TMS320F28015PZSR [TI]

具有 60MHz 频率、32KB 闪存、8 通道 PWM 的 C2000™ 32 位 MCU | PZ | 100 | -40 to 125;
TMS320F28015PZSR
型号: TMS320F28015PZSR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 60MHz 频率、32KB 闪存、8 通道 PWM 的 C2000™ 32 位 MCU | PZ | 100 | -40 to 125

时钟 控制器 微控制器 微控制器和处理器 外围集成电路 数字信号处理器 闪存
文件: 总140页 (文件大小:1261K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
Data Manual  
Literature Number: SPRS230J  
October 2003Revised September 2007  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Contents  
Revision History ........................................................................................................................... 9  
1
2
3
F280x, F2801x, C280x DSPs................................................................................................. 11  
1.1  
Features ..................................................................................................................... 11  
Getting Started.............................................................................................................. 12  
1.2  
Introduction....................................................................................................................... 13  
2.1  
Pin Assignments............................................................................................................ 15  
Signal Descriptions......................................................................................................... 21  
2.2  
Functional Overview ........................................................................................................... 27  
3.1  
Memory Maps............................................................................................................... 28  
Brief Descriptions........................................................................................................... 36  
3.2  
3.2.1  
3.2.2  
3.2.3  
3.2.4  
3.2.5  
3.2.6  
3.2.7  
3.2.8  
3.2.9  
C28x CPU ....................................................................................................... 36  
Memory Bus (Harvard Bus Architecture) .................................................................... 36  
Peripheral Bus .................................................................................................. 36  
Real-Time JTAG and Analysis ................................................................................ 36  
Flash .............................................................................................................. 37  
ROM............................................................................................................... 37  
M0, M1 SARAMs ............................................................................................... 37  
L0, L1, H0 SARAMs ............................................................................................ 37  
Boot ROM ........................................................................................................ 37  
3.2.10 Security .......................................................................................................... 39  
3.2.11 Peripheral Interrupt Expansion (PIE) Block .................................................................. 40  
3.2.12 External Interrupts (XINT1, XINT2, XNMI) ................................................................... 40  
3.2.13 Oscillator and PLL .............................................................................................. 40  
3.2.14 Watchdog ........................................................................................................ 40  
3.2.15 Peripheral Clocking ............................................................................................. 40  
3.2.16 Low-Power Modes .............................................................................................. 40  
3.2.17 Peripheral Frames 0, 1, 2 (PFn) .............................................................................. 41  
3.2.18 General-Purpose Input/Output (GPIO) Multiplexer ......................................................... 41  
3.2.19 32-Bit CPU-Timers (0, 1, 2) ................................................................................... 41  
3.2.20 Control Peripherals ............................................................................................. 41  
3.2.21 Serial Port Peripherals ......................................................................................... 42  
Register Map................................................................................................................ 42  
Device Emulation Registers............................................................................................... 44  
Interrupts .................................................................................................................... 44  
3.3  
3.4  
3.5  
3.5.1  
External Interrupts .............................................................................................. 47  
3.6  
System Control ............................................................................................................. 48  
3.6.1  
3.6.2  
OSC and PLL Block ............................................................................................ 49  
Watchdog Block ................................................................................................. 52  
3.7  
Low-Power Modes Block .................................................................................................. 53  
4
Peripherals ........................................................................................................................ 54  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
32-Bit CPU-Timers 0/1/2 .................................................................................................. 54  
Enhanced PWM Modules (ePWM1/2/3/4/5/6).......................................................................... 56  
Hi-Resolution PWM (HRPWM) ........................................................................................... 58  
Enhanced CAP Modules (eCAP1/2/3/4) ................................................................................ 58  
Enhanced QEP Modules (eQEP1/2)..................................................................................... 61  
Enhanced Analog-to-Digital Converter (ADC) Module ................................................................ 63  
4.6.1  
ADC Connections if the ADC Is Not Used ................................................................... 66  
ADC Registers ................................................................................................... 67  
4.6.2  
4.7  
4.8  
Enhanced Controller Area Network (eCAN) Modules (eCAN-A and eCAN-B)..................................... 68  
Serial Communications Interface (SCI) Modules (SCI-A, SCI-B) .................................................... 73  
2
Contents  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
4.9  
Serial Peripheral Interface (SPI) Modules (SPI-A, SPI-B, SPI-C, SPI-D)........................................... 76  
4.10 Inter-Integrated Circuit (I2C) .............................................................................................. 80  
4.11 GPIO MUX .................................................................................................................. 82  
Device Support .................................................................................................................. 86  
5
6
5.1  
Device and Development Support Tool Nomenclature................................................................ 86  
5.2  
Documentation Support ................................................................................................... 88  
Electrical Specifications...................................................................................................... 91  
6.1  
6.2  
6.3  
6.4  
Absolute Maximum Ratings............................................................................................... 91  
Recommended Operating Conditions ................................................................................... 92  
Electrical Characteristics ................................................................................................. 92  
Current Consumption ..................................................................................................... 93  
6.4.1  
Reducing Current Consumption .............................................................................. 97  
Current Consumption Graphs.................................................................................. 98  
6.4.2  
6.5  
6.6  
Emulator Connection Without Signal Buffering for the DSP.......................................................... 99  
Timing Parameter Symbology........................................................................................... 100  
6.6.1  
6.6.2  
6.6.3  
General Notes on Timing Parameters....................................................................... 100  
Test Load Circuit .............................................................................................. 101  
Device Clock Table ........................................................................................... 101  
6.7  
6.8  
Clock Requirements and Characteristics ............................................................................. 103  
Power Sequencing........................................................................................................ 104  
6.8.1  
Power Management and Supervisory Circuit Solutions................................................... 104  
6.9  
General-Purpose Input/Output (GPIO)................................................................................. 107  
6.9.1  
6.9.2  
6.9.3  
6.9.4  
GPIO - Output Timing ......................................................................................... 107  
GPIO - Input Timing ........................................................................................... 108  
Sampling Window Width for Input Signals.................................................................. 109  
Low-Power Mode Wakeup Timing........................................................................... 110  
6.10 Enhanced Control Peripherals .......................................................................................... 113  
6.10.1 Enhanced Pulse Width Modulator (ePWM) Timing........................................................ 113  
6.10.2 Trip-Zone Input Timing ........................................................................................ 113  
6.10.3 External Interrupt Timing...................................................................................... 115  
6.10.4 I2C Electrical Specification and Timing ..................................................................... 116  
6.10.5 Serial Peripheral Interface (SPI) Master Mode Timing.................................................... 116  
6.10.6 SPI Slave Mode Timing ....................................................................................... 120  
6.10.7 On-Chip Analog-to-Digital Converter ........................................................................ 123  
6.11 Detailed Descriptions .................................................................................................... 128  
6.12 Flash Timing............................................................................................................... 129  
6.13 ROM Timing (C280x only)............................................................................................... 130  
Migrating From F280x Devices to C280x Devices.................................................................. 131  
7
8
7.1  
Migration Issues........................................................................................................... 131  
Mechanical Data ............................................................................................................... 132  
Contents  
3
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
List of Figures  
2-1  
2-2  
2-3  
TMS320F2809, TMS320F2808 100-Pin PZ LQFP (Top View) ............................................................. 16  
TMS320F2806 100-Pin PZ LQFP (Top View)................................................................................. 17  
TMS320F2802, TMS320F2801, TMS320C2802, TMS320C2801 100-Pin PZ LQFP  
(Top View) ......................................................................................................................... 18  
2-4  
2-5  
TMS320F2801x 100-Pin PZ LQFP  
(Top View) ......................................................................................................................... 19  
TMS320F2809, TMS320F2808, TMS320F2806,TMS320F2802, TMS320F2801,  
TMS320F28016, TMS320F28015, TMS320C2802, TMS320C2801  
100-Ball GGM and ZGM MicroStar BGA™ (Bottom View) .................................................................. 20  
3-1  
Functional Block Diagram........................................................................................................ 27  
F2809 Memory Map .............................................................................................................. 28  
F2808 Memory Map .............................................................................................................. 29  
F2806 Memory Map .............................................................................................................. 30  
F2802, C2802 Memory Map..................................................................................................... 31  
F2801, F28015, F28016, C2801 Memory Map ............................................................................... 32  
External and PIE Interrupt Sources............................................................................................. 45  
Multiplexing of Interrupts Using the PIE Block ................................................................................ 46  
Clock and Reset Domains ....................................................................................................... 48  
OSC and PLL Block Diagram ................................................................................................... 49  
Using a 3.3-V External Oscillator ............................................................................................... 50  
Using a 1.8-V External Oscillator ............................................................................................... 50  
Using the Internal Oscillator ..................................................................................................... 50  
Watchdog Module................................................................................................................. 52  
CPU-Timers........................................................................................................................ 54  
CPU-Timer Interrupt Signals and Output Signal .............................................................................. 55  
Multiple PWM Modules in a 280x System ..................................................................................... 56  
ePWM Sub-Modules Showing Critical Internal Signal Interconnections................................................... 58  
eCAP Functional Block Diagram................................................................................................ 59  
eQEP Functional Block Diagram................................................................................................ 61  
Block Diagram of the ADC Module ............................................................................................. 64  
ADC Pin Connections With Internal Reference ............................................................................... 65  
ADC Pin Connections With External Reference .............................................................................. 66  
eCAN Block Diagram and Interface Circuit .................................................................................... 69  
eCAN-A Memory Map ............................................................................................................ 70  
eCAN-B Memory Map ............................................................................................................ 71  
Serial Communications Interface (SCI) Module Block Diagram ............................................................ 75  
SPI Module Block Diagram (Slave Mode) ..................................................................................... 79  
I2C Peripheral Module Interfaces ............................................................................................... 81  
GPIO MUX Block Diagram....................................................................................................... 82  
Qualification Using Sampling Window.......................................................................................... 85  
Example of TMS320x280x Device Nomenclature ............................................................................ 87  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
3-9  
3-10  
3-11  
3-12  
3-13  
3-14  
4-1  
4-2  
4-3  
4-4  
4-5  
4-6  
4-7  
4-8  
4-9  
4-10  
4-11  
4-12  
4-13  
4-14  
4-15  
4-16  
4-17  
5-1  
4
List of Figures  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6-1  
Typical Operational Current Versus Frequency (F2808) .................................................................... 98  
Typical Operational Power Versus Frequency (F2808)...................................................................... 98  
Emulator Connection Without Signal Buffering for the DSP................................................................. 99  
3.3-V Test Load Circuit ......................................................................................................... 101  
Clock Timing ..................................................................................................................... 104  
Power-on Reset.................................................................................................................. 105  
Warm Reset ...................................................................................................................... 106  
Example of Effect of Writing Into PLLCR Register.......................................................................... 107  
General-Purpose Output Timing............................................................................................... 107  
Sampling Mode .................................................................................................................. 108  
General-Purpose Input Timing................................................................................................. 109  
IDLE Entry and Exit Timing .................................................................................................... 110  
STANDBY Entry and Exit Timing Diagram................................................................................... 111  
HALT Wake-Up Using GPIOn ................................................................................................. 112  
PWM Hi-Z Characteristics ...................................................................................................... 113  
ADCSOCAO or ADCSOCBO Timing ......................................................................................... 115  
External Interrupt Timing ....................................................................................................... 115  
SPI Master Mode External Timing (Clock Phase = 0) ...................................................................... 118  
SPI Master Mode External Timing (Clock Phase = 1) ...................................................................... 120  
SPI Slave Mode External Timing (Clock Phase = 0)........................................................................ 121  
SPI Slave Mode External Timing (Clock Phase = 1)........................................................................ 122  
ADC Power-Up Control Bit Timing ............................................................................................ 124  
ADC Analog Input Impedance Model ......................................................................................... 125  
Sequential Sampling Mode (Single-Channel) Timing....................................................................... 126  
Simultaneous Sampling Mode Timing ........................................................................................ 127  
6-2  
6-3  
6-4  
6-5  
6-6  
6-7  
6-8  
6-9  
6-10  
6-11  
6-12  
6-13  
6-14  
6-15  
6-16  
6-17  
6-18  
6-19  
6-20  
6-21  
6-22  
6-23  
6-24  
6-25  
List of Figures  
5
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
List of Tables  
2-1  
Hardware Features (100-MHz Devices)........................................................................................ 14  
Hardware Features (60-MHz Devices) ......................................................................................... 15  
Signal Descriptions ............................................................................................................... 21  
Addresses of Flash Sectors in F2809 .......................................................................................... 33  
Addresses of Flash Sectors in F2808 .......................................................................................... 33  
Addresses of Flash Sectors in F2806, F2802................................................................................. 33  
Addresses of Flash Sectors in F2801, F28015, F28016..................................................................... 34  
Impact of Using the Code Security Module.................................................................................... 34  
Wait-states ......................................................................................................................... 35  
Boot Mode Selection.............................................................................................................. 38  
Peripheral Frame 0 Registers .................................................................................................. 43  
Peripheral Frame 1 Registers .................................................................................................. 43  
Peripheral Frame 2 Registers .................................................................................................. 44  
Device Emulation Registers ..................................................................................................... 44  
PIE Peripheral Interrupts ........................................................................................................ 46  
PIE Configuration and Control Registers ...................................................................................... 47  
External Interrupt Registers...................................................................................................... 47  
PLL, Clocking, Watchdog, and Low-Power Mode Registers ................................................................ 49  
PLLCR Register Bit Definitions.................................................................................................. 51  
Possible PLL Configuration Modes ............................................................................................. 51  
Low-Power Modes ................................................................................................................ 53  
CPU-Timers 0, 1, 2 Configuration and Control Registers ................................................................... 55  
ePWM Control and Status Registers ........................................................................................... 57  
eCAP Control and Status Registers ............................................................................................ 59  
eQEP Control and Status Registers............................................................................................ 62  
ADC Registers..................................................................................................................... 67  
3.3-V eCAN Transceivers ....................................................................................................... 69  
CAN Register Map ............................................................................................................... 72  
SCI-A Registers .................................................................................................................. 74  
SCI-B Registers .................................................................................................................. 74  
SPI-A Registers ................................................................................................................... 77  
SPI-B Registers ................................................................................................................... 77  
SPI-C Registers ................................................................................................................... 78  
SPI-D Registers ................................................................................................................... 78  
I2C-A Registers.................................................................................................................... 81  
GPIO Registers ................................................................................................................... 83  
F2808 GPIO MUX Table ......................................................................................................... 84  
TMS320F2809, TMS320F2808 Current Consumption by Power-Supply Pins at 100-MHz SYSCLKOUT............ 93  
TMS320F2806 Current Consumption by Power-Supply Pins at 100-MHz SYSCLKOUT .............................. 94  
2-2  
2-3  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
3-9  
3-10  
3-11  
3-12  
3-13  
3-14  
3-15  
3-16  
3-17  
3-18  
4-1  
4-2  
4-3  
4-4  
4-5  
4-6  
4-7  
4-8  
4-9  
4-10  
4-11  
4-12  
4-13  
4-14  
4-15  
4-16  
6-1  
6-2  
6
List of Tables  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6-3  
TMS320F2802, TMS320F2801 Current Consumption by Power-Supply Pins at 100-MHz SYSCLKOUT............ 95  
TMS320C2802, TMS320C2801 Current Consumption by Power-Supply Pins at 100-MHz SYSCLKOUT ........... 96  
Typical Current Consumption by Various Peripherals (at 100 MHz) ...................................................... 97  
TMS320x280x Clock Table and Nomenclature (100-MHz Devices)...................................................... 101  
TMS320x280x Clock Table and Nomenclature (60-MHz Devices) ....................................................... 102  
Input Clock Frequency .......................................................................................................... 103  
XCLKIN Timing Requirements - PLL Enabled............................................................................... 103  
XCLKIN Timing Requirements - PLL Disabled .............................................................................. 103  
XCLKOUT Switching Characteristics (PLL Bypassed or Enabled) ....................................................... 103  
Power Management and Supervisory Circuit Solutions .................................................................... 104  
Reset (XRS) Timing Requirements ........................................................................................... 106  
General-Purpose Output Switching Characteristics......................................................................... 107  
General-Purpose Input Timing Requirements ............................................................................... 108  
IDLE Mode Timing Requirements ............................................................................................. 110  
IDLE Mode Switching Characteristics......................................................................................... 110  
STANDBY Mode Timing Requirements ...................................................................................... 110  
STANDBY Mode Switching Characteristics ................................................................................. 111  
HALT Mode Timing Requirements ............................................................................................ 111  
HALT Mode Switching Characteristics ....................................................................................... 112  
ePWM Timing Requirements................................................................................................... 113  
ePWM Switching Characteristics .............................................................................................. 113  
Trip-Zone input Timing Requirements ........................................................................................ 113  
High Resolution PWM Characteristics at SYSCLKOUT = (60 - 100 MHz) .............................................. 114  
Enhanced Capture (eCAP) Timing Requirement............................................................................ 114  
eCAP Switching Characteristics ............................................................................................... 114  
Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements.................................................... 114  
eQEP Switching Characteristics............................................................................................... 114  
External ADC Start-of-Conversion Switching Characteristics.............................................................. 114  
External Interrupt Timing Requirements...................................................................................... 115  
External Interrupt Switching Characteristics ................................................................................. 115  
I2C Timing ....................................................................................................................... 116  
SPI Master Mode External Timing (Clock Phase = 0) ...................................................................... 117  
SPI Master Mode External Timing (Clock Phase = 1) ...................................................................... 119  
SPI Slave Mode External Timing (Clock Phase = 0)........................................................................ 120  
SPI Slave Mode External Timing (Clock Phase = 1)........................................................................ 121  
ADC Electrical Characteristics (over recommended operating conditions) .............................................. 123  
ADC Power-Up Delays.......................................................................................................... 124  
Current Consumption for Different ADC Configurations (at 12.5-MHz ADCCLK)....................................... 124  
Sequential Sampling Mode Timing............................................................................................ 126  
Simultaneous Sampling Mode Timing ........................................................................................ 127  
Flash Endurance................................................................................................................. 129  
6-4  
6-5  
6-6  
6-7  
6-8  
6-9  
6-10  
6-11  
6-12  
6-13  
6-14  
6-15  
6-16  
6-17  
6-18  
6-19  
6-20  
6-21  
6-22  
6-23  
6-24  
6-25  
6-26  
6-27  
6-28  
6-29  
6-30  
6-31  
6-32  
6-33  
6-34  
6-35  
6-36  
6-37  
6-38  
6-39  
6-40  
6-41  
6-42  
6-43  
List of Tables  
7
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6-44  
6-45  
6-46  
6-47  
6-48  
8-1  
Flash Parameters at 100-MHz SYSCLKOUT................................................................................ 129  
Flash/OTP Access Timing...................................................................................................... 129  
Minimum Required Flash/OTP Wait-States at Different Frequencies .................................................... 130  
ROM/OTP Access Timing ...................................................................................................... 130  
ROM/ROM (OTP area) Minimum Required Wait-States at Different Frequencies ..................................... 130  
F280x Thermal Model 100-pin GGM Results................................................................................ 132  
F280x Thermal Model 100-pin PZ Results................................................................................... 132  
C280x Thermal Model 100-pin GGM Results................................................................................ 132  
C280x Thermal Model 100-pin PZ Results................................................................................... 132  
F2809 Thermal Model 100-pin GGM Results ............................................................................... 132  
F2809 Thermal Model 100-pin PZ Results .................................................................................. 133  
8-2  
8-3  
8-4  
8-5  
8-6  
8
List of Tables  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
This data manual was revised from SPRS230I to SPRS230J.  
This document has been reviewed for technical accuracy; the technical content is up to date as of the  
specified release date with the following changes:  
Technical Changes Made for Revision J  
Location  
Additions, Deletions, Changes  
Section 2.1  
Figure 2-3  
Modified first paragraph in section on pin assignments  
Modified the TMS320F2802, TMS320F2801, TMS320C2802, TMS320C2801 100-Pin PZ LQFP  
pinmap  
Figure 2-5  
Table 2-3  
Added 2801x devices to title of pinmap for GGM and ZGM packages  
Changed description of EPWM5A and EPWM6A  
Added a note to the 2802 memory map  
Added a note to the 2801, 2801x memory map  
Modified Wait-states table  
Figure 3-5  
Figure 3-6  
Table 3-6  
Table 3-6  
Modified section on ROM  
Section 3.2.10  
Section 3.2.19  
Figure 3-7  
Figure 4-2  
Section 4.3  
Deleted part of note in section on security  
Modified section on 32-bit CPU timers  
Modified External and PIE Interrupt Sources figure and added two paragraphs following figure  
Modified figure  
Deleted note in HRPWM section  
Revision History  
9
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
10  
Revision History  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
1
F280x, F2801x, C280x DSPs  
1.1 Features  
High-Performance Static CMOS Technology  
Enhanced Control Peripherals  
100 MHz (10-ns Cycle Time)  
60 MHz (16.67-ns Cycle Time)  
Low-Power (1.8-V Core, 3.3-V I/O) Design  
Up to 16 PWM Outputs  
Up to 6 HRPWM Outputs With 150 ps MEP  
Resolution  
Up to Four Capture Inputs  
Up to Two Quadrature Encoder Interfaces  
Up to Six 32-bit/Six 16-bit Timers  
(1)  
JTAG Boundary Scan Support  
High-Performance 32-Bit CPU (TMS320C28x)  
16 x 16 and 32 x 32 MAC Operations  
16 x 16 Dual MAC  
Harvard Bus Architecture  
Serial Port Peripherals  
Up to 4 SPI Modules  
Up to 2 SCI (UART) Modules  
Up to 2 CAN Modules  
Atomic Operations  
Fast Interrupt Response and Processing  
Unified Memory Programming Model  
Code-Efficient (in C/C++ and Assembly)  
One Inter-Integrated-Circuit (I2C) Bus  
12-Bit ADC, 16 Channels  
2 x 8 Channel Input Multiplexer  
Two Sample-and-Hold  
Single/Simultaneous Conversions  
On-Chip Memory  
F2809: 128K X 16 Flash, 18K X 16 SARAM  
F2808: 64K X 16 Flash, 18K X 16 SARAM  
F2806: 32K X 16 Flash, 10K X 16 SARAM  
F2802: 32K X 16 Flash, 6K X 16 SARAM  
F2801: 16K X 16 Flash, 6K X 16 SARAM  
F2801x: 16K X 16 Flash, 6K X 16 SARAM  
Fast Conversion Rate:  
80 ns - 12.5 MSPS (F2809 only)  
160 ns - 6.25 MSPS (280x)  
267 ns - 3.75 MSPS (F2801x)  
1K x 16 OTP ROM (Flash Devices Only)  
C2802: 32K X 16 ROM, 6K X 16 SARAM  
C2801: 16K X 16 ROM, 6K X 16 SARAM  
Internal or External Reference  
Up to 35 Individually Programmable,  
Multiplexed GPIO Pins With Input Filtering  
Boot ROM (4K x 16)  
Advanced Emulation Features  
With Software Boot Modes (via SCI, SPI,  
CAN, I2C, and Parallel I/O)  
Standard Math Tables  
Analysis and Breakpoint Functions  
Real-Time Debug via Hardware  
Development Support Includes  
Clock and System Control  
ANSI C/C++ Compiler/Assembler/Linker  
Code Composer Studio™ IDE  
DSP/BIOS™  
Digital Motor Control and Digital Power  
Software Libraries  
Dynamic PLL Ratio Changes Supported  
On-Chip Oscillator  
Watchdog Timer Module  
Any GPIO A Pin Can Be Connected to One of  
the Three External Core Interrupts  
Low-Power Modes and Power Savings  
Peripheral Interrupt Expansion (PIE) Block  
That Supports All 43 Peripheral Interrupts  
IDLE, STANDBY, HALT Modes Supported  
Disable Individual Peripheral Clocks  
128-Bit Security Key/Lock  
Package Options  
Protects Flash/OTP/L0/L1 Blocks  
Prevents Firmware Reverse Engineering  
Thin Quad Flatpack (PZ)  
MicroStar BGA™ (GGM, ZGM)  
Three 32-Bit CPU Timers  
Temperature Options:  
A: -40C to 85C (PZ, GGM, ZGM)  
S: -40C to 125C (PZ, GGM, ZGM)  
Q: -40C to 125C (PZ)  
(1) IEEE Standard 1149.1-1990 Standard Test Access Port and  
Boundary Scan Architecture  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this document.  
Code Composer Studio, DSP/BIOS, MicroStar BGA, TMS320C28x, C28x, TMS320C2000 are trademarks of Texas Instruments.  
eZdsp is a trademark of Spectrum Digital.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2003–2007, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
1.2 Getting Started  
This section gives a brief overview of the steps to take when first developing for a C28x device. For more  
detail on each of these steps, see the following:  
Getting Started With TMS320C28x™ Digital Signal Controllers (literature number SPRAAM0).  
C2000 Getting Started Website (http://www.ti.com/c2000getstarted)  
Step 1. Acquire the appropriate development tools  
The quickest way to begin working with a C28x device is to acquire an eZdsp™ kit for initial  
development, which, in one package, includes:  
On-board JTAG emulation via USB or parallel port  
Appropriate emulation driver  
Code Composer Studio™ IDE for eZdsp  
Once you have become familiar with the device and begin developing on your own  
hardware, purchase Code Composer Studio™ IDE separately for software development and  
a JTAG emulation tool to get started on your project.  
Step 2. Download starter software  
To simplify programming for C28x devices, it is recommended that users download and use  
the C/C++ Header Files and Example(s) to begin developing software for the C28x devices  
and their various peripherals.  
After downloading the appropriate header file package for your device, refer to the following  
resources for step-by-step instructions on how to run the peripheral examples and use the  
header file structure for your own software  
The Quick Start Readme in the /doc directory to run your first application.  
Programming TMS320x28xx and 28xxx Peripherals in C/C++ Application Report  
(literature number SPRAA85)  
Step 3. Download flash programming software  
Many C28x devices include on-chip flash memory and tools that allow you to program the  
flash with your software IP.  
Flash Tools: C28x Flash Tools  
TMS320F281x Flash Programming Solutions (literature number SPRB169)  
Running an Application from Internal Flash Memory on the TMS320F28xx DSP (literature  
number SPRA958)  
Step 4. Move on to more advanced topics  
For more application software and other advanced topics, visit the TI website at  
http://www.ti.com or http://www.ti.com/c2000getstarted.  
12  
F280x, F2801x, C280x DSPs  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
2
Introduction  
The TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320F28015,  
TMS320F28016, TMS320C2802, and TMS320C2801, devices, members of the TMS320C28x™ DSP  
generation, are highly integrated, high-performance solutions for demanding control applications.  
Throughout this document, TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802,  
TMS320F2801, TMS320C2802, TMS320C2801, TMS320F28015, and TMS32028016 are abbreviated as  
F2809, F2808, F2806, F2802, F2801, F28015, F28016, C2802, and C2801, respectively. TMS320F28015  
and TMS320F28016 are abbreviated as F2801x. Table 2-1 provides a summary of features for each  
device.  
Submit Documentation Feedback  
Introduction  
13  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 2-1. Hardware Features (100-MHz Devices)  
FEATURE  
F2809  
10 ns  
18K  
F2808  
10 ns  
18K  
F2806  
F2802  
F2801  
C2802  
C2801  
Instruction cycle (at 100 MHz)  
10 ns  
10 ns  
10 ns  
10 ns  
10 ns  
10K  
6K  
6K  
6K  
6K  
Single-access RAM (SARAM) (16-bit word)  
(L0, L1, M0, M1, (L0, L1, M0, M1,  
(L0, L1, M0, M1)  
(L0, M0, M1)  
(L0, M0, M1)  
(L0, M0, M1)  
(L0, M0, M1)  
H0)  
128K  
H0)  
64K  
3.3-V on-chip flash (16-bit word)  
On-chip ROM (16-bit word)  
32K  
32K  
16K  
32K  
Yes  
Yes  
16K  
Yes  
Yes  
Code security for on-chip flash/SARAM/OTP blocks  
Boot ROM (4K X16)  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
One-time programmable (OTP) ROM  
(16-bit word)  
1K  
1K  
1K  
1K  
1K  
PWM outputs  
ePWM1/2/3/4/5/6 ePWM1/2/3/4/5/6 ePWM1/2/3/4/5/6  
ePWM1/2/3  
ePWM1A/2A/3A  
ePWM1/2/3  
ePWM1A/2A/3A  
ePWM1/2/3  
ePWM1/2/3  
ePWM1A/2A/3A/  
4A/5A/6A  
ePWM1A/2A/  
3A/4A  
ePWM1A/2A/  
3A/4A  
HRPWM channels  
ePWM1A/2A/3A ePWM1A/2A/3A  
32-bit CAPTURE inputs or auxiliary PWM outputs  
32-bit QEP channels (four inputs/channel)  
Watchdog timer  
eCAP1/2/3/4  
eQEP1/2  
Yes  
eCAP1/2/3/4  
eQEP1/2  
Yes  
eCAP1/2/3/4  
eQEP1/2  
Yes  
eCAP1/2  
eQEP1  
Yes  
eCAP1/2  
eQEP1  
Yes  
eCAP1/2  
eQEP1  
Yes  
eCAP1/2  
eQEP1  
Yes  
12-Bit, 16-channel ADC conversion time  
32-Bit CPU timers  
80 ns  
3
160 ns  
3
160 ns  
3
160 ns  
3
160 ns  
3
160 ns  
3
160 ns  
3
Serial Peripheral Interface (SPI)  
Serial Communications Interface (SCI)  
Enhanced Controller Area Network (eCAN)  
Inter-Integrated Circuit (I2C)  
SPI-A/B/C/D  
SCI-A/B  
eCAN-A/B  
I2C-A  
35  
SPI-A/B/C/D  
SCI-A/B  
eCAN-A/B  
I2C-A  
35  
SPI-A/B/C/D  
SCI-A/B  
eCAN-A  
I2C-A  
35  
SPI-A/B  
SCI-A  
eCAN-A  
I2C-A  
35  
SPI-A/B  
SCI-A  
eCAN-A  
I2C-A  
35  
SPI-A/B  
SCI-A  
eCAN-A  
I2C-A  
35  
SPI-A/B  
SCI-A  
eCAN-A  
I2C-A  
35  
Digital I/O pins (shared)  
External interrupts  
3
3
3
3
3
3
3
Supply voltage  
1.8-V Core, 3.3-V I/O  
100-Pin PZ  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Packaging  
100-Ball GGM, ZGM  
A: -40°C to 85°C  
S: -40°C to 125°C  
Q: -40°C to 125°C  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
(PZ, GGM, ZGM) (PZ, GGM, ZGM) (PZ, GGM, ZGM) (PZ, GGM, ZGM) (PZ, GGM, ZGM) (PZ, GGM, ZGM) (PZ, GGM, ZGM)  
(PZ, GGM, ZGM) (PZ, GGM, ZGM) (PZ, GGM, ZGM) (PZ, GGM, ZGM) (PZ, GGM, ZGM) (PZ, GGM, ZGM) (PZ, GGM, ZGM)  
Temperature options  
Product status(1)  
(PZ)  
TMS  
(PZ)  
TMS  
(PZ)  
TMS  
(PZ)  
TMS  
(PZ)  
TMS  
(PZ)  
TMS  
(PZ)  
TMS  
(1) See Section 5.1, Device and Development Support Nomenclature for descriptions of device stages.  
14  
Introduction  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 2-2. Hardware Features (60-MHz Devices)  
FEATURE  
F2802-60  
F2801-60  
F28016  
F28015  
Instruction cycle (at 60 MHz)  
16.67 ns  
16.67 ns  
16.67 ns  
16.67 ns  
6K  
6K  
6K  
6K  
Single-access RAM (SARAM) (16-bit word)  
(L0, M0, M1)  
(L0, M0, M1)  
(L0, M0, M1)  
(L0, M0, M1)  
3.3-V on-chip flash (16-bit word)  
On-chip ROM (16-bit word)  
32K  
16K  
16K  
16K  
Code security for on-chip flash/SARAM/OTP  
blocks  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Boot ROM (4K X16)  
One-time programmable (OTP) ROM  
(16-bit word)  
PWM outputs  
ePWM1/2/3  
ePWM1/2/3  
ePWM1/2/3/4  
ePWM1/2/3/4  
HRPWM channels  
ePWM1A/2A/3A  
ePWM1A/2A/3A  
ePWM1A/2A/3A/4A  
ePWM1A/2A/3A/4A  
32-bit CAPTURE inputs or auxiliary PWM  
outputs  
eCAP1/2  
eCAP1/2  
eCAP1/2  
eCAP1/2  
32-bit QEP channels (four inputs/channel)  
Watchdog timer  
eQEP1  
Yes  
eQEP1  
Yes  
-
Yes  
-
Yes  
16  
No. of channels  
16  
16  
16  
12-Bit ADC  
MSPS  
3.75  
3.75  
3.75  
267 ns  
3
3.75  
267 ns  
3
Conversion time  
267 ns  
3
267 ns  
3
32-Bit CPU timers  
Serial Peripheral Interface (SPI)  
Serial Communications Interface (SCI)  
Enhanced Controller Area Network (eCAN)  
Inter-Integrated Circuit (I2C)  
Digital I/O pins (shared)  
SPI-A/B  
SCI-A  
eCAN-A  
I2C-A  
35  
SPI-A/B  
SCI-A  
eCAN-A  
I2C-A  
35  
SPI-A  
SCI-A  
eCAN-A  
I2C-A  
35  
SPI-A  
SCI-A  
-
I2C-A  
35  
External interrupts  
3
3
3
3
1.8-V Core,  
3.3-V I/O  
1.8-V Core,  
3.3-V I/O  
1.8-V Core,  
3.3-V I/O  
1.8-V Core,  
3.3-V I/O  
Supply voltage  
100-Pin PZ  
Packaging  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
100-Ball GGM, ZGM  
A: -40°C to 85°C  
(PZ, GGM, ZGM)  
(PZ GGM, ZGM)  
(PZ)  
(PZ, GGM, ZGM)  
(PZ, GGM, ZGM)  
(PZ)  
(PZ, GGM, ZGM)  
(PZ, GGM, ZGM)  
(PZ)  
(PZ, GGM, ZGM)  
(PZ, GGM, ZGM)  
(PZ)  
Temperature options  
Product status(1)  
S: -40°C to 125°C  
Q: -40°C to 125°C  
TMS  
TMS  
TMS  
TMS  
(1) See Section 5.1, Device and Development Support Nomenclature for descriptions of device stages.  
2.1 Pin Assignments  
The TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28015, and TMS320F28016 100-pin PZ low-profile quad flatpack (LQFP) pin  
assignments are shown in Figure 2-1, Figure 2-2, Figure 2-3, and Figure 2-4. The 100-ball GGM and ZGM  
ball grid array (BGA) terminal assignments are shown in Figure 2-5. Table 2-3 describes the function(s) of  
each pin.  
Submit Documentation Feedback  
Introduction  
15  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
GPIO16/SPISIMOA/CANTXB/TZ5  
TDO  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
50  
49  
V
V
SS  
SS  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
XRS  
GPIO3/EPWM2B/SPISOMID  
GPIO0/EPWM1A  
GPIO27/ECAP4/EQEP2S/SPISTEB  
EMU0  
V
DDIO  
EMU1  
GPIO2/EPWM2A  
GPIO1/EPWM1B/SPISIMOD  
GPIO34  
V
DDIO  
GPIO24/ECAP1/EQEP2A/SPISIMOB  
TRST  
V
V
V
V
DD  
V
DD  
SS  
X2  
DD2A18  
SS2AGND  
V
SS  
X1  
ADCRESEXT  
V
SS  
ADCREFP  
ADCREFM  
XCLKIN  
GPIO25/ECAP2/EQEP2B/SPISOMIB  
GPIO28/SCIRXDA/TZ5  
ADCREFIN  
ADCINB7  
V
DD  
ADCINB6  
ADCINB5  
ADCINB4  
V
SS  
GPIO13/TZ2/CANRXB/SPISOMIB  
V
DD3VFL  
TEST1  
TEST2  
ADCINB3  
ADCINB2  
ADCINB1  
ADCINB0  
GPIO26/ECAP3/EQEP2I/SPICLKB  
V
GPIO32/SDAA/EPWMSYNCI/ADCSOCAO  
DDAIO  
Figure 2-1. TMS320F2809, TMS320F2808 100-Pin PZ LQFP (Top View)  
16  
Introduction  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
GPIO16/SPISIMOA/TZ5  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
50  
49  
TDO  
V
SS  
XRS  
V
SS  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
GPIO3/EPWM2B/SPISOMID  
GPIO0/EPWM1A  
GPIO27/ECAP4/EQEP2S/SPISTEB  
V
EMU0  
EMU1  
DDIO  
GPIO2/EPWM2A  
V
GPIO1/EPWM1B/SPISIMOD  
GPIO34  
DDIO  
GPIO24/ECAP1/EQEP2A/SPISIMOB  
TRST  
V
DD  
V
V
SS  
DD  
X2  
V
DD2A18  
V
SS2AGND  
V
SS  
X1  
ADCRESEXT  
ADCREFP  
ADCREFM  
ADCREFIN  
ADCINB7  
ADCINB6  
ADCINB5  
ADCINB4  
ADCINB3  
ADCINB2  
ADCINB1  
ADCINB0  
V
SS  
XCLKIN  
GPIO25/ECAP2/EQEP2B/SPISOMIB  
GPIO28/SCIRXDA/TZ5  
V
DD  
V
SS  
GPIO13/TZ2/SPISOMIB  
V
DD3VFL  
TEST1  
TEST2  
99  
100  
GPIO26/ECAP3/EQEP2I/SPICLKB  
GPIO32/SDAA/EPWMSYNCI/ADCSOCAO  
V
DDAIO  
Figure 2-2. TMS320F2806 100-Pin PZ LQFP (Top View)  
Submit Documentation Feedback  
Introduction  
17  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
76  
50  
49  
TDO  
GPIO16/SPISIMOA/TZ5  
77  
V
V
SS  
SS  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
XRS  
GPIO3/EPWM2B  
GPIO0/EPWM1A  
SPISTEB/GPIO27  
EMU0  
EMU1  
V
DDIO  
GPIO2/EPWM2A  
GPIO1/EPWM1B  
GPIO34  
V
DDIO  
SPISIMOB/GPIO24/ECAP1  
TRST  
V
V
V
V
DD  
V
DD  
SS  
X2  
DD2A18  
SS2AGND  
V
SS  
X1  
ADCRESEXT  
ADCREFP  
ADCREFM  
ADCREFIN  
ADCINB7  
ADCINB6  
ADCINB5  
ADCINB4  
ADCINB3  
ADCINB2  
ADCINB1  
ADCINB0  
V
SS  
XCLKIN  
GPIO25/ECAP2/SPISOMIB  
GPIO28/SCIRXDA/TZ5  
V
DD  
V
SS  
SPISOMIB/GPIO13/TZ2  
(A)  
V
DD3VFL  
TEST1  
TEST2  
SPICLKB/GPIO26  
GPIO32/SDAA/EPWMSYNCI/ADSOCAO  
V
DDAIO  
A. On the C280x devices, the VDD3VFL pin is VDDIO  
.
Figure 2-3. TMS320F2802, TMS320F2801, TMS320C2802, TMS320C2801 100-Pin PZ LQFP  
(Top View)  
18  
Introduction  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
50  
TDO  
GPIO16/SPISIMOA/TZ5  
49  
V
V
SS  
SS  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
XRS  
GPIO27  
EMU0  
GPIO3/EPWM2B  
GPIO0/EPWM1A  
V
DDIO  
EMU1  
GPIO2/EPWM2A  
GPIO1/EPWM1B  
GPIO34  
V
DDIO  
GPIO24/ECAP1  
TRST  
V
V
V
V
DD  
V
DD  
SS  
X2  
DD2A18  
SS2AGND  
V
SS  
X1  
ADCRESEXT  
ADCREFP  
ADCREFM  
ADCREFIN  
ADCINB7  
ADCINB6  
ADCINB5  
ADCINB4  
ADCINB3  
ADCINB2  
ADCINB1  
ADCINB0  
V
SS  
XCLKIN  
GPIO25/ECAP2  
GPIO28/SCIRXDA/TZ5  
V
DD  
V
SS  
GPIO13/TZ2  
(A)  
V
DD3VFL  
TEST1  
TEST2  
GPIO26  
GPIO32/SDAA/EPWMSYNCI/ADSOCAO  
V
DDAIO  
A. CANTXA (pin 7) and CANRXA (pin 6) pins are not applicable for the TMS320F28015.  
Figure 2-4. TMS320F2801x 100-Pin PZ LQFP  
(Top View)  
Submit Documentation Feedback  
Introduction  
19  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
K
ADCINB0  
ADCINB3  
ADCINB1  
ADCINB2  
V
SS2AGND  
ADCINB7  
GPIO1  
GPIO2  
ADCINB5  
V
SS  
GPIO16  
VSSAIO  
ADCLO  
GPIO0  
GPIO3  
GPIO18  
J
V
ADCINB4  
ADCINB6  
ADCINA5  
V
ADCREFIN  
ADCREFM  
ADCREFP  
DD2A18  
GPIO4  
GPIO5  
GPIO6  
GPIO17  
DDAIO  
H
G
F
ADCINA0  
ADCINA3  
V
V
V
SS  
DDIO  
SS  
ADCINA1  
V
GPIO34  
GPIO7  
GPIO19  
ADCINA2  
ADCINA7  
DD  
ADCINA4  
VSSA2  
V
ADCINA6  
ADCRESEXT  
GPIO20  
VSS  
GPIO9  
GPIO8  
V
DD  
DDA2  
E
D
C
B
A
V
V
GPIO15  
V
V
X1  
GPIO21  
XCLKOUT  
V
GPIO10  
DD1A18  
SS1AGND  
DD  
SS  
DDIO  
GPIO30  
GPIO14  
GPIO29  
TEST2  
GPIO28  
GPIO25  
XCLKIN  
GPIO11  
TDI  
GPIO31  
GPIO33  
V
V
V
GPIO22  
GPIO27  
V
SS  
DD  
SS  
DD  
V
V
X2  
GPIO24  
EMU1  
GPIO23  
TMS  
DDIO  
DD3VFL  
GPIO13  
VSS  
GPIO12  
GPIO26  
V
XRS  
TDO  
DD  
GPIO32  
V
V
TRST  
V
EMU0  
V
TCK  
TEST1  
SS  
SS  
DDIO  
SS  
1
2
3
4
5
6
7
8
9
10  
Bottom View  
Figure 2-5. TMS320F2809, TMS320F2808, TMS320F2806,TMS320F2802, TMS320F2801,  
TMS320F28016, TMS320F28015, TMS320C2802, TMS320C2801  
100-Ball GGM and ZGM MicroStar BGA™ (Bottom View)  
20  
Introduction  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
2.2 Signal Descriptions  
Table 2-3 describes the signals on the 280x devices. All digital inputs are TTL-compatible. All outputs are  
3.3 V with CMOS levels. Inputs are not 5-V tolerant.  
Table 2-3. Signal Descriptions  
PIN NO.  
(1)  
GGM/  
ZGM  
BALL #  
NAME  
DESCRIPTION  
PZ  
PIN #  
JTAG  
JTAG test reset with internal pulldown. TRST, when driven high, gives the scan system control of  
the operations of the device. If this signal is not connected or driven low, the device operates in its  
functional mode, and the test reset signals are ignored.  
NOTE: Do not use pullup resistors on TRST; it has an internal pull-down device. TRST is an active  
high test pin and must be maintained low at all times during normal device operation. In a low-noise  
environment, TRST may be left floating. In other instances, an external pulldown resistor is highly  
recommended. The value of this resistor should be based on drive strength of the debugger pods  
applicable to the design. A 2.2-kresistor generally offers adequate protection. Since this is  
application-specific, it is recommended that each target board be validated for proper operation of  
the debugger and the application. (I, )  
TRST  
84  
A6  
TCK  
TMS  
75  
74  
A10  
B10  
JTAG test clock with internal pullup (I, )  
JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP  
controller on the rising edge of TCK. (I, )  
JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction  
or data) on a rising edge of TCK. (I, )  
TDI  
73  
76  
C9  
B9  
JTAG scan out, test data output (TDO). The contents of the selected register (instruction or data)  
are shifted out of TDO on the falling edge of TCK. (O/Z 8 mA drive)  
TDO  
Emulator pin 0. When TRST is driven high, this pin is used as an interrupt to or from the emulator  
system and is defined as input/output through the JTAG scan. This pin is also used to put the  
device into boundary-scan mode. With the EMU0 pin at a logic-high state and the EMU1 pin at a  
logic-low state, a rising edge on the TRST pin would latch the device into boundary-scan mode.  
(I/O/Z, 8 mA drive )  
EMU0  
80  
A8  
NOTE: An external pullup resistor is recommended on this pin. The value of this resistor should be  
based on the drive strength of the debugger pods applicable to the design. A 2.2-kto 4.7-kΩ  
resistor is generally adequate. Since this is application-specific, it is recommended that each target  
board be validated for proper operation of the debugger and the application.  
Emulator pin 1. When TRST is driven high, this pin is used as an interrupt to or from the emulator  
system and is defined as input/output through the JTAG scan. This pin is also used to put the  
device into boundary-scan mode. With the EMU0 pin at a logic-high state and the EMU1 pin at a  
logic-low state, a rising edge on the TRST pin would latch the device into boundary-scan mode.  
(I/O/Z, 8 mA drive )  
NOTE: An external pullup resistor is recommended on this pin. The value of this resistor should be  
based on the drive strength of the debugger pods applicable to the design. A 2.2-kto 4.7-kΩ  
resistor is generally adequate. Since this is application-specific, it is recommended that each target  
board be validated for proper operation of the debugger and the application.  
EMU1  
81  
96  
B7  
C4  
FLASH  
3.3-V Flash Core Power Pin. This pin should be connected to 3.3 V at all times. On the ROM  
VDD3VFL  
parts (C280x), this pin should be connected to VDDIO  
.
TEST1  
TEST2  
97  
98  
A3  
B3  
Test Pin. Reserved for TI. Must be left unconnected. (I/O)  
Test Pin. Reserved for TI. Must be left unconnected. (I/O)  
CLOCK  
Output clock derived from SYSCLKOUT. XCLKOUT is either the same frequency, one-half the  
frequency, or one-fourth the frequency of SYSCLKOUT. This is controlled by the bits 1, 0  
(XCLKOUTDIV) in the XCLK register. At reset, XCLKOUT = SYSCLKOUT/4. The XCLKOUT signal  
can be turned off by setting XCLKOUTDIV to 3. Unlike other GPIO pins, the XCLKOUT pin is not  
placed in high-impedance state during a reset. (O/Z, 8 mA drive).  
XCLKOUT  
XCLKIN  
66  
90  
E8  
B5  
External Oscillator Input. This pin is to feed a clock from an external 3.3-V oscillator. In this case,  
the X1 pin must be tied to GND. If a crystal/resonator is used (or if an external 1.8-V oscillator is  
used to feed clock to X1 pin), this pin must be tied to GND. (I)  
(1) I = Input, O = Output, Z = High impedance, OD = Open drain, = Pullup, = Pulldown  
Submit Documentation Feedback  
Introduction  
21  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 2-3. Signal Descriptions (continued)  
PIN NO.  
(1)  
GGM/  
ZGM  
BALL #  
NAME  
DESCRIPTION  
PZ  
PIN #  
Internal/External Oscillator Input. To use the internal oscillator, a quartz crystal or a ceramic  
resonator may be connected across X1 and X2. The X1 pin is referenced to the 1.8-V core digital  
power supply. A 1.8-V external oscillator may be connected to the X1 pin. In this case, the XCLKIN  
pin must be connected to ground. If a 3.3-V external oscillator is used with the XCLKIN pin, X1 must  
be tied to GND. (I)  
X1  
X2  
88  
86  
E6  
C6  
Internal Oscillator Output. A quartz crystal or a ceramic resonator may be connected across X1 and  
X2. If X2 is not used it must be left unconnected. (O)  
RESET  
Device Reset (in) and Watchdog Reset (out).  
Device reset. XRS causes the device to terminate execution. The PC will point to the address  
contained at the location 0x3FFFC0. When XRS is brought to a high level, execution begins at the  
location pointed to by the PC. This pin is driven low by the DSP when a watchdog reset occurs.  
During watchdog reset, the XRS pin is driven low for the watchdog reset duration of 512 OSCCLK  
cycles. (I/OD, )  
XRS  
78  
B8  
The output buffer of this pin is an open-drain with an internal pullup. It is recommended that this pin  
be driven by an open-drain device.  
ADC SIGNALS  
ADC Group A, Channel 7 input (I)  
ADC Group A, Channel 6 input (I)  
ADC Group A, Channel 5 input (I)  
ADC Group A, Channel 4 input (I)  
ADC Group A, Channel 3 input (I)  
ADC Group A, Channel 2 input (I)  
ADC Group A, Channel 1 input (I)  
ADC Group A, Channel 0 input (I)  
ADC Group B, Channel 7 input (I)  
ADC Group B, Channel 6 input (I)  
ADC Group B, Channel 5 input (I)  
ADC Group B, Channel 4 input (I)  
ADC Group B, Channel 3 input (I)  
ADC Group B, Channel 2 input (I)  
ADC Group B, Channel 1 input (I)  
ADC Group B, Channel 0 input (I)  
Low Reference (connect to analog ground) (I)  
ADC External Current Bias Resistor. Connect a 22-kresistor to analog ground.  
External reference input (I)  
ADCINA7  
ADCINA6  
ADCINA5  
ADCINA4  
ADCINA3  
ADCINA2  
ADCINA1  
ADCINA0  
ADCINB7  
ADCINB6  
ADCINB5  
ADCINB4  
ADCINB3  
ADCINB2  
ADCINB1  
ADCINB0  
ADCLO  
16  
17  
18  
19  
20  
21  
22  
23  
34  
33  
32  
31  
30  
29  
28  
27  
24  
38  
35  
F3  
F4  
G4  
G1  
G2  
G3  
H1  
H2  
K5  
H4  
K4  
J4  
K3  
H3  
J3  
K2  
J1  
ADCRESEXT  
ADCREFIN  
F5  
J5  
Internal Reference Positive Output. Requires a low ESR (50 m- 1.5 ) ceramic bypass capacitor  
of 2.2 μF to analog ground. (O)  
ADCREFP  
ADCREFM  
37  
36  
G5  
H5  
Internal Reference Medium Output. Requires a low ESR (50 m- 1.5 ) ceramic bypass capacitor  
of 2.2 μF to analog ground. (O)  
CPU AND I/O POWER PINS  
ADC Analog Power Pin (3.3 V)  
ADC Analog Ground Pin  
VDDA2  
15  
14  
26  
25  
12  
13  
40  
39  
F2  
F1  
J2  
VSSA2  
VDDAIO  
VSSAIO  
ADC Analog I/O Power Pin (3.3 V)  
ADC Analog I/O Ground Pin  
ADC Analog Power Pin (1.8 V)  
ADC Analog Ground Pin  
K1  
E4  
E5  
J6  
VDD1A18  
VSS1AGND  
VDD2A18  
VSS2AGND  
ADC Analog Power Pin (1.8 V)  
ADC Analog Ground Pin  
K6  
22  
Introduction  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 2-3. Signal Descriptions (continued)  
PIN NO.  
(1)  
GGM/  
ZGM  
BALL #  
NAME  
DESCRIPTION  
PZ  
PIN #  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
10  
42  
59  
68  
85  
93  
3
E2  
G6  
F10  
D7  
B6  
D4  
C2  
H7  
E9  
A7  
B1  
E3  
H6  
K9  
H10  
F7  
CPU and Logic Digital Power Pins (1.8 V)  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VSS  
46  
65  
82  
2
Digital I/O Power Pin (3.3 V)  
VSS  
11  
41  
49  
55  
62  
69  
77  
87  
89  
94  
VSS  
VSS  
VSS  
VSS  
Digital Ground Pins  
VSS  
D10  
A9  
D6  
A5  
A4  
VSS  
VSS  
VSS  
VSS  
GPIOA AND PERIPHERAL SIGNALS(2) (3)  
(4)  
GPIO0  
General purpose input/output 0 (I/O/Z)  
EPWM1A  
-
-
Enhanced PWM1 Output A and HRPWM channel (O)  
-
-
General purpose input/output 1 (I/O/Z)(4)  
Enhanced PWM1 Output B (O)  
SPI-D slave in, master out (I/O) (not available on 2801, 2802)  
-
General purpose input/output 2 (I/O/Z)(4)  
Enhanced PWM2 Output A and HRPWM channel (O)  
-
-
General purpose input/output 3 (I/O/Z)(4)  
Enhanced PWM2 Output B (O)  
SPI-D slave out, master in (I/O) (not available on 2801, 2802)  
-
General purpose input/output 4 (I/O/Z)(4)  
Enhanced PWM3 output A and HRPWM channel (O)  
-
-
General purpose input/output 5 (I/O/Z)(4)  
Enhanced PWM3 output B (O)  
SPI-D clock (I/O) (not available on 2801, 2802)  
Enhanced capture input/output 1 (I/O)  
47  
44  
45  
48  
51  
53  
K8  
K7  
J7  
J8  
J9  
H9  
GPIO1  
EPWM1B  
SPISIMOD  
-
GPIO2  
EPWM2A  
-
-
GPIO3  
EPWM2B  
SPISOMID  
-
GPIO4  
EPWM3A  
-
-
GPIO5  
EPWM3B  
SPICLKD  
ECAP1  
(2) Some peripheral functions may not be available in TMS320F2801x devices. See Table 2-2 for details.  
(3) All GPIO pins are I/O/Z, 4-mA drive typical (unless otherwise indicated), and have an internal pullup, which can be selectively  
enabled/disabled on a per-pin basis. This feature only applies to the GPIO pins. The GPIO function (shown in Italics) is the default at  
reset. The peripheral signals that are listed under them are alternate functions.  
(4) The pullups on GPIO0-GPIO11 pins are not enabled at reset.  
Submit Documentation Feedback  
Introduction  
23  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 2-3. Signal Descriptions (continued)  
PIN NO.  
(1)  
GGM/  
ZGM  
BALL #  
NAME  
DESCRIPTION  
PZ  
PIN #  
GPIO6  
General purpose input/output 6 (I/O/Z)(4)  
EPWM4A  
EPWMSYNCI  
EPWMSYNCO  
Enhanced PWM4 output A and HRPWM channel (not available on 2801, 2802) (O)  
External ePWM sync pulse input (I)  
External ePWM sync pulse output (O)  
General purpose input/output 7 (I/O/Z)(4)  
Enhanced PWM4 output B (not available on 2801, 2802) (O)  
SPI-D slave transmit enable (not available on 2801, 2802) (I/O)  
Enhanced capture input/output 2 (I/O)  
General purpose input/output 8 (I/O/Z)(4)  
Enhanced PWM5 output A and HRPWM channel (not available on 2801, 2802) (O)  
Enhanced CAN-B transmit (not available on 2801, 2802, F2806) (O)  
ADC start-of-conversion A (O)  
General purpose input/output 9 (I/O/Z)(4)  
Enhanced PWM5 output B (not available on 2801, 2802) (O)  
SCI-B transmit data (not available on 2801, 2802) (O)  
Enhanced capture input/output 3 (not available on 2801, 2802) (I/O)  
General purpose input/output 10 (I/O/Z)(4)  
Enhanced PWM6 output A and HRPWM channel (not available on 2801, 2802) (O)  
Enhanced CAN-B receive (not available on 2801, 2802, F2806) (I)  
ADC start-of-conversion B (O)  
General purpose input/output 11 (I/O/Z)(4)  
Enhanced PWM6 output B (not available on 2801, 2802) (O)  
SCI-B receive data (not available on 2801, 2802) (I)  
Enhanced CAP Input/Output 4 (not available on 2801, 2802) (I/O)  
General purpose input/output 12 (I/O/Z)(5)  
Trip Zone input 1 (I)  
Enhanced CAN-B transmit (not available on 2801, 2802, F2806) (O)  
SPI-B Slave in, Master out (I/O)  
56  
58  
60  
61  
64  
70  
1
G9  
G8  
F9  
GPIO7  
EPWM4B  
SPISTED  
ECAP2  
GPIO8  
EPWM5A  
CANTXB  
ADCSOCAO  
GPIO9  
EPWM5B  
SCITXDB  
ECAP3  
F8  
GPIO10  
EPWM6A  
CANRXB  
ADCSOCBO  
E10  
D9  
B2  
GPIO11  
EPWM6B  
SCIRXDB  
ECAP4  
GPIO12  
TZ1  
CANTXB  
SPISIMOB  
GPIO13  
TZ2  
CANRXB  
SPISOMIB  
General purpose input/output 13 (I/O/Z)(5)  
Trip zone input 2 (I)  
Enhanced CAN-B receive (not available on 2801, 2802, F2806) (I)  
SPI-B slave out, master in (I/O)  
General purpose input/output 14 (I/O/Z)(5)  
Trip zone input 3 (I)  
SCI-B transmit (not available on 2801, 2802) (O)  
SPI-B clock input/output (I/O)  
General purpose input/output 15 (I/O/Z)(5)  
Trip zone input (I)  
SCI-B receive (not available on 2801, 2802) (I)  
SPI-B slave transmit enable (I/O)  
95  
8
B4  
GPIO14  
TZ3  
SCITXDB  
SPICLKB  
D3  
E1  
GPIO15  
TZ4  
SCIRXDB  
SPISTEB  
9
GPIO16  
SPISIMOA  
CANTXB  
TZ5  
General purpose input/output 16 (I/O/Z)(5)  
SPI-A slave in, master out (I/O)  
Enhanced CAN-B transmit (not available on 2801, 2802, F2806) (O)  
Trip zone input 5 (I)  
General purpose input/output 17 (I/O/Z)(5)  
SPI-A slave out, master in (I/O)  
Enhanced CAN-B receive (not available on 2801, 2802, F2806) (I)  
Trip zone input 6(I)  
50  
52  
K10  
J10  
GPIO17  
SPISOMIA  
CANRXB  
TZ6  
GPIO18  
General purpose input/output 18 (I/O/Z)(5)  
SPICLKA  
SPI-A clock input/output (I/O)  
SCITXDB  
-
-
54  
57  
H8  
SCI-B transmit (not available on 2801, 2802) (O)  
-
-
General purpose input/output 19 (I/O/Z)(5)  
SPI-A slave transmit enable input/output (I/O)  
GPIO19  
SPISTEA  
SCIRXDB  
G10  
SCI-B receive (not available on 2801, 2802) (I)  
-
-
-
-
(5) The pullups on GPIO12-GPIO34 are enabled upon reset.  
24 Introduction  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 2-3. Signal Descriptions (continued)  
PIN NO.  
(1)  
GGM/  
ZGM  
BALL #  
NAME  
DESCRIPTION  
PZ  
PIN #  
GPIO20  
General purpose input/output 20 (I/O/Z)(5)  
Enhanced QEP1 input A (I)  
SPI-C slave in, master out (not available on 2801, 2802) (I/O)  
Enhanced CAN-B transmit (not available on 2801, 2802, F2806) (O)  
General purpose input/output 21 (I/O/Z)(5)  
Enhanced QEP1 input A (I)  
SPI-C master in, slave out (not available on 2801, 2802) (I/O)  
Enhanced CAN-B receive (not available on 2801, 2802, F2806) (I)  
General purpose input/output 22 (I/O/Z)(5)  
Enhanced QEP1 strobe (I/O)  
SPI-C clock (not available on 2801, 2802) (I/O)  
SCI-B transmit (not available on 2801, 2802) (O)  
General purpose input/output 23 (I/O/Z)(5)  
Enhanced QEP1 index (I/O)  
SPI-C slave transmit enable (not available on 2801, 2802) (I/O)  
SCI-B receive (I) (not available on 2801, 2802)  
General purpose input/output 24 (I/O/Z)(5)  
Enhanced capture 1 (I/O)  
Enhanced QEP2 input A (I) (not available on 2801, 2802)  
SPI-B slave in, master out (I/O)  
General purpose input/output 25 (I/O/Z)(5)  
Enhanced capture 2 (I/O)  
Enhanced QEP2 input B (I) (not available on 2801, 2802)  
SPI-B master in, slave out (I/O)  
General purpose input/output 26 (I/O/Z)(5)  
Enhanced capture 3 (I/O) (not available on 2801, 2802)  
Enhanced QEP2 index (I/O) (not available on 2801, 2802)  
SPI-B clock (I/O)  
EQEP1A  
SPISIMOC  
CANTXB  
63  
67  
71  
72  
83  
91  
99  
79  
92  
4
F6  
E7  
D8  
C10  
C7  
C5  
A2  
C8  
D5  
C3  
D2  
D1  
A1  
GPIO21  
EQEP1B  
SPISOMIC  
CANRXB  
GPIO22  
EQEP1S  
SPICLKC  
SCITXDB  
GPIO23  
EQEP1I  
SPISTEC  
SCIRXDB  
GPIO24  
ECAP1  
EQEP2A  
SPISIMOB  
GPIO25  
ECAP2  
EQEP2B  
SPISOMIB  
GPIO26  
ECAP3  
EQEP2I  
SPICLKB  
GPIO27  
ECAP4  
EQEP2S  
SPISTEB  
General purpose input/output 27 (I/O/Z)(5)  
Enhanced capture 4 (I/O) (not available on 2801, 2802)  
Enhanced QEP2 strobe (I/O) (not available on 2801, 2802)  
SPI-B slave transmit enable (I/O)  
General purpose input/output 28. This pin has an 8-mA (typical) output buffer. (I/O/Z)(5)  
SCI receive data (I)  
GPIO28  
SCIRXDA  
-
-
TZ5  
Trip zone input 5 (I)  
GPIO29  
SCITXDA  
-
General purpose input/output 29. This pin has an 8-mA (typical) output buffer. (I/O/Z)(5)  
SCI transmit data (O)  
-
TZ6  
Trip zone 6 input (I)  
GPIO30  
CANRXA  
-
-
General purpose input/output 30. This pin has an 8-mA (typical) output buffer. (I/O/Z)(5)  
Enhanced CAN-A receive data (I)  
-
-
General purpose input/output 31. This pin has an 8-mA (typical) output buffer. (I/O/Z)(5)  
Enhanced CAN-A transmit data (O)  
-
-
General purpose input/output 32 (I/O/Z)(5)  
I2C data open-drain bidirectional port (I/OD)  
Enhanced PWM external sync pulse input (I)  
ADC start-of-conversion (O)  
6
GPIO31  
CANTXA  
-
-
7
GPIO32  
SDAA  
EPWMSYNCI  
ADCSOCAO  
100  
Submit Documentation Feedback  
Introduction  
25  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 2-3. Signal Descriptions (continued)  
PIN NO.  
(1)  
GGM/  
ZGM  
BALL #  
NAME  
DESCRIPTION  
PZ  
PIN #  
GPIO33  
General-Purpose Input/Output 33 (I/O/Z)(1)  
SCLA  
EPWMSYNCO  
ADCSOCBO  
I2C clock open-drain bidirectional port (I/OD)  
Enhanced PWM external synch pulse output (O)  
ADC start-of-conversion (O)  
General-Purpose Input/Output 34 (I/O/Z)(1)  
-
-
-
5
C1  
G7  
GPIO34  
-
-
-
43  
(1) The pullups on GPIO12-GPIO34 are enabled upon reset.  
NOTE  
Some peripheral functions may not be available in TMS320F2801x devices. See  
Table 2-2 for details.  
26  
Introduction  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
3
Functional Overview  
Memory Bus  
TINT0  
TINT1  
Real-Time JTAG  
(TDI, TDO, TRST, TCK,  
TMS, EMU0, EMU1)  
32-bit CPU TIMER 0  
7
32-bit CPU TIMER 1  
32-bit CPU TIMER 2  
TINT2  
INT14  
PIE  
(96 Interrupts)  
(A)  
INT[12:1]  
M0 SARAM  
1 K 16  
NMI, INT13  
M1 SARAM  
1 K 16  
External Interrupt  
Control  
32  
4
FIFO  
SCI-A/B  
L0 SARAM  
4 K 16  
(0-wait)  
16  
2
FIFO  
FIFO  
SPI-A/B/C/D  
2
I C-A  
(B)  
L1 SARAM  
4 K 16  
(0-wait)  
4
8
eCAN-A/B (32 mbox)  
eQEP1/2  
(C)  
H0 SARAM  
8 K 16  
(0-wait)  
4
eCAP1/2/3/4  
(4 timers 32-bit)  
GPIOs  
(35)  
12  
6
ROM  
32K x 16 (C2802)  
16K x 16 (C2801)  
ePWM1/2/3/4/5/6  
(12 PWM outputs,  
6 trip zones,  
C28x CPU  
(100 MHz)  
6 timers 16-bit)  
FLASH  
32  
SYSCLKOUT  
128K x 16 (F2809)  
64K x 16 (F2808)  
32K x 16 (F2806)  
32K x 16 (F2802)  
16K x 16 (F2801)  
16K x 16 (F2801x)  
System Control  
XCLKOUT  
XRS  
RS  
(Oscillator, PLL,  
Peripheral Clocking,  
Low Power Modes,  
WatchDog)  
CLKIN  
XCLKIN  
X1  
X2  
(D)  
OTP  
1K 16  
ADCSOCA/B  
SOCA/B  
Boot ROM  
4 K 16  
(1-wait state)  
12-Bit ADC  
16 Channels  
Peripheral Bus  
Protected by the code-security module.  
A. 43 of the possible 96 interrupts are used on the devices.  
B. Not available in F2802, F2801, C2802, and C2801.  
C. Not available in F2806, F2802, F2801, C2802, and C2801.  
D. The 1K x 16 OTP has been replaced with 1K x 16 ROM for C280x devices.  
Figure 3-1. Functional Block Diagram  
Submit Documentation Feedback  
Functional Overview  
27  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
3.1 Memory Maps  
Block Start  
Address  
Prog Space  
Data Space  
0x00 0000  
M0 SARAM (1 K y 16)  
0x00 0400  
M1 SARAM (1 K y 16)  
0x00 0800  
0x00 0D00  
Peripheral Frame 0  
PIE Vector − RAM  
(256 x 16)  
(Enabled if ENPIE = 1)  
0x00 0E00  
0x00 6000  
Peripheral Frame 1  
(protected)  
0x00 7000  
0x00 8000  
Peripheral Frame 2  
(protected)  
L0 SARAM (0-wait)  
(4 k y 16, Secure Zone, Dual Mapped)  
0x00 9000  
0x00 A000  
0x00 C000  
L1 SARAM (0-wait)  
(4 k y 16, Secure Zone, Dual Mapped)  
H0 SARAM (0-wait)  
(8 k y 16, Dual Mapped)  
0x3D 7800  
OTP  
(1 k y 16, Secure Zone)  
0x3D 7C00  
0x3D 8000  
FLASH  
(128 k y 16, Secure Zone)  
0x3F 7FF8  
0x3F 8000  
128-bit Password  
L0 SARAM (0-wait)  
(4 k y 16, Secure Zone, Dual Mapped)  
0x3F 9000  
0x3F A000  
L1 SARAM (0-wait)  
(4 k y 16, Secure Zone, Dual Mapped)  
H0 SARAM (0-wait)  
(8 k y 16, Dual Mapped)  
0x3F C000  
0x3F F000  
Boot ROM (4 k y 16)  
0x3F FFC0  
Vectors (32 y 32)  
(enabled if VMAP = 1, ENPIE = 0)  
Reserved  
A. Memory blocks are not to scale.  
B. Peripheral Frame 0, Peripheral Frame 1, and Peripheral Frame 2 memory maps are restricted to data memory only.  
User program cannot access these memory maps in program space.  
C. Protected means the order of Write followed by Read operations is preserved rather than the pipeline order.  
D. Certain memory ranges are EALLOW protected against spurious writes after configuration.  
Figure 3-2. F2809 Memory Map  
28  
Functional Overview  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Block Start  
Address  
Prog Space  
Data Space  
0x00 0000  
M0 SARAM (1 K y 16)  
0x00 0400  
M1 SARAM (1 K y 16)  
0x00 0800  
0x00 0D00  
Peripheral Frame 0  
PIE Vector − RAM  
(256 x 16)  
(Enabled if ENPIE = 1)  
0x00 0E00  
0x00 6000  
Peripheral Frame 1  
(protected)  
0x00 7000  
0x00 8000  
Peripheral Frame 2  
(protected)  
L0 SARAM (0-wait)  
(4 k y 16, Secure Zone, Dual Mapped)  
0x00 9000  
0x00 A000  
0x00 C000  
L1 SARAM (0-wait)  
(4 k y 16, Secure Zone, Dual Mapped)  
H0 SARAM (0-wait)  
(8 k y 16, Dual Mapped)  
0x3D 7800  
0x3D 7C00  
0x3E 8000  
OTP  
(1 k y 16, Secure Zone)  
FLASH  
(64 k y 16, Secure Zone)  
0x3F 7FF8  
0x3F 8000  
128-bit Password  
L0 SARAM (0-wait)  
(4 k y 16, Secure Zone, Dual Mapped)  
0x3F 9000  
0x3F A000  
L1 SARAM (0-wait)  
(4 k y 16, Secure Zone, Dual Mapped)  
H0 SARAM (0-wait)  
(8 k y 16, Dual Mapped)  
0x3F C000  
0x3F F000  
Boot ROM (4 k y 16)  
0x3F FFC0  
Vectors (32 y 32)  
(enabled if VMAP = 1, ENPIE = 0)  
Reserved  
A. Memory blocks are not to scale.  
B. Peripheral Frame 0, Peripheral Frame 1, and Peripheral Frame 2 memory maps are restricted to data memory only.  
User program cannot access these memory maps in program space.  
C. Protected means the order of Write followed by Read operations is preserved rather than the pipeline order.  
D. Certain memory ranges are EALLOW protected against spurious writes after configuration.  
Figure 3-3. F2808 Memory Map  
Submit Documentation Feedback  
Functional Overview  
29  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Block Start  
Address  
Prog Space  
Data Space  
0x00 0000  
M0 SARAM (1K y 16)  
0x00 0400  
0x00 0800  
0x00 0D00  
M1 SARAM (1K y 16)  
Peripheral Frame 0  
PIE Vector − RAM  
(256 x 16)  
(Enabled if ENPIE = 1)  
0x00 0E00  
0x00 6000  
Peripheral Frame 1  
(protected)  
0x00 7000  
0x00 8000  
Peripheral Frame 2  
(protected)  
L0 SARAM (0-wait)  
(4k y 16, Secure Zone, Dual Mapped)  
0x00 9000  
0x00 A000  
L1 SARAM (0-wait)  
(4k y 16, Secure Zone, Dual Mapped)  
0x3D 7800  
0x3D 7C00  
OTP  
(1 K y 16, Secure Zone)  
0x3F 0000  
FLASH  
(32 K y 16, Secure Zone)  
0x3F 7FF8  
0x3F 8000  
128-bit Password  
L0 SARAM (0-wait) (4k y 16,  
Secure Zone, Dual Mapped)  
0x3F 9000  
0x3F A000  
L1 SARAM (0-wait) (4k y 16,  
Secure Zone, Dual Mapped)  
0x3F F000  
0x3F FFC0  
Boot ROM (4 K y 16)  
Vectors (32 y 32)  
(enabled if VMAP = 1, ENPIE = 0)  
Reserved  
A. Memory blocks are not to scale.  
B. Peripheral Frame 0, Peripheral Frame 1, and Peripheral Frame 2 memory maps are restricted to data memory only.  
User program cannot access these memory maps in program space.  
C. Protected means the order of Write followed by Read operations is preserved rather than the pipeline order.  
D. Certain memory ranges are EALLOW protected against spurious writes after configuration.  
Figure 3-4. F2806 Memory Map  
30  
Functional Overview  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Block Start  
Address  
Data Space  
Prog Space  
0x00 0000  
M0 SARAM (1K y 16)  
0x00 0400  
M1 SARAM (1K y 16)  
0x00 0800  
0x00 0D00  
Peripheral Frame 0  
PIE Vector − RAM  
(256 x 16)  
(Enabled if ENPIE = 1)  
0x00 0E00  
0x00 6000  
Peripheral Frame 1  
(protected)  
0x00 7000  
0x00 8000  
0x00 9000  
Peripheral Frame 2  
(protected)  
L0 SARAM (0-wait)  
(4K y 16, Secure Zone, Dual Mapped)  
0x3D 7800  
0x3D 7C00  
(A)  
OTP (F2802 Only)  
(1K y 16, Secure Zone)  
0x3F 0000  
FLASH (F2802) or ROM (C2802)  
(32K y 16, Secure Zone)  
0x3F 7FF8  
0x3F 8000  
128-bit Password  
L0 (0-wait)  
(4K y 16, Secure Zone, Dual Mapped)  
0x3F 9000  
0x3F F000  
0x3F FFC0  
Boot ROM (4 K y 16)  
Vectors (32 y 32)  
(enabled if VMAP = 1, ENPIE = 0)  
Reserved  
A. The 1K x 16 OTP has been replaced with 1K x 16 ROM in C2802.  
B. Memory blocks are not to scale.  
C. Peripheral Frame 0, Peripheral Frame 1, and Peripheral Frame 2 memory maps are restricted to data memory only.  
User program cannot access these memory maps in program space.  
D. Protected means the order of Write followed by Read operations is preserved rather than the pipeline order.  
E. Certain memory ranges are EALLOW protected against spurious writes after configuration.  
F. Some locations in ROM are reserved for TI. See Table 3-5 for more information.  
Figure 3-5. F2802, C2802 Memory Map  
Submit Documentation Feedback  
Functional Overview  
31  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Block Start  
Address  
Data Space  
Prog Space  
0x00 0000  
M0 SARAM (1K y 16)  
0x00 0400  
M1 SARAM (1K y 16)  
0x00 0800  
0x00 0D00  
Peripheral Frame 0  
PIE Vector − RAM  
(256 x 16)  
(Enabled if ENPIE = 1)  
0x00 0E00  
0x00 6000  
Peripheral Frame 1  
(protected)  
0x00 7000  
0x00 8000  
0x00 9000  
Peripheral Frame 2  
(protected)  
L0 SARAM (0-wait)  
(4K y 16, Secure Zone, Dual Mapped)  
0x3D 7800  
0x3D 7C00  
(A)  
OTP (F2801/F2801x Only)  
(1K y 16, Secure Zone)  
0x3F 4000  
FLASH (F2801) or ROM (C2801)  
(16K y 16, Secure Zone)  
0x3F 7FF8  
0x3F 8000  
128-bit Password  
L0 (0-wait)  
(4K y 16, Secure Zone, Dual Mapped)  
0x3F 9000  
0x3F F000  
0x3F FFC0  
Boot ROM (4K y 16)  
Vectors (32 y 32)  
(enabled if VMAP = 1, ENPIE = 0)  
Reserved  
A. The 1K x 16 OTP has been replaced with 1K x 16 ROM in C2801.  
B. Memory blocks are not to scale.  
C. Peripheral Frame 0, Peripheral Frame 1, and Peripheral Frame 2 memory maps are restricted to data memory only.  
User program cannot access these memory maps in program space.  
D. Protected means the order of Write followed by Read operations is preserved rather than the pipeline order.  
E. Certain memory ranges are EALLOW protected against spurious writes after configuration.  
F. Some locations in ROM are reserved for TI. See Table 3-5 for more information.  
Figure 3-6. F2801, F28015, F28016, C2801 Memory Map  
32  
Functional Overview  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 3-1. Addresses of Flash Sectors in F2809  
ADDRESS RANGE  
0x3D 8000 - 0x3D BFFF  
0x3D C000 - 0x3D FFFF  
0x3E 0000 - 0x3E 3FFF  
0x3E 4000 - 0x3E 7FFF  
0x3E 8000 - 0x3E BFFF  
0x3E C000 - 0x3E FFFF  
0x3F 0000 - 0x3F 3FFF  
0x3F 4000 - 0x3F 7F7F  
PROGRAM AND DATA SPACE  
Sector H (16K x 16)  
Sector G (16K x 16)  
Sector F (16K x 16)  
Sector E (16K x 16)  
Sector D (16K x 16)  
Sector C (16K x 16)  
Sector B (16K x 16)  
Sector A (16K x 16)  
Program to 0x0000 when using the  
Code Security Module  
0x3F 7F80 - 0x3F 7FF5  
0x3F 7FF6 - 0x3F 7FF7  
0x3F 7FF8 - 0x3F 7FFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password (128-Bit)  
(Do not program to all zeros)  
Table 3-2. Addresses of Flash Sectors in F2808  
ADDRESS RANGE  
0x3E 8000 - 0x3E BFFF  
0x3E C000 - 0x3E FFFF  
0x3F 0000 - 0x3F 3FFF  
0x3F 4000 - 0x3F 7F7F  
PROGRAM AND DATA SPACE  
Sector D (16K x 16)  
Sector C (16K x 16)  
Sector B (16K x 16)  
Sector A (16K x 16)  
Program to 0x0000 when using the  
Code Security Module  
0x3F 7F80 - 0x3F 7FF5  
0x3F 7FF6 - 0x3F 7FF7  
0x3F 7FF8 - 0x3F 7FFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password (128-Bit)  
(Do not program to all zeros)  
Table 3-3. Addresses of Flash Sectors in F2806, F2802  
ADDRESS RANGE  
0x3F 0000 - 0x3F 1FFF  
0x3F 2000 - 0x3F 3FFF  
0x3F 4000 - 0x3F 5FFF  
0x3F 6000 - 0x3F 7F7F  
PROGRAM AND DATA SPACE  
Sector D (8K x 16)  
Sector C (8K x 16)  
Sector B (8K x 16)  
Sector A (8K x 16)  
Program to 0x0000 when using the  
Code Security Module  
0x3F 7F80 - 0x3F 7FF5  
0x3F 7FF6 - 0x3F 7FF7  
0x3F 7FF8 - 0x3F 7FFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password (128-Bit)  
(Do not program to all zeros)  
Submit Documentation Feedback  
Functional Overview  
33  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 3-4. Addresses of Flash Sectors in F2801, F28015, F28016  
ADDRESS RANGE  
0x3F 4000 - 0x3F 4FFF  
0x3F 5000 - 0x3F 5FFF  
0x3F 6000 - 0x3F 6FFF  
0x3F 7000 - 0x3F 7F7F  
0x3F 7F80 - 0x3F 7FF5  
PROGRAM AND DATA SPACE  
Sector D (4K x 16)  
Sector C (4K x 16)  
Sector B (4K x 16)  
Sector A (4K x 16)  
Program to 0x0000 when using the  
Code Security Module  
0x3F 7FF6 - 0x3F 7FF7  
0x3F 7FF8 - 0x3F 7FFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password (128-Bit)  
(Do not program to all zeros)  
NOTE  
When the code-security passwords are programmed, all addresses between  
0x3F7F80 and 0x3F7FF5 cannot be used as program code or data. These locations  
must be programmed to 0x0000.  
If the code security feature is not used, addresses 0x3F7F80 through 0x3F7FEF may  
be used for code or data. Addresses 0x3F7FF0 – 0x3F7FF5 are reserved for data and  
should not contain program code. .  
On ROM devices, addresses 0x3F7FF0 – 0x3F7FF5 and 0x3D7BFC – 0x3D7BFF are  
reserved for TI, irrespective of whether code security has been used or not. User  
application should not use these locations in any way.  
Table 3-5 shows how to handle these memory locations.  
Table 3-5. Impact of Using the Code Security Module  
ADDRESS  
FLASH  
ROM  
Code security enabled Code security disabled Code security enabled Code security disabled  
0x3F7F80 - 0x3F7FEF  
0x3F7FF0 - 0x3F7FF5  
0x3D7BFC – 0x3D7BFF  
Application code and data  
Reserved for data only  
Fill with 0x0000  
Application code and data  
Fill with 0x0000  
Reserved for TI. Do not use.  
Application code and data  
Peripheral Frame 1 and Peripheral Frame 2 are grouped together so as to enable these blocks to be  
write/read peripheral block protected. The protected mode ensures that all accesses to these blocks  
happen as written. Because of the C28x pipeline, a write immediately followed by a read, to different  
memory locations, will appear in reverse order on the memory bus of the CPU. This can cause problems  
in certain peripheral applications where the user expected the write to occur first (as written). The C28x  
CPU supports a block protection mode where a region of memory can be protected so as to make sure  
that operations occur as written (the penalty is extra cycles are added to align the operations). This mode  
is programmable and by default, it will protect the selected zones.  
The wait-states for the various spaces in the memory map area are listed in Table 3-6.  
34  
Functional Overview  
Submit Documentation Feedback  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 3-6. Wait-states  
AREA  
WAIT-STATES COMMENTS  
M0 and M1 SARAMs  
Peripheral Frame 0  
0-wait  
0-wait  
Fixed  
Fixed  
0-wait (writes) Fixed. The eCAN peripheral can extend a cycle as needed.  
2-wait (reads) Back-to-back writes will introduce a 1-cycle delay.  
Peripheral Frame 1  
0-wait (writes)  
Fixed  
Peripheral Frame 2  
L0 & L1 SARAMs  
2-wait (reads)  
0-wait  
Programmed via the Flash registers. 1-wait-state operation  
is possible at a reduced CPU frequency. See Section 3.2.5  
for more information.  
Programmable,  
1-wait minimum  
OTP  
Programmed via the Flash registers. 0-wait-state operation  
Programmable, is possible at reduced CPU frequency. The CSM password  
0-wait minimum locations are hardwired for 16 wait-states. See  
Section 3.2.5 for more information.  
Flash  
H0 SARAM  
Boot-ROM  
0-wait  
1-wait  
Fixed  
Fixed  
Submit Documentation Feedback  
Functional Overview  
35  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
3.2 Brief Descriptions  
3.2.1 C28x CPU  
The C28x™ DSP generation is the newest member of the TMS320C2000™ DSP platform. The C28x is a  
very efficient C/C++ engine, hence enabling users to develop not only their system control software in a  
high-level language, but also enables math algorithms to be developed using C/C++. The C28x is as  
efficient in DSP math tasks as it is in system control tasks that typically are handled by microcontroller  
devices. This efficiency removes the need for a second processor in many systems. The 32 x 32-bit MAC  
capabilities of the C28x and its 64-bit processing capabilities, enable the C28x to efficiently handle higher  
numerical resolution problems that would otherwise demand a more expensive floating-point processor  
solution. Add to this the fast interrupt response with automatic context save of critical registers, resulting in  
a device that is capable of servicing many asynchronous events with minimal latency. The C28x has an  
8-level-deep protected pipeline with pipelined memory accesses. This pipelining enables the C28x to  
execute at high speeds without resorting to expensive high-speed memories. Special branch-look-ahead  
hardware minimizes the latency for conditional discontinuities. Special store conditional operations further  
improve performance.  
3.2.2 Memory Bus (Harvard Bus Architecture)  
As with many DSP type devices, multiple busses are used to move data between the memories and  
peripherals and the CPU. The C28x memory bus architecture contains a program read bus, data read bus  
and data write bus. The program read bus consists of 22 address lines and 32 data lines. The data read  
and write busses consist of 32 address lines and 32 data lines each. The 32-bit-wide data busses enable  
single cycle 32-bit operations. The multiple bus architecture, commonly termed Harvard Bus, enables the  
C28x to fetch an instruction, read a data value and write a data value in a single cycle. All peripherals and  
memories attached to the memory bus will prioritize memory accesses. Generally, the priority of memory  
bus accesses can be summarized as follows:  
Highest:  
Data Writes  
(Simultaneous data and program writes cannot occur on the memory bus.)  
Program Writes (Simultaneous data and program writes cannot occur on the memory bus.)  
Data Reads  
Program Reads (Simultaneous program reads and fetches cannot occur on the memory bus.)  
Lowest:  
Fetches  
(Simultaneous program reads and fetches cannot occur on the memory bus.)  
3.2.3 Peripheral Bus  
To enable migration of peripherals between various Texas Instruments (TI) DSP family of devices, the  
280x devices adopt a peripheral bus standard for peripheral interconnect. The peripheral bus bridge  
multiplexes the various busses that make up the processor Memory Bus into a single bus consisting of 16  
address lines and 16 or 32 data lines and associated control signals. Two versions of the peripheral bus  
are supported on the 280x. One version only supports 16-bit accesses (called peripheral frame 2). The  
other version supports both 16- and 32-bit accesses (called peripheral frame 1).  
3.2.4 Real-Time JTAG and Analysis  
The 280x implements the standard IEEE 1149.1 JTAG interface. Additionally, the 280x supports real-time  
mode of operation whereby the contents of memory, peripheral and register locations can be modified  
while the processor is running and executing code and servicing interrupts. The user can also single step  
through non-time critical code while enabling time-critical interrupts to be serviced without interference.  
The 280x implements the real-time mode in hardware within the CPU. This is a unique feature to the  
280x, no software monitor is required. Additionally, special analysis hardware is provided which allows the  
user to set hardware breakpoint or data/address watch-points and generate various user-selectable break  
events when a match occurs.  
36  
Functional Overview  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
3.2.5 Flash  
The F2809 contains 128K x 16 of embedded flash memory, segregated into eight 16K X 16 sectors. The  
F2808 contains 64K x 16 of embedded flash memory, segregated into four 16K X 16 sectors. The F2806  
and F2802 have 32K X 16 of embedded flash, segregated into four 8K X 16 sectors. The F2801 device  
contains 16K X 16 of embedded flash, segregated into four 4K X 16 sectors. All five devices also contain  
a single 1K x 16 of OTP memory at address range 0x3D 7800 – 0x3D 7BFF. The user can individually  
erase, program, and validate a flash sector while leaving other sectors untouched. However, it is not  
possible to use one sector of the flash or the OTP to execute flash algorithms that erase/program other  
sectors. Special memory pipelining is provided to enable the flash module to achieve higher performance.  
The flash/OTP is mapped to both program and data space; therefore, it can be used to execute code or  
store data information. Note that addresses 0x3F7FF0 – 0x3F7FF5 are reserved for data variables and  
should not contain program code.  
NOTE  
The F2809/F2808/F2806/F2802/F2801 Flash and OTP wait-states can be configured by  
the application. This allows applications running at slower frequencies to configure the  
flash to use fewer wait-states.  
Flash effective performance can be improved by enabling the flash pipeline mode in the  
Flash options register. With this mode enabled, effective performance of linear code  
execution will be much faster than the raw performance indicated by the wait-state  
configuration alone. The exact performance gain when using the Flash pipeline mode is  
application-dependent.  
For more information on the Flash options, Flash wait-state, and OTP wait-state registers,  
see the TMS320x280x System Control and Interrupts Reference Guide (literature number  
SPRU712).  
3.2.6 ROM  
The C2802 contains 32K x 16 of ROM, while the C2801 contains 16K x 16 of ROM.  
3.2.7 M0, M1 SARAMs  
All 280x devices contain these two blocks of single access memory, each 1K x 16 in size. The stack  
pointer points to the beginning of block M1 on reset. The M0 and M1 blocks, like all other memory blocks  
on C28x devices, are mapped to both program and data space. Hence, the user can use M0 and M1 to  
execute code or for data variables. The partitioning is performed within the linker. The C28x device  
presents a unified memory map to the programmer. This makes for easier programming in high-level  
languages.  
3.2.8 L0, L1, H0 SARAMs  
The F2809 and F2808 each contain an additional 16K x 16 of single-access RAM, divided into 3 blocks  
(L0-4K, L1-4K, H0-8K). The F2806 contains an additional 8K x 16 of single-access RAM, divided into  
2 blocks (L0-4K, L1-4K). The F2802, F2801, C2802, and C2801 each contain an additional 4K x 16 of  
single-access RAM (L0-4K). Each block can be independently accessed to minimize CPU pipeline stalls.  
Each block is mapped to both program and data space.  
3.2.9 Boot ROM  
The Boot ROM is factory-programmed with boot-loading software. Boot-mode signals are provided to tell  
the bootloader software what boot mode to use on power up. The user can select to boot normally or to  
download new software from an external connection or to select boot software that is programmed in the  
internal Flash/ROM. The Boot ROM also contains standard tables, such as SIN/COS waveforms, for use  
in math related algorithms.  
Submit Documentation Feedback  
Functional Overview  
37  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 3-7. Boot Mode Selection  
GPIO18  
SPICLKA  
SCITXDB  
GPIO29  
SCITXDA  
MODE  
DESCRIPTION  
GPIO34  
Boot to Flash/ROM  
Jump to Flash/ROM address 0x3F 7FF6  
1
1
1
You must have programmed a branch instruction here prior  
to reset to redirect code execution as desired.  
SCI-A Boot  
SPI-A Boot  
I2C Boot  
Load a data stream from SCI-A  
1
1
1
1
0
0
0
1
0
Load from an external serial SPI EEPROM on SPI-A  
Load data from an external EEPROM at address 0x50 on  
the I2C bus  
eCAN-A Boot  
Call CAN_Boot to load from eCAN-A mailbox 1.  
Jump to M0 SARAM address 0x00 0000.  
Jump to OTP address 0x3D 7800  
0
0
0
0
1
1
0
0
1
0
1
0
Boot to M0 SARAM  
Boot to OTP  
Parallel I/O Boot  
Load data from GPIO0 - GPIO15  
38  
Functional Overview  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
3.2.10 Security  
The 280x devices support high levels of security to protect the user firmware from being reverse  
engineered. The security features a 128-bit password (hardcoded for 16 wait-states), which the user  
programs into the flash. One code security module (CSM) is used to protect the flash/OTP and the L0/L1  
SARAM blocks. The security feature prevents unauthorized users from examining the memory contents  
via the JTAG port, executing code from external memory or trying to boot-load some undesirable software  
that would export the secure memory contents. To enable access to the secure blocks, the user must  
write the correct 128-bit KEY value, which matches the value stored in the password locations within the  
Flash.  
NOTE  
The 128-bit password (at 0x3F 7FF8 – 0x3F 7FFF) must not be programmed to zeros.  
Doing so would permanently lock the device.  
disclaimer  
Code Security Module Disclaimer  
THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS  
DESIGNED TO PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED  
MEMORY (EITHER ROM OR FLASH) AND IS WARRANTED BY TEXAS  
INSTRUMENTS (TI), IN ACCORDANCE WITH ITS STANDARD TERMS AND  
CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS FOR THE  
WARRANTY PERIOD APPLICABLE FOR THIS DEVICE.  
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE  
COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED  
MEMORY CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER,  
EXCEPT AS SET FORTH ABOVE, TI MAKES NO WARRANTIES OR  
REPRESENTATIONS CONCERNING THE CSM OR OPERATION OF THIS DEVICE,  
INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR  
A PARTICULAR PURPOSE.  
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL,  
INDIRECT, INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN  
ANY WAY OUT OF YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT  
TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED  
DAMAGES INCLUDE, BUT ARE NOT LIMITED TO LOSS OF DATA, LOSS OF  
GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR OTHER  
ECONOMIC LOSS.  
Submit Documentation Feedback  
Functional Overview  
39  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
3.2.11 Peripheral Interrupt Expansion (PIE) Block  
The PIE block serves to multiplex numerous interrupt sources into a smaller set of interrupt inputs. The  
PIE block can support up to 96 peripheral interrupts. On the 280x, 43 of the possible 96 interrupts are  
used by peripherals. The 96 interrupts are grouped into blocks of 8 and each group is fed into 1 of 12  
CPU interrupt lines (INT1 to INT12). Each of the 96 interrupts is supported by its own vector stored in a  
dedicated RAM block that can be overwritten by the user. The vector is automatically fetched by the CPU  
on servicing the interrupt. It takes 8 CPU clock cycles to fetch the vector and save critical CPU registers.  
Hence the CPU can quickly respond to interrupt events. Prioritization of interrupts is controlled in  
hardware and software. Each individual interrupt can be enabled/disabled within the PIE block.  
3.2.12 External Interrupts (XINT1, XINT2, XNMI)  
The 280x supports three masked external interrupts (XINT1, XINT2, XNMI). XNMI can be connected to  
the INT13 or NMI interrupt of the CPU. Each of the interrupts can be selected for negative, positive, or  
both negative and positive edge triggering and can also be enabled/disabled (including the XNMI). The  
masked interrupts also contain a 16-bit free running up counter, which is reset to zero when a valid  
interrupt edge is detected. This counter can be used to accurately time stamp the interrupt. Unlike the  
281x devices, there are no dedicated pins for the external interrupts. Rather, any Port A GPIO pin can be  
configured to trigger any external interrupt.  
3.2.13 Oscillator and PLL  
The 280x can be clocked by an external oscillator or by a crystal attached to the on-chip oscillator circuit.  
A PLL is provided supporting up to 10 input-clock-scaling ratios. The PLL ratios can be changed on-the-fly  
in software, enabling the user to scale back on operating frequency if lower power operation is desired.  
Refer to the Electrical Specification section for timing details. The PLL block can be set in bypass mode.  
3.2.14 Watchdog  
The 280x devices contain a watchdog timer. The user software must regularly reset the watchdog counter  
within a certain time frame; otherwise, the watchdog will generate a reset to the processor. The watchdog  
can be disabled if necessary.  
3.2.15 Peripheral Clocking  
The clocks to each individual peripheral can be enabled/disabled so as to reduce power consumption  
when a peripheral is not in use. Additionally, the system clock to the serial ports (except I2C and eCAN)  
and the ADC blocks can be scaled relative to the CPU clock. This enables the timing of peripherals to be  
decoupled from increasing CPU clock speeds.  
3.2.16 Low-Power Modes  
The 280x devices are full static CMOS devices. Three low-power modes are provided:  
IDLE:  
Place CPU into low-power mode. Peripheral clocks may be turned off selectively and only  
those peripherals that need to function during IDLE are left operating. An enabled interrupt  
from an active peripheral or the watchdog timer will wake the processor from IDLE mode.  
STANDBY: Turns off clock to CPU and peripherals. This mode leaves the oscillator and PLL functional.  
An external interrupt event will wake the processor and the peripherals. Execution begins  
on the next valid cycle after detection of the interrupt event  
HALT:  
Turns off the internal oscillator. This mode basically shuts down the device and places it in  
the lowest possible power consumption mode. A reset or external signal can wake the  
device from this mode.  
40  
Functional Overview  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
3.2.17 Peripheral Frames 0, 1, 2 (PFn)  
The 280x segregate peripherals into three sections. The mapping of peripherals is as follows:  
PF0: PIE:  
Flash:  
PIE Interrupt Enable and Control Registers Plus PIE Vector Table  
Flash Control, Programming, Erase, Verify Registers  
CPU-Timers 0, 1, 2 Registers  
Timers:  
CSM:  
Code Security Module KEY Registers  
ADC:  
ADC Result Registers (dual-mapped)  
PF1: eCAN:  
GPIO:  
eCAN Mailbox and Control Registers  
GPIO MUX Configuration and Control Registers  
Enhanced Pulse Width Modulator Module and Registers  
Enhanced Capture Module and Registers  
ePWM:  
eCAP:  
eQEP:  
Enhanced Quadrature Encoder Pulse Module and Registers  
System Control Registers  
PF2: SYS:  
SCI:  
Serial Communications Interface (SCI) Control and RX/TX Registers  
Serial Port Interface (SPI) Control and RX/TX Registers  
ADC Status, Control, and Result Register  
SPI:  
ADC:  
I2C:  
Inter-Integrated Circuit Module and Registers  
3.2.18 General-Purpose Input/Output (GPIO) Multiplexer  
Most of the peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. This  
enables the user to use a pin as GPIO if the peripheral signal or function is not used. On reset, GPIO pins  
are configured as inputs. The user can individually program each pin for GPIO mode or peripheral signal  
mode. For specific inputs, the user can also select the number of input qualification cycles. This is to filter  
unwanted noise glitches. The GPIO signals can also be used to bring the device out of specific low-power  
modes.  
3.2.19 32-Bit CPU-Timers (0, 1, 2)  
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock  
prescaling. The timers have a 32-bit count down register, which generates an interrupt when the counter  
reaches zero. The counter is decremented at the CPU clock speed divided by the prescale value setting.  
When the counter reaches zero, it is automatically reloaded with a 32-bit period value. CPU-Timer 2 is  
reserved for the DSP/BIOS Real-Time OS, and is connected to INT14 of the CPU. If DSP/BIOS is not  
being used, CPU-Timer 2 is available for general use. CPU-Timer 1 is for general use and can be  
connected to INT13 of the CPU. CPU-Timer 0 is also for general use and is connected to the PIE block.  
3.2.20 Control Peripherals  
The 280x devices support the following peripherals which are used for embedded control and  
communication:  
ePWM:  
The enhanced PWM peripheral supports independent/complementary PWM generation,  
adjustable dead-band generation for leading/trailing edges, latched/cycle-by-cycle trip  
mechanism. Some of the PWM pins support HRPWM features.  
eCAP:  
The enhanced capture peripheral uses a 32-bit time base and registers up to four  
programmable events in continuous/one-shot capture modes.  
This peripheral can also be configured to generate an auxiliary PWM signal.  
Submit Documentation Feedback  
Functional Overview  
41  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
eQEP:  
The enhanced QEP peripheral uses a 32-bit position counter, supports low-speed  
measurement using capture unit and high-speed measurement using a 32-bit unit timer.  
This peripheral has a watchdog timer to detect motor stall and input error detection logic  
to identify simultaneous edge transition in QEP signals.  
ADC:  
The ADC block is a 12-bit converter, single ended, 16-channels. It contains two  
sample-and-hold units for simultaneous sampling.  
3.2.21 Serial Port Peripherals  
The 280x devices support the following serial communication peripherals:  
eCAN:  
This is the enhanced version of the CAN peripheral. It supports 32 mailboxes, time  
stamping of messages, and is CAN 2.0B-compliant.  
SPI:  
The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of  
programmed length (one to sixteen bits) to be shifted into and out of the device at a  
programmable bit-transfer rate. Normally, the SPI is used for communications between the  
DSP controller and external peripherals or another processor. Typical applications include  
external I/O or peripheral expansion through devices such as shift registers, display  
drivers, and ADCs. Multi-device communications are supported by the master/slave  
operation of the SPI. On the 280x, the SPI contains a 16-level receive and transmit FIFO  
for reducing interrupt servicing overhead.  
SCI:  
I2C:  
The serial communications interface is a two-wire asynchronous serial port, commonly  
known as UART. On the 280x, the SCI contains a 16-level receive and transmit FIFO for  
reducing interrupt servicing overhead.  
The inter-integrated circuit (I2C) module provides an interface between a DSP and other  
devices compliant with Philips Semiconductors Inter-IC bus (I2C-bus) specification version  
2.1 and connected by way of an I2C-bus. External components attached to this 2-wire  
serial bus can transmit/receive up to 8-bit data to/from the DSP through the I2C module.  
On the 280x, the I2C contains a 16-level receive and transmit FIFO for reducing interrupt  
servicing overhead.  
3.3 Register Map  
The 280x devices contain three peripheral register spaces. The spaces are categorized as follows:  
Peripheral  
Frame 0:  
These are peripherals that are mapped directly to the CPU memory bus.  
See Table 3-8  
Peripheral  
Frame 1  
These are peripherals that are mapped to the 32-bit peripheral bus.  
See Table 3-9  
Peripheral  
Frame 2:  
These are peripherals that are mapped to the 16-bit peripheral bus.  
See Table 3-10  
42  
Functional Overview  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 3-8. Peripheral Frame 0 Registers(1) (2)  
NAME  
ADDRESS RANGE  
SIZE (x16)  
ACCESS TYPE(3)  
Device Emulation Registers  
FLASH Registers(4)  
0x0880 - 0x09FF  
384  
EALLOW protected  
EALLOW protected  
CSM Protected  
0x0A80 - 0x0ADF  
96  
Code Security Module Registers  
ADC Result Registers (dual-mapped)  
CPU-TIMER0/1/2 Registers  
PIE Registers  
0x0AE0 - 0x0AEF  
0x0B00 - 0x0B0F  
0x0C00 - 0x0C3F  
0x0CE0 - 0x0CFF  
0x0D00 - 0x0DFF  
16  
16  
EALLOW protected  
Not EALLOW protected  
Not EALLOW protected  
Not EALLOW protected  
EALLOW protected  
64  
32  
PIE Vector Table  
256  
(1) Registers in Frame 0 support 16-bit and 32-bit accesses.  
(2) Missing segments of memory space are reserved and should not be used in applications.  
(3) If registers are EALLOW protected, then writes cannot be performed until the EALLOW instruction is executed. The EDIS instruction  
disables writes to prevent stray code or pointers from corrupting register contents.  
(4) The Flash Registers are also protected by the Code Security Module (CSM).  
Table 3-9. Peripheral Frame 1 Registers(1)(2)  
NAME  
ADDRESS RANGE  
0x6000 - 0x60FF  
0x6100 - 0x61FF  
0x6200 - 0x62FF  
SIZE (x16)  
ACCESS TYPE  
Some eCAN control registers (and selected  
bits in other eCAN control registers) are  
EALLOW-protected.  
eCANA Registers  
256  
eCANA Mailbox RAM  
eCANB Registers  
256  
Not EALLOW-protected  
Some eCAN control registers (and selected  
bits in other eCAN control registers) are  
EALLOW-protected.  
256  
eCANB Mailbox RAM  
ePWM1 Registers  
0x6300 - 0x63FF  
0x6800 - 0x683F  
0x6840 - 0x687F  
0x6880 - 0x68BF  
0x68C0 - 0x68FF  
0x6900 - 0x693F  
0x6940 - 0x697F  
0x6A00 - 0x6A1F  
0x6A20 - 0x6A3F  
0x6A40 - 0x6A5F  
0x6A60 - 0x6A7F  
0x6B00 - 0x6B3F  
0x6B40 - 0x6B7F  
0x6F80 - 0x6FBF  
0x6FC0 - 0x6FDF  
0x6FE0 - 0x6FFF  
256  
64  
64  
64  
64  
64  
64  
32  
32  
32  
32  
64  
64  
128  
32  
32  
Not EALLOW-protected  
ePWM2 Registers  
Some ePWM registers are EALLOW  
protected.  
See Table 4-2  
ePWM3 Registers  
ePWM4 Registers  
ePWM5 Registers  
ePWM6 Registers  
eCAP1 Registers  
eCAP2 Registers  
eCAP3 Registers  
Not EALLOW protected  
eCAP4 Registers  
eQEP1 Registers  
eQEP2 Registers  
GPIO Control Registers  
GPIO Data Registers  
GPIO Interrupt and LPM Select Registers  
EALLOW protected  
Not EALLOW protected  
EALLOW protected  
(1) The eCAN control registers only support 32-bit read/write operations. All 32-bit accesses are aligned to even address boundaries.  
(2) Missing segments of memory space are reserved and should not be used in applications.  
Submit Documentation Feedback  
Functional Overview  
43  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 3-10. Peripheral Frame 2 Registers(1) (2)  
NAME  
System Control Registers  
SPI-A Registers  
ADDRESS RANGE  
0x7010 - 0x702F  
0x7040 - 0x704F  
0x7050 - 0x705F  
0x7070 - 0x707F  
0x7100 - 0x711F  
0x7740 - 0x774F  
0x7750 - 0x775F  
0x7760 - 0x776F  
0x7780 - 0x778F  
0x7900 - 0x792F  
SIZE (x16)  
ACCESS TYPE  
EALLOW Protected  
32  
16  
16  
16  
32  
16  
16  
16  
16  
48  
SCI-A Registers  
External Interrupt Registers  
ADC Registers  
SPI-B Registers  
Not EALLOW Protected  
SCI-B Registers  
SPI-C Registers  
SPI-D Registers  
I2C Registers  
(1) Peripheral Frame 2 only allows 16-bit accesses. All 32-bit accesses are ignored (invalid data may be returned or written).  
(2) Missing segments of memory space are reserved and should not be used in applications.  
3.4 Device Emulation Registers  
These registers are used to control the protection mode of the C28x CPU and to monitor some critical  
device signals. The registers are defined in Table 3-11.  
Table 3-11. Device Emulation Registers  
ADDRESS  
RANGE  
NAME  
SIZE (x16)  
DESCRIPTION  
0x0880  
0x0881  
DEVICECNF  
PARTID  
2
1
Device Configuration Register  
0x0882  
Part ID Register  
0x002C(1) - F2801  
0x0024 - F2802  
0x0034 - F2806  
0x003C - F2808  
0x00FE - F2809  
0x0014 - F28016  
0x001C - F28015  
0xFF2C - C2801  
0xFF24 - C2802  
REVID  
0x0883  
1
Revision ID Register  
Revision ID Register  
0x0000 - Silicon Rev. 0 - TMX  
0x0001 - Silicon Rev. A - TMX  
0x0002 - Silicon Rev. B - TMS  
0x0003 - Silicon Rev. C - TMS  
0x0000 - Silicon rev. 0 - TMS (F2809 only)  
PROTSTART  
PROTRANGE  
0x0884  
0x0885  
1
1
Block Protection Start Address Register  
Block Protection Range Address Register  
(1) The first byte (00) denotes flash devices. FF denotes ROM devices. Other values are reserved for future devices.  
3.5 Interrupts  
Figure 3-7 shows how the various interrupt sources are multiplexed within the 280x devices.  
Eight PIE block interrupts are grouped into one CPU interrupt. In total, 12 CPU interrupt groups, with 8  
interrupts per group equals 96 possible interrupts. On the 280x, 43 of these are used by peripherals as  
shown in Table 3-12.  
The TRAP #VectorNumber instruction transfers program control to the interrupt service routine  
corresponding to the vector specified. TRAP #0 attempts to transfer program control to the address  
pointed to by the reset vector. The PIE vector table does not, however, include a reset vector. Therefore,  
TRAP #0 should not be used when the PIE is enabled. Doing so will result in undefined behavior.  
44  
Functional Overview  
Submit Documentation Feedback  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
When the PIE is enabled, TRAP #1 through TRAP #12 will transfer program control to the interrupt service  
routine corresponding to the first vector within the PIE group. For example: TRAP #1 fetches the vector  
from INT1.1, TRAP #2 fetches the vector from INT2.1 and so forth.  
Peripherals  
(SPI, SCI, I2C, eCAN, ePWM, eCAP, eQEP, ADC)  
WDINT  
Watchdog  
WAKEINT  
LPMINT  
Low Power Modes  
XINT1  
XINT1  
Interrupt Control  
XINT1CR(15:0)  
XINT1CTR(15:0)  
INT1 to  
INT12  
GPIOXINT1SEL(4:0)  
XINT2SOC  
ADC  
XINT2  
XINT2  
Interrupt Control  
XINT2CR(15:0)  
XINT2CTR(15:0)  
C28  
CPU  
GPIOXINT2SEL(4:0)  
TINT0  
CPU TIMER 0  
CPU TIMER 2  
(Reserved for DSP/BIOS)  
TINT2  
TINT1  
INT14  
INT13  
CPU TIMER 1  
int13_select  
nmi_select  
GPIO0.int  
XNMI_XINT13  
GPIO  
MUX  
Interrupt Control  
XNMICR(15:0)  
XNMICTR(15:0)  
NMI  
GPIO31.int  
1
GPIOXNMISEL(4:0)  
Figure 3-7. External and PIE Interrupt Sources  
Submit Documentation Feedback  
Functional Overview  
45  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
IFR(12:1)  
IER(12:1)  
INTM  
INT1  
INT2  
1
CPU  
MUX  
0
INT11  
INT12  
Global  
Enable  
(Flag)  
(Enable)  
INTx.1  
INTx.2  
INTx.3  
INTx.4  
INTx.5  
From  
Peripherals or  
External  
INTx  
MUX  
INTx.6  
INTx.7  
INTx.8  
Interrupts  
PIEACKx  
(Enable)  
(Flag)  
(Enable/Flag)  
PIEIERx(8:1)  
PIEIFRx(8:1)  
Figure 3-8. Multiplexing of Interrupts Using the PIE Block  
Table 3-12. PIE Peripheral Interrupts(1)  
PIE INTERRUPTS  
CPU  
INTERRUPTS  
INTx.8  
INTx.7  
INTx.6  
INTx.5  
INTx.4  
INTx.3  
INTx.2  
INTx.1  
WAKEINT  
(LPM/WD)  
TINT0  
(TIMER 0)  
ADCINT  
(ADC)  
SEQ2INT  
(ADC)  
SEQ1INT  
(ADC)  
INT1  
INT2  
INT3  
INT4  
INT5  
XINT2  
XINT1  
reserved  
EPWM6_TZINT EPWM5_TZINT EPWM4_TZINT EPWM3_TZINT EPWM2_TZINT EPWM1_TZINT  
(ePWM6)  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
(ePWM5)  
(ePWM4)  
(ePWM3)  
(ePWM2)  
(ePWM1)  
EPWM6_INT  
(ePWM6)  
EPWM5_INT  
(ePWM5)  
EPWM4_INT  
(ePWM4)  
EPWM3_INT  
(ePWM3)  
EPWM2_INT  
(ePWM2)  
EPWM1_INT  
(ePWM1)  
ECAP4_INT  
(eCAP4)  
ECAP3_INT  
(eCAP3)  
ECAP2_INT  
(eCAP2)  
ECAP1_INT  
(eCAP1)  
reserved  
reserved  
reserved  
reserved  
EQEP2_INT  
(eQEP2)  
EQEP1_INT  
(eQEP1)  
reserved  
reserved  
SPITXINTD  
(SPI-D)  
SPIRXINTD  
(SPI-D)  
SPITXINTC  
(SPI-C)  
SPIRXINTC  
(SPI-C)  
SPITXINTB  
(SPI-B)  
SPIRXINTB  
(SPI-B)  
SPITXINTA  
(SPI-A)  
SPIRXINTA  
(SPI-A)  
INT6  
INT7  
INT8  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
I2CINT2A  
(I2C-A)  
I2CINT1A  
(I2C-A)  
ECAN1_INTB  
(CAN-B)  
ECAN0_INTB  
(CAN-B)  
ECAN1_INTA  
(CAN-A)  
ECAN0_INTA  
(CAN-A)  
SCITXINTB  
(SCI-B)  
SCIRXINTB  
(SCI-B)  
SCITXINTA  
(SCI-A)  
SCIRXINTA  
(SCI-A)  
INT9  
INT10  
INT11  
INT12  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
(1) Out of the 96 possible interrupts, 43 interrupts are currently used. The remaining interrupts are reserved for future devices. These  
interrupts can be used as software interrupts if they are enabled at the PIEIFRx level, provided none of the interrupts within the group is  
being used by a peripheral. Otherwise, interrupts coming in from peripherals may be lost by accidentally clearing their flag while  
modifying the PIEIFR. To summarize, there are two safe cases when the reserved interrupts could be used as software interrupts:  
1) No peripheral within the group is asserting interrupts.  
2) No peripheral interrupts are assigned to the group (example PIE group 12).  
46  
Functional Overview  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 3-13. PIE Configuration and Control Registers  
NAME  
PIECTRL  
PIEACK  
PIEIER1  
PIEIFR1  
PIEIER2  
PIEIFR2  
PIEIER3  
PIEIFR3  
PIEIER4  
PIEIFR4  
PIEIER5  
PIEIFR5  
PIEIER6  
PIEIFR6  
PIEIER7  
PIEIFR7  
PIEIER8  
PIEIFR8  
PIEIER9  
PIEIFR9  
PIEIER10  
PIEIFR10  
PIEIER11  
PIEIFR11  
PIEIER12  
PIEIFR12  
Reserved  
ADDRESS  
0x0CE0  
0x0CE1  
0x0CE2  
0x0CE3  
0x0CE4  
0x0CE5  
0x0CE6  
0x0CE7  
0x0CE8  
0x0CE9  
0x0CEA  
0x0CEB  
0x0CEC  
0x0CED  
0x0CEE  
0x0CEF  
0x0CF0  
0x0CF1  
0x0CF2  
0x0CF3  
0x0CF4  
0x0CF5  
0x0CF6  
0x0CF7  
0x0CF8  
0x0CF9  
SIZE (X16)  
DESCRIPTION(1)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
PIE, Control Register  
PIE, Acknowledge Register  
PIE, INT1 Group Enable Register  
PIE, INT1 Group Flag Register  
PIE, INT2 Group Enable Register  
PIE, INT2 Group Flag Register  
PIE, INT3 Group Enable Register  
PIE, INT3 Group Flag Register  
PIE, INT4 Group Enable Register  
PIE, INT4 Group Flag Register  
PIE, INT5 Group Enable Register  
PIE, INT5 Group Flag Register  
PIE, INT6 Group Enable Register  
PIE, INT6 Group Flag Register  
PIE, INT7 Group Enable Register  
PIE, INT7 Group Flag Register  
PIE, INT8 Group Enable Register  
PIE, INT8 Group Flag Register  
PIE, INT9 Group Enable Register  
PIE, INT9 Group Flag Register  
PIE, INT10 Group Enable Register  
PIE, INT10 Group Flag Register  
PIE, INT11 Group Enable Register  
PIE, INT11 Group Flag Register  
PIE, INT12 Group Enable Register  
PIE, INT12 Group Flag Register  
Reserved  
0x0CFA  
0x0CFF  
(1) The PIE configuration and control registers are not protected by EALLOW mode. The PIE vector table  
is protected.  
3.5.1 External Interrupts  
Table 3-14. External Interrupt Registers  
NAME  
XINT1CR  
XINT2CR  
reserved  
ADDRESS  
0x7070  
SIZE (x16)  
DESCRIPTION  
XINT1 control register  
1
1
5
1
1
1
5
1
0x7071  
XINT2 control register  
0x7072 - 0x7076  
0x7077  
XNMICR  
XNMI control register  
XINT1 counter register  
XINT2 counter register  
XINT1CTR  
XINT2CTR  
reserved  
0x7078  
0x7079  
0x707A - 0x707E  
0x707F  
XNMICTR  
XNMI counter register  
Each external interrupt can be enabled/disabled or qualified using positive, negative, or both positive and  
negative edge. For more information, see the TMS320x280x System Control and Interrupts Reference  
Guide (literature number SPRU712).  
Submit Documentation Feedback  
Functional Overview  
47  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
3.6 System Control  
This section describes the 280x oscillator, PLL and clocking mechanisms, the watchdog function and the  
low power modes. Figure 3-9 shows the various clock and reset domains in the 280x devices that will be  
discussed.  
Reset  
SYSCLKOUT  
XRS  
Watchdog  
Block  
(A)  
Peripheral Reset  
X1  
X2  
(A)  
CLKIN  
28x  
CPU  
PLL  
OSC  
Power  
Modes  
Control  
XCLKIN  
CPU  
Timers  
Peripheral  
Registers  
Clock Enables  
System  
Control  
Registers  
ePWM 1/2/3/4/5/6  
eCAP 1/2/3/4 eQEP 1/2  
Peripheral  
Registers  
I/O  
I/O  
I/O  
eCAN-A/B  
I C-A  
Peripheral  
Registers  
2
GPIO  
MUX  
GPIOs  
Low-Speed Prescaler  
LSPCLK  
Peripheral  
Registers  
Low-Speed Peripherals  
SCI-A/B, SPI-A/B/C/D  
High-Speed Prescaler  
HSPCLK  
ADC  
Registers  
12-Bit ADC  
16 ADC inputs  
A. CLKIN is the clock into the CPU. It is passed out of the CPU as SYSCLKOUT (that is, CLKIN is the same frequency  
as SYSCLKOUT).  
Figure 3-9. Clock and Reset Domains  
48  
Functional Overview  
Submit Documentation Feedback  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
The PLL, clocking, watchdog and low-power modes, are controlled by the registers listed in Table 3-15.  
Table 3-15. PLL, Clocking, Watchdog, and Low-Power Mode Registers(1)  
NAME  
XCLK  
ADDRESS  
0x7010  
SIZE (x16)  
DESCRIPTION  
XCLKOUT Pin Control, X1 and XCLKIN Status Register  
PLL Status Register  
1
1
8
1
1
1
1
1
1
1
1
1
1
1
3
1
6
PLLSTS  
reserved  
HISPCP  
LOSPCP  
PCLKCR0  
PCLKCR1  
LPMCR0  
reserved  
PLLCR  
0x7011  
0x7012 - 0x7019  
0x701A  
High-Speed Peripheral Clock Prescaler Register (for HSPCLK)  
Low-Speed Peripheral Clock Prescaler Register (for LSPCLK)  
Peripheral Clock Control Register 0  
0x701B  
0x701C  
0x701D  
Peripheral Clock Control Register 1  
0x701E  
Low Power Mode Control Register 0  
0x701F - 0x7020  
0x7021  
PLL Control Register  
SCSR  
0x7022  
System Control and Status Register  
Watchdog Counter Register  
WDCNTR  
reserved  
WDKEY  
reserved  
WDCR  
0x7023  
0x7024  
0x7025  
Watchdog Reset Key Register  
Watchdog Control Register  
0x7026 - 0x7028  
0x7029  
reserved  
0x702A - 0x702F  
(1) All of the registers in this table are EALLOW protected.  
3.6.1 OSC and PLL Block  
Figure 3-10 shows the OSC and PLL block on the 280x.  
OSCCLK  
OSCCLK  
XCLKIN  
(3.3-V clock input)  
0
n
xor  
OSCCLK or  
VCOCLK  
CLKIN  
PLLSTS[OSCOFF]  
PLLSTS[PLLOFF]  
VCOCLK  
PLL  
/2  
n 0  
PLLSTS[CLKINDIV]  
X1  
On chip  
oscillator  
4-bit PLL Select (PLLCR)  
X2  
Figure 3-10. OSC and PLL Block Diagram  
The on-chip oscillator circuit enables a crystal/resonator to be attached to the 280x devices using the X1  
and X2 pins. If the on-chip oscillator is not used, an external oscillator can be used in either one of the  
following configurations:  
1. A 3.3-V external oscillator can be directly connected to the XCLKIN pin. The X2 pin should be left  
unconnected and the X1 pin tied low. The logic-high level in this case should not exceed VDDIO  
.
2. A 1.8-V external oscillator can be directly connected to the X1 pin. The X2 pin should be left  
unconnected and the XCLKIN pin tied low. The logic-high level in this case should not exceed VDD  
.
The three possible input-clock configurations are shown in Figure 3-11 through Figure 3-13  
Submit Documentation Feedback  
Functional Overview  
49  
 
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
XCLKIN  
X1  
X2  
NC  
External Clock Signal  
(Toggling 0V  
)
DDIO  
Figure 3-11. Using a 3.3-V External Oscillator  
X2  
X1  
XCLKIN  
External Clock Signal  
NC  
(Toggling 0V  
)
DD  
Figure 3-12. Using a 1.8-V External Oscillator  
XCLKIN  
X1  
X2  
C
L2  
C
L1  
Crystal  
Figure 3-13. Using the Internal Oscillator  
3.6.1.1 External Reference Oscillator Clock Option  
The typical specifications for the external quartz crystal for a frequency of 20 MHz are listed below:  
Fundamental mode, parallel resonant  
CL (load capacitance) = 12 pF  
CL1 = CL2 = 24 pF  
Cshunt = 6 pF  
ESR range = 30 to 60  
TI recommends that customers have the resonator/crystal vendor characterize the operation of their  
device with the DSP chip. The resonator/crystal vendor has the equipment and expertise to tune the tank  
circuit. The vendor can also advise the customer regarding the proper tank component values that will  
produce proper start up and stability over the entire operating range.  
3.6.1.2 PLL-Based Clock Module  
The 280x devices have an on-chip, PLL-based clock module. This module provides all the necessary  
clocking signals for the device, as well as control for low-power mode entry. The PLL has a 4-bit ratio  
control PLLCR[DIV] to select different CPU clock rates. The watchdog module should be disabled before  
writing to the PLLCR register. It can be re-enabled (if need be) after the PLL module has stabilized, which  
takes 131072 OSCCLK cycles.  
50  
Functional Overview  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 3-16. PLLCR Register Bit Definitions  
SYSCLKOUT  
(CLKIN)(2)  
PLLCR[DIV](1)  
0000 (PLL bypass)  
0001  
OSCCLK/n  
(OSCCLK*1)/n  
(OSCCLK*2)/n  
(OSCCLK*3)/n  
(OSCCLK*4)/n  
(OSCCLK*5)/n  
(OSCCLK*6)/n  
(OSCCLK*7)/n  
(OSCCLK*8)/n  
(OSCCLK*9)/n  
(OSCCLK*10)/n  
reserved  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011-1111  
(1) This register is EALLOW protected.  
(2) CLKIN is the input clock to the CPU. SYSCLKOUT is the output  
clock from the CPU. The frequency of SYSCLKOUT is the same as  
CLKIN. If CLKINDIV = 0, n = 2; if CLKINDIV = 1, n = 1.  
NOTE  
PLLSTS[CLKINDIV] enables or bypasses the divide-by-two block before the clock is fed  
to the core. This bit must be 0 before writing to the PLLCR and must only be set after  
PLLSTS[PLLLOCKS] = 1.  
The PLL-based clock module provides two modes of operation:  
Crystal-operation - This mode allows the use of an external crystal/resonator to provide the time base  
to the device.  
External clock source operation - This mode allows the internal oscillator to be bypassed. The device  
clocks are generated from an external clock source input on the X1 or the XCLKIN pin.  
Table 3-17. Possible PLL Configuration Modes  
SYSCLKOUT  
(CLKIN)  
PLL MODE  
REMARKS  
PLLSTS[CLKINDIV]  
Invoked by the user setting the PLLOFF bit in the PLLSTS register. The PLL block  
is disabled in this mode. This can be useful to reduce system noise and for low  
power operation. The PLLCR register must first be set to 0x0000 (PLL Bypass)  
before entering this mode. The CPU clock (CLKIN) is derived directly from the  
input clock on either X1/X2, X1 or XCLKIN.  
0
OSCCLK/2  
PLL Off  
1
OSCCLK  
PLL Bypass is the default PLL configuration upon power-up or after an external  
reset (XRS). This mode is selected when the PLLCR register is set to 0x0000 or  
while the PLL locks to a new frequency after the PLLCR register has been  
modified. In this mode, the PLL itself is bypassed but the PLL is not turned off.  
0
1
OSCCLK/2  
OSCCLK  
PLL Bypass  
PLL Enable  
Achieved by writing a non-zero value n into the PLLCR register. Upon writing to the  
PLLCR the device will switch to PLL Bypass mode until the PLL locks.  
0
OSCCLK*n/2  
3.6.1.3 Loss of Input Clock  
In PLL-enabled and PLL-bypass mode, if the input clock OSCCLK is removed or absent, the PLL will still  
issue a limp-mode clock. The limp-mode clock continues to clock the CPU and peripherals at a typical  
frequency of 1-5 MHz. Limp mode is not specified to work from power-up, only after input clocks have  
been present initially. In PLL bypass mode, the limp mode clock from the PLL is automatically routed to  
the CPU if the input clock is removed or absent.  
Normally, when the input clocks are present, the watchdog counter decrements to initiate a watchdog  
Submit Documentation Feedback  
Functional Overview  
51  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
reset or WDINT interrupt. However, when the external input clock fails, the watchdog counter stops  
decrementing (i.e., the watchdog counter does not change with the limp-mode clock). In addition to this,  
the device will be reset and the “Missing Clock Status” (MCLKSTS) bit will be set. These conditions could  
be used by the application firmware to detect the input clock failure and initiate necessary shut-down  
procedure for the system.  
NOTE  
Applications in which the correct CPU operating frequency is absolutely critical should  
implement a mechanism by which the DSP will be held in reset, should the input clocks  
ever fail. For example, an R-C circuit may be used to trigger the XRS pin of the DSP,  
should the capacitor ever get fully charged. An I/O pin may be used to discharge the  
capacitor on a periodic basis to prevent it from getting fully charged. Such a circuit would  
also help in detecting failure of the flash memory and the VDD3VFL rail.  
3.6.2 Watchdog Block  
The watchdog block on the 280x is similar to the one used on the 240x and 281x devices. The watchdog  
module generates an output pulse, 512 oscillator clocks wide (OSCCLK), whenever the 8-bit watchdog up  
counter has reached its maximum value. To prevent this, the user disables the counter or the software  
must periodically write a 0x55 + 0xAA sequence into the watchdog key register which will reset the  
watchdog counter. Figure 3-14 shows the various functional blocks within the watchdog module.  
WDCR (WDPS(2:0))  
WDCR (WDDIS)  
WDCNTR(7:0)  
OSCCLK  
WDCLK  
8-Bit  
Watchdog  
Counter  
CLR  
Watchdog  
Prescaler  
/512  
Clear Counter  
Internal  
Pullup  
WDKEY(7:0)  
WDRST  
WDINT  
Generate  
Output Pulse  
(512 OSCCLKs)  
Watchdog  
55 + AA  
Key Detector  
Good Key  
XRS  
Bad  
WDCHK  
Key  
Core-reset  
SCSR (WDENINT)  
WDCR (WDCHK(2:0))  
1
0
1
(A)  
WDRST  
A. The WDRST signal is driven low for 512 OSCCLK cycles.  
Figure 3-14. Watchdog Module  
The WDINT signal enables the watchdog to be used as a wakeup from IDLE/STANDBY mode.  
52  
Functional Overview  
Submit Documentation Feedback  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
In STANDBY mode, all peripherals are turned off on the device. The only peripheral that remains  
functional is the watchdog. The WATCHDOG module will run off OSCCLK. The WDINT signal is fed to the  
LPM block so that it can wake the device from STANDBY (if enabled). See Section Section 3.7,  
Low-Power Modes Block, for more details.  
In IDLE mode, the WDINT signal can generate an interrupt to the CPU, via the PIE, to take the CPU out of  
IDLE mode.  
In HALT mode, this feature cannot be used because the oscillator (and PLL) are turned off and hence so  
is the WATCHDOG.  
3.7 Low-Power Modes Block  
The low-power modes on the 280x are similar to the 240x devices. Table 3-18 summarizes the various  
modes.  
Table 3-18. Low-Power Modes  
MODE  
LPMCR0(1:0)  
OSCCLK  
CLKIN  
SYSCLKOUT  
EXIT(1)  
XRS, Watchdog interrupt, any enabled  
interrupt, XNMI  
IDLE  
00  
On  
On  
On(2)  
On  
XRS, Watchdog interrupt, GPIO Port A  
signal, debugger(3), XNMI  
STANDBY  
HALT  
01  
1X  
Off  
Off  
Off  
Off  
(watchdog still running)  
Off  
XRS, GPIO Port A signal, XNMI,  
debugger(3)  
(oscillator and PLL turned off,  
watchdog not functional)  
(1) The Exit column lists which signals or under what conditions the low power mode will be exited. A low signal, on any of the signals, will  
exit the low power condition. This signal must be kept low long enough for an interrupt to be recognized by the device. Otherwise the  
IDLE mode will not be exited and the device will go back into the indicated low power mode.  
(2) The IDLE mode on the C28x behaves differently than on the 24x/240x. On the C28x, the clock output from the CPU (SYSCLKOUT) is  
still functional while on the 24x/240x the clock is turned off.  
(3) On the C28x, the JTAG port can still function even if the CPU clock (CLKIN) is turned off.  
The various low-power modes operate as follows:  
IDLE Mode:  
This mode is exited by any enabled interrupt or an XNMI that is recognized by  
the processor. The LPM block performs no tasks during this mode as long as the  
LPMCR0(LPM) bits are set to 0,0.  
STANDBY Mode:  
Any GPIO port A signal (GPIO[31:0]) can wake the device from STANDBY  
mode. The user must select which signal(s) will wake the device in the  
GPIOLPMSEL register. The selected signal(s) are also qualified by the OSCCLK  
before waking the device. The number of OSCCLKs is specified in the LPMCR0  
register.  
HALT Mode:  
Only the XRS and any GPIO port A signal (GPIO[31:0]) can wake the device  
from HALT mode. The user selects the signal in the GPIOLPMSEL register.  
NOTE  
The low-power modes do not affect the state of the output pins (PWM pins included).  
They will be in whatever state the code left them in when the IDLE instruction was  
executed. See the TMS320x280x System Control and Interrupts Reference Guide  
(literature number SPRU712) for more details.  
Submit Documentation Feedback  
Functional Overview  
53  
 
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
4
Peripherals  
The integrated peripherals of the 280x are described in the following subsections:  
Three 32-bit CPU-Timers  
Up to six enhanced PWM modules (ePWM1, ePWM2, ePWM3, ePWM4, ePWM5, ePWM6)  
Up to four enhanced capture modules (eCAP1, eCAP2, eCAP3, eCAP4)  
Up to two enhanced QEP modules (eQEP1, eQEP2)  
Enhanced analog-to-digital converter (ADC) module  
Up to two enhanced controller area network (eCAN) modules (eCAN-A, eCAN-B)  
Up to two serial communications interface modules (SCI-A, SCI-B)  
Up to four serial peripheral interface (SPI) modules (SPI-A, SPI-B, SPI-C, SPI-D)  
Inter-integrated circuit module (I2C)  
Digital I/O and shared pin functions  
4.1 32-Bit CPU-Timers 0/1/2  
There are three 32-bit CPU-timers on the 280x devices (CPU-TIMER0/1/2).  
CPU-Timer 0 and CPU-Timer 1 can be used in user applications. Timer 2 is reserved for DSP/BIOS™.  
These timers are different from the timers that are present in the ePWM modules.  
NOTE  
NOTE: If the application is not using DSP/BIOS, then CPU-Timer 2 can be used in the  
application.  
Reset  
Timer Reload  
16-Bit Timer Divide-Down  
32-Bit Timer Period  
TDDRH:TDDR  
PRDH:PRD  
16-Bit Prescale Counter  
SYSCLKOUT  
PSCH:PSC  
TCR.4  
32-Bit Counter  
TIMH:TIM  
(Timer Start Status)  
Borrow  
Borrow  
TINT  
Figure 4-1. CPU-Timers  
In the 280x devices, the timer interrupt signals (TINT0, TINT1, TINT2) are connected as shown in  
Figure 4-2.  
54  
Peripherals  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
INT1  
to  
INT12  
TINT0  
PIE  
CPU-TIMER 0  
C28x  
TINT1  
CPU-TIMER 1  
INT13  
INT14  
XINT13  
CPU-TIMER 2  
(Reserved for  
DSP/BIOS)  
TINT2  
A. The timer registers are connected to the memory bus of the C28x processor.  
B. The timing of the timers is synchronized to SYSCLKOUT of the processor clock.  
Figure 4-2. CPU-Timer Interrupt Signals and Output Signal  
The general operation of the timer is as follows: The 32-bit counter register "TIMH:TIM" is loaded with the  
value in the period register "PRDH:PRD". The counter register decrements at the SYSCLKOUT rate of the  
C28x. When the counter reaches 0, a timer interrupt output signal generates an interrupt pulse. The  
registers listed in Table 4-1 are used to configure the timers. For more information, see the TMS320x280x  
System Control and Interrupts Reference Guide (literature number SPRU712).  
Table 4-1. CPU-Timers 0, 1, 2 Configuration and Control Registers  
NAME  
TIMER0TIM  
ADDRESS  
0x0C00  
0x0C01  
0x0C02  
0x0C03  
0x0C04  
0x0C05  
0x0C06  
0x0C07  
0x0C08  
0x0C09  
0x0C0A  
0x0C0B  
0x0C0C  
0x0C0D  
0x0C0E  
0x0C0F  
0x0C10  
0x0C11  
0x0C12  
0x0C13  
0x0C14  
0x0C15  
0x0C16  
0x0C17  
SIZE (x16)  
DESCRIPTION  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CPU-Timer 0, Counter Register  
TIMER0TIMH  
TIMER0PRD  
TIMER0PRDH  
TIMER0TCR  
reserved  
CPU-Timer 0, Counter Register High  
CPU-Timer 0, Period Register  
CPU-Timer 0, Period Register High  
CPU-Timer 0, Control Register  
TIMER0TPR  
TIMER0TPRH  
TIMER1TIM  
TIMER1TIMH  
TIMER1PRD  
TIMER1PRDH  
TIMER1TCR  
reserved  
CPU-Timer 0, Prescale Register  
CPU-Timer 0, Prescale Register High  
CPU-Timer 1, Counter Register  
CPU-Timer 1, Counter Register High  
CPU-Timer 1, Period Register  
CPU-Timer 1, Period Register High  
CPU-Timer 1, Control Register  
TIMER1TPR  
TIMER1TPRH  
TIMER2TIM  
TIMER2TIMH  
TIMER2PRD  
TIMER2PRDH  
TIMER2TCR  
reserved  
CPU-Timer 1, Prescale Register  
CPU-Timer 1, Prescale Register High  
CPU-Timer 2, Counter Register  
CPU-Timer 2, Counter Register High  
CPU-Timer 2, Period Register  
CPU-Timer 2, Period Register High  
CPU-Timer 2, Control Register  
TIMER2TPR  
TIMER2TPRH  
CPU-Timer 2, Prescale Register  
CPU-Timer 2, Prescale Register High  
Submit Documentation Feedback  
Peripherals  
55  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 4-1. CPU-Timers 0, 1, 2 Configuration and Control Registers (continued)  
NAME  
reserved  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
0x0C18  
0x0C3F  
40  
4.2 Enhanced PWM Modules (ePWM1/2/3/4/5/6)  
The 280x device contains up to six enhanced PWM Modules (ePWM). Figure 4-3 shows a block diagram  
of multiple ePWM modules. Figure 4-4 shows the signal interconnections with the ePWM. See the  
TMS320x280x Enhanced Pulse Width Modulator (ePWM) Module Reference Guide (literature number  
SPRU791) for more details.  
EPWM1SYNCI  
EPWM1SYNCI  
EPWM1INT  
EPWM1A  
EPWM1SOC  
ePWM1 module  
EPWM1B  
TZ1 to TZ6  
EPWM1SYNCO  
to eCAP1  
module  
(sync in)  
EPWM1SYNCO  
.
EPWM2SYNCI  
ePWM2 module  
EPWM2SYNCO  
EPWM2INT  
EPWM2A  
EPWM2B  
TZ1 to TZ6  
EPWM2SOC  
PIE  
GPIO  
MUX  
EPWMxSYNCI  
ePWMx module  
EPWMxINT  
EPWMxA  
EPWMxB  
EPWMxSOC  
TZ1 to TZ6  
ADCSOCx0  
EPWMxSYNCO  
Peripheral Bus  
ADC  
Figure 4-3. Multiple PWM Modules in a 280x System  
Table 4-2 shows the complete ePWM register set per module.  
56  
Peripherals  
Submit Documentation Feedback  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 4-2. ePWM Control and Status Registers  
SIZE (x16) /  
#SHADOW  
NAME  
EPWM1  
EPWM2  
EPWM3  
EPWM4  
EPWM5  
EPWM6  
DESCRIPTION  
Time Base Control Register  
TBCTL  
0x6800  
0x6801  
0x6802  
0x6803  
0x6804  
0x6805  
0x6807  
0x6808  
0x6809  
0x680A  
0x680B  
0x680C  
0x680D  
0x680E  
0x680F  
0x6810  
0x6811  
0x6812  
0x6814  
0x6815  
0x6816  
0x6817  
0x6818  
0x6819  
0x681A  
0x681B  
0x681C  
0x681D  
0x681E  
0x6820  
0x6840  
0x6841  
0x6842  
0x6843  
0x6844  
0x6845  
0x6847  
0x6848  
0x6849  
0x684A  
0x684B  
0x684C  
0x684D  
0x684E  
0x684F  
0x6850  
0x6851  
0x6852  
0x6854  
0x6855  
0x6856  
0x6857  
0x6858  
0x6859  
0x685A  
0x685B  
0x685C  
0x685D  
0x685E  
0x6860  
0x6880  
0x6881  
0x6882  
0x6883  
0x6884  
0x6885  
0x6887  
0x6888  
0x6889  
0x688A  
0x688B  
0x688C  
0x688D  
0x688E  
0x688F  
0x6890  
0x6891  
0x6892  
0x6894  
0x6895  
0x6896  
0x6897  
0x6898  
0x6899  
0x689A  
0x689B  
0x689C  
0x689D  
0x689E  
0x68A0  
0x68C0  
0x68C1  
0x68C2  
0x68C3  
0x68C4  
0x68C5  
0x68C7  
0x68C8  
0x68C9  
0x68CA  
0x68CB  
0x68CC  
0x68CD  
0x68CE  
0x68CF  
0x68D0  
0x68D1  
0x68D2  
0x68D4  
0x68D5  
0x68D6  
0x68D7  
0x68D8  
0x68D9  
0x68DA  
0x68DB  
0x68DC  
0x68DD  
0x68DE  
0x68E0  
0x6900  
0x6901  
N/A  
0x6940  
0x6941  
N/A  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
1 / 0  
1 / 1  
1 / 1  
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
TBSTS  
TBPHSHR  
TBPHS  
TBCTR  
TBPRD  
CMPCTL  
CMPAHR  
CMPA  
Time Base Status Register  
Time Base Phase HRPWM Register  
Time Base Phase Register  
0x6903  
0x6904  
0x6905  
0x6907  
N/A  
0x6943  
0x6944  
0x6945  
0x6947  
N/A  
Time Base Counter Register  
Time Base Period Register Set  
Counter Compare Control Register  
Time Base Compare A HRPWM Register  
Counter Compare A Register Set  
Counter Compare B Register Set  
Action Qualifier Control Register For Output A  
Action Qualifier Control Register For Output B  
Action Qualifier Software Force Register  
Action Qualifier Continuous S/W Force Register Set  
Dead-Band Generator Control Register  
Dead-Band Generator Rising Edge Delay Count Register  
Dead-Band Generator Falling Edge Delay Count Register  
Trip Zone Select Register(1)  
0x6909  
0x690A  
0x690B  
0x690C  
0x690D  
0x690E  
0x690F  
0x6910  
0x6911  
0x6912  
0x6914  
0x6915  
0x6916  
0x6917  
0x6918  
0x6919  
0x691A  
0x691B  
0x691C  
0x691D  
0x691E  
0x6920(2)  
0x6949  
0x694A  
0x694B  
0x694C  
0x694D  
0x694E  
0x694F  
0x6950  
0x6951  
0x6952  
0x6954  
0x6955  
0x6956  
0x6957  
0x6958  
0x6959  
0x695A  
0x695B  
0x695C  
0x695D  
0x695E  
0x6960(2)  
CMPB  
AQCTLA  
AQCTLB  
AQSFRC  
AQCSFRC  
DBCTL  
DBRED  
DBFED  
TZSEL  
TZCTL  
Trip Zone Control Register(1)  
Trip Zone Enable Interrupt Register(1)  
TZEINT  
TZFLG  
Trip Zone Flag Register  
Trip Zone Clear Register(1)  
Trip Zone Force Register(1)  
TZCLR  
TZFRC  
ETSEL  
Event Trigger Selection Register  
Event Trigger Prescale Register  
Event Trigger Flag Register  
ETPS  
ETFLG  
ETCLR  
ETFRC  
PCCTL  
HRCNFG  
Event Trigger Clear Register  
Event Trigger Force Register  
PWM Chopper Control Register  
HRPWM Configuration Register(1)  
(1) Registers that are EALLOW protected.  
(2) Applicable to F2809 only  
Submit Documentation Feedback  
Peripherals  
57  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Time−base (TB)  
Sync  
in/out  
select  
Mux  
CTR=ZERO  
CTR=CMPB  
TBPRD shadow (16)  
EPWMxSYNCO  
TBPRD active (16)  
Disabled  
CTR=PRD  
TBCTL[SYNCOSEL]  
TBCTL[CNTLDE]  
EPWMxSYNCI  
Counter  
up/down  
TBCTL[SWFSYNC]  
(software forced sync)  
(16 bit)  
CTR=ZERO  
TBCNT  
active (16)  
CTR_Dir  
TBPHSHR (8)  
16  
8
CTR = PRD  
CTR = ZERO  
CTR = CMPA  
CTR = CMPB  
CTR_Dir  
Phase  
Event  
EPWMxINT  
TBPHS active (24)  
control  
trigger  
and  
EPWMxSOCA  
EPWMxSOCB  
interrupt  
(ET)  
Counter compare (CC)  
Action  
qualifier  
(AQ)  
CTR=CMPA  
CMPAHR (8)  
16  
16  
8
HiRes PWM (HRPWM)  
CMPA active (24)  
EPWMA  
EPWMB  
EPWMxAO  
CMPA shadow (24)  
CTR=CMPB  
Dead  
band  
(DB)  
PWM  
chopper  
(PC)  
Trip  
zone  
(TZ)  
EPWMxBO  
EPWMxTZINT  
TZ1 to TZ6  
CMPB active (16)  
CMPB shadow (16)  
CTR = ZERO  
Figure 4-4. ePWM Sub-Modules Showing Critical Internal Signal Interconnections  
4.3 Hi-Resolution PWM (HRPWM)  
The HRPWM module offers PWM resolution (time granularity) which is significantly better than what can  
be achieved using conventionally derived digital PWM methods. The key points for the HRPWM module  
are:  
Significantly extends the time resolution capabilities of conventionally derived digital PWM  
Typically used when effective PWM resolution falls below ~ 9-10 bits. This occurs at PWM frequencies  
greater than ~200 KHz when using a CPU/System clock of 100 MHz.  
This capability can be utilized in both duty cycle and phase-shift control methods.  
Finer time granularity control or edge positioning is controlled via extensions to the Compare A and  
Phase registers of the ePWM module.  
HRPWM capabilities are offered only on the A signal path of an ePWM module (i.e., on the EPWMxA  
output). EPWMxB output has conventional PWM capabilities.  
4.4 Enhanced CAP Modules (eCAP1/2/3/4)  
The 280x device contains up to four enhanced capture (eCAP) modules. Figure 4-5 shows a functional  
block diagram of a module. See the TMS320x280x Enhanced Capture (eCAP) Module Reference Guide  
(literature number SPRU807) for more details.  
The eCAP modules are clocked at the SYSCLKOUT rate.  
58  
Peripherals  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
The clock enable bits (ECAP1/2/3/4ENCLK) in the PCLKCR1 register are used to turn off the eCAP  
modules individually (for low power operation). Upon reset, ECAP1ENCLK, ECAP2ENCLK,  
ECAP3ENCLK, and ECAP4ENCLK are set to low, indicating that the peripheral clock is off.  
CTRPHS  
(phase register−32 bit)  
APWM mode  
SYNCIn  
CTR_OVF  
OVF  
CTR [0−31]  
PRD [0−31]  
CMP [0−31]  
TSCTR  
(counter−32 bit)  
SYNCOut  
PWM  
compare  
logic  
Delta−mode  
RST  
32  
CTR=PRD  
CTR=CMP  
CTR [0−31]  
PRD [0−31]  
32  
eCAPx  
32  
32  
LD1  
CAP1  
(APRD active)  
Polarity  
select  
LD  
APRD  
shadow  
32  
CMP [0−31]  
32  
LD2  
CAP2  
(ACMP active)  
Polarity  
select  
LD  
Event  
qualifier  
Event  
Pre-scale  
32  
ACMP  
shadow  
Polarity  
select  
32  
32  
LD3  
LD4  
CAP3  
(APRD shadow)  
LD  
CAP4  
(ACMP shadow)  
Polarity  
select  
LD  
4
Capture events  
4
CEVT[1:4]  
Interrupt  
Trigger  
and  
Flag  
Continuous /  
Oneshot  
Capture Control  
to PIE  
CTR_OVF  
CTR=PRD  
CTR=CMP  
control  
Figure 4-5. eCAP Functional Block Diagram  
Table 4-3. eCAP Control and Status Registers  
SIZE  
(x16)  
NAME  
ECAP1  
0x6A00  
ECAP2  
ECAP3  
ECAP4  
DESCRIPTION  
Time-Stamp Counter  
TSCTR  
0x6A20  
0x6A40  
0x6A60  
2
Submit Documentation Feedback  
Peripherals  
59  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 4-3. eCAP Control and Status Registers (continued)  
SIZE  
(x16)  
NAME  
ECAP1  
ECAP2  
ECAP3  
ECAP4  
DESCRIPTION  
CTRPHS  
CAP1  
0x6A02  
0x6A04  
0x6A06  
0x6A08  
0x6A0A  
0x6A22  
0x6A24  
0x6A26  
0x6A28  
0x6A2A  
0x6A42  
0x6A44  
0x6A46  
0x6A48  
0x6A4A  
0x6A62  
0x6A64  
0x6A66  
0x6A68  
0x6A6A  
2
2
2
2
2
8
Counter Phase Offset Value Register  
Capture 1 Register  
CAP2  
Capture 2 Register  
CAP3  
Capture 3 Register  
CAP4  
Capture 4 Register  
Reserved  
0x6A0C-  
0x6A12  
0x6A2C-  
0x6A32  
0x6A4C-  
0x6A52  
0x6A6C-  
0x6A72  
ECCTL1  
ECCTL2  
ECEINT  
ECFLG  
0x6A14  
0x6A15  
0x6A16  
0x6A17  
0x6A18  
0x6A19  
0x6A34  
0x6A35  
0x6A36  
0x6A37  
0x6A38  
0x6A39  
0x6A54  
0x6A55  
0x6A56  
0x6A57  
0x6A58  
0x6A59  
0x6A74  
0x6A75  
0x6A76  
0x6A77  
0x6A78  
0x6A79  
1
1
1
1
1
1
6
Capture Control Register 1  
Capture Control Register 2  
Capture Interrupt Enable Register  
Capture Interrupt Flag Register  
Capture Interrupt Clear Register  
Capture Interrupt Force Register  
ECCLR  
ECFRC  
Reserved  
0x6A1A-  
0x6A1F  
0x6A3A-  
0x6A3F  
0x6A5A-  
0x6A5F  
0x6A7A-  
0x6A7F  
60  
Peripherals  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
4.5 Enhanced QEP Modules (eQEP1/2)  
The 280x device contains up to two enhanced quadrature encoder (eQEP) modules. See the  
TMS320x280x Enhanced Quadrature Encoder (eQEP) Module Reference Guide (literature number  
SPRU790) for more details.  
System  
control registers  
To CPU  
EQEPxENCLK  
SYSCLKOUT  
QCPRD  
QCAPCTL  
16  
QCTMR  
16  
16  
Quadrature  
capture unit  
(QCAP)  
QCTMRLAT  
QCPRDLAT  
QUTMR  
QUPRD  
QWDTMR  
QWDPRD  
Registers  
used by  
multiple units  
32  
16  
QEPCTL  
QEPSTS  
QFLG  
UTOUT  
UTIME  
QWDOG  
QDECCTL  
16  
WDTOUT  
EQEPxAIN  
EQEPxBIN  
EQEPxIIN  
EQEPxINT  
16  
QCLK  
QDIR  
QI  
EQEPxA/XCLK  
EQEPxB/XDIR  
EQEPxI  
PIE  
Position counter/  
control unit  
(PCCU)  
Quadrature  
decoder  
(QDU)  
EQEPxIOUT  
EQEPxIOE  
EQEPxSIN  
EQEPxSOUT  
EQEPxSOE  
QS  
GPIO  
MUX  
QPOSLAT  
QPOSSLAT  
QPOSILAT  
PHE  
PCSOUT  
EQEPxS  
32  
32  
16  
QPOSCNT  
QPOSINIT  
QPOSMAX  
QEINT  
QFRC  
QPOSCMP  
QCLR  
QPOSCTL  
Enhanced QEP (eQEP) peripheral  
Figure 4-6. eQEP Functional Block Diagram  
Submit Documentation Feedback  
Peripherals  
61  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 4-4. eQEP Control and Status Registers  
EQEP1  
SIZE(x16)/  
#SHADOW  
EQEP1  
ADDRESS  
EQEP2  
ADDRESS  
NAME  
QPOSCNT  
REGISTER DESCRIPTION  
0x6B00  
0x6B02  
0x6B04  
0x6B06  
0x6B08  
0x6B0A  
0x6B0C  
0x6B0E  
0x6B10  
0x6B12  
0x6B13  
0x6B14  
0x6B15  
0x6B16  
0x6B17  
0x6B18  
0x6B19  
0x6B1A  
0x6B1B  
0x6B1C  
0x6B1D  
0x6B1E  
0x6B1F  
0x6B20  
0x6B40  
0x6B42  
0x6B44  
0x6B46  
0x6B48  
0x6B4A  
0x6B4C  
0x6B4E  
0x6B50  
0x6B52  
0x6B53  
0x6B54  
0x6B55  
0x6B56  
0x6B57  
0x6B58  
0x6B59  
0x6B5A  
0x6B5B  
0x6B5C  
0x6B5D  
0x6B5E  
0x6B5F  
0x6B60  
2/0  
2/0  
2/0  
2/1  
2/0  
2/0  
2/0  
2/0  
2/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
31/0  
eQEP Position Counter  
QPOSINIT  
QPOSMAX  
QPOSCMP  
QPOSILAT  
QPOSSLAT  
QPOSLAT  
QUTMR  
eQEP Initialization Position Count  
eQEP Maximum Position Count  
eQEP Position-compare  
eQEP Index Position Latch  
eQEP Strobe Position Latch  
eQEP Position Latch  
eQEP Unit Timer  
QUPRD  
eQEP Unit Period Register  
eQEP Watchdog Timer  
QWDTMR  
QWDPRD  
QDECCTL  
QEPCTL  
QCAPCTL  
QPOSCTL  
QEINT  
eQEP Watchdog Period Register  
eQEP Decoder Control Register  
eQEP Control Register  
eQEP Capture Control Register  
eQEP Position-compare Control Register  
eQEP Interrupt Enable Register  
eQEP Interrupt Flag Register  
eQEP Interrupt Clear Register  
eQEP Interrupt Force Register  
eQEP Status Register  
QFLG  
QCLR  
QFRC  
QEPSTS  
QCTMR  
eQEP Capture Timer  
QCPRD  
eQEP Capture Period Register  
eQEP Capture Timer Latch  
eQEP Capture Period Latch  
QCTMRLAT  
QCPRDLAT  
Reserved  
0x6B21-  
0x6B3F  
0x6B61-  
0x6B7F  
62  
Peripherals  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
4.6 Enhanced Analog-to-Digital Converter (ADC) Module  
A simplified functional block diagram of the ADC module is shown in Figure 4-7. The ADC module  
consists of a 12-bit ADC with a built-in sample-and-hold (S/H) circuit. Functions of the ADC module  
include:  
12-bit ADC core with built-in S/H  
Analog input: 0.0 V to 3.0 V (Voltages above 3.0 V produce full-scale conversion results.)  
Fast conversion rate: Up to 80 ns at 25-MHz ADC clock, 12.5 MSPS  
16-channel, MUXed inputs  
Autosequencing capability provides up to 16 "autoconversions" in a single session. Each conversion  
can be programmed to select any 1 of 16 input channels  
Sequencer can be operated as two independent 8-state sequencers or as one large 16-state  
sequencer (i.e., two cascaded 8-state sequencers)  
Sixteen result registers (individually addressable) to store conversion values  
The digital value of the input analog voltage is derived by:  
Digital Value + 0,  
when input 0 V  
Input Analog Voltage * ADCLO  
when 0 V < input < 3 V  
when input 3 V  
Digital Value + 4096   
3
Digital Value + 4095,  
A. All fractional values are truncated.  
Multiple triggers as sources for the start-of-conversion (SOC) sequence  
S/W - software immediate start  
ePWM start of conversion  
XINT2 ADC start of conversion  
Flexible interrupt control allows interrupt request on every end-of-sequence (EOS) or every other EOS.  
Sequencer can operate in "start/stop" mode, allowing multiple "time-sequenced triggers" to  
synchronize conversions.  
SOCA and SOCB triggers can operate independently in dual-sequencer mode.  
Sample-and-hold (S/H) acquisition time window has separate prescale control.  
The ADC module in the 280x has been enhanced to provide flexible interface to ePWM peripherals. The  
ADC interface is built around a fast, 12-bit ADC module with a fast conversion rate of up to 80 ns at  
25-MHz ADC clock. The ADC module has 16 channels, configurable as two independent 8-channel  
modules. The two independent 8-channel modules can be cascaded to form a 16-channel module.  
Although there are multiple input channels and two sequencers, there is only one converter in the ADC  
module. Figure 4-7 shows the block diagram of the ADC module.  
The two 8-channel modules have the capability to autosequence a series of conversions, each module  
has the choice of selecting any one of the respective eight channels available through an analog MUX. In  
the cascaded mode, the autosequencer functions as a single 16-channel sequencer. On each sequencer,  
once the conversion is complete, the selected channel value is stored in its respective RESULT register.  
Autosequencing allows the system to convert the same channel multiple times, allowing the user to  
perform oversampling algorithms. This gives increased resolution over traditional single-sampled  
conversion results.  
Submit Documentation Feedback  
Peripherals  
63  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
SYSCLKOUT  
System  
Control Block  
High-Speed  
Prescaler  
DSP  
HALT  
HSPCLK  
ADCENCLK  
Analog  
MUX  
Result Registers  
70A8h  
Result Reg 0  
Result Reg 1  
ADCINA0  
S/H  
ADCINA7  
12-Bit  
ADC  
Module  
Result Reg 7  
Result Reg 8  
70AFh  
70B0h  
ADCINB0  
S/H  
ADCINB7  
Result Reg 15  
70B7h  
ADC Control Registers  
S/W  
S/W  
EPWMSOCA  
SOC  
SOC  
Sequencer 2  
Sequencer 1  
EPWMSOCB  
GPIO/XINT2  
_ADCSOC  
Figure 4-7. Block Diagram of the ADC Module  
To obtain the specified accuracy of the ADC, proper board layout is very critical. To the best extent  
possible, traces leading to the ADCIN pins should not run in close proximity to the digital signal paths.  
This is to minimize switching noise on the digital lines from getting coupled to the ADC inputs.  
Furthermore, proper isolation techniques must be used to isolate the ADC module power pins ( VDD1A18  
,
VDD2A18 , VDDA2, VDDAIO ) from the digital supply.Figure 4-8 shows the ADC pin connections for the 280x  
devices.  
NOTE  
1. The ADC registers are accessed at the SYSCLKOUT rate. The internal timing of the  
ADC module is controlled by the high-speed peripheral clock (HSPCLK).  
2. The behavior of the ADC module based on the state of the ADCENCLK and HALT  
signals is as follows:  
ADCENCLK: On reset, this signal will be low. While reset is active-low (XRS) the  
clock to the register will still function. This is necessary to make sure all registers  
and modes go into their default reset state. The analog module, however, will be  
in a low-power inactive state. As soon as reset goes high, then the clock to the  
registers will be disabled. When the user sets the ADCENCLK signal high, then  
the clocks to the registers will be enabled and the analog module will be enabled.  
There will be a certain time delay (ms range) before the ADC is stable and can be  
used.  
HALT: This mode only affects the analog module. It does not affect the registers.  
In this mode, the ADC module goes into low-power mode. This mode also will stop  
the clock to the CPU, which will stop the HSPCLK; therefore, the ADC register  
logic will be turned off indirectly.  
64  
Peripherals  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Figure 4-8 shows the ADC pin-biasing for internal reference and Figure 4-9 shows the ADC pin-biasing for  
external reference.  
ADCINA[7:0]  
ADCINB[7:0]  
ADCLO  
ADC 16-Channel Analog Inputs  
Analog input 0−3 V with respect to ADCLO  
Connect to analog ground  
ADCREFIN  
Float or ground if internal reference is used  
22 kW  
ADC External Current Bias Resistor ADCRESEXT  
(A)  
2.2 mF  
ADC Reference Positive Output  
ADC Reference Medium Output  
ADCREFP  
ADCREFM  
ADCREFP and ADCREFM should not  
be loaded by external circuitry  
(A)  
2.2 mF  
V
V
DD1A18  
ADC Analog Power Pin (1.8 V)  
ADC Analog Power Pin (1.8 V)  
DD2A18  
ADC Power  
V
V
ADC Analog Ground Pin  
ADC Analog Ground Pin  
SS1AGND  
SS2AGND  
ADC Analog Power Pin (3.3 V)  
ADC Analog Ground Pin  
V
V
DDA2  
SSA2  
ADC Analog and Reference I/O Power  
ADC Analog Power Pin (3.3 V)  
ADC Analog I/O Ground Pin  
V
V
DDAIO  
SSAIO  
A. TAIYO YUDEN LMK212BJ225MG-T or equivalent  
B. External decoupling capacitors are recommended on all power pins.  
C. Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance.  
Figure 4-8. ADC Pin Connections With Internal Reference  
Submit Documentation Feedback  
Peripherals  
65  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
ADCINA[7:0]  
ADCINB[7:0]  
ADCLO  
ADC 16-Channel Analog Inputs  
Analog input 0−3 V with respect to ADCLO  
Connect to Analog Ground  
(D)  
ADCREFIN  
Connect to 1.500, 1.024, or 2.048-V precision source  
22 kW  
ADC External Current Bias Resistor ADCRESEXT  
(A)  
2.2 mF  
ADC Reference Positive Output  
ADC Reference Medium Output  
ADCREFP  
ADCREFM  
(A)  
2.2 mF  
ADCREFP and ADCREFM should not  
be loaded by external circuitry  
V
ADC Analog Power Pin (1.8 V)  
ADC Analog Power Pin (1.8 V)  
DD1A18  
V
DD2A18  
ADC Analog Power  
ADC Analog Ground Pin  
ADC Analog Ground Pin  
V
V
SS1AGND  
SS2AGND  
ADC Analog Power Pin (3.3 V)  
ADC Analog Ground Pin  
V
V
DDA2  
SSA2  
ADC Analog Power Pin (3.3 V)  
ADC Analog I/O Ground Pin  
V
V
DDAIO  
ADC Analog and Reference I/O Power  
SSAIO  
A. TAIYO YUDEN LMK212BJ225MG-T or equivalent  
B. External decoupling capacitors are recommended on all power pins.  
C. Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance.  
D. External voltage on ADCREFIN is enabled by changing bits 15:14 in the ADC Reference Select register depending on  
the voltage used on this pin. TI recommends TI part REF3020 or equivalent for 2.048-V generation. Overall gain  
accuracy will be determined by accuracy of this voltage source.  
Figure 4-9. ADC Pin Connections With External Reference  
NOTE  
The temperature rating of any recommended component must match the rating of the end  
product.  
4.6.1 ADC Connections if the ADC Is Not Used  
It is recommended to keep the connections for the analog power pins, even if the ADC is not used.  
Following is a summary of how the ADC pins should be connected, if the ADC is not used in an  
application:  
VDD1A18/VDD2A18 – Connect to VDD  
VDDA2, VDDAIO – Connect to VDDIO  
VSS1AGND/VSS2AGND, VSSA2, VSSAIO – Connect to VSS  
ADCLO – Connect to VSS  
ADCREFIN – Connect to VSS  
ADCREFP/ADCREFM – Connect a 100-nF cap to VSS  
ADCRESEXT – Connect a 20-kresistor (very loose tolerance) to VSS  
ADCINAn, ADCINBn - Connect to VSS  
.
When the ADC is not used, be sure that the clock to the ADC module is not turned on to realize power  
savings.  
When the ADC module is used in an application, unused ADC input pins should be connected to analog  
ground (VSS1AGND/VSS2AGND  
)
66  
Peripherals  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
4.6.2 ADC Registers  
The ADC operation is configured, controlled, and monitored by the registers listed in Table 4-5.  
Table 4-5. ADC Registers(1)  
NAME  
ADDRESS(1) ADDRESS(2) SIZE (x16)  
DESCRIPTION  
ADCTRL1  
0x7100  
0x7101  
0x7102  
0x7103  
0x7104  
0x7105  
0x7106  
0x7107  
0x7108  
0x7109  
0x710A  
0x710B  
0x710C  
0x710D  
0x710E  
0x710F  
0x7110  
0x7111  
0x7112  
0x7113  
0x7114  
0x7115  
0x7116  
0x7117  
0x7118  
0x7119  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
ADC Control Register 1  
ADC Control Register 2  
ADCTRL2  
ADCMAXCONV  
ADCCHSELSEQ1  
ADCCHSELSEQ2  
ADCCHSELSEQ3  
ADCCHSELSEQ4  
ADCASEQSR  
ADCRESULT0  
ADCRESULT1  
ADCRESULT2  
ADCRESULT3  
ADCRESULT4  
ADCRESULT5  
ADCRESULT6  
ADCRESULT7  
ADCRESULT8  
ADCRESULT9  
ADCRESULT10  
ADCRESULT11  
ADCRESULT12  
ADCRESULT13  
ADCRESULT14  
ADCRESULT15  
ADCTRL3  
ADC Maximum Conversion Channels Register  
ADC Channel Select Sequencing Control Register 1  
ADC Channel Select Sequencing Control Register 2  
ADC Channel Select Sequencing Control Register 3  
ADC Channel Select Sequencing Control Register 4  
ADC Auto-Sequence Status Register  
0x0B00  
0x0B01  
0x0B02  
0x0B03  
0x0B04  
0x0B05  
0x0B06  
0x0B07  
0x0B08  
0x0B09  
0x0B0A  
0x0B0B  
0x0B0C  
0x0B0D  
0x0B0E  
0x0B0F  
ADC Conversion Result Buffer Register 0  
ADC Conversion Result Buffer Register 1  
ADC Conversion Result Buffer Register 2  
ADC Conversion Result Buffer Register 3  
ADC Conversion Result Buffer Register 4  
ADC Conversion Result Buffer Register 5  
ADC Conversion Result Buffer Register 6  
ADC Conversion Result Buffer Register 7  
ADC Conversion Result Buffer Register 8  
ADC Conversion Result Buffer Register 9  
ADC Conversion Result Buffer Register 10  
ADC Conversion Result Buffer Register 11  
ADC Conversion Result Buffer Register 12  
ADC Conversion Result Buffer Register 13  
ADC Conversion Result Buffer Register 14  
ADC Conversion Result Buffer Register 15  
ADC Control Register 3  
ADCST  
ADC Status Register  
0x711A  
0x711B  
Reserved  
2
ADCREFSEL  
ADCOFFTRIM  
0x711C  
0x711D  
1
1
ADC Reference Select Register  
ADC Offset Trim Register  
0x711E  
0x711F  
Reserved  
2
ADC Status Register  
(1) The registers in this column are Peripheral Frame 2 Registers.  
(2) The ADC result registers are dual mapped in the 280x DSP. Locations in Peripheral Frame 2 (0x7108-0x7117) are 2 wait-states and left  
justified. Locations in Peripheral frame 0 space (0x0B00-0x0B0F) are 0 wait sates and right justified. During high speed/continuous  
conversion use of the ADC, use the 0 wait-state locations for fast transfer of ADC results to user memory.  
Submit Documentation Feedback  
Peripherals  
67  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
4.7 Enhanced Controller Area Network (eCAN) Modules (eCAN-A and eCAN-B)  
The CAN module has the following features:  
Fully compliant with CAN protocol, version 2.0B  
Supports data rates up to 1 Mbps  
Thirty-two mailboxes, each with the following properties:  
Configurable as receive or transmit  
Configurable with standard or extended identifier  
Has a programmable receive mask  
Supports data and remote frame  
Composed of 0 to 8 bytes of data  
Uses a 32-bit time stamp on receive and transmit message  
Protects against reception of new message  
Holds the dynamically programmable priority of transmit message  
Employs a programmable interrupt scheme with two interrupt levels  
Employs a programmable alarm on transmission or reception time-out  
Low-power mode  
Programmable wake-up on bus activity  
Automatic reply to a remote request message  
Automatic retransmission of a frame in case of loss of arbitration or error  
32-bit local network time counter synchronized by a specific message (communication in conjunction  
with mailbox 16)  
Self-test mode  
Operates in a loopback mode receiving its own message. A "dummy" acknowledge is provided,  
thereby eliminating the need for another node to provide the acknowledge bit.  
NOTE  
For a SYSCLKOUT of 100 MHz, the smallest bit rate possible is 15.625 kbps.  
For a SYSCLKOUT of 60 MHz, the smallest bit rate possible is 9.375 kbps.  
68  
Peripherals  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Address  
Controls  
Data  
eCAN0INT  
eCAN1INT  
Enhanced CAN Controller  
Message Controller  
32  
Mailbox RAM  
(512 Bytes)  
Memory Management  
Unit  
eCAN Memory  
(512 Bytes)  
Registers and Message  
Objects Control  
CPU Interface,  
Receive Control Unit,  
Timer Management Unit  
32-Message Mailbox  
of 4 × 32-Bit Words  
32  
32  
32  
Receive Buffer  
Transmit Buffer  
Control Buffer  
Status Buffer  
eCAN Protocol Kernel  
SN65HVD23x  
3.3-V CAN Transceiver  
CAN Bus  
Figure 4-10. eCAN Block Diagram and Interface Circuit  
Table 4-6. 3.3-V eCAN Transceivers  
SUPPLY  
VOLTAGE  
LOW-POWER  
MODE  
SLOPE  
CONTROL  
PART NUMBER  
VREF  
OTHER  
TA  
SN65HVD230  
SN65HVD230Q  
SN65HVD231  
SN65HVD231Q  
SN65HVD232  
SN65HVD232Q  
SN65HVD233  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
Standby  
Standby  
Sleep  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
None  
Yes  
Yes  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 125°C  
Yes  
Sleep  
Yes  
None  
None  
None  
None  
None  
None  
Standby  
Adjustable  
Diagnostic  
Loopback  
SN65HVD234  
SN65HVD235  
3.3 V  
3.3 V  
Standby & Sleep  
Standby  
Adjustable  
Adjustable  
None  
None  
-40°C to 125°C  
-40°C to 125°C  
Autobaud  
Loopback  
Submit Documentation Feedback  
Peripherals  
69  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
eCAN-A Control and Status Registers  
Mailbox Enable − CANME  
Mailbox Direction − CANMD  
Transmission Request Set − CANTRS  
Transmission Request Reset − CANTRR  
Transmission Acknowledge − CANTA  
Abort Acknowledge − CANAA  
eCAN-A Memory (512 Bytes)  
Received Message Pending − CANRMP  
Received Message Lost − CANRML  
Remote Frame Pending − CANRFP  
Global Acceptance Mask − CANGAM  
Master Control − CANMC  
6000h  
Control and Status Registers  
603Fh  
6040h  
607Fh  
6080h  
60BFh  
60C0h  
60FFh  
Local Acceptance Masks (LAM)  
(32 × 32-Bit RAM)  
Message Object Time Stamps (MOTS)  
Bit-Timing Configuration − CANBTC  
Error and Status − CANES  
(32 × 32-Bit RAM)  
Message Object Time-Out (MOTO)  
Transmit Error Counter − CANTEC  
Receive Error Counter − CANREC  
Global Interrupt Flag 0 − CANGIF0  
Global Interrupt Mask − CANGIM  
Global Interrupt Flag 1 − CANGIF1  
Mailbox Interrupt Mask − CANMIM  
Mailbox Interrupt Level − CANMIL  
Overwrite Protection Control − CANOPC  
TX I/O Control − CANTIOC  
(32 × 32-Bit RAM)  
eCAN-A Memory RAM (512 Bytes)  
Mailbox 0  
Mailbox 1  
Mailbox 2  
Mailbox 3  
Mailbox 4  
6100h−6107h  
6108h−610Fh  
6110h−6117h  
6118h−611Fh  
6120h−6127h  
RX I/O Control − CANRIOC  
Time Stamp Counter − CANTSC  
Time-Out Control − CANTOC  
Time-Out Status − CANTOS  
Mailbox 28  
Mailbox 29  
Mailbox 30  
Mailbox 31  
61E0h−61E7h  
61E8h−61EFh  
61F0h−61F7h  
61F8h−61FFh  
Reserved  
Message Mailbox (16 Bytes)  
Message Identifier − MSGID  
Message Control − MSGCTRL  
Message Data Low − MDL  
Message Data High − MDH  
61E8h−61E9h  
61EAh−61EBh  
61ECh−61EDh  
61EEh−61EFh  
Figure 4-11. eCAN-A Memory Map  
NOTE  
If the eCAN module is not used in an application, the RAM available (LAM, MOTS,  
MOTO, and mailbox RAM) can be used as general-purpose RAM. The CAN module clock  
should be enabled for this.  
70  
Peripherals  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
eCAN-B Control and Status Registers  
Mailbox Enable − CANME  
Mailbox Direction − CANMD  
Transmission Request Set − CANTRS  
Transmission Request Reset − CANTRR  
Transmission Acknowledge − CANTA  
Abort Acknowledge − CANAA  
eCAN-B Memory (512 Bytes)  
Control and Status Registers  
Received Message Pending − CANRMP  
Received Message Lost − CANRML  
Remote Frame Pending − CANRFP  
Global Acceptance Mask − CANGAM  
Master Control − CANMC  
6200h  
623Fh  
6240h  
627Fh  
6280h  
62BFh  
62C0h  
62FFh  
Local Acceptance Masks (LAM)  
(32 × 32-Bit RAM)  
Message Object Time Stamps (MOTS)  
Bit-Timing Configuration − CANBTC  
Error and Status − CANES  
(32 × 32-Bit RAM)  
Message Object Time-Out (MOTO)  
Transmit Error Counter − CANTEC  
Receive Error Counter − CANREC  
Global Interrupt Flag 0 − CANGIF0  
Global Interrupt Mask − CANGIM  
Global Interrupt Flag 1 − CANGIF1  
Mailbox Interrupt Mask − CANMIM  
Mailbox Interrupt Level − CANMIL  
Overwrite Protection Control − CANOPC  
TX I/O Control − CANTIOC  
(32 × 32-Bit RAM)  
eCAN-B Memory RAM (512 Bytes)  
Mailbox 0  
Mailbox 1  
Mailbox 2  
Mailbox 3  
Mailbox 4  
6300h−6307h  
6308h−630Fh  
6310h−6317h  
6318h−631Fh  
6320h−6327h  
RX I/O Control − CANRIOC  
Time Stamp Counter − CANTSC  
Time-Out Control − CANTOC  
Time-Out Status − CANTOS  
Mailbox 28  
Mailbox 29  
Mailbox 30  
Mailbox 31  
63E0h−63E7h  
63E8h−63EFh  
63F0h−63F7h  
63F8h−63FFh  
Reserved  
Message Mailbox (16 Bytes)  
Message Identifier − MSGID  
Message Control − MSGCTRL  
Message Data Low − MDL  
Message Data High − MDH  
63E8h−63E9h  
63EAh−63EBh  
63ECh−63EDh  
63EEh−63EFh  
Figure 4-12. eCAN-B Memory Map  
The CAN registers listed in Table 4-7 are used by the CPU to configure and control the CAN controller  
and the message objects. eCAN control registers only support 32-bit read/write operations. Mailbox RAM  
can be accessed as 16 bits or 32 bits. 32-bit accesses are aligned to an even boundary.  
Submit Documentation Feedback  
Peripherals  
71  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 4-7. CAN Register Map(1)  
ECAN-A  
ADDRESS  
ECAN-B  
ADDRESS  
SIZE  
(x32)  
REGISTER NAME  
DESCRIPTION  
CANME  
CANMD  
0x6000  
0x6002  
0x6004  
0x6006  
0x6008  
0x600A  
0x600C  
0x600E  
0x6010  
0x6012  
0x6014  
0x6016  
0x6018  
0x601A  
0x601C  
0x601E  
0x6020  
0x6022  
0x6024  
0x6026  
0x6028  
0x602A  
0x602C  
0x602E  
0x6030  
0x6032  
0x6200  
0x6202  
0x6204  
0x6206  
0x6208  
0x620A  
0x620C  
0x620E  
0x6210  
0x6212  
0x6214  
0x6216  
0x6218  
0x621A  
0x621C  
0x621E  
0x6220  
0x6222  
0x6224  
0x6226  
0x6228  
0x622A  
0x622C  
0x622E  
0x6230  
0x6232  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Mailbox enable  
Mailbox direction  
CANTRS  
CANTRR  
CANTA  
Transmit request set  
Transmit request reset  
Transmission acknowledge  
Abort acknowledge  
CANAA  
CANRMP  
CANRML  
CANRFP  
CANGAM  
CANMC  
Receive message pending  
Receive message lost  
Remote frame pending  
Global acceptance mask  
Master control  
CANBTC  
CANES  
Bit-timing configuration  
Error and status  
CANTEC  
CANREC  
CANGIF0  
CANGIM  
CANGIF1  
CANMIM  
CANMIL  
CANOPC  
CANTIOC  
CANRIOC  
CANTSC  
CANTOC  
CANTOS  
Transmit error counter  
Receive error counter  
Global interrupt flag 0  
Global interrupt mask  
Global interrupt flag 1  
Mailbox interrupt mask  
Mailbox interrupt level  
Overwrite protection control  
TX I/O control  
RX I/O control  
Time stamp counter (Reserved in SCC mode)  
Time-out control (Reserved in SCC mode)  
Time-out status (Reserved in SCC mode)  
(1) These registers are mapped to Peripheral Frame 1.  
72  
Peripherals  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
4.8 Serial Communications Interface (SCI) Modules (SCI-A, SCI-B)  
The 280x devices include two serial communications interface (SCI) modules. The SCI modules support  
digital communications between the CPU and other asynchronous peripherals that use the standard  
non-return-to-zero (NRZ) format. The SCI receiver and transmitter are double-buffered, and each has its  
own separate enable and interrupt bits. Both can be operated independently or simultaneously in the  
full-duplex mode. To ensure data integrity, the SCI checks received data for break detection, parity,  
overrun, and framing errors. The bit rate is programmable to over 65000 different speeds through a 16-bit  
baud-select register.  
Features of each SCI module include:  
Two external pins:  
SCITXD: SCI transmit-output pin  
SCIRXD: SCI receive-input pin  
NOTE: Both pins can be used as GPIO if not used for SCI.  
Baud rate programmable to 64K different rates:  
LSPCLK  
(BRR ) 1) * 8  
Baud rate =  
when BRR 0  
when BRR = 0  
LSPCLK  
16  
Baud rate =  
Data-word format  
One start bit  
Data-word length programmable from one to eight bits  
Optional even/odd/no parity bit  
One or two stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: idle-line and address bit  
Half- or full-duplex operation  
Double-buffered receive and transmit functions  
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms  
with status flags.  
Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX  
EMPTY flag (transmitter-shift register is empty)  
Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag  
(break condition occurred), and RX ERROR flag (monitoring four interrupt conditions)  
Separate enable bits for transmitter and receiver interrupts (except BRKDT)  
100 MHz  
Max bit rate +  
+ 6.25   106 bńs  
16  
(for 100 MHz devices)  
(for 60 MHz devices)  
60 MHz  
16  
Max bit rate +  
+ 3.75   106 bńs  
NRZ (non-return-to-zero) format  
Ten SCI module control registers located in the control register frame beginning at address 7050h  
NOTE  
All registers in this module are 8-bit registers that are connected to Peripheral Frame 2.  
When a register is accessed, the register data is in the lower byte (7-0), and the upper  
byte (15-8) is read as zeros. Writing to the upper byte has no effect.  
Enhanced features:  
Auto baud-detect hardware logic  
Submit Documentation Feedback  
Peripherals  
73  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
16-level transmit/receive FIFO  
The SCI port operation is configured and controlled by the registers listed in Table 4-8 and Table 4-9.  
Table 4-8. SCI-A Registers(1)  
NAME  
ADDRESS  
0x7050  
0x7051  
0x7052  
0x7053  
0x7054  
0x7055  
0x7056  
0x7057  
0x7059  
0x705A  
0x705B  
0x705C  
0x705F  
SIZE (x16)  
DESCRIPTION  
SCI-A Communications Control Register  
SCI-A Control Register 1  
SCICCRA  
1
1
1
1
1
1
1
1
1
1
1
1
1
SCICTL1A  
SCIHBAUDA  
SCILBAUDA  
SCICTL2A  
SCI-A Baud Register, High Bits  
SCI-A Baud Register, Low Bits  
SCI-A Control Register 2  
SCIRXSTA  
SCIRXEMUA  
SCIRXBUFA  
SCITXBUFA  
SCIFFTXA(2)  
SCIFFRXA(2)  
SCIFFCTA(2)  
SCIPRIA  
SCI-A Receive Status Register  
SCI-A Receive Emulation Data Buffer Register  
SCI-A Receive Data Buffer Register  
SCI-A Transmit Data Buffer Register  
SCI-A FIFO Transmit Register  
SCI-A FIFO Receive Register  
SCI-A FIFO Control Register  
SCI-A Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. 32-bit accesses produce  
undefined results.  
(2) These registers are new registers for the FIFO mode.  
Table 4-9. SCI-B Registers(1) (2)  
NAME  
ADDRESS  
0x7750  
0x7751  
0x7752  
0x7753  
0x7754  
0x7755  
0x7756  
0x7757  
0x7759  
0x775A  
0x775B  
0x775C  
0x775F  
SIZE (x16)  
DESCRIPTION  
SCI-B Communications Control Register  
SCI-B Control Register 1  
SCICCRB  
1
1
1
1
1
1
1
1
1
1
1
1
1
SCICTL1B  
SCIHBAUDB  
SCILBAUDB  
SCICTL2B  
SCI-B Baud Register, High Bits  
SCI-B Baud Register, Low Bits  
SCI-B Control Register 2  
SCIRXSTB  
SCIRXEMUB  
SCIRXBUFB  
SCITXBUFB  
SCIFFTXB(2)  
SCIFFRXB(2)  
SCIFFCTB(2)  
SCIPRIB  
SCI-B Receive Status Register  
SCI-B Receive Emulation Data Buffer Register  
SCI-B Receive Data Buffer Register  
SCI-B Transmit Data Buffer Register  
SCI-B FIFO Transmit Register  
SCI-B FIFO Receive Register  
SCI-B FIFO Control Register  
SCI-B Priority Control Register  
(1) Registers in this table are mapped to peripheral bus 16 space. This space only allows 16-bit accesses. 32-bit accesses produce  
undefined results.  
(2) These registers are new registers for the FIFO mode.  
74  
Peripherals  
Submit Documentation Feedback  
 
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Figure 4-13 shows the SCI module block diagram.  
SCICTL1.1  
SCITXD  
Frame Format and Mode  
SCITXD  
TXSHF  
TXENA  
Register  
Parity  
Even/Odd Enable  
TX EMPTY  
SCICTL2.6  
8
SCICCR.6 SCICCR.5  
TXRDY  
TX INT ENA  
Transmitter-Data  
Buffer Register  
SCICTL2.7  
TXWAKE  
SCICTL1.3  
1
SCICTL2.0  
8
TX FIFO  
Interrupts  
TXINT  
TX FIFO _0  
TX Interrupt  
Logic  
TX FIFO _1  
-----  
SCITXBUF.7-0  
To CPU  
TX FIFO _15  
SCI TX Interrupt select logic  
WUT  
TX FIFO registers  
SCIFFENA  
AutoBaud Detect logic  
SCIFFTX.14  
SCIHBAUD. 15 - 8  
SCIRXD  
RXSHF  
Register  
Baud Rate  
MSbyte  
Register  
SCIRXD  
RXWAKE  
LSPCLK  
SCIRXST.1  
SCILBAUD. 7 - 0  
RXENA  
SCICTL1.0  
8
Baud Rate  
LSbyte  
Register  
SCICTL2.1  
Receive Data  
Buffer register  
SCIRXBUF.7-0  
RXRDY  
RX/BK INT ENA  
SCIRXST.6  
8
BRKDT  
RX FIFO _15  
SCIRXST.5  
-----  
RX FIFO _0  
RX FIFO  
Interrupts  
RX FIFO_1  
RXINT  
RX Interrupt  
Logic  
SCIRXBUF.7-0  
RX FIFO registers  
To CPU  
RXFFOVF  
SCIRXST.7 SCIRXST.4 - 2  
SCIFFRX.15  
RX Error  
FE OE PE  
RX Error  
RX ERR INT ENA  
SCI RX Interrupt select logic  
SCICTL1.6  
Figure 4-13. Serial Communications Interface (SCI) Module Block Diagram  
Submit Documentation Feedback  
Peripherals  
75  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
4.9 Serial Peripheral Interface (SPI) Modules (SPI-A, SPI-B, SPI-C, SPI-D)  
The 280x devices include the four-pin serial peripheral interface (SPI) module. Up to four SPI modules  
(SPI-A, SPI-B, SPI-C, and SPI-D) are available. The SPI is a high-speed, synchronous serial I/O port that  
allows a serial bit stream of programmed length (one to sixteen bits) to be shifted into and out of the  
device at a programmable bit-transfer rate. Normally, the SPI is used for communications between the  
DSP controller and external peripherals or another processor. Typical applications include external I/O or  
peripheral expansion through devices such as shift registers, display drivers, and ADCs. Multidevice  
communications are supported by the master/slave operation of the SPI.  
The SPI module features include:  
Four external pins:  
SPISOMI: SPI slave-output/master-input pin  
SPISIMO: SPI slave-input/master-output pin  
SPISTE: SPI slave transmit-enable pin  
SPICLK: SPI serial-clock pin  
NOTE: All four pins can be used as GPIO, if the SPI module is not used.  
Two operational modes: master and slave  
Baud rate: 125 different programmable rates.  
LSPCLK  
Baud rate =  
when SPIBRR = 3 to 127  
when SPIBRR = 0,1, 2  
(SPIBRR ) 1)  
LSPCLK  
Baud rate =  
4
Data word length: one to sixteen data bits  
Four clocking schemes (controlled by clock polarity and clock phase bits) include:  
Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the  
SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the  
falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.  
Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the  
SPICLK signal and receives data on the falling edge of the SPICLK signal.  
Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the  
falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Simultaneous receive and transmit operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled  
algorithms.  
Nine SPI module control registers: Located in control register frame beginning at address 7040h.  
NOTE  
All registers in this module are 16-bit registers that are connected to Peripheral Frame 2.  
When a register is accessed, the register data is in the lower byte (7-0), and the upper  
byte (15-8) is read as zeros. Writing to the upper byte has no effect.  
Enhanced feature:  
16-level transmit/receive FIFO  
Delayed transmit control  
The SPI port operation is configured and controlled by the registers listed in Table 4-10.  
76  
Peripherals  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 4-10. SPI-A Registers  
NAME  
SPICCR  
SPICTL  
ADDRESS  
0x7040  
0x7041  
0x7042  
0x7044  
0x7046  
0x7047  
0x7048  
0x7049  
0x704A  
0x704B  
0x704C  
0x704F  
SIZE (X16)  
DESCRIPTION(1)  
1
1
1
1
1
1
1
1
1
1
1
1
SPI-A Configuration Control Register  
SPI-A Operation Control Register  
SPI-A Status Register  
SPISTS  
SPIBRR  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
SPI-A Baud Rate Register  
SPI-A Receive Emulation Buffer Register  
SPI-A Serial Input Buffer Register  
SPI-A Serial Output Buffer Register  
SPI-A Serial Data Register  
SPIFFTX  
SPIFFRX  
SPIFFCT  
SPIPRI  
SPI-A FIFO Transmit Register  
SPI-A FIFO Receive Register  
SPI-A FIFO Control Register  
SPI-A Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined  
results.  
Table 4-11. SPI-B Registers  
NAME  
SPICCR  
SPICTL  
ADDRESS  
0x7740  
0x7741  
0x7742  
0x7744  
0x7746  
0x7747  
0x7748  
0x7749  
0x774A  
0x774B  
0x774C  
0x774F  
SIZE (X16)  
DESCRIPTION(1)  
1
1
1
1
1
1
1
1
1
1
1
1
SPI-B Configuration Control Register  
SPI-B Operation Control Register  
SPI-B Status Register  
SPISTS  
SPIBRR  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
SPI-B Baud Rate Register  
SPI-B Receive Emulation Buffer Register  
SPI-B Serial Input Buffer Register  
SPI-B Serial Output Buffer Register  
SPI-B Serial Data Register  
SPIFFTX  
SPIFFRX  
SPIFFCT  
SPIPRI  
SPI-B FIFO Transmit Register  
SPI-B FIFO Receive Register  
SPI-B FIFO Control Register  
SPI-B Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined  
results.  
Submit Documentation Feedback  
Peripherals  
77  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 4-12. SPI-C Registers  
NAME  
SPICCR  
SPICTL  
ADDRESS  
0x7760  
0x7761  
0x7762  
0x7764  
0x7766  
0x7767  
0x7768  
0x7769  
0x776A  
0x776B  
0x776C  
0x776F  
SIZE (X16)  
DESCRIPTION(1)  
1
1
1
1
1
1
1
1
1
1
1
1
SPI-C Configuration Control Register  
SPI-C Operation Control Register  
SPI-C Status Register  
SPISTS  
SPIBRR  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
SPI-C Baud Rate Register  
SPI-C Receive Emulation Buffer Register  
SPI-C Serial Input Buffer Register  
SPI-C Serial Output Buffer Register  
SPI-C Serial Data Register  
SPIFFTX  
SPIFFRX  
SPIFFCT  
SPIPRI  
SPI-C FIFO Transmit Register  
SPI-C FIFO Receive Register  
SPI-C FIFO Control Register  
SPI-C Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined  
results.  
Table 4-13. SPI-D Registers  
NAME  
SPICCR  
SPICTL  
ADDRESS  
0x7780  
0x7781  
0x7782  
0x7784  
0x7786  
0x7787  
0x7788  
0x7789  
0x778A  
0x778B  
0x778C  
0x778F  
SIZE (X16)  
DESCRIPTION(1)  
1
1
1
1
1
1
1
1
1
1
1
1
SPI-D Configuration Control Register  
SPI-D Operation Control Register  
SPI-D Status Register  
SPISTS  
SPIBRR  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
SPI-D Baud Rate Register  
SPI-D Receive Emulation Buffer Register  
SPI-D Serial Input Buffer Register  
SPI-D Serial Output Buffer Register  
SPI-D Serial Data Register  
SPIFFTX  
SPIFFRX  
SPIFFCT  
SPIPRI  
SPI-D FIFO Transmit Register  
SPI-D FIFO Receive Register  
SPI-D FIFO Control Register  
SPI-D Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined  
results.  
78  
Peripherals  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Figure 4-14 is a block diagram of the SPI in slave mode.  
SPIFFENA  
Overrun  
INT ENA  
Receiver  
Overrun Flag  
SPIFFTX.14  
RX FIFO registers  
SPISTS.7  
SPICTL.4  
SPIRXBUF  
RX FIFO _0  
RX FIFO _1  
SPIINT/SPIRXINT  
RX FIFO Interrupt  
−−−−−  
RX Interrupt  
Logic  
RX FIFO _15  
16  
SPIRXBUF  
Buffer Register  
SPIFFOVF FLAG  
SPIFFRX.15  
To CPU  
TX FIFO registers  
SPITXBUF  
TX FIFO _15  
TX Interrupt  
Logic  
TX FIFO Interrupt  
−−−−−  
TX FIFO _1  
SPITXINT  
TX FIFO _0  
16  
SPI INT  
ENA  
SPI INT FLAG  
SPITXBUF  
Buffer Register  
SPISTS.6  
16  
SPICTL.0  
16  
M
S
M
SPIDAT  
Data Register  
S
SW1  
SW2  
SPISIMO  
SPISOMI  
M
S
M
SPIDAT.15 − 0  
S
Talk  
SPICTL.1  
(A)  
SPISTE  
State Control  
Master/Slave  
SPICTL.2  
SPI Char  
SPICCR.3 − 0  
S
3
2
1
0
SW3  
Clock  
Polarity  
Clock  
Phase  
M
S
SPI Bit Rate  
LSPCLK  
SPICCR.6  
SPICTL.3  
SPICLK  
SPIBRR.6 − 0  
M
6
5
4
3
2
1
0
A. SPISTE is driven low by the master for a slave device.  
Figure 4-14. SPI Module Block Diagram (Slave Mode)  
Submit Documentation Feedback  
Peripherals  
79  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
4.10 Inter-Integrated Circuit (I2C)  
The 280x device contains one I2C Serial Port. Figure 4-15 shows how the I2C peripheral module  
interfaces within the 280x device.  
The I2C module has the following features:  
Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):  
Support for 1-bit to 8-bit format transfers  
7-bit and 10-bit addressing modes  
General call  
START byte mode  
Support for multiple master-transmitters and slave-receivers  
Support for multiple slave-transmitters and master-receivers  
Combined master transmit/receive and receive/transmit mode  
Data transfer rate of from 10 kbps up to 400 kbps (Philips Fast-mode rate)  
One 16-bit receive FIFO and one 16-bit transmit FIFO  
One interrupt that can be used by the CPU. This interrupt can be generated as a result of one of the  
following conditions:  
Transmit-data ready  
Receive-data ready  
Register-access ready  
No-acknowledgment received  
Arbitration lost  
Stop condition detected  
Addressed as slave  
An additional interrupt that can be used by the CPU when in FIFO mode  
Module enable/disable capability  
Free data format mode  
80  
Peripherals  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
System Control  
Block  
C28X CPU  
I2CAENCLK  
SYSCLKOUT  
SYSRS  
Control  
Data[16]  
SDAA  
SCLA  
Data[16]  
Addr[16]  
GPIO  
MUX  
2
I C−A  
I2CINT1A  
I2CINT2A  
PIE  
Block  
A. The I2C registers are accessed at the SYSCLKOUT rate. The internal timing and signal waveforms of the I2C port are  
also at the SYSCLKOUT rate.  
B. The clock enable bit (I2CAENCLK) in the PCLKCRO register turns off the clock to the I2C port for low power  
operation. Upon reset, I2CAENCLK is clear, which indicates the peripheral internal clocks are off.  
Figure 4-15. I2C Peripheral Module Interfaces  
The registers in Table 4-14 configure and control the I2C port operation.  
Table 4-14. I2C-A Registers  
NAME  
I2COAR  
I2CIER  
ADDRESS  
0x7900  
0x7901  
0x7902  
0x7903  
0x7904  
0x7905  
0x7906  
0x7907  
0x7908  
0x7909  
0x790A  
0x790C  
0x7920  
0x7921  
-
DESCRIPTION  
I2C own address register  
I2C interrupt enable register  
I2C status register  
I2CSTR  
I2CCLKL  
I2CCLKH  
I2CCNT  
I2CDRR  
I2CSAR  
I2CDXR  
I2CMDR  
I2CISRC  
I2CPSC  
I2CFFTX  
I2CFFRX  
I2CRSR  
I2CXSR  
I2C clock low-time divider register  
I2C clock high-time divider register  
I2C data count register  
I2C data receive register  
I2C slave address register  
I2C data transmit register  
I2C mode register  
I2C interrupt source register  
I2C prescaler register  
I2C FIFO transmit register  
I2C FIFO receive register  
I2C receive shift register (not accessible to the CPU)  
I2C transmit shift register (not accessible to the CPU)  
-
Submit Documentation Feedback  
Peripherals  
81  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
4.11 GPIO MUX  
On the 280x, the GPIO MUX can multiplex up to three independent peripheral signals on a single GPIO  
pin in addition to providing individual pin bit-banging IO capability. The GPIO MUX block diagram per pin  
is shown in Figure 4-16. Because of the open drain capabilities of the I2C pins, the GPIO MUX block  
diagram for these pins differ. See the TMS320x280x System Control and Interrupts Reference Guide  
(literature number SPRU712) for details.  
GPIOXINT1SEL  
GPIOLMPSEL  
GPIOXINT2SEL  
LPMCR0  
GPIOXNMISEL  
External Interrupt  
MUX  
Low Power  
Modes Block  
PIE  
Asynchronous  
path  
GPxDAT (read)  
GPxQSEL1/2  
GPxCTRL  
N/C  
00  
GPxPUD  
Peripheral 1 Input  
Peripheral 2 Input  
01  
Input  
Qualification  
Internal  
Pullup  
10  
11  
Peripheral 3 Input  
GPxTOGGLE  
Asynchronous path  
GPIOx pin  
GPxCLEAR  
GPxSET  
00  
01  
GPxDAT (latch)  
Peripheral 1 Output  
10  
11  
Peripheral 2 Output  
Peripheral 3 Output  
High Impedance  
Output Control  
GPxDIR (latch)  
00  
01  
Peripheral 1 Output Enable  
Peripheral 2 Output Enable  
0 = Input, 1 = Output  
XRS  
10  
11  
Peripheral 3 Output Enable  
= Default at Reset  
GPxMUX1/2  
A. x stands for the port, either A or B. For example, GPxDIR refers to either the GPADIR and GPBDIR register  
depending on the particular GPIO pin selected.  
B. GPxDAT latch/read are accessed at the same memory location.  
Figure 4-16. GPIO MUX Block Diagram  
82  
Peripherals  
Submit Documentation Feedback  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
The 280x supports 34 GPIO pins. The GPIO control and data registers are mapped to Peripheral Frame 1  
to enable 32-bit operations on the registers (along with 16-bit operations). Table 4-15 shows the GPIO  
register mapping.  
Table 4-15. GPIO Registers  
NAME  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
GPIO CONTROL REGISTERS (EALLOW PROTECTED)  
GPACTRL  
GPAQSEL1  
GPAQSEL2  
GPAMUX1  
GPAMUX2  
GPADIR  
0x6F80  
0x6F82  
0x6F84  
0x6F86  
0x6F88  
0x6F8A  
0x6F8C  
2
2
2
2
2
2
2
GPIO A Control Register (GPIO0 to 31)  
GPIO A Qualifier Select 1 Register (GPIO0 to 15)  
GPIO A Qualifier Select 2 Register (GPIO16 to 31)  
GPIO A MUX 1 Register (GPIO0 to 15)  
GPIO A MUX 2 Register (GPIO16 to 31)  
GPIO A Direction Register (GPIO0 to 31)  
GPIO A Pull Up Disable Register (GPIO0 to 31)  
GPAPUD  
0x6F8E  
0x6F8F  
reserved  
2
GPBCTRL  
GPBQSEL1  
GPBQSEL2  
GPBMUX1  
GPBMUX2  
GPBDIR  
0x6F90  
0x6F92  
0x6F94  
0x6F96  
0x6F98  
0x6F9A  
0x6F9C  
2
2
2
2
2
2
2
GPIO B Control Register (GPIO32 to 35)  
GPIO B Qualifier Select 1 Register (GPIO32 to 35)  
reserved  
GPIO B MUX 1 Register (GPIO32 to 35)  
reserved  
GPIO B Direction Register (GPIO32 to 35)  
GPIO B Pull Up Disable Register (GPIO32 to 35)  
GPBPUD  
0x6F9E  
0x6F9F  
reserved  
reserved  
2
reserved  
0x6FA0  
0x6FBF  
32  
GPIO DATA REGISTERS (NOT EALLOW PROTECTED)  
GPADAT  
GPASET  
0x6FC0  
0x6FC2  
0x6FC4  
0x6FC6  
0x6FC8  
0x6FCA  
0x6FCC  
0x6FCE  
2
2
2
2
2
2
2
2
GPIO Data Register (GPIO0 to 31)  
GPIO Data Set Register (GPIO0 to 31)  
GPIO Data Clear Register (GPIO0 to 31)  
GPIO Data Toggle Register (GPIO0 to 31)  
GPIO Data Register (GPIO32 to 35)  
GPACLEAR  
GPATOGGLE  
GPBDAT  
GPBSET  
GPIO Data Set Register (GPIO32 to 35)  
GPIO Data Clear Register (GPIO32 to 35)  
GPIO Data Toggle Register (GPIO32 to 35)  
GPBCLEAR  
GPBTOGGLE  
0x6FD0  
0x6FDF  
reserved  
16  
GPIO INTERRUPT AND LOW POWER MODES SELECT REGISTERS (EALLOW PROTECTED)  
GPIOXINT1SEL  
GPIOXINT2SEL  
GPIOXNMISEL  
0x6FE0  
0x6FE1  
0x6FE2  
1
1
1
XINT1 GPIO Input Select Register (GPIO0 to 31)  
XINT2 GPIO Input Select Register (GPIO0 to 31)  
XNMI GPIO Input Select Register (GPIO0 to 31)  
0x6FE3  
0x6FE7  
reserved  
GPIOLPMSEL  
reserved  
5
2
0x6FE8  
LPM GPIO Select Register (GPIO0 to 31)  
0x6FEA  
0x6FFF  
22  
Submit Documentation Feedback  
Peripherals  
83  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 4-16. F2808 GPIO MUX Table  
DEFAULT AT RESET  
PRIMARY I/O  
FUNCTION  
GPAMUX1/2(1)  
REGISTER  
BITS  
PERIPHERAL  
SELECTION 1(2)  
(GPxMUX1/2 BITS = 0,1)  
PERIPHERAL  
SELECTION 2  
(GPxMUX1/2 BITS = 1,0)  
PERIPHERAL  
SELECTION 3  
(GPxMUX1/2 BITS = 1,1)  
(GPxMUX1/2  
BITS = 0,0)  
GPAMUX1  
EPWM1A (O)  
EPWM1B (O)  
EPWM2A (O)  
EPWM2B (O)  
EPWM3A (O)  
EPWM3B (O)  
EPWM4A (O)  
EPWM4B (O)  
EPWM5A (O)  
EPWM5B (O)  
EPWM6A (O)  
EPWM6B (O)  
TZ1 (I)  
1-0  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
Reserved(3)  
Reserved(3)  
Reserved(3)  
Reserved(3)  
Reserved(3)  
3-2  
SPISIMOD (I/O)  
Reserved(3)  
5-4  
7-6  
SPISOMID (I/O)  
Reserved(3)  
9-8  
Reserved(3)  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
SPICLKD (I/O)  
EPWMSYNCI (I)  
SPISTED (I/O)  
CANTXB (O)  
SCITXDB (O)  
CANRXB (I)  
ECAP1 (I/O)  
EPWMSYNCO (O)  
ECAP2 (I/O)  
ADCSOCAO (O)  
ECAP3 (I/O)  
ADCSOCBO (O)  
ECAP4 (I/O)  
SCIRXDB (I)  
CANTXB (O)  
CANRXB (I)  
SPISIMOB (I/O)  
SPISOMIB (I/O)  
SPICLKB (I/O)  
SPISTEB (I/O)  
TZ2 (I)  
TZ3 (I)  
SCITXDB (O)  
SCIRXDB (I)  
TZ4 (I)  
GPAMUX2  
1-0  
GPIO16  
GPIO17  
GPIO18  
GPIO19  
GPIO20  
GPIO21  
GPIO22  
GPIO23  
GPIO24  
GPIO25  
GPIO26  
GPIO27  
GPIO28  
GPIO29  
GPIO30  
GPIO31  
SPISIMOA (I/O)  
SPISOMIA (I/O)  
SPICLKA (I/O)  
SPISTEA (I/O)  
EQEP1A (I)  
CANTXB (O)  
CANRXB (I)  
SCITXDB (O)  
SCIRXDB (I)  
SPISIMOC (I/O)  
SPISOMIC (I/O)  
SPICLKC (I/O)  
SPISTEC (I/O)  
EQEP2A (I)  
TZ5 (I)  
3-2  
TZ6 (I)  
5-4  
Reserved(3)  
Reserved(3)  
CANTXB (O)  
CANRXB (I)  
SCITXDB (O)  
SCIRXDB (I)  
SPISIMOB (I/O)  
SPISOMIB (I/O)  
SPICLKB (I/O)  
SPISTEB (I/O)  
TZ5 (I)  
7-6  
9-8  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
EQEP1B (I)  
EQEP1S (I/O)  
EQEP1I (I/O)  
ECAP1 (I/O)  
ECAP2 (I/O)  
ECAP3 (I/O)  
ECAP4 (I/O)  
SCIRXDA (I)  
SCITXDA (O)  
CANRXA (I)  
CANTXA (O)  
GPBMUX1  
EQEP2B (I)  
EQEP2I (I/O)  
EQEP2S (I/O)  
Reserved(3)  
Reserved(3)  
Reserved(3)  
TZ6 (I)  
Reserved(3)  
Reserved(3)  
Reserved(3)  
1-0  
3-2  
5-4  
GPIO32  
GPIO33  
GPIO34  
SDAA (I/OC)  
SCLA (I/OC)  
Reserved(3)  
EPWMSYNCI (I)  
EPWMSYNCO (O)  
Reserved(3)  
ADCSOCAO (O)  
ADCSOCBO (O)  
Reserved(3)  
(1) GPxMUX1/2 refers to the appropriate MUX register for the pin; GPAMUX1, GPAMUX2 or GPBMUX1.  
(2) This table pertains to the 2808 device. Some peripherals may not be available in the 2809, 2806, 2802, or 2801 devices. See the pin  
descriptions for more detail.  
(3) The word "Reserved" means that there is no peripheral assigned to this GPxMUX1/2 register setting. Should it be selected, the state of  
the pin will be undefined and the pin may be driven. This selection is a reserved configuration for future expansion.  
84  
Peripherals  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
The user can select the type of input qualification for each GPIO pin via the GPxQSEL1/2 registers from  
four choices:  
Synchronization To SYSCLKOUT Only (GPxQSEL1/2=0,0): This is the default mode of all GPIO pins  
at reset and it simply synchronizes the input signal to the system clock (SYSCLKOUT).  
Qualification Using Sampling Window (GPxQSEL1/2=0,1 and 1,0): In this mode the input signal, after  
synchronization to the system clock (SYSCLKOUT), is qualified by a specified number of cycles before  
the input is allowed to change.  
Time between samples  
GPyCTRL Reg  
Input Signal  
Qualified By 3  
or 6 Samples  
Qualification  
GPIOx  
SYNC  
GPxQSEL  
SYSCLKOUT  
Number of Samples  
Figure 4-17. Qualification Using Sampling Window  
The sampling period is specified by the QUALPRD bits in the GPxCTRL register and is configurable in  
groups of 8 signals. It specifies a multiple of SYSCLKOUT cycles for sampling the input signal. The  
sampling window is either 3-samples or 6-samples wide and the output is only changed when ALL  
samples are the same (all 0s or all 1s) as shown in Figure 4-18 (for 6 sample mode).  
No Synchronization (GPxQSEL1/2=1,1): This mode is used for peripherals where synchronization is  
not required (synchronization is performed within the peripheral).  
Due to the multi-level multiplexing that is required on the 280x device, there may be cases where a  
peripheral input signal can be mapped to more then one GPIO pin. Also, when an input signal is not  
selected, the input signal will default to either a 0 or 1 state, depending on the peripheral.  
Submit Documentation Feedback  
Peripherals  
85  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
5
Device Support  
Texas Instruments (TI) offers an extensive line of development tools for the C28x™ generation of DSPs,  
including tools to evaluate the performance of the processors, generate code, develop algorithm  
implementations, and fully integrate and debug software and hardware modules.  
The following products support development of 280x-based applications:  
Software Development Tools  
Code Composer Studio™ Integrated Development Environment (IDE)  
C/C++ Compiler  
Code generation tools  
Assembler/Linker  
Cycle Accurate Simulator  
Application algorithms  
Sample applications code  
Hardware Development Tools  
2808 eZdsp™  
Evaluation modules  
JTAG-based emulators - SPI515, XDS510PP, XDS510PP Plus, XDS510USB  
Universal 5-V dc power supply  
Documentation and cables  
5.1 Device and Development Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
TMS320™ DSP devices and support tools. Each TMS320™ DSP commercial family member has one of  
three prefixes: TMX, TMP, or TMS (e.g., TMS320F2808). Texas Instruments recommends two of three  
possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary  
stages of product development from engineering prototypes (TMX/TMDX) through fully qualified  
production devices/tools (TMS/TMDS).  
Device development evolutionary flow:  
TMX  
TMP  
TMS  
Experimental device that is not necessarily representative of the final device's electrical  
specifications  
Final silicon die that conforms to the device's electrical specifications but has not completed  
quality and reliability verification  
Fully qualified production device  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification  
testing  
TMDS Fully qualified development-support product  
TMX and TMP devices and TMDX development-support tools are shipped against the following  
disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
86  
Device Support  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard  
production devices. Texas Instruments recommends that these devices not be used in any production  
system because their expected end-use failure rate still is undefined. Only qualified production devices are  
to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the  
package type (for example, PBK) and temperature range (for example, A). Figure 5-1 provides a legend  
for reading the complete device name for any family member.  
A
−60  
TMS  
320  
F
28015 PZ  
PREFIX  
Indicates 60-MHz device  
Absence of “−60” indicates  
100-MHz device.  
TMX = Experimental Device  
TMP = Prototype Device  
TMS = Qualified Device  
TEMPERATURE RANGE  
A
S
Q
=
=
=
–405C to 855C  
–405C to 1255C  
–405C to 1255C — Q100 Fault Grading  
DEVICE FAMILY  
320 = TMS320E DSP Family  
PACKAGE TYPE  
PZ = 100-Pin Low-Profile Quad  
Flatpack (LQFP)  
GGM = 100-Ball Ball Grid Array (BGA)  
ZGM = 100-Ball Lead-Free BGA  
TECHNOLOGY  
DEVICE  
2809  
2808  
F
=
Flash EEPROM  
(1.8-V Core/3.3-V I/O)  
2806  
2802  
2801  
28015  
28016  
Figure 5-1. Example of TMS320x280x Device Nomenclature  
Submit Documentation Feedback  
Device Support  
87  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
5.2 Documentation Support  
Extensive documentation supports all of the TMS320™ DSP family generations of devices from product  
announcement through applications development. The types of documentation available include: data  
sheets and data manuals, with design specifications; and hardware and software applications. Useful  
reference documentation includes:  
CPU User's Guides  
SPRU430  
TMS320C28x DSP CPU and Instruction Set Reference Guide describes the central  
processing unit (CPU) and the assembly language instructions of the TMS320C28x  
fixed-point digital signal processors (DSPs). It also describes emulation features available on  
these DSPs.  
SPRU712  
TMS320x280x, 2801x, 2804x System Control and Interrupts Reference Guide describes the  
various interrupts and system control features of the 280x digital signal processors (DSPs).  
Peripheral Guides  
SPRU566  
SPRU716  
SPRU791  
TMS320x28xx, 28xxx Peripheral Reference Guide describes the peripheral reference guides  
of the 28x digital signal processors (DSPs).  
TMS320x280x, 2801x, 2804x Analog-to-Digital Converter (ADC) Reference Guide describes  
how to configure and use the on-chip ADC module, which is a 12-bit pipelined ADC.  
TMS320x28xx, 28xxx Enhanced Pulse Width Modulator (ePWM) Module Reference Guide  
describes the main areas of the enhanced pulse width modulator that include digital motor  
control, switch mode power supply control, UPS (uninterruptible power supplies), and other  
forms of power conversion  
SPRU924  
SPRU807  
SPRU790  
TMS320x28xx, 28xxx High-Resolution Pulse Width Modulator (HRPWM) describes the  
operation of the high-resolution extension to the pulse width modulator (HRPWM)  
TMS320x28xx, 28xxx Enhanced Capture (eCAP) Module Reference Guide describes the  
enhanced capture module. It includes the module description and registers.  
TMS320x28xx, 28xxx Enhanced Quadrature Encoder Pulse (eQEP) Reference Guide  
describes the eQEP module, which is used for interfacing with a linear or rotary incremental  
encoder to get position, direction, and speed information from a rotating machine in high  
performance motion and position control systems. It includes the module description and  
registers  
SPRU074  
SPRU051  
TMS320x28xx, 28xxx Enhanced Controller Area Network (eCAN) Reference Guide  
describes the eCAN that uses established protocol to communicate serially with other  
controllers in electrically noisy environments.  
TMS320x28xx, 28xxx Serial Communication Interface (SCI) Reference Guide describes the  
SCI, which is a two-wire asynchronous serial port, commonly known as a UART. The SCI  
modules support digital communications between the CPU and other asynchronous  
peripherals that use the standard non-return-to-zero (NRZ) format.  
SPRU059  
TMS320x28xx, 28xxx Serial Peripheral Interface (SPI) Reference Guide describes the SPI -  
a high-speed synchronous serial input/output (I/O) port - that allows a serial bit stream of  
programmed length (one to sixteen bits) to be shifted into and out of the device at a  
programmed bit-transfer rate.  
SPRU721  
SPRU722  
TMS320x28xx, 28xxx Inter-Integrated Circuit (I2C) Reference Guide describes the features  
and operation of the inter-integrated circuit (I2C) module that is available on the  
TMS320x280x digital signal processor (DSP).  
TMS320x280x, 2801x, 2804x Boot ROM Reference Guide describes the purpose and  
features of the bootloader (factory-programmed boot-loading software). It also describes  
other contents of the device on-chip boot ROM and identifies where all of the information is  
88  
Device Support  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
located within that memory.  
Tools Guides  
SPRU513  
TMS320C28x Assembly Language Tools User's Guide describes the assembly language  
tools (assembler and other tools used to develop assembly language code), assembler  
directives, macros, common object file format, and symbolic debugging directives for the  
TMS320C28x device.  
SPRU514  
SPRU608  
SPRU625  
TMS320C28x Optimizing C Compiler User's Guide describes the TMS320C28x™ C/C++  
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320  
DSP assembly language source code for the TMS320C28x device.  
The TMS320C28x Instruction Set Simulator Technical Overview describes the simulator,  
available within the Code Composer Studio for TMS320C2000 IDE, that simulates the  
instruction set of the C28x™ core.  
TMS320C28x DSP/BIOS Application Programming Interface (API) Reference Guide  
describes development using DSP/BIOS.  
Application Reports and Software  
Key Links Include:  
1. C2000 Get Started - www.ti.com/c2000getstarted  
2. C2000 Digital Motor Control Software Library - www.ti.com/c2000appsw  
3. C2000 Digital Power Supply Software Library - www.ti.com/dpslib  
4. DSP Power Management Reference Designs - www.ti.com/dsppower  
SPRAAM0 Getting Started With TMS320C28x™ Digital Signal Controllers is organized by development  
flow and functional areas to make your design effort as seamless as possible. Tips on  
getting started with C28x™ DSP software and hardware development are provided to aid in  
your initial design and debug efforts. Each section includes pointers to valuable information  
including technical documentation, software, and tools for use in each phase of design.  
SPRA958  
Running an Application from Internal Flash Memory on the TMS320F28xx DSP covers the  
requirements needed to properly configure application software for execution from on-chip  
flash memory. Requirements for both DSP/BIOS™ and non-DSP/BIOS projects are  
presented. Example code projects are included.  
SPRAA85 Programming TMS320x28xx and 28xxx Peripherals in C/C++ explores a hardware  
abstraction layer implementation to make C/C++ coding easier on 28x DSPs. This method is  
compared to traditional #define macros and topics of code efficiency and special case  
registers are also addressed.  
SPRAA88 Using PWM Output as a Digital-to-Analog Converter on a TMS320F280x presents a method  
for utilizing the on-chip pulse width modulated (PWM) signal generators on the  
TMS320F280x family of digital signal controllers as a digital-to-analog converter (DAC).  
SPRAA91 TMS320F280x DSC USB Connectivity Using TUSB3410 USB-to-UART Bridge Chip presents  
hardware connections as well as software preparation and operation of the development  
system using a simple communication echo program.  
SPRAAH1 Using the Enhanced Quadrature Encoder Pulse (eQEP) Module provides a guide for the use  
of the eQEP module as a dedicated capture unit and is applicable to the TMS320x280x,  
28xxx family of processors.  
SPRAA58 TMS320x281x to TMS320x280x Migration Overview describes differences between the  
Texas Instruments TMS320x281x and TMS320x280x DSPs to assist in application migration  
from the 281x to the 280x. While the main focus of this document is migration from 281x to  
280x, users considering migrating in the reverse direction (280x to 281x) will also find this  
document useful.  
Submit Documentation Feedback  
Device Support  
89  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
SPRAAI1  
Using Enhanced Pulse Width Modulator (ePWM) Module for 0-100% Duty Cycle Control  
provides a guide for the use of the ePWM module to provide 0% to 100% duty cycle control  
and is applicable to the TMS320x280x family of processors.  
SPRAAD5 Power Line Communication for Lighting Apps using BPSK w/ a Single DSP Controller  
presents a complete implementation of a power line modem following CEA-709 protocol  
using a single DSP.  
SPRAAD8 TMS320280x and TMS320F2801x ADC Calibration describes a method for improving the  
absolute accuracy of the 12-bit ADC found on the TMS320280x and TMS3202801x devices.  
Inherent gain and offset errors affect the absolute accuracy of the ADC. The methods  
described in this report can improve the absolute accuracy of the ADC to levels better than  
0.5%. This application report has an option to download an example program that executes  
from RAM on the F2808 EzDSP.  
SPRA820  
Online Stack Overflow Detection on the TMS320C28x DSP presents the methodology for  
online stack overflow detection on the TMS320C28x™ DSP. C-source code is provided that  
contains functions for implementing the overflow detection on both DSP/BIOS™ and  
non-DSP/BIOS applications.  
SPRA806  
An Easy Way of Creating a C-callable Assembly Function for the TMS320C28x DSP  
provides instructions and suggestions to configure the C compiler to assist with  
understanding of parameter-passing conventions and environments expected by the C  
compiler.  
Software  
SPRC191  
C280x, C2801x C/C++ Header Files and Peripheral Examples  
SPRM194 F2801 100-Pin GGM/ZGM BSDL Model  
SPRM195 F2801 100-Pin PZ BSDL Model  
SPRM196 F2806 100-Pin PZ BSDL Model  
SPRM197 F2808 100-Pin PZ BSDL Model  
SPRM198 F2808 100-Pin GGM/ZGM BSDL Model  
SPRM200 F2806 100-Pin GGM/ZGM BSDL Model  
SPRM244 F2809 GGM/ZGM BSDL Model  
SPRM245 F2809 PZ BSDL Model  
A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support digital signal  
processing research and education. The TMS320 DSP newsletter, Details on Signal Processing, is  
published quarterly and distributed to update TMS320 DSP customers on product information.  
Updated information on the TMS320 DSP controllers can be found on the worldwide web at:  
http://www.ti.com.  
To send comments regarding this data manual (literature number SPRS230), use the  
comments@books.sc.ti.com email address, which is a repository for feedback. For questions and support,  
contact the Product Information Center listed at the http://www.ti.com/sc/docs/pic/home.htm site.  
90  
Device Support  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6
Electrical Specifications  
This section provides the absolute maximum ratings and the recommended operating conditions for the  
TMS320F280x DSPs.  
6.1 Absolute Maximum Ratings(1)(2)  
Unless otherwise noted, the list of absolute maximum ratings are specified over operating temperature ranges.  
Supply voltage range, VDDIO, VDD3VFL  
Supply voltage range, VDDA2, VDDAIO  
Supply voltage range, VDD  
with respect to VSS  
with respect to VSSA  
with respect to VSS  
with respect to VSSA  
with respect to VSS  
- 0.3 V to 4.6 V  
- 0.3 V to 4.6 V  
- 0.3 V to 2.5 V  
- 0.3 V to 2.5 V  
- 0.3 V to 0.3 V  
- 0.3 V to 4.6 V  
- 0.3 V to 4.6 V  
± 20 mA  
Supply voltage range, VDD1A18, VDD2A18  
Supply voltage range, VSSA2, VSSAIO, VSS1AGND, VSS2AGND  
Input voltage range, VIN  
Output voltage range, VO  
(3)  
Input clamp current, IIK (VIN < 0 or VIN > VDDIO  
)
Output clamp current, IOK (VO < 0 or VO > VDDIO  
Operating ambient temperature ranges,  
)
± 20 mA  
TA: A version (GGM, PZ)(4)  
- 40°C to 85°C  
- 40°C to 125°C  
- 40°C to 125°C  
- 40°C to 150°C  
- 65°C to 150°C  
(4)  
TA: S version (GGM, PZ)  
TA: Q version ( PZ)(4)  
Junction temperature range, Tj(4)  
(4)  
Storage temperature range, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Section 6.2 is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) Continuous clamp current per pin is ± 2 mA. This includes the analog inputs which have an internal clamping circuit that clamps the  
voltage to a diode drop above VDDA2 or below VSSA2  
.
(4) Long-term high-temperature storage and/or extended use at maximum temperature conditions may result in a reduction of overall device  
life. For additional information, see IC Package Thermal Metrics Application Report (literature number SPRA953) and Reliability Data for  
TMS320LF24x and TMS320F281x Devices Application Report (literature number SPRA963)  
Submit Documentation Feedback  
Electrical Specifications  
91  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6.2 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.14  
1.71  
NOM  
3.3  
1.8  
0
MAX  
3.47  
1.89  
UNIT  
V
Device supply voltage, I/O, VDDIO  
Device supply voltage CPU, VDD  
Supply ground, VSS, VSSIO  
V
V
ADC supply voltage (3.3 V), VDDA2, VDDAIO  
ADC supply voltage (1.8 V), VDD1A18, VDD2A18  
Flash supply voltage, VDD3VFL  
3.14  
1.71  
3.14  
2
3.3  
1.8  
3.3  
3.47  
1.89  
3.47  
100  
60  
V
V
V
Device clock frequency (system clock), fSYSCLKOUT  
100-MHz devices  
60-MHz devices  
MHz  
MHz  
V
2
High-level input voltage, VIH  
Low-level input voltage, VIL  
2
VDDIO  
0.8  
-4  
All I/Os except Group 2  
Group 2(1)  
mA  
mA  
High-level output source current, VOH = 2.4 V, IOH  
Low-level output sink current, VOL = VOL MAX, IOL  
-8  
All I/Os except Group 2  
Group 2(1)  
4
8
A version  
-40  
-40  
-40  
85  
Ambient temperature, TA  
S version  
125  
125  
°C  
Q version  
(1) Group 2 pins are as follows: GPIO28, GPIO29, GPIO30, GPIO31, TDO, XCLKOUT, EMU0, and EMU1  
6.3 Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.4  
TYP  
MAX UNIT  
IOH = IOHMAX  
IOH = 50 μA  
VOH High-level output voltage  
VOL Low-level output voltage  
V
VDDIO - 0.2  
IOL = IOLMAX  
0.4  
V
Pin with pullup  
enabled  
VDDIO = 3.3 V, VIN = 0 V  
VDDIO = 3.3 V, VIN = 0 V  
VDDIO = 3.3 V, VIN = VDDIO  
All I/Os (including XRS)  
-80  
-140  
-190  
Input current  
(low level)  
IIL  
μA  
Pin with pulldown  
enabled  
±2  
±2  
Pin with pullup  
enabled  
Input current Pin with pulldown  
IIH  
VDDIO = 3.3 V, VIN = VDDIO (F280x)  
VDDIO = 3.3 V, VIN = VDDIO (C280x)  
VO = VDDIO or 0 V  
28  
80  
50  
80  
μA  
(high level)  
enabled  
Pin with pulldown  
enabled  
140  
190  
±2  
Output current, pullup or  
pulldown disabled  
IOZ  
CI  
μA  
Input capacitance  
2
pF  
92  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6.4 Current Consumption  
Table 6-1. TMS320F2809, TMS320F2808 Current Consumption by Power-Supply Pins at 100-MHz  
SYSCLKOUT  
(1)  
(2)  
(3)  
IDD  
IDDIO  
TYP(4)  
IDD3VFL  
IDDA18  
TYP(4)  
IDDA33  
TYP(4)  
MAX  
MODE  
TEST CONDITIONS  
TYP(4)  
MAX  
MAX  
TYP  
MAX  
MAX  
The following peripheral  
clocks are enabled:  
ePWM1/2/3/4/5/6  
eCAP1/2/3/4  
eQEP1/2  
eCAN-A  
SCI-A/B  
SPI-A  
ADC  
I2C  
Operational  
(Flash)  
195 mA  
230 mA  
15 mA  
27 mA  
35 mA  
40 mA  
30 mA  
38 mA  
1.5 mA  
2 mA  
All PWM pins are toggled  
at 100 kHz.  
All I/O pins are left  
unconnected.  
Data is continuously  
transmitted out of the  
SCI-A, SCI-B, and  
eCAN-A ports. The  
hardware multiplier is  
exercised.  
Code is running out of  
flash with 3 wait-states.  
XCLKOUT is turned off.  
Flash is powered down.  
XCLKOUT is turned off.  
The following peripheral  
clocks are enabled:  
IDLE  
75 mA  
90 mA  
12 mA  
500 μA  
2 mA  
2 μA  
10 μA  
5 μA  
50 μA  
15 μA  
30 μA  
eCAN-A  
SCI-A  
SPI-A  
I2C  
Flash is powered down.  
Peripheral clocks are off.  
STANDBY  
HALT  
6 mA  
100 μA  
60 μA  
500 μA  
120 μA  
2 μA  
2 μA  
10 μA  
10 μA  
5 μA  
5 μA  
50 μA  
50 μA  
15 μA  
15 μA  
30 μA  
30 μA  
Flash is powered down.  
Peripheral clocks are off.  
Input clock is disabled.  
70 μA  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) IDDA18 includes current into VDD1A18 and VDD2A18 pins. In order to realize the IDDA18 currents shown for IDLE, STANDBY, and HALT,  
clock to the ADC module must be turned off explicitly by writing to the PCLKCR0 register.  
(3) IDDA33 includes current into VDDA2 and VDDAIO pins.  
(4) The TYP numbers are applicable over room temperature and nominal voltage.  
NOTE  
The peripheral - I/O multiplexing implemented in the 280x devices prevents all available  
peripherals from being used at the same time. This is because more than one peripheral  
function may share an I/O pin. It is, however, possible to turn on the clocks to all the  
peripherals at the same time, although such a configuration is not useful. If this is done,  
the current drawn by the device will be more than the numbers specified in the current  
consumption tables.  
Submit Documentation Feedback  
Electrical Specifications  
93  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 6-2. TMS320F2806 Current Consumption by Power-Supply Pins at 100-MHz SYSCLKOUT  
(1)  
(2)  
(3)  
IDD  
IDDIO  
TYP(4)  
IDD3VFL  
IDDA18  
TYP(4)  
IDDA33  
TYP(4)  
MAX  
MODE  
TEST CONDITIONS  
TYP(4)  
MAX  
MAX  
TYP(4)  
MAX  
MAX  
The following peripheral  
clocks are enabled:  
ePWM1/2/3/4/5/6  
eCAP1/2/3/4  
eQEP1/2  
eCAN-A  
SCI-A/B  
SPI-A  
ADC  
Operational  
(Flash)  
I2C  
195 mA  
230 mA  
15 mA  
27 mA  
35 mA  
40 mA  
30 mA  
38 mA  
1.5 mA  
2 mA  
All PWM pins are toggled at  
100 kHz.  
All I/O pins are left  
unconnected.  
Data is continuously  
transmitted out of the  
SCI-A, SCI-B, and eCAN-A  
ports. The hardware  
multiplier is exercised.  
Code is running out of flash  
with 3 wait-states.  
XCLKOUT is turned off  
Flash is powered down.  
XCLKOUT is turned off.  
The following peripheral  
clocks are enabled:  
IDLE  
75 mA  
90 mA  
12 mA  
500 μA  
2 mA  
2 μA  
10 μA  
5 μA  
50 μA  
15 μA  
30 μA  
eCAN-A  
SCI-A  
SPI-A  
I2C  
Flash is powered down.  
Peripheral clocks are off.  
STANDBY  
HALT  
6 mA  
100 μA  
60 μA  
500 μA  
120 μA  
2 μA  
2 μA  
10 μA  
10 μA  
5 μA  
5 μA  
50 μA  
50 μA  
15 μA  
15 μA  
30 μA  
30 μA  
Flash is powered down.  
Peripheral clocks are off.  
Input clock is disabled.  
70 μA  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) IDDA18 includes current into VDD1A18 and VDD2A18 pins. In order to realize the IDDA18 currents shown for IDLE, STANDBY, and HALT,  
clock to the ADC module must be turned off explicitly by writing to the PCLKCR0 register.  
(3) IDDA33 includes current into VDDA2 and VDDAIO pins.  
(4) The TYP numbers are applicable over room temperature and nominal voltage.  
NOTE  
The peripheral - I/O multiplexing implemented in the 280x devices prevents all available  
peripherals from being used at the same time. This is because more than one peripheral  
function may share an I/O pin. It is, however, possible to turn on the clocks to all the  
peripherals at the same time, although such a configuration is not useful. If this is done,  
the current drawn by the device will be more than the numbers specified in the current  
consumption tables.  
94  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 6-3. TMS320F2802, TMS320F2801 Current Consumption by Power-Supply Pins at 100-MHz  
SYSCLKOUT  
(1)  
(2)  
(3)  
IDD  
IDDIO  
TYP(4)  
IDD3VFL  
TYP(4)  
IDDA18  
TYP(4)  
IDDA33  
TYP(4)  
MODE  
TEST CONDITIONS  
TYP(4)  
MAX  
MAX  
MAX  
MAX  
MAX  
The following peripheral  
clocks are enabled:  
ePWM1/2/3  
eCAP1/2  
eQEP1  
eCAN-A  
SCI-A  
SPI-A  
ADC  
Operational  
(Flash)  
I2C  
180 mA  
210 mA  
15 mA  
27 mA  
35 mA  
40 mA  
30 mA  
38 mA  
1.5 mA  
2 mA  
All PWM pins are toggled at  
100 kHz.  
All I/O pins are left  
unconnected.  
Data is continuously  
transmitted out of the SCI-A,  
SCI-B, and eCAN-A ports.  
The hardware multiplier is  
exercised.  
Code is running out of flash  
with 3 wait-states.  
XCLKOUT is turned off.  
Flash is powered down.  
XCLKOUT is turned off.  
The following peripheral  
clocks are enabled:  
IDLE  
75 mA  
90 mA  
12 mA  
500 μA  
2 mA  
2 μA  
10 μA  
5 μA  
50 μA  
15 μA  
30 μA  
eCAN-A  
SCI-A  
SPI-A  
I2C  
Flash is powered down.  
Peripheral clocks are off.  
STANDBY  
HALT  
6 mA  
100 μA  
60 μA  
500 μA  
120 μA  
2 μA  
2 μA  
10 μA  
10 μA  
5 μA  
5 μA  
50 μA  
50 μA  
15 μA  
15 μA  
30 μA  
30 μA  
Flash is powered down.  
Peripheral clocks are off.  
Input clock is disabled.  
70 μA  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) IDDA18 includes current into VDD1A18 and VDD2A18 pins. In order to realize the IDDA18 currents shown for IDLE, STANDBY, and HALT,  
clock to the ADC module must be turned off explicitly by writing to the PCLKCR0 register.  
(3) IDDA33 includes current into VDDA2 and VDDAIO pins.  
(4) The TYP numbers are applicable over room temperature and nominal voltage.  
NOTE  
The peripheral - I/O multiplexing implemented in the 280x devices prevents all available  
peripherals from being used at the same time. This is because more than one peripheral  
function may share an I/O pin. It is, however, possible to turn on the clocks to all the  
peripherals at the same time, although such a configuration is not useful. If this is done,  
the current drawn by the device will be more than the numbers specified in the current  
consumption tables.  
Submit Documentation Feedback  
Electrical Specifications  
95  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 6-4. TMS320C2802, TMS320C2801 Current Consumption by Power-Supply Pins at  
100-MHz SYSCLKOUT  
(1)  
(2)  
(3)  
IDD  
IDDIO  
IDDA18  
IDDA33  
MODE  
TEST CONDITIONS  
TYP(4)  
MAX  
TYP(4)  
MAX  
TYP(4)  
MAX  
TYP(4)  
MAX  
The following peripheral clocks  
are enabled:  
ePWM1/2/3  
eCAP1/2  
eQEP1  
eCAN-A  
SCI-A  
SPI-A  
ADC  
Operational  
(ROM)  
150 mA  
165 mA  
5 mA  
10 mA  
30 mA  
38 mA  
1.5 mA  
2 mA  
I2C  
All PWM pins are toggled at  
100 kHz.  
All I/O pins are left unconnected.  
Data is continuously transmitted  
out of the SCI-A, SCI-B, and  
eCAN-A ports. The hardware  
multiplier is exercised.  
Code is running out of ROM with  
3 wait-states.  
XCLKOUT is turned off.  
XCLKOUT is turned off.  
The following peripheral clocks  
are enabled:  
eCAN-A  
SCI-A  
SPI-A  
I2C  
IDLE  
75 mA  
90 mA  
12 mA  
500 μA  
2 mA  
5 μA  
50 μA  
15 μA  
30 μA  
STANDBY  
HALT  
Peripheral clocks are off.  
6 mA  
100 μA  
80 μA  
500 μA  
120 μA  
5 μA  
5 μA  
50 μA  
50 μA  
15 μA  
15 μA  
30 μA  
30 μA  
Peripheral clocks are off.  
Input clock is disabled.  
70 μA  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) IDDA18 includes current into VDD1A18 and VDD2A18 pins. In order to realize the IDDA18 currents shown for IDLE, STANDBY, and HALT,  
clock to the ADC module must be turned off explicitly by writing to the PCLKCR0 register.  
(3) IDDA33 includes current into VDDA2 and VDDAIO pins.  
(4) The TYP numbers are applicable over room temperature and nominal voltage.  
NOTE  
The peripheral - I/O multiplexing implemented in the 280x devices prevents all available  
peripherals from being used at the same time. This is because more than one peripheral  
function may share an I/O pin. It is, however, possible to turn on the clocks to all the  
peripherals at the same time, although such a configuration is not useful. If this is done,  
the current drawn by the device will be more than the numbers specified in the current  
consumption tables.  
96  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6.4.1 Reducing Current Consumption  
280x devices have a richer peripheral mix compared to the 281x family. While the McBSP has been  
removed, the following new peripherals have been added on the 280x:  
3 SPI modules  
1 CAN module  
1 I2C module  
The two event manager modules of the 281x have been enhanced and replaced with separate ePWM (6),  
eCAP (4) and eQEP (2) modules, providing tremendous flexibility in applications. Like 281x, 280x DSPs  
incorporate a unique method to reduce the device current consumption. Since each peripheral unit has an  
individual clock-enable bit, significant reduction in current consumption can be achieved by turning off the  
clock to any peripheral module that is not used in a given application. Furthermore, any one of the three  
low-power modes could be taken advantage of to reduce the current consumption even further. Table 6-5  
indicates the typical reduction in current consumption achieved by turning off the clocks.  
Table 6-5. Typical Current Consumption by Various  
Peripherals (at 100 MHz)(1)  
PERIPHERAL  
MODULE  
IDD CURRENT  
REDUCTION (mA)  
ADC  
I2C  
8(2)  
5
eQEP  
ePWM  
eCAP  
SCI  
5
5
2
4
SPI  
5
eCAN  
11  
(1) All peripheral clocks are disabled upon reset. Writing to/reading  
from peripheral registers is possible only after the peripheral clocks  
are turned on.  
(2) This number represents the current drawn by the digital portion of  
the ADC module. Turning off the clock to the ADC module results in  
the elimination of the current drawn by the analog portion of the  
ADC (IDDA18) as well.  
NOTE  
IDDIO current consumption is reduced by 15 mA (typical) when XCLKOUT is turned off.  
NOTE  
The baseline IDD current (current when the core is executing a dummy loop with no  
peripherals enabled) is 110 mA, typical. To arrive at the IDD current for a given application,  
the current-drawn by the peripherals (enabled by that application) must be added to the  
baseline IDD current.  
Submit Documentation Feedback  
Electrical Specifications  
97  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6.4.2 Current Consumption Graphs  
250.0  
200.0  
150.0  
100.0  
50.0  
0.0  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
SYSCLKOUT (MHz)  
1.8-V current  
IDD  
IDDA18  
IDDIO  
IDD3VFL  
3.3-V current  
Figure 6-1. Typical Operational Current Versus Frequency (F2808)  
600.0  
500.0  
400.0  
300.0  
200.0  
100.0  
0.0  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
SYSCLKOUT (MHz)  
TOTAL POWER  
Figure 6-2. Typical Operational Power Versus Frequency (F2808)  
NOTE  
Typical operational current for 60-MHz devices can be estimated from Figure 6-1. For Idd  
current alone, subtract the current contribution of non-existent peripherals after scaling the  
peripheral currents for 60 MHz. For example, to compute the current of F2801-60 device,  
the contribution by the following peripherals must be subtracted from Idd : ePWM4/5/6,  
eCAP3/4, eQEP2, SCI-B.  
98  
Electrical Specifications  
Submit Documentation Feedback  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6.5 Emulator Connection Without Signal Buffering for the DSP  
Figure 6-3 shows the connection between the DSP and JTAG header for a single-processor configuration.  
If the distance between the JTAG header and the DSP is greater than 6 inches, the emulation signals  
must be buffered. If the distance is less than 6 inches, buffering is typically not needed. Figure 6-3 shows  
the simpler, no-buffering situation. For the pullup/pulldown resistor values, see the pin description section.  
6 inches or less  
VDDIO  
VDDIO  
13  
14  
2
5
EMU0  
EMU1  
TRST  
TMS  
TDI  
EMU0  
EMU1  
TRST  
TMS  
PD  
4
GND  
1
6
GND  
GND  
GND  
GND  
3
8
TDI  
7
10  
12  
TDO  
TDO  
11  
9
TCK  
TCK  
TCK_RET  
DSP  
JTAG Header  
Figure 6-3. Emulator Connection Without Signal Buffering for the DSP  
Submit Documentation Feedback  
Electrical Specifications  
99  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6.6 Timing Parameter Symbology  
Timing parameter symbols used are created in accordance with JEDEC Standard 100. To shorten the  
symbols, some of the pin names and other related terminology have been abbreviated as follows:  
Lowercase subscripts and their  
meanings:  
Letters and symbols and their  
meanings:  
a
c
d
f
access time  
cycle time (period)  
delay time  
H
L
High  
Low  
V
X
Z
Valid  
fall time  
Unknown, changing, or don't care level  
High impedance  
h
r
hold time  
rise time  
su  
t
setup time  
transition time  
valid time  
v
w
pulse duration (width)  
6.6.1 General Notes on Timing Parameters  
All output signals from the 28x devices (including XCLKOUT) are derived from an internal clock such that  
all output transitions for a given half-cycle occur with a minimum of skewing relative to each other.  
The signal combinations shown in the following timing diagrams may not necessarily represent actual  
cycles. For actual cycle examples, see the appropriate cycle description section of this document.  
100  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6.6.2 Test Load Circuit  
This test load circuit is used to measure all switching characteristics provided in this document.  
Tester Pin Electronics  
Data Sheet Timing Reference Point  
Output  
Under  
Test  
42 Ω  
3.5 nH  
Transmission Line  
(Α)  
Z0 = 50 Ω  
(B)  
Device Pin  
4.0 pF  
1.85 pF  
A. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the  
device pin.  
B. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its  
transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to  
produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to  
add or subtract the transmission line delay (2 ns or longer) from the data sheet timing.  
Figure 6-4. 3.3-V Test Load Circuit  
6.6.3 Device Clock Table  
This section provides the timing requirements and switching characteristics for the various clock options  
available on the 280x DSPs. Table 6-6 and Table 6-7 list the cycle times of various clocks.  
Table 6-6. TMS320x280x Clock Table and Nomenclature (100-MHz Devices)  
MIN  
28.6  
20  
10  
4
NOM  
MAX UNIT  
tc(OSC), Cycle time  
Frequency  
50  
35  
ns  
MHz  
ns  
On-chip oscillator  
clock  
tc(CI), Cycle time  
Frequency  
250  
100  
500  
100  
2000  
100  
XCLKIN(1)  
SYSCLKOUT  
XCLKOUT  
HSPCLK(2)  
LSPCLK(2)  
ADC clock  
MHz  
ns  
tc(SCO), Cycle time  
Frequency  
10  
2
MHz  
ns  
tc(XCO), Cycle time  
Frequency  
10  
0.5  
10  
MHz  
ns  
tc(HCO), Cycle time  
Frequency  
20(3)  
50(3)  
40(3)  
25(3)  
100  
100  
MHz  
ns  
tc(LCO), Cycle time  
Frequency  
10  
80  
MHz  
ns  
tc(ADCCLK), Cycle time  
Frequency  
12.5  
MHz  
(1) This also applies to the X1 pin if a 1.8-V oscillator is used.  
(2) Lower LSPCLK and HSPCLK will reduce device power consumption.  
(3) This is the default reset value if SYSCLKOUT = 100 MHz.  
Submit Documentation Feedback  
Electrical Specifications  
101  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 6-7. TMS320x280x Clock Table and Nomenclature (60-MHz Devices)  
MIN  
28.6  
20  
NOM  
MAX UNIT  
tc(OSC), Cycle time  
Frequency  
50  
35  
ns  
MHz  
ns  
On-chip oscillator  
clock  
tc(CI), Cycle time  
Frequency  
16.67  
4
250  
60  
XCLKIN(1)  
SYSCLKOUT  
XCLKOUT  
HSPCLK(2)  
LSPCLK(2)  
ADC clock  
MHz  
ns  
tc(SCO), Cycle time  
Frequency  
16.67  
2
500  
60  
MHz  
ns  
tc(XCO), Cycle time  
Frequency  
16.67  
0.5  
2000  
60  
MHz  
ns  
tc(HCO), Cycle time  
Frequency  
16.67  
33.3(3)  
30(3)  
66.7(3)  
15(3)  
60  
60  
MHz  
ns  
tc(LCO), Cycle time  
Frequency  
16.67  
80  
MHz  
ns  
tc(ADCCLK), Cycle time  
Frequency  
12.5  
MHz  
(1) This also applies to the X1 pin if a 1.8-V oscillator is used.  
(2) Lower LSPCLK and HSPCLK will reduce device power consumption.  
(3) This is the default reset value if SYSCLKOUT = 60 MHz.  
102  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6.7 Clock Requirements and Characteristics  
Table 6-8. Input Clock Frequency  
PARAMETER  
Resonator (X1/X2)  
MIN  
20  
20  
4
TYP MAX UNIT  
35  
Crystal (X1/X2)  
35  
MHz  
100  
fx  
Input clock frequency  
100-MHz device  
60-MHz device  
External oscillator/clock  
source (XCLKIN or X1 pin)  
4
60  
fl  
Limp mode SYSCLKOUT frequency range (with /2 enabled)  
1-5  
MHz  
Table 6-9. XCLKIN(1) Timing Requirements - PLL Enabled  
NO.  
C8  
MIN  
MAX UNIT  
tc(CI)  
tf(CI)  
Cycle time, XCLKIN  
33.3  
200  
6
ns  
ns  
ns  
%
C9  
Fall time, XCLKIN  
C10 tr(CI)  
Rise time, XCLKIN  
6
C11 tw(CIL)  
C12 tw(CIH)  
Pulse duration, XCLKIN low as a percentage of tc(OSCCLK)  
Pulse duration, XCLKIN high as a percentage of tc(OSCCLK)  
45  
45  
55  
55  
%
(1) This applies to the X1 pin also.  
Table 6-10. XCLKIN(1) Timing Requirements - PLL Disabled  
NO.  
MIN  
10  
MAX UNIT  
C8  
tc(CI)  
Cycle time, XCLKIN  
Fall time, XCLKIN  
Rise time, XCLKIN  
100-MHz device  
60-MHz device  
Up to 20 MHz  
250  
250  
6
ns  
16.67  
C9  
tf(CI)  
ns  
ns  
ns  
ns  
%
20 MHz to 100 MHz  
Up to 20 MHz  
2
C10 tr(CI)  
6
20 MHz to 100 MHz  
2
C11 tw(CIL)  
C12 tw(CIH)  
Pulse duration, XCLKIN low as a percentage of tc(OSCCLK)  
Pulse duration, XCLKIN high as a percentage of tc(OSCCLK)  
45  
45  
55  
55  
%
(1) This applies to the X1 pin also.  
The possible configuration modes are shown in Table 3-17.  
Table 6-11. XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)(1)(2)  
NO.  
PARAMETER  
MIN  
10  
TYP  
MAX  
UNIT  
100-MHz device  
60-MHz device  
C1  
tc(XCO)  
Cycle time, XCLKOUT  
ns  
16.67  
C3  
C4  
C5  
C6  
tf(XCO)  
tr(XCO)  
tw(XCOL)  
tw(XCOH)  
tp  
Fall time, XCLKOUT  
2
2
ns  
ns  
Rise time, XCLKOUT  
Pulse duration, XCLKOUT low  
Pulse duration, XCLKOUT high  
PLL lock time  
H-2  
H-2  
H+2  
ns  
H+2  
ns  
(3)  
131072tc(OSCCLK)  
cycles  
(1) A load of 40 pF is assumed for these parameters.  
(2) H = 0.5tc(XCO)  
(3) OSCCLK is either the output of the on-chip oscillator or the output from an external oscillator.  
Submit Documentation Feedback  
Electrical Specifications  
103  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
C10  
C9  
C8  
(A)  
XCLKIN  
C6  
C3  
C1  
C4  
C5  
(B)  
XCLKOUT  
A. The relationship of XCLKIN to XCLKOUT depends on the divide factor chosen. The waveform relationship shown is  
intended to illustrate the timing parameters only and may differ based on actual configuration.  
B. XCLKOUT configured to reflect SYSCLKOUT.  
Figure 6-5. Clock Timing  
6.8 Power Sequencing  
No requirements are placed on the power up/down sequence of the various power pins to ensure the  
correct reset state for all the modules. However, if the 3.3-V transistors in the level shifting output buffers  
of the I/O pins are powered prior to the 1.8-V transistors, it is possible for the output buffers to turn on,  
causing a glitch to occur on the pin during power up. To avoid this behavior, power the VDD (core voltage)  
pins prior to or simultaneously with the VDDIO (input/output voltage) pins, ensuring that the VDD pins have  
reached 0.7 V before the VDDIO pins reach 0.7 V.  
There are some requirements on the XRS pin:  
1. During power up, the XRS pin must be held low for tw(RSL1) after the input clock is stable (see  
Table 6-13). This is to enable the entire device to start from a known condition.  
2. During power down, the XRS pin must be pulled low at least 8 μs prior to VDD reaching 1.5 V. This is to  
enhance flash reliability.  
Additionally it is recommended that no voltage larger than a diode drop (0.7 V) should be applied to any  
pin prior to powering up the device. Voltages applied to pins on an unpowered device can bias internal p-n  
junctions in unintended ways and produce unpredictable results.  
6.8.1 Power Management and Supervisory Circuit Solutions  
Table 6-12 lists the power management and supervisory circuit solutions for 280x DSPs. LDO selection  
depends on the total power consumed in the end application. Go to www.power.ti.com for a complete list  
of TI power ICs or select TI DSP Power Solutions for links to the DSP Power Selection Guide  
(slub006a.pdf) and links to specific power reference designs.  
Table 6-12. Power Management and Supervisory Circuit Solutions  
SUPPLIER  
Texas Instruments  
Texas Instruments  
Texas Instruments  
Texas Instruments  
Texas Instruments  
Texas Instruments  
Texas Instruments  
Texas Instruments  
Texas Instruments  
TYPE  
LDO  
PART  
DESCRIPTION  
TPS767D301 Dual 1-A low-dropout regulator (LDO) with supply voltage supervisor (SVS)  
LDO  
TPS70202  
TPS766xx  
TPS3808  
TPS3803  
TPS799xx  
TPS736xx  
TPS62110  
TPS6230x  
Dual 500/250-mA LDO with SVS  
LDO  
250-mA LDO with PG  
SVS  
Open Drain SVS with programmable delay  
Low-cost Open-drain SVS with 5 μS delay  
200-mA LDO in WCSP package  
SVS  
LDO  
LDO  
400-mA LDO with 40 mV of VDO  
DC/DC  
DC/DC  
High Vin 1.2-A dc/dc converter in 4x4 QFN package  
500-mA converter in WCSP package  
104  
Electrical Specifications  
Submit Documentation Feedback  
 
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
V
, V  
DDIO DD3VFL  
V
, V  
DDA2 DDAIO  
(3.3 V)  
V
, V  
DD DD1A18,  
V
DD2A18  
(1.8 V)  
XCLKIN  
X1/X2  
(A)  
OSCCLK/8  
XCLKOUT  
XRS  
User-Code Dependent  
t
OSCST  
t
w(RSL1)  
Address/Data Valid. Internal Boot-ROM Code Execution Phase  
Address/Data/  
Control  
(Internal)  
User-Code Execution Phase  
User-Code Dependent  
t
d(EX)  
(B)  
h(boot-mode)  
t
Boot-Mode  
Pins  
GPIO Pins as Input  
Boot-ROM Execution Starts  
Peripheral/GPIO Function  
Based on Boot Code  
(C)  
GPIO Pins as Input (State Depends on Internal PU/PD)  
User-Code Dependent  
I/O Pins  
A. Upon power up, SYSCLKOUT is OSCCLK/2. Since the XCLKOUTDIV bits in the XCLK register come up with a reset  
state of 0, SYSCLKOUT is further divided by 4 before it appears at XCLKOUT. This explains why XCLKOUT =  
OSCCLK/8 during this phase.  
B. After reset, the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode pin, the boot code  
branches to destination memory or boot code function. If boot ROM code executes after power-on conditions (in  
debugger environment), the boot code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT  
will be based on user environment and could be with or without PLL enabled.  
C. See Section 6.8 for requirements to ensure a high-impedance state for GPIO pins during power-up.  
Figure 6-6. Power-on Reset  
Submit Documentation Feedback  
Electrical Specifications  
105  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 6-13. Reset (XRS) Timing Requirements  
MIN  
8tc(OSCCLK)  
8tc(OSCCLK)  
NOM  
MAX  
UNIT  
(1)  
tw(RSL1)  
tw(RSL2)  
Pulse duration, stable XCLKIN to XRS high  
Pulse duration, XRS low  
cycles  
cycles  
Warm reset  
Pulse duration, reset pulse generated by  
watchdog  
tw(WDRS)  
512tc(OSCCLK)  
cycles  
td(EX)  
Delay time, address/data valid after XRS high  
Oscillator start-up time  
32tc(OSCCLK)  
10  
cycles  
ms  
(2)  
tOSCST  
th(boot-mode)  
1
Hold time for boot-mode pins  
200tc(OSCCLK)  
cycles  
(1) In addition to the tw(RSL1) requirement, XRS has to be low at least for 1 ms after VDD reaches 1.5 V.  
(2) Dependent on crystal/resonator and board design.  
XCLKIN  
X1/X2  
OSCCLK/8  
XCLKOUT  
XRS  
User-Code Dependent  
OSCCLK * 5  
t
w(RSL2)  
User-Code Execution Phase  
t
d(EX)  
Address/Data/  
Control  
(Don’t Care)  
User-Code Execution  
(Internal)  
(A)  
t
Boot-ROM Execution Starts  
GPIO Pins as Input  
h(boot-mode)  
Boot-Mode  
Pins  
Peripheral/GPIO Function  
User-Code Dependent  
Peripheral/GPIO Function  
User-Code Execution Starts  
I/O Pins  
GPIO Pins as Input (State Depends on Internal PU/PD)  
User-Code Dependent  
A. After reset, the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code  
branches to destination memory or boot code function. If Boot ROM code executes after power-on conditions (in  
debugger environment), the Boot code execution time is based on the current SYSCLKOUT speed. The  
SYSCLKOUT will be based on user environment and could be with or without PLL enabled.  
Figure 6-7. Warm Reset  
Figure 6-8 shows an example for the effect of writing into PLLCR register. In the first phase, PLLCR =  
0x0004 and SYSCLKOUT = OSCCLK x 2. The PLLCR is then written with 0x0008. Right after the PLLCR  
register is written, the PLL lock-up phase begins. During this phase, SYSCLKOUT = OSCCLK/2. After the  
PLL lock-up is complete (which takes 131072 OSCCLK cycles), SYSCLKOUT reflects the new operating  
frequency, OSCCLK x 4.  
106  
Electrical Specifications  
Submit Documentation Feedback  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
OSCCLK  
Write to PLLCR  
SYSCLKOUT  
OSCCLK * 2  
OSCCLK/2  
OSCCLK * 4  
(Current CPU  
Frequency)  
(CPU Frequency While PLL is Stabilizing  
With the Desired Frequency. This Period  
(Changed CPU Frequency)  
(PLL Lock-up Time, t ) is  
p
131072 OSCCLK Cycles Long.)  
Figure 6-8. Example of Effect of Writing Into PLLCR Register  
6.9 General-Purpose Input/Output (GPIO)  
6.9.1 GPIO - Output Timing  
Table 6-14. General-Purpose Output Switching Characteristics  
PARAMETER  
Rise time, GPIO switching low to high  
Fall time, GPIO switching high to low  
Toggling frequency, GPO pins  
MIN  
MAX  
8
UNIT  
ns  
tr(GPO)  
tf(GPO)  
tfGPO  
All GPIOs  
All GPIOs  
8
ns  
25  
MHz  
GPIO  
t
r(GPO)  
t
f(GPO)  
Figure 6-9. General-Purpose Output Timing  
Submit Documentation Feedback  
Electrical Specifications  
107  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6.9.2 GPIO - Input Timing  
(A)  
GPIO Signal  
GPxQSELn = 1,0 (6 samples)  
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
t
Sampling Period determined  
by GPxCTRL[QUALPRD]  
w(SP)  
(B)  
t
w(IQSW)  
(C)  
(SYSCLKOUT cycle * 2 * QUALPRD) * 5  
)
Sampling Window  
SYSCLKOUT  
QUALPRD = 1  
(SYSCLKOUT/2)  
(D)  
Output From  
Qualifier  
A. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It  
can vary from 00 to 0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLKOUT cycle. For any other value  
"n", the qualification sampling period in 2n SYSCLKOUT cycles (i.e., at every 2n SYSCLKOUT cycles, the GPIO pin  
will be sampled).  
B. The qualification period selected via the GPxCTRL register applies to groups of 8 GPIO pins.  
C. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is  
used.  
D. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLKOUT cycles or  
greater. In other words, the inputs should be stable for (5 x QUALPRD x 2) SYSCLKOUT cycles. This would ensure  
5 sampling periods for detection to occur. Since external signals are driven asynchronously, an 13-SYSCLKOUT-wide  
pulse ensures reliable recognition.  
Figure 6-10. Sampling Mode  
Table 6-15. General-Purpose Input Timing Requirements  
MIN  
1tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
cycles  
cycles  
cycles  
QUALPRD = 0  
tw(SP)  
Sampling period  
QUALPRD 0  
2tc(SCO) * QUALPRD  
tw(SP) * (n(1) - 1)  
2tc(SCO)  
tw(IQSW)  
Input qualifier sampling window  
Pulse duration, GPIO low/high  
Synchronous mode  
With input qualifier  
(2)  
tw(GPI)  
tw(IQSW) + tw(SP) + 1tc(SCO)  
(1) "n" represents the number of qualification samples as defined by GPxQSELn register.  
(2) For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal.  
108  
Electrical Specifications  
Submit Documentation Feedback  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6.9.3 Sampling Window Width for Input Signals  
The following section summarizes the sampling window width for input signals for various input qualifier  
configurations.  
Sampling frequency denotes how often a signal is sampled with respect to SYSCLKOUT.  
Sampling frequency = SYSCLKOUT/(2 * QUALPRD), if QUALPRD 0  
Sampling frequency = SYSCLKOUT, if QUALPRD = 0  
Sampling period = SYSCLKOUT cycle x 2 x QUALPRD, if QUALPRD 0  
In the above equations, SYSCLKOUT cycle indicates the time period of SYSCLKOUT.  
Sampling period = SYSCLKOUT cycle, if QUALPRD = 0  
In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of  
the signal. This is determined by the value written to GPxQSELn register.  
Case 1:  
Qualification using 3 samples  
Sampling window width = (SYSCLKOUT cycle x 2 x QUALPRD) x 2, if QUALPRD 0  
Sampling window width = (SYSCLKOUT cycle) x 2, if QUALPRD = 0  
Case 2:  
Qualification using 6 samples  
Sampling window width = (SYSCLKOUT cycle x 2 x QUALPRD) x 5, if QUALPRD 0  
Sampling window width = (SYSCLKOUT cycle) x 5, if QUALPRD = 0  
XCLKOUT  
GPIOxn  
t
w(GPI)  
Figure 6-11. General-Purpose Input Timing  
NOTE  
The pulse-width requirement for general-purpose input is applicable for the  
XINT2_ADCSOC signal as well.  
Submit Documentation Feedback  
Electrical Specifications  
109  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6.9.4 Low-Power Mode Wakeup Timing  
Table 6-16 shows the timing requirements, Table 6-17 shows the switching characteristics, and  
Figure 6-12 shows the timing diagram for IDLE mode.  
Table 6-16. IDLE Mode Timing Requirements(1)  
MIN NOM  
MAX  
UNIT  
Without input qualifier  
With input qualifier  
2tc(SCO)  
5tc(SCO) + tw(IQSW)  
tw(WAKE-INT) Pulse duration, external wake-up signal  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 6-15.  
Table 6-17. IDLE Mode Switching Characteristics(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Delay time, external wake signal to  
(2)  
program execution resume  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
20tc(SCO)  
20tc(SCO) + tw(IQSW)  
1050tc(SCO)  
cycles  
cycles  
cycles  
Wake-up from Flash  
Flash module in active state  
td(WAKE-IDLE)  
Wake-up from Flash  
Flash module in sleep state  
1050tc(SCO) + tw(IQSW)  
20tc(SCO)  
Wake-up from SARAM  
20tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-15.  
(2) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. execution of an ISR (triggered  
by the wake up) signal involves additional latency.  
t
d(WAKE−IDLE)  
Address/Data  
(internal)  
XCLKOUT  
t
w(WAKE−INT)  
(A)  
WAKE INT  
A. WAKE INT can be any enabled interrupt, WDINT, XNMI, or XRS.  
Figure 6-12. IDLE Entry and Exit Timing  
Table 6-18. STANDBY Mode Timing Requirements  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
Without input qualification  
With input qualification(1)  
3tc(OSCCLK)  
Pulse duration, external  
wake-up signal  
tw(WAKE-INT)  
cycles  
(2 + QUALSTDBY) * tc(OSCCLK)  
(1) QUALSTDBY is a 6-bit field in the LPMCR0 register.  
110  
Electrical Specifications  
Submit Documentation Feedback  
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 6-19. STANDBY Mode Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Delay time, IDLE instruction  
executed to XCLKOUT low  
td(IDLE-XCOL)  
32tc(SCO)  
45tc(SCO)  
cycles  
Delay time, external wake signal  
to program execution resume(1)  
cycles  
cycles  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
100tc(SCO)  
100tc(SCO) + tw(WAKE-INT)  
1125tc(SCO)  
Wake up from flash  
Flash module in active  
state  
td(WAKE-STBY)  
Wake up from flash  
cycles  
cycles  
Flash module in sleep  
state  
1125tc(SCO) + tw(WAKE-INT)  
Without input qualifier  
With input qualifier  
100tc(SCO)  
Wake up from SARAM  
100tc(SCO) + tw(WAKE-INT)  
(1) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. execution of an ISR (triggered  
by the wake up signal) involves additional latency.  
(A)  
(C)  
(E)  
(D)  
(B)  
(F)  
Device  
Status  
STANDBY  
STANDBY  
Normal Execution  
Flushing Pipeline  
Wake−up  
Signal  
t
w(WAKE-INT)  
t
d(WAKE-STBY)  
X1/X2 or  
X1 or  
XCLKIN  
XCLKOUT  
t
d(IDLE−XCOL)  
A. IDLE instruction is executed to put the device into STANDBY mode.  
B. The PLL block responds to the STANDBY signal. SYSCLKOUT is held for approximately 32 cycles before being  
turned off. This 32-cycle delay enables the CPU pipe and any other pending operations to flush properly.  
C. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in  
STANDBY mode.  
D. The external wake-up signal is driven active.  
E. After a latency period, the STANDBY mode is exited.  
F. Normal execution resumes. The device will respond to the interrupt (if enabled).  
Figure 6-13. STANDBY Entry and Exit Timing Diagram  
Table 6-20. HALT Mode Timing Requirements  
MIN NOM  
MAX  
UNIT  
cycles  
cycles  
(1)  
tw(WAKE-GPIO)  
tw(WAKE-XRS)  
Pulse duration, GPIO wake-up signal  
Pulse duration, XRS wakeup signal  
toscst + 2tc(OSCCLK)  
toscst + 8tc(OSCCLK)  
(1) See Table 6-13 for an explanation of toscst  
.
Submit Documentation Feedback  
Electrical Specifications  
111  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 6-21. HALT Mode Switching Characteristics  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
cycles  
cycles  
td(IDLE-XCOL)  
tp  
Delay time, IDLE instruction executed to XCLKOUT low  
PLL lock-up time  
32tc(SCO)  
45tc(SCO)  
131072tc(OSCCLK)  
Delay time, PLL lock to program execution resume  
1125tc(SCO)  
35tc(SCO)  
cycles  
cycles  
Wake up from flash  
Flash module in sleep state  
td(WAKE-HALT)  
Wake up from SARAM  
(G)  
(A)  
(C)  
(E)  
(B)  
(D)  
HALT  
(F)  
Device  
Status  
HALT  
Flushing Pipeline  
PLL Lock-up Time  
Normal  
Execution  
Wake-up Latency  
GPIOn  
t
d(WAKE−HALT)  
t
w(WAKE-GPIO)  
t
p
X1/X2  
or XCLKIN  
Oscillator Start-up Time  
XCLKOUT  
t
d(IDLE−XCOL)  
A. IDLE instruction is executed to put the device into HALT mode.  
B. The PLL block responds to the HALT signal. SYSCLKOUT is held for approximately 32 cycles before the oscillator is  
turned off and the CLKIN to the core is stopped. This 32-cycle delay enables the CPU pipe and any other pending  
operations to flush properly.  
C. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as  
the clock source, the internal oscillator is shut down as well. The device is now in HALT mode and consumes  
absolute minimum power.  
D. When the GPIOn pin is driven low, the oscillator is turned on and the oscillator wake-up sequence is initiated. The  
GPIO pin should be driven high only after the oscillator has stabilized. This enables the provision of a clean clock  
signal during the PLL lock sequence. Since the falling edge of the GPIO pin asynchronously begins the wakeup  
procedure, care should be taken to maintain a low noise environment prior to entering and during HALT mode.  
E. When GPIOn is deactivated, it initiates the PLL lock sequence, which takes 131,072 OSCCLK (X1/X2 or X1 or  
XCLKIN) cycles.  
F. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after a latency. The HALT  
mode is now exited.  
G. Normal operation resumes.  
Figure 6-14. HALT Wake-Up Using GPIOn  
112  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6.10 Enhanced Control Peripherals  
6.10.1 Enhanced Pulse Width Modulator (ePWM) Timing  
PWM refers to PWM outputs on ePWM1-6. Table 6-22 shows the PWM timing requirements and  
Table 6-23, switching characteristics.  
Table 6-22. ePWM Timing Requirements(1)  
TEST CONDITIONS  
Asynchronous  
MIN  
2tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
cycles  
tw(SYCIN)  
Sync input pulse width  
Synchronous  
2tc(SCO)  
With input qualifier  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-15.  
Table 6-23. ePWM Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
20  
MAX  
UNIT  
ns  
tw(PWM)  
Pulse duration, PWMx output high/low  
Sync output pulse width  
tw(SYNCOUT)  
td(PWM)tza  
8tc(SCO)  
cycles  
ns  
Delay time, trip input active to PWM forced high  
Delay time, trip input active to PWM forced low  
no pin load  
25  
20  
td(TZ-PWM)HZ  
Delay time, trip input active to PWM Hi-Z  
ns  
6.10.2 Trip-Zone Input Timing  
(A)  
XCLKOUT  
t
w(TZ)  
TZ  
t
d(TZ-PWM)HZ  
(B)  
PWM  
A. TZ - TZ1, TZ2, TZ3, TZ4, TZ5, TZ6  
B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM  
recovery software.  
Figure 6-15. PWM Hi-Z Characteristics  
Table 6-24. Trip-Zone input Timing Requirements(1)  
MIN  
1tc(SCO)  
MAX UNIT  
cycles  
tw(TZ)  
Pulse duration, TZx input low  
Asynchronous  
Synchronous  
2tc(SCO)  
cycles  
With input qualifier  
1tc(SCO) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 6-15.  
Table 6-25 shows the high-resolution PWM switching characteristics.  
Submit Documentation Feedback  
Electrical Specifications  
113  
 
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 6-25. High Resolution PWM Characteristics at SYSCLKOUT = (60 - 100 MHz)  
MIN  
TYP  
MAX UNIT  
Micro Edge Positioning (MEP) step size(1)  
150  
310  
ps  
(1) Maximum MEP step size is based on worst-case process, maximum temperature and maximum voltage. MEP step size will increase  
with low voltage and high temperature and decrease with voltage and cold temperature.  
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI  
software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per  
SYSCLKOUT period dynamically while the HRPWM is in operation.  
Table 6-26 shows the eCAP timing requirement and Table 6-27 shows the eCAP switching characteristics.  
Table 6-26. Enhanced Capture (eCAP) Timing Requirement(1)  
TEST CONDITIONS  
Asynchronous  
MIN  
2tc(SCO)  
MAX UNIT  
cycles  
tw(CAP)  
Capture input pulse width  
Synchronous  
2tc(SCO)  
cycles  
With input qualifier  
1tc(SCO) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 6-15.  
Table 6-27. eCAP Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
tw(APWM)  
Pulse duration, APWMx output high/low  
20  
ns  
Table 6-28 shows the eQEP timing requirement and Table 6-29 shows the eQEP switching  
characteristics.  
Table 6-28. Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements(1)  
TEST CONDITIONS  
Asynchronous/synchronous  
With input qualifier  
MIN  
MAX  
UNIT  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
tw(QEPP)  
QEP input period  
2tc(SCO)  
2(1tc(SCO) + tw(IQSW)  
)
tw(INDEXH)  
tw(INDEXL)  
tw(STROBH)  
tw(STROBL)  
QEP Index Input High time  
QEP Index Input Low time  
QEP Strobe High time  
QEP Strobe Input Low time  
Asynchronous/synchronous  
With input qualifier  
2tc(SCO)  
2tc(SCO) +tw(IQSW)  
2tc(SCO)  
Asynchronous/synchronous  
With input qualifier  
2tc(SCO) + tw(IQSW)  
2tc(SCO)  
2tc(SCO) + tw(IQSW)  
2tc(SCO)  
Asynchronous/synchronous  
With input qualifier  
Asynchronous/synchronous  
With input qualifier  
2tc(SCO) +tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-15.  
Table 6-29. eQEP Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
4tc(SCO)  
6tc(SCO)  
UNIT  
cycles  
cycles  
td(CNTR)xin  
Delay time, external clock to counter increment  
td(PCS-OUT)QEP Delay time, QEP input edge to position compare sync output  
Table 6-30. External ADC Start-of-Conversion Switching Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
tw(ADCSOCAL)  
Pulse duration, ADCSOCAO low  
32tc(HCO)  
cycles  
114  
Electrical Specifications  
Submit Documentation Feedback  
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
t
w(ADCSOCAL)  
ADCSOCAO  
or  
ADCSOCBO  
Figure 6-16. ADCSOCAO or ADCSOCBO Timing  
6.10.3 External Interrupt Timing  
t
w(INT)  
XNMI, XINT1, XINT2  
t
d(INT)  
Address bus  
(internal)  
Interrupt Vector  
Figure 6-17. External Interrupt Timing  
Table 6-31. External Interrupt Timing Requirements(1)  
TEST CONDITIONS  
MIN  
1tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
(2)  
tw(INT)  
Pulse duration, INT input low/high  
Synchronous  
With qualifier  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-15.  
(2) This timing is applicable to any GPIO pin configured for ADCSOC functionality.  
Table 6-32. External Interrupt Switching Characteristics(1)  
PARAMETER  
MIN  
MAX  
UNIT  
td(INT)  
Delay time, INT low/high to interrupt-vector fetch  
tw(IQSW) + 12tc(SCO)  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 6-15.  
Submit Documentation Feedback  
Electrical Specifications  
115  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6.10.4 I2C Electrical Specification and Timing  
Table 6-33. I2C Timing  
TEST CONDITIONS  
MIN  
MAX  
400  
UNIT  
kHz  
fSCL  
SCL clock frequency  
I2C clock module frequency is between  
7 MHz and 12 MHz and I2C prescaler and  
clock divider registers are configured  
appropriately  
vil  
Low level input voltage  
High level input voltage  
Input hysteresis  
0.3 VDDIO  
V
V
Vih  
0.7 VDDIO  
Vhys  
Vol  
0.05 VDDIO  
V
Low level output voltage  
Low period of SCL clock  
3 mA sink current  
0
0.4  
V
tLOW  
I2C clock module frequency is between  
7 MHz and 12 MHz and I2C prescaler and  
clock divider registers are configured  
appropriately  
1.3  
μs  
tHIGH  
High period of SCL clock  
I2C clock module frequency is between  
7 MHz and 12 MHz and I2C prescaler and  
clock divider registers are configured  
appropriately  
0.6  
-10  
μs  
lI  
Input current with an input voltage  
10  
μA  
between 0.1 VDDIO and 0.9 VDDIO MAX  
6.10.5 Serial Peripheral Interface (SPI) Master Mode Timing  
Table 6-34 lists the master mode timing (clock phase = 0) and Table 6-35 lists the timing (clock  
phase = 1). Figure 6-18 and Figure 6-19 show the timing waveforms.  
116  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 6-34. SPI Master Mode External Timing (Clock Phase = 0)(1)(2)(3)(4)(5)  
NO.  
SPI WHEN (SPIBRR + 1) IS EVEN OR  
SPIBRR = 0 OR 2  
SPI WHEN (SPIBRR + 1) IS ODD  
AND SPIBRR > 3  
UNIT  
MIN  
4tc(LCO)  
MAX  
MIN  
MAX  
1
2
tc(SPC)M  
Cycle time, SPICLK  
128tc(LCO)  
0.5tc(SPC)M  
5tc(LCO)  
127tc(LCO)  
ns  
ns  
tw(SPCH)M  
Pulse duration, SPICLK high  
(clock polarity = 0)  
0.5tc(SPC)M -10  
0.5tc(SPC)M - 0.5tc(LCO) - 10  
0.5tc(SPC)M - 0.5tc(LCO) - 10  
0.5tc(SPC)M + 0.5tc(LCO)-10  
0.5tc(SPC)M + 0.5tc(LCO)- 10  
0.5tc(SPC)M - 0.5tc(LCO)  
0.5tc(SPC)M - 0.5tc(LCO)  
0.5tc(SPC)M + 0.5tc(LCO)  
0.5tc(SPC)M + 0.5tc(LCO)  
10  
tw(SPCL)M  
Pulse duration, SPICLK low  
(clock polarity = 1)  
0.5tc(SPC)M - 10  
0.5tc(SPC)M - 10  
0.5tc(SPC)M - 10  
0.5tc(SPC)M  
0.5tc(SPC)M  
0.5tc(SPC)M  
10  
3
4
5
8
9
tw(SPCL)M  
Pulse duration, SPICLK low  
(clock polarity = 0)  
ns  
ns  
tw(SPCH)M  
Pulse duration, SPICLK high  
(clock polarity = 1)  
td(SPCH-SIMO)M  
td(SPCL-SIMO)M  
tv(SPCL-SIMO)M  
tv(SPCH-SIMO)M  
tsu(SOMI-SPCL)M  
tsu(SOMI-SPCH)M  
tv(SPCL-SOMI)M  
tv(SPCH-SOMI)M  
Delay time, SPICLK high to SPISIMO  
valid (clock polarity = 0)  
Delay time, SPICLK low to SPISIMO  
valid (clock polarity = 1)  
10  
10  
Valid time, SPISIMO data valid after  
SPICLK low (clock polarity = 0)  
0.5tc(SPC)M -10  
0.5tc(SPC)M -10  
35  
0.5tc(SPC)M + 0.5tc(LCO) -10  
0.5tc(SPC)M + 0.5tc(LCO) -10  
35  
Valid time, SPISIMO data valid after  
SPICLK high (clock polarity = 1)  
Setup time, SPISOMI before SPICLK  
low (clock polarity = 0)  
ns  
ns  
Setup time, SPISOMI before SPICLK  
high (clock polarity = 1)  
35  
35  
Valid time, SPISOMI data valid after  
SPICLK low (clock polarity = 0)  
0.25tc(SPC)M -10  
0.25tc(SPC)M - 10  
0.5tc(SPC)M- 0.5tc(LCO)- 10  
0.5tc(SPC)M- 0.5tc(LCO)- 10  
Valid time, SPISOMI data valid after  
SPICLK high (clock polarity = 1)  
ns  
(1) The MASTER / SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR +1)  
(3) tc(LCO) = LSPCLK cycle time  
(4) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MAX, slave mode receive 12.5-MHz MAX.  
(5) The active edge of the SPICLK signal referenced is controlled by the clock polarity bit (SPICCR.6).  
Submit Documentation Feedback  
Electrical Specifications  
117  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
SPISOMI  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
(A)  
SPISTE  
A. In the master mode, SPISTE goes active 0.5tc(SPC) (minimum) before valid SPI clock edge. On the trailing end of the  
word, the SPISTE will go inactive 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit, except that SPISTE  
stays active between back-to-back transmit words in both FIFO and nonFIFO modes.  
Figure 6-18. SPI Master Mode External Timing (Clock Phase = 0)  
118  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 6-35. SPI Master Mode External Timing (Clock Phase = 1)(1)(2)(3)(4)(5)  
NO.  
SPI WHEN (SPIBRR + 1) IS EVEN  
OR SPIBRR = 0 OR 2  
SPI WHEN (SPIBRR + 1) IS ODD  
AND SPIBRR > 3  
UNIT  
MIN  
4tc(LCO)  
MAX  
MIN  
MAX  
1
2
tc(SPC)M  
Cycle time, SPICLK  
128tc(LCO)  
0.5tc(SPC)M  
5tc(LCO)  
127tc(LCO)  
ns  
ns  
tw(SPCH)M  
Pulse duration, SPICLK high (clock  
polarity = 0)  
0.5tc(SPC)M -10  
0.5tc(SPC)M - 0.5tc (LCO)-10  
0.5tc(SPC)M - 0.5tc (LCO)-10  
0.5tc(SPC)M + 0.5tc(LCO) - 10  
0.5tc(SPC)M + 0.5tc(LCO) -10  
0.5tc(SPC)M - 10  
0.5tc(SPC)M - 0.5tc(LCO)  
0.5tc(SPC)M - 0.5tc(LCO  
0.5tc(SPC)M + 0.5tc(LCO)  
0.5tc(SPC)M + 0.5tc(LCO)  
tw(SPCL))M  
Pulse duration, SPICLK low (clock  
polarity = 1)  
0.5tc(SPC)M -10  
0.5tc(SPC)M -10  
0.5tc(SPC)M -10  
0.5tc(SPC)M -10  
0.5tc(SPC)M  
0.5tc(SPC)M  
0.5tc(SPC)M  
ns  
ns  
ns  
ns  
3
6
tw(SPCL)M  
Pulse duration, SPICLK low (clock  
polarity = 0)  
tw(SPCH)M  
Pulse duration, SPICLK high (clock  
polarity = 1)  
tsu(SIMO-SPCH)M  
Setup time, SPISIMO data valid  
before SPICLK high (clock polarity  
= 0)  
tsu(SIMO-SPCL)M  
Setup time, SPISIMO data valid  
before SPICLK low (clock polarity =  
1)  
0.5tc(SPC)M -10  
0.5tc(SPC)M - 10  
ns  
7
tv(SPCH-SIMO)M  
tv(SPCL-SIMO)M  
tsu(SOMI-SPCH)M  
tsu(SOMI-SPCL)M  
tv(SPCH-SOMI)M  
tv(SPCL-SOMI)M  
Valid time, SPISIMO data valid after  
SPICLK high (clock polarity = 0)  
0.5tc(SPC)M -10  
0.5tc(SPC)M -10  
35  
0.5tc(SPC)M - 10  
0.5tc(SPC)M -10  
35  
ns  
ns  
ns  
ns  
ns  
ns  
Valid time, SPISIMO data valid after  
SPICLK low (clock polarity = 1)  
10  
11  
Setup time, SPISOMI before  
SPICLK high (clock polarity = 0)  
Setup time, SPISOMI before  
SPICLK low (clock polarity = 1)  
35  
35  
Valid time, SPISOMI data valid after  
SPICLK high (clock polarity = 0)  
0.25tc(SPC)M -10  
0.25tc(SPC)M -10  
0.5tc(SPC)M -10  
0.5tc(SPC)M -10  
Valid time, SPISOMI data valid after  
SPICLK low (clock polarity = 1)  
(1) The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is set.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25 MHz MAX, master mode receive 12.5 MHz MAX  
Slave mode transmit 12.5 MHz MAX, slave mode receive 12.5 MHz MAX.  
(4) tc(LCO) = LSPCLK cycle time  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
Submit Documentation Feedback  
Electrical Specifications  
119  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
6
7
SPISIMO  
SPISOMI  
Master Out Data Is Valid  
Data Valid  
10  
11  
Master In Data Must  
Be Valid  
(A)  
SPISTE  
A. In the master mode, SPISTE goes active 0.5tc(SPC) (minimum) before valid SPI clock edge. On the trailing end of the  
word, the SPISTE will go inactive 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit, except that SPISTE  
stays active between back-to-back transmit words in both FIFO and nonFIFO modes.  
Figure 6-19. SPI Master Mode External Timing (Clock Phase = 1)  
6.10.6 SPI Slave Mode Timing  
Table 6-36 lists the slave mode external timing (clock phase = 0) and Table 6-37 (clock phase = 1).  
Figure 6-20 and Figure 6-21 show the timing waveforms.  
Table 6-36. SPI Slave Mode External Timing (Clock Phase = 0)(1)(2)(3)(4)(5)  
NO.  
MIN  
MAX UNIT  
12 tc(SPC)S  
13 tw(SPCH)S  
tw(SPCL)S  
Cycle time, SPICLK  
4tc(LCO)  
ns  
Pulse duration, SPICLK high (clock polarity = 0)  
0.5tc(SPC)S - 10 0.5tc(SPC)S  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SPICLK low (clock polarity = 1)  
0.5tc(SPC)S - 10 0.5tc(SPC)S  
14 tw(SPCL)S  
tw(SPCH)S  
Pulse duration, SPICLK low (clock polarity = 0)  
0.5tc(SPC)S - 10 0.5tc(SPC)S  
Pulse duration, SPICLK high (clock polarity = 1)  
0.5tc(SPC)S - 10 0.5tc(SPC)S  
15 td(SPCH-SOMI)S  
td(SPCL-SOMI)S  
16 tv(SPCL-SOMI)S  
tv(SPCH-SOMI)S  
19 tsu(SIMO-SPCL)S  
tsu(SIMO-SPCH)S  
20 tv(SPCL-SIMO)S  
tv(SPCH-SIMO)S  
Delay time, SPICLK high to SPISOMI valid (clock polarity = 0)  
Delay time, SPICLK low to SPISOMI valid (clock polarity = 1)  
Valid time, SPISOMI data valid after SPICLK low (clock polarity = 0)  
Valid time, SPISOMI data valid after SPICLK high (clock polarity = 1)  
Setup time, SPISIMO before SPICLK low (clock polarity = 0)  
Setup time, SPISIMO before SPICLK high (clock polarity = 1)  
Valid time, SPISIMO data valid after SPICLK low (clock polarity = 0)  
Valid time, SPISIMO data valid after SPICLK high (clock polarity = 1)  
35  
35  
0.75tc(SPC)S  
0.75tc(SPC)S  
35  
35  
0.5tc(SPC)S-10  
0.5tc(SPC)S-10  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.  
(4) tc(LCO) = LSPCLK cycle time  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
120  
Electrical Specifications  
Submit Documentation Feedback  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
12  
SPICLK  
(clock polarity = 0)  
13  
15  
14  
SPICLK  
(clock polarity = 1)  
16  
SPISOMI  
SPISIMO  
SPISOMI Data Is Valid  
19  
20  
SPISIMO Data  
Must Be Valid  
(A)  
SPISTE  
A. In the slave mode, the SPISTE signal should be asserted low at least 0.5tc(SPC) (minimum) before the valid SPI clock  
edge and remain low for at least 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit.  
Figure 6-20. SPI Slave Mode External Timing (Clock Phase = 0)  
Table 6-37. SPI Slave Mode External Timing (Clock Phase = 1)(1)(2)(3)(4)  
NO.  
MIN  
8tc(LCO)  
MAX UNIT  
12 tc(SPC)S  
13 tw(SPCH)S  
tw(SPCL)S  
Cycle time, SPICLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
Setup time, SPISOMI before SPICLK high (clock polarity = 0)  
Setup time, SPISOMI before SPICLK low (clock polarity = 1  
0.5tc(SPC)S - 10  
0.5tc(SPC)S - 10  
0.5tc(SPC)S - 10  
0.5tc(SPC)S - 10  
0.125tc(SPC)S  
0.125tc(SPC)S  
0.75tc(SPC)S  
0.5tc(SPC)S  
0.5tc(SPC)S  
0.5tc(SPC)S  
0.5tc(SPC)S  
14 tw(SPCL)S  
tw(SPCH)S  
17 tsu(SOMI-SPCH)S  
tsu(SOMI-SPCL)S  
18 tv(SPCH-SOMI)S  
Valid time, SPISOMI data valid after SPICLK low (clock polarity =  
0)  
tv(SPCL-SOMI)S  
Valid time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
0.75tc(SPC)S  
ns  
21 tsu(SIMO-SPCH)S  
tsu(SIMO-SPCL)S  
Setup time, SPISIMO before SPICLK high (clock polarity = 0)  
Setup time, SPISIMO before SPICLK low (clock polarity = 1)  
35  
35  
ns  
ns  
ns  
22 tv(SPCH-SIMO)S  
Valid time, SPISIMO data valid after SPICLK high  
(clock polarity = 0)  
0.5tc(SPC)S-10  
tv(SPCL-SIMO)S  
Valid time, SPISIMO data valid after SPICLK low (clock polarity =  
1)  
0.5tc(SPC)S-10  
ns  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
Submit Documentation Feedback  
Electrical Specifications  
121  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
17  
18  
SPISOMI Data Is Valid  
SPISOMI  
SPISIMO  
Data Valid  
21  
22  
SPISIMO Data  
Must Be Valid  
(A)  
SPISTE  
A. In the slave mode, the SPISTE signal should be asserted low at least 0.5tc(SPC) before the valid SPI clock edge and  
remain low for at least 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit.  
Figure 6-21. SPI Slave Mode External Timing (Clock Phase = 1)  
122  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6.10.7 On-Chip Analog-to-Digital Converter  
Table 6-38. ADC Electrical Characteristics (over recommended operating conditions)(1)(2)  
PARAMETER  
DC SPECIFICATIONS  
Resolution  
MIN  
TYP  
MAX  
UNIT  
12  
0.001  
0.001  
0.001  
Bits  
MHz  
MHz  
ADC clock  
60-MHz device  
7.5  
12.5  
25  
100-MHz device  
100-MHz device (F2809 only)  
ACCURACY  
INL (Integral nonlinearity)  
1-12.5 MHz ADC clock (6.25 MSPS)  
±1.5  
±2  
LSB  
LSB  
12.5-25 MHz ADC clock (12.5  
MSPS)  
DNL (Differential nonlinearity)(3)  
±1  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
(4)  
Offset error  
-60  
+60  
Offset error with hardware trimming  
Overall gain error with internal reference  
Overall gain error with external reference  
Channel-to-channel offset variation  
Channel-to-channel gain variation  
ANALOG INPUT  
±4  
(5)  
-60  
-60  
+60  
+60  
±4  
±4  
(6)  
Analog input voltage (ADCINx to ADCLO)  
ADCLO  
0
3
5
V
-5  
0
mV  
pF  
μA  
Input capacitance  
10  
Input leakage current  
±5  
(5)  
INTERNAL VOLTAGE REFERENCE  
VADCREFP - ADCREFP output voltage at the pin based on  
internal reference  
1.275  
0.525  
V
V
VADCREFM - ADCREFM output voltage at the pin based on  
internal reference  
Voltage difference, ADCREFP - ADCREFM  
0.75  
50  
V
Temperature coefficient  
PPM/°C  
EXTERNAL VOLTAGE REFERENCE(5) (7)  
ADCREFSEL[15:14] = 11b  
ADCREFSEL[15:14] = 10b  
ADCREFSEL[15:14] = 01b  
1.024  
1.500  
2.048  
V
V
V
VADCREFIN - External reference voltage input on ADCREFIN  
pin 0.2% or better accurate reference recommended  
AC SPECIFICATIONS  
SINAD (100 kHz) Signal-to-noise ratio + distortion  
SNR (100 kHz) Signal-to-noise ratio  
THD (100 kHz) Total harmonic distortion  
ENOB (100 kHz) Effective number of bits  
SFDR (100 kHz) Spurious free dynamic range  
67.5  
68  
dB  
dB  
-79  
10.9  
83  
dB  
Bits  
dB  
(1) Tested at 12.5 MHz ADCCLK.  
(2) All voltages listed in this table are with respect to VSSA2  
(3) TI specifies that the ADC will have no missing codes.  
(4) 1 LSB has the weighted value of 3.0/4096 = 0.732 mV.  
.
(5) A single internal/external band gap reference sources both ADCREFP and ADCREFM signals, and hence, these voltages track  
together. The ADC converter uses the difference between these two as its reference. The total gain error listed for the internal reference  
is inclusive of the movement of the internal bandgap over temperature. Gain error over temperature for the external reference option will  
depend on the temperature profile of the source used.  
(6) Voltages above VDDA + 0.3 V or below VSS - 0.3 V applied to an analog input pin may temporarily affect the conversion of another pin.  
To avoid this, the analog inputs should be kept within these limits.  
(7) TI recommends using high precision external reference TI part REF3020/3120 or equivalent for 2.048-V reference.  
Submit Documentation Feedback  
Electrical Specifications  
123  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6.10.7.1 ADC Power-Up Control Bit Timing  
ADC Power Up Delay  
ADC Ready for Conversions  
PWDNBG  
PWDNREF  
t
d(BGR)  
PWDNADC  
t
d(PWD)  
Request for  
ADC  
Conversion  
Figure 6-22. ADC Power-Up Control Bit Timing  
Table 6-39. ADC Power-Up Delays  
PARAMETER(1)  
MIN  
TYP  
MAX  
UNIT  
td(BGR)  
td(PWD)  
Delay time for band gap reference to be stable. Bits 7 and 6 of the ADCTRL3  
register (ADCBGRFDN1/0) must be set to 1 before the PWDNADC bit is enabled.  
5
ms  
Delay time for power-down control to be stable. Bit delay time for band-gap  
reference to be stable. Bits 7 and 6 of the ADCTRL3 register (ADCBGRFDN1/0)  
must be set to 1 before the PWDNADC bit is enabled. Bit 5 of the ADCTRL3  
register (PWDNADC)must be set to 1 before any ADC conversions are initiated.  
20  
50  
μs  
1
ms  
(1) Timings maintain compatibility to the 281x ADC module. The 280x ADC also supports driving all 3 bits at the same time and waiting  
td(BGR) ms before first conversion.  
Table 6-40. Current Consumption for Different ADC Configurations (at 12.5-MHz ADCCLK)(1)(2)  
ADC OPERATING MODE  
CONDITIONS  
VDDA18  
VDDA3.3  
UNIT  
Mode A (Operational Mode):  
30  
2
mA  
BG and REF enabled  
PWD disabled  
Mode B:  
Mode C:  
Mode D:  
9
5
5
0.5  
20  
15  
mA  
μA  
μA  
ADC clock enabled  
BG and REF enabled  
PWD enabled  
ADC clock enabled  
BG and REF disabled  
PWD enabled  
ADC clock disabled  
BG and REF disabled  
PWD enabled  
(1) Test Conditions:  
SYSCLKOUT = 100 MHz  
ADC module clock = 12.5 MHz  
ADC performing a continuous conversion of all 16 channels in Mode A  
(2) VDDA18 includes current into VDD1A18 and VDD2A18. VDDA3.3 includes current into VDDA2 and VDDAIO  
.
124  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
R
1 k  
on  
Switch  
R
s
ADCIN0  
C
10 pF  
C
h
1.64 pF  
p
Source  
Signal  
ac  
28x DSP  
Typical Values of the Input Circuit Components:  
Switch Resistance (R ):  
1 kΩ  
1.64 pF  
on  
Sampling Capacitor (C ):  
h
Parasitic Capacitance (C ): 10 pF  
p
Source Resistance (R ):  
50 Ω  
s
Figure 6-23. ADC Analog Input Impedance Model  
6.10.7.2 Definitions  
Reference Voltage  
The on-chip ADC has a built-in reference, which provides the reference voltages for the ADC.  
Analog Inputs  
The on-chip ADC consists of 16 analog inputs, which are sampled either one at a time or two channels at  
a time. These inputs are software-selectable.  
Converter  
The on-chip ADC uses a 12-bit four-stage pipeline architecture, which achieves a high sample rate with  
low power consumption.  
Conversion Modes  
The conversion can be performed in two different conversion modes:  
Sequential sampling mode (SMODE = 0)  
Simultaneous sampling mode (SMODE = 1)  
Submit Documentation Feedback  
Electrical Specifications  
125  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6.10.7.3 Sequential Sampling Mode (Single-Channel) (SMODE = 0)  
In sequential sampling mode, the ADC can continuously convert input signals on any of the channels (Ax  
to Bx). The ADC can start conversions on event triggers from the ePWM, software trigger, or from an  
external ADCSOC signal. If the SMODE bit is 0, the ADC will do conversions on the selected channel on  
every Sample/Hold pulse. The conversion time and latency of the Result register update are explained  
below. The ADC interrupt flags are set a few SYSCLKOUT cycles after the Result register update. The  
selected channels will be sampled at every falling edge of the Sample/Hold pulse. The Sample/Hold pulse  
width can be programmed to be 1 ADC clock wide (minimum) or 16 ADC clocks wide (maximum).  
Sample n+2  
Sample n+1  
Analog Input on  
Sample n  
Channel Ax or Bx  
ADC Clock  
Sample and Hold  
SH Pulse  
SMODE Bit  
t
d(SH)  
t
dschx_n+1  
t
dschx_n  
ADC Event Trigger from  
ePWM or Other Sources  
t
SH  
Figure 6-24. Sequential Sampling Mode (Single-Channel) Timing  
Table 6-41. Sequential Sampling Mode Timing  
AT 12.5 MHz  
SAMPLE n  
SAMPLE n + 1  
ADC CLOCK,  
REMARKS  
tc(ADCCLK) = 80 ns  
td(SH)  
Delay time from event trigger to  
2.5tc(ADCCLK)  
sampling  
tSH  
Sample/Hold width/Acquisition  
Width  
(1 + Acqps) *  
tc(ADCCLK)  
80 ns with Acqps = 0  
320 ns  
Acqps value = 0-15  
ADCTRL1[8:11]  
td(schx_n)  
td(schx_n+1)  
Delay time for first result to appear  
in Result register  
4tc(ADCCLK)  
Delay time for successive results to  
appear in Result register  
(2 + Acqps) *  
tc(ADCCLK)  
160 ns  
126  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6.10.7.4 Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1)  
In simultaneous mode, the ADC can continuously convert input signals on any one pair of channels  
(A0/B0 to A7/B7). The ADC can start conversions on event triggers from the ePWM, software trigger, or  
from an external ADCSOC signal. If the SMODE bit is 1, the ADC will do conversions on two selected  
channels on every Sample/Hold pulse. The conversion time and latency of the result register update are  
explained below. The ADC interrupt flags are set a few SYSCLKOUT cycles after the Result register  
update. The selected channels will be sampled simultaneously at the falling edge of the Sample/Hold  
pulse. The Sample/Hold pulse width can be programmed to be 1 ADC clock wide (minimum) or 16 ADC  
clocks wide (maximum).  
NOTE  
In simultaneous mode, the ADCIN channel pair select has to be A0/B0, A1/B1, ..., A7/B7,  
and not in other combinations (such as A1/B3, etc.).  
Sample n  
Sample n+2  
Sample n+1  
Analog Input on  
Channel Ax  
Analog Input on  
Channel Bx  
ADC Clock  
Sample and Hold  
SH Pulse  
SMODE Bit  
t
d(SH)  
t
dschA0_n+1  
t
SH  
ADC Event Trigger from  
ePWM or Other Sources  
t
t
dschA0_n  
dschB0_n+1  
t
dschB0_n  
Figure 6-25. Simultaneous Sampling Mode Timing  
Table 6-42. Simultaneous Sampling Mode Timing  
AT 12.5 MHz  
ADC CLOCK,  
tc(ADCCLK) = 80 ns  
SAMPLE n  
SAMPLE n + 1  
REMARKS  
td(SH)  
Delay time from event trigger to  
2.5tc(ADCCLK)  
sampling  
tSH  
Sample/Hold width/Acquisition  
Width  
(1 + Acqps) *  
tc(ADCCLK)  
80 ns with Acqps = 0 Acqps value = 0-15  
ADCTRL1[8:11]  
td(schA0_n)  
td(schB0_n)  
Delay time for first result to  
appear in Result register  
4tc(ADCCLK)  
320 ns  
400 ns  
240 ns  
240 ns  
Delay time for first result to  
appear in Result register  
5tc(ADCCLK)  
td(schA0_n+1) Delay time for successive results  
to appear in Result register  
(3 + Acqps) * tc(ADCCLK)  
(3 + Acqps) * tc(ADCCLK)  
td(schB0_n+1) Delay time for successive results  
to appear in Result register  
Submit Documentation Feedback  
Electrical Specifications  
127  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6.11 Detailed Descriptions  
Integral Nonlinearity  
Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero through full  
scale. The point used as zero occurs one-half LSB before the first code transition. The full-scale point is  
defined as level one-half LSB beyond the last code transition. The deviation is measured from the center  
of each particular code to the true straight line between these two points.  
Differential Nonlinearity  
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal  
value. A differential nonlinearity error of less than ±1 LSB ensures no missing codes.  
Zero Offset  
The major carry transition should occur when the analog input is at zero volts. Zero error is defined as the  
deviation of the actual transition from that point.  
Gain Error  
The first code transition should occur at an analog value one-half LSB above negative full scale. The last  
transition should occur at an analog value one and one-half LSB below the nominal full scale. Gain error is  
the deviation of the actual difference between first and last code transitions and the ideal difference  
between first and last code transitions.  
Signal-to-Noise Ratio + Distortion (SINAD)  
SINAD is the ratio of the rms value of the measured input signal to the rms sum of all other spectral  
components below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is  
expressed in decibels.  
Effective Number of Bits (ENOB)  
For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following  
(
)
SINAD * 1.76  
N +  
formula,  
6.02  
it is possible to get a measure of performance expressed as N, the effective  
number of bits. Thus, effective number of bits for a device for sine wave inputs at a given input frequency  
can be calculated directly from its measured SINAD.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first nine harmonic components to the rms value of the measured  
input signal and is expressed as a percentage or in decibels.  
Spurious Free Dynamic Range (SFDR)  
SFDR is the difference in dB between the rms amplitude of the input signal and the peak spurious signal.  
128  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
6.12 Flash Timing  
Table 6-43. Flash Endurance  
MIN  
TYP  
MAX  
UNIT  
cycles  
write  
Nf  
Flash endurance for the array (write/erase cycles)  
0°C to 85°C (ambient)  
0°C to 85°C (ambient)  
100  
1000  
NOTP OTP endurance for the array (write cycles)  
1
Table 6-44. Flash Parameters at 100-MHz SYSCLKOUT  
PARAMETER(1)  
TEST CONDITIONS  
MIN  
TYP  
50  
MAX  
UNIT  
μs  
Program  
Time  
16-Bit Word  
16K Sector  
8K Sector  
4K Sector  
16K Sector  
8K Sector  
4K Sector  
500  
250  
125  
10  
ms  
ms  
ms  
S
Erase Time  
10  
S
10  
S
IDD3VFLP  
VDD3VFL current consumption during the  
Erase/Program cycle  
Erase  
Program  
75  
mA  
mA  
mA  
35  
IDDP  
VDD current consumption during Erase/Program  
cycle  
140  
IDDIOP  
VDDIO current consumption during Erase/Program  
cycle  
20  
mA  
(1) Typical parameters as seen at room temperature using flash API version 3.00 including function call overhead.  
Table 6-45. Flash/OTP Access Timing  
PARAMETER  
Paged flash access time  
MIN  
36  
TYP  
MAX  
UNIT  
ns  
ta(fp)  
ta(fr)  
Random flash access time  
OTP access time  
36  
ns  
ta(OTP)  
60  
ns  
Equations to compute the Flash page wait-state and random wait-state in Table 6-46 are as follows:  
ta(fp)  
Flash Page Wait-State  
+
ǒ Ǔ* 1  
ƪ ƫ(round up to the next highest integer) or 0, whichever is larger  
tc(SCO)  
ta(fr)  
(round up to the next highest integer) or 1, whichever is larger  
Flash Random Wait-State  
+
ǒ Ǔ* 1  
ƪ ƫ  
tc(SCO)  
Equation to compute the OTP wait-state in Table 6-46 is as follows:  
ta(OTP)  
OTP Wait-State  
+
ǒ Ǔ* 1  
ƪ ƫ(round up to the next highest integer) or 1, whichever is larger  
tc(SCO)  
Submit Documentation Feedback  
Electrical Specifications  
129  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 6-46. Minimum Required Flash/OTP Wait-States at Different Frequencies  
SYSCLKOUT  
(MHz)  
SYSCLKOUT (ns)  
FLASH PAGE  
WAIT-STATE  
FLASH RANDOM OTP WAIT-STATE  
WAIT-STATE(1)  
100  
75  
60  
50  
30  
25  
15  
4
10  
13.33  
16.67  
20  
3
2
2
1
1
0
0
0
3
2
2
1
1
1
1
1
5
4
3
2
1
1
1
1
33.33  
40  
66.67  
250  
(1) Random wait-state must be greater than or equal to 1.  
6.13 ROM Timing (C280x only)  
Table 6-47. ROM/OTP Access Timing  
PARAMETER  
Paged ROM access time  
MIN  
19  
TYP  
MAX  
UNIT  
ns  
ta(rp)  
ta(rr)  
Random ROM access time  
19  
ns  
(1)  
ta(ROM)  
ROM (OTP area) access time  
60  
ns  
(1) In C280x devices, a 1K X 16 ROM block replaces the OTP block found in Flash devices.  
Equations to compute the page wait-state and random wait-state in Table 6-48 are as follows:  
ta(rp)  
+
ǒ Ǔ* 1  
ROM Page Wait-State ƪ ƫ(round up to the next highest integer) or 0, whichever is larger  
tc(SCO)  
ta(rr)  
+
ǒ Ǔ* 1  
ƪ ƫ(round up to the next highest integer) or 1, whichever is larger  
ROM Random Wait-State  
tc(SCO)  
Table 6-48. ROM/ROM (OTP area) Minimum Required  
Wait-States at Different Frequencies  
SYSCLKOUT  
(MHz)  
SYSCLKOUT  
(ns)  
PAGE  
WAIT-STATE  
RANDOM  
WAIT-STATE(1)  
100  
75  
50  
30  
25  
15  
4
10  
13.33  
20  
1
1
0
0
0
0
0
1
1
1
1
1
1
1
33.33  
40  
66.67  
250  
(1) Random wait-state must be greater than or equal to 1.  
130  
Electrical Specifications  
Submit Documentation Feedback  
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
7
Migrating From F280x Devices to C280x Devices  
7.1 Migration Issues  
The migration issues to be considered while migrating from the F280x devices to C280x devices are as  
follows:  
The 1K OTP memory available in F280x devices has been replaced by 1K ROM C280x devices.  
Current consumption differs for F280x and C280x devices for all four possible modes. See the  
appropriate electrical section for exact numbers.  
The VDD3VFL pin is the 3.3-V Flash core power pin in F280x devices but is a VDDIO pin in C280x  
devices.  
F280x and C280x devices are pin-compatible and code-compatible; however, they are electrically  
different with different EMI/ESD profiles. Before ramping production with C280x devices, evaluate  
performance of the hardware design with both devices.  
Addresses 0x3D 7BFC through 0x3D 7BFF in the OTP and addresses 0x3F 7FF0 through 0x3F 7FF5  
in the main ROM array are reserved for ROM part-specific information and are not available for user  
applications.  
The paged and random wait-state specifications for the Flash and ROM parts are different. While  
migrating from Flash to ROM parts, the same wait-state values must be used for best-performance  
compatibility (for example, in applications that use software delay loops or where precise interrupt  
latencies are critical).  
The analog input switch resistance is smaller in C280x devices compared to F280x devices. While  
migrating from a Flash to a ROM device care should be taken to design the analog input circuits to  
meet the application performance required by the sampling network.  
The PART-ID register value is different for Flash and ROM parts.  
From a silicon functionality/errata standpoint, rev A ROM devices are equivalent to rev C flash devices.  
See the errata applicable to 280x devices for details.  
As part of the ROM code generation process, all unused memory locations in the customer application  
are automatically filled with 0xFFFF. Unused locations should not be manually filled with any other  
data.  
For errata applicable to 280x devices, see the TMS320F280x, TMS320C280x, and TMS320F2801x DSP  
Silicon Errata (literature number SPRZ171).  
Submit Documentation Feedback  
Migrating From F280x Devices to C280x Devices  
131  
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
8
Mechanical Data  
Table 8-1, Table 8-2, Table 8-3, and Table 8-4 show the thermal data.  
The mechanical package diagram(s) that follow the tables reflect the most current released mechanical  
data available for the designated device(s).  
Table 8-1. F280x Thermal Model 100-pin GGM Results  
AIR FLOW  
PARAMETER  
0 lfm  
30.58  
0.4184  
12.08  
16.46  
150 lfm  
29.31  
0.32  
250 lfm  
28.09  
500 lfm  
26.62  
θJA[°C/W] High k PCB  
ΨJT[°C/W]  
θJC  
0.3725  
0.4887  
θJB  
Table 8-2. F280x Thermal Model 100-pin PZ Results  
AIR FLOW  
PARAMETER  
0 lfm  
48.16  
0.3425  
12.89  
29.58  
150 lfm  
40.06  
0.85  
250 lfm  
37.96  
500 lfm  
35.17  
θJA[°C/W] High k PCB  
ΨJT[°C/W]  
θJC  
1.0575  
1.410  
θJB  
Table 8-3. C280x Thermal Model 100-pin GGM Results  
AIR FLOW  
PARAMETER  
0 lfm  
36.33  
0.57  
150 lfm  
35.01  
0.43  
250 lfm  
33.81  
0.52  
500 lfm  
32.31  
0.67  
θJA[°C/W] High k PCB  
ΨJT[°C/W]  
θJC  
14.18  
21.36  
θJB  
Table 8-4. C280x Thermal Model 100-pin PZ Results  
AIR FLOW  
PARAMETER  
0 lfm  
69.81  
0.42  
150 lfm  
60.34  
1.23  
250 lfm  
57.46  
1.54  
500 lfm  
53.63  
2.11  
θJA[°C/W] High k PCB  
ΨJT[°C/W]  
θJC  
13.52  
54.78  
θJB  
Table 8-5. F2809 Thermal Model 100-pin GGM Results  
AIR FLOW  
PARAMETER  
0 lfm  
28.15  
0.38  
150 lfm  
26.89  
0.35  
250 lfm  
25.68  
0.33  
500 lfm  
24.22  
0.44  
θJA[°C/W] High k PCB  
ΨJT[°C/W]  
θJC  
10.36  
13.3  
θJB  
132  
Mechanical Data  
Submit Documentation Feedback  
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806  
TMS320F2802, TMS320F2801  
TMS320C2802, TMS320C2801, and TMS320F2801x DSPs  
www.ti.com  
SPRS230JOCTOBER 2003REVISED SEPTEMBER 2007  
Table 8-6. F2809 Thermal Model 100-pin PZ Results  
AIR FLOW  
150 lfm  
28.34  
PARAMETER  
0 lfm  
44.02  
0.2  
250 lfm  
36.28  
0.7  
500 lfm  
33.68  
0.95  
θJA[°C/W] High k PCB  
ΨJT[°C/W]  
θJC  
0.56  
7.06  
θJB  
28.76  
Submit Documentation Feedback  
Mechanical Data  
133  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Oct-2007  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
GGM  
GGM  
PZ  
TMS320C2801GGMA  
TMS320C2801GGMS  
TMS320C2801PZA  
TMS320C2801PZQ  
TMS320C2801PZS  
TMS320C2801ZGMA  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
BGA  
100  
100  
100  
100  
100  
100  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
BGA  
LQFP  
LQFP  
LQFP  
PZ  
PZ  
BGA MI  
CROSTA  
R
ZGM  
TMS320C2801ZGMS  
ACTIVE  
BGA MI  
CROSTA  
R
ZGM  
100  
TBD  
Call TI  
Call TI  
TMS320C2802GGMA  
TMS320C2802GGMS  
TMS320C2802PZA  
TMS320C2802PZQ  
TMS320C2802PZS  
TMS320C2802ZGMA  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
BGA  
BGA  
GGM  
GGM  
PZ  
100  
100  
100  
100  
100  
100  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
LQFP  
LQFP  
LQFP  
PZ  
PZ  
BGA MI  
CROSTA  
R
ZGM  
TMS320C2802ZGMS  
ACTIVE  
BGA MI  
CROSTA  
R
ZGM  
100  
TBD  
Call TI  
Call TI  
TMS320F28015PZA  
TMS320F28015PZQ  
TMS320F28015PZS  
TMS320F28016PZA  
TMS320F28016PZQ  
TMS320F28016PZS  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
100  
100  
100  
100  
100  
100  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TMS320F2801GGMA  
TMS320F2801GGMS  
TMS320F2801PZA  
ACTIVE  
ACTIVE  
ACTIVE  
BGA  
BGA  
GGM  
GGM  
PZ  
100  
100  
100  
184  
184  
TBD  
TBD  
SNPB  
SNPB  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
LQFP  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TMS320F2801PZA-60  
TMS320F2801PZQ  
TMS320F2801PZS  
TMS320F2801PZS-60  
TMS320F2801ZGMA  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
PZ  
PZ  
100  
100  
100  
100  
100  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
PZ  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
PZ  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
BGA MI  
CROSTA  
ZGM  
184 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Oct-2007  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
R
TMS320F2801ZGMS  
ACTIVE  
BGA MI  
CROSTA  
R
ZGM  
100  
184 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
TMS320F2802GGMA  
TMS320F2802GGMS  
TMS320F2802PZA  
ACTIVE  
ACTIVE  
ACTIVE  
BGA  
BGA  
GGM  
GGM  
PZ  
100  
100  
100  
184  
184  
TBD  
TBD  
SNPB  
SNPB  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
LQFP  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TMS320F2802PZA-60  
TMS320F2802PZQ  
TMS320F2802PZS  
TMS320F2802PZS-60  
TMS320F2802ZGMA  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
PZ  
PZ  
100  
100  
100  
100  
100  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
PZ  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
PZ  
1
Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
BGA MI  
CROSTA  
R
ZGM  
184 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
TMS320F2802ZGMS  
ACTIVE  
BGA MI  
CROSTA  
R
ZGM  
100  
184 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
TMS320F2806GGMA  
TMS320F2806GGMS  
TMS320F2806PZA  
ACTIVE  
ACTIVE  
ACTIVE  
BGA  
BGA  
GGM  
GGM  
PZ  
100  
100  
100  
184  
184  
TBD  
TBD  
SNPB  
SNPB  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
LQFP  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TMS320F2806PZQ  
TMS320F2806PZS  
TMS320F2806ZGMA  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
PZ  
PZ  
100  
100  
100  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
BGA MI  
CROSTA  
R
ZGM  
184 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
TMS320F2806ZGMS  
ACTIVE  
BGA MI  
CROSTA  
R
ZGM  
100  
184 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
TMS320F2808GGMA  
TMS320F2808GGMS  
TMS320F2808PZA  
ACTIVE  
ACTIVE  
ACTIVE  
BGA  
BGA  
GGM  
GGM  
PZ  
100  
100  
100  
184  
184  
TBD  
TBD  
SNPB  
SNPB  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
LQFP  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TMS320F2808PZQ  
TMS320F2808PZS  
TMS320F2808ZGMA  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
PZ  
PZ  
100  
100  
100  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
BGA MI  
CROSTA  
R
ZGM  
184 Green (RoHS &  
no Sb/Br)  
SNAGCU  
SNAGCU  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Call TI  
TMS320F2808ZGMS  
TMS320F2809GGMA  
ACTIVE  
ACTIVE  
BGA MI  
CROSTA  
R
ZGM  
GGM  
100  
100  
184 Green (RoHS &  
no Sb/Br)  
BGA  
184  
TBD  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Oct-2007  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
GGM  
PZ  
TMS320F2809GGMS  
TMS320F2809PZA  
ACTIVE  
ACTIVE  
BGA  
100  
100  
184  
TBD  
Call TI  
Call TI  
LQFP  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TMS320F2809PZQ  
TMS320F2809PZS  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
PZ  
PZ  
100  
100  
90  
TBD  
Call TI  
Call TI  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TMS320F2809ZGMA  
TMS320F2809ZGMS  
ACTIVE  
ACTIVE  
BGA MI  
CROSTA  
R
ZGM  
ZGM  
100  
100  
184  
TBD  
Call TI  
Call TI  
BGA MI  
CROSTA  
R
184  
TBD  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 3  
MECHANICAL DATA  
MPBG028B FEBRUARY 1997 – REVISED MAY 2002  
GGM (S–PBGA–N100)  
PLASTIC BALL GRID ARRAY  
10,10  
9,90  
SQ  
7,20 TYP  
0,80  
0,40  
K
J
H
G
F
E
D
C
B
A
A1 Corner  
1
2
3
4
5
6
7
8
9
10  
Bottom View  
0,95  
0,85  
1,40 MAX  
Seating Plane  
0,10  
0,55  
0,45  
0,08  
0,45  
0,35  
4145257–3/C 12/01  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice  
C. MicroStar BGA configuration.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.  
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an  
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties  
may be subject to additional restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would  
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement  
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications  
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related  
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any  
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its  
representatives against any damages arising out of the use of TI products in such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is  
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products  
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any  
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Applications  
Audio  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
interface.ti.com  
logic.ti.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/lpw  
Telephony  
Low Power  
Wireless  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

TMS320F28015ZGM

TMS320F280x, TMS320C280x, TMS320F2801x digital signal processors
TI

TMS320F28015ZGMA

Digital Signal Processors
TI

TMS320F28016-Q1

TMS320F280x, TMS320C280x, TMS320F2801x digital signal processors
TI

TMS320F28016GGM

TMS320F280x, TMS320C280x, TMS320F2801x digital signal processors
TI

TMS320F28016PZ

TMS320F280x, TMS320C280x, TMS320F2801x digital signal processors
TI

TMS320F28016PZA

Digital Signal Processors
TI

TMS320F28016PZQ

Digital Signal Processors
TI

TMS320F28016PZS

Digital Signal Processors
TI

TMS320F28016ZGM

TMS320F280x, TMS320C280x, TMS320F2801x digital signal processors
TI

TMS320F2801GGM

TMS320F280x, TMS320C280x, TMS320F2801x digital signal processors
TI

TMS320F2801GGMA

Digital Signal Processors
TI