TMS320F280037-Q1 [TI]

TMS320F28003x Real-Time Microcontrollers;
TMS320F280037-Q1
型号: TMS320F280037-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TMS320F28003x Real-Time Microcontrollers

微控制器
文件: 总255页 (文件大小:5821K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
TMS320F28003x Real-Time Microcontrollers  
– One Controller Area Network with Flexible  
Data-Rate (CAN FD/MCAN) bus port  
– Two Serial Peripheral Interface (SPI) ports  
– Two UART-compatible Serial Communication  
Interface (SCI)  
– Two UART-compatible Local Interconnect  
Network (LIN) interfaces  
– Fast Serial Interface (FSI) with one transmitter  
and one receiver (up to 200Mbps)  
Analog system  
1 Features  
TMS320C28x 32-bit DSP core at 120 MHz  
– IEEE 754 Floating-Point Unit (FPU)  
Support for Fast Integer Division (FINTDIV)  
– Trigonometric Math Unit (TMU)  
Support for Nonlinear Proportional Integral  
Derivative (NLPID) control  
– CRC Engine and Instructions (VCRC)  
Ten hardware breakpoints (with ERAD)  
Programmable Control Law Accelerator (CLA)  
– 120 MHz  
– IEEE 754 single-precision floating-point  
instructions  
– Three 4-MSPS, 12-bit Analog-to-Digital  
Converters (ADCs)  
Up to 23 external channels (includes the two  
gpdac outputs)  
Four integrated Post-Processing Blocks  
(PPB) per ADC  
– Executes code independently of main CPU  
On-chip memory  
– Four windowed comparators (CMPSS) with  
12-bit reference Digital-to-Analog Converters  
(DACs)  
– 384KB (192KW) of flash (ECC-protected)  
across three independent banks  
– 69KB (34.5KW) of RAM (ECC-protected)  
– Dual-zone security  
Digital glitch filters  
– Two 12-bit buffered DAC outputs  
Enhanced control peripherals  
– 16 ePWM channels with eight channels  
that have high-resolution capability (150-ps  
resolution)  
– Secure Boot and JTAG Lock  
Clock and system control  
– Two internal 10-MHz oscillators  
– Crystal oscillator or external clock input  
– Windowed watchdog timer module  
– Missing clock detection circuitry  
– Dual-clock Comparator (DCC)  
3.3-V I/O design  
– Internal VREG generation allows for single-  
supply design  
– Brownout reset (BOR) circuit  
System peripherals  
Integrated dead-band support  
Integrated hardware trip zones (TZs)  
– Three Enhanced Capture (eCAP) modules  
High-resolution Capture (HRCAP) available  
on one of the three eCAP modules  
– Two Enhanced Quadrature Encoder Pulse  
(eQEP) modules with support for CW/CCW  
operation modes  
– Eight Sigma-Delta Filter Module (SDFM) input  
channels (two parallel filters per channel)  
– 6-channel Direct Memory Access (DMA)  
controller  
– 55 individually programmable multiplexed  
General-Purpose Input/Output (GPIO) pins  
– 23 digital inputs on analog pins  
– 2 digital inputs/outputs on analog pins (AGPIO)  
– Enhanced Peripheral Interrupt Expansion  
(ePIE)  
– Multiple low-power mode (LPM) support  
– Embedded Real-time Analysis and Diagnostic  
(ERAD)  
Standard SDFM data filtering  
Comparator filter for fast action for  
overvalue or undervalue condition  
– Embedded Pattern Generator (EPG)  
Configurable Logic Block (CLB)  
– 4 tiles  
– Augments existing peripheral capability  
– Supports position manager solutions  
Host Interface Controller (HIC)  
– Unique Identification (UID) number  
Communications peripherals  
– One Power-Management Bus (PMBus)  
– Access to internal memory from an external  
host  
interface  
Background CRC (BGCRC)  
– One cycle CRC computation on 32 bits of data  
Advanced Encryption Standard (AES) accelerator  
– Two Inter-integrated Circuit (I2C) interfaces  
– One Controller Area Network (CAN/DCAN) bus  
port  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. ADVANCE INFORMATION for preproduction products; subject to change  
without notice.  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Live Firmware Update (LFU)  
– Fast context switching from old to new firmware  
– Flash bank erase time improvements  
Diagnostic features  
– Memory Power On Self Test (MPOST)  
– Hardware Built-in Self Test (HWBIST)  
Package options:  
– 100-pin Low-profile Quad Flatpack (LQFP)  
[PZ suffix]  
– 80-pin Low-profile Quad Flatpack (LQFP)  
[PN suffix]  
Industrial power  
Industrial AC-DC  
UPS  
Three phase UPS  
Single phase online UPS  
Telecom & server power  
Merchant DC/DC  
Merchant network & server PSU  
Merchant telecom rectifiers  
Hybrids, electric & powertrain systems  
DC/DC converter  
– 64-pin (LQFP) [PM suffix]  
– 48-pin (LQFP) [PT suffix]  
Temperature options:  
– Free-air (TA): –40°C to 125°C  
– Junction (TJ): –40°C to 150°C  
Inverter & motor control  
On-board (OBC) & wireless charger  
Virtual engine sound system (VESS)  
Engine fan  
eTurbo/charger  
Pump  
2 Applications  
Electric power steering (EPS)  
Infotainment and cluster  
Head-up display  
Automotive head unit  
Automotive external amplifier  
Body electronics & lighting  
Automotive HVAC compressor module  
DC/AC inverter  
Appliances  
Air conditioner outdoor unit  
Building automation  
Door operator drive control  
Industrial machine & machine tools  
Automated sorting equipment  
Textile machine  
Headlight  
ADAS  
AC inverter & VF drives  
AC drive control module  
AC drive position feedback  
AC drive power stage module  
Linear motor transport systems  
Linear motor power stage  
Single & multi axis servo drives  
Servo drive position feedback  
Servo drive power stage module  
Speed controlled BLDC drives  
AC-input BLDC motor drive  
DC-input BLDC motor drive  
Factory automation  
Mechanically scanning LIDAR  
EV charging infrastructure  
AC charging (pile) station  
DC charging (pile) station  
EV charging station power module  
Wireless EV charging station  
Renewable energy storage  
Energy storage power conversion system  
(PCS)  
Solar energy  
Central inverter  
Micro inverter  
Robot servo drive  
Solar power optimizer  
Solar arc protection  
Rapid shutdown  
String inverter  
Mobile robot motor control  
Position sensor  
3 Description  
The TMS320F28003x (F28003x) is a member of the C2000real-time microcontroller family of scalable, ultra-  
low latency devices designed for efficiency in power electronics, including but not limited to: high power density,  
high switching frequencies, and supporting the use of GaN and SiC technologies.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
These include such applications as:  
Industrial motor drives  
Motor control  
Solar inverters  
Digital power  
Electrical vehicles and transportation  
Sensing and signal processing  
The real-time control subsystem is based on TI’s 32-bit C28x DSP core, which provides 120 MHz of signal-  
processing performance for floating- or fixed-point code running from either on-chip flash or SRAM. The  
C28x CPU is further boosted by the Floating-Point Unit (FPU), Trigonometric Math Unit (TMU), and VCRC  
(Cyclical Redundancy Check) extended instruction sets, speeding up common algorithms key to real-time control  
systems.  
The CLA allows significant offloading of common tasks from the main C28x CPU. The CLA is an independent  
32-bit floating-point math accelerator that executes in parallel with the CPU. Additionally, the CLA has its own  
dedicated memory resources and it can directly access the key peripherals that are required in a typical control  
system. Support of a subset of ANSI C is standard, as are key features like hardware breakpoints and hardware  
task-switching.  
The F28003x supports up to 384KB (192KW) of flash memory divided into three 128KB (64KW) banks, which  
enable programming and execution in parallel. Up to 69KB (34.5KW) of on-chip SRAM is also available to  
supplement the flash memory.  
The Live Firmware Update hardware enhancements on F28003x allow fast context switching from the old  
firmware to the new firmware to minimize application downtime when updating the device firmware.  
High-performance analog blocks are integrated on the F28003x real-time microcontroller (MCU) and are closely  
coupled with the processing and PWM units to provide optimal real-time signal chain performance. Sixteen PWM  
channels, all supporting frequency-independent resolution modes, enable control of various power stages from a  
3-phase inverter to power factor correction and advanced multi-level power topologies.  
The inclusion of the Configurable Logic Block (CLB) allows the user to add custom logic and potentially integrate  
FPGA-like functions into the C2000 real-time MCU.  
Interfacing is supported through various industry-standard communication ports (such as SPI, SCI, I2C, PMBus,  
LIN, CAN and CAN FD) and offers multiple pin-muxing options for optimal signal placement. The Fast Serial  
Interface (FSI) enables up to 200 Mbps of robust communications across an isolation boundary.  
New to the C2000 platform is the Host Interface Controller (HIC), a high-throughput interface that allows an  
external host to access the resources of the TMS320F28003x directly.  
Want to learn more about features that make C2000 Real-Time MCUs the right choice for your real-time control  
system? Check out The Essential Guide for Developing With C2000™ Real-Time Microcontrollers and visit the  
C2000™ real-time control MCUs page.  
The Getting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guide covers all  
aspects of development with C2000 devices from hardware to support resources. In addition to key reference  
documents, each section provides relevant links and resources to further expand on the information covered.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Ready to get started? Check out the F28003x evaluation board (coming soon) and download C2000Ware.  
Device Information  
CONTROL LAW  
ACCELERATOR (CLA) LOGIC BLOCK (CLB)  
CONFIGURABLE  
PART NUMBER(1)  
FLASH SIZE  
TMS320F280039C-Q1,  
TMS320F280039C  
Yes  
Yes  
4 Tiles  
TMS320F280039-Q1,  
TMS320F280039  
384KB  
TMS320F280038C-Q1  
TMS320F280038-Q1  
Yes  
Yes  
4 Tiles  
TMS320F280037C-Q1,  
TMS320F280037C  
Yes  
Yes  
4 Tiles  
TMS320F280037-Q1,  
TMS320F280037  
256KB  
TMS320F280036C-Q1  
TMS320F280036-Q1  
Yes  
Yes  
Yes  
4 Tiles  
TMS320F280034-Q1,  
TMS320F280034  
128KB  
128KB  
TMS320F280033  
No  
(1) For more information on these devices, see the Device Comparison table.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
3.1 Functional Block Diagram  
The Functional Block Diagram shows the CPU system and associated peripherals.  
Buses Legend  
CPU  
CLA  
DMA  
HIC  
BGCRC  
C28x CPU  
(120MHz)  
FPU32  
TMU  
CLA  
(120MHz)  
VCRC  
FINTDIV  
SYSTEM CONTROL  
CLA to CPU MSG RAM  
CPU to CLA MSG RAM  
CPU Timers  
XTAL  
Boot ROM  
Secure ROM  
INTOSC1, INTOSC2  
PLL  
ePIE  
Windowed WD  
NMI WD  
Flash Bank0  
16 Sectors, 64Kw(128KB)  
CLA Data ROM  
CLA Program ROM  
Flash Bank1  
16 Sectors, 64Kw(128KB)  
SECURITY  
DCSM  
JTAG Lock  
Secure Boot  
CLA to DMA MSG RAM  
DMA to CLA MSG RAM  
Flash Bank2  
16 Sectors, 64Kw(128KB)  
M0-M1 RAM  
2Kw(4KB)  
DIAGNOSTICS  
DCC  
MPOST  
HWBIST  
ERAD  
JTAG/cJTAG  
BGCRC  
HIC  
LS0-LS7 RAM  
16Kw(32KB)  
GS0-GS3 RAM  
16Kw(32KB)  
DMA  
6 Channels  
OTHERS  
EPG  
PF10  
PF11  
PF12  
LFU  
PF1  
PF3  
PF4  
PF2  
PF7 PF7  
PF8  
PF9  
2x LIN(A)  
1x AES  
1x PMBUS  
2x SPI  
1x FSI RX  
1x FSI TX  
2x SCI  
2x I2C  
4x CLB  
Result  
3x 12-Bit ADC  
Data  
55x GPIO  
16x ePWM  
(8 Hi-Res Capable)  
1x  
DCAN/ MCAN/  
CAN CAN FD  
1x  
4x CMPSS  
2x Bu ered DAC  
Input XBAR  
Output XBAR  
ePWM XBAR  
CLB XBAR  
3x eCAP  
(1 HRCAP Capable)  
2x eQEP  
(CW/CCW Support)  
CLB Input XBAR  
CLB Output XBAR  
8x SD Filters  
A. The LIN module can also work as an SCI.  
Figure 3-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................2  
3 Description.......................................................................2  
3.1 Functional Block Diagram...........................................5  
Revision History................................................................. 6  
4 Device Comparison.........................................................7  
4.1 Related Products........................................................ 9  
5 Pin Configuration and Functions.................................10  
5.1 Pin Diagrams............................................................ 10  
5.2 Pin Attributes.............................................................15  
5.3 Signal Descriptions................................................... 37  
5.4 Pin Multiplexing.........................................................61  
5.5 Pins With Internal Pullup and Pulldown.................... 69  
5.6 Connections for Unused Pins................................... 70  
6 Specifications................................................................ 72  
6.1 Absolute Maximum Ratings...................................... 72  
6.2 ESD Ratings – Commercial...................................... 72  
6.3 ESD Ratings – Automotive....................................... 73  
6.4 Recommended Operating Conditions.......................73  
6.5 Power Consumption Summary................................. 74  
6.6 Electrical Characteristics...........................................80  
6.7 Thermal Resistance Characteristics for PZ  
Package...................................................................... 81  
6.8 Thermal Resistance Characteristics for PN  
Package...................................................................... 82  
6.9 Thermal Resistance Characteristics for PM  
Package...................................................................... 83  
6.10 Thermal Resistance Characteristics for PT  
Package...................................................................... 84  
6.11 Thermal Design Considerations..............................84  
6.12 System....................................................................85  
6.13 Analog Peripherals................................................126  
6.14 Control Peripherals............................................... 156  
6.15 Communications Peripherals................................171  
7 Detailed Description....................................................206  
7.1 Overview.................................................................206  
7.2 Functional Block Diagram.......................................207  
7.3 Memory...................................................................208  
7.4 Identification............................................................216  
7.5 Bus Architecture – Peripheral Connectivity.............217  
7.6 C28x Processor...................................................... 218  
7.7 Control Law Accelerator (CLA)............................... 220  
7.8 Embedded Real-Time Analysis and Diagnostic  
(ERAD)......................................................................222  
7.9 Background CRC-32 (BGCRC).............................. 222  
7.10 Direct Memory Access (DMA)...............................223  
7.11 Device Boot Modes...............................................224  
7.12 Dual Code Security Module.................................. 232  
7.13 Watchdog..............................................................233  
7.14 C28x Timers..........................................................234  
7.15 Dual-Clock Comparator (DCC)............................. 234  
7.16 Configurable Logic Block (CLB)............................236  
8 Applications, Implementation, and Layout............... 238  
8.1 TI Reference Design...............................................238  
9 Device and Documentation Support..........................239  
9.1 Getting Started and Next Steps.............................. 239  
9.2 Device Nomenclature..............................................239  
9.3 Markings................................................................. 240  
9.4 Tools and Software................................................. 241  
9.5 Documentation Support.......................................... 243  
9.6 Support Resources................................................. 244  
9.7 Trademarks.............................................................245  
9.8 Electrostatic Discharge Caution..............................245  
9.9 Glossary..................................................................245  
10 Mechanical, Packaging, and Orderable  
Information.................................................................. 246  
Revision History  
DATE  
REVISION  
NOTES  
October 2021  
*
Initial Release  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
4 Device Comparison  
Table 4-1 lists the features of the TMS320F28003x devices.  
Table 4-1. Device Comparison  
F280039C  
F280037C  
F280039C-Q1 F280038C-Q1 F280037C-Q1 F280036C-Q1  
F280034  
F280034-Q1  
FEATURE(1)  
F280033  
F280039  
F280038-Q1  
F280037  
F280036-Q1  
F280039-Q1  
F280037-Q1  
Processor and Accelerators  
C28x  
Frequency (MHz)  
120  
FPU  
Yes (instructions for Fast Integer Division)  
VCRC  
Yes  
TMU  
Yes – Type 1 (instructions supporting NLPID)  
CLA – Type 2  
Available  
Frequency (MHz)  
Yes  
120  
Yes  
5
No  
6-Channel DMA – Type 0  
External interrupts  
Memory  
384KB (192KW)  
3 x 128KB  
Flash  
256KB (128KW)  
2 x 128KB  
128KB (64KW)  
2 x 64KB  
Flash Banks  
RAM  
Dedicated  
Local Shared  
Message  
4KB (2KW)  
32KB (16KW)  
1KB (0.5KW)  
32KB (16KW)  
69KB (34.5KW)  
Global Shared  
Total  
Message RAM Types  
512B (256W) CPU-CLA  
512B (256W) CLA-DMA  
ECC  
FLASH, Mx, LSx, GSx, Message RAM  
FLASH, Mx,  
LSx, GSx  
Parity  
ROM, CAN RAM  
Yes  
Code security for on-chip flash and RAM  
System  
4 Tiles on C Variants  
Configurable Logic Block (CLB)  
Embedded Pattern Generator (EPG)  
32-bit CPU timers  
Yes  
3
Advance Encryption Standard (AES)  
Background CRC (BGCRC)  
Live Firmware Update (LFU) Support  
Secure Boot  
Yes  
Yes  
Yes, with enhancements and flash bank erase time improvements  
Yes  
Yes  
Yes  
1
JTAG Lock  
HWBIST  
Nonmaskable Interrupt Watchdog (NMIWD) timers  
Watchdog timers  
1
Crystal oscillator/External clock input  
Internal oscillator  
1
2
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
F280033  
SPRSP61 – OCTOBER 2021  
Table 4-1. Device Comparison (continued)  
F280039C  
F280037C  
F280039C-Q1 F280038C-Q1 F280037C-Q1 F280036C-Q1  
F280039  
F280034  
F280034-Q1  
FEATURE(1)  
F280038-Q1  
F280037  
F280036-Q1  
F280039-Q1  
F280037-Q1  
Pins and Power Supply  
Internal 3.3-V to 1.2-V Voltage VREG LDO  
Regulator  
Yes  
GPIO pins  
100-pin PZ  
80-pin PN  
51  
39  
26  
51  
39  
26  
14  
51  
39  
26  
14  
64-pin PM  
25  
25  
48-pin PT  
Additional GPIO  
4 (2 from cJTAG and 2 from X1/X2)  
AIO (analog with digital inputs) 100-pin PZ  
23  
16  
16  
23  
16  
16  
14  
2
23  
16  
16  
14  
2
80-pin PN  
64-pin PM  
48-pin PT  
16  
16  
AGPIO (analog with digital  
inputs and outputs)  
100-pin PZ  
80-pin PN  
2
2
2
2
Analog Peripherals  
ADC 12-bit  
Number of ADCs  
MSPS  
3
4
Conversion Time (ns)(2)  
100-pin PZ  
250  
ADC channels (single-ended)  
(includes the two gpdac  
outputs)  
23  
23  
18  
16  
14  
23  
18  
16  
14  
80-pin PN  
18  
16  
64-pin PM  
16  
16  
48-pin PT  
Temperature sensor  
Buffered DAC  
CMPSS  
1
2
4
(each CMPSS has two comparators and two internal DACs)  
Control Peripherals (3)  
eCAP/HRCAP modules – Type 2  
ePWM/HRPWM channels – Type 4  
eQEP modules – Type 2  
3 (1 - eCAP3 with HRCAP capability)  
16 (8 - ePWM1 to ePWM4 with HRPWM capability)  
2
8
SDFM channels – Type 2  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 4-1. Device Comparison (continued)  
F280039C  
F280037C  
F280039C-Q1 F280038C-Q1 F280037C-Q1 F280036C-Q1  
F280034  
F280034-Q1  
FEATURE(1)  
F280033  
F280039  
F280038-Q1  
F280037  
F280036-Q1  
F280039-Q1  
F280037-Q1  
Communication Peripherals (3)  
CAN (DCAN) – Type 0  
1
1
CANFD (MCAN) – Type 1  
Fast Serial Interface (FSI) – Type 2  
I2C – Type 1  
1 (1 RX and 1 TX)  
2
2
1
1
2
2
LIN – Type 1 (UART-Compatible)  
Host Interface Controller (HIC) – Type 1  
PMBus – Type 0  
SCI – Type 0 (UART-Compatible)  
SPI – Type 2  
Package Options, Temperature, and Qualification  
–40°C to 150°C  
–40°C to 125°C  
F280037C  
Junction temperature (TJ)  
Free-Air temperature (TA)  
Package Options  
100-pin PZ  
F280039C  
F280039  
F280034  
F280034  
F280034  
F280034  
F280033  
F280037  
80-pin PN  
64-pin PM  
48-pin PT  
100-pin PZ  
64-pin PM  
48-pin PT  
F280039C  
F280039  
F280037C  
F280037  
F280033  
F280039C  
F280039  
F280037C  
F280037  
F280033  
F280037C  
F280037  
F280033  
Package Options with AEC-  
Q100 Qualification available  
F280039C-Q1  
F280039-Q1  
F280037C-Q1  
F280037-Q1  
F280038C-Q1  
F280038-Q1  
F280036C-Q1  
F280036-Q1  
F280037C-Q1  
F280037-Q1  
F280034-Q1  
(1) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor  
differences between devices that do not affect the basic functionality of the module.  
(2) Time between start of sample-and-hold window to start of sample-and-hold window of the next conversion.  
(3) For devices that are available in more than one package, the peripheral count listed in the smaller package is reduced because the  
smaller package has less device pins available. The number of peripherals internally present on the device is not reduced compared  
to the largest package offered within a part number. See Section 5 to identify which peripheral instances are accessible on pins in the  
smaller package.  
4.1 Related Products  
TMS320F2803x Real-Time Microcontrollers  
The F2803x series increases the pin-count and memory size options. The F2803x series also introduces the  
parallel control law accelerator (CLA) option.  
TMS320F2807x Real-Time Microcontrollers  
The F2807x series offers the most performance, largest pin counts, flash memory sizes, and peripheral options.  
The F2807x series includes the latest generation of accelerators, ePWM peripherals, and analog technology.  
TMS320F28004x Real-Time Microcontrollers  
The F28004x series is a reduced version of the F2807x series with the latest generational enhancements.  
TMS320F28002x Real-Time Microcontrollers  
The F28002x series is a reduced version of the F28004x series with the latest generational enhancements.  
TMS320F2838x Real-Time Microcontrollers  
The F2838x series offers more performance, larger pin counts, flash memory sizes, peripheral and wide variety  
of connectivity options. The F2838x series includes the latest generation of accelerators, ePWM peripherals, and  
analog technology.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
5 Pin Configuration and Functions  
5.1 Pin Diagrams  
Figure 5-1 shows the pin assignments on the 100-pin PZ low-profile quad flatpack; the Q and non-Q variant have  
the same pinout. Figure 5-2 shows the pin assignments on the 80-pin PN low-profile quad flatpack. Figure 5-3  
shows the pin assignments on the 64-pin PM low-profile quad flatpack (Q temperature). Figure 5-4 shows the pin  
assignments on the 64-pin PM low-profile quad flatpack. Figure 5-5 shows the pin assignments on the 48-Pin PT  
low-profile quad flatpack; the Q and non-Q variant have the same pinout.  
GPIO28  
XRSn  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
GPIO4  
2
GPIO8  
VDDIO  
3
VREGENZ  
VSS  
VDD  
4
VSS  
5
VDD  
GPIO47  
6
VDDIO  
GPIO48  
7
GPIO19,X1  
GPIO18,X2  
GPIO58  
GPIO57  
GPIO56  
GPIO32  
GPIO35/TDI  
TMS  
GPIO49  
8
GPIO50  
9
GPIO51  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
GPIO52  
GPIO53  
GPIO54  
A6  
B2,C6  
GPIO37/TDO  
TCK  
B3,VDAC  
A2,B6,C9  
A3,B9,C7  
A14,B14,C4  
A11,B10,C0  
B12,C2  
GPIO27  
GPIO26  
GPIO25  
GPIO24  
GPIO17  
GPIO16  
GPIO33  
GPIO11  
GPIO12  
A1,B7,DACB_OUT  
A0,B15,C15,DACA_OUT  
VREFHI  
VREFHI  
Not to scale  
A. Only the GPIO function is shown on GPIO pins. See Section 5.2 for the complete, muxed signal name.  
Figure 5-1. 100-Pin PZ Low-Profile Quad Flatpack (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
GPIO30  
GPIO31  
GPIO29  
GPIO28  
XRSn  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
GPIO3  
2
GPIO4  
3
GPIO8  
4
GPIO42  
GPIO39  
VSS  
5
GPIO46  
VDDIO  
VDD  
6
7
GPIO43  
VDD  
8
VSS  
9
VDDIO  
A6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GPIO19,X1  
GPIO18,X2  
GPIO32  
GPIO35/TDI  
TMS  
B2,C6  
A3,B3,C5,VDAC  
A2,B6,C9  
A15,B9,C7  
A14,B14,C4  
GPIO37/TDO  
TCK  
A11,B10,C0  
A5,B12,C2  
GPIO27  
GPIO26  
GPIO25  
GPIO24  
A1,B7,DACB_OUT  
A0,B15,C15,DACA_OUT  
VREFHI  
Not to scale  
A. Only the GPIO function is shown on GPIO pins. See Section 5.2 for the complete, muxed signal name.  
Figure 5-2. 80-Pin PN Low-Profile Quad Flatpack (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
GPIO29  
GPIO28  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
GPIO4  
2
GPIO8  
XRSn  
3
VREGENZ  
VSS  
VDD  
4
VSS  
5
VDD  
A6  
6
VDDIO  
B2,C6  
7
GPIO19,X1  
GPIO18,X2  
GPIO32  
GPIO35/TDI  
TMS  
A3,B3,C5,VDAC  
A2,B6,C9  
8
9
A15,B9,C7  
A14,B14,C4  
A11,B10,C0  
A5,B12,C2  
A1,B7,DACB_OUT  
A0,B15,C15,DACA_OUT  
VREFHI  
10  
11  
12  
13  
14  
15  
16  
GPIO37/TDO  
TCK  
GPIO24  
GPIO17  
GPIO16  
Not to scale  
A. Only the GPIO function is shown on GPIO pins. See Section 5.2 for the complete, muxed signal name.  
Figure 5-3. 64-Pin PM Low-Profile Quad Flatpack - Q Temperature (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
GPIO29  
GPIO28  
XRSn  
VDD  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
GPIO4  
2
GPIO8  
3
GPIO39  
VSS  
4
VSS  
5
VDD  
A6  
6
VDDIO  
B2,C6  
7
GPIO19,X1  
GPIO18,X2  
GPIO32  
GPIO35/TDI  
TMS  
A3,B3,C5,VDAC  
A2,B6,C9  
8
9
A15,B9,C7  
10  
11  
12  
13  
14  
15  
16  
A14,B14,C4  
A11,B10,C0  
GPIO37/TDO  
TCK  
A5,B12,C2  
A1,B7,DACB_OUT  
A0,B15,C15,DACA_OUT  
VREFHI  
GPIO24  
GPIO17  
GPIO16  
Not to scale  
A. Only the GPIO function is shown on GPIO pins. See Section 5.2 for the complete, muxed signal name.  
Figure 5-4. 64-Pin PM Low-Profile Quad Flatpack (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
GPIO29  
GPIO28  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDD  
2
VDDIO  
XRSn  
3
GPIO19,X1  
GPIO18,X2  
GPIO32  
A6,B2,C6  
4
A3,B3,C5,VDAC  
A2,B6,C9  
5
6
GPIO35/TDI  
TMS  
A15,B9,C7  
7
A11,B10,C0  
8
GPIO37/TDO  
TCK  
A5,B12,C2  
9
A1,B7,DACB_OUT  
A0,B15,C15,DACA_OUT  
VREFHI  
10  
11  
12  
GPIO24  
GPIO16  
GPIO33  
Not to scale  
A. Only the GPIO function is shown on GPIO pins. See Section 5.2 for the complete, muxed signal name.  
Figure 5-5. 48-Pin PT Low-Profile Quad Flatpack (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
5.2 Pin Attributes  
Table 5-1. Pin Attributes  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
ANALOG  
A0  
I
I
ADC-A Input 0  
B15  
ADC-B Input 15  
C15  
I
ADC-C Input 15  
DACA_OUT  
CMP3_HP2  
CMP3_LP2  
AIO231  
O
I
Buffered DAC-A Output.  
23  
19  
15  
15  
11  
CMPSS-3 High Comparator Positive Input 2  
CMPSS-3 Low Comparator Positive Input 2  
Analog Pin Used For Digital Input 231  
SDFM-1 Channel 1 Clock Input  
HIC Base address range select 1  
ADC-A Input 1  
I
0, 4, 8, 12  
I
SD1_C1  
HIC_BASESEL1  
A1  
2
I
15  
I
I
B7  
I
ADC-B Input 7  
DACB_OUT  
CMP1_HP4  
CMP1_LP4  
AIO232  
O
I
Buffered DAC-B Output.  
CMPSS-1 High Comparator Positive Input 4  
CMPSS-1 Low Comparator Positive Input 4  
Analog Pin Used For Digital Input 232  
SDFM-1 Channel 4 Data Input  
HIC Base address range select 0  
ADC-A Input 10  
22  
18  
14  
14  
10  
I
0, 4, 8, 12  
I
SD1_D4  
HIC_BASESEL0  
A10  
2
I
15  
I
I
B1  
I
ADC-B Input 1  
C10  
I
ADC-C Input 10  
CMP2_HP3  
CMP2_HN0  
CMP2_LP3  
CMP2_LN0  
AIO230  
I
CMPSS-2 High Comparator Positive Input 3  
CMPSS-2 High Comparator Negative Input 0  
CMPSS-2 Low Comparator Positive Input 3  
CMPSS-2 Low Comparator Negative Input 0  
Analog Pin Used For Digital Input 230  
SDFM-1 Channel 4 Clock Input  
HIC Base address range select 2  
ADC-A Input 11  
I
40  
29  
25  
25  
21  
I
I
0, 4, 8, 12  
I
SD1_C4  
HIC_BASESEL2  
A11  
2
I
15  
I
I
B10  
I
ADC-B Input 10  
C0  
I
ADC-C Input 0  
CMP1_HP1  
CMP1_HN1  
CMP1_LP1  
CMP1_LN1  
AIO237  
I
CMPSS-1 High Comparator Positive Input 1  
CMPSS-1 High Comparator Negative Input 1  
CMPSS-1 Low Comparator Positive Input 1  
CMPSS-1 Low Comparator Negative Input 1  
Analog Pin Used For Digital Input 237  
SDFM-1 Channel 2 Data Input  
HIC Address 6  
I
20  
16  
12  
12  
8
I
I
0, 4, 8, 12  
I
SD1_D2  
HIC_A6  
2
I
15  
I
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
A12  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ADC-A Input 12  
CMP2_HP1  
CMP2_HN1  
CMP2_LP1  
CMP2_LN1  
AIO238  
SD2_C3  
HIC_NCS  
A14  
CMPSS-2 High Comparator Positive Input 1  
CMPSS-2 High Comparator Negative Input 1  
CMPSS-2 Low Comparator Positive Input 1  
CMPSS-2 Low Comparator Negative Input 1  
Analog Pin Used For Digital Input 238  
SDFM-2 Channel 3 Clock Input  
HIC Chip select input  
28  
19  
17  
22  
15  
13  
18  
11  
9
18  
11  
9
14  
0, 4, 8, 12  
2
15  
ADC-A Input 14  
B14  
ADC-B Input 14  
C4  
ADC-C Input 4  
CMP3_HP4  
CMP3_LP4  
AIO239  
SD1_D1  
HIC_A5  
A2  
CMPSS-3 High Comparator Positive Input 4  
CMPSS-3 Low Comparator Positive Input 4  
Analog Pin Used For Digital Input 239  
SDFM-1 Channel 1 Data Input  
HIC Address 5  
0, 4, 8, 12  
2
15  
ADC-A Input 2  
B6  
ADC-B Input 6  
C9  
ADC-C Input 9  
CMP1_HP0  
CMP1_LP0  
AIO224  
SD2_D3  
HIC_A3  
A3  
CMPSS-1 High Comparator Positive Input 0  
CMPSS-1 Low Comparator Positive Input 0  
Analog Pin Used For Digital Input 224  
SDFM-2 Channel 3 Data Input  
HIC Address 3  
6
0, 4, 8, 12  
2
15  
ADC-A Input 3  
CMP3_HP5  
CMP3_LP5  
AIO229  
A4  
CMPSS-3 High Comparator Positive Input 5  
CMPSS-3 Low Comparator Positive Input 5  
Analog Pin Used For Digital Input 229  
ADC-A Input 4  
18  
36  
0, 4, 8, 12  
B8  
ADC-B Input 8  
CMP2_HP0  
CMP2_LP0  
AIO225  
SD2_C2  
HIC_NWE  
A5  
CMPSS-2 High Comparator Positive Input 0  
CMPSS-2 Low Comparator Positive Input 0  
Analog Pin Used For Digital Input 225  
SDFM-2 Channel 2 Clock Input  
HIC Data Write enable from host  
ADC-A Input 5  
27  
23  
23  
19  
0, 4, 8, 12  
2
15  
CMP2_HP5  
CMP2_LP5  
AIO249  
A6  
CMPSS-2 High Comparator Positive Input 5  
CMPSS-2 Low Comparator Positive Input 5  
Analog Pin Used For Digital Input 249  
ADC-A Input 6  
35  
14  
0, 4, 8, 12  
CMP1_HP2  
CMP1_LP2  
AIO228  
SD2_C1  
HIC_A0  
CMPSS-1 High Comparator Positive Input 2  
CMPSS-1 Low Comparator Positive Input 2  
Analog Pin Used For Digital Input 228  
SDFM-2 Channel 1 Clock Input  
HIC Address 0  
10  
6
6
4
0, 4, 8, 12  
2
15  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
A8  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ADC-A Input 8  
CMP4_HP4  
CMP4_LP4  
AIO240  
CMPSS-4 High Comparator Positive Input 4  
CMPSS-4 Low Comparator Positive Input 4  
Analog Pin Used For Digital Input 240  
SDFM-2 Channel 1 Clock Input  
HIC Byte enable 1  
37  
0, 4, 8, 12  
SD2_C1  
HIC_NBE1  
A9  
2
15  
ADC-A Input 9  
CMP2_HP2  
CMP2_LP2  
AIO227  
CMPSS-2 High Comparator Positive Input 2  
CMPSS-2 Low Comparator Positive Input 2  
Analog Pin Used For Digital Input 227  
SDFM-1 Channel 3 Clock Input  
HIC Byte enable 0  
38  
28  
24  
24  
20  
0, 4, 8, 12  
SD1_C3  
HIC_NBE0  
B0  
2
15  
ADC-B Input 0  
C11  
ADC-C Input 11  
CMP2_HP4  
CMP2_LP4  
AIO253  
41  
30  
CMPSS-2 High Comparator Positive Input 4  
CMPSS-2 Low Comparator Positive Input 4  
Analog Pin Used For Digital Input 253  
ADC-B Input 11  
0, 4, 8, 12  
0, 4, 8, 12  
B11  
CMP4_HP5  
CMP4_LP5  
AIO251  
CMPSS-4 High Comparator Positive Input 5  
CMPSS-4 Low Comparator Positive Input 5  
Analog Pin Used For Digital Input 251  
ADC-B Input 11  
B11  
CMP4_HP5  
CMP4_LP5  
CMPSS-4 High Comparator Positive Input 5  
CMPSS-4 Low Comparator Positive Input 5  
49  
34  
General-Purpose Input Output 21. This pin  
also has digital mux functions which are  
described in the DIGITAL section of this table.  
GPIO21 (See GPIO  
Section)  
0, 4, 8, 12  
I/O  
B2  
I
I
I
I
I
I
I
I
ADC-B Input 2  
C6  
ADC-C Input 6  
CMP3_HP0  
CMP3_LP0  
AIO226  
SD2_D4  
HIC_A1  
B3  
CMPSS-3 High Comparator Positive Input 0  
CMPSS-3 Low Comparator Positive Input 0  
Analog Pin Used For Digital Input 226  
SDFM-2 Channel 4 Data Input  
HIC Address 1  
15  
11  
7
7
4
0, 4, 8, 12  
2
15  
ADC-B Input 3  
Optional external reference voltage for on-chip  
DACs.  
VDAC  
I
CMP3_HP3  
CMP3_HN0  
CMP3_LP3  
CMP3_LN0  
AIO242  
I
I
I
I
I
I
I
CMPSS-3 High Comparator Positive Input 3  
CMPSS-3 High Comparator Negative Input 0  
CMPSS-3 Low Comparator Positive Input 3  
CMPSS-3 Low Comparator Negative Input 0  
Analog Pin Used For Digital Input 242  
SDFM-2 Channel 2 Data Input  
16  
12  
8
8
5
0, 4, 8, 12  
SD2_D2  
2
HIC_A2  
15  
HIC Address 2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
B4  
C8  
I
I
I
I
I
I
I
I
I
I
I
I
I
ADC-B Input 4  
ADC-C Input 8  
CMP4_HP0  
CMP4_LP0  
AIO236  
39  
32  
28  
24  
24  
20  
CMPSS-4 High Comparator Positive Input 0  
CMPSS-4 Low Comparator Positive Input 0  
Analog Pin Used For Digital Input 236  
ADC-B Input 5  
0, 4, 8, 12  
B5  
CMP1_HP5  
CMP1_LP5  
AIO252  
CMPSS-1 High Comparator Positive Input 5  
CMPSS-1 Low Comparator Positive Input 5  
Analog Pin Used For Digital Input 252  
SDFM-2 Channel 4 Clock Input  
0, 4, 8, 12  
2
SD2_C4  
B5  
ADC-B Input 5  
CMP1_HP5  
CMP1_LP5  
CMPSS-1 High Comparator Positive Input 5  
CMPSS-1 Low Comparator Positive Input 5  
48  
29  
33  
22  
General-Purpose Input Output 20. This pin  
also has digital mux functions which are  
described in the DIGITAL section of this table.  
GPIO20 (See GPIO  
Section)  
0, 4, 8, 12  
I/O  
C1  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
O
I
ADC-C Input 1  
CMP4_HP2  
CMP4_LP2  
AIO248  
CMPSS-4 High Comparator Positive Input 2  
CMPSS-4 Low Comparator Positive Input 2  
Analog Pin Used For Digital Input 248  
ADC-C Input 14  
18  
18  
14  
0, 4, 8, 12  
C14  
CMP4_HP3  
CMP4_HN0  
CMP4_LP3  
CMP4_LN0  
AIO247  
CMPSS-4 High Comparator Positive Input 3  
CMPSS-4 High Comparator Negative Input 0  
CMPSS-4 Low Comparator Positive Input 3  
CMPSS-4 Low Comparator Negative Input 0  
Analog Pin Used For Digital Input 247  
ADC-C Input 2  
42  
0, 4, 8, 12  
C2  
B12  
ADC-B Input 12  
CMP3_HP1  
CMP3_HN1  
CMP3_LP1  
CMP3_LN1  
AIO244  
CMPSS-3 High Comparator Positive Input 1  
CMPSS-3 High Comparator Negative Input 1  
CMPSS-3 Low Comparator Positive Input 1  
CMPSS-3 Low Comparator Negative Input 1  
Analog Pin Used For Digital Input 244  
SDFM-1 Channel 3 Data Input  
21  
17  
13  
13  
9
0, 4, 8, 12  
SD1_D3  
HIC_A7  
2
15  
HIC Address 7  
C3  
ADC-C Input 3  
A7  
ADC-A Input 7  
CMP4_HP1  
CMP4_HN1  
CMP4_LP1  
CMP4_LN1  
AIO245  
CMPSS-4 High Comparator Positive Input 1  
CMPSS-4 High Comparator Negative Input 1  
CMPSS-4 Low Comparator Positive Input 1  
CMPSS-4 Low Comparator Negative Input 1  
Analog Pin Used For Digital Input 245  
SDFM-1 Channel 2 Clock Input  
HIC Output enable for data bus  
ADC-C Input 5  
31  
28  
23  
12  
19  
19  
15  
0, 4, 8, 12  
SD1_C2  
HIC_NOE  
C5  
2
15  
8
8
5
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
C7  
B9  
I
I
ADC-C Input 7  
18  
14  
10  
10  
7
ADC-B Input 9  
ADC High Reference. In external reference  
mode, externally drive the high reference  
voltage onto this pin. In internal reference  
mode, a voltage is driven onto this pin by the  
device. In either mode, place at least a 2.2-µF  
capacitor on this pin. This capacitor should  
be placed as close to the device as possible  
between the VREFHI and VREFLO pins.  
VREFHI  
25  
27  
20  
21  
16  
17  
16  
17  
12  
13  
I
VREFLO  
A15  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ADC Low Reference  
ADC-A Input 15  
CMP1_HP3  
CMP1_HN0  
CMP1_LP3  
CMP1_LN0  
AIO233  
CMPSS-1 High Comparator Positive Input 3  
CMPSS-1 High Comparator Negative Input 0  
CMPSS-1 Low Comparator Positive Input 3  
CMPSS-1 Low Comparator Negative Input 0  
Analog Pin Used For Digital Input 233  
SDFM-2 Channel 1 Data Input  
HIC Address 4  
14  
10  
10  
7
0, 4, 8, 12  
SD2_D1  
HIC_A4  
2
15  
A3  
ADC-A Input 3  
CMP3_HP5  
CMP3_LP5  
A5  
12  
17  
8
8
5
9
CMPSS-3 High Comparator Positive Input 5  
CMPSS-3 Low Comparator Positive Input 5  
ADC-A Input 5  
CMP2_HP5  
CMP2_LP5  
A8  
13  
13  
CMPSS-2 High Comparator Positive Input 5  
CMPSS-2 Low Comparator Positive Input 5  
ADC-A Input 8  
CMP4_HP4  
CMP4_LP4  
AIO241  
CMPSS-4 High Comparator Positive Input 4  
CMPSS-4 Low Comparator Positive Input 4  
Analog Pin Used For Digital Input 241  
SDFM-2 Channel 1 Clock Input  
HIC Byte enable 1  
24  
20  
20  
16  
0, 4, 8, 12  
SD2_C1  
HIC_NBE1  
B0  
2
15  
ADC-B Input 0  
C11  
ADC-C Input 11  
24  
27  
20  
23  
20  
23  
16  
19  
CMP2_HP4  
CMP2_LP4  
C14  
CMPSS-2 High Comparator Positive Input 4  
CMPSS-2 Low Comparator Positive Input 4  
ADC-C Input 14  
CMP4_HP3  
CMP4_HN0  
CMP4_LP3  
CMP4_LN0  
CMPSS-4 High Comparator Positive Input 3  
CMPSS-4 High Comparator Negative Input 0  
CMPSS-4 Low Comparator Positive Input 3  
CMPSS-4 Low Comparator Negative Input 0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
GPIO  
GPIO0  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 0  
ePWM-1 Output A  
EPWM1_A  
1
I2CA_SDA  
6
I/OD I2C-A Open-Drain Bidirectional Data  
SPIA_STE  
7
I/O  
I
SPI-A Slave Transmit Enable (STE)  
FSIRX-A Input Clock  
FSIRXA_CLK  
MCAN_RX  
9
79  
63  
52  
52  
42  
10  
I
CAN/CAN FD Receive  
CLB Output X-BAR Output 8  
eQEP-1 Index  
CLB_OUTPUTXBAR8  
EQEP1_INDEX  
HIC_D7  
11  
O
13  
I/O  
I/O  
I
14  
HIC Data 7  
HIC_BASESEL1  
GPIO1  
15  
HIC Base address range select 1  
General-Purpose Input Output 1  
ePWM-1 Output B  
0, 4, 8, 12  
I/O  
O
EPWM1_B  
1
6
I2CA_SCL  
I/OD I2C-A Open-Drain Bidirectional Clock  
SPIA_SOMI  
MCAN_TX  
7
I/O  
O
O
I
SPI-A Slave Out, Master In (SOMI)  
CAN/CAN FD Transmit  
CLB Output X-BAR Output 7  
HIC Address 2  
10  
11  
13  
78  
62  
51  
51  
41  
CLB_OUTPUTXBAR7  
HIC_A2  
FSITX-A Time Division Multiplexed Additional  
Data Input  
FSITXA_TDM_D1  
14  
I
HIC_D10  
15  
I/O  
I/O  
O
HIC Data 10  
GPIO2  
0, 4, 8, 12  
General-Purpose Input Output 2  
ePWM-2 Output A  
EPWM2_A  
OUTPUTXBAR1  
PMBUSA_SDA  
SPIA_SIMO  
SCIA_TX  
1
5
O
Output X-BAR Output 1  
6
I/OD PMBus-A Open-Drain Bidirectional Data  
7
I/O  
O
I
SPI-A Slave In, Master Out (SIMO)  
SCI-A Transmit Data  
9
77  
61  
50  
50  
40  
FSIRXA_D1  
I2CB_SDA  
HIC_A1  
10  
FSIRX-A Optional Additional Data Input  
11  
I/OD I2C-B Open-Drain Bidirectional Data  
13  
I
HIC Address 1  
CANA_TX  
HIC_D9  
14  
O
CAN-A Transmit  
15  
I/O  
I/O  
O
HIC Data 9  
GPIO3  
0, 4, 8, 12  
General-Purpose Input Output 3  
ePWM-2 Output B  
Output X-BAR Output 2  
EPWM2_B  
OUTPUTXBAR2  
PMBUSA_SCL  
SPIA_CLK  
SCIA_RX  
1
2, 5  
6
O
I/OD PMBus-A Open-Drain Bidirectional Clock  
7
I/O  
SPI-A Clock  
9
76  
60  
49  
49  
39  
I
I
SCI-A Receive Data  
FSIRX-A Primary Data Input  
FSIRXA_D0  
I2CB_SCL  
HIC_NOE  
CANA_RX  
HIC_D4  
10  
11  
13  
14  
15  
I/OD I2C-B Open-Drain Bidirectional Clock  
O
I
HIC Output enable for data bus  
CAN-A Receive  
I/O  
HIC Data 4  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
GPIO4  
0, 4, 8, 12  
I/O  
O
O
O
O
I/O  
I/O  
I
General-Purpose Input Output 4  
ePWM-3 Output A  
EPWM3_A  
1
MCAN_TX  
3
CAN/CAN FD Transmit  
Output X-BAR Output 3  
CAN-A Transmit  
OUTPUTXBAR3  
CANA_TX  
5
6
SPIB_CLK  
7
75  
59  
48  
48  
38  
SPI-B Clock  
EQEP2_STROBE  
FSIRXA_CLK  
CLB_OUTPUTXBAR6  
HIC_BASESEL2  
HIC_NWE  
9
eQEP-2 Strobe  
10  
FSIRX-A Input Clock  
11  
O
I
CLB Output X-BAR Output 6  
HIC Base address range select 2  
HIC Data Write enable from host  
General-Purpose Input Output 5  
ePWM-3 Output B  
13  
15  
I
GPIO5  
0, 4, 8, 12  
I/O  
O
O
I
EPWM3_B  
1
OUTPUTXBAR3  
MCAN_RX  
3
Output X-BAR Output 3  
CAN/CAN FD Receive  
CAN-A Receive  
5
CANA_RX  
6
I
SPIA_STE  
7
89  
74  
61  
61  
47  
I/O  
O
O
I
SPI-A Slave Transmit Enable (STE)  
FSITX-A Optional Additional Data Output  
CLB Output X-BAR Output 5  
HIC Address 7  
FSITXA_D1  
CLB_OUTPUTXBAR5  
HIC_A7  
9
10  
13  
HIC_D4  
14  
I/O  
I/O  
I/O  
O
O
O
I
HIC Data 4  
HIC_D15  
15  
HIC Data 15  
GPIO6  
0, 4, 8, 12  
General-Purpose Input Output 6  
ePWM-4 Output A  
EPWM4_A  
1
OUTPUTXBAR4  
SYNCOUT  
2
Output X-BAR Output 4  
External ePWM Synchronization Pulse  
eQEP-1 Input A  
3
EQEP1_A  
5
SPIB_SOMI  
FSITXA_D0  
FSITXA_D1  
HIC_NBE1  
7
97  
80  
64  
64  
48  
I/O  
O
O
I
SPI-B Slave Out, Master In (SOMI)  
FSITX-A Primary Data Output  
FSITX-A Optional Additional Data Output  
HIC Byte enable 1  
9
11  
13  
CLB_OUTPUTXBAR8  
HIC_D14  
14  
O
I/O  
I/O  
O
O
I
CLB Output X-BAR Output 8  
HIC Data 14  
15  
GPIO7  
0, 4, 8, 12  
General-Purpose Input Output 7  
ePWM-4 Output B  
EPWM4_B  
1
3
OUTPUTXBAR5  
EQEP1_B  
Output X-BAR Output 5  
eQEP-1 Input B  
5
SPIB_SIMO  
FSITXA_CLK  
CLB_OUTPUTXBAR2  
HIC_A6  
7
84  
68  
57  
57  
43  
I/O  
O
O
I
SPI-B Slave In, Master Out (SIMO)  
FSITX-A Output Clock  
CLB Output X-BAR Output 2  
HIC Address 6  
9
10  
13  
15  
HIC_D14  
I/O  
HIC Data 14  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
GPIO8  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 8  
ePWM-5 Output A  
EPWM5_A  
1
ADCSOCAO  
EQEP1_STROBE  
SCIA_TX  
3
O
ADC Start of Conversion A for External ADC  
eQEP-1 Strobe  
5
I/O  
O
6
SCI-A Transmit Data  
SPIA_SIMO  
I2CA_SCL  
7
I/O  
SPI-A Slave In, Master Out (SIMO)  
74  
90  
93  
58  
75  
76  
47  
62  
63  
47  
62  
63  
9
I/OD I2C-A Open-Drain Bidirectional Clock  
FSITXA_D1  
CLB_OUTPUTXBAR5  
HIC_A0  
10  
O
O
I
FSITX-A Optional Additional Data Output  
CLB Output X-BAR Output 5  
HIC Address 0  
11  
13  
FSITXA_TDM_CLK  
HIC_D8  
14  
I
FSITX-A Time Division Multiplexed Clock Input  
HIC Data 8  
15  
I/O  
I/O  
O
O
O
I/O  
I
GPIO9  
0, 4, 8, 12  
General-Purpose Input Output 9  
ePWM-5 Output B  
EPWM5_B  
1
SCIB_TX  
2
SCI-B Transmit Data  
OUTPUTXBAR6  
EQEP1_INDEX  
SCIA_RX  
3
Output X-BAR Output 6  
eQEP-1 Index  
5
6
SCI-A Receive Data  
SPIA_CLK  
7
I/O  
O
I
SPI-A Clock  
FSITXA_D0  
LINB_RX  
10  
FSITX-A Primary Data Output  
LIN-B Receive  
11  
HIC_BASESEL0  
I2CB_SCL  
13  
I
HIC Base address range select 0  
14  
I/OD I2C-B Open-Drain Bidirectional Clock  
HIC_NRDY  
GPIO10  
15  
O
I/O  
O
HIC Ready from device to host  
General-Purpose Input Output 10  
ePWM-6 Output A  
0, 4, 8, 12  
EPWM6_A  
1
3
ADCSOCBO  
EQEP1_A  
O
ADC Start of Conversion B for External ADC  
eQEP-1 Input A  
5
I
SCIB_TX  
6
O
SCI-B Transmit Data  
SPIA_SOMI  
I2CA_SDA  
7
I/O  
SPI-A Slave Out, Master In (SOMI)  
9
I/OD I2C-A Open-Drain Bidirectional Data  
FSITXA_CLK  
LINB_TX  
10  
11  
13  
14  
15  
O
O
I
FSITX-A Output Clock  
LIN-B Transmit  
HIC_NWE  
HIC Data Write enable from host  
FSITX-A Time Division Multiplexed Data Input  
CLB Output X-BAR Output 4  
FSITXA_TDM_D0  
CLB_OUTPUTXBAR4  
I
O
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
GPIO11  
0, 4, 8, 12  
I/O  
O
O
I
General-Purpose Input Output 11  
ePWM-6 Output B  
EPWM6_B  
OUTPUTXBAR7  
EQEP1_B  
SCIB_RX  
1
3
Output X-BAR Output 7  
eQEP-1 Input B  
5
6
I
SCI-B Receive Data  
SPIA_STE  
FSIRXA_D1  
LINB_RX  
7
I/O  
I
SPI-A Slave Transmit Enable (STE)  
FSIRX-A Optional Additional Data Input  
LIN-B Receive  
52  
51  
50  
37  
36  
35  
31  
30  
29  
31  
30  
29  
9
10  
I
EQEP2_A  
SPIA_SIMO  
HIC_D6  
11  
I
eQEP-2 Input A  
13  
I/O  
I/O  
I
SPI-A Slave In, Master Out (SIMO)  
HIC Data 6  
14  
HIC_NBE0  
GPIO12  
15  
HIC Byte enable 0  
0, 4, 8, 12  
I/O  
O
I
General-Purpose Input Output 12  
ePWM-7 Output A  
EPWM7_A  
MCAN_RX  
EQEP1_STROBE  
SCIB_TX  
1
3
5
6
CAN/CAN FD Receive  
eQEP-1 Strobe  
I/O  
O
SCI-B Transmit Data  
PMBus-A Control Signal - Slave Input/Master  
Output  
PMBUSA_CTL  
7
I/O  
FSIRXA_D0  
LINB_TX  
9
I
FSIRX-A Primary Data Input  
LIN-B Transmit  
10  
O
SPIA_CLK  
CANA_RX  
HIC_D13  
11  
I/O  
I
SPI-A Clock  
13  
CAN-A Receive  
14  
I/O  
O
HIC Data 13  
HIC_INT  
15  
HIC Device interrupt to host  
General-Purpose Input Output 13  
ePWM-7 Output B  
CAN/CAN FD Transmit  
eQEP-1 Index  
GPIO13  
0, 4, 8, 12  
I/O  
O
EPWM7_B  
MCAN_TX  
EQEP1_INDEX  
SCIB_RX  
1
3
O
5
I/O  
I
6
SCI-B Receive Data  
PMBUSA_ALERT  
FSIRXA_CLK  
LINB_RX  
7
I/OD PMBus-A Open-Drain Bidirectional Alert Signal  
9
I
FSIRX-A Input Clock  
LIN-B Receive  
10  
11  
13  
14  
15  
I
SPIA_SOMI  
CANA_TX  
HIC_D11  
I/O  
O
SPI-A Slave Out, Master In (SOMI)  
CAN-A Transmit  
I/O  
I/O  
HIC Data 11  
HIC_D5  
HIC Data 5  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
GPIO14  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 14  
ePWM-8 Output A  
EPWM8_A  
1
SCIB_TX  
2
O
SCI-B Transmit Data  
I2CB_SDA  
5
I/OD I2C-B Open-Drain Bidirectional Data  
Output X-BAR Output 3  
I/OD PMBus-A Open-Drain Bidirectional Data  
OUTPUTXBAR3  
PMBUSA_SDA  
SPIB_CLK  
6
O
7
96  
79  
9
I/O  
I
SPI-B Clock  
EQEP2_A  
10  
eQEP-2 Input A  
LINB_TX  
11  
O
O
O
I/O  
I/O  
O
I
LIN-B Transmit  
EPWM3_A  
13  
ePWM-3 Output A  
CLB Output X-BAR Output 7  
HIC Data 15  
CLB_OUTPUTXBAR7  
HIC_D15  
14  
15  
GPIO15  
0, 4, 8, 12  
General-Purpose Input Output 15  
ePWM-8 Output B  
SCI-B Receive Data  
EPWM8_B  
1
SCIB_RX  
2
I2CB_SCL  
5
I/OD I2C-B Open-Drain Bidirectional Clock  
Output X-BAR Output 4  
I/OD PMBus-A Open-Drain Bidirectional Clock  
OUTPUTXBAR4  
PMBUSA_SCL  
SPIB_STE  
6
O
7
95  
78  
9
I/O  
I
SPI-B Slave Transmit Enable (STE)  
eQEP-2 Input B  
EQEP2_B  
10  
LINB_RX  
11  
I
LIN-B Receive  
EPWM3_B  
13  
O
ePWM-3 Output B  
CLB_OUTPUTXBAR6  
HIC_D12  
14  
O
CLB Output X-BAR Output 6  
HIC Data 12  
15  
I/O  
I/O  
I/O  
O
GPIO16  
0, 4, 8, 12  
General-Purpose Input Output 16  
SPI-A Slave In, Master Out (SIMO)  
Output X-BAR Output 7  
ePWM-5 Output A  
SPIA_SIMO  
OUTPUTXBAR7  
EPWM5_A  
1
3
5
O
SCIA_TX  
6
O
SCI-A Transmit Data  
SD1_D1  
7
I
SDFM-1 Channel 1 Data Input  
eQEP-1 Strobe  
EQEP1_STROBE  
PMBUSA_SCL  
9
I/O  
54  
39  
33  
33  
26  
10  
I/OD PMBus-A Open-Drain Bidirectional Clock  
External Clock Output. This pin outputs a  
XCLKOUT  
11  
O
divided-down version of a chosen clock signal  
from within the device.  
EQEP2_B  
SPIB_SOMI  
HIC_D1  
13  
14  
15  
I
eQEP-2 Input B  
I/O  
I/O  
SPI-B Slave Out, Master In (SOMI)  
HIC Data 1  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
GPIO17  
0, 4, 8, 12  
I/O  
I/O  
O
General-Purpose Input Output 17  
SPI-A Slave Out, Master In (SOMI)  
Output X-BAR Output 8  
ePWM-5 Output B  
SPIA_SOMI  
OUTPUTXBAR8  
EPWM5_B  
SCIA_RX  
1
3
5
O
6
I
SCI-A Receive Data  
55  
40  
34  
34  
SD1_C1  
7
I
SDFM-1 Channel 1 Clock Input  
eQEP-1 Index  
EQEP1_INDEX  
PMBUSA_SDA  
CANA_TX  
HIC_D2  
9
I/O  
10  
I/OD PMBus-A Open-Drain Bidirectional Data  
11  
O
I/O  
I/O  
I/O  
O
CAN-A Transmit  
15  
HIC Data 2  
GPIO18  
0, 4, 8, 12  
General-Purpose Input Output 18  
SPI-A Clock  
SPIA_CLK  
SCIB_TX  
1
2
3
5
6
7
9
SCI-B Transmit Data  
CAN-A Receive  
CANA_RX  
EPWM6_A  
I2CA_SCL  
SD1_D2  
I
O
ePWM-6 Output A  
I/OD I2C-A Open-Drain Bidirectional Clock  
I
I
SDFM-1 Channel 2 Data Input  
eQEP-2 Input A  
EQEP2_A  
68  
50  
41  
41  
33  
PMBus-A Control Signal - Slave Input/Master  
Output  
PMBUSA_CTL  
10  
I/O  
External Clock Output. This pin outputs a  
divided-down version of a chosen clock signal  
from within the device.  
XCLKOUT  
11  
O
LINB_TX  
13  
O
I
LIN-B Transmit  
FSITXA_TDM_CLK  
HIC_INT  
14  
FSITX-A Time Division Multiplexed Clock Input  
HIC Device interrupt to host  
Crystal oscillator output.  
General-Purpose Input Output 19  
SPI-A Slave Transmit Enable (STE)  
SCI-B Receive Data  
15  
O
X2  
ALT  
I/O  
I/O  
I/O  
I
GPIO19  
0, 4, 8, 12  
SPIA_STE  
SCIB_RX  
1
2
CANA_TX  
3
O
CAN-A Transmit  
EPWM6_B  
I2CA_SDA  
SD1_C2  
5
O
ePWM-6 Output B  
6
I/OD I2C-A Open-Drain Bidirectional Data  
7
I
I
SDFM-1 Channel 2 Clock Input  
eQEP-2 Input B  
EQEP2_B  
9
PMBUSA_ALERT  
CLB_OUTPUTXBAR1  
LINB_RX  
10  
11  
13  
14  
15  
I/OD PMBus-A Open-Drain Bidirectional Alert Signal  
69  
51  
42  
42  
34  
O
I
CLB Output X-BAR Output 1  
LIN-B Receive  
FSITXA_TDM_D0  
HIC_NBE0  
I
FSITX-A Time Division Multiplexed Data Input  
HIC Byte enable 0  
I
Crystal oscillator input or single-ended clock  
input. The device initialization software must  
configure this pin before the crystal oscillator is  
enabled. To use this oscillator, a quartz crystal  
circuit must be connected to X1 and X2. This  
pin can also be used to feed a single-ended  
3.3-V level clock. See the XTAL section for  
usage details.  
X1  
ALT  
I/O  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
General-Purpose Input Output 20. This pin  
also has analog functions which are described  
in the ANALOG section of this table.  
GPIO20 (See ANALOG  
Section)  
0, 4, 8, 12  
I/O  
EQEP1_A  
SPIB_SIMO  
SD1_D3  
1
6
7
9
I
I/O  
I
eQEP-1 Input A  
48  
33  
SPI-B Slave In, Master Out (SIMO)  
SDFM-1 Channel 3 Data Input  
CAN/CAN FD Transmit  
MCAN_TX  
O
General-Purpose Input Output 21. This pin  
also has analog functions which are described  
in the ANALOG section of this table.  
GPIO21 (See ANALOG  
Section)  
0, 4, 8, 12  
I/O  
EQEP1_B  
SPIB_SOMI  
SD1_C3  
1
I
I/O  
I
eQEP-1 Input B  
49  
34  
6
SPI-B Slave Out, Master In (SOMI)  
SDFM-1 Channel 3 Clock Input  
CAN/CAN FD Receive  
General-Purpose Input Output 22  
eQEP-1 Strobe  
7
MCAN_RX  
GPIO22  
9
I
0, 4, 8, 12  
I/O  
I/O  
O
I/O  
I
EQEP1_STROBE  
SCIB_TX  
1
3
SCI-B Transmit Data  
SPI-B Clock  
SPIB_CLK  
SD1_D4  
6
7
SDFM-1 Channel 4 Data Input  
LIN-A Transmit  
LINA_TX  
9
83  
67  
56  
56  
O
O
O
I
CLB_OUTPUTXBAR1  
LINB_TX  
10  
CLB Output X-BAR Output 1  
LIN-B Transmit  
11  
HIC_A5  
13  
HIC Address 5  
EPWM4_A  
HIC_D13  
14  
O
I/O  
I/O  
I/O  
I
ePWM-4 Output A  
15  
HIC Data 13  
GPIO23  
0, 4, 8, 12  
General-Purpose Input Output 23  
eQEP-1 Index  
EQEP1_INDEX  
SCIB_RX  
1
3
SCI-B Receive Data  
SPI-B Slave Transmit Enable (STE)  
SDFM-1 Channel 4 Clock Input  
LIN-A Receive  
SPIB_STE  
SD1_C4  
6
I/O  
I
7
LINA_RX  
9
81  
65  
54  
54  
I
CLB_OUTPUTXBAR3  
LINB_RX  
10  
11  
13  
14  
15  
O
I
CLB Output X-BAR Output 3  
LIN-B Receive  
HIC_A3  
I
HIC Address 3  
EPWM4_B  
HIC_D11  
O
I/O  
ePWM-4 Output B  
HIC Data 11  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
GPIO24  
0, 4, 8, 12  
I/O  
O
I
General-Purpose Input Output 24  
Output X-BAR Output 1  
eQEP-2 Input A  
OUTPUTXBAR1  
EQEP2_A  
EPWM8_A  
SPIB_SIMO  
SD2_D1  
1
2
5
O
I/O  
I
ePWM-8 Output A  
6
SPI-B Slave In, Master Out (SIMO)  
SDFM-2 Channel 1 Data Input  
LIN-B Transmit  
7
56  
41  
35  
35  
27  
LINB_TX  
9
O
PMBUSA_SCL  
SCIA_TX  
10  
11  
I/OD PMBus-A Open-Drain Bidirectional Clock  
O
SCI-A Transmit Data  
Error Status Output. This signal requires an  
external pulldown.  
ERRORSTS  
13  
O
HIC_D3  
15  
I/O  
I/O  
O
I
HIC Data 3  
GPIO25  
0, 4, 8, 12  
General-Purpose Input Output 25  
Output X-BAR Output 2  
eQEP-2 Input B  
OUTPUTXBAR2  
EQEP2_B  
1
2
EQEP1_A  
5
I
eQEP-1 Input A  
SPIB_SOMI  
SD2_C1  
6
I/O  
I
SPI-B Slave Out, Master In (SOMI)  
SDFM-2 Channel 1 Clock Input  
FSITX-A Optional Additional Data Output  
57  
58  
59  
42  
43  
44  
7
FSITXA_D1  
PMBUSA_SDA  
SCIA_RX  
9
O
10  
I/OD PMBus-A Open-Drain Bidirectional Data  
11  
I
I
SCI-A Receive Data  
HIC_BASESEL0  
GPIO26  
14  
HIC Base address range select 0  
General-Purpose Input Output 26  
Output X-BAR Output 3  
eQEP-2 Index  
0, 4, 8, 12  
I/O  
O
OUTPUTXBAR3  
EQEP2_INDEX  
SPIB_CLK  
SD2_D2  
1, 5  
2
I/O  
I/O  
I
6
SPI-B Clock  
7
SDFM-2 Channel 2 Data Input  
FSITX-A Primary Data Output  
FSITXA_D0  
9
O
PMBus-A Control Signal - Slave Input/Master  
Output  
PMBUSA_CTL  
10  
I/O  
I2CA_SDA  
HIC_D0  
11  
I/OD I2C-A Open-Drain Bidirectional Data  
14  
I/O  
I
HIC Data 0  
HIC_A1  
15  
HIC Address 1  
GPIO27  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 27  
Output X-BAR Output 4  
eQEP-2 Strobe  
OUTPUTXBAR4  
EQEP2_STROBE  
SPIB_STE  
SD2_C2  
1, 5  
2
I/O  
I/O  
I
6
SPI-B Slave Transmit Enable (STE)  
SDFM-2 Channel 2 Clock Input  
FSITX-A Output Clock  
7
FSITXA_CLK  
PMBUSA_ALERT  
I2CA_SCL  
HIC_D1  
9
O
10  
11  
14  
15  
I/OD PMBus-A Open-Drain Bidirectional Alert Signal  
I/OD I2C-A Open-Drain Bidirectional Clock  
I/O  
I
HIC Data 1  
HIC_A4  
HIC Address 4  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
GPIO28  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
0, 4, 8, 12  
I/O  
I
General-Purpose Input Output 28  
SCI-A Receive Data  
ePWM-7 Output A  
SCIA_RX  
1
3
EPWM7_A  
OUTPUTXBAR5  
EQEP1_A  
O
O
I
5
Output X-BAR Output 5  
eQEP-1 Input A  
6
SD2_D3  
7
I
SDFM-2 Channel 3 Data Input  
eQEP-2 Strobe  
1
4
2
2
2
EQEP2_STROBE  
LINA_TX  
9
I/O  
O
I/O  
10  
11  
LIN-A Transmit  
SPIB_CLK  
SPI-B Clock  
Error Status Output. This signal requires an  
external pulldown.  
ERRORSTS  
13  
O
I2CB_SDA  
HIC_NOE  
GPIO29  
14  
I/OD I2C-B Open-Drain Bidirectional Data  
15  
O
I/O  
O
O
O
I
HIC Output enable for data bus  
General-Purpose Input Output 29  
SCI-A Transmit Data  
0, 4, 8, 12  
SCIA_TX  
1
3
EPWM7_B  
OUTPUTXBAR6  
EQEP1_B  
SD2_C3  
ePWM-7 Output B  
5
Output X-BAR Output 6  
eQEP-1 Input B  
6
7
I
SDFM-2 Channel 3 Clock Input  
eQEP-2 Index  
EQEP2_INDEX  
LINA_RX  
9
I/O  
I
100  
3
1
1
1
10  
11  
LIN-A Receive  
SPIB_STE  
I/O  
SPI-B Slave Transmit Enable (STE)  
Error Status Output. This signal requires an  
external pulldown.  
ERRORSTS  
13  
O
I2CB_SCL  
HIC_NCS  
14  
I/OD I2C-B Open-Drain Bidirectional Clock  
15  
I
HIC Chip select input  
AUXCLKIN  
GPIO30  
ALT  
0, 4, 8, 12  
I/O  
I
General-Purpose Input Output 30  
CAN-A Receive  
CANA_RX  
SPIB_SIMO  
OUTPUTXBAR7  
EQEP1_STROBE  
SD2_D4  
1
3
I/O  
O
I/O  
I
SPI-B Slave In, Master Out (SIMO)  
Output X-BAR Output 7  
eQEP-1 Strobe  
5
6
98  
1
7
SDFM-2 Channel 4 Data Input  
FSIRX-A Input Clock  
CAN/CAN FD Receive  
ePWM-1 Output A  
FSIRXA_CLK  
MCAN_RX  
EPWM1_A  
HIC_D8  
9
I
10  
11  
14  
I
O
I/O  
HIC Data 8  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
GPIO31  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 31  
CAN-A Transmit  
CANA_TX  
SPIB_SOMI  
OUTPUTXBAR8  
EQEP1_INDEX  
SD2_C4  
1
3
I/O  
O
SPI-B Slave Out, Master In (SOMI)  
Output X-BAR Output 8  
eQEP-1 Index  
5
6
I/O  
I
99  
2
7
SDFM-2 Channel 4 Clock Input  
FSIRX-A Optional Additional Data Input  
CAN/CAN FD Transmit  
FSIRXA_D1  
MCAN_TX  
EPWM1_B  
HIC_D10  
9
I
10  
O
11  
O
ePWM-1 Output B  
14  
I/O  
I/O  
HIC Data 10  
GPIO32  
0, 4, 8, 12  
General-Purpose Input Output 32  
I2CA_SDA  
SPIB_CLK  
EPWM8_B  
LINA_TX  
1
I/OD I2C-A Open-Drain Bidirectional Data  
3
I/O  
O
O
I
SPI-B Clock  
5
ePWM-8 Output B  
LIN-A Transmit  
6
SD1_D2  
7
64  
49  
40  
40  
32  
SDFM-1 Channel 2 Data Input  
FSIRX-A Primary Data Input  
CAN-A Transmit  
FSIRXA_D0  
CANA_TX  
PMBUSA_SDA  
ADCSOCBO  
HIC_INT  
9
I
10  
O
11  
I/OD PMBus-A Open-Drain Bidirectional Data  
13  
O
O
ADC Start of Conversion B for External ADC  
HIC Device interrupt to host  
15  
GPIO33  
0, 4, 8, 12  
I/O  
General-Purpose Input Output 33  
I2CA_SCL  
SPIB_STE  
OUTPUTXBAR4  
LINA_RX  
1
I/OD I2C-A Open-Drain Bidirectional Clock  
3
I/O  
SPI-B Slave Transmit Enable (STE)  
Output X-BAR Output 4  
LIN-A Receive  
5
O
6
I
I
SD1_C2  
7
SDFM-1 Channel 2 Clock Input  
FSIRX-A Input Clock  
53  
38  
32  
32  
25  
FSIRXA_CLK  
CANA_RX  
EQEP2_B  
ADCSOCAO  
SD1_C1  
9
I
10  
I
CAN-A Receive  
11  
I
eQEP-2 Input B  
13  
O
I
ADC Start of Conversion A for External ADC  
SDFM-1 Channel 1 Clock Input  
HIC Data 0  
14  
HIC_D0  
15  
I/O  
I/O  
O
GPIO34  
0, 4, 8, 12  
General-Purpose Input Output 34  
Output X-BAR Output 1  
OUTPUTXBAR1  
PMBUSA_SDA  
HIC_NBE1  
I2CB_SDA  
HIC_D9  
1
6
I/OD PMBus-A Open-Drain Bidirectional Data  
HIC Byte enable 1  
I/OD I2C-B Open-Drain Bidirectional Data  
I/O HIC Data 9  
94  
77  
13  
14  
15  
I
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
GPIO35  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
0, 4, 8, 12  
I/O  
I
General-Purpose Input Output 35  
SCI-A Receive Data  
SCIA_RX  
1
3
5
6
7
9
I2CA_SDA  
CANA_RX  
PMBUSA_SCL  
LINA_RX  
I/OD I2C-A Open-Drain Bidirectional Data  
CAN-A Receive  
I/OD PMBus-A Open-Drain Bidirectional Clock  
I
I
I
LIN-A Receive  
eQEP-1 Input A  
EQEP1_A  
PMBus-A Control Signal - Slave Input/Master  
Output  
PMBUSA_CTL  
10  
I/O  
63  
48  
39  
39  
31  
EPWM5_B  
SD2_C1  
11  
13  
14  
O
I
ePWM-5 Output B  
SDFM-2 Channel 1 Clock Input  
HIC Data Write enable from host  
HIC_NWE  
I
JTAG Test Data Input (TDI) - TDI is the default  
mux selection for the pin. The internal pullup is  
disabled by default. The internal pullup should  
be enabled or an external pullup added on the  
board if this pin is used as JTAG TDI to avoid a  
floating input.  
TDI  
15  
I
GPIO37  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 37  
Output X-BAR Output 2  
OUTPUTXBAR2  
I2CA_SCL  
SCIA_TX  
1
3
I/OD I2C-A Open-Drain Bidirectional Clock  
5
O
O
O
I
SCI-A Transmit Data  
CAN-A Transmit  
LIN-A Transmit  
CANA_TX  
6
LINA_TX  
7
EQEP1_B  
9
eQEP-1 Input B  
61  
46  
37  
37  
29  
PMBUSA_ALERT  
HIC_NRDY  
10  
14  
I/OD PMBus-A Open-Drain Bidirectional Alert Signal  
O
HIC Ready from device to host  
JTAG Test Data Output (TDO) - TDO is the  
default mux selection for the pin. The internal  
pullup is disabled by default. The TDO function  
will tristate when there is no JTAG activity,  
leaving this pin floating; the internal pullup  
should be enabled or an external pullup added  
on the board to avoid a floating GPIO input.  
TDO  
15  
O
GPIO39  
0, 4, 8, 12  
I/O  
I
General-Purpose Input Output 39  
CAN/CAN FD Receive  
FSIRX-A Input Clock  
MCAN_RX  
6
7
FSIRXA_CLK  
EQEP2_INDEX  
CLB_OUTPUTXBAR2  
SYNCOUT  
I
9
I/O  
O
eQEP-2 Index  
56  
46  
11  
13  
14  
15  
CLB Output X-BAR Output 2  
External ePWM Synchronization Pulse  
eQEP-1 Index  
O
EQEP1_INDEX  
HIC_D7  
I/O  
I/O  
HIC Data 7  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
GPIO40  
0, 4, 8, 12  
I/O  
I/O  
O
General-Purpose Input Output 40  
SPI-B Slave In, Master Out (SIMO)  
ePWM-2 Output B  
SPIB_SIMO  
EPWM2_B  
PMBUSA_SDA  
FSIRXA_D0  
SCIB_TX  
1
5
6
I/OD PMBus-A Open-Drain Bidirectional Data  
7
I
O
I
FSIRX-A Primary Data Input  
SCI-B Transmit Data  
eQEP-1 Input A  
80  
64  
53  
53  
9
EQEP1_A  
LINB_TX  
10  
11  
O
I
LIN-B Transmit  
HIC_NBE1  
HIC_D5  
14  
HIC Byte enable 1  
HIC Data 5  
15  
I/O  
I/O  
O
GPIO41  
0, 4, 8, 12  
General-Purpose Input Output 41  
ePWM-2 Output A  
EPWM2_A  
PMBUSA_SCL  
FSIRXA_D1  
SCIB_RX  
5
6
I/OD PMBus-A Open-Drain Bidirectional Clock  
7
I
FSIRX-A Optional Additional Data Input  
SCI-B Receive Data  
9
I
I
82  
66  
55  
55  
EQEP1_B  
LINB_RX  
10  
eQEP-1 Input B  
11  
I
LIN-B Receive  
HIC_A4  
13  
I
HIC Address 4  
SPIB_SOMI  
HIC_D12  
14  
I/O  
I/O  
I/O  
I
SPI-B Slave Out, Master In (SOMI)  
HIC Data 12  
15  
GPIO42  
0, 4, 8, 12  
General-Purpose Input Output 42  
LIN-A Receive  
LINA_RX  
2
3
OUTPUTXBAR5  
O
Output X-BAR Output 5  
PMBus-A Control Signal - Slave Input/Master  
Output  
PMBUSA_CTL  
5
I/O  
57  
I2CA_SDA  
6
I/OD I2C-A Open-Drain Bidirectional Data  
EQEP1_STROBE  
CLB_OUTPUTXBAR3  
HIC_D2  
10  
I/O  
O
eQEP-1 Strobe  
11  
CLB Output X-BAR Output 3  
HIC Data 2  
14  
I/O  
I
HIC_A6  
15  
HIC Address 6  
GPIO43  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 43  
Output X-BAR Output 6  
OUTPUTXBAR6  
PMBUSA_ALERT  
I2CA_SCL  
3
5, 9  
6
I/OD PMBus-A Open-Drain Bidirectional Alert Signal  
I/OD I2C-A Open-Drain Bidirectional Clock  
EQEP1_INDEX  
CLB_OUTPUTXBAR4  
SD2_D3  
10  
11  
13  
14  
15  
54  
I/O  
O
I
eQEP-1 Index  
CLB Output X-BAR Output 4  
SDFM-2 Channel 3 Data Input  
HIC Data 3  
HIC_D3  
I/O  
I
HIC_A7  
HIC Address 7  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
GPIO44  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
0, 4, 8, 12  
I/O  
O
I
General-Purpose Input Output 44  
Output X-BAR Output 7  
eQEP-1 Input A  
OUTPUTXBAR7  
EQEP1_A  
3
5
6
7
PMBUSA_SDA  
FSITXA_CLK  
I/OD PMBus-A Open-Drain Bidirectional Data  
O
FSITX-A Output Clock  
PMBus-A Control Signal - Slave Input/Master  
Output  
PMBUSA_CTL  
9
85  
69  
I/O  
CLB_OUTPUTXBAR3  
FSIRXA_D0  
HIC_D7  
10  
O
I
CLB Output X-BAR Output 3  
FSIRX-A Primary Data Input  
HIC Data 7  
11  
13  
I/O  
O
LINB_TX  
14  
LIN-B Transmit  
HIC_D5  
15  
I/O  
I/O  
O
HIC Data 5  
GPIO45  
0, 4, 8, 12  
General-Purpose Input Output 45  
Output X-BAR Output 8  
FSITX-A Primary Data Output  
OUTPUTXBAR8  
FSITXA_D0  
PMBUSA_ALERT  
CLB_OUTPUTXBAR4  
SD2_C3  
3
7
O
9
73  
I/OD PMBus-A Open-Drain Bidirectional Alert Signal  
10  
O
I
CLB Output X-BAR Output 4  
SDFM-2 Channel 3 Clock Input  
HIC Data 6  
13  
HIC_D6  
15  
I/O  
I/O  
O
GPIO46  
0, 4, 8, 12  
General-Purpose Input Output 46  
LIN-A Transmit  
LINA_TX  
3
MCAN_TX  
5
O
CAN/CAN FD Transmit  
FSITXA_D1  
PMBUSA_SDA  
SD2_C4  
7
6
O
FSITX-A Optional Additional Data Output  
9
I/OD PMBus-A Open-Drain Bidirectional Data  
13  
I
I
SDFM-2 Channel 4 Clock Input  
HIC Data Write enable from host  
General-Purpose Input Output 47  
LIN-A Receive  
HIC_NWE  
15  
GPIO47  
0, 4, 8, 12  
I/O  
I
LINA_RX  
3
MCAN_RX  
CLB_OUTPUTXBAR2  
PMBUSA_SCL  
SD2_D4  
5
I
CAN/CAN FD Receive  
7
O
CLB Output X-BAR Output 2  
6
9
I/OD PMBus-A Open-Drain Bidirectional Clock  
13  
I
I
SDFM-2 Channel 4 Data Input  
FSITX-A Time Division Multiplexed Clock Input  
HIC Address 6  
FSITXA_TDM_CLK  
HIC_A6  
14  
15  
I
GPIO48  
0, 4, 8, 12  
I/O  
O
O
O
I
General-Purpose Input Output 48  
Output X-BAR Output 3  
OUTPUTXBAR3  
CANA_TX  
1
3
CAN-A Transmit  
SCIA_TX  
6
7
SCI-A Transmit Data  
SD1_D1  
7
SDFM-1 Channel 1 Data Input  
PMBUSA_SDA  
HIC_A7  
9
I/OD PMBus-A Open-Drain Bidirectional Data  
HIC Address 7  
15  
I
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
GPIO49  
0, 4, 8, 12  
I/O  
General-Purpose Input Output 49  
Output X-BAR Output 4  
CAN-A Receive  
OUTPUTXBAR4  
CANA_RX  
SCIA_RX  
1
O
3
I
6
I
I
SCI-A Receive Data  
SD1_C1  
7
8
SDFM-1 Channel 1 Clock Input  
LIN-A Receive  
LINA_RX  
9
I
SD2_D1  
13  
I
SDFM-2 Channel 1 Data Input  
FSITX-A Primary Data Output  
HIC Data 2  
FSITXA_D0  
HIC_D2  
14  
O
I/O  
I/O  
I
15  
GPIO50  
0, 4, 8, 12  
General-Purpose Input Output 50  
eQEP-1 Input A  
EQEP1_A  
MCAN_TX  
SPIB_SIMO  
SD1_D2  
1
5
O
I/O  
I
CAN/CAN FD Transmit  
SPI-B Slave In, Master Out (SIMO)  
SDFM-1 Channel 2 Data Input  
6
7
9
I2CB_SDA  
SD2_D2  
9
I/OD I2C-B Open-Drain Bidirectional Data  
13  
I
O
I/O  
I/O  
I
SDFM-2 Channel 2 Data Input  
FSITX-A Optional Additional Data Output  
HIC Data 3  
FSITXA_D1  
HIC_D3  
14  
15  
GPIO51  
0, 4, 8, 12  
General-Purpose Input Output 51  
eQEP-1 Input B  
EQEP1_B  
MCAN_RX  
SPIB_SOMI  
SD1_C2  
1
5
I
CAN/CAN FD Receive  
6
I/O  
I
SPI-B Slave Out, Master In (SOMI)  
SDFM-1 Channel 2 Clock Input  
7
10  
11  
12  
I2CB_SCL  
SD2_D3  
9
I/OD I2C-B Open-Drain Bidirectional Clock  
13  
I
O
I/O  
I/O  
I/O  
O
I/O  
I
SDFM-2 Channel 3 Data Input  
FSITX-A Output Clock  
FSITXA_CLK  
HIC_D6  
14  
15  
HIC Data 6  
GPIO52  
0, 4, 8, 12  
General-Purpose Input Output 52  
eQEP-1 Strobe  
EQEP1_STROBE  
CLB_OUTPUTXBAR5  
SPIB_CLK  
SD1_D3  
1
5
CLB Output X-BAR Output 5  
SPI-B Clock  
6
7
SDFM-1 Channel 3 Data Input  
External ePWM Synchronization Pulse  
SDFM-2 Channel 4 Data Input  
FSIRX-A Primary Data Input  
HIC Data Write enable from host  
General-Purpose Input Output 53  
eQEP-1 Index  
SYNCOUT  
SD2_D4  
9
O
I
13  
FSIRXA_D0  
HIC_NWE  
GPIO53  
14  
I
15  
I
0, 4, 8, 12  
I/O  
I/O  
O
I/O  
I
EQEP1_INDEX  
CLB_OUTPUTXBAR6  
SPIB_STE  
SD1_C3  
1
5
CLB Output X-BAR Output 6  
SPI-B Slave Transmit Enable (STE)  
SDFM-1 Channel 3 Clock Input  
ADC Start of Conversion A for External ADC  
CAN-A Receive  
6
7
ADCSOCAO  
CANA_RX  
SD1_C1  
9
O
I
10  
13  
14  
I
SDFM-1 Channel 1 Clock Input  
FSIRX-A Optional Additional Data Input  
FSIRXA_D1  
I
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
GPIO54  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
0, 4, 8, 12  
I/O  
I/O  
I
General-Purpose Input Output 54  
SPI-A Slave In, Master Out (SIMO)  
eQEP-2 Input A  
SPIA_SIMO  
EQEP2_A  
1
5
OUTPUTXBAR2  
SD1_D4  
6
O
I
Output X-BAR Output 2  
7
SDFM-1 Channel 4 Data Input  
13  
ADCSOCBO  
LINB_TX  
9
O
O
I
ADC Start of Conversion B for External ADC  
LIN-B Transmit  
10  
13  
14  
SD1_C2  
SDFM-1 Channel 2 Clock Input  
FSIRX-A Input Clock  
FSIRXA_CLK  
I
FSITX-A Time Division Multiplexed Additional  
Data Input  
FSITXA_TDM_D1  
15  
I
GPIO55  
0, 4, 8, 12  
I/O  
I/O  
I
General-Purpose Input Output 55  
SPI-A Slave Out, Master In (SOMI)  
eQEP-2 Input B  
SPIA_SOMI  
EQEP2_B  
OUTPUTXBAR3  
SD1_C4  
1
5
6
7
O
I
Output X-BAR Output 3  
SDFM-1 Channel 4 Clock Input  
43  
Error Status Output. This signal requires an  
external pulldown.  
ERRORSTS  
9
O
LINB_RX  
10  
I
I
LIN-B Receive  
SD1_C3  
13  
SDFM-1 Channel 3 Clock Input  
HIC Address 0  
HIC_A0  
15  
I
GPIO56  
0, 4, 8, 12  
I/O  
I/O  
O
O
I/O  
O
I
General-Purpose Input Output 56  
SPI-A Clock  
SPIA_CLK  
CLB_OUTPUTXBAR7  
MCAN_TX  
EQEP2_STROBE  
SCIB_TX  
1
2
CLB Output X-BAR Output 7  
CAN/CAN FD Transmit  
eQEP-2 Strobe  
3
5
6
SCI-B Transmit Data  
SD2_D1  
7
65  
SDFM-2 Channel 1 Data Input  
SPI-B Slave In, Master Out (SIMO)  
SPIB_SIMO  
I2CA_SDA  
EQEP1_A  
9
I/O  
10  
I/OD I2C-A Open-Drain Bidirectional Data  
11  
I
I
eQEP-1 Input A  
SD1_C4  
13  
SDFM-1 Channel 4 Clock Input  
FSIRX-A Optional Additional Data Input  
HIC Data 6  
FSIRXA_D1  
HIC_D6  
14  
I
15  
I/O  
I/O  
I/O  
O
I
GPIO57  
0, 4, 8, 12  
General-Purpose Input Output 57  
SPI-A Slave Transmit Enable (STE)  
CLB Output X-BAR Output 8  
CAN/CAN FD Receive  
SPIA_STE  
CLB_OUTPUTXBAR8  
MCAN_RX  
EQEP2_INDEX  
SCIB_RX  
1
2
3
5
I/O  
I
eQEP-2 Index  
6
SCI-B Receive Data  
66  
SD2_C1  
7
I
SDFM-2 Channel 1 Clock Input  
SPI-B Slave Out, Master In (SOMI)  
SPIB_SOMI  
I2CA_SCL  
EQEP1_B  
9
I/O  
10  
11  
14  
15  
I/OD I2C-A Open-Drain Bidirectional Clock  
I
I
eQEP-1 Input B  
FSIRX-A Input Clock  
HIC Data 4  
FSIRXA_CLK  
HIC_D4  
I/O  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
GPIO58  
0, 4, 8, 12  
I/O  
O
I/O  
I
General-Purpose Input Output 58  
Output X-BAR Output 1  
SPI-B Clock  
OUTPUTXBAR1  
SPIB_CLK  
SD2_D2  
5
6
7
SDFM-2 Channel 2 Data Input  
LIN-A Transmit  
LINA_TX  
9
O
O
I/O  
I
67  
CANA_TX  
EQEP1_STROBE  
SD2_C2  
10  
CAN-A Transmit  
11  
eQEP-1 Strobe  
13  
SDFM-2 Channel 2 Clock Input  
FSIRX-A Primary Data Input  
HIC Ready from device to host  
General-Purpose Input Output 59  
Output X-BAR Output 2  
SPI-B Slave Transmit Enable (STE)  
SDFM-2 Channel 2 Clock Input  
LIN-A Receive  
FSIRXA_D0  
HIC_NRDY  
GPIO59  
14  
I
15  
O
I/O  
O
I/O  
I
0, 4, 8, 12  
OUTPUTXBAR2  
SPIB_STE  
SD2_C2  
5
6
7
LINA_RX  
9
I
92  
CANA_RX  
EQEP1_INDEX  
SD2_C3  
10  
11  
13  
I
CAN-A Receive  
I/O  
I
eQEP-1 Index  
SDFM-2 Channel 3 Clock Input  
FSITX-A Time Division Multiplexed Additional  
Data Input  
FSITXA_TDM_D1  
14  
I
GPIO60  
0, 4, 8, 12  
I/O  
O
O
I/O  
I
General-Purpose Input Output 60  
CAN/CAN FD Transmit  
MCAN_TX  
OUTPUTXBAR3  
SPIB_SIMO  
SD2_D3  
3
5
Output X-BAR Output 3  
6
44  
SPI-B Slave In, Master Out (SIMO)  
SDFM-2 Channel 3 Data Input  
SDFM-2 Channel 4 Clock Input  
HIC Address 0  
7
SD2_C4  
13  
I
HIC_A0  
15  
I
GPIO61  
0, 4, 8, 12  
I/O  
I
General-Purpose Input Output 61  
CAN/CAN FD Receive  
MCAN_RX  
OUTPUTXBAR4  
SPIB_SOMI  
SD2_C3  
3
5
O
I/O  
I
Output X-BAR Output 4  
91  
6
SPI-B Slave Out, Master In (SOMI)  
SDFM-2 Channel 3 Clock Input  
CAN-A Receive  
7
CANA_RX  
14  
I
TEST, JTAG, AND RESET  
TCK  
TMS  
60  
62  
45  
47  
36  
36  
28  
I
JTAG test clock with internal pullup.  
JTAG test-mode select (TMS) with internal  
pullup. This serial control input is clocked into  
the TAP controller on the rising edge of TCK.  
This device does not have a TRSTn pin. An  
external pullup resistor (recommended 2.2 kΩ)  
on the TMS pin to VDDIO should be placed on  
the board to keep JTAG in reset during normal  
operation.  
38  
38  
30  
I/O  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 5-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
PIN  
TYPE  
SIGNAL NAME  
100 PZ 80 PN 64 PM  
48 PT  
DESCRIPTION  
Device Reset (in) and Watchdog Reset (out).  
During a power-on condition, this pin is driven  
low by the device. An external circuit may also  
drive this pin to assert a device reset. This  
pin is also driven low by the MCU when a  
watchdog reset occurs. During watchdog reset,  
the XRSn pin is driven low for the watchdog  
reset duration of 512 OSCCLK cycles. A  
resistor between 2.2 kΩ and 10 kΩ should  
XRSn  
2
5
3
3
3
I/OD be placed between XRSn and VDDIO. If a  
capacitor is placed between XRSn and VSS  
for noise filtering, it should be 100 nF or  
smaller. These values will allow the watchdog  
to properly drive the XRSn pin to VOL within  
512 OSCCLK cycles when the watchdog reset  
is asserted. This pin is an open-drain output  
with an internal pullup. If this pin is driven by  
an external device, it should be done using an  
open-drain device.  
POWER AND GROUND  
4, 46, 8, 31, 4, 27, 4, 27, 23, 36,  
1.2-V Digital Logic Power Pins. See the PMM  
section for usage details.  
VDD  
71, 87 53, 71 44, 59 44, 59  
45  
3.3-V Analog Power Pins. Place a minimum  
2.2-µF decoupling capacitor on each pin. See  
the PMM section for usage details.  
VDDA  
VDDIO  
34 26 22 22  
18  
3, 47, 7, 32, 28, 43, 28, 43, 24, 35,  
3.3-V Digital I/O Power Pins. See the PMM  
section for usage details.  
70, 88 52, 72  
60  
60  
46  
Internal voltage regulator disable with internal  
pulldown. Tie low to VSS to enable internal  
VREG. Tie high to VDDIO to use an external  
VREGENZ  
73  
46  
I
supply. See the PMM section for usage details.  
5, 45, 9, 30, 5, 26, 5, 26, 22, 37,  
VSS  
Digital Ground  
72, 86 55, 70 45, 58 45, 58  
44  
VSSA  
33 25 21 21  
17  
Analog Ground  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
5.3 Signal Descriptions  
5.3.1 Analog Signals  
Table 5-2. Analog Signals  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
GPIO PIN  
100 PZ PIN  
80 PN PIN  
19  
64 PM PIN  
64 PMQ PIN  
48 PT PIN  
A0  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ADC-A Input 0  
ADC-A Input 1  
ADC-A Input 2  
ADC-A Input 3  
ADC-A Input 4  
ADC-A Input 5  
ADC-A Input 6  
ADC-A Input 7  
ADC-A Input 8  
ADC-A Input 9  
ADC-A Input 10  
ADC-A Input 11  
ADC-A Input 12  
ADC-A Input 14  
ADC-A Input 15  
23  
22  
17  
18  
36  
35  
14  
31  
37  
38  
40  
20  
28  
19  
15  
14  
9
15  
14  
9
11  
10  
6
A1  
18  
A2  
13  
A3  
12  
8
8
5
A4  
27  
23  
13  
6
23  
13  
6
19  
9
A5  
17  
A6  
10  
4
A7  
23  
19  
20  
24  
25  
12  
18  
11  
10  
9
19  
20  
24  
25  
12  
18  
11  
10  
9
15  
16  
20  
21  
8
A8  
24  
A9  
28  
A10  
A11  
A12  
A14  
A15  
29  
16  
22  
14  
15  
14  
7
6
AIO224  
AIO225  
AIO226  
AIO227  
AIO228  
AIO229  
AIO230  
AIO231  
AIO232  
AIO233  
AIO236  
AIO237  
AIO238  
AIO239  
AIO240  
AIO241  
AIO242  
AIO244  
AIO245  
AIO247  
AIO248  
AIO249  
AIO251  
Analog Pin Used For Digital Input  
224  
17  
36  
15  
38  
14  
18  
40  
23  
22  
13  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Analog Pin Used For Digital Input  
225  
27  
11  
28  
10  
23  
7
23  
7
19  
4
Analog Pin Used For Digital Input  
226  
Analog Pin Used For Digital Input  
227  
24  
6
24  
6
20  
4
Analog Pin Used For Digital Input  
228  
Analog Pin Used For Digital Input  
229  
Analog Pin Used For Digital Input  
230  
29  
19  
18  
14  
28  
16  
22  
15  
25  
15  
14  
10  
24  
12  
18  
11  
25  
15  
14  
10  
24  
12  
18  
11  
21  
11  
10  
7
Analog Pin Used For Digital Input  
231  
Analog Pin Used For Digital Input  
232  
Analog Pin Used For Digital Input  
233  
Analog Pin Used For Digital Input  
236  
39  
20  
28  
19  
37  
20  
8
Analog Pin Used For Digital Input  
237  
Analog Pin Used For Digital Input  
238  
14  
Analog Pin Used For Digital Input  
239  
Analog Pin Used For Digital Input  
240  
Analog Pin Used For Digital Input  
241  
24  
12  
17  
23  
20  
8
20  
8
16  
5
Analog Pin Used For Digital Input  
242  
16  
21  
31  
42  
29  
35  
30  
Analog Pin Used For Digital Input  
244  
13  
19  
13  
19  
9
Analog Pin Used For Digital Input  
245  
15  
Analog Pin Used For Digital Input  
247  
Analog Pin Used For Digital Input  
248  
22  
18  
18  
14  
Analog Pin Used For Digital Input  
249  
Analog Pin Used For Digital Input  
251  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 5-2. Analog Signals (continued)  
SIGNAL NAME  
AIO252  
PIN TYPE  
DESCRIPTION  
GPIO PIN  
100 PZ PIN  
80 PN PIN  
64 PM PIN  
64 PMQ PIN  
48 PT PIN  
I
Analog Pin Used For Digital Input  
252  
48  
AIO253  
I
Analog Pin Used For Digital Input  
253  
41  
B0  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ADC-B Input 0  
ADC-B Input 1  
ADC-B Input 2  
ADC-B Input 3  
ADC-B Input 4  
ADC-B Input 5  
ADC-B Input 6  
ADC-B Input 7  
ADC-B Input 8  
ADC-B Input 9  
ADC-B Input 10  
ADC-B Input 11  
ADC-B Input 12  
ADC-B Input 14  
ADC-B Input 15  
ADC-C Input 0  
ADC-C Input 1  
ADC-C Input 2  
ADC-C Input 3  
ADC-C Input 4  
ADC-C Input 5  
ADC-C Input 6  
ADC-C Input 7  
ADC-C Input 8  
ADC-C Input 9  
ADC-C Input 10  
ADC-C Input 11  
ADC-C Input 14  
ADC-C Input 15  
41  
40  
24  
29  
11  
12  
28  
33  
13  
18  
27  
14  
16  
34  
17  
15  
19  
16  
22  
17  
23  
15  
12  
11  
14  
28  
13  
29  
24  
27  
19  
14  
20  
25  
7
20  
25  
7
16  
21  
4
B1  
B2  
15  
B3  
16  
8
8
5
B4  
39  
24  
24  
20  
B5  
32, 48  
17  
B6  
9
9
6
10  
19  
7
B7  
22  
14  
23  
10  
12  
14  
23  
10  
12  
B8  
36  
B9  
18  
B10  
B11  
B12  
B14  
B15  
C0  
20  
8
30, 49  
21  
13  
11  
15  
12  
18  
13  
19  
11  
8
13  
11  
15  
12  
18  
13  
19  
11  
8
9
19  
23  
11  
8
20  
C1  
29  
14  
9
C2  
21  
C3  
31  
15  
C4  
19  
C5  
28  
5
4
C6  
15  
7
7
C7  
18  
10  
24  
9
10  
24  
9
7
C8  
39  
20  
6
C9  
17  
C10  
C11  
C14  
C15  
CMP1_HN0  
40  
25  
20  
23  
15  
10  
25  
20  
23  
15  
10  
21  
16  
19  
11  
7
41  
42  
23  
CMPSS-1 High Comparator Negative  
Input 0  
CMP1_HN1  
CMP1_HP0  
CMP1_HP1  
CMP1_HP2  
CMP1_HP3  
CMP1_HP4  
CMP1_HP5  
CMP1_LN0  
CMP1_LN1  
CMP1_LP0  
CMP1_LP1  
CMP1_LP2  
CMP1_LP3  
I
I
I
I
I
I
I
I
I
I
I
I
I
CMPSS-1 High Comparator Negative  
Input 1  
20  
17  
20  
14  
16  
13  
16  
10  
14  
18  
33  
14  
16  
13  
16  
10  
14  
12  
9
12  
9
8
6
CMPSS-1 High Comparator Positive  
Input 0  
CMPSS-1 High Comparator Positive  
Input 1  
12  
6
12  
6
8
CMPSS-1 High Comparator Positive  
Input 2  
4
CMPSS-1 High Comparator Positive  
Input 3  
10  
14  
10  
14  
7
CMPSS-1 High Comparator Positive  
Input 4  
22  
10  
CMPSS-1 High Comparator Positive  
Input 5  
32, 48  
CMPSS-1 Low Comparator Negative  
Input 0  
10  
12  
9
10  
12  
9
7
8
6
8
4
7
CMPSS-1 Low Comparator Negative  
Input 1  
20  
17  
20  
14  
CMPSS-1 Low Comparator Positive  
Input 0  
CMPSS-1 Low Comparator Positive  
Input 1  
12  
6
12  
6
CMPSS-1 Low Comparator Positive  
Input 2  
CMPSS-1 Low Comparator Positive  
Input 3  
10  
10  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-2. Analog Signals (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
GPIO PIN  
100 PZ PIN  
80 PN PIN  
64 PM PIN  
64 PMQ PIN  
48 PT PIN  
CMP1_LP4  
CMP1_LP5  
CMP2_HN0  
CMP2_HN1  
CMP2_HP0  
CMP2_HP1  
CMP2_HP2  
CMP2_HP3  
CMP2_HP4  
CMP2_HP5  
CMP2_LN0  
CMP2_LN1  
CMP2_LP0  
CMP2_LP1  
CMP2_LP2  
CMP2_LP3  
CMP2_LP4  
CMP2_LP5  
CMP3_HN0  
CMP3_HN1  
CMP3_HP0  
CMP3_HP1  
CMP3_HP2  
CMP3_HP3  
CMP3_HP4  
CMP3_HP5  
CMP3_LN0  
CMP3_LN1  
CMP3_LP0  
CMP3_LP1  
CMP3_LP2  
CMP3_LP3  
CMP3_LP4  
CMP3_LP5  
I
CMPSS-1 Low Comparator Positive  
Input 4  
22  
18  
14  
14  
10  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
CMPSS-1 Low Comparator Positive  
Input 5  
32, 48  
40  
28  
36  
28  
38  
40  
41  
35  
40  
28  
36  
28  
38  
40  
41  
35  
16  
21  
15  
21  
23  
16  
19  
18  
16  
21  
15  
21  
23  
16  
19  
18  
33  
29  
22  
27  
22  
28  
29  
24  
17  
29  
22  
27  
22  
28  
29  
24  
17  
12  
17  
11  
17  
19  
12  
15  
12  
12  
17  
11  
17  
19  
12  
15  
12  
CMPSS-2 High Comparator Negative  
Input 0  
25  
18  
23  
18  
24  
25  
20  
13  
25  
18  
23  
18  
24  
25  
20  
13  
8
25  
18  
23  
18  
24  
25  
20  
13  
25  
18  
23  
18  
24  
25  
20  
13  
8
21  
14  
19  
14  
20  
21  
16  
9
CMPSS-2 High Comparator Negative  
Input 1  
CMPSS-2 High Comparator Positive  
Input 0  
CMPSS-2 High Comparator Positive  
Input 1  
CMPSS-2 High Comparator Positive  
Input 2  
CMPSS-2 High Comparator Positive  
Input 3  
CMPSS-2 High Comparator Positive  
Input 4  
CMPSS-2 High Comparator Positive  
Input 5  
CMPSS-2 Low Comparator Negative  
Input 0  
21  
14  
19  
14  
20  
21  
16  
9
CMPSS-2 Low Comparator Negative  
Input 1  
CMPSS-2 Low Comparator Positive  
Input 0  
CMPSS-2 Low Comparator Positive  
Input 1  
CMPSS-2 Low Comparator Positive  
Input 2  
CMPSS-2 Low Comparator Positive  
Input 3  
CMPSS-2 Low Comparator Positive  
Input 4  
CMPSS-2 Low Comparator Positive  
Input 5  
CMPSS-3 High Comparator Negative  
Input 0  
5
CMPSS-3 High Comparator Negative  
Input 1  
13  
7
13  
7
9
CMPSS-3 High Comparator Positive  
Input 0  
4
CMPSS-3 High Comparator Positive  
Input 1  
13  
15  
8
13  
15  
8
9
CMPSS-3 High Comparator Positive  
Input 2  
11  
5
CMPSS-3 High Comparator Positive  
Input 3  
CMPSS-3 High Comparator Positive  
Input 4  
11  
8
11  
8
CMPSS-3 High Comparator Positive  
Input 5  
5
5
CMPSS-3 Low Comparator Negative  
Input 0  
8
8
CMPSS-3 Low Comparator Negative  
Input 1  
13  
7
13  
7
9
CMPSS-3 Low Comparator Positive  
Input 0  
4
CMPSS-3 Low Comparator Positive  
Input 1  
13  
15  
8
13  
15  
8
9
CMPSS-3 Low Comparator Positive  
Input 2  
11  
5
CMPSS-3 Low Comparator Positive  
Input 3  
CMPSS-3 Low Comparator Positive  
Input 4  
11  
8
11  
8
CMPSS-3 Low Comparator Positive  
Input 5  
5
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 5-2. Analog Signals (continued)  
SIGNAL NAME  
CMP4_HN0  
PIN TYPE  
DESCRIPTION  
GPIO PIN  
100 PZ PIN  
80 PN PIN  
64 PM PIN  
64 PMQ PIN  
48 PT PIN  
I
CMPSS-4 High Comparator Negative  
Input 0  
42  
27  
23  
23  
19  
CMP4_HN1  
CMP4_HP0  
CMP4_HP1  
CMP4_HP2  
CMP4_HP3  
CMP4_HP4  
CMP4_HP5  
CMP4_LN0  
CMP4_LN1  
CMP4_LP0  
CMP4_LP1  
CMP4_LP2  
CMP4_LP3  
CMP4_LP4  
CMP4_LP5  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
CMPSS-4 High Comparator Negative  
Input 1  
31  
39  
23  
28  
23  
22  
27  
24  
34  
27  
23  
28  
23  
22  
27  
24  
34  
19  
24  
19  
18  
23  
20  
19  
24  
19  
18  
23  
20  
15  
20  
15  
14  
19  
16  
CMPSS-4 High Comparator Positive  
Input 0  
CMPSS-4 High Comparator Positive  
Input 1  
31  
CMPSS-4 High Comparator Positive  
Input 2  
29  
CMPSS-4 High Comparator Positive  
Input 3  
42  
CMPSS-4 High Comparator Positive  
Input 4  
37  
CMPSS-4 High Comparator Positive  
Input 5  
30, 49  
42  
CMPSS-4 Low Comparator Negative  
Input 0  
23  
19  
24  
19  
18  
23  
20  
23  
19  
24  
19  
18  
23  
20  
19  
15  
20  
15  
14  
19  
16  
CMPSS-4 Low Comparator Negative  
Input 1  
31  
CMPSS-4 Low Comparator Positive  
Input 0  
39  
CMPSS-4 Low Comparator Positive  
Input 1  
31  
CMPSS-4 Low Comparator Positive  
Input 2  
29  
CMPSS-4 Low Comparator Positive  
Input 3  
42  
CMPSS-4 Low Comparator Positive  
Input 4  
37  
CMPSS-4 Low Comparator Positive  
Input 5  
30, 49  
DACA_OUT  
DACB_OUT  
GPIO20  
O
Buffered DAC-A Output.  
Buffered DAC-B Output.  
General-Purpose Input Output 20  
General-Purpose Input Output 21  
HIC Address 0  
23  
22  
48  
30  
14  
15  
16  
17  
19  
18  
33  
34  
10  
11  
15  
14  
15  
14  
11  
10  
O
I/O  
GPIO21  
I/O  
HIC_A0  
I
I
6
7
6
7
4
4
5
6
7
HIC_A1  
HIC Address 1  
HIC_A2  
I
HIC Address 2  
12  
13  
14  
15  
16  
17  
18  
19  
29  
28  
24  
22  
23  
27  
19  
23  
28  
29  
15  
16  
17  
18  
10, 24  
8
8
HIC_A3  
I
HIC Address 3  
9
9
HIC_A4  
I
HIC Address 4  
10  
11  
12  
13  
14  
15  
25  
24  
20  
18  
19  
23  
15  
19  
24  
25  
11  
12  
13  
14  
20, 6  
10  
11  
12  
13  
14  
15  
25  
24  
20  
18  
19  
23  
15  
19  
24  
25  
11  
12  
13  
14  
20, 6  
HIC_A5  
I
HIC Address 5  
19  
20  
HIC_A6  
I
HIC Address 6  
8
HIC_A7  
I
HIC Address 7  
21  
9
HIC_BASESEL0  
HIC_BASESEL1  
HIC_BASESEL2  
HIC_NBE0  
HIC_NBE1  
HIC_NCS  
HIC_NOE  
HIC_NWE  
SD1_C1  
I
HIC Base address range select 0  
HIC Base address range select 1  
HIC Base address range select 2  
HIC Byte enable 0  
22  
10  
11  
21  
20  
16  
14  
15  
19  
11  
15  
20  
21  
I
23  
I
40  
I
38  
I
HIC Byte enable 1  
37  
I
HIC Chip select input  
28  
O
I
HIC Output enable for data bus  
HIC Data Write enable from host  
SDFM-1 Channel 1 Clock Input  
SDFM-1 Channel 2 Clock Input  
SDFM-1 Channel 3 Clock Input  
SDFM-1 Channel 4 Clock Input  
SDFM-1 Channel 1 Data Input  
SDFM-1 Channel 2 Data Input  
SDFM-1 Channel 3 Data Input  
SDFM-1 Channel 4 Data Input  
SDFM-2 Channel 1 Clock Input  
31  
36  
I
23  
SD1_C2  
I
31  
SD1_C3  
I
38  
SD1_C4  
I
40  
SD1_D1  
I
19  
SD1_D2  
I
20  
8
9
SD1_D3  
I
21  
SD1_D4  
I
22  
10  
SD2_C1  
I
14, 37  
16, 4  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-2. Analog Signals (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
GPIO PIN  
100 PZ PIN  
80 PN PIN  
64 PM PIN  
64 PMQ PIN  
48 PT PIN  
SD2_C2  
SD2_C3  
SD2_C4  
SD2_D1  
SD2_D2  
SD2_D3  
SD2_D4  
VDAC  
I
I
I
I
I
I
I
I
SDFM-2 Channel 2 Clock Input  
SDFM-2 Channel 3 Clock Input  
SDFM-2 Channel 4 Clock Input  
SDFM-2 Channel 1 Data Input  
SDFM-2 Channel 2 Data Input  
SDFM-2 Channel 3 Data Input  
SDFM-2 Channel 4 Data Input  
36  
28  
48  
27  
22  
23  
18  
23  
18  
19  
14  
14  
12  
13  
11  
12  
10  
8
10  
8
7
5
6
4
5
16  
17  
15  
16  
9
9
7
7
Optional external reference voltage  
for on-chip DACs.  
8
8
VREFHI  
I
ADC High Reference. In external  
reference mode, externally drive the  
high reference voltage onto this pin.  
In internal reference mode, a voltage  
is driven onto this pin by the device.  
In either mode, place at least a  
24, 25  
20  
16  
16  
12  
2.2-µF capacitor on this pin. This  
capacitor should be placed as close  
to the device as possible between  
the VREFHI and VREFLO pins.  
VREFLO  
I
ADC Low Reference  
26, 27  
21  
17  
17  
13  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
5.3.2 Digital Signals  
Table 5-3. Digital Signals  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
GPIO PIN  
33, 53, 8  
10, 32, 54  
29  
100 PZ PIN  
12, 53, 74  
13, 64, 93  
100  
80 PN PIN  
38, 58  
49, 76  
3
64 PM PIN  
32, 47  
40, 63  
1
64 PMQ PIN  
32, 47  
40, 63  
1
48 PT PIN  
ADCSOCAO  
ADCSOCBO  
AUXCLKIN  
CANA_RX  
O
O
ADC Start of Conversion A for External ADC  
ADC Start of Conversion B for External ADC  
25  
32  
1
I
CAN-A Receive  
CAN-A Transmit  
12, 18, 3, 30, 33,  
35, 49, 5, 53, 59,  
61  
12, 51, 53, 63, 68,  
76, 8, 89, 91, 92,  
98  
1, 36, 38, 48, 50,  
60, 74  
30, 32, 39, 41, 49, 30, 32, 39, 41, 49,  
61 61  
25, 31, 33, 39, 47  
CANA_TX  
O
13, 17, 19, 2, 31,  
32, 37, 4, 48, 58  
50, 55, 61, 64, 67,  
69, 7, 75, 77, 99  
2, 35, 40, 46, 49,  
51, 59, 61  
29, 34, 37, 40, 42, 29, 34, 37, 40, 42,  
29, 32, 34, 38, 40  
48, 50  
42, 56  
46, 57  
54  
48, 50  
42, 56  
57  
CLB_OUTPUTXBAR1  
CLB_OUTPUTXBAR2  
CLB_OUTPUTXBAR3  
CLB_OUTPUTXBAR4  
CLB_OUTPUTXBAR5  
CLB_OUTPUTXBAR6  
CLB_OUTPUTXBAR7  
CLB_OUTPUTXBAR8  
EPWM1_A  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
CLB Output X-BAR Output 1  
CLB Output X-BAR Output 2  
CLB Output X-BAR Output 3  
CLB Output X-BAR Output 4  
CLB Output X-BAR Output 5  
CLB Output X-BAR Output 6  
CLB Output X-BAR Output 7  
CLB Output X-BAR Output 8  
ePWM-1 Output A  
19, 22  
39, 47, 7  
23, 42, 44  
10, 43, 45  
5, 52, 8  
15, 4, 53  
1, 14, 56  
57, 6  
69, 83  
6, 84  
51, 67  
56, 68  
57, 65, 69  
54, 73, 76  
58, 74  
59, 78  
62, 79  
63, 80  
1, 63  
34  
43  
81, 85  
54  
93  
63  
63  
11, 74, 89  
12, 75, 95  
65, 78, 96  
66, 79, 97  
79, 98  
47, 61  
48  
47, 61  
48  
47  
38  
51  
51  
41  
52, 64  
52  
52, 64  
52  
42, 48  
42  
30  
EPWM1_B  
ePWM-1 Output B  
1, 31  
78, 99  
2, 62  
51  
51  
41  
EPWM2_A  
ePWM-2 Output A  
2, 41  
77, 82  
61, 66  
60, 64  
59, 79  
74, 78  
67, 80  
65, 68  
39, 58  
40, 48, 75  
50, 76  
37, 51  
36, 4  
50, 55  
49, 53  
48  
50, 55  
49, 53  
48  
40  
EPWM2_B  
ePWM-2 Output B  
3, 40  
76, 80  
39  
EPWM3_A  
ePWM-3 Output A  
14, 4  
75, 96  
38  
EPWM3_B  
ePWM-3 Output B  
15, 5  
89, 95  
61  
61  
47  
EPWM4_A  
ePWM-4 Output A  
22, 6  
83, 97  
56, 64  
54, 57  
33, 47  
34, 39, 62  
41, 63  
31, 42  
2, 30  
1, 29  
35  
56, 64  
54, 57  
33, 47  
34, 39, 62  
41, 63  
31, 42  
2, 30  
1, 29  
35  
48  
EPWM4_B  
ePWM-4 Output B  
23, 7  
81, 84  
43  
EPWM5_A  
ePWM-5 Output A  
16, 8  
54, 74  
26  
EPWM5_B  
ePWM-5 Output B  
17, 35, 9  
10, 18  
11, 19  
12, 28  
13, 29  
14, 24  
15, 32  
55, 63, 90  
68, 93  
31  
EPWM6_A  
ePWM-6 Output A  
33  
EPWM6_B  
ePWM-6 Output B  
52, 69  
34  
EPWM7_A  
ePWM-7 Output A  
1, 51  
2
EPWM7_B  
ePWM-7 Output B  
100, 50  
56, 96  
3, 35  
1
EPWM8_A  
ePWM-8 Output A  
41, 79  
49, 78  
27  
EPWM8_B  
ePWM-8 Output B  
64, 95  
40  
40  
32  
EQEP1_A  
eQEP-1 Input A  
10, 20, 25, 28, 35,  
40, 44, 50, 56, 6  
1, 48, 57, 63, 65,  
80, 85, 9, 93, 97  
33, 4, 42, 48, 64,  
69, 76, 80  
2, 39, 53, 63, 64  
2, 39, 53, 63, 64  
2, 31, 48  
EQEP1_B  
I
eQEP-1 Input B  
eQEP-1 Index  
eQEP-1 Strobe  
11, 21, 29, 37, 41, 10, 100, 49, 52, 61, 3, 34, 37, 46, 66,  
1, 31, 37, 55, 57  
1, 31, 37, 55, 57  
29, 34, 52, 54, 62  
30, 33, 47, 56  
1, 29, 43  
42  
51, 57, 7  
66, 82, 84  
68  
EQEP1_INDEX  
EQEP1_STROBE  
I/O  
I/O  
13, 17, 23, 31, 39, 12, 50, 55, 79, 81,  
43, 53, 59, 9 90, 92, 99  
2, 35, 40, 54, 56,  
63, 65, 75  
29, 34, 46, 52, 54,  
62  
12, 16, 22, 30, 42, 11, 51, 54, 67, 74,  
52, 58, 8 83, 98  
1, 36, 39, 57, 58,  
67  
30, 33, 47, 56  
26  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-3. Digital Signals (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
GPIO PIN  
100 PZ PIN  
80 PN PIN  
37, 41, 50, 79  
38, 39, 42, 51, 78  
64 PM PIN  
31, 35, 41  
32, 33, 42  
64 PMQ PIN  
31, 35, 41  
32, 33, 42  
48 PT PIN  
27, 33  
EQEP2_A  
EQEP2_B  
I
I
eQEP-2 Input A  
eQEP-2 Input B  
11, 14, 18, 24, 54  
13, 52, 56, 68, 96  
15, 16, 19, 25, 33, 43, 53, 54, 57, 69,  
25, 26, 34  
55  
95  
EQEP2_INDEX  
EQEP2_STROBE  
ERRORSTS  
I/O  
I/O  
O
eQEP-2 Index  
eQEP-2 Strobe  
26, 29, 39, 57  
27, 28, 4, 56  
24, 28, 29, 55  
100, 58, 66  
1, 59, 65, 75  
1, 100, 43, 56  
3, 43, 56  
4, 44, 59  
3, 4, 41  
1, 46  
2, 48  
1
1
2, 48  
2, 38  
Error Status Output. This signal requires an  
external pulldown.  
1, 2, 35  
1, 2, 35  
1, 2, 27  
FSIRXA_CLK  
FSIRXA_D0  
FSIRXA_D1  
I
I
I
FSIRX-A Input Clock  
13, 30, 33, 39, 4,  
54, 57  
13, 50, 53, 66, 75,  
79, 98  
1, 35, 38, 56, 59,  
63  
29, 32, 46, 48, 52  
30, 40, 49, 53  
31, 50, 55  
29, 32, 48, 52  
30, 40, 49, 53  
31, 50, 55  
25, 38, 42  
32, 39  
40  
FSIRX-A Primary Data Input  
FSIRX-A Optional Additional Data Input  
12, 3, 32, 40, 44,  
52, 58  
11, 51, 64, 67, 76,  
80, 85  
36, 49, 60, 64, 69  
11, 2, 31, 41, 53,  
56  
12, 52, 65, 77, 82,  
99  
2, 37, 61, 66  
FSITXA_CLK  
O
O
O
I
FSITX-A Output Clock  
10, 27, 44, 51, 7  
26, 45, 49, 6, 9  
25, 46, 5, 50, 6, 8  
18, 47, 8  
10, 59, 84, 85, 93  
58, 8, 90, 97  
57, 74, 89, 9, 97  
6, 68, 74  
44, 68, 69, 76  
43, 73, 75, 80  
42, 58, 6, 74, 80  
50, 58  
57, 63  
62, 64  
47, 61, 64  
41, 47  
42, 63  
51  
57, 63  
62, 64  
47, 61, 64  
41, 47  
42, 63  
51  
43  
48  
FSITXA_D0  
FSITX-A Primary Data Output  
FSITXA_D1  
FSITX-A Optional Additional Data Output  
FSITX-A Time Division Multiplexed Clock Input  
FSITX-A Time Division Multiplexed Data Input  
47, 48  
33  
FSITXA_TDM_CLK  
FSITXA_TDM_D0  
FSITXA_TDM_D1  
I
10, 19  
69, 93  
51, 76  
34  
I
FSITX-A Time Division Multiplexed Additional Data  
Input  
1, 54, 59  
13, 78, 92  
62  
41  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
GPIO16  
GPIO17  
GPIO18  
GPIO19  
GPIO20  
GPIO21  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-Purpose Input Output 0  
General-Purpose Input Output 1  
General-Purpose Input Output 2  
General-Purpose Input Output 3  
General-Purpose Input Output 4  
General-Purpose Input Output 5  
General-Purpose Input Output 6  
General-Purpose Input Output 7  
General-Purpose Input Output 8  
General-Purpose Input Output 9  
General-Purpose Input Output 10  
General-Purpose Input Output 11  
General-Purpose Input Output 12  
General-Purpose Input Output 13  
General-Purpose Input Output 14  
General-Purpose Input Output 15  
General-Purpose Input Output 16  
General-Purpose Input Output 17  
General-Purpose Input Output 18  
General-Purpose Input Output 19  
General-Purpose Input Output 20  
General-Purpose Input Output 21  
79  
78  
77  
76  
75  
89  
97  
84  
74  
90  
93  
52  
51  
50  
96  
95  
54  
55  
68  
69  
48  
49  
63  
62  
61  
60  
59  
74  
80  
68  
58  
75  
76  
37  
36  
35  
79  
78  
39  
40  
50  
51  
33  
34  
52  
51  
50  
49  
48  
61  
64  
57  
47  
62  
63  
31  
30  
29  
52  
51  
50  
49  
48  
61  
64  
57  
47  
62  
63  
31  
30  
29  
42  
41  
40  
39  
38  
47  
48  
43  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
33  
34  
41  
42  
33  
34  
41  
42  
26  
33  
34  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 5-3. Digital Signals (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
General-Purpose Input Output 22  
General-Purpose Input Output 23  
General-Purpose Input Output 24  
General-Purpose Input Output 25  
General-Purpose Input Output 26  
General-Purpose Input Output 27  
General-Purpose Input Output 28  
General-Purpose Input Output 29  
General-Purpose Input Output 30  
General-Purpose Input Output 31  
General-Purpose Input Output 32  
General-Purpose Input Output 33  
General-Purpose Input Output 34  
General-Purpose Input Output 35  
General-Purpose Input Output 37  
General-Purpose Input Output 39  
General-Purpose Input Output 40  
General-Purpose Input Output 41  
General-Purpose Input Output 42  
General-Purpose Input Output 43  
General-Purpose Input Output 44  
General-Purpose Input Output 45  
General-Purpose Input Output 46  
General-Purpose Input Output 47  
General-Purpose Input Output 48  
General-Purpose Input Output 49  
General-Purpose Input Output 50  
General-Purpose Input Output 51  
General-Purpose Input Output 52  
General-Purpose Input Output 53  
General-Purpose Input Output 54  
General-Purpose Input Output 55  
General-Purpose Input Output 56  
General-Purpose Input Output 57  
General-Purpose Input Output 58  
General-Purpose Input Output 59  
General-Purpose Input Output 60  
General-Purpose Input Output 61  
HIC Address 0  
GPIO PIN  
100 PZ PIN  
80 PN PIN  
64 PM PIN  
64 PMQ PIN  
48 PT PIN  
GPIO22  
GPIO23  
GPIO24  
GPIO25  
GPIO26  
GPIO27  
GPIO28  
GPIO29  
GPIO30  
GPIO31  
GPIO32  
GPIO33  
GPIO34  
GPIO35  
GPIO37  
GPIO39  
GPIO40  
GPIO41  
GPIO42  
GPIO43  
GPIO44  
GPIO45  
GPIO46  
GPIO47  
GPIO48  
GPIO49  
GPIO50  
GPIO51  
GPIO52  
GPIO53  
GPIO54  
GPIO55  
GPIO56  
GPIO57  
GPIO58  
GPIO59  
GPIO60  
GPIO61  
HIC_A0  
HIC_A1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
22  
83  
81  
56  
57  
58  
59  
1
67  
65  
41  
42  
43  
44  
4
56  
54  
35  
56  
54  
35  
23  
24  
27  
25  
26  
27  
28  
2
1
2
1
2
1
29  
100  
98  
99  
64  
53  
94  
63  
61  
3
30  
1
31  
2
32  
49  
38  
77  
48  
46  
56  
64  
66  
57  
54  
69  
73  
6
40  
32  
40  
32  
32  
25  
33  
34  
35  
39  
37  
46  
53  
55  
39  
37  
31  
29  
37  
39  
40  
80  
82  
53  
55  
41  
42  
43  
44  
85  
45  
46  
47  
6
48  
7
49  
8
9
50  
51  
10  
52  
11  
53  
12  
54  
13  
55  
43  
56  
65  
57  
66  
58  
67  
59  
92  
60  
44  
61  
91  
55, 60, 8  
2, 26  
43, 44, 74  
58, 77  
58  
47  
50  
47  
50  
I
HIC Address 1  
43, 61  
40  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-3. Digital Signals (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
GPIO PIN  
100 PZ PIN  
80 PN PIN  
62  
64 PM PIN  
64 PMQ PIN  
48 PT PIN  
HIC_A2  
I
I
HIC Address 2  
HIC Address 3  
HIC Address 4  
HIC Address 5  
HIC Address 6  
HIC Address 7  
1
78  
51  
51  
41  
HIC_A3  
23  
81  
65  
54  
54  
HIC_A4  
I
27, 41  
22  
59, 82  
83  
44, 66  
67  
55  
55  
HIC_A5  
I
56  
56  
HIC_A6  
I
42, 47, 7  
43, 48, 5  
25, 9  
6, 84  
57, 68  
54, 74  
42, 75  
63  
57  
57  
43  
47  
HIC_A7  
I
7, 89  
61  
61  
HIC_BASESEL0  
HIC_BASESEL1  
HIC_BASESEL2  
HIC_D0  
I
HIC Base address range select 0  
HIC Base address range select 1  
HIC Base address range select 2  
HIC Data 0  
57, 90  
79  
62  
62  
I
52  
52  
42  
38  
25  
26  
I
4
26, 33  
75  
59  
48  
48  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
53, 58  
54, 59  
55, 8  
38, 43  
39, 44  
40, 57  
41, 54  
60, 74  
35, 64, 69  
37, 73  
56, 63, 69  
1, 58  
32  
32  
HIC_D1  
HIC Data 1  
16, 27  
33  
34  
33  
HIC_D2  
HIC Data 2  
17, 42, 49  
24, 43, 50  
3, 5, 57  
13, 40, 44  
11, 45, 51, 56  
39, 44  
34  
HIC_D3  
HIC Data 3  
56, 9  
35  
35  
49, 61  
29, 53  
31  
27  
HIC_D4  
HIC Data 4  
66, 76, 89  
50, 80, 85  
10, 52, 65  
79, 85  
74, 98  
77, 94  
78, 99  
50, 81  
82, 95  
51, 83  
84, 97  
89, 96  
51, 64, 68  
52, 69  
80, 94, 97  
100  
49, 61  
29, 53  
31  
39, 47  
HIC_D5  
HIC Data 5  
HIC_D6  
HIC Data 6  
HIC_D7  
HIC Data 7  
46, 52  
47  
52  
42  
HIC_D8  
HIC Data 8  
30, 8  
47  
HIC_D9  
HIC Data 9  
2, 34  
61, 77  
2, 62  
50  
50  
40  
41  
HIC_D10  
HIC_D11  
HIC_D12  
HIC_D13  
HIC_D14  
HIC_D15  
HIC_INT  
HIC_NBE0  
HIC_NBE1  
HIC_NCS  
HIC_NOE  
HIC_NRDY  
HIC_NWE  
I2CA_SCL  
HIC Data 10  
1, 31  
51  
51  
HIC Data 11  
13, 23  
35, 65  
66, 78  
36, 67  
68, 80  
74, 79  
36, 49, 50  
37, 51  
64, 77, 80  
3
29, 54  
55  
29, 54  
55  
HIC Data 12  
15, 41  
HIC Data 13  
12, 22  
30, 56  
57, 64  
61  
30, 56  
57, 64  
61  
HIC Data 14  
6, 7  
43, 48  
HIC Data 15  
14, 5  
47  
HIC Device interrupt to host  
HIC Byte enable 0  
HIC Byte enable 1  
HIC Chip select input  
HIC Output enable for data bus  
HIC Ready from device to host  
HIC Data Write enable from host  
I2C-A Open-Drain Bidirectional Clock  
12, 18, 32  
11, 19  
30, 40, 41  
31, 42  
53, 64  
1
30, 40, 41  
31, 42  
53, 64  
1
32, 33  
I
34  
I
34, 40, 6  
29  
48  
I
1
2, 39  
O
28, 3  
1, 76  
4, 60  
2, 49  
2, 49  
O
37, 58, 9  
10, 35, 4, 46, 52  
61, 67, 90  
11, 63, 75, 93  
46, 75  
48, 59, 6, 76  
37, 62  
39, 48, 63  
32, 37, 41, 47, 51  
37, 62  
39, 48, 63  
32, 37, 41, 47, 51  
29  
I
31, 38  
I/OD  
1, 18, 27, 33, 37,  
43, 57, 8  
53, 59, 61, 66, 68, 38, 44, 46, 50, 54,  
74, 78 58, 62  
25, 29, 33, 41  
I2CA_SDA  
I/OD  
I2C-A Open-Drain Bidirectional Data  
10, 19, 26, 32, 35, 58, 63, 64, 65, 69, 43, 48, 49, 51, 57,  
39, 40, 42, 52, 63  
39, 40, 42, 52, 63  
31, 32, 34, 42  
42, 56  
79, 93  
63, 76  
I2CB_SCL  
I2CB_SDA  
LINA_RX  
I/OD  
I/OD  
I
I2C-B Open-Drain Bidirectional Clock  
I2C-B Open-Drain Bidirectional Data  
LIN-A Receive  
15, 29, 3, 51, 9  
14, 2, 28, 34, 50  
10, 100, 76, 90, 95  
1, 77, 9, 94, 96  
3, 60, 75, 78  
4, 61, 77, 79  
3, 38, 48, 57, 65  
1, 49, 62  
2, 50  
1, 49, 62  
2, 50  
1, 39  
2, 40  
23, 29, 33, 35, 42,  
47, 49, 59  
100, 53, 6, 63, 8,  
81, 92  
1, 32, 39, 54  
1, 32, 39, 54  
1, 25, 31  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 5-3. Digital Signals (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
GPIO PIN  
100 PZ PIN  
80 PN PIN  
64 PM PIN  
64 PMQ PIN  
48 PT PIN  
LINA_TX  
LINB_RX  
LINB_TX  
MCAN_RX  
MCAN_TX  
O
LIN-A Transmit  
LIN-B Receive  
LIN-B Transmit  
22, 28, 32, 37, 46,  
58  
1, 61, 64, 67, 83  
4, 46, 49, 6, 67  
2, 37, 40, 56  
2, 37, 40, 56  
2, 29, 32  
I
11, 13, 15, 19, 23, 43, 50, 52, 69, 81, 35, 37, 51, 65, 66, 29, 31, 42, 54, 55, 29, 31, 42, 54, 55,  
41, 55, 9 82, 90, 95 75, 78 62 62  
34  
O
I
10, 12, 14, 18, 22, 13, 51, 56, 68, 80, 36, 41, 50, 64, 67, 30, 35, 41, 53, 56, 30, 35, 41, 53, 56,  
24, 40, 44, 54  
27, 33  
42, 47  
38, 41  
83, 85, 93, 96  
69, 76, 79  
63  
63  
CAN/CAN FD Receive  
CAN/CAN FD Transmit  
12, 21, 30, 39, 47,  
5, 51, 57, 61  
10, 49, 51, 6, 66,  
79, 89, 91, 98  
1, 34, 36, 56, 63,  
74  
30, 46, 52, 61  
30, 52, 61  
O
1, 13, 20, 31, 4, 46, 44, 48, 50, 65, 75, 2, 33, 35, 59, 6, 62  
29, 48, 51  
29, 48, 51  
50, 56, 60  
78, 9, 99  
OUTPUTXBAR1  
OUTPUTXBAR2  
OUTPUTXBAR3  
O
O
O
Output X-BAR Output 1  
Output X-BAR Output 2  
Output X-BAR Output 3  
2, 24, 34, 58  
56, 67, 77, 94  
13, 57, 61, 76, 92  
41, 61, 77  
42, 46, 60  
35, 50  
37, 49  
48, 61  
35, 50  
37, 49  
48, 61  
27, 40  
29, 39  
38, 47  
25, 3, 37, 54, 59  
14, 26, 4, 48, 5, 55, 43, 44, 58, 7, 75,  
43, 59, 74, 79  
60  
89, 96  
OUTPUTXBAR4  
O
Output X-BAR Output 4  
15, 27, 33, 49, 6,  
61  
53, 59, 8, 91, 95,  
97  
38, 44, 78, 80  
32, 64  
32, 64  
25, 48  
OUTPUTXBAR5  
OUTPUTXBAR6  
OUTPUTXBAR7  
OUTPUTXBAR8  
PMBUSA_ALERT  
O
O
Output X-BAR Output 5  
28, 42, 7  
29, 43, 9  
1, 84  
100, 90  
4, 57, 68  
3, 54, 75  
2, 57  
1, 62  
2, 57  
1, 62  
2, 43  
1
Output X-BAR Output 6  
O
Output X-BAR Output 7  
11, 16, 30, 44  
17, 31, 45  
52, 54, 85, 98  
55, 99  
1, 37, 39, 69  
2, 40, 73  
31, 33  
34  
31, 33  
34  
26  
O
Output X-BAR Output 8  
I/OD  
PMBus-A Open-Drain Bidirectional Alert Signal  
13, 19, 27, 37, 43,  
45  
50, 59, 61, 69  
35, 44, 46, 51, 54,  
73  
29, 37, 42  
29, 37, 42  
29, 34  
31, 33  
PMBUSA_CTL  
PMBUSA_SCL  
PMBUSA_SDA  
SCIA_RX  
I/O  
I/OD  
I/OD  
I
PMBus-A Control Signal - Slave Input/Master  
Output  
12, 18, 26, 35, 42,  
44  
51, 58, 63, 68, 85  
36, 43, 48, 50, 57,  
69  
30, 39, 41  
30, 39, 41  
PMBus-A Open-Drain Bidirectional Clock  
PMBus-A Open-Drain Bidirectional Data  
SCI-A Receive Data  
15, 16, 24, 3, 35,  
41, 47  
54, 56, 6, 63, 76,  
82, 95  
39, 41, 48, 60, 66,  
78  
33, 35, 39, 49, 55  
34, 40, 50, 53  
33, 35, 39, 49, 55  
34, 40, 50, 53  
26, 27, 31, 39  
32, 40  
14, 17, 2, 25, 32,  
34, 40, 44, 46, 48  
55, 57, 64, 7, 77,  
80, 85, 94, 96  
40, 42, 49, 6, 61,  
64, 69, 77, 79  
17, 25, 28, 3, 35, 1, 55, 57, 63, 76, 8, 4, 40, 42, 48, 60,  
2, 34, 39, 49, 62  
2, 34, 39, 49, 62  
2, 31, 39  
1, 26, 27, 29, 40  
34  
49, 9  
90  
75  
SCIA_TX  
O
SCI-A Transmit Data  
16, 2, 24, 29, 37,  
48, 8  
100, 54, 56, 61, 7,  
74, 77  
3, 39, 41, 46, 58,  
61  
1, 33, 35, 37, 47,  
50  
1, 33, 35, 37, 47,  
50  
SCIB_RX  
I
SCI-B Receive Data  
11, 13, 15, 19, 23, 50, 52, 66, 69, 81, 35, 37, 51, 65, 66,  
41, 57 82, 95 78  
29, 31, 42, 54, 55  
29, 31, 42, 54, 55  
SCIB_TX  
O
SCI-B Transmit Data  
10, 12, 14, 18, 22, 51, 65, 68, 80, 83, 36, 50, 64, 67, 75, 30, 41, 53, 56, 62, 30, 41, 53, 56, 62,  
33  
40, 56, 9  
17, 33, 49, 53  
19, 33, 51, 54  
21, 53, 55  
23, 55, 56  
16, 48  
90, 93, 96  
12, 53, 55, 8  
10, 13, 53, 69  
12, 43, 49  
43, 65, 81  
54, 7  
76, 79  
38, 40  
38, 51  
34  
63  
63  
SD1_C1  
SD1_C2  
SD1_C3  
SD1_C4  
SD1_D1  
SD1_D2  
SD1_D3  
SD1_D4  
SD2_C1  
I
I
I
I
I
I
I
I
I
SDFM-1 Channel 1 Clock Input  
SDFM-1 Channel 2 Clock Input  
SDFM-1 Channel 3 Clock Input  
SDFM-1 Channel 4 Clock Input  
SDFM-1 Channel 1 Data Input  
SDFM-1 Channel 2 Data Input  
SDFM-1 Channel 3 Data Input  
SDFM-1 Channel 4 Data Input  
SDFM-2 Channel 1 Clock Input  
32, 34  
32, 42  
32, 34  
32, 42  
25  
25, 34  
65  
54  
33  
54  
33  
39  
26  
18, 32, 50  
20, 52  
64, 68, 9  
11, 48  
49, 50  
33  
40, 41  
40, 41  
32, 33  
22, 54  
13, 83  
67  
56  
39  
56  
39  
25, 35, 57  
57, 63, 66  
42, 48  
31  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-3. Digital Signals (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
SDFM-2 Channel 2 Clock Input  
SDFM-2 Channel 3 Clock Input  
SDFM-2 Channel 4 Clock Input  
SDFM-2 Channel 1 Data Input  
SDFM-2 Channel 2 Data Input  
SDFM-2 Channel 3 Data Input  
SDFM-2 Channel 4 Data Input  
SPI-A Clock  
GPIO PIN  
100 PZ PIN  
80 PN PIN  
64 PM PIN  
64 PMQ PIN  
48 PT PIN  
SD2_C2  
I
27, 58, 59  
59, 67, 92  
44  
SD2_C3  
I
I
29, 45, 59, 61  
31, 46, 60  
100, 91, 92  
44, 99  
3, 73  
1
35  
2
1
35  
2
1
27  
2
SD2_C4  
2, 6  
41  
SD2_D1  
I
24, 49, 56  
56, 65, 8  
SD2_D2  
I
26, 50, 58  
58, 67, 9  
43  
SD2_D3  
I
28, 43, 51, 60  
30, 47, 52  
1, 10, 44  
4, 54  
SD2_D4  
I
11, 6, 98  
1
SPIA_CLK  
SPIA_SIMO  
SPIA_SOMI  
SPIA_STE  
SPIB_CLK  
I/O  
I/O  
I/O  
I/O  
I/O  
12, 18, 3, 56, 9  
11, 16, 2, 54, 8  
1, 10, 13, 17, 55  
11, 19, 5, 57  
51, 65, 68, 76, 90  
13, 52, 54, 74, 77  
43, 50, 55, 78, 93  
52, 66, 69, 79, 89  
36, 50, 60, 75  
37, 39, 58, 61  
35, 40, 62, 76  
37, 51, 63, 74  
30, 41, 49, 62  
31, 33, 47, 50  
29, 34, 51, 63  
31, 42, 52, 61  
2, 40, 48, 56  
30, 41, 49, 62  
31, 33, 47, 50  
29, 34, 51, 63  
31, 42, 52, 61  
2, 40, 48, 56  
33, 39  
26, 40  
SPI-A Slave In, Master Out (SIMO)  
SPI-A Slave Out, Master In (SOMI)  
SPI-A Slave Transmit Enable (STE)  
SPI-B Clock  
41  
34, 42, 47  
2, 32, 38  
14, 22, 26, 28, 32,  
4, 52, 58  
1, 11, 58, 64, 67,  
75, 83, 96  
4, 43, 49, 59, 67,  
79  
SPIB_SIMO  
SPIB_SOMI  
SPIB_STE  
I/O  
I/O  
I/O  
SPI-B Slave In, Master Out (SIMO)  
SPI-B Slave Out, Master In (SOMI)  
SPI-B Slave Transmit Enable (STE)  
External ePWM Synchronization Pulse  
20, 24, 30, 40, 50, 44, 48, 56, 65, 80,  
56, 60, 7 84, 9, 98  
1, 33, 41, 64, 68  
35, 53, 57  
33, 55, 64  
1, 32, 54  
35, 53, 57  
33, 55, 64  
1, 32, 54  
27, 43  
26, 48  
1, 25  
16, 21, 25, 31, 41, 10, 49, 54, 57, 66,  
51, 57, 6, 61 82, 91, 97, 99  
2, 34, 39, 42, 66,  
80  
15, 23, 27, 29, 33, 100, 12, 53, 59, 81,  
3, 38, 44, 65, 78  
53, 59  
39, 52, 6  
35  
92, 95  
11, 97  
63  
SYNCOUT  
TDI  
O
I
56, 80  
48  
46, 64  
39  
64  
39  
48  
31  
JTAG Test Data Input (TDI) - TDI is the default mux  
selection for the pin. The internal pullup is disabled  
by default. The internal pullup should be enabled or  
an external pullup added on the board if this pin is  
used as JTAG TDI to avoid a floating input.  
TDO  
O
JTAG Test Data Output (TDO) - TDO is the default  
mux selection for the pin. The internal pullup is  
disabled by default. The TDO function will tristate  
when there is no JTAG activity, leaving this pin  
floating; the internal pullup should be enabled or  
an external pullup added on the board to avoid a  
floating GPIO input.  
37  
19  
61  
69  
46  
51  
37  
42  
37  
42  
29  
34  
X1  
I/O  
Crystal oscillator input or single-ended clock input.  
The device initialization software must configure  
this pin before the crystal oscillator is enabled. To  
use this oscillator, a quartz crystal circuit must be  
connected to X1 and X2. This pin can also be used  
to feed a single-ended 3.3-V level clock. See the  
XTAL section for usage details.  
X2  
I/O  
O
Crystal oscillator output.  
18  
68  
50  
41  
41  
33  
XCLKOUT  
External Clock Output. This pin outputs a divided-  
down version of a chosen clock signal from within  
the device.  
16, 18  
54, 68  
39, 50  
33, 41  
33, 41  
26, 33  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
5.3.3 Digital Signals by GPIO  
Table 5-4. Digital Signals by GPIO  
PIN  
SIGNAL NAME  
TYPE  
DESCRIPTION  
100 PZ  
80 PN  
64 PM  
64 PMQ  
48 PT  
GPIO8  
GPIO33  
GPIO53  
ADC Start of Conversion A for External  
ADC  
GPIO8  
GPIO8  
GPIO8  
ADCSOCAO  
O
O
GPIO33  
GPIO33 GPIO33 GPIO33  
GPIO10  
GPIO32  
GPIO54  
ADC Start of Conversion B for External  
ADC  
GPIO10 GPIO10 GPIO10  
GPIO32 GPIO32 GPIO32  
ADCSOCBO  
AUXCLKIN  
GPIO32  
GPIO29 GPIO29 GPIO29 GPIO29 GPIO29  
GPIO3  
GPIO5  
GPIO12  
GPIO18  
GPIO30 GPIO12  
GPIO33 GPIO18  
GPIO35/ GPIO30  
GPIO3  
GPIO5  
GPIO3  
GPIO5  
GPIO12 GPIO12  
GPIO18 GPIO18  
GPIO33 GPIO33  
GPIO35/ GPIO35/  
GPIO3  
GPIO5  
GPIO3  
GPIO5  
GPIO18  
GPIO33  
GPIO35/  
TDI  
CANA_RX  
I
CAN-A Receive  
TDI  
GPIO33  
GPIO49 GPIO35/  
TDI  
TDI  
GPIO53  
GPIO59  
GPIO61  
TDI  
GPIO2  
GPIO4  
GPIO13  
GPIO17 GPIO13  
GPIO19 GPIO17  
GPIO31 GPIO19  
GPIO32 GPIO31  
GPIO37/ GPIO32  
GPIO2  
GPIO4  
GPIO2  
GPIO4  
GPIO13 GPIO13  
GPIO17 GPIO17 GPIO19  
GPIO19 GPIO19 GPIO32  
GPIO32 GPIO32 GPIO37/  
GPIO37/ GPIO37/  
TDO TDO  
GPIO2  
GPIO4  
GPIO2  
GPIO4  
CANA_TX  
O
CAN-A Transmit  
TDO  
TDO  
GPIO48  
GPIO58  
GPIO37/  
TDO  
GPIO19 GPIO19 GPIO19 GPIO19  
GPIO22 GPIO22 GPIO22 GPIO22  
CLB_OUTPUTXBAR1  
CLB_OUTPUTXBAR2  
O
O
CLB Output X-BAR Output 1  
CLB Output X-BAR Output 2  
GPIO19  
GPIO7  
GPIO7  
GPIO7  
GPIO7  
GPIO7  
GPIO47 GPIO39 GPIO39  
GPIO23  
GPIO23  
GPIO44  
CLB_OUTPUTXBAR3  
CLB_OUTPUTXBAR4  
CLB_OUTPUTXBAR5  
CLB_OUTPUTXBAR6  
CLB_OUTPUTXBAR7  
CLB_OUTPUTXBAR8  
O
O
O
O
O
O
CLB Output X-BAR Output 3  
CLB Output X-BAR Output 4  
CLB Output X-BAR Output 5  
CLB Output X-BAR Output 6  
CLB Output X-BAR Output 7  
CLB Output X-BAR Output 8  
GPIO42 GPIO23 GPIO23  
GPIO44  
GPIO10  
GPIO10 GPIO43 GPIO10 GPIO10  
GPIO45  
GPIO5  
GPIO8  
GPIO52  
GPIO5  
GPIO8  
GPIO5  
GPIO8  
GPIO5  
GPIO8  
GPIO5  
GPIO4  
GPIO1  
GPIO4  
GPIO15  
GPIO53  
GPIO4  
GPIO15  
GPIO4  
GPIO1  
GPIO4  
GPIO1  
GPIO1  
GPIO14  
GPIO56  
GPIO1  
GPIO14  
GPIO0  
GPIO6  
GPIO57  
GPIO0  
GPIO6  
GPIO0  
GPIO6  
GPIO0  
GPIO6  
GPIO0  
GPIO6  
GPIO0  
GPIO0  
EPWM1_A  
EPWM1_B  
O
O
ePWM-1 Output A  
ePWM-1 Output B  
GPIO0  
GPIO1  
GPIO0  
GPIO1  
GPIO0  
GPIO1  
GPIO30 GPIO30  
GPIO1 GPIO1  
GPIO31 GPIO31  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-4. Digital Signals by GPIO (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
100 PZ  
80 PN  
64 PM  
64 PMQ  
48 PT  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO16  
GPIO2  
GPIO2  
GPIO2  
GPIO2  
EPWM2_A  
EPWM2_B  
EPWM3_A  
EPWM3_B  
EPWM4_A  
EPWM4_B  
EPWM5_A  
O
O
O
O
O
O
O
ePWM-2 Output A  
GPIO41 GPIO41 GPIO41 GPIO41  
GPIO3 GPIO3 GPIO3 GPIO3  
GPIO40 GPIO40 GPIO40 GPIO40  
ePWM-2 Output B  
ePWM-3 Output A  
ePWM-3 Output B  
ePWM-4 Output A  
ePWM-4 Output B  
ePWM-5 Output A  
GPIO4  
GPIO14 GPIO14  
GPIO4  
GPIO4  
GPIO4  
GPIO5 GPIO5  
GPIO15 GPIO15  
GPIO6 GPIO6  
GPIO22 GPIO22 GPIO22 GPIO22  
GPIO7 GPIO7 GPIO7 GPIO7  
GPIO23 GPIO23 GPIO23 GPIO23  
GPIO8 GPIO8 GPIO8 GPIO8  
GPIO16 GPIO16 GPIO16 GPIO16  
GPIO9 GPIO9 GPIO9 GPIO9  
GPIO17 GPIO17 GPIO17 GPIO17 GPIO35/  
GPIO5  
GPIO6  
GPIO5  
GPIO6  
EPWM5_B  
O
ePWM-5 Output B  
GPIO35/ GPIO35/ GPIO35/ GPIO35/  
TDI TDI TDI TDI  
TDI  
GPIO10 GPIO10 GPIO10 GPIO10  
GPIO18 GPIO18 GPIO18 GPIO18  
EPWM6_A  
EPWM6_B  
EPWM7_A  
EPWM7_B  
EPWM8_A  
EPWM8_B  
O
O
O
O
O
O
ePWM-6 Output A  
ePWM-6 Output B  
ePWM-7 Output A  
ePWM-7 Output B  
ePWM-8 Output A  
ePWM-8 Output B  
GPIO18  
GPIO19  
GPIO28  
GPIO29  
GPIO11 GPIO11 GPIO11 GPIO11  
GPIO19 GPIO19 GPIO19 GPIO19  
GPIO12 GPIO12 GPIO12 GPIO12  
GPIO28 GPIO28 GPIO28 GPIO28  
GPIO13 GPIO13 GPIO13 GPIO13  
GPIO29 GPIO29 GPIO29 GPIO29  
GPIO14 GPIO14  
GPIO24 GPIO24  
GPIO24 GPIO24 GPIO24  
GPIO32 GPIO32 GPIO32  
GPIO15 GPIO15  
GPIO32 GPIO32  
GPIO6  
GPIO10  
GPIO6  
GPIO20 GPIO10  
GPIO25 GPIO20  
GPIO28 GPIO25  
GPIO35/ GPIO28  
GPIO6  
GPIO10 GPIO10  
GPIO28 GPIO28 GPIO28  
GPIO35/ GPIO35/ GPIO35/  
TDI  
GPIO6  
GPIO6  
EQEP1_A  
I
eQEP-1 Input A  
TDI  
GPIO40  
GPIO35/  
TDI  
TDI  
TDI  
GPIO40 GPIO40  
GPIO44 GPIO40  
GPIO50 GPIO44  
GPIO56  
GPIO7  
GPIO11  
GPIO7  
GPIO7  
GPIO11 GPIO11  
GPIO29 GPIO29 GPIO29  
GPIO37/ GPIO37/ GPIO37/  
TDO  
GPIO7  
GPIO21 GPIO11  
GPIO29 GPIO21  
GPIO37/ GPIO29  
TDO  
GPIO41  
GPIO7  
EQEP1_B  
I
eQEP-1 Input B  
GPIO37/  
TDO  
TDO  
TDO  
GPIO41 GPIO41  
GPIO51 GPIO41  
GPIO57  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
48 PT  
SPRSP61 – OCTOBER 2021  
Table 5-4. Digital Signals by GPIO (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
100 PZ  
80 PN  
64 PM  
64 PMQ  
GPIO0  
GPIO9  
GPIO13 GPIO13  
GPIO17 GPIO17 GPIO13  
GPIO23 GPIO23 GPIO17  
GPIO31 GPIO31 GPIO23  
GPIO53 GPIO39 GPIO39  
GPIO59 GPIO43  
GPIO0  
GPIO9  
GPIO0  
GPIO9  
GPIO0  
GPIO9  
GPIO13  
GPIO17  
GPIO23  
EQEP1_INDEX  
I/O  
I/O  
eQEP-1 Index  
GPIO0  
GPIO8  
GPIO8  
GPIO12  
GPIO12  
GPIO8  
GPIO8  
GPIO16  
GPIO22  
GPIO30  
GPIO52  
GPIO58  
GPIO16 GPIO12 GPIO12  
GPIO22 GPIO16 GPIO16  
GPIO30 GPIO22 GPIO22  
GPIO42  
EQEP1_STROBE  
eQEP-1 Strobe  
GPIO16  
GPIO11  
GPIO14  
GPIO18  
GPIO24  
GPIO54  
GPIO11  
GPIO11 GPIO11  
GPIO14  
GPIO18  
GPIO24  
EQEP2_A  
EQEP2_B  
I
I
eQEP-2 Input A  
eQEP-2 Input B  
GPIO18 GPIO18  
GPIO18  
GPIO24 GPIO24  
GPIO24  
GPIO15  
GPIO16  
GPIO19  
GPIO25  
GPIO33  
GPIO55  
GPIO15  
GPIO16 GPIO16 GPIO16 GPIO16  
GPIO19 GPIO19 GPIO19 GPIO19  
GPIO25 GPIO33 GPIO33 GPIO33  
GPIO33  
GPIO26 GPIO26  
GPIO29 GPIO29  
GPIO57 GPIO39  
GPIO29  
GPIO39  
EQEP2_INDEX  
I/O  
I/O  
eQEP-2 Index  
GPIO29 GPIO29  
GPIO4  
GPIO4  
GPIO27  
GPIO27  
GPIO28  
GPIO28  
GPIO56  
GPIO4  
GPIO4  
GPIO4  
EQEP2_STROBE  
eQEP-2 Strobe  
GPIO28 GPIO28 GPIO28  
GPIO24  
GPIO24 GPIO24 GPIO24 GPIO24  
GPIO28 GPIO28 GPIO28 GPIO28  
GPIO29 GPIO29 GPIO29 GPIO29  
Error Status Output. This signal requires an GPIO28  
ERRORSTS  
O
external pulldown.  
GPIO29  
GPIO55  
GPIO0  
GPIO4  
GPIO0  
GPIO0  
GPIO4  
GPIO13  
GPIO30  
GPIO33  
GPIO39  
GPIO0  
GPIO4  
GPIO13  
GPIO33  
GPIO13  
GPIO30  
GPIO33  
GPIO54  
GPIO57  
GPIO4  
GPIO13  
GPIO33  
GPIO39  
GPIO0  
GPIO4  
GPIO33  
FSIRXA_CLK  
I
FSIRX-A Input Clock  
GPIO3  
GPIO12  
GPIO3  
GPIO3  
GPIO12 GPIO12  
GPIO32 GPIO32 GPIO32  
GPIO40 GPIO40  
GPIO3  
GPIO32 GPIO12  
GPIO40 GPIO32  
GPIO44 GPIO40  
GPIO52 GPIO44  
GPIO58  
GPIO3  
FSIRXA_D0  
FSIRXA_D1  
I
I
FSIRX-A Primary Data Input  
GPIO2  
GPIO11  
GPIO31 GPIO11  
GPIO41 GPIO31  
GPIO53 GPIO41  
GPIO56  
GPIO2  
GPIO2  
GPIO11 GPIO11  
GPIO41 GPIO41  
GPIO2  
FSIRX-A Optional Additional Data Input  
GPIO2  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-4. Digital Signals by GPIO (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
100 PZ  
80 PN  
64 PM  
64 PMQ  
48 PT  
GPIO7  
GPIO10  
GPIO27  
GPIO44  
GPIO51  
GPIO7  
GPIO10  
GPIO27 GPIO10 GPIO10  
GPIO44  
GPIO7  
GPIO7  
FSITXA_CLK  
FSITXA_D0  
FSITXA_D1  
O
O
O
FSITX-A Output Clock  
GPIO7  
GPIO6  
GPIO9  
GPIO26 GPIO26  
GPIO49 GPIO45  
GPIO6  
GPIO9  
GPIO6  
GPIO9  
GPIO6  
GPIO9  
FSITX-A Primary Data Output  
GPIO6  
GPIO5  
GPIO6  
GPIO8  
GPIO25 GPIO25  
GPIO50 GPIO46  
GPIO5  
GPIO6  
GPIO8  
GPIO5  
GPIO6  
GPIO8  
GPIO5  
GPIO6  
GPIO8  
GPIO5  
GPIO6  
FSITX-A Optional Additional Data Output  
GPIO8  
GPIO8  
GPIO18  
GPIO47  
FSITX-A Time Division Multiplexed Clock  
Input  
GPIO8  
GPIO8  
FSITXA_TDM_CLK  
FSITXA_TDM_D0  
FSITXA_TDM_D1  
I
I
I
GPIO18  
GPIO19  
GPIO1  
GPIO18 GPIO18 GPIO18  
FSITX-A Time Division Multiplexed Data  
Input  
GPIO10 GPIO10 GPIO10 GPIO10  
GPIO19 GPIO19 GPIO19 GPIO19  
GPIO1  
FSITX-A Time Division Multiplexed  
Additional Data Input  
GPIO54  
GPIO59  
GPIO1  
GPIO1  
GPIO1  
GPIO8  
GPIO55  
GPIO60  
A6  
GPIO8  
A6  
GPIO8  
A6  
GPIO8  
A6  
HIC_A0  
HIC_A1  
I
I
HIC Address 0  
HIC Address 1  
A6  
GPIO2  
GPIO26 GPIO26  
B2/C6  
GPIO2  
GPIO2  
B2/C6  
GPIO2  
B2/C6  
GPIO2  
B2/C6  
B2/C6  
GPIO1  
GPIO1  
GPIO1  
GPIO1  
GPIO1  
HIC_A2  
HIC_A3  
I
I
HIC Address 2  
HIC Address 3  
B3/VDAC B3/VDAC B3/VDAC B3/VDAC B3/VDAC  
GPIO23 GPIO23 GPIO23 GPIO23  
A2/B6/C9  
A2/B6/C9 A2/B6/C9 A2/B6/C9 A2/B6/C9  
GPIO27  
GPIO41  
A15  
GPIO27  
GPIO41  
GPIO41 GPIO41  
A15 A15  
HIC_A4  
HIC_A5  
I
I
HIC Address 4  
HIC Address 5  
A15  
GPIO22 GPIO22 GPIO22 GPIO22  
A14/B14/ A14/B14/ A14/B14/ A14/B14/  
C4  
C4  
C4  
C4  
GPIO7  
GPIO47 GPIO42  
A11/B10/ A11/B10/  
GPIO7  
GPIO7  
GPIO7  
GPIO7  
HIC_A6  
HIC_A7  
I
I
HIC Address 6  
HIC Address 7  
A11/B10/ A11/B10/ A11/B10/  
C0  
C0  
C0  
C0  
C0  
GPIO5  
GPIO48 GPIO43  
C2/B12  
GPIO5  
GPIO5  
C2/B12  
GPIO5  
C2/B12  
GPIO5  
C2/B12  
C2/B12  
GPIO9  
GPIO9  
GPIO9  
A1/B7/  
DACB_O DACB_O  
GPIO9  
A1/B7/  
GPIO25 GPIO25  
A1/B7/ A1/B7/  
DACB_O DACB_O  
A1/B7/  
DACB_O  
UT  
HIC_BASESEL0  
HIC_BASESEL1  
I
I
HIC Base address range select 0  
HIC Base address range select 1  
UT  
UT  
UT  
UT  
GPIO0  
GPIO0  
GPIO0  
GPIO0  
GPIO0  
A0/B15/C A0/B15/C A0/B15/C A0/B15/C A0/B15/C  
15/ 15/ 15/ 15/ 15/  
DACA_O DACA_O DACA_O DACA_O DACA_O  
UT UT UT UT UT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 5-4. Digital Signals by GPIO (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
100 PZ  
80 PN  
64 PM  
64 PMQ  
48 PT  
GPIO4  
GPIO4  
GPIO4  
GPIO4  
GPIO4  
HIC_BASESEL2  
I
HIC Base address range select 2  
A10/B1/C A10/B1/C A10/B1/C A10/B1/C A10/B1/C  
10 10 10 10 10  
GPIO26 GPIO26  
GPIO33 GPIO33  
HIC_D0  
HIC_D1  
HIC_D10  
HIC_D11  
HIC_D12  
HIC_D13  
HIC_D14  
HIC_D15  
HIC_D2  
HIC_D3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
HIC Data 0  
HIC Data 1  
HIC Data 10  
HIC Data 11  
HIC Data 12  
HIC Data 13  
HIC Data 14  
HIC Data 15  
HIC Data 2  
HIC Data 3  
GPIO33 GPIO33 GPIO33  
GPIO16 GPIO16 GPIO16  
GPIO16 GPIO16  
GPIO27 GPIO27  
GPIO1  
GPIO1  
GPIO1  
GPIO1  
GPIO1  
GPIO31 GPIO31  
GPIO13 GPIO13 GPIO13 GPIO13  
GPIO23 GPIO23 GPIO23 GPIO23  
GPIO15 GPIO15  
GPIO41 GPIO41  
GPIO41 GPIO41  
GPIO12 GPIO12 GPIO12 GPIO12  
GPIO22 GPIO22 GPIO22 GPIO22  
GPIO6  
GPIO7  
GPIO6  
GPIO7  
GPIO6  
GPIO7  
GPIO6  
GPIO7  
GPIO6  
GPIO7  
GPIO5  
GPIO5  
GPIO5  
GPIO5  
GPIO5  
GPIO14 GPIO14  
GPIO17 GPIO17  
GPIO49 GPIO42  
GPIO17 GPIO17  
GPIO24 GPIO24 GPIO24  
GPIO24 GPIO24  
GPIO50 GPIO43  
GPIO3  
GPIO3  
GPIO5  
GPIO5  
GPIO57  
GPIO3  
GPIO5  
GPIO3  
GPIO5  
GPIO3  
GPIO5  
HIC_D4  
HIC_D5  
HIC_D6  
HIC_D7  
I/O  
I/O  
I/O  
I/O  
HIC Data 4  
HIC Data 5  
HIC Data 6  
HIC Data 7  
GPIO13 GPIO13  
GPIO40 GPIO40  
GPIO44 GPIO44  
GPIO13 GPIO13  
GPIO40 GPIO40  
GPIO11  
GPIO11  
GPIO51  
GPIO45  
GPIO56  
GPIO11 GPIO11  
GPIO0  
GPIO0  
GPIO0  
GPIO0  
GPIO39  
GPIO39  
GPIO44  
GPIO0  
GPIO2  
GPIO44  
GPIO8  
GPIO8  
HIC_D8  
HIC_D9  
I/O  
I/O  
HIC Data 8  
HIC Data 9  
GPIO8  
GPIO2  
GPIO8  
GPIO2  
GPIO30 GPIO30  
GPIO2 GPIO2  
GPIO34 GPIO34  
GPIO12 GPIO12 GPIO12 GPIO12  
GPIO18 GPIO18 GPIO18 GPIO18  
GPIO32 GPIO32 GPIO32 GPIO32  
GPIO18  
GPIO32  
HIC_INT  
O
I
HIC Device interrupt to host  
HIC Byte enable 0  
GPIO11 GPIO11 GPIO11 GPIO11  
GPIO19 GPIO19 GPIO19 GPIO19  
GPIO19  
A9  
HIC_NBE0  
A9  
A9  
A9  
A9  
GPIO6  
GPIO34 GPIO34  
GPIO40 GPIO40  
GPIO6  
GPIO6  
GPIO40 GPIO40  
A8 A8  
GPIO6  
GPIO6  
A8  
HIC_NBE1  
I
HIC Byte enable 1  
A8  
A8  
GPIO29 GPIO29 GPIO29 GPIO29 GPIO29  
HIC_NCS  
HIC_NOE  
I
HIC Chip select input  
A12  
A12  
A12  
A12  
A12  
GPIO3  
GPIO3  
GPIO3  
GPIO3  
GPIO3  
O
HIC Output enable for data bus  
GPIO28 GPIO28 GPIO28 GPIO28 GPIO28  
C3/A7 C3/A7 C3/A7 C3/A7 C3/A7  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-4. Digital Signals by GPIO (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
100 PZ  
80 PN  
64 PM  
64 PMQ  
48 PT  
GPIO9  
GPIO37/  
TDO  
GPIO9  
GPIO9  
GPIO9  
GPIO37/  
TDO  
HIC_NRDY  
HIC_NWE  
O
HIC Ready from device to host  
GPIO37/ GPIO37/ GPIO37/  
TDO  
TDO  
TDO  
GPIO58  
GPIO4  
GPIO10 GPIO10  
GPIO35/ GPIO35/  
GPIO4  
GPIO4  
GPIO10 GPIO10  
GPIO35/ GPIO35/  
TDI  
A4/B8  
GPIO4  
GPIO4  
GPIO35/  
TDI  
I
HIC Data Write enable from host  
TDI  
TDI  
TDI  
A4/B8  
GPIO52 GPIO46  
A4/B8  
A4/B8  
A4/B8  
GPIO1  
GPIO8  
GPIO18 GPIO18  
GPIO27 GPIO27 GPIO18 GPIO18  
GPIO33 GPIO33 GPIO33 GPIO33  
GPIO37/ GPIO37/ GPIO37/ GPIO37/  
GPIO1  
GPIO8  
GPIO1  
GPIO8  
GPIO1  
GPIO8  
GPIO1  
GPIO18  
GPIO33  
GPIO37/  
TDO  
I2CA_SCL  
I/OD  
I2C-A Open-Drain Bidirectional Clock  
TDO  
TDO  
TDO  
TDO  
GPIO57 GPIO43  
GPIO0 GPIO0  
GPIO10 GPIO10  
GPIO19 GPIO19 GPIO10 GPIO10  
GPIO26 GPIO26 GPIO19 GPIO19  
GPIO32 GPIO32 GPIO32 GPIO32  
GPIO35/ GPIO35/ GPIO35/ GPIO35/  
GPIO0  
GPIO0  
GPIO0  
GPIO19  
GPIO32  
GPIO35/  
TDI  
I2CA_SDA  
I/OD  
I2C-A Open-Drain Bidirectional Data  
TDI  
TDI  
TDI  
TDI  
GPIO56 GPIO42  
GPIO3  
GPIO3  
GPIO9  
GPIO3  
GPIO9  
GPIO29 GPIO29  
GPIO3  
GPIO9  
GPIO9  
GPIO3  
GPIO29  
I2CB_SCL  
I2CB_SDA  
I/OD  
I/OD  
I2C-B Open-Drain Bidirectional Clock  
I2C-B Open-Drain Bidirectional Data  
GPIO15  
GPIO15  
GPIO29  
GPIO29  
GPIO51  
GPIO2  
GPIO2  
GPIO14  
GPIO14  
GPIO28  
GPIO2  
GPIO2  
GPIO2  
GPIO28 GPIO28 GPIO28 GPIO28  
GPIO34  
GPIO34  
GPIO50  
GPIO23  
GPIO29 GPIO23  
GPIO33 GPIO29  
GPIO35/ GPIO33  
GPIO23 GPIO23  
GPIO29 GPIO29  
GPIO33 GPIO33  
GPIO35/ GPIO35/  
GPIO29  
GPIO33  
GPIO35/  
TDI  
LINA_RX  
LINA_TX  
LINB_RX  
I
O
I
LIN-A Receive  
LIN-A Transmit  
LIN-B Receive  
TDI  
GPIO47  
GPIO35/  
TDI  
TDI  
TDI  
GPIO49 GPIO42  
GPIO59  
GPIO22 GPIO22  
GPIO28 GPIO28  
GPIO32 GPIO32  
GPIO37/ GPIO37/  
GPIO22 GPIO22  
GPIO28 GPIO28  
GPIO32 GPIO32  
GPIO37/ GPIO37/  
GPIO28  
GPIO32  
GPIO37/  
TDO  
TDO  
TDO  
TDO  
TDO  
GPIO58 GPIO46  
GPIO9  
GPIO9  
GPIO11  
GPIO11  
GPIO13  
GPIO13  
GPIO15  
GPIO15  
GPIO19  
GPIO19  
GPIO23  
GPIO23  
GPIO41  
GPIO41  
GPIO55  
GPIO9  
GPIO9  
GPIO11 GPIO11  
GPIO13 GPIO13  
GPIO19 GPIO19  
GPIO23 GPIO23  
GPIO41 GPIO41  
GPIO19  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
64 PMQ 48 PT  
SPRSP61 – OCTOBER 2021  
Table 5-4. Digital Signals by GPIO (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
100 PZ  
80 PN  
64 PM  
GPIO10  
GPIO12  
GPIO14  
GPIO18  
GPIO22  
GPIO24  
GPIO40  
GPIO44  
GPIO54  
GPIO10  
GPIO12 GPIO10 GPIO10  
GPIO14 GPIO12 GPIO12  
GPIO18 GPIO18 GPIO18 GPIO18  
GPIO22 GPIO22 GPIO22 GPIO24  
GPIO24 GPIO24 GPIO24  
GPIO40 GPIO40 GPIO40  
GPIO44  
LINB_TX  
O
LIN-B Transmit  
GPIO0  
GPIO5  
GPIO0  
GPIO5  
GPIO12  
GPIO21 GPIO12  
GPIO30 GPIO39  
GPIO39  
GPIO12  
GPIO21  
GPIO30  
GPIO47  
GPIO51  
GPIO57  
GPIO61  
GPIO0  
GPIO5  
GPIO0  
GPIO5  
GPIO12  
GPIO0  
GPIO5  
MCAN_RX  
I
CAN/CAN FD Receive  
GPIO1  
GPIO4  
GPIO13  
GPIO20 GPIO13  
GPIO31 GPIO20  
GPIO50 GPIO31  
GPIO56 GPIO46  
GPIO60  
GPIO1  
GPIO4  
GPIO1  
GPIO4  
GPIO13 GPIO13  
GPIO1  
GPIO4  
GPIO1  
GPIO4  
MCAN_TX  
O
CAN/CAN FD Transmit  
GPIO2  
GPIO2  
GPIO24  
GPIO24  
GPIO34  
GPIO34  
GPIO58  
GPIO2  
GPIO2  
GPIO2  
OUTPUTXBAR1  
OUTPUTXBAR2  
O
O
Output X-BAR Output 1  
Output X-BAR Output 2  
GPIO24 GPIO24 GPIO24  
GPIO3  
GPIO25  
GPIO37/ GPIO25  
TDO  
GPIO54  
GPIO59  
GPIO3  
GPIO3  
GPIO3  
GPIO3  
GPIO37/ GPIO37/ GPIO37/  
TDO  
GPIO37/  
TDO  
TDO  
TDO  
GPIO4  
GPIO5  
GPIO4  
GPIO5  
GPIO14  
GPIO26  
GPIO14  
GPIO26  
GPIO48  
GPIO55  
GPIO60  
GPIO4  
GPIO5  
GPIO4  
GPIO5  
GPIO4  
GPIO5  
OUTPUTXBAR3  
OUTPUTXBAR4  
O
O
Output X-BAR Output 3  
Output X-BAR Output 4  
GPIO6  
GPIO15  
GPIO27 GPIO15  
GPIO6  
GPIO6  
GPIO6  
GPIO6  
GPIO33 GPIO27 GPIO33 GPIO33 GPIO33  
GPIO49 GPIO33  
GPIO61  
GPIO7  
GPIO28  
GPIO42  
GPIO7  
GPIO28  
GPIO7  
GPIO7  
GPIO7  
OUTPUTXBAR5  
OUTPUTXBAR6  
O
O
Output X-BAR Output 5  
Output X-BAR Output 6  
GPIO28 GPIO28 GPIO28  
GPIO9  
GPIO29  
GPIO43  
GPIO9  
GPIO29  
GPIO9  
GPIO29 GPIO29  
GPIO9  
GPIO29  
GPIO16  
GPIO11 GPIO11  
GPIO16 GPIO16 GPIO11 GPIO11  
GPIO30 GPIO30 GPIO16 GPIO16  
GPIO44 GPIO44  
OUTPUTXBAR7  
O
Output X-BAR Output 7  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-4. Digital Signals by GPIO (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
100 PZ  
80 PN  
64 PM  
64 PMQ  
48 PT  
GPIO17  
GPIO31 GPIO17 GPIO17  
GPIO45  
GPIO17  
GPIO31  
OUTPUTXBAR8  
O
Output X-BAR Output 8  
GPIO13  
GPIO13 GPIO19  
GPIO19 GPIO27  
GPIO27 GPIO37/  
GPIO13 GPIO13  
GPIO19 GPIO19  
GPIO37/ GPIO37/  
GPIO19  
GPIO37/  
TDO  
PMBus-A Open-Drain Bidirectional Alert  
Signal  
PMBUSA_ALERT  
I/OD  
GPIO37/  
TDO  
TDO  
GPIO43  
GPIO45  
TDO  
TDO  
GPIO12  
GPIO18  
GPIO26  
GPIO35/  
TDI  
GPIO12  
GPIO18  
GPIO26  
GPIO35/  
TDI  
GPIO12 GPIO12  
GPIO18 GPIO18  
GPIO35/ GPIO35/  
GPIO18  
GPIO35/  
TDI  
PMBus-A Control Signal - Slave Input/  
Master Output  
PMBUSA_CTL  
PMBUSA_SCL  
I/O  
TDI  
TDI  
GPIO42  
GPIO44  
GPIO44  
GPIO3  
GPIO15  
GPIO16  
GPIO24  
GPIO35/  
TDI  
GPIO3  
GPIO15  
GPIO16  
GPIO24  
GPIO35/  
TDI  
GPIO3  
GPIO3  
GPIO3  
GPIO16  
GPIO24  
GPIO35/  
TDI  
GPIO16 GPIO16  
GPIO24 GPIO24  
GPIO35/ GPIO35/  
I/OD  
PMBus-A Open-Drain Bidirectional Clock  
PMBus-A Open-Drain Bidirectional Data  
SCI-A Receive Data  
TDI  
TDI  
GPIO41  
GPIO47  
GPIO41 GPIO41  
GPIO41  
GPIO2  
GPIO2  
GPIO14 GPIO14  
GPIO17 GPIO17  
GPIO25 GPIO25  
GPIO32 GPIO32  
GPIO34 GPIO34  
GPIO40 GPIO40  
GPIO44 GPIO44  
GPIO48 GPIO46  
GPIO2  
GPIO2  
GPIO17 GPIO17  
GPIO32 GPIO32 GPIO32  
GPIO40 GPIO40  
GPIO2  
PMBUSA_SDA  
I/OD  
GPIO3  
GPIO3  
GPIO9  
GPIO9  
GPIO17  
GPIO17  
GPIO25  
GPIO25  
GPIO28  
GPIO28  
GPIO35/  
GPIO35/  
TDI  
GPIO3  
GPIO9  
GPIO3  
GPIO9  
GPIO3  
GPIO17 GPIO17 GPIO28  
GPIO28 GPIO28 GPIO35/  
GPIO35/ GPIO35/  
SCIA_RX  
I
TDI  
TDI  
TDI  
TDI  
GPIO49  
GPIO2  
GPIO2  
GPIO8  
GPIO8  
GPIO16  
GPIO2  
GPIO8  
GPIO2  
GPIO8  
GPIO2  
GPIO16  
GPIO24  
GPIO29  
GPIO37/  
TDO  
GPIO16 GPIO16 GPIO16  
GPIO24 GPIO24 GPIO24  
GPIO29 GPIO29 GPIO29  
GPIO37/ GPIO37/ GPIO37/  
GPIO24  
GPIO29  
GPIO37/  
TDO  
SCIA_TX  
SCIB_RX  
O
SCI-A Transmit Data  
TDO  
TDO  
TDO  
GPIO48  
GPIO11  
GPIO13  
GPIO15  
GPIO19  
GPIO23  
GPIO41  
GPIO57  
GPIO11  
GPIO13  
GPIO15  
GPIO19  
GPIO23  
GPIO41  
GPIO11 GPIO11  
GPIO13 GPIO13  
GPIO19 GPIO19 GPIO19  
GPIO23 GPIO23  
I
SCI-B Receive Data  
GPIO41 GPIO41  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
48 PT  
SPRSP61 – OCTOBER 2021  
Table 5-4. Digital Signals by GPIO (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
100 PZ  
80 PN  
64 PM  
64 PMQ  
GPIO9  
GPIO10  
GPIO12  
GPIO14  
GPIO18  
GPIO22  
GPIO40  
GPIO56  
GPIO9  
GPIO10  
GPIO12  
GPIO14  
GPIO18  
GPIO22  
GPIO40  
GPIO9  
GPIO9  
GPIO10 GPIO10  
GPIO12 GPIO12  
GPIO18 GPIO18  
GPIO22 GPIO22  
GPIO40 GPIO40  
SCIB_TX  
O
SCI-B Transmit Data  
GPIO18  
GPIO17  
GPIO33 GPIO17 GPIO17 GPIO17  
GPIO49 GPIO33 GPIO33 GPIO33  
GPIO53 A0/B15/C A0/B15/C A0/B15/C  
GPIO33  
A0/B15/C  
15/  
DACA_O  
UT  
SD1_C1  
I
SDFM-1 Channel 1 Clock Input  
A0/B15/C  
15/  
15/  
DACA_O DACA_O DACA_O  
UT UT UT  
15/  
15/  
DACA_O  
UT  
GPIO19  
GPIO33 GPIO19 GPIO19 GPIO19 GPIO19  
GPIO51 GPIO33 GPIO33 GPIO33 GPIO33  
SD1_C2  
SD1_C3  
SD1_C4  
SD1_D1  
I
I
I
I
SDFM-1 Channel 2 Clock Input  
SDFM-1 Channel 3 Clock Input  
SDFM-1 Channel 4 Clock Input  
SDFM-1 Channel 1 Data Input  
GPIO54  
C3/A7  
C3/A7  
C3/A7  
C3/A7  
C3/A7  
GPIO21  
GPIO53 GPIO21  
A9  
A9  
A9  
GPIO55  
A9  
A9  
GPIO23  
GPIO55 GPIO23 GPIO23 GPIO23  
GPIO56 A10/B1/C A10/B1/C A10/B1/C  
A10/B1/C  
10  
A10/B1/C  
10  
10  
10  
10  
GPIO16  
GPIO48  
A14/B14/  
C4  
GPIO16 GPIO16 GPIO16  
A14/B14/ A14/B14/ A14/B14/ GPIO16  
C4 C4 C4  
GPIO18  
GPIO32  
GPIO50  
A11/B10/  
C0  
GPIO18 GPIO18 GPIO18 GPIO18  
GPIO32 GPIO32 GPIO32 GPIO32  
A11/B10/ A11/B10/ A11/B10/ A11/B10/  
SD1_D2  
SD1_D3  
SD1_D4  
I
I
I
SDFM-1 Channel 2 Data Input  
SDFM-1 Channel 3 Data Input  
SDFM-1 Channel 4 Data Input  
C0  
C0  
C0  
C0  
GPIO20  
GPIO52  
C2/B12  
GPIO20  
C2/B12  
C2/B12  
C2/B12  
C2/B12  
GPIO22  
GPIO54  
A1/B7/  
DACB_O  
UT  
GPIO22 GPIO22 GPIO22  
A1/B7/ A1/B7/ A1/B7/  
DACB_O DACB_O DACB_O  
A1/B7/  
DACB_O  
UT  
UT  
UT  
UT  
GPIO25  
GPIO35/  
TDI  
GPIO57  
A6  
GPIO25  
GPIO35/  
TDI  
GPIO35/ GPIO35/ GPIO35/  
TDI  
A6  
TDI  
A6  
TDI  
A6  
SD2_C1  
SD2_C2  
I
I
SDFM-2 Channel 1 Clock Input  
SDFM-2 Channel 2 Clock Input  
A6  
A8  
A8  
A8  
A8  
A8  
GPIO27  
GPIO58 GPIO27  
GPIO59  
A4/B8  
A4/B8  
A4/B8  
A4/B8  
A4/B8  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-4. Digital Signals by GPIO (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
100 PZ  
80 PN  
64 PM  
64 PMQ  
48 PT  
GPIO29  
GPIO59  
GPIO61  
A12  
GPIO29  
GPIO45  
A12  
GPIO29 GPIO29 GPIO29  
A12 A12 A12  
SD2_C3  
I
SDFM-2 Channel 3 Clock Input  
GPIO31  
GPIO60  
B5  
GPIO31  
GPIO46  
SD2_C4  
SD2_D1  
I
I
SDFM-2 Channel 4 Clock Input  
SDFM-2 Channel 1 Data Input  
GPIO24  
GPIO49  
GPIO56  
GPIO24 GPIO24 GPIO24 GPIO24  
A15 A15 A15 A15  
GPIO26  
GPIO50 GPIO26  
GPIO58 B3/VDAC  
B3/VDAC  
SD2_D2  
SD2_D3  
SD2_D4  
I
I
I
SDFM-2 Channel 2 Data Input  
SDFM-2 Channel 3 Data Input  
SDFM-2 Channel 4 Data Input  
B3/VDAC B3/VDAC B3/VDAC  
GPIO28  
GPIO28  
GPIO51  
GPIO43  
GPIO60  
A2/B6/C9  
A2/B6/C9  
GPIO28 GPIO28 GPIO28  
A2/B6/C9 A2/B6/C9 A2/B6/C9  
GPIO30  
GPIO47 GPIO30  
B2/C6  
B2/C6  
B2/C6  
GPIO52  
B2/C6  
B2/C6  
GPIO3  
GPIO9  
GPIO12  
GPIO18  
GPIO56  
GPIO3  
GPIO9  
GPIO3  
GPIO9  
GPIO3  
GPIO9  
GPIO3  
SPIA_CLK  
SPIA_SIMO  
SPIA_SOMI  
SPIA_STE  
I/O  
I/O  
I/O  
I/O  
SPI-A Clock  
GPIO12 GPIO12 GPIO12 GPIO18  
GPIO18 GPIO18 GPIO18  
GPIO2  
GPIO8  
GPIO11  
GPIO16  
GPIO54  
GPIO2  
GPIO8  
GPIO2  
GPIO8  
GPIO2  
GPIO8  
GPIO2  
SPI-A Slave In, Master Out (SIMO)  
SPI-A Slave Out, Master In (SOMI)  
SPI-A Slave Transmit Enable (STE)  
GPIO11 GPIO11 GPIO11 GPIO16  
GPIO16 GPIO16 GPIO16  
GPIO1  
GPIO10  
GPIO13  
GPIO17  
GPIO55  
GPIO1  
GPIO1  
GPIO1  
GPIO10 GPIO10 GPIO10  
GPIO13 GPIO13 GPIO13  
GPIO17 GPIO17 GPIO17  
GPIO1  
GPIO0  
GPIO5  
GPIO11  
GPIO19  
GPIO57  
GPIO0  
GPIO5  
GPIO0  
GPIO5  
GPIO0  
GPIO5  
GPIO0  
GPIO5  
GPIO19  
GPIO11 GPIO11 GPIO11  
GPIO19 GPIO19 GPIO19  
GPIO4  
GPIO14  
GPIO4  
GPIO22 GPIO14  
GPIO4  
GPIO4  
GPIO4  
GPIO28  
GPIO32  
GPIO26 GPIO22 GPIO22 GPIO22  
GPIO28 GPIO26 GPIO28 GPIO28  
GPIO32 GPIO28 GPIO32 GPIO32  
GPIO52 GPIO32  
SPIB_CLK  
I/O  
SPI-B Clock  
GPIO58  
GPIO7  
GPIO20  
GPIO24  
GPIO7  
GPIO20  
GPIO24 GPIO24 GPIO24  
GPIO30 GPIO40 GPIO40  
GPIO40  
GPIO7  
GPIO7  
GPIO30  
GPIO40  
GPIO50  
GPIO56  
GPIO60  
GPIO7  
GPIO24  
SPIB_SIMO  
I/O  
SPI-B Slave In, Master Out (SIMO)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
48 PT  
SPRSP61 – OCTOBER 2021  
Table 5-4. Digital Signals by GPIO (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
100 PZ  
80 PN  
64 PM  
64 PMQ  
GPIO6  
GPIO16  
GPIO21  
GPIO25  
GPIO31  
GPIO41  
GPIO51  
GPIO57  
GPIO61  
GPIO6  
GPIO16  
GPIO21  
GPIO25  
GPIO31  
GPIO41  
GPIO6  
GPIO16 GPIO16  
GPIO41 GPIO41  
GPIO6  
GPIO6  
GPIO16  
SPIB_SOMI  
I/O  
SPI-B Slave Out, Master In (SOMI)  
GPIO15  
GPIO23 GPIO15  
GPIO27 GPIO23 GPIO23 GPIO23  
GPIO29 GPIO27 GPIO29 GPIO29  
GPIO33 GPIO29 GPIO33 GPIO33  
GPIO53 GPIO33  
GPIO29  
GPIO33  
SPIB_STE  
SYNCOUT  
TDI  
I/O  
O
I
SPI-B Slave Transmit Enable (STE)  
External ePWM Synchronization Pulse  
GPIO59  
GPIO6  
GPIO6  
GPIO6  
GPIO6  
GPIO6  
GPIO52 GPIO39 GPIO39  
JTAG Test Data Input (TDI) - TDI is the  
default mux selection for the pin. The  
internal pullup is disabled by default. The  
internal pullup should be enabled or an  
external pullup added on the board if this  
pin is used as JTAG TDI to avoid a floating  
input.  
GPIO35/ GPIO35/ GPIO35/ GPIO35/ GPIO35/  
TDI TDI TDI TDI TDI  
JTAG Test Data Output (TDO) - TDO is  
the default mux selection for the pin. The  
internal pullup is disabled by default. The  
TDO function will tristate when there is no  
JTAG activity, leaving this pin floating; the  
internal pullup should be enabled or an  
external pullup added on the board to avoid  
a floating GPIO input.  
GPIO37/ GPIO37/ GPIO37/ GPIO37/ GPIO37/  
TDO TDO TDO TDO TDO  
TDO  
O
Crystal oscillator input or single-ended  
clock input. The device initialization  
software must configure this pin before the  
crystal oscillator is enabled. To use this  
oscillator, a quartz crystal circuit must be  
connected to X1 and X2. This pin can  
also be used to feed a single-ended 3.3-V  
level clock. See the XTAL section for usage  
details.  
X1  
I/O  
GPIO19 GPIO19 GPIO19 GPIO19 GPIO19  
GPIO18 GPIO18 GPIO18 GPIO18 GPIO18  
X2  
I/O  
O
Crystal oscillator output.  
External Clock Output. This pin outputs a  
divided-down version of a chosen clock  
signal from within the device.  
GPIO16 GPIO16 GPIO16 GPIO16 GPIO16  
GPIO18 GPIO18 GPIO18 GPIO18 GPIO18  
XCLKOUT  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
5.3.4 Power and Ground  
Table 5-5. Power and Ground  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
GPIO PIN  
100 PZ PIN  
80 PN PIN  
64 PM PIN  
64 PMQ PIN  
48 PT PIN  
VDD  
1.2-V Digital Logic Power Pins. See  
the PMM section for usage details.  
4, 46, 71, 87 31, 53, 71, 8 27, 4, 44, 59 27, 4, 44, 59  
23, 36, 45  
VDDA  
3.3-V Analog Power Pins. Place  
a minimum 2.2-µF decoupling  
capacitor on each pin. See the PMM  
section for usage details.  
34  
26  
22  
22  
18  
VDDIO  
3.3-V Digital I/O Power Pins. See the  
PMM section for usage details.  
3, 47, 70, 88 32, 52, 7, 72  
73  
28, 43, 60  
28, 43, 60  
46  
24, 35, 46  
VREGENZ  
I
Internal voltage regulator disable with  
internal pulldown. Tie low to VSS to  
enable internal VREG. Tie high to  
VDDIO to use an external supply.  
See the PMM section for usage  
details.  
VSS  
Digital Ground  
Analog Ground  
45, 5, 72, 86 30, 55, 70, 9 26, 45, 5, 58 26, 45, 5, 58  
22, 37, 44  
17  
VSSA  
33  
25  
21  
21  
5.3.5 Test, JTAG, and Reset  
Table 5-6. Test, JTAG, and Reset  
SIGNAL NAME  
TCK  
PIN TYPE  
DESCRIPTION  
GPIO  
100 PZ  
80 PN  
64 PM  
64 PMQ  
48 PT  
JTAG test clock with internal  
pullup.  
I
60  
45  
36  
36  
28  
JTAG test-mode select  
(TMS) with internal pullup.  
This serial control input  
is clocked into the TAP  
controller on the rising edge  
of TCK. This device does  
not have a TRSTn pin.  
An external pullup resistor  
(recommended 2.2 kΩ) on  
the TMS pin to VDDIO  
TMS  
I/O  
62  
47  
38  
38  
30  
should be placed on the  
board to keep JTAG in reset  
during normal operation.  
Crystal oscillator input or  
single-ended clock input.  
The device initialization  
software must configure  
this pin before the crystal  
oscillator is enabled. To  
use this oscillator, a quartz  
crystal circuit must be  
connected to X1 and X2.  
This pin can also be used  
to feed a single-ended 3.3-V  
level clock.  
X1  
I/O  
69  
51  
42  
42  
34  
X2  
I/O  
Crystal oscillator output.  
68  
50  
41  
41  
33  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
48 PT  
SPRSP61 – OCTOBER 2021  
Table 5-6. Test, JTAG, and Reset (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
GPIO  
100 PZ  
80 PN  
64 PM  
64 PMQ  
Device Reset (in) and  
Watchdog Reset (out).  
During a power-on condition,  
this pin is driven low by the  
device. An external circuit  
may also drive this pin to  
assert a device reset. This  
pin is also driven low by the  
MCU when a watchdog reset  
occurs. During watchdog  
reset, the XRSn pin is driven  
low for the watchdog reset  
duration of 512 OSCCLK  
cycles. A resistor between  
2.2 kΩ and 10 kΩ should  
be placed between XRSn  
and VDDIO. If a capacitor is  
placed between XRSn and  
VSS for noise filtering, it  
should be 100 nF or smaller.  
These values will allow  
XRSn  
I/OD  
2
5
3
3
3
the watchdog to properly  
drive the XRSn pin to VOL  
within 512 OSCCLK cycles  
when the watchdog reset  
is asserted. This pin is an  
open-drain output with an  
internal pullup.  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
5.4 Pin Multiplexing  
5.4.1 GPIO Muxed Pins  
Section 5.4.1.1 lists the GPIO muxed pins. The default mode for each GPIO pin is the GPIO function, except  
GPIO35 and GPIO37, which default to TDI and TDO, respectively. Secondary functions can be selected by  
setting both the GPyGMUXn.GPIOz and GPyMUXn.GPIOz register bits. The GPyGMUXn register should be  
configured before the GPyMUXn to avoid transient pulses on GPIOs from alternate mux selections. Columns  
that are not shown and blank cells are reserved GPIO Mux settings. GPIO ALT functions cannot be configured  
with the GPyMUXn and GPyGMUXn registers. These are special functions that need to be configured from the  
module.  
Note  
GPIO36 and GPIO38 do not exist on this device. GPIO62 to GPIO63 exist but are not pinned out on  
any packages. Boot ROM enables pullups on GPIO62 to GPIO63. For more details, see Section 5.5.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
5.4.1.1 GPIO Muxed Pins  
Table 5-7. GPIO Muxed Pins  
0, 4, 8, 12  
GPIO0  
1
2
3
5
6
7
9
10  
11  
13  
14  
15  
ALT  
CLB_OUTPUTX  
BAR8  
EPWM1_A  
I2CA_SDA  
SPIA_STE  
FSIRXA_CLK  
MCAN_RX  
EQEP1_INDEX  
HIC_D7  
HIC_BASESEL1  
HIC_D10  
CLB_OUTPUTX  
BAR7  
FSITXA_TDM_D  
1
GPIO1  
EPWM1_B  
I2CA_SCL  
SPIA_SOMI  
MCAN_TX  
HIC_A2  
GPIO2  
GPIO3  
EPWM2_A  
EPWM2_B  
OUTPUTXBAR1 PMBUSA_SDA  
SPIA_SIMO  
SPIA_CLK  
SCIA_TX  
SCIA_RX  
FSIRXA_D1  
FSIRXA_D0  
I2CB_SDA  
I2CB_SCL  
HIC_A1  
CANA_TX  
CANA_RX  
HIC_D9  
HIC_D4  
OUTPUTXBAR2  
OUTPUTXBAR4  
SCIB_TX  
OUTPUTXBAR2  
OUTPUTXBAR3  
PMBUSA_SCL  
CANA_TX  
HIC_NOE  
EQEP2_STROB  
E
CLB_OUTPUTX  
BAR6  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
EPWM3_A  
EPWM3_B  
EPWM4_A  
EPWM4_B  
MCAN_TX  
OUTPUTXBAR3  
SYNCOUT  
SPIB_CLK  
SPIA_STE  
SPIB_SOMI  
SPIB_SIMO  
FSIRXA_CLK  
HIC_BASESEL2  
HIC_A7  
HIC_NWE  
HIC_D15  
HIC_D14  
HIC_D14  
CLB_OUTPUTX  
BAR5  
MCAN_RX  
EQEP1_A  
EQEP1_B  
CANA_RX  
FSITXA_D1  
FSITXA_D0  
FSITXA_CLK  
I2CA_SCL  
HIC_D4  
CLB_OUTPUTX  
BAR8  
FSITXA_D1  
HIC_NBE1  
HIC_A6  
CLB_OUTPUTX  
BAR2  
OUTPUTXBAR5  
ADCSOCAO  
EQEP1_STROB  
E
CLB_OUTPUTX  
BAR5  
FSITXA_TDM_C  
LK  
GPIO8  
EPWM5_A  
EPWM5_B  
EPWM6_A  
EPWM6_B  
EPWM7_A  
SCIA_TX  
SCIA_RX  
SCIB_TX  
SCIB_RX  
SCIB_TX  
SPIA_SIMO  
SPIA_CLK  
FSITXA_D1  
FSITXA_D0  
FSITXA_CLK  
LINB_RX  
HIC_A0  
HIC_BASESEL0  
HIC_NWE  
HIC_D8  
GPIO9  
OUTPUTXBAR6 EQEP1_INDEX  
LINB_RX  
LINB_TX  
I2CB_SCL  
HIC_NRDY  
FSITXA_TDM_D CLB_OUTPUTX  
GPIO10  
GPIO11  
GPIO12  
ADCSOCBO  
OUTPUTXBAR7  
MCAN_RX  
EQEP1_A  
EQEP1_B  
SPIA_SOMI  
SPIA_STE  
I2CA_SDA  
FSIRXA_D1  
FSIRXA_D0  
0
BAR4  
EQEP2_A  
SPIA_CLK  
SPIA_SIMO  
CANA_RX  
HIC_D6  
HIC_NBE0  
EQEP1_STROB  
E
PMBUSA_CTL  
LINB_TX  
HIC_D13  
HIC_D11  
HIC_INT  
HIC_D5  
PMBUSA_ALER  
T
GPIO13  
GPIO14  
GPIO15  
EPWM7_B  
EPWM8_A  
EPWM8_B  
MCAN_TX  
EQEP1_INDEX  
I2CB_SDA  
SCIB_RX  
FSIRXA_CLK  
SPIB_CLK  
SPIB_STE  
LINB_RX  
EQEP2_A  
EQEP2_B  
SPIA_SOMI  
LINB_TX  
CANA_TX  
EPWM3_A  
EPWM3_B  
EQEP2_B  
CLB_OUTPUTX  
BAR7  
SCIB_TX  
SCIB_RX  
OUTPUTXBAR3 PMBUSA_SDA  
HIC_D15  
HIC_D12  
CLB_OUTPUTX  
BAR6  
I2CB_SCL  
OUTPUTXBAR4  
PMBUSA_SCL  
LINB_RX  
EQEP1_STROB  
E
GPIO16  
GPIO17  
GPIO18  
SPIA_SIMO  
SPIA_SOMI  
SPIA_CLK  
OUTPUTXBAR7  
OUTPUTXBAR8  
CANA_RX  
EPWM5_A  
EPWM5_B  
EPWM6_A  
SCIA_TX  
SCIA_RX  
I2CA_SCL  
SD1_D1  
SD1_C1  
SD1_D2  
PMBUSA_SCL  
PMBUSA_SDA  
PMBUSA_CTL  
XCLKOUT  
CANA_TX  
XCLKOUT  
SPIB_SOMI  
HIC_D1  
HIC_D2  
HIC_INT  
EQEP1_INDEX  
EQEP2_A  
FSITXA_TDM_C  
LK  
SCIB_TX  
SCIB_RX  
LINB_TX  
LINB_RX  
X2  
X1  
PMBUSA_ALER CLB_OUTPUTX  
FSITXA_TDM_D  
0
GPIO19  
SPIA_STE  
CANA_TX  
EPWM6_B  
I2CA_SDA  
SD1_C2  
EQEP2_B  
HIC_NBE0  
T
BAR1  
GPIO20  
GPIO21  
EQEP1_A  
EQEP1_B  
SPIB_SIMO  
SPIB_SOMI  
SD1_D3  
SD1_C3  
MCAN_TX  
MCAN_RX  
EQEP1_STROB  
E
CLB_OUTPUTX  
BAR1  
GPIO22  
GPIO23  
SCIB_TX  
SCIB_RX  
SPIB_CLK  
SPIB_STE  
SD1_D4  
SD1_C4  
LINA_TX  
LINA_RX  
LINB_TX  
LINB_RX  
HIC_A5  
EPWM4_A  
EPWM4_B  
HIC_D13  
CLB_OUTPUTX  
BAR3  
EQEP1_INDEX  
HIC_A3  
HIC_D11  
HIC_D3  
GPIO24  
GPIO25  
GPIO26  
OUTPUTXBAR1  
OUTPUTXBAR2  
EQEP2_A  
EQEP2_B  
EPWM8_A  
EQEP1_A  
SPIB_SIMO  
SPIB_SOMI  
SPIB_CLK  
SD2_D1  
SD2_C1  
SD2_D2  
LINB_TX  
FSITXA_D1  
FSITXA_D0  
PMBUSA_SCL  
PMBUSA_SDA  
PMBUSA_CTL  
SCIA_TX  
SCIA_RX  
I2CA_SDA  
ERRORSTS  
HIC_BASESEL0  
HIC_D0  
OUTPUTXBAR3 EQEP2_INDEX  
OUTPUTXBAR3  
HIC_A1  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-7. GPIO Muxed Pins (continued)  
0, 4, 8, 12  
1
2
3
5
6
7
9
10  
11  
13  
14  
15  
ALT  
EQEP2_STROB  
E
PMBUSA_ALER  
T
GPIO27  
OUTPUTXBAR4  
OUTPUTXBAR4  
SPIB_STE  
SD2_C2  
FSITXA_CLK  
I2CA_SCL  
HIC_D1  
HIC_A4  
EQEP2_STROB  
E
GPIO28  
GPIO29  
GPIO30  
SCIA_RX  
SCIA_TX  
CANA_RX  
EPWM7_A  
EPWM7_B  
SPIB_SIMO  
OUTPUTXBAR5  
OUTPUTXBAR6  
OUTPUTXBAR7  
EQEP1_A  
EQEP1_B  
SD2_D3  
SD2_C3  
SD2_D4  
LINA_TX  
LINA_RX  
MCAN_RX  
SPIB_CLK  
SPIB_STE  
EPWM1_A  
ERRORSTS  
ERRORSTS  
I2CB_SDA  
I2CB_SCL  
HIC_NOE  
HIC_NCS  
AUX  
CLKI  
N
EQEP2_INDEX  
FSIRXA_CLK  
EQEP1_STROB  
E
HIC_D8  
GPIO31  
GPIO32  
GPIO33  
GPIO34  
GPIO35  
CANA_TX  
I2CA_SDA  
SPIB_SOMI  
SPIB_CLK  
SPIB_STE  
OUTPUTXBAR8 EQEP1_INDEX  
SD2_C4  
SD1_D2  
SD1_C2  
FSIRXA_D1  
FSIRXA_D0  
FSIRXA_CLK  
MCAN_TX  
CANA_TX  
CANA_RX  
EPWM1_B  
PMBUSA_SDA  
EQEP2_B  
HIC_D10  
EPWM8_B  
LINA_TX  
LINA_RX  
ADCSOCBO  
ADCSOCAO  
HIC_NBE1  
SD2_C1  
HIC_INT  
HIC_D0  
HIC_D9  
TDI  
I2CA_SCL  
OUTPUTXBAR4  
SD1_C1  
I2CB_SDA  
HIC_NWE  
OUTPUTXBAR1  
SCIA_RX  
PMBUSA_SDA  
PMBUSA_SCL  
I2CA_SDA  
I2CA_SCL  
CANA_RX  
SCIA_TX  
LINA_RX  
LINA_TX  
EQEP1_A  
EQEP1_B  
PMBUSA_CTL  
EPWM5_B  
PMBUSA_ALER  
T
GPIO37  
GPIO39  
OUTPUTXBAR2  
CANA_TX  
MCAN_RX  
HIC_NRDY  
TDO  
CLB_OUTPUTX  
BAR2  
FSIRXA_CLK  
EQEP2_INDEX  
SYNCOUT  
HIC_A4  
EQEP1_INDEX  
HIC_D7  
GPIO40  
GPIO41  
SPIB_SIMO  
EPWM2_B  
EPWM2_A  
PMBUSA_SDA  
PMBUSA_SCL  
FSIRXA_D0  
FSIRXA_D1  
SCIB_TX  
SCIB_RX  
EQEP1_A  
EQEP1_B  
LINB_TX  
LINB_RX  
HIC_NBE1  
HIC_D5  
SPIB_SOMI  
HIC_D12  
EQEP1_STROB CLB_OUTPUTX  
GPIO42  
GPIO43  
GPIO44  
LINA_RX  
OUTPUTXBAR5  
OUTPUTXBAR6  
OUTPUTXBAR7  
PMBUSA_CTL  
I2CA_SDA  
I2CA_SCL  
HIC_D2  
HIC_D3  
LINB_TX  
HIC_A6  
HIC_A7  
HIC_D5  
E
BAR3  
PMBUSA_ALER  
T
PMBUSA_ALER  
T
CLB_OUTPUTX  
BAR4  
EQEP1_INDEX  
SD2_D3  
HIC_D7  
CLB_OUTPUTX  
BAR3  
EQEP1_A  
PMBUSA_SDA  
FSITXA_CLK  
PMBUSA_CTL  
FSIRXA_D0  
PMBUSA_ALER CLB_OUTPUTX  
GPIO45  
GPIO46  
GPIO47  
OUTPUTXBAR8  
LINA_TX  
FSITXA_D0  
FSITXA_D1  
SD2_C3  
SD2_C4  
SD2_D4  
HIC_D6  
HIC_NWE  
HIC_A6  
T
BAR4  
MCAN_TX  
MCAN_RX  
PMBUSA_SDA  
CLB_OUTPUTX  
BAR2  
FSITXA_TDM_C  
LK  
LINA_RX  
PMBUSA_SCL  
GPIO48  
GPIO49  
GPIO50  
GPIO51  
OUTPUTXBAR3  
OUTPUTXBAR4  
EQEP1_A  
CANA_TX  
CANA_RX  
SCIA_TX  
SCIA_RX  
SD1_D1  
SD1_C1  
SD1_D2  
SD1_C2  
PMBUSA_SDA  
LINA_RX  
HIC_A7  
HIC_D2  
HIC_D3  
HIC_D6  
SD2_D1  
SD2_D2  
SD2_D3  
FSITXA_D0  
FSITXA_D1  
FSITXA_CLK  
MCAN_TX  
MCAN_RX  
SPIB_SIMO  
SPIB_SOMI  
I2CB_SDA  
I2CB_SCL  
EQEP1_B  
EQEP1_STROB  
E
CLB_OUTPUTX  
BAR5  
GPIO52  
GPIO53  
SPIB_CLK  
SPIB_STE  
SD1_D3  
SD1_C3  
SYNCOUT  
SD2_D4  
SD1_C1  
FSIRXA_D0  
FSIRXA_D1  
FSIRXA_CLK  
HIC_NWE  
CLB_OUTPUTX  
BAR6  
EQEP1_INDEX  
ADCSOCAO  
CANA_RX  
FSITXA_TDM_D  
1
GPIO54  
GPIO55  
GPIO56  
SPIA_SIMO  
SPIA_SOMI  
SPIA_CLK  
EQEP2_A  
EQEP2_B  
OUTPUTXBAR2  
OUTPUTXBAR3  
SCIB_TX  
SD1_D4  
SD1_C4  
SD2_D1  
ADCSOCBO  
ERRORSTS  
SPIB_SIMO  
LINB_TX  
LINB_RX  
I2CA_SDA  
SD1_C2  
SD1_C3  
SD1_C4  
HIC_A0  
HIC_D6  
CLB_OUTPUTX  
BAR7  
EQEP2_STROB  
E
MCAN_TX  
MCAN_RX  
EQEP1_A  
EQEP1_B  
FSIRXA_D1  
CLB_OUTPUTX  
BAR8  
GPIO57  
SPIA_STE  
EQEP2_INDEX  
SCIB_RX  
SD2_C1  
SPIB_SOMI  
I2CA_SCL  
FSIRXA_CLK  
HIC_D4  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 5-7. GPIO Muxed Pins (continued)  
0, 4, 8, 12  
1
2
3
5
6
7
9
10  
11  
13  
14  
15  
ALT  
EQEP1_STROB  
E
GPIO58  
OUTPUTXBAR1  
SPIB_CLK  
SD2_D2  
LINA_TX  
CANA_TX  
SD2_C2  
FSIRXA_D0  
HIC_NRDY  
FSITXA_TDM_D  
1
GPIO59  
OUTPUTXBAR2  
SPIB_STE  
SD2_C2  
LINA_RX  
CANA_RX  
EQEP1_INDEX  
SD2_C3  
SD2_C4  
GPIO60  
GPIO61  
AIO224  
AIO225  
AIO226  
AIO227  
AIO228  
AIO229  
AIO230  
AIO231  
AIO232  
AIO233  
AIO236  
AIO237  
AIO238  
AIO239  
AIO240  
AIO241  
AIO242  
AIO244  
AIO245  
AIO247  
AIO248  
AIO249  
AIO251  
AIO252  
AIO253  
MCAN_TX  
MCAN_RX  
OUTPUTXBAR3  
OUTPUTXBAR4  
SPIB_SIMO  
SPIB_SOMI  
SD2_D3  
SD2_C3  
HIC_A0  
CANA_RX  
SD2_D3  
SD2_C2  
SD2_D4  
SD1_C3  
SD2_C1  
HIC_A3  
HIC_NWE  
HIC_A1  
HIC_NBE0  
HIC_A0  
SD1_C4  
SD1_C1  
SD1_D4  
SD2_D1  
HIC_BASESEL2  
HIC_BASESEL1  
HIC_BASESEL0  
HIC_A4  
SD1_D2  
SD2_C3  
SD1_D1  
SD2_C1  
SD2_C1  
SD2_D2  
SD1_D3  
SD1_C2  
HIC_A6  
HIC_NCS  
HIC_A5  
HIC_NBE1  
HIC_NBE1  
HIC_A2  
HIC_A7  
HIC_NOE  
SD2_C4  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
5.4.2 Digital Inputs on ADC Pins (AIOs)  
GPIOs on port H (GPIO224–GPIO253) are multiplexed with analog pins. These are also referred to as AIOs.  
These pins can only function in input mode. By default, these pins will function as analog pins and the GPIOs are  
in a high-Z state. The GPHAMSEL register is used to configure these pins for digital or analog operation.  
Note  
If digital signals with sharp edges (high dv/dt) are connected to the AIOs, cross-talk can occur with  
adjacent analog signals. The user should therefore limit the edge rate of signals connected to AIOs if  
adjacent channels are being used for analog functions.  
5.4.3 Digital Inputs and Outputs on ADC Pins (AGPIOs)  
Some GPIOs on this device are multiplexed with analog pins. These are also referred to as AGPIOs. Unlike  
AIOs, AGPIOs have full input and output capability. This device has two GPIOs (GPIO20, GPIO21) that offer this  
feature on the 100-Pin PZ and 80-Pin PN packages.  
100-Pin PZ: On this package, there are dedicated pins for B5 (pin 32) and B11 (pin 30) which respectively also  
have AIO252 and AIO251 functionality. In addition, GPIO20 (pin 48) and GPIO21 (pin 49) are also available as  
B5 and B11 respectively. Since B5 and B11 are dedicated pins on this package, it is recommended to use them  
instead of the ones on GPIO20/21.  
80-Pin PN: On this package, GPIO20 (pin 33) and GPIO21 (pin 34) are also available as B5 and B11  
respectively. There are no dedicated pin for B5 and B11.  
By default the AGPIOs are not connected and have to be configured. Table 5-8 truth table shows how to  
configure the AGPIOs using B5 (pin 32) and GPIO20 (pin 48) on the 100-Pin PZ as an example.  
Table 5-8. AGPIO Configuration  
B5 CONNECTED TO  
GPIO20 CONNECTED TO  
AGPIOCTRLA.bit.GPIO20  
GPAAMSEL.bit.GPIO20  
GPHAMSEL.bit.GPIO252  
ADC  
Yes  
Yes  
Yes  
-
GPIO20  
AIO252  
ADC  
GPIO20  
AIO252  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
1
1
1
0
0
0
0
-
-
-
-
-
-
-
-
-
-
-
Yes  
-
-
-
-
-
-
-
-
-
-
Yes  
-
-
-
-
Yes  
Yes  
Yes  
Yes  
-
Yes  
Yes  
Yes  
Yes  
-
Yes  
-
-
-
Yes  
-
Yes  
Note  
If digital signals with sharp edges (high dv/dt) are connected to the AGPIOs, cross-talk can occur with  
adjacent analog signals. The user should therefore limit the edge rate of signals connected to AGPIOs  
if adjacent channels are being used for analog functions.  
5.4.4 GPIO Input X-BAR  
The Input X-BAR is used to route signals from a GPIO to many different IP blocks such as the ADCs, eCAPs,  
ePWMs, and external interrupts (see Figure 5-6). Table 5-9 lists the input X-BAR destinations.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
GPIO0  
Asynchronous  
Synchronous  
Sync. + Qual.  
Input X-BAR  
Other Sources  
INPUT[16:1]  
127:16  
15:0  
GPIOx  
eCAP  
Modules  
DCCx Clock Source-1  
DCCx Clock Source-0  
TZ1,TRIP1  
TZ2,TRIP2  
TZ3,TRIP3  
TRIP6  
XINT1  
TRIP4  
TRIP5  
XINT2  
XINT3  
XINT4  
XINT5  
ePWM  
Modules  
CPU PIE  
CLA  
TRIP7  
TRIP8  
TRIP9  
TRIP10  
TRIP11  
TRIP12  
ePWM  
X-BAR  
Other  
Sources  
ADCEXTSOC  
ADC  
EXTSYNCIN1  
ePWM and eCAP  
Sync Scheme  
EXTSYNCIN2  
Other Sources  
INPUT[1:16]  
ERAD  
EPG  
Output X-BAR  
INPUT[13:16]  
Figure 5-6. Input X-BAR  
Table 5-9. Input X-BAR Destinations  
INPUT  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
ECAP / HRCAP  
EPWM X-BAR  
CLB X-BAR  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes Yes Yes Yes Yes Yes  
Yes Yes Yes Yes Yes Yes  
Yes Yes Yes Yes Yes Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
OUTPUT X-BAR  
CPU XINT  
Yes  
XINT1 XINT2  
XINT3  
XINT4 XINT5  
TZ1, TZ2, TZ3,  
TRIP1 TRIP2 TRIP3  
EPWM TRIP  
TRIP6  
ADC START OF  
CONVERSION  
ADCEX  
TSOC  
EPWM / ECAP  
SYNC  
EXTSY EXTSY  
NCIN1  
NCIN2  
CLK CLK  
DCCx  
CLK1 CLK0  
EPG1 EPG1 EPG1 EPG1  
0
0
EPG  
IN1  
IN2  
IN3  
IN4  
ERAD  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes Yes Yes Yes Yes Yes  
Yes  
Yes  
Yes  
Yes  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
5.4.5 GPIO Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR  
The Output X-BAR has eight outputs that can be selected on the GPIO mux as OUTPUTXBARx. The CLB  
X-BAR has eight outputs that are connected to the CLB global mux as AUXSIGx. The CLB Output X-BAR has  
eight outputs that can be selected on the GPIO mux as CLB_OUTPUTXBARx. The ePWM X-BAR has eight  
outputs that are connected to the TRIPx inputs of the ePWM. The sources for the Output X-BAR, CLB X-BAR,  
CLB Output X-BAR, and ePWM X-BAR are shown in Figure 5-7.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
CTRIPOUTH  
CTRIPOUTL  
(Output X-BAR only)  
(ePWM X-BAR only)  
CMPSSx  
CTRIPH  
CTRIPL  
ePWM and eCAP  
EXTSYNCOUT  
Sync Chain  
AUXSIG1  
AUXSIG2  
AUXSIG3  
AUXSIG4  
AUXSIG5  
AUXSIG6  
AUXSIG7  
AUXSIG8  
CLB  
Global  
Mux  
ADCSOCA0  
ADCSOCA0  
Select Circuit  
CLB  
X-BAR  
ADCSOCB0  
ADCSOCB0  
Select Circuit  
TRIP4  
TRIP5  
eCAPx  
ADCx  
ECAPxOUT  
EVT1  
EVT2  
EVT3  
EVT4  
All  
ePWM  
Modules  
TRIP7  
TRIP8  
TRIP9  
TRIP10  
TRIP11  
TRIP12  
EPWM  
X-BAR  
INPUT1-6  
INPUT7-14  
(ePWM X-BAR only)  
Input X-BAR  
CLAHALT  
eQEPx  
CLAHALT  
OUTPUTXBAR1  
OUTPUTXBAR2  
OUTPUTXBAR3  
OUTPUTXBAR4  
OUTPUTXBAR5  
OUTPUTXBAR6  
OUTPUTXBAR7  
OUTPUTXBAR8  
FLT1.COMPH  
FLT1.COMPL  
Output  
X-BAR  
SDFMx  
FLT4.COMPH  
FLT4.COMPL  
GPIO  
Mux  
X-BAR Flags  
(shared)  
CLB_OUTPUTXBAR1  
CLB_OUTPUTXBAR2  
CLB_OUTPUTXBAR3  
CLB_OUTPUTXBAR4  
CLB_OUTPUTXBAR5  
CLB_OUTPUTXBAR6  
CLB_OUTPUTXBAR7  
CLB_OUTPUTXBAR8  
CLB  
Output  
X-BAR  
CLB Input X-BAR  
CLB TILEx  
Figure 5-7. Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR Sources  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
5.5 Pins With Internal Pullup and Pulldown  
Some pins on the device have internal pullups or pulldowns. Table 5-10 lists the pull direction and when it is  
active. The pullups on GPIO pins are disabled by default and can be enabled through software. To avoid any  
floating unbonded inputs, the Boot ROM will enable internal pullups on GPIO pins that are not bonded out in  
a particular package. Other pins noted in Table 5-10 with pullups and pulldowns are always on and cannot be  
disabled.  
Table 5-10. Pins With Internal Pullup and Pulldown  
RESET  
(XRSn = 0)  
PIN  
DEVICE BOOT  
APPLICATION  
GPIOx  
Pullup disabled  
Pullup disabled(1)  
Application defined  
Application defined  
Application defined  
Application defined  
GPIO35/TDI  
GPIO37/TDO  
AGPIOx  
TCK  
Pullup disabled  
Pullup disabled  
Pullup disabled  
Pullup disabled  
Pullup active  
Pullup active  
Pullup active  
TMS  
XRSn  
Other pins (including AIOs)  
No pullup or pulldown present  
(1) Pins not bonded out in a given package will have the internal pullups enabled by the Boot ROM.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
5.6 Connections for Unused Pins  
For applications that do not need to use all functions of the device, Table 5-11 lists acceptable conditioning for  
any unused pins. When multiple options are listed in Table 5-11, any option is acceptable. Pins not listed in Table  
5-11 must be connected according to Section 5.  
Table 5-11. Connections for Unused Pins  
SIGNAL NAME  
ACCEPTABLE PRACTICE  
ANALOG  
VREFHI  
VREFLO  
Tie to VDDA (applies only if ADC is not used in the application)  
Tie to VSSA  
No Connect  
Analog input pins with  
DACx_OUT  
Tie to VSSA through 4.7-kΩ or larger resistor  
No Connect  
Analog input pins (except  
DACx_OUT)  
Tie to VSSA  
Tie to VSSA through resistor  
No connection (digital input mode with internal pullup enabled)  
Analog input pins (shared with  
GPIOs)(1)  
No connection (digital output mode with internal pullup disabled)  
Pullup or pulldown resistor (any value resistor, digital input mode, and with internal pullup disabled)  
DIGITAL  
No connection (input mode with internal pullup enabled)  
No connection (output mode with internal pullup disabled)  
GPIOx  
Pullup or pulldown resistor (any value resistor, input mode, and with internal pullup disabled)  
When TDI mux option is selected (default), the GPIO is in Input mode.  
Internal pullup enabled  
External pullup resistor  
GPIO35/TDI  
When TDO mux option is selected (default), the GPIO is in Output mode only during JTAG activity;  
otherwise, it is in a tri-state condition. The pin must be biased to avoid extra current on the input buffer.  
GPIO37/TDO  
Internal pullup enabled  
External pullup resistor  
No Connect  
TCK  
TMS  
Pullup resistor  
Pullup resistor  
Turn XTAL off and:  
Input mode with internal pullup enabled  
GPIO19/X1  
GPIO18/X2  
Input mode with external pullup or pulldown resistor  
Output mode with internal pullup disabled  
Turn XTAL off and:  
Input mode with internal pullup enabled  
Input mode with external pullup or pulldown resistor  
Output mode with internal pullup disabled  
POWER AND GROUND  
VDD  
All VDD pins must be connected per Section 5.3. Pins should not be used to bias any external circuits.  
If a dedicated analog supply is not used, tie to VDDIO.  
VDDA  
VDDIO  
VSS  
All VDDIO pins must be connected per Section 5.3.  
All VSS pins must be connected to board ground.  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 5-11. Connections for Unused Pins (continued)  
SIGNAL NAME  
ACCEPTABLE PRACTICE  
VSSA  
If an analog ground is not used, tie to VSS.  
(1) AGPIO pins share analog and digital functionality. The actions here only apply if these pins are also not being used for analog  
functions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6 Specifications  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These are stress ratings only and functional operation of the device beyond the Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect  
device reliability. All voltage values are with respect to VSS, unless otherwise noted.  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
4.6  
4.6  
1.5  
4.6  
4.6  
UNIT  
VDDIO with respect to VSS  
VDDA with respect to VSSA  
VDD with respect to VSS  
VIN (3.3 V)  
Supply voltage  
V
Input voltage  
V
V
Output voltage  
VO  
Digital/analog input (per pin), IIK (VIN < VSS/VSSA or VIN > VDDIO/  
VDDA)(2)  
–20  
–20  
20  
20  
Input clamp current  
mA  
Total for all inputs, IIKTOTAL  
(VIN < VSS/VSSA or VIN > VDDIO/VDDA)  
Output current  
Digital output (per pin), IOUT  
–20  
–40  
–40  
–65  
20  
125  
150  
150  
mA  
°C  
°C  
°C  
Free-Air temperature  
Operating junction temperature  
Storage temperature(1)  
TA  
TJ  
Tstg  
(1) Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device  
life. For additional information, see the Semiconductor and IC Package Thermal Metrics Application Report.  
(2) Continuous clamp current per pin is ±2 mA. Do not operate in this condition continuously as VDDIO/VDDA voltage may internally rise and  
impact other electrical specifications.  
6.2 ESD Ratings – Commercial  
VALUE  
UNIT  
F280039C, F280039, F280037C, F280037, F280034, F280033 in 100-pin PZ package  
Human-body model (HBM), per ANSI/ESDA/JEDEC  
±2000  
±500  
JS-001(1)  
V(ESD)  
Electrostatic discharge (ESD)  
V
Charged-device model (CDM), per ANSI/ESDA/JEDEC  
JS-002(2)  
F280039C, F280039, F280037C, F280037, F280034, F280033 in 80-pin PN package  
Human-body model (HBM), per ANSI/ESDA/JEDEC  
±2000  
±500  
JS-001(1)  
V(ESD)  
Electrostatic discharge (ESD)  
V
V
V
Charged-device model (CDM), per ANSI/ESDA/JEDEC  
JS-002(2)  
F280039C, F280039, F280037C, F280037, F280034, F280033 in 64-pin PM package  
Human-body model (HBM), per ANSI/ESDA/JEDEC  
±2000  
±500  
JS-001(1)  
V(ESD)  
Electrostatic discharge (ESD)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC  
JS-002(2)  
F280037C, F280037, F280034, F280033 in 48-pin PT package  
Human-body model (HBM), per ANSI/ESDA/JEDEC  
JS-001(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge (ESD)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC  
JS-002(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
 
 
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.3 ESD Ratings – Automotive  
VALUE  
UNIT  
F280039C-Q1, F280039-Q1, F280037C-Q1, F280037-Q1 in 100-pin PZ package  
Human body model (HBM), per  
AEC Q100-002(1)  
All pins  
±2000  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM),  
per AEC Q100-011  
All pins  
±500  
±750  
V
Corner pins on 100-pin PZ:  
1, 25, 26, 50, 51, 75, 76, 100  
F280038C-Q1, F280038-Q1, F280036C-Q1, F280036-Q1 in 64-pin PM package  
Human body model (HBM), per  
AEC Q100-002(1)  
All pins  
All pins  
±2000  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM),  
per AEC Q100-011  
±500  
±750  
V
V
Corner pins on 64-pin PM:  
1, 16, 17, 32, 33, 48, 49, 64  
F280037C-Q1, F280037-Q1, F280034-Q1 in 48-pin PT package  
Human body model (HBM), per  
All pins  
All pins  
±2000  
AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM),  
per AEC Q100-011  
±500  
±750  
Corner pins on 48-pin PT:  
1, 12, 13, 24, 25, 36, 37, 48  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.4 Recommended Operating Conditions  
MIN  
NOM  
MAX  
3.63  
3.63  
UNIT  
VBOR-VDDIO(MAX) + VBOR-VDDIO-GB  
Internal BOR enabled(3)  
Internal BOR disabled  
3.3  
(2)  
Device supply voltage, VDDIO and VDDA  
V
2.8  
3.3  
0
Device ground, VSS  
Analog ground, VSSA  
SRSUPPLY  
V
V
0
Supply ramp rate(4)  
Digital input voltage  
Analog input voltage  
VSS – 0.3  
VSSA – 0.3  
–40  
VDDIO + 0.3  
VDDA + 0.3  
150  
V
V
VIN  
(1)  
Junction temperature, TJ  
°C  
°C  
Free-Air temperature, TA  
–40  
125  
(1) Operation above TJ = 105°C for extended duration will reduce the lifetime of the device. See Calculating Useful Lifetimes of Embedded  
Processors for more information.  
(2) See the Power Management Module (PMM) section.  
(3) Internal BOR is enabled by default.  
(4) See the Power Management Module Operating Conditions table.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
 
 
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.5 Power Consumption Summary  
Current values listed in this section are representative for the test conditions given and not the absolute  
maximum possible. The actual device currents in an application will vary with application code and pin  
configurations. Section 6.5.1 lists the system current consumption values. Section 6.5.2 lists the system current  
consumption with VREG disabled.  
6.5.1 System Current Consumption  
over operating free-air temperature range (unless otherwise noted).  
TYP : Vnom, 30  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPERATING MODE  
VDDIO current consumption during  
operational usage  
This is an estimation of current  
for a typical heavily loaded  
application. Actual currents will  
vary depending on system  
activity, I/O electrical loading  
and switching frequency. This  
includes Core supply current with  
Internal Vreg Enabled.  
IDDIO  
78.5  
106  
mA  
- CPU is running from RAM  
- Flash is powered up  
- X1/X2 crystal is powered up  
- PLL is enabled, SYSCLK=Max  
Device frequency  
VDDA current consumption during  
operational usage  
IDDA  
3
6.5  
mA  
- Analog modules are powered up  
- Outputs are static without DC  
Load  
- Inputs are static high or low  
IDLE MODE  
VDDIO current consumption while  
device is in Idle mode  
- CPU is in IDLE mode  
- Flash is powered down  
- PLL is Enabled, SYSCLK=Max  
Device Frequency, CPUCLK is  
gated  
- X1/X2 crystal is powered up  
- Analog Modules are powered  
down  
IDDIO  
28.2  
0.01  
47.4  
0.1  
mA  
mA  
VDDA current consumption while  
device is in Idle mode  
IDDA  
- Outputs are static without DC  
Load  
- Inputs are static high or low  
STANDBY MODE  
VDDIO current consumption while  
device is in Standby mode  
- CPU is in STANDBY mode  
- Flash is powered down  
- PLL is Enabled, SYSCLK &  
CPUCLK are gated  
- X1/X2 crystal is powered down  
- Analog Modules are powered  
down  
IDDIO  
13.9  
0.01  
31.3  
0.1  
mA  
mA  
VDDA current consumption while  
device is in Standby mode  
IDDA  
- Outputs are static without DC  
Load  
- Inputs are static high or low  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.5.1 System Current Consumption (continued)  
over operating free-air temperature range (unless otherwise noted).  
TYP : Vnom, 30℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
HALT MODE  
VDDIO current consumption while  
device is in Halt mode  
- CPU is in HALT mode  
- Flash is powered down  
- PLL is Disabled, SYSCLK &  
CPUCLK are gated  
IDDIO  
9.8  
27.5  
mA  
- X1/X2 crystal is powered down  
- Analog Modules are powered  
down  
- Outputs are static without DC  
Load  
VDDA current consumption while  
device is in Halt mode  
IDDA  
0.01  
0.1  
mA  
mA  
- Inputs are static high or low  
FLASH ERASE/PROGRAM  
VDDIO current consumption during  
- CPU is running from RAM  
- Flash going through continuous  
Program/Erase operation  
- PLL is enabled, SYSCLK at 120  
MHz.  
IDDIO  
72  
106  
Erase/Program cycle(1)  
- Peripheral clocks are turned  
OFF.  
- X1/X2 crystal is powered up  
- Analog is powered down  
- Outputs are static without DC  
Load  
VDDA current consumption during  
Erase/Program cycle  
IDDA  
0.1  
2.5  
mA  
- Inputs are static high or low  
RESET MODE  
VDDIO current consumption while  
reset is active(2)  
IDDIO  
5.8  
0.1  
mA  
mA  
VDDA current consumption while reset  
is active(2)  
IDDA  
(1) Brownout events during flash programming can corrupt flash data and permanently lock the device. Programming environments using  
alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system  
components with sufficient margin to avoid supply brownout conditions.  
(2) This is the current consumption while reset is active, that is XRSn is low.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.5.2 System Current Consumption (VREG Disable - External Supply)  
over operating free-air temperature range (unless otherwise noted).  
TYP : Vnom, 30℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPERATING MODE  
VDD current consumption during  
operational usage  
This is an estimation of current  
for a typical heavily loaded  
application. Actual currents will  
vary depending on system  
activity, I/O electrical loading and  
switching frequency.  
IDD  
68  
7
90  
15  
mA  
mA  
VDDIO current consumption during  
operational usage  
IDDIO  
- CPU is running from RAM  
- Flash is powered up  
- X1/X2 crystal is powered up  
- PLL is enabled, SYSCLK=Max  
Device frequency  
- Analog modules are powered up  
- Outputs are static without DC  
Load  
VDDA current consumption during  
operational usage  
IDDA  
3
6.5  
mA  
- Inputs are static high or low  
IDLE MODE  
VDD current consumption while device - CPU is in IDLE mode  
IDD  
25  
43  
mA  
mA  
is in Idle mode  
- Flash is powered down  
- PLL is Enabled, SYSCLK=Max  
Device Frequency, CPUCLK is  
gated  
VDDIO current consumption while  
device is in Idle mode  
IDDIO  
1.7  
2.2  
- X1/X2 crystal is powered up  
- Analog Modules are powered  
down  
- Outputs are static without DC  
Load  
VDDA current consumption while  
device is in Idle mode  
IDDA  
0.01  
0.1  
mA  
- Inputs are static high or low  
STANDBY MODE  
VDD current consumption while device - CPU is in STANDBY mode  
IDD  
11.6  
1.7  
27.6  
2.3  
mA  
mA  
is in Standby mode  
- Flash is powered down  
- PLL is Enabled, SYSCLK &  
CPUCLK are gated  
- X1/X2 crystal is powered down  
- Analog Modules are powered  
down  
VDDIO current consumption while  
device is in Standby mode  
IDDIO  
VDDA current consumption while  
device is in Standby mode  
IDDA  
0.01  
0.1  
mA  
- Outputs are static without DC  
Load  
- Inputs are static high or low  
HALT MODE  
VDD current consumption while device - CPU is in HALT mode  
IDD  
8.5  
0.8  
25  
mA  
mA  
is in Halt mode  
- Flash is powered down  
- PLL is Disabled, SYSCLK &  
CPUCLK are gated  
- X1/X2 crystal is powered down  
- Analog Modules are powered  
down  
VDDIO current consumption while  
device is in Halt mode  
IDDIO  
1.2  
VDDA current consumption while  
device is in Halt mode  
IDDA  
0.01  
0.1  
mA  
- Outputs are static without DC  
Load  
- Inputs are static high or low  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.5.2 System Current Consumption (VREG Disable - External Supply) (continued)  
over operating free-air temperature range (unless otherwise noted).  
TYP : Vnom, 30℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FLASH ERASE/PROGRAM  
VDD Current consumption during  
Erase/Program cycle(1)  
- CPU is running from RAM  
- Flash going through continuous  
Program/Erase operation  
- PLL is enabled, SYSCLK at 120  
MHz.  
IDD  
41  
31  
60.5  
45.5  
mA  
mA  
VDDIO Current consumption during  
Erase/Program cycle(1)  
IDDIO  
- Peripheral clocks are turned  
OFF.  
- X1/X2 crystal is powered up  
- Analog is powered down  
- Outputs are static without DC  
Load  
VDDA Current consumption during  
Erase/Program cycle  
IDDA  
0.1  
2.5  
mA  
- Inputs are static high or low  
RESET MODE  
VDD current consumption while reset  
is active(2)  
IDD  
3.3  
2.2  
0.1  
mA  
mA  
mA  
VDDIO current consumption while  
reset is active(2)  
IDDIO  
IDDA  
VDDA current consumption while reset  
is active(2)  
(1) Brownout events during flash programming can corrupt flash data and permanently lock the device. Programming environments using  
alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system  
components with sufficient margin to avoid supply brownout conditions.  
(2) This is the current consumption while reset is active, that is XRSn is low.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.5.3 Operating Mode Test Description  
Section 6.5.1 and Section 6.5.4.1 list the current consumption values for the operational mode of the device. The  
operational mode provides an estimation of what an application might encounter. The test condition for these  
measurements has the following properties:  
Code is executing from RAM.  
FLASH is read and kept in active state.  
No external components are driven by I/O pins.  
All peripherals have clocks enabled.  
The CPU is actively executing code.  
All analog peripherals are powered up. ADCs and DACs are periodically converting.  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.5.4 Reducing Current Consumption  
The F28003x devices provide some methods to reduce the device current consumption:  
One of the two low-power modes—IDLE or STANDBY—could be entered during idle periods in the  
application.  
The flash module may be powered down if the code is run from RAM.  
Disable the pullups on pins that assume an output function.  
Each peripheral has an individual clock-enable bit (PCLKCRx). Reduced current consumption may be  
achieved by turning off the clock to any peripheral that is not used in a given application. Section 6.5.4.1  
lists the typical current reduction that may be achieved by disabling the clocks using the PCLKCRx register.  
To realize the lowest VDDA current consumption in an LPM, see the Analog-to-Digital Converter (ADC)  
chapter of the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual to ensure each  
module is powered down as well.  
6.5.4.1 Typical Current Reduction per Disabled Peripheral  
PERIPHERAL  
IDD CURRENT REDUCTION (mA)  
ADC(1)  
0.73  
0.56  
0.42  
1.41  
0.33  
0.25  
0.04  
0.12  
1.28  
0.12  
0.57  
0.08  
0.29  
0.95  
0.78  
1.56  
0.1  
CLA  
CLA BGCRC  
CLB  
CMPSS(1)  
CPU BGCRC  
CPU TIMER  
GPDAC  
DCAN  
DCC  
DMA  
eCAP1 and eCAP2  
eCAP3(2)  
ePWM1 to ePWM4(3)  
ePWM5 to ePWM8  
ERAD  
eQEP  
FSI RX  
0.34  
0.27  
0.17  
0.26  
0.35  
1.01  
0.28  
0.16  
1.83  
0.08  
FSI TX  
HIC  
I2C  
LIN  
MCAN (CAN FD)  
PMBUS  
SCI  
SDFM  
SPI  
(1) This current represents the current drawn by the digital portion of the each module.  
(2) eCAP3 can also be configured as HRCAP.  
(3) ePWM1 to ePWM4 can also be configured as HRPWM.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.6 Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX UNIT  
Digital and Analog IO  
VOH High-level output voltage  
IOH = IOH MIN  
IOH = –100 μA  
IOL = IOL MAX  
IOL = 100 µA  
VDDIO * 0.8  
VDDIO – 0.2  
V
0.4  
V
VOL  
Low-level output voltage  
0.2  
IOH  
High-level output source current for all output pins  
Low-level output sink current for all output pins  
High-level output impedance for all output pins  
Low-level output impedance for all output pins  
High-level input voltage  
–4  
mA  
IOL  
4
mA  
ROH  
70  
70  
ROL  
VIH  
2.0  
V
VIL  
Low-level input voltage  
0.8  
V
VHYSTERESIS  
Input hysteresis  
125  
mV  
VDDIO = 3.3 V  
VIN = VDDIO  
IPULLDOWN  
IPULLUP  
Input current  
Input current  
Pins with pulldown  
120  
160  
µA  
µA  
Digital inputs with pullup VDDIO = 3.3 V  
enabled(1)  
VIN = 0 V  
Pullups and outputs  
disabled  
Digital inputs  
0.1  
0 V ≤ VIN ≤ VDDIO  
ILEAK  
Pin leakage  
µA  
pF  
Analog pins (except  
ADCINB3/VDAC)  
Analog drivers  
disabled  
0 V ≤ VIN ≤ VDDA  
0.1  
11  
ADCINB3/VDAC  
Digital inputs  
2
2
CI  
Input capacitance  
Analog pins(2)  
VREG, POR and BOR  
VREG, POR,  
BOR(3)  
(1) See Pins With Internal Pullup and Pulldown table for a list of pins with a pullup or pulldown.  
(2) The analog pins are specified separately; see the Per-Channel Parasitic Capacitance tables that are in the ADC Input Model section.  
(3) See the Power Management Module (PMM) section.  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.7 Thermal Resistance Characteristics for PZ Package  
°C/W(1)  
7.6  
AIR FLOW (lfm)(2)  
JC  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
Junction-to-free air thermal resistance  
N/A  
N/A  
0
JB  
24.2  
46.1  
37.3  
34.8  
32.6  
0.2  
JA (High k PCB)  
150  
250  
500  
0
JMA  
Junction-to-moving air thermal resistance  
0.4  
150  
250  
500  
0
PsiJT  
Junction-to-package top  
0.4  
0.6  
23.8  
22.8  
22.4  
21.9  
150  
250  
500  
PsiJB  
Junction-to-board  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on  
a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.8 Thermal Resistance Characteristics for PN Package  
°C/W(1)  
14.2  
21.9  
49.9  
38.3  
36.7  
34.4  
0.8  
AIR FLOW (lfm)(2)  
JC  
JB  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
N/A  
N/A  
0
150  
250  
500  
0
JA (High k PCB)  
Junction-to-free air thermal resistance  
Junction-to-package top  
1.18  
1.34  
1.62  
21.6  
20.7  
20.5  
20.1  
150  
250  
500  
0
PsiJT  
150  
250  
500  
PsiJB  
Junction-to-board  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on  
a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.9 Thermal Resistance Characteristics for PM Package  
°C/W(1)  
12.4  
25.6  
51.8  
42.2  
39.4  
36.5  
0.5  
AIR FLOW (lfm)(2)  
JC  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
Junction-to-free air thermal resistance  
N/A  
N/A  
0
JB  
JA (High k PCB)  
150  
250  
500  
0
JMA  
Junction-to-moving air thermal resistance  
0.9  
150  
250  
500  
0
PsiJT  
Junction-to-package top  
1.1  
1.4  
25.1  
23.8  
23.4  
22.7  
150  
250  
500  
PsiJB  
Junction-to-board  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on  
a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.10 Thermal Resistance Characteristics for PT Package  
°C/W(1)  
13.6  
30.6  
64  
AIR FLOW (lfm)(2)  
JC  
JB  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
N/A  
N/A  
0
50.4  
48.2  
45  
150  
250  
500  
0
JA (High k PCB)  
Junction-to-free air thermal resistance  
Junction-to-package top  
0.56  
0.94  
1.1  
150  
250  
500  
0
PsiJT  
1.38  
30.1  
28.7  
28.4  
28  
150  
250  
500  
PsiJB  
Junction-to-board  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on  
a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
6.11 Thermal Design Considerations  
Based on the end application design and operational profile, the IDD and IDDIO currents could vary. Systems  
that exceed the recommended maximum power dissipation in the end product may require additional thermal  
enhancements. Ambient temperature (TA) varies with the end application and product design. The critical factor  
that affects reliability and functionality is TJ, the junction temperature, not the ambient temperature. Hence, care  
should be taken to keep TJ within the specified limits. Tcase should be measured to estimate the operating  
junction temperature TJ. Tcase is normally measured at the center of the package top-side surface. The thermal  
application report Semiconductor and IC Package Thermal Metrics helps to understand the thermal metrics and  
definitions.  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.12 System  
6.12.1 Power Management Module (PMM)  
6.12.1.1 Introduction  
The Power Management Module (PMM) handles all the power management functions required for device  
operation.  
6.12.1.2 Overview  
The block diagram of the PMM is shown in Figure 6-1. As can be seen, the PMM comprises of various  
sub-components which will be described in the subsequent sections.  
MCU  
To Rest of Chip  
PMM  
CPU Reset  
Release  
I/O  
POR  
RISE  
DELAY  
(45us)  
RISE  
DELAY  
(80us)  
I/O  
BOR  
Internal  
Power  
Good  
RISE  
DELAY  
(40us)  
Signal  
EN  
VMONCTL.bit.BORLVMONDIS  
VDD  
POR  
EN  
1.2v LDO  
VREG  
Internal  
External  
Internal  
External  
CVDDIO  
CVDD  
Figure 6-1. PMM Block Diagram  
6.12.1.2.1 Power Rail Monitors  
The PMM has voltage monitors on the supply rails that release the XRSn signal high once the voltages cross the  
set threshold during power up. They also function to trip the XRSn signal low if any of the voltages drop below  
the programmed levels. The various voltage monitors are described in the subsequent sections.  
Note  
Not all the voltage monitors are supported for device operation in an application. In the case where a  
voltage monitor is not supported, an external supervisor is recommended if the device needs supply  
voltage monitoring.  
The three voltage monitors (I/O POR, I/O BOR, VDD POR) all have to release their respective outputs before the  
device begins operation (i.e XRSn goes high). However, if any of the voltage monitors trips, XRSn is driven low.  
The I/Os are held in high impedance when any of the voltage monitors trip.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.12.1.2.1.1 I/O POR (Power-On Reset) Monitor  
The I/O POR monitor supervises the VDDIO rail. During power-up, this is the first monitor to release (i.e first to  
untrip) on VDDIO.  
6.12.1.2.1.2 I/O BOR (Brown-Out Reset) Monitor  
The I/O BOR monitor also supervises the VDDIO rail. During power-up, this is the second monitor to release (i.e  
second to untrip) on VDDIO. This monitor has a tighter tolerance compared to the I/O POR.  
Any drop in voltage below the recommended operating voltages will trip the I/O BOR and reset the device but  
this can be disabled by setting VMONCTL.bit.BORLVMONDIS to 1. The I/O BOR can only be disabled after the  
device has fully booted up. If the I/O BOR is disabled, the I/O POR will reset the device for voltage drops.  
Note  
The level that the I/O POR trips at is well below the minimum recommended voltage for VDDIO and  
hence should not be used for device supervision.  
Figure 6-2 shows the operating region of the I/O BOR.  
3.63 V  
+10%  
Recommended  
System Voltage  
Regulator Range  
3.3 V  
0%  
VDDIO  
Operating  
Range  
3.1 V  
3.0 V  
–6.1%  
–9.1%  
VBOR-GB  
BOR Guard Band  
VBOR-VDDIO  
Internal BOR Threshold  
–14.8%  
–15.1%  
2.81 V  
2.80 V  
Figure 6-2. I/O BOR Operating Region  
6.12.1.2.1.3 VDD POR (Power-On Reset) Monitor  
The VDD POR monitor supervises the VDD rail. During power-up, this monitor releases i.e untrips once the  
voltage crosses the programmed trip level on VDD.  
Note  
VDD POR is programmed at a level below the minimum recommended voltage for VDD and hence it  
should not be relied upon for VDD supervision if that is required in the application.  
6.12.1.2.2 External Supervisor Usage  
VDDIO Monitoring: The I/O BOR is supported for application use so an external supervisor is not required to  
monitor the I/O rail.  
VDD Monitoring: The VDD POR is not supported for application use. If VDD monitoring is required by the  
application, an external supervisor should be used to monitor the VDD rail.  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Note  
Using an external supervisor with the internal VREG is not supported. If VDD monitoring is required  
by the application, it is a requirement to use a package with VREGENZ pin in order to power VDD  
externally.  
6.12.1.2.3 Delay Blocks  
The delay blocks in the path of the voltage monitors work together to delay the release time between the voltage  
monitors and XRSn. This is to ensure that the voltages are stable when XRSn releases in external VREG mode.  
They are only active during power-up i.e when VDDIO and VDD are ramping up.  
They contribute to the minimum slew rates specified in Power Management Module Electrical Data and Timing  
for the power rails.  
Note  
The delay numbers specified in the block diagram are typical numbers.  
6.12.1.2.4 Internal 1.2-V LDO Voltage Regulator (VREG)  
The internal VREG is supplied by the VDDIO rail and can generate the 1.2V required to power the VDD pins. It  
is enabled by tying the VREGENZ pin low. Although it eliminates the need to use an external supply for VDD,  
decoupling capacitors are still required on the VDD pins for VREG stability and transients. See VDD Decoupling  
for details.  
6.12.1.2.5 VREGENZ  
The VREGENZ (VREG disable) pin controls the state of the internal VREG. To enable the internal VREG,  
VREGENZ pin should be tied low. For applications supplying VDD externally (external VREG), the internal  
VREG should be disabled by tying the VREGENZ pin high.  
Note  
Not all device packages have VREGENZ pinned out. For packages without VREGENZ, external  
VREG mode is not supported.  
6.12.1.3 External Components  
6.12.1.3.1 Decoupling Capacitors  
VDDIO and VDD require decoupling capacitors for correct operation. The requirements are outlined in the  
subsequent sections.  
6.12.1.3.1.1 VDDIO Decoupling  
It is recommended to place a minimum amount of decoupling capacitance on VDDIO. See the CVDDIO parameter  
in Power Management Module Electrical Data and Timing. The actual amount of decoupling capacitance to use  
is a requirement of the power supply driving VDDIO. Either of the configurations outlined below is acceptable:  
Configuration 1: Place a decoupling capacitor on each VDDIO pin per the CVDDIO parameter.  
Configuration 2: Install a single decoupling capacitor which is the equivalent of CVDDIO * VDDIO pins.  
Note  
It is critical to have the decoupling capacitor/s close to the device pins.  
6.12.1.3.1.2 VDD Decoupling  
It is recommended to place a minimum amount of decoupling capacitance on VDD. See the CVDD TOTAL  
parameter in Power Management Module Electrical Data and Timing.  
In external VREG mode, the actual amount of decoupling capacitance to use is a requirement of the power  
supply driving VDD.  
Either of the configurations outlined below is acceptable:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Configuration 1: Divide CVDD TOTAL across the VDD pins.  
Configuration 2: Install a single decoupling capacitor with value of CVDD TOTAL.  
Note  
It is critical to have the decoupling capacitor/s close to the device pins.  
6.12.1.4 Power Sequencing  
6.12.1.4.1 Supply Pins Ganging  
It is strongly recommended that all 3.3v rails be tied together and supplied from a single source. This list  
includes:  
VDDIO  
VDDA  
In addition, no power pin should be left unconnected.  
In external VREG mode, the VDD pins should be tied together and supplied from a single source.  
In internal VREG mode, tying the VDD pins together is optional as long as each VDD pin has a capacitor on it.  
See VDD Decoupling for VDD decoupling configurations.  
The analog modules on the device have fairly high PSRR and hence in most cases, noise on VDDA will have to  
exceed the recommended operating conditions of the supply rails before the analog modules see performance  
degradation. Due to this, supplying VDDA separately typically offers minimal benefits. Nevertheless, for the  
purposes of noise improvement, placing a pi filter between VDDIO and VDDA is acceptable.  
Note  
All the supply pins per rail are tied together internally. For instance, all VDDIO pins are tied together  
internally, all VDD pins are tied together internally etc.  
6.12.1.4.2 Signal Pins Power Sequence  
Before powering the device, no voltage larger than 0.3 V above VDDIO or 0.3 V below VSS should be applied  
to any digital pin and no voltage larger than 0.3 V above VDDA or 0.3 V below VSSA should be applied to any  
analog pin (including VREFHI and VDAC). Simply, the signal pins should only be driven after XRSn goes high  
provided all the 3.3v rails are tied together. This sequencing is still required even if VDDIO and VDDA are not  
tied together.  
If the above sequence is violated, device malfunction and possibly damage can occur as current will flow through  
unintended parasitic paths in the device.  
6.12.1.4.3 Supply Pins Power Sequence  
6.12.1.4.3.1 External VREG/VDD Mode Sequence  
Figure 6-3 depicts the power sequencing requirements for external VREG mode. The values for all the  
parameters indicated can be found in Power Management Module Electrical Data and Timing.  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
VDDIO  
VDDIO  
VDD  
(i)  
(ii)  
VBOR-VDDIO-UP  
VBOR-VDDIO-DOWN  
VDD  
Internal  
Internal  
Power Good  
Signal(iv)  
Power Good  
Signal(iii)  
XRSn  
XRSn  
SRVDDIO  
SRVDD  
SRVDDIO  
SRVDD  
(ii)  
(i)  
VPOR-VDDIO  
VPOR-VDD-DOWN  
VPOR-VDD-UP  
VPOR-VDDIO  
V
DDIO - VDD  
Delay  
VDDIO-MON-TOT-DELAY  
VXRSn-PU-DELAY  
VXRSn-PD-DELAY  
(i) This trip point is the trip point before XRSn releases. See the PMM Characteris cs table.  
(ii) This trip point is the trip point a er XRSn releases. See the PMM Characteris cs table.  
(iii) During power up, the Power Good Signal goes high a er all POR and BOR monitors are released. See the PMM Block Diagram.  
(iv) During power down, the Power Good Signal goes low if any of the POR or BOR monitors are tripped. See the PMM Block Diagram.  
Figure 6-3. External VREG Power Up Sequence  
For Power Up:  
1. VDDIO i.e the 3.3 V rail should come up first with the minimum slew rate specified.  
2. VDD i.e the 1.2 V rail should come up next with the minimum slew rate specified.  
3. The time delta between the VDDIO rail coming up and when the VDD rail can come up is also specified.  
4. After the times specified by vddio-mon-tot-delay and vxrsn-pu-delay, XRSn will be released and the  
device starts the boot-up sequence.  
There is an additional delay between XRSn releasing (i.e going high) and the boot-up sequence starting.  
See Figure 6-1.  
5. The VDD POR and I/O BOR monitors have different release point during power up.  
6. During power up, both VDDIO and VDD rails have to be up before XRSn releases.  
For Power-Down:  
1. There is no requirement between VDDIO and VDD on which should power down first, however, there is a  
minimum slew rate spec.  
2. The VDD POR and I/O BOR monitors have different trip points during power down.  
3. Any of the POR or BOR monitors that trips during power down will cause XRSn to go low after  
VXRSN-PD-DELAY  
.
Note  
The Power Good Signal is an internal signal.  
Note  
If there is an external circuit driving XRSn e.g a supervisor, the boot-up sequence does not start until  
the XRSn pin is released by all internal and external sources.  
6.12.1.4.3.2 Internal VREG/VDD Mode Sequence  
Figure 6-4 depicts the power sequencing requirements for internal VREG mode. The values for all the  
parameters indicated can be found in Power Management Module Electrical Data and Timing.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
VDDIO  
VDDIO  
(i)  
(ii)  
VBOR-VDDIO-UP  
VBOR-VDDIO-DOWN  
Internal  
Power Good  
Signal(iii)  
Internal  
Power Good  
Signal(iv)  
XRSn  
XRSn  
SRVDDIO  
SRVDDIO  
VPOR-VDDIO  
VPOR-VDDIO  
VDDIO-MON-TOT-DELAY  
VXRSn-PU-DELAY  
VXRSn-PD-DELAY  
(i) This trip point is the trip point before XRSn releases. See the PMM Characteris cs table.  
(ii) This trip point is the trip point a er XRSn releases. See the PMM Characteris cs table.  
(iii) During power up, the Power Good Signal goes high a er all POR and BOR monitors are released. See the PMM Block Diagram.  
(iv) During power down, the Power Good Signal goes low if any of the POR or BOR monitors are tripped. See the PMM Block Diagram.  
Figure 6-4. Internal VREG Power Up Sequence  
For Power-Up:  
1. VDDIO i.e the 3.3 V rail should come up with the minimum slew rate specified.  
2. The Internal VREG powers up after the I/O monitors (I/O POR and I/O BOR) are released.  
3. After the times specified by VDDIO-MON-TOT-DELAY and VXRSN-PU-DELAY, XRSn will be released and the  
device starts the boot-up sequence.  
There is an additional delay between XRSn releasing (i.e going high) and the boot-up sequence starting.  
See Figure 6-1.  
4. The I/O BOR monitor has a different release point during power up.  
For Power-Down:  
1. The only requirement on VDDIO during power down is the slew rate.  
2. The I/O BOR monitor has a different release point during power down.  
3. The I/O BOR tripping will cause XRSn to go low after VXRSN-PD-DELAY and also power down the Internal  
VREG.  
Note  
The Power Good Signal is an internal signal.  
Note  
If there is an external circuit driving XRSn e.g a supervisor, the boot-up sequence does not start until  
the XRSn pin is released by all internal and external sources.  
6.12.1.4.3.3 Supply Sequencing Summary and Effects of Violations  
The acceptable power up sequence for the rails is summarized below. Power-up here means the rail in question  
has reached the minimum recommended operating voltage. Non-acceptable sequences will lead to reliability  
concerns and possibly damage. For simplicity, it is recommended to tie all the 3.3-V rails together and follow the  
descriptions in Supply Pins Power Sequence.  
Table 6-1. External VREG Sequence Summary  
RAILS POWER-UP ORDER  
CASE  
ACCEPTABLE  
VDDIO  
VDDA  
VDD  
A
B
C
D
1
1
2
2
2
3
1
3
3
2
3
1
Yes  
Yes  
-
-
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 6-1. External VREG Sequence Summary (continued)  
RAILS POWER-UP ORDER  
CASE  
ACCEPTABLE  
VDDIO  
VDDA  
VDD  
E
F
3
3
1
2
2
1
1
2
1
2
2
1
-
-
Yes  
-
G
H
Table 6-2. Internal VREG Sequence Summary  
RAILS POWER-UP ORDER  
CASE  
ACCEPTABLE  
VDDIO  
VDDA  
A
B
C
1
2
1
2
1
1
Yes  
-
Yes  
Note  
The analog modules on the device should only be powered after VDDA has reached the minimum  
recommended operating voltage.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.12.1.5 Power Management Module Electrical Data and Timing  
6.12.1.5.1 Power Management Module Operating Conditions  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
General  
VDDIO Capacitance Per  
Pin(7)  
(1) (2)  
CVDDIO  
0.1  
2.2  
20  
uF  
uF  
VDDA Capacitance Per  
Pin(7)  
(1) (2)  
CVDDA  
Supply Ramp Rate of 3.3V  
Rail (VDDIO)  
(3)  
SRVDDIO  
100  
mV/us  
V
VBOR-VDDIO-GB VDDIO Brown Out Reset  
0.1  
(5)  
Voltage Guardband  
External VREG  
CVDD  
Total VDD Capacitance(7)  
10  
20  
0
uF  
mV/us  
us  
TOTAL(1) (4)  
Supply Ramp Rate of 1.2V  
Rail (VDD)  
(3)  
SRVDD  
100  
VDDIO - VDD  
Delay(6)  
Ramp Delay Between VDDIO  
and VDD  
Internal VREG  
CVDD  
Total VDD Capacitance(7)  
10  
uF  
TOTAL(4)  
(1) The exact value of the decoupling capacitance depends on the system voltage regulation solution that is supplying these pins.  
(2) It is recommended to tie the 3.3V rails (VDDIO, VDDA) together and supply them from a single source.  
(3) Supply ramp rate faster than the max can trigger the on-chip ESD protection.  
(4) See the Power Management Module (PMM) section on possible configurations for the total decoupling capacitance.  
(5) TI recommends VBOR-VDDIO-GB to avoid BOR-VDDIO resets due to normal supply noise or load-transient events on the 3.3-V VDDIO  
system regulator. Good system regulator design and decoupling capacitance (following the system regulator specifications) are  
important to prevent activation of the BOR-VDDIO during normal device operation. The value of VBOR-VDDIO-GB is a system-level design  
consideration; the voltage listed here is typical for many applications.  
(6) Delay between when the 3.3v rail ramps up and when the 1.2v rail ramps up. See the supply sequencing table for the allowable supply  
ramp sequences.  
(7) Capacitor tolerance should be less than 10%.  
6.12.1.5.2 Power Management Module Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Internal Voltage Regulator  
Output  
VVREG  
1.152  
1.2  
1.248  
V
VDDIO Power on Reset  
Voltage  
Before and After XRSn  
Release  
VPOR-VDDIO  
2.3  
2.7  
V
V
V
V
V
VBOR-VDDIO-UP VDDIO Brown Out Reset  
Before XRSn Release  
After XRSn Release  
Before XRSn Release  
After XRSn Release  
(1)  
Voltage on Ramp Up  
VBOR-VDDIO-  
VDDIO Brown Out Reset  
Voltage on Ramp Down  
2.81  
3.0  
(1)  
DOWN  
VPOR-VDD-UP  
VDD Power on Reset Voltage  
on Ramp Up  
0.9  
1
(2)  
VPOR-VDD-  
VDD Power on Reset Voltage  
on Ramp Down  
(2)  
DOWN  
XRSn Release Delay after  
Supplies are Ramped Up  
During Power-Up  
VXRSn-PU-  
This is the final delay  
40  
50  
us  
ns  
(3)  
DELAY  
XRSn Trip Delay after  
Supplies are Ramped Down  
During Power-Down  
VXRSn-PD-  
(4)  
DELAY  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
 
 
 
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.12.1.5.2 Power Management Module Characteristics (continued)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDDIO-MON-  
Total Delays in Path of  
VDDIO Monitors (POR, BOR)  
45  
us  
TOT-DELAY  
XRSn Release Delay after a  
VDDIO BOR/VDD POR Event  
40  
90  
us  
us  
VXRSn-MON-  
Supplies Within Operating  
Range  
RELEASE-DELAY  
XRSn Release Delay after a  
VDDIO POR Event  
(1) See the Supply Voltages figure.  
(2) VPOR-VDD is not supported and it is set to trip at a level below the recommended operating conditions. If monitoring of VDD is needed,  
an external supervisor is required.  
(3) Supplies are considered fully ramped up after they cross the minimum recommended operating conditions for the respective rail. All  
POR and BOR monitors need to be released before this delay takes effect. RC network delay will add to this.  
(4) On power down, any of the POR or BOR monitors that trips will immediately trip XRSn. This delay is the time between any of the POR,  
BOR monitors tripping and XRSn going low. It is variable and depends on the ramp down rate of the supply. RC network delay will add  
to this.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.12.2 Reset Timing  
XRSn is the device reset pin. It functions as an input and open-drain output. The device has a built-in power-on  
reset (POR) and brown-out reset (BOR) monitors. During power up, the monitor circuits keep the XRSn pin low.  
For more details, see the Power Management Module (PMM) section. A watchdog or NMI watchdog reset will  
also drive the pin low. An external open-drain circuit may drive the pin to assert a device reset.  
A resistor with a value from 2.2 kΩ to 10 kΩ should be placed between XRSn and VDDIO. A capacitor should  
be placed between XRSn and VSS for noise filtering, it should be 100 nF or smaller. These values will allow  
the watchdog to properly drive the XRSn pin to VOL within 512 OSCCLK cycles when the watchdog reset is  
asserted. Figure 6-5 shows the recommended reset circuit.  
VDDIO  
2.2 kW to 10 kW  
Optional open-drain  
Reset source  
XRSn  
£100 nF  
Figure 6-5. Reset Circuit  
6.12.2.1 Reset Sources  
The Reset Signals table summarizes the various reset signals and their effect on the device.  
Table 6-3. Reset Signals  
Reset Source  
CPU Core Reset  
(C28x, FPU, TMU)  
Peripherals  
Reset  
JTAG / Debug  
Logic Reset  
IOs  
XRS Output  
POR  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
No  
Yes  
Yes  
-
BOR  
XRS Pin  
WDRS  
NMIWDRS  
Yes  
Yes  
No  
No  
Yes  
No  
No  
SYSRS (Debugger Reset)  
SCCRESET  
SIMRESET. XRS  
SIMRESET. CPU1RS  
HWBISTRS  
The parameter th(boot-mode) must account for a reset initiated from any of these sources.  
See the Resets section of the System Control chapter in the TMS320F28003x Real-Time Microcontrollers  
Technical Reference Manual.  
CAUTION  
Some reset sources are internally driven by the device. Some of these sources will drive XRSn low,  
use this to disable any other devices driving the boot pins. The SCCRESET and debugger reset  
sources do not drive XRSn; therefore, the pins used for boot mode should not be actively driven by  
other devices in the system. The boot configuration has a provision for changing the boot pins in  
OTP.  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.12.2.2 Reset Electrical Data and Timing  
6.12.2.2.1 Reset (XRSn) Timing Requirements  
MIN  
1.5  
MAX  
UNIT  
ms  
th(boot-mode)  
tw(RSL2)  
Hold time for boot-mode pins  
Pulse duration, XRSn low on warm reset  
3.2  
µs  
6.12.2.2.2 Reset (XRSn) Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
100  
MAX  
UNIT  
tw(RSL1)  
tw(WDRS)  
tboot-flash  
Pulse duration, XRSn driven low by device after supplies are stable  
Pulse duration, reset pulse generated by watchdog  
µs  
cycles  
ms  
512tc(OSCCLK)  
Boot-ROM execution time to first instruction fetch in flash  
1.2  
6.12.2.2.3 Reset Timing Diagrams  
VDDIO VDDA  
(3.3V)  
VDD (1.2V)  
tw(RSL1)  
XRSn(A)  
tboot-flash  
Boot ROM  
CPU  
Execution  
Phase  
User code  
User code dependent  
(B)  
th(boot-mode)  
GPIO pins as input  
Boot-ROM execution starts  
Boot-Mode  
Pins  
Peripheral/GPIO function  
Based on boot code  
GPIO pins as input (pullups are disabled)  
User code dependent  
I/O Pins  
A. The XRSn pin can be driven externally by a supervisor or an external pullup resistor, see the Pin Attributes table. On-chip monitors will  
hold this pin low until the supplies are in a valid range.  
B. After reset from any source (see the Reset Sources section), the boot ROM code samples Boot Mode pins. Based on the status of  
the Boot Mode pin, the boot code branches to destination memory or boot code function. If boot ROM code executes after power-on  
conditions (in debugger environment), the boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based  
on user environment and could be with or without PLL enabled.  
Figure 6-6. Power-on Reset  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
tw(RSL2)  
XRSn  
CPU  
Execution  
Phase  
User code  
Boot ROM  
User code  
Boot ROM execution starts  
(initiated by any reset source)  
(A)  
th(boot-mode)  
Boot-Mode  
Pins  
Peripheral/GPIO function  
GPIO Pins as Input  
Peripheral/GPIO function  
User-Code Execution Starts  
I/O Pins  
GPIO Pins as Input (Pullups are Disabled)  
User-Code Dependent  
User-Code Dependent  
A. After reset from any source (see the Reset Sources section), the Boot ROM code samples BOOT Mode pins. Based on the status of  
the Boot Mode pin, the boot code branches to destination memory or boot code function. If Boot ROM code executes after power-on  
conditions (in debugger environment), the Boot code execution time is based on the current SYSCLK speed. The SYSCLK will be  
based on user environment and could be with or without PLL enabled.  
Figure 6-7. Warm Reset  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.12.3 Clock Specifications  
6.12.3.1 Clock Sources  
Table 6-4. Possible Reference Clock Sources  
CLOCK SOURCE  
DESCRIPTION  
INTOSC1  
INTOSC2(1)  
X1 (XTAL)  
Internal oscillator 1.  
Zero-pin overhead 10-MHz internal oscillator.  
Internal oscillator 2.  
Zero-pin overhead 10-MHz internal oscillator.  
External crystal or resonator connected between the X1 and X2 pins or single-ended clock connected to the X1  
pin.  
(1) On reset, internal oscillator 2 (INTOSC2) is the default clock source for the PLL (OSCCLK).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
SYSCLKDIVSEL  
PLLSYSCLK  
CPUCLK  
NMIWD  
Watchdog  
Timer  
SYS  
Divider  
PLLRAWCLK  
FPU  
TMU  
Flash  
SYSPLL  
INTOSC1  
INTOSC2  
X1 (XTAL)  
OSCCLK  
SYSPLLCLKEN  
OSCCLKSRCSEL  
CPU  
ePIE  
CLA  
GPIO  
Mx RAMs  
LSx RAMs  
Boot ROM  
Message RAMs  
DCSM  
System Control  
WD  
SYSCLK  
SYSCLK  
GSx RAMs  
XINT  
CPUTIMERs  
CLB  
I2C  
ADC  
ECAP  
EQEP  
EPWM  
HRCAL  
PMBUS  
LIN  
FSI  
SDFM  
EPG  
CMPSS  
GPDAC  
DCAN  
MCAN  
HIC  
DCC  
HWBIST  
BGCRC  
One per SYSCLK peripheral  
PCLKCRx  
PERx.SYSCLK  
ERAD  
AES  
One per LSPCLK peripheral  
LOSPCP  
PCLKCRx  
PERx.LSPCLK  
SCI  
SPI  
LSPCLK  
LSP  
Divider  
CLKSRCCTL2.CANxBCLKSEL  
CAN Bit Clock  
Figure 6-8. Clocking System  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
SYSPLL  
OSCCLK  
INTCLK  
VCOCLK  
PLLRAWCLK  
÷
(REFDIV+1)  
÷
(ODIV+1)  
VCO  
÷
IMULT  
Figure 6-9. System PLL  
In Figure 6-9,  
IMULT  
fOSCCLK  
REFDIV +1  
=
ì
fPLLRAWCLK  
ODIV +1  
(
)
(
)
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.12.3.2 Clock Frequencies, Requirements, and Characteristics  
This section provides the frequencies and timing requirements of the input clocks, PLL lock times, frequencies of  
the internal clocks, and the frequency and switching characteristics of the output clock.  
6.12.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times  
6.12.3.2.1.1 Input Clock Frequency  
MIN  
10  
MAX  
20  
UNIT  
MHz  
MHz  
f(XTAL)  
f(X1)  
Frequency, X1/X2, from external crystal or resonator  
Frequency, X1, from external oscillator  
10  
25  
6.12.3.2.1.2 XTAL Oscillator Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
–0.3  
TYP  
MAX  
UNIT  
X1 VIL  
X1 VIH  
Valid low-level input voltage  
Valid high-level input voltage  
0.3 * VDDIO  
VDDIO + 0.3  
V
V
0.7 * VDDIO  
6.12.3.2.1.3 X1 Input Level Characteristics When Using an External Clock Source (Not a Crystal)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
–0.3  
MAX  
0.3 * VDDIO  
VDDIO + 0.3  
UNIT  
V
X1 VIL  
X1 VIH  
Valid low-level input voltage  
Valid high-level input voltage  
0.7 * VDDIO  
V
6.12.3.2.1.4 X1 Timing Requirements  
MIN  
MAX  
UNIT  
ns  
tf(X1)  
Fall time, X1  
6
6
tr(X1)  
Rise time, X1  
ns  
tw(X1L)  
tw(X1H)  
Pulse duration, X1 low as a percentage of tc(X1)  
Pulse duration, X1 high as a percentage of tc(X1)  
45%  
45%  
55%  
55%  
6.12.3.2.1.5 AUXCLKIN Timing Requirements  
MIN  
MAX  
6
UNIT  
ns  
tf(AUXI)  
Fall time, AUXCLKIN  
tr(AUXI)  
tw(AUXL)  
tw(AUXH)  
Rise time, AUXCLKIN  
6
ns  
Pulse duration, AUXCLKIN low as a percentage of tc(XCI)  
Pulse duration, AUXCLKIN high as a percentage of tc(XCI)  
45%  
45%  
55%  
55%  
6.12.3.2.1.6 APLL Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
PLL Lock time  
SYS PLL Lock Time(1)  
5µs + (1024 * (REFDIV + 1) * tc(OSCCLK)  
)
us  
(1) The PLL lock time here defines the typical time that takes for the PLL to lock once PLL is enabled (SYSPLLCTL1[PLLENA]=1).  
Additional time to verify the PLL clock using Dual Clock Comparator (DCC) is not accounted here. TI recommends using the latest  
example software from C2000Ware for initializing the PLLs. For the system PLL, see InitSysPll() or SysCtl_setClock().  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.12.3.2.1.7 XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER(1)  
MIN  
MAX  
5
UNIT  
ns  
tf(XCO)  
Fall time, XCLKOUT  
tr(XCO)  
tw(XCOL)  
tw(XCOH)  
f(XCO)  
Rise time, XCLKOUT  
5
ns  
Pulse duration, XCLKOUT low  
Pulse duration, XCLKOUT high  
Frequency, XCLKOUT  
H – 2(2)  
H – 2(2)  
H + 2(2)  
H + 2(2)  
50  
ns  
ns  
MHz  
(1) A load of 40 pF is assumed for these parameters.  
(2) H = 0.5tc(XCO)  
6.12.3.2.1.8 Internal Clock Frequencies  
MIN  
2
NOM  
MAX  
120  
500  
20  
UNIT  
MHz  
ns  
f(SYSCLK)  
tc(SYSCLK)  
f(INTCLK)  
f(VCOCLK)  
f(PLLRAWCLK)  
f(PLL)  
Frequency, device (system) clock  
Period, device (system) clock  
8.33  
2
Frequency, system PLL going into VCO (after REFDIV)  
Frequency, system PLL VCO (before ODIV)  
Frequency, system PLL output (before SYSCLK divider)  
Frequency, PLLSYSCLK  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
220  
6
600  
240  
120  
2
f(PLL_LIMP)  
f(LSP)  
Frequency, PLL Limp Frequency (1)  
Frequency, LSPCLK  
45/(ODIV+1)  
2
120  
500  
tc(LSPCLK)  
Period, LSPCLK  
8.33  
Frequency, OSCCLK (INTOSC1 or INTOSC2 or XTAL or  
X1)  
f(OSCCLK)  
See respective clock  
MHz  
f(EPWM)  
Frequency, EPWMCLK  
Frequency, HRPWMCLK  
120  
120  
MHz  
MHz  
f(HRPWM)  
60  
(1) PLL output frequency when OSCCLK is dead (Loss of OSCCLK causes PLL to Limp).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.12.3.3 Input Clocks and PLLs  
In addition to the internal 0-pin oscillators, three types of external clock sources are supported:  
A single-ended 3.3-V external clock. The clock signal should be connected to X1, as shown in Figure 6-10,  
with the XTALCR.SE bit set to 1.  
An external crystal. The crystal should be connected across X1 and X2 with its load capacitors connected to  
VSS as shown in Figure 6-11.  
An external resonator. The resonator should be connected across X1 and X2 with its ground connected to  
VSS as shown in Figure 6-12.  
Microcontroller  
Microcontroller  
GPIO19  
X1  
GPIO18  
X2  
GPIO18*  
X2  
GPIO19  
X1  
VSS  
VSS  
* Available as a  
GPIO when X1 is  
used as a clock  
+3.3 V  
VDD  
Out  
3.3-V Oscillator  
Gnd  
Figure 6-11. External Crystal  
Figure 6-10. Single-ended 3.3-V External Clock  
Microcontroller  
GPIO18  
X2  
GPIO19  
X1  
VSS  
Figure 6-12. External Resonator  
6.12.3.4 XTAL Oscillator  
6.12.3.4.1 Introduction  
The XTAL oscillator in this device is an embedded electrical oscillator that when paired with a compatible crystal  
can generate the system clock required by the device.  
6.12.3.4.2 Overview  
The sections below describe the components of the electrical oscillator and crystal.  
6.12.3.4.2.1 Electrical Oscillator  
The electrical oscillator in this device is a Pierce oscillator design. It is a positive feedback inverter circuit that  
requires a tuning circuit in order to oscillate. When it is paired with a compatible crystal, a tank circuit is formed.  
This tank circuit oscillates at the fundamental frequency of the crystal component. On this device, it is designed  
to operate in parallel resonance mode due to the shunt capacitor (C0) and required load capacitors (CL). Figure  
6-13 illustrates the components of the electrical oscillator and the tank circuit.  
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
To Rest of Chip  
MCU  
XTAL Oscillator  
Buffer  
0
1
Comp  
XCLKOUT  
Circuit  
[XTAL On]  
Rbias  
Pierce Inverter  
Internal  
External  
Internal  
External  
Rd  
Crystal  
CL1  
CL2  
GND  
GND  
Figure 6-13. Electrical Oscillator Block Diagram  
6.12.3.4.2.1.1 Modes of Operation  
The electrical oscillator in this device has two modes of operation: crystal mode and single-ended mode.  
6.12.3.4.2.1.1.1 Crystal Mode of Operation  
In crystal mode of operation, a quartz crystal with load capacitors has to be connected to X1 and X2.  
This mode of operation is engaged when [XTAL On]=1 which is achieved by setting XTALCR.OSCOFF=0 and  
XTALCR.SE=0. There is an internal bias resistor for the feedback loop so an external one should not be used.  
Adding an external bias resistor will create a parallel resistance with the internal Rbias, moving the bias point  
of operation and possibly leading to clipped waveforms, out of spec duty cycle and reduction in the effective  
negative resistance.  
In this mode of operation, the resultant clock on X1 is passed through a comparator (Comp) to the rest of the  
chip. The clock on X1 needs to meet the VIH and VIL of the comparator. See XTAL Oscillator Characteristics  
table for the VIH and VIL requirements of the comparator.  
6.12.3.4.2.1.1.2 Single-Ended Mode of Operation  
In the single-ended mode of operation, a clock signal is connected to X1 with X2 left unconnected. A quartz  
crystal should not be used in this mode.  
This mode is enabled when [XTAL On]=0 which can be achieved by setting XTALCR.OSCOFF=1 and  
XTALCR.SE=1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
In this mode of operation, the clock on X1 is passed through a buffer (Buffer) to the rest of the chip. See X1 Input  
Level Characteristics When Using an External Clock Source (Not a Crystal) table for the input requirements of  
the buffer.  
6.12.3.4.2.1.2 XTAL Output on XCLKOUT  
The output of the electrical oscillator that is fed to the rest of the chip can be brought out on XCLKOUT for  
observation by configuring CLKSRCCTL3.XCLKOUTSEL and XCLKOUTDIVSEL.XCLKOUTDIV registers . See  
the GPIO mux table for a list of GPIOs that XCLKOUT comes out on.  
6.12.3.4.2.2 Quartz Crystal  
Electrically, a quartz crystal can be represented by an LCR circuit (Inductor-Capacitor-Resistor). However, unlike  
an LCR circuit, crystals have very high Q due to the low motional resistance and are also very underdamped.  
Components of the crystal are shown in Figure 6-14 and explained below.  
Quartz Crystal  
Internal  
External  
Cm  
Rm  
C0  
CL  
Lm  
Figure 6-14. Crystal Electrical Representation  
Cm (Motional capacitance): Denotes the elasticity of the crystal.  
Rm (Motional resistance): Denotes the resistive losses within the crystal. This is not the ESR of the crystal but  
can be approximated as such depending on the values of the other crystal components.  
Lm (Motional inductance): Denotes the vibrating mass of the crystal.  
C0 (Shunt capacitance): The capacitance formed from the two crystal electrodes and stray package  
capacitance.  
CL (Load capacitance): This is the effective capacitance seen by the crystal at its electrodes. It is external to  
the crystal. The frequency ppm specified in the crystal datasheet is usually tied to the CL parameter.  
Note that most crystal manufacturers specify CL as the effective capacitance seen at the crystal pins while some  
crystal manufacturers specify the CL as the capacitance on just one of the crystal pins. Check with the crystal  
manufacturer for how the CL is specified in order to use the correct values in calculations.  
From Figure 6-13, CL1 and CL2 are in series so to find the equivalent total capacitance seen by the crystal, the  
capacitance series formula has to be applied which simply evaluates to [CL1]/2 if CL1=CL2.  
It is recommended to add stray PCB capacitance to this value. 3pF to 5pF are reasonable estimates but the  
actual value will depend on the PCB in question.  
Note that the load capacitance is a requirement of both the electrical oscillator and crystal. The value chosen has  
to satisfy both the electrical oscillator and the crystal.  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
The effect of CL on the crystal is frequency pulling. If the effective load capacitance is lower than the target, the  
crystal frequency will increase and vice-versa. However, the effect of frequency pulling is usually very minimal  
and typically results in less than 10ppm variation from the nominal frequency.  
6.12.3.4.2.3 GPIO Modes of Operation  
On this device, X1 and X2 can be used as GPIO19 and GPIO18 respectively depending on the operating mode  
of the XTAL. Refer to the External Oscillator (XTAL) TRM section.  
6.12.3.4.3 Functional Operation  
6.12.3.4.3.1 ESR - Effective Series Resistance  
This is the resistive load the crystal presents to the electrical oscillator at resonance. The higher the ESR, the  
lower the Q and less likelihood the crystal will start-up or maintain oscillation. The relationship between ESR and  
the crystal components is indicated below.  
2
C0  
CL  
ESR = Rm * 1 +  
(1)  
Note that the ESR is not the same as motional resistance of the crystal but can be approximated as such if the  
effective load capacitance is much greater than the shunt capacitance.  
6.12.3.4.3.2 Rneg - Negative Resistance  
Negative resistance is the impedance presented by the electrical oscillator to the crystal. It is the amount of  
energy the electrical oscillator must supply to the crystal to overcome the losses incurred during oscillation. It  
depicts a circuit that provides rather than consume energy and can also be viewed as the overall gain of the  
circuit.  
The generally accepted practice is to have Rneg > 3x-5x ESR to ensure the crystal starts up under all  
conditions. Note that it takes slightly more energy to start-up the crystal than it does to sustain oscillation and  
hence if it can be ensured that the negative resistance requirement is met at start-up, then oscillation sustenance  
will not be an issue.  
Figure 6-15 and Figure 6-16 show the variation between negative resistance and the crystal components for this  
device. As can be seen from the chart, the crystal shunt capacitance (C0) and effective load capacitance (CL)  
greatly influence the negative resistance of the electrical oscillator. Note that these are typical graphs so refer to  
Table 6-5 for min/max values for design considerations.  
6.12.3.4.3.3 Start-up Time  
Start-up time is an important consideration when selecting the components of the crystal circuit. As mentioned  
in the negative resistance section, for reliable start-up across all conditions, it is recommended that the Rneg >  
3x-5x the ESR of the crystal.  
Crystal ESR and dampening resistor (Rd) greatly affect the start-up time. The higher the two, the longer the  
crystal takes to start-up. Longer start-up times are usually a sign the crystal and components are not a correct  
match.  
Refer to Crystal Oscillator Specifications for the typical start-up times. Note that the numbers specified here are  
typical numbers provided for guidance only. Actual start-up time depends heavily on the crystal in question and  
the external components.  
6.12.3.4.3.3.1 X1/X2 Precondition  
On this device, the GPIO19/18 alternate functionality on X1/X2 can be used to speed up the start-up time of the  
crystal if needed. This functionality is achieved by preconditioning the load capacitors CL1 and CL2 to a known  
state before the XTAL is turned on. See the TRM for details.  
6.12.3.4.3.4 DL - Drive Level  
Drive level refers to how much power is provided by the electrical oscillator and dissipated by the crystal. The  
maximum drive level specified in the crystal manufacturer’s datasheet is usually the maximum the crystal can  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
dissipate without damage or significant reduction in operating life. On the other hand, the drive level specified  
by the electrical oscillator is the maximum power it can provide. The actual power provided by the electrical  
oscillator is not necessarily the max power and depends on the crystal and board components.  
For cases where the actual drive level from the electrical oscillator exceeds the maximum drive level  
specification of the crystal, a dampening resistor (Rd) should be installed to limit the current and reduce the  
power dissipated by the crystal. Note that Rd reduces the circuit gain and hence the actual value to use should  
be evaluated to make sure all other conditions for start-up and sustained oscillation are met.  
6.12.3.4.4 How to Choose a Crystal  
Using Crystal Oscillator Specifications as a reference:  
1. Pick a crystal frequency e.g: 20MHz  
2. Check that the ESR of the crystal <=50Ω per specifications for 20MHz.  
3. Check that the load capacitance requirement of the crystal manufacturer is within 6pF and 12pF per  
specifications for 20MHz.  
As mentioned, CL1 and CL2 are in series so provided CL1=CL2, effective load capacitance CL = [CL1]/2  
Adding board parasitics to this results in CL = [CL1]/2 + Cstray  
4. Check that the maximum drive level of the crystal >= 1mW. If this requirement is not met, a dampening  
resistor Rd can be used. Refer to DL - Drive Level on other points to consider when using Rd.  
6.12.3.4.5 Testing  
It is recommended that the user have the crystal manufacturer completely characterize the crystal with their  
board to ensure the crystal always starts up and maintains oscillation.  
Below is a brief overview of some measurements that can be performed:  
Due to how sensitive the crystal circuit is to capacitance, it is recommended not to connect scope probes to X1  
and X2. If scope probes must be used to monitor X1/X2, an active probe with <1pF capacitance should be used.  
Frequency  
1. Bring out the XTAL on XCLKOUT.  
2. Measure this frequency as the crystal frequency.  
Negative Resistance  
1. Bring out the XTAL on XCLKOUT.  
2. Place a potentiometer in series with the crystal between the load capacitors.  
3. Increase the resistance of the potentiometer until the clock on XCLKOUT stops.  
4. This resistance plus the crystal’s actual ESR is the negative resistance of the electrical oscillator.  
Start-Up Time  
1. Turn off the XTAL.  
2. Bring out the XTAL on XCLKOUT.  
3. Turn on the XTAL and measure how long it takes the clock on XCLKOUT to stay within 45% and 55% duty  
cycle.  
6.12.3.4.6 Common Problems and Debug Tips  
Crystal Fails to Start-Up  
Go through how to select a crystal section and make sure there are no violations.  
Crystal Takes a Long Time to Start-Up  
If a dampening resistor Rd is installed, it is too high.  
If no dampening resistor is installed, either the crystal ESR is too high or the overall circuit gain is too low due  
to high load capacitance.  
6.12.3.4.7 Crystal Oscillator Specifications  
6.12.3.4.7.1 Crystal Oscillator Parameters  
MIN  
MAX  
UNIT  
CL1, CL2  
Load capacitance  
12  
24  
pF  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.12.3.4.7.1 Crystal Oscillator Parameters (continued)  
MIN  
MAX  
UNIT  
C0  
Crystal shunt capacitance  
7
pF  
6.12.3.4.7.2 Crystal Equivalent Series Resistance (ESR) Requirements  
For the Crystal Equivalent Series Resistance (ESR) Requirements table:  
1. Crystal shunt capacitance (C0) should be less than or equal to 7 pF.  
2. ESR = Negative Resistance/3  
Table 6-5. Crystal Equivalent Series Resistance (ESR) Requirements  
MAXIMUM ESR (Ω)  
(CL1 = CL2 = 12 pF)  
MAXIMUM ESR (Ω)  
(CL1 = CL2 = 24 pF)  
CRYSTAL FREQUENCY (MHz)  
10  
12  
14  
16  
18  
20  
55  
50  
50  
45  
45  
45  
110  
95  
90  
75  
65  
50  
Negative Resistance vs. 10MHz Crystal  
3000  
2500  
2000  
1500  
1000  
500  
C0 (pF)  
1
3
5
7
9
0
2
4
6
8
10  
12  
14  
16  
Effective CL (pF)  
Figure 6-15. Negative Resistance Variation at 10MHz  
Negative Resistance vs. 20MHz Crystal  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
C0 (pF)  
1
3
5
7
9
2
4
6
8
10  
12  
14  
16  
Effective CL (pF)  
Figure 6-16. Negative Resistance Variation at 20MHz  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.12.3.4.7.3 Crystal Oscillator Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ESR MAX = 110 Ω  
CL1 = CL2 = 24 pF  
C0 = 7 pF  
f = 10 MHz  
4
ms  
Start-up  
time(1)  
ESR MAX = 50 Ω  
CL1 = CL2 = 24 pF  
C0 = 7 pF  
f = 20 MHz  
2
ms  
Crystal drive level (DL)  
1
mW  
(1) Start-up time is dependent on the crystal and tank circuit components. TI recommends that the crystal vendor characterize the  
application with the chosen crystal.  
Copyright © 2021 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.12.3.5 Internal Oscillators  
To reduce production board costs and application development time, all F28003x devices contain two  
independent internal oscillators, referred to as INTOSC1 and INTOSC2. By default, INTOSC2 is set as the  
source for the system reference clock (OSCCLK) and INTOSC1 is set as the backup clock source.  
Applications requiring tighter SCI baud rate matching can use the SCI baud tuning example  
(baud_tune_via_uart) available in C2000Ware.  
6.12.3.5.1 INTOSC Characteristics  
over recommended operating conditions (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
9.75 (-2.5%)  
9.85 (-1.5%)  
TYP  
10  
MAX  
10.15 (1.5%)  
10.15 (1.5%)  
UNIT  
MHz  
MHz  
Frequency, INTOSC1 and  
INTOSC2  
-40to 125℃  
fINTOSC  
Frequency, INTOSC1 and  
INTOSC2  
-10to 90℃  
10  
Frequency stability at room  
temperature  
30°C, Nominal  
VDD  
fINTOSC-STABILITY  
tINT0SC-ST  
±0.1  
%
Start-up and settling time  
20  
µs  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.12.4 Flash Parameters  
Table 6-6 lists the minimum required Flash wait states with different clock sources and frequencies. Wait state is  
the value set in register FRDCNTL[RWAIT].  
Table 6-6. Minimum Required Flash Wait States with Different Clock Sources and Frequencies  
EXTERNAL OSCILLATOR OR CRYSTAL  
INTOSC1 OR INTOSC2  
CPUCLK (MHz)  
NORMAL  
OPERATION  
BANK OR PUMP  
SLEEP(1)  
BANK OR PUMP  
NORMAL OPERATION  
SLEEP(1)  
116 < CPUCLK ≤ 120  
100 < CPUCLK ≤ 116  
97 < CPUCLK ≤ 100  
80 < CPUCLK ≤ 97  
77 < CPUCLK ≤ 80  
60 < CPUCLK ≤ 77  
58 < CPUCLK ≤ 60  
40 < CPUCLK ≤ 58  
38 < CPUCLK ≤ 40  
20 < CPUCLK ≤ 38  
19 < CPUCLK ≤ 20  
CPUCLK ≤ 19  
6
5
5
4
4
3
3
2
2
1
1
0
5
4
3
2
1
0
5
4
3
2
1
0
(1) Flash SLEEP operations require an extra wait state when using INTOSC as the clock source for the frequency ranges indicated. Any  
wait state FRDCNTL[RWAIT] change must be made before beginning a SLEEP mode operation. This setting impacts both flash banks.  
The F28003x devices have an improved 128-bit prefetch buffer that provides high flash code execution efficiency  
across wait states. Figure 6-17 and Figure 6-18 illustrate typical efficiency across wait-state settings compared  
to previous-generation devices with a 64-bit prefetch buffer. Wait-state execution efficiency with a prefetch buffer  
will depend on how many branches are present in application software. Two examples of linear code and  
if-then-else code are provided.  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
Flash with 64-Bit Prefetch  
Flash with 128-Bit Prefetch  
Flash with 64-Bit Prefetch  
Flash with 128-Bit Prefetch  
0
1
2
3
4
5
0
1
2
3
4
5
Wait State  
Wait State  
D005  
D006  
Figure 6-17. Application Code With Heavy 32-Bit  
Floating-Point Math Instructions  
Figure 6-18. Application Code With 16-Bit If-Else  
Instructions  
Copyright © 2021 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Section 6.12.4.1 lists the Flash parameters.  
Note  
The Main Array flash programming must be aligned to 64-bit address boundaries and each 64-bit  
word may only be programmed once per write/erase cycle.  
Note  
It is important to provide the correct sector mask for the bank erase command. If the mask is  
mistakenly chosen to erase an inaccessible sector (belongs to another security zone), the bank erase  
command will continue attempting to erase the sector endlessly and the FSM will never exit (since  
erase will not succeed). To avoid such a situation, user must take care to provide the correct mask.  
However, given that there is a chance of choosing an incorrect mask, TI suggests to initialize the max  
allowed erase pulses to zero after the max number of pulses are issued by the FSM for the bank  
erase operation. This will ensure that the FSM will end the bank erase command after trying to erase  
the inaccessible sector up to the max allowed erase pulses.  
The Example_EraseBanks() function in the C2000Ware’s flash API usage example depicts the  
implementation of this sequence (content of the while loop waiting for the FSM to complete the bank  
erase command). Users must use this code as-is irrespective of whether or not security is used by the  
application to also ensure that the FSM exits from bank erase operations in case of an erase-failure.  
6.12.4.1 Flash Parameters  
PARAMETER  
MIN  
TYP  
150  
50  
MAX UNIT  
128 data bits + 16 ECC bits  
8KB (Sector)  
300  
100  
56  
µs  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
Program Time(1)  
< 25 cycles  
1k cycles  
2k cycles  
20k cycles  
< 25 cycles  
1k cycles  
2k cycles  
20k cycles  
15  
26  
133  
226  
1026  
78  
Sector EraseTime(2) (3)  
8KB (Sector)  
128KB (Bank)  
31  
123  
21  
35  
183  
310  
1410  
Bank EraseTime(2) (3)  
42  
169  
Nwec Write/Erase Cycles per Sector  
20000 cycles  
100000 cycles  
Nwec Write/Erase Cycles for Entire Flash  
(Combined for all Sectors)  
tretention Data retention duration at TJ =  
85oC  
20  
years  
(1) Program time is at the maximum device frequency. Program time includes overhead of the flash state machine but does not include  
the time to transfer the following into RAM:  
• Code that uses flash API to program the flash  
• Flash API itself  
• Flash data to be programmed  
In other words, the time indicated in this table is applicable after all the required code/data is available in the device RAM, ready for  
programming. The transfer time will significantly vary depending on the speed of the JTAG debug probe used.  
Program time calculation is based on programming 144 bits at a time at the specified operating frequency. Program time includes  
Program verify by the CPU. The program time does not degrade with write/erase (W/E) cycling, but the erase time does.  
Erase time includes Erase verify by the CPU and does not involve any data transfer.  
(2) Erase time includes Erase verify by the CPU.  
(3) The on-chip flash memory is in an erased state when the device is shipped from TI. As such, erasing the flash memory is not required  
prior to programming, when programming the device for the first time. However, the erase operation is needed on all subsequent  
programming operations.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.12.5 Emulation/JTAG  
The JTAG (IEEE Standard 1149.1-1990 Standard Test Access Port and Boundary Scan Architecture) port has  
four dedicated pins: TMS, TDI, TDO, and TCK. The cJTAG (IEEE Standard 1149.7-2009 for Reduced-Pin and  
Enhanced-Functionality Test Access Port and Boundary-Scan Architecture) port is a compact JTAG interface  
requiring only two pins (TMS and TCK), which allows other device functionality to be muxed to the traditional  
GPIO35 (TDI) and GPIO37 (TDO) pins.  
Typically, no buffers are needed on the JTAG signals when the distance between the MCU target and the JTAG  
header is smaller than 6 inches (15.24 cm), and no other devices are present on the JTAG chain. Otherwise,  
each signal should be buffered. Additionally, for most JTAG debug probe operations at 10 MHz, no series  
resistors are needed on the JTAG signals. However, if high emulation speeds are expected (35 MHz or so), 22-Ω  
resistors should be placed in series on each JTAG signal.  
The PD (Power Detect) pin of the JTAG debug probe header should be connected to the board's 3.3-V supply.  
Header GND pins should be connected to board ground. TDIS (Cable Disconnect Sense) should also be  
connected to board ground. The JTAG clock should be looped from the header TCK output pin back to the  
RTCK input pin of the header (to sense clock continuity by the JTAG debug probe). This MCU does not support  
the EMU0 and EMU1 signals that are present on 14-pin and 20-pin emulation headers. These signals should  
always be pulled up at the emulation header through a pair of board pullup resistors ranging from 2.2 kΩ to  
4.7 kΩ (depending on the drive strength of the debugger ports). Typically, a 2.2-kΩ value is used.  
Header pin RESET is an open-drain output from the JTAG debug probe header that enables board components  
to be reset through JTAG debug probe commands (available only through the 20-pin header). Figure 6-19 shows  
how the 14-pin JTAG header connects to the MCU’s JTAG port signals. Figure 6-20 shows how to connect to  
the 20-pin JTAG header. The 20-pin JTAG header pins EMU2, EMU3, and EMU4 are not used and should be  
grounded.  
For more information about hardware breakpoints and watchpoints, see Hardware Breakpoints and Watchpoints  
in CCS for C2000 devices.  
For more information about JTAG emulation, see the XDS Target Connection Guide.  
Note  
JTAG Test Data Input (TDI) is the default mux selection for the pin. The internal pullup is disabled by  
default. If this pin is used as JTAG TDI, the internal pullup should be enabled or an external pullup  
added on the board to avoid a floating input. In the cJTAG option, this pin can be used as GPIO.  
JTAG Test Data Output (TDO) is the default mux selection for the pin. The internal pullup is disabled  
by default. The TDO function will be in a tri-state condition when there is no JTAG activity, leaving this  
pin floating. The internal pullup should be enabled or an external pullup added on the board to avoid a  
floating GPIO input. In the cJTAG option, this pin can be used as GPIO.  
Copyright © 2021 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Distance between the header and the target  
should be less than 6 inches (15.24 cm).  
3.3 V  
4.7 kΩ  
2
1
TMS  
TMS  
TRST  
3.3 V  
10 kΩ  
3.3 V  
10 kΩ  
TDI(A)  
TDI  
TDIS  
GND  
3
4
MCU  
100 Ω  
5
7
6
3.3 V  
PD  
KEY  
TDO(A)  
TCK  
TDO  
RTCK  
TCK  
EMU0  
GND  
8
9
10  
GND  
11  
13  
12  
GND  
4.7 kΩ  
14  
4.7 kΩ  
3.3 V  
EMU1  
3.3 V  
A. TDI and TDO connections are not required for cJTAG option and these pins can be used as GPIOs instead.  
Figure 6-19. Connecting to the 14-Pin JTAG Header  
Distance between the header and the target  
should be less than 6 inches (15.24 cm).  
3.3 V  
4.7 kΩ  
3.3 V  
10 kΩ  
3.3 V  
10 kΩ  
2
1
TMS  
TMS  
TRST  
TDI(A)  
TDI  
TDIS  
KEY  
GND  
3
5
4
MCU  
100 Ω  
6
3.3V  
PD  
TDO(A)  
TDO  
GND  
GND  
GND  
EMU1  
GND  
EMU3  
GND  
7
8
9
10  
12  
14  
16  
18  
20  
RTCK  
TCK  
11  
13  
15  
17  
19  
TCK  
Ω
4.7 kΩ  
4.7 k  
3.3 V  
EMU0  
RESET  
EMU2  
EMU4  
3.3 V  
Open  
Drain  
A low pulse from the JTAG debug probe  
can be tied with other reset sources  
to reset the board.  
GND  
GND  
A. TDI and TDO connections are not required for cJTAG option and these pins can be used as GPIOs instead.  
Figure 6-20. Connecting to the 20-Pin JTAG Header  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.12.5.1 JTAG Electrical Data and Timing  
6.12.5.1.1 JTAG Timing Requirements  
NO.  
MIN  
66.66  
26.66  
26.66  
7
MAX  
UNIT  
ns  
1
tc(TCK)  
Cycle time, TCK  
1a  
1b  
tw(TCKH)  
Pulse duration, TCK high (40% of tc)  
Pulse duration, TCK low (40% of tc)  
Input setup time, TDI valid to TCK high  
Input setup time, TMS valid to TCK high  
Input hold time, TDI valid from TCK high  
Input hold time, TMS valid from TCK high  
ns  
tw(TCKL)  
ns  
tsu(TDI-TCKH)  
tsu(TMS-TCKH)  
th(TCKH-TDI)  
th(TCKH-TMS)  
3
4
ns  
ns  
7
7
7
6.12.5.1.2 JTAG Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
2
td(TCKL-TDO)  
Delay time, TCK low to TDO valid  
6
20  
ns  
6.12.5.1.3 JTAG Timing Diagram  
1
1a  
1b  
TCK  
2
TDO  
3
4
TDI/TMS  
Figure 6-21. JTAG Timing  
Copyright © 2021 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.12.5.2 cJTAG Electrical Data and Timing  
6.12.5.2.1 cJTAG Timing Requirements  
NO.  
MIN  
100  
40  
40  
7
MAX  
UNIT  
ns  
1
tc(TCK)  
Cycle time, TCK  
1a  
1b  
tw(TCKH)  
Pulse duration, TCK high (40% of tc)  
Pulse duration, TCK low (40% of tc)  
Input setup time, TMS valid to TCK high  
Input setup time, TMS valid to TCK low  
Input hold time, TMS valid from TCK high  
Input hold time, TMS valid from TCK low  
ns  
tw(TCKL)  
ns  
tsu(TMS-TCKH)  
tsu(TMS-TCKL)  
th(TCKH-TMS)  
th(TCKL-TMS)  
ns  
3
4
7
ns  
2
ns  
2
ns  
6.12.5.2.2 cJTAG Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
MAX  
20  
UNIT  
ns  
2
5
td(TCKL-TMS)  
Delay time, TCK low to TMS valid  
Delay time, TCK high to TMS disable  
5
tdis(TCKH-TMS)  
20  
ns  
6.12.5.2.3 cJTAG Timing Diagram  
1
1a  
1b  
2
3
3
4
4
5
TCK  
TMS  
TMS Input  
TMS Output  
TMS Input  
Figure 6-22. cJTAG Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.12.6 GPIO Electrical Data and Timing  
The peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. On reset, GPIO pins  
are configured as inputs. For specific inputs, the user can also select the number of input qualification cycles to  
filter unwanted noise glitches.  
The GPIO module contains an Output X-BAR which allows an assortment of internal signals to be routed to  
a GPIO in the GPIO mux positions denoted as OUTPUTXBARx. The GPIO module also contains an Input  
X-BAR which is used to route signals from any GPIO input to different IP blocks such as the ADCs, eCAPs,  
ePWMs, and external interrupts. For more details, see the X-BAR chapter in the TMS320F28003x Real-Time  
Microcontrollers Technical Reference Manual.  
6.12.6.1 GPIO – Output Timing  
6.12.6.1.1 General-Purpose Output Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
Rise time, GPIO switching low to high  
MIN  
MAX  
8(1)  
8(1)  
50  
UNIT  
ns  
tr(GPO)  
tf(GPO)  
tfGPO  
All GPIOs  
All GPIOs  
Fall time, GPIO switching high to low  
Toggling frequency, GPIO pins  
ns  
MHz  
(1) Rise time and fall time vary with load. These values assume a 20-pF load.  
6.12.6.1.2 General-Purpose Output Timing Diagram  
GPIO  
tr(GPO)  
tf(GPO)  
Figure 6-23. General-Purpose Output Timing  
Copyright © 2021 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.12.6.2 GPIO – Input Timing  
6.12.6.2.1 General-Purpose Input Timing Requirements  
MIN  
1tc(SYSCLK)  
MAX  
UNIT  
cycles  
cycles  
cycles  
cycles  
cycles  
QUALPRD = 0  
QUALPRD ≠ 0  
tw(SP)  
Sampling period  
2tc(SYSCLK) * QUALPRD  
tw(SP) * (n(1) – 1)  
tw(IQSW)  
Input qualifier sampling window  
Pulse duration, GPIO low/high  
Synchronous mode  
With input qualifier  
2tc(SYSCLK)  
(2)  
tw(GPI)  
tw(IQSW) + tw(SP) + 1tc(SYSCLK)  
(1) "n" represents the number of qualification samples as defined by GPxQSELn register.  
(2) For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal.  
6.12.6.2.2 Sampling Mode  
(A)  
GPIO Signal  
GPxQSELn = 1,0 (6 samples)  
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
tw(SP)  
Sampling Period determined  
by GPxCTRL[QUALPRD](B)  
tw(IQSW)  
(SYSCLK cycle * 2 * QUALPRD) * 5(C)  
Sampling Window  
SYSCLK  
QUALPRD = 1  
(SYSCLK/2)  
(D)  
Output From  
Qualifier  
A. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It can vary from 00 to  
0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLK cycle. For any other value "n", the qualification sampling period in 2n  
SYSCLK cycles (that is, at every 2n SYSCLK cycles, the GPIO pin will be sampled).  
B. The qualification period selected through the GPxCTRL register applies to groups of eight GPIO pins.  
C. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is used.  
D. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLK cycles or greater. In other words,  
the inputs should be stable for (5 × QUALPRD × 2) SYSCLK cycles. This would ensure 5 sampling periods for detection to occur.  
Because external signals are driven asynchronously, an 13-SYSCLK-wide pulse ensures reliable recognition.  
Figure 6-24. Sampling Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.12.6.3 Sampling Window Width for Input Signals  
The following section summarizes the sampling window width for input signals for various input qualifier  
configurations.  
Sampling frequency denotes how often a signal is sampled with respect to SYSCLK.  
Sampling frequency = SYSCLK/(2 × QUALPRD), if QUALPRD ≠ 0  
Sampling frequency = SYSCLK, if QUALPRD = 0  
Sampling period = SYSCLK cycle × 2 × QUALPRD, if QUALPRD ≠ 0  
In the previous equations, SYSCLK cycle indicates the time period of SYSCLK.  
Sampling period = SYSCLK cycle, if QUALPRD = 0  
In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of the  
signal. This is determined by the value written to GPxQSELn register.  
Case 1:  
Qualification using 3 samples  
Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 2, if QUALPRD ≠ 0  
Sampling window width = (SYSCLK cycle) × 2, if QUALPRD = 0  
Case 2:  
Qualification using 6 samples  
Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 5, if QUALPRD ≠ 0  
Sampling window width = (SYSCLK cycle) × 5, if QUALPRD = 0  
SYSCLK  
GPIOxn  
tw(GPI)  
Figure 6-25. General-Purpose Input Timing  
Copyright © 2021 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.12.7 Interrupts  
The C28x CPU has fourteen peripheral interrupt lines. Two of them (INT13 and INT14) are connected directly  
to CPU timers 1 and 2, respectively. The remaining twelve are connected to peripheral interrupt signals through  
the enhanced Peripheral Interrupt Expansion (ePIE) module. The ePIE multiplexes up to sixteen peripheral  
interrupts into each CPU interrupt line. It also expands the vector table to allow each interrupt to have its own  
ISR. This allows the CPU to support a large number of peripherals.  
An interrupt path is divided into three stages—the peripheral, the ePIE, and the CPU. Each stage has its  
own enable and flag registers. This system allows the CPU to handle one interrupt while others are pending,  
implement and prioritize nested interrupts in software, and disable interrupts during certain critical tasks.  
Figure 6-26 shows the interrupt architecture for this device.  
TINT0  
TIMER0  
LPMINT  
WDINT  
LPM Logic  
WD  
WAKEINT  
NMI module  
ERAD  
NMI  
RTOSINT  
CPU  
INPUTXBAR4  
XINT1 Control  
INPUTXBAR5  
INPUTXBAR6  
INPUTXBAR13  
INPUTXBAR14  
XINT2 Control  
XINT3 Control  
XINT4 Control  
XINT5 Control  
GPIO0  
to  
GPIOx  
ePIE  
INT1  
to  
INT12  
Input  
X-BAR  
TIMER1  
TIMER2  
INT13  
INT14  
Peripherals  
See ePIE Table  
Figure 6-26. Device Interrupt Architecture  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.12.7.1 External Interrupt (XINT) Electrical Data and Timing  
For an explanation of the input qualifier parameters, see the General-Purpose Input Timing Requirements table.  
6.12.7.1.1 External Interrupt Timing Requirements  
MIN  
2tc(SYSCLK)  
MAX  
UNIT  
cycles  
cycles  
Synchronous  
With qualifier  
tw(INT)  
Pulse duration, INT input low/high  
tw(IQSW) + tw(SP) + 1tc(SYSCLK)  
6.12.7.1.2 External Interrupt Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
td(INT) Delay time, INT low/high to interrupt-vector fetch(1)  
tw(IQSW) + 14tc(SYSCLK)  
tw(IQSW) + tw(SP) + 14tc(SYSCLK) cycles  
(1) This assumes that the ISR is in a single-cycle memory.  
6.12.7.1.3 External Interrupt Timing  
tw(INT)  
XINT1, XINT2, XINT3,  
XINT4, XINT5  
td(INT)  
Address bus  
(internal)  
Interrupt Vector  
Figure 6-27. External Interrupt Timing  
Copyright © 2021 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.12.8 Low-Power Modes  
This device has HALT, IDLE and STANDBY as clock-gating low-power modes.  
Further details, as well as the entry and exit procedure, for all of the low-power modes can be found in the Low  
Power Modes section of the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual.  
6.12.8.1 Clock-Gating Low-Power Modes  
IDLE and HALT modes on this device are similar to those on other C28x devices. Table 6-7 describes the effect  
on the system when any of the clock-gating low-power modes are entered.  
Table 6-7. Effect of Clock-Gating Low-Power Modes on the Device  
MODULES/  
CLOCK DOMAIN  
IDLE  
STANDBY  
HALT  
SYSCLK  
Active  
Gated  
Active  
Gated  
Gated  
Gated  
Gated  
Gated  
Gated  
CPUCLK  
Clock to modules connected  
to PERx.SYSCLK  
WDCLK  
PLL  
Active  
Active  
Gated if CLKSRCCTL1.WDHALTI = 0  
Software must power down PLL before entering HALT.  
Powered down if CLKSRCCTL1.WDHALTI = 0  
Powered down if CLKSRCCTL1.WDHALTI = 0  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
INTOSC1  
INTOSC2  
Flash(1)  
XTAL(2)  
Powered  
(1) The Flash module is not powered down by hardware in any LPM. It may be powered down using software if required by the  
application. For more information, see the Flash and OTP Memory section of the System Control chapter in the TMS320F28003x  
Real-Time Microcontrollers Technical Reference Manual.  
(2) The XTAL is not powered down by hardware in any LPM. It may be powered down by software setting the XTALCR.OSCOFF bit to 1.  
This can be done at any time during the application if the XTAL is not required.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.12.8.2 Low-Power Mode Wake-up Timing  
For an explanation of the input qualifier parameters, see the General-Purpose Input Timing Requirements table.  
6.12.8.2.1 IDLE Mode Timing Requirements  
MIN  
2tc(SYSCLK)  
MAX  
UNIT  
Without input qualifier  
With input qualifier  
tw(WAKE)  
Pulse duration, external wake-up signal  
cycles  
2tc(SYSCLK) + tw(IQSW)  
6.12.8.2.2 IDLE Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
Without input qualifier  
With input qualifier  
40tc(SYSCLK) cycles  
From Flash (active state)  
40tc(SYSCLK) + tw(WAKE) cycles  
(2)  
Without input qualifier  
9316tc(SYSCLK)  
cycles  
cycles  
Delay time, external wake signal to  
(2)  
td(WAKE-IDLE)  
From Flash (sleep state)  
From RAM  
program execution resume(1)  
9316tc(SYSCLK)  
+
With input qualifier  
tw(WAKE)  
Without input qualifier  
With input qualifier  
25tc(SYSCLK) cycles  
25tc(SYSCLK) + tw(WAKE) cycles  
(1) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up signal) involves additional latency.  
(2) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and  
FPAC1[PSLEEP].  
6.12.8.2.3 IDLE Entry and Exit Timing Diagram  
td(WAKE-IDLE)  
Address/Data  
(internal)  
XCLKOUT  
tw(WAKE)  
WAKE(A)  
A. WAKE can be any enabled interrupt, WDINT or XRSn. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum)  
is needed before the wake-up signal could be asserted.  
Figure 6-28. IDLE Entry and Exit Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.12.8.2.4 STANDBY Mode Timing Requirements  
MIN  
MAX  
UNIT  
QUALSTDBY = 0 | 2tc(OSCCLK)  
3tc(OSCCLK)  
Pulse duration, external  
wake-up signal  
tw(WAKE-INT)  
cycles  
QUALSTDBY > 0 |  
(2 + QUALSTDBY) * tc(OSCCLK)  
(1)  
(2 + QUALSTDBY)tc(OSCCLK)  
(1) QUALSTDBY is a 6-bit field in the LPMCR register.  
6.12.8.2.5 STANDBY Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
Delay time, IDLE instruction executed to  
XCLKOUT stop  
td(IDLE-XCOS)  
16tc(INTOSC1) cycles  
Wakeup from flash  
(Flash module in  
active state)  
td(WAKE-STBY)  
175tc(SYSCLK) + tw(WAKE-INT) cycles  
Delay time, external wake signal to program  
execution resume(1)  
Wakeup from flash  
(Flash module in  
sleep state)  
td(WAKE-STBY)  
td(WAKE-STBY)  
9316tc(SYSCLK) (2) + tw(WAKE-INT) cycles  
Wakeup from RAM  
3tc(OSC) + 15tc(SYSCLK) + tw(WAKE-INT) cycles  
(1) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up signal) involves additional latency.  
(2) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and  
FPAC1[PSLEEP].  
6.12.8.2.6 STANDBY Entry and Exit Timing Diagram  
(C)  
(F)  
(A)  
(B)  
(D)(E)  
(G)  
Device  
Status  
STANDBY  
STANDBY  
Normal Execution  
Flushing Pipeline  
Wake-up  
Signal  
tw(WAKE-INT)  
td(WAKE-STBY)  
OSCCLK  
XCLKOUT  
td(IDLE-XCOS)  
A. IDLE instruction is executed to put the device into STANDBY mode.  
B. The LPM block responds to the STANDBY signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being turned off.  
This delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in STANDBY mode. After  
the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.  
D. The external wake-up signal is driven active.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal  
must be free of glitches. If a noisy signal is fed to a GPIO pin, the wakeup behavior of the device will not be deterministic and the device  
may not exit low-power mode for subsequent wakeup pulses.  
F. After a latency period, the STANDBY mode is exited.  
G. Normal execution resumes. The device will respond to the interrupt (if enabled).  
Figure 6-29. STANDBY Entry and Exit Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.12.8.2.7 HALT Mode Timing Requirements  
MIN  
toscst + 2tc(OSCCLK)  
toscst + 8tc(OSCCLK)  
MAX  
UNIT  
cycles  
cycles  
tw(WAKE-GPIO)  
tw(WAKE-XRS)  
Pulse duration, GPIO wake-up signal(1)  
Pulse duration, XRS wake-up signal(1)  
(1) For applications using X1/X2 for OSCCLK, the user must characterize their specific oscillator start-up time as it is dependent on  
circuit/layout external to the device. See Crystal Oscillator (XTAL) section for more information. For applications using INTOSC1 or  
INTOSC2 for OSCCLK, see the Internal Oscillators section for toscst. Oscillator start-up time does not apply to applications using a  
single-ended crystal on the X1 pin, as it is powered externally to the device.  
6.12.8.2.8 HALT Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
Delay time, IDLE instruction executed to XCLKOUT  
stop  
td(IDLE-XCOS)  
16tc(INTOSC1) cycles  
Delay time, external wake signal end to CPU1 program  
execution resume  
Wakeup from Flash - Flash module in active state  
Wakeup from Flash - Flash module in sleep state  
Wakeup from RAM  
75tc(OSCCLK)  
td(WAKE-HALT)  
cycles  
(1)  
9316tc(SYSCLK)+75tc(OSCCLK)  
75tc(OSCCLK)  
(1) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and  
FPAC1[PSLEEP].  
Copyright © 2021 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.12.8.2.9 HALT Entry and Exit Timing Diagram  
(C)  
(F)  
(A)  
(B)  
(D)(E)  
HALT  
(G)  
Device  
Status  
HALT  
Flushing Pipeline  
Normal  
Execution  
GPIOn  
td(WAKE-HALT)  
tw(WAKE-GPIO)  
OSCCLK  
Oscillator Start-up Time  
XCLKOUT  
td(IDLE-XCOS)  
A. IDLE instruction is executed to put the device into HALT mode.  
B. The LPM block responds to the HALT signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being turned off. This  
delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as the clock  
source, the internal oscillator is shut down as well. The device is now in HALT mode and consumes very little power. It is possible  
to keep the zero-pin internal oscillators (INTOSC1 and INTOSC2) and the watchdog alive in HALT MODE. This is done by writing 1  
to CLKSRCCTL1.WDHALTI. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the  
wake-up signal could be asserted.  
D. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator wake-up  
sequence is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This enables the provision of a clean  
clock signal during the PLL lock sequence. Because the falling edge of the GPIO pin asynchronously begins the wake-up procedure,  
care should be taken to maintain a low noise environment before entering and during HALT mode.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal  
must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the device will not be deterministic and the  
device may not exit low-power mode for subsequent wake-up pulses.  
F. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after some latency. The HALT mode is now  
exited.  
G. Normal operation resumes.  
H. The user must relock the PLL upon HALT wakeup to ensure a stable PLL lock.  
Figure 6-30. HALT Entry and Exit Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.13 Analog Peripherals  
The analog subsystem module is described in this section.  
The analog modules on this device include the ADC, temperature sensor, CMPSS, and buffered DAC.  
The analog subsystem has the following features:  
Flexible voltage references  
– The ADCs are referenced to VREFHIx and VSSA pins  
VREFHIx pin voltage can be driven in externally or can be generated by an internal bandgap voltage  
reference  
The internal voltage reference range can be selected to be 0V to 3.3V or 0V to 2.5V  
– The buffered DACs are referenced to VREFHIx and VSSA  
Alternately, these DACs can be referenced to the VDAC pin and VSSA  
– The comparator DACs are referenced to VDDA and VSSA  
Alternately, these DACs can be referenced to the VDAC pin and VSSA  
Flexible pin usage  
– Buffered DAC outputs, comparator subsystem inputs, and digital inputs (AIOs)/outputs (AGPIOs) are  
multiplexed with ADC inputs  
– Internal connection to VREFLO on all ADCs for offset self-calibration  
Figure 6-31 shows the Analog Subsystem Block Diagram for the 100-pin PZ LQFP.  
Figure 6-32 shows the Analog Subsystem Block Diagram for the 80-pin PN LQFP.  
Figure 6-33 shows the Analog Subsystem Block Diagram for the 64-pin PM LQFP.  
Figure 6-34 shows the Analog Subsystem Block Diagram for the 48-pin PT LQFP.  
Figure 6-35 shows the analog group connections. Section 6.13.1 lists the analog pins and internal connections.  
Section 6.13.2 lists descriptions of analog signals.  
Copyright © 2021 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
VREFHI  
Comparator Subsystem 1  
CMP1_HP  
CTRIP1H  
VREFLO  
Digital  
CMP1_HN  
Filter  
VDDA or VDAC  
CTRIPOUT1H  
Reference Circuit  
ANAREFSEL  
DAC12  
DAC12  
Misc. Analog  
Temp Sensor  
(C12)  
CTRIP1L  
Digital  
Filter  
CMP1_LN  
CMP1_LP  
CTRIPOUT1L  
Vref  
REFLO  
Comparator Subsystem 2  
CMP2_HP  
CMP2_HN  
CTRIP2H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT2H  
HPMXSEL4/  
HPMXSEL2/  
HPMXSEL0/  
/LPMXSEL4/  
/LPMXSEL2/  
/LPMXSEL0/  
A1/B7/DACB_OUT  
A6  
A2/B6/C9  
A11/B10/C0  
B5, B5/GPIO20  
REFHI  
DAC12  
DAC12  
ADC Inputs  
A0 to A15  
CTRIP2L  
Digital  
Filter  
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1  
ADC-A  
12-bits  
CMP2_LN  
CMP2_LP  
CTRIPOUT2L  
HPMXSEL5/  
/LPMXSEL5/  
AGPIO  
B9/C7  
AIO  
CMPSS1 Input MUX  
Comparator Subsystem 3  
REFLO  
CMP3_HP  
CMP3_HN  
CTRIP3H  
Digital  
Filter  
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0  
A10/B1/C10  
VDDA or VDAC  
CTRIPOUT3H  
HPMXSEL2/  
HPMXSEL0/  
/LPMXSEL2/  
/LPMXSEL0/  
A9  
A4/B8  
A12  
A5  
B0/C11  
DAC12  
DAC12  
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1  
REFHI  
HPMXSEL5/  
HPMXSEL4/  
/LPMXSEL5/  
/LPMXSEL4/  
CTRIP3L  
Digital  
Filter  
ADC Inputs  
B0 to B15  
CMP3_LN  
CMP3_LP  
CTRIPOUT3L  
ADC-B  
12-bits  
AIO  
CMPSS2 Input MUX  
C5  
B2/C6  
B3/VDAC  
Comparator Subsystem 4  
HPMXSEL0/  
/LPMXSEL0/  
CMP4_HP  
CMP4_HN  
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0  
HPMXSEL4/ /LPMXSEL4/  
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1  
REFLO  
CTRIP4H  
Digital  
Filter  
A14/B14/C4  
B12/C2  
VDDA or VDAC  
CTRIPOUT4H  
HPMXSEL5/  
HPMXSEL2/  
/LPMXSEL5/  
/LPMXSEL2/  
A3  
DAC12  
DAC12  
A0/B15/C15/DACA_OUT  
CTRIP4L  
REFHI  
Digital  
Filter  
AIO  
CMP4_LN  
CMP4_LP  
CMPSS3 Input MUX  
ADC Inputs  
C0 to C15  
CTRIPOUT4L  
ADC-C  
12-bits  
B4/C8  
C14  
HPMXSEL0/  
/LPMXSEL0/  
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0  
HPMXSEL2/  
/LPMXSEL2/  
C1  
A8  
HPMXSEL4/  
HPMXSEL5/  
/LPMXSEL4/  
/LPMXSEL5/  
REFLO  
B11, B11/GPIO21  
A7/C3  
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1  
CMPSS Inputs  
AGPIO  
AGO  
AIO  
CMPSS4 Input MUX  
VREFHI  
VDAC  
12-bit  
Buffered  
DACA_OUT  
DAC-A  
VREFHI  
VDAC  
12-bit  
Buffered  
DAC-B  
DACB_OUT  
Figure 6-31. Analog Subsystem Block Diagram (100-Pin PZ LQFP)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
VREFHI  
VREFLO  
Comparator Subsystem 1  
Digital  
CMP1_HP  
CMP1_HN  
CTRIP1H  
Filter  
VDDA or VDAC  
CTRIPOUT1H  
Reference Circuit  
ANAREFSEL  
DAC12  
DAC12  
Misc. Analog  
CTRIP1L  
Digital  
Filter  
CMP1_LN  
CMP1_LP  
CTRIPOUT1L  
Temp Sensor  
(C12)  
Vref  
REFLO  
Comparator Subsystem 2  
CMP2_HP  
CMP2_HN  
CTRIP2H  
Digital  
Filter  
HPMXSEL4/  
HPMXSEL2/  
HPMXSEL0/  
/LPMXSEL4/  
/LPMXSEL2/  
/LPMXSEL0/  
A1/B7/DACB_OUT  
A6  
VDDA or VDAC  
CTRIPOUT2H  
A2/B6/C9  
REFHI  
DAC12  
DAC12  
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1  
HPMXSEL5/ /LPMXSEL5/  
A11/B10/C0  
B5/GPIO20  
A15/B9/C7  
ADC Inputs  
A0 to A15  
CTRIP2L  
Digital  
Filter  
ADC-A  
12-bits  
CMP2_LN  
CMP2_LP  
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0  
CTRIPOUT2L  
AGPIO  
AIO  
CMPSS1 Input MUX  
Comparator Subsystem 3  
REFLO  
CMP3_HP  
CMP3_HN  
CTRIP3H  
Digital  
Filter  
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0  
A10/B1/C10  
A9/B4/C8  
A4/B8/C14  
A12/C1  
VDDA or VDAC  
CTRIPOUT3H  
HPMXSEL2/  
HPMXSEL0/  
/LPMXSEL2/  
/LPMXSEL0/  
DAC12  
DAC12  
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1  
REFHI  
HPMXSEL5/  
HPMXSEL4/  
/LPMXSEL5/  
/LPMXSEL4/  
CTRIP3L  
Digital  
Filter  
ADC Inputs  
B0 to B15  
CMP3_LN  
CMP3_LP  
A8/B0/C11  
CTRIPOUT3L  
ADC-B  
12-bits  
AIO  
CMPSS2 Input MUX  
Comparator Subsystem 4  
HPMXSEL0/  
/LPMXSEL0/  
B2/C6  
A3/B3/C5/VDAC  
A14/B14/C4  
CMP4_HP  
CMP4_HN  
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0  
HPMXSEL5/  
HPMXSEL4/  
REFLO  
CTRIP4H  
Digital  
Filter  
/LPMXSEL5/  
/LPMXSEL4/  
VDDA or VDAC  
CTRIPOUT4H  
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1  
A5/B12/C2  
DAC12  
DAC12  
HPMXSEL2/  
/LPMXSEL2/  
A0/B15/C15/DACA_OUT  
CTRIP4L  
REFHI  
Digital  
Filter  
AIO  
CMP4_LN  
CMP4_LP  
CMPSS3 Input MUX  
ADC Inputs  
C0 to C15  
CTRIPOUT4L  
ADC-C  
12-bits  
HPMXSEL0/  
/LPMXSEL0/  
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0  
HPMXSEL2/  
/LPMXSEL2/  
HPMXSEL4/  
HPMXSEL5/  
/LPMXSEL4/  
/LPMXSEL5/  
REFLO  
B11/GPIO21  
A7/C3  
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1  
CMPSS Inputs  
AGPIO  
AIO  
CMPSS4 Input MUX  
VREFHI  
VDAC  
12-bit  
Buffered  
DACA_OUT  
DAC-A  
VREFHI  
VDAC  
12-bit  
Buffered  
DAC-B  
DACB_OUT  
Figure 6-32. Analog Subsystem Block Diagram (80-Pin PN LQFP)  
Copyright © 2021 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
VREFHI  
Comparator Subsystem 1  
CMP1_HP  
CTRIP1H  
VREFLO  
Digital  
CMP1_HN  
Filter  
VDDA or VDAC  
CTRIPOUT1H  
Reference Circuit  
ANAREFSEL  
DAC12  
DAC12  
Misc. Analog  
Temp Sensor  
(C12)  
CTRIP1L  
Digital  
Filter  
CMP1_LN  
CMP1_LP  
CTRIPOUT1L  
Vref  
REFLO  
Comparator Subsystem 2  
CMP2_HP  
CMP2_HN  
CTRIP2H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT2H  
HPMXSEL4/  
HPMXSEL2/  
HPMXSEL0/  
/LPMXSEL4/  
/LPMXSEL2/  
/LPMXSEL0/  
A1/B7/DACB_OUT  
A6  
REFHI  
DAC12  
DAC12  
ADC Inputs  
A0 to A15  
A2/B6/C9  
A11/B10/C0  
CTRIP2L  
Digital  
Filter  
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1  
ADC-A  
12-bits  
CMP2_LN  
CMP2_LP  
CTRIPOUT2L  
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0  
A15/B9/C7  
AIO  
CMPSS1 Input MUX  
Comparator Subsystem 3  
REFLO  
CMP3_HP  
CMP3_HN  
CTRIP3H  
Digital  
Filter  
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0  
A10/B1/C10  
A9/B4/C8  
A4/B8/C14  
A12/C1  
VDDA or VDAC  
CTRIPOUT3H  
HPMXSEL2/  
HPMXSEL0/  
/LPMXSEL2/  
/LPMXSEL0/  
DAC12  
DAC12  
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1  
REFHI  
HPMXSEL5/  
HPMXSEL4/  
/LPMXSEL5/  
/LPMXSEL4/  
CTRIP3L  
Digital  
Filter  
ADC Inputs  
B0 to B15  
CMP3_LN  
CMP3_LP  
A8/B0/C11  
CTRIPOUT3L  
ADC-B  
12-bits  
AIO  
CMPSS2 Input MUX  
Comparator Subsystem 4  
HPMXSEL0/  
/LPMXSEL0/  
B2/C6  
A3/B3/C5/VDAC  
A14/B14/C4  
CMP4_HP  
CMP4_HN  
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0  
HPMXSEL5/  
HPMXSEL4/  
REFLO  
CTRIP4H  
Digital  
Filter  
/LPMXSEL5/  
/LPMXSEL4/  
VDDA or VDAC  
CTRIPOUT4H  
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1  
A5/B12/C2  
DAC12  
DAC12  
HPMXSEL2/  
/LPMXSEL2/  
A0/B15/C15/DACA_OUT  
CTRIP4L  
REFHI  
Digital  
Filter  
AIO  
CMP4_LN  
CMP4_LP  
CMPSS3 Input MUX  
ADC Inputs  
C0 to C15  
CTRIPOUT4L  
ADC-C  
12-bits  
HPMXSEL0/  
/LPMXSEL0/  
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0  
HPMXSEL2/  
HPMXSEL4/  
/LPMXSEL2/  
/LPMXSEL4/  
REFLO  
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1  
A7/C3  
CMPSS Inputs  
AIO  
CMPSS4 Input MUX  
VREFHI  
VDAC  
12-bit  
Buffered  
DACA_OUT  
DAC-A  
VREFHI  
VDAC  
12-bit  
Buffered  
DAC-B  
DACB_OUT  
Figure 6-33. Analog Subsystem Block Diagram (64-Pin PM LQFP)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
VREFHI  
VREFLO  
Comparator Subsystem 1  
Digital  
CMP1_HP  
CMP1_HN  
CTRIP1H  
Filter  
VDDA or VDAC  
CTRIPOUT1H  
Reference Circuit  
ANAREFSEL  
DAC12  
DAC12  
Misc. Analog  
CTRIP1L  
Digital  
Filter  
CMP1_LN  
CMP1_LP  
CTRIPOUT1L  
Temp Sensor  
(C12)  
Vref  
REFLO  
Comparator Subsystem 2  
CMP2_HP  
CMP2_HN  
CTRIP2H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT2H  
HPMXSEL4/  
HPMXSEL2/  
HPMXSEL0/  
/LPMXSEL4/  
/LPMXSEL2/  
/LPMXSEL0/  
A1/B7/DACB_OUT  
A6/B2/C6  
REFHI  
DAC12  
DAC12  
ADC Inputs  
A0 to A15  
A2/B6/C9  
A11/B10/C0  
CTRIP2L  
Digital  
Filter  
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1  
ADC-A  
12-bits  
CMP2_LN  
CMP2_LP  
CTRIPOUT2L  
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0  
A15/B9/C7  
AIO  
CMPSS1 Input MUX  
Comparator Subsystem 3  
REFLO  
CMP3_HP  
CMP3_HN  
CTRIP3H  
Digital  
Filter  
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0  
A10/B1/C10  
A9/B4/C8  
A4/B8/C14  
A12/C1  
VDDA or VDAC  
CTRIPOUT3H  
HPMXSEL2/  
HPMXSEL0/  
/LPMXSEL2/  
/LPMXSEL0/  
DAC12  
DAC12  
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1  
REFHI  
HPMXSEL5/  
HPMXSEL4/  
/LPMXSEL5/  
/LPMXSEL4/  
CTRIP3L  
Digital  
Filter  
ADC Inputs  
B0 to B15  
CMP3_LN  
CMP3_LP  
A8/B0/C11  
CTRIPOUT3L  
AIO  
ADC-B  
12-bits  
CMPSS2 Input MUX  
Comparator Subsystem 4  
HPMXSEL0/  
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0  
HPMXSEL5/ /LPMXSEL5/  
/LPMXSEL0/  
CMP4_HP  
CMP4_HN  
A3/B3/C5/VDAC  
CTRIP4H  
Digital  
Filter  
REFLO  
REFHI  
VDDA or VDAC  
CTRIPOUT4H  
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1  
A5/B12/C2  
DAC12  
DAC12  
HPMXSEL2/  
/LPMXSEL2/  
A0/B15/C15/DACA_OUT  
CTRIP4L  
Digital  
Filter  
AIO  
CMP4_LN  
CMP4_LP  
CMPSS3 Input MUX  
ADC Inputs  
C0 to C15  
CTRIPOUT4L  
ADC-C  
12-bits  
HPMXSEL0/  
/LPMXSEL0/  
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0  
HPMXSEL2/  
HPMXSEL4/  
/LPMXSEL2/  
/LPMXSEL4/  
REFLO  
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1  
A7/C3  
CMPSS Inputs  
AIO  
CMPSS4 Input MUX  
VREFHI  
VDAC  
12-bit  
Buffered  
DACA_OUT  
DAC-A  
VREFHI  
VDAC  
12-bit  
Buffered  
DAC-B  
DACB_OUT  
Figure 6-34. Analog Subsystem Block Diagram (48-Pin PT LQFP)  
Copyright © 2021 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
CMPSSx Input MUX  
CMPxHPMX  
CMPx_HP0  
0
1
CMPx_HP1  
CMPx_HP2  
CMPx_HP3  
CMPx_HP4  
CMPx_HP5  
2
3
4
5
CMPx_HP  
CMPxHNMX  
CMPxLNMX  
CMPxLPMX  
CMPx_HN0  
CMPx_HN1  
0
1
CMPx_HN  
CMPx_LN  
CMPx_LN0  
CMPx_LN1  
0
1
CMPx_LP0  
CMPx_LP1  
CMPx_LP2  
CMPx_LP3  
CMPx_LP4  
0
1
2
3
4
5
CMPx_LP  
CMPx_LP5  
Gx_ADCA  
Gx_ADCB  
Gx_ADCA  
Gx_ADCB  
AIO  
AIO  
AGPIO  
Gx_ADCC  
Gx_ADCC  
AIO  
A. AIOs support digital input mode only.  
Figure 6-35. Analog Group Connections  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
AIO Input  
SPRSP61 – OCTOBER 2021  
6.13.1 Analog Pins and Internal Connections  
Table 6-8. Analog Pins and Internal Connections  
Package Pin  
Pin Name  
ADC  
Comparator Subsystem (MUX)  
High  
Positive  
High  
Negative  
Low  
Positive  
Low  
Negative  
100 PZ  
80 PN  
64 PM  
48 PT  
A
B
C
VREFHI  
VREFLO  
24, 25  
26, 27  
20  
21  
16  
17  
12  
13  
A13  
B13  
C13  
Analog Group 1  
CMP1  
A6  
14  
17  
-
10  
6
9
4(1)  
6
A6  
A2  
A15  
-
-
B6  
-
-
C9  
-
CMP1 (HPMXSEL=2)  
CMP1 (HPMXSEL=0)  
CMP1 (HPMXSEL=3)  
CMP1 (LPMXSEL=2)  
CMP1 (LPMXSEL=0)  
CMP1 (LPMXSEL=3)  
AIO228  
AIO224  
AIO233  
A2/B6/C9  
A15  
13  
CMP1 (HNMXSEL=0)  
CMP1 (HNMXSEL=1)  
CMP1 (LNMXSEL=0)  
CMP1 (LNMXSEL=1)  
14  
10  
7
B9/C7  
18  
20  
22  
B9  
B10  
B7  
C7  
C0  
-
A11/B10/C0  
A1/B7/DACB_OUT  
16  
18  
12  
14  
8
A11  
A1  
CMP1 (HPMXSEL=1)  
CMP1 (HPMXSEL=4)  
CMP1 (LPMXSEL=1)  
CMP1 (LPMXSEL=4)  
CMP2  
AIO237  
AIO232  
10  
Analog Group 2  
A10/B1/C10  
40  
29  
25  
21  
4(1)  
5
A10  
B1  
C10  
CMP2 (HPMXSEL=3)  
CMP2 (HNMXSEL=0)  
CMP3 (HNMXSEL=0)  
CMP2 (LPMXSEL=3)  
CMP3  
CMP2 (LNMXSEL=0)  
CMP3 (LNMXSEL=0)  
AIO230  
Analog Group 3  
B2/C6  
15  
16  
28  
-
11  
7
-
-
-
B2  
C6  
-
CMP3 (HPMXSEL=0)  
CMP3 (HPMXSEL=3)  
CMP3 (LPMXSEL=0)  
CMP3 (LPMXSEL=3)  
AIO226  
AIO242  
B3/VDAC(2)  
C5  
B3  
12  
8
-
C5  
-
-
-
A3  
A3  
CMP3 (HPMXSEL=5)  
CMP3 (LPMXSEL=5)  
18  
19  
-
-
-
-
-
AIO229  
AIO239  
A14/B14/C4  
15  
11  
A14  
A0  
B14  
C4  
CMP3 (HPMXSEL=4)  
CMP3 (HPMXSEL=2)  
CMP3 (LPMXSEL=4)  
CMP3 (LPMXSEL=2)  
A0/B15/C15/  
DACA_OUT  
23  
19  
15  
11  
B15  
C15  
AIO231  
Analog Group 4  
23 19  
CMP4  
A7/C3  
31  
15  
A7  
-
C3  
CMP4 (HPMXSEL=1)  
CMP4 (HNMXSEL=1)  
CMP4 (LPMXSEL=1)  
CMP2/3  
CMP4 (LNMXSEL=1)  
AIO245  
AIO249  
AIO244  
Combined Analog Group 2/3  
35  
-
-
-
-
-
-
-
-
A5  
A5  
-
CMP2 (HPMXSEL=5)  
CMP3 (HPMXSEL=1)  
CMP2 (LPMXSEL=5)  
17  
13  
9
B12/C2  
21  
B12  
C2  
CMP3 (HNMXSEL=1)  
CMP2 (HNMXSEL=1)  
CMP3 (LPMXSEL=1)  
CMP2/4  
CMP3 (LNMXSEL=1)  
CMP2 (LNMXSEL=1)  
Combined Analog Group 2/4  
A12  
C1  
28  
29  
37  
-
A12  
-
-
-
-
-
-
C1  
-
CMP2 (HPMXSEL=1)  
CMP4 (HPMXSEL=2)  
CMP2 (LPMXSEL=1)  
CMP4 (LPMXSEL=2)  
AIO238  
AIO248  
AIO240  
AIO241  
22  
-
18  
-
14  
-
A8  
A8  
CMP4 (HPMXSEL=4)  
CMP2 (HPMXSEL=4)  
CMP4 (LPMXSEL=4)  
CMP2 (LPMXSEL=4)  
-
24  
-
20  
-
16  
-
-
-
-
B0/C11  
B0  
C11  
41  
AIO253  
Copyright © 2021 Texas Instruments Incorporated  
132  
Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 6-8. Analog Pins and Internal Connections (continued)  
Package Pin  
80 PN 64 PM  
ADC  
Comparator Subsystem (MUX)  
Pin Name  
AIO Input  
Low  
Negative  
High  
Positive  
High  
Low  
100 PZ  
48 PT  
A
B
C
Negative  
Positive  
A4/B8  
C14  
36  
-
A4  
-
B8  
-
-
CMP2 (HPMXSEL=0)  
CMP2 (LPMXSEL=0)  
AIO225  
27  
23  
19  
-
C14  
CMP4 (HPMXSEL=3)  
CMP4 (HNMXSEL=0)  
CMP4 (LPMXSEL=3)  
CMP4 (LNMXSEL=0)  
42  
38  
39  
-
-
-
-
AIO247  
AIO227  
AIO236  
A9  
A9  
-
-
-
CMP2 (HPMXSEL=2)  
CMP4 (HPMXSEL=0)  
CMP2 (LPMXSEL=2)  
CMP4 (LPMXSEL=0)  
28  
24  
20  
B4/C8  
B4  
C8  
Other Analog  
B5  
32  
48  
30  
49  
-
-
33  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AIO252  
GPIO20  
AIO251  
GPIO21  
B5  
CMP1 (HPMXSEL=5)  
CMP4 (HPMXSEL=5)  
CMP1 (LPMXSEL=5)  
CMP4 (LPMXSEL=5)  
B5/GPIO20(3)  
B11  
-
-
-
B11  
-
B11/GPIO21(3)  
TempSensor(4)  
34  
-
C12  
(1) A6 and C6 is double bonded as pin # 4.  
(2) Optional external reference voltage for on-chip COMPDACs/GPDACs. There is an internal capacitance to VSSA on this pin whether used for ADC input or COMPDAC/GPDAC reference.  
If used as a VDAC reference, place at least a 1-µF capacitor on this pin.  
(3) The GPIOs on these analog pins support full digital input and output functionality and are referred to as AGPIOs. By default, the AGPIOs are unconnected; that is, the analog and digital  
functions are both disabled. For configuration details, see the Digital Inputs and Outputs on ADC Pins (AGPIOs) section.  
(4) Internal connection only; does not come to a device pin.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
133  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.13.2 Analog Signal Descriptions  
Table 6-9. Analog Signal Descriptions  
Signal Name  
AIOx  
Description  
Digital input on ADC pin  
GPIOx  
Digital input/output pin with ADC functionality  
ADC A Input  
Ax  
Bx  
ADC B Input  
Cx  
ADC C Input  
CMPx_DACH  
CMPx_DACL  
CMPx_HNy  
CMPx_HPy  
CMPx_LNy  
CMPx_LPy  
DACx_OUT  
TempSensor  
Comparator subsystem high DAC output  
Comparator subsystem low DAC output  
Comparator subsystem high comparator negative input  
Comparator subsystem high comparator positive input  
Comparator subsystem low comparator negative input  
Comparator subsystem low comparator positive input  
Buffered DAC Output  
Internal temperature sensor  
Optional external reference voltage for on-chip COMPDACs. This pin has a higher capacitance compared to the  
other analog pins. See the Per-Channel Parasitic Capacitance table for details. This capacitance is present whether  
the pin is being used for ADC input or COMPDAC/GPDAC reference and cannot be disabled. If this pin is being  
used as a reference for the on-chip COMPDAC/GPDACs, place at least a 1-μF capacitor on this pin.  
VDAC  
Copyright © 2021 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.13.3 Analog-to-Digital Converter (ADC)  
The ADC module described here is a successive approximation (SAR) style ADC with resolution of 12 bits.  
This section refers to the analog circuits of the converter as the “core,” and includes the channel-select MUX,  
the sample-and-hold (S/H) circuit, the successive approximation circuits, voltage reference circuits, and other  
analog support circuits. The digital circuits of the converter are referred to as the “wrapper” and include logic  
for programmable conversions, result registers, interfaces to analog circuits, interfaces to the peripheral buses,  
post-processing circuits, and interfaces to other on-chip modules.  
Each ADC module consists of a single sample-and-hold (S/H) circuit. The ADC module is designed to be  
duplicated multiple times on the same chip, allowing simultaneous sampling or independent operation of multiple  
ADCs. The ADC wrapper is start-of-conversion (SOC)-based (see the SOC Principle of Operation section of  
the Analog-to-Digital Converter (ADC) chapter in the TMS320F28003x Real-Time Microcontrollers Technical  
Reference Manual).  
Each ADC has the following features:  
Resolution of 12 bits  
Ratiometric external reference set by VREFHI/VREFLO  
Selectable internal reference of 2.5 V or 3.3 V  
Single-ended signaling  
Input multiplexer with up to 16 channels  
16 configurable SOCs  
16 individually addressable result registers  
Multiple trigger sources  
– S/W: software immediate start  
– All ePWMs: ADCSOC A or B  
– GPIO XINT2  
– CPU Timers 0/1/2  
– ADCINT1/2  
Four flexible PIE interrupts  
Burst-mode triggering option  
Four post-processing blocks, each with:  
– Saturating offset calibration  
– Error from setpoint calculation  
– High, low, and zero-crossing compare, with interrupt and ePWM trip capability  
– Trigger-to-sample delay capture  
Note  
Not every channel may be pinned out from all ADCs. See the Pin Configuration and Functions section  
to determine which channels are available.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
The block diagram for the ADC core and ADC wrapper are shown in Figure 6-36.  
Analog-to-Digital Core  
Analog-to-Digital Wrapper Logic  
Input Circuit  
SOCx (0-15)  
CHSEL  
[15:0]  
[15:0]  
[15:0]  
SOC Arbitration  
& Control  
ACQPS  
CHSEL  
ADCIN0  
ADCIN1  
ADCIN2  
ADCIN3  
ADCIN4  
ADCIN5  
ADCIN6  
ADCIN7  
ADCIN8  
ADCIN9  
ADCIN10  
ADCIN11  
ADCIN12  
ADCIN13  
ADCIN14  
ADCIN15  
0
1
ADCSOC  
2
3
.
.
.
.
.
.
4
5
ADCCOUNTER  
TRIGGER[15:0]  
6
VIN  
+
DOUT  
7
8
VIN-  
9
10  
11  
12  
13  
14  
15  
SOC Delay  
Timestamp  
Trigger  
Timestamp  
Converter  
S/H Circuit  
RESULT  
-
+
ADCPPBxOFFCAL  
saturate  
+
ADCPPBxOFFREF  
-
ADCPPBxRESULT  
ADCEVT  
VREFHI  
Event  
Logic  
CONFIG  
ADCEVTINT  
Bandgap  
Reference Circuit  
1.65-V Output  
(3.3-V Range)  
or  
1
Post Processing Block (1-4)  
Interrupt Block (1-4)  
0
2.5-V Output  
(2.5-V Range)  
ADCINT1-4  
VREFLO  
Analog System Control  
ANAREFSEL  
ANAREFx2PSSEL  
Reference Voltage Levels  
Figure 6-36. ADC Module Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.13.3.1 ADC Configurability  
Some ADC configurations are individually controlled by the SOCs, while others are globally controlled per ADC  
module. Table 6-10 summarizes the basic ADC options and their level of configurability.  
Table 6-10. ADC Options and Configuration Levels  
OPTIONS  
CONFIGURABILITY  
Clock  
Per module(1)  
Resolution  
Signal mode  
Not configurable (12-bit resolution only)  
Not configurable (single-ended signal mode only)  
Reference voltage source  
Trigger source  
Either external or internal for all modules  
Per SOC(1)  
Converted channel  
Acquisition window duration  
EOC location  
Per SOC  
Per SOC(1)  
Per module  
Per module(1)  
Burst mode  
(1) Writing these values differently to different ADC modules could cause the ADCs to operate  
asynchronously. For guidance on when the ADCs are operating synchronously or asynchronously,  
see the Ensuring Synchronous Operation section of the Analog-to-Digital Converter (ADC) chapter  
in the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual.  
6.13.3.1.1 Signal Mode  
The ADC supports single-ended signaling. The input voltage to the converter is sampled through a single pin  
(ADCINx), referenced to VREFLO.  
Pin Voltage  
VREFHI  
VREFHI  
ADCINx  
ADCINx  
ADC  
VREFHI/2  
VREFLO  
VREFLO  
(VSSA)  
Digital Output  
2n - 1  
ADC Vin  
0
Figure 6-37. Single-ended Signaling Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.13.3.2 ADC Electrical Data and Timing  
Note  
The ADC inputs should be kept below VDDA + 0.3 V during operation. If an ADC input exceeds this  
level, the VREF internal to the device may be disturbed, which can impact results for other ADC inputs  
using the same VREF  
.
Note  
The VREFHI pin must be kept below VDDA + 0.3 V to ensure proper functional operation. If the  
VREFHI pin exceeds this level, a blocking circuit may activate, and the internal value of VREFHI may  
float to 0 V internally, giving improper ADC conversion.  
6.13.3.2.1 ADC Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
60  
UNIT  
ADCCLK (derived from PERx.SYSCLK)  
5
MHz  
120-MHz SYSCLK  
4
MSPS  
Sample rate  
120-MHz SYSCLK (AGPIO Pin)  
With 50 Ω or less Rs  
3.75  
MSPS  
75  
90  
ns  
ns  
V
Sample window duration (set by ACQPS and  
PERx.SYSCLK)(1)  
With 50 Ω or less Rs (AGPIO Pin)  
External Reference  
VREFHI  
2.4  
2.5 or 3.0  
1.65  
VDDA  
Internal Reference = 3.3V Range  
Internal Reference = 2.5V Range  
V
VREFHI(2)  
2.5  
V
VREFLO  
VSSA  
VSSA  
VDDA  
3.3  
V
VREFHI - VREFLO  
2.4  
V
Internal Reference = 3.3 V Range  
Internal Reference = 2.5 V Range  
External Reference  
0
0
V
Conversion range  
2.5  
V
VREFLO  
VREFHI  
V
(1) The sample window must also be at least as long as 1 ADCCLK cycle for correct ADC operation.  
(2) In internal reference mode, the reference voltage is driven out of the VREFHI pin by the device. The user should not drive a voltage  
into the pin in this mode.  
Copyright © 2021 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.13.3.2.2 ADC Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
General  
ADCCLK Conversion Cycles  
Power Up Time  
120-MHz SYSCLK  
10.1  
11 ADCCLKs  
External Reference mode  
Internal Reference mode  
500  
µs  
µs  
5000  
5000  
Internal Reference mode, when switching between  
2.5-V range and 3.3-V range.  
µs  
µA  
µF  
VREFHI input current(1)  
130  
Internal Reference Capacitor  
Value(2)  
2.2  
2.2  
External Reference Capacitor  
Value(2)  
µF  
DC Characteristics  
Internal reference  
External reference  
–45  
–5  
45  
5
Gain Error  
LSB  
±3  
±2  
2
Offset Error  
–5  
5
LSB  
LSB  
Channel-to-Channel Gain Error(4)  
Channel-to-Channel Offset  
Error(4)  
2
LSB  
ADC-to-ADC Gain Error(5)  
ADC-to-ADC Offset Error(5)  
DNL Error  
Identical VREFHI and VREFLO for all ADCs  
Identical VREFHI and VREFLO for all ADCs  
4
2
LSB  
LSB  
LSB  
LSB  
LSBs  
>–1  
–2  
±0.5  
±1.0  
1
2
1
INL Error  
ADC-to-ADC Isolation  
AC Characteristics  
VREFHI = 2.5 V, synchronous ADCs  
–1  
External VREFHI/Internal VREFHI = 2.5 V, fin =  
100 kHz, SYSCLK from X1  
70.5  
68.2  
dB  
dB  
dB  
Internal VREFHI = 1.65 V (0 to 3.3 V range), fin =  
100 kHz, SYSCLK from X1  
SNR(3)  
External/Internal VREFHI, fin = 100 kHz, SYSCLK  
from INTOSC  
60.1  
External VREFHI/Internal VREFHI = 2.5 V, fin =  
100 kHz, SYSCLK from X1  
–85.0  
THD(3)  
Internal VREFHI = 1.65 V (0 to 3.3 V range), fin =  
100 kHz, SYSCLK from X1  
–82.3  
79.2  
70.4  
dB  
dB  
dB  
SFDR(3)  
External/Internal VREFHI , fin = 100 kHz  
External VREFHI/Internal VREFHI = 2.5V, fin = 100  
kHz, SYSCLK from X1  
Internal VREFHI = 1.65 V (0 to 3.3 V range), fin =  
100 kHz, SYSCLK from X1  
SINAD(3)  
68.0  
60.0  
dB  
External/Internal VREFHI, fin = 100 kHz, SYSCLK  
from INTOSC  
External VREFHI/Internal VREFHI = 2.5 V, fin  
= 100 kHz, SYSCLK from X1, single and  
synchronous ADCs  
11.4  
11.0  
Internal VREFHI = 1.65 V (0 to 3.3 V range),  
fin = 100 kHz, SYSCLK from X1, single and  
synchronous ADCs  
ENOB(3)  
bits  
Any VREF mode, fin = 100 kHz, SYSCLK from X1,  
asynchronous ADCs  
Not  
Supported  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
UNIT  
SPRSP61 – OCTOBER 2021  
6.13.3.2.2 ADC Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
VDD = 1.2-V DC + 100mV  
DC up to Sine at 1 kHz  
60  
VDD = 1.2-V DC + 100 mV  
DC up to Sine at 300 kHz  
57  
60  
57  
PSRR  
dB  
VDDA = 3.3-V DC + 200 mV  
DC up to Sine at 1 kHz  
VDDA = 3.3-V DC + 200 mV  
Sine at 900 kHz  
(1) Load current on VREFHI increases when ADC input is greater than VDDA. This causes inaccurate conversions.  
(2) A ceramic capacitor with package size of 0805 or smaller is preferred. Up to ±20% tolerance is acceptable.  
(3) IO activity is minimized on pins adjacent to ADC input and VREFHI pins as part of best practices to reduce capacitive coupling and  
crosstalk.  
(4) Variation across all channels belonging to the same ADC module.  
(5) Worst case variation compared to other ADC modules.  
6.13.3.2.3 ADC Input Model  
The ADC input characteristics are given by Table 6-11 and Figure 6-38.  
Table 6-11. Input Model Parameters  
DESCRIPTION  
REFERENCE MODE  
VALUE  
Cp  
Parasitic input capacitance  
All  
See Table 6-12 to Table 6-15  
External Reference, 2.5-V Internal  
Reference  
500 Ω  
860 Ω  
Ron  
Sampling switch resistance  
3.3-V Internal Reference  
External Reference, 2.5-V Internal  
Reference  
12.5 pF  
Ch  
Rs  
Sampling capacitor  
3.3-V Internal Reference  
All  
7.5 pF  
50 Ω  
Nominal source impedance  
ADC  
ADCINx  
Rs  
Switch  
Ron  
AC  
Cp  
Ch  
VREFLO  
Figure 6-38. Input Model  
This input model should be used with actual signal source impedance to determine the acquisition window  
duration. For more information, see the Choosing an Acquisition Window Duration section of the Analog-  
to-Digital Converter (ADC) chapter in the TMS320F28003x Real-Time Microcontrollers Technical Reference  
Manual.  
Table 6-12. Per-Channel Parasitic Capacitance for 100-Pin PZ LQFP  
Cp (pF)  
ADC CHANNEL  
COMPARATOR DISABLED  
COMPARATOR ENABLED  
A0/B15/C15/DACA_OUT  
9.1  
7.4  
4.1  
3.3  
3.8  
11.6  
9.9  
6.6  
5.8  
6.3  
A1/B7/DACB_OUT  
A2/B6/C9  
A3  
A4/B8  
Copyright © 2021 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
 
 
 
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 6-12. Per-Channel Parasitic Capacitance for 100-Pin PZ LQFP  
(continued)  
Cp (pF)  
ADC CHANNEL  
COMPARATOR DISABLED  
COMPARATOR ENABLED  
A5  
A6  
3.5  
3.2  
3.8  
4.1  
3.1  
4.7  
4
6
5.7  
6.3  
6.6  
5.6  
7.2  
6.5  
5.9  
6.3  
6.6  
6.4  
77.5  
6.3  
6
A7/C3  
A8  
A9  
A10/B1/C10  
A11/B11/C0  
A12  
3.4  
3.8  
4.1  
3.9  
75  
A14/B14/C4  
B0/C11  
B2/C6  
B3/VDAC  
B4/C8  
B5  
3.8  
3.5  
3.3  
3
B9/C7  
B11  
5.8  
5.5  
6.1  
5.5  
6.1  
6.7  
5.7  
5.6  
B12/C2  
C1  
3.6  
3
C5  
3.6  
4.2  
3.2  
3.1  
C14  
AGPIO_B5  
AGPIO_B11  
Table 6-13. Per-Channel Parasitic Capacitance for 80-Pin PN LQFP  
Cp (pF)  
ADC CHANNEL  
COMPARATOR DISABLED  
COMPARATOR ENABLED  
A0/B15/C15/DACA_OUT  
A1/B7/DACB_OUT  
A2/B6/C9  
9.1  
7.4  
4.1  
81.9  
8
11.6  
9.9  
6.6  
A3/B3/C5/VDAC  
A4/B8/C14  
A5/B12/C2  
A6  
89.4  
13  
7.1  
3.2  
3.8  
8.2  
6.9  
4.7  
4
12.1  
5.7  
A7/C3  
6.3  
A8/B0/C11  
A9/B4/C8  
13.2  
11.9  
7.2  
A10/B1/C10  
A11/B11/C0  
A12/C1  
6.5  
6.4  
3.8  
7.1  
3.9  
3.2  
11.4  
6.3  
A14/B14/C4  
A15/B9/C7  
B2/C6  
12.1  
6.4  
AGPIO_B5  
5.7  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 6-13. Per-Channel Parasitic Capacitance for 80-Pin PN LQFP (continued)  
Cp (pF)  
ADC CHANNEL  
COMPARATOR DISABLED  
COMPARATOR ENABLED  
AGPIO_B11  
3.1  
5.6  
Table 6-14. Per-Channel Parasitic Capacitance for 64-Pin PM LQFP  
Cp (pF)  
ADC CHANNEL  
COMPARATOR DISABLED  
COMPARATOR ENABLED  
A0/B15/C15/DACA_OUT  
A1/B7/DACB_OUT  
A2/B6/C9  
9.1  
7.4  
4.1  
81.9  
8
11.6  
9.9  
6.6  
A3/B3/C5/VDAC  
A4/B8/C14  
A5/B12/C2  
A6  
89.4  
13  
7.1  
3.2  
3.8  
8.2  
6.9  
4.7  
4
12.1  
5.7  
A7/C3  
6.3  
A8/B0/C11  
A9/B4/C8  
13.2  
11.9  
7.2  
A10/B1/C10  
A11/B11/C0  
A12/C1  
6.5  
6.4  
3.8  
7.1  
3.9  
11.4  
6.3  
A14/B14/C4  
A15/B9/C7  
B2/C6  
12.1  
6.4  
Table 6-15. Per-Channel Parasitic Capacitance for 48-Pin PT LQFP  
Cp (pF)  
ADC CHANNEL  
COMPARATOR DISABLED  
COMPARATOR ENABLED  
A0/B15/C15/DACA_OUT  
A1/B7/DACB_OUT  
A2/B6/C9  
9.1  
7.4  
4.1  
81.9  
8
11.6  
9.9  
6.6  
A3/B3/C5/VDAC  
A4/B8/C14  
89.4  
13  
A5/B12/C2  
7.1  
7.1  
3.8  
8.2  
6.9  
4.7  
4
12.1  
12.1  
6.3  
A6/B2/C6  
A7/C3  
A8/B0/C11  
13.2  
11.9  
7.2  
A9/B4/C8  
A10/B1/C10  
A11/B11/C0  
A12/C1  
6.5  
6.4  
7.1  
11.4  
12.1  
A15/B9/C7  
Copyright © 2021 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.13.3.2.4 ADC Timing Diagrams  
Figure 6-39 shows the ADC conversion timings for two SOCs given the following assumptions:  
SOC0 and SOC1 are configured to use the same trigger.  
No other SOCs are converting or pending when the trigger occurs.  
The round-robin pointer is in a state that causes SOC0 to convert first.  
ADCINTSEL is configured to set an ADCINT flag upon end of conversion for SOC0 (whether this flag  
propagates through to the CPU to cause an interrupt is determined by the configurations in the PIE module).  
Table 6-16 lists the descriptions of the ADC timing parameters. Table 6-17 lists the ADC timings.  
Sample n  
Input on SOC0.CHSEL  
Input on SOC1.CHSEL  
Sample n+1  
ADC S+H  
SOC0  
SOC1  
SYSCLK  
ADCCLK  
ADCTRIG  
ADCSOCFLG.SOC0  
ADCSOCFLG.SOC1  
ADCRESULT0  
Sample n  
(old data)  
(old data)  
ADCRESULT1  
Sample n+1  
ADCINTFLG.ADCINTx  
tSH  
tLAT  
tEOC  
tINT  
Figure 6-39. ADC Timings  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 6-16. ADC Timing Parameters  
PARAMETER  
DESCRIPTION  
The duration of the S+H window.  
At the end of this window, the value on the S+H capacitor becomes the voltage to be converted into a digital  
value. The duration is given by (ACQPS + 1) SYSCLK cycles. ACQPS can be configured individually for each  
SOC, so tSH will not necessarily be the same for different SOCs.  
tSH  
Note: The value on the S+H capacitor will be captured approximately 5 ns before the end of the S+H window  
regardless of device clock settings.  
The time from the end of the S+H window until the ADC results latch in the ADCRESULTx register.  
tLAT  
If the ADCRESULTx register is read before this time, the previous conversion results will be returned.  
The time from the end of the S+H window until the S+H window for the next ADC conversion can begin. The  
subsequent sample can start before the conversion results are latched.  
tEOC  
The time from the end of the S+H window until an ADCINT flag is set (if configured).  
If the INTPULSEPOS bit in the ADCCTL1 register is set, tINT will coincide with the conversion results being  
latched into the result register.  
If the INTPULSEPOS bit is 0, tINT will coincide with the end of the S+H window. If tINT triggers a read of the  
ADC result register (directly through DMA or indirectly by triggering an ISR that reads the result), care must be  
taken to ensure the read occurs after the results latch (otherwise, the previous results will be read).  
tINT  
If the INTPULSEPOS bit is 0, and the OFFSET field in the ADCINTCYCLE register is not 0, then there will be  
a delay of OFFSET SYSCLK cycles before the ADCINT flag is set. This delay can be used to enter the ISR or  
trigger the DMA at exactly the time the sample is ready.  
Table 6-17. ADC Timings  
ADCCLK  
CYCLES  
ADCCLK PRESCALE  
SYSCLK CYCLES  
ADCCTL2  
[PRESCALE]  
RATIO  
ADCCLK:SYSCLK  
(1)  
(2)  
tEOC  
tLAT  
tINT(EARLY)  
tINT(LATE)  
tEOC  
0
2
1
2
3
4
5
6
7
8
11  
21  
31  
41  
51  
61  
71  
81  
13  
1
1
1
1
1
1
1
1
11  
21  
31  
41  
51  
61  
71  
81  
11  
23  
34  
44  
55  
65  
76  
86  
10.5  
10.3  
10.3  
10.2  
10.2  
10.1  
10.1  
4
6
8
10  
12  
14  
(1) Refer to the "ADC: DMA Read of Stale Result" advisory in the TMS320F28003x Real-Time MCUs Silicon Errata.  
(2) By default, tINT occurs one SYSCLK cycle after the S+H window if INTPULSEPOS is 0. This can be changed by writing to the OFFSET  
field in the ADCINTCYCLE register.  
Copyright © 2021 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.13.4 Temperature Sensor  
6.13.4.1 Temperature Sensor Electrical Data and Timing  
The temperature sensor can be used to measure the device junction temperature. The temperature sensor  
is sampled through an internal connection to the ADC and translated into a temperature through TI-provided  
software. When sampling the temperature sensor, the ADC must meet the acquisition time in the Temperature  
Sensor Characteristics table.  
6.13.4.1.1 Temperature Sensor Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Tacc  
tstartup  
tacq  
Temperature Accuracy  
External reference  
±15  
°C  
Start-up time  
(TSNSCTL[ENABLE] to  
sampling temperature sensor)  
500  
µs  
ns  
ADC acquisition time  
450  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.13.5 Comparator Subsystem (CMPSS)  
The Comparator Subsystem (CMPSS) consists of analog comparators and supporting circuits that are useful for  
power applications such as peak current mode control, switched-mode power, power factor correction, voltage  
trip monitoring, and so forth.  
The comparator subsystem is built around a number of modules. Each subsystem contains two comparators,  
two reference 12-bit DACs, and two digital filters. The subsystem also includes one ramp generator.  
Comparators are denoted "H" or "L" within each module where “H” and “L” represent high and low, respectively.  
Each comparator generates a digital output which indicates whether the voltage on the positive input is greater  
than the voltage on the negative input. The positive input of the comparator is driven from an external pin  
(see the Analog Subsystem chapter of the TMS320F28003x Real-Time Microcontrollers Technical Reference  
Manual for mux options available to the CMPSS. The negative input can be driven by an external pin or by  
the programmable reference 12-bit DAC. Each comparator output passes through a programmable digital filter  
that can remove spurious trip signals. An unfiltered output is also available if filtering is not required. A ramp  
generator circuit is optionally available to control the reference 12-bit DAC value for the high comparator in the  
subsystem.  
Each CMPSS includes:  
Two analog comparators  
Two programmable reference 12-bit DACs  
One ramp generator  
Ability to synchronize submodules with EPWMSYNCPER  
Ability to extend clear signal with EPWMBLANK  
Ability to synchronize output with SYSCLK  
Ability to latch output  
Ability to invert output  
Option to use hysteresis on the input  
Option for negative input of comparator to be driven by an external signal or by the reference DAC  
Option to choose between VDDA or VDAC to be the DAC reference voltage  
Copyright © 2021 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.13.5.1 CMPSS Connectivity Diagram  
Comparator Subsystem1  
CMP1_HP  
CTRIP1H  
CTRIP1L  
CTRIP2H  
CTRIP2L  
CTRIP1H  
Digital  
CMP1_HN  
Filter  
VDDA or VDAC  
CTRIPOUT1H  
DAC12  
DAC12  
Digital  
Filter  
CTRIP1L  
CTRIPOUT1L  
CMP1_LN  
CMP1_LP  
ePWM X- BAR  
ePWMs  
Comparator Subsystem2  
CMP2_HP  
CMP2_HN  
CTRIP2H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT2H  
DAC12  
DAC12  
CTRIP4H  
CTRIP4L  
Digital  
Filter  
CTRIP2L  
CMP2_LN  
CMP2_LP  
CTRIPOUT2L  
CTRIPOUT1H  
CTRIPOUT1L  
CTRIPOUT2H  
CTRIPOUT2L  
Comparator Subsystem4  
CMP4_HP  
CMP4_HN  
CTRIP4H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT4H  
Output X- BAR  
GPIO Mux  
DAC12  
DAC12  
Digital  
Filter  
CTRIP4L  
CTRIPOUT4L  
CMP4_LN  
CMP4_LP  
CTRIPOUT4H  
CTRIPOUT4L  
Figure 6-40. CMPSS Connectivity  
6.13.5.2 Block Diagram  
The block diagram for the CMPSS is shown in Figure 6-41.  
CTRIPx(x= "H" or "L") signals are connected to the ePWM X-BAR for ePWM trip response. See the  
Enhanced Pulse Width Modulator (ePWM) chapter of the TMS320F28003x Real-Time Microcontrollers  
Technical Reference Manual for more details on the ePWM X-BAR mux configuration.  
CTRIPxOUTx(x= "H" or "L") signals are connected to the Output X-BAR for external signaling. See the  
General-Purpose Input/Output (GPIO) chapter of the TMS320F28003x Real-Time Microcontrollers Technical  
Reference Manual for more details on the Output X-BAR mux configuration.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Figure 6-41. CMPSS Module Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.13.5.3 CMPSS Electrical Data and Timing  
6.13.5.3.1 Comparator Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
500  
UNIT  
µs  
TPU  
Power-up time  
Comparator input (CMPINxx) range  
Input referred offset error  
0
VDDA  
V
Low common mode, inverting  
input set to 50mV  
–20  
20  
mV  
1x  
12  
24  
36  
48  
21  
26  
30  
46  
2x  
Hysteresis(1)  
LSB  
3x  
4x  
Step response  
60  
Response time (delay from CMPINx input pin  
change to GPIO output pin through either ePWM  
X-BAR or Output X-BAR)  
ns  
Ramp response (1.65V/µs)  
Ramp response (8.25mV/µs)  
Up to 250 kHz  
ns  
dB  
dB  
PSRR  
CMRR  
Power Supply Rejection Ratio  
Common Mode Rejection Ratio  
40  
(1) The CMPSS DAC is used as the reference to determine how much hysteresis to apply. Therefore, hysteresis will scale with the  
CMPSS DAC reference voltage. Hysteresis is available for all comparator input source configurations.  
CMPSS Comparator Input Referred Offset and Hysteresis  
Note  
The CMPSS inputs must be kept below VDDA + 0.3 V to ensure proper functional operation. If a  
CMPSS input exceeds this level, an internal blocking circuit isolates the internal comparator from  
the external pin until the external pin voltage returns below VDDA + 0.3 V. During this time, the  
internal comparator input is floating and can decay below VDDA within approximately 0.5 µs. After  
this time, the comparator could begin to output an incorrect result depending on the value of the other  
comparator input.  
Input Referred Offset  
CTRIPx  
Logic Level  
CTRIPx = 1  
CTRIPx = 0  
COMPINxP  
Voltage  
0
CMPINxN or  
DACxVAL  
Figure 6-42. CMPSS Comparator Input Referred Offset  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Hysteresis  
CTRIPx  
Logic Level  
CTRIPx = 1  
CTRIPx = 0  
COMPINxP  
Voltage  
0
CMPINxN or  
DACxVAL  
Figure 6-43. CMPSS Comparator Hysteresis  
6.13.5.3.2 CMPSS DAC Static Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0
TYP  
MAX  
UNIT  
Internal reference  
VDDA  
CMPSS DAC output range  
V
External reference  
0
VDAC(4)  
Static offset error(1)  
Static gain error(1)  
Static DNL  
–25  
–2  
25  
2
mV  
% of FSR  
LSB  
Endpoint corrected  
>–1  
–16  
4
Static INL  
Endpoint corrected  
16  
1
LSB  
Settling time  
Resolution  
Settling to 1LSB after full-scale output change  
µs  
12  
bits  
Error induced by comparator trip or CMPSS  
DAC code change within the same CMPSS  
module  
CMPSS DAC output disturbance(2)  
–100  
100  
LSB  
CMPSS DAC disturbance time(2)  
VDAC reference voltage  
VDAC load(3)  
200  
VDDA  
10  
ns  
V
When VDAC is reference  
When VDAC is reference  
2.4  
6
2.5 or 3.0  
8
kΩ  
(1) Includes comparator input referred errors.  
(2) Disturbance error may be present on the CMPSS DAC output for a certain amount of time after a comparator trip.  
(3) Per active CMPSS module.  
(4) The maximum output voltage is VDDA when VDAC > VDDA.  
Copyright © 2021 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.13.5.3.3 CMPSS Illustrative Graphs  
Offset Error  
Figure 6-44. CMPSS DAC Static Offset  
Ideal Gain  
Actual Gain  
Figure 6-45. CMPSS DAC Static Gain  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Linearity Error  
Figure 6-46. CMPSS DAC Static Linearity  
Copyright © 2021 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.13.6 Buffered Digital-to-Analog Converter (DAC)  
The buffered DAC module consists of an internal 12-bit DAC and an analog output buffer that can drive an  
external load. For driving even higher loads than typical, a trade-off can be made between load size and  
output voltage swing. For the load conditions of the buffered DAC, see the Buffered DAC Electrical Data and  
Timing section. The buffered DAC is a general-purpose DAC that can be used to generate a DC voltage or AC  
waveforms such as sine waves, square waves, triangle waves and so forth. Software writes to the DAC value  
register can take effect immediately or can be synchronized with EPWMSYNCO events.  
Each buffered DAC has the following features:  
12-bit resolution  
Selectable reference voltage source  
x1 and x2 gain modes when using internal VREFHI  
Ability to synchronize with EPWMSYNCPER  
DACCTL[DACREFSEL]  
ANAREFx2P5  
VDAC  
0
DACREF  
1.65 V  
0
1
Internal Reference  
Circuit  
1
2.5 V  
0
1
VREFHI  
ANAREFxSEL  
VDDA  
DACCTL[LOADMODE]  
>
D
D
SYSCLK  
DACVALS  
Q
Q
0
DACOUT  
12-bit  
DAC  
Amp  
(x1 or x2)  
DACVALA  
1
EPWM1SYNCPER  
EPWM2SYNCPER  
0
1
EN  
VSSA  
VSSA  
EPWM3SYNCPER  
...  
2
...  
DACCTL[MODE]  
(Select x1 or x2 gain)  
EPWMnSYNCPER  
n-1  
DACCTL[SYNCSEL]  
Figure 6-47. DAC Module Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.13.6.1 Buffered DAC Electrical Data and Timing  
6.13.6.1.1 Buffered DAC Operating Conditions  
over recommended operating conditions (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
kΩ  
pF  
V
RL  
CL  
Resistive Load(2)  
5
Capacitive Load  
100  
VDDA – 0.3  
VDDA – 0.6  
VDDA  
RL = 5 kΩ  
0.3  
0.6  
2.4  
VOUT  
Valid Output Voltage Range(3)  
RL = 1 kΩ  
V
Reference Voltage(4)  
VDAC or VREFHI  
2.5 or 3.0  
V
(1) Typical values are measured with VREFHI = 3.3 V and VREFLO = 0 V, unless otherwise noted. Minimum and maximum values are  
tested or characterized with VREFHI = 2.5 V and VREFLO = 0 V.  
(2) DAC can drive a minimum resistive load of 1 kΩ, but the output range will be limited.  
(3) This is the linear output range of the DAC. The DAC can generate voltages outside this range, but the output voltage will not be linear  
due to the buffer.  
(4) For best PSRR performance, VDAC or VREFHI should be less than VDDA.  
6.13.6.1.2 Buffered DAC Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
12  
MAX  
UNIT  
General  
Resolution  
bits  
mV/V  
V-ns  
Load Regulation  
Glitch Energy  
–1  
1
1.5  
Settling to 2 LSBs after 0.3V-  
to-3V transition  
Voltage Output Settling Time Full-Scale  
Voltage Output Settling Time 1/4th Full-Scale  
Voltage Output Slew Rate  
2
1.6  
4.5  
µs  
µs  
Settling to 2 LSBs after 0.3V-  
to-0.75V transition  
Slew rate from 0.3V-to-3V  
transition  
2.8  
V/µs  
5-kΩ Load  
328  
557  
ns  
ns  
kΩ  
µs  
µs  
Load Transient Settling Time  
Reference Input Resistance(2)  
1-kΩ Load  
VDAC or VREFHI  
External Reference mode  
Internal Reference mode  
160  
200  
240  
500  
TPU  
Power Up Time  
5000  
DC Characteristics  
Offset  
Gain  
DNL  
INL  
Offset Error  
Midpoint  
–10  
–2.5  
–1  
10  
2.5  
1
mV  
% of FSR  
LSB  
Gain Error(3)  
Differential Non Linearity(4)  
Endpoint corrected  
Endpoint corrected  
±0.4  
±2  
Integral Non Linearity  
–5  
5
LSB  
AC Characteristics  
Integrated noise from 100 Hz  
to 100 kHz  
600  
µVrms  
Output Noise  
Noise density at 10 kHz  
1 kHz, 200 KSPS  
800  
64  
nVrms/√Hz  
SNR  
THD  
Signal to Noise Ratio  
dB  
dB  
Total Harmonic Distortion  
1 kHz, 200 KSPS  
–64.2  
Spurious Free Dynamic  
Range  
SFDR  
1 kHz, 200 KSPS  
1 kHz, 200 KSPS  
66  
dB  
dB  
Signal to Noise and Distortion  
Ratio  
SINAD  
61.7  
Copyright © 2021 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.13.6.1.2 Buffered DAC Electrical Characteristics (continued)  
over recommended operating conditions (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
70  
MAX  
UNIT  
dB  
DC  
100 kHz  
Power Supply Rejection  
Ratio(5)  
PSRR  
30  
dB  
(1) Typical values are measured with VREFHI = 3.3 V and VREFLO = 0 V, unless otherwise noted. Minimum and maximum values are  
tested or characterized with VREFHI = 2.5 V and VREFLO = 0 V.  
(2) Per active Buffered DAC module.  
(3) Gain error is calculated for linear output range.  
(4) The DAC output is monotonic.  
(5) VREFHI = 3.2 V, VDDA = 3.3 V DC + 100 mV Sine.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.14 Control Peripherals  
6.14.1 Enhanced Pulse Width Modulator (ePWM)  
The ePWM peripheral is a key element in controlling many of the power electronic systems found in both  
commercial and industrial equipment. The ePWM type-4 module is able to generate complex pulse width  
waveforms with minimal CPU overhead by building the peripheral up from smaller modules with separate  
resources that can operate together to form a system. Some of the highlights of the ePWM type-4 module  
include complex waveform generation, dead-band generation, a flexible synchronization scheme, advanced  
trip-zone functionality, and global register reload capabilities.  
The ePWM and eCAP synchronization scheme on the device provides flexibility in partitioning the ePWM and  
eCAP modules and allows localized synchronization within the modules.  
Figure 6-48 shows the ePWM module. Figure 6-49 shows the ePWM trip input connectivity.  
Copyright © 2021 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Time-Base (TB)  
TBPRD Shadow (24)  
ePWM  
SYNC  
Scheme  
EXTSYNCIN  
EXTSYNCOUT  
TBPRDHR (8)  
TBPRD Active (24)  
CTR=PRD  
EPWMxSYNCI  
TBCTL[PHSEN]  
TBCTL[SWFSYNC]  
DCAEVT1/sync(A)  
DCBEVT1/sync(A)  
Counter  
Up/Down  
(16 bit)  
CTR=ZERO  
CTR_Dir  
TBCTR  
Active (16)  
CTR=PRD  
EPWMx_INT  
CTR=ZERO  
TBPHSHR (8)  
EPWMxSOCA  
EPWMxSOCB  
CTR=PRD or ZERO  
CTR=CMPA  
16  
8
On-chip  
ADC  
Event  
Trigger  
And  
Interrupt  
(ET)  
Phase  
TBPHS Active (24)  
CTR=CMPB  
Control  
CTR=CMPC  
CTR=CMPD  
CTR_Dir  
DCAEVT1.soc(A)  
DCBEVT1.soc(A)  
ADCSOCOUTSELECT  
Counter Compare (CC)  
Action  
Qualifier  
(AQ)  
CTR=CMPA  
CMPAHR (8)  
Select and pulse stretch  
for external ADC  
16  
HiRes PWM (HRPWM)  
CMPAHR (8)  
EPWMA  
ADCSOCAO  
ADCSOCBO  
CMPA Active (24)  
CMPA Shadow (24)  
ePWMxA  
Trip  
Zone  
(TZ)  
Dead  
Band  
(DB)  
PWM  
Chopper  
(DB)  
CTR=CMPB  
CMPBHR (8)  
16  
CMPB Active (16)  
EPWMB  
ePWMxB  
CMPB Shadow (16)  
CMPBHR (8)  
CTR=CMPC  
EPWMx_TZ_INT  
TZ1 to TZ3  
TBCNT (16)  
CMPC[15-0]  
CTR=ZERO  
DCAEVT1.inter  
DCBEVT1.inter  
DCAEVT2.inter  
EMUSTOP  
16  
CLOCKFAIL  
CMPC Active (16)  
EQEPxERR  
DCBEVT2.inter  
DCAEVT1.force(A)  
DCBEVT1.force(A)  
DCAEVT2.force(A)  
CMPC Shadow (16)  
TBCNT (16)  
CTR=CMPD  
DCBEVT2.force(A)  
CMPD[15-0]  
16  
CMPD Active (16)  
CMPD Shadow (16)  
A. These events are generated by the ePWM digital compare (DC) submodule based on the levels of the TRIPIN inputs.  
Figure 6-48. ePWM Submodules and Critical Internal Signal Interconnects  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Figure 6-49. ePWM Trip Input Connectivity  
Copyright © 2021 Texas Instruments Incorporated  
158 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.14.1.1 ePWM Electrical Data and Timing  
For an explanation of the input qualifier parameters, see the General-Purpose Input Timing Requirements table.  
6.14.1.1.1 ePWM Timing Requirements  
MIN  
2tc(EPWMCLK)  
MAX  
UNIT  
Asynchronous  
Synchronous  
tw(SYNCIN)  
Sync input pulse width  
2tc(EPWMCLK)  
cycles  
With input qualifier  
1tc(EPWMCLK) + tw(IQSW)  
6.14.1.1.2 ePWM Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER(1)  
MIN  
20  
MAX  
UNIT  
ns  
tw(PWM)  
Pulse duration, PWMx output high/low  
Sync output pulse width  
tw(SYNCOUT)  
8tc(SYSCLK)  
cycles  
Delay time, trip input active to PWM forced high  
Delay time, trip input active to PWM forced low  
Delay time, trip input active to PWM Hi-Z  
td(TZ-PWM)  
25  
ns  
(1) 20-pF load on pin.  
6.14.1.1.3 Trip-Zone Input Timing  
For an explanation of the input qualifier parameters, see the General-Purpose Input Timing Requirements table.  
6.14.1.1.3.1 Trip-Zone Input Timing Requirements  
MIN  
1tc(EPWMCLK)  
MAX UNIT  
cycles  
Asynchronous  
Synchronous  
tw(TZ)  
Pulse duration, TZx input low  
2tc(EPWMCLK)  
cycles  
With input qualifier  
1tc(EPWMCLK) + tw(IQSW)  
cycles  
6.14.1.1.3.2 PWM Hi-Z Characteristics Timing Diagram  
EPWMCLK  
tw(TZ)  
TZ(A)  
td(TZ-PWM)  
PWM(B)  
A. TZ: TZ1, TZ2, TZ3, TRIP1–TRIP12  
B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery  
software.  
Figure 6-50. PWM Hi-Z Characteristics  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.14.2 High-Resolution Pulse Width Modulator (HRPWM)  
The HRPWM combines multiple delay lines in a single module and a simplified calibration system by using a  
dedicated calibration delay line. For each ePWM module, there are two HR outputs:  
HR Duty and Deadband control on Channel A  
HR Duty and Deadband control on Channel B  
The HRPWM module offers PWM resolution (time granularity) that is significantly better than what can be  
achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are:  
Significantly extends the time resolution capabilities of conventionally derived digital PWM  
This capability can be used in both single edge (duty cycle and phase-shift control) as well as dual edge  
control for frequency/period modulation.  
Finer time granularity control or edge positioning is controlled through extensions to the Compare A, B,  
phase, period and deadband registers of the ePWM module.  
6.14.2.1 HRPWM Electrical Data and Timing  
6.14.2.1.1 High-Resolution PWM Characteristics  
PARAMETER  
MIN  
TYP  
MAX UNIT  
310 ps  
Micro Edge Positioning (MEP) step size(1)  
150  
(1) The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher  
temperature and lower voltage and decrease with lower temperature and higher voltage.  
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI  
software libraries for details of using SFO functions in end applications. SFO functions help to estimate the number of MEP steps per  
SYSCLK period dynamically while the HRPWM is in operation.  
6.14.3 External ADC Start-of-Conversion Electrical Data and Timing  
6.14.3.1 External ADC Start-of-Conversion Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
tw(ADCSOCL)  
Pulse duration, ADCSOCxO low  
32tc(SYSCLK)  
cycles  
6.14.3.2 ADCSOCAO or ADCSOCBO Timing Diagram  
tw(ADCSOCL)  
ADCSOCAO  
or  
ADCSOCBO  
Figure 6-51. ADCSOCAO or ADCSOCBO Timing  
Copyright © 2021 Texas Instruments Incorporated  
160 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.14.4 Enhanced Capture (eCAP)  
The eCAP module can be used in systems where accurate timing of external events is important. eCAP/HRCAP  
on this device is Type-2.  
Applications for eCAP include:  
Speed measurements of rotating machinery (for example, toothed sprockets sensed through Hall sensors)  
Elapsed time measurements between position sensor pulses  
Period and duty cycle measurements of pulse train signals  
Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors  
The eCAP module includes the following features:  
4-event time-stamp registers (each 32 bits)  
Edge-polarity selection for up to four sequenced time-stamp capture events  
Interrupt on either of the four events  
Single shot capture of up to four event timestamps  
Continuous mode capture of timestamps in a four-deep circular buffer  
Absolute time-stamp capture  
Difference (Delta) mode time-stamp capture  
All of the above resources dedicated to a single input pin  
When not used in capture mode, the eCAP module can be configured as a single-channel PWM output  
(APWM).  
The capture functionality of the Type-1 eCAP is enhanced from the Type-0 eCAP with the following added  
features:  
Event filter reset bit  
– Writing a 1 to ECCTL2[CTRFILTRESET] will clear the event filter, the modulo counter, and any pending  
interrupts flags. Resetting the bit is useful for initialization and debug.  
Modulo counter status bits  
– The modulo counter (ECCTL2 [MODCTRSTS]) indicates which capture register will be loaded next. In the  
Type-0 eCAP, it was not possible to know current state of modulo counter.  
DMA trigger source  
– eCAPxDMA is added as a DMA trigger. CEVT[1–4] can be configured as the source for eCAPxDMA.  
Input multiplexer  
– ECCTL0 [INPUTSEL] selects one of 128 input signals.  
EALLOW protection  
– EALLOW protection is added to critical registers. To maintain software compatibility with the Type-0 eCAP,  
configure DEV_CFG_REGS.ECAPTYPE to make these registers unprotected.  
The capture functionality of the Type-2 eCAP is enhanced from the Type-1 eCAP with the following added  
features:  
ECAPxSYNCINSEL register  
– The ECAPSxYNCINSEL register is added for each eCAP to select an external SYNCIN. Every eCAP can  
have a separate SYNCIN signal.  
The eCAP inputs connect to any GPIO input through the Input X-BAR. The APWM outputs connect to GPIO pins  
through the Output X-BAR to OUTPUTx positions in the GPIO mux. See the GPIO Input X-BAR section and the  
GPIO Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR section.  
The eCAP module is clocked by PERx.SYSCLK.  
The clock enable bits (ECAP1–ECAP3) in the PCLKCR3 register turn off the eCAP module individually (for  
low-power operation). Upon reset, ECAP1ENCLK is set to low, indicating that the peripheral clock is off.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.14.4.1 eCAP and HRCAP Block Diagram  
ECCTL2 [ SYNCI_EN, SYNCOSEL, SWSYNC]  
ECCTL2[CAP/APWM]  
APWM Mode  
CTRPHS  
(phase register−32 bit)  
ECAPxSYNCIN  
OVF  
RST  
CTR_OVF  
CTR [0−31]  
PRD [0−31]  
CMP [0−31]  
TSCTR  
ECAPxSYNCOUT  
PWM  
Compare  
Logic  
Output  
X-Bar  
(counter−32 bit)  
Delta−Mode  
32  
CTR=PRD  
CTR=CMP  
CTR [0−31]  
PRD [0−31]  
32  
ECCTL1 [ CAPLDEN, CTRRSTx]  
HRCTRL[HRE]  
32  
32  
LD1  
CAP1  
Polarity  
Select  
LD  
(APRD Active)  
APRD  
32  
shadow  
CMP [0−31]  
32  
HRCTRL[HRE]  
32  
HRCTRL[HRE]  
32  
CAP2  
Polarity  
Select  
LD2  
LD  
Other  
Sources  
(ACMP Active)  
[127:16]  
[15:0]  
Event  
Prescale  
Event  
32  
ACMP  
16  
qualifier  
Input  
shadow  
ECCTL1[PRESCALE]  
HRCTRL[HRE]  
32  
X-Bar  
32  
Polarity  
Select  
LD3  
LD4  
CAP3  
LD  
(APRD Shadow)  
HRCTRL[HRE]  
32  
32  
CAP4  
Polarity  
Select  
LD  
(ACMP Shadow)  
Edge Polarity Select  
ECCTL1[CAPxPOL]  
4
Capture Events  
4
CEVT[1:4]  
ECAPxDMA_INT  
ECCTL2[CTRFILTRESET]  
Interrupt  
Trigger  
and  
Continuous /  
Oneshot  
MODCNTRSTS  
CTR_OVF  
CTR=PRD  
CTR=CMP  
Capture Control  
ECCTL2[DMAEVTSEL]  
Flag  
Control  
ECAPx  
(to ePIE)  
ECCTL2 [ REARM, CONT_ONESHT, STOP_WRAP]  
Registers: ECEINT, ECFLG, ECCLR, ECFRC  
Capture Pulse  
HR Input  
SYSCLK  
HRCLK  
(A)  
HR Submodule  
ECAPx_HRCAL  
(to ePIE)  
A. The HRCAP submodule is not available on all eCAP modules; in this case, the high-resolution muxes and hardware are not  
implemented.  
Figure 6-52. eCAP and HRCAP Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
162 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.14.4.2 eCAP Synchronization  
The eCAP modules can be synchronized with each other by selecting a common SYNCIN source. SYNCIN  
source for eCAP can be either software sync-in or external sync-in. The external sync-in signal can come from  
EPWM, eCAP, or X-Bar. The SYNC signal is defined by the selection in the ECAPxSYNCINSEL[SEL] bit for  
ECAPx as shown in Figure 6-53.  
ECAPx  
Disable  
0x0  
0x1  
ECAPxSYNCIN  
EPWMxSYNCOUT  
ECAPxSYNCIN  
Signals  
ECCTL2[SWSYNC]  
CTR=PRD  
Disable  
EXTSYNCOUT  
ECAPxSYNCOUT  
(EPWM, ECAP,  
INPUTXBAR, )  
Disable  
SYNCSELECT[SYNCOUT]  
0xn  
ECCTL2[SYNCOSEL]  
ECAPSYNCINSEL[SEL]  
Figure 6-53. eCAP Synchronization Scheme  
6.14.4.3 eCAP Electrical Data and Timing  
6.14.4.3.1 eCAP Timing Requirements  
MIN  
2tc(SYSCLK)  
NOM  
MAX  
UNIT  
Asynchronous  
tw(CAP)  
Capture input pulse width  
Synchronous  
2tc(SYSCLK)  
ns  
With input qualifier  
1tc(SYSCLK) + tw_(IQSW)  
6.14.4.3.2 eCAP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
tw(APWM)  
Pulse duration, APWMx output high/low  
20  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.14.5 High-Resolution Capture (HRCAP)  
The eCAP3 module can be configured as high-resolution capture (HRCAP) submodules. The HRCAP  
submodule measures the difference, in time, between pulses asynchronously to the system clock. This  
submodule is new to the eCAP Type 1 module, and features many enhancements over the Type 0 HRCAP  
module.  
Applications for the HRCAP include:  
Capacitive touch applications  
High-resolution period and duty-cycle measurements of pulse train cycles  
Instantaneous speed measurements  
Instantaneous frequency measurements  
Voltage measurements across an isolation boundary  
Distance/sonar measurement and scanning  
Flow measurements  
The HRCAP submodule includes the following features:  
Pulse-width capture in either non-high-resolution or high-resolution modes  
Absolute mode pulse-width capture  
Continuous or "one-shot" capture  
Capture on either falling or rising edge  
Continuous mode capture of pulse widths in 4-deep buffer  
Hardware calibration logic for precision high-resolution capture  
All of the resources in this list are available on any pin using the Input X-BAR.  
The HRCAP submodule includes one high-resolution capture channel in addition to a calibration block. The  
calibration block allows the HRCAP submodule to be continually recalibrated, at a set interval, with no “down  
time”. Because the HRCAP submodule now uses the same hardware as its respective eCAP, if the HRCAP is  
used, the corresponding eCAP will be unavailable.  
Each high-resolution-capable channel has the following independent key resources.  
All hardware of the respective eCAP  
High-resolution calibration logic  
Dedicated calibration interrupt  
6.14.5.1 eCAP and HRCAP Block Diagram  
For the HRCAP Block Diagram, see the eCAP and HRCAP Block Diagram in the Enhanced Capture (eCAP)  
section.  
Copyright © 2021 Texas Instruments Incorporated  
164 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.14.5.2 HRCAP Electrical Data and Timing  
6.14.5.2.1 HRCAP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ns  
Input pulse width  
110  
Measurement length ≤ 5 µs  
Measurement length > 5 µs  
±390  
±450  
540  
ps  
Accuracy(1) (2) (3) (4)  
1450  
ps  
See HRCAP  
Standard  
Standard deviation  
Resolution  
Deviation  
Characteristics  
figure  
300  
ps  
(1) Value obtained using an oscillator of 100 PPM, oscillator accuracy directly affects the HRCAP accuracy.  
(2) Measurement is completed using rising-rising or falling-falling edges  
(3) Opposite polarity edges will have an additional inaccuracy due to the difference between VIH and VIL. This effect is dependent on the  
signal’s slew rate.  
(4) Accuracy only applies to time-converted measurements.  
6.14.5.2.2 HRCAP Figure and Graph  
HRCAP’s Mean  
Accuracy  
Resolution  
(Step Size)  
Precision  
(Standard Deviation)  
Actual  
Input Signal  
A. The HRCAP has some variation in performance, this results in a probability distribution which is described using the following terms:  
Accuracy: The time difference between the input signal and the mean of the HRCAP’s distribution.  
Precision: The width of the HRCAP’s distribution, this is given as a standard deviation.  
Resolution: The minimum measurable increment.  
Figure 6-54. HRCAP Accuracy Precision and Resolution  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
2
7.4  
Typical Core Conditions  
Noisy Core Supply  
1.8  
1.6  
1.4  
1.2  
1
6.66  
5.92  
5.18  
4.44  
3.7  
0.8  
0.6  
0.4  
0.2  
2.96  
2.22  
1.48  
0.74  
0
1000  
2000  
3000  
4000  
5000  
Time Between Edges(nS)  
6000  
7000  
8000  
9000  
10000  
A. Typical core conditions: All peripheral clocks are enabled.  
B. Noisy core supply: All core clocks are enabled and disabled with a regular period during the measurement.  
C. Fluctuations in current and voltage on the 1.2-V rail cause the standard deviation of the HRCAP to rise. Care should be taken to ensure  
that the 1.2-V supply is clean, and that noisy internal events, such as enabling and disabling clock trees, have been minimized while  
using the HRCAP.  
Figure 6-55. HRCAP Standard Deviation Characteristics  
Copyright © 2021 Texas Instruments Incorporated  
166 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.14.6 Enhanced Quadrature Encoder Pulse (eQEP)  
The eQEP module on this device is Type-2. The eQEP interfaces directly with linear or rotary incremental  
encoders to obtain position, direction, and speed information from rotating machines used in high-performance  
motion and position control systems.  
The eQEP peripheral contains the following major functional units (see Figure 6-56):  
Programmable input qualification for each pin (part of the GPIO MUX)  
Quadrature decoder unit (QDU)  
Position counter and control unit for position measurement (PCCU)  
Quadrature edge-capture unit for low-speed measurement (QCAP)  
Unit time base for speed/frequency measurement (UTIME)  
Watchdog timer for detecting stalls (QWDOG)  
Quadrature Mode Adapter (QMA)  
System  
control registers  
To CPU  
EQEPxENCLK  
SYSCLK  
QCPRD  
Enhanced QEP (eQEP) peripheral  
QCAPCTL  
16  
QCTMR  
16  
16  
Quadrature  
capture unit  
(QCAP)  
QCTMRLAT  
QCPRDLAT  
QUTMR  
QUPRD  
QWDTMR  
QWDPRD  
Registers  
used by  
multiple units  
32  
16  
QDECCTL  
16  
QEPCTL  
QEPSTS  
QFLG  
UTOUT  
UTIME  
QWDOG  
EQEPx_A  
EQEPx_B  
EQEPxAIN  
WDTOUT  
QMA  
EQEPxBIN  
EQEPxINT  
QCLK  
PIE  
QDIR  
EQEPxIIN  
Quadrature  
32  
QI  
GPIO  
MUX  
EQEPx_INDEX  
EQEPxIOUT  
Position counter/  
control unit  
(PCCU)  
decoder  
(QDU)  
QS  
EQEPxIOE  
QPOSLAT  
PHE  
QPOSSLAT  
QPOSILAT  
PCSOUT  
EQEPxSIN  
EQEPx_STROBE  
EQEPxSOUT  
EQEPxSOE  
32  
32  
16  
QEINT  
QPOSCNT  
QPOSINIT  
QPOSMAX  
QPOSCMP  
QFRC  
QCLR  
QPOSCTL  
Figure 6-56. eQEP Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 167  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.14.6.1 eQEP Electrical Data and Timing  
For an explanation of the input qualifier parameters, see the General-Purpose Input Timing Requirements table.  
6.14.6.1.1 eQEP Timing Requirements  
MIN  
MAX  
UNIT  
Synchronous(1)  
2tc(SYSCLK)  
tw(QEPP)  
QEP input period  
cycles  
Synchronous with input qualifier  
Synchronous(1)  
2[1tc(SYSCLK) + tw(IQSW)]  
2tc(SYSCLK)  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
tw(INDEXH)  
tw(INDEXL)  
tw(STROBH)  
tw(STROBL)  
QEP Index Input High time  
QEP Index Input Low time  
QEP Strobe High time  
QEP Strobe Input Low time  
cycles  
cycles  
cycles  
cycles  
Synchronous with input qualifier  
Synchronous(1)  
Synchronous with input qualifier  
Synchronous(1)  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
Synchronous with input qualifier  
Synchronous(1)  
Synchronous with input qualifier  
2tc(SYSCLK) + tw(IQSW)  
(1) The GPIO GPxQSELn Asynchronous mode should not be used for eQEP module input pins.  
6.14.6.1.2 eQEP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
5tc(SYSCLK)  
7tc(SYSCLK)  
UNIT  
cycles  
cycles  
td(CNTR)xin  
Delay time, external clock to counter increment  
td(PCS-OUT)QEP  
Delay time, QEP input edge to position compare sync output  
Copyright © 2021 Texas Instruments Incorporated  
168 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.14.7 Sigma-Delta Filter Module (SDFM)  
SDFM features include:  
Eight external pins per SDFM module  
– Four sigma-delta data input pins per SDFM module (SD-Dx, where x = 1 to 4)  
– Four sigma-delta clock input pins per SDFM module (SD-Cx, where x = 1 to 4)  
Different configurable modulator clock modes supported:  
– Mode 0: Modulator clock rate equals the modulator data rate.  
Four independent, configurable secondary filter (comparator) units per SDFM module:  
– Four different filter type selection (Sinc1/Sinc2/SincFast/Sinc3) options available  
– Ability to detect over-value condition, under-value condition, and Threshold-crossing conditions  
1. Two independent Higher Threshold comparators (used to detect over-value condition)  
2. Two independent Lower Threshold comparators (used to detect under-value condition)  
3. One independent Threshold-Crossing comparator (used to measure duty cycle/frequency with eCAP)  
– OSR value for comparator filter unit (COSR) programmable from 1 to 32  
Four independent configurable primary filter (data filter) units per SDFM module:  
– Four different filter type selection (Sinc1/Sinc2/SincFast/Sinc3) options available  
– OSR value for data filter unit (DOSR) programmable from 1 to 256  
– Ability to enable or disable (or both) individual filter module  
– Ability to synchronize all four independent filters of an SDFM module by using the Master Filter Enable  
(MFE) bit or by using PWM signals  
Data filter output can be represented in either 16 bits or 32 bits.  
Data filter unit has a programmable mode FIFO to reduce interrupt overhead. The FIFO has the following  
features:  
– The primary filter (data filter) has a 16-deep x 32-bit FIFO.  
– The FIFO can interrupt the CPU after programmable number of data-ready events.  
– FIFO Wait-for-Sync feature: Ability to ignore data-ready events until the PWM synchronization signal  
(SDSYNC) is received. Once the SDSYNC event is received, the FIFO is populated on every data-ready  
event.  
– Data filter output can be represented in either 16 bits or 32 bits.  
PWMx.SOCA/SOCB can be configured to serve as SDSYNC source on a per-data-filter-channel basis.  
PWMs can be used to generate a modulator clock for sigma-delta modulators.  
Configurable Input Qualification available for both SD-Cx and SD-Dx  
Ability to use one filter channel clock (SD-C1) to provide clock to other filter clock channels.  
Configurable digital filter available on comparator filter events to blankout comparator events caused by  
spurious noise  
Figure 6-57 shows the SDFM module block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 169  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Output XBAR  
PWM XBAR  
SDyFLTx_CEVT1 SDyFLTx_CEVT2  
Comparator  
Signals  
SDyFLTx.DR  
SDFM- Sigma Delta Filter Module  
G4  
Streams  
DMA  
Filter Module 1  
Secondary  
(Comparator)  
Filter  
Interrupt  
Unit  
SDy_D1  
SDy_C1  
Input  
Ctrl  
SDy_ERR  
Primary (Data)  
Filter  
SDyFLTx.DR  
CLA  
PWMi.SOCA / SOCB  
PWMj.CMPC  
FIFO  
SDy_D2  
SDy_C2  
Filter Module 2  
SDy_ERR  
SDyFLTx.DR  
C28x  
GPIO  
MUX  
PWMi.SOCA / SOCB  
PWMj.CMPC  
SDy_D3  
SDy_C3  
Filter Module 3  
Filter Module 4  
SDyFLTx_CEVT1  
SDyFLTx_CEVT2  
ECAP  
PWMi.SOCA / SOCB  
PWMj.CMPD  
Register  
Map  
SDy_D4  
SDy_C4  
PWMi.SOCA / SOCB  
PWMj.CMPD  
LEGEND  
Where,  
j
i
=
=
y =  
x =  
11 for SDFM1 & 12 for SDFM2  
1 to Max. no of PWMs  
1 for SDFM1 & 2 for SDFM2  
1 t 4  
Interrupt / trigger sources from SDFM  
Internal secondary filter signals  
Figure 6-57. Sigma Delta Filter Module (SDFM) Block Diagram  
6.14.7.1 SDFM Electrical Data and Timing  
WARNING  
Special precautions should be taken on both SD-Cx and SD-Dx signals to ensure a clean and  
noise-free signal that meets SDFM timing requirements. Precautions such as series termination  
resistors for ringing noise due to any impedance mismatch of clock driver and spacing of traces from  
other noisy signals are recommended.  
Note  
The SDFM SD-Cx and SD-Dx signals, when synchronized to PLLRAWCLK, provide protection  
against SDFM module corruption due to occasional random noise glitches that may result in a false  
comparator trip and filter output. However, the signals do not provide protection against persistent  
violations of the above timing requirements. Timing violations will result in data corruption proportional  
to the number of bits which violate the requirements.  
6.14.7.1.1 SDFM Timing Requirements When Using Asynchronous GPIO (ASYNC) Option  
MIN  
MAX  
UNIT  
Mode 0  
tc(SDC)M0  
Cycle time, SDx_Cy  
4 * tc(PLLRAWCLK)  
2 * tc(PLLRAWCLK)  
256 * SYSCLK period  
ns  
ns  
ns  
ns  
tw(SDDHL)M0  
tsu(SDDV-SDCH)M0  
th(SDCH-SDD)M0  
Pulse duration, SDx_Dy (high / Low)  
Setup time, SDx_Dy valid before SDx_Cy goes high  
Hold time, SDx_Dy wait after SDx_Cy goes high  
1 * tc(PLLRAWCLK) + 3  
1 * tc(PLLRAWCLK) + 3  
Copyright © 2021 Texas Instruments Incorporated  
170 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.15 Communications Peripherals  
6.15.1 Controller Area Network (CAN)  
Note  
The CAN module uses the IP known as DCAN. This document uses the names CAN and DCAN  
interchangeably to reference this peripheral.  
The CAN module implements the following features:  
Complies with ISO11898-1 ( Bosch® CAN protocol specification 2.0 A and B)  
Bit rates up to 1 Mbps  
Multiple clock sources  
32 message objects (mailboxes), each with the following properties:  
– Configurable as receive or transmit  
– Configurable with standard (11-bit) or extended (29-bit) identifier  
– Supports programmable identifier receive mask  
– Supports data and remote frames  
– Holds 0 to 8 bytes of data  
– Parity-checked configuration and data RAM  
Individual identifier mask for each message object  
Programmable FIFO mode for message objects  
Programmable loopback modes for self-test operation  
Suspend mode for debug support  
Software module reset  
Automatic bus on after bus-off state by a programmable 32-bit timer  
Two interrupt lines  
DMA support  
Note  
For a CAN bit clock of 100 MHz, the smallest bit rate possible is 3.90625 kbps.  
Note  
The accuracy of the on-chip zero-pin oscillator is in the INTOSC Characteristics table. Depending  
on parameters such as the CAN bit timing settings, bit rate, bus length, and propagation delay, the  
accuracy of this oscillator may not meet the requirements of the CAN protocol. In this situation, an  
external clock source must be used.  
Figure 6-58 shows the CAN block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 171  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
CAN_H  
CAN_L  
CAN Bus  
3.3V CAN Transceiver  
CANx TX pin  
External connections  
Device  
CANx RX pin  
CAN  
CAN Core  
Message RAM  
Message Handler  
Message  
RAM  
Interface  
Register and Message  
Object Access (IFx)  
32  
Message  
Objects  
(Mailboxes)  
Test Modes  
Only  
Module Interface  
CANINT0 CANINT1  
DMA  
CPU Bus  
Figure 6-58. CAN Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
172 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.15.2 Modular Controller Area Network (MCAN)  
The Controller Area Network (CAN) is a serial communications protocol that efficiently supports distributed  
real-time control with a high level of reliability. CAN has high immunity to electrical interference and the ability to  
detect various type of errors. In CAN, many short messages are broadcast to the entire network, which provides  
data consistency in every node of the system.  
The MCAN module supports both classic CAN and CAN FD (CAN with flexible data-rate) protocols. The CAN FD  
feature allows higher throughput and increased payload per data frame. Classic CAN and CAN FD devices may  
coexist on the same network without any conflict provided that partial network transceivers, which can detect  
and ignore CAN FD without generating bus errors, are used by the classic CAN devices. The MCAN module is  
compliant to ISO 11898-1:2015.  
Note  
The availabilty of the CAN FD feature is dependent on the device's part number. Refer to the device  
data sheet for more information.  
Device  
MCANSS  
Uncorrectable ECC  
NMI  
PIE  
Correctable ECC  
Configurable Interrupts (2 lines)  
Counter Overflow and Clock Stop/  
Wakeup  
mcanss_tx  
mcanss_rx  
CPU BUS  
SYSCLK  
Peripheral Clock  
Bit Timing Clock  
Clock disable/  
enable  
MCAN Bit Clock  
Wakeup  
Clock Stop and Wakeup  
RESET  
Reset  
Figure 6-59. MCAN Module Overview  
The MCAN module implements the following features:  
Conforms with CAN Protocol 2.0 A, B and ISO 11898-1:2015  
Full CAN FD support (up to 64 data bytes)  
AUTOSAR and SAE J1939 support  
Up to 32 dedicated transmit buffers  
Configurable transmit FIFO, up to 32 elements  
Configurable transmit queue, up to 32 elements  
Configurable transmit Event FIFO, up to 32 elements  
Up to 64 dedicated receive buffers  
Two configurable receive FIFOs, up to 64 elements each  
Up to 128 filter elements  
Loop-back mode for self-test  
Maskable interrupt (two configurable interrupt lines, correctable ECC, counter overflow and clock stop/  
wakeup)  
Non-maskable interrupt (uncorrectable ECC)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 173  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Two clock domains (CAN clock/host clock)  
ECC check for Message RAM  
Clock stop and wakeup support  
Timestamp counter  
Non-supported features:  
Host bus firewall  
Clock calibration  
Debug over CAN  
Copyright © 2021 Texas Instruments Incorporated  
174 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.15.3 Inter-Integrated Circuit (I2C)  
The I2C module has the following features:  
Compliance with the NXP Semiconductors I2C-bus specification (version 2.1):  
– Support for 8-bit format transfers  
– 7-bit and 10-bit addressing modes  
– General call  
– START byte mode  
– Support for multiple master-transmitters and slave-receivers  
– Support for multiple slave-transmitters and master-receivers  
– Combined master transmit/receive and receive/transmit mode  
– Data transfer rate from 10 kbps up to 400 kbps (Fast-mode)  
Supports voltage thresholds compatible to:  
– SMBus 2.0 and below  
– PMBus 1.2 and below  
One 16-byte receive FIFO and one 16-byte transmit FIFO  
Supports two ePIE interrupts  
– I2Cx interrupt – Any of the below conditions can be configured to generate an I2Cx interrupt:  
Transmit Ready  
Receive Ready  
Register-Access Ready  
No-Acknowledgment  
Arbitration-Lost  
Stop Condition Detected  
Addressed-as-Slave  
– I2Cx_FIFO interrupts:  
Transmit FIFO interrupt  
Receive FIFO interrupt  
Module enable and disable capability  
Free data format mode  
Figure 6-60 shows how the I2C peripheral module interfaces within the device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 175  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
I2C module  
I2CXSR  
I2CDXR  
TX FIFO  
RX FIFO  
FIFO Interrupt  
to CPU/PIE  
SDA  
Peripheral bus  
I2CRSR  
I2CDRR  
Control/status  
registers  
CPU  
Clock  
synchronizer  
SCL  
Prescaler  
Noise filters  
Arbitrator  
Interrupt to  
CPU/PIE  
I2C INT  
Figure 6-60. I2C Peripheral Module Interfaces  
Copyright © 2021 Texas Instruments Incorporated  
176 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.15.3.1 I2C Electrical Data and Timing  
Note  
To meet all of the I2C protocol timing specifications, the I2C module clock must be configured in the  
range from 7 MHz to 12 MHz.  
6.15.3.1.1 I2C Timing Requirements  
NO.  
MIN  
MAX  
UNIT  
Standard mode  
T0  
T1  
fmod  
I2C module frequency  
7
12  
MHz  
µs  
Hold time, START condition, SCL fall delay after  
SDA fall  
th(SDA-SCL)START  
4.0  
Setup time, Repeated START, SCL rise before SDA  
fall delay  
T2  
tsu(SCL-SDA)START  
4.0  
µs  
T3  
T4  
T5  
T6  
T7  
T8  
th(SCL-DAT)  
tsu(DAT-SCL)  
tr(SDA)  
Hold time, data after SCL fall  
Setup time, data before SCL rise  
Rise time, SDA  
0
µs  
ns  
ns  
ns  
ns  
ns  
250  
1000  
1000  
300  
tr(SCL)  
Rise time, SCL  
tf(SDA)  
Fall time, SDA  
tf(SCL)  
Fall time, SCL  
300  
Setup time, STOP condition, SCL rise before SDA  
rise delay  
T9  
tsu(SCL-SDA)STOP  
4.0  
µs  
Pulse duration of spikes that will be suppressed by  
filter  
T10  
tw(SP)  
Cb  
ns  
0
50  
T11  
capacitance load on each bus line  
400  
pF  
Fast mode  
T0  
fmod  
I2C module frequency  
7
12  
MHz  
µs  
Hold time, START condition, SCL fall delay after  
SDA fall  
T1  
T2  
th(SDA-SCL)START  
0.6  
Setup time, Repeated START, SCL rise before SDA  
fall delay  
tsu(SCL-SDA)START  
0.6  
µs  
T3  
T4  
T5  
T6  
T7  
T8  
th(SCL-DAT)  
tsu(DAT-SCL)  
tr(SDA)  
Hold time, data after SCL fall  
Setup time, data before SCL rise  
Rise time, SDA  
0
100  
20  
µs  
ns  
ns  
ns  
ns  
ns  
300  
300  
300  
300  
tr(SCL)  
Rise time, SCL  
20  
tf(SDA)  
Fall time, SDA  
11.4  
11.4  
tf(SCL)  
Fall time, SCL  
Setup time, STOP condition, SCL rise before SDA  
rise delay  
T9  
tsu(SCL-SDA)STOP  
0.6  
µs  
Pulse duration of spikes that will be suppressed by  
filter  
T10  
T11  
tw(SP)  
Cb  
ns  
0
50  
capacitance load on each bus line  
400  
pF  
6.15.3.1.2 I2C Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
Standard mode  
S1  
S2  
S3  
fSCL  
SCL clock frequency  
SCL clock period  
0
10  
100  
kHz  
µs  
TSCL  
tw(SCLL)  
Pulse duration, SCL clock low  
4.7  
µs  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 177  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.15.3.1.2 I2C Switching Characteristics (continued)  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
S4  
tw(SCLH)  
tBUF  
Pulse duration, SCL clock high  
4.0  
µs  
Bus free time between STOP and START  
conditions  
S5  
4.7  
µs  
S6  
S7  
S8  
tv(SCL-DAT)  
tv(SCL-ACK)  
II  
Valid time, data after SCL fall  
Valid time, Acknowledge after SCL fall  
Input current on pins  
3.45  
3.45  
10  
µs  
µs  
µA  
0.1 Vbus < Vi < 0.9 Vbus  
–10  
Fast mode  
S1  
S2  
S3  
S4  
fSCL  
SCL clock frequency  
0
2.5  
1.3  
0.6  
400  
kHz  
µs  
TSCL  
SCL clock period  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL clock low  
Pulse duration, SCL clock high  
µs  
µs  
Bus free time between STOP and START  
conditions  
S5  
tBUF  
1.3  
µs  
S6  
S7  
S8  
tv(SCL-DAT)  
tv(SCL-ACK)  
II  
Valid time, data after SCL fall  
Valid time, Acknowledge after SCL fall  
Input current on pins  
0.9  
0.9  
10  
µs  
µs  
µA  
0.1 Vbus < Vi < 0.9 Vbus  
–10  
6.15.3.1.3 I2C Timing Diagram  
STOP  
START  
SDA  
SCL  
ACK  
Contd...  
Contd...  
S7  
S6  
T10  
T5  
T7  
S3  
S4  
9th  
clock  
T6  
T8  
S2  
Repeated  
START  
STOP  
S5  
SDA  
ACK  
T2  
T9  
T1  
SCL  
9th  
clock  
Figure 6-61. I2C Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
178 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.15.4 Power Management Bus (PMBus) Interface  
The PMBus module has the following features:  
Compliance with the SMI Forum PMBus Specification (Part I v1.0 and Part II v1.1)  
Supports voltage thresholds compatible to:  
– PMBus 1.2 and below  
– SMBus 2.0 and below  
Support for master and slave modes  
Support for I2C mode  
Support for two speeds:  
– Standard Mode: Up to 100 kHz  
– Fast Mode: 400 kHz  
Packet error checking  
CONTROL and ALERT signals  
Clock high and low time-outs  
Four-byte transmit and receive buffers  
One maskable interrupt, which can be generated by several conditions:  
– Receive data ready  
– Transmit buffer empty  
– Slave address received  
– End of message  
– ALERT input asserted  
– Clock low time-out  
– Clock high time-out  
– Bus free  
PCLKCR20  
SYSCLK  
PMBCTRL  
Div  
ALERT  
CTL  
DMA  
CPU  
PIE  
Bit clock  
Other registers  
GPIO Mux  
PMBTXBUF  
SCL  
Shift register  
PMBRXBUF  
SDA  
PMBUSA_INT  
PMBus Module  
Figure 6-62. PMBus Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 179  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.15.4.1 PMBus Electrical Data and Timing  
6.15.4.1.1 PMBus Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.8  
UNIT  
V
VIL  
VIH  
VOL  
IOL  
Valid low-level input voltage  
Valid high-level input voltage  
Low-level output voltage  
Low-level output current  
2.1  
VDDIO  
0.4  
V
At Ipullup = 4 mA  
VOL ≤ 0.4 V  
V
4
0
mA  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
50  
ns  
Ii  
Input leakage current on each pin  
Capacitance on each pin  
0.1 Vbus < Vi < 0.9 Vbus  
–10  
10  
10  
µA  
pF  
Ci  
6.15.4.1.2 PMBus Fast Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fSCL  
tBUF  
SCL clock frequency  
10  
400  
kHz  
Bus free time between STOP and  
START conditions  
1.3  
0.6  
0.6  
0.6  
µs  
µs  
µs  
µs  
START condition hold time -- SDA fall  
to SCL fall delay  
tHD;STA  
tSU;STA  
tSU;STO  
Repeated START setup time -- SCL  
rise to SDA fall delay  
STOP condition setup time -- SCL rise  
to SDA rise delay  
tHD;DAT  
tSU;DAT  
tTimeout  
tLOW  
Data hold time after SCL fall  
Data setup time before SCL rise  
Clock low time-out  
300  
100  
25  
ns  
ns  
ms  
µs  
µs  
35  
Low period of the SCL clock  
High period of the SCL clock  
1.3  
0.6  
tHIGH  
50  
25  
Cumulative clock low extend time  
(slave device)  
tLOW;SEXT  
tLOW;MEXT  
From START to STOP  
Within each byte  
ms  
ms  
Cumulative clock low extend time  
(master device)  
10  
tr  
tf  
Rise time of SDA and SCL  
Fall time of SDA and SCL  
5% to 95%  
95% to 5%  
20  
20  
300  
300  
ns  
ns  
Copyright © 2021 Texas Instruments Incorporated  
180 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.15.4.1.3 PMBus Standard Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fSCL  
tBUF  
SCL clock frequency  
10  
100  
kHz  
Bus free time between STOP and  
START conditions  
4.7  
4
µs  
µs  
µs  
µs  
START condition hold time -- SDA fall  
to SCL fall delay  
tHD;STA  
tSU;STA  
tSU;STO  
Repeated START setup time -- SCL  
rise to SDA fall delay  
4.7  
4
STOP condition setup time -- SCL rise  
to SDA rise delay  
tHD;DAT  
tSU;DAT  
tTimeout  
tLOW  
Data hold time after SCL fall  
Data setup time before SCL rise  
Clock low time-out  
300  
250  
25  
ns  
ns  
ms  
µs  
µs  
35  
Low period of the SCL clock  
High period of the SCL clock  
4.7  
4
tHIGH  
50  
25  
Cumulative clock low extend time  
(slave device)  
tLOW;SEXT  
tLOW;MEXT  
From START to STOP  
Within each byte  
ms  
ms  
Cumulative clock low extend time  
(master device)  
10  
tr  
tf  
Rise time of SDA and SCL  
Fall time of SDA and SCL  
1000  
300  
ns  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 181  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.15.5 Serial Communications Interface (SCI)  
The SCI is a 2-wire asynchronous serial port, commonly known as a UART. The SCI module supports digital  
communications between the CPU and other asynchronous peripherals that use the standard non-return-to-zero  
(NRZ) format  
The SCI receiver and transmitter each have a 16-level-deep FIFO for reducing servicing overhead, and each has  
its own separate enable and interrupt bits. Both can be operated independently for half-duplex communication,  
or simultaneously for full-duplex communication. To specify data integrity, the SCI checks received data for break  
detection, parity, overrun, and framing errors. The bit rate is programmable to different speeds through a 16-bit  
baud-select register.  
Features of the SCI module include:  
Two external pins:  
– SCITXD: SCI transmit-output pin  
– SCIRXD: SCI receive-input pin  
– Baud rate programmable to 64K different rates  
Data-word format  
– 1 start bit  
– Data-word length programmable from 1 to 8 bits  
– Optional even/odd/no parity bit  
– 1 or 2 stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: idle-line and address bit  
Half- or full-duplex operation  
Double-buffered receive and transmit functions  
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with  
status flags.  
– Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY  
flag (transmitter-shift register is empty)  
– Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break  
condition occurred), and RX ERROR flag (monitoring four interrupt conditions)  
Separate enable bits for transmitter and receiver interrupts (except BRKDT)  
NRZ format  
Auto baud-detect hardware logic  
16-level transmit and receive FIFO  
Note  
All registers in this module are 8-bit registers. When a register is accessed, the register data is in the  
lower byte (bits 7–0), and the upper byte (bits 15–8) is read as zeros. Writing to the upper byte has no  
effect.  
Figure 6-63 shows the SCI block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
182 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
TXSHF  
Register  
SCITXD  
8
TXENA  
SCICTL1.1  
Frame  
Format and Mode  
Parity  
Even/Odd  
TXEMPTY  
SCICTL2.6  
0
1
SCICCR.6  
8
Enable  
TX FIFO_0  
TX FIFO_1  
TXINT  
SCICCR.5  
To CPU  
TX Interrupt  
TX FIFO Interrupts  
8
Logic  
TX FIFO_N  
TXINTENA  
SCICTL2.0  
TXRDY  
8
1
0
TXWAKE  
SCICTL2.7  
SCICTL1.3  
SCI TX Interrupt Select Logic  
Auto Baud Detect Logic  
8
WUT  
Transmit Data  
Buffer Register  
SCITXBUF.7-0  
RXENA  
Baud Rate  
MSB/LSB  
Registers  
SCICTL1.0  
LSPCLK  
RXSHF  
Register  
SCIRXD  
SCIHBAUD.15-8  
SCILBAUD.7-0  
RXWAKE  
8
SCIRXST.1  
0
1
8
SCIFFENA  
SCIFFTX.14  
RX FIFO_0  
RX FIFO_1  
RXINT  
To CPU  
8
RX FIFO Interrupts  
RX Interrupt  
Logic  
RX FIFO_N  
RXFFOVF  
8
1
SCIFFRX.15  
0
RXBKINTENA  
SCICTL2.1  
RXRDY  
SCIRXST.6  
RXENA  
BRKDT  
RXERRINTENA  
SCICTL1.6  
SCICTL1.0  
SCIRXST.5  
SCI RX Interrupt Select Logic  
8
SCIRXST.5-2  
BRKDT FE OE PE  
RXERROR  
Receive Data  
Buffer Register  
SCIRXBUF.7-0  
SCIRXST.7  
Figure 6-63. SCI Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 183  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.15.6 Serial Peripheral Interface (SPI)  
The serial peripheral interface (SPI) is a high-speed synchronous serial input and output (I/O) port that allows a  
serial bit stream of programmed length (1 to 16 bits) to be shifted into and out of the device at a programmed bit-  
transfer rate. The SPI is normally used for communications between the MCU controller and external peripherals  
or another controller. Typical applications include external I/O or peripheral expansion through devices such  
as shift registers, display drivers, and analog-to-digital converters (ADCs). Multidevice communications are  
supported by the master or slave operation of the SPI. The port supports a 16-level, receive and transmit FIFO  
for reducing CPU servicing overhead.  
The SPI module features include:  
SPISOMI: SPI slave-output/master-input pin  
SPISIMO: SPI slave-input/master-output pin  
SPISTE: SPI slave transmit-enable pin  
SPICLK: SPI serial-clock pin  
Two operational modes: Master and Slave  
Baud rate: 125 different programmable rates. The maximum baud rate that can be employed is limited by the  
maximum speed of the I/O buffers used on the SPI pins.  
Data word length: 1 to 16 data bits  
Four clocking schemes (controlled by clock polarity and clock phase bits) include:  
– Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the  
SPICLK signal and receives data on the rising edge of the SPICLK signal.  
– Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling  
edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.  
– Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the  
SPICLK signal and receives data on the falling edge of the SPICLK signal.  
– Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the rising  
edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Simultaneous receive and transmit operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithm  
16-level transmit/receive FIFO  
DMA support  
High-speed mode  
Delayed transmit control  
3-wire SPI mode  
SPISTE inversion for digital audio interface receive mode on devices with two SPI modules  
Figure 6-64 shows the SPI CPU interfaces.  
Copyright © 2021 Texas Instruments Incorporated  
184 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
PCLKCR8  
Low-Speed  
Prescaler  
CPU  
LSPCLK  
SYSCLK  
Bit Clock  
SYSRS  
SPISIMO  
SPISOMI  
SPICLK  
SPISTE  
SPI  
GPIO MUX  
SPIINT  
PIE  
SPITXINT  
SPIRXDMA  
SPITXDMA  
DMA  
Figure 6-64. SPI CPU Interface  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 185  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.15.6.1 SPI Master Mode Timings  
The following section contains the SPI Master Mode Timings. For more information about the SPI in High-Speed  
mode, see the Serial Peripheral Interface (SPI) chapter of the TMS320F28003x Real-Time Microcontrollers  
Technical Reference Manual.  
Note  
All timing parameters for SPI High-Speed Mode assume a load capacitance of 5 pF on SPICLK,  
SPISIMO, and SPISOMI.  
6.15.6.1.1 SPI Master Mode Timing Requirements  
NO.  
(BRR + 1) (1)  
MIN  
MAX UNIT  
High-Speed Mode  
8
9
tsu(SOMI)M  
th(SOMI)M  
Setup time, SPISOMI valid before SPICLK  
Hold time, SPISOMI valid after SPICLK  
Even, Odd  
Even, Odd  
1
ns  
ns  
6.5  
Normal Mode  
8
9
tsu(SOMI)M  
th(SOMI)M  
Setup time, SPISOMI valid before SPICLK  
Hold time, SPISOMI valid after SPICLK  
Even, Odd  
Even, Odd  
15  
0
ns  
ns  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
Copyright © 2021 Texas Instruments Incorporated  
186 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.15.6.1.2 SPI Master Mode Switching Characteristics (Clock Phase = 0)  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER(1) (2)  
(BRR + 1)(3)  
MIN  
MAX UNIT  
General  
Even  
Odd  
4tc(LSPCLK)  
5tc(LSPCLK)  
0.5tc(SPC)M – 1 0.5tc(SPC)M + 1  
0.5tc(SPC)M  
0.5tc(LSPCLK) + 1  
0.5tc(SPC)M – 1 0.5tc(SPC)M + 1  
0.5tc(SPC)M  
0.5tc(LSPCLK) + 1  
1.5tc(SPC)M  
3tc(SYSCLK) + 3  
1.5tc(SPC)M  
4tc(SYSCLK) + 3  
0.5tc(SPC)M – 3 0.5tc(SPC)M + 3  
128tc(LSPCLK)  
1
2
tc(SPC)M  
Cycle time, SPICLK  
ns  
ns  
127tc(LSPCLK)  
Even  
tw(SPC1)M Pulse duration, SPICLK, first pulse  
+
Odd  
Even  
Odd  
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1  
3
tw(SPC2)M Pulse duration, SPICLK, second pulse  
ns  
ns  
ns  
0.5tc(SPC)M – 0.5tc(LSPCLK) – 1  
1.5tc(SPC)M – 3tc(SYSCLK) – 3  
1.5tc(SPC)M – 4tc(SYSCLK) – 3  
Even  
23  
24  
td(SPC)M  
Delay time, SPISTE active to SPICLK  
Valid time, SPICLK to SPISTE inactive  
Odd  
Even  
Odd  
tv(STE)M  
0.5tc(SPC)M  
0.5tc(SPC)M – 0.5tc(LSPCLK) – 3  
0.5tc(LSPCLK) + 3  
High-Speed Mode  
4
td(SIMO)M Delay time, SPICLK to SPISIMO valid Even, Odd  
1
ns  
ns  
Even  
Odd  
0.5tc(SPC)M – 3  
Valid time, SPISIMO valid after  
SPICLK  
5
tv(SIMO)M  
0.5tc(SPC)M – 0.5tc(LSPCLK) – 3  
Normal Mode  
4
td(SIMO)M Delay time, SPICLK to SPISIMO valid Even, Odd  
2
ns  
ns  
Even  
Odd  
0.5tc(SPC)M – 3  
Valid time, SPISIMO valid after  
SPICLK  
5
tv(SIMO)M  
0.5tc(SPC)M – 0.5tc(LSPCLK) – 3  
(1) 10-pF load on pin for High-Speed Mode.  
(2) 20-pF load on pin for Normal Mode.  
(3) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 187  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
MAX UNIT  
SPRSP61 – OCTOBER 2021  
6.15.6.1.3 SPI Master Mode Switching Characteristics (Clock Phase = 1)  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER(1) (2)  
(BRR + 1)  
MIN  
General  
Even  
Odd  
4tc(LSPCLK)  
5tc(LSPCLK)  
0.5tc(SPC)M – 1 0.5tc(SPC)M + 1  
0.5tc(SPC)M  
0.5tc(LSPCLK) + 1  
0.5tc(SPC)M – 1 0.5tc(SPC)M + 1  
0.5tc(SPC)M  
0.5tc(LSPCLK) + 1  
2tc(SPC)M  
128tc(LSPCLK)  
1
2
tc(SPC)M  
Cycle time, SPICLK  
ns  
ns  
127tc(LSPCLK)  
Even  
tw(SPCH)M Pulse duration, SPICLK, first pulse  
Odd  
Even  
Odd  
0.5tc(SPC)M – 0.5tc(LSPCLK) – 1  
3
tw(SPC2)M Pulse duration, SPICLK, second pulse  
ns  
+
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1  
23  
24  
td(SPC)M  
Delay time, SPISTE valid to SPICLK  
Delay time, SPICLK to SPISTE invalid  
Even, Odd  
2tc(SPC)M – 3tc(SYSCLK) – 3  
ns  
ns  
3tc(SYSCLK) + 3  
Even  
Odd  
–3  
–3  
3
3
td(STE)M  
High-Speed Mode  
Even  
Odd  
0.5tc(SPC)M – 2  
0.5tc(SPC)M + 0.5tc(LSPCLK) – 2  
0.5tc(SPC)M – 3  
4
5
td(SIMO)M Delay time, SPISIMO valid to SPICLK  
ns  
ns  
Even  
Odd  
Valid time, SPISIMO valid after  
tv(SIMO)M  
SPICLK  
0.5tc(SPC)M – 0.5tc(LSPCLK) – 3  
Normal Mode  
Even  
Odd  
0.5tc(SPC)M – 2  
0.5tc(SPC)M + 0.5tc(LSPCLK) – 2  
0.5tc(SPC)M – 3  
4
5
td(SIMO)M Delay time, SPISIMO valid to SPICLK  
ns  
ns  
Even  
Odd  
Valid time, SPISIMO valid after  
SPICLK  
tv(SIMO)M  
0.5tc(SPC)M – 0.5tc(LSPCLK) – 3  
(1) 10-pF load on pin for High-Speed Mode.  
(2) 20-pF load on pin for Normal Mode.  
Copyright © 2021 Texas Instruments Incorporated  
188 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.15.6.1.4 SPI Master Mode Timing Diagrams  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
SPISTE(A)  
24  
23  
A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO  
modes.  
Figure 6-65. SPI Master Mode External Timing (Clock Phase = 0)  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data Must  
Be Valid  
SPISOMI  
SPISTE(A)  
24  
23  
A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO  
modes.  
Figure 6-66. SPI Master Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 189  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.15.6.2 SPI Slave Mode Timings  
The following section contains the SPI Slave Mode Timings. For more information about the SPI in High-Speed  
mode, see the Serial Peripheral Interface (SPI) chapter of the TMS320F28003x Real-Time Microcontrollers  
Technical Reference Manual.  
6.15.6.2.1 SPI Slave Mode Timing Requirements  
NO.  
12  
MIN  
4tc(SYSCLK)  
MAX UNIT  
tc(SPC)S  
Cycle time, SPICLK  
ns  
ns  
ns  
ns  
ns  
13  
14  
19  
20  
tw(SPC1)S  
tw(SPC2)S  
tsu(SIMO)S  
th(SIMO)S  
Pulse duration, SPICLK, first pulse  
Pulse duration, SPICLK, second pulse  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO valid after SPICLK  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
Setup time, SPISTE valid before SPICLK  
(Clock Phase = 0)  
2tc(SYSCLK) + 15  
ns  
25  
26  
tsu(STE)S  
Setup time, SPISTE valid before SPICLK  
(Clock Phase = 1)  
2tc(SYSCLK) + 15  
1.5tc(SYSCLK)  
ns  
ns  
th(STE)S  
Hold time, SPISTE invalid after SPICLK  
6.15.6.2.2 SPI Slave Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
15  
16  
PARAMETER(1)  
MIN  
MAX UNIT  
td(SOMI)S  
tv(SOMI)S  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI valid after SPICLK  
12  
ns  
ns  
0
(1) 20-pF load on pin.  
Copyright © 2021 Texas Instruments Incorporated  
190 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.15.6.2.3 SPI Slave Mode Timing Diagrams  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
16  
SPISOMI  
SPISOMI Data Is Valid  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
25  
26  
Figure 6-67. SPI Slave Mode External Timing (Clock Phase = 0)  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
SPISOMI  
SPISOMI Data Is Valid  
Data Valid  
Data Valid  
16  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
26  
25  
Figure 6-68. SPI Slave Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 191  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.15.7 Local Interconnect Network (LIN)  
This device contains one Local Interconnect Network (LIN) module. The LIN module adheres to the LIN 2.1  
standard as defined by the LIN Specification Package Revision 2.1. The LIN is a low-cost serial interface  
designed for applications where the CAN protocol may be too expensive to implement, such as small  
subnetworks for cabin comfort functions like interior lighting or window control in an automotive application.  
The LIN standard is based on the SCI (UART) serial data link format. The communication concept is single-  
master and multiple-slave with a message identification for multicast transmission between any network nodes.  
The LIN module can be programmed to work either as an SCI or as a LIN as the core of the module is an SCI.  
The hardware features of the SCI are augmented to achieve LIN compatibility. The SCI module is a universal  
asynchronous receiver-transmitter (UART) that implements the standard non-return-to-zero format.  
Though the registers are common for LIN and SCI, the register descriptions have notes to identify the register/bit  
usage in different modes. Because of this, code written for this module cannot be directly ported to the stand-  
alone SCI module and vice versa.  
The LIN module has the following features:  
Compatibility with LIN 1.3, 2.0 and 2.1 protocols  
Configurable baud rate up to 20 kbps (as per LIN 2.1 protocol)  
Two external pins: LINRX and LINTX  
Multibuffered receive and transmit units  
Identification masks for message filtering  
Automatic master header generation  
– Programmable synchronization break field  
– Synchronization field  
– Identifier field  
Slave automatic synchronization  
– Synchronization break detection  
– Optional baud rate update  
– Synchronization validation  
231 programmable transmission rates with 7 fractional bits  
Wakeup on LINRX dominant level from transceiver  
Automatic wakeup support  
– Wakeup signal generation  
– Expiration times on wakeup signals  
Automatic bus idle detection  
Error detection  
– Bit error  
– Bus error  
– No-response error  
– Checksum error  
– Synchronization field error  
– Parity error  
Capability to use direct memory access (DMA) for transmit and receive data  
Two interrupt lines with priority encoding for:  
– Receive  
– Transmit  
– ID, error, and status  
Support for LIN 2.0 checksum  
Enhanced synchronizer finite state machine (FSM) support for frame processing  
Enhanced handling of extended frames  
Enhanced baud rate generator  
Update wakeup/go to sleep  
Copyright © 2021 Texas Instruments Incorporated  
192 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
READ DATA BUS  
WRITE DATA BUS  
ADDRESS BUS  
CHECKSUM  
CALCULATOR  
INTERFACE  
ID PARTY  
CHECKER  
BIT  
MONITOR  
TXRX ERROR  
DETECTOR (TED)  
TIME-OUT  
CONTROL  
COUNTER  
COMPARE  
LINRX/  
SCIRX  
LINTX/  
SCITX  
DMA  
CONTROL  
MASK  
FILTER  
8 RECEIVE  
BUFFERS  
FSM  
8 TRANSMIT  
BUFFERS  
SYNCHRONIZER  
Figure 6-69. LIN Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 193  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.15.8 Fast Serial Interface (FSI)  
The Fast Serial Interface (FSI) module is a serial communication peripheral capable of reliable and robust  
high-speed communications. The FSI is designed to ensure data robustness across many system conditions  
such as chip-to-chip as well as board-to-board across an isolation barrier. Payload integrity checks such as  
CRC, start- and end-of-frame patterns, and user-defined tags, are encoded before transmit and then verified  
after receipt without additional CPU interaction. Line breaks can be detected using periodic transmissions, all  
managed and monitored by hardware. The FSI is also tightly integrated with other control peripherals on the  
device. To ensure that the latest sensor data or control parameters are available, frames can be transmitted on  
every control loop period. An integrated skew-compensation block has been added on the receiver to handle  
skew that may occur between the clock and data signals due to a variety of factors, including trace-length  
mismatch and skews induced by an isolation chip. With embedded data robustness checks, data-link integrity  
checks, skew compensation, and integration with control peripherals, the FSI can enable high-speed, robust  
communication in any system. These and many other features of the FSI follow.  
The FSI module includes the following features:  
Independent transmitter and receiver cores  
Source-synchronous transmission  
Dual data rate (DDR)  
One or two data lines  
Programmable data length  
Skew adjustment block to compensate for board and system delay mismatches  
Frame error detection  
Programmable frame tagging for message filtering  
Hardware ping to detect line breaks during communication (ping watchdog)  
Two interrupts per FSI core  
Externally triggered frame generation  
Hardware- or software-calculated CRC  
Embedded ECC computation module  
Register write protection  
DMA support  
SPI compatibility mode (limited features available)  
Operating the FSI at maximum speed (60 MHz) at dual data rate (120 Mbps) may require the integrated skew  
compensation block to be configured according to the specific operating conditions on a case-by-case basis.  
The Fast Serial Interface (FSI) Skew Compensation Application Report provides example software on how to  
configure and set up the integrated skew compensation block on the Fast Serial Interface.  
The FSI consists of independent transmitter (FSITX) and receiver (FSIRX) cores. The FSITX and FSIRX cores  
are configured and operated independently. The features available on the FSITX and FSIRX are described in the  
FSI Transmitter section and the FSI Receiver section, respectively.  
Copyright © 2021 Texas Instruments Incorporated  
194 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.15.8.1 FSI Transmitter  
The FSI transmitter module handles the framing of data, CRC generation, signal generation of TXCLK, TXD0,  
and TXD1, as well as interrupt generation. The operation of the transmitter core is controlled and configured  
through programmable control registers. The transmitter control registers let the CPU program, control, and  
monitor the operation of the FSI transmitter. The transmit data buffer is accessible by the CPU and the DMA.  
The transmitter has the following features:  
Automated ping frame generation  
Externally triggered ping frames  
Externally triggered data frames  
Software-configurable frame lengths  
16-word data buffer  
Data buffer underrun and overrun detection  
Hardware-generated CRC on data bits  
Software ECC calculation on select data  
DMA support  
Figure 6-70 shows the FSITX CPU interface. Figure 6-71 shows the high-level block diagram of the FSITX. Not  
all data paths and internal connections are shown. This diagram provides a high-level overview of the internal  
modules present in the FSITX.  
PLLRAWCLK  
PCLKCR18  
SYSCLK  
SYSRSN  
C28x  
ePIE  
FSITXyINT1  
FSITXyINT2  
CLA  
FSITXyCLK  
FSITXyD0  
FSITXyD1  
FSITX  
DMA  
FSITXyDMA  
32  
A. The signals connected to the trigger muxes are described in the External Frame Trigger Mux section of the Fast Serial Interface (FSI)  
chapter in the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual.  
Figure 6-70. FSITX CPU Interface  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 195  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
FSITX  
PLLRAWCLK  
SYSRSN  
SYSCLK  
FSI Mode:  
TXCLKIN  
Transmit Clock  
Generator  
TXCLK = TXCLKIN/2  
SPI Signaling Mode:  
TXCLK = TXCLKIN  
Register Interface  
FSITXINT1  
Core Reset  
Control Registers,  
Interrupt Management  
TXCLK  
FSITXINT2  
Ping Time-out Counter  
FSITX_DMA_EVT  
TXD0  
TXD1  
Transmitter Core  
External Frame Triggers  
Transmit Data  
Buffer  
ECC Logic  
Figure 6-71. FSITX Block Diagram  
6.15.8.1.1 FSITX Electrical Data and Timing  
6.15.8.1.1.1 FSITX Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
NO.  
PARAMETER(1)  
MIN  
MAX  
UNIT  
ns  
1
2
tc(TXCLK)  
tw(TXCLK)  
Cycle time, TXCLK  
16.67  
Pulse width, TXCLK low or TXCLK high  
(0.5tc(TXCLK)) – 1  
(0.25tc(TXCLK)) – 2  
(0.5tc(TXCLK)) + 1  
(0.25tc(TXCLK)) + 2  
ns  
Delay time, TXCLK rising or falling toTXD  
valid  
3
4
5
6
7
td(TXCLK–TXD)  
td(TXCLK)  
ns  
ns  
ns  
ns  
ns  
ns  
TXCLK delay compensation at  
TX_DLYLINE_CTRL[TXCLK_DLY]=31  
9.95  
9.95  
9.95  
0.3  
30  
30  
30  
1
TXD0 delay compensation at  
TX_DLYLINE_CTRL[TXD0_DLY]=31  
td(TXD0)  
TXD1 delay compensation at  
TX_DLYLINE_CTRL[TXD1_DLY]=31  
td(TXD1)  
Incremental delay of each delay line element  
for TXCLK, TXD0, and TXD1  
td(DELAY_ELEMENT)  
tskew(TDM_CLK-TDM_Dx )  
Delay skew introduced between TXCLK-  
TDM_CLK delay and TXDx-TDM_Dx delays  
TDM1  
-2.5  
2.5  
(1) 10-pF load on pin.  
Copyright © 2021 Texas Instruments Incorporated  
196 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.15.8.1.1.2 FSITX Timings  
1
2
FSITXCLK  
FSITXD0  
FSITXD1  
3
Figure 6-72. FSITX Timings  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 197  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.15.8.2 FSI Receiver  
The receiver module interfaces to the FSI clock (RXCLK), and data lines (RXD0 and RXD1) after they pass  
through an optional programmable delay line. The receiver core handles the data framing, CRC computation,  
and frame-related error checking. The receiver bit clock and state machine are run by the RXCLK input, which is  
asynchronous to the device system clock.  
The receiver control registers let the CPU program, control, and monitor the operation of the FSIRX. The receive  
data buffer is accessible by the CPU, HIC, and the DMA.  
The receiver core has the following features:  
16-word data buffer  
Multiple supported frame types  
Ping frame watchdog  
Frame watchdog  
CRC calculation and comparison in hardware  
ECC detection  
Programmable delay line control on incoming signals  
DMA support  
SPI compatibility mode  
Figure 6-73 shows the FSIRX CPU interface. Figure 6-74 provides a high-level overview of the internal modules  
present in the FSIRX. Not all data paths and internal connections are shown.  
PCLKCR18  
SYSCLK  
SYSRSN  
C28x  
ePIE  
FSIRXyINT1  
FSIRXyINT2  
CLA  
FSIRXyCLK  
FSIRXyD0  
FSIRXyD1  
FSIRX  
DMA  
FSIRXyDMA  
Figure 6-73. FSIRX CPU Interface  
Copyright © 2021 Texas Instruments Incorporated  
198 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
FSIRX  
SYSRSn  
SYSCLK  
Frame Watchdog  
Register Interface  
FSIRXINT1  
Core Reset  
Control Registers,  
Interrupt Management  
FSIRXINT2  
RXCLK  
Ping Watchdog  
FSIRX_DMA_EVT  
Receiver Core  
Skew  
Control  
RXD0  
RXD1  
Receive Data  
Buffer  
ECC Check  
Logic  
Figure 6-74. FSIRX Block Diagram  
6.15.8.2.1 FSIRX Electrical Data and Timing  
6.15.8.2.1.1 FSIRX Timing Requirements  
NO.  
MIN  
16.67  
MAX  
UNIT  
1
2
tc(RXCLK)  
tw(RXCLK)  
Cycle time, RXCLK  
ns  
ns  
Pulse width, RXCLK low or RXCLK high.  
0.35tc(RXCLK)  
0.65tc(RXCLK)  
Setup time with respect to RXCLK, applies to  
both edges of the clock  
3
4
tsu(RXCLK–RXD)  
th(RXCLK–RXD)  
1.7  
2
ns  
ns  
Hold time with respect to RXCLK, applies to  
both edges of the clock  
6.15.8.2.1.2 FSIRX Switching Characteristics  
NO.  
PARAMETER(1)  
MIN  
MAX  
UNIT  
RXCLK delay compensation at  
RX_DLYLINE_CTRL[RXCLK_DLY]=31  
1
2
3
4
td(RXCLK)  
10  
30  
ns  
RXD0 delay compensation at  
RX_DLYLINE_CTRL[RXD0_DLY]=31  
td(RXD0)  
10  
10  
0.3  
-3  
30  
30  
1
ns  
ns  
ns  
ns  
RXD1 delay compensation  
at RX_DLYLINE_CTRL[RXD1_DLY]=31  
td(RXD1)  
Incremental delay of each delay line element  
for RXCLK, RXD0, and RXD1  
td(DELAY_ELEMENT)  
tskew(TDM_CLK-TDM_Dx )  
(1) 10-pF load on pin.  
Delay skew introduced between RXCLK-  
TDM_CLK delay and RXDx-TDM_Dx delays  
TDM1  
3
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 199  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.15.8.2.1.3 FSIRX Timings  
1
2
FSIRXCLK  
FSIRXD0  
FSIRXD1  
3
4
Figure 6-75. FSIRX Timings  
Copyright © 2021 Texas Instruments Incorporated  
200 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.15.8.3 FSI SPI Compatibility Mode  
The FSI supports a SPI compatibility mode to enable communication with programmable SPI devices. In this  
mode, the FSI transmits its data in the same manner as a SPI in a single clock configuration mode. While the  
FSI is able to physically interface with a SPI in this mode, the external device must be able to encode and  
decode an FSI frame to communicate successfully. This is because the FSI transmits all SPI frame phases with  
the exception of the preamble and postamble. The FSI provides the same data validation and frame checking  
as if it was in standard FSI mode, allowing for more robust communication without consuming CPU cycles. The  
external SPI is required to send all relevant information and can access standard FSI features such as the ping  
frame watchdog on the FSIRX, frame tagging, or custom CRC values. The list of features of SPI compatibility  
mode follows:  
Data will transmit on rising edge and receive on falling edge of the clock.  
Only 16-bit word size is supported.  
TXD1 will be driven like an active-low chip-select signal. The signal will be low for the duration of the full  
frame transmission.  
No receiver chip-select input is required. RXD1 is not used. Data is shifted into the receiver on every active  
clock edge.  
No preamble or postamble clocks will be transmitted. All signals return to the idle state after the frame phase  
is finished.  
It is not possible to transmit in the SPI slave configuration because the FSI TXCLK cannot take an external  
clock source.  
6.15.8.3.1 FSITX SPI Signaling Mode Electrical Data and Timing  
Special timings are not required for the FSIRX in SPI signaling mode. FSIRX timings listed in the FSIRX Timing  
Requirements table are applicable in SPI compatibility mode. Setup and Hold times are only valid on the falling  
edge of FSIRXCLK because this is the active edge in SPI signaling mode.  
6.15.8.3.1.1 FSITX SPI Signaling Mode Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
NO.  
PARAMETER(1)  
MIN  
16.67  
MAX  
UNIT  
ns  
1
2
3
4
5
tc(TXCLK)  
Cycle time, TXCLK  
tw(TXCLK)  
Pulse width, TXCLK low or TXCLK high  
Delay time, TXD0 valid after TXCLK high  
Delay time, TXCLK high after TXD1 low  
Delay time, TXD1 high after TXCLK low  
(0.5tc(TXCLK)) – 1  
(0.5tc(TXCLK)) + 1  
3
ns  
td(TXCLKH–TXD0)  
td(TXD1-TXCLK)  
td(TXCLK-TXD1)  
ns  
tw(TXCLK) – 3  
tw(TXCLK)  
ns  
ns  
(1) 10-pF load on pin  
6.15.8.3.1.2 FSITX SPI Signaling Mode Timings  
1
2
FSITXCLK  
3
FSITXD0  
5
4
FSITXD1  
Figure 6-76. FSITX SPI Signaling Mode Timings  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 201  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.15.9 Host Interface Controller (HIC)  
The HIC module allows an external host controller (master) to directly access resources of the device (slave)  
by emulating the ASRAM protocol. It has two modes of operation: direct access and mailbox access. In direct  
access mode, device resources is written to and read from directly by the external host. In mailbox access mode,  
external host and device write to and read from a buffer and notify each other when the buffer write/read is  
complete. For security reasons, the HIC has to be enabled by the device before the external host can access it.  
Features of the HIC include:  
Configurable I/O data lines of 8 bits and 16 bits  
Direct and mailbox access modes  
8 address lines and 8 configurable base addresses for a total of 2048 possible addressable regions  
Two 64-byte buffers for external host and device when using mailbox access mode  
Interrupt generation on buffer full/empty  
High throughput  
Trigger HIC activity from other peripherals  
Error indicators to the system or interface  
Commit feature that blocks writes to configuration registers  
Legend  
HIC Pins  
HIC Registers  
HIC  
I/O Interface  
A[7:0]  
Bus Master Interface  
A[31:0]  
D[15:0]  
nBE[1:0]  
nCS  
H2DINT to PIE  
D2HINT to Pin  
WDATA[31:0]  
RDATA[31:0]  
Memory Mapped HIC  
Configuration Interface  
Host  
To  
Device  
Device  
To  
Host  
CTRL Regs  
STATUS Regs  
nWE  
BASE_ADDR0  
BASE_ADDR1  
nOE  
.
.
Mailbox  
Buffer  
Mailbox  
Buffer  
BASESEL[2:0]  
nRDY  
BASE_ADDRn  
EVT_TRIGGER[15:0]  
Figure 6-77. HIC Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
202 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
6.15.9.1 HIC Electrical Data and Timing  
6.15.9.1.1 HIC Timing Requirements  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX UNIT  
Read/Write Parameters with nOE and nWE pins - Dual Read/Write pins  
tsu(ABBV-OEV)  
tsu(ABBV-WEV)  
tsu(CSV-OEV)  
tsu(CSV-WEV)  
th(ABBV-OEIV)  
th(ABBV-WEIV)  
tw(OEV)  
Setup time, A/BASESEL/nBE before nOE active  
Setup time, A/BASESEL/nBE before nWE active  
Setup time, nCS active before nOE active  
Setup time, nCS active before nWE active  
Hold time, A/BASESEL/nBE/nCS after nOE inactive  
Hold time, A/BASESEL/nBE/nCS after nWE inactive  
Active pulse width of nOE (Read)(1)  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
0.5tc(SYSCLK)  
0.5tc(SYSCLK)  
6
6
4tc(SYSCLK)  
4tc(SYSCLK)  
3tc(SYSCLK)  
3tc(SYSCLK)  
3tc(SYSCLK)  
0
tw(WEV)  
Active pulse width of nWE (Write)  
tw(CSIV)  
Inactive pulse width of nCS(2)  
tw(OEIV)  
Inactive Read pulse width of nOE(2)  
tw(WEIV)  
Inactive Write pulse width of nWE(2)  
tsu(DV-WEV)  
th(DV-WEIV)  
Setup time, D before nWE active  
Hold time, D after nWE inactive  
6
Read/Write Parameters with RnW pin - Single Read/Write pin  
tsu(ABBV-CSV)  
tsu(RNWV-CSV)  
th(ABBV-CSIV)  
tw(CSV_RD)  
tw(CSV_WR)  
tw(CSIV)  
Setup time, A/BASESEL/nBE before nCS active  
Setup time, RnW before nCS active  
Hold time, A/BASESEL/nBE/RnW after nCS inactive  
Active pulse width of nCS for read operation(1)  
Active pulse width of nCS for write operation  
Inactive pulse width of nCS(2)  
0
0.5tc(SYSCLK)  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4tc(SYSCLK)  
4tc(SYSCLK)  
3tc(SYSCLK)  
3tc(SYSCLK)  
0
tw(RNWIV)  
Inactive pulse width of RnW(2)  
tsu(DV-CSV)  
th(DV-CSIV)  
Setup time, D before nCS active  
Hold time, D after nCS inactive  
5
(1) For accesses to the device region, additional 2 SYSCLK cycles are required.  
(2) For accesses to the device region with nRDY pin, additional SYSCLK cycle is required.  
6.15.9.1.2 HIC Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER(1)  
MIN  
MAX UNIT  
Read/Write Parameters with nOE and nWE pins  
td(OEV-DV)  
Output data delay time : nOE to D output valid (2)  
Output data hold time : nOE invalid to D output invalid (tri-state)  
Read Ready delay time : nOE to nRDY output valid  
Write Ready delay time : nWE to nRDY output valid  
Ready to Data delay time : nRDY output valid to D output valid  
Active pulse width of nRDY output  
3tc(SYSCLK)  
4tc(SYSCLK) + 15 ns  
2tc(SYSCLK) + 15 ns  
12 ns  
td(OEIV-DIV)  
td(OEV-RDYV)  
td(WEV-RDYV)  
td(RDYV-DV)  
tw(RDYACT)  
1tc(SYSCLK)  
0
0
-3  
12 ns  
3
ns  
ns  
2tc(SYSCLK)  
Read/Write Parameters with RnW pin  
td(CSV-DV)  
Output delay time : nCS active to D output valid (2)  
3tc(SYSCLK)  
4tc(SYSCLK) + 14 ns  
2tc(SYSCLK) + 14 ns  
12 ns  
td(CSIV-DIV)  
td(CSV-RDYV)  
td(RDYV-DV)  
Output hold time : nCS inactive to D output invalid (tri-state)  
Output delay time : nCS to nRDY output valid  
1tc(SYSCLK)  
0
Ready to Data delay time : nRDY output valid to D output valid  
-3  
3
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 203  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
6.15.9.1.2 HIC Switching Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER(1)  
MIN  
MAX UNIT  
tw(RDYACT)  
Active pulse width of nRDY output  
2tc(SYSCLK)  
ns  
(1) 10-pF load on pin.  
(2) Applicable to mailbox accesses only. Direct memory map (Device) accesses are qualified with nRDY pin.  
6.15.9.1.3 HIC Timing Diagrams  
SETUP SIGNALS  
T9  
nCS  
A[7:0]  
BASESEL[2:0]  
nBE[3:0]  
READ SIGNALS  
T1  
T5  
T3  
T10  
nOE  
T7  
S2  
S1  
T8  
D[15:0]  
7
WRITE SIGNALS  
T6  
T2  
T4  
T11  
nWE  
T12  
T13  
D[15:0]  
READY/WAIT SIGNAL  
S5  
S6  
S3  
S4  
nRDY  
Figure 6-78. Read/Write Operation With nOE and nWE Pins  
Copyright © 2021 Texas Instruments Incorporated  
204 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
SETUP SIGNALS  
T19  
nCS  
T17 or T18  
T16  
T14  
T15  
A[7:0]  
BASESEL[2:0]  
nBE[3:0]  
READ SIGNALS  
T20  
RnW  
(Read)  
S8  
S7  
D[15:0]  
S10  
WRITE SIGNALS  
T20  
T15  
T21  
RnW  
(Write)  
T22  
D[15:0]  
nRDY  
READY/WAIT SIGNAL  
S9  
S11  
Figure 6-79. Read/Write Operation With RnW Pin  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 205  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
7 Detailed Description  
7.1 Overview  
C2000™ 32-bit Real-Time microcontrollers are optimized for processing, sensing, and actuation to improve  
closed-loop performance in real-time control applications such as industrial motor drives; solar inverters and  
digital power; electrical vehicles and transportation; motor control; and sensing and signal processing.  
The TMS320F28003x (F28003x) is a powerful 32-bit floating-point microcontroller unit (MCU) that lets designers  
incorporate crucial control peripherals, differentiated analog, and nonvolatile memory on a single device.  
The real-time control subsystem is based on TI’s 32-bit C28x CPU, which provides 120 MHz of signal processing  
performance. The C28x CPU is further boosted by the FPU, new TMU extended instruction set, which enables  
fast execution of algorithms with trigonometric operations commonly found in transforms and torque loop  
calculations; and the VCRC extended instruction set, which reduces the latency for complex math operations  
commonly found in encoded applications.  
The CLA allows significant offloading of common tasks from the main C28x CPU. The CLA is an independent  
32-bit floating-point math accelerator that executes in parallel with the CPU. Additionally, the CLA has its own  
dedicated memory resources and it can directly access the key peripherals that are required in a typical control  
system. Support of a subset of ANSI C is standard, as are key features like hardware breakpoints and hardware  
task-switching.  
The F28003x supports up to 384KB (192KW) of flash memory divided into three 128KB (64KW) banks, which  
enable programming and execution in parallel. Up to 69KB (34.5KW) of on-chip SRAM is also available to  
supplement the flash memory.  
The Live Firmware Update hardware enhancements on F28003x allow fast context switching from the old  
firmware to the new firmware to minimize application downtime when updating the device firmware.  
High-performance analog blocks are integrated on the F28003x real-time MCU to further enable system  
consolidation. Three separate 12-bit ADCs provide precise and efficient management of multiple analog signals,  
which ultimately boosts system throughput. Four analog comparator modules provide continuous monitoring of  
input voltage levels for trip conditions.  
The TMS320C2000devices contain industry-leading control peripherals with frequency-independent ePWM/  
HRPWM and eCAP allow for a best-in-class level of control to the system.  
Connectivity is supported through various industry-standard communication ports (such as SPI, SCI, I2C,  
PMBus, LIN, CAN and CAN FD) and offers multiple muxing options for optimal signal placement in a variety  
of applications. New to the C2000platform is Host Interface Controller (HIC), a high throughput interface that  
allows an external host to access resources of the TMS320F28003x. Additionally, in an industry first, the FSI  
enables high-speed, robust communication to complement the rich set of peripherals that are embedded in the  
device.  
A specially enabled device variant, TMS320F28003xC, allows access to the Configurable Logic Block (CLB) for  
additional interfacing features. See Table 4-1 for more information.  
The Embedded Real-Time Analysis and Diagnostic (ERAD) module enhances the debug and system analysis  
capabilities of the device by providing additional hardware breakpoints and counters for profiling.  
To learn more about the C2000 real-time MCUs, visit the C2000™ real-time control MCUs page.  
Copyright © 2021 Texas Instruments Incorporated  
206 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
7.2 Functional Block Diagram  
Figure 7-1 shows the CPU system and associated peripherals.  
Buses Legend  
CPU  
CLA  
DMA  
HIC  
BGCRC  
C28x CPU  
(120MHz)  
FPU32  
TMU  
CLA  
(120MHz)  
VCRC  
FINTDIV  
SYSTEM CONTROL  
CLA to CPU MSG RAM  
CPU to CLA MSG RAM  
CPU Timers  
XTAL  
INTOSC1, INTOSC2  
PLL  
Boot ROM  
Secure ROM  
Flash Bank0  
16 Sectors, 64Kw(128KB)  
Windowed WD  
ePIE  
CLA Data ROM  
CLA Program ROM  
NMI WD  
Flash Bank1  
16 Sectors, 64Kw(128KB)  
SECURITY  
DCSM  
JTAG Lock  
Secure Boot  
CLA to DMA MSG RAM  
DMA to CLA MSG RAM  
Flash Bank2  
16 Sectors, 64Kw(128KB)  
M0-M1 RAM  
2Kw(4KB)  
DIAGNOSTICS  
DCC  
MPOST  
HWBIST  
ERAD  
JTAG/cJTAG  
BGCRC  
HIC  
LS0-LS7 RAM  
16Kw(32KB)  
GS0-GS3 RAM  
16Kw(32KB)  
DMA  
6 Channels  
OTHERS  
EPG  
PF10  
PF11  
PF12  
LFU  
PF1  
PF3  
PF4  
PF2  
PF7 PF7  
PF8  
PF9  
2x LIN(A)  
1x AES  
1x PMBUS  
2x SPI  
1x FSI RX  
1x FSI TX  
2x SCI  
2x I2C  
4x CLB  
Result  
3x 12-Bit ADC  
Data  
55x GPIO  
16x ePWM  
(8 Hi-Res Capable)  
1x  
DCAN/ MCAN/  
CAN CAN FD  
1x  
4x CMPSS  
Input XBAR  
Output XBAR  
ePWM XBAR  
CLB XBAR  
3x eCAP  
(1 HRCAP Capable)  
2x Bu ered DAC  
2x eQEP  
(CW/CCW Support)  
CLB Input XBAR  
CLB Output XBAR  
8x SD Filters  
A. The LIN module can also work as an SCI.  
Figure 7-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 207  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
7.3 Memory  
7.3.1 Memory Map  
The Memory Map table describes the memory map. See the Memory Controller Module section of the System  
Control chapter in the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual.  
Table 7-1. Memory Map  
START  
ADDRESS  
END  
ADDRESS  
HIC  
DMA  
CLA  
ECC/  
ACCESS  
MEMORY  
SIZE  
SECURITY  
ACCESS ACCESS ACCESS  
PARITY PROTECTION  
M0 RAM  
M1 RAM  
1K x 16  
1K x 16  
512 x 16  
512 x 16  
2K x 16  
2K x 16  
2K x 16  
2K x 16  
2K x 16  
2K x 16  
2K x 16  
2K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
2K x 16  
8K x 16  
0x0000 0000  
0x0000 0400  
0x0000 0D00  
0x0100 0900  
0x0000 8000  
0x0000 8800  
0x0000 9000  
0x0000 9800  
0x0000 A000  
0x0000 A800  
0x0000 B000  
0x0000 B800  
0x0000 03FF  
0x0000 07FF  
0x0000 0EFF  
0x0100 0AFF  
0x0000 87FF  
0x0000 8FFF  
0x0000 97FF  
0x0000 9FFF  
0x0000 A7FF  
0x0000 AFFF  
0x0000 B7FF  
0x0000 BFFF  
-
-
-
ECC  
ECC  
-
Yes  
Yes  
-
-
-
-
-
-
PieVectTable  
PieVectTable Swap  
LS0 RAM  
-
-
-
-
-
-
-
-
-
-
-
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
ECC  
ECC  
ECC  
ECC  
ECC  
ECC  
ECC  
ECC  
ECC  
ECC  
ECC  
ECC  
Parity  
Parity  
ECC  
ECC  
ECC  
ECC  
ECC  
ECC  
ECC  
Parity  
Parity  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
Yes  
LS1 RAM  
-
-
Yes  
LS2 RAM  
-
-
Yes  
LS3 RAM  
-
-
Yes  
LS4 RAM  
-
-
Yes  
LS5 RAM  
-
-
Yes  
LS6 RAM  
-
-
Yes  
LS7 RAM  
-
-
Yes  
GS0 RAM  
0x0000 C000 0x0000 CFFF  
0x0000 D000 0x0000 DFFF  
Yes  
Yes  
-
GS1 RAM  
Yes  
Yes  
-
-
GS2 RAM  
0x0000 E000  
0x0000 F000  
0x0004 9000  
0x0005 8000  
0x0000 1480  
0x0000 1500  
0x0000 1680  
0x0000 1700  
0x0007 0000  
0x0007 8000  
0x0000 EFFF  
0x0000 FFFF  
0x0004 97FF  
0x0005 9FFF  
0x0000 14FF  
0x0000 157F  
0x0000 16FF  
0x0000 177F  
0x0007 0BFF  
0x0007 8BFF  
0x000A FFFF  
0x003F 7FFF  
0x003F FFFF  
Yes  
Yes  
-
-
GS3 RAM  
Yes  
Yes  
-
-
CAN A Message RAM  
MCAN Message RAM  
Yes  
Yes  
-
-
Yes  
-
-
-
-
CLA to CPU Message RAM 128 x 16  
CPU to CLA Message RAM 128 x 16  
CLA to DMA Message RAM 128 x 16  
DMA to CLA Message RAM 128 x 16  
TI OTP(1)  
User OTP  
Flash  
-
-
-
-
-
-
-
-
-
-
Yes  
Yes  
Yes  
Yes  
-
-
-
-
-
-
-
Yes  
-
Yes  
-
-
3K x 16  
3K x 16  
-
-
-
-
-
-
Yes(2)  
Yes(2)  
Yes  
Yes  
-
-
-
192K x 16 0x0008 0000  
-
-
Secure ROM  
Boot ROM  
24K x 16  
32K x 16  
0x003F 2000  
0x003F 8000  
-
-
-
-
Pie Vector Fetch Error (part  
of Boot ROM)  
1 x 16  
0x003F FFBE 0x003F FFBF  
0x003F FFC0 0x003F FFFF  
-
-
-
-
-
-
Parity  
Parity  
-
-
-
-
Default Vectors (part of  
Boot ROM)  
64 x 16  
(1) TI OTP is for TI internal use only.  
(2) Only a subset is secure.  
7.3.1.1 Dedicated RAM (Mx RAM)  
The CPU subsystem has two dedicated ECC-capable RAM blocks: M0 and M1. These memories are small  
nonsecure blocks that are tightly coupled with the CPU (that is, only the CPU has access to them).  
7.3.1.2 Local Shared RAM (LSx RAM)  
Local shared RAMs (LSx RAMs) are accessible to the CPU, CLA, and BGCRC. All LSx RAM blocks have ECC.  
These memories are secure and have CPU access protection (CPU write/CPU fetch).  
Copyright © 2021 Texas Instruments Incorporated  
208 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
7.3.1.3 Global Shared RAM (GSx RAM)  
Global shared RAMs (GSx RAMs) are accessible from the CPU, HIC, BGCRC and DMA. The CPU, HIC, and  
DMA have full read and write access to these memories. All GSx RAM blocks have ECC. The GSx RAMs have  
access protection (CPU write/CPU fetch/DMA write/HIC write).  
7.3.1.4 Message RAM  
There are two types of message RAMs on this device that can be used to share between CPU, CLA and DMA.  
CLA-CPU message RAM shares data between the CLA and CPU while the CLA-DMA message RAM shares  
data between the CLA and DMA.  
7.3.2 Control Law Accelerator (CLA) Memory Map  
Table 7-2 shows the CLA data ROM memory map. For information about the CLA program ROM, see the  
CLA Program ROM (CLAPROMCRC) chapter in the TMS320F28003x Real-Time Microcontrollers Technical  
Reference Manual.  
Table 7-2. CLA Data ROM Memory Map  
MEMORY  
FFT Tables (Load)  
Data (Load)  
START ADDRESS  
0x0100 1070  
0x0100 1870  
0x0100 1FFA  
0x0000 F070  
0x0000 F870  
0x0000 FFFA  
END ADDRESS  
0x0100 186F  
0x0100 1FF9  
0x0100 1FFF  
0x0000 F86F  
0x0000 FFF9  
0x0000 FFFF  
LENGTH  
0x0800  
0x078A  
0x0006  
0x0800  
0x078A  
0x0006  
Version (Load)  
FFT Tables (Run)  
Data (Run)  
Version (Run)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 209  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
7.3.3 Flash Memory Map  
On the F28003x devices, three flash banks (384KB [192KW]) are available. Code to program the flash should  
be executed out of RAM, there should not be any kind of access to the flash bank when an erase or program  
operation is in progress. The Addresses of Flash Sectors table lists the addresses of flash sectors available for  
each part number.  
7.3.3.1 Addresses of Flash Sectors  
Table 7-3. Addresses of Flash Sectors  
ADDRESS  
ECC ADDRESS  
START  
PART  
NUMBER  
SECTOR  
SIZE  
START  
END  
SIZE  
END  
OTP Sectors  
TI OTP Bank 0  
(Unsecure)  
1008 x 16  
0x0007 0000  
0x0007 03EF  
126 x 16  
0x0107 0000  
0x0107 007D  
All F28003x  
TI OTP Bank 0  
(Secure)  
16 x 16  
1K x 16  
1K x 16  
0x0007 03F0  
0x0007 0400  
0x0007 0800  
0x0007 03FF  
0x0007 07FF  
0x0007 0BFF  
2 x 16  
0x0107 007E  
0x0107 0080  
0x0107 0100  
0x0107 007F  
0x0107 00FF  
0x0107 017F  
TI OTP Bank 1  
TI OTP Bank 2  
128 x 16  
128 x 16  
F280039,  
F280038  
User  
configurable  
DCSM OTP  
Bank 0  
1K x 16  
1K x 16  
1K x 16  
0x0007 8000  
0x0007 8400  
0x0007 8800  
0x0007 83FF  
0x0007 87FF  
0x0007 8BFF  
128 x 16  
128 x 16  
128 x 16  
0x0107 1000  
0x0107 1080  
0x0107 1100  
0x0107 107F  
0x0107 10FF  
0x0107 117F  
All F28003x  
User  
configurable  
DCSM OTP  
Bank 1  
User  
F280039,  
F280038  
configurable  
DCSM OTP  
Bank 2  
Bank 0 Sectors  
Sector 0  
Sector 1  
Sector 2  
Sector 3  
Sector 4  
Sector 5  
Sector 6  
Sector 7  
Sector 8  
Sector 9  
Sector 10  
Sector 11  
Sector 12  
Sector 13  
Sector 14  
Sector 15  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
0x0008 0000  
0x0008 1000  
0x0008 2000  
0x0008 3000  
0x0008 4000  
0x0008 5000  
0x0008 6000  
0x0008 7000  
0x0008 8000  
0x0008 9000  
0x0008 A000  
0x0008 B000  
0x0008 C000  
0x0008 D000  
0x0008 E000  
0x0008 F000  
0x0008 0FFF  
0x0008 1FFF  
0x0008 2FFF  
0x0008 3FFF  
0x0008 4FFF  
0x0008 5FFF  
0x0008 6FFF  
0x0008 7FFF  
0x0008 8FFF  
0x0008 9FFF  
0x0008 AFFF  
0x0008 BFFF  
0x0008 CFFF  
0x0008 DFFF  
0x0008 EFFF  
0x0008 FFFF  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
0x0108 0000  
0x0108 0200  
0x0108 0400  
0x0108 0600  
0x0108 0800  
0x0108 0A00  
0x0108 0C00  
0x0108 0E00  
0x0108 1000  
0x0108 1200  
0x0108 1400  
0x0108 1600  
0x0108 1800  
0x0108 1A00  
0x0108 1C00  
0x0108 1E00  
0x0108 01FF  
0x0108 03FF  
0x0108 05FF  
0x0108 07FF  
0x0108 09FF  
0x0108 0BFF  
0x0108 0DFF  
0x0108 0FFF  
0x0108 11FF  
0x0108 13FF  
0x0108 15FF  
0x0108 17FF  
0x0108 19FF  
0x0108 1BFF  
0x0108 1DFF  
0x0108 1FFF  
F280039,  
F280038,  
F280037,  
F280036  
F280039,  
F280038,  
F280037,  
F280036,  
F280034,  
F280033  
Copyright © 2021 Texas Instruments Incorporated  
210 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 7-3. Addresses of Flash Sectors (continued)  
ADDRESS  
ECC ADDRESS  
START  
PART  
NUMBER  
SECTOR  
SIZE  
START  
END  
SIZE  
END  
Bank 1 Sectors  
Sector 0  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
0x0009 0000  
0x0009 1000  
0x0009 2000  
0x0009 3000  
0x0009 4000  
0x0009 5000  
0x0009 6000  
0x0009 7000  
0x0009 8000  
0x0009 9000  
0x0009 A000  
0x0009 B000  
0x0009 C000  
0x0009 D000  
0x0009 E000  
0x0009 F000  
0x0009 0FFF  
0x0009 1FFF  
0x0009 2FFF  
0x0009 3FFF  
0x0009 4FFF  
0x0009 5FFF  
0x0009 6FFF  
0x0009 7FFF  
0x0009 8FFF  
0x0009 9FFF  
0x0009 AFFF  
0x0009 BFFF  
0x0009 CFFF  
0x0009 DFFF  
0x0009 EFFF  
0x0009 FFFF  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
0x0108 2000  
0x0108 2200  
0x0108 2400  
0x0108 2600  
0x0108 2800  
0x0108 2A00  
0x0108 2C00  
0x0108 2E00  
0x0108 3000  
0x0108 3200  
0x0108 3400  
0x0108 3600  
0x0108 3800  
0x0108 3A00  
0x0108 3C00  
0x0108 3E00  
0x0108 21FF  
0x0108 23FF  
0x0108 25FF  
0x0108 27FF  
0x0108 29FF  
0x0108 2BFF  
0x0108 2DFF  
0x0108 2FFF  
0x0108 31FF  
0x0108 33FF  
0x0108 35FF  
0x0108 37FF  
0x0108 39FF  
0x0108 3BFF  
0x0108 3DFF  
0x0108 3FFF  
Sector 1  
Sector 2  
Sector 3  
Sector 4  
Sector 5  
Sector 6  
Sector 7  
Sector 8  
Sector 9  
Sector 10  
Sector 11  
Sector 12  
Sector 13  
Sector 14  
Sector 15  
F280039,  
F280038,  
F280037,  
F280036,  
F280034,  
F280033  
F280039,  
F280038,  
F280037,  
F280036  
Bank 2 Sectors  
Sector 0  
Sector 1  
Sector 2  
Sector 3  
Sector 4  
Sector 5  
Sector 6  
Sector 7  
Sector 8  
Sector 9  
Sector 10  
Sector 11  
Sector 12  
Sector 13  
Sector 14  
Sector 15  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
0x000A 0000  
0x000A 1000  
0x000A 2000  
0x000A 3000  
0x000A 4000  
0x000A 5000  
0x000A 6000  
0x000A 7000  
0x000A 8000  
0x000A 9000  
0x000A A000  
0x000A B000  
0x000A C000  
0x000A D000  
0x000A E000  
0x000A F000  
0x000A 0FFF  
0x000A 1FFF  
0x000A 2FFF  
0x000A 3FFF  
0x000A 4FFF  
0x000A 5FFF  
0x000A 6FFF  
0x000A 7FFF  
0x000A 8FFF  
0x000A 9FFF  
0x000A AFFF  
0x000A BFFF  
0x000A CFFF  
0x000A DFFF  
0x000A EFFF  
0x000A FFFF  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
0x0108 4000  
0x0108 4200  
0x0108 4400  
0x0108 4600  
0x0108 4800  
0x0108 4A00  
0x0108 4C00  
0x0108 4E00  
0x0108 5000  
0x0108 5200  
0x0108 5400  
0x0108 5600  
0x0108 5800  
0x0108 5A00  
0x0108 5C00  
0x0108 5E00  
0x0108 41FF  
0x0108 43FF  
0x0108 45FF  
0x0108 47FF  
0x0108 49FF  
0x0108 4BFF  
0x0108 4DFF  
0x0108 4FFF  
0x0108 51FF  
0x0108 53FF  
0x0108 55FF  
0x0108 57FF  
0x0108 59FF  
0x0108 5BFF  
0x0108 5DFF  
0x0108 5FFF  
F280039,  
F280038  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
211  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
7.3.4 Peripheral Registers Memory Map  
The Peripheral Registers Memory Map (C28x) table lists the peripheral registers.  
Table 7-4. Peripheral Registers Memory Map (C28)  
Bit Field Name  
Pipeline  
Protected  
DMA  
Access  
HIC  
Access  
CLA  
Access  
DriverLib Name  
Base Address  
Instance  
Structure  
Peripheral Frame 0 (PF0)  
-
-
-
M0_RAM_BASE  
M1_RAM_BASE  
0x0000_0000  
0x0000_0400  
0x0000_0B00  
0x0000_0B20  
0x0000_0B40  
0x0000_0C00  
0x0000_0C00  
0x0000_0C08  
0x0000_0C10  
0x0000_0CE0  
0x0000_0CE0  
0x0000_0D00  
0x0000_1000  
0x0000_1020  
0x0000_1040  
0x0000_1060  
0x0000_1080  
0x0000_10A0  
0x0000_10C0  
0x0000_1400  
0x0000_8000  
0x0000_8800  
0x0000_9000  
0x0000_9800  
0x0000_A000  
0x0000_A800  
0x0000_B000  
0x0000_B800  
0x0000_C000  
0x0000_D000  
0x0000_E000  
0x0000_F000  
0x0007_8000  
0x0007_8200  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AdcaResultRegs  
ADC_RESULT_REGS  
ADCARESULT_BASE  
ADCBRESULT_BASE  
ADCCRESULT_BASE  
CPUTIMER0_BASE  
CLA1_ONLY_BASE  
CPUTIMER1_BASE  
CPUTIMER2_BASE  
PIECTRL_BASE  
YES  
YES  
YES  
AdcbResultRegs  
ADC_RESULT_REGS  
YES  
YES  
YES  
AdccResultRegs  
ADC_RESULT_REGS  
YES  
YES  
YES  
CpuTimer0Regs  
CPUTIMER_REGS  
-
-
-
Cla1OnlyRegs  
CLA_ONLY_REGS  
-
-
YES  
CpuTimer1Regs  
CPUTIMER_REGS  
-
-
-
CpuTimer2Regs  
CPUTIMER_REGS  
-
-
-
PieCtrlRegs  
PIE_CTRL_REGS  
-
-
-
Cla1SoftIntRegs  
CLA_SOFTINT_REGS  
CLA1_SOFTINT_BASE  
PIEVECTTABLE_BASE  
DMA_BASE  
-
-
YES  
PieVectTable  
PIE_VECT_TABLE  
-
-
-
DmaRegs  
DMA_REGS  
-
-
-
Dmach1Regs  
DMA_CH_REGS  
DMA_CH1_BASE  
DMA_CH2_BASE  
DMA_CH3_BASE  
DMA_CH4_BASE  
DMA_CH5_BASE  
DMA_CH6_BASE  
CLA1_BASE  
-
-
-
Dmach2Regs  
DMA_CH_REGS  
-
-
-
Dmach3Regs  
DMA_CH_REGS  
-
-
-
Dmach4Regs  
DMA_CH_REGS  
-
-
-
Dmach5Regs  
DMA_CH_REGS  
-
-
-
Dmach6Regs  
DMA_CH_REGS  
-
-
-
Cla1Regs  
CLA_REGS  
-
-
-
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
-
-
-
LS0_RAM_BASE  
LS1_RAM_BASE  
LS2_RAM_BASE  
LS3_RAM_BASE  
LS4_RAM_BASE  
LS5_RAM_BASE  
LS6_RAM_BASE  
LS7_RAM_BASE  
GS0_RAM_BASE  
GS1_RAM_BASE  
GS2_RAM_BASE  
GS3_RAM_BASE  
DCSM_Z1OTP_BASE  
DCSM_Z2OTP_BASE  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
YES  
YES  
YES  
YES  
-
YES  
YES  
YES  
YES  
-
-
-
-
-
-
-
-
-
-
DcsmZ1OtpRegs  
DcsmZ2OtpRegs  
DCSM_Z1_OTP  
DCSM_Z2_OTP  
-
-
-
-
Peripheral Frame 1 (PF1)  
CLB_LOGIC_CONFIG_ CLB1_LOGICCFG_BAS  
Clb1LogicCfgRegs  
Clb1LogicCtrlRegs  
Clb1DataExchRegs  
Clb2LogicCfgRegs  
Clb2LogicCtrlRegs  
Clb2DataExchRegs  
0x0000_3000  
0x0000_3100  
0x0000_3180  
0x0000_3400  
0x0000_3500  
0x0000_3580  
-
-
-
-
-
-
-
-
-
-
-
-
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
REGS  
E
CLB_LOGIC_CONTROL CLB1_LOGICCTRL_BA  
_REGS SE  
CLB_DATA_EXCHANGE CLB1_DATAEXCH_BAS  
_REGS  
E
CLB_LOGIC_CONFIG_ CLB2_LOGICCFG_BAS  
REGS  
E
CLB_LOGIC_CONTROL CLB2_LOGICCTRL_BA  
_REGS SE  
CLB_DATA_EXCHANGE CLB2_DATAEXCH_BAS  
_REGS  
E
Copyright © 2021 Texas Instruments Incorporated  
212 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 7-4. Peripheral Registers Memory Map (C28) (continued)  
Bit Field Name  
Pipeline  
Protected  
DMA  
Access  
HIC  
Access  
CLA  
Access  
DriverLib Name  
Base Address  
Instance  
Structure  
CLB_LOGIC_CONFIG_ CLB3_LOGICCFG_BAS  
Clb3LogicCfgRegs  
Clb3LogicCtrlRegs  
Clb3DataExchRegs  
Clb4LogicCfgRegs  
Clb4LogicCtrlRegs  
Clb4DataExchRegs  
0x0000_3800  
0x0000_3900  
0x0000_3980  
0x0000_3C00  
0x0000_3D00  
0x0000_3D80  
-
-
-
-
-
-
-
-
-
-
-
-
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
REGS  
E
CLB_LOGIC_CONTROL CLB3_LOGICCTRL_BA  
_REGS SE  
CLB_DATA_EXCHANGE CLB3_DATAEXCH_BAS  
_REGS  
E
CLB_LOGIC_CONFIG_ CLB4_LOGICCFG_BAS  
REGS  
E
CLB_LOGIC_CONTROL CLB4_LOGICCTRL_BA  
_REGS SE  
CLB_DATA_EXCHANGE CLB4_DATAEXCH_BAS  
_REGS  
E
Peripheral Frame 10 (PF10)  
WdRegs  
WD_REGS  
WD_BASE  
0x0000_7000  
0x0000_7060  
YES  
YES  
-
-
-
-
-
-
NmiIntruptRegs  
NMI_INTRUPT_REGS  
NMI_BASE  
Peripheral Frame 11 (PF11)  
XintRegs  
SciaRegs  
ScibRegs  
I2caRegs  
I2cbRegs  
XINT_REGS  
SCI_REGS  
SCI_REGS  
I2C_REGS  
I2C_REGS  
XINT_BASE  
SCIA_BASE  
SCIB_BASE  
I2CA_BASE  
I2CB_BASE  
0x0000_7070  
0x0000_7200  
0x0000_7210  
0x0000_7300  
0x0000_7340  
YES  
YES  
YES  
YES  
YES  
-
-
-
-
-
-
-
-
-
-
-
YES  
YES  
YES  
YES  
Peripheral Frame 12 (PF12)  
HwbistRegs  
MpostRegs  
Dcc0Regs  
Dcc1Regs  
HWBIST_REGS  
MPOST_REGS  
DCC_REGS  
HWBIST_BASE  
MPOST_BASE  
DCC0_BASE  
DCC1_BASE  
0x0005_E000  
0x0005_E200  
0x0005_E700  
0x0005_E740  
YES  
YES  
YES  
YES  
-
-
-
-
-
-
-
-
-
-
-
-
DCC_REGS  
Peripheral Frame 2 (PF2)  
EPwm1Regs  
EPwm2Regs  
EPwm3Regs  
EPwm4Regs  
EPwm5Regs  
EPwm6Regs  
EPwm7Regs  
EPwm8Regs  
EQep1Regs  
EQep2Regs  
ECap1Regs  
ECap2Regs  
ECap3Regs  
HRCap3Regs  
DacaRegs  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EQEP_REGS  
EQEP_REGS  
ECAP_REGS  
ECAP_REGS  
ECAP_REGS  
HRCAP_REGS  
DAC_REGS  
EPWM1_BASE  
EPWM2_BASE  
EPWM3_BASE  
EPWM4_BASE  
EPWM5_BASE  
EPWM6_BASE  
EPWM7_BASE  
EPWM8_BASE  
EQEP1_BASE  
EQEP2_BASE  
ECAP1_BASE  
ECAP2_BASE  
ECAP3_BASE  
HRCAP3_BASE  
DACA_BASE  
0x0000_4000  
0x0000_4100  
0x0000_4200  
0x0000_4300  
0x0000_4400  
0x0000_4500  
0x0000_4600  
0x0000_4700  
0x0000_5100  
0x0000_5140  
0x0000_5200  
0x0000_5240  
0x0000_5280  
0x0000_52A0  
0x0000_5C00  
0x0000_5C10  
0x0000_5C80  
0x0000_5CA0  
0x0000_5CC0  
0x0000_5CE0  
0x0000_5E00  
0x0000_5E80  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
DacbRegs  
DAC_REGS  
DACB_BASE  
Cmpss1Regs  
Cmpss2Regs  
Cmpss3Regs  
Cmpss4Regs  
Sdfm1Regs  
Sdfm2Regs  
CMPSS_REGS  
CMPSS_REGS  
CMPSS_REGS  
CMPSS_REGS  
SDFM_REGS  
SDFM_REGS  
CMPSS1_BASE  
CMPSS2_BASE  
CMPSS3_BASE  
CMPSS4_BASE  
SDFM1_BASE  
SDFM2_BASE  
Peripheral Frame 3 (PF3)  
SpiaRegs  
SPI_REGS  
SPIA_BASE  
0x0000_6100  
YES  
YES  
YES  
YES  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 213  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 7-4. Peripheral Registers Memory Map (C28) (continued)  
Bit Field Name  
Pipeline  
Protected  
DMA  
Access  
HIC  
Access  
CLA  
Access  
DriverLib Name  
Base Address  
Instance  
SpibRegs  
Structure  
SPI_REGS  
SPIB_BASE  
BGCRC_CPU_BASE  
BGCRC_CLA1_BASE  
PMBUSA_BASE  
HIC_BASE  
0x0000_6110  
0x0000_6340  
0x0000_6380  
0x0000_6400  
0x0000_6500  
0x0000_6600  
0x0000_6680  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
-
YES  
-
YES  
-
BgcrcCpuRegs  
BgcrcCla1Regs  
PmbusaRegs  
HicRegs  
BGCRC_REGS  
BGCRC_REGS  
PMBUS_REGS  
HIC_CFG_REGS  
FSI_TX_REGS  
FSI_RX_REGS  
-
-
YES  
YES  
-
YES  
YES  
YES  
YES  
YES  
-
FsiTxaRegs  
FsiRxaRegs  
FSITXA_BASE  
YES  
YES  
YES  
YES  
FSIRXA_BASE  
Peripheral Frame 4 (PF4)  
AdcaRegs  
AdcbRegs  
AdccRegs  
ADC_REGS  
ADC_REGS  
ADC_REGS  
ADCA_BASE  
ADCB_BASE  
ADCC_BASE  
0x0000_7400  
0x0000_7480  
0x0000_7500  
YES  
YES  
YES  
-
-
-
-
-
-
YES  
YES  
YES  
Peripheral Frame 5 (PF5)  
InputXbarRegs  
XbarRegs  
INPUT_XBAR_REGS  
XBAR_REGS  
INPUTXBAR_BASE  
XBAR_BASE  
0x0000_7900  
0x0000_7920  
0x0000_7940  
0x0000_7960  
YES  
YES  
YES  
YES  
-
-
-
-
-
-
-
-
-
-
-
-
SyncSocRegs  
ClbInputXbarRegs  
SYNC_SOC_REGS  
INPUT_XBAR_REGS  
SYNCSOC_BASE  
CLBINPUTXBAR_BASE  
DMA_CLA_SRC_SEL_R DMACLASRCSEL_BAS  
DmaClaSrcSelRegs  
0x0000_7980  
YES  
-
-
-
EGS  
E
EPwmXbarRegs  
ClbXbarRegs  
EPWM_XBAR_REGS  
CLB_XBAR_REGS  
EPWMXBAR_BASE  
CLBXBAR_BASE  
0x0000_7A00  
0x0000_7A40  
0x0000_7A80  
YES  
YES  
YES  
-
-
-
-
-
-
-
-
-
OutputXbarRegs  
OUTPUT_XBAR_REGS OUTPUTXBAR_BASE  
CLBOUTPUTXBAR_BA  
ClbOutputXbarRegs  
OUTPUT_XBAR_REGS  
SE  
0x0000_7BC0  
YES  
-
-
-
GpioCtrlRegs  
GpioDataRegs  
GPIO_CTRL_REGS  
GPIO_DATA_REGS  
GPIOCTRL_BASE  
GPIODATA_BASE  
0x0000_7C00  
0x0000_7F00  
YES  
YES  
-
-
-
-
-
YES  
GPIO_DATA_READ_RE  
GS  
GpioDataReadRegs  
GPIODATAREAD_BASE  
0x0000_7F80  
YES  
-
YES  
YES  
ClkCfgRegs  
CLK_CFG_REGS  
CPU_SYS_REGS  
CLKCFG_BASE  
CPUSYS_BASE  
SYSSTAT_BASE  
PERIPHAC_BASE  
0x0005_D200  
0x0005_D300  
0x0005_D400  
0x0005_D500  
YES  
YES  
YES  
YES  
-
-
-
-
-
-
-
-
-
-
-
-
CpuSysRegs  
SysStatusRegs  
PeriphAcRegs  
SYS_STATUS_REGS  
PERIPH_AC_REGS  
ANALOG_SUBSYS_RE ANALOGSUBSYS_BAS  
AnalogSubsysRegs  
0x0005_D700  
YES  
-
-
-
GS  
E
Peripheral Frame 6 (PF6)  
DevCfgRegs  
DEV_CFG_REGS  
DEVCFG_BASE  
0x0005_D000  
0x0005_E800  
0x0005_E900  
0x0005_E908  
0x0005_E910  
0x0005_E918  
0x0005_E920  
0x0005_E928  
0x0005_E930  
0x0005_E938  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EradGlobalRegs  
EradHWBP1Regs  
EradHWBP2Regs  
EradHWBP3Regs  
EradHWBP4Regs  
EradHWBP5Regs  
EradHWBP6Regs  
EradHWBP7Regs  
EradHWBP8Regs  
ERAD_GLOBAL_REGS ERAD_GLOBAL_BASE  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP1_BASE  
ERAD_HWBP2_BASE  
ERAD_HWBP3_BASE  
ERAD_HWBP4_BASE  
ERAD_HWBP5_BASE  
ERAD_HWBP6_BASE  
ERAD_HWBP7_BASE  
ERAD_HWBP8_BASE  
ERAD_COUNTER_REG ERAD_COUNTER1_BA  
SE  
EradCounter1Regs  
EradCounter2Regs  
EradCounter3Regs  
EradCounter4Regs  
0x0005_E980  
0x0005_E990  
0x0005_E9A0  
0x0005_E9B0  
YES  
YES  
YES  
YES  
-
-
-
-
-
-
-
-
-
-
-
-
S
ERAD_COUNTER_REG ERAD_COUNTER2_BA  
SE  
S
ERAD_COUNTER_REG ERAD_COUNTER3_BA  
SE  
S
ERAD_COUNTER_REG ERAD_COUNTER4_BA  
SE  
S
Copyright © 2021 Texas Instruments Incorporated  
214 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 7-4. Peripheral Registers Memory Map (C28) (continued)  
Bit Field Name  
Pipeline  
Protected  
DMA  
Access  
HIC  
Access  
CLA  
Access  
DriverLib Name  
Base Address  
Instance  
Structure  
ERAD_CRC_GLOBAL_ ERAD_CRC_GLOBAL_  
EradCRCGlobalRegs  
0x0005_EA00  
YES  
-
-
-
REGS  
BASE  
EradCRC1Regs  
EradCRC2Regs  
EradCRC3Regs  
EradCRC4Regs  
EradCRC5Regs  
EradCRC6Regs  
EradCRC7Regs  
EradCRC8Regs  
Epg1Regs  
ERAD_CRC_REGS  
ERAD_CRC_REGS  
ERAD_CRC_REGS  
ERAD_CRC_REGS  
ERAD_CRC_REGS  
ERAD_CRC_REGS  
ERAD_CRC_REGS  
ERAD_CRC_REGS  
EPG_REGS  
ERAD_CRC1_BASE  
ERAD_CRC2_BASE  
ERAD_CRC3_BASE  
ERAD_CRC4_BASE  
ERAD_CRC5_BASE  
ERAD_CRC6_BASE  
ERAD_CRC7_BASE  
ERAD_CRC8_BASE  
EPG1_BASE  
0x0005_EA10  
0x0005_EA20  
0x0005_EA30  
0x0005_EA40  
0x0005_EA50  
0x0005_EA60  
0x0005_EA70  
0x0005_EA80  
0x0005_EC00  
0x0005_ECD0  
0x0005_F000  
0x0005_F080  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Epg1MuxRegs  
DcsmZ1Regs  
EPG_MUX_REGS  
DCSM_Z1_REGS  
DCSM_Z2_REGS  
EPG1MUX_BASE  
DCSM_Z1_BASE  
DCSM_Z2_BASE  
DcsmZ2Regs  
DCSM_COMMON_REG  
S
DcsmCommonRegs  
MemCfgRegs  
DCSMCOMMON_BASE  
MEMCFG_BASE  
0x0005_F0C0  
0x0005_F400  
0x0005_F500  
YES  
YES  
YES  
-
-
-
-
-
-
-
-
-
MEM_CFG_REGS  
ACCESS_PROTECTION ACCESSPROTECTION_  
_REGS BASE  
AccessProtectionRegs  
MEMORY_ERROR_RE MEMORYERROR_BAS  
MemoryErrorRegs  
0x0005_F540  
YES  
-
-
-
GS  
E
TestErrorRegs  
Flash0CtrlRegs  
Flash0EccRegs  
TEST_ERROR_REGS  
FLASH_CTRL_REGS  
FLASH_ECC_REGS  
TESTERROR_BASE  
FLASH0CTRL_BASE  
FLASH0ECC_BASE  
0x0005_F590  
0x0005_F800  
0x0005_FB00  
YES  
YES  
YES  
-
-
-
-
-
-
-
-
-
Peripheral Frame 7 (PF7)  
CanaRegs  
-
CAN_REGS  
-
CANA_BASE  
0x0004_8000  
0x0004_9000  
YES  
YES  
YES  
YES  
YES  
YES  
-
-
CANA_MSG_RAM_BAS  
E
MCAN_MSG_RAM_BAS  
E
-
-
0x0005_8000  
YES  
-
YES  
-
McanaSsRegs  
McanaRegs  
MCANASS_REGS  
MCANA_REGS  
MCANASS_BASE  
MCANA_BASE  
0x0005_C400  
0x0005_C600  
0x0005_C800  
YES  
YES  
YES  
-
-
-
YES  
YES  
YES  
-
-
-
McanaErrorRegs  
MCANA_ERROR_REGS MCANA_ERROR_BASE  
Peripheral Frame 8 (PF8)  
LinaRegs  
LinbRegs  
LIN_REGS  
LIN_REGS  
LINA_BASE  
LINB_BASE  
0x0000_6A00  
0x0000_6B00  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
LfuRegs  
LFU_REGS  
AES_IP_REGS  
LFU_BASE  
AESA_BASE  
0x0000_7FE0  
0x0004_2000  
0x0004_2C00  
YES  
-
-
-
-
YES  
AesaRegs  
AesaSsRegs  
-
-
YES  
YES  
-
-
AES_WRAPPER_REGS  
AESA_SS_BASE  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 215  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
7.4 Identification  
Table 7-5 lists the Device Identification Registers. Additional information on these device identification registers  
can be found in the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual.  
Table 7-5. Device Identification Registers  
NAME  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
Device part identification number  
TMS320F280039C  
TMS320F280039  
TMS320F280038C  
TMS320F280038  
TMS320F280037C  
TMS320F280037  
TMS320F280036C  
TMS320F280036  
TMS320F280034  
TMS320F280033  
Silicon revision number  
Revision 0  
0x05FF 0500  
0x05FF 0500  
0x05FE 0500  
0x05FE 0500  
0x05FD 0500  
0x05FD 0500  
0x05FC 0500  
0x05FC 0500  
0x05FA 0500  
0x05F9 0500  
PARTIDH  
0x0005 D00A  
2
REVID  
0x0005 D00C  
0x0007 01F4  
2
2
0x0000 0000  
Unique identification number. This number is different on each  
individual device with the same PARTIDH. This unique number  
can be used as a serial number in the application. This number  
is present only on TMS devices.  
UID_UNIQUE  
Copyright © 2021 Texas Instruments Incorporated  
216 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
7.5 Bus Architecture – Peripheral Connectivity  
The Peripheral Connectivity table lists a broad view of the peripheral and configuration register accessibility from  
each bus master.  
Table 7-6. Peripheral Connectivity  
PERIPHERAL  
DMA  
HIC  
BGCRC  
CLA  
C28  
SYSTEM PERIPHERALS  
CPU Timers  
ERAD  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
GPIO Data  
Y
Y
GPIO Pin Mapping and Configuration  
XBAR Configuration  
System Configuration  
AES  
EPG  
LFU  
DCC  
Y
Y
Y
MEMORY  
M0/M1  
LSx  
Y
Y
Y
Y
Y
Y
Y
Y
Y
GSx  
Y
Y
ROM  
FLASH  
CONTROL PERIPHERALS  
ePWM/HRPWM  
eCAP/HRCAP  
eQEP(1)  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
CLB  
SDFM  
Y
ANALOG PERIPHERALS  
CMPSS(1)  
DAC(1)  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
ADC Configuration  
ADC Results(1)  
Y
Y
COMMUNICATION PERIPHERALS  
DCAN  
MCAN  
FSITX/FSIRX  
I2C  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
LIN  
Y
Y
Y
Y
PMBus  
SCI  
SPI  
Y
Y
(1) These modules are accessible from DMA but cannot trigger a DMA transfer.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 217  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
7.6 C28x Processor  
The CPU is a 32-bit fixed-point processor. This device draws from the best features of digital signal processing;  
reduced instruction set computing (RISC); and microcontroller architectures, firmware, and tool sets.  
The CPU features include a modified Harvard architecture and circular addressing. The RISC features  
are single-cycle instruction execution, register-to-register operations, and modified Harvard architecture. The  
microcontroller features include ease of use through an intuitive instruction set, byte packing and unpacking,  
and bit manipulation. The modified Harvard architecture of the CPU enables instruction and data fetches to be  
performed in parallel. The CPU can read instructions and data while it writes data simultaneously to maintain the  
single-cycle instruction operation across the pipeline. The CPU does this over six separate address/data buses.  
For more information on CPU architecture and instruction set, see the TMS320C28x CPU and Instruction Set  
Reference Guide.  
7.6.1 Floating-Point Unit (FPU)  
The C28x plus floating-point (C28x+FPU) processor extends the capabilities of the C28x fixed-point CPU by  
adding registers and instructions to support IEEE single-precision floating-point operations.  
Devices with the C28x+FPU include the standard C28x register set plus an additional set of floating-point unit  
registers. The additional floating-point unit registers are the following:  
Eight floating-point result registers, RnH (where n = 0–7)  
Floating-point Status Register (STF)  
Repeat Block Register (RB)  
All of the floating-point registers, except the RB, are shadowed. This shadowing can be used in high-priority  
interrupts for fast context save and restore of the floating-point registers.  
For more information on the C28x Floating Point Unit (FPU), see the TMS320C28x Extended Instruction Sets  
Technical Reference Manual.  
7.6.2 Fast Integer Division Unit  
The Fast Integer Division (FINTDIV) unit of the C28x CPU uniquely supports three types of integer division  
(Truncated, Modulus, Euclidean) of varying data type sizes (16/16, 32/16, 32/32, 64/32, 64/64) in unsigned or  
signed formats.  
Truncated integer division is naturally supported by C language (/, % operators).  
Modulus and Euclidean divisions are variants that are more efficient for control algorithms and are supported  
by C intrinsics.  
All three types of integer division produce both a quotient and remainder component, are interruptible, and  
execute in a minimum number of deterministic cycles (10 cycles for a 32/32 division). In addition, the Fast  
Division capabilities of the C28x CPU uniquely support fast execution of floating-point 32-bit (in 5 cycles) and  
64-bit (in 20 cycles) division.  
For more information about fast integer division, see the Fast Integer Division – A Differentiated Offering From  
C2000™ Product Family Application Report.  
7.6.3 Trigonometric Math Unit (TMU)  
The trigonometric math unit (TMU) extends the capabilities of a C28x+FPU by adding instructions and  
leveraging existing FPU instructions to speed up the execution of common trigonometric and arithmetic  
operations listed in Table 7-7.  
Table 7-7. TMU Supported Instructions  
Instructions  
C Equivalent Operation  
Pipeline Cycles  
MPY2PIF32 RaH,RbH  
DIV2PIF32 RaH,RbH  
DIVF32 RaH,RbH,RcH  
SQRTF32 RaH,RbH  
a = b * 2pi  
2/3  
2/3  
5
a = b / 2pi  
a = b/c  
a = sqrt(b)  
5
Copyright © 2021 Texas Instruments Incorporated  
218 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 7-7. TMU Supported Instructions (continued)  
Instructions  
C Equivalent Operation  
Pipeline Cycles  
SINPUF32 RaH,RbH  
COSPUF32 RaH,RbH  
ATANPUF32 RaH,RbH  
QUADF32 RaH,RbH,RcH,RdH  
a = sin(b*2pi)  
4
4
4
5
a = cos(b*2pi)  
a = atan(b)/2pi  
Operation to assist in calculating ATANPU2  
No changes have been made to existing instructions, pipeline or memory bus architecture. All TMU instructions  
use the existing FPU register set (R0H to R7H) to carry out their operations.  
For more information, see the TMS320C28x Extended Instruction Sets Technical Reference Manual.  
7.6.4 VCRC Unit  
Cyclic redundancy check (CRC) algorithms provide a straightforward method for verifying data integrity over  
large data blocks, communication packets, or code sections. The C28x+VCRC can perform 8-bit, 16-bit, 24-bit,  
and 32-bit CRCs. For example, the VCRC can compute the CRC for a block length of 10 bytes in 10 cycles. A  
CRC result register contains the current CRC, which is updated whenever a CRC instruction is executed.  
The following are the CRC polynomials used by the CRC calculation logic of the VCRC:  
CRC8 polynomial = 0x07  
CRC16 polynomial 1 = 0x8005  
CRC16 polynomial 2 = 0x1021  
CRC24 polynomial = 0x5d6dcb  
CRC32 polynomial 1 = 0x04c11db7  
CRC32 polynomial 2 = 0x1edc6f41  
This module can calculate CRCs for a byte of data in a single cycle. The CRC calculation for CRC8, CRC16,  
CRC24, and CRC32 is done byte-wise (instead of computing on a complete 16-bit or 32-bit data read by the  
C28x core) to match the byte-wise computation requirement mandated by various standards.  
The VCRC Unit also allows the user to provide the size (1b-32b) and value of any polynomial to fit custom CRC  
requirements. The CRC execution time increases to three cycles when using a custom polynomial.  
For more information on the Cyclic Redundancy Check (VCRC) instruction sets, see the TMS320C28x Extended  
Instruction Sets Technical Reference Manual.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 219  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
7.7 Control Law Accelerator (CLA)  
The CLA Type-2 is an independent, fully programmable, 32-bit floating-point math processor that brings  
concurrent control-loop execution to the C28x family. The low interrupt-latency of the CLA allows it to read  
ADC samples "just-in-time." This significantly reduces the ADC sample to output delay to enable faster system  
response and higher MHz control loops. By using the CLA to service time-critical control loops, the main CPU is  
free to perform other system tasks such as communications and diagnostics.  
The control law accelerator extends the capabilities of the C28x CPU by adding parallel processing. Time-critical  
control loops serviced by the CLA can achieve low ADC sample to output delay. Thus, the CLA enables faster  
system response and higher frequency control loops. Using the CLA for time-critical tasks frees up the main  
CPU to perform other system and communication functions concurrently.  
The following is a list of major features of the CLA:  
Clocked at the same rate as the main CPU (SYSCLKOUT).  
An independent architecture allowing CLA algorithm execution independent of the main C28x CPU.  
– Complete bus architecture:  
Program Address Bus (PAB) and Program Data Bus (PDB)  
Data Read Address Bus (DRAB), Data Read Data Bus (DRDB), Data Write Address Bus (DWAB), and  
Data Write Data Bus (DWDB)  
– Independent 8-stage pipeline.  
– 16-bit program counter (MPC)  
– Four 32-bit result registers (MR0 to MR3)  
– Two 16-bit auxiliary registers (MAR0, MAR1)  
– Status register (MSTF)  
Instruction set includes:  
– IEEE single-precision (32-bit) floating-point math operations  
– Floating-point math with parallel load or store  
– Floating-point multiply with parallel add or subtract  
– 1/X and 1/sqrt(X) estimations  
– Data type conversions  
– Conditional branch and call  
– Data load/store operations  
The CLA program code can consist of up to eight tasks or interrupt service routines, or seven tasks and a  
main background task.  
– The start address of each task is specified by the MVECT registers.  
– No limit on task size as long as the tasks fit within the configurable CLA program memory space.  
– One task is serviced at a time until its completion. There is no nesting of tasks.  
– Upon task completion a task-specific interrupt is flagged within the PIE.  
– When a task finishes the next highest-priority pending task is automatically started.  
– The Type-2 CLA can have a main task that runs continuously in the background, while other high-priority  
events trigger a foreground task.  
Task trigger mechanisms:  
– C28x CPU through the IACK instruction  
Task1 to Task8: up to 256 possible trigger sources from peripherals connected to the shared bus on which  
the CLA assumes secondary ownership.  
Task8 can be set to be the background task, while Tasks 1 to 7 take peripheral triggers.  
Memory and Shared Peripherals:  
– Two dedicated message RAMs for communication between the CLA and the main CPU.  
– The C28x CPU can map CLA program and data memory to the main CPU space or CLA space.  
Copyright © 2021 Texas Instruments Incorporated  
220 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
CLA Control  
Register Set  
MIFR(16)  
MIOVF(16)  
MPERINT1  
to  
MPERINT8  
CLA_INT1  
to  
CLA_INT8  
From Shared  
Peripherals  
MICLR(16)  
MICLROVF(16)  
MIFRC(16)  
C28x  
CPU  
PIE  
INT11  
INT12  
MIER(16)  
MIRUN(16)  
LVF  
LUF  
MCTLBGRND(16)  
MSTSBGRND(16)  
CLA1SOFTINTEN(16)  
CLA1INTFRC(16)  
SYSCLK  
CLA Clock Enable  
SYSRS  
MVECT1(16)  
MVECT2(16)  
MVECT3(16)  
MVECT4(16)  
MVECT5(16)  
MVECT6(16)  
MVECT7(16)  
MVECT8(16)  
CPU Read/Write Data Bus  
CLA Program  
Memory (LSx)  
CLA Program Bus  
LSxMSEL[MSEL_LSx]  
LSxCLAPGM[CLAPGM_LSx]  
MVECTBGRND(16)  
MVECTBGRNDACTIVE(16)  
MPSACTL(16)  
MPSA1(32)  
CLA Data  
Memory (LSx)  
MPSA2(32)  
MCTL(16)  
CLA Message  
RAMs  
CLA Execution  
Register Set  
MPC(16)  
MSTF(32)  
MR0(32)  
MR1(32)  
MR2(32)  
MR3(32)  
Shared  
Peripherals  
MEALLOW  
MAR0(16)  
MAR1(16)  
CPU Read Data Bus  
Figure 7-2. CLA Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 221  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
7.8 Embedded Real-Time Analysis and Diagnostic (ERAD)  
The ERAD module enhances the debug and system-analysis capabilities of the device. The debug and system-  
analysis enhancements provided by the ERAD module is done outside of the CPU. The ERAD module consists  
of the Enhanced Bus Comparator units and the System Event Counter units. The Enhanced Bus Comparator  
units are used to generate hardware breakpoints, hardware watch points, and other output events. The System  
Event Counter units are used to analyze and profile the system. The ERAD module is accessible by the  
debugger and by the application software, which significantly increases the debug capabilities of many real-time  
systems, especially in situations where debuggers are not connected. In the TMS320F28003x devices, the  
ERAD module contains eight Enhanced Bus Comparator units (which increases the number of Hardware  
breakpoints from two to ten) and four Benchmark System Event Counter units.  
7.9 Background CRC-32 (BGCRC)  
The Background CRC (BGCRC) module computes a CRC-32 on a configurable block of memory. It  
accomplishes this by fetching the specified block of memory during idle cycles (when the CPU, HIC, CLA or  
DMA is not accessing the memory block). The calculated CRC-32 value is compared against a golden CRC-32  
value to indicate a pass or fail. In essence, the BGCRC helps identify memory faults and corruption.  
The BGCRC module has the following features:  
One cycle CRC-32 computation on 32 bits of data  
No CPU bandwidth impact for zero wait state memory  
Minimal CPU bandwidth impact for non-zero wait state memory  
Dual operation modes (CRC-32 mode and scrub mode)  
Watchdog timer to time CRC-32 completion  
Ability to pause and resume CRC-32 computation  
Copyright © 2021 Texas Instruments Incorporated  
222 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
7.10 Direct Memory Access (DMA)  
The DMA module provides a hardware method of transferring data between peripherals and/or memory without  
intervention from the CPU, thereby freeing up bandwidth for other system functions. Additionally, the DMA has  
the capability to orthogonally rearrange the data as it is transferred as well as “ping-pong” data between buffers.  
These features are useful for structuring data into blocks for optimal CPU processing. Figure 7-3 shows a  
device-level block diagram of the DMA.  
DMA features include:  
Six channels with independent PIE interrupts  
Peripheral interrupt trigger sources  
– ADC interrupts and EVT signals  
– External Interrupts  
– ePWM SOC signals  
– CPU timers  
– eCAP  
– SPI transmit and receive  
– CAN transmit and receive  
– LIN transmit and receive  
Data sources and destinations:  
– GSx RAM  
– ADC result registers  
– Control peripheral registers (ePWM, eQEP, eCAP)  
– SPI, LIN, CAN, and PMBus registers  
Word Size: 16-bit or 32-bit (SPI limited to 16-bit)  
Throughput: Four cycles per word without arbitration  
ADC  
WRAPPER  
ADC  
RESULTS  
XINT  
TIMER  
Global Shared RAM  
DCAN  
LIN  
AES  
DMA bus  
C28x bus  
TINT (0-2)  
XINT(1-5)  
ADCx.INT(1-5), ADCx.EVT  
AESA_ContextIn, AESA_ContextOut, AESA_DataIn, AESA_DataOut  
LINxTXDMA, LINxRXDMA  
CANxIF(1-3)  
C28x  
PIE  
DMA Trigger  
Source Selection  
SDxDRINT1-4  
ECAP(1-3)DMA  
DMACHSRCSEL1.CHx  
DMACHSRCSEL2.CHx  
CHx.MODE.PERINTSEL  
(x = 1 to 6)  
DMA  
EPWM(1-8).SOCA, EPWM(1-8.SOCB  
CLB1-4INT  
EPG1INT  
SPITXDMA(A-B)  
SPIRXDMA(A-B)  
HICA_INT  
FSITXADMA, FSIRXADMA  
FSI_DATA_TAG_MATCH,  
FSI_PING_TAG_MATCH  
PM  
Bus  
FSI  
HIC  
CMPSS  
eQEP  
eCAP  
EPWM  
EPG  
CLB  
SPI  
DAC  
SDFM  
Figure 7-3. DMA Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 223  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
7.11 Device Boot Modes  
This section explains the default boot modes, as well as all the available boot modes supported on this device.  
The boot ROM uses the boot mode select, general-purpose input/output (GPIO) pins to determine the boot  
mode configuration.  
Table 7-8 shows the boot mode options available for selection by the default boot mode select pins. Users have  
the option to program the device to customize the boot modes selectable in the boot-up table as well as the boot  
mode select pin GPIOs used.  
All the peripheral boot modes that are supported use the first instance of the peripheral module (SCIA, SPIA,  
I2CA, CANA, and so forth). Whenever these boot modes are referred to in this chapter, such as SCI boot, it is  
actually referring to the first module instance, which means the SCI boot on the SCIA port. The same applies to  
the other peripheral boots.  
See Section 6.12.2.2.2 and the Power-on Reset figure for tboot-flash, the boot ROM execution time to first  
instruction fetch in flash.  
Table 7-8. Device Default Boot Modes  
GPIO24  
GPIO32  
BOOT MODE  
(DEFAULT BOOT MODE SELECT PIN 1)  
(DEFAULT BOOT MODE SELECT PIN 0)  
Parallel IO  
SCI / Wait Boot(1)  
CAN  
0
0
1
1
0
1
0
1
Flash  
(1) SCI boot mode can be used as a wait boot mode as long as SCI continues to wait for an 'A' or 'a' during the SCI autobaud lock  
process.  
Copyright © 2021 Texas Instruments Incorporated  
224 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
7.11.1 Device Boot Configurations  
This section details what boot configurations are available and how to configure them. This device supports  
from 0 boot mode select pins up to 3 boot mode select pins as well as from 1 configured boot mode up to 8  
configured boot modes.  
To change and configure the device from the default settings to custom settings for your application, use the  
following process:  
1. Determine all the various ways you want application to be able to boot. (For example: Primary boot option of  
Flash boot for your main application, secondary boot option of CAN boot for firmware updates, tertiary boot  
option of SCI boot for debugging, etc)  
2. Based on the number of boot modes needed, determine how many boot mode select pins (BMSPs) are  
required to select between your selected boot modes. (For example: 2 BMSPs are required to select  
between 3 boot mode options)  
3. Assign the required BMSPs to a physical GPIO pin. (For example, BMSP0 to GPIO10, BMSP1 to GPIO51,  
and BMSP2 left as default which is disabled). Refer to Section 7.11.1.1 for all the details on performing these  
configurations.  
4. Assign the determined boot mode definitions to indexes in your custom boot table that correlate to  
the decoded value of the BMSPs. For example, BOOTDEF0=Boot to Flash, BOOTDEF1=CAN Boot,  
BOOTDEF2=SCI Boot; all other BOOTDEFx are left as default/nothing). Refer to Section 7.11.1.2 for all  
the details on setting up and configuring the custom boot mode table.  
Additionally, the Boot Mode Example Use Cases section of the TMS320F28003x Real-Time Microcontrollers  
Technical Reference Manual provides some example use cases on how to configure the BMSPs and custom  
boot tables.  
Note  
The CAN boot mode turns on the XTAL. Be sure an XTAL is installed in the application before using  
CAN boot mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 225  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
7.11.1.1 Configuring Boot Mode Pins  
This section explains how the boot mode select pins can be customized by the user, by programming  
the BOOTPIN-CONFIG location (refer to Table 7-9) in the user-configurable dual-zone security module  
(DCSM) OTP. The location in the DCSM OTP is Z1-OTP-BOOTPIN-CONFIG or Z2-OTP-BOOTPIN-CONFIG.  
When debugging, EMU-BOOTPIN-CONFIG is the emulation equivalent of Z1-OTP-BOOTPIN-CONFIG/Z2-OTP-  
BOOTPIN-CONFIG, and can be programmed to experiment with different boot modes without writing to OTP.  
The device can be programmed to use 0, 1, 2, or 3 boot mode select pins as needed.  
Note  
When using Z2-OTP-BOOTPIN-CONFIG, the configurations programmed in this location will take  
priority over the configurations in Z1-OTP-BOOTPIN-CONFIG. It is recommended to use Z1-OTP-  
BOOTPIN-CONFIG first and then if OTP configurations need to be altered, switch to using Z2-OTP-  
BOOTPIN-CONFIG.  
Table 7-9. BOOTPIN-CONFIG Bit Fields  
BIT  
31:24  
23:16  
15:8  
NAME  
DESCRIPTION  
Key  
Write 0x5A to these 8-bits to indicate the bits in this register are valid  
Refer to BMSP0 description except for BMSP2  
Refer to BMSP0 description except for BMSP1  
Boot Mode Select Pin 2 (BMSP2)  
Boot Mode Select Pin 1 (BMSP1)  
Set to the GPIO pin to be used during boot (up to 255):  
- 0x0 = GPIO0  
- 0x01 = GPIO1  
7:0  
Boot Mode Select Pin 0 (BMSP0)  
- and so on  
Writing 0xFF disables BMSP0 and this pin is no longer used to select  
the boot mode.  
The following GPIOs cannot be used as a BMSP. If selected for a particular BMSP, the boot ROM automatically  
selects the factory default GPIO (the factory default for BMSP2 is 0xFF, which disables the BMSP).  
GPIO 20 and GPIO 21  
GPIO 36 and GPIO 38  
GPIO 62 to GPIO 223  
Copyright © 2021 Texas Instruments Incorporated  
226 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 7-10. Standalone Boot Mode Select Pin Decoding  
BOOTPIN_CONFIG  
BMSP0  
BMSP1  
BMSP2  
REALIZED BOOT MODE  
KEY  
!= 0x5A  
Don’t Care  
Don’t Care  
Don’t Care  
Boot as defined by the factory default BMSPs  
Boot as defined in the boot table for boot mode  
0xFF  
0xFF  
0xFF  
0
(All BMSPs disabled)  
Boot as defined by the value of BMSP0  
(BMSP1 and BMSP2 disabled)  
Valid GPIO  
0xFF  
0xFF  
Valid GPIO  
0xFF  
0xFF  
0xFF  
Boot as defined by the value of BMSP1  
(BMSP0 and BMSP2 disabled)  
Boot as defined by the value of BMSP2  
(BMSP0 and BMSP1 disabled)  
0xFF  
Valid GPIO  
Boot as defined by the values of BMSP0 and  
Valid GPIO  
Valid GPIO  
Valid GPIO  
0xFF  
0xFF  
BMSP1  
(BMSP2 disabled)  
Boot as defined by the values of BMSP0 and  
BMSP2  
Valid GPIO  
(BMSP1 disabled)  
Boot as defined by the values of BMSP1 and  
= 0x5A  
0xFF  
Valid GPIO  
Valid GPIO  
Valid GPIO  
Valid GPIO  
BMSP2  
(BMSP0 disabled)  
Boot as defined by the values of BMSP0,  
BMSP1, and BMSP2  
Valid GPIO  
BMSP0 is reset to the factory default BMSP0  
GPIO  
Boot as defined by the values of BMSP0,  
BMSP1, and BMSP2  
Invalid GPIO  
Valid GPIO  
Valid GPIO  
Valid GPIO  
Invalid GPIO  
Valid GPIO  
Valid GPIO  
Valid GPIO  
Invalid GPIO  
BMSP1 is reset to the factory default BMSP1  
GPIO  
Boot as defined by the values of BMSP0,  
BMSP1, and BMSP2  
BMSP2 is reset to the factory default state,  
which is disabled  
Boot as defined by the values of BMSP0 and  
BMSP1  
Note  
When decoding the boot mode, BMSP0 is the least-significant-bit and BMSP2 is the most-significant-  
bit of the boot table index value. It is recommended when disabling BMSPs to start with disabling  
BMSP2. For example, in an instance when only using BMSP2 (BMSP1 and BMSP0 are disabled),  
then only the boot table indexes of 0 and 4 will be selectable. In the instance when using only BMSP0,  
then the selectable boot table indexes are 0 and 1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 227  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
7.11.1.2 Configuring Boot Mode Table Options  
This section explains how to configure the boot definition table, BOOTDEF, for the device and the associated  
boot options. The 64-bit location is located in user-configurable DCSM OTP in the Z1-OTP-BOOTDEF-LOW and  
Z1-OTP-BOOTDEF-HIGH locations. When debugging, EMU-BOOTDEF-LOW and EMU-BOOTDEF-HIGH are  
the emulation equivalents of Z1-OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH, and can be programmed  
to experiment with different boot mode options without writing to OTP. The range of customization to the boot  
definition table depends on how many boot mode select pins (BMSP) are being used. For example, 0 BMSPs  
equals to 1 table entry, 1 BMSP equals to 2 table entries, 2 BMSPs equals to 4 table entries, and 3 BMSPs  
equals to 8 table entries. Refer to the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual  
for examples on how to set up the BOOTPIN_CONFIG and BOOTDEF values.  
Note  
The locations Z2-OTP-BOOTDEF-LOW and Z2-OTP-BOOTDEF-HIGH will be used instead of Z1-  
OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH locations when Z2-OTP-BOOTPIN-CONFIG is  
configured. Refer to Configuring Boot Mode Pins for more details on BOOTPIN_CONFIG usage.  
Table 7-11. BOOTDEF Bit Fields  
BYTE  
POSITION  
BOOTDEF NAME  
NAME  
DESCRIPTION  
Set the boot mode for index 0 of the boot table.  
Different boot modes and their options can include,  
for example, a boot mode that uses different GPIOs  
for a specific bootloader or a different flash entry  
point address. Any unsupported boot mode will  
cause the device to either go to wait boot or boot to  
flash.  
BOOT_DEF0  
7:0  
BOOT_DEF0 Mode/Options  
Refer to GPIO Assignments for valid BOOTDEF  
values to set in the table.  
BOOT_DEF1  
BOOT_DEF2  
BOOT_DEF3  
BOOT_DEF4  
BOOT_DEF5  
BOOT_DEF6  
BOOT_DEF7  
15:8  
BOOT_DEF1 Mode/Options  
BOOT_DEF2 Mode/Options  
BOOT_DEF3 Mode/Options  
BOOT_DEF4 Mode/Options  
BOOT_DEF5 Mode/Options  
BOOT_DEF6 Mode/Options  
BOOT_DEF7 Mode/Options  
23:16  
31:24  
39:32  
47:40  
55:48  
63:56  
Refer to BOOT_DEF0 description  
Copyright © 2021 Texas Instruments Incorporated  
228 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
7.11.2 GPIO Assignments  
This section details the GPIOs and boot option values used for boot mode set in the BOOT_DEF memory  
location located at Z1-OTP-BOOTDEF-LOW/ Z2-OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH/ Z2-OTP-  
BOOTDEF-HIGH. Refer to Configuring Boot Mode Table Options on how to configure BOOT_DEF. When  
selecting a boot mode option, make sure to verify that the necessary pins are available in the pin mux options for  
the specific device package being used.  
Table 7-12. SCI Boot Options  
OPTION  
BOOTDEF VALUE  
SCITXDA GPIO  
SCIRXDA GPIO  
GPIO28  
GPIO17  
GPIO9  
0 (default)  
0x01  
0x21  
0x41  
0x61  
0x81  
GPIO29  
1
2
3
4
GPIO16  
GPIO8  
GPIO2  
GPIO3  
GPIO16  
GPIO3  
Table 7-13. MCAN Boot Options  
OPTION  
BOOTDEF VALUE  
CANTXA GPIO  
CANRXA GPIO  
GPIO5  
0 (default)  
0x08  
0x28  
0x48  
GPIO4  
1
2
GPIO1  
GPIO0  
GPIO13  
GPIO12  
Table 7-14. DCAN Boot Options  
OPTION  
BOOTDEF VALUE  
CANTXA GPIO  
CANRXA GPIO  
GPIO5  
0 (default)  
0x02  
0x22  
0x42  
0x62  
GPIO4  
1
2
3
GPIO32  
GPIO33  
GPIO2  
GPIO3  
GPIO13  
GPIO12  
Table 7-15. I2C Boot Options  
OPTION  
BOOTDEF VALUE  
SDAA GPIO  
GPIO32  
GPIO0  
SCLA GPIO  
GPIO33  
GPIO1  
0
1
2
0x07  
0x27  
0x47  
GPIO10  
GPIO8  
Table 7-16. RAM Boot Options  
RAM ENTRY POINT  
(ADDRESS)  
OPTION  
BOOTDEF VALUE  
0
0x05  
0x0000 0000  
Table 7-17. Flash Boot Options  
FLASH ENTRY POINT  
OPTION  
BOOTDEF VALUE  
FLASH SECTOR  
(ADDRESS)  
0x0008 0000  
0x0008 8000  
0x0008 FFF0  
0x0009 0000  
0x0009 7FF0  
0x0009 FFF0  
0x000A 0000  
0x000A FFF0  
0 (default)  
0x03  
0x23  
0x43  
0x63  
0x83  
0xA3  
0xC3  
0xE3  
Bank0 Sector 0  
Bank 0 Sector 8  
Bank 0 Sector 15  
Bank 1, Sector 0  
Bank 1, Sector 7  
Bank 1, Sector 15  
Bank 2, Sector 0  
Bank 2, Sector 15  
1
2
3
4
5
6
7
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 229  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Table 7-18. LFU Flash Boot Options  
FLASH ENTRY POINT  
OPTION  
BOOTDEF VALUE  
(ADDRESS)  
BANK  
0 (default)  
0x0B  
0x2B  
0x4B  
0x6B  
0x8B  
0x0008 0000  
0x0009 0000  
0x000A 0000  
0x0008 8000  
0x0009 8000  
0x000A 8000  
0x0008 FFF0  
0x0009 FFF0  
0x000A FFF0  
0x0008 8000  
0x0009 0000  
0x0009 0000  
0x0008 EFF0  
0x0009 7FF0  
0x000A 7FF0  
Bank0  
Bank1  
Bank2  
Bank0  
Bank1  
Bank2  
Bank0  
Bank1  
Bank2  
Bank0  
Bank1  
Bank2  
Bank0  
Bank1  
Bank2  
1
2
3
4
Table 7-19. Secure LFU Flash Boot Options  
FLASH ENTRY POINT  
OPTION  
BOOTDEF VALUE  
(ADDRESS)  
BANK  
0 (default)  
0x0C  
0x2C  
0x4C  
0x6C  
0x8C  
0x0008 0000  
0x0009 0000  
0x000A 0000  
0x0008 8000  
0x0009 8000  
0x000A 8000  
0x0008 FFF0  
0x0009 FFF0  
0x000A FFF0  
0x0008 8000  
0x0009 0000  
0x0009 0000  
0x0008 EFF0  
0x0009 7FF0  
0x000A 7FF0  
Bank0  
Bank1  
Bank2  
Bank0  
Bank1  
Bank2  
Bank0  
Bank1  
Bank2  
Bank0  
Bank1  
Bank2  
Bank0  
Bank1  
Bank2  
1
2
3
4
Table 7-20. Wait Boot Options  
OPTION  
BOOTDEF VALUE  
WATCHDOG  
Enabled  
0
1
0x04  
0x24  
Disabled  
Copyright © 2021 Texas Instruments Incorporated  
230 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 7-21. SPI Boot Options  
OPTION  
BOOTDEF VALUE  
SPISIMOA  
SPISOMIA  
SPICLKA  
GPIO3  
GPIO3  
GPIO9  
GPIO9  
SPISTEA  
GPIO5  
0
1
2
3
0x06  
0x26  
0x46  
0x66  
GPIO2  
GPIO1  
GPIO16  
GPIO8  
GPIO1  
GPIO0  
GPIO10  
GPIO17  
GPIO11  
GPIO11  
GPIO8  
Table 7-22. Parallel Boot Options  
28x(DSP) CONTROL  
GPIO  
OPTION  
BOOTDEF VALUE  
0x00  
D0-D7 GPIO  
HOST CONTROL GPIO  
0 (default)  
D0 - GPIO28  
D1 - GPIO1  
D2 - GPIO2  
D3 - GPIO3  
D4 - GPIO4  
D5 - GPIO5  
D6 - GPIO6  
D7 - GPIO7  
D0 - GPIO0  
D1 - GPIO1  
D2 - GPIO2  
D3 - GPIO3  
D4 - GPIO4  
D5 - GPIO5  
D6 - GPIO6  
D7 - GPIO7  
GPIO16  
GPIO29  
1
0x20  
GPIO16  
GPIO11  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 231  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
7.12 Dual Code Security Module  
The dual code security module (DCSM) prevents access to on-chip secure memories. The term “secure” means  
access to secure memories and resources is blocked. The term “unsecure” means access is allowed; for  
example, through a debugging tool such as Code Composer Studio(CCS).  
The code security mechanism offers protection for two zones, Zone 1 (Z1) and Zone 2 (Z2). The security  
implementation for both the zones is identical. Each zone has its own dedicated secure resource (OTP memory  
and secure ROM) and allocated secure resource (LSx RAM and flash sectors).  
The security of each zone is ensured by its own 128-bit password (CSM password). The password for each  
zone is stored in an OTP memory location based on a zone-specific link pointer. The link pointer value can be  
changed to program a different set of security settings (including passwords) in OTP.  
Code Security Module Disclaimer  
THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS DESIGNED  
TO PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY AND IS  
WARRANTED BY TEXAS INSTRUMENTS (TI), IN ACCORDANCE WITH ITS STANDARD TERMS  
AND CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS FOR THE WARRANTY  
PERIOD APPLICABLE FOR THIS DEVICE.  
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE  
COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED MEMORY  
CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT AS SET FORTH  
ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS CONCERNING THE CSM OR  
OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY  
OR FITNESS FOR A PARTICULAR PURPOSE.  
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT,  
INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY OUT OF  
YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN ADVISED OF THE  
POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED  
TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR  
OTHER ECONOMIC LOSS.  
Copyright © 2021 Texas Instruments Incorporated  
232 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
7.13 Watchdog  
The watchdog module is the same as the one on previous TMS320C2000 devices, but with an optional lower  
limit on the time between software resets of the counter. This windowed countdown is disabled by default, so the  
watchdog is fully backward-compatible.  
The watchdog generates either a reset or an interrupt. It is clocked from the internal oscillator with a selectable  
frequency divider.  
Figure 7-4 shows the various functional blocks within the watchdog module.  
WDCR.WDPRECLKDIV  
WDCR.WDPS  
WDCR.WDDIS  
WDCNTR  
WDCLK  
(INTOSC1)  
Overflow  
1-count  
delay  
8-bit  
Watchdog  
Counter  
WDCLK  
Divider  
Watchdog  
Prescaler  
SYSRSn  
Clear  
Count  
WDWCR.MIN  
WDKEY (7:0)  
Watchdog  
Window  
Detector  
Out of Window  
Good Key  
Watchdog  
Key Detector  
55 + AA  
WDCR(WDCHK(2:0))  
Bad Key  
WDRSTn  
WDINTn  
Generate  
512-WDCLK  
Output Pulse  
1
0
1
Watchdog Time-out  
SCSR.WDENINT  
Figure 7-4. Windowed Watchdog  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 233  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
7.14 C28x Timers  
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock prescaling. The  
timers have a 32-bit count-down register that generates an interrupt when the counter reaches zero. The counter  
is decremented at the CPU clock speed divided by the prescale value setting. When the counter reaches zero, it  
is automatically reloaded with a 32-bit period value.  
CPU-Timer 0 is for general use and is connected to the PIE block. CPU-Timer 1 is also for general use and is  
connected to INT13 of the CPU. CPU-Timer 2 is reserved for TI-RTOS. It is connected to INT14 of the CPU. If  
TI-RTOS is not being used, CPU-Timer 2 is available for general use.  
CPU-Timer 2 can be clocked by any one of the following:  
SYSCLK (default)  
Internal zero-pin oscillator 1 (INTOSC1)  
Internal zero-pin oscillator 2 (INTOSC2)  
X1 (XTAL)  
7.15 Dual-Clock Comparator (DCC)  
The DCC module is used for evaluating and monitoring the clock input based on a second clock, which can  
be a more accurate and reliable version. This instrumentation is used to detect faults in clock source or clock  
structures, thereby enhancing the system's safety metrics.  
7.15.1 Features  
The DCC has the following features:  
Allows the application to ensure that a fixed ratio is maintained between frequencies of two clock signals.  
Supports the definition of a programmable tolerance window in terms of the number of reference clock cycles.  
Supports continuous monitoring without requiring application intervention.  
Supports a single-sequence mode for spot measurements.  
Allows the selection of a clock source for each of the counters, resulting in several specific use cases.  
7.15.2 Mapping of DCCx Clock Source Inputs  
Table 7-23. DCCx Clock Source0 Table  
DCCxCLKSRC0[3:0]  
CLOCK NAME  
0x0  
0x1  
XTAL/X1  
INTOSC1  
0x2  
INTOSC2  
TCK  
0x4  
0x5  
CPU1.SYSCLK  
0x8  
AUXCLKIN  
0xC  
others  
INPUT XBAR (Output16 of input-xbar)  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
234 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Table 7-24. DCCx Clock Source1 Table  
DCCxCLKSRC1[4:0]  
CLOCK NAME  
PLLRAWCLK  
INTOSC1  
0x0  
0x2  
0x3  
INTOSC2  
0x6  
CPU1.SYSCLK  
0x9  
Input XBAR (Output15 of the input-xbar)  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
others  
AUXCLKIN  
EPWMCLK  
LSPCLK  
ADCCLK  
WDCLK  
CAN0BITCLK  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 235  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
7.16 Configurable Logic Block (CLB)  
The C2000 configurable logic block (CLB) is a collection of blocks that can be interconnected using software to  
implement custom digital logic functions or enhance existing on-chip peripherals. The CLB is able to enhance  
existing peripherals through a set of crossbar interconnections, which provide a high level of connectivity to  
existing control peripherals such as enhanced pulse width modulators (ePWM), enhanced capture modules  
(eCAP), and enhanced quadrature encoder pulse modules (eQEP). The crossbars also allow the CLB to be  
connected to external GPIO pins. In this way, the CLB can be configured to interact with device peripherals to  
perform small logical functions such as comparators, or to implement custom serial data exchange protocols.  
Through the CLB, functions that would otherwise be accomplished using external logic devices can now be  
implemented inside the MCU.  
The CLB peripheral is configured through the CLB tool. For more information on the CLB tool, available  
examples, application reports and users guide, please refer to the following location in your C2000Ware for  
C2000 MCUs package (C2000Ware_2_00_00_03 and higher):  
C2000WARE_INSTALL_LOCATION\utilities\clb_tool\clb_syscfg\doc  
CLB Tool User's Guide  
Designing With the C2000™ Configurable Logic Block (CLB) Application Report  
How to Migrate Custom Logic From an FPGA/CPLD to C2000™ Microcontrollers Application Report  
The CLB module and its interconnections are shown in Figure 7-5.  
GPIO0  
to  
GPIOx  
Asynchronous  
Synchronous  
Sync. + Qual  
Input X-BAR  
INPUT1 œ INPUT6  
CLBx TILE  
OUT4/5  
Other Sources  
CLB X-BAR  
CLB INPUT X-BAR  
AUXSIG0 œ AUXSIG7  
Other Sources  
CLB  
CLB TILE1  
CELL  
GPREG  
CLB Global Signals  
IN0-7  
OUT 0-7  
Local  
Signals  
.
.
.
CLB Tile Outputs  
ñ
ñ
Intersect other Peripherals  
OUTPUT X-BAR  
INPUT1 œ INPUT16  
CLB TILEx  
CELL  
GPREG  
IN0-7  
OUT 0-7  
Local  
Signals  
All CLB Tile Outputs  
CLB OUTPUT X-BAR  
GPIO MUX  
Figure 7-5. GPIO to CLB Tile Connections  
Copyright © 2021 Texas Instruments Incorporated  
236 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
Absolute encoder protocol interfaces are now provided as Position Manager solutions in the C2000Ware  
MotorControl SDK. Configuration files, application programmer interface (API), and use examples for such  
solutions are provided with C2000Ware MotorControl SDK. In some solutions, the TI-configured CLB is used  
with other on-chip resources, such as the SPI port or the C28x CPU, to perform more complex functionality.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 237  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
8 Applications, Implementation, and Layout  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 TI Reference Design  
The TI Reference Design Library is a robust reference design library spanning analog, embedded processor,  
and connectivity. Created by TI experts to help you jump start your system design, all reference designs include  
schematic or block diagrams, BOMs, and design files to speed your time to market.  
Search and download TI reference designs at Select TI reference designs.  
Copyright © 2021 Texas Instruments Incorporated  
238 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
9 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
9.1 Getting Started and Next Steps  
The Getting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guide covers all  
aspects of development with C2000 devices from hardware to support resources. In addition to key reference  
documents, each section provides relevant links and resources to further expand on the information covered.  
9.2 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320  
MCU devices and support tools. Each TMS320MCU commercial family member has one of three prefixes:  
TMX, TMP, or TMS (for example, TMS320F280039C). Texas Instruments recommends two of three possible  
prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of  
product development from engineering prototypes (with TMX for devices and TMDX for tools) through fully  
qualified production devices and tools (with TMS for devices and TMDS for tools).  
Device development evolutionary flow:  
TMX Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
TMP Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
TMS Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.  
TMDS Fully-qualified development-support product.  
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, PN) and temperature range (for example, S).  
For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your TI  
sales representative.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 239  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
Generic Part Number:  
Orderable Part Number:  
TMS  
X
320  
F
F
280039C  
-Q1  
Q1  
280039C (blank) PZ  
R
PREFIX(A)  
AUTOMOTIVE AEC-Q100 QUALIFICATION  
TMX (X) = experimental device  
TMS (blank) = qualified device  
(blank) = Not AEC-Q100 qualified  
Q1 = AEC-Q100 Grade 1 qualification  
DEVICE FAMILY  
SHIPPING OPTIONS  
320 = TMS320 MCU Family  
(blank) = Tray  
R = Tape and Reel  
TECHNOLOGY  
F = Flash  
PACKAGE TYPE  
PZ = 100-pin Low-Profile Quad Flatpack (LQFP)  
PN = 80-pin LQFP  
DEVICE  
PM = 64-pin LQFP  
PT = 48-pin LQFP  
280039  
280038  
280037  
280036  
280034  
230033  
280039C  
280038C  
280037C  
280036C  
TEMPERATURE RANGE  
(blank), S = –40°C to 125°C (TA); –40°C to 150°C (TJ)  
A. Prefix X is used in orderable part numbers.  
Figure 9-1. Device Nomenclature  
9.3 Markings  
Figure 9-2, Figure 9-3, Figure 9-4, and Figure 9-5 show the package symbolization. Table 9-1 lists the silicon  
revision codes.  
YMLLLLS  
Lot Trace Code  
=
YM  
LLLL  
S
2-Digit Year/Month Code  
Assembly Lot Code  
Assembly Site Code  
Wafer Fab Code (one or two characters) as applicable  
Silicon Revision Code  
=
=
=
=
=
X
F280039CPZQ  
$$#−YMLLLLS  
G4  
$$  
#
G4  
ECAT  
=
Package  
Pin 1  
Figure 9-2. Package Symbolization for PZ Package  
YMLLLLS  
Lot Trace Code  
=
YM  
LLLL  
S
2-Digit Year/Month Code  
Assembly Lot Code  
Assembly Site Code  
Wafer Fab Code (one or two characters) as applicable  
Silicon Revision Code  
=
=
=
=
=
X
F280039CSPN  
$$#−YMLLLLS  
G4  
$$  
#
G4  
ECAT  
=
Package  
Pin 1  
Figure 9-3. Package Symbolization for PN Package  
Copyright © 2021 Texas Instruments Incorporated  
240 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
YMLLLLS  
Lot Trace Code  
=
YM  
LLLL  
S
2-Digit Year/Month Code  
Assembly Lot Code  
Assembly Site Code  
Wafer Fab Code (one or two characters) as applicable  
Silicon Revision Code  
=
=
=
=
=
X
F280039CSPM  
$$#−YMLLLLS  
G4  
$$  
#
G4  
ECAT  
=
Package  
Pin 1  
Figure 9-4. Package Symbolization for PM Package  
YMLLLLS  
Lot Trace Code  
=
YM  
LLLL  
S
980  
$$  
2-Digit Year/Month Code  
Assembly Lot Code  
Assembly Site Code  
TI E.I.A. Code  
Wafer Fab Code (one or two characters) as applicable  
Silicon Revision Code  
=
=
=
=
=
=
980  
PT  
X
F280037CS  
YMLLLLS  
#
$$#  
G4  
G4  
ECAT  
=
Package  
Pin 1  
Figure 9-5. Package Symbolization for PT Package  
Table 9-1. Revision Identification  
REVID(1)  
ADDRESS: 0x5D00C  
SILICON REVISION CODE  
Blank  
SILICON REVISION  
COMMENTS  
This silicon revision is available as TMX.  
0
0x0000 0000  
(1) Silicon Revision ID  
9.4 Tools and Software  
TI offers an extensive line of development tools. Some of the tools and software to evaluate the performance  
of the device, generate code, and develop solutions follow. To view all available tools and software for C2000™  
real-time control MCUs, visit the C2000 real-time control MCUs – Design & development page.  
Development Tools  
TMDSCNCD280039C Control Card  
The F280039C controlCARD is an HSEC180 controlCARD based evaluation and development tool for the  
C2000™ F28003x series of microcontroller products. controlCARDs are ideal to use for initial evaluation and  
system prototyping. controlCARDs are complete board-level modules that utilize one of two standard form  
factors (100-pin DIMM or 180-pin HSEC ) to provide a low-profile single-board controller solution. For first  
evaluation controlCARDs are typically purchased bundled with a baseboard or bundled in an application kit.  
TI Resource Explorer  
To enhance your experience, be sure to check out the TI Resource Explorer to browse examples, libraries, and  
documentation for your applications.  
HSEC180 controlCARD Baseboard Docking Station  
TMDSHSECDOCK is a baseboard that provides header pin access to key signals on compatible HSEC180-  
based controlCARDs. A breadboard area is available for rapid prototyping. Board power can be provided by the  
provided USB cable or a 5-V barrel supply.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 241  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
XDS110 JTAG Debug Probe  
The Texas Instruments XDS110 is a new class of debug probe (emulator) for TI embedded processors. The  
XDS110 replaces the XDS100 family while supporting a wider variety of standards (IEEE1149.1, IEEE1149.7,  
SWD) in a single pod. Also, all XDS debug probes support Core and System Trace in all Arm® and DSP  
processors that feature an Embedded Trace Buffer (ETB). For Core Trace over pins the XDS560v2 PRO TRACE  
Receiver & Debug Probe is required.  
XDS200 USB Debug Probe  
The XDS200 is a debug probe (emulator) used for debugging TI embedded devices. The XDS200 features a  
balance of low cost with good performance as compared to the low cost XDS110 and the high performance  
XDS560v2. It supports a wide variety of standards (IEEE1149.1, IEEE1149.7, SWD) in a single pod. All XDS  
debug probes support Core and System Trace in all Arm® and DSP processors that feature an Embedded Trace  
Buffer (ETB). For Core Trace over pins the XDS560v2 PRO TRACE Receiver & Debug Probe is required.  
XDS560v2 System Trace USB Debug Probe  
The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional  
JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7). Note that it does not support serial wire debug (SWD).  
Software Tools  
C2000™ Software Guide  
C2000™ real-time controllers are a portfolio of high-performance microcontrollers that are purpose-built  
to control power electronics and provide advanced digital signal processing for industrial and automotive  
applications. Software components to program various modules in C2000 MCUs are released as part of C2000  
software releases. This guide provides an overview of various software components and available functionality.  
C2000Ware for C2000 MCUs  
C2000Ware for C2000™ MCUs is a cohesive set of software and documentation created to minimize  
development time. It includes device-specific drivers, libraries, and peripheral examples.  
Digital Power SDK  
Digital Power SDK is a cohesive set of software infrastructure, tools, and documentation designed to minimize  
C2000 MCU-based digital power system development time targeted for various AC-DC, DC-DC and DC-AC  
power supply applications. The software includes firmware that runs on C2000 digital power evaluation modules  
(EVMs) and reference designs, which are targeted for solar, telecom, server, electric vehicle chargers and  
industrial power delivery applications. Digital Power SDK provides all the needed resources at every stage of  
development and evaluation in a digital power applications.  
Motor Control SDK  
Motor Control SDK is a cohesive set of software infrastructure, tools, and documentation designed to minimize  
C2000 MCU-based motor control system development time targeted for various three-phase motor control  
applications. The software includes firmware that runs on C2000 motor control evaluation modules (EVMs) and  
reference designs, which are targeted for industrial drive and other motor control, Motor Control SDK provides  
all the needed resources at every stage of development and evaluation for high-performance motor control  
applications.  
Code Composer Studio(CCS) Integrated Development Environment (IDE) for C2000 microcontrollers  
Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller  
and Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and  
debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build  
environment, debugger, profiler, and many other features. The intuitive IDE provides a single user interface  
taking the user through each step of the application development flow. Familiar tools and interfaces allow  
users to get started faster than ever before. Code Composer Studio combines the advantages of the Eclipse  
software framework with advanced embedded debug capabilities from TI resulting in a compelling feature-rich  
development environment for embedded developers.  
SysConfig System configuration tool  
SysConfig is a comprehensive collection of graphical utilities for configuring pins, peripherals, radios,  
subsystems, and other components. SysConfig helps you manage, expose and resolve conflicts visually so  
that you have more time to create differentiated applications. The tool's output includes C header and code files  
Copyright © 2021 Texas Instruments Incorporated  
242 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
that can be used with software development kit (SDK) examples or used to configure custom software. The  
SysConfig tool automatically selects the pinmux settings that satisfy the entered requirements. The SysConfig  
tool is delivered integrated in CCS, as a standalone installer, or can be used via the dev.ti.com cloud tools portal.  
For more information about the SysConfig system configuration tool, visit the System configuation tool page.  
C2000 Third-party search tool  
TI has partnered with multiple companies to offer a wide range of solutions and services for TI C2000 devices.  
These companies can accelerate your path to production using C2000 devices. Download this search tool to  
quickly browse third-party details and find the right third-party to meet your needs.  
UniFlash Standalone Flash Tool  
UniFlash is a standalone tool used to program on-chip flash memory through a GUI, command line, or scripting  
interface.  
C2000 code generation tools - compiler  
The TI C2000 C/C++ Compiler and Assembly Language Tools support development of applications for TI C2000  
Microcontroller platforms, including the Concerto (F28M3xx), Entry-Performance (280xx), Premium-Performance  
Floating-Point (283xx), and C2000 Fixed-Point (2823x/280x/281x) Microcontroller devices.  
Models  
Various models are available for download from the product Design & development pages. These models  
include I/O Buffer Information Specification (IBIS) Models and Boundary-Scan Description Language (BSDL)  
Models. To view all available models, visit the Design tools & simulation section of the Design & development  
page for each device.  
Training  
To help assist design engineers in taking full advantage of the C2000 microcontroller features and performance,  
TI has developed a variety of training resources. Utilizing the online training materials and downloadable  
hands-on workshops provides an easy means for gaining a complete working knowledge of the C2000  
microcontroller family. These training resources have been designed to decrease the learning curve, while  
reducing development time, and accelerating product time to market. For more information on the various  
training resources, visit the C2000™ real-time control MCUs – Support & training site. Additionally, the C2000  
Academy course provides new users with a way to ramp quickly with C2000 devices and their many features.  
This is a great entry point for users getting started with C2000, and is available at the C2000 Academy resource  
explorer page.  
9.5 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
The current documentation that describes the processor, related peripherals, and other technical collateral  
follows.  
Errata  
TMS320F28003x Real-Time MCUs Silicon Errata describes known advisories on silicon and provides  
workarounds.  
Technical Reference Manual  
TMS320F28003x Real-Time Microcontrollers Technical Reference Manual details the integration, the  
environment, the functional description, and the programming models for each peripheral and subsystem in  
the F28003x real-time microcontrollers.  
CPU User's Guides  
TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and the  
assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). This Reference  
Guide also describes emulation features available on these DSPs.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 243  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
TMS320C28x Extended Instruction Sets Technical Reference Manual describes the architecture, pipeline, and  
instruction set of the TMU, VCU-II, and FPU accelerators.  
Peripheral Guides  
C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the 28x  
DSPs.  
Tools Guides  
TMS320C28x Assembly Language Tools v21.6.0.LTS User's Guide describes the assembly language tools  
(assembler and other tools used to develop assembly language code), assembler directives, macros, common  
object file format, and symbolic debugging directives for the TMS320C28x device.  
TMS320C28x Optimizing C/C++ Compiler v21.6.0.LTS User's Guide describes the TMS320C28x C/C++  
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly  
language source code for the TMS320C28x device.  
Application Reports  
The SMT & packaging application notes website lists documentation on TI’s surface mount technology (SMT)  
and application notes on a variety of packaging-related topics.  
Semiconductor Packing Methodology describes the packing methodologies employed to prepare semiconductor  
devices for shipment to end users.  
Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful lifetime  
of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general  
engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement.  
An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS  
including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/  
output structures, and future trends.  
Serial Flash Programming of C2000™ Microcontrollers discusses using a flash kernel and ROM loaders for  
serial programming a device.  
Fast Integer Division – A Differentiated Offering From C2000™ Product Family provides an overview of the  
different division and modulo (remainder) functions and its associated properties.  
C2000™ Key Technology Guide provides a deeper look into the components that differentiate the C2000  
Microcontroller Unit (MCU) as it pertains to Real-Time Control Systems.  
9.6 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
Copyright © 2021 Texas Instruments Incorporated  
244 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
TMS320F280039C, TMS320F280037C  
www.ti.com  
SPRSP61 – OCTOBER 2021  
9.7 Trademarks  
C2000, TMS320C2000, Code Composer Studio, TMS320, TI E2Eare trademarks of Texas Instruments.  
Bosch® is a registered trademark of Robert Bosch GmbH Corporation.  
Arm® are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
All trademarks are the property of their respective owners.  
9.8 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.9 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 245  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
 
 
TMS320F280039C, TMS320F280037C  
SPRSP61 – OCTOBER 2021  
www.ti.com  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
To learn more about TI packaging, visit the Packaging information website.  
Copyright © 2021 Texas Instruments Incorporated  
246 Submit Document Feedback  
Product Folder Links: TMS320F280039C TMS320F280037C  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
XF280037CSPT  
XF280039CSPM  
XF280039CSPN  
XF280039CSPZ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
PT  
PM  
PN  
PZ  
48  
64  
90  
90  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Call TI  
Call TI  
Call TI  
80  
119  
90  
100  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Oct-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
PM0064A  
LQFP - 1.6 mm max height  
SCALE 1.400  
PLASTIC QUAD FLATPACK  
10.2  
9.8  
B
NOTE 3  
64  
49  
PIN 1 ID  
1
48  
10.2  
9.8  
12.2  
TYP  
11.8  
NOTE 3  
33  
16  
32  
17  
A
0.27  
0.17  
64X  
60X 0.5  
4X 7.5  
0.08  
C A B  
C
(0.13) TYP  
SEATING PLANE  
0.08  
SEE DETAIL A  
0.25  
GAGE PLANE  
(1.4)  
1.6 MAX  
0.05 MIN  
0.75  
0.45  
0 -7  
DETAIL  
SCALE: 14  
A
DETAIL A  
TYPICAL  
4215162/A 03/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PM0064A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
49  
64  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
(R0.05) TYP  
33  
16  
17  
32  
(11.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
0.05 MAX  
ALL AROUND  
EXPOSED METAL  
METAL  
0.05 MIN  
ALL AROUND  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215162/A 03/2017  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. For more information, see Texas Instruments literature number SLMA004 (www.ti.com/lit/slma004).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PM0064A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
64  
49  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
(R0.05) TYP  
16  
33  
17  
32  
(11.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:8X  
4215162/A 03/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
MECHANICAL DATA  
MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTQF003A – OCTOBER 1994 – REVISED DECEMBER 1996  
PT (S-PQFP-G48)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
M
0,08  
0,50  
36  
25  
37  
24  
48  
13  
0,13 NOM  
1
12  
5,50 TYP  
7,20  
SQ  
6,80  
Gage Plane  
9,20  
SQ  
8,80  
0,25  
0,05 MIN  
0°7°  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,10  
1,60 MAX  
4040052/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
D. This may also be a thermally enhanced plastic package with leads conected to the die pads.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTQF010A – JANUARY 1995 – REVISED DECEMBER 1996  
PN (S-PQFP-G80)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
60  
M
0,08  
41  
61  
40  
0,13 NOM  
80  
21  
1
20  
Gage Plane  
9,50 TYP  
0,25  
12,20  
SQ  
11,80  
0,05 MIN  
0°7°  
14,20  
SQ  
13,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040135 /B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TMS320F280037C

TMS320F28003x Real-Time Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280037C-Q1

TMS320F28003x Real-Time Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280038-Q1

TMS320F28003x Real-Time Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280038C-Q1

TMS320F28003x Real-Time Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280039

TMS320F28003x Real-Time Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280039-Q1

TMS320F28003x Real-Time Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280039C

TMS320F28003x Real-Time Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280039C-Q1

TMS320F28003x Real-Time Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28003X

TMS320F28003x Real-Time Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280040-Q1

TMS320F28004x Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280040C-Q1

TMS320F28004x Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280041

具有 100MHz 频率、FPU、TMU、128kB 闪存、PGA、SDFM 的 C2000™ 32 位 MCU

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI