
01C8 0000 – 01C8 0FFF  
01C8 1000 – 01C8 2FFF  
01C8 3000 – 01C8 37FF  
01C8 3800 – 01C8 3FFF  
01C8 4000 – 01FF FFFF  
0200 0000 – 0200 0033  
0200 0034 – 2FFF FFFF  
3000 0000 – 33FF FFFF  
3400 0000 – 37FF FFFF  
3800 0000 – 3BFF FFFF  
3C00 0000 – 3C0F FFFF  
3C10 0000 – 3FFF FFFF  
4000 0000 – 73FF FFFF  
7400 0000 – 75FF FFFF  
Reserved  
Reserved  
External Memory Interface A (EMIFA) Registers  
L2 Registers  
256K  
256K  
256K  
256K  
256K  
256K  
256K  
256K  
256K  
512K  
256K  
256K – 4K  
4K  
HPI Registers  
McBSP 0 Registers  
Reserved  
Timer 0 Registers  
Timer 1 Registers  
Interrupt Selector Registers  
EDMA RAM and EDMA Registers  
Reserved  
Timer 2 Registers  
GP0 Registers  
Device Configuration Registers  
I2C0 Data and Control Registers  
Reserved  
16K  
32K  
McASP0 Control Registers  
Reserved  
16K  
192K  
256K  
256K  
256K  
16K  
Reserved  
Emulation  
Reserved  
Reserved  
VP1 Control  
16K  
VP2 Control  
16K  
VIC Control  
16K  
Reserved  
192K  
4K  
EMAC Control  
EMAC Wrapper  
EWRAP Registers  
MDIO Control Registers  
Reserved  
8K  
2K  
2K  
3.5M  
52  
QDMA Registers  
Reserved  
928M – 52  
64M  
McBSP 0 Data  
Reserved  
64M  
Reserved  
64M  
McASP0 Data  
1M  
Reserved  
64M – 1M  
832M  
32M  
Reserved  
Reserved  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
13  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 2-3. TMS320DM643 Memory Map Summary (continued)  
BLOCK SIZE  
(BYTES)  
MEMORY BLOCK DESCRIPTION  
HEX ADDRESS RANGE  
Reserved  
32M  
32M  
32M  
32M  
32M  
256M  
256M  
256M  
256M  
1G  
7600 0000 – 77FF FFFF  
7800 0000 – 79FF FFFF  
7A00 0000 – 7BFF FFFF  
7C00 0000 – 7DFF FFFF  
7E00 0000 – 7FFF FFFF  
8000 0000 – 8FFF FFFF  
9000 0000 – 9FFF FFFF  
A000 0000 – AFFF FFFF  
B000 0000 – BFFF FFFF  
C000 0000 – FFFF FFFF  
VP1 Channel A Data  
VP1 Channel B Data  
VP2 Channel A Data  
VP2 Channel B Data  
EMIFA CE0  
EMIFA CE1  
EMIFA CE2  
EMIFA CE3  
Reserved  
14  
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
2.3.1 L2 Architecture Expanded  
Figure 2-2 shows the detail of the L2 architecture on the TMS320DM643 device. For more information on  
the L2MODE bits, see the cache configuration (CCFG) register bit field descriptions in the TMS320C64x  
Two-Level Internal Memory Reference Guide (literature number SPRU610).  
L2MODE  
010  
L2 Memory  
Block Base Address  
000  
001  
011  
111  
0x0000 0000  
128K-Byte SRAM  
0x0002 0000  
64K-Byte RAM  
0x0003 0000  
0x0003 8000  
32K-Byte RAM  
32K-Byte RAM  
0x0003 FFFF  
0x0004 0000  
Figure 2-2. TMS320DM643 L2 Architecture Memory Configuration  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
15  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
2.4 Bootmode  
The DM643 device resets using the active-low signal RESET. While RESET is low, the device is held in  
reset and is initialized to the prescribed reset state. Refer to reset timing for reset timing characteristics  
and states of device pins during reset. The release of RESET starts the processor running with the  
prescribed device configuration and boot mode.  
The DM643 has three types of boot modes:  
Host boot  
If host boot is selected, upon release of RESET, the CPU is internally "stalled" while the remainder of  
the device is released. During this period, an external host can initialize the CPU's memory space as  
necessary through the host interface, including internal configuration registers, such as those that  
control the EMIF or other peripherals. Once the host is finished with all necessary initialization, it must  
set the DSPINT bit in the HPIC register to complete the boot process. This transition causes the boot  
configuration logic to bring the CPU out of the "stalled" state. The CPU then begins execution from  
address 0. The DSPINT condition is not latched by the CPU, because it occurs while the CPU is still  
internally "stalled". Also, DSPINT brings the CPU out of the "stalled" state only if the host boot process  
is selected. All memory may be written to and read by the host. This allows for the host to verify what it  
sends to the DSP if required. After the CPU is out of the "stalled" state, the CPU needs to clear the  
DSPINT, otherwise, no more DSPINTs can be received.  
EMIF boot (using default ROM timings)  
Upon the release of RESET, the 1K-Byte ROM code located in the beginning of CE1 is copied to  
address 0 by the EDMA using the default ROM timings, while the CPU is internally "stalled". The data  
should be stored in the endian format that the system is using. In this case, the EMIF automatically  
assembles consecutive 8-bit bytes to form the 32-bit instruction words to be copied. The transfer is  
automatically done by the EDMA as a single-frame block transfer from the ROM to address 0. After  
completion of the block transfer, the CPU is released from the "stalled" state and starts running from  
address 0.  
No boot  
With no boot, the CPU begins direct execution from the memory located at address 0. Note: operation  
is undefined if invalid code is located at address 0.  
2.5 Pin Assignments  
2.5.1 Pin Map  
Figure 2-3 through Figure 2-6 show the DM643 pin assignments in four quadrants (A, B, C, and D).  
16  
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
AF  
V
DV  
RSV04  
VP1CTL0  
VP1D[0]  
V
VP1CLK0  
VP1CLK1  
V
RSV19  
V
SS  
VP1D[1]  
SS  
DD  
DD  
SS  
V
SS  
SS  
VP1D[15]/  
AXR0[3]  
AE  
DV  
DV  
V
CLKMODE1 VP1CTL1  
VP1D[2]  
VP1D[3]  
VP1D[4]  
VP1D[5]  
VP1D[6]  
VP1D[7]  
V
VP1D[10]  
VP1D[11]  
V
V
DV  
DD  
DD  
SS  
SS  
SS  
SS  
VDAC/  
GP0[8]  
VP1D[13]/  
AXR0[1]  
VP1D[16]/  
AXR0[4]  
AD  
AC  
AB  
AA  
Y
AFSX0  
AMUTEIN0  
AMUTE0  
ACLKX0  
V
RSV03  
V
VP1CTL2  
VP1D[8]  
VP1D[9]  
SS  
SS  
VP1D[12]/  
AXR0[0]  
VP1D[14]/  
AXR0[2]  
VP1D[17]/  
AXR0[5]  
AHCLKX0  
STCLK  
CLKIN  
V
RSV02  
V
SS  
SS  
VP1D[18]/  
AXR0[6]  
VP1D[19]/  
AXR0[7]  
V
V
RSV01  
RSV00  
HD0  
V
V
DV  
V
DV  
CV  
CV  
DV  
V
DV  
DD  
SS  
SS  
SS  
SS  
DD  
SS  
DD  
DD  
DD  
DD  
SS  
HD1  
HD5  
CLKMODE0  
HD3  
V
CV  
CV  
V
V
DV  
V
V
DV  
V
SS  
SS  
DD  
DD  
SS  
DD  
SS  
SS  
DD  
HD2  
HD6  
DV  
DV  
V
CV  
V
CV  
CV  
V
CV  
DD  
DD  
DD  
DD  
SS  
DD  
DD  
SS  
W
V
HD7  
HD4  
V
RSV06  
SS  
SS  
HD10  
HD14  
HD8  
HD9  
RSV10  
HD11  
PLLV  
V
SS  
SS  
U
HD12  
HDS2  
HDS1  
HD13  
HD15  
HCNTL0  
DV  
V
V
CV  
DD  
DD  
SS  
T
V
RSV11  
RSV12  
V
CV  
DD  
SS  
SS  
SS  
R
HCS  
MDCLK  
RSV08  
V
V
CV  
V
SS  
SS  
DD  
P
HCNTL1  
V
HAS  
3
RESET  
4
MDIO  
5
V
CV  
DD  
CV  
SS  
SS  
DD  
SS  
1
2
6
7
8
9
10  
11  
12  
13  
Figure 2-3. DM643 Pin Map [Quadrant A]  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
17  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
AF  
AED50  
AED54  
V
AED62  
AED63  
DV  
V
SS  
RSV18  
V
FSX0  
CLKX0  
RSV13  
V
SS  
DD  
DD  
SS  
SS  
SS  
AE  
AED52  
AED53  
AED51  
AED56  
AED57  
AED55  
AED58  
AED59  
AED61  
AED60  
V
DV  
DV  
DD  
V
CLKR0  
RSV15  
RSV16  
RSV17  
DX0  
RSV23  
DR0  
RSV20  
RSV22  
RSV21  
RSV14  
V
SS  
SS  
AD  
AC  
AB  
AA  
Y
AED48  
AED49  
DV  
DD  
AED33  
AED34  
AED37  
AED40  
AED44  
AED32  
AED35  
ACLKR0  
AFSR0  
V
SS  
V
DV  
DD  
V
V
SS  
SS  
SS  
DV  
DD  
DV  
DD  
V
DV  
DD  
AED38  
AED41  
AED45  
AED47  
AEA18  
AEA22  
ABE6  
AED36  
AED39  
AED43  
AHOLD  
AEA21  
AEA17  
AEA14  
AEA11  
V
AHCLKR0  
FSR0  
DV  
DD  
V
SS  
SS  
SS  
DV  
V
V
DV  
V
CV  
CV  
CV  
CV  
CV  
V
SS  
AED42  
AED46  
DD  
SS  
SS  
DD  
SS  
DD  
DD  
DD  
DD  
DD  
V
SS  
CV  
V
CV  
CV  
V
CV  
DV  
DV  
DD  
SS  
DD  
DD  
SS  
DD  
DD  
DD  
W
V
V
DV  
V
SS  
SS  
DD  
V
DV  
V
SS  
AEA20  
AEA16  
AEA13  
ABE5  
AEA19  
AEA15  
SS  
DD  
U
CV  
CV  
V
V
DV  
DD  
DD  
DD  
SS  
T
ABE7  
V
SS  
SS  
R
V
CV  
V
DV  
DD  
ASOE3  
AEA12  
ABE4  
SS  
DD  
SS  
P
CV  
V
CV  
V
ABUSREQ  
22  
AEA10  
23  
AEA9  
24  
DV  
DD  
AEA8  
26  
DD  
SS  
DD  
SS  
14  
15  
16  
17  
18  
19  
20  
21  
25  
Figure 2-4. DM643 Pin Map [Quadrant B]  
18  
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
N
M
L
HRDY  
HR/W  
DV  
HHWIL  
HINT  
V
V
CV  
V
CV  
DD  
DD  
SS  
SS  
DD  
SS  
HD17/  
MTXD1  
HD16/  
MTXD0  
HD18/  
MTXD2  
GP0[0]  
GP0[3]  
DV  
V
CV  
V
SS  
DD  
SS  
DD  
HD19/  
MTXD3  
HD20/  
MTXEN  
HD22/  
MTCLK  
V
V
V
CV  
CV  
SS  
SS  
DD  
DD  
HD21/  
MCOL  
HD24/  
MRXD0  
K
J
HD23  
GP0[9]  
DV  
DD  
SS  
HD25/  
MRXD1  
HD26/  
MRXD2  
HD28/  
MRXDV  
GP0[10]  
V
DV  
V
SS  
SS  
DD  
HD27/  
MRXD3  
HD30/  
MCRS  
H
G
F
V
GP0[12]  
DV  
DV  
V
SS  
RSV07  
SS  
DD  
DD  
HD31/  
MRCLK  
HD29/  
MRXER  
GP0[15]  
GP0[5]/  
GP0[13]  
GP0[4]/  
CV  
CV  
CV  
DD  
CV  
V
CV  
CV  
V
CV  
DD  
DD  
DD  
DD  
SS  
DD  
DD  
SS  
GP0[6]/  
GP0[11]  
V
CV  
DV  
V
DV  
V
V
DV  
V
SS  
SS  
DD  
DD  
SS  
DD  
SS  
SS  
DD  
EXT_INT6 EXT_INT5 EXT_INT4  
GP0[7]/  
EXT_INT7  
E
D
C
B
A
RSV09  
V
SCL0  
DV  
V
DV  
V
DV  
DD  
VP2D[14]  
VP2D[13]  
VP2D[12]  
VP2D[11]  
VP2D[18]  
VP2D[17]  
VP2D[16]  
VP2D[15]  
VP2D[19]  
SS  
DD  
SS  
DD  
SS  
CLKOUT4/  
GP0[1]  
V
V
V
SDA0  
DV  
V
VP2CTL1  
VP2CTL2  
VP2D[1]  
VP2D[0]  
VP2CTL0  
VP2D[5]  
VP2D[4]  
VP2D[3]  
VP2D[9]  
VP2D[8]  
VP2D[7]  
V
V
V
SS  
SS  
SS  
DD  
SS  
SS  
SS  
SS  
TOUT0/  
MAC_EN  
CLKOUT6/  
GP0[2]  
GP0[14]  
DV  
V
SS  
DD  
TOUT1/  
LENDIAN  
DV  
DV  
DV  
V
V
NMI  
V
V
V
SS  
DD  
DD  
DD  
SS  
SS  
SS  
V
TINP0  
4
TINP1  
5
VP2CLK0  
V
VP2D[2]  
9
VP2D[6]  
10  
VP2D[10]  
11  
V
SS  
VP2CLK1  
13  
SS  
SS  
SS  
1
2
3
6
7
8
12  
Figure 2-5. DM643 Pin Map [Quadrant C]  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
19  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
N
M
L
V
CV  
CV  
V
AHOLDA  
AEA7  
AEA6  
V
SS  
AEA5  
ABE2  
ACE3  
SS  
DD  
DD  
SS  
CV  
V
V
DV  
DD  
APDT  
AEA4  
ABE1  
ACE2  
AEA3  
ABE0  
ABE3  
ASDCKE  
ACE0  
DD  
SS  
SS  
CV  
CV  
V
V
AARDY  
DD  
DD  
SS  
AAWE/  
ASDWE/  
ASWE  
K
J
DV  
ACE1  
SS  
DD  
AARE/  
ASDCAS/  
ASADS/  
ASRE  
AAOE/  
AECLKOUT2 ASDRAS/  
ASOE  
V
DV  
V
SS  
AECLKOUT1  
SS  
DD  
H
G
F
CV  
CV  
CV  
DV  
V
DV  
DV  
AED17  
AED19  
AED23  
AED16  
AED21  
AED25  
AED27  
AECLKIN  
AED20  
AED24  
AED26  
AED28  
AED30  
V
SS  
DD  
DD  
DD  
DD  
SS  
DD  
DD  
CV  
V
CV  
CV  
V
CV  
CV  
CV  
AED18  
AED22  
DD  
SS  
DD  
DD  
SS  
DD  
DD  
DD  
V
DV  
V
V
V
DV  
V
V
SS  
SS  
DD  
SS  
SS  
DD  
SS  
E
D
C
B
A
RSV05  
TRST  
EMU1  
TMS  
DV  
V
V
V
DV  
V
DV  
V
V
SS  
SS  
DD  
SS  
DD  
SS  
DD  
SS  
EMU4  
EMU3  
EMU2  
EMU8  
EMU6  
EMU5  
EMU11  
EMU10  
EMU9  
AED14  
AED15  
AED12  
AED10  
AED11  
AED8  
AED6  
AED7  
V
DV  
V
SS  
AED29  
AED31  
SS  
SS  
SS  
DD  
AED4  
AED3  
V
DV  
DD  
SS  
DV  
TDO  
V
V
AED2  
AED0  
DV  
DV  
DV  
DD  
DD  
SS  
SS  
DD  
V
EMU0  
15  
TCK  
16  
EMU7  
17  
TDI  
18  
AED13  
20  
AED9  
21  
V
AED5  
23  
AED1  
24  
V
SS  
SS  
SS  
22  
DD  
25  
14  
19  
26  
Figure 2-6. DM643 Pin Map [Quadrant D]  
20  
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
2.5.2 Signal Groups Description  
RESET  
NMI  
CLKIN  
(A)  
(B)  
CLKOUT4/GP0[1]  
GP0[7]/EXT_INT7  
GP0[6]/EXT_INT6  
GP0[5]/EXT_INT5  
GP0[4]/EXT_INT4  
Reset and  
Interrupts  
(A)  
(B)  
CLKOUT6/GP0[2]  
Clock/PLL  
(B)  
CLKMODE1  
CLKMODE0  
PLLV  
(B)  
RSV23  
RSV22  
RSV21  
TMS  
TDO  
TDI  
TCK  
Reserved  
TRST  
EMU0  
EMU1  
EMU2  
EMU3  
EMU4  
EMU5  
EMU6  
EMU7  
EMU8  
EMU9  
EMU10  
EMU11  
RSV02  
RSV01  
RSV00  
IEEE Standard  
1149.1  
(JTAG)  
Emulation  
Peripheral  
Control/Status  
TOUT0/MAC_EN  
Control/Status  
(B)  
GP0[7]/EXT_INT7  
GP0[15]  
GP0[14]  
GP0[13]  
(B)  
GP0[6]/EXT_INT6  
(B)  
GP0[5]/EXT_INT5  
(B)  
GP0[4]/EXT_INT4  
GP0[3]  
GP0[12]  
GP0[11]  
GP0[10]  
GP0  
(A)  
CLKOUT6/GP0[2]  
(A)  
CLKOUT4/GP0[1]  
GP0[0]  
GP0[9]  
VDAC/GP0[8]  
General-Purpose Input/Output 0 (GP0) Port  
A. These pins are muxed with the GP0 pins and by default these signals function as clocks (CLKOUT4 or CLKOUT6). To use these muxed  
pins as GPIO signals, the appropriate GPIO register bits (GPxEN and GPxDIR) must be properly enabled and configured. For more  
details, see the Device Configurations section of this data sheet.  
B. These pins are GP0 pins that can also function as external interrupt sources (EXT_INT[7:4]). Default after reset is EXT_INTx or GPIO as  
input-only.  
Figure 2-7. CPU and Peripheral Signals  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
21  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
64  
Data  
AED[63:0]  
AECLKIN  
AECLKOUT1  
AECLKOUT2  
ASDCKE  
ACE3  
ACE2  
Memory Map  
Space Select  
External  
Memory I/F  
Control  
AARE/ASDCAS/ASADS/ASRE  
ACE1  
ACE0  
AAOE/ASDRAS/ASOE  
AAWE/ASDWE/ASWE  
AARDY  
20  
Address  
AEA[22:3]  
ASOE3  
ABE7  
ABE6  
ABE5  
ABE4  
ABE3  
ABE2  
ABE1  
ABE0  
APDT  
Byte Enables  
AHOLD  
Bus  
Arbitration  
AHOLDA  
ABUSREQ  
EMIFA (64-bit)  
Data  
VDAC/GP0[8]  
VCXO Interpolated  
Control Port (VIC)  
Figure 2-8. EMIFA/VIC Peripheral Signals  
HPI  
32  
HD[15:0]  
(Host-Port Interface)  
Data  
(A)  
HD[31:16]  
HAS  
HR/W  
HCS  
HDS1  
HDS2  
HRDY  
HCNTL0  
HCNTL1  
Register Select  
Control  
Half-Word  
Select  
HHWIL  
(HPI16 ONLY)  
HINT  
A. These HPI data pins (HD[31:16], excluding HD[23]) are muxed with the EMAC peripheral. By default, these pins function as HPI.  
For more details on the EMAC pin functions, see the Ethernet MAC (EMAC) peripheral signals section and the terminal functions  
table portions of this data sheet.  
Figure 2-9. HPI Peripheral Signals  
22  
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
McBSP0  
Transmit  
CLKX0  
FSX0  
DX0  
CLKR0  
FSR0  
Receive  
Clock  
DR0  
CLKS0 not supported  
on DM643  
McBSP  
(Multichannel Buffered  
Serial Port)  
TOUT1/LENDIAN  
TINP1  
TOUT0/MACEN  
TINP0  
Timer 0  
Timer 1  
Timer 2  
Timers  
SCL0  
SDA0  
I2C0  
I2C0  
Figure 2-10. McBSP/Timer/I2C0 Peripheral Signals  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
23  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
EMAC  
(A)  
HD16/MTXD0  
(A)  
HD17/MTXD1  
Transmit  
(A)  
HD18/MTXD2  
(A)  
HD19/MTXD3  
MDIO  
(A)  
HD24/MRXD0  
(A)  
HD25/MRXD1  
Receive  
MDIO  
Input/Output  
(A)  
HD26/MRXD2  
(A)  
HD27/MRXD3  
(A)  
HD20/MTXEN  
Clock  
MDCLK  
(A)  
HD29/MRXER  
Error Detect  
and Control  
(A)  
HD28/MRXDV  
(A)  
HD21/MCOL  
(A)  
HD30/MCRS  
(A)  
HD22/MTCLK  
HD31/MRCLK  
Clocks  
(A)  
Ethernet MAC (EMAC)  
and MDIO  
A. These EMAC pins are muxed with the upper data pins of the HPI peripheral. By default, these signals function as HPI. For more details  
on these muxed pins, see the Device Configurations section of this data sheet.  
Figure 2-11. EMAC/MDIO Peripheral Signals  
24  
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
(C)  
STCLK  
VP1CLK0  
VP1CLK1  
VP1CTL0  
VP1CTL1  
VP1CTL2  
Timing and  
Control Logic  
VP1D[0]  
VP1D[1]  
VP1D[2]  
VP1D[3]  
VP1D[4]  
VP1D[5]  
VP1D[6]  
VP1D[7]  
VP1D[8]  
VP1D[9]  
VP1D[10]  
VP1D[11]  
VP1D[12]/AXR0[0]  
VP1D[13]/AXR0[1]  
VP1D[14]/AXR0[2]  
VP1D[15]/AXR0[3]  
VP1D[16]/AXR0[4]  
VP1D[17]/AXR0[5]  
VP1D[18]/AXR0[6]  
VP1D[19]/AXR0[7]  
Capture/Display  
Buffer  
(2560 Bytes)  
(A)  
Channel A  
Channel B uses only  
the VP1D[19:10]  
bidirectional pins  
Capture/Display  
Buffer  
(2560 Bytes)  
(B)  
Channel B  
Video Port 1 (VP1)  
A. Channel A supports: BT.656 (8/10-bit), Y/C Video (16/20-bit), RAW Video (16/20-bit) display modes and BT.656 (8/10-bit), Y/C Video  
(16/20-bit), RAW Video (16/20-bit) capture modes [TSI (8-bit) capture mode].  
B. Channel B supports: BT.656 (8/10-bit), RAW Video (8/10-bit) capture modes and can display synchronized RAW Video data with  
Channel A.  
C. The same STCLK signal is used for both video ports (VP1 and VP2).  
Figure 2-12. Video Port 1 Peripheral Signals  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
25  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
(C)  
STCLK  
VP2CLK0  
VP2CLK1  
VP2CTL0  
VP2CTL1  
VP2CTL2  
Timing and  
Control Logic  
VP2D[0]  
VP2D[1]  
VP2D[2]  
VP2D[3]  
VP2D[4]  
VP2D[5]  
VP2D[6]  
VP2D[7]  
VP2D[8]  
VP2D[9]  
VP2D[10]  
VP2D[11]  
VP2D[12]  
VP2D[13]  
VP2D[14]  
VP2D[15]  
VP2D[16]  
VP2D[17]  
VP2D[18]  
VP2D[19]  
Capture/Display  
Buffer  
(2560 Bytes)  
(A)  
Channel A  
Channel B uses only  
the VP2D[19:10]  
bidirectional pins  
Capture/Display  
Buffer  
(2560 Bytes)  
(B)  
Channel B  
Video Port 2 (VP2)  
A. Channel A supports: BT.656 (8/10-bit), Y/C Video (16/20-bit), RAW Video (16/20-bit) display modes and BT.656 (8/10-bit), Y/C  
Video (16/20-bit), RAW Video (16/20-bit) capture modes [TSI (8-bit) capture mode].  
B. Channel B supports: BT.656 (8/10-bit), RAW Video (8/10-bit) capture modes and can display synchronized RAW Video data with  
Channel A.  
C. The same STCLK signal is used for both video ports (VP1 and VP2).  
Figure 2-13. Video Port 2 Peripheral Signals  
26  
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
(Transmit/Receive Data Pins)  
(Transmit/Receive Data Pins)  
VP1D[12]/AXR0[0]  
VP1D[13]/AXR0[1]  
VP1D[14]/AXR0[2]  
VP1D[15]/AXR0[3]  
VP1D[16]/AXR0[4]  
VP1D[17]/AXR0[5]  
VP1D[18]/AXR0[6]  
VP1D[19]/AXR0[7]  
8-Serial Ports  
Flexible  
Partitioning  
Tx, Rx, OFF  
(Transmit Bit Clock)  
(Receive Bit Clock)  
Transmit  
Clock  
Generator  
ACLKX0  
Receive Clock  
Generator  
ACLKR0  
AHCLKR0  
AHCLKX0  
(Receive Master Clock)  
(Transmit Master Clock)  
Transmit  
Clock Check  
Circuit  
Receive Clock  
Check Circuit  
Receive Frame  
Sync  
Transmit  
Frame Sync  
AFSR0  
AFSX0  
(Receive Frame Sync or  
Left/Right Clock)  
(Transmit Frame Sync or  
Left/Right Clock)  
(A)  
Error Detect  
AMUTE0  
AMUTEIN0  
Auto Mute  
Logic  
McASP0  
(Multichannel Audio Serial Port 0)  
NOTES: On multiplexed pins, bolded text denotes the active function of the pin for that particular peripheral module.  
Bolded and italicized text within parentheses denotes the function of the pins in an audio system.  
A. The McASP’s Error Detect function detects underruns, overruns, early/late frame syncs, DMA errors, and external mute input.  
Figure 2-14. McASP0 Peripheral Signals  
2.5.3 Terminal Functions  
Table 2-4, the terminal functions table, identifies the external signal names, the associated pin (ball)  
numbers along with the mechanical package designator, the pin type (I, O/Z, or I/O/Z), whether the pin  
has any internal pullup/pulldown resistors and a functional pin description. For more detailed information  
on device configuration, peripheral selection, multiplexed/shared pins, and debugging considerations, see  
the Device Configurations section of this data sheet.  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
27  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 2-4. Terminal Functions  
SIGNAL  
NAME  
IPD/  
TYPE(1)  
DESCRIPTION  
IPU(2)  
NO.  
CLOCK/PLL CONFIGURATION  
CLKIN  
AC2  
D6  
I
Clock Input. This clock is the input to the on-chip PLL.  
Clock output at 1/4 of the device speed (O/Z) [default] or this pin can be  
programmed as a GP0 1 pin (I/O/Z).  
CLKOUT4/GP0[1](3)  
I/O/Z  
IPU  
Clock output at 1/6 of the device speed (O/Z) [default] or this pin can be  
programmed as a GP0 2 pin (I/O/Z).  
CLKOUT6/GP0[2](3)  
CLKMODE1  
C6  
I/O/Z  
I
IPU  
IPD  
AE4  
Clock mode select  
Selects whether the CPU clock frequency = input clock frequency x1  
(Bypass), x6, or x12.  
CLKMODE0  
PLLV(4)  
AA2  
V6  
I
IPD  
For more details on the CLKMODE pins and the PLL multiply factors, see  
the Clock PLL section of this data sheet.  
A(1)  
PLL voltage supply  
JTAG EMULATION  
TMS  
TDO  
TDI  
E15  
B18  
A18  
A16  
I
IPU  
IPU  
IPU  
IPU  
JTAG test-port mode select  
JTAG test-port data out  
JTAG test-port data in  
JTAG test-port clock  
O/Z  
I
I
TCK  
JTAG test-port reset. For IEEE 1149.1 JTAG compatibility, see the IEEE 1149.1  
JTAG compatibility statement portion of this data sheet.  
TRST  
D14  
I
IPD  
EMU11  
EMU10  
EMU9  
EMU8  
EMU7  
EMU6  
EMU5  
EMU4  
EMU3  
EMU2  
EMU1  
EMU0  
D17  
C17  
B17  
D16  
A17  
C16  
B16  
D15  
C15  
B15  
C14  
A15  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
Emulation pin 11. Reserved for future use, leave unconnected.  
Emulation pin 10. Reserved for future use, leave unconnected.  
Emulation pin 9. Reserved for future use, leave unconnected.  
Emulation pin 8. Reserved for future use, leave unconnected.  
Emulation pin 7. Reserved for future use, leave unconnected.  
Emulation pin 6. Reserved for future use, leave unconnected.  
Emulation pin 5. Reserved for future use, leave unconnected.  
Emulation pin 4. Reserved for future use, leave unconnected.  
Emulation pin 3. Reserved for future use, leave unconnected.  
Emulation pin 2. Reserved for future use, leave unconnected.  
(5)  
Emulation pin 1  
(5)  
Emulation pin 0  
RESETS, INTERRUPTS, AND GENERAL-PURPOSE INPUT/OUTPUTS  
RESET  
NMI  
P4  
B4  
I
I
Device reset  
Nonmaskable interrupt, edge-driven (rising edge)  
Note: Any noise on the NMI pin may trigger an NMI interrupt; therefore, if the  
NMI pin is not used, it is recommended that the NMI pin be grounded versus  
relying on the IPD.  
IPD  
GP0[7]/EXT_INT7  
GP0[6]/EXT_INT6  
GP0[5]/EXT_INT5  
E1  
F2  
F3  
I/O/Z  
I/O/Z  
I/O/Z  
IPU  
IPU  
IPU  
General-purpose input/output (GPIO) pins (I/O/Z) or external interrupts (input  
only). The default after reset setting is GPIO enabled as input-only.  
When these pins function as External Interrupts [by selecting the  
corresponding interrupt enable register bit (IER.[7:4])], they are edge-driven  
and the polarity can be independently selected via the External Interrupt  
Polarity Register bits (EXTPOL.[3:0]).  
GP0[4]/EXT_INT4  
F4  
I/O/Z  
IPU  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal  
(2) IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the  
opposite supply rail, a 1-kresistor should be used.)  
(3) These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.  
(4) PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin.  
(5) The EMU0 and EMU1 pins are internally pulled up with 30-kresistors; therefore, for emulation and normal operation, no external  
pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated  
1-kresistor.  
28  
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 2-4. Terminal Functions (continued)  
SIGNAL  
NAME  
IPD/  
TYPE(1)  
DESCRIPTION  
IPU(2)  
NO.  
G3  
C1  
G4  
H4  
F1  
GP0[15]  
GP0[14]  
GP0[13]  
GP0[12]  
GP0[11]  
GP0[10]  
GP0[9]  
General-purpose input/output GP0[15:9] pins (I/O/Z).  
Note: By default, no function is enabled upon reset. To configure these pins, see  
the Device Configuration section of this data sheet.  
I/O/Z  
J2  
K3  
L5  
GP0[3]  
IPD  
IPD  
GP0 3 pin (I/O/Z)  
General-purpose 0 pin (GP0[0]) (I/O/Z) [default]  
This pin can be programmed as GPIO 0 (input only) [default] or as GP0[0]  
(output only) pin or output as a general-purpose interrupt (GP0INT) signal  
(output only).  
GP0[0]  
M5  
I/O/Z  
I/O/Z  
Note: This pin must remain low during device reset.  
VCXO Interpolated Control Port (VIC) single-bit digital-to-analog converter  
(VDAC) output [output only] [default] or this pin can be programmed as a GP0 8  
pin (I/O/Z).  
VDAC/GP0[8](3)  
AD1  
IPD  
Clock output at 1/6 of the device speed (O/Z) [default] or this pin can be  
programmed as a GP0 2 pin (I/O/Z).  
CLKOUT6/GP0[2](3)  
CLKOUT4/GP0[1](3)  
C6  
D6  
I/O/Z  
I/O/Z  
IPD  
IPD  
Clock output at 1/4 of the device speed (O/Z) [default] or this pin can be  
programmed as a GP0 1 pin (I/O/Z).  
HOST-PORT INTERFACE (HPI) or EMAC  
HINT  
N4  
P1  
R3  
O/Z  
Host interrupt from DSP to host (O).  
HCNTL1  
HCNTL0  
I
I
Host control – selects between control, address, or data registers (I).  
Host control – selects between control, address, or data registers (I).  
Host half-word select – first or second half-word (not necessarily high or low  
order). [For HPI16 bus width selection only] (I).  
HHWIL  
N3  
I
HR/W  
HAS  
M1  
P3  
R1  
R2  
I
I
I
I
Host read or write select (I).  
Host address strobe (I)  
Host chip select (I)  
Host data strobe 1 (I)  
Host data strobe 2 (I)  
HCS  
HDS1  
Note: If unused, the following HPI control signals should be externally pulled  
high.  
HDS2  
HRDY  
T2  
N1  
I
O/Z  
Host ready from DSP to host (O)  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
Submit Documentation Feedback  
29  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 2-4. Terminal Functions (continued)  
SIGNAL  
NAME  
IPD/  
TYPE(1)  
DESCRIPTION  
IPU(2)  
NO.  
G1  
H3  
G2  
J4  
HD31/MRCLK(6)  
HD30/MCRS(6)  
HD29/MRXER(6)  
HD28/MRXDV(6)  
HD27/MRXD3(6)  
HD26/MRXD2(6)  
HD25/MRXD1(6)  
HD24/MRXD0(6)  
HD23  
HD22/MTCLK(6)  
HD21/MCOL(6)  
HD20/MTXEN(6)  
HD19/MTXD3(6)  
HD18/MTXD2(6)  
HD17/MTXD1(6)  
HD16/MTXD0(6)  
HD15  
H2  
J3  
J1  
K4  
K1  
L4  
Host-port data (I/O/Z) [default] or EMAC transmit/receive or control pins  
As HPI data bus  
K2  
L3  
Used for transfer of data, address, and control  
Host-Port bus width user-configurable at device reset via a 10-kresistor  
pullup/pulldown resistor on the HD5 pin:  
L2  
Note: If a configuration pin must be routed out from the device, the internal  
pullup/pulldown (IPU/IPD) resistor should not be relied upon; TI recommends the  
use of an external pullup/pulldown resistor.  
M4  
M2  
M3  
T3  
Boot Configuration:  
I/O/Z  
HD5 pin = 0: HPI operates as an HPI16.  
(HPI bus is 16 bits wide. HD[15:0] pins are used and the remaining  
HD[31:16] pins are reserved pins in the high-impedance state.)  
HD14  
U1  
U3  
U2  
U4  
V1  
V3  
V2  
W2  
W4  
Y1  
W3  
Y2  
Y4  
AA1  
Y3  
HD13  
HD5 pin = 1: HPI operates as an HPI32.  
HD12  
(HPI bus is 32 bits wide. All HD[31:0] pins are used for host-port operations.)  
HD11  
For superset devices like DM643, the HD31 through HD16 pins can also function  
as EMAC transmit/receive or control pins (when MAC_EN pin = 1). For more  
details on the EMAC pin functions, see the Ethernet MAC (EMAC) peripheral  
section of this table and for more details on how to configure the EMAC pin  
functions, see the device configuration section of this data sheet.  
HD10  
HD9  
HD8  
HD7  
HD6  
HD5  
HD4  
HD3  
HD2  
HD1  
HD0  
EMIFA (64-bit) – CONTROL SIGNALS COMMON TO ALL TYPES OF MEMORY  
ACE3  
ACE2  
ACE1  
ACE0  
ABE7  
ABE6  
ABE5  
ABE4  
ABE3  
ABE2  
ABE1  
ABE0  
L26  
K23  
K24  
K25  
T22  
T23  
R25  
R26  
M25  
M26  
L23  
L24  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
EMIFA memory space enables  
Enabled by bits 28 through 31 of the word address  
Only one pin is asserted during any external data access  
EMIFA byte-enable control  
Decoded from the low-order address bits. The number of address bits or  
byte enables used depends on the width of external memory.  
Byte-write enables for most types of memory  
Can be directly connected to SDRAM read and write mask signal (SDQM)  
(6) These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.  
30 Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 2-4. Terminal Functions (continued)  
SIGNAL  
NAME  
IPD/  
TYPE(1)  
DESCRIPTION  
IPU(2)  
NO.  
EMIFA peripheral data transfer, allows direct transfer between external  
peripherals  
APDT  
M22  
O/Z  
IPU  
EMIFA (64-bit) – BUS ARBITRATION  
AHOLDA  
AHOLD  
N22  
W24  
P22  
O
I
IPU  
IPU  
IPU  
EMIFA hold-request-acknowledge to the host  
EMIFA hold request from the host  
EMIFA bus request output  
ABUSREQ  
O
EMIFA (64-bit) – ASYNCHRONOUS/SYNCHRONOUS MEMORY CONTROL  
EMIFA external input clock. The EMIFA input clock (AECLKIN, CPU/4 clock, or  
CPU/6 clock) is selected at reset via the pullup/pulldown resistors on the  
AEA[20:19] pins.  
AECLKIN  
H25  
I
IPD  
AECLKIN is the default for the EMIFA input clock.  
EMIFA output clock 2. Programmable to be EMIFA input clock (AECLKIN,  
CPU/4 clock, or CPU/6 clock) frequency divided-by-1, -2, or -4.  
AECLKOUT2  
AECLKOUT1  
J23  
J26  
O/Z  
O/Z  
IPD  
IPD  
EMIFA output clock 1 [at EMIFA input clock (AECLKIN, CPU/4 clock, or CPU/6  
clock) frequency].  
EMIFA asynchronous memory read-enable/SDRAM column-address  
strobe/programmable synchronous interface-address strobe or read-enable  
AARE/  
ASDCAS/  
ASADS/ASRE  
For programmable synchronous interface, the RENEN field in the CE Space  
Secondary Control Register (CExSEC) selects between ASADS and ASRE:  
If RENEN = 0, then the ASADS/ASRE signal functions as the ASADS signal.  
If RENEN = 1, then the ASADS/ASRE signal functions as the ASRE signal.  
J25  
O/Z  
IPU  
AAOE/  
ASDRAS/  
ASOE  
EMIFA asynchronous memory output-enable/SDRAM row-address  
strobe/programmable synchronous interface output-enable  
J24  
K26  
L25  
O/Z  
O/Z  
O/Z  
IPU  
IPU  
IPU  
AAWE/  
ASDWE/  
ASWE  
EMIFA asynchronous memory write-enable/SDRAM write-enable/programmable  
synchronous interface write-enable  
EMIFA SDRAM clock-enable (used for self-refresh mode).  
ASDCKE  
If SDRAM is not in system, ASDCKE can be used as a general-purpose  
output.  
EMIFA synchronous memory output-enable for ACE3 (for glueless FIFO  
interface)  
ASOE3  
AARDY  
R22  
L22  
O/Z  
I
IPU  
IPU  
Asynchronous memory ready input  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
31  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 2-4. Terminal Functions (continued)  
SIGNAL  
NAME  
IPD/  
TYPE(1)  
DESCRIPTION  
IPU(2)  
NO.  
EMIFA (64-bit) – ADDRESS  
AEA22  
AEA21  
AEA20  
AEA19  
AEA18  
AEA17  
AEA16  
AEA15  
AEA14  
AEA13  
AEA12  
AEA11  
AEA10  
AEA9  
U23  
V24  
V25  
V26  
V23  
U24  
U25  
U26  
T24  
T25  
R23  
R24  
P23  
P24  
P26  
N23  
N24  
N26  
M23  
M24  
EMIFA external address (doubleword address)  
EMIFA address numbering for the DM643 device starts with AEA3 to maintain  
signal name compatibility with other C64x™ devices (e.g., C6414, C6415, and  
C6416) [see the 64-bit EMIF addressing scheme in the TMS320C6000 DSP  
External Memory Interface (EMIF) Reference Guide (literature number  
SPRU266)].  
Note: If a configuration pin must be routed out from the device, the internal  
pullup/pulldown (IPU/IPD) resistor should not be relied upon; TI recommends the  
use of an external pullup/pulldown resistor.  
Boot Configuration:  
Controls initialization of DSP modes at reset (I) via pullup/pulldown resistors  
O/Z  
IPD  
Boot mode (AEA[22:21]):  
00 - No boot (default mode)  
01 - HPI boot  
10 - Reserved  
11 - EMIFA 8-bit ROM boot  
EMIF clock select AEA[20:19]:  
Clock mode select for EMIFA (AECLKIN_SEL[1:0])  
00 - AECLKIN (default mode)  
01 - CPU/4 Clock Rate  
AEA8  
AEA7  
AEA6  
10 - CPU/6 Clock Rate  
11 - Reserved  
AEA5  
For more details, see the Device Configurations section of this data sheet.  
AEA4  
AEA3  
32  
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 2-4. Terminal Functions (continued)  
SIGNAL  
NAME  
IPD/  
TYPE(1)  
DESCRIPTION  
IPU(2)  
NO.  
EMIFA (64-bit) – DATA  
AED63  
AED62  
AED61  
AED60  
AED59  
AED58  
AED57  
AED56  
AED55  
AED54  
AED53  
AED52  
AED51  
AED50  
AED49  
AED48  
AED47  
AED46  
AED45  
AED44  
AED43  
AED42  
AED41  
AED40  
AED39  
AED38  
AED37  
AED36  
AED35  
AED34  
AED33  
AED32  
AED31  
AED30  
AED29  
AED28  
AED27  
AED26  
AED25  
AED24  
AED23  
AED22  
AED21  
AED20  
AF24  
AF23  
AE23  
AD23  
AD22  
AE22  
AD21  
AE21  
AC21  
AF21  
AD20  
AE20  
AC20  
AF20  
AC19  
AD19  
W23  
Y26  
Y23  
Y25  
Y24  
AA26  
AA23  
AA25  
AA24  
AB23  
AB25  
AB24  
AC26  
AC25  
AD25  
AD26  
C26  
I/O/Z  
IPU  
EMIFA external data  
C25  
D26  
D25  
E24  
E25  
F24  
F25  
F23  
F26  
G24  
G25  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
33  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 2-4. Terminal Functions (continued)  
SIGNAL  
NAME  
IPD/  
TYPE(1)  
DESCRIPTION  
IPU(2)  
NO.  
G23  
G26  
H23  
H24  
C19  
D19  
A20  
D20  
B20  
C20  
A21  
D21  
B21  
C21  
A23  
C22  
B22  
B23  
A24  
B24  
AED19  
AED18  
AED17  
AED16  
AED15  
AED14  
AED13  
AED12  
AED11  
AED10  
AED9  
I/O/Z  
IPU  
EMIFA external data  
AED8  
AED7  
AED6  
AED5  
AED4  
AED3  
AED2  
AED1  
AED0  
MANAGEMENT DATA INPUT/OUTPUT (MDIO)  
MDCLK  
MDIO  
R5  
P5  
I/O/Z  
I/O/Z  
IPD  
IPU  
MDIO serial clock input/output (I/O/Z).  
MDIO serial data input/output (I/O/Z).  
VCXO INTERPOLATED CONTROL PORT (VIC)  
VCXO Interpolated Control Port (VIC) single-bit digital-to-analog converter  
VDAC/GP0[8](3)  
STCLK  
AD1  
AC1  
I/O/Z  
I
IPD  
(VDAC) output [output only] [default] or this pin can be programmed as a GP0 8  
pin (I/O/Z)  
VIDEO PORTS (VP1 AND VP2)  
IPD The STCLK signal drives the hardware counter on the video ports.  
34  
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 2-4. Terminal Functions (continued)  
SIGNAL  
NAME  
IPD/  
TYPE(1)  
DESCRIPTION  
IPU(2)  
NO.  
VIDEO PORT 2 (VP2)  
VP2D[19]  
VP2D[18]  
VP2D[17]  
VP2D[16]  
VP2D[15]  
VP2D[14]  
VP2D[13]  
VP2D[12]  
VP2D[11]  
VP2D[10]  
VP2D[9]  
VP2D[8]  
VP2D[7]  
VP2D[6]  
VP2D[5]  
VP2D[4]  
VP2D[3]  
VP2D[2]  
VP2D[1]  
VP2D[0]  
VP2CLK1  
VP2CLK0  
VP2CTL2  
VP2CTL1  
VP2CTL0  
E13  
E12  
D12  
C12  
B12  
E11  
D11  
C11  
B11  
A11  
D10  
C10  
B10  
A10  
D9  
Video port 2 (VP2) data input/output (I/O/Z)  
I/O/Z  
IPD  
Note: By default, no function is enabled upon reset. To configure these pins, see  
the Device Configuration section of this data sheet.  
C9  
B9  
A9  
D8  
C8  
A13  
A7  
I/O/Z  
I
IPD  
IPD  
VP2 clock 1 (I/O/Z)  
VP2 clock 0 (I)  
C7  
VP2 control 2 (I/O/Z)  
VP2 control 1 (I/O/Z)  
VP2 control 0 (I/O/Z)  
D7  
I/O/Z  
IPD  
B8  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
35  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 2-4. Terminal Functions (continued)  
SIGNAL  
NAME  
IPD/  
TYPE(1)  
DESCRIPTION  
IPU(2)  
NO.  
VIDEO PORT 1 (VP1) OR McASP0 DATA  
VP1D[19]/AXR0[7](3)  
VP1D[18]/AXR0[6](3)  
VP1D[17]/AXR0[5](3)  
VP1D[16]/AXR0[4](3)  
VP1D[15]/AXR0[3](3)  
VP1D[14]/AXR0[2](3)  
VP1D[13]/AXR0[1](3)  
VP1D[12]/AXR0[0](3)  
VP1D[11]  
AB12  
AB11  
AC11  
AD11  
AE11  
AC10  
AD10  
AC9  
AD9  
AE9  
Video port 1 (VP1) data input/output (I/O/Z) or McASP0 data pins (I/O/Z)  
By default, standalone VP1 data input/output pins have no function enabled  
upon reset. To configure these pins, see the Device Configuration section of this  
data sheet.  
VP1D[10]  
I/O/Z  
IPD  
VP1D[9]  
AC8  
AD8  
AC7  
AD7  
AE7  
For more details on the McASP0 data pin functions, see McASP0 data section of  
this table and the Device Configurations section of this data sheet.  
VP1D[8]  
VP1D[7]  
VP1D[6]  
VP1D[5]  
VP1D[4]  
AC6  
AD6  
AE6  
VP1D[3]  
VP1D[2]  
VP1D[1]  
AF6  
VP1D[0]  
AF5  
VP1CLK1  
AF10  
AF8  
I/O/Z  
I
IPD  
IPD  
VP1 clock 1 (I/O/Z)  
VP1CLK0  
VP1 clock 0 (I)  
VP1CTL2  
AD5  
AE5  
VP1 control 2 (I/O/Z)  
VP1CTL1  
I/O/Z  
IPD  
VP1 control 1 (I/O/Z)  
VP1CTL0  
AF4  
VP1 control 0 (I/O/Z)  
TIMER 2  
No external pins. The timer 2 peripheral pins are not pinned out as external pins.  
TIMER 1  
Timer 1 output (O/Z)  
Boot Configuration: Device endian mode [LENDIAN] (I)  
Controls initialization of DSP modes at reset via pullup/pulldown resistors  
Device Endian mode  
0 - Big Endian  
1 - Little Endian (default)  
For more details on LENDIAN, see the Device Configurations section of this data  
sheet.  
TOUT1  
TINP1  
B5  
A5  
O/Z  
IPU  
IPD  
Note: If a configuration pin must be routed out from the device, the internal  
pullup/pulldown (IPU/IPD) resistor should not be relied upon; TI recommends the  
use of an external pullup/pulldown resistor.  
I
Timer 1 or general-purpose input  
TIMER 0  
Timer 0 output (O/Z)  
Boot Configuration: MAC enable pin [MAC_EN] (I)  
The MAC_EN pin controls the selection (enable/disable) of the HPI, EMAC and  
MDIO peripherals.  
TOUT0  
TINP0  
C5  
A4  
O/Z  
IPD  
IPD  
For more details, see the Device Configurations section of this data sheet.  
Note: If a configuration pin must be routed out from the device, the internal  
pullup/pulldown (IPU/IPD) resistor should not be relied upon; TI recommends the  
use of an external pullup/pulldown resistor.  
I
Timer 0 or general-purpose input  
36  
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 2-4. Terminal Functions (continued)  
SIGNAL  
NAME  
IPD/  
TYPE(1)  
DESCRIPTION  
IPU(2)  
NO.  
INTER-INTEGRATED CIRCUIT 0 (I2C0)  
SCL0  
SDA0  
E4  
D3  
I/O/Z  
I/O/Z  
I2C0 clock.  
I2C0 data.  
MULTICHANNEL BUFFERED SERIAL PORT 0 (McBSP0)  
CLKR0  
FSR0  
DR0  
AE15  
AB16  
AC16  
AE16  
AF16  
AF17  
I/O/Z  
I/O/Z  
I
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
McBSP0 receive clock (I/O/Z)  
McBSP0 receive frame sync (I/O/Z)  
McBSP0 receive data (I)  
DX0  
O/Z  
I/O/Z  
I/O/Z  
McBSP0 transmit data (O/Z)  
McBSP0 transmit frame sync (I/O/Z)  
McBSP0 transmit clock (I/O/Z)  
ETHERNET MAC (EMAC)  
FSX0  
CLKX0  
HD31/MRCLK(3)  
HD30/MCRS(3)  
HD29/MRXER(3)  
HD28/MRXDV(3)  
HD27/MRXD3(3)  
HD26/MRXD2(3)  
HD25/MRXD1(3)  
HD24/MRXD0(3)  
HD22/MTCLK(3)  
HD21/MCOL(3)  
HD20/MTXEN(3)  
HD19/MTXD3(3)  
HD18/MTXD2(3)  
HD17/MTXD1(3)  
G1  
H3  
G2  
J4  
I
Host-port data (I/O/Z) [default] or EMAC transmit/receive or control pins (I) (O/Z)  
HPI pin functions are default, see the Device Configurations section of this data  
sheet. EMAC Media Independent I/F (MII) data, clocks, and control pins for  
Transmit/Receive.  
I
I
MII transmit clock (MTCLK),  
I
Transmit clock source from the attached PHY.  
MII transmit data (MTXD[3:0]),  
H2  
J3  
I
I
Transmit data nibble synchronous with transmit clock (MTCLK).  
MII transmit enable (MTXEN),  
J1  
I
I
K4  
L4  
K2  
L3  
L2  
M4  
M2  
This signal indicates a valid transmit data on the transmit data pins  
(MTDX[3:0]).  
I
MII collision sense (MCOL)  
I
Assertion of this signal during half-duplex operation indicates network  
collision.  
During full-duplex operation, transmission of new frames will not begin if this  
pin is asserted.  
O/Z  
O/Z  
O/Z  
O/Z  
MII carrier sense (MCRS)  
Indicates a frame carrier signal is being received.  
MII receive data (MRXD[3:0]),  
Receive data nibble synchronous with receive clock (MRCLK).  
MII receive clock (MRCLK),  
Receive clock source from the attached PHY.  
MII receive data valid (MRXDV),  
HD16/MTXD0(3)  
M3  
O/Z  
This signal indicates a valid data nibble on the receive data pins  
(MRDX[3:0]) and  
MII receive error (MRXER),  
Indicates reception of a coding error on the receive data.  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
37  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 2-4. Terminal Functions (continued)  
SIGNAL  
NAME  
IPD/  
TYPE(1)  
DESCRIPTION  
IPU(2)  
NO.  
MULTICHANNEL AUDIO SERIAL PORT 0 (McASP0) CONTROL  
AHCLKX0  
AC12  
AD12  
AB13  
AC13  
AD13  
AB14  
AC14  
AD14  
I/O/Z  
I/O/Z  
I/O/Z  
O/Z  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
McASP0 transmit high-frequency master clock (I/O/Z).  
McASP0 transmit frame sync or left/right clock (LRCLK) (I/O/Z).  
McASP0 transmit bit clock (I/O/Z).  
AFSX0  
ACLKX0  
AMUTE0  
AMUTEIN0  
AHCLKR0  
AFSR0  
McASP0 mute output (O/Z).  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
McASP0 mute input (I/O/Z).  
McASP0 receive high-frequency master clock (I/O/Z).  
McASP0 receive frame sync or left/right clock (LRCLK) (I/O/Z).  
McASP0 receive bit clock (I/O/Z).  
ACLKR0  
MULTICHANNEL AUDIO SERIAL PORT 0 (McASP0) DATA  
VP1D[19]/AXR0[7](3)  
VP1D[18]/AXR0[6](3)  
VP1D[17]/AXR0[5](3)  
VP1D[16]/AXR0[4](3)  
VP1D[15]/AXR0[3](3)  
VP1D[14]/AXR0[2](3)  
VP1D[13]/AXR0[1](3)  
VP1D[12]/AXR0[0](3)  
AB12  
AB11  
AC11  
AD11  
AE11  
AC10  
AD10  
AC9  
VP1 input/output data pins [19:12] (I/O/Z) or McASP0 TX/RX data pins [7:0]  
(I/O/Z) [default].  
I/O/Z  
IPD  
RESERVED FOR TEST  
RSV07  
RSV08  
RSV05  
RSV06  
RSV00  
RSV01  
RSV02  
RSV03  
RSV04  
H7  
R6  
A
A
Reserved. This pin must be connected directly to CVDD for proper operation.  
Reserved. This pin must be connected directly to DVDD for proper operation.  
E14  
W7  
I
IPD  
A
AA3  
AB3  
AC4  
AD3  
AF3  
A
Reserved (leave unconnected, do not connect to power or ground. If the signal  
must be routed out from the device, the internal pull-up/down resistance should  
not be relied upon and an external pull-up/down should be used.)  
I
O/Z  
O/Z  
O
IPU  
ADDITIONAL RESERVED FOR TEST  
Reserved. For proper DM643 device operation, this pin at device reset must be  
pulled down via a 10-kexternal resistor.  
RSV09  
E2  
I
IPD  
RSV10  
RSV12  
RSV11  
RSV17  
RSV16  
RSV21  
RSV15  
RSV23  
RSV22  
RSV20  
RSV14  
RSV19  
RSV18  
RSV13  
V4  
I/O/Z  
I
Reserved. This pin must be pulled down via a 10-kexternal resistor.  
R4  
IPU  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
T4  
O
AB15  
AC15  
AC17  
AD15  
AD16  
AD17  
AE17  
AE18  
AF12  
AF14  
AF18  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I
Reserved (leave unconnected, do not connect to power or ground. If the signal  
must be routed out from the device, the internal pull-up/down resistance should  
not be relied upon and an external pull-up/down should be used.)  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I
I/O/Z  
38  
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 2-4. Terminal Functions (continued)  
SIGNAL  
NAME  
IPD/  
TYPE(1)  
DESCRIPTION  
IPU(2)  
NO.  
SUPPLY VOLTAGE PINS  
A2  
A25  
B1  
B2  
B14  
B25  
B26  
C3  
C24  
D4  
D23  
E5  
E7  
E8  
E10  
E17  
E19  
E20  
E22  
F9  
F12  
F15  
F18  
G5  
3.3-V supply voltage  
(see the Power-Supply Decoupling section of this data sheet)  
DVDD  
S
G22  
H5  
H22  
J6  
J21  
K5  
K22  
M6  
M21  
N2  
P25  
R21  
U5  
U22  
V21  
W5  
W22  
W25  
Y5  
Y22  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
39  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 2-4. Terminal Functions (continued)  
SIGNAL  
NAME  
IPD/  
TYPE(1)  
DESCRIPTION  
IPU(2)  
NO.  
AA9  
AA12  
AA15  
AA18  
AB5  
AB7  
AB8  
AB10  
AB17  
AB19  
AB20  
AB22  
AC23  
AD24  
AE1  
3.3-V supply voltage  
(see the Power-Supply Decoupling section of this data sheet)  
DVDD  
S
AE2  
AE13  
AE25  
AE26  
AF2  
AF25  
40  
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 2-4. Terminal Functions (continued)  
SIGNAL  
NAME  
IPD/  
TYPE(1)  
DESCRIPTION  
IPU(2)  
NO.  
F6  
F7  
F20  
F21  
G6  
G7  
G8  
G10  
G11  
G13  
G14  
G16  
G17  
G19  
G20  
G21  
H20  
K7  
K20  
L7  
L20  
M12  
M14  
N7  
1.2-V supply voltage (-500 device)  
1.4 V supply voltage (-600 device)  
(see the Power-Supply Decoupling section of this data sheet)  
CVDD  
S
N13  
N15  
N20  
P7  
P12  
P14  
P20  
R13  
R15  
T7  
T20  
U7  
U20  
W20  
Y6  
Y7  
Y8  
Y10  
Y11  
Y13  
Y14  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
41  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 2-4. Terminal Functions (continued)  
SIGNAL  
NAME  
IPD/  
TYPE(1)  
DESCRIPTION  
IPU(2)  
NO.  
Y16  
Y17  
Y19  
Y20  
1.2-V supply voltage (-500 device)  
CVDD  
Y21  
S
1.4 V supply voltage (-600 device)  
(see the Power-Supply Decoupling section of this data sheet)  
AA6  
AA7  
AA20  
AA21  
GROUND PINS  
A1  
A3  
A6  
A8  
A12  
A14  
A19  
A22  
A26  
B3  
B6  
B7  
B13  
B19  
C2  
C4  
C13  
C18  
C23  
D1  
VSS  
GND  
Ground pins  
D2  
D5  
D13  
D18  
D22  
D24  
E3  
E6  
E9  
E16  
E18  
E21  
E23  
E26  
F5  
42  
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 2-4. Terminal Functions (continued)  
SIGNAL  
NAME  
IPD/  
TYPE(1)  
DESCRIPTION  
IPU(2)  
NO.  
F8  
F10  
F11  
F13  
F14  
F16  
F17  
F19  
F22  
G9  
G12  
G15  
G18  
H1  
H6  
H21  
H26  
J5  
J7  
J20  
J22  
K6  
VSS  
K21  
L1  
GND  
Ground pins  
L6  
L21  
M7  
M13  
M15  
M20  
N5  
N6  
N12  
N14  
N21  
N25  
P2  
P6  
P13  
P15  
P21  
R7  
R12  
R14  
R20  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
43  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 2-4. Terminal Functions (continued)  
SIGNAL  
NAME  
IPD/  
TYPE(1)  
DESCRIPTION  
IPU(2)  
NO.  
T1  
T5  
T6  
T21  
T26  
U6  
U21  
V5  
V7  
V20  
V22  
W1  
W6  
W21  
W26  
Y9  
Y12  
Y15  
Y18  
AA4  
AA5  
AA8  
AA10  
AA11  
AA13  
AA14  
AA16  
AA17  
AA19  
AA22  
AB1  
AB2  
AB4  
AB6  
AB9  
AB18  
AB21  
AB26  
AC3  
AC5  
AC18  
AC22  
AC24  
AD2  
AD4  
VSS  
GND  
Ground pins  
44  
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 2-4. Terminal Functions (continued)  
SIGNAL  
NAME  
IPD/  
TYPE(1)  
DESCRIPTION  
IPU(2)  
NO.  
AD18  
AE3  
AE8  
AE10  
AE12  
AE14  
AE19  
AE24  
AF1  
VSS  
GND  
Ground pins  
AF7  
AF9  
AF11  
AF13  
AF15  
AF19  
AF22  
AF26  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
45  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
2.6 Development  
www.ti.com  
2.6.1 Development Support  
TI offers an extensive line of development tools for the TMS320C6000™ DSP platform, including tools to  
evaluate the performance of the processors, generate code, develop algorithm implementations, and fully  
integrate and debug software and hardware modules.  
The following products support development of C6000™ DSP-based applications:  
Software Development Tools:  
Code Composer Studio™ Integrated Development Environment (IDE): including Editor  
C/C++/Assembly Code Generation, and Debug plus additional development tools  
Scalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time target  
software needed to support any DSP application.  
Hardware Development Tools:  
Extended Development System (XDS™) Emulator (supports C6000™ DSP multiprocessor system debug)  
EVM (Evaluation Module)  
For a complete listing of development-support tools for the TMS320C6000™ DSP platform, visit the Texas  
Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL). For  
information on pricing and availability, contact the nearest TI field sales office or authorized distributor.  
2.6.2 Device Support  
2.6.2.1 Device and Development-Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX,  
TMP, or TMS (e.g., TMS320DM643GDK500). Texas Instruments recommends two of three possible prefix  
designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of  
product development from engineering prototypes (TMX/TMDX) through fully qualified production  
devices/tools (TMS/TMDS).  
Device development evolutionary flow:  
TMX  
TMP  
TMS  
Experimental device that is not necessarily representative of the final device's electrical  
specifications  
Final silicon die that conforms to the device's electrical specifications but has not completed  
quality and reliability verification  
Fully qualified production device  
Support tool development evolutionary flow:  
TMDX  
Development-support product that has not yet completed Texas Instruments internal  
qualification testing.  
TMDS  
Fully qualified development-support product  
TMX and TMP devices and TMDX development-support tools are shipped against the following  
disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
46  
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard  
production devices. Texas Instruments recommends that these devices not be used in any production  
system because their expected end-use failure rate still is undefined. Only qualified production devices are  
to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the  
package type (for example, GDK), the temperature range (for example, “blank” is the default commercial  
temperature range), and the device speed range in megahertz (for example, 500 is 500 MHz). Figure 2-15  
provides a legend for reading the complete device name for any TMS320C6000™ DSP platform member.  
The ZDK package, like the GDK package, is a 548-ball plastic BGA only with Pb-free balls. The ZNZ is the  
Pb-free package version of the GNZ package.  
For device part numbers and further ordering information for TMS320DM643 in the GDK, GNZ, ZDK, and  
ZNZ package types, see the TI website (http://www.ti.com) or contact your TI sales representative.  
(
)
TMS 320 DM643 GDK  
500  
PREFIX  
DEVICE SPEED RANGE  
TMX= Experimental device  
TMP= Prototype device  
500 (500-MHz CPU, 100-MHz EMIF  
600 (600-MHz CPU, 133-MHz EMIF  
TMS= Qualified device  
SMX= Experimental device, MIL  
SMJ = MIL-PRF-38535, QML  
TEMPERATURE RANGE (DEFAULT: 0°C TO 90°C)  
Blank = 0°C to 90°C, commercial temperature  
SM  
= High Rel (non-38535)  
DEVICE FAMILY  
320 = TMS320t DSP family  
(A)(B)  
PACKAGE TYPE  
GDK = 548-pin plastic BGA  
GNZ = 548-pin plastic BGA  
ZDK = 548-pin plastic BGA, with Pb-free soldered balls  
ZNZ = 548-pin plastic BGA, with Pb-free soldered balls  
(C)  
DEVICE  
DM64x DSP:  
643  
642  
641  
640  
A. BGA = Ball Grid Array  
B. The ZDK and ZNZ mechanical package designators represent the version of the GDK and GLZ packages, respectively, with Pb-free  
balls. For more detailed information, see the Mechanical Data section of this document.  
C. For actual device part numbers (P/Ns) and ordering information, see the TI website (www.ti.com).  
Figure 2-15. TMS320DM64x™ DSP Device Nomenclature (Including the TMS320DM643 Device)  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Overview  
47  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
2.6.2.2 Documentation Support  
Extensive documentation supports all TMS320™ DSP family generations of devices from product  
announcement through applications development. The types of documentation available include: data  
sheets, such as this document, with design specifications; complete user's reference guides for all devices  
and tools; technical briefs; development-support tools; on-line help; and hardware and software  
applications. The following is a brief, descriptive list of support documentation specific to the C6000™  
DSP devices:  
The TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189) describes the  
C6000™ DSP CPU (core) architecture, instruction set, pipeline, and associated interrupts.  
The TMS320C6000 DSP Peripherals Overview Reference Guide (literature number SPRU190) provides  
an overview and briefly describes the functionality of the peripherals available on the C6000™ DSP  
platform of devices. This document also includes a table listing the peripherals available on the C6000  
devices along with literature numbers and hyperlinks to the associated peripheral documents.  
The TMS320C64x Technical Overview (literature number SPRU395) gives an introduction to the C64x™  
digital signal processor, and discusses the application areas that are enhanced by the C64x™ DSP  
VelociTI.2™ VLIW architecture.  
The TMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide (literature  
number SPRU629) describes the functionality of the Video Port and VIC Port peripherals.  
The TMS320C6000 DSP Multichannel Audio Serial Port (McASP) Reference Guide (literature number  
SPRU041) describes the functionality of the McASP peripheral.  
TMS320C6000 DSP Inter-Integrated Circuit (I2C) Module Reference Guide (literature number SPRU175)  
describes the functionality of the I2C peripheral.  
TMS320C6000 DSP Ethernet Media Access Controller (EMAC)/ Management Data Input/Output (MDIO)  
Module Reference Guide (literature number SPRU628) describes the functionality of the EMAC and MDIO  
peripherals.  
The Using IBIS Models for Timing Analysis application report (literature number SPRA839) describes how  
to properly use IBIS models to attain accurate timing analysis for a given system.  
The tools support documentation is electronically available within the Code Composer Studio™ Integrated  
Development Environment (IDE). For a complete listing of C6000™ DSP latest documentation, visit the  
Texas Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL).  
2.6.2.3 Device Silicon Revision  
This data manual supports the initial release of the DM643 device; therefore, no device-specific silicon  
errata document is currently available.  
48  
Device Overview  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
3 Device Configurations  
On the DM643 device, bootmode and certain device configurations/peripheral selections are determined at  
device reset, while other device configurations/peripheral selections are software-configurable via the  
peripheral configurations register (PERCFG) [address location 0x01B3F000] after device reset.  
3.1 Configurations at Reset  
For proper DM643 device operation, the following external pins must be configured correctly:  
The GP0[0] (pin M5) must remain low, do not oppose the internal pulldown (IPD).  
The RSV09 (pin E2) at device reset must be pulled down via a 10-kresistor.  
3.1.1 Peripheral Selection at Device Reset  
Some DM643 peripherals share the same pins (internally muxed) and are mutually exclusive (i.e., HPI,  
EMAC, and MDIO). Other DM643 peripherals (i.e., the Timers, I2C0, GP0, McBSP0, and VP2), are  
always available.  
HPI, EMAC, and MDIO peripherals  
The MAC_EN pin is latched at reset and determines specific peripheral selection, summarized in  
Table 3-1. For further clarification of the HPI vs. EMAC configuration, see Table 3-2.  
Table 3-1. HD5, and MAC_EN Peripheral Selection (HPI, EMAC, and MDIO)  
PERIPHERAL SELECTION  
HD5 MAC_EN  
Pin [C5]  
PERIPHERALS SELECTED  
HPI Data  
Lower  
HPI Data  
Upper  
EMAC and MDIO  
Pin [Y1]  
0
0
1
1
0
1
0
1
Hi-Z  
Hi-Z  
Disabled  
Disabled  
Disabled  
The HPI peripheral is enabled and based on the HD5 and MAC_EN pin configuration at reset, HPI16  
mode or EMAC and MDIO can be selected.  
The MAC_EN pin, in combination with the HD5 pin, controls the selection of the EMAC and MDIO  
peripherals (for more details, see Table 3-2).  
Table 3-2. HPI vs. EMAC Peripheral Pin Selection  
CONFIGURATION SELECTION  
PERIPHERALS SELECTED  
GP0[0] (Pin [M5])(1)  
HD5 (Pin [Y1])  
MAC_EN (Pin [C5])  
HD[15:0]  
HD[31:16]  
Hi-Z  
0
0
0
0
0
0
1
1
0
1
0
1
HPI16  
HPI16  
used for EMAC  
HPI32 (HD[31:0])  
Hi-Z  
used for EMAC  
(1) Invalid configuration. The GP0[0] pin must remain low during  
device reset.  
1
x
x
3.1.2 Device Configuration at Device Reset  
Table 3-3 describes the DM643 device configuration pins, which are set up via external pullup/pulldown  
resistors through the specified EMIFA address bus pins (AEA[22:19]), and the TOUT1/LENDIAN, and the  
HD5 pins (all of which are latched during device reset).  
Note: If a configuration pin must be routed out from the device, the internal pullup/pulldown (IPU/IPD)  
resistor should not be relied upon; TI recommends the use of an external pullup/pulldown resistor.  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Configurations  
49  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
 
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 3-3. DM643 Device Configuration Pins (TOUT1/LENDIAN, AEA[22:19], HD5, and MAC_EN)  
CONFIGURATION  
NO.  
FUNCTIONAL DESCRIPTION  
PIN  
Device Endian mode (LEND)  
TOUT1/LENDIAN  
B5  
0 - System operates in Big Endian mode  
1 - System operates in Little Endian mode (default)  
Bootmode [1:0]  
00 - No boot (default mode)  
01 - HPI boot  
10 - Reserved  
[U23,  
V24]  
AEA[22:21]  
AEA[20:19]  
11 - EMIFA 8-bit ROM boot  
EMIFA input clock select  
Clock mode select for EMIFA (AECLKIN_SEL[1:0])  
[V25,  
V26]  
00 - AECLKIN (default mode)  
01 - CPU/4 Clock Rate  
10 - CPU/6 Clock Rate  
11 - Reserved  
HPI peripheral bus width (HPI_WIDTH)  
0 - HPI operates as an HPI16.  
(HPI bus is 16 bits wide. HD[15:0] pins are used and the remaining HD[31:16] pins are reserved pins in  
the Hi-Z state.)  
1 - HPI operates as an HPI32.  
HD5  
Y1  
C5  
(HPI bus is 32 bits wide. All HD[31:0] pins are used for host-port operations.)  
(Also see the TOUT0/MAC_EN functional description in this table)  
Peripheral Selection  
TOUT0/MAC_EN  
0 - EMAC and MDIO disabled; HPI16 enabled (default mode) [HPI32, if HD5 = 1; HPI16 if HD5 = 0]  
1 - EMAC and MDIO enabled; HPI16 enabled, if HD5 = 0; HPI32 disabled, if HD5 = 1  
3.2 Configurations After Reset  
3.2.1 Peripheral Selection After Device Reset  
Video Ports, McBSP0, McASP0 and I2C0  
The DM643 device has designated registers for peripheral configuration (PERCFG), device status  
(DEVSTAT), and JTAG identification (JTAGID). These registers are part of the Device Configuration  
module and are mapped to a 4K block memory starting at 0x01B3F000. The CPU accesses these  
registers via the CFGBUS.  
The peripheral configuration register (PERCFG), allows the user to control the peripheral selection of the  
Video Ports (VP1 and VP2) McBSP0, McASP0, and I2C0 peripherals. For more detailed information on  
the PERCFG register control bits, see Figure 3-1 and Table 3-4.  
50  
Device Configurations  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
24  
31  
Reserved  
R-0  
23  
15  
16  
8
Reserved  
R-0  
Reserved  
R-0  
7
6
5
4
3
2
1
0
Reserved  
R-0  
VP2EN  
R/W-0  
VP1EN  
R/W-0  
Reserved  
R-0  
I2C0EN  
R/W-0  
MCBSP1EN(1)  
MCBSP0EN  
R/W-1  
MCASP0EN  
R/W-0  
R/W-1  
Legend: R = Read only, R/W = Read/Write, -n = value after reset  
(1) The DM643 device does not support the McBSP1 peripheral.  
Figure 3-1. Peripheral Configuration Register (PERCFG)  
[Address Location: 0x01B3F000 - 0x01B3F003]  
Table 3-4. Peripheral Configuration (PERCFG) Register Selection Bit Descriptions  
BIT  
NAME  
DESCRIPTION  
31:7  
Reserved  
Reserved. Read-only, writes have no effect.  
VP2 Enable bit.  
Determines whether the VP2 peripheral is enabled or disabled.  
6
5
VP2EN  
VP1EN  
0 = VP2 is disabled, the module is powered down (default).  
(This feature allows power savings by disabling the peripheral when not in use.)  
1 = VP2 is enabled.  
VP1 Enable bit.  
Determines whether the VP1 peripheral is enabled or disabled.  
0 = VP1 is disabled, the module is powered down (default).  
(This feature allows power savings by disabling the peripheral when not in use.)  
1 = VP1 is enabled.  
Note: For proper DM643 device operation, the MCBSP1EN bit must be set to zero (0).  
4
3
Reserved  
I2C0EN  
Reserved. Read-only, writes have no effect.  
Inter-integrated circuit 0 (I2C0) enable bit.  
Selects whether I2C0 peripheral is enabled or disabled (default).  
0 = I2C0 is disabled, the module is powered down (default).  
1 = I2C0 is enabled.  
For C64x compatibility and possible future expansion, at device reset this bit is a one (1). The DM643  
device does not support the McBSP1 peripheral.  
2
1
MCBSP1EN  
MCBSP0EN  
Note: For proper DM643 device operation, this bit must be set to zero (0).  
McBSP0 Enable bit.  
Determines whether the McBSP0 peripheral is enabled or disabled.  
0 = McBSP0 is disabled, the module is powered down.  
(This feature allows power savings by disabling the peripheral when not in use.)  
1 = McBSP0 is enabled (default).  
For a graphic (logic) representation of this Peripheral Configuration (PERCFG) Register selection bit and  
the signal pins controlled/selected, see Figure 3-2.  
McASP0 vs. VP1 upper-data pins select bit.  
Selects whether the McASP0 peripheral or the VP1 upper-data pins are enabled.  
0 = McASP0 is disabled; VP1 upper-data pins are enabled; and the VP1lower-data pins are dependent on  
the MCSBP1EN and VP1EN bits (default).  
1 = McASP0 is enabled; VP1 upper-data pins are disabled; and the VP1 lower-data pins are dependent  
on the MCSBP1EN and VP1EN bits.  
0
MCASP0EN  
For a graphic (logic) representation of this Peripheral Configuration (PERCFG) Register selection bit and  
the signal pins controlled/selected, see Figure 3-2.  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Configurations  
51  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
(B)  
MCBSP1EN [PERCFG.2]  
Reserved for C64x Compatibility.  
McBSP1 peripheral not supported on  
DM643.  
1
0
VP1  
Lower Data (10 pins)  
VP1 (Channel A)  
VP1D[9:0]  
(B)  
MCBSP1EN [PERCFG.2]  
MCASP0EN [PERCFG.0]  
1
0
VP1 (Channel A)  
VP1  
MCASP0EN [PERCFG.0]  
Upper Data (10 pins)  
(A)  
VP1D[19:12] Muxed  
VP1D[11:10] Standalone  
McASP0 Data  
1
0
VP1 (Channel B)  
A. Consists of: VP1D[19:12]/AXR0[7:0]  
B. McBSP1 peripheral not supported on DM643. For proper DM643 device operation, the MCBSP1EN bit must be  
set to zero.  
Figure 3-2. VP1, McBSP1, McBSP0, and McASP0 Data/Control Pin Muxing  
52  
Device Configurations  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
3.3 Peripheral Configuration Lock  
By default, the McASP0, VP1, VP2, and I2C peripherals are disabled on power up. In order to use these  
peripherals on the DM643 device, the peripheral must first be enabled in the Peripheral Configuration  
register (PERCFG). Software muxed pins should not be programmed to switch functionalities  
during run-time. Care should also be taken to ensure that no accesses are being performed before  
disabling the peripherals. To help minimize power consumption in the DM643 device, unused  
peripherals may be disabled.  
Figure 3-3 shows the flow needed to enable (or disable) a given peripheral on the DM643 device.  
Unlock the PERCFG Register  
Using the PCFGLOCK Register  
Write to  
PERCFG Register  
to Enable/Disable Peripherals  
Read from  
PERCFG Register  
Wait 128 CPU Cycles Before  
Accessing Enabled Peripherals  
Figure 3-3. Peripheral Enable/Disable Flow Diagram  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Configurations  
53  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
A 32-bit key (value = 0x10C0010C) must be written to the Peripheral Configuration Lock register  
(PCFGLOCK) in order to unlock access to the PERCFG register. Reading the PCFGLOCK register  
determines whether the PERCFG register is currently locked (LOCKSTAT bit = 1) or unlocked  
(LOCKSTAT bit = 0), see Figure 3-4. A peripheral can only be enabled when the PERCFG register is  
"unlocked" (LOCKSTAT bit = 0).  
Read Accesses  
31  
1
0
Reserved  
R-0  
LOCKSTAT  
R-1  
Write Accesses  
31  
0
LOCK  
W-0  
Legend: R = Read only, R/W = Read/Write, -n = value after reset  
Figure 3-4. PCFGLOCK Register Diagram [Address Location: 0x01B3 F018] - Read/Write Accesses  
Table 3-5. PCFGLOCK Register Selection Bit Descriptions - Read Accesses  
BIT  
NAME  
DESCRIPTION  
31:1  
Reserved  
Reserved. Read-only, writes have no effect.  
Lock status bit.  
Determines whether the PERCFG register is locked or unlocked.  
0
LOCKSTAT  
0 = Unlocked, read accesses to the PERCFG register allowed.  
1 = Locked, write accesses to the PERCFG register do not modify the register state [default].  
Reads are unaffected by Lock Status.  
Table 3-6. PCFGLOCK Register Selection Bit Descriptions - Write Accesses  
BIT  
NAME  
LOCK  
DESCRIPTION  
Lock bits.  
0x10C0010C = Unlocks PERCFG register accesses.  
31:0  
Any write to the PERCFG register will automatically relock the register. In order to avoid the unnecessary  
overhead of multiple unlock/enable sequences, all peripherals should be enabled with a single write to the  
PERCFG register with the necessary enable bits set.  
Prior to waiting 128 CPU cycles, the PERCFG register should be read. There is no direct correlation  
between the CPU issuing a write to the PERCFG register and the write actually occurring. Reading the  
PERCFG register after the write is issued forces the CPU to wait for the write to the PERCFG register to  
occur.  
Once a peripheral is enabled, the DSP (or other peripherals such as the HPI) must wait a minimum of 128  
CPU cycles before accessing the enabled peripheral. The user must ensure that no accesses are  
performed to a peripheral while it is disabled.  
54  
Device Configurations  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
 
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
3.4 Device Status Register Description  
The device status register depicts the status of the device peripheral selection. For the actual register bit  
names and their associated bit field descriptions, see Figure 3-5 and Table 3-7.  
31  
24  
Reserved  
R-0  
23  
15  
16  
Reserved  
R-0  
12  
11  
10  
HPI_WIDTH  
R-x  
9
8
Reserved  
R-0  
MAC_EN  
R-x  
Reserved  
R-x  
Reserved  
R-x  
7
6
5
4
3
2
1
0
Reserved  
R-x  
CLKMODE1  
R-x  
CLKMODE0  
R-x  
LENDIAN  
R-x  
BOOTMODE1 BOOTMODE0 AECLKINSEL1 AECLKINSEL0  
R-x R-x R-x R-x  
Legend: R = Read only, R/W = Read/Write, -n = value after reset  
Figure 3-5. Device Status Register (DEVSTAT) Description - 0x01B3 F004  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Configurations  
55  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 3-7. Device Status (DEVSTAT) Register Selection Bit Descriptions  
BIT  
NAME  
DESCRIPTION  
31:12  
Reserved  
Reserved. Read-only, writes have no effect.  
EMAC enable bit.  
Shows the status of whether EMAC peripheral is enabled or disabled (default).  
11  
10  
MAC_EN  
0 = EMAC is disabled, and the module is powered down (default).  
1 = EMAC is enabled.  
HPI bus width control bit.  
Shows the status of whether the HPI bus operates in 32-bit mode or in 16-bit mode (default).  
HPI_WIDTH  
0 = HPI operates in 16-bit mode. (default).  
1 = HPI operates in 32-bit mode.  
9:7  
6
Reserved  
Reserved. Read-only, writes have no effect.  
Clock mode select bits  
CLKMODE1  
Shows the status of whether the CPU clock frequency equals the input clock frequency X1 (Bypass), x6,  
or x12.  
Clock mode select for CPU clock frequency (CLKMODE[1:0])  
00 - Bypass (x1) (default mode)  
01 - x6  
10 - x12  
5
CLKMODE0  
11 - Reserved  
For more details on the CLKMODE pins and the PLL multiply factors, see the Clock PLL section of this  
data sheet.  
Device Endian mode (LEND)  
Shows the status of whether the system is operating in Big Endian mode or Little Endian mode (default).  
4
3
LENDIAN  
0 - System is operating in Big Endian mode  
1 - System is operating in Little Endian mode (default)  
BOOTMODE1  
Bootmode configuration bits  
Shows the status of what device bootmode configuration is operational.  
Bootmode [1:0]  
00 - No boot (default mode)  
01 - HPI boot  
10 - Reserved  
2
1
0
BOOTMODE0  
AECLKINSEL1  
AECLKINSEL0  
11 - EMIFA 8-bit ROM boot  
EMIFA input clock select  
Shows the status of what clock mode is enabled or disabled for the EMIF.  
Clock mode select for EMIFA (AECLKIN_SEL[1:0])  
00 - AECLKIN (default mode)  
01 - CPU/4 Clock Rate  
10 - CPU/6 Clock Rate  
11 - Reserved  
3.5 Multiplexed Pin Configurations  
Multiplexed pins are pins that are shared by more than one peripheral and are internally multiplexed.  
Some of these pins are configured by software, and the others are configured by external pullup/pulldown  
resistors only at reset. Those muxed pins that are configured by software should not be programmed to  
switch functionalities during run-time. Those muxed pins that are configured by external pullup/pulldown  
resistors are mutually exclusive; only one peripheral has primary control of the function of these pins after  
reset. Table 3-8 identifies the multiplexed pins on the DM643 device; shows the default (primary) function  
and the default settings after reset; and describes the pins, registers, etc. necessary to configure specific  
multiplexed functions.  
56  
Device Configurations  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 3-8. DM643 Device Multiplexed Pin Configurations  
MULTIPLEXED PINS  
DEFAULT  
FUNCTION  
DEFAULT  
SETTING  
DESCRIPTION  
NAME  
NO.  
CLKOUT4/GP0[1]  
D6  
CLKOUT4  
GP1EN = 0 (disabled)  
These pins are software-configurable. To use these pins  
as GPIO pins, the GPxEN bits in the GPIO Enable  
Register and the GPxDIR bits in the GPIO Direction  
Register must be properly configured.  
CLKOUT6/GP0[2]  
VDAC/GP0[8]  
C6  
CLKOUT6  
GP2EN = 0 (disabled)  
GPxEN = 1: GPx pin enabled  
GPxDIR = 0: GPx pin is an input  
GPxDIR = 1: GPx pin is an output  
The VDAC output pin function is default.  
To use GP0[8] as a GPIO pin, the GPxEN bits in the GPIO  
Enable Register and the GPxDIR bits in the GPIO  
Direction Register must be properly configured.  
GP8EN = 0 (disabled)  
MAC_EN = 0 (disabled)  
AD1  
None  
GP8EN = 1: GP8 pin enabled  
GP8DIR = 0: GP8 pin is an input  
GP8DIR = 1: GP8 pin is an output  
VP1D[19]/AXR0[7]  
VP1D[18]/AXR0[6]  
VP1D[17]/AXR0[5]  
VP1D[16]/AXR0[4]  
VP1D[15]/AXR0[3]  
VP1D[14]/AXR0[2]  
VP1D[13]/AXR0[1]  
VP1D[12]/AXR0[0]  
HD31/MRCLK  
HD30/MCRS  
AB12  
AB11  
AC11  
AD11  
AE11  
AC10  
AD10  
AC9  
G1  
By default, no function is enabled upon reset.  
To enable the Video Port 1 data pins, the VP1EN bit in the  
VP1EN bit = 0 (disabled) PERCFG register must be set to a 1. (McASP0 data pins  
None  
MCASP0EN bit = 0  
(disabled)  
are disabled).  
To enable the McASP0[7:0] data pins, the MCASP0EN bit  
in the PERCFG register must be set to a 1. (VP1 upper  
data pins are disabled).  
HD31  
HD30  
HD29  
HD28  
HD27  
HD26  
HD25  
HD24  
HD22  
HD21  
HD20  
HD19  
HD18  
HD17  
HD16  
H3  
HD29/MRXER  
HD28/MRXDV  
HD27/MRXD3  
HD26/MRXD2  
HD25/MRXD1  
HD24/MRXD0  
HD22/MTCLK  
G2  
J4  
H2  
J3  
J1  
To enable the EMAC peripheral, an external pullup resistor  
MAC_EN = 0 (disabled) (1 k) must be provided on the MAC_EN pin (setting  
K4  
MAC_EN = 1 at reset).  
L4  
HD21/MCOL  
K2  
HD20/MTXEN  
HD19/MTXD3  
L3  
L2  
HD18/MTXD2  
M4  
HD17/MTXD1  
M2  
HD16/MTXD0  
M3  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Configurations  
Submit Documentation Feedback  
57  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
3.6 Debugging Considerations  
It is recommended that external connections be provided to device configuration pins, including  
TOUT1/LENDIAN, AEA[22:19], HD5, and TOUT0/MAC_EN. Although internal pullup/pulldown resistors  
exist on these pins, providing external connectivity adds convenience to the user in debugging and  
flexibility in switching operating modes.  
Internal pullup/pulldown resistors also exist on the non-configuration pins on the AEA bus (AEA[18:0]). Do  
not oppose the internal pullup/pulldown resistors on these non-configuration pins with external  
pullup/pulldown resistors. If an external controller provides signals to these non-configuration pins, these  
signals must be driven to the default state of the pins at reset, or not be driven at all.  
For the internal pullup/pulldown resistors for all device pins, see the terminal functions table.  
3.7 Configuration Examples  
Figure 3-6 through Figure 3-8 illustrate examples of peripheral selections that are configurable on the  
DM643 device.  
58  
Device Configurations  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
64  
AED[63:0]  
EMIFA  
AECLKIN, AARDY, AHOLD  
AEA[22:3], ACE[3:0], ABE[7:0],  
AECLKOUT1, AECLKOUT2,  
ASDCKE, ASOE3, APDT,  
AHOLDA, ABUSREQ,  
AARE/ASDCAS/ASADS/ASRE,  
AAOE/ASDRAS/ASOE,  
16  
HD[15:0]  
HPI  
(16-Bit)  
Clock  
and  
System  
HRDY, HINT  
HCNTL0, HCNTL1,  
HHWIL, HAS, HR/W,  
HCS, HDS1, HDS2  
AAWE/ASDWE/ASWE  
CLKIN,  
MTXD[3:0], MTXEN  
CLKMODE0, CLKMODE1  
EMAC  
MDIO  
TIMER2  
TIMER1  
MRXD[3:0], MRXER,  
MRXDV, MCOL, MCRS,  
MTCLK, MRCLK  
CLKOUT4, CLKOUT6, PLLV  
TINP1  
MDIO, MDCLK  
TOUT1/LENDIAN  
TINP0  
TIMER0  
TOUT0/MACEN  
GP0  
and  
EXT_INT  
GP0[15:9, 3:0]  
GP0[7:4]  
CLKR0, FSR0, DR0,  
DX0, FSX0, CLKX0  
McBSP0  
McASP0 Control  
McASP0 Data  
SCL0  
SDA0  
I2C0  
VIC  
VDAC/GP0[8]  
(A)  
STCLK  
VP1  
(20-Bit)  
VP1CLK0  
(A)  
STCLK  
VP2  
(20-Bit)  
VP1CLK1,  
VP1CTL[2:0],  
VP1D[19:0]  
VP2CLK0  
VP2CLK1,  
VP2CTL[2:0],  
VP2D[19:0]  
PERCFG Register Value:  
External Pins:  
0x0000 006A  
HD5 = 0  
TOUT0/MAC_EN = 1  
Shading denotes a peripheral module not available for this configuration.  
A. STCLK supports both video ports (VP2 and VP1).  
Figure 3-6. Configuration Example A  
(2 20-Bit Video Ports + 1 McBSP + HPI + EMAC + MDIO + I2C0 + EMIF + 3 Timers)  
[TBD]  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Configurations  
59  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
64  
AED[63:0]  
EMIFA  
AECLKIN, AARDY, AHOLD  
AEA[22:3], ACE[3:0], ABE[7:0],  
AECLKOUT1, AECLKOUT2,  
ASDCKE, ASOE3, APDT,  
AHOLDA, ABUSREQ,  
AARE/ASDCAS/ASADS/ASRE,  
AAOE/ASDRAS/ASOE,  
Clock  
and  
System  
HPI  
(16-Bit)  
AAWE/ASDWE/ASWE  
CLKIN,  
CLKMODE0, CLKMODE1  
MTXD[3:0], MTXEN  
EMAC  
TIMER2  
TIMER1  
TIMER0  
CLKOUT4, CLKOUT6, PLLV  
MRXD[3:0], MRXER,  
MRXDV, MCOL, MCRS,  
MTCLK, MRCLK  
TINP1  
MDIO, MDCLK  
MDIO  
TOUT1/LENDIAN  
TINP0  
TOUT0/MACEN  
GP0  
and  
EXT_INT  
GP0[15:9, 3:0]  
GP0[7:4]  
CLKR0, FSR0, DR0,  
DX0, FSX0, CLKX0  
McBSP0  
McASP0 Control  
McASP0 Data  
SCL0  
SDA0  
I2C0  
VIC  
VDAC/GP0[8]  
(A)  
(A)  
STCLK  
STCLK  
VP1  
(8/10-Bit)  
VP2  
(20-Bit)  
VP1CLK0  
VP2CLK0  
VP2CLK1,  
VP2CTL[2:0],  
VP2D[19:0]  
VP1CLK1,  
VP1CTL[2:0],  
VP1D[9:2]  
PERCFG Register Value:  
External Pins:  
0x0000 006B  
HD5 = 1  
TOUT0/MAC_EN = 1  
Shading denotes a peripheral module not available for this configuration.  
A. STCLK supports both video ports (VP2 and VP1)  
Figure 3-7. Configuration Example B  
(1 20-Bit Video Port + 1 10-Bit Video Port + 1 McBSP + EMAC + MDIO + I2C0 + EMIF)  
[Possible Video IP Phone Applications]  
60  
Device Configurations  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
64  
AED[63:0]  
EMIFA  
AECLKIN, AARDY, AHOLD  
AEA[22:3], ACE[3:0], ABE[7:0],  
AECLKOUT1, AECLKOUT2,  
ASDCKE, ASOE3, APDT,  
AHOLDA, ABUSREQ,  
AARE/ASDCAS/ASADS/ASRE,  
AAOE/ASDRAS/ASOE,  
16  
HD[15:0]  
Clock  
and  
System  
HPI  
(16-Bit)  
HRDY, HINT  
HCNTL0, HCNTL1,  
HHWIL, HAS, HR/W,  
HCS, HDS1, HDS2  
AAWE/ASDWE/ASWE  
CLKIN,  
CLKMODE0, CLKMODE1  
MTXD[3:0], MTXEN  
EMAC  
MDIO  
TIMER2  
TIMER1  
TIMER0  
CLKOUT4, CLKOUT6, PLLV  
MRXD[3:0], MRXER,  
MRXDV, MCOL, MCRS,  
MTCLK, MRCLK  
TINP1  
MDIO, MDCLK  
TOUT1/LENDIAN  
TINP0  
TOUT0/MACEN  
CLKR0, FSR0, DR0,  
DX0, FSX0, CLKX0  
GP0  
and  
EXT_INT  
GP0[15:9, 3:0]  
GP0[7:4]  
McBSP0  
AHCLKX0, AFSX0,  
ACLKX0, AMUTE0,  
AMUTEIN0, AHCLKR0,  
AFSR0, ACLKR0  
McASP0 Control  
McASP0 Data  
SCL0  
SDA0  
I2C0  
VIC  
AXR0[7:0]  
VDAC/GP0[8]  
(A)  
(A)  
STCLK  
STCLK  
VP2  
(20-Bit)  
VP1  
(10-Bit)  
VP1CLK0  
VP2CLK0  
VP1CLK1,  
VP1CTL[2:0],  
VP1D[9:0]  
VP2CLK1,  
VP2CTL[2:0],  
VP2D[19:0]  
PERCFG Register Value:  
External Pins:  
0x0000 006B  
HD5 = 0  
TOUT0/MAC_EN = 1  
Shading denotes a peripheral module not available for this configuration.  
A. STCLK supports both video ports (VP2 and VP1).  
Figure 3-8. Configuration Example C  
(1 20-Bit Video Port, 1 10-Bit Video Port + 1 McBSP + 1 McASP0 + VIC + I2C0 + EMIF)  
[TBD]  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Configurations  
61  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
4 Device Operating Conditions  
4.1 Absolute Maximum Ratings Over Operating Case Temperature Range  
(1)  
(Unless Otherwise Noted)  
(2)  
CVDD  
–0.3 V to 1.8 V  
–0.3 V to 4 V  
–0.3 V to 4 V  
–0.3 V to 4 V  
0°C to 90°C  
–65°C to 150°C  
–40°C to 125°C  
500  
Supply voltage ranges:  
(2)  
DVDD  
Input voltage ranges:  
VI  
Output voltage ranges:  
VO  
Operating case temperature ranges, TC:  
(default)  
Storage temperature range, Tstg  
:
Temperature Range  
Number of Cycles  
Package Temperature Cycling:  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS.  
4.2 Recommended Operating Conditions  
MIN NOM  
MAX UNIT  
(1)  
(1)  
Supply voltage, Core (-500 device)  
Supply voltage, Core (-600 device)  
Supply voltage, I/O  
1.14  
1.36  
3.14  
0
1.2  
1.4  
3.3  
0
1.26  
1.44  
3.46  
0
V
V
CVDD  
DVDD  
VSS  
VIH  
V
Supply ground  
V
High-level input voltage  
2
V
VIL  
Low-level input voltage  
0.8  
V
VOS  
VUS  
TC  
Maximum voltage during overshoot  
4.3(2)  
V
(2)  
Maximum voltage during undershoot  
Operating case temperature Default  
–1.0  
V
0
90  
°C  
(1) Future variants of the C64x DSPs may operate at voltages ranging from 0.9 V to 1.4 V to provide a range of system power/performance  
options. TI highly recommends that users design-in a supply that can handle multiple voltages within this range (i.e., 1.2 V, 1.25 V,  
1.3 V, 1.35 V, 1.4 V with ± 3% tolerances) by implementing simple board changes such as reference resistor values or input pin  
configuration modifications. Examples of such supplies include the PT4660, PT5500, PT5520, PT6440, and PT6930 series from Power  
Trends, a subsidiary of Texas Instruments. Not incorporating a flexible supply may limit the system's ability to easily adapt to future  
versions of C64x devices.  
(2) The absolute maximum ratings should not be exceeded for more than 30% of the cycle period.  
62  
Device Operating Conditions  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
4.3 Electrical Characteristics Over Recommended Ranges of Supply Voltage and  
Operating Case Temperature (Unless Otherwise Noted)  
(1)  
PARAMETER  
High-level output voltage  
Low-level output voltage  
TEST CONDITIONS  
DVDD = MIN, IOH = MAX(2)  
DVDD = MIN, IOL = MAX(2)  
MIN  
TYP  
MAX UNIT  
VOH  
VOL  
2.4  
V
0.4  
V
VI = VSS to DVDD no opposing internal  
resistor  
±10  
uA  
VI = VSS to DVDD opposing internal pullup  
resistor  
II  
Input current  
50  
100  
150  
uA  
(3)  
VI = VSS to DVDD opposing internal  
pulldown resistor  
–150  
–100  
–50  
–16  
–8  
uA  
mA  
mA  
(3)  
EMIF, CLKOUT4, CLKOUT6, EMUx  
Video Ports, Timer, TDO, GPIO  
(Excluding GP0[2:1]), McBSP  
IOH  
High-level output current  
Low-level output current  
HPI  
–0.5(3)  
16  
mA  
mA  
EMIF, CLKOUT4, CLKOUT6, EMUx  
Video Ports, Timer, TDO, GPIO  
(Excluding GP0[2:1]), McBSP  
8
mA  
IOL  
SCL0 and SDA0  
3
1.5(3)  
±10  
mA  
mA  
uA  
HPI  
IOZ  
Off-state output current  
Core supply current(4)  
VO = DVDD or 0 V  
CVDD = 1.4 V, CPU clock = 600 MHz  
CVDD = 1.2 V, CPU clock = 500 MHz  
DVDD = 3.3 V, CPU clock = 600 MHz  
DVDD = 3.3 V, CPU clock = 500 MHz  
890  
620  
210  
165  
mA  
mA  
mA  
mA  
pF  
ICDD  
IDDD  
I/O supply current(4)  
Ci  
Input capacitance  
Output capacitance  
10  
10  
Co  
pF  
(1) For test conditions shown as MIN, MAX, or NOM, use the appropriate value specified in the recommended operating conditions table.  
(2) Single pin driving IOH/IOL = MAX.  
(3) Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor.  
(4) Measured with average activity (50% high/50% low power) at 25°C case temperature and 133-MHz EMIF for -600 speed (100-MHz  
EMIF for -500 speed). This model represents a device performing high-DSP-activity operations 50% of the time, and the remainder  
performing low-DSP-activity operations. The high/low-DSP-activity models are defined as follows:  
High-DSP-Activity Model:  
CPU: 8 instructions/cycle with 2 LDDW instructions [L1 Data Memory: 128 bits/cycle via LDDW instructions;  
L1 Program Memory: 256 bits/cycle; L2/EMIF EDMA: 50% writes, 50% reads to/from SDRAM (50% bit-switching)]  
McBSP: 1 channel at 2.048 MHz  
Timers: 2 timers at maximum rate  
Low-DSP-Activity Model:  
CPU: 2 instructions/cycle with 1 LDH instruction [L1 Data Memory: 16 bits/cycle; L1 Program Memory: 256 bits per 4 cycles;  
L2/EMIF EDMA: None]  
McBSP: 1 channel at 2.048 MHz  
Timers: 2 timers at maximum rate  
The actual current draw is highly application-dependent. For more details on core and I/O activity, refer to the TMS320DMx Power  
Consumption Summary application report (literature number SPRA962).  
Copyright © 2005–2010, Texas Instruments Incorporated  
Device Operating Conditions  
63  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
5 DM643 Peripheral Information and Electrical Specifications  
5.1 Parameter Information  
5.1.1 Parameter Information Device-Specific Information  
Tester Pin Electronics  
Data Sheet Timing Reference Point  
42  
3.5 nH  
Output  
Under  
Test  
Transmission Line  
Z0 = 50 Ω  
(see note)  
Device Pin  
(see note)  
4.0 pF  
1.85 pF  
NOTE: The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must  
be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect. The  
transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from the data  
sheet timings.  
Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin.  
Figure 5-1. Test Load Circuit for AC Timing Measurements  
The load capacitance value stated is only for characterization and measurement of AC timing signals. This  
load capacitance value does not indicate the maximum load the device is capable of driving.  
5.1.1.1 Signal Transition Levels  
All input and output timing parameters are referenced to 1.5 V for both "0" and "1" logic levels.  
V
ref  
= 1.5 V  
Figure 5-2. Input and Output Voltage Reference Levels for AC Timing Measurements  
All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks,  
VOLMAX and VOH MIN for output clocks.  
V
ref  
= V MIN (or V MIN)  
IH OH  
V
ref  
= V MAX (or V MAX)  
IL OL  
Figure 5-3. Rise and Fall Transition Time Voltage Reference Levels  
5.1.1.2 AC Transient Rise/Fall Time Specifications  
Figure 5-4 and Figure 5-5 show the AC transient specifications for Rise and Fall time. For device-specific  
information on these values, refer to the Recommended Operating Conditions section of this Data Sheet.  
64  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
(A)  
t = 0.3 T (max)  
C
V
OS  
(max)  
Minimum  
Risetime  
V
IH  
(min)  
Waveform  
Valid Region  
Ground  
A. t = the peripheral cycle time.  
c
Figure 5-4. AC Transient Specification Rise Time  
(A)  
t = 0.3 T (max)  
C
V
IL  
(max)  
V
US  
(max)  
Ground  
A. t = the peripheral cycle time.  
c
Figure 5-5. AC Transient Specification Fall Time  
5.1.1.3 Signal Transition Rates  
All timings are tested with an input edge rate of 4 Volts per nanosecond (4 V/ns).  
5.1.1.4 Timing Parameters and Board Routing Analysis  
The timing parameter values specified in this data sheet do not include delays by board routings. As a  
good board design practice, such delays must always be taken into account. Timing values may be  
adjusted by increasing/decreasing such delays. TI recommends utilizing the available I/O buffer  
information specification (IBIS) models to analyze the timing characteristics correctly. To properly use IBIS  
models to attain accurate timing analysis for a given system, see the Using IBIS Models for Timing  
Analysis application report (literature number SPRA839). If needed, external logic hardware such as  
buffers may be used to compensate any timing differences.  
For inputs, timing is most impacted by the round-trip propagation delay from the DSP to the external  
device and from the external device to the DSP. This round-trip delay tends to negatively impact the input  
setup time margin, but also tends to improve the input hold time margins (see Table 5-1 and Figure 5-6).  
Figure 5-6 represents a general transfer between the DSP and an external device. The figure also  
represents board route delays and how they are perceived by the DSP and the external device.  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
65  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 5-1. Board-Level Timing Example  
(see Figure 5-6)  
NO.  
1
DESCRIPTION  
Clock route delay  
2
Minimum DSP hold time  
3
Minimum DSP setup time  
External device hold time requirement  
External device setup time requirement  
Control signal route delay  
External device hold time  
4
5
6
7
8
External device access time  
DSP hold time requirement  
DSP setup time requirement  
Data route delay  
9
10  
11  
ECLKOUTx  
(Output from DSP)  
1
ECLKOUTx  
(Input to External Device)  
2
3
(A)  
Control Signals  
(Output from DSP)  
4
5
6
Control Signals  
(Input to External Device)  
7
8
(B)  
Data Signals  
(Output from External Device)  
9
10  
11  
(B)  
Data Signals  
(Input to DSP)  
A. Control signals include data for Writes.  
B. Data signals are generated during Reads from an external device.  
Figure 5-6. Board-Level Input/Output Timings  
5.2 Recommended Clock and Control Signal Transition Behavior  
All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic  
manner.  
5.3 Power Supplies  
For more information regarding TI's power management products and suggested devices to power TI  
DSPs, visit www.ti.com/dsppower.  
5.3.1 Power-Supply Sequencing  
TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However,  
systems should be designed to ensure that neither supply is powered up for extended periods of time  
(>1 second) if the other supply is below the proper operating voltage.  
66  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
 
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
5.3.2 Power-Supply Design Considerations  
A dual-power supply with simultaneous sequencing can be used to eliminate the delay between core and  
I/O power up. A Schottky diode can also be used to tie the core rail to the I/O rail (see Figure 5-7).  
I/O Supply  
DV  
DD  
Schottky  
Diode  
C6000  
DSP  
Core Supply  
CV  
DD  
V
SS  
GND  
Figure 5-7. Schottky Diode Diagram  
Core and I/O supply voltage regulators should be located close to the DSP (or DSP array) to minimize  
inductance and resistance in the power delivery path. Additionally, when designing for high-performance  
applications utilizing the C6000™ platform of DSPs, the PC board should include separate power planes  
for core, I/O, and ground, all bypassed with high-quality low-ESL/ESR capacitors.  
5.3.3 Power-Supply Decoupling  
In order to properly decouple the supply planes from system noise, place as many capacitors (caps) as  
possible close to the DSP. Assuming 0603 caps, the user should be able to fit a total of 60 caps, 30 for  
the core supply and 30 for the I/O supply. These caps need to be close to the DSP power pins, no more  
than 1.25 cm maximum distance to be effective. Physically smaller caps, such as 0402, are better  
because of their lower parasitic inductance. Proper capacitance values are also important. Small bypass  
caps (near 560 pF) should be closest to the power pins. Medium bypass caps (220 nF or as large as can  
be obtained in a small package) should be next closest. TI recommends no less than 8 small and  
8 medium caps per supply (32 total) be placed immediately next to the BGA vias, using the "interior" BGA  
space and at least the corners of the "exterior".  
Eight larger caps (4 for each supply) can be placed further away for bulk decoupling. Large bulk caps (on  
the order of 100 µF) should be furthest away (but still as close as possible). No less than 4 large caps per  
supply (8 total) should be placed outside of the BGA.  
Any cap selection needs to be evaluated from a yield/manufacturing point-of-view. As with the selection of  
any component, verification of capacitor availability over the product’s production lifetime should be  
considered.  
5.3.4 Peripheral Power-Down Operation  
The DM643 device can be powered down in three ways:  
Power-down due to pin configuration  
Power-down due to software configuration – relates to the default state of the peripheral configuration  
bits in the PERCFG register.  
Power-down during run-time via software configuration  
On the DM643 device, the HPI and EMAC and MDIO peripherals are controlled (selected) at the pin level  
during chip reset (e.g., HD5 and MAC_EN pins).  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
67  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
The McASP0, McBSP0, VP1, VP2, and I2C0 peripheral functions are selected via the peripheral  
configuration (PERCFG) register bits.  
For more detailed information on the peripheral configuration pins and the PERCFG register bits, see the  
Device Configurations section of this document.  
5.3.5 Power-Down Modes Logic  
Figure 5-8 shows the power-down mode logic on the DM643.  
CLKOUT4  
CLKOUT6  
Internal Clock Tree  
Clock  
Distribution  
and Dividers  
PD1  
PD2  
IFR  
Power-  
Internal  
Peripherals  
Clock  
PLL  
IER  
CSR  
Down  
Logic  
PWRD  
CPU  
PD3  
TMS320DM643  
CLKIN  
RESET  
A. External input clocks, with the exception of CLKIN, are not gated by the power-down mode logic.  
Figure 5-8. Power-Down Mode Logic(A)  
68  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
 
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
5.3.6 Triggering, Wake-up, and Effects  
The power-down modes and their wake-up methods are programmed by setting the PWRD field (bits  
15–10) of the control status register (CSR). The PWRD field of the CSR is shown in Figure 5-9 and  
described in Table 5-2. When writing to the CSR, all bits of the PWRD field should be set at the same  
time. Logic 0 should be used when writing to the reserved bit (bit 15) of the PWRD field. The CSR is  
discussed in detail in the TMS320C6000 CPU and Instruction Set Reference Guide (literature number  
SPRU189).  
31  
16  
(See NOTE)  
15  
14  
13  
12  
11  
10  
9
8
Enable or  
Non-Enabled  
Interrupt Wake  
Enabled  
Interrupt Wake  
Reserved  
PD3  
PD2  
PD1  
(See NOTE)  
R/W-0  
7
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
0
(See NOTE)  
Legend: R/W = Readable/Writable, -n = value after reset, -x = undefined value after reset  
NOTE: The shaded bits are not part of the power-down logic discussion and therefore are not covered here. For information on these other  
bit fields in the CSR register, see the TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189).  
Figure 5-9. PWRD Field of the CSR Register  
A delay of up to nine clock cycles may occur after the instruction that sets the PWRD bits in the CSR  
before the PD mode takes effect. As best practice, NOPs should be padded after the PWRD bits are set in  
the CSR to account for this delay.  
If PD1 mode is terminated by a non-enabled interrupt, the program execution returns to the instruction  
where PD1 took effect. If PD1 mode is terminated by an enabled interrupt, the interrupt service routine will  
be executed first, then the program execution returns to the instruction where PD1 took effect. In the case  
with an enabled interrupt, the GIE bit in the CSR and the NMIE bit in the interrupt enable register (IER)  
must also be set in order for the interrupt service routine to execute; otherwise, execution returns to the  
instruction where PD1 took effect upon PD1 mode termination by an enabled interrupt.  
PD2 and PD3 modes can only be aborted by device reset. Table 5-2 summarizes all the power-down  
modes.  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
69  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 5-2. Characteristics of the Power-Down Modes  
PRWD Field  
(BITS 15–10)  
POWER-DOWN  
WAKE-UP METHOD  
EFFECT ON CHIP'S OPERATION  
MODE  
No power-down  
PD1  
000000  
001001  
Wake by an enabled interrupt  
CPU halted (except for the interrupt logic)  
Power-down mode blocks the internal clock inputs at the  
boundary of the CPU, preventing most of the CPU's logic from  
switching. During PD1, EDMA transactions can proceed  
between peripherals and internal memory.  
Wake by an enabled or  
non-enabled interrupt  
010001  
PD1  
Output clock from PLL is halted, stopping the internal clock  
structure from switching and resulting in the entire chip being  
halted. All register and internal RAM contents are preserved. All  
functional I/O "freeze" in the last state when the PLL clock is  
turned off.  
011010  
PD2(1)  
Wake by a device reset  
Input clock to the PLL stops generating clocks. All register and  
internal RAM contents are preserved. All functional I/O "freeze"  
in the last state when the PLL clock is turned off. Following  
reset, the PLL needs time to re-lock, just as it does following  
power-up.  
011100  
PD3(1)  
Wake by a device reset  
Wake-up from PD3 takes longer than wake-up from PD2  
because the PLL needs to be re-locked, just as it does following  
power-up.  
All others  
Reserved  
(1) When entering PD2 and PD3, all functional I/O remains in the previous state. However, for peripherals which are asynchronous in  
nature or peripherals with an external clock source, output signals may transition in response to stimulus on the inputs. Under these  
conditions, peripherals will not operate according to specifications.  
5.3.7 C64x Power-Down Mode with an Emulator  
If user power-down modes are programmed, and an emulator is attached, the modes will be masked to  
allow the emulator access to the system. This condition prevails until the emulator is reset or the cable is  
removed from the header. If power measurements are to be performed when in a power-down mode, the  
emulator cable should be removed.  
When the DSP is in power-down mode PD2 or PD3, emulation logic will force any emulation execution  
command (such as Step or Run) to spin in IDLE. For this reason, PC writes (such as loading code) will  
fail. A DSP reset will be required to get the DSP out of PD2/PD3.  
70  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
5.4 Enhanced Direct Memory Access (EDMA) Controller  
The EDMA controller handles all data transfers between the level-two (L2) cache/memory controller and  
the device peripherals on the DM643 DSP. These data transfers include cache servicing, non-cacheable  
memory accesses, user-programmed data transfers, and host accesses.  
5.4.1 EDMA Device-Specific Information  
5.4.1.1 EDMA Channel Synchronization Events  
The C64x EDMA supports up to 64 EDMA channels which service peripheral devices and external  
memory. Table 5-3 lists the source of C64x EDMA synchronization events associated with each of the  
programmable EDMA channels. For the DM643 device, the association of an event to a channel is fixed;  
each of the EDMA channels has one specific event associated with it. These specific events are captured  
in the EDMA event registers (ERL, ERH) even if the events are disabled by the EDMA event enable  
registers (EERL, EERH). The priority of each event can be specified independently in the transfer  
parameters stored in the EDMA parameter RAM. For more detailed information on the EDMA module and  
how EDMA events are enabled, captured, processed, linked, chained, and cleared, etc., see the  
TMS320C6000 DSP Enhanced Direct Memory Access (EDMA) Controller Reference Guide (literature  
number SPRU234).  
Table 5-3. TMS320DM643 EDMA Channel Synchronization Events(1)  
EDMA  
EVENT NAME  
EVENT DESCRIPTION  
CHANNEL(1)  
0
1
DSP_INT  
TINT0  
HPI-to-DSP interrupt  
Timer 0 interrupt  
2
TINT1  
Timer 1 interrupt  
3
SD_INTA  
GPINT4/EXT_INT4  
GPINT5/EXT_INT5  
GPINT6/EXT_INT6  
GPINT7/EXT_INT7  
GPINT0  
EMIFA SDRAM timer interrupt  
GP0 event 4/External interrupt pin 4  
GP0 event 5/External interrupt pin 5  
GP0 event 6/External interrupt pin 6  
GP0 event 7/External interrupt pin 7  
GP0 event 0  
4
5
6
7
8
9
GPINT1  
GP0 event 1  
10  
11  
12  
13  
14–18  
19  
20–31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
GPINT2  
GP0 event 2  
GPINT3  
GP0 event 3  
XEVT0  
McBSP0 transmit event  
McBSP0 receive event  
None  
REVT0  
TINT2  
Timer 2 interrupt  
None  
AXEVTE0  
AXEVTO0  
AXEVT0  
McASP0 transmit even event  
McASP0 transmit odd event  
McASP0 transmit event  
McASP0 receive even event  
McASP0 receive odd event  
McASP0 receive event  
AREVTE0  
AREVTO0  
AREVT0  
VP1EVTYB  
VP1EVTUB  
VP1EVTVB  
VP1 Channel B Y event DMA request  
VP1 Channel B Cb event DMA request  
VP1 Channel B Cr event DMA request  
(1) In addition to the events shown in this table, each of the 64 channels can also be synchronized with the transfer completion or alternate  
transfer completion events. For more detailed information on EDMA event-transfer chaining, see the TMS320C6000 DSP Enhanced  
Direct Memory Access (EDMA) Controller Reference Guide (literature number SPRU234).  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
71  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 5-3. TMS320DM643 EDMA Channel Synchronization Events(1) (continued)  
EDMA  
EVENT NAME  
EVENT DESCRIPTION  
CHANNEL(1)  
41  
42  
VP2EVTYB  
VP2EVTUB  
VP2EVTVB  
ICREVT0  
ICXEVT0  
VP2 Channel B Y event DMA request  
VP2 Channel B Cb event DMA request  
VP2 Channel B Cr event DMA request  
I2C0 receive event  
43  
44  
45  
I2C0 transmit event  
46–47  
48  
None  
GPINT8  
GP0 event 8  
49  
GPINT9  
GP0 event 9  
50  
GPINT10  
GPINT11  
GPINT12  
GPINT13  
GPINT14  
GPINT15  
VP1EVTYA  
VP1EVTUA  
VP1EVTVA  
VP2EVTYA  
VP2EVTUA  
VP2EVTVA  
GP0 event 10  
51  
GP0 event 11  
52  
GP0 event 12  
53  
GP0 event 13  
54  
GP0 event 14  
55  
GP0 event 15  
56  
VP1 Channel A Y event DMA request  
VP1 Channel A Cb event DMA request  
VP1 Channel A Cr event DMA request  
VP2 Channel A Y event DMA request  
VP2 Channel A Cb event DMA request  
VP2 Channel A Cr event DMA request  
None  
57  
58  
59  
60  
61  
62–63  
72  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
5.4.2 EDMA Peripheral Register Description(s)  
Table 5-4. EDMA Registers (C64x)  
HEX ADDRESS RANGE  
01A0 0800 – 01A0 FF98  
01A0 FF9C  
ACRONYM  
REGISTER NAME  
Reserved  
EPRH  
CIPRH  
CIERH  
CCERH  
ERH  
Event polarity high register  
01A0 FFA4  
Channel interrupt pending high register  
Channel interrupt enable high register  
Channel chain enable high register  
Event high register  
01A0 FFA8  
01A0 FFAC  
01A0 FFB0  
01A0 FFB4  
EERH  
ECRH  
ESRH  
PQAR0  
PQAR1  
PQAR2  
PQAR3  
EPRL  
PQSR  
CIPRL  
CIERL  
CCERL  
ERL  
Event enable high register  
Event clear high register  
01A0 FFB8  
01A0 FFBC  
Event set high register  
01A0 FFC0  
Priority queue allocation register 0  
Priority queue allocation register 1  
Priority queue allocation register 2  
Priority queue allocation register 3  
Event polarity low register  
01A0 FFC4  
01A0 FFC8  
01A0 FFCC  
01A0 FFDC  
01A0 FFE0  
Priority queue status register  
Channel interrupt pending low register  
Channel interrupt enable low register  
Channel chain enable low register  
Event low register  
01A0 FFE4  
01A0 FFE8  
01A0 FFEC  
01A0 FFF0  
01A0 FFF4  
EERL  
ECRL  
ESRL  
Event enable low register  
01A0 FFF8  
Event clear low register  
01A0 FFFC  
Event set low register  
01A1 0000 – 01A3 FFFF  
Reserved  
Table 5-5. Quick DMA (QDMA) and Pseudo Registers  
HEX ADDRESS RANGE  
0200 0000  
ACRONYM  
QOPT  
REGISTER NAME  
QDMA options parameter register  
QDMA source address register  
QDMA frame count register  
QDMA destination address register  
QDMA index register  
0200 0004  
QSRC  
QCNT  
0200 0008  
0200 000C  
QDST  
0200 0010  
QIDX  
0200 0014 – 0200 001C  
0200 0020  
Reserved  
QSOPT  
QSSRC  
QSCNT  
QSDST  
QSIDX  
QDMA pseudo options register  
QDMA psuedo source address register  
QDMA psuedo frame count register  
QDMA destination address register  
QDMA psuedo index register  
0200 0024  
0200 0028  
0200 002C  
0200 0030  
Table 5-6. EDMA Parameter RAM (C64x)(1)  
HEX ADDRESS RANGE  
01A0 0000 – 01A0 0017  
01A0 0018 – 01A0 002F  
ACRONYM  
REGISTER NAME  
Parameters for Event 0 (6 words)  
Parameters for Event 1 (6 words)  
COMMENTS  
Parameters for Event 0  
(6 words) or Reload/Link  
Parameters for other Event  
(1) The DM643 device has 213 EDMA parameters total: 64-Event/Reload channels and 149-Reload only parameter sets [six (6) words  
each] that can be used to reload/link EDMA transfers.  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
73  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 5-6. EDMA Parameter RAM (C64x) (continued)  
HEX ADDRESS RANGE  
01A0 0030 – 01A0 0047  
01A0 0048 – 01A0 005F  
01A0 0060 – 01A0 0077  
01A0 0078 – 01A0 008F  
01A0 0090 – 01A0 00A7  
01A0 00A8 – 01A0 00BF  
01A0 00C0 – 01A0 00D7  
01A0 00D8 – 01A0 00EF  
01A0 00F0 – 01A0 00107  
01A0 0108 – 01A0 011F  
01A0 0120 – 01A0 0137  
01A0 0138 – 01A0 014F  
01A0 0150 – 01A0 0167  
01A0 0168 – 01A0 017F  
01A0 0180 – 01A0 0197  
01A0 0198 – 01A0 01AF  
...  
ACRONYM  
REGISTER NAME  
Parameters for Event 2 (6 words)  
COMMENTS  
Parameters for Event 3 (6 words)  
Parameters for Event 4 (6 words)  
Parameters for Event 5 (6 words)  
Parameters for Event 6 (6 words)  
Parameters for Event 7 (6 words)  
Parameters for Event 8 (6 words)  
Parameters for Event 9 (6 words)  
Parameters for Event 10 (6 words)  
Parameters for Event 11 (6 words)  
Parameters for Event 12 (6 words)  
Parameters for Event 13 (6 words)  
Parameters for Event 14 (6 words)  
Parameters for Event 15 (6 words)  
Parameters for Event 16 (6 words)  
Parameters for Event 17 (6 words)  
...  
01A0 05D0 – 01A0 05E7  
01A0 05E8 – 01A0 05FF  
Parameters for Event 62 (6 words)  
Parameters for Event 63 (6 words)  
Reload/Link Parameters for  
other Event 0–15  
01A0 0600 – 01A0 0617  
Reload/link parameters for Event 0 (6 words)  
01A0 0618 – 01A0 062F  
...  
Reload/link parameters for Event 1 (6 words)  
...  
01A0 07E0 – 01A0 07F7  
01A0 07F8 – 01A0 080F  
01A0 0810 – 01A0 0827  
...  
Reload/link parameters for Event 20 (6 words)  
Reload/link parameters for Event 21 (6 words)  
Reload/link parameters for Event 22 (6 words)  
...  
01A0 13C8 – 01A0 13DF  
01A0 13E0 – 01A0 13F7  
01A0 13F8 – 01A0 13FF  
01A0 1400 – 01A3 FFFF  
Reload/link parameters for Event 147 (6 words)  
Reload/link parameters for Event 148 (6 words)  
Scratch pad area (2 words)  
Reserved  
74  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
5.5 Interrupts  
5.5.1 Interrupt Sources and Interrupt Selector  
The C64x DSP core supports 16 prioritized interrupts, which are listed in Table 5-7. The highest-priority  
interrupt is INT_00 (dedicated to RESET) while the lowest-priority interrupt is INT_15. The first four  
interrupts (INT_00–INT_03) are non-maskable and fixed. The remaining interrupts (INT_04–INT_15) are  
maskable and default to the interrupt source specified in Table 5-7. The interrupt source for interrupts  
4–15 can be programmed by modifying the selector value (binary value) in the corresponding fields of the  
Interrupt Selector Control registers: MUXH (address 0x019C0000) and MUXL (address 0x019C0004).  
Table 5-7. DM643 DSP Interrupts  
INTERRUPT  
CPU  
INTERRUPT  
NUMBER  
SELECTOR  
VALUE  
(BINARY)  
SELECTOR  
CONTROL  
REGISTER  
INTERRUPT  
EVENT  
INTERRUPT SOURCE  
INT_00(1)  
INT_01(1)  
RESET  
NMI  
INT_02(1)  
Reserved  
Reserved. Do not use.  
INT_03(1)  
INT_04(2)  
INT_05(2)  
INT_06(2)  
INT_07(2)  
INT_08(2)  
INT_09(2)  
INT_10(2)  
INT_11(2)  
INT_12(2)  
INT_13(2)  
INT_14(2)  
Reserved  
Reserved. Do not use.  
GP0 interrupt 4/External interrupt pin 4  
GP0 interrupt 5/External interrupt pin 5  
GP0 interrupt 6/External interrupt pin 6  
GP0 interrupt 7/External interrupt pin 7  
EDMA channel (0 through 63) interrupt  
EMU DTDMA  
MUXL[4:0]  
00100  
00101  
00110  
00111  
01000  
01001  
00011  
01010  
01011  
00000  
00001  
00010  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
GPINT4/EXT_INT4  
GPINT5/EXT_INT5  
GPINT6/EXT_INT6  
GPINT7/EXT_INT7  
EDMA_INT  
EMU_DTDMA  
SD_INTA  
MUXL[9:5]  
MUXL[14:10]  
MUXL[20:16]  
MUXL[25:21]  
MUXL[30:26]  
MUXH[4:0]  
EMIFA SDRAM timer interrupt  
EMU real-time data exchange (RTDX) receive  
EMU RTDX transmit  
MUXH[9:5]  
EMU_RTDXRX  
EMU_RTDXTX  
DSP_INT  
MUXH[14:10]  
MUXH[20:16]  
HPI-to-DSP interrupt  
MUXH[25:21]  
TINT0  
Timer 0 interrupt  
INT_15(2)  
MUXH[30:26]  
TINT1  
Timer 1 interrupt  
XINT0  
McBSP0 transmit interrupt  
McBSP0 receive interrupt  
Reserved. Do not use.  
Reserved. Do not use.  
GP0 interrupt 0  
RINT0  
Reserved  
Reserved  
GPINT0  
Reserved  
Reserved. Do not use.  
Reserved. Do not use.  
Timer 2 interrupt  
Reserved  
TINT2  
Reserved  
Reserved. Do not use.  
Reserved. Do not use.  
I2C0 interrupt  
Reserved  
ICINT0  
Reserved  
Reserved. Do not use.  
EMAC/MDIO interrupt  
EMAC_MDIO_INT  
Reserved  
Reserved. Do not use.  
VP1 interrupt  
VPINT1  
VPINT2  
VP2 interrupt  
AXINT0  
McASP0 transmit interrupt  
(1) Interrupts INT_00 through INT_03 are non-maskable and fixed.Interrupts  
(2) INT_04 through INT_15 are programmable by modifying the binary selector values in the Interrupt Selector Control registers fields.  
Table 5-7 shows the default interrupt sources for Interrupts INT_04 through INT_15. For more detailed information on interrupt sources  
and selection, see the TMS320C6000 DSP Interrupt Selector Reference Guide (literature number SPRU646).  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
75  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 5-7. DM643 DSP Interrupts (continued)  
INTERRUPT  
SELECTOR  
CONTROL  
REGISTER  
CPU  
INTERRUPT  
NUMBER  
SELECTOR  
VALUE  
(BINARY)  
INTERRUPT  
EVENT  
INTERRUPT SOURCE  
11101  
ARINT0  
McASP0 receive interrupt  
Reserved. Do not use.  
11110 – 11111  
Reserved  
5.5.2 Interrupts Peripheral Register Description(s)  
Table 5-8. Interrupt Selector Registers (C64x)  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
Interrupt multiplexer high  
COMMENTS  
Selects which interrupts drive CPU  
interrupts 10–15 (INT10–INT15)  
019C 0000  
MUXH  
Selects which interrupts drive CPU  
interrupts 4–9 (INT04–INT09)  
019C 0004  
MUXL  
Interrupt multiplexer low  
Sets the polarity of the external  
interrupts (EXT_INT4–EXT_INT7)  
019C 0008  
EXTPOL  
External interrupt polarity  
Reserved  
019C 000C – 019F FFFF  
5.5.3 External Interrupts Electrical Data/Timing  
Table 5-9. Timing Requirements for External Interrupts(1) (see Figure 5-10)  
–500  
–600  
NO.  
UNIT  
MIN  
MAX  
Width of the NMI interrupt pulse low  
4P  
8P  
4P  
8P  
ns  
ns  
ns  
ns  
1
2
tw(ILOW)  
Width of the EXT_INT interrupt pulse low  
Width of the NMI interrupt pulse high  
Width of the EXT_INT interrupt pulse high  
tw(IHIGH)  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.  
2
1
EXT_INTx, NMI  
Figure 5-10. External/NMI Interrupt Timing  
76  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
 
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
5.6 Reset  
A hardware reset (RESET) is required to place the DSP into a known good state out of power-up. The  
RESET signal can be asserted (pulled low) prior to ramping the core and I/O voltages or after the core  
and I/O voltages have reached their proper operating conditions. As a best practice, reset should be held  
low during power-up. Prior to deasserting RESET (low-to-high transition), the core and I/O voltages should  
be at their proper operating conditions and CLKIN should also be running at the correct frequency.  
For information on peripheral selection at the rising edge of RESET, see the Device Configuration section  
of this data manual.  
5.6.1 Reset Electrical Data/Timing  
Table 5-10. Timing Requirements for Reset (see Figure 5-11)  
–500  
–600  
NO.  
UNIT  
MIN  
MAX  
1
tw(RST)  
tsu(boot)  
th(boot)  
Width of the RESET pulse  
250  
4E or 4C(2)  
4P(3)  
µs  
ns  
ns  
(1)  
16  
17  
Setup time, boot configuration bits valid before RESET high  
(1)  
Hold time, boot configuration bits valid after RESET high  
(1) AEA[22:19], LENDIAN, and HD5 are the boot configuration pins during device reset.  
(2) E = 1/AECLKIN clock frequency in ns. C = 1/CLKIN clock frequency in ns.  
Select the MIN parameter value, whichever value is larger.  
(3) P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
77  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 5-11. Switching Characteristics Over Recommended Operating Conditions During Reset(1) (2) (3)  
(see Figure 5-11)  
–500  
–600  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
3P + 20E  
8P + 20E  
2
3
td(RSTL-ECKI)  
Delay time, RESET low to AECLKIN synchronized internally  
Delay time, RESET high to AECLKIN synchronized internally  
Delay time, RESET low to AECLKOUT1 high impedance  
Delay time, RESET high to AECLKOUT1 valid  
Delay time, RESET low to EMIF Z high impedance  
Delay time, RESET high to EMIF Z valid  
2E  
2E  
2E  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(RSTH-ECKI)  
4
td(RSTL-ECKO1HZ)  
td(RSTH-ECKO1V)  
td(RSTL-EMIFZHZ)  
td(RSTH-EMIFZV)  
td(RSTL-EMIFHIV)  
td(RSTH-EMIFHV)  
td(RSTL-EMIFLIV)  
td(RSTH-EMIFLV)  
td(RSTL-ZHZ)  
5
8P + 20E  
3P + 4E  
6
2E  
16E  
2E  
7
8P + 20E  
8
Delay time, RESET low to EMIF high group invalid  
Delay time, RESET high to EMIF high group valid  
Delay time, RESET low to EMIF low group invalid  
Delay time, RESET high to EMIF low group valid  
Delay time, RESET low to Z group high impedance  
Delay time, RESET high to Z group valid  
9
8P + 20E  
8P + 20E  
8P  
10  
11  
14  
15  
2E  
0
td(RSTH-ZV)  
2P  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.  
(2) E = the EMIF input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA.  
(3) EMIF Z group consists of: AEA[22:3], AED[63:0], ACE[3:0], ABE[7:0], AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE,  
AAOE/ASDRAS/ASOE, ASOE3, ASDCKE, and APDT  
EMIF high group consists of: AHOLDA (when the corresponding HOLD input is high)  
EMIF low group consists of: ABUSREQ; AHOLDA (when the corresponding HOLD input is low)  
Z group consists of: HD[31:0] and the muxed EMAC output pins, MDCLK, MDIO, CLKX0, FSX0, DX0, CLKR0, FSR0, TOUT0,  
TOUT1, VDAC/GP0[8], GP0[13, 11, 10, 7:0], HR/W, HDS2, HDS1, HCS, HCNTL1, HAS, HCNTL0, HHWIL (16-bit HPI mode only),  
HRDY, HINT, VP1D[19:0], and VP2D[19:0].  
78  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
CLKOUT4  
CLKOUT6  
1
RESET  
2
4
3
5
AECLKIN  
AECLKOUT1  
AECLKOUT2  
6
7
(A)(B)  
EMIF Z Group  
9
8
(A)  
(A)  
EMIF High Group  
11  
10  
EMIF Low Group  
14  
15  
17  
(A)(B)  
Z Group  
16  
Boot and Device  
Configuration Inputs  
(C)  
A. EMIF Z group consists of:  
AEA[22:3], AED[63:0], ACE[3:0], ABE[7:0], AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE,  
and AAOE/ASDRAS/ASOE, ASOE3, ASDCKE, and APDT.  
EMIF high group consists of: AHOLDA (when the corresponding HOLD input is high)  
EMIF low group consists of: ABUSREQ; AHOLDA (when the corresponding HOLD input is low)  
Z group consists of:  
HD[31:0] and the muxed EMAC output pins, MDCLK, MDIO, CLKX0, FSX0, DX0, CLKR0, FSR0,  
TOUT0, TOUT1, VDAC/GP0[8], GP0[13, 11, 10, 7:0], HR/W, HDS2, HDS1, HCS, HCNTL1, HAS,  
HCNTL0, HHWIL (16-bit HPI mode only), HRDY, HINT, VP1D[19:0], and VP2D[19:0].  
B. If AEA[22:19], LENDIAN, and HD5 pins are actively driven, care must be taken to ensure no timing contention between parameters  
6, 7, 14, 15, 16, and 17.  
C. Boot and Device Configurations Inputs (during reset) include: AEA[22:19], LENDIAN, and HD5.  
Figure 5-11. Reset Timing  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
79  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
5.7 Clock PLL  
The PLL controller features hardware-configurable PLL multiplier controller, dividers (/2, /4, /6, and /8),  
and reset controller. The PLL controller accepts an input clock, as determined by the logic state on the  
CLKMODE[1:0] pins, from the CLKIN pin. The resulting clock outputs are passed to the DSP core,  
peripherals, and other modules inside the C6000™ DSP.  
5.7.1 Clock PLL Device-Specific Information  
Most of the internal C64x™ DSP clocks are generated from a single source through the CLKIN pin. This  
source clock either drives the PLL, which multiplies the source clock frequency to generate the internal  
CPU clock, or bypasses the PLL to become the internal CPU clock.  
To use the PLL to generate the CPU clock, the external PLL filter circuit must be properly designed.  
Figure 5-12 shows the external PLL circuitry for either x1 (PLL bypass) or other PLL multiply modes.  
To minimize the clock jitter, a single clean power supply should power both the C64x™ DSP device and  
the external clock oscillator circuit. The minimum CLKIN rise and fall times should also be observed. For  
the input clock timing requirements, see the input and output clocks electricals section.  
Rise/fall times, duty cycles (high/low pulse durations), and the load capacitance of the external clock  
source must meet the DSP requirements in this data sheet (see the electrical characteristics over  
recommended ranges of supply voltage and operating case temperature table and the input and output  
clocks electricals section).  
80  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
3.3 V  
CPU Clock  
C1  
C2  
Peripheral Bus, EDMA  
Clock  
EMI  
filter  
/2  
/8  
/4  
/6  
10 µF 0.1 µF  
Timer Internal Clock  
PLLV  
CLKOUT4, Peripheral Clock  
(AUXCLK for McASP),  
McBSP Internal Clock  
CLKMODE0  
CLKOUT6  
PLLMULT  
CLKMODE1  
PLL  
x6, x12  
00 01 10  
CLKIN  
PLLCLK  
1
0
/4  
/2  
ECLKIN  
AEA[20:19]  
EK2RATE  
(GBLCTL.[19,18])  
EMIF  
00 01 10  
Internal to DM643  
ECLKOUT1 ECLKOUT2  
(For the PLL Options, CLKMODE Pins Setup, and PLL Clock Frequency Ranges, see the “TMS320DM643 PLL Multiply Factor  
Options, Clock Frequency Ranges, and Typical Lock Time” table.)  
NOTES: Place all PLL external components (C1, C2, and the EMI Filter) as close to the C6000 DSP device as possible. For the  
best performance, TI recommends that all the PLL external components be on a single side of the board without jumpers,  
switches, or components other than the ones shown.  
For reduced PLL jitter, maximize the spacing between switching signals and the PLL external components (C1, C2, and  
the EMI Filter).  
The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, D  
.
VDD  
EMI filter manufacturer TDK part number ACF451832-333, -223, -153, -103. Panasonic part number EXCCET103U.  
Figure 5-12. External PLL Circuitry for Either PLL Multiply Modes or x1 (Bypass) Mode  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
81  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 5-12. TMS320DM643 PLL Multiply Factor Options, Clock Frequency Ranges,  
and Typical Lock Time(1) (2)  
GDK and ZDK PACKAGES – 23 x 23 mm BGA,  
GNZ and ZNZ PACKAGES – 27 x 27 mm BGA  
CLKMODE  
CLKMODE1 CLKMODE0 (PLL MULTIPLY  
FACTORS)  
CLKIN  
RANGE  
(MHz)  
CPU CLOCK  
FREQUENCY  
RANGE (MHz)  
TYPICAL  
CLKOUT4  
RANGE (MHz)  
CLKOUT6  
RANGE (MHz)  
LOCK TIME  
(µs)(3)  
0
0
1
1
0
1
0
1
Bypass (x1)  
x6  
30–75  
30–75  
30–50  
30–75  
180–450  
360–600  
7.5–18.8  
45–112.5  
90–150  
5–12.5  
30–75  
60–100  
N/A  
75  
x12  
Reserved  
(1) These clock frequency range values are applicable to a DM643-600 speed device. For -500 device speed values, see the CLKIN timing  
requirements table for the specific device speed.  
(2) Use external pullup resistors on the CLKMODE pins (CLKMODE1 and CLKMODE0) to set the DM643 device to one of the valid PLL  
multiply clock modes (x6 or x12). With internal pulldown resistors on the CLKMODE pins (CLKMODE1, CLKMODE0), the default clock  
mode is x1 (bypass).  
(3) Under some operating conditions, the maximum PLL lock time may vary by as much as 150% from the specified typical value. For  
example, if the typical lock time is specified as 100 µs, the maximum value may be as long as 250 µs.  
5.7.2 Clock PLL Electrical Data/Timing (Input and Output Clocks)  
Table 5-13. Timing Requirements for CLKIN for –500 Devices(1) (2) (3) (see Figure 5-13)  
–500  
NO.  
PLL MODE x12  
PLL MODE x6  
x1 (Bypass)  
UNIT  
MIN  
24  
MAX  
MIN  
13.3  
MAX  
MIN  
13.3  
MAX  
1
2
3
4
5
tc(CLKIN)  
tw(CLKINH)  
tw(CLKINL)  
tt(CLKIN)  
Cycle time, CLKIN  
33.3  
33.3  
33.3  
ns  
ns  
ns  
ns  
ns  
Pulse duration, CLKIN high  
Pulse duration, CLKIN low  
Transition time, CLKIN  
Period jitter, CLKIN  
0.45C  
0.45C  
0.45C  
0.45C  
0.45C  
0.45C  
5
5
1
tJ(CLKIN)  
0.02C  
0.02C  
0.02C  
(1) The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN.  
(2) For more details on the PLL multiplier factors (x6, x12), see the Clock PLL section of this data sheet.  
(3) C = CLKIN cycle time in ns. For example, when CLKIN frequency is 50 MHz, use C = 20 ns.  
Table 5-14. Timing Requirements for CLKIN for –600 Devices(1) (2) (3) (see Figure 5-13)  
–600  
NO.  
PLL MODE x12  
PLL MODE x6  
x1 (Bypass)  
UNIT  
MIN  
20  
MAX  
MIN  
13.3  
MAX  
MIN  
13.3  
MAX  
1
2
3
4
5
tc(CLKIN)  
tw(CLKINH)  
tw(CLKINL)  
tt(CLKIN)  
Cycle time, CLKIN  
33.3  
33.3  
33.3  
ns  
ns  
ns  
ns  
ns  
Pulse duration, CLKIN high  
Pulse duration, CLKIN low  
Transition time, CLKIN  
Period jitter, CLKIN  
0.45C  
0.45C  
0.45C  
0.45C  
0.45C  
0.45C  
5
5
1
tJ(CLKIN)  
0.02C  
0.02C  
0.02C  
(1) The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN.  
(2) For more details on the PLL multiplier factors (x6, x12), see the Clock PLL section of this data sheet.  
(3) C = CLKIN cycle time in ns. For example, when CLKIN frequency is 50 MHz, use C = 20 ns.  
1
5
4
2
CLKIN  
3
4
Figure 5-13. CLKIN Timing  
82  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
 
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 5-15. Switching Characteristics Over Recommended Operating Conditions for CLKOUT4(1) (2) (3)  
(see Figure 5-14)  
–500  
–600  
NO.  
PARAMETER  
UNIT  
CLKMODE = x1, x6, x12  
MIN  
MAX  
1
2
3
tw(CKO4H)  
tw(CKO4L)  
tt(CKO4)  
Pulse duration, CLKOUT4 high  
2P – 0.7  
2P – 0.7  
2P + 0.7  
2P + 0.7  
1
ns  
ns  
ns  
Pulse duration, CLKOUT4 low  
Transition time, CLKOUT4  
(1) The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN.  
(2) PH is the high period of CLKIN in ns and PL is the low period of CLKIN in ns.  
(3) P = 1/CPU clock frequency in nanoseconds (ns)  
3
1
CLKOUT4  
2
3
Figure 5-14. CLKOUT4 Timing  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
83  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 5-16. Switching Characteristics Over Recommended Operating Conditions for CLKOUT6(1) (2) (3)  
(see Figure 5-15)  
–500  
–600  
NO.  
PARAMETER  
UNIT  
CLKMODE = x1, x6, x12  
MIN  
MAX  
1
2
3
tw(CKO6H)  
tw(CKO6L)  
tt(CKO6)  
Pulse duration, CLKOUT6 high  
3P – 0.7  
3P – 0.7  
3P + 0.7  
3P + 0.7  
1
ns  
ns  
ns  
Pulse duration, CLKOUT6 low  
Transition time, CLKOUT6  
(1) The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN.  
(2) PH is the high period of CLKIN in ns and PL is the low period of CLKIN in ns.  
(3) P = 1/CPU clock frequency in nanoseconds (ns)  
3
1
CLKOUT6  
2
3
Figure 5-15. CLKOUT6 Timing  
Table 5-17. Timing Requirements for AECLKIN for EMIFA(1) (2) (3) (see Figure 5-16)  
–500  
–600  
NO.  
UNIT  
MIN  
MAX  
1
2
3
4
5
tc(EKI)  
tw(EKIH)  
tw(EKIL)  
tt(EKI)  
Cycle time, AECLKIN  
6(4)  
2.7  
2.7  
16P  
ns  
ns  
ns  
ns  
ns  
Pulse duration, AECLKIN high  
Pulse duration, AECLKIN low  
Transition time, AECLKIN  
Period jitter, AECLKIN  
3
tJ(EKI)  
0.02E  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.  
(2) The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN.  
(3) E = the EMIF input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA.  
(4) Minimum AECLKIN cycle times must be met, even when AECLKIN is generated by an internal clock source. Minimum AECLKIN times  
are based on internal logic speed; the maximum useable speed of the EMIF may be lower due to AC timing requirements. On the 600  
devices, 133-MHz operation is achievable if the requirements of the EMIF Device Speed section are met. On the 500 devices, 100-MHz  
operation is achievable if the requirements of the EMIF Device Speed section are met.  
1
5
4
2
AECLKIN  
3
4
Figure 5-16. AECLKIN Timing for EMIFA  
84  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
 
 
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 5-18. Switching Characteristics Over Recommended Operating Conditions for AECLKOUT1 for the  
EMIFA Module(1) (2) (3) (see Figure 5-17)  
–500  
–600  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
2
3
4
5
tw(EKO1H)  
Pulse duration, AECLKOUT1 high  
EH – 0.7 EH + 0.7  
EL – 0.7 EL + 0.7  
1
ns  
ns  
ns  
ns  
ns  
tw(EKO1L)  
Pulse duration, AECLKOUT1 low  
tt(EKO1)  
Transition time, AECLKOUT1  
td(EKIH-EKO1H)  
td(EKIL-EKO1L)  
Delay time, AECLKIN high to AECLKOUT1 high  
Delay time, AECLKIN low to AECLKOUT1 low  
1
1
8
8
(1) E = the EMIF input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA.  
(2) The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN.  
(3) EH is the high period of E (EMIF input clock period) in ns and EL is the low period of E (EMIF input clock period) in ns for EMIFA.  
AECLKIN  
5
2
3
3
1
4
AECLKOUT1  
Figure 5-17. AECLKOUT1 Timing for the EMIFA Module  
Table 5-19. Switching Characteristics Over Recommended Operating Conditions for AECLKOUT2 for the  
EMIFA Module(1) (2) (see Figure 5-18)  
–500  
–600  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
2
3
4
5
tw(EKO2H)  
Pulse duration, AECLKOUT2 high  
0.5NE – 0.7  
0.5NE – 0.7  
0.5NE + 0.7  
ns  
ns  
ns  
ns  
ns  
tw(EKO2L)  
Pulse duration, AECLKOUT2 low  
0.5NE + 0.7  
tt(EKO2)  
Transition time, AECLKOUT2  
1
8
8
td(EKIH-EKO2H)  
td(EKIL-EKO2L)  
Delay time, AECLKIN high to AECLKOUT2 high  
Delay time, AECLKIN low to AECLKOUT2 low  
1
1
(1) The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN.  
(2) E = the EMIF input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA. N = the EMIF input clock divider; N = 1, 2,  
or 4.  
AECLKIN  
5
2
3
3
1
4
AECLKOUT2  
Figure 5-18. AECLKOUT2 Timing for the EMIFA Module  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
85  
 
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
5.8 External Memory Interface (EMIIF)  
EMIF supports a glueless interface to a variety of external devices, including:  
Pipelined synchronous-burst SRAM (SBSRAM)  
Synchronous DRAM (SDRAM)  
Asynchronous devices, including SRAM, ROM, and FIFOs  
An external shared-memory device  
5.8.1 EMIF Device-Specific Information  
EMIF Device Speed  
The rated EMIF speed of these devices only applies to the SDRAM interface when in a system that meets  
the following requirements:  
1 chip-enable (CE) space (maximum of 2 chips) of SDRAM connected to EMIF  
up to 1 CE space of buffers connected to EMIF  
EMIF trace lengths between 1 and 3 inches  
166-MHz SDRAM for 133-MHz operation  
143-MHz SDRAM for 100-MHz operation  
Other configurations may be possible, but timing analysis must be done to verify all AC timings are met.  
Verification of AC timings is mandatory when using configurations other than those specified above. TI  
recommends utilizing I/O buffer information specification (IBIS) to analyze all AC timings.  
To properly use IBIS models to attain accurate timing analysis for a given system, see the Using IBIS  
Models for Timing Analysis application report (literature number SPRA839).  
To maintain signal integrity, serial termination resistors should be inserted into all EMIF output signal lines  
(see the Terminal Functions table for the EMIF output signals).  
For more detailed information on the DM643 EMIF peripheral, see the TMS320C6000 DSP External  
Memory Interface (EMIF) Reference Guide (literature number SPRU266).  
86  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
5.8.2 EMIF Peripheral Register Description(s)  
Table 5-20. EMIFA Registers  
HEX ADDRESS RANGE  
0180 0000  
ACRONYM  
GBLCTL  
CECTL1  
CECTL0  
REGISTER NAME  
EMIFA global control  
COMMENTS  
0180 0004  
EMIFA CE1 space control  
EMIFA CE0 space control  
Reserved  
0180 0008  
0180 000C  
0180 0010  
CECTL2  
CECTL3  
SDCTL  
SDTIM  
SDEXT  
EMIFA CE2 space control  
EMIFA CE3 space control  
EMIFA SDRAM control  
0180 0014  
0180 0018  
0180 001C  
EMIFA SDRAM refresh control  
EMIFA SDRAM extension  
Reserved  
0180 0020  
0180 0024 – 0180 003C  
0180 0040  
PDTCTL  
CESEC1  
CESEC0  
Peripheral device transfer (PDT) control  
EMIFA CE1 space secondary control  
EMIFA CE0 space secondary control  
Reserved  
0180 0044  
0180 0048  
0180 004C  
0180 0050  
CESEC2  
CESEC3  
EMIFA CE2 space secondary control  
EMIFA CE3 space secondary control  
Reserved  
0180 0054  
0180 0058 – 0183 FFFF  
5.8.3 EMIF Electrical Data/Timing  
5.8.3.1 Asynchronous Memory Timing  
Table 5-21. Timing Requirements for Asynchronous Memory Cycles for EMIFA Module(1) (2)  
(see Figure 5-19 and Figure 5-20)  
–500  
–600  
NO.  
UNIT  
MIN MAX  
3
4
6
7
tsu(EDV-AREH)  
th(AREH-EDV)  
tsu(ARDY-EKO1H)  
th(EKO1H-ARDY)  
Setup time, AEDx valid before AARE high  
Hold time, AEDx valid after AARE high  
6.5  
1
ns  
ns  
ns  
ns  
Setup time, AARDY valid before AECLKOUTx high  
Hold time, AARDY valid after AECLKOUTx high  
3
2.5  
(1) To ensure data setup time, simply program the strobe width wide enough. AARDY is internally synchronized. The AARDY signal is only  
recognized two cycles before the end of the programmed strobe time and while AARDY is low, the strobe time is extended  
cycle-by-cycle. When AARDY is recognized low, the end of the strobe time is two cycles after AARDY is recognized high. To use  
AARDY as an asynchronous input, the pulse width of the AARDY signal should be wide enough (e.g., pulse width = 2E) to ensure setup  
and hold time is met.  
(2) RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters  
are programmed via the EMIF CE space control registers.  
Table 5-22. Switching Characteristics Over Recommended Operating Conditions for Asynchronous  
Memory Cycles for EMIFA Module(1) (2) (3) (see Figure 5-19 and Figure 5-20)  
–500  
–600  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
2
tosu(SELV-AREL)  
toh(AREH-SELIV)  
Output setup time, select signals valid to AARE low  
Output hold time, AARE high to select signals invalid  
RS * E – 1.8  
RH * E – 1.9  
ns  
ns  
(1) RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters  
are programmed via the EMIF CE space control registers.  
(2) E = AECLKOUT1 period in ns for EMIFA  
(3) Select signals for EMIFA include: ACEx, ABE[7:0], AEA[22:3], AAOE; and for EMIFA writes, include AED[63:0].  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
87  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 5-22. Switching Characteristics Over Recommended Operating Conditions for Asynchronous  
Memory Cycles for EMIFA Module (see Figure 5-19 and Figure 5-20) (continued)  
–500  
–600  
NO.  
PARAMETER  
UNIT  
MIN  
1
MAX  
5
8
td(EKO1H-AREV)  
tosu(SELV-AWEL)  
toh(AWEH-SELIV)  
td(EKO1H-AWEV)  
Delay time, AECLKOUTx high to AARE valid  
Output setup time, select signals valid to AAWE low  
Output hold time, AAWE high to select signals invalid  
Delay time, AECLKOUTx high to AAWE valid  
7
ns  
ns  
ns  
ns  
WS * E – 2.0  
WH * E – 2.5  
1.3  
9
10  
7.1  
Setup = 2  
Strobe = 3  
Not Ready  
Hold = 2  
AECLKOUTx  
2
2
1
1
1
ACEx  
ABE[7:0]  
BE  
2
AEA[22:3]  
Address  
3
4
2
AED[63:0]  
1
5
Read Data  
(A)  
AAOE/ASDRAS/ASOE  
5
(A)  
AARE/ASDCAS/ASADS/ASRE  
(A)  
AAWE/ASDWE/ASWE  
7
7
6
6
AARDY  
A. AAOE/ASDRAS/ASOE, AARE/ASDCAS/ASADS/ASRE, and AAWE/ASDWE/ASWE operate as AAOE (identified under select signals),  
AARE, and AAWE, respectively, during asynchronous memory accesses.  
Figure 5-19. Asynchronous Memory Read Timing for EMIFA  
88  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
 
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Setup = 2  
Hold = 2  
Strobe = 3  
Not Ready  
AECLKOUTx  
ACEx  
9
9
8
8
8
8
ABE[7:0]  
BE  
9
9
AEA[22:3]  
Address  
Write Data  
AED[63:0]  
(A)  
AAOE/ASDRAS/ASOE  
(A)  
AARE/ASDCAS/ASADS/ASRE  
10  
10  
(A)  
AAWE/ASDWE/ASWE  
7
7
6
6
AARDY  
A. AAOE/ASDRAS/ASOE, AARE/ASDCAS/ASADS/ASRE, and AAWE/ASDWE/ASWE operate as AAOE (identified under select signals), AARE,  
and AAWE, respectively, during asynchronous memory accesses.  
Figure 5-20. Asynchronous Memory Write Timing for EMIFA  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
89  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
5.8.3.2 Programmable Synchronous Interface Timing  
Table 5-23. Timing Requirements for Programmable Synchronous Interface Cycles for EMIFA Module  
(see Figure 5-21)  
–500  
MIN  
–600  
MIN  
NO.  
UNIT  
MAX  
MAX  
6
7
tsu(EDV-EKOxH)  
th(EKOxH-EDV)  
Setup time, read AEDx valid before AECLKOUTx high  
Hold time, read AEDx valid after AECLKOUTx high  
3.1  
1.8  
2
ns  
ns  
1.5  
Table 5-24. Switching Characteristics Over Recommended Operating Conditions for Programmable  
Synchronous Interface Cycles for EMIFA Module(1) (see Figure 5-21Figure 5-23)  
–500  
MIN  
–600  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
6.4  
MAX  
4.9  
1
2
td(EKOxH-CEV)  
td(EKOxH-BEV)  
td(EKOxH-BEIV)  
td(EKOxH-EAV)  
td(EKOxH-EAIV)  
td(EKOxH-ADSV)  
td(EKOxH-OEV)  
td(EKOxH-EDV)  
td(EKOxH-EDIV)  
td(EKOxH-WEV)  
Delay time, AECLKOUTx high to ACEx valid  
Delay time, AECLKOUTx high to ABEx valid  
Delay time, AECLKOUTx high to ABEx invalid  
Delay time, AECLKOUTx high to AEAx valid  
Delay time, AECLKOUTx high to AEAx invalid  
Delay time, AECLKOUTx high to ASADS/ASRE valid  
Delay time, AECLKOUTx high to ASOE valid  
Delay time, AECLKOUTx high to AEDx valid  
Delay time, AECLKOUTx high to AEDx invalid  
Delay time, AECLKOUTx high to ASWE valid  
1.1  
1.1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6.4  
4.9  
3
1.1  
1.1  
4
6.4  
4.9  
5
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
8
6.4  
6.4  
6.4  
4.9  
4.9  
4.9  
9
10  
11  
12  
1.1  
1.1  
1.1  
1.1  
6.4  
4.9  
(1) The following parameters are programmable via the EMIF CE Space Secondary Control register (CExSEC):  
Read latency (SYNCRL): 0-, 1-, 2-, or 3-cycle read latency  
Write latency (SYNCWL): 0-, 1-, 2-, or 3-cycle write latency  
ACEx assertion length (CEEXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes inactive after the final command has  
been issued (CEEXT = 0). For synchronous FIFO interface with glue, ACEx is active when ASOE is active (CEEXT = 1).  
Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect  
cycles (RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1).  
Synchronization clock (SNCCLK): Synchronized to AECLKOUT1 or AECLKOUT2  
90  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
READ latency = 2  
AECLKOUTx  
1
2
1
ACEx  
3
ABE[7:0]  
BE1  
BE2  
BE3  
BE4  
4
5
AEA[22:3]  
EA1  
8
EA2  
EA3  
EA4  
6
7
AED[63:0]  
(C)  
Q1  
Q2  
Q3  
Q4  
8
9
AARE/ASDCAS/ASADS/ASRE  
9
(C)  
(C)  
AAOE/ASDRAS/ASOE  
AAWE/ASDWE/ASWE  
A. The read latency and the length of ACEx assertion are programmable via the SYNCRL and CEEXT fields, respectively, in the EMIFA CE  
Space Secondary Control register (CExSEC). In this figure, SYNCRL = 2 and CEEXT = 0.  
B. The following parameters are programmable via the EMIF CE Space Secondary Control register (CExSEC):  
Read latency (SYNCRL): 0-, 1-, 2-, or 3-cycle read latency  
Write latency (SYNCWL): 0-, 1-, 2-, or 3-cycle write latency  
ACEx assertion length (CEEXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes inactive after the final command has been  
issued (CEEXT = 0). For synchronous FIFO interface with glue, ACEx is active when ASOE is active (CEEXT = 1).  
Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect cycles  
(RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1).  
Synchronization clock (SNCCLK): Synchronized to AECLKOUT1 or AECLKOUT2  
C. AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and AAWE/ASDWE/ASWE operate as ASADS/ASRE, ASOE, and ASWE, respectively,  
during programmable synchronous interface accesses.  
Figure 5-21. Programmable Synchronous Interface Read Timing for EMIFA (With Read Latency = 2) (A)(B)  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
91  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
AECLKOUTx  
1
2
1
3
ACEx  
ABE[7:0]  
AEA[22:3]  
BE1  
BE2  
EA2  
Q2  
BE3  
EA3  
Q3  
BE4  
EA4  
Q4  
5
4
EA1  
10  
Q1  
10  
11  
AED[63:0]  
8
8
(C)  
AARE/ASDCAS/ASADS/ASRE  
(C)  
AAOE/ASDRAS/ASOE  
12  
12  
(C)  
AAWE/ASDWE/ASWE  
A. The write latency and the length of ACEx assertion are programmable via the SYNCWL and CEEXT fields, respectively, in the EMIFA CE  
Space Secondary Control register (CExSEC). In this figure, SYNCWL = 0 and CEEXT = 0.  
B. The following parameters are programmable via the EMIF CE Space Secondary Control register (CExSEC):  
Read latency (SYNCRL): 0-, 1-, 2-, or 3-cycle read latency  
Write latency (SYNCWL): 0-, 1-, 2-, or 3-cycle write latency  
ACEx assertion length (CEEXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes inactive after the final command has  
been issued (CEEXT = 0). For synchronous FIFO interface with glue, ACEx is active when ASOE is active (CEEXT = 1).  
Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect  
cycles(RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1).  
Synchronization clock (SNCCLK): Synchronized to AECLKOUT1 or AECLKOUT2  
C. AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and AAWE/ASDWE/ASWE operate as ASADS/ASRE, ASOE, and ASWE,  
respectively, during programmable synchronous interface accesses.  
Figure 5-22. Programmable Synchronous Interface Write Timing for EMIFA (With Write Latency = 0)(A)(B)  
92  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Write  
Latency =  
(B)  
1
AECLKOUTx  
1
1
3
ACEx  
2
ABE[7:0]  
BE1  
BE2  
BE3  
EA3  
Q2  
BE4  
EA4  
Q3  
5
4
AEA[22:3]  
EA1  
10  
EA2  
10  
11  
8
AED[63:0]  
(C)  
Q1  
Q4  
8
AARE/ASDCAS/ASADS/ASRE  
(C)  
AAOE/ASDRAS/ASOE  
12  
12  
(C)  
AAWE/ASDWE/ASWE  
A. The write latency and the length of ACEx assertion are programmable via the SYNCWL and CEEXT fields, respectively, in the EMIFA CE  
Space Secondary Control register (CExSEC). In this figure, SYNCWL = 0 and CEEXT = 0.  
B. The following parameters are programmable via the EMIF CE Space Secondary Control register (CExSEC):  
Read latency (SYNCRL): 0-, 1-, 2-, or 3-cycle read latency  
Write latency (SYNCWL): 0-, 1-, 2-, or 3-cycle write latency  
ACEx assertion length (CEEXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes inactive after the final command has  
been issued (CEEXT = 0). For synchronous FIFO interface with glue, ACEx is active when ASOE is active (CEEXT = 1).  
Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect  
cycles (RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1).  
Synchronization clock (SNCCLK): Synchronized to AECLKOUT1 or AECLKOUT2  
C. AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and AAWE/ASDWE/ASWE operate as ASADS/ASRE, ASOE, and ASWE,  
respectively, during programmable synchronous interface accesses.  
Figure 5-23. Programmable Synchronous Interface Write Timing for EMIFA (With Write Latency = 1) (A)(B)  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
93  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
5.8.3.3 Synchronous DRAM Timing  
Table 5-25. Timing Requirements for Synchronous DRAM Cycles for EMIFA Module (see Figure 5-24)  
–500  
MIN MAX  
2.1  
–600  
MIN MAX  
0.6  
NO.  
UNIT  
6
7
tsu(EDV-EKO1H)  
th(EKO1H-EDV)  
Setup time, read AEDx valid before AECLKOUTx high  
Hold time, read AEDx valid after AECLKOUTx high  
ns  
ns  
2.8  
2.1  
Table 5-26. Switching Characteristics Over Recommended Operating Conditions for Synchronous DRAM  
Cycles for EMIFA Module (see Figure 5-24Figure 5-31)  
–500  
MIN  
–600  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
6.4  
MAX  
4.9  
1
2
td(EKO1H-CEV)  
td(EKO1H-BEV)  
td(EKO1H-BEIV)  
td(EKO1H-EAV)  
td(EKO1H-EAIV)  
td(EKO1H-CASV)  
td(EKO1H-EDV)  
td(EKO1H-EDIV)  
td(EKO1H-WEV)  
td(EKO1H-RAS)  
td(EKO1H-ACKEV)  
td(EKO1H-PDTV)  
Delay time, AECLKOUTx high to ACEx valid  
Delay time, AECLKOUTx high to ABEx valid  
Delay time, AECLKOUTx high to ABEx invalid  
Delay time, AECLKOUTx high to AEAx valid  
Delay time, AECLKOUTx high to AEAx invalid  
Delay time, AECLKOUTx high to ASDCAS valid  
Delay time, AECLKOUTx high to AEDx valid  
Delay time, AECLKOUTx high to AEDx invalid  
Delay time, AECLKOUTx high to ASDWE valid  
Delay time, AECLKOUTx high to ASDRAS valid  
Delay time, AECLKOUTx high to ASDCKE valid  
Delay time, AECLKOUTx high to APDT valid  
1.3  
1.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6.4  
4.9  
3
1.3  
1.3  
4
6.4  
4.9  
5
1.3  
1.3  
1.3  
1.3  
8
6.4  
6.4  
4.9  
4.9  
9
10  
11  
12  
13  
14  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
6.4  
6.4  
6.4  
6.4  
4.9  
4.9  
4.9  
4.9  
94  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
READ  
AECLKOUTx  
ACEx  
1
4
1
2
3
ABE[7:0]  
BE1  
BE2  
BE3  
BE4  
5
5
5
Bank  
AEA[22:14]  
AEA[12:3]  
4
Column  
4
AEA13  
6
7
D2  
AED[63:0]  
(A)  
D1  
D3  
D4  
AAOE/ASDRAS/ASOE  
8
8
(A)  
AARE/ASDCAS/ASADS/ASRE  
(A)  
AAWE/ASDWE/ASWE  
14  
14  
(B)  
APDT  
A. AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,  
respectively, during SDRAM accesses.  
B. APDT signal is only asserted when the EDMA is in PDT mode (set the PDTS bit to 1 in the EDMA options parameter RAM). For APDT read,  
data is not latched into EMIF. The PDTRL field in the PDT control register (PDTCTL) configures the latency of the APDT signal with respect to  
the data phase of a read transaction. The latency of the APDT signal for a read can be programmed to 0, 1, 2, or 3 by setting PDTRL to 00, 01,  
10, or 11, respectively. PDTRL equals 00 (zero latency) in this figure.  
Figure 5-24. SDRAM Read Command (CAS Latency 3) for EMIFA  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
95  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
WRITE  
AECLKOUTx  
ACEx  
1
2
4
4
4
9
2
4
5
5
5
9
3
ABE[7:0]  
BE1  
BE2  
BE3  
BE4  
Bank  
AEA[22:14]  
Column  
AEA[12:3]  
AEA13  
10  
AED[63:0]  
D1  
D2  
D3  
D4  
(A)  
AAOE/ASDRAS/ASOE  
8
8
(A)  
AARE/ASDCAS/ASADS/ASRE  
11  
14  
11  
(A)  
AAWE/ASDWE/ASWE  
14  
(B)  
APDT  
A. AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,  
respectively, during SDRAM accesses.  
B. APDT signal is only asserted when the EDMA is in PDT mode (set the PDTD bit to 1 in the EDMA options parameter RAM). For APDT write,  
data is not driven (in High-Z). The PDTWL field in the PDT control register (PDTCTL) configures the latency of the APDT signal with respect to  
the data phase of a write transaction. The latency of the APDT signal for a write transaction can be programmed to 0, 1, 2, or 3 by setting  
PDTWL to 00, 01, 10, or 11, respectively. PDTWL equals 00 (zero latency) in this figure.  
Figure 5-25. SDRAM Write Command for EMIFA  
96  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
ACTV  
AECLKOUTx  
1
4
1
5
ACEx  
ABE[7:0]  
Bank Activate  
AEA[22:14]  
AEA[12:3]  
4
5
5
Row Address  
4
Row Address  
AEA13  
AED[63:0]  
12  
12  
(A)  
AAOE/ASDRAS/ASOE  
(A)  
AARE/ASDCAS/ASADS/ASRE  
(A)  
AAWE/ASDWE/ASWE  
A. AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,  
respectively, during SDRAM accesses.  
Figure 5-26. SDRAM ACTV Command for EMIFA  
DCAB  
AECLKOUTx  
1
1
ACEx  
ABE[7:0]  
AEA[22:14, 12:3]  
4
12  
11  
5
12  
11  
AEA13  
AED[63:0]  
(A)  
AAOE/ASDRAS/ASOE  
(A)  
AARE/ASDCAS/ASADS/ASRE  
(A)  
AAWE/ASDWE/ASWE  
A. AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,  
respectively, during SDRAM accesses.  
Figure 5-27. SDRAM DCAB Command for EMIFA  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
97  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
DEAC  
AECLKOUTx  
1
1
ACEx  
ABE[7:0]  
4
5
AEA[22:14]  
AEA[12:3]  
Bank  
4
5
AEA13  
AED[63:0]  
12  
11  
12  
11  
(A)  
AAOE/ASDRAS/ASOE  
(A)  
AARE/ASDCAS/ASADS/ASRE  
(A)  
AAWE/ASDWE/ASWE  
A. AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS, respectively,  
during SDRAM accesses.  
Figure 5-28. SDRAM DEAC Command for EMIFA  
REFR  
AECLKOUTx  
1
1
ACEx  
ABE[7:0]  
AEA[22:14, 12:3]  
AEA13  
AED[63:0]  
12  
8
12  
8
(A)  
AAOE/ASDRAS/ASOE  
(A)  
AARE/ASDCAS/ASADS/ASRE  
(A)  
AAWE/ASDWE/ASWE  
A. AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,  
respectively, during SDRAM accesses.  
Figure 5-29. SDRAM REFR Command for EMIFA  
98  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
MRS  
AECLKOUTx  
1
4
1
5
ACEx  
ABE[7:0]  
AEA[22:3]  
AED[63:0]  
MRS value  
12  
8
12  
8
(A)  
AAOE/ASDRAS/ASOE  
(A)  
AARE/ASDCAS/ASADS/ASRE  
11  
11  
(A)  
AAWE/ASDWE/ASWE  
A. AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,  
respectively, during SDRAM accesses.  
Figure 5-30. SDRAM MRS Command for EMIFA  
TRAS cycles  
End Self-Refresh  
Self Refresh  
AECLKOUTx  
ACEx  
ABE[7:0]  
AEA[22:14, 12:3]  
AEA13  
AED[63:0]  
(A)  
AAOE/ASDRAS/ASOE  
(A)  
AARE/ASDCAS/ASADS/ASRE  
(A)  
AAWE/ASDWE/ASWE  
13  
13  
ASDCKE  
A. AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,  
respectively, during SDRAM accesses.  
Figure 5-31. SDRAM Self-Refresh Timing for EMIFA  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
99  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
5.8.3.4 HOLD/HOLDA Timing  
Table 5-27. Timing Requirements for the HOLD/HOLDA Cycles for EMIFA Module(1) (see Figure 5-32)  
–500  
MIN MAX  
E
–600  
MIN MAX  
E
NO.  
UNIT  
3
th(HOLDAL-HOLDL)  
Hold time, HOLD low after HOLDA low  
ns  
(1) E = the EMIF input clock (ECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA.  
Table 5-28. Switching Characteristics Over Recommended Operating Conditions for the HOLD/HOLDA  
Cycles for EMIFA Module(1) (2) (3) (see Figure 5-32)  
–500  
MIN  
–600  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
(4)  
(4)  
1
2
4
5
6
7
td(HOLDL-EMHZ)  
td(EMHZ-HOLDAL)  
td(HOLDH-EMLZ)  
td(EMLZ-HOLDAH)  
td(HOLDL-EKOHZ)  
td(HOLDH-EKOLZ)  
Delay time, HOLD low to EMIFA Bus high impedance  
Delay time, EMIF Bus high impedance to HOLDA low  
Delay time, HOLD high to EMIF Bus low impedance  
Delay time, EMIFA Bus low impedance to HOLDA high  
Delay time, HOLD low to AECLKOUTx high impedance  
Delay time, HOLD high to AECLKOUTx low impedance  
2E  
0
2E  
0
ns  
ns  
ns  
ns  
ns  
ns  
2E  
7E  
2E  
7E  
2E  
0
2E  
0
2E  
(4)  
2E  
(4)  
2E  
2E  
2E  
2E  
7E  
7E  
(1) E = the EMIF input clock (ECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA.  
(2) EMIFA Bus consists of: ACE[3:0], ABE[7:0], AED[63:0], AEA[22:3], AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and  
AAWE/ASDWE/ASWE , ASDCKE, ASOE3, and APDT.  
(3) The EKxHZ bits in the EMIF Global Control register (GBLCTL) determine the state of the ECLKOUTx signals during HOLDA. If EKxHZ =  
0, ECLKOUTx continues clocking during Hold mode. If  
EKxHZ = 1, ECLKOUTx goes to high impedance during Hold mode, as shown in Figure 5-32.  
(4) All pending EMIF transactions are allowed to complete before HOLDA is asserted. If no bus transactions are occurring, then the  
minimum delay time can be achieved. Also, bus hold can be indefinitely delayed by setting NOHOLD = 1.  
External Requestor  
DSP Owns Bus  
DSP Owns Bus  
Owns Bus  
3
HOLD  
2
5
HOLDA  
1
4
7
(A)  
EMIF Bus  
DM643  
DM643  
(B)  
AECLKOUTx  
(EKxHZ = 0)  
6
(B)  
AECLKOUTx  
(EKxHZ = 1)  
A. EMIFA Bus consists of: ACE[3:0], ABE[7:0], AED[63:0], AEA[22:3], AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE,  
and AAWE/ASDWE/ASWE, ASDCKE, ASOE3, and APDT.  
B. The EKxHZ bits in the EMIF Global Control register (GBLCTL) determine the state of the ECLKOUTx signals during HOLDA. If  
EKxHZ = 0, ECLKOUTx continues clocking during Hold mode. If EKxHZ = 1, ECLKOUTx goes to high impedance during Hold  
mode, as shown in this figure.  
Figure 5-32. HOLD/HOLDA Timing for EMIFA  
100  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
 
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
5.8.3.5 BUSREQ Timing  
Table 5-29. Switching Characteristics Over Recommended Operating Conditions for the BUSREQ Cycles  
for EMIFA Module (see Figure 5-33)  
–500  
MIN  
0.6  
–600  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
1
td(AEKO1H-ABUSRV)  
Delay time, AECLKOUTx high to ABUSREQ valid  
7.1  
1
5.5  
ns  
AECLKOUTx  
1
1
ABUSREQ  
Figure 5-33. BUSREQ Timing for EMIFA  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
101  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
5.9 Multichannel Audio Serial Port (McASP0) Peripheral  
The McASP functions as a general-purpose audio serial port optimized for the needs of multichannel  
audio applications. The McASP is useful for time-division multiplexed (TDM) stream, Inter-Integrated  
Sound (I2S) protocols, and intercomponent digital audio interface transmission (DIT).  
5.9.1 McASP0 Device-Specific Information  
The TMS320DM643 device includes one multichannel audio serial port (McASP) interface peripheral  
(McASP0). The McASP is a serial port optimized for the needs of multichannel audio applications.  
The McASP consists of a transmit and receive section. These sections can operate completely  
independently with different data formats, separate master clocks, bit clocks, and frame syncs or  
alternatively, the transmit and receive sections may be synchronized. The McASP module also includes a  
pool of 16 shift registers that may be configured to operate as either transmit data, receive data, or  
general-purpose I/O (GPIO).  
The transmit section of the McASP can transmit data in either a time-division-multiplexed (TDM)  
synchronous serial format or in a digital audio interface (DIT) format where the bit stream is encoded for  
S/PDIF, AES-3, IEC-60958, CP-430 transmission. The receive section of the McASP supports the TDM  
synchronous serial format.  
The McASP can support one transmit data format (either a TDM format or DIT format) and one receive  
format at a time. All transmit shift registers use the same format and all receive shift registers use the  
same format. However, the transmit and receive formats need not be the same.  
Both the transmit and receive sections of the McASP also support burst mode which is useful for  
non-audio data (for example, passing control information between two DSPs).  
The McASP peripheral has additional capability for flexible clock generation, and error detection/handling,  
as well as error management.  
For more detailed information on and the functionality of the McASP peripheral, see the TMS320C6000  
DSP Multichannel Audio Serial Port (McASP) Reference Guide (literature number SPRU041).  
5.9.1.1 McASP Block Diagram  
Figure 5-34 illustrates the major blocks along with external signals of the TMS320DM643 McASP0  
peripheral; and shows the 8 serial data [AXR] pins. The McASP also includes full general-purpose I/O  
(GPIO) control, so any pins not needed for serial transfers can be used for general-purpose I/O.  
102  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
McASP0  
Transmit  
Frame Sync  
Generator  
DIT  
RAM  
AFSX0  
Transmit  
Clock Check  
(High-  
Transmit  
Clock  
Generator  
AHCLKX0  
ACLKX0  
Frequency)  
AMUTE0  
Error  
Detect  
AMUTEIN0  
Receive  
Clock Check  
(High-  
Receive  
Clock  
Generator  
AHCLKR0  
ACLKR0  
Frequency)  
Transmit  
Data  
Formatter  
Receive  
Frame Sync  
Generator  
AFSR0  
Serializer 0  
AXR0[0]  
AXR0[1]  
AXR0[2]  
AXR0[3]  
AXR0[4]  
AXR0[5]  
AXR0[6]  
AXR0[7]  
Serializer 1  
Serializer 2  
Serializer 3  
Serializer 4  
Serializer 5  
Serializer 6  
Serializer 7  
Receive  
Data  
Formatter  
GPIO  
Control  
Figure 5-34. McASP0 Configuration  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
103  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
5.9.2 McASP0 Peripheral Register Description(s)  
Table 5-30. McASP0 Control Registers  
HEX ADDRESS RANGE  
01B4 C000  
ACRONYM  
REGISTER NAME  
PID  
PWRDEMU  
Peripheral Identification register [Register value: 0x0010 0101]  
01B4 C004  
Power down and emulation management register  
01B4 C008  
Reserved  
01B4 C00C  
Reserved  
01B4 C010  
PFUNC  
PDIR  
Pin function register  
01B4 C014  
Pin direction register  
01B4 C018  
PDOUT  
PDIN/PDSET  
PDCLR  
Pin data out register  
01B4 C01C  
Pin data in / data set registerRead returns: PDINWrites affect: PDSET  
Pin data clear register  
01B4 C020  
01B4 C024 – 01B4 C040  
01B4 C044  
Reserved  
GBLCTL  
AMUTE  
DLBCTL  
DITCTL  
Global control register  
01B4 C048  
Mute control register  
01B4 C04C  
Digital Loop-back control register  
DIT mode control register  
Reserved  
01B4 C050  
01B4 C054 – 01B4 C05C  
Alias of GBLCTL containing only Receiver Reset bits, allows transmit to be reset  
independently from receive.  
01B4 C060  
RGBLCTL  
01B4 C064  
01B4 C068  
RMASK  
RFMT  
Receiver format UNIT bit mask register  
Receive bit stream format register  
Receive frame sync control register  
Receive clock control register  
High-frequency receive clock control register  
Receive TDM slot 0–31 register  
Receiver interrupt control register  
Status register – Receiver  
01B4 C06C  
AFSRCTL  
ACLKRCTL  
AHCLKRCTL  
RTDM  
01B4 C070  
01B4 C074  
01B4 C078  
01B4 C07C  
RINTCTL  
RSTAT  
01B4 C080  
01B4 C084  
RSLOT  
Current receive TDM slot register  
Receiver clock check control register  
Reserved  
01B4 C088  
RCLKCHK  
01B4 C08C – 01B4 C09C  
Alias of GBLCTL containing only Transmitter Reset bits, allows transmit to be reset  
independently from receive.  
01B4 C0A0  
XGBLCTL  
01B4 C0A4  
01B4 C0A8  
01B4 C0AC  
01B4 C0B0  
01B4 C0B4  
01B4 C0B8  
01B4 C0BC  
01B4 C0C0  
01B4 C0C4  
01B4 C0C8  
XMASK  
XFMT  
Transmit format UNIT bit mask register  
Transmit bit stream format register  
Transmit frame sync control register  
Transmit clock control register  
AFSXCTL  
ACLKXCTL  
AHCLKXCTL  
XTDM  
High-frequency Transmit clock control register  
Transmit TDM slot 0–31 register  
Transmit interrupt control register  
Status register – Transmitter  
XINTCTL  
XSTAT  
XSLOT  
Current transmit TDM slot  
XCLKCHK  
Transmit clock check control register  
104  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 5-30. McASP0 Control Registers (continued)  
HEX ADDRESS RANGE  
01B4 C0CC – 01B4 C0FC  
01B4 C100  
ACRONYM  
REGISTER NAME  
Reserved  
DITCSRA0  
DITCSRA1  
DITCSRA2  
DITCSRA3  
DITCSRA4  
DITCSRA5  
DITCSRB0  
DITCSRB1  
DITCSRB2  
DITCSRB3  
DITCSRB4  
DITCSRB5  
DITUDRA0  
DITUDRA1  
DITUDRA2  
DITUDRA3  
DITUDRA4  
DITUDRA5  
DITUDRB0  
DITUDRB1  
DITUDRB2  
DITUDRB3  
DITUDRB4  
DITUDRB5  
Left (even TDM slot) channel status register file  
Left (even TDM slot) channel status register file  
Left (even TDM slot) channel status register file  
Left (even TDM slot) channel status register file  
Left (even TDM slot) channel status register file  
Left (even TDM slot) channel status register file  
Right (odd TDM slot) channel status register file  
Right (odd TDM slot) channel status register file  
Right (odd TDM slot) channel status register file  
Right (odd TDM slot) channel status register file  
Right (odd TDM slot) channel status register file  
Right (odd TDM slot) channel status register file  
Left (even TDM slot) user data register file  
Left (even TDM slot) user data register file  
Left (even TDM slot) user data register file  
Left (even TDM slot) user data register file  
Left (even TDM slot) user data register file  
Left (even TDM slot) user data register file  
Right (odd TDM slot) user data register file  
Right (odd TDM slot) user data register file  
Right (odd TDM slot) user data register file  
Right (odd TDM slot) user data register file  
Right (odd TDM slot) user data register file  
Right (odd TDM slot) user data register file  
Reserved  
01B4 C104  
01B4 C108  
01B4 C10C  
01B4 C110  
01B4 C114  
01B4 C118  
01B4 C11C  
01B4 C120  
01B4 C124  
01B4 C128  
01B4 C12C  
01B4 C130  
01B4 C134  
01B4 C138  
01B4 C13C  
01B4 C140  
01B4 C144  
01B4 C148  
01B4 C14C  
01B4 C150  
01B4 C154  
01B4 C158  
01B4 C15C  
01B4 C160 – 01B4 C17C  
01B4 C180  
SRCTL0  
SRCTL1  
SRCTL2  
SRCTL3  
SRCTL4  
SRCTL5  
SRCTL6  
SRCTL7  
Serializer 0 control register  
01B4 C184  
Serializer 1 control register  
01B4 C188  
Serializer 2 control register  
01B4 C18C  
Serializer 3 control register  
01B4 C190  
Serializer 4 control register  
01B4 C194  
Serializer 5 control register  
01B4 C198  
Serializer 6 control register  
01B4 C19C  
Serializer 7 control register  
01B4 C1A0 – 01B4 C1FC  
01B4 C200  
Reserved  
XBUF0  
Transmit Buffer for Serializer 0  
01B4 C204  
XBUF1  
Transmit Buffer for Serializer 1  
01B4 C208  
XBUF2  
Transmit Buffer for Serializer 2  
01B4 C20C  
XBUF3  
Transmit Buffer for Serializer 3  
01B4 C210  
XBUF4  
Transmit Buffer for Serializer 4  
01B4 C214  
XBUF5  
Transmit Buffer for Serializer 5  
01B4 C218  
XBUF6  
Transmit Buffer for Serializer 6  
01B4 C21C  
XBUF7  
Transmit Buffer for Serializer 7  
01B4 C220 – 01B4 C27C  
01B4 C280  
Reserved  
RBUF0  
Receive Buffer for Serializer 0  
01B4 C284  
RBUF1  
Receive Buffer for Serializer 1  
01B4 C288  
RBUF2  
Receive Buffer for Serializer 2  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
105  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 5-30. McASP0 Control Registers (continued)  
HEX ADDRESS RANGE  
01B4 C28C  
ACRONYM  
RBUF3  
RBUF4  
RBUF5  
RBUF6  
RBUF7  
REGISTER NAME  
Receive Buffer for Serializer 3  
Receive Buffer for Serializer 4  
Receive Buffer for Serializer 5  
Receive Buffer for Serializer 6  
Receive Buffer for Serializer 7  
Reserved  
01B4 C290  
01B4 C294  
01B4 C298  
01B4 C29C  
01B4 C2A0 – 01B4 FFFF  
Table 5-31. McASP0 Data Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
(Used when RSEL or XSEL  
bits = 0 [these bits are located  
in the RFMT or XFMT registers,  
respectively].)  
McASPx receive buffers or McASPx transmit buffers via  
the Peripheral Data Bus.  
3C00 0000 – 3C0F FFFF  
RBUF/XBUFx  
5.9.3 McASP0 Electrical Data/Timing  
5.9.3.1 Multichannel Audio Serial Port (McASP) Timing  
Table 5-32. Timing Requirements for McASP (see Figure 5-35 and Figure 5-36)  
–500  
–600  
NO.  
UNIT  
MIN  
MAX  
1
2
3
4
tc(AHCKRX)  
tw(AHCKRX)  
tc(CKRX)  
Cycle time, AHCLKR/X  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Pulse duration, AHCLKR/X high or low  
Cycle time, ACLKR/X  
10  
33  
ACLKR/X ext  
ACLKR/X ext  
ACLKR/X int  
ACLKR/X ext  
ACLKR/X int  
ACLKR/X ext  
ACLKR/X int  
ACLKR/X ext  
ACLKR/X int  
ACLKR/X ext  
tw(CKRX)  
Pulse duration, ACLKR/X high or low  
16.5  
5
5
6
7
8
tsu(FRX-CKRX)  
th(CKRX-FRX)  
tsu(AXR-CKRX)  
th(CKRX-AXR)  
Setup time, AFSR/X input valid before ACLKR/X latches data  
Hold time, AFSR/X input valid after ACLKR/X latches data  
Setup time, AXR input valid before ACLKR/X latches data  
Hold time, AXR input valid after ACLKR/X latches data  
5
5
5
5
5
5
5
106  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 5-33. Switching Characteristics Over Recommended Operating Conditions for McASP  
(see Figure 5-35 and Figure 5-36)  
–500  
–600  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
9
tc(AHCKRX)  
tw(AHCKRX)  
tc(CKRX)  
Cycle time, AHCLKR/X  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
11  
12  
Pulse duration, AHCLKR/X high or low  
Cycle time, ACLKR/X  
10  
33  
ACLKR/X int  
ACLKR/X int  
ACLKR/X int  
ACLKR/X ext  
ACLKX int  
tw(CKRX)  
Pulse duration, ACLKR/X high or low  
16.5  
–1  
0
5
13  
14  
15  
td(CKRX-FRX)  
Delay time, ACLKR/X transmit edge to AFSX/R output valid  
Delay time, ACLKX transmit edge to AXR output valid  
10  
5
–1  
0
td(CKX-AXRV)  
ACLKX ext  
10  
10  
10  
ACLKR/X int  
ACLKR/X ext  
0
Disable time, AXR high impedance following last data bit from  
ACLKR/X transmit edge  
tdis(CKRX-AXRHZ)  
0
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
107  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
2
1
2
AHCLKR/X (Falling Edge Polarity)  
AHCLKR/X (Rising Edge Polarity)  
4
3
4
ACLKR/X (CLKRP = CLKXP = 0)  
ACLKR/X (CLKRP = CLKXP = 1)  
6
5
AFSR/X (Bit Width, 0 Bit Delay)  
AFSR/X (Bit Width, 1 Bit Delay)  
AFSR/X (Bit Width, 2 Bit Delay)  
AFSR/X (Slot Width, 0 Bit Delay)  
AFSR/X (Slot Width, 1 Bit Delay)  
AFSR/X (Slot Width, 2 Bit Delay)  
8
7
AXR[n] (Data In/Receive)  
A0 A1  
A30 A31 B0 B1  
B30 B31 C0 C1 C2 C3  
C31  
For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP receiver is configured for falling  
edge (to shift data in).  
For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP receiver is configured for rising  
edge (to shift data in).  
Figure 5-35. McASP Input Timings  
108  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
10  
10  
9
AHCLKR/X (Falling Edge Polarity)  
AHCLKR/X (Rising Edge Polarity)  
12  
11  
12  
ACLKR/X (CLKRP = CLKXP = 1)  
ACLKR/X (CLKRP = CLKXP = 0)  
13  
13  
13  
13  
AFSR/X (Bit Width, 0 Bit Delay)  
AFSR/X (Bit Width, 1 Bit Delay)  
AFSR/X (Bit Width, 2 Bit Delay)  
AFSR/X (Slot Width, 0 Bit Delay)  
AFSR/X (Slot Width, 1 Bit Delay)  
AFSR/X (Slot Width, 2 Bit Delay)  
AXR[n] (Data Out/Transmit)  
13  
13  
13  
14  
15  
A0 A1  
A30 A31 B0 B1  
B30 B31 C0 C1 C2 C3  
C31  
For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP receiver is configured for rising  
edge (to shift data in).  
For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP receiver is configured for falling  
edge (to shift data in).  
Figure 5-36. McASP Output Timings  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
109  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
5.10 Inter-Integrated Circuit (I2C)  
The inter-integrated circuit (I2C) module provides an interface between a TMS320C6000™ DSP and other  
devices compliant with Philips Semiconductors Inter-IC bus (I2C bus) specification version 2.1 and  
connected by way of an I2C-bus. External components attached to this 2-wire serial bus can  
transmit/receive up to 8-bit data to/from the DSP through the I2C module.  
5.10.1 I2C Device-Specific Information  
The I2C module on the TMS320DM643 may be used by the DSP to control local peripherals ICs (DACs,  
ADCs, etc.) while the other may be used to communicate with other controllers in a system or to  
implement a user interface.  
The I2C port supports:  
Compatible with Philips I2C Specification Revision 2.1 (January 2000)  
Fast Mode up to 400 Kbps (no fail-safe I/O buffers)  
Noise Filter to Remove Noise 50 ns or less  
Seven- and Ten-Bit Device Addressing Modes  
Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality  
Events: DMA, Interrupt, or Polling  
Slew-Rate Limited Open-Drain Output Buffers  
Figure 5-37 is a block diagram of the I2C0 module.  
110  
DM643 Peripheral Information and Electrical Specifications  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
I2C0 Module  
Clock  
Prescale  
Peripheral Clock  
(CPU/4)  
I2CPSCx  
Bit Clock  
Control  
I2COARx  
I2CSARx  
I2CMDRx  
I2CCNTx  
Generator  
SCL  
Noise  
Filter  
Own  
Address  
I2C Clock  
I2CCLKHx  
I2CCLKLx  
Slave  
Address  
Mode  
Transmit  
I2CXSRx  
Data  
Count  
Transmit  
Shift  
Transmit  
Buffer  
I2CDXRx  
SDA  
Interrupt/DMA  
I2CIERx  
Noise  
Filter  
I2C Data  
Interrupt  
Enable  
Receive  
Receive  
Buffer  
I2CDRRx  
Interrupt  
Status  
I2CSTRx  
Interrupt  
Source  
Receive  
Shift  
I2CRSRx  
I2CISRCx  
Shading denotes a peripheral module not available for this configuration.  
Figure 5-37. I2C0 Module Block Diagram  
For more detailed information on the I2C peripheral, see the TMS320C6000 DSP Inter-Integrated Circuit  
(I2C) Module Reference Guide (literature number SPRU175).  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
111  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
5.10.2 I2C Peripheral Register Description(s)  
Table 5-34. I2C0 Registers  
HEX ADDRESS RANGE  
01B4 0000  
ACRONYM  
I2COAR0  
I2CIER0  
I2CSTR0  
I2CCLKL0  
I2CCLKH0  
I2CCNT0  
I2CDRR0  
I2CSAR0  
I2CDXR0  
I2CMDR0  
I2CISRC0  
REGISTER NAME  
I2C0 own address register  
I2C0 interrupt enable register  
I2C0 interrupt status register  
01B4 0004  
01B4 0008  
01B4 000C  
I2C0 clock low-time divider register  
I2C0 clock high-time divider register  
I2C0 data count register  
01B4 0010  
01B4 0014  
01B4 0018  
I2C0 data receive register  
01B4 001C  
I2C0 slave address register  
I2C0 data transmit register  
01B4 0020  
01B4 0024  
I2C0 mode register  
01B4 0028  
I2C0 interrupt source register  
Reserved  
01B4 002C  
01B4 0030  
I2CPSC0  
I2CPID10  
I2CPID20  
I2C0 prescaler register  
01B4 0034  
I2C0 Peripheral Identification register 1 [Value: 0x0000 0101]  
I2C0 Peripheral Identification register 2 [Value: 0x0000 0005]  
Reserved  
01B4 0038  
01B4 003C – 01B4 3FFF  
112  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
5.10.3 I2C Electrical Data/Timing  
5.10.3.1 Inter-Integrated Circuits (I2C) Timing  
Table 5-35. Timing Requirements for I2C Timings(1) (see Figure 5-38)  
–500  
–600  
NO.  
STANDARD  
MODE  
UNIT  
FAST MODE  
MIN  
MAX  
MIN  
MAX  
1
2
tc(SCL)  
Cycle time, SCL  
10  
2.5  
µs  
µs  
Setup time, SCL high before SDA low (for a repeated START  
condition)  
tsu(SCLH-SDAL)  
4.7  
4
0.6  
0.6  
Hold time, SCL low after SDA low (for a START and a repeated  
START condition)  
3
th(SCLL-SDAL)  
µs  
4
5
6
7
tw(SCLL)  
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
100(2)  
µs  
µs  
ns  
µs  
tw(SCLH)  
Pulse duration, SCL high  
tsu(SDAV-SDLH)  
th(SDA-SDLL)  
Setup time, SDA valid before SCL high  
Hold time, SDA valid after SCL low (For I2C bus™ devices)  
250  
0(3)  
0(3) 0.9(4)  
Pulse duration, SDA high between STOP and START  
conditions  
8
tw(SDAH)  
tr(SDA)  
tr(SCL)  
tf(SDA)  
tf(SCL)  
4.7  
1.3  
µs  
ns  
ns  
ns  
ns  
20 + 0.1Cb  
9
Rise time, SDA  
Rise time, SCL  
Fall time, SDA  
Fall time, SCL  
1000  
1000  
300  
300  
300  
300  
300  
(5)  
20 + 0.1Cb  
10  
11  
12  
(5)  
20 + 0.1Cb  
(5)  
20 + 0.1Cb  
300  
(5)  
13  
14  
15  
tsu(SCLH-SDAH)  
tw(SP)  
Setup time, SCL high before SDA high (for STOP condition)  
Pulse duration, spike (must be suppressed)  
Capacitive load for each bus line  
4
0.6  
0
µs  
ns  
pF  
50  
(5)  
Cb  
400  
400  
(1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down.  
(2) A Fast-mode I2C-bus™ device can be used in a Standard-mode I2C-bus™ system, but the requirement tsu(SDA-SCLH) 250 ns must then  
be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch  
the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH) = 1000 + 250 = 1250 ns  
(according to the Standard-mode I2C-Bus Specification) before the SCL line is released.  
(3) A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the  
undefined region of the falling edge of SCL.  
(4) The maximum th(SDA-SCLL) has only to be met if the device does not stretch the low period [tw(SCLL)] of the SCL signal.  
(5) Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed.  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
113  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
11  
9
SDA  
6
8
14  
4
13  
5
10  
SCL  
1
12  
3
2
7
3
Stop  
Start  
Repeated  
Start  
Stop  
Figure 5-38. I2C Receive Timings  
Table 5-36. Switching Characteristics for I2C Timings(1) (see Figure 5-39)  
–500  
–600  
NO.  
PARAMETER  
STANDARD  
MODE  
UNIT  
FAST MODE  
MIN  
MAX  
MIN  
MAX  
16  
17  
tc(SCL)  
td(SCLH-SDAL)  
td(SDAL-SCLL)  
Cycle time, SCL  
10  
2.5  
µs  
µs  
Delay time, SCL high to SDA low (for a repeated START  
condition)  
4.7  
4
0.6  
0.6  
Delay time, SDA low to SCL low (for a START and a repeated  
START condition)  
18  
µs  
19  
20  
21  
22  
tw(SCLL)  
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
100  
0
µs  
µs  
ns  
µs  
tw(SCLH)  
Pulse duration, SCL high  
td(SDAV-SDLH)  
tv(SDLL-SDAV)  
Delay time, SDA valid to SCL high  
Valid time, SDA valid after SCL low (For I2C bus™ devices)  
250  
0
0.9  
Pulse duration, SDA high between STOP and START  
conditions  
23  
24  
25  
26  
27  
tw(SDAH)  
tr(SDA)  
tr(SCL)  
tf(SDA)  
tf(SCL)  
4.7  
1.3  
µs  
ns  
ns  
ns  
ns  
20 + 0.1Cb  
Rise time, SDA  
Rise time, SCL  
Fall time, SDA  
Fall time, SCL  
1000  
1000  
300  
300  
300  
300  
300  
(2)  
20 + 0.1Cb  
(2)  
20 + 0.1Cb  
(2)  
20 + 0.1Cb  
300  
(2)  
28  
29  
td(SCLH-SDAH)  
Cp  
Delay time, SCL high to SDA high (for STOP condition)  
Capacitance for each I2C pin  
4
0.6  
µs  
pF  
10  
10  
(1) Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed.  
(2) Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed.  
114  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
26  
24  
SDA  
21  
23  
19  
28  
20  
25  
SCL  
16  
27  
18  
17  
22  
18  
Stop  
Start  
Repeated  
Start  
Stop  
Figure 5-39. I2C Transmit Timings  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
115  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
5.11 Host-Port Interface (HPI)  
The HPI is a parallel port through which a host processor can directly access the CPU memory space.  
The host device functions as a master to the interface, which increases ease of access. The host and  
CPU can exchange information via internal or external memory. The host also has direct access to  
memory-mapped peripherals. Connectivity to the CPU memory space is provided through the enhanced  
DMA (EDMA) controller. Both the host and the CPU can access the HPI control register (HPIC) and the  
HPI address register (HPIA). The host can access the HPI data register (HPID) and the HPIC by using the  
external data and interface control signals.  
For more detailed information on the HPI peripheral, see the TMS320C6000 DSP Host Port Interface  
(HPI) Reference Guide (literature number SPRU578).  
5.11.1 HPI Peripheral Register Description(s)  
Table 5-37. HPI Registers  
HEX ADDRESS RANGE  
ACRONYM  
HPID  
REGISTER NAME  
HPI data register  
COMMENTS  
Host read/write access only  
0188 0000  
HPIC  
HPI control register  
HPIC has both Host/CPU read/write access  
HPIA  
HPI address register  
(Write)  
0188 0004  
(HPIAW)(1)  
HPIA has both Host/CPU read/write access  
HPIA  
HPI address register  
(Read)  
0188 0008  
(HPIAR)(1)  
0188 000C – 0189 FFFF  
018A 0000  
Reserved  
HPI transfer request control  
register  
HPI_TRCTL  
018A 0004 – 018B FFFF  
Reserved  
(1) Host access to the HPIA register updates both the HPIAW and HPIAR registers. The CPU can access HPIAW and HPIAR  
independently.  
116  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
5.11.2 Host-Port Interface (HPI) Electrical Data/Timing  
Table 5-38. Timing Requirements for Host-Port Interface Cycles(1) (2) (see Figure 5-40 through  
Figure 5-47)  
–500  
–600  
NO.  
UNIT  
MIN  
5
MAX  
1
2
tsu(SELV-HSTBL)  
th(HSTBL-SELV)  
tw(HSTBL)  
Setup time, select signals(3) valid before HSTROBE low  
Hold time, select signals(3) valid after HSTROBE low  
Pulse duration, HSTROBE low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.4  
4P(4)  
4P  
5
3
4
tw(HSTBH)  
Pulse duration, HSTROBE high between consecutive accesses  
Setup time, select signals(3) valid before HAS low  
Hold time, select signals(3) valid after HAS low  
Setup time, host data valid before HSTROBE high  
Hold time, host data valid after HSTROBE high  
10  
11  
12  
13  
tsu(SELV-HASL)  
th(HASL-SELV)  
tsu(HDV-HSTBH)  
th(HSTBH-HDV)  
2
5
2.8  
Hold time, HSTROBE low after HRDY low. HSTROBE should not be inactivated  
until HRDY is active (low); otherwise, HPI writes will not complete properly.  
14  
th(HRDYL-HSTBL)  
2
ns  
18  
19  
tsu(HASL-HSTBL)  
th(HSTBL-HASL)  
Setup time, HAS low before HSTROBE low  
Hold time, HAS low after HSTROBE low  
2
ns  
ns  
2.1  
(1) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
(2) P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.  
(3) Select signals include: HCNTL[1:0] and HR/W. For HPI16 mode only, select signals also include HHWIL.  
(4) Select the parameter value of 4P or 12.5 ns, whichever is larger.  
Table 5-39. Switching Characteristics Over Recommended Operating Conditions During Host-Port  
Interface Cycles(1) (2) (see Figure 5-40 through Figure 5-47)  
–500  
–600  
NO.  
PARAMETER  
UNIT  
MIN  
1.3  
2
MAX  
6
7
td(HSTBL-HRDYH)  
td(HSTBL-HDLZ)  
td(HDV-HRDYL)  
toh(HSTBH-HDV)  
td(HSTBH-HDHZ)  
td(HSTBL-HDV)  
Delay time, HSTROBE low to HRDY high(3)  
4P + 8  
ns  
ns  
ns  
ns  
ns  
ns  
Delay time, HSTROBE low to HD low impedance for an HPI read  
Delay time, HD valid to HRDY low  
8
–3  
9
Output hold time, HD valid after HSTROBE high  
Delay time, HSTROBE high to HD high impedance  
Delay time, HSTROBE low to HD valid (HPI16 mode, 2nd half-word only)  
1.5  
15  
16  
12  
4P + 8  
(1) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
(2) P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.  
(3) This parameter is used during HPID reads and writes. For reads, at the beginning of a word transfer (HPI32) or the first half-word  
transfer (HPI16) on the falling edge of HSTROBE, the HPI sends the request to the EDMA internal address generation hardware, and  
HRDY remains high until the EDMA internal address generation hardware loads the requested data into HPID. For writes, HRDY goes  
high if the internal write buffer is full.  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
117  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
HAS  
1
1
1
1
2
2
2
2
2
HCNTL[1:0]  
1
HR/W  
1
2
HHWIL  
4
3
3
(A)  
HSTROBE  
HCS  
15  
9
15  
9
7
16  
HD[15:0] (output)  
1st half-word  
2nd half-word  
6
8
HRDY  
A. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 5-40. HPI16 Read Timing (HAS Not Used, Tied High)  
(A)  
HAS  
19  
11  
19  
11  
10  
10  
10  
10  
HCNTL[1:0]  
HR/W  
11  
11  
11  
11  
10  
10  
HHWIL  
4
3
(B)  
HSTROBE  
18  
18  
HCS  
15  
15  
7
9
16  
9
HD[15:0] (output)  
HRDY  
1st half-word  
2nd half-word  
6
8
A. For correct operation, strobe the HAS signal only once per HSTROBE active cycle.  
B. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 5-41. HPI16 Read Timing (HAS Used)  
118  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
HAS  
HCNTL[1:0]  
HR/W  
1
1
2
2
2
2
1
1
2
1
1
2
HHWIL  
3
3
4
(A)  
HSTROBE  
HCS  
12  
12  
13  
13  
HD[15:0] (input)  
1st half-word  
2nd half-word  
6
14  
HRDY  
A. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 5-42. HPI16 Write Timing (HAS Not Used, Tied High)  
19  
11  
19  
(A)  
HAS  
11  
11  
11  
10  
10  
10  
10  
10  
10  
HCNTL[1:0]  
HR/W  
11  
11  
HHWIL  
3
4
(B)  
HSTROBE  
18  
12  
18  
HCS  
12  
13  
13  
HD[15:0] (input)  
1st half-word  
2nd half-word  
6
14  
HRDY  
A. For correct operation, strobe the HAS signal only once per HSTROBE active cycle.  
B. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 5-43. HPI16 Write Timing (HAS Used)  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
119  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
HAS  
1
1
2
HCNTL[1:0]  
HR/W  
2
3
(A)  
HSTROBE  
HCS  
7
9
15  
HD[31:0] (output)  
HRDY  
6
8
A. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 5-44. HPI32 Read Timing (HAS Not Used, Tied High)  
19  
(A)  
HAS  
11  
10  
HCNTL[1:0]  
11  
10  
HR/W  
18  
3
(B)  
HSTROBE  
HCS  
7
9
15  
HD[31:0] (output)  
HRDY  
6
8
A. For correct operation, strobe the HAS signal only once per HSTROBE active cycle.  
B. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 5-45. HPI32 Read Timing (HAS Used)  
120  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
HAS  
HCNTL[1:0]  
HR/W  
1
1
2
2
3
(A)  
HSTROBE  
HCS  
12  
13  
HD[31:0] (input)  
HRDY  
6
14  
A. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 5-46. HPI32 Write Timing (HAS Not Used, Tied High)  
19  
(A)  
HAS  
11  
10  
HCNTL[1:0]  
11  
10  
HR/W  
3
18  
(B)  
HSTROBE  
HCS  
12  
13  
HD[31:0] (input)  
HRDY  
6
14  
A. For correct operation, strobe the HAS signal only once per HSTROBE active cycle.  
B. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 5-47. HPI32 Write Timing (HAS Used)  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
121  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
5.12 Multichannel Buffered Serial Port (McBSP)  
The McBSP provides these functions:  
Full-duplex communication  
Double-buffered data registers, which allow a continuous data stream  
Independent framing and clocking for receive and transmit  
Direct interface to industry-standard codecs, analog interface chips (AICs), and other serially  
connected analog-to-digital (A/D) and digital-to-analog (D/A) devices  
On the DM643 device, the McBSP peripheral does not support external clocking to the sample rate  
generator (no CLKS input).  
For more detailed information on the McBSP peripheral, see the TMS320C6000 DSP Multichannel  
Buffered Serial Port (McBSP) Reference Guide (literature number SPRU580).  
5.12.1 McBSP Peripheral Register Description(s)  
Table 5-40. McBSP 0 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
The CPU and EDMA controller  
can only read this register; they  
cannot write to it.  
018C 0000  
DRR0  
McBSP0 data receive register via Configuration Bus  
0x3000 0000 – 0x33FF FFFF  
018C 0004  
DRR0  
DXR0  
DXR0  
SPCR0  
RCR0  
XCR0  
McBSP0 data receive register via Peripheral Bus  
McBSP0 data transmit register via Configuration Bus  
McBSP0 data transmit register via Peripheral Bus  
McBSP0 serial port control register  
0x3000 0000 – 0x33FF FFFF  
018C 0008  
018C 000C  
McBSP0 receive control register  
018C 0010  
McBSP0 transmit control register  
CLKSP (Bit 30) and CLKSM  
(Bit 29) are RSV on DM643  
018C 0014  
SRGR0  
McBSP0 sample rate generator register  
018C 0018  
018C 001C  
MCR0  
RCERE00  
XCERE00  
PCR0  
McBSP0 multichannel control register  
McBSP0 enhanced receive channel enable register 0  
McBSP0 enhanced transmit channel enable register 0  
McBSP0 pin control register  
018C 0020  
018C 0024  
018C 0028  
RCERE10  
XCERE10  
RCERE20  
XCERE20  
RCERE30  
XCERE30  
McBSP0 enhanced receive channel enable register 1  
McBSP0 enhanced transmit channel enable register 1  
McBSP0 enhanced receive channel enable register 2  
McBSP0 enhanced transmit channel enable register 2  
McBSP0 enhanced receive channel enable register 3  
McBSP0 enhanced transmit channel enable register 3  
Reserved  
018C 002C  
018C 0030  
018C 0034  
018C 0038  
018C 003C  
018C 0040 – 018F FFFF  
122  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
5.12.2 McBSP Electrical Data/Timing  
5.12.2.1 Multichannel Buffered Serial Port (McBSP) Timing  
Table 5-41. Timing Requirements for McBSP(1) (see Figure 5-48)  
–500  
–600  
NO.  
UNIT  
MIN  
MAX  
2
3
tc(CKRX)  
tw(CKRX)  
Cycle time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
4P or 6.67(2) (3)  
0.5tc(CKRX) 1(4)  
ns  
ns  
Pulse duration, CLKR/X high or CLKR/X low  
9
1.3  
6
5
6
tsu(FRH-CKRL)  
th(CKRL-FRH)  
tsu(DRV-CKRL)  
th(CKRL-DRV)  
tsu(FXH-CKXL)  
th(CKXL-FXH)  
Setup time, external FSR high before CLKR low  
Hold time, external FSR high after CLKR low  
Setup time, DR valid before CLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
3
8
7
0.9  
3
8
Hold time, DR valid after CLKR low  
3.1  
9
10  
11  
Setup time, external FSX high before CLKX low  
Hold time, external FSX high after CLKX low  
1.3  
6
3
(1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also  
inverted.  
(2) P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.  
(3) Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock  
source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA  
limitations and AC timing requirements.  
(4) This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
123  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 5-42. Switching Characteristics Over Recommended Operating Conditions for McBSP(1) (2)  
(see Figure 5-48)  
–500  
–600  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
4P or 6.67(3) (4)  
2
tc(CKRX)  
Cycle time, CLKR/X  
CLKR/X int  
ns  
(5)  
3
4
tw(CKRX)  
Pulse duration, CLKR/X high or CLKR/X low  
Delay time, CLKR high to internal FSR valid  
CLKR/X int  
CLKR int  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
FSX int  
C – 1(6)  
–2.1  
C + 1(6)  
ns  
ns  
td(CKRH-FRV)  
3
–1.7  
3
9
td(CKXH-FXV)  
tdis(CKXH-DXHZ)  
td(CKXH-DXV)  
Delay time, CLKX high to internal FSX valid  
ns  
ns  
ns  
1.7  
9
4
–3.9  
Disable time, DX high impedance following last data  
bit from CLKX high  
12  
13  
–2.1  
9
–3.9 + D1(7)  
–2.1 + D1(7)  
–2.3 + D1(8)  
4 + D2(7)  
9 + D2(7)  
5.6 + D2(8)  
Delay time, CLKX high to DX valid  
Delay time, FSX high to DX valid  
14  
td(FXH-DXV)  
ns  
ONLY applies when in data  
delay 0 (XDATDLY = 00b) mode  
FSX ext  
1.9 + D1(8)  
9 + D2(8)  
(1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also  
inverted.  
(2) Minimum delay times also represent minimum output hold times.  
(3) Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times  
are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements.  
(4) P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.  
(5) Use whichever value is greater.  
(6) The CLKSM bit in the SRGR0 register must remain a 1, the DM643 device does not support a CLKS input.  
C = H or L  
H = CLKX high pulse width = (CLKGDV/2 + 1) * 4P if CLKGDV is even  
H = CLKX high pulse width = (CLKGDV + 1)/2 * 4P if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * 4P if CLKGDV is even  
L = CLKX low pulse width = (CLKGDV + 1)/2 * 4P if CLKGDV is odd or zero  
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see footnote (4) above).  
(7) Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.  
if DXENA = 0, then D1 = D2 = 0  
if DXENA = 1, then D1 = 4P, D2 = 8P  
(8) Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.  
if DXENA = 0, then D1 = D2 = 0  
if DXENA = 1, then D1 = 4P, D2 = 8P  
124  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
2
3
3
CLKR  
4
4
FSR (int)  
5
6
FSR (ext)  
DR  
7
8
Bit(n-1)  
(n-2)  
(n-3)  
2
3
3
CLKX  
9
FSX (int)  
11  
10  
FSX (ext)  
FSX  
(XDATDLY=00b)  
(A)  
13  
14  
13  
(A)  
12  
DX  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
A. Parameter No. 13 applies to the first data bit only when XDATDLY 0.  
Figure 5-48. McBSP Timing  
Table 5-43. Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0(1) (2)  
(see Figure 5-49)  
–500  
–600  
NO.  
UNIT  
MASTER  
SLAVE  
MIN MAX  
MIN  
12  
4
MAX  
4
5
tsu(DRV-CKXL)  
th(CKXL-DRV)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
2 – 12P  
5 + 24P  
ns  
ns  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.  
(2) For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
125  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 5-44. Switching Characteristics Over Recommended Operating Conditions for McBSP as SPI  
Master or Slave: CLKSTP = 10b, CLKXP = 0(1) (2) (see Figure 5-49)  
–500  
–600  
NO.  
PARAMETER  
UNIT  
MASTER(3)  
SLAVE  
MIN  
MIN  
MAX  
MAX  
1
2
3
th(CKXL-FXL)  
td(FXL-CKXH)  
td(CKXH-DXV)  
Hold time, FSX low after CLKX low(4)  
Delay time, FSX low to CLKX high(5)  
Delay time, CLKX high to DX valid  
T – 2 T + 3  
L – 2.5 L + 3  
ns  
ns  
ns  
–2  
4
12P + 2.8 20P + 17  
Disable time, DX high impedance following last data bit  
from CLKX low  
6
tdis(CKXL-DXHZ)  
L – 2 L + 3  
ns  
Disable time, DX high impedance following last data bit  
from FSX high  
7
8
tdis(FXH-DXHZ)  
td(FXL-DXV)  
4P + 3 12P + 17  
ns  
ns  
Delay time, FSX low to DX valid  
8P + 1.8 16P + 17  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.  
(2) For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(3) The CLKSM bit in the SRGR0 register must remain a 1, the DM643 device does not support a CLKS input.  
T = CLKX period = (1 + CLKGDV) * 4P  
H = CLKX high pulse width = (CLKGDV/2 + 1) * 4P if CLKGDV is even  
H = CLKX high pulse width = (CLKGDV + 1)/2 * 4P if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * 4P if CLKGDV is even  
L = CLKX low pulse width = (CLKGDV + 1)/2 * 4P if CLKGDV is odd or zero  
(4) FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input  
on FSX and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP  
(5) FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master  
clock (CLKX).  
CLKX  
1
2
8
FSX  
7
6
3
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-3)  
(n-4)  
4
5
Bit 0  
(n-2)  
(n-4)  
Figure 5-49. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
Table 5-45. Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0(1) (2)  
(see Figure 5-50)  
–500  
–600  
NO.  
UNIT  
MASTER  
SLAVE  
MIN MAX  
MIN  
12  
4
MAX  
4
5
tsu(DRV-CKXH)  
th(CKXH-DRV)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
2 – 12P  
5 + 24P  
ns  
ns  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.  
(2) For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.  
126  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
 
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 5-46. Switching Characteristics Over Recommended Operating Conditions for McBSP as SPI  
Master or Slave: CLKSTP = 11b, CLKXP = 0(1) (2) (see Figure 5-50)  
–500  
–600  
NO.  
PARAMETER  
UNIT  
MASTER(3)  
SLAVE  
MIN MAX  
MIN  
MAX  
1
2
3
th(CKXL-FXL)  
td(FXL-CKXH)  
td(CKXL-DXV)  
Hold time, FSX low after CLKX low(4)  
Delay time, FSX low to CLKX high(5)  
Delay time, CLKX low to DX valid  
L – 2 L + 3  
T – 2.5 T + 3  
ns  
ns  
ns  
–2  
4
12P + 3 20P + 17  
12P + 3 20P + 17  
Disable time, DX high impedance following last data bit from  
CLKX low  
6
7
tdis(CKXL-DXHZ)  
td(FXL-DXV)  
–2  
4
ns  
ns  
Delay time, FSX low to DX valid  
H – 2 H + 4 8P + 2 16P + 17  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.  
(2) For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(3) The CLKSM bit in the SRGR0 register must remain a 1, the DM643 device does not support a CLKS input.  
T = CLKX period = (1 + CLKGDV) * 4P  
H = CLKX high pulse width = (CLKGDV/2 + 1) * 4P if CLKGDV is even  
H = CLKX high pulse width = (CLKGDV + 1)/2 * 4P if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * 4P if CLKGDV is even  
L = CLKX low pulse width = (CLKGDV + 1)/2 * 4P if CLKGDV is odd or zero  
(4) FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input  
on FSX and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP  
(5) FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master  
clock (CLKX).  
CLKX  
1
2
7
FSX  
DX  
6
3
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-3)  
(n-4)  
4
5
DR  
Bit 0  
(n-2)  
(n-4)  
Figure 5-50. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
Table 5-47. Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1(1) (2)  
(see Figure 5-51)  
–500  
–600  
NO.  
UNIT  
MASTER  
SLAVE  
MIN MAX  
MIN  
12  
4
MAX  
4
5
tsu(DRV-CKXH)  
th(CKXH-DRV)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
2 – 12P  
5 + 24P  
ns  
ns  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.  
(2) For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
127  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 5-48. Switching Characteristics Over Recommended Operating Conditions for McBSP as SPI  
Master or Slave: CLKSTP = 10b, CLKXP = 1(1) (2) (see Figure 5-51)  
–500  
–600  
NO.  
PARAMETER  
UNIT  
MASTER(3)  
SLAVE  
MIN MAX  
MIN  
MAX  
1
2
3
th(CKXH-FXL)  
td(FXL-CKXL)  
td(CKXL-DXV)  
Hold time, FSX low after CLKX high(4)  
Delay time, FSX low to CLKX low(5)  
Delay time, CLKX low to DX valid  
T – 2 T + 3  
H – 2.5 H + 3  
ns  
ns  
ns  
–2  
4
12P + 3 20P + 17  
Disable time, DX high impedance following last data bit  
from CLKX high  
6
tdis(CKXH-DXHZ)  
H – 2 H + 3  
ns  
Disable time, DX high impedance following last data bit  
from FSX high  
7
8
tdis(FXH-DXHZ)  
td(FXL-DXV)  
4P + 3 12P + 17  
8P + 2 16P + 17  
ns  
ns  
Delay time, FSX low to DX valid  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.  
(2) For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(3) The CLKSM bit in the SRGR0 register must remain a 1, the DM643 device does not support a CLKS input.  
T = CLKX period = (1 + CLKGDV) * 4P  
H = CLKX high pulse width = (CLKGDV/2 + 1) * 4P if CLKGDV is even  
H = CLKX high pulse width = (CLKGDV + 1)/2 * 4P if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * 4P if CLKGDV is even  
L = CLKX low pulse width = (CLKGDV + 1)/2 * 4P if CLKGDV is odd or zero  
(4) FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input  
on FSX and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP  
(5) FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master  
clock (CLKX).  
CLKX  
1
2
8
FSX  
7
6
3
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 5-51. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
Table 5-49. Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1(1) (2)  
(see Figure 5-52)  
–500  
–600  
NO.  
UNIT  
MASTER  
SLAVE  
MIN MAX  
MIN  
12  
4
MAX  
4
5
tsu(DRV-CKXH)  
th(CKXH-DRV)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
2 – 12P  
5 + 24P  
ns  
ns  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.  
(2) For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.  
128  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
 
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 5-50. Switching Characteristics Over Recommended Operating Conditions for McBSP as SPI  
Master or Slave: CLKSTP = 11b, CLKXP = 1(1) (2) (see Figure 5-52)  
–500  
–600  
NO.  
PARAMETER  
UNIT  
MASTER(3)  
SLAVE  
MIN MAX  
MIN  
MAX  
H + 3  
1
2
3
th(CKXH-FXL)  
td(FXL-CKXL)  
td(CKXH-DXV)  
Hold time, FSX low after CLKX high(4)  
Delay time, FSX low to CLKX low(5)  
Delay time, CLKX high to DX valid  
H – 2  
ns  
ns  
ns  
T – 2.5 T + 1.5  
–2  
4
12P + 3 20P + 17  
12P + 3 20P + 17  
Disable time, DX high impedance following last data bit  
from CLKX high  
6
7
tdis(CKXH-DXHZ)  
td(FXL-DXV)  
–2  
4
ns  
ns  
Delay time, FSX low to DX valid  
L – 2  
L + 4 8P + 2 16P + 17  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.  
(2) For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(3) The CLKSM bit in the SRGR0 register must remain a 1, the DM643 device does not support a CLKS input.  
T = CLKX period = (1 + CLKGDV) * 4P  
H = CLKX high pulse width = (CLKGDV/2 + 1) * 4P if CLKGDV is even  
H = CLKX high pulse width = (CLKGDV + 1)/2 * 4P if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * 4P if CLKGDV is even  
L = CLKX low pulse width = (CLKGDV + 1)/2 * 4P if CLKGDV is odd or zero  
(4) FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input  
on FSX and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP  
(5) FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master  
clock (CLKX).  
CLKX  
1
2
FSX  
DX  
7
6
3
Bit 0  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
DR  
(n-2)  
(n-3)  
(n-4)  
Figure 5-52. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
129  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
5.13 Video Port  
Each Video Port is capable of sending and receiving digital video data. The Video Ports are also capable  
of capturing/displaying RAW data. The Video Port peripherals follow video standards such as BT.656 and  
SMPTE296.  
5.13.1 Video Port Device-Specific Information  
The TMS320DM643 device has two video port peripherals.  
The video port peripheral can operate as a video capture port, video display port, or as a transport stream  
interface (TSI) capture port.  
The port consists of two channels: A and B. A 5120-byte capture/display buffer is splittable between the  
two channels. The entire port (both channels) is always configured for either video capture or display only.  
Separate data pipelines control the parsing and formatting of video capture or display data for each of the  
BT.656, Y/C, raw video, and TSI modes.  
For video capture operation, the video port may operate as two 8/10-bit channels of BT.656 or raw video  
capture; or as a single channel of 8/10-bit BT.656, 8/10-bit raw video, 16/20-bit Y/C video, 16/20-bit raw  
video, or 8-bit TSI.  
For video display operation, the video port may operate as a single channel of 8/10-bit BT.656; or as a  
single channel of 8/10-bit BT.656, 8/10-bit raw video, 16/20 bit Y/C video, or 16/20-bit raw video. It may  
also operate in a two channel 8/10-bit raw mode in which the two channels are locked to the same timing.  
Channel B is not used during single channel operation.  
For more detailed information on the DM643 Video Port peripherals, see the TMS320C64x DSP Video  
Port/VCXO Interpolated Control (VIC) Port Reference Guide (literature number SPRU629).  
5.13.2 Video Port Peripheral Register Description(s)  
Table 5-51. Video Port 1 and 2 (VP1 and VP2) Control Registers  
HEX ADDRESS RANGE  
ACRONYM  
DESCRIPTION  
VP1  
VP2  
01C4 4000  
01C4 4004  
01C4 4008  
01C4 400C  
01C4 4020  
01C4 4024  
01C4 4028  
01C4 402C  
01C4 4030  
01C4 4034  
01C4 4038  
01C4 403C  
01C4 4040  
01C4 4044  
01C4 40C0  
01C4 40C4  
01C4 40C8  
01C4 40CC  
01C4 4100  
01C4 4104  
01C4 8000  
01C4 8004  
01C4 8008  
01C4 800C  
01C4 8020  
01C4 8024  
01C4 8028  
01C4 802C  
01C4 8030  
01C4 8034  
01C4 8038  
01C4 803C  
01C4 8040  
01C4 8044  
01C4 80C0  
01C4 80C4  
01C4 80C8  
01C4 80CC  
01C4 8100  
01C4 8104  
VP_PIDx  
VP_PCRx  
Video Port Peripheral Identification Register  
Video Port Peripheral Control Register  
Reserved  
Reserved  
VP_PFUNCx  
VP_PDIRx  
VP_PDINx  
VP_PDOUTx  
VP_PDSETx  
VP_PDCLRx  
VP_PIENx  
VP_PIPOx  
VP_PISTATx  
VP_PICLRx  
VP_CTLx  
VP_STATx  
VP_IEx  
Video Port Pin Function Register  
Video Port Pin Direction Register  
Video Port Pin Data Input Register  
Video Port Pin Data Output Register  
Video Port Pin Data Set Register  
Video Port Pin Data Clear Register  
Video Port Pin Interrupt Enable Register  
Video Port Pin Interrupt Polarity Register  
Video Port Pin Interrupt Status Register  
Video Port Pin Interrupt Clear Register  
Video Port Control Register  
Video Port Status Register  
Video Port Interrupt Enable Register  
Video Port interrupt Status Register  
Video Capture Channel A Status Register  
Video Capture Channel A Control Register  
VP_ISx  
VC_STATx  
VC_CTLx  
130  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 5-51. Video Port 1 and 2 (VP1 and VP2) Control Registers (continued)  
HEX ADDRESS RANGE  
ACRONYM  
DESCRIPTION  
VP1  
VP2  
01C4 4108  
01C4 410C  
01C4 4110  
01C4 4114  
01C4 4118  
01C4 411C  
01C4 4120  
01C4 4140  
01C4 4144  
01C4 4148  
01C4 414C  
01C4 4150  
01C4 4154  
01C4 4158  
01C4 415C  
01C4 4160  
01C4 4180  
01C4 4184  
01C4 4188  
01C4 418C  
01C4 4190  
01C4 4194  
01C4 4198  
01C4 419C  
01C4 41A0  
01C4 41A4  
01C4 4200  
01C4 4204  
01C4 4208  
01C4 420C  
01C4 4210  
01C4 4214  
01C4 4218  
01C4 421C  
01C4 4220  
01C4 4224  
01C4 4228  
01C4 422C  
01C4 4230  
01C4 4234  
01C4 4238  
01C4 423C  
01C4 4240  
01C4 4244  
01C4 4248  
01C4 424C  
01C4 8108  
01C4 810C  
01C4 8110  
01C4 8114  
01C4 8118  
01C4 811C  
01C4 8120  
01C4 8140  
01C4 8144  
01C4 8148  
01C4 814C  
01C4 8150  
01C4 8154  
01C4 8158  
01C4 815C  
01C4 8160  
01C4 8180  
01C4 8184  
01C4 8188  
01C4 818C  
01C4 8190  
01C4 8194  
01C4 8198  
01C4 819C  
01C4 81A0  
01C4 81A4  
01C4 8200  
01C4 8204  
01C4 8208  
01C4 820C  
01C4 8210  
01C4 8214  
01C4 8218  
01C4 821C  
01C4 8220  
01C4 8224  
01C4 8228  
01C4 822C  
01C4 8230  
01C4 8234  
01C4 8238  
01C4 823C  
01C4 8240  
01C4 8244  
01C4 8248  
01C4 824C  
VC_ASTRTx  
VC_ASTOPx  
VC_ASTRTx  
VC_ASTOPx  
VC_AVINTx  
Video Capture Channel A Field 1 Start Register  
Video Capture Channel A Field 1 Stop Register  
Video Capture Channel A Field 2 Start Register  
Video Capture Channel A Field 2 Stop Register  
Video Capture Channel A Vertical Interrupt Register  
Video Capture Channel A Threshold Register  
Video Capture Channel A Event Count Register  
Video Capture Channel B Status Register  
Video Capture Channel B Control Register  
Video Capture Channel B Field 1 Start Register  
Video Capture Channel B Field 1 Stop Register  
Video Capture Channel B Field 2 Start Register  
Video Capture Channel B Field 2 Stop Register  
Video Capture Channel B Vertical Interrupt Register  
Video Capture Channel B Threshold Register  
Video Capture Channel B Event Count Register  
TCI Capture Control Register  
VC_ATHRLDx  
VC_AEVTCTx  
VC_BSTATx  
VC_BCTLx  
VC_BSTRTx  
VC_BSTOPx  
VC_BSTRTx  
VC_BSTOPx  
VC_BVINTx  
VC_BTHRLDx  
VC_BEVTCTx  
TSI_CTLx  
TSI_CLKINITLx  
TSI_CLKINITMx  
TSI_STCLKLx  
TSI_STCLKMx  
TSI_STCMPLx  
TSI_STCMPMx  
TSI_STMSKLx  
TSI_STMSKMx  
TSI_TICKSx  
VD_STATx  
TCI Clock Initialization LSB Register  
TCI Clock Initialization MSB Register  
TCI System Time Clock LSB Register  
TCI System Time Clock MSB Register  
TCI System Time Clock Compare LSB Register  
TCI System Time Clock Compare MSB Register  
TCI System Time Clock Compare Mask LSB Register  
TCI System Time Clock Compare Mask MSB Register  
TCI System Time Clock Ticks Interrupt Register  
Video Display Status Register  
VD_CTLx  
Video Display Control Register  
VD_FRMSZx  
VD_HBLNKx  
VD_VBLKS1x  
VD_VBLKE1x  
VD_VBLKS2x  
VD_VBLKE2x  
VD_IMGOFF1x  
VD_IMGSZ1x  
VD_IMGOFF2x  
VD_IMGSZ2x  
VD_FLDT1x  
Video Display Frame Size Register  
Video Display Horizontal Blanking Register  
Video Display Field 1 Vertical Blanking Start Register  
Video Display Field 1 Vertical Blanking End Register  
Video Display Field 2 Vertical Blanking Start Register  
Video Display Field 2 Vertical Blanking End Register  
Video Display Field 1 Image Offset Register  
Video Display Field 1 Image Size Register  
Video Display Field 2 Image Offset Register  
Video Display Field 2 Image Size Register  
Video Display Field 1 Timing Register  
VD_FLDT2x  
Video Display Field 2 Timing Register  
VD_THRLDx  
VD_HSYNCx  
VD_VSYNS1x  
VD_VSYNE1x  
VD_VSYNS2x  
VD_VSYNE2x  
Video Display Threshold Register  
Video Display Horizontal Synchronization Register  
Video Display Field 1 Vertical Synchronization Start Register  
Video Display Field 1 Vertical Synchronization End Register  
Video Display Field 2 Vertical Synchronization Start Register  
Video Display Field 2 Vertical Synchronization End Register  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
131  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 5-51. Video Port 1 and 2 (VP1 and VP2) Control Registers (continued)  
HEX ADDRESS RANGE  
ACRONYM  
DESCRIPTION  
VP1  
VP2  
01C4 4250  
01C4 4254  
01C4 4258  
01C4 425C  
01C4 4260  
01C4 4264  
01C4 4268  
01C4 426C  
7800 0000  
7800 0008  
7800 0010  
7800 0020  
7800 0028  
7800 0030  
7A00 0000  
7A00 0008  
7A00 0010  
7A00 0020  
01C4 8250  
01C4 8254  
01C4 8258  
01C4 825C  
01C4 8260  
01C4 8264  
01C4 8268  
01C4 826C  
7C00 0000  
7C00 0008  
7C00 0010  
7C00 0020  
7C00 0028  
7C00 0030  
7E00 0000  
7E00 0008  
7E00 0010  
7E00 0020  
VD_RELOADx  
VD_DISPEVTx  
VD_CLIPx  
VD_DEFVALx  
VD_VINTx  
VD_FBITx  
VD_VBIT1x  
VD_VBIT2x  
Y_RSCA  
Video Display Counter Reload Register  
Video Display Display Event Register  
Video Display Clipping Register  
Video Display Default Display Value Register  
Video Display Vertical Interrupt Register  
Video Display Field Bit Register  
Video Display Field 1Vertical Blanking Bit Register  
Video Display Field 2Vertical Blanking Bit Register  
Y FIFO Source Register A  
CB_SRCA  
CR_SRCA  
Y_DSTA  
CB FIFO Source Register A  
CR FIFO Source Register A  
Y FIFO Destination Register A  
CB_DST  
CB FIFO Destination Register  
CR_DST  
CR FIFO Destination Register  
Y_SRCB  
Y FIFO Source Register B  
CB_SRCB  
CR_SRCB  
Y_DSTB  
CB FIFO Source Register b  
CR FIFO Source Register B  
Y FIFO Destination Register B  
132  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
5.13.3 Video Port (VP1, VP2) Electrical Data/Timing  
5.13.3.1 VCLKIN Timing (Video Capture Mode)  
Table 5-52. Timing Requirements for Video Capture Mode for VPxCLKINx(1)  
(see Figure 5-53)  
–500  
–600  
NO.  
UNIT  
MIN  
MAX  
1
2
3
4
tc(VKI)  
Cycle time, VPxCLKINx  
12.5  
5.4  
ns  
ns  
ns  
ns  
tw(VKIH)  
tw(VKIL)  
tt(VKI)  
Pulse duration, VPxCLKINx high  
Pulse duration, VPxCLKINx low  
Transition time, VPxCLKINx  
5.4  
3
(1) The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN.  
4
1
2
3
VPxCLKINx  
4
Figure 5-53. Video Port Capture VPxCLKINx TIming  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
133  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
5.13.3.2 Video Data and Control Timing (Video Capture Mode)  
Table 5-53. Timing Requirements in Video Capture Mode for Video Data and Control Inputs  
(see Figure 5-54)  
–500  
–600  
NO.  
UNIT  
MIN  
2.9  
0.5  
2.9  
0.5  
MAX  
1
2
3
4
tsu(VDATV-VKIH) Setup time, VPxDx valid before VPxCLKINx high  
ns  
ns  
ns  
ns  
th(VDATV-VKIH)  
tsu(VCTLV-VKIH)  
th(VCTLV-VKIH)  
Hold time, VPxDx valid after VPxCLKINx high  
Setup time, VPxCTLx valid before VPxCLKINx high  
Hold time, VPxCTLx valid after VPxCLKINx high  
VPxCLKINx  
1
3
2
VPxD[19:0] (Input)  
VPxCTLx (Input)  
4
Figure 5-54. Video Port Capture Data and Control Input Timing  
134  
DM643 Peripheral Information and Electrical Specifications  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
 
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
5.13.3.3 VCLKIN Timing (Video Display Mode)  
Table 5-54. Timing Requirements for Video Display Mode for VPxCLKINx(1) (see Figure 5-55)  
–500  
–600  
NO.  
UNIT  
MIN  
9
MAX  
1
2
3
4
tc(VKI)  
Cycle time, VPxCLKINx  
ns  
ns  
ns  
ns  
tw(VKIH)  
tw(VKIL)  
tt(VKI)  
Pulse duration, VPxCLKINx high  
Pulse duration, VPxCLKINx low  
Transition time, VPxCLKINx  
4.1  
4.1  
3
(1) The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN.  
4
1
2
3
VPxCLKINx  
4
Figure 5-55. Video Port Display VPxCLKINx Timing  
5.13.3.4 Video Control Input/Output and Video Display Data Output Timing With Respect to VPxCLKINx  
and VPxCLKOUTx (Video Display Mode)  
Table 5-55. Timing Requirements in Video Display Mode for Video Control Input Shown With Respect to  
VPxCLKINx and VPxCLKOUTx (see Figure 5-56)  
–500  
–600  
NO.  
UNIT  
MIN  
MAX  
13 tsu(VCTLV-VKIH)  
14 th(VCTLV-VKIH)  
15 tsu(VCTLV-VKOH)  
16 th(VCTLV-VKOH)  
Setup time, VPxCTLx valid before VPxCLKINx high  
Hold time, VPxCTLx valid after VPxCLKINx high  
Setup time, VPxCTLx valid before VPxCLKOUTx high(1)  
Hold time, VPxCTLx valid after VPxCLKOUTx high(1)  
2.9  
0.5  
ns  
ns  
ns  
ns  
7.4  
–0.9  
(1) Assuming non-inverted VPxCLKOUTx signal.  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
135  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 5-56. Switching Characteristics Over Recommended Operating Conditions in Video Display Mode  
for Video Data and Control Output Shown With Respect to VPxCLKINx and VPxCLKOUTx(1) (2)  
(see Figure 5-56)  
–500  
–600  
MIN  
V – 0.7  
NO.  
PARAMETER  
UNIT  
MAX  
1
2
3
4
5
6
7
8
9
tc(VKO)  
Cycle time, VPxCLKOUTx  
V + 0.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tw(VKOH)  
Pulse duration, VPxCLKOUTx high  
VH – 0.7 VH + 0.7  
VL – 0.7 VL + 0.7  
1.8  
tw(VKOL)  
Pulse duration, VPxCLKOUTx low  
tt(VKO)  
Transition time, VPxCLKOUTx  
td(VKIH-VKOH)  
td(VKIL-VKOL)  
td(VKIH-VKOL)  
td(VKIL-VKOH)  
td(VKIH-VPOUTV)  
Delay time, VPxCLKINx high to VPxCLKOUTx high(3)  
Delay time, VPxCLKINx low to VPxCLKOUTx low(3)  
Delay time, VPxCLKINx high to VPxCLKOUTx low  
Delay time, VPxCLKINx low to VPxCLKOUTx high  
Delay time, VPxCLKINx high to VPxOUT valid(4)  
Delay time, VPxCLKINx high to VPxOUT invalid(4)  
Delay time, VPxCLKOUTx high to VPxOUT valid(1) (4)  
Delay time, VPxCLKOUTx high to VPxOUT invalid(1) (4)  
1.1  
1.1  
1.1  
1.1  
5.7  
5.7  
5.7  
5.7  
9
10 td(VKIH-VPOUTIV)  
11 td(VKOH-VPOUTV)  
12 td(VKOH-VPOUTIV)  
1.7  
4.3  
–0.2  
(1) V = the video input clock (VPxCLKINx) period in ns.  
(2) VH is the high period of V (video input clock period) in ns and VL is the low period of V (video input clock period) in ns.  
(3) Assuming non-inverted VPxCLKOUTx signal.  
(4) VPxOUT consists of VPxCTLx and VPxD[19:0]  
VPxCLKINx  
5
7
2
1
6
8
3
VPxCLKOUTx  
[VCLK2P = 0]  
4
4
VPxCLKOUTx  
(Inverted)  
[VCLK2P = 1]  
12  
10  
11  
9
VPxCTLx,V  
PxD[19:0]  
(Outputs)  
15  
16  
14  
13  
VPxCTLx  
(Input)  
Figure 5-56. Video Port Display Data Output Timing and Control Input/Output Timing With Respect to  
VPxCLKINx and VPxCLKOUTx  
136  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
 
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
5.13.3.5 Video Dual-Display Sync Mode Timing (With Respect to VPxCLKINx)  
Table 5-57. Timing Requirements for Dual-Display Sync Mode for VPxCLKINx (see Figure 5-57)  
–500  
–600  
NO.  
UNIT  
MIN  
MAX  
1
tskr(VKI)  
Skew rate, VPxCLKINx before VPyCLKINy  
±500  
ps  
VPxCLKINx  
1
VPyCLKINy  
Figure 5-57. Video Port Dual-Display Sync Timing  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
137  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
5.14 VCXO Interpolated Control (VIC)  
The VIC can be used in conjunction with the Video Ports (VPs) to maintain synchronization of a video  
stream. The VIC can also be used to control a VCXO to adjust the pixel clock rate to a video port.  
5.14.1 VIC Device-Specific Information  
The VCXO interpolated control (VIC) port provides digital-to-analog conversation with resolution from  
9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output (VDAC pin).  
Typical D/A converters provide a discrete output level for every value of the digital word that is being  
converted. This is a problem for digital words that are long. This is avoided in a Sigma Delta type D/A  
converter by choosing a few widely spaced output levels and interpolating values between them. The  
interpolating mechanism causes the output to oscillate rapidly between the levels in such a manner that  
the average output represents the value of input code.  
In the VIC, two output levels are chosen (0 and 1), and Sigma Delta interpolation scheme is implemented  
to interpolate between these levels with a rapidly changing signal. The frequency of interpolation is  
dependent on the resolution needed.  
When the video port is used in transport stream interface (TSI) mode, the VIC port is used to control the  
system clock, VCXO, for MPEG transport stream.  
The VIC supports the following features:  
Single interpolation for D/A conversion  
Programmable precision from 9-to-16 bits  
Interface for register accesses  
For more detailed information on the DM643 VCXO interpolated control (VIC) peripheral, see the  
TMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide (literature number  
SPRU629).  
5.14.2 VIC Peripheral Register Description(s)  
Table 5-58. VCXO Interpolated Control (VIC) Port Registers  
HEX ADDRESS RANGE  
01C4 C000  
ACRONYM  
VICCTL  
VICIN  
REGISTER NAME  
VIC control register  
01C4 C004  
VIC input register  
VIC clock divider register  
Reserved  
01C4 C008  
VPDIV  
01C4 C00C – 01C4 FFFF  
138  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
5.14.3 VIC Electrical Data/Timing  
5.14.3.1 STCLK Timing  
Table 5-59. Timing Requirments for STCLK(1) (see Figure 5-58)  
–500  
–600  
NO.  
UNIT  
MIN  
MAX  
1
2
3
4
tc(STCLK)  
tw(STCLKH)  
tw(STCLKL)  
tt(STCLK)  
Cycle time, STCLK  
33.3  
16  
ns  
ns  
ns  
ns  
Pulse duration, STCLK high  
Pulse duration, STCLK low  
Transition time, STCLK  
16  
3
(1) The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN.  
4
1
2
3
STCLK  
4
Figure 5-58. STCLK Timing  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
139  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
5.15 Ethernet Media Access Controller (EMAC)  
The EMAC controls the flow of packet data from the DSP to the PHY.  
5.15.1 EMAC Device-Specific Information  
The ethernet media access controller (EMAC) provides an efficient interface between the DM643 DSP  
core processor and the network. The DM643 EMAC support both 10Base-T and 100Base-TX, or  
10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality  
of service (QOS) support. The DM643 EMAC makes use of a custom interface to the DSP core that  
allows efficient data transmission and reception.  
The EMAC controls the flow of packet data from the DSP to the PHY. The MDIO module controls PHY  
configuration and status monitoring.  
Both the EMAC and the MDIO modules interface to the DSP through a custom interface that allows  
efficient data transmission and reception. This custom interface is referred to as the EMAC control  
module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to  
control device reset, interrupts, and system priority.  
The TMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output  
(MDIO) Module Reference Guide (literature number SPRU628) describes the DM643 EMAC peripheral in  
detail. Some of the features documented in this peripheral reference guide are not supported on the  
DM643 at this time. The DM643 supports one receive channel and does not support receive quality of  
service (QOS). For a list of supported registers and register fields, see Table 5-60 [Ethernet MAC (EMAC)  
Control Registers] and Table 5-61 [EMAC Statistics Registers] in this data manual.  
5.15.2 EMAC Peripheral Register Description(s)  
Table 5-60. Ethernet MAC (EMAC) Control Registers  
HEX ADDRESS RANGE  
01C8 0000  
ACRONYM  
TXIDVER  
REGISTER NAME  
Transmit Identification and Version Register  
01C8 0004  
TXCONTROL  
TXTEARDOWN  
Transmit Control Register  
Transmit Teardown Register  
Reserved  
01C8 0008  
01C8 000C  
01C8 0010  
RXIDVER  
Receive Identification and Version Register  
Receive Control Register  
01C8 0014  
RXCONTROL  
Receive Teardown Register  
(RXTDNCH field only supports writes of 0.)  
01C8 0018  
RXTEARDOWN  
01C8 001C – 01C8 00FF  
Reserved  
Receive Multicast/Broadcast/Promiscuous Channel Enable Register  
(The RXQOSEN field is reserved and only supports writes of 0. The PROMCH,  
BROADCH, and MUCTCH bit fields only support writes of 0.)  
01C8 0100  
RXMBPENABLE  
Receive Unicast Set Register  
(Bits 7–1 are reserved and only support writes of 0.)  
01C8 0104  
01C8 0108  
RXUNICASTSET  
Receive Unicast Clear Register  
(Bits 7–1 are reserved and only support writes of 0.)  
RXUNICASTCLEAR  
01C8 010C  
01C8 0110  
RXMAXLEN  
Receive Maximum Length Register  
Receive Buffer Offset Register  
RXBUFFEROFFSET  
01C8 0114  
RXFILTERLOWTHRESH Receive Filter Low Priority Packets Threshold Register  
01C8 0118 – 01C8 011F  
01C8 0120  
Reserved  
RX0FLOWTHRESH  
Receive Channel 0 Flow Control Threshold Register  
140  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
 
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 5-60. Ethernet MAC (EMAC) Control Registers (continued)  
HEX ADDRESS RANGE  
01C8 0124  
ACRONYM  
RX1FLOWTHRESH  
RX2FLOWTHRESH  
RX3FLOWTHRESH  
RX4FLOWTHRESH  
RX5FLOWTHRESH  
RX6FLOWTHRESH  
RX7FLOWTHRESH  
RX0FREEBUFFER  
RX1FREEBUFFER  
RX2FREEBUFFER  
RX3FREEBUFFER  
RX4FREEBUFFER  
RX5FREEBUFFER  
RX6FREEBUFFER  
RX7FREEBUFFER  
MACCONTROL  
MACSTATUS  
REGISTER NAME  
01C8 0128  
01C8 012C  
01C8 0130  
Reserved. Do not write.  
01C8 0134  
01C8 0138  
01C8 013C  
01C8 0140  
Receive Channel 0 Free Buffer Count Register  
01C8 0144  
01C8 0148  
01C8 014C  
01C8 0150  
Reserved. Do not write.  
01C8 0154  
01C8 0158  
01C8 015C  
01C8 0160  
MAC Control Register  
01C8 0164  
MAC Status Register (RXQOSACT field is reserved.)  
Reserved  
01C8 0168 – 01C8 016C  
01C8 0170  
TXINTSTATRAW  
TXINTSTATMASKED  
TXINTMASKSET  
TXINTMASKCLEAR  
MACINVECTOR  
Transmit Interrupt Status (Unmasked) Register  
Transmit Interrupt Status (Masked) Register  
Transmit Interrupt Mask Set Register  
Transmit Interrupt Mask Clear Register  
MAC Input Vector Register  
01C8 0174  
01C8 0178  
01C8 017C  
01C8 0180  
01C8 0184 – 01C8 018F  
Reserved  
Receive Interrupt Status (Unmasked) Register  
(Bits 7–1 are reserved.)  
01C8 0190  
01C8 0194  
01C8 0198  
01C8 019C  
RXINTSTATRAW  
RXINTSTATMASKED  
RXINTMASKSET  
Receive Interrupt Status (Masked) Register  
(Bits 7–1 are reserved.)  
Receive Interrupt Mask Set Register  
(Bits 7–1 are reserved and only support writes of 0.)  
Receive Interrupt Mask Clear Register  
(Bits 7–1 are reserved and only support writes of 0.)  
RXINTMASKCLEAR  
01C8 01A0  
01C8 01A4  
01C8 01A8  
01C8 01AC  
01C8 01B0  
01C8 01B4  
01C8 01B8  
01C8 01BC  
01C8 01C0  
01C8 01C4  
01C8 01C8  
01C8 01CC  
01C8 01D0  
01C8 01D4  
01C8 01D8  
01C8 01DC  
MACINTSTATRAW  
MACINTSTATMASKED  
MACINTMASKSET  
MACINTMASKCLEAR  
MACADDRL0  
MAC Interrupt Status (Unmasked) Register  
MAC Interrupt Status (Masked) Register  
MAC Interrupt Mask Set Register  
MAC Interrupt Mask Clear Register  
MAC Address Channel 0 Lower Byte Register  
MACADDRL1  
MACADDRL2  
MACADDRL3  
MACADDRL4  
Reserved. Do not write.  
MACADDRL5  
MACADDRL6  
MACADDRL7  
MACADDRM  
MAC Address Middle Byte Register  
MAC Address High Bytes Register  
MAC Address Hash 1 Register  
MAC Address Hash 2 Register  
MACADDRH  
MACHASH1  
MACHASH2  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
141  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 5-60. Ethernet MAC (EMAC) Control Registers (continued)  
HEX ADDRESS RANGE  
01C8 01E0  
ACRONYM  
BOFFTEST  
TPACETEST  
RXPAUSE  
TXPAUSE  
REGISTER NAME  
Backoff Test Register  
01C8 01E4  
Transmit Pacing Test Register  
Receive Pause Timer Register  
Transmit Pause Timer Register  
Reserved  
01C8 01E8  
01C8 01EC  
01C8 01F0 – 01C8 01FF  
01C8 0200 – 01C8 05FF  
01C8 0600  
(see Table 5-61)  
TX0HDP  
EMAC Statistics Registers  
Transmit Channel 0 DMA Head Descriptor Pointer Register  
Transmit Channel 1 DMA Head Descriptor Pointer Register  
Transmit Channel 2 DMA Head Descriptor Pointer Register  
Transmit Channel 3 DMA Head Descriptor Pointer Register  
Transmit Channel 4 DMA Head Descriptor Pointer Register  
Transmit Channel 5 DMA Head Descriptor Pointer Register  
Transmit Channel 6 DMA Head Descriptor Pointer Register  
Transmit Channel 7 DMA Head Descriptor Pointer Register  
Receive Channel 0 DMA Head Descriptor Pointer Register  
01C8 0604  
TX1HDP  
01C8 0608  
TX2HDP  
01C8 060C  
01C8 0610  
TX3HDP  
TX4HDP  
01C8 0614  
TX5HDP  
01C8 0618  
TX6HDP  
01C8 061C  
01C8 0620  
TX7HDP  
RX0HDP  
01C8 0624  
RX1HDP  
01C8 0628  
RX2HDP  
01C8 062C  
01C8 0630  
RX3HDP  
RX4HDP  
Reserved. Do not write.  
01C8 0634  
RX5HDP  
01C8 0638  
RX6HDP  
01C8 063C  
01C8 0640  
RX7HDP  
TX0INTACK  
TX1INTACK  
TX2INTACK  
TX3INTACK  
TX4INTACK  
TX5INTACK  
TX6INTACK  
TX7INTACK  
RX0INTACK  
RX1INTACK  
RX2INTACK  
RX3INTACK  
RX4INTACK  
RX5INTACK  
RX6INTACK  
RX7INTACK  
Transmit Channel 0 Interrupt Acknowledge Register  
Transmit Channel 1 Interrupt Acknowledge Register  
Transmit Channel 2 Interrupt Acknowledge Register  
Transmit Channel 3 Interrupt Acknowledge Register  
Transmit Channel 4 Interrupt Acknowledge Register  
Transmit Channel 5 Interrupt Acknowledge Register  
Transmit Channel 6 Interrupt Acknowledge Register  
Transmit Channel 7 Interrupt Acknowledge Register  
Receive Channel 0 Interrupt Acknowledge Register  
01C8 0644  
01C8 0648  
01C8 064C  
01C8 0650  
01C8 0654  
01C8 0658  
01C8 065C  
01C8 0660  
01C8 0664  
01C8 0668  
01C8 066C  
01C8 0670  
Reserved. Do not write.  
01C8 0674  
01C8 0678  
01C8 067C  
01C8 0680 – 01C8 0FFF  
Reserved  
142  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 5-61. EMAC Statistics Registers  
HEX ADDRESS RANGE  
ACRONYM  
RXGOODFRAMES  
RXBCASTFRAMES  
RXMCASTFRAMES  
RXPAUSEFRAMES  
RXCRCERRORS  
RXALIGNCODEERRORS  
RXOVERSIZED  
RXJABBER  
REGISTER NAME  
Good Receive Frames Register  
01C8 0200  
01C8 0204  
01C8 0208  
01C8 020C  
01C8 0210  
01C8 0214  
01C8 0218  
01C8 021C  
01C8 0220  
01C8 0224  
01C8 0228  
01C8 022C  
01C8 0230  
01C8 0234  
01C8 0238  
01C8 023C  
01C8 0240  
01C8 0244  
01C8 0248  
01C8 024C  
01C8 0250  
01C8 0254  
01C8 0258  
01C8 025C  
01C8 0260  
01C8 0264  
01C8 0268  
01C8 026C  
01C8 0270  
01C8 0274  
01C8 0278  
01C8 027C  
01C8 0280  
01C8 0284  
01C8 0288  
01C8 028C  
01C8 0290 – 01C8 05FF  
Broadcast Receive Frames Register  
Multicast Receive Frames Register  
Pause Receive Frames Register  
Receive CRC Errors Register  
Receive Alignment/Code Errors Register  
Receive Oversized Frames Register  
Receive Jabber Frames Register  
RXUNDERSIZED  
RXFRAGMENTS  
RXFILTERED  
Receive Undersized Frames Register  
Receive Frame Fragments Register  
Filtered Receive Frames Register  
Reserved  
RXQOSFILTERED  
RXOCTETS  
Receive Octet Frames Register  
TXGOODFRAMES  
TXBCASTFRAMES  
TXMCASTFRAMES  
TXPAUSEFRAMES  
TXDEFERRED  
Good Transmit Frames Register  
Broadcast Transmit Frames Register  
Multicast Transmit Frames Register  
Pause Transmit Frames Register  
Deferred Transmit Frames Register  
Collision Register  
TXCOLLISION  
TXSINGLECOLL  
TXMULTICOLL  
Single Collision Transmit Frames Register  
Multiple Collision Transmit Frames Register  
Excessive Collisions Register  
TXEXCESSIVECOLL  
TXLATECOLL  
Late Collisions Register  
TXUNDERRUN  
TXCARRIERSLOSS  
TXOCTETS  
Transmit Underrun Register  
Transmit Carrier Sense Errors Register  
Transmit Octet Frames Register  
FRAME64  
Transmit and Receive 64 Octet Frames Register  
Transmit and Receive 65 to 127 Octet Frames Register  
Transmit and Receive 128 to 255 Octet Frames Register  
Transmit and Receive 256 to 511 Octet Frames Register  
Transmit and Receive 512 to 1023 Octet Frames Register  
Transmit and Receive 1024 or Above Octet Frames Register  
Network Octet Frames Register  
FRAME65T127  
FRAME128T255  
FRAME256T511  
FRAME512T1023  
FRAME1024TUP  
NETOCTETS  
RXSOFOVERRUNS  
RXMOFOVERRUNS  
RXDMAOVERRUNS  
Receive Start of Frame Overruns Register  
Receive Middle of Frame Overruns Register  
Receive DMA Overruns Register  
Reserved  
Table 5-62. EMAC Wrapper  
HEX ADDRESS RANGE  
01C8 1000 – 01C8 1FFF  
01C8 2000 – 01C8 2FFF  
ACRONYM  
REGISTER NAME  
EMAC Control Module Descriptor Memory  
Reserved  
Table 5-63. EWRAP Registers  
HEX ADDRESS RANGE  
01C8 3000  
ACRONYM  
EWTRCTRL  
EWCTL  
REGISTER NAME  
TR control  
01C8 3004  
Interrupt control register  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
143  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 5-63. EWRAP Registers (continued)  
HEX ADDRESS RANGE  
01C8 3008  
ACRONYM  
EWINTTCNT  
REGISTER NAME  
Interrupt timer count  
Reserved  
01C8 300C – 01C8 37FF  
5.15.3 EMAC Electrical Data/Timing  
Table 5-64. Timing Requirements for MRCLK (see Figure 5-59)  
–500  
–600  
NO.  
UNIT  
MIN  
MAX  
1
2
3
tc(MRCLK)  
Cycle time, MRCLK  
40  
14  
14  
ns  
ns  
ns  
tw(MRCLKH)  
tw(MRCLKL)  
Pulse duration, MRCLK high  
Pulse duration, MRCLK low  
1
2
3
MRCLK  
Figure 5-59. MRCLK Timing (EMAC – Receive)  
Table 5-65. Timing Requirements for MTCLK (see Figure 5-59)  
–500  
–600  
NO.  
UNIT  
MIN  
MAX  
1
2
3
tc(MTCLK)  
Cycle time, MTCLK  
40  
14  
14  
ns  
ns  
ns  
tw(MTCLKH)  
tw(MTCLKL)  
Pulse duration, MTCLK high  
Pulse duration, MTCLK low  
1
2
3
MTCLK  
Figure 5-60. MTCLK Timing (EMAC – Transmit)  
Table 5-66. Timing Requirements for EMAC MII Receive 10/100 Mbit/s(1) (see Figure 5-61)  
–500  
–600  
NO.  
UNIT  
MIN  
8
MAX  
1
2
tsu(MRXD-MRCLKH)  
th(MRCLKH-MRXD)  
Setup time, receive selected signals valid before MRCLK high  
Hold time, receive selected signals valid after MRCLK high  
ns  
ns  
8
(1) Receive selected signals include: MRXD3-MRXD0, MRXDV, and MRXER.  
144  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
 
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
MRXD3–MRXD0 is driven by the PHY on the falling edge of MRCLK. MRXD3–MRXD0 timing must be  
met during clock periods when MRXDV is asserted. MRXDV is asserted and deasserted by the PHY on  
the falling edge of MRCLK. MRXER is driven by the PHY on the falling edge of MRCLK (xx = 00–01).  
1
2
MRCLK (Input)  
MRXD3−MRXD0,  
MRXDV, MRXER (Inputs)  
Figure 5-61. EMAC Receive Interface Timing  
Table 5-67. Switching Characteristics Over Recommended Operating Conditions for EMAC MII Transmit  
10/100 Mbit/s(1) (see Figure 5-62)  
–500  
–600  
NO.  
UNIT  
MIN  
MAX  
1
td(MTCLKH-MTXD)  
Delay time, MTCLK high to transmit selected signals valid  
5
25  
ns  
(1) Transmit selected signals include: MTXD3–MTXD0, and MTXEN.  
MTXD3–MTXD0 is driven by the reconciliation sublayer synchronous to the MTCLK. MTXEN is asserted  
and deasserted by the reconciliation sublayer synchronous to the MTCLK rising edge.  
1
MTCLK (Input)  
MTXD3−MTXD0,  
MTXEN (Outputs)  
Figure 5-62. EMAC Transmit Interface Timing  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
145  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
5.16 Management Data Input/Output (MDIO)  
The MDIO module controls PHY configuration and status monitoring.  
5.16.1 Device-Specific Information  
The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to  
enumerate all PHY devices in the system.  
The management data input/output (MDIO) module implements the 802.3 serial management interface to  
interrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIO  
module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the  
negotiation results, and configure required parameters in the EMAC module for correct operation. The  
module is designed to allow almost transparent operation of the MDIO interface, with very little  
maintenance from the core processor.  
The TMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output  
(MDIO) Module Reference Guide (literature number SPRU628) describes the DM643 MDIO peripheral in  
detail. Some of the features documented in this peripheral reference guide are not supported on the  
DM643 at this time. The DM643 only supports one EMAC module. For a list of supported registers and  
register fields, see Table 5-68 [MDIO Registers] in this data manual.  
5.16.2 Peripheral Register Description(s)  
Table 5-68. MDIO Registers  
HEX ADDRESS RANGE  
01C8 3800  
ACRONYM  
VERSION  
CONTROL  
ALIVE  
REGISTER NAME  
MDIO Version Register  
MDIO Control Register  
01C8 3804  
01C8 3808  
MDIO PHY Alive Indication Register  
MDIO PHY Link Status Register  
01C8 380C  
LINK  
MDIO Link Status Change Interrupt Register  
(MAC1 field is reserved and only supports writes of 0.)  
01C8 3810  
01C8 3814  
01C8 3818  
01C8 381C  
01C8 3820  
01C8 3824  
LINKINTRAW  
LINKINTMASKED  
USERINTRAW  
MDIO Link Status Change Interrupt (Masked) Register  
(MAC1 field is reserved and only supports writes of 0.)  
MDIO User Command Complete Interrupt Register  
(MAC1 field is reserved and only supports writes of 0.)  
MDIO User Command Complete Interrupt (Masked) Register  
(MAC1 field is reserved and only supports writes of 0.)  
USERINTMASKED  
USERINTMASKSET  
USERINTMASKCLEAR  
MDIO User Command Complete Interrupt Mask Set Register  
(MAC1 field is reserved and only supports writes of 0.)  
MDIO User Command Complete Interrupt Mask Clear Register  
(MAC1 field is reserved and only supports writes of 0.)  
01C8 3828  
01C8 382C  
USERACCESS0  
USERACCESS1  
USERPHYSEL0  
USERPHYSEL1  
MDIO User Access Register 0  
Reserved. Do not write.  
MDIO User PHY Select Register 0  
Reserved. Do not write.  
Reserved  
01C8 3830  
01C8 3834  
01C8 3838 – 01C8 3FFF  
146  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
 
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
5.16.3 Management Data Input/Output (MDIO) Electrical Data/Timing  
Table 5-69. Timing Requirements for MDIO Input (see Figure 5-63)  
–500  
–600  
NO.  
UNIT  
MIN  
MAX  
1
2
3
4
tc(MDCLK)  
Cycle time, MDCLK  
400  
180  
10  
ns  
ns  
ns  
ns  
tw(MDCLK)  
Pulse duration, MDCLK high/low  
tsu(MDIO-MDCLKH)  
th(MDCLKH-MDIO)  
Setup time, MDIO data input valid before MDCLK high  
Hold time, MDIO data input valid after MDCLK high  
0
1
MDCLK  
3
4
MDIO  
(input)  
Figure 5-63. MDIO Input Timing  
Table 5-70. Switching Characteristics Over Recommended Operating Conditions for MDIO Output  
(see Figure 5-64)  
–500  
–600  
MIN  
–10  
NO.  
UNIT  
MAX  
7
td(MDCLKL-MDIO)  
Delay time, MDCLK low to MDIO data output valid  
100  
ns  
1
MDCLK  
7
MDIO  
(output)  
Figure 5-64. MDIO Output Timing  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
147  
 
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
5.17 Timer  
The C6000™ DSP device has 32-bit general-purpose timers that can be used to:  
Time events  
Count events  
Generate pulses  
Interrupt the CPU  
Send synchronization events to the DMA  
The timers have two signaling modes and can be clocked by an internal or an external source. The timers  
have an input pin and an output pin. The input and output pins (TINP and TOUT) can function as timer  
clock input and clock output. They can also be respectively configured for general-purpose input and  
output.  
With an internal clock, for example, the timer can signal an external A/D converter to start a conversion, or  
it can trigger the DMA controller to begin a data transfer. With an external clock, the timer can count  
external events and interrupt the CPU after a specified number of events.  
5.17.1 Timer Device-Specific Information  
The DM643 device has a total of three 32-bit general-purpose timers (Timer0, Timer1, and Timer2).  
Timer2 is not externally pinned out.  
For more detailed information, see the TMS320C6000 DSP 32-Bit Timer Reference Guide (literature  
number SPRU582).  
5.17.2 Timer Peripheral Register Description(s)  
Table 5-71. Timer 0 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
Determines the operating mode of the timer, monitors the  
timer status, and controls the function of the TOUT pin.  
0194 0000  
CTL0  
Timer 0 control register  
Contains the number of timer input clock cycles to count.  
This number controls the TSTAT signal frequency.  
0194 0004  
PRD0  
Timer 0 period register  
0194 0008  
CNT0  
Timer 0 counter register  
Reserved  
Contains the current value of the incrementing counter.  
0194 000C – 0197 FFFF  
Table 5-72. Timer 1 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
Determines the operating mode of the timer, monitors the  
timer status, and controls the function of the TOUT pin.  
0198 0000  
CTL1  
Timer 1 control register  
Timer 1 period register  
Contains the number of timer input clock cycles to count.  
This number controls the TSTAT signal frequency.  
0198 0004  
PRD1  
0198 0008  
CNT1  
Timer 1 counter register  
Reserved  
Contains the current value of the incrementing counter.  
0198 000C – 019B FFFF  
Table 5-73. Timer 2 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
Determines the operating mode of the timer, monitors the  
timer status.  
01AC 0000  
CTL2  
Timer 2 control register  
Timer 2 period register  
Contains the number of timer input clock cycles to count.  
This number controls the TSTAT signal frequency.  
01AC 0004  
PRD2  
01AC 0008  
CNT2  
Timer 2 counter register  
Reserved  
Contains the current value of the incrementing counter.  
01AC 000C – 01AF FFFF  
148  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
5.17.3 Timer Electrical Data/Timing  
Table 5-74. Timing Requirements for Timer Inputs(1) (see Figure 5-65)  
–500  
–600  
NO.  
UNIT  
MIN  
MAX  
1
2
tw(TINPH)  
tw(TINPL)  
Pulse duration, TINP high  
Pulse duration, TINP low  
8P  
8P  
ns  
ns  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.  
Table 5-75. Switching Characteristics Over Recommended Operating Conditions for Timer Outputs(1)  
(see Figure 5-65)  
–500  
–600  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
3
4
tw(TOUTH)  
tw(TOUTL)  
Pulse duration, TOUT high  
Pulse duration, TOUT low  
8P – 3  
8P – 3  
ns  
ns  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.  
2
1
TINPx  
4
3
TOUTx  
Figure 5-65. Timer Timing  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
149  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
5.18 General-Purpose Input/Output (GPIO)  
The GPIO peripheral provides dedicated general-purpose pins that can be configured as either inputs or  
outputs. When configured as an output, you can write to an internal register to control the state driven on  
the output pin. When configured as an input, you can detect the state of the input by reading the state of  
an internal register.  
In addition, the GPIO peripheral can produce CPU interrupts and EDMA events in different interrupt/event  
generation modes.  
5.18.1 GPIO Device-Specific Information  
To use the GP[15:0] software-configurable GPIO pins, the GPxEN bits in the GP Enable (GPEN) Register  
and the GPxDIR bits in the GP Direction (GPDIR) Register must be properly configured.  
GPxEN = 1  
GPxDIR = 0  
GPxDIR = 1  
GP[x] pin is enabled  
GP[x] pin is an input  
GP[x] pin is an output  
where "x" represents one of the 15 through 0 GPIO pins  
Figure 5-66 shows the GPIO enable bits in the GPEN register for the DM643 device. To use any of the  
GPx pins as general-purpose input/output functions, the corresponding GPxEN bit must be set to "1"  
(enabled). Default values are device-specific, so refer to Figure 5-66 for the DM643 default configuration.  
31  
15  
16  
Reserved  
R-0  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
GP15 GP14 GP13 GP12 GP11 GP10  
EN EN EN EN EN EN  
GP9  
EN  
GP8  
EN  
GP7  
EN  
GP6  
EN  
GP5  
EN  
GP4  
EN  
GP3  
EN  
GP2  
EN  
GP1  
EN  
GP0  
EN  
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-0 R/W-0 R/W-1  
Legend: R/W = Readable/Writable, -n = value after reset, -x = undefined value after reset  
Figure 5-66. GPIO Enable Register (GPEN) [Hex Address: 01B0 0000]  
Figure 5-67 shows the GPIO direction bits in the GPDIR register. This register determines if a given GPIO  
pin is an input or an output providing the corresponding GPxEN bit is enabled (set to "1") in the GPEN  
register. By default, all the GPIO pins are configured as input pins.  
150  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
 
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
16  
31  
Reserved  
R-0  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
GP15 GP14 GP13 GP12 GP11 GP10  
DIR DIR DIR DIR DIR DIR  
GP9  
DIR  
GP8  
DIR  
GP7  
DIR  
GP6  
DIR  
GP5  
DIR  
GP4  
DIR  
GP3  
DIR  
GP2  
DIR  
GP1  
DIR  
GP0  
DIR  
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0  
Legend: R/W = Readable/Writable, -n = value after reset, -x = undefined value after reset  
Figure 5-67. GPIO Direction Register (GPDIR) [Hex Address: 01B0 0004]  
For more detailed information on general-purpose inputs/outputs (GPIOs), see the TMS320C6000 DSP  
General-Purpose Input/Output (GPIO) Reference Guide (literature number SPRU584).  
5.18.2 GPIO Peripheral Register Description(s)  
Table 5-76. GP0 Registers  
HEX ADDRESS RANGE  
01B0 0000  
ACRONYM  
GPEN  
GPDIR  
GPVAL  
REGISTER NAME  
GP0 enable register  
GP0 direction register  
GP0 value register  
01B0 0004  
01B0 0008  
01B0 000C  
Reserved  
01B0 0010  
GPDH  
GPHM  
GPDL  
GPLM  
GPGC  
GPPOL  
GP0 delta high register  
GP0 high mask register  
GP0 delta low register  
GP0 low mask register  
GP0 global control register  
GP0 interrupt polarity register  
Reserved  
01B0 0014  
01B0 0018  
01B0 001C  
01B0 0020  
01B0 0024  
01B0 0028 – 01B3 EFFF  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
151  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
5.18.3 General-Purpose Input/Output (GPIO) Electrical Data/Timing  
Table 5-77. Timing Requirements for GPIO Inputs(1) (2) (see Figure 5-68)  
–500  
–600  
NO.  
UNIT  
MIN  
MAX  
1
2
tw(GPIH)  
tw(GPIL)  
Pulse duration, GPIx high  
Pulse duration, GPIx low  
8P  
8P  
ns  
ns  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.  
(2) The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have the DSP recognize  
the GPIx changes through software polling of the GPIO register, the GPIx duration must be extended to at least 12P to allow the DSP  
enough time to access the GPIO register through the CFGBUS.  
Table 5-78. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs(1)  
(see Figure 5-68)  
–500  
–600  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
3
4
tw(GPOH)  
tw(GPOL)  
Pulse duration, GPOx high  
Pulse duration, GPOx low  
24P – 8(2)  
24P – 8(2)  
ns  
ns  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.  
(2) This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the  
GPIO is dependent upon internal bus activity.  
2
1
GPIx  
4
3
GPOx  
Figure 5-68. GPIO Port Timing  
152  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
Copyright © 2005–2010, Texas Instruments Incorporated  
 
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
5.19 JTAG  
The JTAG interface is used for BSDL testing and emulation of the DM643 device.  
Note: IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.  
5.19.1 JTAG Device-Specific Information  
5.19.1.1 IEEE 1149.1 JTAG Compatibility Statement  
The TMS320DM643 DSP requires that both TRST and RESET be asserted upon power up to be properly  
initialized. While RESET initializes the DSP core, TRST initializes the DSP's emulation logic. Both resets  
are required for proper operation.  
Note: TRST is synchronous and must be clocked by TCLK; otherwise, BSCAN may not respond as  
expected after TRST is asserted.  
While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for  
the DSP to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG port  
interface and DSP's emulation logic in the reset state. TRST only needs to be released when it is  
necessary to use a JTAG controller to debug the DSP or exercise the DSP's boundary scan functionality.  
RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE  
correctly. Other boundary-scan instructions work correctly independent of current state of RESET.  
The TMS320DM643 DSP includes an internal pulldown (IPD) on the TRST pin to ensure that TRST will  
always be asserted upon power up and the DSP's internal emulation logic will always be properly  
initialized when this pin is not routed out. JTAG controllers from Texas Instruments actively drive TRST  
high. However, some third-party JTAG controllers may not drive TRST high but expect the use of a pullup  
resistor on TRST. When using this type of JTAG controller, assert TRST to intialize the DSP after powerup  
and externally drive TRST high before attempting any emulation or boundary scan operations.  
Following the release of RESET, the low-to-high transition of TRST must be "seen" to latch the state of  
EMU1 and EMU0. The EMU[1:0] pins configure the device for either Boundary Scan mode or Emulation  
mode. For more detailed information, see the terminal functions section of this data sheet.  
Note: The DESIGN_WARNING section of the TMS320DM643 BSDL file contains information and  
constraints regarding proper device operation while in Boundary Scan Mode.  
5.19.1.2 JTAG ID Register Description  
The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. For the  
DM643 device, the JTAG ID register resides at address location 0x01B3 F008. The register hex value for  
the DM643 device is: 0x0007 902F. For the actual register bit names and their associated bit field  
descriptions, see Figure 5-69 and Table 5-79.  
31-28  
VARIANT (4-Bit)  
R-0000  
27-12  
11-1  
0
PART NUMBER (16-Bit)  
R-0000 0000 0111 1001  
MANUFACTURER (11-Bit)  
R-0000 0010 111  
LSB  
R-1  
Legend: R = Read only, -n = value after reset  
Figure 5-69. JTAG ID Register Description – TMS320DM643 Register Value – 0x0007 902F  
Copyright © 2005–2010, Texas Instruments Incorporated  
DM643 Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
153  
 
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
Table 5-79. JTAG ID Register Selection Bit Descriptions  
BIT  
31:28  
27:12  
11–1  
0
NAME  
VARIANT  
DESCRIPTION  
Variant (4-Bit) value. DM643 value: 0000.  
Part Number (16-Bit) value. DM643 value: 0000 0000 0111 1001.  
PART NUMBER  
MANUFACTURER Manufacturer (11-Bit) value. DM643 value: 0000 0010 111.  
LSB LSB. This bit is read as a "1" for DM643.  
5.19.2 JTAG Peripheral Register Description(s)  
Table 5-80. JTAG ID Register  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
JTAG Identification Register  
COMMENTS  
Read-only. Provides 32-bit  
JTAG ID of the device.  
01B3 F008  
JTAGID  
5.19.3 JTAG Test-Port Electrical Data/Timing  
Table 5-81. Timing Requirements for JTAG Test Port (see Figure 5-70)  
–500  
–600  
NO.  
UNIT  
MIN  
MAX  
1
3
4
tc(TCK)  
Cycle time, TCK  
35  
10  
9
ns  
ns  
ns  
tsu(TDIV-TCKH)  
th(TCKH-TDIV)  
Setup time, TDI/TMS/TRST valid before TCK high  
Hold time, TDI/TMS/TRST valid after TCK high  
Table 5-82. Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port  
(see Figure 5-70)  
–500  
–600  
NO.  
PARAMETER  
Delay time, TCK low to TDO valid  
UNIT  
MIN  
MAX  
2
td(TCKL-TDOV)  
0
18  
ns  
1
TCK  
TDO  
2
2
4
3
TDI/TMS/TRST  
Figure 5-70. JTAG Test-Port Timing  
154  
DM643 Peripheral Information and Electrical Specifications  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
 
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
6 Revision History  
This data sheet revision history highlights the technical changes made to the SPRS269C device-specific  
data sheet to make it a SPRS269D revision.  
SEE  
ADDS/CHANGES/DELETES  
Section 4.3 Added note regarding VOH and VOL  
.
Copyright © 2005–2010, Texas Instruments Incorporated  
Revision History  
155  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
www.ti.com  
7 Mechanical Data  
The following table(s) show the thermal resistance characteristics for the PBGA GDK, GNZ, ZDK, and  
ZNZ mechanical packages.  
7.1 Thermal Data  
Table 7-1. Thermal Resistance Characteristics (S-PBGA Package) [GDK]  
NO.  
1
°C/W  
AIR FLOW (m/s)(1)  
RΘJC  
RΘJB  
Junction-to-case  
Junction-to-board  
3.3  
7.92  
18.2  
15.3  
13.7  
12.2  
0.37  
0.47  
0.57  
0.7  
N/A  
N/A  
0.00  
0.5  
2
3
4
RΘJA  
PsiJT  
PsiJB  
Junction-to-free air  
Junction-to-package top  
Junction-to-board  
5
1.0  
6
2.00  
0.00  
0.5  
7
8
9
1.0  
10  
11  
12  
13  
14  
2.00  
0.00  
0.5  
11.4  
11  
10.7  
10.2  
1.0  
2.00  
(1) m/s = meters per second  
Table 7-2. Thermal Resistance Characteristics (S-PBGA Package) [GNZ]  
NO.  
1
°C/W  
AIR FLOW (m/s)(1)  
RΘJC  
RΘJB  
Junction-to-case  
Junction-to-board  
3.3  
7.46  
17.4  
14.0  
12.3  
10.8  
0.37  
0.47  
0.57  
0.7  
N/A  
N/A  
0.00  
0.5  
2
3
4
RΘJA  
PsiJT  
PsiJB  
Junction-to-free air  
Junction-to-package top  
Junction-to-board  
5
1.0  
6
2.00  
0.00  
0.5  
7
8
9
1.0  
10  
11  
12  
13  
14  
2.00  
0.00  
0.5  
11.4  
11  
10.7  
10.2  
1.0  
2.00  
(1) m/s = meters per second  
Table 7-3. Thermal Resistance Characteristics (S-PBGA Package) [ZDK]  
NO.  
1
°C/W  
AIR FLOW (m/s)(1)  
RΘJC  
RΘJB  
Junction-to-case  
Junction-to-board  
3.3  
N/A  
N/A  
2
7.92  
(1) m/s = meters per second  
156 Mechanical Data  
Copyright © 2005–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
TMS320DM643  
www.ti.com  
SPRS269DFEBRUARY 2005REVISED OCTOBER 2010  
Table 7-3. Thermal Resistance Characteristics (S-PBGA Package) [ZDK] (continued)  
NO.  
3
°C/W  
AIR FLOW (m/s)(1)  
18.2  
15.3  
13.7  
12.2  
0.37  
0.47  
0.57  
0.7  
0.00  
0.5  
4
RΘJA  
Junction-to-free air  
Junction-to-package top  
Junction-to-board  
5
6
1.0  
2.00  
0.00  
0.5  
7
8
PsiJT  
9
1.0  
10  
11  
12  
13  
14  
2.00  
0.00  
0.5  
11.4  
11  
PsiJB  
10.7  
10.2  
1.0  
2.00  
Table 7-4. Thermal Resistance Characteristics (S-PBGA Package) [ZNZ]  
(1)  
NO.  
1
°C/W  
AIR FLOW (m/s)  
RΘJC  
RΘJB  
Junction-to-case  
Junction-to-board  
3.3  
7.46  
17.4  
14.0  
12.3  
10.8  
0.37  
0.47  
0.57  
0.7  
N/A  
N/A  
0.00  
0.5  
2
3
4
RΘJA  
PsiJT  
PsiJB  
Junction-to-free air  
Junction-to-package top  
Junction-to-board  
5
1.0  
6
2.00  
0.00  
0.5  
7
8
9
1.0  
10  
11  
12  
13  
14  
2.00  
0.00  
0.5  
11.4  
11  
10.7  
10.2  
1.0  
2.00  
(1) m/s = meters per second  
7.2 Packaging Information  
The following packaging information and addendum reflect the most current released data available for the  
designated device(s). This data is subject to change without notice and without revision of this document.  
Copyright © 2005–2010, Texas Instruments Incorporated  
Mechanical Data  
157  
Submit Documentation Feedback  
Product Folder Link(s): TMS320DM643  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Aug-2013  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
TMS320DM643AGDK5  
ACTIVE  
FC/CSP  
FCBGA  
FCBGA  
GDK  
548  
548  
548  
60  
TBD  
SNPB  
Level-4-220C-72 HR  
Level-4-220C-72 HR  
Level-4-260C-72HR  
TMS320DM643A  
@ 2003 TI  
GDK  
500  
TMS320DM643AGNZ5  
TMS320DM643AZDK5  
ACTIVE  
ACTIVE  
GNZ  
ZDK  
40  
60  
TBD  
SNPB  
TMS320DM643A  
@ 2003 TI  
GNZ  
500  
Pb-Free (RoHS  
Exempt)  
SNAGCU  
TMS320DM643A  
@ 2003 TI  
ZDK  
500  
TMS320DM643AZDK6  
TMS320DM643AZNZ6  
ACTIVE  
ACTIVE  
FCBGA  
FCBGA  
ZDK  
ZNZ  
548  
548  
60  
40  
Pb-Free (RoHS  
Exempt)  
SNAGCU  
SNAGCU  
Level-4-260C-72HR  
Level-4-260C-72HR  
TMS320DM643A  
@ 2003 TI  
ZDK  
Pb-Free (RoHS  
Exempt)  
TMS320DM643A  
@ 2003 TI  
ZNZ  
TMS320DM643GDK600  
TMS320DM643ZNZ500  
OBSOLETE  
OBSOLETE  
FC/CSP  
FCBGA  
GDK  
ZNZ  
548  
548  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Aug-2013  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MPBG301 – JULY 2002  
GDK (S–PBGA–N548)  
PLASTIC BALL GRID ARRAY  
23,10  
22,90  
SQ  
SQ  
20,00 TYP  
21,10  
20,90  
0,80  
0,40  
AF  
AD  
AB  
Y
AE  
AC  
AA  
W
U
V
0,80  
T
R
P
N
M
K
L
0,40  
A1 Corner  
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19 21 23 25  
2
4
6
8
10 12 14 16 18 20 22 24 26  
Bottom View  
2,80 MAX  
0,50 NOM  
Seating Plane  
0,12  
0,55  
0,45  
0,10  
0,45  
0,35  
4203481-3/B 07/02  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Flip chip application only.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃꢄ ꢅꢆꢂ ꢄꢇ ꢈ ꢄꢉꢄ  
MPBG314A – OCTOBER 2002 – REVISED DECEMBER 2002  
GNZ (S–PBGA–N548)  
PLASTIC BALL GRID ARRAY  
27,20  
26,80  
25,00 TYP  
1,00  
SQ  
SQ  
25,20  
24,80  
0,50  
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
1,00  
U
T
R
P
N
M
L
0,50  
K
J
H
A1 Corner  
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19 21 23 25  
10 12 14 16 18 20 22 24 26  
2
4
6
8
Bottom View  
2,80 MAX  
0,50 NOM  
Seating Plane  
0,15  
0,70  
0,50  
0,10  
0,60  
0,40  
4202595-5\E 12/02  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Flip chip application only.  
D. Substrate color may vary.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

TMS320DM643AZDK6

Video/Imaging Fixed-Point Digital Signal Processo
TI

TMS320DM643AZNZ6

Video/Imaging Fixed-Point Digital Signal Processor
TI

TMS320DM643GDK500

Video/Imaging Fixed-Point Digital Signal Processo
TI

TMS320DM643GDK600

Video/Imaging Fixed-Point Digital Signal Processo
TI

TMS320DM643GNZ500

Video/Imaging Fixed-Point Digital Signal Processo
TI

TMS320DM643GNZ600

Video/Imaging Fixed-Point Digital Signal Processo
TI

TMS320DM643ZDK500

Video/Imaging Fixed-Point Digital Signal Processo
TI

TMS320DM643ZDK600

Video/Imaging Fixed-Point Digital Signal Processo
TI

TMS320DM643ZNZ500

Video/Imaging Fixed-Point Digital Signal Processo
TI

TMS320DM643ZNZ600

Video/Imaging Fixed-Point Digital Signal Processo
TI

TMS320DM643_07

Video/Imaging Fixed-Point Digital Signal Processor
TI

TMS320DM6441

Digital Media System-on-Chip
TI