TMS320F280025 [TI]

具有 100MHz 频率、FPU、TMU、128kB 闪存的 C2000™ 32 位 MCU;
TMS320F280025
型号: TMS320F280025
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 100MHz 频率、FPU、TMU、128kB 闪存的 C2000™ 32 位 MCU

闪存
文件: 总208页 (文件大小:6661K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
TMS320F28002x 实时微控制器  
• 模拟系统  
1 特性  
– 两3.45MSPS 12 位模数转换(ADC)  
TMS320C28x 32 DSP 内核100MHz )  
IEEE 754 浮点单(FPU)  
• 多16 个外部通道  
• 每ADC 具有四个集成后处理(PPB)  
– 四个12 位参考  
• 支持快速整数除(FINTDIV)  
– 三角法数学单(TMU)  
数模转换(DAC) 的窗口比较(CMPSS)  
• 数字干扰滤波器  
• 增强型控制外设  
• 支持非线性比例积分微(NLPID) 控制  
CRC 引擎和指(VCRC)  
– 十个硬件断点ERAD)  
• 片上存储器  
14 ePWM 通道包含具有高分辨率功能  
150ps 分辨率8 个通道  
• 集成式死区支持  
• 集成硬件跳匣区(TZ)  
– 三个增强型捕(eCAP) 模块  
128KB (64KW) 闪存ECC 保护)  
24KB (12KW) RAMECC 保护或奇偶校验保  
)  
– 双区域安全  
• 时钟和系统控制  
• 在三eCAP 模块中有一个提供高分辨率  
(HRCAP)  
– 两个内部零引10MHz 振荡器  
– 片上晶体振荡器或外部时钟输入  
– 窗口化看门狗计时器模块  
– 丢失时钟检测电路  
– 两个支CW/CCW 运行模式的增强型正交编码  
器脉(eQEP) 模块  
• 可配置逻辑(CLB)  
– 增强现有外设功能  
– 支持位置管理器解决方案  
• 主机接口控制(HIC)  
– 双路时钟比较(DCC)  
3.3V 单电源  
– 内VREG 生成  
– 欠压复(BOR) 电路  
• 系统外设  
– 可从外部主机访问内部存储器  
• 背CRC (BGCRC)  
– 关32 位数据的一个周CRC 运算  
• 诊断特性  
6 通道直接存储器存(DMA) 控制器  
39 个独立可编程多路复用通用输入/(GPIO)  
引脚  
– 在模拟引脚上提16 路数字输入  
– 增强型外设中断扩(ePIE)  
– 支持多个低功耗模(LPM)  
– 嵌入式实时分析和诊(ERAD)  
– 唯一标(UID) 号  
– 存储开机自(MPOST)  
– 硬件内置自(HWBIST)  
• 封装选项:  
80 引脚薄型四方扁平封(LQFP)  
[PN]  
64 LQFP [PM]  
48 LQFP [PT]  
• 温度选项:  
• 通信外设  
– 一个电源管理总线(PMBus) 接口  
– 两个内部集成电(I2C) 端口  
– 一个控制器局域(CAN) 总线端口  
2 个串行外设接(SPI) 端口  
– 一UART 兼容的串行通信接(SCI)  
– 两UART 兼容的本地互连网(LIN) 接口  
– 带一个发送器和一个接收器的快速串行接口  
(FSI)200Mbps)  
S40°C 125°C 结温  
Q在自然通风环境40°C 125°C 的温度  
范围  
通过针对汽车应用AEC Q100 认证)  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SPRSP45  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
• 车身电子装置与照明  
2 应用  
HVAC 压缩机模块  
直流/交流逆变器  
前照灯  
• 电器  
空调室外机  
• 楼宇自动化  
• 交流逆变器和变频驱动器  
交流驱动器控制模块  
交流驱动器位置反馈  
交流驱动器功率级模块  
• 线性电机运输系统  
线性电机功率级  
电梯门自动启闭装置驱动控制  
• 工业机械和机床  
自动分拣设备  
纺织机  
EV 充电基础设施  
• 单轴及多轴伺服驱动器  
伺服驱动器位置反馈  
伺服驱动器功率级模块  
• 速度控BLDC 驱动器  
交流充电站  
直流充电站  
电动汽车充电站电源模块  
无线电动汽车充电站  
• 可再生能源存储  
能量存储电源转换系(PCS)  
• 太阳能  
交流输BLDC 电机驱动  
直流输BLDC 电机驱动器  
• 工业电源  
工业交流/直流转换器  
UPS  
中央逆变器  
微型逆变器  
太阳能电源优化器  
太阳能电弧保护  
快速关断  
电表  
串式逆变器  
UPS  
单相在线UPS  
• 电信和服务器电源  
商用直流/直流  
商用网络和服务PSU  
商用电信整流器  
• 混合动力、电动和动力总成系统  
直流/直流转换器  
逆变器和电机控制  
车载充电(OBC) 和无线充电器  
3 说明  
TMS320F28002x (F28002x) C2000实时微控制器系列中的一个器件该系列可扩展、超低延迟器件旨在提  
高电力电子设备的效率包括但不限于高功率密度、高开关频率并支持使GaN SiC 技术。  
这些应用包括:  
工业电机驱动  
电机控制  
光伏逆变器  
数字电源  
电动车辆与运输  
感应和信号调理  
实时控制子系统基于 TI 32 C28x DSP 内核可针对从片上闪存或 SRAM 运行的浮点或定点代码提供  
100MHz 的信号处理性能。三角函数数学单元 (TMU) VCRC循环冗余校验扩展指令集进一步增强了 C28x  
CPU 的性能从而加快了实时控制系统关键常用算法的速度。  
高性能模拟模块集成在 F28002x 实时微控制器 (MCU) 并与处理单元和 PWM 单元紧密耦合以提供更好的  
实时信号链性能。14 PWM 通道均支持与频率无关的分辨率模式可控制从三相逆变器到高级多级电源拓扑的  
各种功率级。  
通过加入可配置逻辑模块 (CLB)用户可以添加自定义逻辑还可将类似 FPGA 的功能集成到 C2000 实时 MCU  
中。  
各种业界通用通信端口SPISCII2CPMBusLIN CAN不仅支持连接还提供了多个引脚复用选  
可实现出色的信号布局。快速串行接(FSI) 可跨隔离边界实现高200Mbps 的稳健通信。  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
C2000 平台新增了主机接口控制器 (HIC)这是一种高吞吐量接口允许外部主机直接访问 TMS320F28002x 的  
资源。  
是否想详细了解 C2000 MCU 适用于实时控制系统的特性查看《使用 C2000™ 实时微控制器的基本开发指  
南》并访C2000™ 实时控MCU 页面。  
准备好开始了吗TMDSCNCD280025C 评估板并下C2000Ware。  
器件信息  
可配置逻辑(CLB)  
器件型号(1)  
TMS320F280025C  
闪存大小  
2 个逻辑块  
128KB  
TMS320F280025  
TMS320F280023C  
TMS320F280023  
TMS320F280021  
2 个逻辑块  
64KB  
32KB  
(1) 如需更多有关这些器件的信息请参阅器件比较表。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
3.1 功能方框图  
功能方框图展示CPU 系统及关联的外设。  
Boot ROM  
Secure Memories  
shown in Red  
Secure ROM  
C28x CPU  
FPU32  
Bus Legend  
Flash Bank0  
16 Sectors  
64 KW (128 KB)  
FINTDIV  
TMU  
VCRC  
CPU  
DMA  
HIC  
BGCRC  
CPU Timers  
DCC  
DCSM  
ePIE  
ERAD  
M0-M1 RAM  
2 KW (4 KB)  
BGCRC  
LS4-LS7 RAM  
8 KW (16 KB)  
Crystal Oscillator  
INTOSC1, INTOSC2  
PLL  
HIC  
GS0 RAM  
2 KW (4 KB)  
DMA  
6 Channles  
PF1  
PF3  
PF4  
PF2  
PF7  
PF8  
PF9  
Result  
2x 12-Bit ADC  
Data  
14x ePWM Chan.  
(8 Hi-Res Capable) 
4x CMPSS  
1x PMBUS  
2x SPI  
1x CAN  
2x LIN  
1x SCI  
2x I2C  
39x GPIO  
Input XBAR  
Output XBAR  
ePWM XBAR  
CLB XBAR  
3x eCAP 
(1 HRCAP Capable) 
2x CLB  
1x FSI RX  
1x FSI TX  
NMI  
Watchdog  
2x eQEP  
(CW/CCW Support)  
Windowed  
Watchdog  
3-1. 功能方框图  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
Table of Contents  
8 Detailed Description....................................................157  
8.1 Overview.................................................................157  
8.2 Functional Block Diagram.......................................158  
8.3 Memory...................................................................159  
8.4 Identification............................................................165  
8.5 Bus Architecture Peripheral Connectivity...........166  
8.6 C28x Processor...................................................... 167  
8.7 Embedded Real-Time Analysis and Diagnostic  
(ERAD)......................................................................169  
8.8 Background CRC-32 (BGCRC).............................. 169  
8.9 Direct Memory Access (DMA).................................170  
8.10 Device Boot Modes...............................................171  
8.11 Dual Code Security Module.................................. 177  
8.12 Watchdog..............................................................178  
8.13 C28x Timers..........................................................179  
8.14 Dual-Clock Comparator (DCC)............................. 179  
8.15 Configurable Logic Block (CLB)............................181  
9 Applications, Implementation, and Layout............... 183  
9.1 TI 参考设计............................................................. 183  
10 Device and Documentation Support........................184  
10.1 Getting Started and Next Steps............................ 184  
10.2 Device and Development Support Tool  
Nomenclature............................................................184  
10.3 Markings............................................................... 185  
10.4 Tools and Software............................................... 187  
10.5 Documentation Support........................................ 188  
10.6 支持资源................................................................189  
10.7 Trademarks...........................................................190  
10.8 静电放电警告........................................................ 190  
10.9 术语表................................................................... 190  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 2  
3 说明................................................................................... 2  
3.1 功能方框图..................................................................4  
4 Revision History.............................................................. 6  
5 Device Comparison.........................................................9  
5.1 Related Products...................................................... 10  
6 Terminal Configuration and Functions........................11  
6.1 Pin Diagrams.............................................................11  
6.2 Pin Attributes.............................................................14  
6.3 Signal Descriptions................................................... 29  
6.4 Pin Multiplexing.........................................................42  
6.5 Pins With Internal Pullup and Pulldown.................... 49  
6.6 Connections for Unused Pins................................... 50  
7 Specifications................................................................ 52  
7.1 Absolute Maximum Ratings ..................................... 52  
7.2 ESD Ratings Commercial.....................................52  
7.3 ESD Ratings Automotive......................................53  
7.4 Recommended Operating Conditions ......................53  
Supply Voltages.............................................................. 54  
7.5 Power Consumption Summary................................. 55  
7.6 Electrical Characteristics ..........................................59  
7.7 Thermal Resistance Characteristics for PN  
Package...................................................................... 60  
7.8 Thermal Resistance Characteristics for PM  
Package...................................................................... 60  
7.9 Thermal Resistance Characteristics for PT  
Package...................................................................... 61  
7.10 Thermal Design Considerations..............................61  
7.11 System.................................................................... 62  
7.12 Analog Peripherals..................................................90  
7.13 Control Peripherals............................................... 110  
7.14 Communications Peripherals................................125  
Information.................................................................. 191  
11.1 Packaging Information.......................................... 191  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
4 Revision History  
Changes from October 4, 2020 to December 31, 2020 (from Revision A (October 2020) to  
Revision B (December 2020))  
Page  
通篇添加TMS320F280025-Q1TMS320F280025C-Q1TMS320F280023-Q1 TMS320F280021-Q1  
............................................................................................................................................................................1  
5-1器件比较):添加TMS320F280025-Q1TMS320F280025C-Q1TMS320F280023-Q1 和  
TMS320F280021-Q1 更新了表...........................................................................................................................1  
6-1 (Pin Attributes): Updated muxed signal names of A7. Updated DESCRIPTION of VDD: Changed  
recommended total capacitance from 22 µF to 10 µF.......................................................................................11  
Removed Digital Signals by GPIO section (Section 6.3.2 in SPRSP45A)........................................................29  
6.3.2 (Digital Signals): Added section.......................................................................................................... 29  
6-4 (Power and Ground): Updated DESCRIPTION of VDD: Changed recommended total capacitance from  
22 µF to 10 µF...................................................................................................................................................29  
7.2 (ESD Ratings Commercial): Updated device numbers..................................................................... 52  
7.3 (ESD Ratings Automotive): Updated device numbers. Added data for 64-pin PM package.............53  
7.5.1 (System Current Consumption): Updated table.................................................................................. 55  
7.11.1.1 (Internal 1.2-V LDO Voltage Regulator (VREG)): Updated Configuration 1...................................62  
7.11.3.5.1 (INTOSC Characteristics): Updated table................................................................................... 73  
7-5 (Flash Parameters): Changed "Nwec Write/Erase Cycles" to "Nwec Write/Erase Cycles per sector".  
Added "Nwec Write/Erase Cycles for entire Flash (combined all sectors)"........................................................74  
7.14.8 (Host Interface Controller (HIC)): Updated "The HIC module allows ..." paragraph....................... 153  
7-70 (HIC Block Diagram): Removed "Bus Master Interface" label........................................................... 153  
10-1 (Device Nomenclature): Updated figure.............................................................................................184  
10.4 (Tools and Software): Added LAUNCHXL-F280025C to Development Tools section..................... 187  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
Changes from March 17, 2020 to October 3, 2020 (from Revision * (March 2020) to Revision A  
(October 2020))  
Page  
通篇更新了整个文档中的表格、图和交叉参考的编号格式.............................................................................. 1  
通篇此文档当前状态是“量产数据”...............................................................................................................1  
通篇删除TMS320F280024TMS320F280024C TMS320F280022......................................................1  
通篇删除64 QFP-Q 数据.............................................................................................................................1  
1特性):更新了串行通信接(SCI) 特性更新了本地互连网(LIN) 特性................................................1  
5-1器件比较):更新了表.......................................................................................................................... 1  
2 应用):更新部分。................................................................................................................................ 2  
3说明):更新部分。................................................................................................................................. 2  
• 器件信息更新表格。........................................................................................................................................2  
3-1功能方框图):更新了图.......................................................................................................................4  
6-1 (Pin Attributes): Updated table...............................................................................................................11  
6-2 (64-Pin PM Low-Profile Quad Flatpack (Top View)): Updated figure..................................................... 11  
Removed "64-Pin PM Low-Profile Quad Flatpack Q-Temperature (Top View)" figure................................. 11  
Removed Digital Signals section (Section 4.3.2 in SPRSP45).........................................................................29  
Digital Signals by GPIO: Added section........................................................................................................... 29  
6-4 (Power and Ground): Updated DESCRIPTION of VDD and VDDIO..................................................... 29  
6.4.1.1 (GPIO Muxed Pins Table): Added Note about AIO pins...................................................................43  
6-6 (GPIO Muxed Pins): Updated table....................................................................................................... 43  
6.4.4 (GPIO Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR): Changed section title  
from "GPIO Output X-BAR and ePWM X-BAR" to "GPIO Output X-BAR, CLB X-BAR, CLB Output X-BAR,  
and ePWM X-BAR". Updated section...............................................................................................................47  
6-5 (Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR Sources): Replaced "Output X-  
BAR and ePWM X-BAR Sources" figure with "Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM  
X-BAR Sources" figure..................................................................................................................................... 47  
6-9 (Connections for Unused Pins): Added "Analog input pins" in ANALOG section.................................. 50  
7 (Specifications): Updated section and tables............................................................................................52  
7.1 (Absolute Maximum Ratings): Updated table.........................................................................................52  
7.4 (Recommended Operating Conditions): Updated SRSUPPLY values and unit........................................ 52  
7.6 (Electrical Characteristics): Updated ROH and ROL values.....................................................................52  
7.3 (ESD Ratings Automotive): Removed F280024, F280024C, and F280022 data..............................53  
7.5.3 (Current Consumption Graphs): Added section..................................................................................56  
7.5.4 (Reducing Current Consumption): Updated section........................................................................... 58  
7.5.4.1 (Typical Current Reduction per Disabled Peripheral): Updated table.............................................. 58  
7.7 (Thermal Resistance Characteristics for PN Package): Added section.................................................60  
7.8 (Thermal Resistance Characteristics for PM Package): Added section.................................................60  
7.9 (Thermal Resistance Characteristics for PT Package): Added section................................................. 61  
7.11.2.2.1 (Reset (XRSn) Timing Requirements): Updated tw(RSL2).............................................................64  
7.11.2.2.2 (Reset (XRSn) Switching Characteristics): Added tboot-flash........................................................ 64  
7-8 (Power-on Reset): Updated figure......................................................................................................... 64  
7.11.3.2.1.6 (Internal Clock Frequencies): Updated MAX f(VCOCLK).............................................................69  
7.11.3.5 (Internal Oscillators): Updated section........................................................................................... 73  
7.11.3.5.1 (INTOSC Characteristics): Updated fINTOSC MIN values and MAX values..................................73  
7.11.4 (Flash Parameters): Updated section................................................................................................74  
7-4 (Minimum Required Flash Wait States with Different Clock Sources and Frequencies): Updated table  
and footnotes....................................................................................................................................................74  
7-5 (Flash Parameters): Added "The on-chip flash memory is in an erased state ..." footnote................... 74  
7.11.5 (Emulation/JTAG): Updated link of Hardware Breakpoints and Watchpoints for C28x in CCS.........76  
7-31 (Analog Group Connections): Added figure.........................................................................................90  
7-35 (ADC Timings): Updated tINT..............................................................................................................102  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.14.2.1.1 (I2C Timing Requirements): Updated table...............................................................................129  
7.14.2.1.2 (I2C Switching Characteristics): Updated table.........................................................................129  
7-54 (I2C Timing Diagram): Added figure.................................................................................................. 129  
7-56 (SCI Block Diagram): Updated figure.................................................................................................134  
7-59 (SPI Master Mode External Timing (Clock Phase = 1)): Updated parameter 24............................... 138  
7.14.5.2.1 (SPI Slave Mode Timing Requirements): Updated MIN value of tsu(STE)S................................ 142  
7.14.8 (Host Interface Controller (HIC)): Updated list of features.............................................................. 153  
7-70 (HIC Block Diagram): Updated figure................................................................................................ 153  
7.14.8.1.1 (HIC Timing Requirements): Updated table.............................................................................. 154  
7.14.8.1.2 (HIC Switching Characteristics): Updated table........................................................................154  
7-71 (Read/Write Operation With nOE and nWE Pins): Added figure....................................................... 155  
7-72 (Read/Write Operation With RnW Pin): Added figure........................................................................ 155  
8-1 (Functional Block Diagram): Added "Secure Memories shown in Red" legend box............................158  
8-2 (Addresses of Flash Sectors): Updated table...................................................................................... 160  
8-4 (Device Identification Registers): Removed PARTIDH for TMS320F280024, TMS320F280024C, and  
TMS320F280022............................................................................................................................................165  
8-4: Added REVID for Revision A silicon................................................................................................... 165  
8-4: Updated ADDRESS of UID_UNIQUE.................................................................................................165  
8.10 (Device Boot Modes): Updated section..............................................................................................171  
8.10.1 (Device Boot Configurations): Added Note about CAN boot mode turning on the XTAL............... 171  
8-3 (Windowed Watchdog): Removed SCSR.WDOVERRIDE...................................................................178  
9.1TI 参考设计):更新了此部分........................................................................................................... 183  
Removed Related Links section (Section 10.5 in SPRSP45).........................................................................184  
10.1 (Getting Started and Next Steps): Added section.............................................................................. 184  
10.2 (Device and Development Support Tool Nomenclature): Updated section........................................184  
10-1 (Device Nomenclature): Removed 280024, 280024C, and 280022 from DEVICE............................184  
10-2 (Package Symbolization for PM and PN Packages): Updated figure................................................ 185  
10-3 (Package Symbolization for PT Package): Updated figure................................................................185  
10-1 (Revision Identification): Added data for Revision A silicon...............................................................185  
10.4 (Tools and Software): Updated section.............................................................................................. 187  
10.5 (Documentation Support): Updated section.......................................................................................188  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
5 Device Comparison  
5-1. Device Comparison  
F280025  
F280025-Q1  
F280025C  
F280023  
F280023-Q1  
F280023C  
F280021  
F280021-Q1  
FEATURE(1)  
F280025C-Q1  
PROCESSOR AND ACCELERATORS  
Frequency (MHz)  
100  
FPU32  
Yes (with new instructions for Fast Integer Division)  
VCRC  
Yes  
C28x  
Yes (with new instructions supporting NLPID)  
TMU Type 1  
Fast Integer Division  
Yes  
Yes  
DMA Type 0  
MEMORY  
Flash  
128KB (64KW)  
64KB (32KW)  
20KB (10KW)  
4KB (2KW)  
24KB (12KW)  
Yes  
32KB (16KW)  
Dedicated and Local Shared RAM  
Global Shared RAM  
RAM  
TOTAL RAM  
Code security for on-chip flash and RAM  
SYSTEM  
Configurable Logic Block (CLB)(2)  
32-bit CPU timers  
(F280025C-2 tiles) (F280023C-2 tiles)  
-
3
1
Watchdog-timer  
Nonmaskable Interrupt Watchdog (NMIWD) timers  
Crystal oscillator/External clock input  
0-pin internal oscillator  
1
1
2
80-pin PN  
39  
26  
16  
64-pin PM  
48-pin PT  
GPIO pins  
4 (When cJTAG is used, TDI and TDO can be GPIO;  
When INTOSC is used as clock source, X1 and X2 can be  
GPIO)  
Additional GPIO  
80-pin PN  
64-pin PM  
48-pin PT  
16  
16  
14  
5
AIO inputs  
External interrupts  
ANALOG PERIPHERALS  
Number of ADCs  
MSPS  
Conversion-time (ns)(3)  
2
3.45  
290  
16  
16  
14  
1
ADC 12-bit  
80-pin PN  
ADC channels (single-ended)  
Temperature sensor  
64-pin PM  
48-pin PT  
CMPSS (each has two comparators and two internal DACs)  
4
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
5-1. Device Comparison (continued)  
F280025  
F280025-Q1  
F280025C  
F280023  
F280023-Q1  
F280023C  
F280021  
F280021-Q1  
FEATURE(1)  
F280025C-Q1  
CONTROL PERIPHERALS(4)  
3 (1 with HRCAP capability)  
eCAP/HRCAP modules Type 1  
14 (8 with HRPWM capability)  
2
ePWM/HRPWM channels Type 4  
eQEP modules Type 2  
COMMUNICATION PERIPHERALS(4)  
1
CAN Type 0  
2
I2C Type 1  
1
SCI Type 0 (UART-Compatible)  
SPI Type 2  
2
2
LIN Type 1 (UART-Compatible)  
PMBus Type 0  
1
1 (1 RX and 1 TX)  
FSI Type 1  
PACKAGE, TEMPERATURE, AND QUALIFICATION OPTIONS  
80-pin PN  
F280025  
F280025C  
F280023  
F280023C  
64-pin PM  
S: 40°C to 125°C (TJ)  
Q: 40°C to 125°C (TA)(5)  
48-pin PT  
80-pin PN  
F280021  
F280025-Q1  
F280025C-Q1  
64-pin PM  
F280023-Q1  
48-pin PT  
F280021-Q1  
(1) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor  
differences between devices that do not affect the basic functionality of the module.  
(2) C devices include additional Motor Control libraries in ROM. Contact TI for more information.  
(3) Time between start of sample-and-hold window to start of sample-and-hold window of the next conversion.  
(4) For devices that are available in more than one package, the peripheral count listed in the smaller package is reduced because the  
smaller package has less device pins available. The number of peripherals internally present on the device is not reduced co  
(5) The letter Q refers to AEC Q100 qualification for automotive applications.  
5.1 Related Products  
TMS320F2803x Real-Time Microcontrollers  
The F2803x series increases the pin-count and memory size options. The F2803x series also introduces the  
parallel control law accelerator (CLA) option.  
TMS320F2807x Real-Time Microcontrollers  
The F2807x series offers the most performance, largest pin counts, flash memory sizes, and peripheral options.  
The F2807x series includes the latest generation of accelerators, ePWM peripherals, and analog technology.  
TMS320F28004x Real-Time Microcontrollers  
The F28004x series is a reduced version of the F2807x series with the latest generational enhancements.  
TMS320F2838x Real-Time Microcontrollers  
The F2838x series offers more performance, larger pin counts, flash memory sizes, peripheral and wide variety  
of connectivity options. The F2838x series includes the latest generation of accelerators, ePWM peripherals, and  
analog technology. Configurable logic block (CLB) versions are available.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
6 Terminal Configuration and Functions  
6.1 Pin Diagrams  
6-1 shows the pin assignments on the 80-pin PN low-profile quad flatpack (Q temperature). 6-2 shows the  
pin assignments on the 64-pin PM low-profile quad flatpack. 6-3 shows the pin assignments on the 48-Pin PT  
low-profile quad flatpack.  
GPIO2  
GPIO1  
GPIO0  
GPIO40  
GPIO23  
GPIO41  
GPIO22  
GPIO7  
GPIO44  
VSS  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
GPIO17  
GPIO16  
GPIO33  
GPIO11  
GPIO12  
GPIO13  
FLT1  
FLT2  
VDDIO  
VDD  
VDD  
VSS  
VDDIO  
GPIO45  
GPIO5  
GPIO9  
GPIO10  
GPIO34  
GPIO15  
GPIO14  
GPIO6  
A10,C10  
A9,C8  
A4,C14  
VDDA  
VSSA  
A8,C11  
A7,C3  
A12,C1  
VREFLO  
Not to scale  
A. Only the GPIO function is shown on GPIO terminals. See 6-1 for the complete, muxed signal name.  
6-1. 80-Pin PN Low-Profile Quad Flatpack (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
GPIO40  
GPIO23  
GPIO41  
GPIO22  
GPIO7  
VSS  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
GPIO33  
GPIO11  
GPIO12  
GPIO13  
VDDIO  
VDD  
VSS  
A10,C10  
A9,C8  
A4,C14  
VDDA  
VDD  
VDDIO  
GPIO5  
GPIO9  
GPIO10  
GPIO6  
VSSA  
A8,C11  
A7,C3  
A12,C1  
VREFLO  
Not to scale  
A. Only the GPIO function is shown on GPIO terminals. See 6-1 for the complete, muxed signal name.  
6-2. 64-Pin PM Low-Profile Quad Flatpack (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
VSS  
GPIO4  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
GPIO7  
VSS  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GPIO12  
GPIO13  
VSS  
A10,C10  
A9,C8  
A4,C14  
VDDA  
VSSA  
VDD  
A8,C11  
A7,C3  
VDDIO  
GPIO5  
GPIO6  
A12,C1  
VREFLO  
Not to scale  
A. Only the GPIO function is shown on GPIO terminals. See 6-1 for the complete, muxed signal name.  
6-3. 48-Pin PT Low-Profile Quad Flatpack (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
6.2 Pin Attributes  
6-1. Pin Attributes  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
80 QFP 64 QFP 48 QFP  
ANALOG  
DESCRIPTION  
A0  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ADC-A Input 0  
ADC-C Input 15  
C15  
CMP3_HP2  
CMP3_LP2  
AIO231  
CMPSS-3 High Comparator Positive Input 2  
CMPSS-3 Low Comparator Positive Input 2  
Analog Pin Used For Digital Input 231  
HIC Base Address Range Select 1  
Analog Input  
19  
18  
15  
14  
11  
10  
0, 4, 8, 12  
15  
HIC_BASESEL1  
A1  
CMP1_HP4  
CMP1_LP4  
AIO232  
CMPSS-1 High Comparator Positive Input 4  
CMPSS-1 Low Comparator Positive Input 4  
Analog Pin Used For Digital Input 232  
HIC Base Address Range Select 0  
ADC-A Input 10  
0, 4, 8, 12  
15  
HIC_BASESEL0  
A10  
C10  
ADC-C Input 10  
CMP2_HP3  
CMP2_HN0  
CMP2_LP3  
CMP2_LN0  
AIO230  
CMPSS-2 High Comparator Positive Input 3  
CMPSS-2 High Comparator Negative Input 0  
CMPSS-2 Low Comparator Positive Input 3  
CMPSS-2 Low Comparator Negative Input 0  
Analog Pin Used For Digital Input 230  
HIC Base Address Range Select 2  
ADC-A Input 11  
29  
25  
21  
0, 4, 8, 12  
15  
HIC_BASESEL2  
A11  
C0  
ADC-C Input 0  
CMP1_HP1  
CMP1_HN1  
CMP1_LP1  
CMP1_LN1  
AIO237  
CMPSS-1 High Comparator Positive Input 1  
CMPSS-1 High Comparator Negative Input 1  
CMPSS-1 Low Comparator Positive Input 1  
CMPSS-1 Low Comparator Negative Input 1  
Analog Pin Used For Digital Input 237  
HIC Address 6  
16  
12  
8
0, 4, 8, 12  
15  
HIC_A6  
A12  
ADC-A Input 12  
C1  
ADC-C Input 1  
CMP2_HP1  
CMP4_HP2  
CMP2_HN1  
CMP2_LP1  
CMP4_LP2  
CMP2_LN1  
AIO238  
CMPSS-2 High Comparator Positive Input 1  
CMPSS-4 High Comparator Positive Input 2  
CMPSS-2 High Comparator Negative Input 1  
CMPSS-2 Low Comparator Positive Input 1  
CMPSS-4 Low Comparator Positive Input 2  
CMPSS-2 Low Comparator Negative Input 1  
Analog Pin Used For Digital Input 238  
HIC Chip Select  
22  
18  
14  
0, 4, 8, 12  
15  
HIC_NCS  
A14  
ADC-A Input 14  
C4  
ADC-C Input 4  
CMP3_HP4  
CMP3_LP4  
AIO239  
CMPSS-3 High Comparator Positive Input 4  
CMPSS-3 Low Comparator Positive Input 4  
Analog Pin Used For Digital Input 239  
HIC Address 5  
15  
11  
0, 4, 8, 12  
15  
HIC_A5  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
A15  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ADC-A Input 15  
ADC-C Input 7  
C7  
CMP1_HP3  
CMP1_HN0  
CMP1_LP3  
CMP1_LN0  
AIO233  
HIC_A4  
A2  
CMPSS-1 High Comparator Positive Input 3  
CMPSS-1 High Comparator Negative Input 0  
CMPSS-1 Low Comparator Positive Input 3  
CMPSS-1 Low Comparator Negative Input 0  
Analog Pin Used For Digital Input 233  
HIC Address 4  
14  
10  
7
0, 4, 8, 12  
15  
ADC-A Input 2  
C9  
ADC-C Input 9  
CMP1_HP0  
CMP1_LP0  
AIO224  
HIC_A3  
A3  
CMPSS-1 High Comparator Positive Input 0  
CMPSS-1 Low Comparator Positive Input 0  
Analog Pin Used For Digital Input 224  
HIC Address 3  
13  
9
6
0, 4, 8, 12  
15  
ADC-A Input 3  
C5  
ADC-C Input 5  
Optional external reference voltage for on-chip  
CMPSS DACs. There is an internal capacitor to  
VSSA on this pin whether used for ADC input or  
CMPSS DAC reference which cannot be disabled. If  
this pin is being used as a reference for the CMPSS  
DACs, place at least a 1-µF capacitor on this pin.  
VDAC  
I
12  
8
5
CMP3_HP3  
CMP3_HN0  
CMP3_LP3  
CMP3_LN0  
AIO242  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
CMPSS-3 High Comparator Positive Input 3  
CMPSS-3 High Comparator Negative Input 0  
CMPSS-3 Low Comparator Positive Input 3  
CMPSS-3 Low Comparator Negative Input 0  
Analog Pin Used For Digital Input 242  
HIC Address 2  
0, 4, 8, 12  
15  
HIC_A2  
A4  
ADC-A Input 4  
C14  
ADC-C Input 14  
CMP2_HP0  
CMP4_HP3  
CMP4_HN0  
CMP2_LP0  
CMP4_LP3  
CMP4_LN0  
AIO225  
CMPSS-2 High Comparator Positive Input 0  
CMPSS-4 High Comparator Positive Input 3  
CMPSS-4 High Comparator Negative Input 0  
CMPSS-2 Low Comparator Positive Input 0  
CMPSS-4 Low Comparator Positive Input 3  
CMPSS-4 Low Comparator Negative Input 0  
Analog Pin Used For Digital Input 225  
HIC Data Write Enable  
27  
23  
19  
0, 4, 8, 12  
15  
HIC_NWE  
A5  
ADC-A Input 5  
C2  
ADC-C Input 2  
CMP3_HP1  
CMP3_HN1  
CMP3_LP1  
CMP3_LN1  
AIO244  
CMPSS-3 High Comparator Positive Input 1  
CMPSS-3 High Comparator Negative Input 1  
CMPSS-3 Low Comparator Positive Input 1  
CMPSS-3 Low Comparator Negative Input 1  
Analog Pin Used For Digital Input 244  
HIC Address 7  
17  
13  
9
0, 4, 8, 12  
15  
HIC_A7  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
A6  
I
I
I
I
I
I
I
I
I
I
I
I
O
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Analog Input  
CMP1_HP2  
CMP1_LP2  
AIO228  
CMPSS-1 High Comparator Positive Input 2  
CMPSS-1 Low Comparator Positive Input 2  
Analog Pin Used For Digital Input 228  
HIC Address 0  
10  
6
4
0, 4, 8, 12  
15  
HIC_A0  
A7  
ADC-A Input 7  
C3  
ADC-C Input 3  
CMP4_HP1  
CMP4_HN1  
CMP4_LP1  
CMP4_LN1  
AIO245  
CMPSS-4 High Comparator Positive Input 1  
CMPSS-4 High Comparator Negative Input 1  
CMPSS-4 Low Comparator Positive Input 1  
CMPSS-4 Low Comparator Negative Input 1  
Analog Pin Used For Digital Input 245  
HIC Output Enable  
23  
19  
15  
0, 4, 8, 12  
15  
HIC_NOE  
A8  
ADC-A Input 8  
C11  
ADC-C Input 11  
CMP2_HP4  
CMP4_HP4  
CMP2_LP4  
CMP4_LP4  
AIO241  
CMPSS-2 High Comparator Positive Input 4  
CMPSS-4 High Comparator Positive Input 4  
CMPSS-2 Low Comparator Positive Input 4  
CMPSS-4 Low Comparator Positive Input 4  
Analog Pin Used For Digital Input 241  
HIC Byte Enable 1  
24  
20  
16  
0, 4, 8, 12  
15  
HIC_NBE1  
A9  
ADC-A Input 9  
C8  
ADC-C Input 8  
CMP2_HP2  
CMP4_HP0  
CMP2_LP2  
CMP4_LP0  
AIO227  
CMPSS-2 High Comparator Positive Input 2  
CMPSS-4 High Comparator Positive Input 0  
CMPSS-2 Low Comparator Positive Input 2  
CMPSS-4 Low Comparator Positive Input 0  
Analog Pin Used For Digital Input 227  
HIC Byte Enable 0  
28  
24  
20  
0, 4, 8, 12  
15  
HIC_NBE0  
C6  
Analog Input  
CMP3_HP0  
CMP3_LP0  
AIO226  
CMPSS-3 High Comparator Positive Input 0  
CMPSS-3 Low Comparator Positive Input 0  
Analog Pin Used For Digital Input 226  
HIC Address 1  
11  
7
4
0, 4, 8, 12  
15  
HIC_A1  
ADC- High Reference. In external reference mode,  
externally drive the high reference voltage onto this  
pin. In internal reference mode, a voltage is driven  
onto this pin by the device. In either mode, place at  
least a 2.2-µF capacitor on this pin. This capacitor  
should be placed as close to the device as possible  
between the VREFHI and VREFLO pins.  
VREFHI  
VREFLO  
20  
21  
16  
17  
12  
13  
I
I
ADC- Low Reference  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
80 QFP 64 QFP 48 QFP  
GPIO  
DESCRIPTION  
GPIO0  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 0  
ePWM-1 Output A  
EPWM1_A  
1
I2CA_SDA  
6
I/OD I2C-A Open-Drain Bidirectional Data  
SPIA_STE  
7
63  
52  
42  
I/O  
I
SPI-A Slave Transmit Enable (STE)  
FSIRX-A Input Clock  
FSIRXA_CLK  
CLB_OUTPUTXBAR8  
HIC_BASESEL1  
GPIO1  
9
11  
O
I
CLB Output X-BAR Output 8  
HIC Base Address Range Select 1  
General-Purpose Input Output 1  
ePWM-1 Output B  
15  
0, 4, 8, 12  
I/O  
O
EPWM1_B  
1
6
I2CA_SCL  
I/OD I2C-A Open-Drain Bidirectional Clock  
SPIA_SOMI  
CLB_OUTPUTXBAR7  
HIC_A2  
7
I/O  
O
I
SPI-A Slave Out, Master In (SOMI)  
CLB Output X-BAR Output 7  
HIC Address 2  
62  
51  
41  
11  
13  
FSITX-A Time Division Multiplexed Additional Data  
Input  
FSITXA_TDM_D1  
14  
I
HIC_D10  
15  
I/O  
I/O  
O
HIC Data 10  
GPIO2  
0, 4, 8, 12  
General-Purpose Input Output 2  
ePWM-2 Output A  
EPWM2_A  
OUTPUTXBAR1  
PMBUSA_SDA  
SPIA_SIMO  
SCIA_TX  
1
5
O
Output X-BAR Output 1  
6
I/OD PMBus-A Open-Drain Bidirectional Data  
7
I/O  
O
I
SPI-A Slave In, Master Out (SIMO)  
SCI-A Transmit Data  
9
61  
50  
40  
FSIRXA_D1  
I2CB_SDA  
HIC_A1  
10  
FSIRX-A Data Input 1  
11  
I/OD I2C-B Open-Drain Bidirectional Data  
13  
I
HIC Address 1  
CANA_TX  
HIC_D9  
14  
O
CAN-A Transmit  
15  
I/O  
I/O  
O
HIC Data 9  
GPIO3  
0, 4, 8, 12  
General-Purpose Input Output 3  
ePWM-2 Output B  
Output X-BAR Output 2  
EPWM2_B  
OUTPUTXBAR2  
PMBUSA_SCL  
SPIA_CLK  
SCIA_RX  
1
2, 5  
6
O
I/OD PMBus-A Open-Drain Bidirectional Clock  
7
I/O  
SPI-A Clock  
9
60  
49  
39  
I
I
SCI-A Receive Data  
FSIRX-A Data Input 0  
FSIRXA_D0  
I2CB_SCL  
HIC_NOE  
CANA_RX  
HIC_D4  
10  
11  
13  
14  
15  
I/OD I2C-B Open-Drain Bidirectional Clock  
O
I
HIC Output Enable  
CAN-A Receive  
HIC Data 4  
I/O  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
GPIO4  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
0, 4, 8, 12  
I/O  
O
O
O
I/O  
I/O  
I
General-Purpose Input Output 4  
ePWM-3 Output A  
EPWM3_A  
1
OUTPUTXBAR3  
CANA_TX  
5
Output X-BAR Output 3  
CAN-A Transmit  
6
SPIB_CLK  
7
SPI-B Clock  
59  
48  
38  
EQEP2_STROBE  
FSIRXA_CLK  
CLB_OUTPUTXBAR6  
HIC_BASESEL2  
HIC_NWE  
9
eQEP-2 Strobe  
10  
FSIRX-A Input Clock  
CLB Output X-BAR Output 6  
HIC Base Address Range Select 2  
HIC Data Write Enable  
General-Purpose Input Output 5  
ePWM-3 Output B  
11  
O
I
13  
15  
I
GPIO5  
0, 4, 8, 12  
I/O  
O
O
I
EPWM3_B  
1
OUTPUTXBAR3  
CANA_RX  
3
Output X-BAR Output 3  
CAN-A Receive  
6
SPIA_STE  
7
I/O  
O
O
I
SPI-A Slave Transmit Enable (STE)  
FSITX-A Data Output 1  
CLB Output X-BAR Output 5  
HIC Address 7  
74  
61  
47  
FSITXA_D1  
CLB_OUTPUTXBAR5  
HIC_A7  
9
10  
13  
HIC_D4  
14  
I/O  
I/O  
I/O  
O
O
O
I
HIC Data 4  
HIC_D15  
15  
HIC Data 15  
GPIO6  
0, 4, 8, 12  
General-Purpose Input Output 6  
ePWM-4 Output A  
EPWM4_A  
1
OUTPUTXBAR4  
SYNCOUT  
2
Output X-BAR Output 4  
External ePWM Synchronization Pulse  
eQEP-1 Input A  
3
EQEP1_A  
5
SPIB_SOMI  
FSITXA_D0  
FSITXA_D1  
HIC_NBE1  
7
80  
64  
48  
I/O  
O
O
I
SPI-B Slave Out, Master In (SOMI)  
FSITX-A Data Output 0  
FSITX-A Data Output 1  
HIC Byte Enable 1  
9
11  
13  
CLB_OUTPUTXBAR8  
HIC_D14  
14  
O
I/O  
I/O  
O
O
I
CLB Output X-BAR Output 8  
HIC Data 14  
15  
GPIO7  
0, 4, 8, 12  
General-Purpose Input Output 7  
ePWM-4 Output B  
EPWM4_B  
1
3
OUTPUTXBAR5  
EQEP1_B  
Output X-BAR Output 5  
eQEP-1 Input B  
5
SPIB_SIMO  
FSITXA_CLK  
CLB_OUTPUTXBAR2  
HIC_A6  
7
68  
57  
43  
I/O  
O
O
I
SPI-B Slave In, Master Out (SIMO)  
FSITX-A Output Clock  
CLB Output X-BAR Output 2  
HIC Address 6  
9
10  
13  
15  
HIC_D14  
I/O  
HIC Data 14  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
SIGNAL NAME  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
TYPE  
I/O  
O
GPIO8  
0, 4, 8, 12  
General-Purpose Input Output 8  
ePWM-5 Output A  
EPWM5_A  
ADCSOCAO  
EQEP1_STROBE  
SCIA_TX  
1
3
O
ADC Start of Conversion A for External ADC  
eQEP-1 Strobe  
5
I/O  
O
6
SCI-A Transmit Data  
SPIA_SIMO  
I2CA_SCL  
7
I/O  
SPI-A Slave In, Master Out (SIMO)  
58  
47  
9
I/OD I2C-A Open-Drain Bidirectional Clock  
FSITXA_D1  
CLB_OUTPUTXBAR5  
HIC_A0  
10  
O
O
I
FSITX-A Data Output 1  
CLB Output X-BAR Output 5  
HIC Address 0  
11  
13  
FSITXA_TDM_CLK  
HIC_D8  
14  
I
FSITX-A Time Division Multiplexed Clock Input  
HIC Data 8  
15  
I/O  
I/O  
O
O
I/O  
I
GPIO9  
0, 4, 8, 12  
General-Purpose Input Output 9  
ePWM-5 Output B  
EPWM5_B  
OUTPUTXBAR6  
EQEP1_INDEX  
SCIA_RX  
1
3
Output X-BAR Output 6  
eQEP-1 Index  
5
6
SCI-A Receive Data  
SPIA_CLK  
FSITXA_D0  
LINB_RX  
7
75  
76  
37  
62  
63  
31  
I/O  
O
I
SPI-A Clock  
10  
FSITX-A Data Output 0  
LIN-B Receive  
11  
HIC_BASESEL0  
I2CB_SCL  
13  
I
HIC Base Address Range Select 0  
14  
I/OD I2C-B Open-Drain Bidirectional Clock  
HIC_NRDY  
GPIO10  
15  
O
I/O  
O
HIC Ready  
0, 4, 8, 12  
General-Purpose Input Output 10  
ePWM-6 Output A  
EPWM6_A  
ADCSOCBO  
EQEP1_A  
1
3
O
ADC Start of Conversion B for External ADC  
eQEP-1 Input A  
5
I
SPIA_SOMI  
I2CA_SDA  
FSITXA_CLK  
LINB_TX  
7
I/O  
SPI-A Slave Out, Master In (SOMI)  
9
I/OD I2C-A Open-Drain Bidirectional Data  
10  
O
O
I
FSITX-A Output Clock  
LIN-B Transmit  
11  
HIC_NWE  
13  
HIC Data Write Enable  
FSITX-A Time Division Multiplexed Data Input  
General-Purpose Input Output 11  
ePWM-6 Output B  
FSITXA_TDM_D0  
GPIO11  
14  
I
0, 4, 8, 12  
I/O  
O
O
I
EPWM6_B  
OUTPUTXBAR7  
EQEP1_B  
1
3
Output X-BAR Output 7  
eQEP-1 Input B  
5
SPIA_STE  
FSIRXA_D1  
LINB_RX  
7
I/O  
I
SPI-A Slave Transmit Enable (STE)  
FSIRX-A Data Input 1  
LIN-B Receive  
9
10  
11  
13  
14  
15  
I
EQEP2_A  
I
eQEP-2 Input A  
SPIA_SIMO  
HIC_D6  
I/O  
I/O  
I
SPI-A Slave In, Master Out (SIMO)  
HIC Data 6  
HIC_NBE0  
HIC Byte Enable 0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
GPIO12  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 12  
ePWM-7 Output A  
EPWM7_A  
EQEP1_STROBE  
PMBUSA_CTL  
FSIRXA_D0  
LINB_TX  
1
5
I/O  
I/O  
I
eQEP-1 Strobe  
7
PMBus-A Control Signal - Slave Input/Master Output  
FSIRX-A Data Input 0  
LIN-B Transmit  
9
36  
35  
79  
78  
30  
24  
10  
O
SPIA_CLK  
11  
I/O  
I
SPI-A Clock  
CANA_RX  
13  
CAN-A Receive  
HIC_D13  
14  
I/O  
O
HIC Data 13  
HIC_INT  
15  
HIC Device Interrupt  
General-Purpose Input Output 13  
ePWM-7 Output B  
GPIO13  
0, 4, 8, 12  
I/O  
O
EPWM7_B  
EQEP1_INDEX  
PMBUSA_ALERT  
FSIRXA_CLK  
LINB_RX  
1
5
I/O  
eQEP-1 Index  
7
I/OD PMBus-A Open-Drain Bidirectional Alert  
9
I
FSIRX-A Input Clock  
LIN-B Receive  
29  
23  
10  
I
SPIA_SOMI  
CANA_TX  
11  
I/O  
O
SPI-A Slave Out, Master In (SOMI)  
CAN-A Transmit  
13  
HIC_D11  
14  
I/O  
I/O  
I/O  
HIC Data 11  
HIC_D5  
15  
HIC Data 5  
GPIO14  
0, 4, 8, 12  
General-Purpose Input Output 14  
I2CB_SDA  
5
I/OD I2C-B Open-Drain Bidirectional Data  
Output X-BAR Output 3  
I/OD PMBus-A Open-Drain Bidirectional Data  
OUTPUTXBAR3  
PMBUSA_SDA  
SPIB_CLK  
6
O
7
9
I/O  
I
SPI-B Clock  
EQEP2_A  
10  
eQEP-2 Input A  
LINB_TX  
11  
O
LIN-B Transmit  
EPWM3_A  
CLB_OUTPUTXBAR7  
HIC_D15  
13  
O
ePWM-3 Output A  
CLB Output X-BAR Output 7  
HIC Data 15  
14  
O
15  
I/O  
I/O  
GPIO15  
0, 4, 8, 12  
General-Purpose Input Output 15  
I2CB_SCL  
5
6
I/OD I2C-B Open-Drain Bidirectional Clock  
Output X-BAR Output 4  
I/OD PMBus-A Open-Drain Bidirectional Clock  
OUTPUTXBAR4  
PMBUSA_SCL  
SPIB_STE  
O
7
9
I/O  
I
SPI-B Slave Transmit Enable (STE)  
eQEP-2 Input B  
EQEP2_B  
10  
11  
13  
14  
15  
LINB_RX  
I
LIN-B Receive  
EPWM3_B  
CLB_OUTPUTXBAR6  
HIC_D12  
O
O
I/O  
ePWM-3 Output B  
CLB Output X-BAR Output 6  
HIC Data 12  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
SIGNAL NAME  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
TYPE  
I/O  
I/O  
O
GPIO16  
0, 4, 8, 12  
General-Purpose Input Output 16  
SPI-A Slave In, Master Out (SIMO)  
Output X-BAR Output 7  
ePWM-5 Output A  
SPIA_SIMO  
OUTPUTXBAR7  
EPWM5_A  
1
3
5
O
SCIA_TX  
6
O
SCI-A Transmit Data  
EQEP1_STROBE  
PMBUSA_SCL  
9
I/O  
eQEP-1 Strobe  
39  
33  
26  
10  
I/OD PMBus-A Open-Drain Bidirectional Clock  
External Clock Output. This pin outputs a divided-  
XCLKOUT  
11  
O
down version of a chosen clock signal from within the  
device.  
EQEP2_B  
13  
I
eQEP-2 Input B  
SPIB_SOMI  
HIC_D1  
14  
I/O  
I/O  
I/O  
I/O  
O
SPI-B Slave Out, Master In (SOMI)  
HIC Data 1  
15  
GPIO17  
0, 4, 8, 12  
General-Purpose Input Output 17  
SPI-A Slave Out, Master In (SOMI)  
Output X-BAR Output 8  
ePWM-5 Output B  
SPIA_SOMI  
OUTPUTXBAR8  
EPWM5_B  
SCIA_RX  
1
3
5
O
6
40  
34  
I
SCI-A Receive Data  
EQEP1_INDEX  
PMBUSA_SDA  
CANA_TX  
9
I/O  
eQEP-1 Index  
10  
I/OD PMBus-A Open-Drain Bidirectional Data  
11  
O
I/O  
I/O  
I/O  
I
CAN-A Transmit  
HIC_D2  
15  
HIC Data 2  
GPIO18_X2  
SPIA_CLK  
CANA_RX  
EPWM6_A  
I2CA_SCL  
EQEP2_A  
0, 4, 8, 12  
General-Purpose Input Output 18_X2  
SPI-A Clock  
1
3
CAN-A Receive  
5
O
ePWM-6 Output A  
6
I/OD I2C-A Open-Drain Bidirectional Clock  
9
I
eQEP-2 Input A  
PMBUSA_CTL  
10  
I/O  
PMBus-A Control Signal - Slave Input/Master Output  
External Clock Output. This pin outputs a divided-  
down version of a chosen clock signal from within the  
device.  
50  
41  
33  
XCLKOUT  
11  
O
LINB_TX  
13  
14  
15  
O
I
LIN-B Transmit  
FSITXA_TDM_CLK  
HIC_INT  
FSITX-A Time Division Multiplexed Clock Input  
HIC Device Interrupt  
O
Crystal oscillator output. For more information about  
the ALT functionality, see the table that is in the  
External Oscillator (XTAL) section of the System  
Control chapter in the TMS320F28002x Real-Time  
Microcontrollers Technical Reference Manual.  
X2  
ALT  
O
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
GPIO19_X1  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
0, 4, 8, 12  
I/O  
I/O  
O
General-Purpose Input Output 19_X1  
SPI-A Slave Transmit Enable (STE)  
CAN-A Transmit  
SPIA_STE  
1
3
CANA_TX  
EPWM6_B  
5
O
ePWM-6 Output B  
I2CA_SDA  
6
I/OD I2C-A Open-Drain Bidirectional Data  
eQEP-2 Input B  
I/OD PMBus-A Open-Drain Bidirectional Alert  
EQEP2_B  
9
I
PMBUSA_ALERT  
CLB_OUTPUTXBAR1  
LINB_RX  
10  
11  
13  
14  
15  
O
I
CLB Output X-BAR Output 1  
LIN-B Receive  
51  
42  
34  
FSITXA_TDM_D0  
HIC_NBE0  
I
FSITX-A Time Division Multiplexed Data Input  
HIC Byte Enable 0  
I
Crystal oscillator input or single-ended clock input.  
The device initialization software must configure this  
pin before the crystal oscillator is enabled. To use this  
oscillator, a quartz crystal circuit must be connected  
to X1 and X2. This pin can also be used to feed a  
single-ended 3.3-V level clock. For more information  
about the ALT functionality, see the table that is in the  
External Oscillator (XTAL) section of the System  
Control chapter in the TMS320F28002x Real-Time  
Microcontrollers Technical Reference Manual.  
X1  
ALT  
I
GPIO22  
0, 4, 8, 12  
I/O  
I/O  
I/O  
O
General-Purpose Input Output 22  
eQEP-1 Strobe  
EQEP1_STROBE  
SPIB_CLK  
LINA_TX  
1
6
SPI-B Clock  
9
LIN-A Transmit  
CLB_OUTPUTXBAR1  
LINB_TX  
10  
67  
56  
O
CLB Output X-BAR Output 1  
LIN-B Transmit  
11  
O
HIC_A5  
13  
I
HIC Address 5  
EPWM4_A  
HIC_D13  
14  
O
ePWM-4 Output A  
15  
I/O  
I/O  
I/O  
I/O  
I
HIC Data 13  
GPIO23  
0, 4, 8, 12  
General-Purpose Input Output 23  
eQEP-1 Index  
EQEP1_INDEX  
SPIB_STE  
LINA_RX  
1
6
SPI-B Slave Transmit Enable (STE)  
LIN-A Receive  
9
65  
54  
LINB_RX  
11  
I
LIN-B Receive  
HIC_A3  
13  
I
HIC Address 3  
EPWM4_B  
HIC_D11  
14  
O
ePWM-4 Output B  
15  
I/O  
I/O  
O
HIC Data 11  
GPIO24  
0, 4, 8, 12  
General-Purpose Input Output 24  
Output X-BAR Output 1  
eQEP-2 Input A  
OUTPUTXBAR1  
EQEP2_A  
SPIB_SIMO  
LINB_TX  
1
2
I
6
I/O  
O
SPI-B Slave In, Master Out (SIMO)  
LIN-B Transmit  
9
41  
35  
27  
PMBUSA_SCL  
SCIA_TX  
10  
11  
I/OD PMBus-A Open-Drain Bidirectional Clock  
O
SCI-A Transmit Data  
Error Status Output. When used, this signal requires  
an external pulldown.  
ERRORSTS  
HIC_D3  
13  
15  
O
I/O  
HIC Data 3  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
GPIO25  
0, 4, 8, 12  
I/O  
O
I
General-Purpose Input Output 25  
Output X-BAR Output 2  
eQEP-2 Input B  
OUTPUTXBAR2  
EQEP2_B  
1
2
EQEP1_A  
5
I
eQEP-1 Input A  
SPIB_SOMI  
FSITXA_D1  
PMBUSA_SDA  
SCIA_RX  
6
42  
I/O  
O
SPI-B Slave Out, Master In (SOMI)  
FSITX-A Data Output 1  
9
10  
I/OD PMBus-A Open-Drain Bidirectional Data  
11  
I
SCI-A Receive Data  
HIC_BASESEL0  
GPIO26  
14  
I
HIC Base Address Range Select 0  
General-Purpose Input Output 26  
Output X-BAR Output 3  
0, 4, 8, 12  
I/O  
O
OUTPUTXBAR3  
EQEP2_INDEX  
SPIB_CLK  
1, 5  
2
I/O  
I/O  
O
eQEP-2 Index  
6
SPI-B Clock  
FSITXA_D0  
PMBUSA_CTL  
I2CA_SDA  
9
43  
FSITX-A Data Output 0  
10  
I/O  
PMBus-A Control Signal - Slave Input/Master Output  
11  
I/OD I2C-A Open-Drain Bidirectional Data  
HIC_D0  
14  
I/O  
I
HIC Data 0  
HIC_A1  
15  
HIC Address 1  
GPIO27  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 27  
Output X-BAR Output 4  
eQEP-2 Strobe  
OUTPUTXBAR4  
EQEP2_STROBE  
SPIB_STE  
1, 5  
2
I/O  
I/O  
O
6
SPI-B Slave Transmit Enable (STE)  
FSITX-A Output Clock  
FSITXA_CLK  
PMBUSA_ALERT  
I2CA_SCL  
9
44  
10  
I/OD PMBus-A Open-Drain Bidirectional Alert  
I/OD I2C-A Open-Drain Bidirectional Clock  
11  
HIC_D1  
14  
I/O  
I
HIC Data 1  
HIC_A4  
15  
HIC Address 4  
GPIO28  
0, 4, 8, 12  
I/O  
I
General-Purpose Input Output 28  
SCI-A Receive Data  
ePWM-7 Output A  
Output X-BAR Output 5  
eQEP-1 Input A  
SCIA_RX  
1
3
EPWM7_A  
OUTPUTXBAR5  
EQEP1_A  
O
O
I
5
6
EQEP2_STROBE  
LINA_TX  
9
I/O  
O
I/O  
eQEP-2 Strobe  
4
2
2
10  
11  
LIN-A Transmit  
SPIB_CLK  
SPI-B Clock  
Error Status Output. When used, this signal requires  
an external pulldown.  
ERRORSTS  
13  
O
I2CB_SDA  
HIC_NOE  
14  
15  
I/OD I2C-B Open-Drain Bidirectional Data  
HIC Output Enable  
O
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
GPIO29  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 29  
SCI-A Transmit Data  
ePWM-7 Output B  
SCIA_TX  
1
3
EPWM7_B  
OUTPUTXBAR6  
EQEP1_B  
O
5
O
Output X-BAR Output 6  
eQEP-1 Input B  
6
I
EQEP2_INDEX  
LINA_RX  
9
I/O  
I
eQEP-2 Index  
3
1
1
10  
11  
LIN-A Receive  
SPIB_STE  
I/O  
SPI-B Slave Transmit Enable (STE)  
Error Status Output. When used, this signal requires  
an external pulldown.  
ERRORSTS  
13  
O
I2CB_SCL  
HIC_NCS  
14  
I/OD I2C-B Open-Drain Bidirectional Clock  
15  
I
HIC Chip Select  
GPIO30  
0, 4, 8, 12  
I/O  
I
General-Purpose Input Output 30  
CAN-A Receive  
CANA_RX  
SPIB_SIMO  
OUTPUTXBAR7  
EQEP1_STROBE  
FSIRXA_CLK  
EPWM1_A  
HIC_D8  
1
3
I/O  
O
SPI-B Slave In, Master Out (SIMO)  
Output X-BAR Output 7  
eQEP-1 Strobe  
5
1
6
I/O  
I
9
FSIRX-A Input Clock  
ePWM-1 Output A  
11  
O
14  
I/O  
I/O  
O
HIC Data 8  
GPIO31  
0, 4, 8, 12  
General-Purpose Input Output 31  
CAN-A Transmit  
CANA_TX  
SPIB_SOMI  
OUTPUTXBAR8  
EQEP1_INDEX  
FSIRXA_D1  
EPWM1_B  
HIC_D10  
1
3
I/O  
O
SPI-B Slave Out, Master In (SOMI)  
Output X-BAR Output 8  
eQEP-1 Index  
5
2
6
I/O  
I
9
FSIRX-A Data Input 1  
ePWM-1 Output B  
11  
O
14  
I/O  
I/O  
HIC Data 10  
GPIO32  
0, 4, 8, 12  
General-Purpose Input Output 32  
I2CA_SDA  
SPIB_CLK  
LINA_TX  
1
I/OD I2C-A Open-Drain Bidirectional Data  
3
I/O  
O
SPI-B Clock  
6
LIN-A Transmit  
49  
40  
32  
FSIRXA_D0  
CANA_TX  
ADCSOCBO  
HIC_INT  
9
I
FSIRX-A Data Input 0  
CAN-A Transmit  
10  
O
13  
O
ADC Start of Conversion B for External ADC  
HIC Device Interrupt  
15  
O
GPIO33  
0, 4, 8, 12  
I/O  
General-Purpose Input Output 33  
I2CA_SCL  
SPIB_STE  
OUTPUTXBAR4  
LINA_RX  
1
3
I/OD I2C-A Open-Drain Bidirectional Clock  
I/O  
SPI-B Slave Transmit Enable (STE)  
Output X-BAR Output 4  
LIN-A Receive  
5
O
6
I
I
38  
32  
25  
FSIRXA_CLK  
CANA_RX  
EQEP2_B  
9
FSIRX-A Input Clock  
CAN-A Receive  
10  
11  
13  
15  
I
I
eQEP-2 Input B  
ADCSOCAO  
HIC_D0  
O
I/O  
ADC Start of Conversion A for External ADC  
HIC Data 0  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
GPIO34  
0, 4, 8, 12  
I/O  
General-Purpose Input Output 34  
Output X-BAR Output 1  
OUTPUTXBAR1  
PMBUSA_SDA  
HIC_NBE1  
I2CB_SDA  
HIC_D9  
1
O
6
I/OD PMBus-A Open-Drain Bidirectional Data  
HIC Byte Enable 1  
I/OD I2C-B Open-Drain Bidirectional Data  
77  
13  
I
14  
15  
I/O  
I/O  
I
HIC Data 9  
GPIO35  
0, 4, 8, 12  
General-Purpose Input Output 35  
SCI-A Receive Data  
SCIA_RX  
1
3
I2CA_SDA  
CANA_RX  
PMBUSA_SCL  
LINA_RX  
I/OD I2C-A Open-Drain Bidirectional Data  
CAN-A Receive  
I/OD PMBus-A Open-Drain Bidirectional Clock  
5
I
6
7
I
I
LIN-A Receive  
48  
39  
31  
EQEP1_A  
9
eQEP-1 Input A  
PMBUSA_CTL  
HIC_NWE  
10  
14  
I/O  
I
PMBus-A Control Signal - Slave Input/Master Output  
HIC Data Write Enable  
JTAG Test Data Input (TDI) - TDI is the default mux  
selection for the pin. The internal pullup is disabled by  
default. The internal pullup should be enabled or an  
external pullup added on the board if this pin is used  
as JTAG TDI to avoid a floating input.  
TDI  
15  
I
GPIO37  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 37  
Output X-BAR Output 2  
OUTPUTXBAR2  
I2CA_SCL  
SCIA_TX  
1
3
I/OD I2C-A Open-Drain Bidirectional Clock  
5
O
O
O
I
SCI-A Transmit Data  
CAN-A Transmit  
LIN-A Transmit  
CANA_TX  
6
LINA_TX  
7
EQEP1_B  
9
eQEP-1 Input B  
46  
37  
29  
PMBUSA_ALERT  
HIC_NRDY  
10  
14  
I/OD PMBus-A Open-Drain Bidirectional Alert  
O
HIC Ready  
JTAG Test Data Output (TDO) - TDO is the default  
mux selection for the pin. The internal pullup is  
disabled by default. The TDO function will tristate  
when there is no JTAG activity, leaving this pin  
floating; the internal pullup should be enabled or an  
external pullup added on the board to avoid a floating  
GPIO input.  
TDO  
15  
O
GPIO39  
0, 4, 8, 12  
I/O  
I
General-Purpose Input Output 39  
FSIRX-A Input Clock  
FSIRXA_CLK  
EQEP2_INDEX  
CLB_OUTPUTXBAR2  
SYNCOUT  
7
9
I/O  
O
eQEP-2 Index  
11  
13  
14  
15  
56  
46  
CLB Output X-BAR Output 2  
External ePWM Synchronization Pulse  
eQEP-1 Index  
O
EQEP1_INDEX  
HIC_D7  
I/O  
I/O  
HIC Data 7  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
GPIO40  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
0, 4, 8, 12  
I/O  
I/O  
O
General-Purpose Input Output 40  
SPI-B Slave In, Master Out (SIMO)  
ePWM-2 Output B  
SPIB_SIMO  
EPWM2_B  
PMBUSA_SDA  
FSIRXA_D0  
EQEP1_A  
1
5
6
I/OD PMBus-A Open-Drain Bidirectional Data  
7
64  
66  
57  
53  
I
I
FSIRX-A Data Input 0  
eQEP-1 Input A  
10  
LINB_TX  
11  
O
I
LIN-B Transmit  
HIC_NBE1  
HIC_D5  
14  
HIC Byte Enable 1  
HIC Data 5  
15  
I/O  
I/O  
O
GPIO41  
0, 4, 8, 12  
General-Purpose Input Output 41  
ePWM-2 Output A  
EPWM2_A  
PMBUSA_SCL  
FSIRXA_D1  
EQEP1_B  
5
6
I/OD PMBus-A Open-Drain Bidirectional Clock  
7
I
I
FSIRX-A Data Input 1  
eQEP-1 Input B  
10  
55  
LINB_RX  
11  
I
LIN-B Receive  
HIC_A4  
13  
I
HIC Address 4  
SPIB_SOMI  
HIC_D12  
14  
I/O  
I/O  
I/O  
I
SPI-B Slave Out, Master In (SOMI)  
HIC Data 12  
15  
GPIO42  
0, 4, 8, 12  
General-Purpose Input Output 42  
LIN-A Receive  
LINA_RX  
2
OUTPUTXBAR5  
PMBUSA_CTL  
I2CA_SDA  
3
O
I/O  
Output X-BAR Output 5  
PMBus-A Control Signal - Slave Input/Master Output  
5
6
I/OD I2C-A Open-Drain Bidirectional Data  
EQEP1_STROBE  
CLB_OUTPUTXBAR3  
HIC_D2  
10  
I/O  
O
eQEP-1 Strobe  
11  
CLB Output X-BAR Output 3  
HIC Data 2  
14  
I/O  
I
HIC_A6  
15  
HIC Address 6  
GPIO43  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 43  
Output X-BAR Output 6  
OUTPUTXBAR6  
PMBUSA_ALERT  
I2CA_SCL  
3
5
I/OD PMBus-A Open-Drain Bidirectional Alert  
I/OD I2C-A Open-Drain Bidirectional Clock  
6
54  
EQEP1_INDEX  
CLB_OUTPUTXBAR4  
HIC_D3  
10  
I/O  
O
eQEP-1 Index  
11  
CLB Output X-BAR Output 4  
HIC Data 3  
14  
I/O  
I
HIC_A7  
15  
HIC Address 7  
GPIO44  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 44  
Output X-BAR Output 7  
eQEP-1 Input A  
OUTPUTXBAR7  
EQEP1_A  
3
5
I
FSITXA_CLK  
CLB_OUTPUTXBAR3  
HIC_D7  
7
69  
O
FSITX-A Output Clock  
CLB Output X-BAR Output 3  
HIC Data 7  
10  
13  
15  
O
I/O  
I/O  
HIC_D5  
HIC Data 5  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
SIGNAL NAME  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
TYPE  
I/O  
O
GPIO45  
0, 4, 8, 12  
General-Purpose Input Output 45  
Output X-BAR Output 8  
OUTPUTXBAR8  
FSITXA_D0  
CLB_OUTPUTXBAR4  
HIC_D6  
3
7
73  
O
FSITX-A Data Output 0  
10  
15  
O
CLB Output X-BAR Output 4  
HIC Data 6  
I/O  
I/O  
O
GPIO46  
0, 4, 8, 12  
3
General-Purpose Input Output 46  
LIN-A Transmit  
LINA_TX  
6
FSITXA_D1  
HIC_NWE  
GPIO61  
7
O
FSITX-A Data Output 1  
15  
I
HIC Data Write Enable  
0, 4, 8, 12  
0, 4, 8, 12  
0, 4, 8, 12  
I/O  
I/O  
I/O  
General-Purpose Input Output 61  
General-Purpose Input Output 62  
General-Purpose Input Output 63  
GPIO62  
GPIO63  
TEST, JTAG, AND RESET  
Flash test pin 1. Reserved for TI. Must be left  
unconnected.  
FLT1  
34  
I/O  
Flash test pin 2. Reserved for TI. Must be left  
unconnected.  
FLT2  
TCK  
33  
45  
I/O  
36  
38  
28  
30  
I
JTAG test clock with internal pullup.  
JTAG test-mode select (TMS) with internal pullup.  
This serial control input is clocked into the TAP  
controller on the rising edge of TCK. This device does  
not have a TRSTn pin. An external pullup resistor  
(recommended 2.2 kΩ) on the TMS pin to VDDIO  
should be placed on the board to keep JTAG in reset  
during normal operation.  
TMS  
47  
I/O  
Device Reset (in) and Watchdog Reset (out). During a  
power-on condition, this pin is driven low by the  
device. An external circuit may also drive this pin to  
assert a device reset. This pin is also driven low by  
the MCU when a watchdog reset occurs. During  
watchdog reset, the XRSn pin is driven low for the  
watchdog reset duration of 512 OSCCLK cycles. A  
resistor between 2.2 kΩand 10 kΩshould be placed  
between XRSn and VDDIO. If a capacitor is placed  
between XRSn and VSS for noise filtering, it should  
be 100 nF or smaller. These values will allow the  
watchdog to properly drive the XRSn pin to VOL  
within 512 OSCCLK cycles when the watchdog reset  
is asserted. This pin is an open-drain output with an  
internal pullup. If this pin is driven by an external  
device, it should be done using an open-drain device.  
XRSn  
5
3
3
I/OD  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
POWER AND GROUND  
1.2-V Digital Logic Power Pins. TI recommends  
placing a decoupling capacitor near each VDD pin  
with a minimum total capacitance of approximately 10  
µF. It is also recommended that all VDD pins be  
externally connected to each other.  
8, 31,  
53, 71  
4, 27,  
36, 45  
44, 59  
VDD  
3.3-V Analog Power Pins. Place a minimum 2.2-µF  
decoupling capacitor on each pin.  
VDDA  
26  
22  
18  
3.3-V Digital I/O Power Pins. Place a minimum 0.1-µF  
decoupling capacitor on each pin. It is recommended  
to place an additional bulk cap of around 20uF shared  
by all the pins. However, the exact value of this bulk  
cap will depend on the regulator being used.  
7, 32,  
52, 72  
28, 43,  
60  
VDDIO  
35, 46  
9, 30,  
55, 70  
5, 26,  
45, 58  
22, 37,  
44  
VSS  
Digital Ground  
Analog Ground  
VSSA  
25  
21  
17  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
6.3 Signal Descriptions  
6.3.1 Analog Signals  
6-2. Analog Signals  
PIN  
SIGNAL NAME  
DESCRIPTION  
ADC-A Input 0  
GPIO  
80 QFP  
64 QFP  
48 QFP  
TYPE  
A0  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
19  
18  
13  
12  
27  
17  
10  
23  
24  
28  
29  
16  
22  
15  
14  
13  
27  
11  
28  
10  
29  
19  
18  
14  
16  
22  
15  
24  
12  
17  
23  
16  
22  
17  
23  
15  
14  
9
11  
10  
6
A1  
Analog Input  
A2  
ADC-A Input 2  
A3  
ADC-A Input 3  
8
5
A4  
ADC-A Input 4  
23  
13  
6
19  
9
A5  
ADC-A Input 5  
A6  
Analog Input  
4
A7  
ADC-A Input 7  
19  
20  
24  
25  
12  
18  
11  
10  
9
15  
16  
20  
21  
8
A8  
ADC-A Input 8  
A9  
ADC-A Input 9  
A10  
A11  
A12  
A14  
A15  
ADC-A Input 10  
ADC-A Input 11  
ADC-A Input 12  
14  
ADC-A Input 14  
ADC-A Input 15  
7
6
AIO224  
AIO225  
AIO226  
AIO227  
AIO228  
AIO230  
AIO231  
AIO232  
AIO233  
AIO237  
AIO238  
AIO239  
AIO241  
AIO242  
AIO244  
AIO245  
C0  
Analog Pin Used For Digital Input 224  
Analog Pin Used For Digital Input 225  
Analog Pin Used For Digital Input 226  
Analog Pin Used For Digital Input 227  
Analog Pin Used For Digital Input 228  
Analog Pin Used For Digital Input 230  
Analog Pin Used For Digital Input 231  
Analog Pin Used For Digital Input 232  
Analog Pin Used For Digital Input 233  
Analog Pin Used For Digital Input 237  
Analog Pin Used For Digital Input 238  
Analog Pin Used For Digital Input 239  
Analog Pin Used For Digital Input 241  
Analog Pin Used For Digital Input 242  
Analog Pin Used For Digital Input 244  
Analog Pin Used For Digital Input 245  
ADC-C Input 0  
23  
7
19  
4
24  
6
20  
4
25  
15  
14  
10  
12  
18  
11  
20  
8
21  
11  
10  
7
8
14  
16  
5
13  
19  
12  
18  
13  
19  
9
15  
8
C1  
ADC-C Input 1  
14  
9
C2  
ADC-C Input 2  
C3  
ADC-C Input 3  
15  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
48 QFP  
6-2. Analog Signals (continued)  
PIN  
SIGNAL NAME  
DESCRIPTION  
ADC-C Input 4  
GPIO  
80 QFP  
64 QFP  
TYPE  
C4  
I
I
I
I
I
I
I
I
I
I
15  
12  
11  
14  
28  
13  
29  
24  
27  
19  
11  
8
C5  
ADC-C Input 5  
Analog Input  
5
4
C6  
7
C7  
ADC-C Input 7  
ADC-C Input 8  
ADC-C Input 9  
ADC-C Input 10  
ADC-C Input 11  
ADC-C Input 14  
ADC-C Input 15  
10  
24  
9
7
C8  
20  
6
C9  
C10  
C11  
C14  
C15  
25  
20  
23  
15  
21  
16  
19  
11  
CMPSS-1 High Comparator Negative  
Input 0  
CMP1_HN0  
CMP1_HN1  
CMP1_HP0  
CMP1_HP1  
CMP1_HP2  
CMP1_HP3  
CMP1_HP4  
CMP1_LN0  
CMP1_LN1  
CMP1_LP0  
CMP1_LP1  
CMP1_LP2  
CMP1_LP3  
CMP1_LP4  
CMP2_HN0  
CMP2_HN1  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
14  
16  
13  
16  
10  
14  
18  
14  
16  
13  
16  
10  
14  
18  
29  
22  
10  
12  
9
7
8
CMPSS-1 High Comparator Negative  
Input 1  
CMPSS-1 High Comparator Positive  
Input 0  
6
CMPSS-1 High Comparator Positive  
Input 1  
12  
6
8
CMPSS-1 High Comparator Positive  
Input 2  
4
CMPSS-1 High Comparator Positive  
Input 3  
10  
14  
10  
12  
9
7
CMPSS-1 High Comparator Positive  
Input 4  
10  
7
CMPSS-1 Low Comparator Negative  
Input 0  
CMPSS-1 Low Comparator Negative  
Input 1  
8
CMPSS-1 Low Comparator Positive  
Input 0  
6
CMPSS-1 Low Comparator Positive  
Input 1  
12  
6
8
CMPSS-1 Low Comparator Positive  
Input 2  
4
CMPSS-1 Low Comparator Positive  
Input 3  
10  
14  
25  
18  
7
CMPSS-1 Low Comparator Positive  
Input 4  
10  
21  
14  
CMPSS-2 High Comparator Negative  
Input 0  
CMPSS-2 High Comparator Negative  
Input 1  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
6-2. Analog Signals (continued)  
PIN  
SIGNAL NAME  
DESCRIPTION  
GPIO  
80 QFP  
27  
22  
28  
29  
24  
29  
22  
27  
22  
28  
29  
24  
12  
17  
11  
64 QFP  
23  
18  
24  
25  
20  
25  
18  
23  
18  
24  
25  
20  
8
48 QFP  
19  
14  
20  
21  
16  
21  
14  
19  
14  
20  
21  
16  
5
TYPE  
CMPSS-2 High Comparator Positive  
Input 0  
CMP2_HP0  
CMP2_HP1  
CMP2_HP2  
CMP2_HP3  
CMP2_HP4  
CMP2_LN0  
CMP2_LN1  
CMP2_LP0  
CMP2_LP1  
CMP2_LP2  
CMP2_LP3  
CMP2_LP4  
CMP3_HN0  
CMP3_HN1  
CMP3_HP0  
CMP3_HP1  
CMP3_HP2  
CMP3_HP3  
CMP3_HP4  
CMP3_LN0  
CMP3_LN1  
CMP3_LP0  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
CMPSS-2 High Comparator Positive  
Input 1  
CMPSS-2 High Comparator Positive  
Input 2  
CMPSS-2 High Comparator Positive  
Input 3  
CMPSS-2 High Comparator Positive  
Input 4  
CMPSS-2 Low Comparator Negative  
Input 0  
CMPSS-2 Low Comparator Negative  
Input 1  
CMPSS-2 Low Comparator Positive  
Input 0  
CMPSS-2 Low Comparator Positive  
Input 1  
CMPSS-2 Low Comparator Positive  
Input 2  
CMPSS-2 Low Comparator Positive  
Input 3  
CMPSS-2 Low Comparator Positive  
Input 4  
CMPSS-3 High Comparator Negative  
Input 0  
CMPSS-3 High Comparator Negative  
Input 1  
13  
7
9
CMPSS-3 High Comparator Positive  
Input 0  
4
CMPSS-3 High Comparator Positive  
Input 1  
17  
19  
12  
15  
12  
17  
11  
13  
15  
8
9
CMPSS-3 High Comparator Positive  
Input 2  
11  
5
CMPSS-3 High Comparator Positive  
Input 3  
CMPSS-3 High Comparator Positive  
Input 4  
11  
8
CMPSS-3 Low Comparator Negative  
Input 0  
5
9
4
CMPSS-3 Low Comparator Negative  
Input 1  
13  
7
CMPSS-3 Low Comparator Positive  
Input 0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
6-2. Analog Signals (continued)  
PIN  
SIGNAL NAME  
DESCRIPTION  
GPIO  
80 QFP  
17  
64 QFP  
13  
15  
8
48 QFP  
TYPE  
CMPSS-3 Low Comparator Positive  
Input 1  
CMP3_LP1  
I
9
11  
5
CMPSS-3 Low Comparator Positive  
Input 2  
CMP3_LP2  
CMP3_LP3  
CMP3_LP4  
CMP4_HN0  
CMP4_HN1  
CMP4_HP0  
CMP4_HP1  
CMP4_HP2  
CMP4_HP3  
CMP4_HP4  
CMP4_LN0  
CMP4_LN1  
CMP4_LP0  
CMP4_LP1  
CMP4_LP2  
CMP4_LP3  
CMP4_LP4  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
19  
CMPSS-3 Low Comparator Positive  
Input 3  
12  
CMPSS-3 Low Comparator Positive  
Input 4  
15  
11  
CMPSS-4 High Comparator Negative  
Input 0  
27  
23  
19  
24  
19  
18  
23  
20  
23  
19  
24  
19  
18  
23  
20  
19  
15  
20  
15  
14  
19  
16  
19  
15  
20  
15  
14  
19  
16  
CMPSS-4 High Comparator Negative  
Input 1  
23  
CMPSS-4 High Comparator Positive  
Input 0  
28  
CMPSS-4 High Comparator Positive  
Input 1  
23  
CMPSS-4 High Comparator Positive  
Input 2  
22  
CMPSS-4 High Comparator Positive  
Input 3  
27  
CMPSS-4 High Comparator Positive  
Input 4  
24  
CMPSS-4 Low Comparator Negative  
Input 0  
27  
CMPSS-4 Low Comparator Negative  
Input 1  
23  
CMPSS-4 Low Comparator Positive  
Input 0  
28  
CMPSS-4 Low Comparator Positive  
Input 1  
23  
CMPSS-4 Low Comparator Positive  
Input 2  
22  
CMPSS-4 Low Comparator Positive  
Input 3  
27  
CMPSS-4 Low Comparator Positive  
Input 4  
24  
HIC_A0  
HIC_A1  
HIC_A2  
HIC_A3  
HIC_A4  
HIC_A5  
I
I
I
I
I
I
HIC Address 0  
HIC Address 1  
HIC Address 2  
HIC Address 3  
HIC Address 4  
HIC Address 5  
10  
11  
12  
13  
14  
15  
6
7
4
4
5
6
7
8
9
10  
11  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
6-2. Analog Signals (continued)  
PIN  
SIGNAL NAME  
DESCRIPTION  
HIC Address 6  
GPIO  
80 QFP  
64 QFP  
48 QFP  
TYPE  
HIC_A6  
I
I
16  
17  
18  
19  
29  
28  
24  
22  
23  
27  
12  
13  
14  
15  
25  
24  
20  
18  
19  
23  
8
HIC_A7  
HIC Address 7  
9
HIC_BASESEL0  
HIC_BASESEL1  
HIC_BASESEL2  
HIC_NBE0  
HIC_NBE1  
HIC_NCS  
I
HIC Base Address Range Select 0  
HIC Base Address Range Select 1  
HIC Base Address Range Select 2  
HIC Byte Enable 0  
10  
11  
21  
20  
16  
14  
15  
19  
I
I
I
I
HIC Byte Enable 1  
I
HIC Chip Select  
HIC_NOE  
O
I
HIC Output Enable  
HIC_NWE  
HIC Data Write Enable  
Optional external reference voltage  
for on-chip CMPSS DACs. There is  
an internal capacitor to VSSA on this  
pin whether used for ADC input or  
CMPSS DAC reference which cannot  
be disabled. If this pin is being used  
as a reference for the CMPSS DACs,  
place at least a 1-μF capacitor on  
this pin.  
VDAC  
I
12  
8
5
ADC- High Reference. In external  
reference mode, externally drive the  
high reference voltage onto this pin.  
In internal reference mode, a voltage  
is driven onto this pin by the device.  
In either mode, place at least a 2.2-  
µF capacitor on this pin. This  
VREFHI  
I
I
20  
21  
16  
17  
12  
13  
capacitor should be placed as close  
to the device as possible between the  
VREFHI and VREFLO pins.  
VREFLO  
ADC- Low Reference  
6.3.2 Digital Signals  
6-3. Digital Signals  
PIN  
SIGNAL NAME  
ADCSOCAO  
DESCRIPTION  
GPIO  
80 QFP  
38, 58  
49, 76  
64 QFP  
32, 47  
40, 63  
48 QFP  
25  
TYPE  
ADC Start of Conversion A for  
External ADC  
O
O
I
33, 8  
ADC Start of Conversion B for  
External ADC  
ADCSOCBO  
10, 32  
32  
12, 18, 3, 30, 1, 36, 38, 48,  
33, 35, 5 50, 60, 74  
30, 32, 39,  
41, 49, 61  
24, 25, 31,  
33, 39, 47  
CANA_RX  
CAN-A Receive  
13, 17, 19, 2, 2, 35, 40, 46,  
29, 34, 37,  
23, 29, 32,  
34, 38, 40  
CANA_TX  
O
O
CAN-A Transmit  
31, 32, 37, 4 49, 51, 59, 61 40, 42, 48, 50  
CLB_OUTPUTXBAR1  
CLB Output X-BAR Output 1  
19, 22 51, 67 42, 56  
34  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
6-3. Digital Signals (continued)  
PIN  
SIGNAL NAME  
DESCRIPTION  
GPIO  
80 QFP  
64 QFP  
48 QFP  
TYPE  
CLB_OUTPUTXBAR2  
CLB_OUTPUTXBAR3  
CLB_OUTPUTXBAR4  
CLB_OUTPUTXBAR5  
CLB_OUTPUTXBAR6  
CLB_OUTPUTXBAR7  
CLB_OUTPUTXBAR8  
EPWM1_A  
O
CLB Output X-BAR Output 2  
CLB Output X-BAR Output 3  
CLB Output X-BAR Output 4  
CLB Output X-BAR Output 5  
CLB Output X-BAR Output 6  
CLB Output X-BAR Output 7  
CLB Output X-BAR Output 8  
ePWM-1 Output A  
39, 7  
42, 44  
43, 45  
5, 8  
56, 68  
57, 69  
54, 73  
58, 74  
59, 78  
62, 79  
63, 80  
1, 63  
46, 57  
43  
O
O
O
47, 61  
48  
47  
38  
O
15, 4  
1, 14  
6
O
51  
41  
O
52, 64  
52  
42, 48  
42  
O
30  
EPWM1_B  
O
ePWM-1 Output B  
1, 31  
2, 41  
3, 40  
14, 4  
15, 5  
22, 6  
23, 7  
16, 8  
17, 9  
10, 18  
11, 19  
12, 28  
13, 29  
2, 62  
51  
41  
EPWM2_A  
O
ePWM-2 Output A  
61, 66  
60, 64  
59, 79  
74, 78  
67, 80  
65, 68  
39, 58  
40, 75  
50, 76  
37, 51  
36, 4  
50, 55  
49, 53  
48  
40  
EPWM2_B  
O
ePWM-2 Output B  
39  
EPWM3_A  
O
ePWM-3 Output A  
38  
EPWM3_B  
O
ePWM-3 Output B  
61  
47  
EPWM4_A  
O
ePWM-4 Output A  
56, 64  
54, 57  
33, 47  
34, 62  
41, 63  
31, 42  
2, 30  
1, 29  
48  
EPWM4_B  
O
ePWM-4 Output B  
43  
EPWM5_A  
O
ePWM-5 Output A  
26  
EPWM5_B  
O
ePWM-5 Output B  
EPWM6_A  
O
ePWM-6 Output A  
33  
34  
EPWM6_B  
O
ePWM-6 Output B  
EPWM7_A  
O
ePWM-7 Output A  
2, 24  
1, 23  
EPWM7_B  
O
ePWM-7 Output B  
3, 35  
10, 25, 28,  
4, 42, 48, 64, 2, 39, 53, 63,  
69, 76, 80 64  
EQEP1_A  
I
I
eQEP-1 Input A  
eQEP-1 Input B  
2, 31, 48  
1, 29, 43  
23  
35, 40, 44, 6  
11, 29, 37, 41, 3, 37, 46, 66, 1, 31, 37, 55,  
EQEP1_B  
7
68  
57  
13, 17, 23,  
2, 35, 40, 54,  
56, 65, 75  
29, 34, 46,  
54, 62  
EQEP1_INDEX  
I/O eQEP-1 Index  
I/O eQEP-1 Strobe  
31, 39, 43, 9  
12, 16, 22,  
30, 42, 8  
1, 36, 39, 57,  
58, 67  
EQEP1_STROBE  
EQEP2_A  
30, 33, 47, 56  
24, 26  
27, 33  
I
I
eQEP-2 Input A  
eQEP-2 Input B  
11, 14, 18, 24 37, 41, 50, 79 31, 35, 41  
15, 16, 19,  
25, 33  
38, 39, 42,  
51, 78  
EQEP2_B  
32, 33, 42  
25, 26, 34  
EQEP2_INDEX  
I/O eQEP-2 Index  
I/O eQEP-2 Strobe  
26, 29, 39  
27, 28, 4  
3, 43, 56  
4, 44, 59  
1, 46  
2, 48  
1
EQEP2_STROBE  
2, 38  
Error Status Output. When used, this  
ERRORSTS  
O
I
24, 28, 29  
3, 4, 41  
1, 2, 35  
1, 2, 27  
signal requires an external pulldown.  
13, 30, 33,  
39, 4  
1, 35, 38, 56,  
59, 63  
29, 32, 46,  
48, 52  
FSIRXA_CLK  
FSIRX-A Input Clock  
23, 25, 38, 42  
FSIRXA_D0  
FSIRXA_D1  
I
I
FSIRX-A Data Input 0  
FSIRX-A Data Input 1  
12, 3, 32, 40 36, 49, 60, 64 30, 40, 49, 53  
11, 2, 31, 41 2, 37, 61, 66 31, 50, 55  
24, 32, 39  
40  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
6-3. Digital Signals (continued)  
PIN  
SIGNAL NAME  
DESCRIPTION  
FSITX-A Output Clock  
GPIO  
80 QFP  
64 QFP  
48 QFP  
TYPE  
FSITXA_CLK  
FSITXA_D0  
O
O
10, 27, 44, 7 44, 68, 69, 76  
26, 45, 6, 9 43, 73, 75, 80  
57, 63  
62, 64  
43  
48  
FSITX-A Data Output 0  
FSITX-A Data Output 1  
42, 58, 6, 74,  
FSITXA_D1  
O
I
25, 46, 5, 6, 8  
80  
47, 61, 64  
41, 47  
42, 63  
51  
47, 48  
33  
FSITX-A Time Division Multiplexed  
Clock Input  
FSITXA_TDM_CLK  
FSITXA_TDM_D0  
FSITXA_TDM_D1  
18, 8  
10, 19  
1
50, 58  
51, 76  
62  
FSITX-A Time Division Multiplexed  
Data Input  
I
34  
FSITX-A Time Division Multiplexed  
Additional Data Input  
I
41  
GPIO0  
I/O General-Purpose Input Output 0  
I/O General-Purpose Input Output 1  
I/O General-Purpose Input Output 2  
I/O General-Purpose Input Output 3  
I/O General-Purpose Input Output 4  
I/O General-Purpose Input Output 5  
I/O General-Purpose Input Output 6  
I/O General-Purpose Input Output 7  
I/O General-Purpose Input Output 8  
I/O General-Purpose Input Output 9  
I/O General-Purpose Input Output 10  
I/O General-Purpose Input Output 11  
I/O General-Purpose Input Output 12  
I/O General-Purpose Input Output 13  
I/O General-Purpose Input Output 14  
I/O General-Purpose Input Output 15  
I/O General-Purpose Input Output 16  
I/O General-Purpose Input Output 17  
I/O General-Purpose Input Output 18_X2  
I/O General-Purpose Input Output 19_X1  
I/O General-Purpose Input Output 22  
I/O General-Purpose Input Output 23  
I/O General-Purpose Input Output 24  
I/O General-Purpose Input Output 25  
I/O General-Purpose Input Output 26  
I/O General-Purpose Input Output 27  
I/O General-Purpose Input Output 28  
I/O General-Purpose Input Output 29  
I/O General-Purpose Input Output 30  
63  
62  
61  
60  
59  
74  
80  
68  
58  
75  
76  
37  
36  
35  
79  
78  
39  
40  
50  
51  
67  
65  
41  
42  
43  
44  
4
52  
51  
50  
49  
48  
61  
64  
57  
47  
62  
63  
31  
30  
29  
42  
41  
40  
39  
38  
47  
48  
43  
GPIO1  
1
GPIO2  
2
GPIO3  
3
GPIO4  
4
GPIO5  
5
GPIO6  
6
GPIO7  
7
GPIO8  
8
GPIO9  
9
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
GPIO16  
GPIO17  
GPIO18_X2  
GPIO19_X1  
GPIO22  
GPIO23  
GPIO24  
GPIO25  
GPIO26  
GPIO27  
GPIO28  
GPIO29  
GPIO30  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
22  
23  
24  
25  
26  
27  
28  
29  
30  
24  
23  
33  
34  
41  
42  
56  
54  
35  
26  
33  
34  
27  
2
1
2
1
3
1
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
48 QFP  
6-3. Digital Signals (continued)  
PIN  
SIGNAL NAME  
GPIO31  
DESCRIPTION  
GPIO  
80 QFP  
64 QFP  
TYPE  
I/O General-Purpose Input Output 31  
I/O General-Purpose Input Output 32  
I/O General-Purpose Input Output 33  
I/O General-Purpose Input Output 34  
I/O General-Purpose Input Output 35  
I/O General-Purpose Input Output 37  
I/O General-Purpose Input Output 39  
I/O General-Purpose Input Output 40  
I/O General-Purpose Input Output 41  
I/O General-Purpose Input Output 42  
I/O General-Purpose Input Output 43  
I/O General-Purpose Input Output 44  
I/O General-Purpose Input Output 45  
I/O General-Purpose Input Output 46  
I/O General-Purpose Input Output 61  
I/O General-Purpose Input Output 62  
I/O General-Purpose Input Output 63  
31  
32  
2
GPIO32  
GPIO33  
GPIO34  
GPIO35  
GPIO37  
GPIO39  
GPIO40  
GPIO41  
GPIO42  
GPIO43  
GPIO44  
GPIO45  
GPIO46  
GPIO61  
GPIO62  
GPIO63  
HIC_A0  
49  
38  
77  
48  
46  
56  
64  
66  
57  
54  
69  
73  
6
40  
32  
32  
25  
33  
34  
35  
39  
37  
46  
53  
55  
31  
29  
37  
39  
40  
41  
42  
43  
44  
45  
46  
61  
62  
63  
I
I
I
I
I
I
I
I
I
I
I
HIC Address 0  
8
58  
43, 61  
62  
47  
50  
HIC_A1  
HIC Address 1  
2, 26  
1
40  
41  
HIC_A2  
HIC Address 2  
51  
HIC_A3  
HIC Address 3  
23  
65  
54  
HIC_A4  
HIC Address 4  
27, 41  
22  
44, 66  
67  
55  
HIC_A5  
HIC Address 5  
56  
HIC_A6  
HIC Address 6  
42, 7  
43, 5  
25, 9  
57, 68  
54, 74  
42, 75  
63  
57  
43  
47  
HIC_A7  
HIC Address 7  
61  
HIC_BASESEL0  
HIC_BASESEL1  
HIC_BASESEL2  
HIC_D0  
HIC_D1  
HIC_D2  
HIC_D3  
HIC_D4  
HIC_D5  
HIC_D6  
HIC_D7  
HIC_D8  
HIC_D9  
HIC Base Address Range Select 0  
HIC Base Address Range Select 1  
HIC Base Address Range Select 2  
62  
52  
42  
38  
25  
26  
4
26, 33  
16, 27  
17, 42  
24, 43  
3, 5  
59  
48  
I/O HIC Data 0  
I/O HIC Data 1  
I/O HIC Data 2  
I/O HIC Data 3  
I/O HIC Data 4  
I/O HIC Data 5  
I/O HIC Data 6  
I/O HIC Data 7  
I/O HIC Data 8  
I/O HIC Data 9  
38, 43  
39, 44  
40, 57  
41, 54  
60, 74  
35, 64, 69  
37, 73  
56, 69  
1, 58  
61, 77  
32  
33  
34  
35  
27  
39, 47  
23  
49, 61  
29, 53  
31  
13, 40, 44  
11, 45  
39, 44  
30, 8  
46  
47  
2, 34  
50  
40  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
6-3. Digital Signals (continued)  
PIN  
SIGNAL NAME  
DESCRIPTION  
GPIO  
80 QFP  
64 QFP  
48 QFP  
TYPE  
HIC_D10  
HIC_D11  
HIC_D12  
HIC_D13  
HIC_D14  
HIC_D15  
HIC_INT  
I/O HIC Data 10  
I/O HIC Data 11  
I/O HIC Data 12  
I/O HIC Data 13  
I/O HIC Data 14  
I/O HIC Data 15  
1, 31  
13, 23  
15, 41  
12, 22  
6, 7  
2, 62  
35, 65  
66, 78  
36, 67  
68, 80  
74, 79  
36, 49, 50  
37, 51  
64, 77, 80  
3
51  
29, 54  
55  
41  
23  
30, 56  
57, 64  
61  
24  
43, 48  
47  
14, 5  
O
I
HIC Device Interrupt  
12, 18, 32  
11, 19  
34, 40, 6  
29  
30, 40, 41  
31, 42  
53, 64  
1
24, 32, 33  
34  
HIC_NBE0  
HIC_NBE1  
HIC_NCS  
HIC_NOE  
HIC_NRDY  
HIC_NWE  
HIC Byte Enable 0  
HIC Byte Enable 1  
HIC Chip Select  
HIC Output Enable  
HIC Ready  
I
48  
I
1
O
O
I
28, 3  
4, 60  
2, 49  
2, 39  
29  
37, 9  
46, 75  
37, 62  
39, 48, 63  
HIC Data Write Enable  
10, 35, 4, 46 48, 59, 6, 76  
31, 38  
1, 18, 27, 33,  
37, 43, 8  
38, 44, 46,  
32, 37, 41,  
47, 51  
I2CA_SCL  
I2CA_SDA  
I/OD I2C-A Open-Drain Bidirectional Clock  
I/OD I2C-A Open-Drain Bidirectional Data  
25, 29, 33, 41  
31, 32, 34, 42  
50, 54, 58, 62  
10, 19, 26,  
32, 35, 42  
43, 48, 49,  
39, 40, 42,  
52, 63  
51, 57, 63, 76  
I2CB_SCL  
I2CB_SDA  
I/OD I2C-B Open-Drain Bidirectional Clock 15, 29, 3, 9  
I/OD I2C-B Open-Drain Bidirectional Data  
3, 60, 75, 78  
1, 49, 62  
2, 50  
1, 39  
2, 40  
14, 2, 28, 34 4, 61, 77, 79  
23, 29, 33,  
35, 42  
3, 38, 48, 57,  
65  
LINA_RX  
LINA_TX  
LINB_RX  
LINB_TX  
I
LIN-A Receive  
LIN-A Transmit  
LIN-B Receive  
LIN-B Transmit  
1, 32, 39, 54  
2, 37, 40, 56  
1, 25, 31  
2, 29, 32  
23, 34  
22, 28, 32,  
37, 46  
4, 46, 49, 6,  
67  
O
I
11, 13, 15, 19, 35, 37, 51,  
29, 31, 42,  
54, 55, 62  
23, 41, 9  
65, 66, 75, 78  
10, 12, 14,  
36, 41, 50,  
30, 35, 41,  
53, 56, 63  
O
24, 27, 33  
18, 22, 24, 40 64, 67, 76, 79  
OUTPUTXBAR1  
OUTPUTXBAR2  
OUTPUTXBAR3  
OUTPUTXBAR4  
OUTPUTXBAR5  
OUTPUTXBAR6  
OUTPUTXBAR7  
OUTPUTXBAR8  
O
O
O
O
O
O
O
O
Output X-BAR Output 1  
Output X-BAR Output 2  
Output X-BAR Output 3  
Output X-BAR Output 4  
Output X-BAR Output 5  
Output X-BAR Output 6  
Output X-BAR Output 7  
Output X-BAR Output 8  
2, 24, 34  
25, 3, 37  
41, 61, 77  
42, 46, 60  
35, 50  
37, 49  
48, 61  
32, 64  
2, 57  
1, 62  
31, 33  
34  
27, 40  
29, 39  
38, 47  
25, 48  
2, 43  
1
14, 26, 4, 5 43, 59, 74, 79  
15, 27, 33, 6 38, 44, 78, 80  
28, 42, 7  
29, 43, 9  
4, 57, 68  
3, 54, 75  
11, 16, 30, 44 1, 37, 39, 69  
26  
17, 31, 45  
2, 40, 73  
PMBus-A Open-Drain Bidirectional  
Alert  
13, 19, 27,  
37, 43  
35, 44, 46,  
51, 54  
PMBUSA_ALERT  
PMBUSA_CTL  
I/OD  
I/O  
29, 37, 42  
30, 39, 41  
23, 29, 34  
24, 31, 33  
PMBus-A Control Signal - Slave  
Input/Master Output  
12, 18, 26,  
35, 42  
36, 43, 48,  
50, 57  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
6-3. Digital Signals (continued)  
PIN  
SIGNAL NAME  
DESCRIPTION  
GPIO  
80 QFP  
64 QFP  
48 QFP  
26, 27, 31, 39  
40  
TYPE  
PMBus-A Open-Drain Bidirectional  
Clock  
15, 16, 24, 3,  
35, 41  
39, 41, 48,  
60, 66, 78  
33, 35, 39,  
49, 55  
PMBUSA_SCL  
I/OD  
PMBus-A Open-Drain Bidirectional  
Data  
14, 17, 2, 25,  
34, 40  
40, 42, 61,  
64, 77, 79  
PMBUSA_SDA  
SCIA_RX  
I/OD  
34, 50, 53  
17, 25, 28, 3, 4, 40, 42, 48, 2, 34, 39, 49,  
35, 9 60, 75 62  
I
SCI-A Receive Data  
SCI-A Transmit Data  
2, 31, 39  
16, 2, 24, 29, 3, 39, 41, 46, 1, 33, 35, 37, 1, 26, 27, 29,  
SCIA_TX  
O
37, 8  
58, 61  
47, 50  
40  
SPIA_CLK  
SPIA_SIMO  
SPIA_SOMI  
SPIA_STE  
I/O SPI-A Clock  
12, 18, 3, 9 36, 50, 60, 75 30, 41, 49, 62  
11, 16, 2, 8 37, 39, 58, 61 31, 33, 47, 50  
1, 10, 13, 17 35, 40, 62, 76 29, 34, 51, 63  
24, 33, 39  
26, 40  
I/O SPI-A Slave In, Master Out (SIMO)  
I/O SPI-A Slave Out, Master In (SOMI)  
I/O SPI-A Slave Transmit Enable (STE)  
23, 41  
11, 19, 5  
37, 51, 63, 74 31, 42, 52, 61  
34, 42, 47  
14, 22, 26,  
28, 32, 4  
4, 43, 49, 59,  
2, 40, 48, 56  
67, 79  
SPIB_CLK  
SPIB_SIMO  
SPIB_SOMI  
I/O SPI-B Clock  
2, 32, 38  
27, 43  
I/O SPI-B Slave In, Master Out (SIMO)  
I/O SPI-B Slave Out, Master In (SOMI)  
24, 30, 40, 7 1, 41, 64, 68  
35, 53, 57  
33, 55, 64  
16, 25, 31,  
41, 6  
2, 39, 42, 66,  
80  
26, 48  
15, 23, 27,  
29, 33  
3, 38, 44, 65,  
78  
SPIB_STE  
SYNCOUT  
I/O SPI-B Slave Transmit Enable (STE)  
1, 32, 54  
46, 64  
1, 25  
48  
External ePWM Synchronization  
O
39, 6  
56, 80  
Pulse  
JTAG Test Data Input (TDI) - TDI is  
the default mux selection for the pin.  
The internal pullup is disabled by  
TDI  
I
default. The internal pullup should be  
enabled or an external pullup added  
on the board if this pin is used as  
JTAG TDI to avoid a floating input.  
35  
48  
39  
31  
JTAG Test Data Output (TDO) - TDO  
is the default mux selection for the  
pin. The internal pullup is disabled by  
default. The TDO function will tristate  
when there is no JTAG activity,  
TDO  
O
37  
46  
37  
29  
leaving this pin floating; the internal  
pullup should be enabled or an  
external pullup added on the board to  
avoid a floating GPIO input.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
6-3. Digital Signals (continued)  
PIN  
SIGNAL NAME  
DESCRIPTION  
GPIO  
80 QFP  
64 QFP  
48 QFP  
TYPE  
Crystal oscillator input or single-  
ended clock input. The device  
initialization software must configure  
this pin before the crystal oscillator is  
enabled. To use this oscillator, a  
quartz crystal circuit must be  
connected to X1 and X2. This pin can  
also be used to feed a single-ended  
3.3-V level clock. For more  
X1  
I
19  
51  
42  
34  
information about the ALT  
functionality, see the table that is in  
the External Oscillator (XTAL) section  
of the System Control chapter in the  
TMS320F28002x Real-Time  
Microcontrollers Technical Reference  
Manual.  
Crystal oscillator output. For more  
information about the ALT  
functionality, see the table that is in  
the External Oscillator (XTAL) section  
of the System Control chapter in the  
TMS320F28002x Real-Time  
Microcontrollers Technical Reference  
Manual.  
X2  
O
O
18  
50  
41  
33  
External Clock Output. This pin  
outputs a divided-down version of a  
chosen clock signal from within the  
device.  
XCLKOUT  
16, 18  
39, 50  
33, 41  
26, 33  
6.3.3 Power and Ground  
6-4. Power and Ground  
PIN  
SIGNAL NAME  
DESCRIPTION  
GPIO  
80 QFP  
64 QFP  
48 QFP  
TYPE  
1.2-V Digital Logic Power Pins. TI  
recommends placing a decoupling  
capacitor near each VDD pin with a  
minimum total capacitance of  
VDD  
31, 53, 71, 8 27, 4, 44, 59  
36, 45  
approximately 10 µF. It is also  
recommended that all VDD pins be  
externally connected to each other.  
3.3-V Analog Power Pins. Place a  
minimum 2.2-µF decoupling capacitor  
on each pin.  
VDDA  
26  
22  
18  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
48 QFP  
6-4. Power and Ground (continued)  
PIN  
SIGNAL NAME  
DESCRIPTION  
GPIO  
80 QFP  
64 QFP  
TYPE  
3.3-V Digital I/O Power Pins. Place a  
minimum 0.1-µF decoupling capacitor  
on each pin. It's recommended to  
place an additional bulk cap of  
around 20uF shared by all the pins.  
However, the exact value of this bulk  
cap will depend on the regulator  
being used.  
VDDIO  
32, 52, 7, 72  
28, 43, 60  
35, 46  
VSS  
Digital Ground  
Analog Ground  
30, 55, 70, 9 26, 45, 5, 58  
22, 37, 44  
17  
VSSA  
25  
21  
6.3.4 Test, JTAG, and Reset  
6-5. Test, JTAG, and Reset  
PIN  
SIGNAL NAME  
TYPE  
DESCRIPTION  
GPIO  
80 QFP  
64 QFP  
48 QFP  
Flash test pin 1. Reserved for TI.  
Must be left unconnected.  
FLT1  
I/O  
34  
Flash test pin 2. Reserved for TI.  
Must be left unconnected.  
FLT2  
TCK  
I/O  
I
33  
45  
JTAG test clock with internal pullup.  
36  
38  
28  
30  
JTAG test-mode select (TMS) with  
internal pullup. This serial control  
input is clocked into the TAP  
controller on the rising edge of TCK.  
This device does not have a TRSTn  
pin. An external pullup resistor  
(recommended 2.2 kΩ) on the TMS  
pin to VDDIO should be placed on  
the board to keep JTAG in reset  
during normal operation.  
TMS  
I/O  
47  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
6-5. Test, JTAG, and Reset (continued)  
PIN  
SIGNAL NAME  
DESCRIPTION  
GPIO  
80 QFP  
64 QFP  
48 QFP  
TYPE  
Device Reset (in) and Watchdog  
Reset (out). During a power-on  
condition, this pin is driven low by the  
device. An external circuit may also  
drive this pin to assert a device reset.  
This pin is also driven low by the  
MCU when a watchdog reset occurs.  
During watchdog reset, the XRSn pin  
is driven low for the watchdog reset  
duration of 512 OSCCLK cycles. A  
resistor between 2.2 kΩand 10 kΩ  
should be placed between XRSn and  
VDDIO. If a capacitor is placed  
between XRSn and VSS for noise  
filtering, it should be 100 nF or  
XRSn  
I/OD  
5
3
3
smaller. These values will allow the  
watchdog to properly drive the XRSn  
pin to VOL within 512 OSCCLK  
cycles when the watchdog reset is  
asserted. This pin is an open-drain  
output with an internal pullup. If this  
pin is driven by an external device, it  
should be done using an open-drain  
device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
6.4 Pin Multiplexing  
6.4.1 GPIO Muxed Pins  
6-6 lists the GPIO muxed pins. The default mode for each GPIO pin is the GPIO function, except GPIO35 and  
GPIO37, which default to TDI and TDO, respectively. Secondary functions can be selected by setting both the  
GPyGMUXn.GPIOz and GPyMUXn.GPIOz register bits. The GPyGMUXn register should be configured before  
the GPyMUXn to avoid transient pulses on GPIOs from alternate mux selections. Columns that are not shown  
and blank cells are reserved GPIO Mux settings. GPIO ALT functions cannot be configured with the GPyMUXn  
and GPyGMUXn registers. These are special functions that need to be configured from the module.  
Note  
GPIO20, GPIO21, GPIO36 and GPIO38 do not exist on this device. GPIO61 to GPIO63 exist but are  
not pinned out on any packages. Boot ROM enables pullups on GPIO61 to GPIO63. For more details,  
see 6.5.  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
6.4.1.1 GPIO Muxed Pins Table  
6-6. GPIO Muxed Pins  
0, 4, 8, 12  
GPIO0  
1
2
3
5
6
7
9
10  
11  
13  
14  
15  
ALT  
CLB_OUTPUTX  
BAR8  
EPWM1_A  
I2CA_SDA  
SPIA_STE  
FSIRXA_CLK  
HIC_BASESEL1  
CLB_OUTPUTX  
BAR7  
FSITXA_TDM_D  
1
GPIO1  
EPWM1_B  
I2CA_SCL  
SPIA_SOMI  
HIC_A2  
HIC_D10  
GPIO2  
GPIO3  
EPWM2_A  
EPWM2_B  
OUTPUTXBAR1 PMBUSA_SDA  
SPIA_SIMO  
SPIA_CLK  
SCIA_TX  
SCIA_RX  
FSIRXA_D1  
FSIRXA_D0  
I2CB_SDA  
I2CB_SCL  
HIC_A1  
CANA_TX  
CANA_RX  
HIC_D9  
HIC_D4  
OUTPUTXBAR2  
OUTPUTXBAR4  
OUTPUTXBAR2  
OUTPUTXBAR3  
PMBUSA_SCL  
CANA_TX  
HIC_NOE  
EQEP2_STROB  
E
CLB_OUTPUTX  
BAR6  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
EPWM3_A  
EPWM3_B  
EPWM4_A  
EPWM4_B  
SPIB_CLK  
SPIA_STE  
SPIB_SOMI  
SPIB_SIMO  
FSIRXA_CLK  
HIC_BASESEL2  
HIC_A7  
HIC_NWE  
HIC_D15  
HIC_D14  
HIC_D14  
CLB_OUTPUTX  
BAR5  
OUTPUTXBAR3  
SYNCOUT  
CANA_RX  
FSITXA_D1  
FSITXA_D0  
FSITXA_CLK  
I2CA_SCL  
HIC_D4  
CLB_OUTPUTX  
BAR8  
EQEP1_A  
EQEP1_B  
FSITXA_D1  
HIC_NBE1  
HIC_A6  
CLB_OUTPUTX  
BAR2  
OUTPUTXBAR5  
ADCSOCAO  
EQEP1_STROB  
E
CLB_OUTPUTX  
BAR5  
FSITXA_TDM_C  
LK  
GPIO8  
EPWM5_A  
EPWM5_B  
EPWM6_A  
EPWM6_B  
EPWM7_A  
SCIA_TX  
SCIA_RX  
SPIA_SIMO  
SPIA_CLK  
FSITXA_D1  
FSITXA_D0  
FSITXA_CLK  
LINB_RX  
HIC_A0  
HIC_BASESEL0  
HIC_NWE  
HIC_D8  
GPIO9  
OUTPUTXBAR6 EQEP1_INDEX  
LINB_RX  
LINB_TX  
I2CB_SCL  
HIC_NRDY  
FSITXA_TDM_D  
0
GPIO10  
GPIO11  
GPIO12  
ADCSOCBO  
EQEP1_A  
EQEP1_B  
SPIA_SOMI  
SPIA_STE  
I2CA_SDA  
FSIRXA_D1  
FSIRXA_D0  
OUTPUTXBAR7  
EQEP2_A  
SPIA_CLK  
SPIA_SIMO  
CANA_RX  
HIC_D6  
HIC_NBE0  
HIC_INT  
EQEP1_STROB  
E
PMBUSA_CTL  
LINB_TX  
HIC_D13  
PMBUSA_ALER  
T
GPIO13  
GPIO14  
GPIO15  
EPWM7_B  
EQEP1_INDEX  
I2CB_SDA  
FSIRXA_CLK  
SPIB_CLK  
SPIB_STE  
LINB_RX  
EQEP2_A  
EQEP2_B  
SPIA_SOMI  
LINB_TX  
CANA_TX  
EPWM3_A  
EPWM3_B  
EQEP2_B  
HIC_D11  
HIC_D5  
HIC_D15  
HIC_D12  
CLB_OUTPUTX  
BAR7  
OUTPUTXBAR3 PMBUSA_SDA  
CLB_OUTPUTX  
BAR6  
I2CB_SCL  
OUTPUTXBAR4  
PMBUSA_SCL  
LINB_RX  
EQEP1_STROB  
E
GPIO16  
SPIA_SIMO  
SPIA_SOMI  
SPIA_CLK  
OUTPUTXBAR7  
OUTPUTXBAR8  
CANA_RX  
EPWM5_A  
EPWM5_B  
EPWM6_A  
SCIA_TX  
SCIA_RX  
I2CA_SCL  
PMBUSA_SCL  
PMBUSA_SDA  
PMBUSA_CTL  
XCLKOUT  
CANA_TX  
XCLKOUT  
SPIB_SOMI  
HIC_D1  
HIC_D2  
HIC_INT  
GPIO17  
EQEP1_INDEX  
EQEP2_A  
FSITXA_TDM_C  
LK  
GPIO18_X2  
LINB_TX  
LINB_RX  
HIC_A5  
X2  
X1  
PMBUSA_ALER CLB_OUTPUTX  
FSITXA_TDM_D  
0
GPIO19_X1  
GPIO22  
SPIA_STE  
CANA_TX  
EPWM6_B  
I2CA_SDA  
SPIB_CLK  
EQEP2_B  
LINA_TX  
HIC_NBE0  
HIC_D13  
T
BAR1  
EQEP1_STROB  
E
CLB_OUTPUTX  
BAR1  
LINB_TX  
EPWM4_A  
EPWM4_B  
GPIO23  
GPIO24  
GPIO25  
GPIO26  
EQEP1_INDEX  
OUTPUTXBAR1  
OUTPUTXBAR2  
SPIB_STE  
SPIB_SIMO  
SPIB_SOMI  
SPIB_CLK  
LINA_RX  
LINB_TX  
LINB_RX  
SCIA_TX  
SCIA_RX  
I2CA_SDA  
HIC_A3  
HIC_D11  
HIC_D3  
EQEP2_A  
EQEP2_B  
PMBUSA_SCL  
PMBUSA_SDA  
PMBUSA_CTL  
ERRORSTS  
EQEP1_A  
FSITXA_D1  
FSITXA_D0  
HIC_BASESEL0  
HIC_D0  
OUTPUTXBAR3 EQEP2_INDEX  
OUTPUTXBAR3  
HIC_A1  
HIC_A4  
EQEP2_STROB  
PMBUSA_ALER  
T
GPIO27  
OUTPUTXBAR4  
E
OUTPUTXBAR4  
SPIB_STE  
FSITXA_CLK  
I2CA_SCL  
HIC_D1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1  
TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
6-6. GPIO Muxed Pins (continued)  
0, 4, 8, 12  
GPIO28  
1
2
3
5
6
7
9
10  
11  
13  
14  
15  
ALT  
EQEP2_STROB  
E
SCIA_RX  
SCIA_TX  
CANA_RX  
EPWM7_A  
EPWM7_B  
SPIB_SIMO  
OUTPUTXBAR5  
OUTPUTXBAR6  
OUTPUTXBAR7  
EQEP1_A  
EQEP1_B  
LINA_TX  
LINA_RX  
SPIB_CLK  
SPIB_STE  
EPWM1_A  
EPWM1_B  
ERRORSTS  
ERRORSTS  
I2CB_SDA  
I2CB_SCL  
HIC_D8  
HIC_NOE  
HIC_NCS  
GPIO29  
EQEP2_INDEX  
FSIRXA_CLK  
EQEP1_STROB  
E
GPIO30  
GPIO31  
GPIO32  
GPIO33  
GPIO34  
GPIO35  
CANA_TX  
I2CA_SDA  
SPIB_SOMI  
SPIB_CLK  
SPIB_STE  
OUTPUTXBAR8 EQEP1_INDEX  
LINA_TX  
FSIRXA_D1  
FSIRXA_D0  
FSIRXA_CLK  
HIC_D10  
CANA_TX  
CANA_RX  
ADCSOCBO  
ADCSOCAO  
HIC_NBE1  
HIC_INT  
HIC_D0  
HIC_D9  
TDI  
I2CA_SCL  
OUTPUTXBAR4  
LINA_RX  
EQEP2_B  
OUTPUTXBAR1  
SCIA_RX  
PMBUSA_SDA  
PMBUSA_SCL  
I2CB_SDA  
HIC_NWE  
I2CA_SDA  
I2CA_SCL  
CANA_RX  
SCIA_TX  
LINA_RX  
LINA_TX  
EQEP1_A  
EQEP1_B  
PMBUSA_CTL  
PMBUSA_ALER  
T
GPIO37  
GPIO39  
OUTPUTXBAR2  
CANA_TX  
HIC_NRDY  
TDO  
CLB_OUTPUTX  
BAR2  
FSIRXA_CLK  
EQEP2_INDEX  
SYNCOUT  
HIC_A4  
EQEP1_INDEX  
HIC_D7  
GPIO40  
GPIO41  
SPIB_SIMO  
EPWM2_B  
EPWM2_A  
PMBUSA_SDA  
PMBUSA_SCL  
FSIRXA_D0  
FSIRXA_D1  
EQEP1_A  
EQEP1_B  
LINB_TX  
LINB_RX  
HIC_NBE1  
HIC_D5  
SPIB_SOMI  
HIC_D12  
EQEP1_STROB CLB_OUTPUTX  
GPIO42  
GPIO43  
GPIO44  
GPIO45  
LINA_RX  
OUTPUTXBAR5  
OUTPUTXBAR6  
OUTPUTXBAR7  
PMBUSA_CTL  
I2CA_SDA  
I2CA_SCL  
HIC_D2  
HIC_D3  
HIC_A6  
HIC_A7  
HIC_D5  
E
BAR3  
PMBUSA_ALER  
T
CLB_OUTPUTX  
BAR4  
EQEP1_INDEX  
CLB_OUTPUTX  
BAR3  
EQEP1_A  
FSITXA_CLK  
HIC_D7  
CLB_OUTPUTX  
BAR4  
OUTPUTXBAR8  
LINA_TX  
FSITXA_D0  
FSITXA_D1  
HIC_D6  
GPIO46  
GPIO61  
GPIO62  
GPIO63  
AIO224  
AIO225  
AIO226  
AIO227  
AIO228  
AIO230  
AIO231  
AIO232  
AIO233  
AIO237  
AIO238  
AIO239  
AIO241  
AIO242  
HIC_NWE  
HIC_A3  
HIC_NWE  
HIC_A1  
HIC_NBE0  
HIC_A0  
HIC_BASESEL2  
HIC_BASESEL1  
HIC_BASESEL0  
HIC_A4  
HIC_A6  
HIC_NCS  
HIC_A5  
HIC_NBE1  
HIC_A2  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1  
TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
6-6. GPIO Muxed Pins (continued)  
0, 4, 8, 12  
AIO244  
1
2
3
5
6
7
9
10  
11  
13  
14  
15  
ALT  
HIC_A7  
HIC_NOE  
AIO245  
Note  
The analog pins that contain AIOs are in analog mode by default. AIO mode is enabled by configuring the AMSEL option of GPIOH for the  
analog pin. In addition, if using the HIC mux options on the AIO pins, an external pullup is required.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1  
TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
6.4.2 Digital Inputs on ADC Pins (AIOs)  
GPIOs on port H (GPIO224GPIO245) are multiplexed with analog pins. These are also referred to as AIOs.  
These pins can only function in input mode. By default, these pins will function as analog pins and the GPIOs  
are in a high-Z state. The GPHAMSEL register is used to configure these pins for digital or analog operation.  
Note  
If digital signals with sharp edges (high dv/dt) are connected to the AIOs, cross-talk can occur with  
adjacent analog signals. The user should therefore limit the edge rate of signals connected to AIOs if  
adjacent channels are being used for analog functions.  
6.4.3 GPIO Input X-BAR  
The Input X-BAR is used to route signals from a GPIO to many different IP blocks such as the ADCs, eCAPs,  
ePWMs, and external interrupts (see 6-4). 6-7 lists the input X-BAR destinations. For details on configuring  
the Input X-BAR, see the Crossbar (X-BAR) chapter of the TMS320F28002x Real-Time Microcontrollers  
Technical Reference Manual.  
GPIO0  
Asynchronous  
Synchronous  
Sync. + Qual.  
Input X-BAR  
Other Sources  
127:16  
GPIOx  
eCAP  
Modules  
15:0  
INPUT[16:1]  
DCCx Clock Source-1  
DCCx Clock Source-0  
TZ1,TRIP1  
TZ2,TRIP2  
TZ3,TRIP3  
TRIP6  
XINT1  
TRIP4  
TRIP5  
XINT2  
XINT3  
XINT4  
XINT5  
ePWM  
Modules  
CPU PIE  
TRIP7  
TRIP8  
TRIP9  
TRIP10  
TRIP11  
TRIP12  
ePWM  
X-BAR  
Other  
Sources  
ADCEXTSOC  
Other Sources  
ADC  
EXTSYNCIN1  
EXTSYNCIN2  
ePWM and eCAP  
Sync Scheme  
Output X-BAR  
6-4. Input X-BAR  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
6-7. Input X-BAR Destinations  
INPUT  
ECAP / HRCAP  
EPWM X-BAR  
CLB X-BAR  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes Yes Yes Yes Yes Yes  
Yes Yes Yes Yes Yes Yes  
Yes Yes Yes Yes Yes Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
OUTPUT X-BAR  
CPU XINT  
Yes  
XINT1 XINT2  
XINT3  
XINT4 XINT5  
TZ1, TZ2, TZ3,  
TRIP1 TRIP2 TRIP3  
EPWM TRIP  
TRIP6  
ADC START OF  
CONVERSION  
ADCEX  
TSOC  
EPWM / ECAP  
SYNC  
EXTSY EXTSY  
NCIN1 NCIN2  
DCCx  
CLK1 CLK0  
6.4.4 GPIO Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR  
The Output X-BAR has eight outputs that can be selected on the GPIO mux as OUTPUTXBARx. The CLB X-  
BAR has eight outputs that are connected to the CLB global mux as AUXSIGx. The CLB Output X-BAR has  
eight outputs that can be selected on the GPIO mux as CLB_OUTPUTXBARx. The ePWM X-BAR has eight  
outputs that are connected to the TRIPx inputs of the ePWM. The sources for the Output X-BAR, CLB X-BAR,  
CLB Output X-BAR, and ePWM X-BAR are shown in 6-5. For details on the Output X-BAR, CLB X-BAR, CLB  
Output X-BAR, and ePWM X-BAR, see the Crossbar (X-BAR) chapter of the TMS320F28002x Real-Time  
Microcontrollers Technical Reference Manual.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
CTRIPOUTH  
CTRIPOUTL  
(Output X-BAR only)  
CMPSSx  
CTRIPH  
CTRIPL  
(ePWM X-BAR only)  
ePWM and eCAP  
EXTSYNCOUT  
Sync Chain  
AUXSIG1  
AUXSIG2  
AUXSIG3  
AUXSIG4  
AUXSIG5  
AUXSIG6  
AUXSIG7  
AUXSIG8  
CLB  
Global  
Mux  
ADCSOCA0  
Select Circuit  
CLB  
X-BAR  
ADCSOCA0  
ADCSOCB0  
Select Circuit  
ADCSOCB0  
ECAPxOUT  
TRIP4  
TRIP5  
eCAPx  
ADCx  
EVT1  
EVT2  
EVT3  
EVT4  
All  
ePWM  
Modules  
TRIP7  
TRIP8  
TRIP9  
TRIP10  
TRIP11  
TRIP12  
EPWM  
X-BAR  
INPUT1-6  
INPUT7-14  
(ePWM X-BAR only)  
Input X-BAR  
eQEPx  
OUTPUTXBAR1  
OUTPUTXBAR2  
OUTPUTXBAR3  
OUTPUTXBAR4  
OUTPUTXBAR5  
OUTPUTXBAR6  
OUTPUTXBAR7  
OUTPUTXBAR8  
Output  
X-BAR  
GPIO  
Mux  
X-BAR Flags  
(shared)  
CLB_OUTPUTXBAR1  
CLB_OUTPUTXBAR2  
CLB_OUTPUTXBAR3  
CLB_OUTPUTXBAR4  
CLB_OUTPUTXBAR5  
CLB_OUTPUTXBAR6  
CLB_OUTPUTXBAR7  
CLB_OUTPUTXBAR8  
CLB  
Output  
X-BAR  
CLB Input X-BAR  
CLB TILEx  
6-5. Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR Sources  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
6.5 Pins With Internal Pullup and Pulldown  
Some pins on the device have internal pullups or pulldowns. 6-8 lists the pull direction and when it is active.  
The pullups on GPIO pins are disabled by default and can be enabled through software. To avoid any floating  
unbonded inputs, the Boot ROM will enable internal pullups on GPIO pins that are not bonded out in a particular  
package. Other pins noted in 6-8 with pullups and pulldowns are always on and cannot be disabled.  
6-8. Pins With Internal Pullup and Pulldown  
RESET  
(XRSn = 0)  
PIN  
DEVICE BOOT  
APPLICATION  
GPIOx  
Pullup disabled  
Pullup disabled(1)  
Application defined  
Application defined  
Application defined  
GPIO35/TDI  
GPIO37/TDO  
TCK  
Pullup disabled  
Pullup disabled  
Pullup active  
Pullup active  
Pullup active  
TMS  
XRSn  
Other pins (including AIOs)  
No pullup or pulldown present  
(1) Pins not bonded out in a given package will have the internal pullups enabled by the Boot ROM.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
6.6 Connections for Unused Pins  
For applications that do not need to use all functions of the device, 6-9 lists acceptable conditioning for any  
unused pins. When multiple options are listed in 6-9, any option is acceptable. Pins not listed in 6-9 must  
be connected according to 6.  
6-9. Connections for Unused Pins  
SIGNAL NAME  
ACCEPTABLE PRACTICE  
ANALOG  
VREFHI  
VREFLO  
Tie to VDDA (applies only if ADC is not used in the application)  
Tie to VSSA  
No Connect  
Tie to VSSA  
Analog input pins  
Tie to VSSA through resistor  
DIGITAL  
No Connect  
FLT1 (Flash Test pin 1)  
FLT2 (Flash Test pin 2)  
Tie to VSS through 4.7-kΩor larger resistor  
No Connect  
Tie to VSS through 4.7-kΩor larger resistor  
No connection (input mode with internal pullup enabled)  
No connection (output mode with internal pullup disabled)  
GPIOx  
Pullup or pulldown resistor (any value resistor, input mode, and with internal pullup disabled)  
When TDI mux option is selected (default), the GPIO is in Input mode.  
Internal pullup enabled  
External pullup resistor  
GPIO35/TDI  
When TDO mux option is selected (default), the GPIO is in Output mode only during JTAG activity;  
otherwise, it is in a tri-state condition. The pin must be biased to avoid extra current on the input buffer.  
GPIO37/TDO  
Internal pullup enabled  
External pullup resistor  
No Connect  
TCK  
TMS  
Pullup resistor  
Pullup resistor  
Turn XTAL off and:  
Input mode with internal pullup enabled  
GPIO19/X1  
GPIO18/X2  
Input mode with external pullup or pulldown resistor  
Output mode with internal pullup disabled  
Turn XTAL off and:  
Input mode with internal pullup enabled  
Input mode with external pullup or pulldown resistor  
Output mode with internal pullup disabled  
POWER AND GROUND  
VDD  
All VDD pins must be connected per 6.3. Pins should not be used to bias any external circuits.  
If a dedicated analog supply is not used, tie to VDDIO.  
VDDA  
VDDIO  
VSS  
All VDDIO pins must be connected per 6.3.  
All VSS pins must be connected to board ground.  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
6-9. Connections for Unused Pins (continued)  
ACCEPTABLE PRACTICE  
SIGNAL NAME  
VSSA  
If an analog ground is not used, tie to VSS.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7 Specifications  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These are stress ratings only and functional operation of the device beyond the Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect  
device reliability. All voltage values are with respect to VSS, unless otherwise noted.  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.3  
0.3  
0.3  
0.3  
MAX  
4.6  
UNIT  
VDDIO with respect to VSS  
VDDA with respect to VSSA  
VIN (3.3 V)  
Supply voltage  
V
4.6  
Input voltage  
4.6  
V
V
Output voltage  
VO  
4.6  
Digital/analog input (per pin), IIK (VIN < VSS/VSSA or VIN  
VDDIO/VDDA)(2)  
>
20  
20  
20  
20  
Input clamp current  
mA  
Total for all inputs, IIKTOTAL  
(VIN < VSS/VSSA or VIN > VDDIO/VDDA)  
Output current  
Digital output (per pin), IOUT  
20  
125  
150  
150  
mA  
°C  
°C  
°C  
20  
40  
40  
65  
Free-Air temperature  
Operating junction temperature  
Storage temperature(1)  
TA  
TJ  
Tstg  
(1) Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device  
life. For additional information, see the Semiconductor and IC Package Thermal Metrics Application Report.  
(2) Continuous clamp current per pin is ±2 mA. Do not operate in this condition continuously as VDDIO/VDDA voltage may internally rise and  
impact other electrical specifications.  
7.2 ESD Ratings Commercial  
VALUE  
UNIT  
F280025, F280025C, F280023, F280023C in 80-pin PN package  
Human-body model (HBM), per ANSI/ESDA/JEDEC  
±2000  
±500  
JS-001(1)  
Electrostatic discharge  
(ESD)  
V(ESD)  
V
Charged-device model (CDM), per JEDEC specification  
JESD22-C101 or ANSI/ESDA/JEDEC JS-002(2)  
F280025, F280025C, F280023, F280023C in 64-pin PM package  
Human-body model (HBM), per ANSI/ESDA/JEDEC  
±2000  
±500  
JS-001(1)  
Electrostatic discharge  
(ESD)  
V(ESD)  
V
V
Charged-device model (CDM), per JEDEC specification  
JESD22-C101 or ANSI/ESDA/JEDEC JS-002(2)  
F280025, F280025C, F280023, F280023C, F280021 in 48-pin PT package  
Human-body model (HBM), per ANSI/ESDA/JEDEC  
±2000  
±500  
JS-001(1)  
Electrostatic discharge  
(ESD)  
V(ESD)  
Charged-device model (CDM), per JEDEC specification  
JESD22-C101 or ANSI/ESDA/JEDEC JS-002(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.3 ESD Ratings Automotive  
VALUE  
UNIT  
F280025-Q1, F280025C-Q1, F280023-Q1 in 80-pin PN package  
Human body model (HBM), per  
All pins  
All pins  
±2000  
AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM),  
per AEC Q100-011  
±500  
±750  
V
Corner pins on 80-pin PN:  
1, 20, 21, 40, 41, 60, 61, 80  
F280025-Q1, F280025C-Q1, F280023-Q1 in 64-pin PM package  
Human body model (HBM), per  
All pins  
All pins  
±2000  
AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM),  
per AEC Q100-011  
±500  
±750  
V
V
Corner pins on 64-pin PM:  
1, 16, 17, 32, 33, 48, 49, 64  
F280025-Q1, F280025C-Q1, F280023-Q1, F280021-Q1 in 48-pin PT package  
Human body model (HBM), per  
AEC Q100-002(1)  
All pins  
All pins  
±2000  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM),  
per AEC Q100-011  
±500  
±750  
Corner pins on 48-pin PT:  
1, 12, 13, 24, 25, 36, 37, 48  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.4 Recommended Operating Conditions  
MIN  
NOM  
3.3  
3.3  
0
MAX UNIT  
Internal BOR enabled(3)  
Internal BOR disabled  
VBOR-VDDIO(MAX) + VBOR-GB  
3.63  
V
3.63  
(2)  
Device supply voltage, VDDIO and  
VDDA  
2.8  
Device ground, VSS  
Analog ground, VSSA  
V
V
0
Supply ramp rate of VDDIO,  
VDDA with respect to VSS.(4)  
SRSUPPLY  
20  
100 mV/us  
10 ms  
VDDIO supply ramp time from  
1 V to VBOR-VDDIO(MAX)  
tVDDIO-RAMP  
Digital input voltage  
Analog input voltage  
VDDIO BOR guard band(5)  
S version(1)  
VDDIO + 0.3  
VDDA + 0.3  
V
V
V
VSS 0.3  
VIN  
VSSA 0.3  
VBOR-GB  
0.1  
Junction temperature, TJ  
125 °C  
125 °C  
40  
40  
Q version(1)  
(AEC Q100 qualification)  
Free-Air temperature, TA  
(1) Operation above TJ = 105°C for extended duration will reduce the lifetime of the device. See Calculating Useful Lifetimes of Embedded  
Processors for more information.  
(2) The VDDIO BOR voltage (VBOR-VDDIO[MAX]) in Electrical Characteristics table determines the lower voltage bound for device  
operation. TI recommends that system designers budget an additional guard band (VBOR-GB) as shown in Supply Voltages figure.  
(3) Internal BOR is enabled by default.  
(4) Supply ramp rate faster than this can trigger the on-chip ESD protection.  
(5) TI recommends VBOR-GB to avoid BOR resets due to normal supply noise or load-transient events on the 3.3-V VDDIO system  
regulator. Good system regulator design and decoupling capacitance (following the system regulator specifications) are important to  
prevent activation of the BOR during normal device operation. The value of VBOR-GB is a system-level design consideration; the voltage  
listed here is typical for many applications.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
Supply Voltages  
3.63 V  
+10%  
Recommended  
System Voltage  
Regulator Range  
3.3 V  
0%  
F28002x  
VDDIO  
Operating  
Range  
3.1 V  
3.0 V  
–6.1%  
–9.1%  
VBOR-GB  
BOR Guard Band  
VBOR-VDDIO  
Internal BOR Threshold  
–14.8%  
–15.1%  
2.81 V  
2.80 V  
7-1. Supply Voltages  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.5 Power Consumption Summary  
Current values listed in this section are representative for the test conditions given and not the absolute  
maximum possible. The actual device currents in an application will vary with application code and pin  
configurations. 7.5.1 lists the system current consumption values.  
7.5.1 System Current Consumption  
over operating free-air temperature range (unless otherwise noted).  
TYP : Vnom, 30℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPERATING MODE  
VDDIO current consumption during  
operational usage  
This is an estimation of current  
for a typical heavily loaded  
application. Actual currents will  
vary depending on system  
activity, I/O electrical loading and  
switching frequency.  
IDDIO  
35  
3
72  
5
mA  
mA  
VDDA current consumption during  
operational usage  
IDDA  
IDLE MODE  
VDDIO current consumption while  
device is in Idle mode  
- CPU is in IDLE mode  
IDDIO  
16  
33  
mA  
mA  
- Flash is powered down  
- XCLKOUT is turned off  
- Pull up is enabled for IO pins  
VDDA current consumption while  
device is in Idle mode  
IDDA  
0.01  
0.1  
STANDBY MODE  
VDDIO current consumption while  
device is in Standby mode  
- CPU is in STANDBY mode  
- Flash is powered down  
- XCLKOUT is turned off  
- Pull up is enabled for IO pins  
IDDIO  
8
22  
mA  
mA  
VDDA current consumption while  
device is in Standby mode  
IDDA  
0.01  
0.1  
HALT MODE  
IDDIO  
VDDIO current consumption while  
device is in Halt mode  
- CPU is in HALT mode  
- Flash is powered down  
- XCLKOUT is turned off  
- Pull up is enabled for IO pins  
1
16  
mA  
mA  
VDDA current consumption while  
device is in Halt mode  
IDDA  
0.01  
0.1  
FLASH ERASE/PROGRAM  
VDDIO current consumption during  
- CPU is running from RAM.  
- SYSCLK at 100 MHz.  
- I/Os are inputs with pullups  
enabled.  
IDDIO  
72  
106  
2.5  
mA  
mA  
Erase/Program cycle(1)  
VDDA current consumption during  
Erase/Program cycle  
- Peripheral clocks are turned off.  
IDDA  
0.1  
RESET MODE  
VDDIO current consumption while  
reset is active(2)  
IDDIO  
8.6  
0.1  
mA  
mA  
VDDA current consumption while reset  
is active(2)  
IDDA  
(1) Brownout events during flash programming can corrupt flash data and permanently lock the device. Programming environments using  
alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system  
components with sufficient margin to avoid supply brownout conditions.  
(2) This is the current consumption while reset is active, i.e XRSn is low.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.5.2 Operating Mode Test Description  
7.5.1 and 7.5.4.1 list the current consumption values for the operational mode of the device. The  
operational mode provides an estimation of what an application might encounter. The test condition for these  
measurements has the following properties:  
Code is executing from RAM.  
FLASH is read and kept in active state.  
No external components are driven by I/O pins.  
All peripherals have clocks enabled.  
All CPUs are actively executing code.  
All analog peripherals are powered up. ADCs and DACs are periodically converting.  
7.5.3 Current Consumption Graphs  
7-2, 7-3, 7-4, 7-5, and 7-6 show a typical representation of the relationship between frequency,  
temperature, core supply, and current consumption on the device. Actual results will vary based on the system  
implementation and conditions.  
7-3 shows the typical operating current profile across temperature and core supply voltage. 7-4 shows the  
typical idle current profile across temperature and core supply voltage. 7-5 shows the typical standby current  
profile across temperature and core supply voltage. 7-6 shows the typical halt current profile across  
temperature and core supply voltage.  
7-2. Operating Current Versus Frequency  
7-3. Operating Current Versus Temperature  
7-4. Current Versus Temperature –  
7-5. Current Versus Temperature STANDBY  
IDLE Mode  
Mode  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7-6. Current Versus Temperature HALT Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.5.4 Reducing Current Consumption  
The F28002x devices provide some methods to reduce the device current consumption:  
One of the two low-power modesIDLE or STANDBYcould be entered during idle periods in the  
application.  
The flash module may be powered down if the code is run from RAM.  
Disable the pullups on pins that assume an output function.  
Each peripheral has an individual clock-enable bit (PCLKCRx). Reduced current consumption may be  
achieved by turning off the clock to any peripheral that is not used in a given application. 7.5.4.1 lists the  
typical current reduction that may be achieved by disabling the clocks using the PCLKCRx register.  
To realize the lowest VDDA current consumption in an LPM, see the Analog-to-Digital Converter (ADC)  
chapter of the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual to ensure each  
module is powered down as well.  
7.5.4.1 Typical Current Reduction per Disabled Peripheral  
PERIPHERAL  
IDDIO CURRENT REDUCTION (mA)  
ADC(1)  
BGCRC  
CAN  
0.67  
0.26  
1.18  
1.18  
0.34  
0.02  
0.01  
0.18  
0.56  
0.22  
0.28  
0.78  
0.11  
0.74  
0.21  
0.87  
0.24  
0.32  
0.19  
0.26  
0.16  
0.08  
CLB  
CMPSS(1)  
CPU TIMER  
CPUCRC  
DCC  
DMA  
eCAP1 and eCAP2  
eCAP3(2)  
ePWM  
eQEP  
FSI  
HIC  
HRPWM  
I2C  
LIN  
PBIST  
PMBUS  
SCI  
SPI  
(1) This current represents the current drawn by the digital portion of the each module.  
(2) eCAP3 can also be configured as HRCAP.  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.6 Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX UNIT  
Digital and Analog IO  
VOH High-level output voltage  
IOH = IOH MIN  
IOH = 100 μA  
IOL = IOL MAX  
IOL = 100 µA  
VDDIO * 0.8  
V
VDDIO 0.2  
0.4  
V
VOL  
Low-level output voltage  
0.2  
IOH  
High-level output source current for all output pins  
Low-level output sink current for all output pins  
High-level output impedance for all output pins  
Low-level output impedance for all output pins  
High-level input voltage  
mA  
4  
IOL  
4
100  
90  
mA  
ROH  
45  
45  
65  
60  
ROL  
VIH  
2.0  
V
VIL  
Low-level input voltage  
0.8  
V
VHYSTERESIS  
Input hysteresis  
125  
mV  
VDDIO = 3.3 V  
VIN = VDDIO  
IPULLDOWN  
IPULLUP  
Input current  
Input current  
Pins with pulldown  
120  
160  
µA  
µA  
Digital inputs with pullup VDDIO = 3.3 V  
enabled(1)  
VIN = 0 V  
Pullups and outputs  
disabled  
0 V VIN ≤  
VDDIO  
Digital inputs  
0.1  
ILEAK  
Pin leakage  
µA  
Analog pins (except  
ADCINA3/VDAC)  
Analog drivers  
disabled  
0 V VIN VDDA  
0.1  
11  
ADCINA3/VDAC  
Digital inputs  
2
2
CI  
Input capacitance  
pF  
V
Analog pins(2)  
VREG and BOR  
VDDIO power on reset VDDIO power on reset  
voltage voltage  
VPOR-VDDIO  
2.3  
1.2  
VBOR-VDDIO  
VVREG  
VDDIO brown out reset voltage(3)  
2.81  
1.14  
3.0  
V
V
Internal voltage regulator output  
1.32  
(1) See Pins With Internal Pullup and Pulldown table for a list of pins with a pullup or pulldown.  
(2) The analog pins are specified separately; see Per-Channel Parasitic Capacitance table.  
(3) See the Supply Voltages figure in the Recommended Operating Conditions section.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.7 Thermal Resistance Characteristics for PN Package  
°C/W(1)  
14.2  
21.9  
49.9  
38.3  
36.7  
34.4  
0.8  
AIR FLOW (lfm)(2)  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
N/A  
N/A  
0
RΘJC  
RΘJB  
150  
250  
500  
0
Junction-to-free air thermal resistance  
Junction-to-package top  
RΘJA (High k PCB)  
1.18  
1.34  
1.62  
21.6  
20.7  
20.5  
20.1  
150  
250  
500  
0
PsiJT  
150  
250  
500  
PsiJB  
Junction-to-board  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
7.8 Thermal Resistance Characteristics for PM Package  
°C/W(1)  
12.4  
25.6  
51.8  
42.2  
39.4  
36.5  
0.5  
AIR FLOW (lfm)(2)  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
Junction-to-free air thermal resistance  
N/A  
N/A  
0
RΘJC  
RΘJB  
RΘJA (High k PCB)  
150  
250  
500  
0
Junction-to-moving air thermal resistance  
RΘJMA  
0.9  
150  
250  
500  
0
PsiJT  
Junction-to-package top  
1.1  
1.4  
25.1  
23.8  
23.4  
22.7  
150  
250  
500  
PsiJB  
Junction-to-board  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
(2) lfm = linear feet per minute  
7.9 Thermal Resistance Characteristics for PT Package  
°C/W(1)  
13.6  
30.6  
64  
AIR FLOW (lfm)(2)  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
N/A  
N/A  
0
RΘJC  
RΘJB  
50.4  
48.2  
45  
150  
250  
500  
0
Junction-to-free air thermal resistance  
Junction-to-package top  
RΘJA (High k PCB)  
0.56  
0.94  
1.1  
150  
250  
500  
0
PsiJT  
1.38  
30.1  
28.7  
28.4  
28  
150  
250  
500  
PsiJB  
Junction-to-board  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
7.10 Thermal Design Considerations  
Based on the end application design and operational profile, the IDD and IDDIO currents could vary. Systems that  
exceed the recommended maximum power dissipation in the end product may require additional thermal  
enhancements. Ambient temperature (TA) varies with the end application and product design. The critical factor  
that affects reliability and functionality is TJ, the junction temperature, not the ambient temperature. Hence, care  
should be taken to keep TJ within the specified limits. Tcase should be measured to estimate the operating  
junction temperature TJ. Tcase is normally measured at the center of the package top-side surface. The thermal  
application report Semiconductor and IC Package Thermal Metrics helps to understand the thermal metrics and  
definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.11 System  
7.11.1 Power Management  
TMS320F28002x real-time MCUs use an internal 1.2-V LDO Voltage Regulator (VREG) to supply the required  
1.2 V to the core (VDD).  
7.11.1.1 Internal 1.2-V LDO Voltage Regulator (VREG)  
The internal VREG is supplied by VDDIO and generates the 1.2 V required to power the VDD pins. The internal  
VREG is always enabled and, as such, is the required supply source for the VDD pins. Although the internal  
VREG eliminates the need to use an external power supply for VDD, decoupling capacitors are required on each  
VDD pin for VREG stability. There are two recommended capacitor configurations (described in the list that  
follows) for the VDD rail when using the internal VREG. The signal description for VDD can be found in 6-4.  
Configuration 1: Place a small decoupling capacitor to VSS on each pin as close to the device as possible. In  
addition, a bulk capacitance must be placed on the VDD node to VSS (one 10-µF capacitor or two parallel  
4.7-µF capacitors).  
Configuration 2: Distribute the total capacitance to VSS evenly across all VDD pins (total capacitance divided  
by number of available VDD pins).  
7.11.1.2 Power Sequencing  
Signal Pin Requirements: Before powering the device, no voltage larger than 0.3 V above VDDIO can be  
applied to any digital pin, and no voltage larger than 0.3 V above VDDA can be applied to any analog pin  
(including VREFHI).  
VDDIO and VDDA Requirements: The 3.3-V supplies VDDIO and VDDA should be powered up together and  
kept within 0.3 V of each other during functional operation.  
VDD Requirements: The VDD sequencing requirements are handled by the device.  
7.11.1.3 Power-On Reset (POR)  
An internal power-on reset (POR) circuit holds the device in reset and keeps the I/Os in a high-impedance state  
during power up. The POR is in control and forces XRSn low internally until the voltage on VDDIO crosses the  
POR threshold. When the voltage crosses the POR threshold, the internal brownout-reset (BOR) circuit takes  
control and holds the device in reset until the voltage crosses the BOR threshold (for internal BOR details, see  
7.11.1.4).  
7.11.1.4 Brownout Reset (BOR)  
An internal BOR circuit monitors the VDDIO rail for dips in voltage which result in the supply voltage dropping out  
of operational range. When the VDDIO voltage drops below the BOR threshold, the device is forced into reset,  
and XRSn is pulled low. XRSn will remain in reset until the voltage returns to the operational range. The BOR is  
enabled by default. To disable the BOR, set the BORLVMONDIS bit in the VMONCTL register. The internal BOR  
circuit monitors only the VDDIO rail. See 7.6 for BOR characteristics. External supply voltage supervisor  
(SVS) devices can be used to monitor the voltage on the 3.3-V rail and to drive XRSn low if supplies fall outside  
operational specifications.  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.11.2 Reset Timing  
XRSn is the device reset pin. It functions as an input and open-drain output. The device has a built-in power-on  
reset (POR). During power up, the POR circuit drives the XRSn pin low. A watchdog or NMI watchdog reset will  
also drive the pin low. An external open-drain circuit may drive the pin to assert a device reset.  
A resistor with a value from 2.2 kΩ to 10 kΩ should be placed between XRSn and VDDIO. A capacitor should  
be placed between XRSn and VSS for noise filtering, it should be 100 nF or smaller. These values will allow the  
watchdog to properly drive the XRSn pin to VOL within 512 OSCCLK cycles when the watchdog reset is  
asserted. 7-7 shows the recommended reset circuit.  
VDDIO  
2.2 kW to 10 kW  
Optional open-drain  
Reset source  
XRSn  
£100 nF  
7-7. Reset Circuit  
7.11.2.1 Reset Sources  
7-1 summarizes the various reset signals and their effect on the device.  
7-1. Reset Signals  
CPU CORE  
RESET  
(C28x, FPU, VCU)  
JTAG/  
DEBUG LOGIC  
RESET  
PERIPHERALS  
RESET  
RESET SOURCE  
I/Os  
XRSn OUTPUT  
POR  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Yes  
XRSn Pin  
WDRS  
Yes  
Yes  
No  
NMIWDRS  
SYSRS (Debugger Reset)  
SCCRESET  
No  
The parameter th(boot-mode) must account for a reset initiated from any of these sources.  
See the Resets section of the System Control chapter in the TMS320F28002x Real-Time Microcontrollers  
Technical Reference Manual.  
CAUTION  
Some reset sources are internally driven by the device. Some of these sources will drive XRSn low,  
use this to disable any other devices driving the boot pins. The SCCRESET and debugger reset  
sources do not drive XRSn; therefore, the pins used for boot mode should not be actively driven by  
other devices in the system. The boot configuration has a provision for changing the boot pins in  
OTP; for more details, see the TMS320F28002x Real-Time Microcontrollers Technical Reference  
Manual.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.11.2.2 Reset Electrical Data and Timing  
7.11.2.2.1 lists the reset (XRSn) timing requirements. 7.11.2.2.2 lists the reset (XRSn) switching  
characteristics. 7-8 shows the power-on reset. 7-9 shows the warm reset.  
7.11.2.2.1 Reset (XRSn) Timing Requirements  
MIN  
1.5  
MAX  
UNIT  
th(boot-mode)  
Hold time for boot-mode pins  
ms  
All cases  
3.2  
Pulse duration, XRSn low on  
warm reset  
tw(RSL2)  
µs  
Low-power modes used in  
application and SYSCLKDIV > 16  
3.2 * (SYSCLKDIV/16)  
7.11.2.2.2 Reset (XRSn) Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
100  
MAX  
UNIT  
Pulse duration, XRSn driven low by device after supplies are  
tw(RSL1)  
µs  
stable  
tw(WDRS)  
tboot-flash  
Pulse duration, reset pulse generated by watchdog  
512tc(OSCCLK)  
cycles  
µs  
Boot-ROM execution time to first instruction fetch in flash  
900  
7.11.2.2.3 Reset Timing Diagrams  
VDDIO VDDA  
(3.3V)  
VDD (1.2V)  
tw(RSL1)  
XRSn(A)  
tboot-flash  
Boot ROM  
CPU  
Execution  
Phase  
User code  
User code dependent  
(B)  
th(boot-mode)  
Boot-Mode  
Pins  
GPIO pins as input  
Boot-ROM execution starts  
Peripheral/GPIO function  
Based on boot code  
GPIO pins as input (pullups are disabled)  
User code dependent  
I/O Pins  
A. The XRSn pin can be driven externally by a supervisor or an external pullup resistor, see 6-1. On-chip POR logic will hold this pin low  
until the supplies are in a valid range.  
B. After reset from any source (see 7.11.2.1), the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode pin,  
the boot code branches to destination memory or boot code function. If boot ROM code executes after power-on conditions (in  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
debugger environment), the boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based on user  
environment and could be with or without PLL enabled.  
7-8. Power-on Reset  
tw(RSL2)  
XRSn  
User code  
CPU  
Execution  
Phase  
Boot ROM  
User code  
Boot ROM execution starts  
(initiated by any reset source)  
(A)  
th(boot-mode)  
Boot-Mode  
Pins  
Peripheral/GPIO function  
GPIO Pins as Input  
Peripheral/GPIO function  
User-Code Execution Starts  
I/O Pins  
GPIO Pins as Input (Pullups are Disabled)  
User-Code Dependent  
User-Code Dependent  
A. After reset from any source (see 7.11.2.1), the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode  
pin, the boot code branches to destination memory or boot code function. If Boot ROM code executes after power-on conditions (in  
debugger environment), the Boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based on user  
environment and could be with or without PLL enabled.  
7-9. Warm Reset  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.11.3 Clock Specifications  
7.11.3.1 Clock Sources  
7-2 lists clock sources. 7-10 shows the clocking system. 7-11 shows the PLL.  
7-2. Possible Reference Clock Sources  
CLOCK SOURCE  
DESCRIPTION  
INTOSC1  
Internal oscillator 1.  
Zero-pin overhead 10-MHz internal oscillator.  
INTOSC2(1)  
X1 (XTAL)  
Internal oscillator 2.  
Zero-pin overhead 10-MHz internal oscillator.  
External crystal or resonator connected between the X1 and X2 pins or single-ended clock connected to the X1  
pin.  
(1) On reset, internal oscillator 2 (INTOSC2) is the default clock source for the PLL (OSCCLK).  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
SYSCLKDIVSEL  
PLLSYSCLK  
NMIWD  
Watchdog  
Timer  
SYS  
Divider  
PLLRAWCLK  
FPU  
TMU  
Flash  
SYSPLL  
INTOSC1  
INTOSC2  
X1 (XTAL)  
CPUCLK  
OSCCLK  
SYSPLLCLKEN  
OSCCLKSRCSEL  
CPU  
ePIE  
GPIO  
Mx RAMs  
Lx RAMs  
Boot ROM  
DCSM  
System Control  
WD  
SYSCLK  
SYSCLK  
GSx RAMs  
XINT  
CPUTIMERs  
CLB  
ECAP  
I2C  
ADC  
CMPSS  
CAN  
HIC  
DCC  
HWBIST  
BGCRC  
One per SYSCLK peripheral  
PCLKCRx  
EQEP  
PERx.SYSCLK  
EPWM  
HRCAL  
PMBUS  
LIN  
FSI  
ERAD  
One per LSPCLK peripheral  
PCLKCRx  
LOSPCP  
PERx.LSPCLK  
SCI  
SPI  
LSPCLK  
LSP  
Divider  
CLKSRCCTL2.CANxBCLKSEL  
CAN Bit Clock  
7-10. Clocking System  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
SYSPLL  
OSCCLK  
INTCLK  
VCOCLK  
PLLRAWCLK  
÷
(REFDIV+1)  
÷
(ODIV+1)  
VCO  
÷
IMULT  
7-11. System PLL  
In 7-11,  
IMULT  
fOSCCLK  
REFDIV +1  
=
ì
fPLLRAWCLK  
ODIV +1  
(
)
(
)
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.11.3.2 Clock Frequencies, Requirements, and Characteristics  
This section provides the frequencies and timing requirements of the input clocks, PLL lock times, frequencies of  
the internal clocks, and the frequency and switching characteristics of the output clock.  
7.11.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times  
7.11.3.2.1.1 lists the frequency requirements for the input clocks. 7.11.3.2.1.2 lists the XTAL oscillator  
characteristics. 7.11.3.2.1.3 lists the X1 timing requirements. 7.11.3.2.1.4 lists the APLL characteristics. 节  
7.11.3.2.1.5 lists the switching characteristics of the output clock, XCLKOUT. 7.11.3.2.1.6 provides the clock  
frequencies for the internal clocks.  
7.11.3.2.1.1 Input Clock Frequency  
MIN  
10  
MAX UNIT  
20 MHz  
25 MHz  
f(XTAL)  
f(X1)  
Frequency, X1/X2, from external crystal or resonator  
Frequency, X1, from external oscillator  
10  
7.11.3.2.1.2 XTAL Oscillator Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
0.3  
TYP  
MAX  
UNIT  
V
X1 VIL  
X1 VIH  
Valid low-level input voltage  
Valid high-level input voltage  
0.3 * VDDIO  
VDDIO + 0.3  
0.7 * VDDIO  
V
7.11.3.2.1.3 X1 Timing Requirements  
MIN  
MAX UNIT  
tf(X1)  
Fall time, X1  
6
6
ns  
ns  
tr(X1)  
Rise time, X1  
tw(X1L)  
tw(X1H)  
Pulse duration, X1 low as a percentage of tc(X1)  
Pulse duration, X1 high as a percentage of tc(X1)  
45%  
45%  
55%  
55%  
7.11.3.2.1.4 APLL Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
PLL Lock time  
SYS PLL Lock Time(1)  
5µs + (1024 * (REFDIV + 1) * tc(OSCCLK)  
)
us  
(1) The PLL lock time here defines the typical time that takes for the PLL to lock once PLL is enabled (SYSPLLCTL1[PLLENA]=1).  
Additional time to verify the PLL clock using Dual Clock Comparator (DCC) is not accounted here. TI recommends using the latest  
example software from C2000Ware for initializing the PLLs. For the system PLL, see InitSysPll() or SysCtl_setClock().  
7.11.3.2.1.5 XCLKOUT Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER(1)  
MIN  
MAX  
5
UNIT  
ns  
tf(XCO)  
Fall time, XCLKOUT  
Rise time, XCLKOUT  
tr(XCO)  
tw(XCOL)  
tw(XCOH)  
f(XCO)  
5
ns  
H 2(2)  
H 2(2)  
Pulse duration, XCLKOUT low  
Pulse duration, XCLKOUT high  
Frequency, XCLKOUT  
H + 2(2)  
H + 2(2)  
50  
ns  
ns  
MHz  
(1) A load of 40 pF is assumed for these parameters.  
(2) H = 0.5tc(XCO)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
 
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.11.3.2.1.6 Internal Clock Frequencies  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
f(SYSCLK)  
Frequency, device (system) clock  
Period, device (system) clock  
2
100  
500  
tc(SYSCLK)  
10  
Frequency, system PLL going into VCO (after  
REFDIV)  
f(INTCLK)  
10  
220  
6
20  
600  
200  
100  
MHz  
MHz  
MHz  
f(VCOCLK)  
f(PLLRAWCLK)  
Frequency, system PLL VCO (before ODIV)  
Frequency, system PLL output (before SYSCLK  
divider)  
f(PLL)  
Frequency, PLLSYSCLK  
Frequency, PLL Limp Frequency (1)  
Frequency, LSPCLK  
2
MHz  
MHz  
MHz  
ns  
f(PLL_LIMP)  
f(LSP)  
45/(ODIV+1)  
2
100  
500  
tc(LSPCLK)  
Period, LSPCLK  
10  
Frequency, OSCCLK (INTOSC1 or INTOSC2 or  
XTAL or X1)  
f(OSCCLK)  
See respective clock  
MHz  
f(EPWM)  
Frequency, EPWMCLK  
Frequency, HRPWMCLK  
100  
100  
MHz  
MHz  
f(HRPWM)  
60  
(1) PLL output frequency when OSCCLK is dead (Loss of OSCCLK causes PLL to Limp).  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.11.3.3 Input Clocks and PLLs  
In addition to the internal 0-pin oscillators, three types of external clock sources are supported:  
A single-ended 3.3-V external clock. The clock signal should be connected to X1, as shown in 7-12, with  
the XTALCR.SE bit set to 1.  
An external crystal. The crystal should be connected across X1 and X2 with its load capacitors connected to  
VSS as shown in 7-13.  
An external resonator. The resonator should be connected across X1 and X2 with its ground connected to  
VSS as shown in 7-14.  
Microcontroller  
Microcontroller  
GPIO19  
X1  
GPIO18  
X2  
GPIO18*  
X2  
GPIO19  
X1  
VSS  
VSS  
* Available as a  
GPIO when X1 is  
used as a clock  
+3.3 V  
VDD  
Out  
3.3-V Oscillator  
Gnd  
7-13. External Crystal  
7-12. Single-ended 3.3-V External Clock  
Microcontroller  
GPIO18  
X2  
GPIO19  
X1  
VSS  
7-14. External Resonator  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.11.3.4 Crystal Oscillator  
When using a quartz crystal, it may be necessary to include a damping resistor (RD) in the crystal circuit to  
prevent overdriving the crystal (drive level can be found in the crystal data sheet). In higher-frequency  
applications (10 MHz or greater), RD is generally not required. If a damping resistor is required, RD should be as  
small as possible because the size of the resistance affects start-up time (smaller RD = faster start-up time). TI  
recommends that the crystal manufacturer characterize the crystal with the application board. 7.11.3.4.1 lists  
the crystal oscillator parameters. 7-3 lists the crystal equivalent series resistance (ESR) requirements. 节  
7.11.3.4.2 lists the crystal oscillator electrical characteristics.  
7.11.3.4.1 Crystal Oscillator Parameters  
MIN  
MAX UNIT  
CL1, CL2  
C0  
Load capacitance  
12  
24  
7
pF  
pF  
Crystal shunt capacitance  
For 7-3:  
1. Crystal shunt capacitance (C0) should be less than or equal to 7 pF.  
2. ESR = Negative Resistance/3  
7-3. Crystal Equivalent Series Resistance (ESR) Requirements  
MAXIMUM ESR (Ω)  
(CL1 = CL2 = 12 pF)  
MAXIMUM ESR (Ω)  
(CL1 = CL2 = 24 pF)  
CRYSTAL FREQUENCY (MHz)  
10  
12  
14  
16  
18  
20  
55  
50  
50  
45  
45  
45  
110  
95  
90  
75  
65  
50  
7.11.3.4.2 Crystal Oscillator Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ms  
f = 20 MHz  
ESR MAX = 50 Ω  
CL1 = CL2 = 24 pF  
C0 = 7 pF  
Start-up time(1)  
2
Crystal drive level (DL)  
1
mW  
(1) Start-up time is dependent on the crystal and tank circuit components. TI recommends that the crystal vendor characterize the  
application with the chosen crystal.  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.11.3.5 Internal Oscillators  
To reduce production board costs and application development time, all F28002x devices contain two  
independent internal oscillators, referred to as INTOSC1 and INTOSC2. By default, INTOSC2 is set as the  
source for the system reference clock (OSCCLK) and INTOSC1 is set as the backup clock source.  
Applications requiring tighter clock tolerance can use the SCI baud tuning example available in C2000Ware  
(C2000Ware_3_03_00_00\driverlib\f28002x\examples\sci\baud_tune_via_uart) to enable baud matching better  
than 1% accuracy.  
7.11.3.5.1 provides the electrical characteristics of the internal oscillators.  
7.11.3.5.1 INTOSC Characteristics  
over recommended operating conditions (unless otherwise noted)  
TEST  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
-40°C to 125°C  
-30°C to 90°C  
10  
10  
10.15 (1.5%)  
10.15 (1.5%)  
MHz  
MHz  
9.8 (2.0%)  
9.85 (1.5%)  
Frequency, INTOSC1 and  
INTOSC2  
fINTOSC  
30°C, Nominal  
VDDIO  
fINTOSC-STABILITY Frequency stability  
±0.1  
%
tINT0SC-ST  
Start-up and settling time  
20  
µs  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.11.4 Flash Parameters  
7-4 lists the minimum required Flash wait states with different clock sources and frequencies. Wait state is the  
value set in register FRDCNTL[RWAIT].  
7-4. Minimum Required Flash Wait States with Different Clock Sources and Frequencies  
EXTERNAL OSCILLATOR OR CRYSTAL  
INTOSC1 OR INTOSC2  
CPUCLK (MHz)  
BANK OR PUMP  
NORMAL OPERATION  
BANK OR PUMP  
NORMAL OPERATION  
SLEEP(1)  
SLEEP(1)  
5
4
4
3
3
2
2
1
1
0
97 < CPUCLK 100  
80 < CPUCLK 97  
77 < CPUCLK 80  
60 < CPUCLK 77  
58 < CPUCLK 60  
40 < CPUCLK 58  
38 < CPUCLK 40  
20 < CPUCLK 38  
19 < CPUCLK 20  
CPUCLK 19  
4
3
2
1
0
4
3
2
1
0
(1) Flash SLEEP operations require an extra wait state when using INTOSC as the clock source for the frequency ranges indicated. Any  
wait state FRDCNTL[RWAIT] change must be made before beginning a SLEEP mode operation. This setting impacts both flash banks.  
The F28002x devices have an improved 128-bit prefetch buffer that provides high flash code execution efficiency  
across wait states. 7-15 and 7-16 illustrate typical efficiency across wait-state settings compared to  
previous-generation devices with a 64-bit prefetch buffer. Wait-state execution efficiency with a prefetch buffer  
will depend on how many branches are present in application software. Two examples of linear code and if-then-  
else code are provided.  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
Flash with 64-Bit Prefetch  
Flash with 128-Bit Prefetch  
Flash with 64-Bit Prefetch  
Flash with 128-Bit Prefetch  
0
1
2
3
4
5
0
1
2
3
4
5
Wait State  
Wait State  
D005  
D006  
7-15. Application Code With Heavy 32-Bit  
7-16. Application Code With 16-Bit If-Else  
Floating-Point Math Instructions  
Instructions  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7-5 lists the Flash parameters.  
7-5. Flash Parameters  
PARAMETER  
MIN  
TYP  
150  
50  
MAX  
300  
UNIT  
µs  
128 data bits + 16 ECC bits  
8KB sector  
Program Time(1)  
100  
ms  
EraseTime(2) (3) at < 25 cycles  
EraseTime(2) (3) at 1000 cycles  
EraseTime(2) (3) at 2000 cycles  
EraseTime(2) (3) at 20K cycles  
Nwec Write/Erase Cycles per sector  
8KB sector  
15  
100  
ms  
8KB sector  
25  
350  
ms  
8KB sector  
30  
600  
ms  
8KB sector  
120  
4000  
20000  
ms  
cycles  
Nwec Write/Erase Cycles for entire Flash (combined all  
sectors)  
100000  
cycles  
years  
tretention Data retention duration at TJ = 85oC  
20  
(1) Program time is at the maximum device frequency. Program time includes overhead of the flash state machine but does not include  
the time to transfer the following into RAM:  
Code that uses flash API to program the flash  
Flash API itself  
Flash data to be programmed  
In other words, the time indicated in this table is applicable after all the required code/data is available in the device RAM, ready for  
programming. The transfer time will significantly vary depending on the speed of the JTAG debug probe used.  
Program time calculation is based on programming 144 bits at a time at the specified operating frequency. Program time includes  
Program verify by the CPU. The program time does not degrade with write/erase (W/E) cycling, but the erase time does.  
Erase time includes Erase verify by the CPU and does not involve any data transfer.  
(2) Erase time includes Erase verify by the CPU.  
(3) The on-chip flash memory is in an erased state when the device is shipped from TI. As such, erasing the flash memory is not required  
prior to programming, when programming the device for the first time. However, the erase operation is needed on all subsequent  
programming operations.  
Note  
The Main Array flash programming must be aligned to 64-bit address boundaries and each 64-bit  
word may only be programmed once per write/erase cycle.  
The DCSM OTP programming must be aligned to 128-bit address boundaries and each 128-bit word  
may only be programmed once. The exceptions are:  
1. The DCSM Zx-LINKPOINTER1 and Zx-LINKPOINTER2 values in the DCSM OTP should be  
programmed together, and may be programmed 1 bit at a time as required by the DCSM  
operation.  
2. The DCSM Zx-LINKPOINTER3 values in the DCSM OTP may be programmed 1 bit at a time on a  
64-bit boundary to separate it from Zx-PSWDLOCK, which must only be programmed once.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.11.5 Emulation/JTAG  
The JTAG (IEEE Standard 1149.1-1990 Standard Test Access Port and Boundary Scan Architecture) port has  
four dedicated pins: TMS, TDI, TDO, and TCK. The cJTAG (IEEE Standard 1149.7-2009 for Reduced-Pin and  
Enhanced-Functionality Test Access Port and Boundary-Scan Architecture) port is a compact JTAG interface  
requiring only two pins (TMS and TCK), which allows other device functionality to be muxed to the traditional  
GPIO35 (TDI) and GPIO37 (TDO) pins.  
Typically, no buffers are needed on the JTAG signals when the distance between the MCU target and the JTAG  
header is smaller than 6 inches (15.24 cm), and no other devices are present on the JTAG chain. Otherwise,  
each signal should be buffered. Additionally, for most JTAG debug probe operations at 10 MHz, no series  
resistors are needed on the JTAG signals. However, if high emulation speeds are expected (35 MHz or so), 22-Ω  
resistors should be placed in series on each JTAG signal.  
The PD (Power Detect) terminal of the JTAG debug probe header should be connected to the board's 3.3-V  
supply. Header GND terminals should be connected to board ground. TDIS (Cable Disconnect Sense) should  
also be connected to board ground. The JTAG clock should be looped from the header TCK output terminal back  
to the RTCK input terminal of the header (to sense clock continuity by the JTAG debug probe). This MCU does  
not support the EMU0 and EMU1 signals that are present on 14-pin and 20-pin emulation headers. These  
signals should always be pulled up at the emulation header through a pair of board pullup resistors ranging from  
2.2 kto 4.7 k(depending on the drive strength of the debugger ports). Typically, a 2.2-kvalue is used.  
Header terminal RESET is an open-drain output from the JTAG debug probe header that enables board  
components to be reset through JTAG debug probe commands (available only through the 20-pin header). 图  
7-17 shows how the 14-pin JTAG header connects to the MCUs JTAG port signals. 7-18 shows how to  
connect to the 20-pin JTAG header. The 20-pin JTAG header terminals EMU2, EMU3, and EMU4 are not used  
and should be grounded.  
For more information about hardware breakpoints and watchpoints, see Hardware Breakpoints and Watchpoints  
for C28x in CCS.  
For more information about JTAG emulation, see the XDS Target Connection Guide.  
Note  
JTAG Test Data Input (TDI) is the default mux selection for the pin. The internal pullup is disabled by  
default. If this pin is used as JTAG TDI, the internal pullup should be enabled or an external pullup  
added on the board to avoid a floating input. In the cJTAG option, this pin can be used as GPIO.  
JTAG Test Data Output (TDO) is the default mux selection for the pin. The internal pullup is disabled  
by default. The TDO function will be in a tri-state condition when there is no JTAG activity, leaving this  
pin floating. The internal pullup should be enabled or an external pullup added on the board to avoid a  
floating GPIO input. In the cJTAG option, this pin can be used as GPIO.  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
Distance between the header and the target  
should be less than 6 inches (15.24 cm).  
3.3 V  
4.7 kΩ  
2
1
TMS  
TMS  
TRST  
3.3 V  
10 kΩ  
3.3 V  
10 kΩ  
TDI(A)  
TDI  
TDIS  
KEY  
3
5
4
GND  
MCU  
100 Ω  
6
3.3 V  
PD  
TDO(A)  
TCK  
TDO  
RTCK  
TCK  
EMU0  
GND  
GND  
GND  
EMU1  
7
8
9
10  
12  
14  
11  
13  
4.7 kΩ  
4.7 kΩ  
3.3 V  
3.3 V  
A. TDI and TDO connections are not required for cJTAG option and these pins can be used as GPIOs instead.  
7-17. Connecting to the 14-Pin JTAG Header  
Distance between the header and the target  
should be less than 6 inches (15.24 cm).  
3.3 V  
4.7 kΩ  
3.3 V  
10 kΩ  
3.3 V  
10 kΩ  
2
1
TMS  
TMS  
TRST  
TDI(A)  
TDI  
TDIS  
KEY  
GND  
3
5
4
MCU  
100 Ω  
6
3.3V  
PD  
TDO(A)  
TDO  
GND  
GND  
GND  
EMU1  
GND  
EMU3  
GND  
7
8
9
10  
12  
14  
16  
18  
20  
RTCK  
TCK  
11  
13  
15  
17  
19  
TCK  
Ω
4.7 kΩ  
4.7 k  
3.3 V  
EMU0  
RESET  
EMU2  
EMU4  
3.3 V  
Open  
Drain  
A low pulse from the JTAG debug probe  
can be tied with other reset sources  
to reset the board.  
GND  
GND  
A. TDI and TDO connections are not required for cJTAG option and these pins can be used as GPIOs instead.  
7-18. Connecting to the 20-Pin JTAG Header  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.11.5.1 JTAG Electrical Data and Timing  
7.11.5.1.1 lists the JTAG timing requirements. 7.11.5.1.2 lists the JTAG switching characteristics. 7-19  
shows the JTAG timing.  
7.11.5.1.1 JTAG Timing Requirements  
NO.  
MIN  
66.66  
26.66  
26.66  
13  
MAX  
UNIT  
ns  
1
tc(TCK)  
Cycle time, TCK  
1a  
1b  
tw(TCKH)  
Pulse duration, TCK high (40% of tc)  
Pulse duration, TCK low (40% of tc)  
Input setup time, TDI valid to TCK high  
Input setup time, TMS valid to TCK high  
Input hold time, TDI valid from TCK high  
Input hold time, TMS valid from TCK high  
ns  
tw(TCKL)  
ns  
tsu(TDI-TCKH)  
tsu(TMS-TCKH)  
th(TCKH-TDI)  
th(TCKH-TMS)  
3
4
ns  
ns  
13  
7
7
7.11.5.1.2 JTAG Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
2
td(TCKL-TDO)  
Delay time, TCK low to TDO valid  
6
25  
ns  
7.11.5.1.3 JTAG Timing Diagram  
1
1a  
1b  
TCK  
2
TDO  
3
4
TDI/TMS  
7-19. JTAG Timing  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.11.5.2 cJTAG Electrical Data and Timing  
7.11.5.2.1 lists the cJTAG timing requirements. 7.11.5.2.2 lists the cJTAG switching characteristics. 7-20  
shows the cJTAG timing.  
7.11.5.2.1 cJTAG Timing Requirements  
NO.  
MIN  
100  
40  
40  
15  
15  
2
MAX  
UNIT  
ns  
1
tc(TCK)  
Cycle time, TCK  
1a  
1b  
tw(TCKH)  
Pulse duration, TCK high (40% of tc)  
Pulse duration, TCK low (40% of tc)  
Input setup time, TMS valid to TCK high  
Input setup time, TMS valid to TCK low  
Input hold time, TMS valid from TCK high  
Input hold time, TMS valid from TCK low  
ns  
tw(TCKL)  
ns  
tsu(TMS-TCKH)  
tsu(TMS-TCKL)  
th(TCKH-TMS)  
th(TCKL-TMS)  
ns  
3
4
ns  
ns  
2
ns  
7.11.5.2.2 cJTAG Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
MAX  
20  
UNIT  
ns  
2
5
td(TCKL-TMS)  
Delay time, TCK low to TMS valid  
Delay time, TCK high to TMS disable  
6
tdis(TCKH-TMS)  
20  
ns  
7.11.5.2.3 cJTAG Timing Diagram  
1
1a  
1b  
2
3
3
4
4
5
TCK  
TMS  
TMS Input  
TMS Output  
TMS Input  
7-20. cJTAG Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.11.6 GPIO Electrical Data and Timing  
The peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. On reset, GPIO pins  
are configured as inputs. For specific inputs, the user can also select the number of input qualification cycles to  
filter unwanted noise glitches.  
The GPIO module contains an Output X-BAR which allows an assortment of internal signals to be routed to a  
GPIO in the GPIO mux positions denoted as OUTPUTXBARx. The GPIO module also contains an Input X-BAR  
which is used to route signals from any GPIO input to different IP blocks such as the ADCs, eCAPs, ePWMs,  
and external interrupts. For more details, see the X-BAR chapter in the TMS320F28002x Real-Time  
Microcontrollers Technical Reference Manual.  
7.11.6.1 GPIO Output Timing  
7.11.6.1.1 lists the general-purpose output switching characteristics. 7-21 shows the general-purpose  
output timing.  
7.11.6.1.1 General-Purpose Output Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
8(1)  
8(1)  
25  
UNIT  
ns  
tr(GPIO)  
tf(GPIO)  
fGPIO  
Rise time, GPIO switching low to high  
All GPIOs  
All GPIOs  
Fall time, GPIO switching high to low  
Toggling frequency, all GPIOs  
ns  
MHz  
(1) Rise time and fall time vary with load. These values assume a 40-pF load.  
GPIO  
tr(GPIO)  
tf(GPIO)  
7-21. General-Purpose Output Timing  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.11.6.2 GPIO Input Timing  
7.11.6.2.1 lists the general-purpose input timing requirements. 7-22 shows the sampling mode.  
7.11.6.2.1 General-Purpose Input Timing Requirements  
MIN  
1tc(SYSCLK)  
MAX  
UNIT  
cycles  
cycles  
cycles  
QUALPRD = 0  
tw(SP)  
Sampling period  
2tc(SYSCLK) * QUALPRD  
QUALPRD 0  
tw(SP) * (n(1) 1)  
2tc(SYSCLK)  
tw(IQSW)  
Input qualifier sampling window  
Pulse duration, GPIO low/high  
Synchronous mode  
With input qualifier  
(2)  
tw(GPI)  
tw(IQSW) + tw(SP) + 1tc(SYSCLK)  
(1) "n" represents the number of qualification samples as defined by GPxQSELn register.  
(2) For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal.  
7.11.6.2.2 Sampling Mode  
(A)  
GPIO Signal  
GPxQSELn = 1,0 (6 samples)  
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
tw(SP)  
Sampling Period determined  
by GPxCTRL[QUALPRD](B)  
tw(IQSW)  
(SYSCLK cycle * 2 * QUALPRD) * 5(C)  
Sampling Window  
SYSCLK  
QUALPRD = 1  
(SYSCLK/2)  
(D)  
Output From  
Qualifier  
A. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It can vary from 00 to  
0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLK cycle. For any other value "n", the qualification sampling period in 2n  
SYSCLK cycles (that is, at every 2n SYSCLK cycles, the GPIO pin will be sampled).  
B. The qualification period selected through the GPxCTRL register applies to groups of eight GPIO pins.  
C. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is used.  
D. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLK cycles or greater. In other words,  
the inputs should be stable for (5 × QUALPRD × 2) SYSCLK cycles. This would ensure 5 sampling periods for detection to occur.  
Because external signals are driven asynchronously, an 13-SYSCLK-wide pulse ensures reliable recognition.  
7-22. Sampling Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.11.6.3 Sampling Window Width for Input Signals  
The following section summarizes the sampling window width for input signals for various input qualifier  
configurations.  
Sampling frequency denotes how often a signal is sampled with respect to SYSCLK.  
Sampling frequency = SYSCLK/(2 × QUALPRD), if QUALPRD 0  
Sampling frequency = SYSCLK, if QUALPRD = 0  
Sampling period = SYSCLK cycle × 2 × QUALPRD, if QUALPRD 0  
In the previous equations, SYSCLK cycle indicates the time period of SYSCLK.  
Sampling period = SYSCLK cycle, if QUALPRD = 0  
In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of the  
signal. This is determined by the value written to GPxQSELn register.  
Case 1:  
Qualification using 3 samples  
Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 2, if QUALPRD 0  
Sampling window width = (SYSCLK cycle) × 2, if QUALPRD = 0  
Case 2:  
Qualification using 6 samples  
Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 5, if QUALPRD 0  
Sampling window width = (SYSCLK cycle) × 5, if QUALPRD = 0  
7-23 shows the general-purpose input timing.  
SYSCLK  
GPIOxn  
tw(GPI)  
7-23. General-Purpose Input Timing  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.11.7 Interrupts  
The C28x CPU has fourteen peripheral interrupt lines. Two of them (INT13 and INT14) are connected directly to  
CPU timers 1 and 2, respectively. The remaining twelve are connected to peripheral interrupt signals through the  
enhanced Peripheral Interrupt Expansion (ePIE) module. The ePIE multiplexes up to sixteen peripheral  
interrupts into each CPU interrupt line. It also expands the vector table to allow each interrupt to have its own  
ISR. This allows the CPU to support a large number of peripherals.  
An interrupt path is divided into three stagesthe peripheral, the ePIE, and the CPU. Each stage has its own  
enable and flag registers. This system allows the CPU to handle one interrupt while others are pending,  
implement and prioritize nested interrupts in software, and disable interrupts during certain critical tasks.  
7-24 shows the interrupt architecture for this device.  
TINT0  
TIMER0  
LPMINT  
WDINT  
LPM Logic  
WD  
WAKEINT  
NMI module  
ERAD  
NMI  
RTOSINT  
CPU  
INPUTXBAR4  
XINT1 Control  
INPUTXBAR5  
INPUTXBAR6  
INPUTXBAR13  
INPUTXBAR14  
XINT2 Control  
XINT3 Control  
XINT4 Control  
XINT5 Control  
GPIO0  
to  
GPIOx  
ePIE  
INT1  
to  
INT12  
Input  
X-BAR  
TIMER1  
TIMER2  
INT13  
INT14  
Peripherals  
See ePIE Table  
7-24. Device Interrupt Architecture  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.11.7.1 External Interrupt (XINT) Electrical Data and Timing  
7.11.7.1.1 lists the external interrupt timing requirements. 7.11.7.1.2 lists the external interrupt switching  
characteristics. 7-25 shows the external interrupt timing. For an explanation of the input qualifier parameters,  
see 7.11.6.2.1.  
7.11.7.1.1 External Interrupt Timing Requirements  
MIN  
2tc(SYSCLK)  
MAX  
UNIT  
Synchronous  
With qualifier  
tw(INT)  
Pulse duration, INT input low/high  
cycles  
tw(IQSW) + tw(SP) + 1tc(SYSCLK)  
7.11.7.1.2 External Interrupt Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
td(INT) Delay time, INT low/high to interrupt-vector fetch(1)  
tw(IQSW) + 14tc(SYSCLK)  
tw(IQSW) + tw(SP) + 14tc(SYSCLK) cycles  
(1) This assumes that the ISR is in a single-cycle memory.  
7.11.7.1.3 External Interrupt Timing  
tw(INT)  
XINT1, XINT2, XINT3,  
XINT4, XINT5  
td(INT)  
Address bus  
(internal)  
Interrupt Vector  
7-25. External Interrupt Timing  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.11.8 Low-Power Modes  
This device has HALT, IDLE and STANDBY as clock-gating low-power modes.  
Further details, as well as the entry and exit procedure, for all of the low-power modes can be found in the Low  
Power Modes section of the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual.  
7.11.8.1 Clock-Gating Low-Power Modes  
IDLE and HALT modes on this device are similar to those on other C28x devices. 7-6 describes the effect on  
the system when any of the clock-gating low-power modes are entered.  
7-6. Effect of Clock-Gating Low-Power Modes on the Device  
MODULES/  
CLOCK DOMAIN  
IDLE  
STANDBY  
HALT  
SYSCLK  
Active  
Gated  
Active  
Gated  
Gated  
Gated  
Gated  
Gated  
Gated  
CPUCLK  
Clock to modules connected  
to PERx.SYSCLK  
WDCLK  
PLL  
Active  
Active  
Gated if CLKSRCCTL1.WDHALTI = 0  
Software must power down PLL before entering HALT.  
Powered down if CLKSRCCTL1.WDHALTI = 0  
Powered down if CLKSRCCTL1.WDHALTI = 0  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
INTOSC1  
INTOSC2  
Flash(1)  
XTAL(2)  
Powered  
(1) The Flash module is not powered down by hardware in any LPM. It may be powered down using software if required by the  
application. For more information, see the Flash and OTP Memory section of the System Control chapter in the TMS320F28002x Real-  
Time Microcontrollers Technical Reference Manual.  
(2) The XTAL is not powered down by hardware in any LPM. It may be powered down by software setting the XTALCR.OSCOFF bit to 1.  
This can be done at any time during the application if the XTAL is not required.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.11.8.2 Low-Power Mode Wake-up Timing  
7.11.8.2.1 lists the IDLE mode timing requirements, 7.11.8.2.2 lists the IDLE mode switching  
characteristics, and 7-26 shows the timing diagram for IDLE mode. For an explanation of the input qualifier  
parameters, see 7.11.6.2.1.  
7.11.8.2.1 IDLE Mode Timing Requirements  
MIN  
2tc(SYSCLK)  
MAX  
UNIT  
Without input qualifier  
With input qualifier  
tw(WAKE)  
Pulse duration, external wake-up signal  
cycles  
2tc(SYSCLK) + tw(IQSW)  
7.11.8.2.2 IDLE Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
Without input qualifier  
With input qualifier  
40tc(SYSCLK) cycles  
From Flash (active  
state)  
40tc(SYSCLK) + tw(WAKE) cycles  
(2)  
Without input qualifier  
6700tc(SYSCLK)  
cycles  
cycles  
Delay time, external wake signal to  
program execution resume(1)  
From Flash (sleep  
state)  
(2)  
td(WAKE-IDLE)  
6700tc(SYSCLK)  
+
With input qualifier  
tw(WAKE)  
Without input qualifier  
With input qualifier  
25tc(SYSCLK) cycles  
From RAM  
25tc(SYSCLK) + tw(WAKE) cycles  
(1) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up signal) involves additional latency.  
(2) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and  
FPAC1[PSLEEP]. This value can be realized when SYSCLK is 200 MHz, RWAIT is 3, and FPAC1[PSLEEP] is 0x860.  
7.11.8.2.3 IDLE Entry and Exit Timing Diagram  
td(WAKE-IDLE)  
Address/Data  
(internal)  
XCLKOUT  
tw(WAKE)  
WAKE(A)  
A. WAKE can be any enabled interrupt, WDINT or XRSn. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum)  
is needed before the wake-up signal could be asserted.  
7-26. IDLE Entry and Exit Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.11.8.2.4 lists the STANDBY mode timing requirements, 7.11.8.2.5 lists the STANDBY mode switching  
characteristics, and 7-27 shows the timing diagram for STANDBY mode.  
7.11.8.2.4 STANDBY Mode Timing Requirements  
MIN  
MAX  
UNIT  
QUALSTDBY = 0 | 2tc(OSCCLK)  
QUALSTDBY > 0 |  
3tc(OSCCLK)  
Pulse duration, external  
wake-up signal  
tw(WAKE-INT)  
cycles  
(2 + QUALSTDBY) * tc(OSCCLK)  
(1)  
(2 + QUALSTDBY)tc(OSCCLK)  
(1) QUALSTDBY is a 6-bit field in the LPMCR register.  
7.11.8.2.5 STANDBY Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
Delay time, IDLE instruction executed to  
XCLKOUT stop  
td(IDLE-XCOS)  
16tc(INTOSC1) cycles  
Wakeup from flash  
(Flash module in  
active state)  
td(WAKE-STBY)  
175tc(SYSCLK) + tw(WAKE-INT) cycles  
Delay time, external wake signal to program  
execution resume(1)  
Wakeup from flash  
(Flash module in  
sleep state)  
td(WAKE-STBY)  
td(WAKE-STBY)  
6700tc(SYSCLK) (2) + tw(WAKE-INT) cycles  
Wakeup from RAM  
3tc(OSC) + 15tc(SYSCLK) + tw(WAKE-INT) cycles  
(1) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up signal) involves additional latency.  
(2) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and  
FPAC1[PSLEEP]. This value can be realized when SYSCLK is 200 MHz, RWAIT is 3, and FPAC1[PSLEEP] is 0x860.  
7.11.8.2.6 STANDBY Entry and Exit Timing Diagram  
(C)  
(F)  
(A)  
(B)  
(D)(E)  
(G)  
Device  
Status  
STANDBY  
STANDBY  
Normal Execution  
Flushing Pipeline  
Wake-up  
Signal  
tw(WAKE-INT)  
td(WAKE-STBY)  
OSCCLK  
XCLKOUT  
td(IDLE-XCOS)  
A. IDLE instruction is executed to put the device into STANDBY mode.  
B. The LPM block responds to the STANDBY signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being turned off.  
This delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in STANDBY mode. After  
the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.  
D. The external wake-up signal is driven active.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal  
must be free of glitches. If a noisy signal is fed to a GPIO pin, the wakeup behavior of the device will not be deterministic and the device  
may not exit low-power mode for subsequent wakeup pulses.  
F. After a latency period, the STANDBY mode is exited.  
G. Normal execution resumes. The device will respond to the interrupt (if enabled).  
7-27. STANDBY Entry and Exit Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.11.8.2.7 lists the HALT mode timing requirements, 7.11.8.2.8 lists the HALT mode switching  
characteristics, and 7-28 shows the timing diagram for HALT mode.  
7.11.8.2.7 HALT Mode Timing Requirements  
MIN  
toscst + 2tc(OSCCLK)  
toscst + 8tc(OSCCLK)  
MAX  
UNIT  
cycles  
cycles  
tw(WAKE-GPIO)  
tw(WAKE-XRS)  
Pulse duration, GPIO wake-up signal(1)  
Pulse duration, XRS wake-up signal(1)  
(1) For applications using X1/X2 for OSCCLK, the user must characterize their specific oscillator start-up time as it is dependent on circuit/  
layout external to the device. See Crystal Oscillator Electrical Characteristics table for more information. For applications using  
INTOSC1 or INTOSC2 for OSCCLK, see Internal Oscillators section for toscst. Oscillator start-up time does not apply to applications  
using a single-ended crystal on the X1 pin, as it is powered externally to the device.  
7.11.8.2.8 HALT Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
Delay time, IDLE instruction executed to XCLKOUT  
stop  
td(IDLE-XCOS)  
16tc(INTOSC1) cycles  
Delay time, external wake signal end to CPU1 program  
execution resume  
Wakeup from Flash - Flash module in active state  
Wakeup from Flash - Flash module in sleep state  
Wakeup from RAM  
75tc(OSCCLK)  
td(WAKE-HALT)  
cycles  
(1)  
17500tc(OSCCLK)  
75tc(OSCCLK)  
(1) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and  
FPAC1[PSLEEP]. This value can be realized when SYSCLK is 200 MHz, RWAIT is 3, and FPAC1[PSLEEP] is 0x860.  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.11.8.2.9 HALT Entry and Exit Timing Diagram  
(C)  
(F)  
(A)  
(B)  
(D)(E)  
HALT  
(G)  
Device  
Status  
HALT  
Flushing Pipeline  
Normal  
Execution  
GPIOn  
td(WAKE-HALT)  
tw(WAKE-GPIO)  
OSCCLK  
Oscillator Start-up Time  
XCLKOUT  
td(IDLE-XCOS)  
A. IDLE instruction is executed to put the device into HALT mode.  
B. The LPM block responds to the HALT signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being turned off. This  
delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as the clock source,  
the internal oscillator is shut down as well. The device is now in HALT mode and consumes very little power. It is possible to keep the  
zero-pin internal oscillators (INTOSC1 and INTOSC2) and the watchdog alive in HALT MODE. This is done by writing 1 to  
CLKSRCCTL1.WDHALTI. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-  
up signal could be asserted.  
D. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator wake-up  
sequence is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This enables the provision of a clean  
clock signal during the PLL lock sequence. Because the falling edge of the GPIO pin asynchronously begins the wake-up procedure,  
care should be taken to maintain a low noise environment before entering and during HALT mode.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal  
must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the device will not be deterministic and the  
device may not exit low-power mode for subsequent wake-up pulses.  
F. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after some latency. The HALT mode is now  
exited.  
G. Normal operation resumes.  
H. The user must relock the PLL upon HALT wakeup to ensure a stable PLL lock.  
7-28. HALT Entry and Exit Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.12 Analog Peripherals  
The analog subsystem module is described in this section.  
The analog modules on this device include the ADC, temperature sensor, and CMPSS.  
The analog subsystem has the following features:  
Flexible voltage references  
The ADCs are referenced to VREFHI and VSSA pins  
VREFHI pin voltage can be driven in externally or can be generated by an internal bandgap voltage  
reference  
The internal voltage reference range can be selected to be 0V to 3.3V or 0V to 2.5V  
The comparator DACs are referenced to VDDA and VSSA  
Alternately, these DACs can be referenced to the VDAC pin and VSSA  
Flexible pin usage  
Comparator subsystem inputs and digital inputs are multiplexed with ADC inputs  
Internal connection to VREFLO on all ADCs for offset self-calibration  
7-29 shows the Analog Subsystem Block Diagram for the 80-pin PN and 64-pin PM LQFPs.  
7-30 shows the Analog Subsystem Block Diagram for the 48-pin PT LQFP.  
7-7 lists the analog pins and internal connections. 7-8 lists descriptions of analog signals.7-31 shows  
the analog group connections.  
7-29. Analog Subsystem Block Diagram (80-Pin PN and 64-Pin PM LQFPs)  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7-30. Analog Subsystem Block Diagram (48-Pin PT LQFP)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
CMPSSx Input MUX  
CMPxHPMX  
CMPx_HP0  
CMPx_HP1  
CMPx_HP2  
CMPx_HP3  
CMPx_HP4  
0
1
2
3
CMPx_HP  
4
CMPxHNMX  
CMPxLNMX  
CMPx_HN0  
CMPx_HN1  
0
1
CMPx_HN  
CMPx_LN  
CMPx_LN0  
CMPx_LN1  
0
1
CMPxLPMX  
CMPx_LP0  
CMPx_LP1  
CMPx_LP2  
CMPx_LP3  
CMPx_LP4  
0
1
2
3
CMPx_LP  
4
Gx_ADCA  
Gx_ADCA  
AIO  
Gx_ADCC  
Gx_ADCC  
AIO  
7-31. Analog Group Connections  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
Analog Pins and Internal Connections  
7-7. Analog Pins and Internal Connections  
Package Pin  
ADC  
Comparator Subsystem (MUX)  
Pin Name  
AIO Input  
High  
Positive  
High  
Negative  
Low  
Positive  
Low  
Negative  
80 QFP 64 QFP 48 QFN  
A
C
VREFHI  
20  
21  
16  
17  
12  
13  
VREFLO  
Analog Group 1  
A6  
A13  
C13  
CMP1  
10  
13  
14  
16  
18  
6
4(3)  
6
A6  
A2  
-
CMP1 (HPMXSEL=2)  
CMP1 (HPMXSEL=0)  
CMP1 (LPMXSEL=2)  
CMP1 (LPMXSEL=0)  
CMP1 (LPMXSEL=3)  
CMP1 (LPMXSEL=1)  
CMP1 (LPMXSEL=4)  
CMP2  
AIO228  
AIO224  
AIO233  
AIO237  
AIO232  
A2/C9  
9
C9  
C7  
C0  
-
A15/C7  
10  
12  
14  
7
A15  
A11  
A1  
CMP1 (HPMXSEL=3) CMP1 (HNMXSEL=0)  
CMP1 (HPMXSEL=1) CMP1 (HNMXSEL=1)  
CMP1 (HPMXSEL=4)  
CMP1 (LNMXSEL=0)  
CMP1 (LNMXSEL=1)  
A11/C0  
8
A1  
10  
Analog Group 2  
A10/C10  
Analog Group 3  
C6  
29  
25  
21  
A10  
C10  
CMP2 (HPMXSEL=3) CMP2 (HNMXSEL=0)  
CMP2 (LPMXSEL=3)  
CMP3  
CMP2 (LNMXSEL=0)  
AIO230  
11  
12  
15  
17  
19  
7
4(3)  
5
-
C6  
C5  
CMP3 (HPMXSEL=0)  
CMP3 (LPMXSEL=0)  
CMP3 (LPMXSEL=3)  
CMP3 (LPMXSEL=4)  
CMP3 (LPMXSEL=1)  
CMP3 (LPMXSEL=2)  
CMP4  
AIO226  
AIO242  
AIO239  
AIO244  
AIO231  
A3/C5/VDAC(1)  
8
A3  
A14  
A5  
A0  
CMP3 (HPMXSEL=3) CMP3 (HNMXSEL=0)  
CMP3 (HPMXSEL=4)  
CMP3 (LNMXSEL=0)  
CMP3 (LNMXSEL=1)  
A14/C4  
11  
13  
15  
-
C4  
A5/C2  
9
C2  
CMP3 (HPMXSEL=1) CMP3 (HNMXSEL=1)  
CMP3 (HPMXSEL=2)  
A0/C15  
11  
C15  
Analog Group 4  
A7/C3  
23  
19  
15  
A7  
C3  
CMP4 (HPMXSEL=1) CMP4 (HNMXSEL=1)  
CMP4 (LPMXSEL=1)  
CMP2/4  
CMP4 (LNMXSEL=1)  
CMP2 (LNMXSEL=1)  
AIO245  
Combined Analog Group 2/4  
CMP2 (HPMXSEL=1)  
CMP2 (HNMXSEL=1)  
CMP4 (HPMXSEL=2)  
CMP2 (LPMXSEL=1)  
CMP4 (LPMXSEL=2)  
A12/C1  
A8/C11  
A4/C14  
A9/C8  
22  
24  
27  
28  
18  
20  
23  
24  
14  
16  
19  
20  
A12  
A8  
C1  
C11  
C14  
C8  
AIO238  
AIO241  
AIO225  
AIO227  
CMP2 (HPMXSEL=4)  
CMP4 (HPMXSEL=4)  
CMP2 (LPMXSEL=4)  
CMP4 (LPMXSEL=4)  
CMP2 (HPMXSEL=0)  
CMP4 (HNMXSEL=0)  
CMP4 (HPMXSEL=3)  
CMP2 (LPMXSEL=0)  
CMP4 (LPMXSEL=3)  
A4  
CMP4 (LNMXSEL=0)  
CMP2 (HPMXSEL=2)  
CMP4 (HPMXSEL=0)  
CMP2 (LPMXSEL=2)  
CMP4 (LPMXSEL=0)  
A9  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1  
TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
AIO Input  
7-7. Analog Pins and Internal Connections (continued)  
Package Pin  
ADC  
Comparator Subsystem (MUX)  
Pin Name  
High  
Positive  
High  
Low  
Low  
Negative  
80 QFP 64 QFP 48 QFN  
A
C
Negative  
Positive  
Other Analog  
TempSensor(2)  
-
-
-
-
C12  
(1) Optional external reference voltage for on-chip COMPDACs. There is an internal capacitance to VSSA on this pin whether used for ADC input or COMPDAC reference. If used as a  
VDAC reference, place at least a 1-µF capacitor on this pin.  
(2) Internal connection only; does not come to a device pin.  
(3) A6 and C6 is double bonded as pin # 4.  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1  
TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
Analog Signal Descriptions  
7-8. Analog Signal Descriptions  
SIGNAL NAME  
DESCRIPTION  
AIOx  
Digital input on ADC pin  
Ax  
ADC A Input  
ADC C Input  
Cx  
CMPx_HNy  
CMPx_HPy  
CMPx_LNy  
CMPx_LPy  
TempSensor  
Comparator subsystem high comparator negative input  
Comparator subsystem high comparator positive input  
Comparator subsystem low comparator negative input  
Comparator subsystem low comparator positive input  
Internal temperature sensor  
Optional external reference voltage for on-chip COMPDACs. There is an internal capacitance to VSSA on this  
pin whether used for ADC input or COMPDAC reference which cannot be disabled. If this pin is being used as  
a reference for the on-chip COMPDACs, place at least a 1-uF capacitor on this pin.  
VDAC  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.12.1 Analog-to-Digital Converter (ADC)  
The ADC module described here is a successive approximation (SAR) style ADC with resolution of 12 bits. This  
section refers to the analog circuits of the converter as the core,and includes the channel-select MUX, the  
sample-and-hold (S/H) circuit, the successive approximation circuits, voltage reference circuits, and other analog  
support circuits. The digital circuits of the converter are referred to as the wrapperand include logic for  
programmable conversions, result registers, interfaces to analog circuits, interfaces to the peripheral buses,  
post-processing circuits, and interfaces to other on-chip modules.  
Each ADC module consists of a single sample-and-hold (S/H) circuit. The ADC module is designed to be  
duplicated multiple times on the same chip, allowing simultaneous sampling or independent operation of multiple  
ADCs. The ADC wrapper is start-of-conversion (SOC)-based (see the SOC Principle of Operation section of the  
Analog-to-Digital Converter (ADC) chapter in the TMS320F28002x Real-Time Microcontrollers Technical  
Reference Manual).  
Each ADC has the following features:  
Resolution of 12 bits  
Ratiometric external reference set by VREFHI/VREFLO  
Selectable internal reference of 2.5 V or 3.3 V  
Single-ended signaling  
Input multiplexer with up to 16 channels  
16 configurable SOCs  
16 individually addressable result registers  
Multiple trigger sources  
S/W: software immediate start  
All ePWMs: ADCSOC A or B  
GPIO XINT2  
CPU Timers 0/1/2  
ADCINT1/2  
Four flexible PIE interrupts  
Burst-mode triggering option  
Four post-processing blocks, each with:  
Saturating offset calibration  
Error from setpoint calculation  
High, low, and zero-crossing compare, with interrupt and ePWM trip capability  
Trigger-to-sample delay capture  
Note  
Not every channel may be pinned out from all ADCs. See 6 to determine which channels are  
available.  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
The block diagram for the ADC core and ADC wrapper are shown in 7-32.  
Analog-to-Digital Core  
Analog-to-Digital Wrapper Logic  
Input Circuit  
SOCx (0-15)  
CHSEL  
[15:0]  
[15:0]  
[15:0]  
SOC Arbitration  
& Control  
ACQPS  
CHSEL  
ADCIN0  
ADCIN1  
ADCIN2  
ADCIN3  
ADCIN4  
ADCIN5  
ADCIN6  
ADCIN7  
ADCIN8  
ADCIN9  
ADCIN10  
ADCIN11  
ADCIN12  
ADCIN13  
ADCIN14  
ADCIN15  
0
1
ADCSOC  
2
3
.
.
.
.
.
.
4
5
ADCCOUNTER  
TRIGGER[15:0]  
6
VIN  
+
DOUT  
7
8
VIN-  
9
10  
11  
12  
13  
14  
15  
SOC Delay  
Timestamp  
Trigger  
Timestamp  
Converter  
S/H Circuit  
RESULT  
-
+
ADCPPBxOFFCAL  
saturate  
+
ADCPPBxOFFREF  
-
ADCPPBxRESULT  
ADCEVT  
VREFHI  
Event  
Logic  
CONFIG  
ADCEVTINT  
Bandgap  
Reference Circuit  
1.65-V Output  
(3.3-V Range)  
or  
1
Post Processing Block (1-4)  
Interrupt Block (1-4)  
0
2.5-V Output  
(2.5-V Range)  
ADCINT1-4  
VREFLO  
Analog System Control  
ANAREFSEL  
ANAREFx2PSSEL  
Reference Voltage Levels  
7-32. ADC Module Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.12.1.1 ADC Configurability  
Some ADC configurations are individually controlled by the SOCs, while others are globally controlled per ADC  
module. 7-9 summarizes the basic ADC options and their level of configurability.  
7-9. ADC Options and Configuration Levels  
OPTIONS  
CONFIGURABILITY  
Clock  
Per module(1)  
Resolution  
Signal mode  
Not configurable (12-bit resolution only)  
Not configurable (single-ended signal mode only)  
Reference voltage source  
Trigger source  
Common for both ADC modules  
Per SOC(1)  
Converted channel  
Acquisition window duration  
EOC location  
Per SOC  
Per SOC(1)  
Per module  
Burst mode  
Per module(1)  
(1) Writing these values differently to different ADC modules could cause the ADCs to operate  
asynchronously. For guidance on when the ADCs are operating synchronously or asynchronously,  
see the Ensuring Synchronous Operation section of the Analog-to-Digital Converter (ADC) chapter  
in the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual.  
7.12.1.1.1 Signal Mode  
The ADC supports single-ended signaling. The input voltage to the converter is sampled through a single pin  
(ADCINx), referenced to VREFLO. 7-33 shows the single-ended signaling mode.  
Pin Voltage  
VREFHI  
VREFHI  
ADCINx  
ADCINx  
ADC  
VREFHI/2  
VREFLO  
VREFLO  
(VSSA)  
Digital Output  
2n - 1  
ADC Vin  
0
7-33. Single-ended Signaling Mode  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.12.1.2 ADC Electrical Data and Timing  
7.12.1.2.1 lists the ADC operating conditions. 7.12.1.2.2 lists the ADC electrical characteristics.  
Note  
The ADC inputs should be kept below VDDA + 0.3 V during operation. If an ADC input exceeds this  
level, the VREF internal to the device may be disturbed, which can impact results for other ADC inputs  
using the same VREF  
.
Note  
The VREFHI pin must be kept below VDDA + 0.3 V to ensure proper functional operation. If the  
VREFHI pin exceeds this level, a blocking circuit may activate, and the internal value of VREFHI may  
float to 0 V internally, giving improper ADC conversion.  
7.12.1.2.1 ADC Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
ADCCLK (derived from PERx.SYSCLK)  
Sample rate  
TEST CONDITIONS  
MIN  
TYP  
MAX  
50  
UNIT  
MHz  
5
100-MHz SYSCLK  
3.45  
MSPS  
Sample window duration (set by ACQPS and  
PERx.SYSCLK)(1)  
75  
ns  
With 50 Ωor less Rs  
VREFHI  
External Reference  
2.4  
2.5 or 3.0  
1.65  
VDDA  
V
V
V
V
V
V
V
V
Internal Reference = 3.3V Range  
Internal Reference = 2.5V Range  
VREFHI(2)  
2.5  
VREFLO  
VSSA  
VSSA  
VDDA  
3.3  
VREFHI - VREFLO  
2.4  
Internal Reference = 3.3 V Range  
Internal Reference = 2.5 V Range  
External Reference  
0
0
Conversion range  
2.5  
VREFLO  
VREFHI  
(1) The sample window must also be at least as long as 1 ADCCLK cycle for correct ADC operation.  
(2) In internal reference mode, the reference voltage is driven out of the VREFHI pin by the device. The user should not drive a voltage  
into the pin in this mode.  
7.12.1.2.2 ADC Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
General  
ADCCLK Conversion Cycles  
Power Up Time  
100-MHz SYSCLK  
10.1  
11 ADCCLKs  
External Reference mode  
Internal Reference mode  
500  
µs  
µs  
5000  
5000  
Internal Reference mode, when switching between  
2.5-V range and 3.3-V range.  
µs  
µA  
µF  
VREFHI input current(1)  
130  
Internal Reference Capacitor  
Value(2)  
2.2  
2.2  
External Reference Capacitor  
Value(2)  
µF  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.12.1.2.2 ADC Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC Characteristics  
Internal reference  
45  
5
45  
5  
Gain Error  
LSB  
External reference  
±3  
±2  
2
Offset Error  
5
LSB  
LSB  
5  
Channel-to-Channel Gain Error(4)  
Channel-to-Channel Offset  
Error(4)  
2
LSB  
ADC-to-ADC Gain Error(5)  
ADC-to-ADC Offset Error(5)  
DNL Error  
Identical VREFHI and VREFLO for all ADCs  
Identical VREFHI and VREFLO for all ADCs  
4
2
LSB  
LSB  
LSB  
LSB  
LSBs  
±0.5  
±1.0  
1
2
1
>1  
2  
INL Error  
ADC-to-ADC Isolation  
AC Characteristics  
VREFHI = 2.5 V, synchronous ADCs  
1  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1  
68.8  
60.1  
SNR(3)  
dB  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
INTOSC  
THD(3)  
VREFHI = 2.5 V, fin = 100 kHz  
dB  
dB  
80.6  
79.2  
SFDR(3)  
VREFHI = 2.5 V, fin = 100 kHz  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1  
68.5  
SINAD(3)  
ENOB(3)  
dB  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
INTOSC  
60.0  
11.0  
11.0  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
X1, Single ADC  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
X1, synchronous ADCs  
bits  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
X1, asynchronous ADCs  
Not  
Supported  
VDD = 1.2-V DC + 100mV  
DC up to Sine at 1 kHz  
60  
57  
60  
57  
VDD = 1.2-V DC + 100 mV  
DC up to Sine at 300 kHz  
PSRR  
dB  
VDDA = 3.3-V DC + 200 mV  
DC up to Sine at 1 kHz  
VDDA = 3.3-V DC + 200 mV  
Sine at 900 kHz  
(1) Load current on VREFHI increases when ADC input is greater than VDDA. This causes inaccurate conversions.  
(2) A ceramic capacitor with package size of 0805 or smaller is preferred. Up to ±20% tolerance is acceptable.  
(3) IO activity is minimized on pins adjacent to ADC input and VREFHI pins as part of best practices to reduce capacitive coupling and  
crosstalk.  
(4) Variation across all channels belonging to the same ADC module.  
(5) Worst case variation compared to other ADC modules.  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.12.1.2.3 ADC Input Model  
The ADC input characteristics are given by 7-10 and 7-34.  
7-10. Input Model Parameters  
DESCRIPTION  
REFERENCE MODE  
VALUE  
Cp  
Parasitic input capacitance  
All  
See 7-11  
External Reference, 2.5-V Internal  
Reference  
500 Ω  
860 Ω  
Ron  
Sampling switch resistance  
3.3-V Internal Reference  
External Reference, 2.5-V Internal  
Reference  
12.5 pF  
Ch  
Rs  
Sampling capacitor  
3.3-V Internal Reference  
All  
7.5 pF  
Nominal source impedance  
50 Ω  
ADC  
ADCINx  
Rs  
Switch  
Ron  
AC  
Cp  
Ch  
VREFLO  
7-34. Input Model  
This input model should be used with actual signal source impedance to determine the acquisition window  
duration. For more information, see the Choosing an Acquisition Window Duration section of the Analog-to-  
Digital Converter (ADC) chapter in the TMS320F28002x Real-Time Microcontrollers Technical Reference  
Manual.  
7-11 lists the parasitic capacitance on each channel.  
7-11. Per-Channel Parasitic Capacitance  
Cp (pF)  
ADC CHANNEL  
COMPARATOR DISABLED  
COMPARATOR ENABLED  
ADCINA0/ADCINC15  
ADCINA1  
3.3  
2.4  
2.9  
71.4  
4.5  
2.7  
2.6  
4.2  
4.5  
3.4  
2.9  
2.9  
4.7  
2.5  
3.3  
2.9  
15.8  
4.9  
5.4  
73.9  
7
ADCINA2/ADCINC9  
ADCINA3/ADCINC5(1)  
ADCINA4/ADCINC14  
ADCINA5/ADCINC2  
ADCINA6  
5.2  
5.1  
6.7  
7
ADCINA7/ADCINC3  
ADCINA8/ADCINC11  
ADCINA9/ADCINC8  
ADCINA10/ADCINC10  
ADCINA11/ADCINC0  
ADCINA12/ADCINC1  
ADCINA14/ADCINC4  
ADCINA15/ADCINC7  
ADCINC6  
5.9  
5.4  
5.4  
7.2  
5
5.8  
5.4  
(1) Pin also used to supply reference voltage for COMPDAC and includes an internal decoupling  
capacitor.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.12.1.2.4 ADC Timing Diagrams  
7-35 shows the ADC conversion timings for two SOCs given the following assumptions:  
SOC0 and SOC1 are configured to use the same trigger.  
No other SOCs are converting or pending when the trigger occurs.  
The round-robin pointer is in a state that causes SOC0 to convert first.  
ADCINTSEL is configured to set an ADCINT flag upon end of conversion for SOC0 (whether this flag  
propagates through to the CPU to cause an interrupt is determined by the configurations in the PIE module).  
7-12 lists the descriptions of the ADC timing parameters. 7-13 lists the ADC timings.  
Sample n  
Input on SOC0.CHSEL  
Input on SOC1.CHSEL  
Sample n+1  
ADC S+H  
SOC0  
SOC1  
SYSCLK  
ADCCLK  
ADCTRIG  
ADCSOCFLG.SOC0  
ADCSOCFLG.SOC1  
ADCRESULT0  
Sample n  
(old data)  
(old data)  
ADCRESULT1  
Sample n+1  
ADCINTFLG.ADCINTx  
tSH  
tLAT  
tEOC  
tINT  
7-35. ADC Timings  
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7-12. ADC Timing Parameters  
PARAMETER  
DESCRIPTION  
The duration of the S+H window.  
At the end of this window, the value on the S+H capacitor becomes the voltage to be converted into a digital  
value. The duration is given by (ACQPS + 1) SYSCLK cycles. ACQPS can be configured individually for each  
SOC, so tSH will not necessarily be the same for different SOCs.  
tSH  
Note: The value on the S+H capacitor will be captured approximately 5 ns before the end of the S+H window  
regardless of device clock settings.  
The time from the end of the S+H window until the ADC results latch in the ADCRESULTx register.  
tLAT  
If the ADCRESULTx register is read before this time, the previous conversion results will be returned.  
The time from the end of the S+H window until the S+H window for the next ADC conversion can begin. The  
subsequent sample can start before the conversion results are latched.  
tEOC  
The time from the end of the S+H window until an ADCINT flag is set (if configured).  
If the INTPULSEPOS bit in the ADCCTL1 register is set, tINT will coincide with the conversion results being  
latched into the result register.  
If the INTPULSEPOS bit is 0, tINT will coincide with the end of the S+H window. If tINT triggers a read of the  
ADC result register (directly through DMA or indirectly by triggering an ISR that reads the result), care must be  
taken to ensure the read occurs after the results latch (otherwise, the previous results will be read).  
tINT  
If the INTPULSEPOS bit is 0, and the OFFSET field in the ADCINTCYCLE register is not 0, then there will be a  
delay of OFFSET SYSCLK cycles before the ADCINT flag is set. This delay can be used to enter the ISR or  
trigger the DMA at exactly the time the sample is ready.  
7-13. ADC Timings  
ADCCLK PRESCALE  
SYSCLK CYCLES  
ADCCLK CYCLES  
RATIO  
ADCCLK:SYSCLK  
(1)  
(2)  
ADCCTL2 [PRESCALE]  
tEOC  
tLAT  
tINT(EARLY)  
tINT(LATE)  
tEOC  
0
2
1
2
3
4
5
6
7
8
11  
21  
31  
41  
51  
61  
71  
81  
13  
1
1
1
1
1
1
1
1
11  
21  
31  
41  
51  
61  
71  
81  
11  
23  
34  
44  
55  
65  
76  
86  
10.5  
10.3  
10.3  
10.2  
10.2  
10.1  
10.1  
4
6
8
10  
12  
14  
(1) Refer to the "ADC: DMA Read of Stale Result" advisory in the TMS320F28002x Real-Time MCUs Silicon Errata.  
(2) By default, tINT occurs one SYSCLK cycle after the S+H window if INTPULSEPOS is 0. This can be changed by writing to the OFFSET  
field in the ADCINTCYCLE register.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.12.2 Temperature Sensor  
7.12.2.1 Temperature Sensor Electrical Data and Timing  
The temperature sensor can be used to measure the device junction temperature. The temperature sensor is  
sampled through an internal connection to the ADC and translated into a temperature through TI-provided  
software. When sampling the temperature sensor, the ADC must meet the acquisition time in 7.12.2.1.1.  
7.12.2.1.1 Temperature Sensor Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Tacc  
tstartup  
tacq  
Temperature Accuracy  
External reference  
±15  
°C  
Start-up time  
(TSNSCTL[ENABLE] to  
sampling temperature sensor)  
500  
µs  
ns  
ADC acquisition time  
450  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.12.3 Comparator Subsystem (CMPSS)  
Each CMPSS contains two comparators, two reference 12-bit DACs, two digital filters, and one ramp generator.  
Comparators are denoted "H" or "L" within each module, where Hand Lrepresent high and low,  
respectively. Each comparator generates a digital output that indicates whether the voltage on the positive input  
is greater than the voltage on the negative input. The positive input of the comparator can be driven from an  
external pin or by the PGA . The negative input can be driven by an external pin or by the programmable  
reference 12-bit DAC. Each comparator output passes through a programmable digital filter that can remove  
spurious trip signals. An unfiltered output is also available if filtering is not required. A ramp generator circuit is  
optionally available to control the reference 12-bit DAC value for the high comparator in the subsystem. There  
are two outputs from each CMPSS module. These two outputs pass through the digital filters and crossbar  
before connecting to the ePWM modules or GPIO pin. 7-36 shows the CMPSS connectivity.  
Comparator Subsystem1  
CTRIP1H  
CTRIP1L  
CTRIP2H  
CTRIP2L  
CMP1_HP  
CMP1_HN  
CTRIP1H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT1H  
DAC12  
DAC12  
Digital  
Filter  
CTRIP1L  
CMP1_LN  
CMP1_LP  
CTRIPOUT1L  
ePWM X- BAR  
ePWMs  
Comparator Subsystem2  
CMP2_HP  
CMP2_HN  
CTRIP2H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT2H  
DAC12  
DAC12  
CTRIP4H  
CTRIP4L  
Digital  
Filter  
CTRIP2L  
CMP2_LN  
CMP2_LP  
CTRIPOUT2L  
CTRIPOUT1H  
CTRIPOUT1L  
CTRIPOUT2H  
CTRIPOUT2L  
Comparator Subsystem4  
CMP4_HP  
CMP4_HN  
CTRIP4H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT4H  
Output X- BAR  
GPIO Mux  
DAC12  
DAC12  
Digital  
Filter  
CTRIP4L  
CMP4_LN  
CMP4_LP  
CTRIPOUT4L  
CTRIPOUT4H  
CTRIPOUT4L  
7-36. CMPSS Connectivity  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.12.3.1 CMPSS Electrical Data and Timing  
7.12.3.1.1 lists the comparator electrical characteristics. 7-37 shows the CMPSS comparator input referred  
offset. 7-38 shows the CMPSS comparator hysteresis.  
7.12.3.1.1 Comparator Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
500  
UNIT  
µs  
TPU  
Power-up time  
Comparator input (CMPINxx) range  
Input referred offset error  
0
VDDA  
V
Low common mode, inverting  
input set to 50mV  
20  
mV  
20  
1x  
12  
24  
36  
48  
21  
26  
30  
46  
2x  
Hysteresis(1)  
LSB  
3x  
4x  
Step response  
60  
Response time (delay from CMPINx input  
ns  
change to output on ePWM X-BAR or Output Ramp response (1.65V/µs)  
X-BAR)  
Ramp response (8.25mV/µs)  
ns  
PSRR  
CMRR  
Power Supply Rejection Ratio Up to 250 kHz  
dB  
Common Mode Rejection  
Ratio  
40  
dB  
(1) The CMPSS DAC is used as the reference to determine how much hysteresis to apply. Therefore, hysteresis will scale with the  
CMPSS DAC reference voltage. Hysteresis is available for all comparator input source configurations.  
CMPSS Comparator Input Referred Offset and Hysteresis  
Note  
The CMPSS inputs must be kept below VDDA + 0.3 V to ensure proper functional operation. If a  
CMPSS input exceeds this level, an internal blocking circuit isolates the internal comparator from the  
external pin until the external pin voltage returns below VDDA + 0.3 V. During this time, the internal  
comparator input is floating and can decay below VDDA within approximately 0.5 µs. After this time,  
the comparator could begin to output an incorrect result depending on the value of the other  
comparator input.  
Input Referred Offset  
CTRIPx  
Logic Level  
CTRIPx = 1  
CTRIPx = 0  
COMPINxP  
Voltage  
0
CMPINxN or  
DACxVAL  
7-37. CMPSS Comparator Input Referred Offset  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
Hysteresis  
CTRIPx  
Logic Level  
CTRIPx = 1  
CTRIPx = 0  
COMPINxP  
Voltage  
0
CMPINxN or  
DACxVAL  
7-38. CMPSS Comparator Hysteresis  
7.12.3.1.2 lists the CMPSS DAC static electrical characteristics.  
7.12.3.1.2 CMPSS DAC Static Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Internal reference  
0
0
VDDA  
CMPSS DAC output range  
V
External reference  
VDAC(4)  
Static offset error(1)  
Static gain error(1)  
Static DNL  
25  
2
mV  
% of FSR  
LSB  
25  
2  
Endpoint corrected  
Endpoint corrected  
4
>1  
16  
Static INL  
16  
LSB  
Settling to 1LSB after full-scale output  
change  
Settling time  
Resolution  
1
µs  
12  
bits  
Error induced by comparator trip or  
CMPSS DAC code change within the  
same CMPSS module  
CMPSS DAC output disturbance(2)  
100  
LSB  
100  
CMPSS DAC disturbance time(2)  
VDAC reference voltage  
VDAC load(3)  
200  
VDDA  
10  
ns  
V
When VDAC is reference  
When VDAC is reference  
2.4  
6
2.5 or 3.0  
8
kΩ  
(1) Includes comparator input referred errors.  
(2) Disturbance error may be present on the CMPSS DAC output for a certain amount of time after a comparator trip.  
(3) Per active CMPSS module.  
(4) The maximum output voltage is VDDA when VDAC > VDDA.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.12.3.1.3 CMPSS Illustrative Graphs  
7-39 shows the CMPSS DAC static offset. 7-40 shows the CMPSS DAC static gain. 7-41 shows the  
CMPSS DAC static linearity.  
Offset Error  
7-39. CMPSS DAC Static Offset  
Ideal Gain  
Actual Gain  
7-40. CMPSS DAC Static Gain  
Copyright © 2021 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
Linearity Error  
7-41. CMPSS DAC Static Linearity  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.13 Control Peripherals  
7.13.1 Enhanced Pulse Width Modulator (ePWM)  
The ePWM peripheral is a key element in controlling many of the power electronic systems found in both  
commercial and industrial equipment. The ePWM type-4 module is able to generate complex pulse width  
waveforms with minimal CPU overhead by building the peripheral up from smaller modules with separate  
resources that can operate together to form a system. Some of the highlights of the ePWM type-4 module  
include complex waveform generation, dead-band generation, a flexible synchronization scheme, advanced trip-  
zone functionality, and global register reload capabilities.  
7-42 shows the ePWM module. 7-43 shows the ePWM trip input connectivity.  
Copyright © 2021 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
Time-Base (TB)  
TBPRD Shadow (24)  
ePWM  
SYNC  
Scheme  
EXTSYNCIN  
EXTSYNCOUT  
TBPRDHR (8)  
TBPRD Active (24)  
CTR=PRD  
EPWMxSYNCI  
TBCTL[PHSEN]  
TBCTL[SWFSYNC]  
DCAEVT1/sync(A)  
DCBEVT1/sync(A)  
Counter  
Up/Down  
(16 bit)  
CTR=ZERO  
CTR_Dir  
TBCTR  
Active (16)  
CTR=PRD  
EPWMx_INT  
CTR=ZERO  
TBPHSHR (8)  
EPWMxSOCA  
EPWMxSOCB  
CTR=PRD or ZERO  
CTR=CMPA  
16  
8
On-chip  
ADC  
Event  
Trigger  
And  
Interrupt  
(ET)  
Phase  
Control  
TBPHS Active (24)  
CTR=CMPB  
CTR=CMPC  
CTR=CMPD  
CTR_Dir  
DCAEVT1.soc(A)  
DCBEVT1.soc(A)  
ADCSOCOUTSELECT  
Counter Compare (CC)  
Action  
Qualifier  
(AQ)  
CTR=CMPA  
CMPAHR (8)  
Select and pulse stretch  
for external ADC  
16  
HiRes PWM (HRPWM)  
CMPAHR (8)  
EPWMA  
ADCSOCAO  
ADCSOCBO  
CMPA Active (24)  
CMPA Shadow (24)  
ePWMxA  
Trip  
Zone  
(TZ)  
Dead  
Band  
(DB)  
PWM  
Chopper  
(DB)  
CTR=CMPB  
CMPBHR (8)  
16  
CMPB Active (16)  
EPWMB  
ePWMxB  
CMPB Shadow (16)  
CMPBHR (8)  
CTR=CMPC  
EPWMx_TZ_INT  
TZ1 to TZ3  
TBCNT (16)  
CMPC[15-0]  
CTR=ZERO  
DCAEVT1.inter  
DCBEVT1.inter  
DCAEVT2.inter  
EMUSTOP  
16  
CLOCKFAIL  
CMPC Active (16)  
EQEPxERR  
DCBEVT2.inter  
DCAEVT1.force(A)  
DCBEVT1.force(A)  
DCAEVT2.force(A)  
CMPC Shadow (16)  
TBCNT (16)  
CTR=CMPD  
DCBEVT2.force(A)  
CMPD[15-0]  
16  
CMPD Active (16)  
CMPD Shadow (16)  
A. These events are generated by the ePWM digital compare (DC) submodule based on the levels of the TRIPIN inputs.  
7-42. ePWM Submodules and Critical Internal Signal Interconnects  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
GPIO0  
Async/  
Sync/  
Input X-Bar  
Sync+Filter  
GPIOx  
Other Sources  
INPUT[1:16]  
16:127  
0:15  
eCAPx  
XINT1  
XINT2  
XINT3  
XINT4  
XINT5  
ADC  
Wrapper(s)  
PIE  
ePWM  
eCAP  
Sync Mux  
EXTSYNCIN1  
EXTSYNCIN2  
TZ1  
TZ2  
TZ3  
EPWMINT  
TZINT  
TRIP1  
TRIP2  
TRIP3  
TRIP6  
EPWMx.EPWMCLK  
PCLKCR2[EPWMx]  
TBCLKSYNC  
PCLKCR0[TBCLKSYNC]  
TRIP4  
TRIP5  
TRIP7  
TRIP8  
TRIP9  
TRIP10  
TRIP11  
TRIP12  
INPUT[1:14]  
CMPSSx.TRIPH  
CMPSSx.TRIPHORL  
CMPSSx.TRIPL  
ADCx.EVT1-4  
ECAPx.OUT  
All  
ePWM  
Modules  
ePWM  
X-Bar  
ADCSOCAO Select  
ADCSOCBO Select  
EXTSYNCOUT  
ADCSOCx  
SOCA  
SOCB  
ADC  
Wrapper(s)  
Reserved  
ECCERR  
TRIP13  
TRIP14  
TRIP15  
TZ4  
TZ5  
TZ6  
PIEVECTERROR  
EQEPERR  
CLKFAIL  
EMUSTOP  
EPWMSYNCPER  
Blanking Window  
CMPSS  
7-43. ePWM Trip Input Connectivity  
Copyright © 2021 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.13.1.1 Control Peripherals Synchronization  
The ePWM and eCAP synchronization scheme on the device provides flexibility in partitioning the ePWM and  
eCAP modules and allows localized synchronization within the modules. Like the other peripherals, the  
partitioning of the ePWM and eCAP modules needs to be done using the CPUSELx registers. 7-44 shows the  
synchronization scheme.  
TBCTL  
SWFSYNC  
CTR=ZERO  
CTR=CMPB  
CTR=CMPC  
CTR=CMPD  
CLR  
DCAEVT1.sync  
One Shot  
Latch  
DCBEVT1.sync  
0
Set  
Q
EPWMSYNCOUTEN  
1
SWEN  
ZEROEN  
0
0
1
CMPBEN  
EPWMxSYNCOUT  
1
0
OR  
CMPCEN  
CMPDEN  
DCARVT1EN  
DCBEVT1EN  
TBCTL2[SELFCLRTRREM]  
Clear  
Register  
Disable  
0
EPWM1SYNCOUT  
|
|
|
EPWMxSYNCOUT  
ECAP1SYNCOUT  
HRPCTL[PWMSYNCSELX]  
CTR=CMPC UP  
EPWMxSYNCIN  
|
|
|
CTR=CMPC DOWN  
CTR=CMPD UP  
ECAPySYNCOUT  
Other Sources  
EPWMxSYNCPER  
CTR=CMPD DOWN  
HRPCTL[PWMSYNCSEL]  
CTR=PRD  
CMPSS  
DAC  
EPWMSYNCINSEL  
Note: SYNCO and SYNCOUT are used interchangeably  
CTR=ZERO  
7-44. Synchronization Chain Architecture  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.13.1.2 ePWM Electrical Data and Timing  
7.13.1.2.1 lists the ePWM timing requirements and 7.13.1.2.2 lists the ePWM switching characteristics. For  
an explanation of the input qualifier parameters, see 7.11.6.2.1.  
7.13.1.2.1 ePWM Timing Requirements  
MIN  
2tc(EPWMCLK)  
MAX  
UNIT  
Asynchronous  
Synchronous  
tw(SYNCIN)  
Sync input pulse width  
2tc(EPWMCLK)  
cycles  
With input qualifier  
1tc(EPWMCLK) + tw(IQSW)  
7.13.1.2.2 ePWM Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
20  
MAX  
UNIT  
ns  
tw(PWM)  
Pulse duration, PWMx output high/low  
Sync output pulse width  
tw(SYNCOUT)  
8tc(SYSCLK)  
cycles  
Delay time, trip input active to PWM forced high  
Delay time, trip input active to PWM forced low  
Delay time, trip input active to PWM Hi-Z  
td(TZ-PWM)  
25  
ns  
7.13.1.2.3 Trip-Zone Input Timing  
7.13.1.2.3.1 lists the trip-zone input timing requirements. 7-45 shows the PWM Hi-Z characteristics. For an  
explanation of the input qualifier parameters, see 7.11.6.2.1.  
7.13.1.2.3.1 Trip-Zone Input Timing Requirements  
MIN  
1tc(EPWMCLK)  
MAX UNIT  
cycles  
Asynchronous  
Synchronous  
tw(TZ)  
Pulse duration, TZx input low  
2tc(EPWMCLK)  
cycles  
With input qualifier  
1tc(EPWMCLK) + tw(IQSW)  
cycles  
EPWMCLK  
tw(TZ)  
TZ(A)  
td(TZ-PWM)  
PWM(B)  
A. TZ: TZ1, TZ2, TZ3, TRIP1TRIP12  
B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery  
software.  
7-45. PWM Hi-Z Characteristics  
Copyright © 2021 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.13.1.3 External ADC Start-of-Conversion Electrical Data and Timing  
7.13.1.3.1 lists the external ADC start-of-conversion switching characteristics. 7-46 shows the ADCSOCAO  
or ADCSOCBO timing.  
7.13.1.3.1 External ADC Start-of-Conversion Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
tw(ADCSOCL)  
Pulse duration, ADCSOCxO low  
32tc(SYSCLK)  
cycles  
tw(ADCSOCL)  
ADCSOCAO  
or  
ADCSOCBO  
7-46. ADCSOCAO or ADCSOCBO Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.13.2 High-Resolution Pulse Width Modulator (HRPWM)  
The HRPWM combines multiple delay lines in a single module and a simplified calibration system by using a  
dedicated calibration delay line. For each ePWM module, there are two HR outputs:  
HR Duty and Deadband control on Channel A  
HR Duty and Deadband control on Channel B  
The HRPWM module offers PWM resolution (time granularity) that is significantly better than what can be  
achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are:  
Significantly extends the time resolution capabilities of conventionally derived digital PWM  
This capability can be used in both single edge (duty cycle and phase-shift control) as well as dual edge  
control for frequency/period modulation.  
Finer time granularity control or edge positioning is controlled through extensions to the Compare A, B,  
phase, period and deadband registers of the ePWM module.  
Note  
The minimum HRPWMCLK frequency allowed for HRPWM is 60 MHz.  
7.13.2.1 HRPWM Electrical Data and Timing  
7.13.2.1.1 lists the high-resolution PWM switching characteristics.  
7.13.2.1.1 High-Resolution PWM Characteristics  
PARAMETER  
MIN  
TYP  
MAX UNIT  
310 ps  
Micro Edge Positioning (MEP) step size(1)  
150  
(1) The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher  
temperature and lower voltage and decrease with lower temperature and higher voltage.  
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI  
software libraries for details of using SFO functions in end applications. SFO functions help to estimate the number of MEP steps per  
SYSCLK period dynamically while the HRPWM is in operation.  
7.13.3 Enhanced Capture and High-Resolution Capture (eCAP, HRCAP)  
The eCAP module can be used in systems where accurate timing of external events is important. eCAP/HRCAP  
on this device is Type-2.  
Applications for eCAP include:  
Speed measurements of rotating machinery (for example, toothed sprockets sensed through Hall sensors)  
Elapsed time measurements between position sensor pulses  
Period and duty cycle measurements of pulse train signals  
Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors  
The eCAP module includes the following features:  
4-event time-stamp registers (each 32 bits)  
Edge-polarity selection for up to four sequenced time-stamp capture events  
Interrupt on either of the four events  
Single shot capture of up to four event timestamps  
Continuous mode capture of timestamps in a four-deep circular buffer  
Absolute time-stamp capture  
Difference (Delta) mode time-stamp capture  
All of the above resources dedicated to a single input pin  
When not used in capture mode, the eCAP module can be configured as a single-channel PWM output  
(APWM).  
Copyright © 2021 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
The capture functionality of the Type-1 eCAP is enhanced from the Type-0 eCAP with the following added  
features:  
Event filter reset bit  
Writing a 1 to ECCTL2[CTRFILTRESET] will clear the event filter, the modulo counter, and any pending  
interrupts flags. Resetting the bit is useful for initialization and debug.  
Modulo counter status bits  
The modulo counter (ECCTL2 [MODCTRSTS]) indicates which capture register will be loaded next. In the  
Type-0 eCAP, it was not possible to know current state of modulo counter.  
DMA trigger source  
eCAPxDMA is added as a DMA trigger. CEVT[14] can be configured as the source for eCAPxDMA.  
Input multiplexer  
ECCTL0 [INPUTSEL] selects one of 128 input signals.  
EALLOW protection  
EALLOW protection is added to critical registers. To maintain software compatibility with the Type-0 eCAP,  
configure DEV_CFG_REGS.ECAPTYPE to make these registers unprotected.  
The capture functionality of the Type-2 eCAP is enhanced from the Type-1 eCAP with the following added  
features:  
ECAPxSYNCINSEL register  
The ECAPSxYNCINSEL register is added for each eCAP to select an external SYNCIN. Every eCAP can  
have a separate SYNCIN signal.  
The eCAP inputs connect to any GPIO input through the Input X-BAR. The APWM outputs connect to GPIO pins  
through the Output X-BAR to OUTPUTx positions in the GPIO mux. See 6.4.3 and 6.4.4.  
The eCAP module is clocked by PERx.SYSCLK.  
The clock enable bits (ECAP1ECAP3) in the PCLKCR3 register turn off the eCAP module individually (for low-  
power operation). Upon reset, ECAP1ENCLK is set to low, indicating that the peripheral clock is off.  
7.13.3.1 High-Resolution Capture (HRCAP)  
The eCAP3 module can be configured as high-resolution capture (HRCAP) submodules. The HRCAP  
submodule measures the difference, in time, between pulses asynchronously to the system clock. This  
submodule is new to the eCAP Type 1 module, and features many enhancements over the Type 0 HRCAP  
module.  
Applications for the HRCAP include:  
Capacitive touch applications  
High-resolution period and duty-cycle measurements of pulse train cycles  
Instantaneous speed measurements  
Instantaneous frequency measurements  
Voltage measurements across an isolation boundary  
Distance/sonar measurement and scanning  
Flow measurements  
The HRCAP submodule includes the following features:  
Pulse-width capture in either non-high-resolution or high-resolution modes  
Absolute mode pulse-width capture  
Continuous or "one-shot" capture  
Capture on either falling or rising edge  
Continuous mode capture of pulse widths in 4-deep buffer  
Hardware calibration logic for precision high-resolution capture  
All of the resources in this list are available on any pin using the Input X-BAR.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
The HRCAP submodule includes one high-resolution capture channel in addition to a calibration block. The  
calibration block allows the HRCAP submodule to be continually recalibrated, at a set interval, with no down  
time. Because the HRCAP submodule now uses the same hardware as its respective eCAP, if the HRCAP is  
used, the corresponding eCAP will be unavailable.  
Each high-resolution-capable channel has the following independent key resources.  
All hardware of the respective eCAP  
High-resolution calibration logic  
Dedicated calibration interrupt  
eCAP and HRCAP Block Diagram  
7-47 shows the eCAP and HRCAP block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
ECCTL2 [ SYNCI_EN, SYNCOSEL, SWSYNC]  
ECCTL2[CAP/APWM]  
APWM Mode  
CTRPHS  
(phase register−32 bit)  
ECAPxSYNCIN  
OVF  
RST  
CTR_OVF  
CTR [0−31]  
PRD [0−31]  
CMP [0−31]  
TSCTR  
ECAPxSYNCOUT  
PWM  
Compare  
Logic  
Output  
X-Bar  
(counter−32 bit)  
Delta−Mode  
32  
CTR=PRD  
CTR=CMP  
CTR [0−31]  
PRD [0−31]  
32  
ECCTL1 [ CAPLDEN, CTRRSTx]  
HRCTRL[HRE]  
32  
32  
LD1  
CAP1  
Polarity  
Select  
LD  
(APRD Active)  
APRD  
32  
shadow  
CMP [0−31]  
32  
HRCTRL[HRE]  
32  
HRCTRL[HRE]  
32  
CAP2  
Polarity  
Select  
LD2  
LD  
Other  
Sources  
(ACMP Active)  
[127:16]  
[15:0]  
Event  
Prescale  
Event  
32  
ACMP  
16  
qualifier  
Input  
shadow  
LD  
ECCTL1[PRESCALE]  
HRCTRL[HRE]  
32  
X-Bar  
32  
Polarity  
Select  
LD3  
LD4  
CAP3  
(APRD Shadow)  
HRCTRL[HRE]  
32  
32  
CAP4  
Polarity  
Select  
LD  
(ACMP Shadow)  
Edge Polarity Select  
ECCTL1[CAPxPOL]  
4
Capture Events  
4
CEVT[1:4]  
ECAPxDMA_INT  
ECCTL2[CTRFILTRESET]  
Interrupt  
Continuous /  
Oneshot  
Trigger  
and  
MODCNTRSTS  
CTR_OVF  
CTR=PRD  
CTR=CMP  
Capture Control  
ECCTL2[DMAEVTSEL]  
Flag  
Control  
ECAPx  
(to ePIE)  
ECCTL2 [ REARM, CONT_ONESHT, STOP_WRAP]  
Registers: ECEINT, ECFLG, ECCLR, ECFRC  
Capture Pulse  
HR Input  
SYSCLK  
HRCLK  
(A)  
HR Submodule  
ECAPx_HRCAL  
(to ePIE)  
Copyright © 2018, Texas Instruments Incorporated  
A. The HRCAP submodule is not available on all eCAP modules; in this case, the high-resolution muxes and hardware are not  
implemented.  
7-47. eCAP and HRCAP Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.13.3.2 eCAP/HRCAP Synchronization  
The eCAP modules can be synchronized with each other by selecting a common SYNCIN source. SYNCIN  
source for eCAP can be either software sync-in or external sync-in. The external sync-in signal can come from  
EPWM, eCAP, or X-Bar. The SYNC signal is defined by the selection in the ECAPxSYNCINSEL[SEL] bit for  
ECAPx as shown in 7-48.  
ECAPx  
Disable  
EPWM[1..7]SYNCOUT  
0x0  
0x1  
ECAPxSYNCIN  
ECAPxSYNCOUT  
EPWMxSYNCOUT  
ECCTL2[SWSYNC]  
CTR=PRD  
EXTSYNCOUT  
ECAP[1..3]SYNCOUT  
INPUT5 (Input X-Bar)  
Disable  
Disable  
INPUT6 (Input X-Bar)  
0x19  
SYNCSELECT[SYNCOUT]  
ECCTL2[SYNCOSEL]  
ECAPSYNCINSEL[SEL]  
7-48. eCAPSynchronization Scheme  
Copyright © 2021 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.13.3.3 eCAP Electrical Data and Timing  
7.13.3.3.1 lists the eCAP timing requirements and 7.13.3.3.2 lists the eCAP switching characteristics.  
7.13.3.3.1 eCAP Timing Requirements  
MIN  
2tc(SYSCLK)  
NOM  
MAX  
UNIT  
Asynchronous  
Synchronous  
tw(CAP)  
Capture input pulse width  
2tc(SYSCLK)  
ns  
With input qualifier  
1tc(SYSCLK) + tw_(IQSW)  
7.13.3.3.2 eCAP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ns  
tw(APWM)  
Pulse duration, APWMx output high/low  
20  
7.13.3.4 HRCAP Electrical Data and Timing  
7.13.3.4.1 lists the HRCAP switching characteristics. 7-49 shows the HRCAP accuracy precision and  
resolution. 7-50 shows the HRCAP standard deviation characteristics.  
7.13.3.4.1 HRCAP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ns  
Input pulse width  
110  
±390  
±450  
540  
ps  
Measurement length 5 µs  
Accuracy(1) (2) (3) (4)  
Measurement length > 5 µs  
1450  
ps  
See HRCAP  
Standard  
Standard deviation  
Resolution  
Deviation  
Characteristics  
figure  
300  
ps  
(1) Value obtained using an oscillator of 100 PPM, oscillator accuracy directly affects the HRCAP accuracy.  
(2) Measurement is completed using rising-rising or falling-falling edges  
(3) Opposite polarity edges will have an additional inaccuracy due to the difference between VIH and VIL. This effect is dependent on the  
signals slew rate.  
(4) Accuracy only applies to time-converted measurements.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
HRCAP Figure and Graph  
HRCAP’s Mean  
Accuracy  
Resolution  
(Step Size)  
Precision  
(Standard Deviation)  
Actual  
Input Signal  
A. The HRCAP has some variation in performance, this results in a probability distribution which is described using the following terms:  
Accuracy: The time difference between the input signal and the mean of the HRCAPs distribution.  
Precision: The width of the HRCAPs distribution, this is given as a standard deviation.  
Resolution: The minimum measurable increment.  
7-49. HRCAP Accuracy Precision and Resolution  
2
7.4  
Typical Core Conditions  
Noisy Core Supply  
1.8  
1.6  
1.4  
1.2  
1
6.66  
5.92  
5.18  
4.44  
3.7  
0.8  
0.6  
0.4  
0.2  
2.96  
2.22  
1.48  
0.74  
0
1000  
2000  
3000  
4000  
5000  
Time Between Edges(nS)  
6000  
7000  
8000  
9000  
10000  
A. Typical core conditions: All peripheral clocks are enabled.  
B. Noisy core supply: All core clocks are enabled and disabled with a regular period during the measurement.  
C. Fluctuations in current and voltage on the 1.2-V rail cause the standard deviation of the HRCAP to rise. Care should be taken to ensure  
that the 1.2-V supply is clean, and that noisy internal events, such as enabling and disabling clock trees, have been minimized while  
using the HRCAP.  
7-50. HRCAP Standard Deviation Characteristics  
Copyright © 2021 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.13.4 Enhanced Quadrature Encoder Pulse (eQEP)  
The eQEP module on this device is Type-2. The eQEP interfaces directly with linear or rotary incremental  
encoders to obtain position, direction, and speed information from rotating machines used in high-performance  
motion and position control systems.  
The eQEP peripheral contains the following major functional units (see 7-51):  
Programmable input qualification for each pin (part of the GPIO MUX)  
Quadrature decoder unit (QDU)  
Position counter and control unit for position measurement (PCCU)  
Quadrature edge-capture unit for low-speed measurement (QCAP)  
Unit time base for speed/frequency measurement (UTIME)  
Watchdog timer for detecting stalls (QWDOG)  
Quadrature Mode Adapter (QMA)  
System  
control registers  
To CPU  
EQEPxENCLK  
SYSCLK  
QCPRD  
Enhanced QEP (eQEP) peripheral  
QCAPCTL  
16  
QCTMR  
16  
16  
Quadrature  
capture unit  
(QCAP)  
QCTMRLAT  
QCPRDLAT  
QUTMR  
QUPRD  
QWDTMR  
QWDPRD  
Registers  
used by  
multiple units  
32  
16  
QDECCTL  
16  
QEPCTL  
QEPSTS  
QFLG  
UTOUT  
UTIME  
QWDOG  
EQEPx_A  
EQEPx_B  
EQEPxAIN  
EQEPxBIN  
WDTOUT  
QMA  
EQEPxINT  
QCLK  
QDIR  
QI  
PIE  
EQEPxIIN  
Quadrature  
decoder  
(QDU)  
32  
GPIO  
MUX  
EQEPx_INDEX  
EQEPxIOUT  
EQEPxIOE  
Position counter/  
control unit  
(PCCU)  
QS  
QPOSLAT  
PHE  
QPOSSLAT  
QPOSILAT  
PCSOUT  
EQEPxSIN  
EQEPx_STROBE  
EQEPxSOUT  
EQEPxSOE  
32  
32  
16  
QEINT  
QPOSCNT  
QPOSINIT  
QPOSMAX  
QPOSCMP  
QFRC  
QCLR  
QPOSCTL  
Copyright © 2017, Texas Instruments Incorporated  
7-51. eQEP Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.13.4.1 eQEP Electrical Data and Timing  
7.13.4.1.1 lists the eQEP timing requirements and 7.13.4.1.2 lists the eQEP switching characteristics. For  
an explanation of the input qualifier parameters, see 7.11.6.2.1.  
7.13.4.1.1 eQEP Timing Requirements  
MIN  
MAX  
UNIT  
Synchronous(1)  
2tc(SYSCLK)  
tw(QEPP)  
QEP input period  
cycles  
Synchronous with input qualifier  
Synchronous(1)  
2[1tc(SYSCLK) + tw(IQSW)]  
2tc(SYSCLK)  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
tw(INDEXH)  
tw(INDEXL)  
tw(STROBH)  
tw(STROBL)  
QEP Index Input High time  
QEP Index Input Low time  
QEP Strobe High time  
QEP Strobe Input Low time  
cycles  
cycles  
cycles  
cycles  
Synchronous with input qualifier  
Synchronous(1)  
Synchronous with input qualifier  
Synchronous(1)  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
Synchronous with input qualifier  
Synchronous(1)  
Synchronous with input qualifier  
2tc(SYSCLK) + tw(IQSW)  
(1) The GPIO GPxQSELn Asynchronous mode should not be used for eQEP module input pins.  
7.13.4.1.2 eQEP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
5tc(SYSCLK)  
7tc(SYSCLK)  
UNIT  
cycles  
cycles  
td(CNTR)xin  
Delay time, external clock to counter increment  
td(PCS-OUT)QEP  
Delay time, QEP input edge to position compare sync output  
Copyright © 2021 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.14 Communications Peripherals  
7.14.1 Controller Area Network (CAN)  
Note  
The CAN module uses the IP known as DCAN. This document uses the names CAN and DCAN  
interchangeably to reference this peripheral.  
The CAN module implements the following features:  
Complies with ISO11898-1 ( Bosch® CAN protocol specification 2.0 A and B)  
Bit rates up to 1 Mbps  
Multiple clock sources  
32 message objects (mailboxes), each with the following properties:  
Configurable as receive or transmit  
Configurable with standard (11-bit) or extended (29-bit) identifier  
Supports programmable identifier receive mask  
Supports data and remote frames  
Holds 0 to 8 bytes of data  
Parity-checked configuration and data RAM  
Individual identifier mask for each message object  
Programmable FIFO mode for message objects  
Programmable loopback modes for self-test operation  
Suspend mode for debug support  
Software module reset  
Automatic bus on after bus-off state by a programmable 32-bit timer  
Two interrupt lines  
DMA support  
Note  
For a CAN bit clock of 100 MHz, the smallest bit rate possible is 3.90625 kbps.  
Note  
The accuracy of the on-chip zero-pin oscillator is in 7.11.3.5.1. Depending on parameters such as  
the CAN bit timing settings, bit rate, bus length, and propagation delay, the accuracy of this oscillator  
may not meet the requirements of the CAN protocol. In this situation, an external clock source must be  
used.  
7-52 shows the CAN block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
CAN_H  
CAN Bus  
CAN_L  
3.3V CAN Transceiver  
External connections  
Device  
CANx RX pin  
CANx TX pin  
CAN  
CAN Core  
Message RAM  
Message Handler  
Message  
RAM  
Interface  
Register and Message  
Object Access (IFx)  
32  
Message  
Objects  
(Mailboxes)  
Test Modes  
Only  
Module Interface  
CANINT0 CANINT1  
DMA  
CPU Bus  
7-52. CAN Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.14.2 Inter-Integrated Circuit (I2C)  
The I2C module has the following features:  
Compliance with the NXP Semiconductors I2C-bus specification (version 2.1):  
Support for 8-bit format transfers  
7-bit and 10-bit addressing modes  
General call  
START byte mode  
Support for multiple master-transmitters and slave-receivers  
Support for multiple slave-transmitters and master-receivers  
Combined master transmit/receive and receive/transmit mode  
Data transfer rate from 10 kbps up to 400 kbps (Fast-mode)  
One 16-byte receive FIFO and one 16-byte transmit FIFO  
Supports two ePIE interrupts  
I2Cx interrupt Any of the below conditions can be configured to generate an I2Cx interrupt:  
Transmit Ready  
Receive Ready  
Register-Access Ready  
No-Acknowledgment  
Arbitration-Lost  
Stop Condition Detected  
Addressed-as-Slave  
I2Cx_FIFO interrupts:  
Transmit FIFO interrupt  
Receive FIFO interrupt  
Module enable and disable capability  
Free data format mode  
7-53 shows how the I2C peripheral module interfaces within the device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
I2C module  
I2CXSR  
I2CDXR  
TX FIFO  
RX FIFO  
FIFO Interrupt  
to CPU/PIE  
SDA  
Peripheral bus  
I2CRSR  
I2CDRR  
Control/status  
registers  
CPU  
Clock  
synchronizer  
SCL  
Prescaler  
Noise filters  
Arbitrator  
Interrupt to  
CPU/PIE  
I2C INT  
7-53. I2C Peripheral Module Interfaces  
Copyright © 2021 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.14.2.1 I2C Electrical Data and Timing  
7.14.2.1.1 lists the I2C timing requirements. 7.14.2.1.2 lists the I2C switching characteristics. 7-54  
shows the I2C timing diagram.  
Note  
To meet all of the I2C protocol timing specifications, the I2C module clock must be configured in the  
range from 7 MHz to 12 MHz.  
7.14.2.1.1 I2C Timing Requirements  
NO.  
MIN  
MAX  
UNIT  
Standard mode  
T0  
T1  
fmod  
I2C module frequency  
7
12  
MHz  
µs  
Hold time, START condition, SCL fall delay after  
SDA fall  
th(SDA-SCL)START  
4.0  
Setup time, Repeated START, SCL rise before SDA  
fall delay  
T2  
tsu(SCL-SDA)START  
4.7  
µs  
T3  
T4  
T5  
T6  
T7  
T8  
th(SCL-DAT)  
tsu(DAT-SCL)  
tr(SDA)  
Hold time, data after SCL fall  
Setup time, data before SCL rise  
Rise time, SDA  
0
µs  
ns  
ns  
ns  
ns  
ns  
250  
1000  
1000  
300  
tr(SCL)  
Rise time, SCL  
tf(SDA)  
Fall time, SDA  
tf(SCL)  
Fall time, SCL  
300  
Setup time, STOP condition, SCL rise before SDA  
rise delay  
T9  
tsu(SCL-SDA)STOP  
4.0  
0
µs  
Pulse duration of spikes that will be suppressed by  
filter  
T10  
tw(SP)  
Cb  
50  
ns  
T11  
capacitance load on each bus line  
400  
pF  
Fast mode  
T0  
fmod  
I2C module frequency  
7
12  
MHz  
µs  
Hold time, START condition, SCL fall delay after  
SDA fall  
T1  
T2  
th(SDA-SCL)START  
0.6  
Setup time, Repeated START, SCL rise before SDA  
fall delay  
tsu(SCL-SDA)START  
0.6  
µs  
T3  
T4  
T5  
T6  
T7  
T8  
th(SCL-DAT)  
tsu(DAT-SCL)  
tr(SDA)  
Hold time, data after SCL fall  
Setup time, data before SCL rise  
Rise time, SDA  
0
100  
20  
µs  
ns  
ns  
ns  
ns  
ns  
300  
300  
300  
300  
tr(SCL)  
Rise time, SCL  
20  
tf(SDA)  
Fall time, SDA  
11.4  
11.4  
tf(SCL)  
Fall time, SCL  
Setup time, STOP condition, SCL rise before SDA  
rise delay  
T9  
tsu(SCL-SDA)STOP  
0.6  
0
µs  
Pulse duration of spikes that will be suppressed by  
filter  
T10  
T11  
tw(SP)  
Cb  
50  
ns  
capacitance load on each bus line  
400  
pF  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
MAX UNIT  
7.14.2.1.2 I2C Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
TEST CONDITIONS  
MIN  
Standard mode  
S1  
S2  
S3  
S4  
fSCL  
SCL clock frequency  
0
10  
100  
kHz  
µs  
TSCL  
SCL clock period  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL clock low  
Pulse duration, SCL clock high  
4.7  
4.0  
µs  
µs  
Bus free time between STOP and START  
conditions  
S5  
tBUF  
4.7  
µs  
S6  
S7  
S8  
tv(SCL-DAT)  
tv(SCL-ACK)  
II  
Valid time, data after SCL fall  
Valid time, Acknowledge after SCL fall  
Input current on pins  
3.45  
3.45  
10  
µs  
µs  
µA  
0.1 Vbus < Vi < 0.9 Vbus  
10  
Fast mode  
S1  
S2  
S3  
S4  
fSCL  
SCL clock frequency  
0
2.5  
1.3  
0.6  
400  
kHz  
µs  
TSCL  
SCL clock period  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL clock low  
Pulse duration, SCL clock high  
µs  
µs  
Bus free time between STOP and START  
conditions  
S5  
tBUF  
1.3  
µs  
S6  
S7  
S8  
tv(SCL-DAT)  
tv(SCL-ACK)  
II  
Valid time, data after SCL fall  
Valid time, Acknowledge after SCL fall  
Input current on pins  
0.9  
0.9  
10  
µs  
µs  
µA  
0.1 Vbus < Vi < 0.9 Vbus  
10  
7.14.2.1.3 I2C Timing Diagram  
STOP  
START  
SDA  
SCL  
ACK  
Contd...  
Contd...  
S7  
S6  
T10  
T5  
T7  
S3  
S4  
9th  
clock  
T6  
T8  
S2  
Repeated  
START  
STOP  
S5  
SDA  
ACK  
T2  
T9  
T1  
SCL  
9th  
clock  
7-54. I2C Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.14.3 Power Management Bus (PMBus) Interface  
The PMBus module has the following features:  
Compliance with the SMI Forum PMBus Specification (Part I v1.0 and Part II v1.1)  
Support for master and slave modes  
Support for I2C mode  
Support for two speeds:  
Standard Mode: Up to 100 kHz  
Fast Mode: 400 kHz  
Packet error checking  
CONTROL and ALERT signals  
Clock high and low time-outs  
Four-byte transmit and receive buffers  
One maskable interrupt, which can be generated by several conditions:  
Receive data ready  
Transmit buffer empty  
Slave address received  
End of message  
ALERT input asserted  
Clock low time-out  
Clock high time-out  
Bus free  
7-55 shows the PMBus block diagram.  
PCLKCR20  
SYSCLK  
PMBCTRL  
Div  
ALERT  
CTL  
DMA  
CPU  
PIE  
Bit clock  
Other registers  
GPIO Mux  
PMBTXBUF  
SCL  
Shift register  
PMBRXBUF  
SDA  
PMBUSA_INT  
PMBus Module  
7-55. PMBus Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.14.3.1 PMBus Electrical Data and Timing  
7.14.3.1.1 lists the PMBus electrical characteristics. 7.14.3.1.2 lists the PMBUS fast mode switching  
characteristics. 7.14.3.1.3 lists the PMBUS standard mode switching characteristics.  
7.14.3.1.1 PMBus Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.8  
UNIT  
V
VIL  
VIH  
VOL  
IOL  
Valid low-level input voltage  
Valid high-level input voltage  
Low-level output voltage  
Low-level output current  
2.1  
VDDIO  
0.4  
V
At Ipullup = 4 mA  
V
4
0
mA  
VOL 0.4 V  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
50  
ns  
Ii  
Input leakage current on each pin  
Capacitance on each pin  
0.1 Vbus < Vi < 0.9 Vbus  
10  
10  
µA  
pF  
10  
Ci  
7.14.3.1.2 PMBus Fast Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fSCL  
tBUF  
SCL clock frequency  
10  
400  
kHz  
Bus free time between STOP and  
START conditions  
1.3  
0.6  
0.6  
0.6  
µs  
µs  
µs  
µs  
START condition hold time -- SDA fall  
to SCL fall delay  
tHD;STA  
tSU;STA  
tSU;STO  
Repeated START setup time -- SCL  
rise to SDA fall delay  
STOP condition setup time -- SCL rise  
to SDA rise delay  
tHD;DAT  
tSU;DAT  
tTimeout  
tLOW  
Data hold time after SCL fall  
Data setup time before SCL rise  
Clock low time-out  
300  
100  
25  
ns  
ns  
ms  
µs  
µs  
35  
Low period of the SCL clock  
High period of the SCL clock  
1.3  
0.6  
tHIGH  
50  
25  
Cumulative clock low extend time  
(slave device)  
tLOW;SEXT  
tLOW;MEXT  
From START to STOP  
Within each byte  
ms  
ms  
Cumulative clock low extend time  
(master device)  
10  
tr  
tf  
Rise time of SDA and SCL  
Fall time of SDA and SCL  
5% to 95%  
95% to 5%  
20  
20  
300  
300  
ns  
ns  
Copyright © 2021 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.14.3.1.3 PMBus Standard Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fSCL  
tBUF  
SCL clock frequency  
10  
100  
kHz  
Bus free time between STOP and  
START conditions  
4.7  
4
µs  
µs  
µs  
µs  
START condition hold time -- SDA fall  
to SCL fall delay  
tHD;STA  
tSU;STA  
tSU;STO  
Repeated START setup time -- SCL  
rise to SDA fall delay  
4.7  
4
STOP condition setup time -- SCL rise  
to SDA rise delay  
tHD;DAT  
tSU;DAT  
tTimeout  
tLOW  
Data hold time after SCL fall  
Data setup time before SCL rise  
Clock low time-out  
300  
250  
25  
ns  
ns  
ms  
µs  
µs  
35  
Low period of the SCL clock  
High period of the SCL clock  
4.7  
4
tHIGH  
50  
25  
Cumulative clock low extend time  
(slave device)  
tLOW;SEXT  
tLOW;MEXT  
From START to STOP  
Within each byte  
ms  
ms  
Cumulative clock low extend time  
(master device)  
10  
tr  
tf  
Rise time of SDA and SCL  
Fall time of SDA and SCL  
1000  
300  
ns  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.14.4 Serial Communications Interface (SCI)  
The SCI is a 2-wire asynchronous serial port, commonly known as a UART. The SCI module supports digital  
communications between the CPU and other asynchronous peripherals that use the standard non-return-to-zero  
(NRZ) format  
The SCI receiver and transmitter each have a 16-level-deep FIFO for reducing servicing overhead, and each has  
its own separate enable and interrupt bits. Both can be operated independently for half-duplex communication,  
or simultaneously for full-duplex communication. To specify data integrity, the SCI checks received data for break  
detection, parity, overrun, and framing errors. The bit rate is programmable to different speeds through a 16-bit  
baud-select register.  
Features of the SCI module include:  
Two external pins:  
SCITXD: SCI transmit-output pin  
SCIRXD: SCI receive-input pin  
Baud rate programmable to 64K different rates  
Data-word format  
1 start bit  
Data-word length programmable from 1 to 8 bits  
Optional even/odd/no parity bit  
1 or 2 stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: idle-line and address bit  
Half- or full-duplex operation  
Double-buffered receive and transmit functions  
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with  
status flags.  
Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY  
flag (transmitter-shift register is empty)  
Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break  
condition occurred), and RX ERROR flag (monitoring four interrupt conditions)  
Separate enable bits for transmitter and receiver interrupts (except BRKDT)  
NRZ format  
Auto baud-detect hardware logic  
16-level transmit and receive FIFO  
Note  
All registers in this module are 8-bit registers. When a register is accessed, the register data is in the  
lower byte (bits 70), and the upper byte (bits 158) is read as zeros. Writing to the upper byte has  
no effect.  
7-56 shows the SCI block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
TXENA  
SCICTL1.1  
TXSHF  
SCITXD  
Register  
Frame  
Format and Mode  
8
Parity  
Even/Odd  
TXEMPTY  
0
1
SCICTL2.6  
SCICCR.6  
8
Enable  
TX FIFO_0  
TX FIFO_1  
TXINT  
To CPU  
SCICCR.5  
TX Interrupt  
Logic  
TX FIFO Interrupts  
8
TX FIFO_N  
TXINTENA  
SCICTL2.0  
TXRDY  
8
1
0
TXWAKE  
SCICTL2.7  
SCICTL1.3  
SCI TX Interrupt Select Logic  
8
WUT  
Transmit Data  
Buffer Register  
SCITXBUF.7-0  
Auto Baud Detect Logic  
RXENA  
Baud Rate  
MSB/LSB  
Registers  
SCICTL1.0  
LSPCLK  
RXSHF  
Register  
SCIRXD  
SCIHBAUD.15-8  
SCILBAUD.7-0  
RXWAKE  
8
SCIRXST.1  
0
1
8
SCIFFENA  
SCIFFTX.14  
RX FIFO_0  
RX FIFO_1  
RXINT  
To CPU  
8
RX FIFO Interrupts  
RX Interrupt  
Logic  
RX FIFO_N  
RXFFOVF  
8
1
SCIFFRX.15  
0
RXBKINTENA  
SCICTL2.1  
RXRDY  
SCIRXST.6  
RXENA  
BRKDT  
RXERRINTENA  
SCICTL1.6  
SCICTL1.0  
SCIRXST.5  
SCI RX Interrupt Select Logic  
8
SCIRXST.5-2  
BRKDT FE OE PE  
RXERROR  
Receive Data  
Buffer Register  
SCIRXBUF.7-0  
SCIRXST.7  
7-56. SCI Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.14.5 Serial Peripheral Interface (SPI)  
The serial peripheral interface (SPI) is a high-speed synchronous serial input and output (I/O) port that allows a  
serial bit stream of programmed length (1 to 16 bits) to be shifted into and out of the device at a programmed bit-  
transfer rate. The SPI is normally used for communications between the MCU controller and external peripherals  
or another controller. Typical applications include external I/O or peripheral expansion through devices such as  
shift registers, display drivers, and analog-to-digital converters (ADCs). Multidevice communications are  
supported by the master or slave operation of the SPI. The port supports a 16-level, receive and transmit FIFO  
for reducing CPU servicing overhead.  
The SPI module features include:  
SPISOMI: SPI slave-output/master-input pin  
SPISIMO: SPI slave-input/master-output pin  
SPISTE: SPI slave transmit-enable pin  
SPICLK: SPI serial-clock pin  
Two operational modes: Master and Slave  
Baud rate: 125 different programmable rates. The maximum baud rate that can be employed is limited by the  
maximum speed of the I/O buffers used on the SPI pins.  
Data word length: 1 to 16 data bits  
Four clocking schemes (controlled by clock polarity and clock phase bits) include:  
Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the  
SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling  
edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.  
Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the  
SPICLK signal and receives data on the falling edge of the SPICLK signal.  
Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the rising  
edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Simultaneous receive and transmit operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithm  
16-level transmit/receive FIFO  
DMA support  
High-speed mode  
Delayed transmit control  
3-wire SPI mode  
SPISTE inversion for digital audio interface receive mode on devices with two SPI modules  
7-57 shows the SPI CPU interfaces.  
Copyright © 2021 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
PCLKCR8  
Low-Speed  
Prescaler  
CPU  
LSPCLK  
SYSCLK  
Bit Clock  
SYSRS  
SPISIMO  
SPISOMI  
SPICLK  
SPISTE  
SPI  
GPIO MUX  
SPIINT  
PIE  
SPITXINT  
SPIRXDMA  
SPITXDMA  
DMA  
7-57. SPI CPU Interface  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.14.5.1 SPI Master Mode Timings  
The following section contains the SPI Master Mode Timings. For more information about the SPI in High-Speed  
mode, see the Serial Peripheral Interface (SPI) chapter of the TMS320F28002x Real-Time Microcontrollers  
Technical Reference Manual.  
7.14.5.1.1 lists the SPI master mode timing requirements.  
7.14.5.1.2 lists the SPI master mode switching characteristics where the clock phase = 0. 7-58 shows the  
SPI master mode external timing where the clock phase = 0.  
7.14.5.1.3 lists the SPI master mode switching characteristics where the clock phase = 1. 7-59 shows the  
SPI master mode external timing where the clock phase = 1.  
Note  
All timing parameters for SPI High-Speed Mode assume a load capacitance of 5 pF on SPICLK,  
SPISIMO, and SPISOMI.  
7.14.5.1.1 SPI Master Mode Timing Requirements  
NO.  
(BRR + 1) (1)  
MIN  
MAX UNIT  
High-Speed Mode  
8
9
tsu(SOMI)M  
th(SOMI)M  
Setup time, SPISOMI valid before SPICLK  
Hold time, SPISOMI valid after SPICLK  
Even, Odd  
Even, Odd  
1
5
ns  
ns  
Normal Mode  
8
9
tsu(SOMI)M  
th(SOMI)M  
Setup time, SPISOMI valid before SPICLK  
Hold time, SPISOMI valid after SPICLK  
Even, Odd  
Even, Odd  
15  
0
ns  
ns  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
Copyright © 2021 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.14.5.1.2 SPI Master Mode Switching Characteristics (Clock Phase = 0)  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
(BRR + 1)(1)  
MIN  
MAX UNIT  
General  
Even  
Odd  
4tc(LSPCLK)  
5tc(LSPCLK)  
128tc(LSPCLK)  
1
tc(SPC)M  
Cycle time, SPICLK  
ns  
ns  
127tc(LSPCLK)  
Even  
0.5tc(SPC)M + 1  
0.5tc(SPC)M 1  
2
tw(SPC1)M Pulse duration, SPICLK, first pulse  
0.5tc(SPC)M  
+
Odd  
Even  
Odd  
0.5tc(SPC)M + 0.5tc(LSPCLK) 1  
0.5tc(SPC)M 1  
0.5tc(LSPCLK) + 1  
0.5tc(SPC)M + 1  
3
tw(SPC2)M Pulse duration, SPICLK, second pulse  
ns  
ns  
ns  
0.5tc(SPC)M  
0.5tc(SPC)M 0.5tc(LSPCLK) 1  
0.5tc(LSPCLK) + 1  
1.5tc(SPC)M  
Even  
1.5tc(SPC)M 3tc(SYSCLK) 3  
3tc(SYSCLK) + 3  
23  
24  
td(SPC)M  
Delay time, SPISTE active to SPICLK  
Valid time, SPICLK to SPISTE inactive  
1.5tc(SPC)M  
Odd  
Even  
Odd  
1.5tc(SPC)M 4tc(SYSCLK) 3  
0.5tc(SPC)M 3  
4tc(SYSCLK) + 3  
0.5tc(SPC)M + 3  
tv(STE)M  
0.5tc(SPC)M  
0.5tc(SPC)M 0.5tc(LSPCLK) 3  
0.5tc(LSPCLK) + 3  
High-Speed Mode  
4
td(SIMO)M Delay time, SPICLK to SPISIMO valid Even, Odd  
1
ns  
ns  
Even  
0.5tc(SPC)M 3  
Valid time, SPISIMO valid after  
5
tv(SIMO)M  
SPICLK  
Odd  
0.5tc(SPC)M 0.5tc(LSPCLK) 3  
Normal Mode  
4
td(SIMO)M Delay time, SPICLK to SPISIMO valid Even, Odd  
1
ns  
ns  
Even  
Odd  
0.5tc(SPC)M 3  
Valid time, SPISIMO valid after  
SPICLK  
5
tv(SIMO)M  
0.5tc(SPC)M 0.5tc(LSPCLK) 3  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
MAX UNIT  
7.14.5.1.3 SPI Master Mode Switching Characteristics (Clock Phase = 1)  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
(BRR + 1)  
MIN  
General  
Even  
Odd  
4tc(LSPCLK)  
5tc(LSPCLK)  
128tc(LSPCLK)  
1
tc(SPC)M  
Cycle time, SPICLK  
ns  
ns  
127tc(LSPCLK)  
Even  
0.5tc(SPC)M + 1  
0.5tc(SPC)M 1  
2
tw(SPCH)M Pulse duration, SPICLK, first pulse  
0.5tc(SPC)M  
Odd  
Even  
Odd  
0.5tc(SPC)M 0.5tc(LSPCLK) 1  
0.5tc(SPC)M 1  
0.5tc(LSPCLK) + 1  
0.5tc(SPC)M + 1  
3
tw(SPC2)M Pulse duration, SPICLK, second pulse  
ns  
0.5tc(SPC)M  
+
0.5tc(SPC)M + 0.5tc(LSPCLK) 1  
0.5tc(LSPCLK) + 1  
2tc(SPC)M  
3tc(SYSCLK) + 2  
23  
24  
td(SPC)M  
Delay time, SPISTE valid to SPICLK  
Delay time, SPICLK to SPISTE invalid  
Even, Odd  
ns  
ns  
2tc(SPC)M 3tc(SYSCLK) 3  
Even  
Odd  
2
2
3  
3  
td(STE)M  
High-Speed Mode  
Even  
Odd  
0.5tc(SPC)M 2  
0.5tc(SPC)M + 0.5tc(LSPCLK) 2  
0.5tc(SPC)M 3  
4
5
td(SIMO)M Delay time, SPISIMO valid to SPICLK  
ns  
ns  
Even  
Odd  
Valid time, SPISIMO valid after  
tv(SIMO)M  
SPICLK  
0.5tc(SPC)M 0.5tc(LSPCLK) 3  
Normal Mode  
Even  
Odd  
0.5tc(SPC)M 2  
0.5tc(SPC)M + 0.5tc(LSPCLK) 2  
0.5tc(SPC)M 3  
4
5
td(SIMO)M Delay time, SPISIMO valid to SPICLK  
ns  
ns  
Even  
Odd  
Valid time, SPISIMO valid after  
SPICLK  
tv(SIMO)M  
0.5tc(SPC)M 0.5tc(LSPCLK) 3  
Copyright © 2021 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.14.5.1.4 SPI Master Mode Timing Diagrams  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
SPISTE(A)  
24  
23  
A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO  
modes.  
7-58. SPI Master Mode External Timing (Clock Phase = 0)  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data Must  
Be Valid  
SPISOMI  
SPISTE(A)  
24  
23  
A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO  
modes.  
7-59. SPI Master Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.14.5.2 SPI Slave Mode Timings  
The following section contains the SPI Slave Mode Timings. For more information about the SPI in High-Speed  
mode, see the Serial Peripheral Interface (SPI) chapter of the TMS320F28002x Real-Time Microcontrollers  
Technical Reference Manual.  
7.14.5.2.1 lists the SPI slave mode timing requirements. 7.14.5.2.2 lists the SPI slave mode switching  
characteristics.  
7-60 shows the SPI slave mode external timing where the clock phase = 0. 7-61 shows the SPI slave  
mode external timing where the clock phase = 1.  
7.14.5.2.1 SPI Slave Mode Timing Requirements  
NO.  
MIN  
4tc(SYSCLK)  
MAX UNIT  
12  
tc(SPC)S  
Cycle time, SPICLK  
ns  
ns  
ns  
ns  
ns  
13  
14  
19  
20  
tw(SPC1)S  
tw(SPC2)S  
tsu(SIMO)S  
th(SIMO)S  
Pulse duration, SPICLK, first pulse  
Pulse duration, SPICLK, second pulse  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO valid after SPICLK  
2tc(SYSCLK) 1  
2tc(SYSCLK) 1  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
Setup time, SPISTE valid before SPICLK  
(Clock Phase = 0)  
2tc(SYSCLK) + 3  
ns  
25  
26  
tsu(STE)S  
Setup time, SPISTE valid before SPICLK  
(Clock Phase = 1)  
2tc(SYSCLK) + 23  
1.5tc(SYSCLK)  
ns  
ns  
th(STE)S  
Hold time, SPISTE invalid after SPICLK  
7.14.5.2.2 SPI Slave Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
15  
16  
PARAMETER  
MIN  
MAX UNIT  
td(SOMI)S  
tv(SOMI)S  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI valid after SPICLK  
12  
ns  
ns  
0
Copyright © 2021 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.14.5.2.3 SPI Slave Mode Timing Diagrams  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
16  
SPISOMI  
SPISOMI Data Is Valid  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
25  
26  
7-60. SPI Slave Mode External Timing (Clock Phase = 0)  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
SPISOMI  
SPISOMI Data Is Valid  
Data Valid  
Data Valid  
16  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
26  
25  
7-61. SPI Slave Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.14.6 Local Interconnect Network (LIN)  
This device contains one Local Interconnect Network (LIN) module. The LIN module adheres to the LIN 2.1  
standard as defined by the LIN Specification Package Revision 2.1. The LIN is a low-cost serial interface  
designed for applications where the CAN protocol may be too expensive to implement, such as small  
subnetworks for cabin comfort functions like interior lighting or window control in an automotive application.  
The LIN standard is based on the SCI (UART) serial data link format. The communication concept is single-  
master and multiple-slave with a message identification for multicast transmission between any network nodes.  
The LIN module can be programmed to work either as an SCI or as a LIN as the core of the module is an SCI.  
The hardware features of the SCI are augmented to achieve LIN compatibility. The SCI module is a universal  
asynchronous receiver-transmitter (UART) that implements the standard non-return-to-zero format.  
Though the registers are common for LIN and SCI, the register descriptions have notes to identify the register/bit  
usage in different modes. Because of this, code written for this module cannot be directly ported to the stand-  
alone SCI module and vice versa.  
The LIN module has the following features:  
Compatibility with LIN 1.3, 2.0 and 2.1 protocols  
Configurable baud rate up to 20 kbps (as per LIN 2.1 protocol)  
Two external pins: LINRX and LINTX  
Multibuffered receive and transmit units  
Identification masks for message filtering  
Automatic master header generation  
Programmable synchronization break field  
Synchronization field  
Identifier field  
Slave automatic synchronization  
Synchronization break detection  
Optional baud rate update  
Synchronization validation  
231 programmable transmission rates with 7 fractional bits  
Wakeup on LINRX dominant level from transceiver  
Automatic wakeup support  
Wakeup signal generation  
Expiration times on wakeup signals  
Automatic bus idle detection  
Error detection  
Bit error  
Bus error  
No-response error  
Checksum error  
Synchronization field error  
Parity error  
Capability to use direct memory access (DMA) for transmit and receive data  
Two interrupt lines with priority encoding for:  
Receive  
Transmit  
ID, error, and status  
Support for LIN 2.0 checksum  
Enhanced synchronizer finite state machine (FSM) support for frame processing  
Enhanced handling of extended frames  
Enhanced baud rate generator  
Copyright © 2021 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
Update wakeup/go to sleep  
7-62 shows the LIN block diagram.  
READ DATA BUS  
WRITE DATA BUS  
ADDRESS BUS  
CHECKSUM  
CALCULATOR  
INTERFACE  
ID PARTY  
CHECKER  
BIT  
MONITOR  
TXRX ERROR  
DETECTOR (TED)  
TIME-OUT  
CONTROL  
COUNTER  
COMPARE  
LINRX/  
SCIRX  
LINTX/  
SCITX  
DMA  
CONTROL  
MASK  
FILTER  
8 RECEIVE  
BUFFERS  
FSM  
8 TRANSMIT  
BUFFERS  
SYNCHRONIZER  
7-62. LIN Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.14.7 Fast Serial Interface (FSI)  
The Fast Serial Interface (FSI) module is a serial communication peripheral capable of reliable and robust high-  
speed communications. The FSI is designed to ensure data robustness across many system conditions such as  
chip-to-chip as well as board-to-board across an isolation barrier. Payload integrity checks such as CRC, start-  
and end-of-frame patterns, and user-defined tags, are encoded before transmit and then verified after receipt  
without additional CPU interaction. Line breaks can be detected using periodic transmissions, all managed and  
monitored by hardware. The FSI is also tightly integrated with other control peripherals on the device. To ensure  
that the latest sensor data or control parameters are available, frames can be transmitted on every control loop  
period. An integrated skew-compensation block has been added on the receiver to handle skew that may occur  
between the clock and data signals due to a variety of factors, including trace-length mismatch and skews  
induced by an isolation chip. With embedded data robustness checks, data-link integrity checks, skew  
compensation, and integration with control peripherals, the FSI can enable high-speed, robust communication in  
any system. These and many other features of the FSI follow.  
The FSI module includes the following features:  
Independent transmitter and receiver cores  
Source-synchronous transmission  
Dual data rate (DDR)  
One or two data lines  
Programmable data length  
Skew adjustment block to compensate for board and system delay mismatches  
Frame error detection  
Programmable frame tagging for message filtering  
Hardware ping to detect line breaks during communication (ping watchdog)  
Two interrupts per FSI core  
Externally triggered frame generation  
Hardware- or software-calculated CRC  
Embedded ECC computation module  
Register write protection  
DMA support  
SPI compatibility mode (limited features available)  
Operating the FSI at maximum speed (50 MHz) at dual data rate (100 Mbps) may require the integrated skew  
compensation block to be configured according to the specific operating conditions on a case-by-case basis.  
The Fast Serial Interface (FSI) Skew Compensation Application Report provides example software on how to  
configure and set up the integrated skew compensation block on the Fast Serial Interface.  
The FSI consists of independent transmitter (FSITX) and receiver (FSIRX) cores. The FSITX and FSIRX cores  
are configured and operated independently. The features available on the FSITX and FSIRX are described in 节  
7.14.7.1 and 7.14.7.2, respectively.  
Copyright © 2021 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.14.7.1 FSI Transmitter  
The FSI transmitter module handles the framing of data, CRC generation, signal generation of TXCLK, TXD0,  
and TXD1, as well as interrupt generation. The operation of the transmitter core is controlled and configured  
through programmable control registers. The transmitter control registers let the CPU program, control, and  
monitor the operation of the FSI transmitter. The transmit data buffer is accessible by the CPU and the DMA.  
The transmitter has the following features:  
Automated ping frame generation  
Externally triggered ping frames  
Externally triggered data frames  
Software-configurable frame lengths  
16-word data buffer  
Data buffer underrun and overrun detection  
Hardware-generated CRC on data bits  
Software ECC calculation on select data  
DMA support  
7-63 shows the FSITX CPU interface. 7-64 shows the high-level block diagram of the FSITX. Not all data  
paths and internal connections are shown. This diagram provides a high-level overview of the internal modules  
present in the FSITX.  
PLLRAWCLK  
PCLKCR18  
SYSCLK  
SYSRSN  
C28x  
ePIE  
FSITXyINT1  
FSITXyINT2  
FSITXyCLK  
FSITXyD0  
FSITXyD1  
FSITX  
DMA  
FSITXyDMA  
32  
A. The signals connected to the trigger muxes are described in the External Frame Trigger Mux section of the Fast Serial Interface (FSI)  
chapter in the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual.  
7-63. FSITX CPU Interface  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
FSITX  
PLLRAWCLK  
SYSRSN  
SYSCLK  
FSI Mode:  
TXCLKIN  
Transmit Clock  
Generator  
TXCLK = TXCLKIN/2  
SPI Signaling Mode:  
TXCLK = TXCLKIN  
Register Interface  
Core Reset  
FSITXINT1  
FSITXINT2  
Control Registers,  
Interrupt Management  
TXCLK  
Ping Time-out Counter  
FSITX_DMA_EVT  
TXD0  
TXD1  
Transmitter Core  
External Frame Triggers  
Transmit Data  
Buffer  
ECC Logic  
7-64. FSITX Block Diagram  
7.14.7.1.1 FSITX Electrical Data and Timing  
7.14.7.1.1.1 lists the FSITX switching characteristics. 7-65 shows the FSITX timings.  
7.14.7.1.1.1 FSITX Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
20  
MAX  
UNIT  
ns  
1
2
tc(TXCLK)  
tw(TXCLK)  
Cycle time, TXCLK  
Pulse width, TXCLK low or TXCLK high  
(0.5tc(TXCLK)) + 1  
(0.25tc(TXCLK)) + 2  
ns  
(0.5tc(TXCLK)) 1  
Delay time, TXCLK rising or falling toTXD  
valid  
3
td(TXCLKTXD)  
ns  
ns  
(0.25tc(TXCLK)) 2  
Delay skew introduced between TXCLK-  
TDM_CLK delay and TXDx-TDM_Dx delays  
TDM1  
tskew(TDM_CLK-TDM_Dx )  
-2  
2
7.14.7.1.1.2 FSITX Timings  
1
2
FSITXCLK  
FSITXD0  
FSITXD1  
3
7-65. FSITX Timings  
Copyright © 2021 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.14.7.2 FSI Receiver  
The receiver module interfaces to the FSI clock (RXCLK), and data lines (RXD0 and RXD1) after they pass  
through an optional programmable delay line. The receiver core handles the data framing, CRC computation,  
and frame-related error checking. The receiver bit clock and state machine are run by the RXCLK input, which is  
asynchronous to the device system clock.  
The receiver control registers let the CPU program, control, and monitor the operation of the FSIRX. The receive  
data buffer is accessible by the CPU, HIC, and the DMA.  
The receiver core has the following features:  
16-word data buffer  
Multiple supported frame types  
Ping frame watchdog  
Frame watchdog  
CRC calculation and comparison in hardware  
ECC detection  
Programmable delay line control on incoming signals  
DMA support  
SPI compatibility mode  
7-66 shows the FSIRX CPU interface. 7-67 provides a high-level overview of the internal modules present  
in the FSIRX. Not all data paths and internal connections are shown.  
PCLKCR18  
SYSCLK  
SYSRSN  
C28x  
ePIE  
FSIRXyINT1  
FSIRXyINT2  
FSIRXyCLK  
FSIRXyD0  
FSIRXyD1  
FSIRX  
DMA  
FSIRXyDMA  
7-66. FSIRX CPU Interface  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
FSIRX  
SYSRSn  
SYSCLK  
Frame Watchdog  
Register Interface  
Core Reset  
FSIRXINT1  
Control Registers,  
Interrupt Management  
FSIRXINT2  
RXCLK  
RXD0  
Ping Watchdog  
FSIRX_DMA_EVT  
Receiver Core  
Skew  
Control  
RXD1  
Receive Data  
Buffer  
ECC Check  
Logic  
7-67. FSIRX Block Diagram  
7.14.7.2.1 FSIRX Electrical Data and Timing  
7.14.7.2.1.1 lists the FSIRX timing requirements. 7.14.7.2.1.2 lists the FSIRX switching characteristics. 图  
7-68 shows the FSIRX Timings.  
7.14.7.2.1.1 FSIRX Timing Requirements  
NO.  
MIN  
20  
MAX  
UNIT  
ns  
1
2
tc(RXCLK)  
tw(RXCLK)  
Cycle time, RXCLK  
Pulse width, RXCLK low or RXCLK high.  
0.35tc(RXCLK)  
0.65tc(RXCLK)  
ns  
Setup time with respect to RXCLK, applies to  
both edges of the clock  
3
4
tsu(RXCLKRXD)  
th(RXCLKRXD)  
1.7  
2
ns  
ns  
Hold time with respect to RXCLK, applies to  
both edges of the clock  
7.14.7.2.1.2 FSIRX Switching Characteristics  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
RXCLK delay compensation at  
RX_DLYLINE_CTRL[RXCLK_DLY]=31  
1
2
3
4
td(RXCLK)  
10  
30  
ns  
RXD0 delay compensation at  
RX_DLYLINE_CTRL[RXD0_DLY]=31  
td(RXD0)  
10  
10  
30  
30  
1
ns  
ns  
ns  
RXD1 delay compensation  
at RX_DLYLINE_CTRL[RXD1_DLY]=31  
td(RXD1)  
Incremental delay of each delay line element  
for RXCLK, RXD0, and RXD1  
td(DELAY_ELEMENT)  
0.3  
Copyright © 2021 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.14.7.2.1.3 FSIRX Timings  
1
2
FSIRXCLK  
FSIRXD0  
FSIRXD1  
3
4
7-68. FSIRX Timings  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.14.7.3 FSI SPI Compatibility Mode  
The FSI supports a SPI compatibility mode to enable communication with programmable SPI devices. In this  
mode, the FSI transmits its data in the same manner as a SPI in a single clock configuration mode. While the  
FSI is able to physically interface with a SPI in this mode, the external device must be able to encode and  
decode an FSI frame to communicate successfully. This is because the FSI transmits all SPI frame phases with  
the exception of the preamble and postamble. The FSI provides the same data validation and frame checking as  
if it was in standard FSI mode, allowing for more robust communication without consuming CPU cycles. The  
external SPI is required to send all relevant information and can access standard FSI features such as the ping  
frame watchdog on the FSIRX, frame tagging, or custom CRC values. The list of features of SPI compatibility  
mode follows:  
Data will transmit on rising edge and receive on falling edge of the clock.  
Only 16-bit word size is supported.  
TXD1 will be driven like an active-low chip-select signal. The signal will be low for the duration of the full  
frame transmission.  
No receiver chip-select input is required. RXD1 is not used. Data is shifted into the receiver on every active  
clock edge.  
No preamble or postamble clocks will be transmitted. All signals return to the idle state after the frame phase  
is finished.  
It is not possible to transmit in the SPI slave configuration because the FSI TXCLK cannot take an external  
clock source.  
7.14.7.3.1 FSITX SPI Signaling Mode Electrical Data and Timing  
7.14.7.3.1.1 lists the FSITX SPI signaling mode switching characteristics. 7-69 shows the FSITX SPI  
signaling mode timings. Special timings are not required for the FSIRX in SPI signaling mode. FSIRX timings  
listed in 7.14.7.2.1.1 are applicable in SPI compatibility mode. Setup and Hold times are only valid on the  
falling edge of FSIRXCLK because this is the active edge in SPI signaling mode.  
7.14.7.3.1.1 FSITX SPI Signaling Mode Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
20  
MAX  
UNIT  
ns  
1
2
3
4
5
tc(TXCLK)  
Cycle time, TXCLK  
tw(TXCLK)  
Pulse width, TXCLK low or TXCLK high  
Delay time, TXD0 valid after TXCLK high  
Delay time, TXCLK high after TXD1 low  
Delay time, TXD1 high after TXCLK low  
(0.5tc(TXCLK)) + 1  
3
ns  
(0.5tc(TXCLK)) 1  
td(TXCLKHTXD0)  
td(TXD1-TXCLK)  
td(TXCLK-TXD1)  
ns  
ns  
t
w(TXCLK) 3  
tw(TXCLK)  
ns  
7.14.7.3.1.2 FSITX SPI Signaling Mode Timings  
1
2
FSITXCLK  
3
FSITXD0  
5
4
FSITXD1  
7-69. FSITX SPI Signaling Mode Timings  
Copyright © 2021 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.14.8 Host Interface Controller (HIC)  
The HIC module allows an external host controller to directly access resources of the device by emulating the  
ASRAM protocol. It has two modes of operation: direct access and mailbox access. In direct access mode,  
device resources is written to and read from directly by the external host. In mailbox access mode, external host  
and device write to and read from a buffer and notify each other when the buffer write/read is complete. For  
security reasons, the HIC has to be enabled by the device before the external host can access it. 7-70 shows  
the block diagram of the HIC.  
Features of the HIC include:  
Configurable I/O data lines of 8 bits and 16 bits  
Direct and mailbox access modes  
8 address lines and 8 configurable base addresses for a total of 2048 possible addressable regions  
Two 64-byte buffers for external host and device when using mailbox access mode  
Interrupt generation on buffer full/empty  
High throughput  
Trigger HIC activity from other peripherals  
Error indicators to the system or interface  
Legend  
HIC Pins  
HIC Registers  
HIC  
I/O Interface  
A[7:0]  
D[15:0]  
nBE[1:0]  
nCS  
A[31:0]  
H2DINT to PIE  
D2HINT to Pin  
WDATA[31:0]  
RDATA[31:0]  
Memory Mapped HIC  
Configuration Interface  
Host  
To  
Device  
Device  
To  
Host  
CTRL Regs  
STATUS Regs  
nWE  
BASE_ADDR0  
BASE_ADDR1  
nOE  
.
Mailbox  
Buffer  
Mailbox  
Buffer  
.
BASE_ADDRn  
BASESEL[2:0]  
nRDY  
EVT_TRIGGER[15:0]  
7-70. HIC Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
7.14.8.1 HIC Electrical Data and Timing  
7.14.8.1.1 lists the HIC timing requirements. 7.14.8.1.2 lists the HIC switching characteristics. 7-71  
shows the read/write operation with nOE and nWE pins. 7-72 shows the read/write operation with RnW pin.  
7.14.8.1.1 HIC Timing Requirements  
over operating free-air temperature range (unless otherwise noted)  
REFID  
MIN  
MAX UNIT  
Read/Write Parameters with nOE and nWE pins - Dual Read/Write pins  
T1  
tsu(ABBV-OEV)  
tsu(ABBV-WEV)  
tsu(CSV-OEV)  
tsu(CSV-WEV)  
th(ABBV-OEIV)  
th(ABBV-WEIV)  
tw(OEV)  
Setup time, A/BASESEL/nBE before nOE active  
Setup time, A/BASESEL/nBE before nWE active  
Setup time, nCS active before nOE active  
Setup time, nCS active before nWE active  
Hold time, A/BASESEL/nBE/nCS after nOE inactive  
Hold time, A/BASESEL/nBE/nCS after nWE inactive  
Active pulse width of nOE (Read)(1)  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
T2  
0
0.5tc(SYSCLK)  
0.5tc(SYSCLK)  
6
T3  
T4  
T5  
T6  
6
T7  
4tc(SYSCLK)  
4tc(SYSCLK)  
3tc(SYSCLK)  
3tc(SYSCLK)  
3tc(SYSCLK)  
0
T8  
tw(WEV)  
Active pulse width of nWE (Write)  
T9  
tw(CSIV)  
Inactive pulse width of nCS(2)  
T10  
T11  
T12  
T13  
tw(OEIV)  
Inactive Read pulse width of nOE(2)  
tw(WEIV)  
Inactive Write pulse width of nWE(2)  
tsu(DV-WEV)  
th(DV-WEIV)  
Setup time, D before nWE active  
Hold time, D after nWE inactive  
6
Read/Write Parameters with RnW pin - Single Read/Write pin  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
tsu(ABBV-CSV)  
tsu(RNWV-CSV)  
th(ABBV-CSIV)  
tw(CSV_RD)  
tw(CSV_WR)  
tw(CSIV)  
Setup time, A/BASESEL/nBE before nCS active  
Setup time, RnW before nCS active  
Hold time, A/BASESEL/nBE/RnW after nCS inactive  
Active pulse width of nCS for read operation(1)  
Active pulse width of nCS for write operation  
Inactive pulse width of nCS(2)  
0
0.5tc(SYSCLK)  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4tc(SYSCLK)  
4tc(SYSCLK)  
3tc(SYSCLK)  
3tc(SYSCLK)  
0
tw(RNWIV)  
Inactive pulse width of RnW(2)  
tsu(DV-CSV)  
th(DV-CSIV)  
Setup time, D before nCS active  
Hold time, D after nCS inactive  
5
(1) For accesses to the device region, additional 2 SYSCLK cycles are required.  
(2) For accesses to the device region with nRDY pin, additional SYSCLK cycle is required.  
Copyright © 2021 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
7.14.8.1.2 HIC Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
REFID  
PARAMETER  
MIN  
MAX UNIT  
Read/Write Parameters with nOE and nWE pins  
S1  
S2  
S3  
S4  
S5  
S6  
td(OEV-DV)  
Output data delay time : nOE to D output valid (1)  
Output data hold time : nOE invalid to D output invalid (tri-state)  
Read Ready delay time : nOE to nRDY output valid  
Write Ready delay time : nWE to nRDY output valid  
Ready to Data delay time : nRDY output valid to D output valid  
Active pulse width of nRDY output  
3tc(SYSCLK)  
4tc(SYSCLK) + 14 ns  
2tc(SYSCLK) + 14 ns  
11 ns  
td(OEIV-DIV)  
td(OEV-RDYV)  
td(WEV-RDYV)  
td(RDYV-DV)  
tw(RDYACT)  
1tc(SYSCLK)  
0
0
-3  
11 ns  
3
ns  
ns  
2tc(SYSCLK)  
Read/Write Parameters with RnW pin  
S7  
td(CSV-DV)  
Output delay time : nCS active to D output valid (1)  
Output hold time : nCS inactive to D output invalid (tri-state)  
Output delay time : nCS to nRDY output valid  
3tc(SYSCLK)  
1tc(SYSCLK)  
0
4tc(SYSCLK) + 14 ns  
2tc(SYSCLK) + 14 ns  
11 ns  
S8  
td(CSIV-DIV)  
td(CSV-RDYV)  
td(RDYV-DV)  
tw(RDYACT)  
S9  
S10  
S11  
Ready to Data delay time : nRDY output valid to D output valid  
Active pulse width of nRDY output  
-3  
3
ns  
ns  
2tc(SYSCLK)  
(1) Applicable to mailbox accesses only. Direct memory map (Device) accesses are qualified with nRDY pin.  
7.14.8.1.3 HIC Timing Diagrams  
SETUP SIGNALS  
T9  
nCS  
A[7:0]  
BASESEL[2:0]  
nBE[3:0]  
READ SIGNALS  
T1  
T5  
T3  
T10  
nOE  
T7  
S2  
S1  
T8  
D[15:0]  
7
WRITE SIGNALS  
T6  
T2  
T4  
T11  
nWE  
T12  
T13  
D[15:0]  
READY/WAIT SIGNAL  
S5  
S6  
S3  
S4  
nRDY  
7-71. Read/Write Operation With nOE and nWE Pins  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
SETUP SIGNALS  
T19  
nCS  
T17 or T18  
T16  
T14  
T15  
A[7:0]  
BASESEL[2:0]  
nBE[3:0]  
READ SIGNALS  
T20  
RnW  
(Read)  
S8  
S7  
D[15:0]  
S10  
WRITE SIGNALS  
T20  
T15  
T21  
RnW  
(Write)  
T22  
D[15:0]  
nRDY  
READY/WAIT SIGNAL  
S9  
S11  
7-72. Read/Write Operation With RnW Pin  
Copyright © 2021 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
8 Detailed Description  
8.1 Overview  
C2000™ 32-bit microcontrollers are optimized for processing, sensing, and actuation to improve closed-loop  
performance in real-time control applications such as industrial motor drives; solar inverters and digital power;  
electrical vehicles and transportation; motor control; and sensing and signal processing.  
The TMS320F28002x (F28002x) is a powerful 32-bit floating-point microcontroller unit (MCU) that lets designers  
incorporate crucial control peripherals, differentiated analog, and nonvolatile memory on a single device.  
The real-time control subsystem is based on TIs 32-bit C28x CPU, which provides 100 MHz of signal  
processing performance. The C28x CPU is further boosted by the new TMU extended instruction set, which  
enables fast execution of algorithms with trigonometric operations commonly found in transforms and torque  
loop calculations; and the VCRC extended instruction set, which reduces the latency for complex math  
operations commonly found in encoded applications.  
The F28002x supports up to 128KB (64KW) of flash memory in one bank. Up to 24KB (12KW) of on-chip SRAM  
is also available in blocks of 4KB (2KW) for efficient system partitioning. Flash ECC, SRAM ECC/parity, and  
dual-zone security are also supported.  
High-performance analog blocks are integrated on the F28002x real-time MCU to further enable system  
consolidation. Two separate 12-bit ADCs provide precise and efficient management of multiple analog signals,  
which ultimately boosts system throughput. Four analog comparator modules provide continuous monitoring of  
input voltage levels for trip conditions.  
The TMS320C2000devices contain industry-leading control peripherals with frequency-independent ePWM/  
HRPWM and eCAP allow for a best-in-class level of control to the system.  
Connectivity is supported through various industry-standard communication ports (such as SPI, SCI, I2C,  
PMBus, LIN, and CAN) and offers multiple muxing options for optimal signal placement in a variety of  
applications. New to the C2000platform is Host Interface Controller (HIC), a high throughput interface that  
allows an external host to access resources of the TMS320F28002x. Additionally, in an industry first, the FSI  
enables high-speed, robust communication to complement the rich set of peripherals that are embedded in the  
device.  
A specially enabled device variant, TMS320F28002xC, allows access to the Configurable Logic Block (CLB) for  
additional interfacing features and allows access to the secure ROM, which includes a library to enable  
InstaSPIN-FOC. See 5-1 for more information.  
The Embedded Real-Time Analysis and Diagnostic (ERAD) module enhances the debug and system analysis  
capabilities of the device by providing additional hardware breakpoints and counters for profiling.  
To learn more about the C2000 real-time MCUs, visit the C2000™ real-time control MCUs page.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
8.2 Functional Block Diagram  
8-1 shows the CPU system and associated peripherals.  
Boot ROM  
Secure Memories  
shown in Red  
Secure ROM  
C28x CPU  
FPU32  
Bus Legend  
Flash Bank0  
16 Sectors  
64 KW (128 KB)  
FINTDIV  
TMU  
VCRC  
CPU  
DMA  
HIC  
BGCRC  
CPU Timers  
DCC  
DCSM  
ePIE  
ERAD  
M0-M1 RAM  
2 KW (4 KB)  
BGCRC  
LS4-LS7 RAM  
8 KW (16 KB)  
Crystal Oscillator  
INTOSC1, INTOSC2  
PLL  
HIC  
GS0 RAM  
2 KW (4 KB)  
DMA  
6 Channles  
PF1  
PF3  
PF4  
PF2  
PF7  
PF8  
PF9  
Result  
2x 12-Bit ADC  
Data  
14x ePWM Chan.  
(8 Hi-Res Capable) 
4x CMPSS  
1x PMBUS  
2x SPI  
1x CAN  
2x LIN  
1x SCI  
2x I2C  
39x GPIO  
Input XBAR  
Output XBAR  
ePWM XBAR  
CLB XBAR  
3x eCAP 
(1 HRCAP Capable) 
2x CLB  
1x FSI RX  
1x FSI TX  
NMI  
Watchdog  
2x eQEP  
(CW/CCW Support)  
Windowed  
Watchdog  
8-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
158 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
8.3 Memory  
8.3.1 Memory Map  
The Memory Map table describes the memory map. See the Memory Controller Module section of the System  
Control chapter in the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual.  
8-1. Memory Map  
START  
HIC  
DMA  
ECC/  
ACCESS  
MEMORY  
SIZE  
END ADDRESS  
SECURITY  
ADDRESS  
ACCESS  
ACCESS  
PARITY  
PROTECTION  
M0 RAM  
M1 RAM  
1K x 16  
1K x 16  
512 x 16  
2K x 16  
2K x 16  
2K x 16  
2K x 16  
2K x 16  
2K x 16  
1K x 16  
1K x 16  
64K x 16  
32K x 16  
64K x 16  
0x0000 0000  
0x0000 0400  
0x0000 0D00  
0x0000 A000  
0x0000 A800  
0x0000 B000  
0x0000 B800  
0x0000 C000  
0x0004 9000  
0x0007 0000  
0x0007 8000  
0x0008 0000  
0x003E 8000  
0x003F 0000  
0x0000 03FF  
0x0000 07FF  
0x0000 0EFF  
0x0000 A7FF  
0x0000 AFFF  
0x0000 B7FF  
0x0000 BFFF  
0x0000 C7FF  
0x0004 97FF  
0x0007 03FF  
0x0007 83FF  
0x0008 FFFF  
0x003E FFFF  
0x003F FFFF  
-
-
ECC  
ECC  
-
Yes  
-
-
-
-
Yes  
PieVectTable  
LS4 RAM  
-
-
-
-
-
-
ECC  
ECC  
ECC  
ECC  
Parity  
Parity  
ECC  
ECC  
ECC  
Parity  
Parity  
Yes  
Yes  
Yes  
Yes  
Yes  
-
LS5 RAM  
-
-
Yes  
LS6 RAM  
-
-
Yes  
LS7 RAM  
-
-
Yes  
GS0 RAM  
CAN A Message RAM  
TI OTP(1)  
Yes  
Yes  
Yes  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
User OTP  
Yes  
Yes  
Yes  
-
Flash  
Secure ROM  
Boot ROM  
Pie Vector Fetch Error  
(part of Boot ROM)  
1 x 16  
0x003F FFBE  
0x003F FFC0  
0x003F FFBF  
0x003F FFFF  
-
-
-
-
Parity  
Parity  
-
-
-
-
Default Vectors  
64 x 16  
(part of Boot ROM)  
(1) TI OTP is for TI internal use only.  
8.3.1.1 Dedicated RAM (Mx RAM)  
The CPU subsystem has two dedicated ECC-capable RAM blocks: M0 and M1. These memories are small  
nonsecure blocks that are tightly coupled with the CPU (that is, only the CPU has access to them).  
8.3.1.2 Local Shared RAM (LSx RAM)  
Local shared RAMs (LSx RAMs) are accessible to the CPU, HIC, and BGCRC. All LSx RAM blocks have ECC.  
These memories are secure and have CPU access protection (CPU write/CPU fetch).  
8.3.1.3 Global Shared RAM (GSx RAM)  
Global shared RAMs (GSx RAMs) are accessible from the CPU, HIC, and DMA. The CPU, HIC, and DMA have  
full read and write access to these memories. All GSx RAM blocks have parity. The GSx RAMs have access  
protection (CPU write/CPU fetch/DMA write/HIC write).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
8.3.2 Flash Memory Map  
On the F28002x devices one flash bank (128KB [64KW]) is available. Code to program the flash should be  
executed out of RAM, there should not be any kind of access to the flash bank when an erase or program  
operation is in progress. 8-2 lists the addresses of flash sectors available for each part number.  
8.3.2.1 Addresses of Flash Sectors  
8-2. Addresses of Flash Sectors  
ADDRESS  
ECC ADDRESS  
START  
PART NUMBER  
SECTOR  
SIZE  
START  
END  
SIZE  
END  
OTP Sectors  
TI OTP  
1K x 16  
1K x 16  
0x0007 0000  
0x0007 8000  
0x0007 03FF  
0x0007 83FF  
128 x 16  
128 x 16  
0x0107 0000  
0x0107 1000  
0x0107 007F  
0x0107 107F  
All F28002x  
DCSM OTP  
Bank 0 Sectors  
Sector 0  
Sector 1  
Sector 2  
Sector 3  
Sector 4  
Sector 5  
Sector 6  
Sector 7  
Sector 8  
Sector 9  
Sector 10  
Sector 11  
Sector 12  
Sector 13  
Sector 14  
Sector 15  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
0x0008 0000  
0x0008 1000  
0x0008 2000  
0x0008 3000  
0x0008 4000  
0x0008 5000  
0x0008 6000  
0x0008 7000  
0x0008 8000  
0x0008 9000  
0x0008 A000  
0x0008 B000  
0x0008 C000  
0x0008 D000  
0x0008 E000  
0x0008 F000  
0x0008 0FFF  
0x0008 1FFF  
0x0008 2FFF  
0x0008 3FFF  
0x0008 4FFF  
0x0008 5FFF  
0x0008 6FFF  
0x0008 7FFF  
0x0008 8FFF  
0x0008 9FFF  
0x0008 AFFF  
0x0008 BFFF  
0x0008 CFFF  
0x0008 DFFF  
0x0008 EFFF  
0x0008 FFFF  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
0x0108 0000  
0x0108 0200  
0x0108 0400  
0x0108 0600  
0x0108 0800  
0x0108 0A00  
0x0108 0C00  
0x0108 0E00  
0x0108 1000  
0x0108 1200  
0x0108 1400  
0x0108 1600  
0x0108 1800  
0x0108 1A00  
0x0108 1C00  
0x0108 1E00  
0x0108 01FF  
0x0108 03FF  
0x0108 05FF  
0x0108 07FF  
0x0108 09FF  
0x0108 0BFF  
0x0108 0DFF  
0x0108 0FFF  
0x0108 11FF  
0x0108 13FF  
0x0108 15FF  
0x0108 17FF  
0x0108 19FF  
0x0108 1BFF  
0x0108 1DFF  
0x0108 1FFF  
All F28002x  
F280025,  
F280023  
F280025  
Copyright © 2021 Texas Instruments Incorporated  
160 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
8.3.3 Peripheral Registers Memory Map  
The Peripheral Registers Memory Map (C28x) table lists the peripheral registers.  
8-3. Peripheral Registers Memory Map (C28x)  
Bit Field Name  
Pipeline  
DMA  
HIC  
DriverLib Name  
Base Address  
Protected  
Access  
Access  
Instance  
Structure  
Peripheral Frame 0 (PF0)  
ADCARESULT_BASE  
ADCCRESULT_BASE  
CPUTIMER0_BASE  
CPUTIMER1_BASE  
CPUTIMER2_BASE  
PIECTRL_BASE  
AdcaResultRegs  
AdccResultRegs  
CpuTimer0Regs  
CpuTimer1Regs  
CpuTimer2Regs  
PieCtrlRegs  
ADC_RESULT_REGS  
ADC_RESULT_REGS  
CPUTIMER_REGS  
CPUTIMER_REGS  
CPUTIMER_REGS  
PIE_CTRL_REGS  
DMA_REGS  
0x0000_0B00  
0x0000_0B40  
0x0000_0C00  
0x0000_0C08  
0x0000_0C10  
0x0000_0CE0  
0x0000_1000  
0x0000_1020  
0x0000_1040  
0x0000_1060  
0x0000_1080  
0x0000_10A0  
0x0000_10C0  
-
-
-
-
-
-
-
-
-
-
-
-
-
YES  
YES  
YES  
YES  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DmaRegs  
DMA_BASE  
Dmach1Regs  
Dmach2Regs  
Dmach3Regs  
Dmach4Regs  
Dmach5Regs  
Dmach6Regs  
DMA_CH_REGS  
DMA_CH_REGS  
DMA_CH_REGS  
DMA_CH_REGS  
DMA_CH_REGS  
DMA_CH_REGS  
DMA_CH1_BASE  
DMA_CH2_BASE  
DMA_CH3_BASE  
DMA_CH4_BASE  
DMA_CH5_BASE  
DMA_CH6_BASE  
Peripheral Frame 1 (PF1)  
CLB1_LOGICCFG_BASE  
CLB1_LOGICCTRL_BASE  
CLB1_DATAEXCH_BASE  
CLB2_LOGICCFG_BASE  
CLB1_DATAEXCH_BASE  
CLB2_LOGICCFG_BASE  
EPWM1_BASE  
Clb1LogicCfgRegs  
Clb1LogicCtrlRegs  
Clb1DataExchRegs  
Clb2LogicCfgRegs  
Clb1DataExchRegs  
Clb2LogicCfgRegs  
EPwm1Regs  
CLB_LOGIC_CONFIG_REGS  
CLB_LOGIC_CONTROL_REGS  
CLB_DATA_EXCHANGE_REGS  
CLB_LOGIC_CONFIG_REGS  
CLB_DATA_EXCHANGE_REGS  
CLB_LOGIC_CONFIG_REGS  
EPWM_REGS  
0x0000_3000  
0x0000_3100  
0x0000_3180  
0x0000_3200  
0x0000_3300  
0x0000_3380  
0x0000_4000  
0x0000_4100  
0x0000_4200  
0x0000_4300  
0x0000_4400  
0x0000_4500  
0x0000_4600  
0x0000_5100  
0x0000_5140  
0x0000_5200  
0x0000_5240  
0x0000_5280  
0x0000_52A0  
0x0000_5C80  
-
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
-
-
-
-
-
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
EPwm2Regs  
EPWM_REGS  
EPWM2_BASE  
EPwm3Regs  
EPWM_REGS  
EPWM3_BASE  
EPwm4Regs  
EPWM_REGS  
EPWM4_BASE  
EPwm5Regs  
EPWM_REGS  
EPWM5_BASE  
EPwm6Regs  
EPWM_REGS  
EPWM6_BASE  
EPwm7Regs  
EPWM_REGS  
EPWM7_BASE  
EQep1Regs  
EQEP_REGS  
EQEP1_BASE  
EQep2Regs  
EQEP_REGS  
EQEP2_BASE  
ECap1Regs  
ECAP_REGS  
ECAP1_BASE  
ECap2Regs  
ECAP_REGS  
ECAP2_BASE  
ECap3Regs  
ECAP_REGS  
ECAP3_BASE  
Hrcap3Regs  
HRCAP_REGS  
HRCAP3_BASE  
Cmpss1Regs  
CMPSS_REGS  
CMPSS1_BASE  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
DMA HIC  
8-3. Peripheral Registers Memory Map (C28x) (continued)  
Bit Field Name  
Pipeline  
DriverLib Name  
Base Address  
Protected  
Access  
Access  
Instance  
Cmpss2Regs  
Structure  
CMPSS_REGS  
CMPSS_REGS  
CMPSS_REGS  
CMPSS2_BASE  
CMPSS3_BASE  
0x0000_5CA0  
0x0000_5CC0  
0x0000_5CE0  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
Cmpss3Regs  
Cmpss4Regs  
CMPSS4_BASE  
Peripheral Frame 2 (PF2)  
SPIA_BASE  
SpiaRegs  
SPI_REGS  
SPI_REGS  
0x0000_6100  
0x0000_6110  
0x0000_6340  
0x0000_6400  
0x0000_6500  
0x0000_6600  
0x0000_6680  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
SpibRegs  
SPIB_BASE  
BgcrcCpuRegs  
PmbusaRegs  
HicRegs  
BGCRC_REGS  
PMBUS_REGS  
HIC_CFG_REGS  
FSI_TX_REGS  
FSI_RX_REGS  
BGCRC_CPU_BASE  
PMBUSA_BASE  
HIC_BASE  
FsiTxaRegs  
FsiRxaRegs  
FSITXA_BASE  
FSIRXA_BASE  
Peripheral Frame 3 (PF3)  
ADCA_BASE  
AdcaRegs  
AdccRegs  
ADC_REGS  
ADC_REGS  
0x0000_7400  
0x0000_7500  
YES  
YES  
-
-
-
-
ADCC_BASE  
Peripheral Frame 4 (PF4)  
INPUTXBAR_BASE  
XBAR_BASE  
InputXbarRegs  
XbarRegs  
INPUT_XBAR_REGS  
XBAR_REGS  
0x0000_7900  
0x0000_7920  
0x0000_7940  
0x0000_7960  
0x0000_7980  
0x0000_7A00  
0x0000_7A40  
0x0000_7A80  
0x0000_7BC0  
0x0000_7C00  
0x0000_7F00  
0x0000_7F80  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SyncSocRegs  
SYNC_SOC_REGS  
SYNCSOC_BASE  
INPUTXBAR2_BASE  
DMACLASRCSEL_BASE  
EPWMXBAR_BASE  
CLBXBAR_BASE  
-
InputXbar2Regs  
DmaClaSrcSelRegs  
EPwmXbarRegs  
ClbXbarRegs  
INPUT_XBAR_REGS  
DMA_CLA_SRC_SEL_REGS  
EPWM_XBAR_REGS  
CLB_XBAR_REGS  
-
-
-
-
OutputXbarRegs  
OutputXbar2Regs  
GpioCtrlRegs  
OUTPUT_XBAR_REGS  
OUTPUT_XBAR_REGS  
GPIO_CTRL_REGS  
OUTPUTXBAR_BASE  
OUTPUTXBAR2_BASE  
GPIOCTRL_BASE  
GPIODATA_BASE  
GPIODATAREAD_BASE  
Peripheral Frame 5 (PF5)  
DEVCFG_BASE  
-
-
-
-
GpioDataRegs  
GpioDataReadRegs  
GPIO_DATA_REGS  
GPIO_DATA_READ_REGS  
YES  
DevCfgRegs  
DEV_CFG_REGS  
CLK_CFG_REGS  
0x0005_D000  
0x0005_D200  
0x0005_D300  
0x0005_D500  
0x0005_D700  
0x0005_F000  
0x0005_F040  
0x0005_F070  
0x0005_F080  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ClkCfgRegs  
CLKCFG_BASE  
CpuSysRegs  
CPU_SYS_REGS  
CPUSYS_BASE  
PeriphAcRegs  
PERIPH_AC_REGS  
PERIPHAC_BASE  
ANALOGSUBSYS_BASE  
DCSM_BANK0_Z1_BASE  
DCSM_BANK0_Z2_BASE  
DCSMCOMMON_BASE  
DCSMCOMMON2_BASE  
AnalogSubsysRegs  
DcsmBank0Z1Regs  
DcsmBank0Z2Regs  
DcsmCommonRegs  
DcsmCommon2Regs  
ANALOG_SUBSYS_REGS  
DCSM_BANK0_Z1_REGS  
DCSM_BANK0_Z2_REGS  
DCSM_COMMON_REGS  
DCSM_COMMON2_REGS  
Copyright © 2021 Texas Instruments Incorporated  
162 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
Instance  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
8-3. Peripheral Registers Memory Map (C28x) (continued)  
Bit Field Name  
Pipeline  
DMA  
HIC  
DriverLib Name  
Base Address  
Protected  
Access  
Access  
Structure  
Peripheral Frame 6 (PF6)  
MEMCFG_BASE  
MemCfgRegs  
MEM_CFG_REGS  
ACCESSPROTECTION_REGS  
MEMORY_ERROR_REGS  
ROM_WAIT_STATE_REGS  
ROM_PREFETCH_REGS  
FLASH_CTRL_REGS  
0x0005_F400  
0x0005_F500  
0x0005_F540  
0x0005_F580  
0x0005_F588  
0x0005_F800  
0x0005_FB00  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AccessProtectionRegs  
MemoryErrorRegs  
RomWaitStateRegs  
RomPrefetchRegs  
Flash0CtrlRegs  
ACCESSPROTECTION_BASE  
MEMORYERROR_BASE  
ROMWAITSTATE_BASE  
ROMPREFETCH_BASE  
FLASH0CTRL_BASE  
FLASH0ECCREGS_BASE  
Peripheral Frame 7 (PF7)  
CANA_BASE  
Flash0EccRegs  
FLASH_ECC_REGS  
CanaRegs  
CAN_REGS  
CAN_MBOX  
0x0004_8000  
0x0004_9000  
0x0005_E000  
0x0005_E200  
0x0005_E700  
0x0005_E740  
0x0005_E800  
0x0005_E900  
0x0005_E908  
0x0005_E910  
0x0005_E918  
0x0005_E920  
0x0005_E928  
0x0005_E930  
0x0005_E938  
0x0005_E980  
0x0005_E990  
0x0005_E9A0  
0x0005_E9B0  
0x0005_EA00  
0x0005_EA10  
0x0005_EA20  
0x0005_EA30  
0x0005_EA40  
0x0005_EA50  
0x0005_EA60  
0x0005_EA70  
0x0005_EA80  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
CanaMboxRegs  
HwbistRegs  
CANAMBOX_BASE  
HWBIST_BASE  
YES  
YES  
HWBIST_REGS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
MpostRegs  
MPOST_REGS  
MPOST_BASE  
Dcc0Regs  
DCC_REGS  
DCC0_BASE  
Dcc1Regs  
DCC_REGS  
DCC1_BASE  
EradGlobalRegs  
EradHWBP1Regs  
EradHWBP2Regs  
EradHWBP3Regs  
EradHWBP4Regs  
EradHWBP5Regs  
EradHWBP6Regs  
EradHWBP7Regs  
EradHWBP8Regs  
EradCounter1Regs  
EradCounter2Regs  
EradCounter3Regs  
EradCounter4Regs  
EradCRCGlobalRegs  
EradCRC1Regs  
EradCRC2Regs  
EradCRC3Regs  
EradCRC4Regs  
EradCRC5Regs  
EradCRC6Regs  
EradCRC7Regs  
EradCRC8Regs  
ERAD_GLOBAL_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_COUNTER_REGS  
ERAD_COUNTER_REGS  
ERAD_COUNTER_REGS  
ERAD_COUNTER_REGS  
ERAD_CRC_GLOBAL_REGS  
ERAD_CRC_REGS  
ERAD_CRC_REGS  
ERAD_CRC_REGS  
ERAD_CRC_REGS  
ERAD_CRC_REGS  
ERAD_CRC_REGS  
ERAD_CRC_REGS  
ERAD_CRC_REGS  
ERADGLOBAL_BASE  
ERADHWBP1_BASE  
ERADHWBP2_BASE  
ERADHWBP3_BASE  
ERADHWBP4_BASE  
ERADHWBP5_BASE  
ERADHWBP6_BASE  
ERADHWBP7_BASE  
ERADHWBP8_BASE  
ERADCOUNTER1_BASE  
ERADCOUNTER2_BASE  
ERADCOUNTER3_BASE  
ERADCOUNTER4_BASE  
ERADCRCGLOBAL_BASE  
ERADCRC1_BASE  
ERADCRC2_BASE  
ERADCRC3_BASE  
ERADCRC4_BASE  
ERADCRC5_BASE  
ERADCRC6_BASE  
ERADCRC7_BASE  
ERADCRC8_BASE  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
DMA HIC  
8-3. Peripheral Registers Memory Map (C28x) (continued)  
Bit Field Name  
Pipeline  
DriverLib Name  
Base Address  
Protected  
Access  
Access  
Instance  
Structure  
Peripheral Frame 8 (PF8)  
LINA_BASE  
LinaRegs  
LIN_REGS  
LIN_REGS  
0x0000_6A00  
0x0000_6B00  
YES  
YES  
YES  
YES  
YES  
YES  
LinbRegs  
LINB_BASE  
Peripheral Frame 9 (PF9)  
WD_BASE  
WdRegs  
WD_REGS  
NMI_INTRUPT_REGS  
XINT_REGS  
0x0000_7000  
0x0000_7060  
0x0000_7070  
0x0000_7200  
0x0000_7300  
0x0000_7340  
YES  
YES  
YES  
YES  
YES  
YES  
-
-
-
-
-
-
YES  
YES  
YES  
YES  
YES  
YES  
NmiIntruptRegs  
XintRegs  
NMI_BASE  
XINT_BASE  
SciaRegs  
I2caRegs  
I2cbRegs  
SCI_REGS  
SCIA_BASE  
I2C_REGS  
I2CA_BASE  
I2C_REGS  
I2CB_BASE  
Copyright © 2021 Texas Instruments Incorporated  
164 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
8.4 Identification  
8-4 lists the Device Identification Registers. Additional information on these device identification registers can  
be found in the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual.  
8-4. Device Identification Registers  
NAME  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
Device part identification number  
TMS320F280025  
TMS320F280025C  
TMS320F280023  
TMS320F280023C  
TMS320F280021  
Silicon revision number  
Revision 0  
0x04FF 0500  
0x04FF 0500  
0x04FD 0500  
0x04FD 0500  
0x04FB 0500  
PARTIDH  
REVID  
0x0005 D00A  
2
0x0005 D00C  
0x0007 01F4  
2
2
0x0000 0000  
0x0000 0001  
Revision A  
Unique identification number. This number is different on each  
individual device with the same PARTIDH. This unique number  
can be used as a serial number in the application. This number  
is present only on TMS devices.  
UID_UNIQUE  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
8.5 Bus Architecture Peripheral Connectivity  
The Peripheral Connectivity table lists a broad view of the peripheral and configuration register accessibility from  
each bus master.  
8-5. Peripheral Connectivity  
PERIPHERAL  
C28  
DMA  
HIC  
BGCRC  
SYSTEM PERIPHERALS  
CPU Timers  
ERAD  
Y
Y
GPIO Data  
Y
Y
GPIO Pin Mapping and Configuration  
XBAR Configuration  
System Configuration  
DCC  
Y
Y
Y
Y
MEMORY  
M0/M1  
LSx  
Y
Y
Y
Y
Y
Y
GS0  
Y
Y
Y
ROM  
FLASH  
Y
Y
CONTROL PERIPHERALS  
ePWM/HRPWM  
eCAP  
Y
Y
Y
Y
Y
Y
Y
Y
Y
eQEP(1)  
ANALOG PERIPHERALS  
CMPSS(1)  
Y
Y
Y
Y
Y
Y
Y
ADC Configuration  
ADC Results(1)  
COMMUNICATION PERIPHERALS  
CAN  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
FSITX/FSIRX  
I2C  
LIN  
Y
Y
PMBus  
SCI  
SPI  
Y
(1) These modules are accessible from DMA but cannot trigger a DMA transfer.  
Copyright © 2021 Texas Instruments Incorporated  
166 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
8.6 C28x Processor  
The CPU is a 32-bit fixed-point processor. This device draws from the best features of digital signal processing;  
reduced instruction set computing (RISC); and microcontroller architectures, firmware, and tool sets.  
The CPU features include a modified Harvard architecture and circular addressing. The RISC features are  
single-cycle instruction execution, register-to-register operations, and modified Harvard architecture. The  
microcontroller features include ease of use through an intuitive instruction set, byte packing and unpacking, and  
bit manipulation. The modified Harvard architecture of the CPU enables instruction and data fetches to be  
performed in parallel. The CPU can read instructions and data while it writes data simultaneously to maintain the  
single-cycle instruction operation across the pipeline. The CPU does this over six separate address/data buses.  
For more information on CPU architecture and instruction set, see the TMS320C28x CPU and Instruction Set  
Reference Guide. For more information on the C28x Floating Point Unit (FPU), Trigonometric Math Unit, and  
Cyclic Redundancy Check (VCRC) instruction sets, see the TMS320C28x Extended Instruction Sets Technical  
Reference Manual. A brief overview of the FPU, TMU, and VCRC are provided here.  
8.6.1 Floating-Point Unit (FPU)  
The C28x plus floating-point (C28x+FPU) processor extends the capabilities of the C28x fixed-point CPU by  
adding registers and instructions to support IEEE single-precision floating-point operations.  
Devices with the C28x+FPU include the standard C28x register set plus an additional set of floating-point unit  
registers. The additional floating-point unit registers are the following:  
Eight floating-point result registers, RnH (where n = 07)  
Floating-point Status Register (STF)  
Repeat Block Register (RB)  
All of the floating-point registers, except the RB, are shadowed. This shadowing can be used in high-priority  
interrupts for fast context save and restore of the floating-point registers.  
8.6.2 Fast Integer Division Unit  
The Fast Integer Division (FINTDIV) unit of the C28x CPU uniquely supports three types of integer division  
(Truncated, Modulus, Euclidean) of varying data type sizes (16/16, 32/16, 32/32, 64/32, 64/64) in unsigned or  
signed formats.  
Truncated integer division is naturally supported by C language (/, % operators).  
Modulus and Euclidean divisions are variants that are more efficient for control algorithms and are supported  
by C intrinsics.  
All three types of integer division produce both a quotient and remainder component, are interruptible, and  
execute in a minimum number of deterministic cycles (10 cycles for a 32/32 division). In addition, the Fast  
Division capabilities of the C28x CPU uniquely support fast execution of floating-point 32-bit (in 5 cycles) and 64-  
bit (in 20 cycles) division.  
For more information about fast integer division, see the Fast Integer Division A Differentiated Offering From  
C2000™ Product Family Application Report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 167  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
8.6.3 Trigonometric Math Unit (TMU)  
The TMU extends the capabilities of a C28x+FPU by adding instructions and leveraging existing FPU  
instructions to speed up the execution of common trigonometric and arithmetic operations listed in 8-6.  
8-6. TMU Supported Instructions  
INSTRUCTIONS  
MPY2PIF32 RaH,RbH  
C EQUIVALENT OPERATION  
PIPELINE CYCLES  
a = b * 2pi  
a = b / 2pi  
a = b/c  
2/3  
2/3  
5
DIV2PIF32 RaH,RbH  
DIVF32 RaH,RbH,RcH  
SQRTF32 RaH,RbH  
a = sqrt(b)  
5
SINPUF32 RaH,RbH  
COSPUF32 RaH,RbH  
ATANPUF32 RaH,RbH  
QUADF32 RaH,RbH,RcH,RdH  
a = sin(b*2pi)  
4
a = cos(b*2pi)  
4
a = atan(b)/2pi  
4
Operation to assist in calculating ATANPU2  
5
No changes have been made to existing instructions, pipeline or memory bus architecture. All TMU instructions  
use the existing FPU register set (R0H to R7H) to carry out their operations.  
Exponent instruction IEXP2F32 and logarithmic instruction LOG2F32 have been added to support computation  
of floating-point power function for the non-linear proportional integral derivative control (NLPID) component of  
the C2000 Digital Control Library. These two added instructions reduce the power function calculations from a  
typical of 300 cycles using library emulation to less than 10 cycles.  
8.6.4 VCRC Unit  
Cyclic redundancy check (CRC) algorithms provide a straightforward method for verifying data integrity over  
large data blocks, communication packets, or code sections. The C28x+VCRC can perform 8-bit, 16-bit, 24-bit,  
and 32-bit CRCs. For example, the VCRC can compute the CRC for a block length of 10 bytes in 10 cycles. A  
CRC result register contains the current CRC, which is updated whenever a CRC instruction is executed.  
The following are the CRC polynomials used by the CRC calculation logic of the VCRC:  
CRC8 polynomial = 0x07  
CRC16 polynomial 1 = 0x8005  
CRC16 polynomial 2 = 0x1021  
CRC24 polynomial = 0x5d6dcb  
CRC32 polynomial 1 = 0x04c11db7  
CRC32 polynomial 2 = 0x1edc6f41  
This module can calculate CRCs for a byte of data in a single cycle. The CRC calculation for CRC8, CRC16,  
CRC24, and CRC32 is done byte-wise (instead of computing on a complete 16-bit or 32-bit data read by the  
C28x core) to match the byte-wise computation requirement mandated by various standards.  
The VCRC Unit also allows the user to provide the size (1b-32b) and value of any polynomial to fit custom CRC  
requirements. The CRC execution time increases to three cycles when using a custom polynomial.  
Copyright © 2021 Texas Instruments Incorporated  
168 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
8.7 Embedded Real-Time Analysis and Diagnostic (ERAD)  
The ERAD module enhances the debug and system-analysis capabilities of the device. The debug and system-  
analysis enhancements provided by the ERAD module is done outside of the CPU. The ERAD module consists  
of the Enhanced Bus Comparator units and the System Event Counter units. The Enhanced Bus Comparator  
units are used to generate hardware breakpoints, hardware watch points, and other output events. The System  
Event Counter units are used to analyze and profile the system. The ERAD module is accessible by the  
debugger and by the application software, which significantly increases the debug capabilities of many real-time  
systems, especially in situations where debuggers are not connected. In the TMS320F28002x devices, the  
ERAD module contains eight Enhanced Bus Comparator units (which increases the number of Hardware  
breakpoints from two to ten) and four Benchmark System Event Counter units.  
8.8 Background CRC-32 (BGCRC)  
The Background CRC (BGCRC) module computes a CRC-32 on a configurable block of memory. It  
accomplishes this by fetching the specified block of memory during idle cycles (when the CPU, HIC, or DMA is  
not accessing the memory block). The calculated CRC-32 value is compared against a golden CRC-32 value to  
indicate a pass or fail. In essence, the BGCRC helps identify memory faults and corruption.  
The BGCRC module has the following features:  
One cycle CRC-32 computation on 32 bits of data  
No CPU bandwidth impact for zero wait state memory  
Minimal CPU bandwidth impact for non-zero wait state memory  
Dual operation modes (CRC-32 mode and scrub mode)  
Watchdog timer to time CRC-32 completion  
Ability to pause and resume CRC-32 computation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 169  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
8.9 Direct Memory Access (DMA)  
The DMA module provides a hardware method of transferring data between peripherals and/or memory without  
intervention from the CPU, thereby freeing up bandwidth for other system functions. Additionally, the DMA has  
the capability to orthogonally rearrange the data as it is transferred as well as ping-pongdata between  
buffers. These features are useful for structuring data into blocks for optimal CPU processing. 8-2 shows a  
device-level block diagram of the DMA.  
DMA features include:  
Six channels with independent PIE interrupts  
Peripheral interrupt trigger sources  
ADC interrupts and EVT signals  
External Interrupts  
ePWM SOC signals  
CPU timers  
eCAP  
SPI transmit and receive  
CAN transmit and receive  
LIN transmit and receive  
Data sources and destinations:  
GSx RAM  
ADC result registers  
Control peripheral registers (ePWM, eQEP, eCAP)  
SPI, LIN, CAN, and PMBus registers  
Word Size: 16-bit or 32-bit (SPI limited to 16-bit)  
Throughput: Four cycles per word without arbitration  
Global Shared  
(GS0) RAM  
ADC  
WRAPPER  
ADC  
RESULTS  
XINT  
TIMER  
CAN  
LIN  
C28x bus  
DMA bus  
DMA Trigger  
TINT(0-2)  
XINT(1-5)  
Source Selection  
ADCx.INT(1-5), ADCx.EVT  
CANxIF(1-3)  
C28x  
DMACHSRCSEL1.CHx  
DMACHSRCSEL2.CHx  
CHx.MODE.PERINTSEL  
(x = 1 to 6)  
DMA  
ECAP(1-3)DMA  
EPWM(1-7).SOCA, EPWM(1-7.SOCB  
SPITXDMA(A-B), SPIRXDMA(A-B)  
FSITXADMA, FSIRXADMA  
PIE  
eCAP EPWM  
SPI  
PMBUS  
FSI  
8-2. DMA Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
170 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
8.10 Device Boot Modes  
This section explains the default boot modes, as well as all the available boot modes supported on this device.  
The boot ROM uses the boot mode select, general-purpose input/output (GPIO) pins to determine the boot  
mode configuration.  
8-7 shows the boot mode options available for selection by the default boot mode select pins. Users have the  
option to program the device to customize the boot modes selectable in the boot-up table as well as the boot  
mode select pin GPIOs used.  
All the peripheral boot modes that are supported use the first instance of the peripheral module (SCIA, SPIA,  
I2CA, CANA, and so forth). Whenever these boot modes are referred to in this chapter, such as SCI boot, it is  
actually referring to the first module instance, which means the SCI boot on the SCIA port. The same applies to  
the other peripheral boots.  
See 7.11.2.2.2 and 7-8 for tboot-flash, the boot ROM execution time to first instruction fetch in flash.  
8-7. Device Default Boot Modes  
GPIO24  
GPIO32  
BOOT MODE  
(DEFAULT BOOT MODE SELECT PIN 1)  
(DEFAULT BOOT MODE SELECT PIN 0)  
Parallel IO  
SCI / Wait Boot(1)  
CAN  
0
0
1
1
0
1
0
1
Flash  
(1) SCI boot mode can be used as a wait boot mode as long as SCI continues to wait for an 'A' or 'a' during the SCI autobaud lock  
process.  
8.10.1 Device Boot Configurations  
This section details what boot configurations are available and how to configure them. This device supports from  
0 boot mode select pins up to 3 boot mode select pins as well as from 1 configured boot mode up to 8  
configured boot modes.  
To change and configure the device from the default settings to custom settings for your application, use the  
following process:  
1. Determine all the various ways you want application to be able to boot. (For example: Primary boot option of  
Flash boot for your main application, secondary boot option of CAN boot for firmware updates, tertiary boot  
option of SCI boot for debugging, etc)  
2. Based on the number of boot modes needed, determine how many boot mode select pins (BMSPs) are  
required to select between your selected boot modes. (For example: 2 BMSPs are required to select  
between 3 boot mode options)  
3. Assign the required BMSPs to a physical GPIO pin. (For example, BMSP0 to GPIO10, BMSP1 to GPIO51,  
and BMSP2 left as default which is disabled). Refer to 8.10.1.1 for all the details on performing these  
configurations.  
4. Assign the determined boot mode definitions to indexes in your custom boot table that correlate to the  
decoded value of the BMSPs. For example, BOOTDEF0=Boot to Flash, BOOTDEF1=CAN Boot,  
BOOTDEF2=SCI Boot; all other BOOTDEFx are left as default/nothing). Refer to 8.10.1.2 for all the  
details on setting up and configuring the custom boot mode table.  
Additionally, the Boot Mode Example Use Cases section of the TMS320F28002x Real-Time Microcontrollers  
Technical Reference Manual provides some example use cases on how to configure the BMSPs and custom  
boot tables.  
Note  
The CAN boot mode turns on the XTAL. Be sure an XTAL is installed in the application before using  
CAN boot mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 171  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
8.10.1.1 Configuring Boot Mode Pins  
This section explains how the boot mode select pins can be customized by the user, by programming the  
BOOTPIN-CONFIG location (refer to 8-8) in the user-configurable dual-zone security module (DCSM) OTP.  
The location in the DCSM OTP is Z1-OTP-BOOTPIN-CONFIG or Z2-OTP-BOOTPIN-CONFIG. When  
debugging, EMU-BOOTPIN-CONFIG is the emulation equivalent of Z1-OTP-BOOTPIN-CONFIG/Z2-OTP-  
BOOTPIN-CONFIG, and can be programmed to experiment with different boot modes without writing to OTP.  
The device can be programmed to use 0, 1, 2, or 3 boot mode select pins as needed.  
Note  
When using Z2-OTP-BOOTPIN-CONFIG, the configurations programmed in this location will take  
priority over the configurations in Z1-OTP-BOOTPIN-CONFIG. It is recommended to use Z1-OTP-  
BOOTPIN-CONFIG first and then if OTP configurations need to be altered, switch to using Z2-OTP-  
BOOTPIN-CONFIG.  
8-8. BOOTPIN-CONFIG Bit Fields  
BIT  
31:24  
23:16  
15:8  
NAME  
DESCRIPTION  
Key  
Write 0x5A to these 8-bits to indicate the bits in this register are valid  
Refer to BMSP0 description except for BMSP2  
Refer to BMSP0 description except for BMSP1  
Boot Mode Select Pin 2 (BMSP2)  
Boot Mode Select Pin 1 (BMSP1)  
Set to the GPIO pin to be used during boot (up to 255):  
- 0x0 = GPIO0  
- 0x01 = GPIO1  
7:0  
Boot Mode Select Pin 0 (BMSP0)  
- and so on  
Writing 0xFF disables BMSP0 and this pin is no longer used to select  
the boot mode.  
The following GPIOs cannot be used as a BMSP. If selected for a particular BMSP, the boot ROM automatically  
selects the factory default GPIO (the factory default for BMSP2 is 0xFF, which disables the BMSP).  
GPIO 20 and GPIO 21  
GPIO 36 and GPIO 38  
GPIO 47 to GPIO 60  
GPIO 63 to GPIO 223  
Copyright © 2021 Texas Instruments Incorporated  
172 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
8-9. Standalone Boot Mode Select Pin Decoding  
BOOTPIN_CONFIG  
BMSP0  
BMSP1  
BMSP2  
REALIZED BOOT MODE  
KEY  
!= 0x5A  
Boot as defined by the factory default BMSPs  
Dont Care  
Dont Care  
Dont Care  
Boot as defined in the boot table for boot mode  
0xFF  
0xFF  
0xFF  
0
(All BMSPs disabled)  
Boot as defined by the value of BMSP0  
(BMSP1 and BMSP2 disabled)  
Valid GPIO  
0xFF  
0xFF  
Valid GPIO  
0xFF  
0xFF  
0xFF  
Boot as defined by the value of BMSP1  
(BMSP0 and BMSP2 disabled)  
Boot as defined by the value of BMSP2  
(BMSP0 and BMSP1 disabled)  
0xFF  
Valid GPIO  
Boot as defined by the values of BMSP0 and  
Valid GPIO  
Valid GPIO  
Valid GPIO  
0xFF  
0xFF  
BMSP1  
(BMSP2 disabled)  
Boot as defined by the values of BMSP0 and  
BMSP2  
Valid GPIO  
(BMSP1 disabled)  
Boot as defined by the values of BMSP1 and  
= 0x5A  
0xFF  
Valid GPIO  
Valid GPIO  
Valid GPIO  
Valid GPIO  
BMSP2  
(BMSP0 disabled)  
Boot as defined by the values of BMSP0,  
BMSP1, and BMSP2  
Valid GPIO  
BMSP0 is reset to the factory default BMSP0  
GPIO  
Boot as defined by the values of BMSP0,  
BMSP1, and BMSP2  
Invalid GPIO  
Valid GPIO  
Valid GPIO  
Valid GPIO  
Invalid GPIO  
Valid GPIO  
Valid GPIO  
Valid GPIO  
Invalid GPIO  
BMSP1 is reset to the factory default BMSP1  
GPIO  
Boot as defined by the values of BMSP0,  
BMSP1, and BMSP2  
BMSP2 is reset to the factory default state,  
which is disabled  
Boot as defined by the values of BMSP0 and  
BMSP1  
Note  
When decoding the boot mode, BMSP0 is the least-significant-bit and BMSP2 is the most-significant-  
bit of the boot table index value. It is recommended when disabling BMSPs to start with disabling  
BMSP2. For example, in an instance when only using BMSP2 (BMSP1 and BMSP0 are disabled),  
then only the boot table indexes of 0 and 4 will be selectable. In the instance when using only BMSP0,  
then the selectable boot table indexes are 0 and 1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 173  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
8.10.1.2 Configuring Boot Mode Table Options  
This section explains how to configure the boot definition table, BOOTDEF, for the device and the associated  
boot options. The 64-bit location is located in user-configurable DCSM OTP in the Z1-OTP-BOOTDEF-LOW and  
Z1-OTP-BOOTDEF-HIGH locations. When debugging, EMU-BOOTDEF-LOW and EMU-BOOTDEF-HIGH are  
the emulation equivalents of Z1-OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH, and can be programmed  
to experiment with different boot mode options without writing to OTP. The range of customization to the boot  
definition table depends on how many boot mode select pins (BMSP) are being used. For example, 0 BMSPs  
equals to 1 table entry, 1 BMSP equals to 2 table entries, 2 BMSPs equals to 4 table entries, and 3 BMSPs  
equals to 8 table entries. Refer to the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual  
for examples on how to set up the BOOTPIN_CONFIG and BOOTDEF values.  
Note  
The locations Z2-OTP-BOOTDEF-LOW and Z2-OTP-BOOTDEF-HIGH will be used instead of Z1-  
OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH locations when Z2-OTP-BOOTPIN-CONFIG is  
configured. Refer to Configuring Boot Mode Pins for more details on BOOTPIN_CONFIG usage.  
8-10. BOOTDEF Bit Fields  
BYTE  
POSITION  
BOOTDEF NAME  
NAME  
DESCRIPTION  
Set the boot mode for index 0 of the boot table.  
Different boot modes and their options can include,  
for example, a boot mode that uses different GPIOs  
for a specific bootloader or a different flash entry  
point address. Any unsupported boot mode will  
cause the device to either go to wait boot or boot to  
flash.  
BOOT_DEF0  
7:0  
BOOT_DEF0 Mode/Options  
Refer to GPIO Assignments for valid BOOTDEF  
values to set in the table.  
BOOT_DEF1  
BOOT_DEF2  
BOOT_DEF3  
BOOT_DEF4  
BOOT_DEF5  
BOOT_DEF6  
BOOT_DEF7  
15:8  
BOOT_DEF1 Mode/Options  
BOOT_DEF2 Mode/Options  
BOOT_DEF3 Mode/Options  
BOOT_DEF4 Mode/Options  
BOOT_DEF5 Mode/Options  
BOOT_DEF6 Mode/Options  
BOOT_DEF7 Mode/Options  
23:16  
31:24  
39:32  
47:40  
55:48  
63:56  
Refer to BOOT_DEF0 description  
Copyright © 2021 Texas Instruments Incorporated  
174 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
8.10.2 GPIO Assignments  
This section details the GPIOs and boot option values used for boot mode set in the BOOT_DEF memory  
location located at Z1-OTP-BOOTDEF-LOW/ Z2-OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH/ Z2-OTP-  
BOOTDEF-HIGH. Refer to Configuring Boot Mode Table Options on how to configure BOOT_DEF. When  
selecting a boot mode option, make sure to verify that the necessary pins are available in the pin mux options for  
the specific device package being used.  
8-11. SCI Boot Options  
OPTION  
BOOTDEF VALUE  
SCITXDA GPIO  
SCIRXDA GPIO  
GPIO28  
GPIO17  
GPIO9  
0 (default)  
0x01  
0x21  
0x41  
0x61  
0x81  
GPIO29  
1
2
3
4
GPIO16  
GPIO8  
GPIO2  
GPIO3  
GPIO16  
GPIO3  
8-12. CAN Boot Options  
OPTION  
BOOTDEF VALUE  
CANTXA GPIO  
CANRXA GPIO  
GPIO5  
0 (default)  
0x02  
0x22  
0x42  
GPIO4  
1
2
GPIO32  
GPIO33  
GPIO2  
GPIO3  
8-13. I2C Boot Options  
OPTION  
BOOTDEF VALUE  
SDAA GPIO  
GPIO32  
GPIO0  
SCLA GPIO  
GPIO33  
GPIO1  
0
1
2
0x07  
0x27  
0x47  
GPIO10  
GPIO8  
8-14. RAM Boot Options  
RAM ENTRY POINT  
(ADDRESS)  
OPTION  
BOOTDEF VALUE  
0
0x05  
0x0000 0000  
8-15. Flash Boot Options  
FLASH ENTRY POINT  
OPTION  
BOOTDEF VALUE  
FLASH SECTOR  
(ADDRESS)  
0x0008 0000  
0x0008 4000  
0x0008 8000  
0x0008 EFF0  
0 (default)  
0x03  
0x23  
0x43  
0x63  
Bank0 Sector 0  
Bank 0 Sector 4  
1
2
3
Bank 0 Sector 8  
Bank 0, End of Sector 14  
8-16. Wait Boot Options  
OPTION  
BOOTDEF VALUE  
WATCHDOG  
Enabled  
0
1
0x04  
0x24  
Disabled  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 175  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
8-17. SPI Boot Options  
OPTION  
BOOTDEF VALUE  
SPISIMOA  
SPISOMIA  
SPICLKA  
GPIO3  
GPIO3  
GPIO9  
GPIO9  
SPISTEA  
GPIO5  
0
1
2
3
0x06  
0x26  
0x46  
0x66  
GPIO2  
GPIO1  
GPIO16  
GPIO8  
GPIO1  
GPIO0  
GPIO10  
GPIO17  
GPIO11  
GPIO11  
GPIO8  
8-18. Parallel Boot Options  
28x(DSP) CONTROL  
GPIO  
OPTION  
0 (default)  
BOOTDEF VALUE  
0x00  
D0-D7 GPIO  
HOST CONTROL GPIO  
D0 - GPIO28  
D1 - GPIO1  
D2 - GPIO2  
D3 - GPIO3  
D4 - GPIO4  
D5 - GPIO5  
D6 - GPIO6  
D7 - GPIO7  
D0 - GPIO0  
D1 - GPIO1  
D2 - GPIO2  
D3 - GPIO3  
D4 - GPIO4  
D5 - GPIO5  
D6 - GPIO6  
D7 - GPIO7  
GPIO16  
GPIO29  
1
0x20  
GPIO16  
GPIO11  
Copyright © 2021 Texas Instruments Incorporated  
176 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
8.11 Dual Code Security Module  
The dual code security module (DCSM) prevents access to on-chip secure memories. The term secure”  
means access to secure memories and resources is blocked. The term unsecuremeans access is allowed;  
for example, through a debugging tool such as Code Composer Studio(CCS).  
The code security mechanism offers protection for two zones, Zone 1 (Z1) and Zone 2 (Z2). The security  
implementation for both the zones is identical. Each zone has its own dedicated secure resource (OTP memory  
and secure ROM) and allocated secure resource (LSx RAM and flash sectors).  
The security of each zone is ensured by its own 128-bit password (CSM password). The password for each zone  
is stored in an OTP memory location based on a zone-specific link pointer. The link pointer value can be  
changed to program a different set of security settings (including passwords) in OTP.  
Code Security Module Disclaimer  
THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS DESIGNED TO  
PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY AND IS  
WARRANTED BY TEXAS INSTRUMENTS (TI), IN ACCORDANCE WITH ITS STANDARD TERMS  
AND CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS FOR THE WARRANTY  
PERIOD APPLICABLE FOR THIS DEVICE.  
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE  
COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED MEMORY  
CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT AS SET FORTH  
ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS CONCERNING THE CSM OR  
OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY  
OR FITNESS FOR A PARTICULAR PURPOSE.  
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT,  
INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY OUT OF  
YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN ADVISED OF THE  
POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED  
TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR  
OTHER ECONOMIC LOSS.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 177  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
8.12 Watchdog  
The watchdog module is the same as the one on previous TMS320C2000 devices, but with an optional lower  
limit on the time between software resets of the counter. This windowed countdown is disabled by default, so the  
watchdog is fully backward-compatible.  
The watchdog generates either a reset or an interrupt. It is clocked from the internal oscillator with a selectable  
frequency divider.  
8-3 shows the various functional blocks within the watchdog module.  
WDCR.WDPRECLKDIV  
WDCR.WDPS  
WDCR.WDDIS  
WDCNTR  
WDCLK  
(INTOSC1)  
Overflow  
1-count  
delay  
8-bit  
Watchdog  
Counter  
WDCLK  
Divider  
Watchdog  
Prescaler  
SYSRSn  
Clear  
Count  
WDWCR.MIN  
WDKEY (7:0)  
Watchdog  
Window  
Detector  
Out of Window  
Good Key  
Watchdog  
Key Detector  
55 + AA  
WDCR(WDCHK(2:0))  
Bad Key  
WDRSTn  
WDINTn  
Generate  
512-WDCLK  
Output Pulse  
1
0
1
Watchdog Time-out  
SCSR.WDENINT  
8-3. Windowed Watchdog  
Copyright © 2021 Texas Instruments Incorporated  
178 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
8.13 C28x Timers  
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock prescaling. The  
timers have a 32-bit count-down register that generates an interrupt when the counter reaches zero. The counter  
is decremented at the CPU clock speed divided by the prescale value setting. When the counter reaches zero, it  
is automatically reloaded with a 32-bit period value.  
CPU-Timer 0 is for general use and is connected to the PIE block. CPU-Timer 1 is also for general use and is  
connected to INT13 of the CPU. CPU-Timer 2 is reserved for TI-RTOS. It is connected to INT14 of the CPU. If  
TI-RTOS is not being used, CPU-Timer 2 is available for general use.  
CPU-Timer 2 can be clocked by any one of the following:  
SYSCLK (default)  
Internal zero-pin oscillator 1 (INTOSC1)  
Internal zero-pin oscillator 2 (INTOSC2)  
X1 (XTAL)  
8.14 Dual-Clock Comparator (DCC)  
There are three Dual-Clock Comparators (DCC0 and DCC1) on the device. All three DCCs are only accessible  
through CPU1. The DCC module is used for evaluating and monitoring the clock input based on a second clock,  
which can be a more accurate and reliable version. This instrumentation is used to detect faults in clock source  
or clock structures, thereby enhancing the system's safety metrics.  
8.14.1 特性  
DCC 具有以下特性:  
• 允许应用确保两个时钟信号的频率之间保持固定的比率。  
• 支持根据参考时钟周期数定义可编程公差窗口。  
• 支持连续监视而无需应用干预。  
• 支持单序列模式进行点测量。  
• 允许为每个计数器选择一个时钟源从而产生几种特定的用例。  
8.14.2 Mapping of DCCx (DCC0 and DCC1) Clock Source Inputs  
8-19. DCCx Clock Source0 Table  
DCCxCLKSRC0[3:0]  
CLOCK NAME  
XTAL/X1  
0x0  
0x1  
INTOSC1  
0x2  
INTOSC2  
0x5  
CPU1.SYSCLK  
INPUT XBAR (Output16 of input-xbar)  
Reserved  
0xC  
others  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 179  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
8-20. DCCx Clock Source1 Table  
DCCxCLKSRC1[4:0]  
CLOCK NAME  
PLLRAWCLK  
INTOSC1  
0x0  
0x2  
0x3  
0x6  
INTOSC2  
CPU1.SYSCLK  
0x9  
0xB  
Input XBAR (Output15 of the input-xbar)  
EPWMCLK  
LSPCLK  
0xC  
0xD  
0xE  
ADCCLK  
WDCLK  
0xF  
CAN0BITCLK  
Reserved  
others  
Copyright © 2021 Texas Instruments Incorporated  
180 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
8.15 Configurable Logic Block (CLB)  
The C2000 configurable logic block (CLB) is a collection of blocks that can be interconnected using software to  
implement custom digital logic functions or enhance existing on-chip peripherals. The CLB is able to enhance  
existing peripherals through a set of crossbar interconnections, which provide a high level of connectivity to  
existing control peripherals such as enhanced pulse width modulators (ePWM), enhanced capture modules  
(eCAP), and enhanced quadrature encoder pulse modules (eQEP). The crossbars also allow the CLB to be  
connected to external GPIO pins. In this way, the CLB can be configured to interact with device peripherals to  
perform small logical functions such as comparators, or to implement custom serial data exchange protocols.  
Through the CLB, functions that would otherwise be accomplished using external logic devices can now be  
implemented inside the MCU.  
The CLB peripheral is configured through the CLB tool. For more information on the CLB tool, available  
examples, application reports and users guide, please refer to the following location in your C2000Ware package  
(C2000Ware_2_00_00_03 and higher):  
C2000WARE_INSTALL_LOCATION\utilities\clb_tool\clb_syscfg\doc  
CLB Tool User Guide  
How to Design with the C2000™ CLB Application Report  
How to Migrate Custom Logic From an FPGA/CPLD to C2000™ CLB Application Report  
The CLB module and its interconnections are shown in 8-4.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 181  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
8-4. CLB Overview  
Absolute encoder protocol interfaces are now provided as Position Manager solutions in the C2000Ware  
MotorControl SDK. Configuration files, application programmer interface (API), and use examples for such  
solutions are provided with C2000Ware MotorControl SDK. In some solutions, the TI-configured CLB is used  
with other on-chip resources, such as the SPI port or the C28x CPU, to perform more complex functionality.  
Copyright © 2021 Texas Instruments Incorporated  
182 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
9 Applications, Implementation, and Layout  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 TI 参考设计  
TI 参考设计库是一个涵盖模拟、嵌入式处理器和连接等内容的强大的参考设计资源库。所有参考设计均由 TI 专家  
构建旨在帮助您着手进行系统设计其中包括原理图或方框图、BOM 和设计文件助您加快产品上市步伐。  
查看我们面向数字电源应用并基于 F28002x 的最新参考设计使用 C2000™ MCU 的两相交错式 LLC 谐振转换  
器参考设计。  
TI 参考设计中搜索并下载其TI 参考设计。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 183  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Getting Started and Next Steps  
For a quick overview of the device, features, roadmap, comparisons to other devices, and package details, see  
Texas Instruments C2000™ F28002x Real-Time Controller Series.  
10.2 Device and Development Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320  
MCU devices and support tools. Each TMS320MCU commercial family member has one of three prefixes:  
TMX, TMP, or TMS (for example, TMS320F280025C). Texas Instruments recommends two of three possible  
prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of  
product development from engineering prototypes (with TMX for devices and TMDX for tools) through fully  
qualified production devices and tools (with TMS for devices and TMDS for tools).  
Device development evolutionary flow:  
TMX Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
TMP Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
TMS Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.  
TMDS Fully-qualified development-support product.  
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, PN) and temperature range (for example, S).  
For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your TI  
sales representative.  
For additional description of the device nomenclature markings on the die, see the TMS320F28002x Real-Time  
MCUs Silicon Errata.  
Copyright © 2021 Texas Instruments Incorporated  
184 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
-Q1  
Q
Generic Part Number: TMS 320  
Orderable Part Number: (blank)  
PREFIX(A)  
F
F
280025C  
R
X
280025C PN  
SHIPPING OPTIONS  
experimental device  
TMX (X)  
TMS (blank)  
=
=
Tray  
Tape and Reel  
(blank)  
R
=
=
qualified device  
QUALIFICATION (in Generic Part Number)  
Non-Automotive  
Q1 refers to Automotive AEC Q100 Grade 1 qualification.  
blank  
-Q1  
=
=
DEVICE FAMILY  
320 = TMS320 MCU Family  
TEMPERATURE RANGE (in Orderable Part Number)  
−40°C to 125°C (TJ)  
S
=
=
TECHNOLOGY  
Q
−40°C to 125°C (TA)  
F = Flash  
PACKAGE TYPE  
80-Pin PN Low-Profile Quad Flatpack (LQFP)  
64-Pin PM LQFP  
48-Pin PT LQFP  
DEVICE  
280025  
280023  
280021  
280025C  
280023C  
A. Prefix X is used in orderable part numbers.  
10-1. Device Nomenclature  
10.3 Markings  
10-2 and 10-3 show the package symbolization. 10-1 lists the silicon revision codes.  
F280025CPMS  
$$#−YMLLLLS  
G4  
F280025CPNS  
$$#−YMLLLLS  
G4  
Package  
Pin 1  
Package  
Pin 1  
YMLLLLS  
Lot Trace Code  
=
YM  
LLLL  
S
2-Digit Year/Month Code  
Assembly Lot  
Assembly Site Code  
Wafer Fab Code (one or two characters) as applicable  
Silicon Revision Code  
=
=
=
=
=
$$  
#
G4  
Green (Low Halogen and RoHS-compliant)  
=
10-2. Package Symbolization for PM and PN Packages  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 185  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
YMLLLLS  
Lot Trace Code  
=
980 PTS  
F280025C  
YMLLLLS  
YM  
LLLL  
S
980  
$$  
2-Digit Year/Month Code  
Assembly Lot  
Assembly Site Code  
TI E.I.A. Code  
Wafer Fab Code (one or two characters) as applicable  
Silicon Revision Code  
=
=
=
=
=
=
#
$$#  
G4  
G4  
Green (Low Halogen and RoHS-compliant)  
=
Package  
Pin 1  
10-3. Package Symbolization for PT Package  
10-1. Revision Identification  
REVID(1)  
ADDRESS: 0x5D00C  
SILICON REVISION CODE  
SILICON REVISION  
COMMENTS  
Blank  
A
0
0x0000 0000  
0x0000 0001  
This silicon revision is available as TMX.  
This silicon revision is available as TMX and  
TMS.  
A
(1) Silicon Revision ID  
Copyright © 2021 Texas Instruments Incorporated  
186 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
10.4 Tools and Software  
TI offers an extensive line of development tools. Some of the tools and software to evaluate the performance of  
the device, generate code, and develop solutions follow. To view all available tools and software for C2000™  
real-time control MCUs, visit the C2000 real-time control MCUs Design & development page.  
Development Tools  
LAUNCHXL-F280025C  
LAUNCHXL-F280025C is a low-cost development board for TI C2000Real-Time Controllers series of F28002x  
devices. Ideal for initial evaluation and prototyping, it provides a standardized and easy-to-use platform to  
develop your next application. This extended version LaunchPaddevelopment kit offers extra pins for  
evaluation and supports the connection of two BoosterPackplug-in modules.  
F280025 controlCARD  
The F280025 controlCARD is an HSEC180 controlCARD based evaluation and development tool for the C2000  
™ F28002x series of microcontroller products. controlCARDs are ideal to use for initial evaluation and system  
prototyping. controlCARDs are complete board-level modules that utilize one of two standard form factors (100-  
pin DIMM or 180-pin HSEC ) to provide a low-profile single-board controller solution. For first evaluation  
controlCARDs are typically purchased bundled with a baseboard or bundled in an application kit.  
TI Resource Explorer  
To enhance your experience, be sure to check out the TI Resource Explorer to browse examples, libraries, and  
documentation for your applications.  
Software Tools  
C2000Ware for C2000 MCUs  
C2000Ware for C2000MCUs is a cohesive set of software and documentation created to minimize  
development time. It includes device-specific drivers, libraries, and peripheral examples.  
Digital Power SDK  
Digital Power SDK is a cohesive set of software infrastructure, tools, and documentation designed to minimize  
C2000 MCU-based digital power system development time targeted for various AC-DC, DC-DC and DC-AC  
power supply applications. The software includes firmware that runs on C2000 digital power evaluation modules  
(EVMs) and TI designs (TIDs), which are targeted for solar, telecom, server, electric vehicle chargers and  
industrial power delivery applications. Digital Power SDK provides all the needed resources at every stage of  
development and evaluation in a digital power applications.  
Motor Control SDK  
Motor Control SDK is a cohesive set of software infrastructure, tools, and documentation designed to minimize  
C2000 MCU-based motor control system development time targeted for various three-phase motor control  
applications. The software includes firmware that runs on C2000 motor control evaluation modules (EVMs) and  
TI designs (TIDs), which are targeted for industrial drive and other motor control, Motor Control SDK provides all  
the needed resources at every stage of development and evaluation for high-performance motor control  
applications.  
Code Composer Studio(CCS) Integrated Development Environment (IDE) for C2000 microcontrollers  
Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and  
Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug  
embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment,  
debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking the user  
through each step of the application development flow. Familiar tools and interfaces allow users to get started  
faster than ever before. Code Composer Studio combines the advantages of the Eclipse software framework  
with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development  
environment for embedded developers.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 187  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
SysConfig System configuration tool  
SysConfig is a comprehensive collection of graphical utilities for configuring pins, peripherals, radios,  
subsystems, and other components. SysConfig helps you manage, expose and resolve conflicts visually so that  
you have more time to create differentiated applications. The tool's output includes C header and code files that  
can be used with software development kit (SDK) examples or used to configure custom software. The  
SysConfig tool automatically selects the pinmux settings that satisfy the entered requirements. The SysConfig  
tool is delivered integrated in CCS, as a standalone installer, or can be used via the dev.ti.com cloud tools portal.  
For more information about the SysConfig system configuration tool, visit the System configuation tool page.  
Models  
Various models are available for download from the product Design & development pages. These models  
include I/O Buffer Information Specification (IBIS) Models and Boundary-Scan Description Language (BSDL)  
Models. To view all available models, visit the Design tools & simulation section of the Design & development  
page for each device.  
Training  
To help assist design engineers in taking full advantage of the C2000 microcontroller features and performance,  
TI has developed a variety of training resources. Utilizing the online training materials and downloadable hands-  
on workshops provides an easy means for gaining a complete working knowledge of the C2000 microcontroller  
family. These training resources have been designed to decrease the learning curve, while reducing  
development time, and accelerating product time to market. For more information on the various training  
resources, visit the C2000™ real-time control MCUs Support & training site.  
The architecture and many of the peripherals of the F28002x are similar to those of the F28004x. The following  
Workshop material and the Migration Between TMS320F28004x and TMS320F28002x Application Report will  
cover the technical details of the TMS320F28004x architecture and highlight the device differences, which will be  
helpful to users of the F28002x device.  
Specific TMS320F28004x hands-on training resources can be found at C2000™ MCU Device Workshops.  
Technical Introduction to the New C2000 TMS320F28004x Device Family  
Many of the peripherals and architecture of the F28002x are similar to the F28004x. This presentation will cover  
the technical details of the TMS320F28004x architecture and highlight the new improvements to various key  
peripherals which will be helpful to users of the F28002x device.  
10.5 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
The current documentation that describes the processor, related peripherals, and other technical collateral  
follows.  
Errata  
TMS320F28002x Real-Time MCUs Silicon Errata describes known advisories on silicon and provides  
workarounds.  
Technical Reference Manual  
TMS320F28002x Real-Time Microcontrollers Technical Reference Manual details the integration, the  
environment, the functional description, and the programming models for each peripheral and subsystem in the  
F28002x real-time microcontrollers.  
Copyright © 2021 Texas Instruments Incorporated  
188 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
CPU User's Guides  
TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and the  
assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). This Reference  
Guide also describes emulation features available on these DSPs.  
TMS320C28x Extended Instruction Sets Technical Reference Manual describes the architecture, pipeline, and  
instruction set of the TMU, VCU-II, and FPU accelerators.  
Peripheral Guides  
C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the 28x  
DSPs.  
Tools Guides  
TMS320C28x Assembly Language Tools v20.8.0.STS User's Guide describes the assembly language tools  
(assembler and other tools used to develop assembly language code), assembler directives, macros, common  
object file format, and symbolic debugging directives for the TMS320C28x device.  
TMS320C28x Optimizing C/C++ Compiler v20.8.0.STS User's Guide describes the TMS320C28x C/C++  
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly  
language source code for the TMS320C28x device.  
Application Reports  
The SMT & packaging application notes website lists documentation on TIs surface mount technology (SMT)  
and application notes on a variety of packaging-related topics.  
Semiconductor Packing Methodology describes the packing methodologies employed to prepare semiconductor  
devices for shipment to end users.  
Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful lifetime  
of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general  
engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement.  
An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS  
including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/  
output structures, and future trends.  
Serial Flash Programming of C2000™ Microcontrollers discusses using a flash kernel and ROM loaders for  
serial programming a device.  
Fast Integer Division A Differentiated Offering From C2000™ Product Family provides an overview of the  
different division and modulo (remainder) functions and its associated properties.  
C2000Key Technology Guide provides a deeper look into the components that differentiate the C2000  
Microcontroller Unit (MCU) as it pertains to Real-Time Control Systems.  
Migration Between TMS320F28004x and TMS320F28002x describes the hardware and software differences to  
be aware of when moving between F28004x and F28002x C2000™ MCUs.  
TMS320F2802x/TMS320F2803x to TMS320F28002x Migration Overview describes the differences between the  
Texas Instruments TMS320F2802x/TMS320F2803x and the TMS320F28002x microcontrollers for the purpose  
of assisting with application migration.  
10.6 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 189  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
www.ti.com.cn  
10.7 Trademarks  
C2000, TMS320C2000, InstaSPIN-FOC, Code Composer Studio, TMS320, LaunchPad, BoosterPack  
, TI E2Eare trademarks of Texas Instruments.  
Bosch® is a registered trademark of Robert Bosch GmbH Corporation.  
所有商标均为其各自所有者的财产。  
10.8 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.9 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
190 Submit Document Feedback  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
 
TMS320F280025, TMS320F280025-Q1  
TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1  
TMS320F280023C, TMS320F280021, TMS320F280021-Q1  
www.ti.com.cn  
ZHCSL01B MARCH 2020 REVISED DECEMBER 2020  
11 Mechanical, Packaging, and Orderable Information  
11.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
To learn more about TI packaging, visit the Packaging information website.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 191  
Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1  
TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jan-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
F280021PTQR  
F280021PTSR  
ACTIVE  
LQFP  
LQFP  
PT  
48  
48  
1000 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
F280021  
PTQ  
ACTIVE  
PT  
NIPDAU  
F280021  
PTS  
F280023CPMSR  
F280023CPNSR  
F280023CPTSR  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
PM  
PN  
PT  
64  
80  
48  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
F280023CPMS  
F280023CPNS  
F280023C  
PTS  
F280023PMQR  
F280023PMSR  
F280023PNQR  
F280023PNSR  
F280023PTQR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PM  
PM  
PN  
PN  
PT  
64  
64  
80  
80  
48  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
F280023PMQ  
F280023PMS  
F280023PNQ  
F280023PNS  
F280023  
PTQ  
F280023PTSR  
ACTIVE  
LQFP  
PT  
48  
1000 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
F280023  
PTS  
F280025CPMQR  
F280025CPMS  
F280025CPMSR  
F280025CPNQR  
F280025CPNSR  
F280025CPTQR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PM  
PM  
PM  
PN  
PN  
PT  
64  
64  
64  
80  
80  
48  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
F280025CPMQ  
F280025CPMS  
F280025CPMS  
F280025CPNQ  
F280025CPNS  
160  
RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
F280025C  
PTQ  
F280025CPTSR  
ACTIVE  
LQFP  
PT  
48  
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
F280025C  
PTS  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jan-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
F280025PMQR  
F280025PMS  
F280025PMSR  
F280025PNQR  
F280025PNS  
F280025PNSR  
F280025PTQR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PM  
PM  
PM  
PN  
PN  
PN  
PT  
64  
64  
64  
80  
80  
80  
48  
1000 RoHS & Green  
160 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
F280025PMQ  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
F280025PMS  
F280025PMS  
F280025PNQ  
F280025PNS  
F280025PNS  
1000 RoHS & Green  
1000 RoHS & Green  
119  
RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
F280025  
PTQ  
F280025PTS  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
PT  
PT  
48  
48  
250  
RoHS & Green  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
F280025  
PTS  
F280025PTSR  
1000 RoHS & Green  
F280025  
PTS  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jan-2021  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
F280021PTQR  
F280021PTSR  
F280023CPMSR  
F280023CPNSR  
F280023CPTSR  
F280023PMQR  
F280023PMSR  
F280023PNQR  
F280023PNSR  
F280023PTQR  
F280023PTSR  
F280025CPMQR  
F280025CPMSR  
F280025CPNQR  
F280025CPNSR  
F280025CPTQR  
F280025CPTSR  
F280025PMQR  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PT  
PT  
PM  
PN  
PT  
PM  
PM  
PN  
PN  
PT  
PT  
PM  
PM  
PN  
PN  
PT  
PT  
PM  
48  
48  
64  
80  
48  
64  
64  
80  
80  
48  
48  
64  
64  
80  
80  
48  
48  
64  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
24.4  
24.4  
16.4  
24.4  
24.4  
24.4  
24.4  
16.4  
16.4  
24.4  
24.4  
24.4  
24.4  
16.4  
16.4  
24.4  
9.6  
9.6  
9.6  
9.6  
1.9  
1.9  
2.1  
2.0  
1.9  
2.1  
2.1  
2.0  
2.0  
1.9  
1.9  
2.1  
2.1  
2.0  
2.0  
1.9  
1.9  
2.1  
12.0  
12.0  
16.0  
24.0  
12.0  
16.0  
16.0  
24.0  
24.0  
12.0  
12.0  
16.0  
16.0  
24.0  
24.0  
12.0  
12.0  
16.0  
16.0  
16.0  
24.0  
24.0  
16.0  
24.0  
24.0  
24.0  
24.0  
16.0  
16.0  
24.0  
24.0  
24.0  
24.0  
16.0  
16.0  
24.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
13.0  
16.0  
9.6  
13.0  
16.0  
9.6  
13.0  
13.0  
16.0  
16.0  
9.6  
13.0  
13.0  
16.0  
16.0  
9.6  
9.6  
9.6  
13.0  
13.0  
16.0  
16.0  
9.6  
13.0  
13.0  
16.0  
16.0  
9.6  
9.6  
9.6  
13.0  
13.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jan-2022  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
F280025PMSR  
F280025PNQR  
F280025PNSR  
F280025PTQR  
F280025PTSR  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PM  
PN  
PN  
PT  
PT  
64  
80  
80  
48  
48  
1000  
1000  
1000  
1000  
1000  
330.0  
330.0  
330.0  
330.0  
330.0  
24.4  
24.4  
24.4  
16.4  
16.4  
13.0  
16.0  
16.0  
9.6  
13.0  
16.0  
16.0  
9.6  
2.1  
2.0  
2.0  
1.9  
1.9  
16.0  
24.0  
24.0  
12.0  
12.0  
24.0  
24.0  
24.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Q2  
9.6  
9.6  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
F280021PTQR  
F280021PTSR  
F280023CPMSR  
F280023CPNSR  
F280023CPTSR  
F280023PMQR  
F280023PMSR  
F280023PNQR  
F280023PNSR  
F280023PTQR  
F280023PTSR  
F280025CPMQR  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PT  
PT  
PM  
PN  
PT  
PM  
PM  
PN  
PN  
PT  
PT  
PM  
48  
48  
64  
80  
48  
64  
64  
80  
80  
48  
48  
64  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
336.6  
336.6  
336.6  
367.0  
336.6  
336.6  
336.6  
367.0  
367.0  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
367.0  
336.6  
336.6  
336.6  
367.0  
367.0  
336.6  
336.6  
336.6  
31.8  
31.8  
41.3  
55.0  
31.8  
41.3  
41.3  
55.0  
55.0  
31.8  
31.8  
41.3  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jan-2022  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
F280025CPMSR  
F280025CPNQR  
F280025CPNSR  
F280025CPTQR  
F280025CPTSR  
F280025PMQR  
F280025PMSR  
F280025PNQR  
F280025PNSR  
F280025PTQR  
F280025PTSR  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PM  
PN  
PN  
PT  
PT  
PM  
PM  
PN  
PN  
PT  
PT  
64  
80  
80  
48  
48  
64  
64  
80  
80  
48  
48  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
336.6  
367.0  
367.0  
336.6  
336.6  
336.6  
336.6  
367.0  
367.0  
336.6  
336.6  
336.6  
367.0  
367.0  
336.6  
336.6  
336.6  
336.6  
367.0  
367.0  
336.6  
336.6  
41.3  
55.0  
55.0  
31.8  
31.8  
41.3  
41.3  
55.0  
55.0  
31.8  
31.8  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
F280025CPMS  
F280025PMS  
F280025PNS  
F280025PTS  
PM  
PM  
PN  
PT  
LQFP  
LQFP  
LQFP  
LQFP  
64  
64  
80  
48  
160  
160  
119  
250  
8 X 20  
8 X 20  
7 X 17  
10 x 25  
150  
150  
150  
150  
315 135.9 7620 15.2  
315 135.9 7620 15.2  
315 135.9 7620 17.9  
315 135.9 7620 12.2  
13.1  
13.1  
13  
13  
14.3 13.95  
11.1 11.25  
Pack Materials-Page 4  
PACKAGE OUTLINE  
PM0064A  
LQFP - 1.6 mm max height  
SCALE 1.400  
PLASTIC QUAD FLATPACK  
10.2  
9.8  
B
NOTE 3  
64  
49  
PIN 1 ID  
1
48  
10.2  
9.8  
12.2  
TYP  
11.8  
NOTE 3  
33  
16  
32  
17  
A
0.27  
0.17  
64X  
60X 0.5  
4X 7.5  
0.08  
C A B  
C
(0.13) TYP  
SEATING PLANE  
0.08  
SEE DETAIL A  
0.25  
GAGE PLANE  
(1.4)  
1.6 MAX  
0.05 MIN  
0.75  
0.45  
0 -7  
DETAIL  
SCALE: 14  
A
DETAIL A  
TYPICAL  
4215162/A 03/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PM0064A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
49  
64  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
(R0.05) TYP  
33  
16  
17  
32  
(11.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
0.05 MAX  
ALL AROUND  
EXPOSED METAL  
METAL  
0.05 MIN  
ALL AROUND  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215162/A 03/2017  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. For more information, see Texas Instruments literature number SLMA004 (www.ti.com/lit/slma004).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PM0064A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
64  
49  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
(R0.05) TYP  
16  
33  
17  
32  
(11.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:8X  
4215162/A 03/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
PT0048A  
LQFP - 1.6 mm max height  
S
C
A
L
E
2
.
0
0
0
LOW PROFILE QUAD FLATPACK  
9.2  
8.8  
7.2  
6.8  
B
A
9.2  
8.8  
7.2  
6.8  
0.27  
48X  
0.17  
0.08  
C A B  
44X 0.5  
4X 5.5  
SEE DETAIL A  
1.6 MAX  
C
SEATING PLANE  
0.1 C  
1.45  
1.35  
0.25  
GAGE PLANE  
0.75  
0.45  
0.5 MIN  
0 -7  
A15.000  
DETAIL A  
4215159/A 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration MS-026.  
4. This may also be a thermally enhanced plastic package with leads conected to the die pads.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PT0048A  
LQFP - 1.6 mm max height  
LOW PROFILE QUAD FLATPACK  
PKG  
SYMM  
48  
37  
SEE SOLDER MASK  
DETAILS  
48X (1.6)  
1
36  
48X (0.3)  
44X (0.5)  
PKG SYMM  
(8.2)  
(R0.05) TYP  
12  
25  
13  
24  
(8.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE 10.000  
0.05 MAX  
ALLAROUND  
0.05 MIN  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL EDGE  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215159/A 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PT0048A  
LQFP - 1.6 mm max height  
LOW PROFILE QUAD FLATPACK  
PKG  
SYMM  
48  
37  
48X (1.6)  
1
36  
48X (0.3)  
44X (0.5)  
PKG SYMM  
(8.2)  
(R0.05) TYP  
12  
25  
13  
24  
(8.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 10X  
4215159/A 12/2021  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
PN0080A  
LQFP - 1.6 mm max height  
SCALE 1.250  
PLASTIC QUAD FLATPACK  
12.2  
11.8  
B
PIN 1 ID  
A
80  
61  
1
60  
12.2  
11.8  
14.2  
TYP  
13.8  
20  
41  
40  
21  
76X 0.5  
0.27  
80X  
0.17  
4X 9.5  
0.08  
C A B  
1.6 MAX  
C
(0.13) TYP  
SEATING PLANE  
0.08  
SEE DETAIL A  
0.25  
GAGE PLANE  
(1.4)  
0.05 MIN  
0.75  
0.45  
0 -7  
DETAIL  
SCALE: 14  
A
DETAIL A  
TYPICAL  
4215166/A 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PN0080A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
80  
61  
80X (1.5)  
1
60  
80X (0.3)  
SYMM  
(13.4)  
76X (0.5)  
(R0.05) TYP  
20  
41  
21  
40  
(13.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:6X  
0.05 MAX  
ALL AROUND  
EXPOSED METAL  
METAL  
0.05 MIN  
ALL AROUND  
EXPOSED METAL  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215166/A 08/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
6. For more information, see Texas Instruments literature number SLMA004 (www.ti.com/lit/slma004).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PN0080A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
80  
61  
80X (1.5)  
1
60  
80X (0.3)  
SYMM  
(13.4)  
76X (0.5)  
(R0.05) TYP  
20  
41  
21  
40  
(13.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:6X  
4215166/A 08/2022  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TMS320F280025-Q1

TMS320F28002x Real-Time Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280025C

具有 100MHz 频率、FPU、TMU、128kB 闪存、CLB 的 C2000™ 32 位 MCU

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280025C-Q1

TMS320F28002x Real-Time Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280025CPM

TMS320F28002x Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280025CPN

TMS320F28002x Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280025PM

TMS320F28002x Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280025PN

TMS320F28002x Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280025PT

TMS320F28002x Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280025_V01

TMS320F28002x Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280025_V02

TMS320F28002x Real-Time Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280033

TMS320F28003x Real-Time Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280034

TMS320F28003x Real-Time Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI