TMS320F28023-Q1 [TI]

TMS320F2802x Microcontrollers;
TMS320F28023-Q1
型号: TMS320F28023-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TMS320F2802x Microcontrollers

微控制器
文件: 总135页 (文件大小:4270K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021,TMS320F28020,TMS320F280200
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
TMS320F2802x Microcontrollers  
Serial port peripherals  
1 Features  
– One Serial Communications Interface (SCI)  
Universal Asynchronous Receiver/Transmitter  
(UART) module  
– One Serial Peripheral Interface (SPI) module  
– One Inter-Integrated-Circuit (I2C) module  
Enhanced control peripherals  
– ePWM  
High-efficiency 32-bit CPU (TMS320C28x)  
– 60 MHz (16.67-ns cycle time)  
– 50 MHz (20-ns cycle time)  
– 40 MHz (25-ns cycle time)  
– 16 × 16 and 32 × 32 MAC operations  
– 16 × 16 dual MAC  
– Harvard bus architecture  
– Atomic operations  
– High-Resolution PWM (HRPWM)  
– Enhanced Capture (eCAP) module  
– Analog-to-Digital Converter (ADC)  
– On-chip temperature sensor  
– Comparator  
Advanced emulation features  
– Analysis and breakpoint functions  
– Real-time debug through hardware  
Package options  
– 38-pin DA Thin Shrink Small-Outline Package  
(TSSOP)  
– 48-pin PT Low-Profile Quad Flatpack (LQFP)  
Temperature options  
– Fast interrupt response and processing  
– Unified memory programming model  
– Code-efficient (in C/C++ and Assembly)  
Endianness: Little endian  
Low cost for both device and system:  
– Single 3.3-V supply  
– No power sequencing requirement  
– Integrated power-on and brown-out resets  
– Small packaging, as low as 38-pin available  
– Low power  
– No analog support pins  
Clocking:  
T: 40°C to 105°C  
– Two internal zero-pin oscillators  
– On-chip crystal oscillator and external clock  
input  
– S: –40°C to 125°C  
– Q: –40°C to 125°C  
(AEC Q100 qualification for automotive  
applications)  
– Watchdog timer module  
– Missing clock detection circuitry  
Up to 22 individually programmable, multiplexed  
GPIO pins with input filtering  
Peripheral Interrupt Expansion (PIE) block that  
supports all peripheral interrupts  
Three 32-bit CPU timers  
Independent 16-bit timer in each Enhanced Pulse  
Width Modulator (ePWM)  
On-chip memory  
– Flash, SARAM, OTP, Boot ROM available  
Code-security module  
128-bit security key and lock  
– Protects secure memory blocks  
– Prevents firmware reverse engineering  
2 Applications  
Air conditioner outdoor unit  
Inverter & motor control  
Textile machine  
Micro inverter  
AC drive power stage module  
AC-input BLDC motor drive  
DC-input BLDC motor drive  
Industrial AC-DC  
Three phase UPS  
Merchant DC/DC  
Merchant network & server PSU  
Merchant telecom rectifiers  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
3 Description  
C2000™ 32-bit microcontrollers are optimized for processing, sensing, and actuation to improve closed-loop  
performance in real-time control applications such as industrial motor drives; solar inverters and digital power;  
electrical vehicles and transportation; motor control; and sensing and signal processing. The C2000 line includes  
the Premium performance MCUs and the Entry performance MCUs.  
The F2802x family of microcontrollers provides the power of the C28x core coupled with highly integrated control  
peripherals in low pin-count devices. This family is code-compatible with previous C28x-based code, and also  
provides a high level of analog integration.  
An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM to  
allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references have  
been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed full-  
scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for low  
overhead and latency.  
To learn more about the C2000 MCUs, visit the C2000 Overview at www.ti.com/c2000.  
Device Information  
PART NUMBER(1)  
TMS320F28027PT  
PACKAGE  
LQFP (48)  
LQFP (48)  
LQFP (48)  
LQFP (48)  
LQFP (48)  
LQFP (48)  
LQFP (48)  
TSSOP (38)  
TSSOP (38)  
TSSOP (38)  
TSSOP (38)  
TSSOP (38)  
TSSOP (38)  
TSSOP (38)  
BODY SIZE  
7.0 mm × 7.0 mm  
7.0 mm × 7.0 mm  
7.0 mm × 7.0 mm  
7.0 mm × 7.0 mm  
7.0 mm × 7.0 mm  
7.0 mm × 7.0 mm  
7.0 mm × 7.0 mm  
12.5 mm × 6.2 mm  
12.5 mm × 6.2 mm  
12.5 mm × 6.2 mm  
12.5 mm × 6.2 mm  
12.5 mm × 6.2 mm  
12.5 mm × 6.2 mm  
12.5 mm × 6.2 mm  
TMS320F28026PT  
TMS320F28023PT  
TMS320F28022PT  
TMS320F28021PT  
TMS320F28020PT  
TMS320F280200PT  
TMS320F28027DA  
TMS320F28026DA  
TMS320F28023DA  
TMS320F28022DA  
TMS320F28021DA  
TMS320F28020DA  
TMS320F280200DA  
(1) For more information on these devices, see Mechanical, Packaging, and Orderable Information.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
4 Functional Block Diagram  
Functional Block Diagram shows the functional block diagram for the device.  
OTP 1K × 16  
Secure  
M0  
SARAM 1K × 16  
(0-wait)  
SARAM  
M1  
1K/3K/4K × 16  
SARAM 1K × 16  
(0-wait)  
Code  
Security  
Module  
FLASH  
8K/16K/32K × 16  
Secure  
(0-wait)  
Secure  
Boot-ROM  
8K × 16  
(0-wait)  
OTP/Flash  
Wrapper  
PSWD  
Memory Bus  
TRST  
TCK  
TDI  
TMS  
TDO  
COMP1OUT  
GPIO  
MUX  
C28x  
32-Bit CPU  
COMP2OUT  
GPIO  
Mux  
COMP1A  
COMP1B  
COMP2A  
COMP2B  
COMP  
3 External Interrupts  
XCLKIN  
PIE  
OSC1,  
OSC2,  
Ext,  
CPU Timer 0  
X1  
X2  
AIO  
CPU Timer 1  
CPU Timer 2  
Memory Bus  
MUX  
PLL,  
LPM,  
WD  
LPM Wakeup  
XRS  
ADC  
A7:0  
B7:0  
POR/  
BOR  
VREG  
32-Bit Peripheral Bus  
16-Bit Peripheral Bus  
32-Bit Peripheral Bus  
ePWM  
SCI  
(4L FIFO)  
SPI  
(4L FIFO)  
I2C  
eCAP  
(4L FIFO)  
HRPWM  
From  
COMP1OUT,  
COMP2OUT  
GPIO MUX  
Copyright © 2017, Texas Instruments Incorporated  
A. Not all peripheral pins are available at the same time due to multiplexing.  
Figure 4-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................2  
4 Functional Block Diagram.............................................. 3  
5 Revision History.............................................................. 5  
6 Device Comparison.........................................................6  
6.1 Related Products........................................................ 7  
7 Terminal Configuration and Functions..........................8  
7.1 Pin Diagrams.............................................................. 8  
7.2 Signal Descriptions................................................... 10  
8 Specifications................................................................ 15  
8.1 Absolute Maximum Ratings...................................... 15  
8.2 ESD Ratings – Automotive....................................... 15  
8.3 ESD Ratings – Commercial...................................... 16  
8.4 Recommended Operating Conditions.......................16  
8.5 Power Consumption Summary................................. 17  
8.6 Electrical Characteristics...........................................21  
8.7 Thermal Resistance Characteristics......................... 23  
8.8 Thermal Design Considerations................................24  
8.9 JTAG Debug Probe Connection Without Signal  
8.14 Flash Timing............................................................33  
9 Detailed Description......................................................36  
9.1 Overview...................................................................36  
9.2 Memory Maps........................................................... 44  
9.3 Register Maps...........................................................51  
9.4 Device Emulation Registers......................................52  
9.5 VREG/BOR/POR...................................................... 53  
9.6 System Control......................................................... 55  
9.7 Low-power Modes Block...........................................63  
9.8 Interrupts...................................................................64  
9.9 Peripherals................................................................69  
10 Applications, Implementation, and Layout............. 119  
10.1 TI Reference Design............................................. 119  
11 Device and Documentation Support........................120  
11.1 Device and Development Support Tool  
Nomenclature............................................................120  
11.2 Tools and Software................................................121  
11.3 Documentation Support........................................ 123  
11.4 Support Resources............................................... 124  
11.5 Trademarks........................................................... 124  
11.6 Electrostatic Discharge Caution............................124  
11.7 Glossary................................................................124  
12 Mechanical, Packaging, and Orderable  
Buffering for the MCU..................................................24  
8.10 Parameter Information............................................ 25  
8.11 Test Load Circuit..................................................... 25  
8.12 Power Sequencing..................................................26  
8.13 Clock Specifications................................................29  
Information.................................................................. 125  
12.1 Packaging Information.......................................... 125  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
5 Revision History  
Changes from October 30, 2020 to January 18, 2021 (from Revision O (October 2020) to  
Revision P (January 2021))  
Page  
Device Comparison: Updated part numebrs.......................................................................................................6  
ESD Ratings – Automotive: Updated part numbers......................................................................................... 15  
ESD Ratings – Commercial: Updated part numbers........................................................................................ 16  
Device and Development Support Tool Nomenclature: Updated Device Nomenclature image to show -Q1 part  
number............................................................................................................................................................120  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
6 Device Comparison  
Table 6-1 lists the features of the TMS320F2802x devices.  
Table 6-1. Device Comparison  
28026  
28027  
28027-Q1  
28027F  
28026-Q1  
28026F  
28023  
28023-Q1  
(50 MHz)  
28022  
28022-Q1  
(50 MHz)  
TYPE  
28021  
(40 MHz)  
28020  
(40 MHz)  
280200  
(40 MHz)  
FEATURE  
(1)  
28027F-Q1  
28026F-Q1  
(60 MHz)(2)  
(60 MHz)(2)  
38-Pin  
DA  
48-Pin  
PT  
38-Pin  
DA  
48-Pin  
PT  
38-Pin  
DA  
48-Pin  
PT  
38-Pin  
DA  
48-Pin  
PT  
38-Pin  
DA  
48-Pin  
PT  
38-Pin  
DA  
48-Pin  
PT  
38-Pin  
DA  
48-Pin  
PT  
Package Type  
TSSOP  
LQFP  
TSSOP  
LQFP  
TSSOP  
LQFP  
TSSOP  
LQFP  
TSSOP  
LQFP  
TSSOP  
LQFP  
TSSOP  
LQFP  
Instruction cycle  
16.67 ns  
16.67 ns  
20 ns  
20 ns  
25 ns  
25 ns  
25 ns  
On-chip flash (16-bit word)  
On-chip SARAM (16-bit word)  
32K  
6K  
16K  
6K  
32K  
6K  
16K  
6K  
32K  
5K  
16K  
3K  
8K  
3K  
Code security for on-chip  
flash/SARAM/OTP blocks  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Boot ROM (8K x 16)  
One-time programmable  
(OTP) ROM (16-bit word)  
ePWM channels  
eCAP inputs  
Watchdog timer  
MSPS  
1
0
8 (ePWM1/2/3/4)  
8 (ePWM1/2/3/4)  
8 (ePWM1/2/3/4)  
8 (ePWM1/2/3/4)  
8 (ePWM1/2/3/4)  
8 (ePWM1/2/3/4)  
8 (ePWM1/2/3/4)  
1
1
1
Yes  
3
1
Yes  
3
1
Yes  
2
1
Yes  
2
Yes  
2
Yes  
4.6  
Yes  
4.6  
Conversion  
Time  
216.67 ns  
216.67 ns  
260 ns  
260 ns  
500 ns  
500 ns  
500 ns  
Channels  
7
13  
7
13  
7
13  
7
13  
7
13  
7
13  
7
13  
12-Bit ADC  
3
Temperature  
Sensor  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Dual Sample-  
and-Hold  
Yes  
3
Yes  
3
Yes  
3
Yes  
3
Yes  
3
Yes  
3
Yes  
3
32-Bit CPU timers  
1
High-resolution ePWM  
Channels  
4 (ePWM1A/2A  
/3A/4A)  
4 (ePWM1A/2A  
/3A/4A)  
4 (ePWM1A/2A  
/3A/4A)  
4 (ePWM1A/2A  
/3A/4A)  
Comparators w/ Integrated  
DACs  
0
0
1
1
2
1
2
1
2
1
2
1
2
1
2
1
2
Inter-integrated circuit (I2C)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Serial Peripheral Interface  
(SPI)  
Serial Communications  
Interface (SCI) (UART  
Compatible)  
0
1
1
1
1
1
1
1
Digital (GPIO)  
I/O pins  
20  
22  
20  
22  
20  
22  
20  
22  
20  
22  
20  
22  
20  
22  
(shared)  
Analog (AIO)  
6
3
6
3
6
3
6
3
6
3
6
3
6
3
External interrupts  
Supply voltage (nominal)  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
T: 40°C to  
105°C  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Temperature S: –40°C to  
options  
125°C  
Q: –40°C to  
125°C(3)  
(1) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor  
differences between devices that do not affect the basic functionality of the module. These device-specific differences are listed in the  
C2000 Real-Time Control Peripherals Reference Guide and in the TMS320F2802x,TMS320F2802xx Technical Reference Manual.  
(2) TMS320F28027F and TMS320F28026F are InstaSPIN-FOC-enabled MCUs. For more information, see Section 11.3 for a list of  
InstaSPIN Technical Reference Manuals.  
(3) The letter Q refers to AEC Q100 qualification for automotive applications.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
6.1 Related Products  
For information about similar products, see the following links:  
TMS320F2802x Microcontrollers  
The F2802x series offers the lowest pin-count and Flash memory size options. InstaSPIN-FOC™ versions are  
available.  
TMS320F2803x Microcontrollers  
The F2803x series increases the pin-count and memory size options. The F2803x series also introduces the  
parallel control law accelerator (CLA) option.  
TMS320F2805x Microcontrollers  
The F2805x series is similar to the F2803x series but adds on-chip programmable gain amplifiers (PGAs).  
InstaSPIN-FOC and InstaSPIN-MOTION™ versions are available.  
TMS320F2806x Microcontrollers  
The F2806x series is the first to include a floating-point unit (FPU). The F2806x series also increases the pin-  
count, memory size options, and the quantity of peripherals. InstaSPIN-FOC™ and InstaSPIN-MOTION™  
versions are available.  
TMS320F2807x Microcontrollers  
The F2807x series offers the most performance, largest pin counts, flash memory sizes, and peripheral options.  
The F2807x series includes the latest generation of accelerators, ePWM peripherals, and analog technology.  
TMS320F28004x Microcontrollers  
The F28004x series is a reduced version of the F2807x series with the latest generational enhancements. The  
F28004x series is the best roadmap option for those using the F2806x series. InstaSPIN-FOC and configurable  
logic block (CLB) versions are available.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
7 Terminal Configuration and Functions  
7.1 Pin Diagrams  
Figure 7-1 shows the 48-pin PT low-profile quad flatpack (LQFP) pin assignments. Figure 7-2 shows the 38-pin  
DA thin shrink small-outline package (TSSOP) pin assignments.  
GPIO2/EPWM2A 37  
GPIO3/EPWM2B/COMP2OUT 38  
GPIO4/EPWM3A 39  
24 GPIO18/SPICLKA/SCITXDA/XCLKOUT  
23 GPIO38/XCLKIN (TCK)  
22 GPIO37 (TDO)  
GPIO5/EPWM3B/ECAP1 40  
21 GPIO36 (TMS)  
GPIO6/EPWM4A/EPWMSYNCI/EPWMSYNCO 41  
GPIO7/EPWM4B/SCIRXDA 42  
20 GPIO35 (TDI)  
19 GPIO34/COMP2OUT  
18 ADCINB7  
VDD  
VSS  
43  
44  
17 ADCINB6/AIO14  
16 ADCINB4/COMP2B/AIO12  
15 ADCINB3  
X1 45  
X2 46  
GPIO12/TZ1/SCITXDA 47  
GPIO28/SCIRXDA/SDAA/TZ2 48  
14 ADCINB2/COMP1B/AIO10  
13 ADCINB1  
Figure 7-1. 2802x 48-Pin PT LQFP (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
VDD  
VSS  
1
38 TEST  
2
37 GPIO0/EPWM1A  
VREGENZ  
VDDIO  
3
36 GPIO1/EPWM1B/COMP1OUT  
35 GPIO16/SPISIMOA/TZ2  
34 GPIO17/SPISOMIA/TZ3  
33 GPIO19/XCLKIN/SPISTEA/SCIRXDA/ECAP1  
32 GPIO18/SPICLKA/SCITXDA/XCLKOUT  
31 GPIO38/XCLKIN (TCK)  
30 GPIO37 (TDO)  
4
GPIO2/EPWM2A  
GPIO3/EPWM2B  
5
6
GPIO4/EPWM3A  
7
GPIO5/EPWM3B/ECAP1  
8
GPIO6/EPWM4A/EPWMSYNCI/EPWMSYNCO  
GPIO7/EPWM4B/SCIRXDA  
VDD  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
29 GPIO36 (TMS)  
28 GPIO35 (TDI)  
VSS  
27 GPIO34  
GPIO12/TZ1/SCITXDA  
GPIO28/SCIRXDA/SDAA/TZ2  
GPIO29/SCITXDA/SCLA/TZ3  
26 ADCINB6/AIO14  
25 ADCINB4/AIO12  
24 ADCINB2/COMP1B/AIO10  
/VREFLO  
23 VSSA  
22 VDDA  
TRST  
XRS  
ADCINA6/AIO6  
ADCINA4/AIO4  
21 ADCINA0/VREFHI  
20 ADCINA2/COMP1A/AIO2  
Figure 7-2. 2802x 38-Pin DA TSSOP (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
7.2 Signal Descriptions  
Section 7.2.1 describes the signals. With the exception of the JTAG pins, the GPIO function is the default at  
reset, unless otherwise mentioned. The peripheral signals that are listed under them are alternate functions.  
Some peripheral functions may not be available in all devices. See Table 6-1 for details. Inputs are not 5-V  
tolerant. All GPIO pins are I/O/Z and have an internal pullup, which can be selectively enabled/disabled on a per-  
pin basis. This feature only applies to the GPIO pins. The pullups on the PWM pins are not enabled at reset. The  
pullups on other GPIO pins are enabled upon reset. The AIO pins do not have an internal pullup.  
Note  
When the on-chip VREG is used, the GPIO19, GPIO34, GPIO35, GPIO36, GPIO37, and GPIO38 pins  
could glitch during power up. This potential glitch will finish before the boot mode pins are read and  
will not affect boot behavior. If glitching is unacceptable in an application, 1.8 V could be supplied  
externally. Alternatively, adding a current-limiting resistor (for example, 470 Ω) in series with these pins  
and any external driver could be considered to limit the potential for degradation to the pin and/or  
external circuitry. There is no power-sequencing requirement when using an external 1.8-V supply.  
However, if the 3.3-V transistors in the level-shifting output buffers of the I/O pins are powered before  
the 1.8-V transistors, it is possible for the output buffers to turn on, causing a glitch to occur on the pin  
during power up. To avoid this behavior, power the VDD pins before or with the VDDIO pins, ensuring  
that the VDD pins have reached 0.7 V before the VDDIO pins reach 0.7 V.  
7.2.1 Signal Descriptions  
TERMINAL  
I/O/Z  
DESCRIPTION  
PT  
PIN NO.  
DA  
PIN NO.  
NAME(1)  
JTAG  
JTAG test reset with internal pulldown. TRST, when driven high, gives the scan  
system control of the operations of the device. If this signal is not connected or  
driven low, the device operates in its functional mode, and the test reset signals  
are ignored.  
NOTE: TRST is an active high test pin and must be maintained low at all times  
during normal device operation. An external pulldown resistor is required on this  
pin. The value of this resistor should be based on drive strength of the debugger  
pods applicable to the design. A 2.2-kΩ resistor generally offers adequate  
protection. Because this is application-specific, TI recommends validating each  
target board for proper operation of the debugger and the application. (↓)  
TRST  
2
16  
I
TCK  
TMS  
See GPIO38  
I
I
See GPIO38. JTAG test clock with internal pullup (↑)  
See GPIO36. JTAG test-mode select (TMS) with internal pullup. This serial control  
input is clocked into the TAP controller on the rising edge of TCK. (↑)  
See GPIO36  
See GPIO35  
See GPIO35. JTAG test data input (TDI) with internal pullup. TDI is clocked into the  
selected register (instruction or data) on a rising edge of TCK. (↑)  
TDI  
I
See GPIO37. JTAG scan out, test data output (TDO). The contents of the selected  
register (instruction or data) are shifted out of TDO on the falling edge of TCK.  
(8-mA drive)  
TDO  
See GPIO37  
O/Z  
FLASH  
TEST  
30  
38  
I/O  
Test Pin. Reserved for TI. Must be left unconnected.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
NAME(1)  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
TERMINAL  
I/O/Z  
DESCRIPTION  
PT  
PIN NO.  
DA  
PIN NO.  
CLOCK  
See GPIO18. Output clock derived from SYSCLKOUT. XCLKOUT is either the  
same frequency, one-half the frequency, or one-fourth the frequency of  
SYSCLKOUT. This is controlled by bits 1:0 (XCLKOUTDIV) in the XCLK register.  
At reset, XCLKOUT = SYSCLKOUT/4. The XCLKOUT signal can be turned off by  
setting XCLKOUTDIV to 3. The mux control for GPIO18 must also be set to  
XCLKOUT for this signal to propogate to the pin.  
XCLKOUT  
See GPIO18  
O/Z  
See GPIO19 and GPIO38. External oscillator input. Pin source for the clock is  
controlled by the XCLKINSEL bit in the XCLK register, GPIO38 is the default  
selection. This pin feeds a clock from an external 3.3-V oscillator. In this case, the  
X1 pin, if available, must be tied to GND and the on-chip crystal oscillator must be  
disabled through bit 14 in the CLKCTL register. If a crystal/resonator is used, the  
XCLKIN path must be disabled by bit 13 in the CLKCTL register.  
XCLKIN  
See GPIO19 and GPIO38  
I
NOTE: Designs that use the GPIO38/TCK/XCLKIN pin to supply an external clock  
for normal device operation may need to incorporate some hooks to disable this  
path during debug using the JTAG connector. This is to prevent contention with the  
TCK signal, which is active during JTAG debug sessions. The zero-pin internal  
oscillators may be used during this time to clock the device.  
On-chip 1.8-V crystal-oscillator input. To use this oscillator, a quartz crystal or a  
ceramic resonator must be connected across X1 and X2. In this case, the XCLKIN  
path must be disabled by bit 13 in the CLKCTL register. If this pin is not used, it  
must be tied to GND. (I)  
X1  
X2  
45  
46  
I
On-chip crystal-oscillator output. A quartz crystal or a ceramic resonator must be  
connected across X1 and X2. If X2 is not used, it must be left unconnected. (O)  
O
RESET  
Device Reset (in) and Watchdog Reset (out). These devices have a built-in power-  
on reset (POR) and brown-out reset (BOR) circuitry. During a power-on or brown-  
out condition, this pin is driven low by the device. An external circuit may also drive  
this pin to assert a device reset. This pin is also driven low by the MCU when a  
watchdog reset occurs. During watchdog reset, the XRS pin is driven low for the  
watchdog reset duration of 512 OSCCLK cycles. A resistor with a value from  
2.2 kΩ to 10 kΩ should be placed between XRS and VDDIO. If a capacitor is placed  
between XRS and VSS for noise filtering, it should be 100 nF or smaller. These  
values will allow the watchdog to properly drive the XRS pin to VOL within  
512 OSCCLK cycles when the watchdog reset is asserted. Regardless of the  
source, a device reset causes the device to terminate execution. The program  
counter points to the address contained at the location 0x3F FFC0. When reset is  
deactivated, execution begins at the location designated by the program counter.  
The output buffer of this pin is an open-drain device with an internal pullup. (↑) If  
this pin is driven by an external device, it should be done using an open-drain  
device.  
XRS  
3
17  
I/OD  
ADC, COMPARATOR, ANALOG I/O  
ADC Group A, Channel 7 input  
ADC Group A, Channel 6 input  
Digital AIO 6  
ADCINA7  
ADCINA6  
AIO6  
6
4
I
I
18  
I/O  
ADCINA4  
COMP2A  
AIO4  
I
ADC Group A, Channel 4 input  
Comparator Input 2A (available in 48-pin device only)  
Digital AIO 4  
5
7
9
19  
I
I/O  
ADCINA3  
ADCINA2  
COMP1A  
AIO2  
I
ADC Group A, Channel 3 input  
ADC Group A, Channel 2 input  
Comparator Input 1A  
I
20  
I
I/O  
Digital AIO 2  
ADCINA1  
ADCINA0  
VREFHI  
8
I
I
I
ADC Group A, Channel 1 input  
ADC Group A, Channel 0 input  
10  
21  
ADC External Reference High – only used when in ADC external reference mode.  
See Section 9.9.1.1, ADC.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
TERMINAL  
I/O/Z  
DESCRIPTION  
PT  
PIN NO.  
DA  
PIN NO.  
NAME(1)  
ADCINB7  
18  
I
ADC Group B, Channel 7 input  
ADC Group B, Channel 6 input  
Digital AIO 14  
ADCINB6  
AIO14  
I
17  
26  
I/O  
ADCINB4  
COMP2B  
AIO12  
I
ADC Group B, Channel 4 input  
16  
15  
14  
13  
25  
I
Comparator Input 2B (available in 48-pin device only)  
Digital AIO12  
I/O  
ADCINB3  
ADCINB2  
COMP1B  
AIO10  
I
ADC Group B, Channel 3 input  
ADC Group B, Channel 2 input  
Comparator Input 1B  
I
I
24  
I/O  
I
Digital AIO 10  
ADCINB1  
ADC Group B, Channel 1 input  
CPU AND I/O POWER  
VDDA  
11  
12  
22  
23  
Analog Power Pin. Tie with a 2.2-µF capacitor (typical) close to the pin.  
Analog Ground Pin  
VSSA  
VREFLO  
I
ADC External Reference Low (always tied to ground)  
32  
43  
1
CPU and Logic Digital Power Pins. When using internal VREG, place one 1.2-µF  
capacitor between each VDD pin and ground. Higher value capacitors may be  
used.  
VDD  
11  
Digital I/O Buffers and Flash Memory Power Pin. Single supply source when VREG  
is enabled. Place a decoupling capacitor on this pin. The exact value should be  
determined by the system voltage regulation solution.  
VDDIO  
35  
4
33  
44  
2
VSS  
Digital Ground Pins  
12  
VOLTAGE REGULATOR CONTROL SIGNAL  
Internal voltage regulator (VREG) enable with internal pulldown. Tie directly to VSS  
VREGENZ  
34  
3
I
(low) to enable the internal 1.8-V VREG. Tie directly to VDDIO (high) to disable the  
VREG and use an external 1.8-V supply.  
GPIO AND PERIPHERAL SIGNALS (2)  
GPIO0  
I/O/Z  
General-purpose input/output 0  
EPWM1A  
O
Enhanced PWM1 Output A and HRPWM channel  
29  
28  
37  
38  
37  
36  
5
GPIO1  
EPWM1B  
I/O/Z  
O
General-purpose input/output 1  
Enhanced PWM1 Output B  
COMP1OUT  
GPIO2  
EPWM2A  
O
Direct output of Comparator 1  
I/O/Z  
O
General-purpose input/output 2  
Enhanced PWM2 Output A and HRPWM channel  
GPIO3  
EPWM2B  
I/O/Z  
O
General-purpose input/output 3  
Enhanced PWM2 Output B  
6
COMP2OUT  
O
Direct output of Comparator 2 (available in 48-pin device only)  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
NAME(1)  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
TERMINAL  
I/O/Z  
DESCRIPTION  
PT  
PIN NO.  
DA  
PIN NO.  
GPIO4  
EPWM3A  
I/O/Z  
O
General-purpose input/output 4  
Enhanced PWM3 output A and HRPWM channel  
39  
40  
41  
42  
47  
27  
26  
7
8
GPIO5  
EPWM3B  
I/O/Z  
O
General-purpose input/output 5  
Enhanced PWM3 output B  
ECAP1  
GPIO6  
EPWM4A  
EPWMSYNCI  
EPWMSYNCO  
GPIO7  
EPWM4B  
SCIRXDA  
I/O  
Enhanced Capture input/output 1  
General-purpose input/output 6  
Enhanced PWM4 output A and HRPWM channel  
External ePWM sync pulse input  
External ePWM sync pulse output  
General-purpose input/output 7  
Enhanced PWM4 output B  
SCI-A receive data  
I/O/Z  
O
9
I
O
I/O/Z  
O
10  
13  
35  
34  
I
GPIO12  
TZ1  
I/O/Z  
General-purpose input/output 12  
Trip Zone input 1  
I
SCITXDA  
O
SCI-A transmit data  
GPIO16  
SPISIMOA  
I/O/Z  
I/O  
General-purpose input/output 16  
SPI slave in, master out  
TZ2  
I
Trip Zone input 2  
GPIO17  
SPISOMIA  
I/O/Z  
I/O  
General-purpose input/output 17  
SPI-A slave out, master in  
TZ3  
I
Trip zone input 3  
GPIO18  
SPICLKA  
SCITXDA  
XCLKOUT  
I/O/Z  
I/O  
O
General-purpose input/output 18  
SPI-A clock input/output  
SCI-A transmit  
O/Z  
Output clock derived from SYSCLKOUT. XCLKOUT is either the same frequency,  
one-half the frequency, or one-fourth the frequency of SYSCLKOUT. This is  
controlled by bits 1:0 (XCLKOUTDIV) in the XCLK register. At reset, XCLKOUT =  
SYSCLKOUT/4. The XCLKOUT signal can be turned off by setting XCLKOUTDIV  
to 3. The mux control for GPIO18 must also be set to XCLKOUT for this signal to  
propogate to the pin.  
24  
32  
GPIO19  
I/O/Z  
I
General-purpose input/output 19  
XCLKIN  
External Oscillator Input. The path from this pin to the clock block is not gated by  
the mux function of this pin. Care must be taken not to enable this path for clocking  
if it is being used for the other periperhal functions  
25  
48  
33  
14  
SPISTEA  
SCIRXDA  
ECAP1  
GPIO28  
SCIRXDA  
SDAA  
I/O  
SPI-A slave transmit enable input/output  
SCI-A receive  
I
I/O  
I/O/Z  
I
Enhanced Capture input/output 1  
General-purpose input/output 28  
SCI receive data  
I/OD  
I
I2C data open-drain bidirectional port  
Trip zone input 2  
TZ2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
TERMINAL  
I/O/Z  
DESCRIPTION  
PT  
PIN NO.  
DA  
PIN NO.  
NAME(1)  
GPIO29  
I/O/Z  
O
General-purpose input/output 29.  
SCI transmit data  
SCITXDA  
SCLA  
1
15  
I/OD  
I
I2C clock open-drain bidirectional port  
Trip zone input 3  
TZ3  
GPIO32  
I/O/Z  
I/OD  
I
General-purpose input/output 32  
I2C data open-drain bidirectional port  
Enhanced PWM external sync pulse input  
ADC start-of-conversion A  
SDAA  
31  
36  
EPWMSYNCI  
ADCSOCAO  
GPIO33  
O
I/O/Z  
I/OD  
O
General-Purpose Input/Output 33  
I2C clock open-drain bidirectional port  
Enhanced PWM external synch pulse output  
ADC start-of-conversion B  
SCLA  
EPWMSYNCO  
ADCSOCBO  
GPIO34  
O
I/O/Z  
General-Purpose Input/Output 34  
Direct output of Comparator 2. COMP2OUT signal is not available in the DA  
package.  
COMP2OUT  
O
19  
27  
GPIO35  
TDI  
I/O/Z  
I
General-Purpose Input/Output 35  
20  
21  
22  
28  
29  
30  
JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected  
register (instruction or data) on a rising edge of TCK  
GPIO36  
TMS  
I/O/Z  
I
General-Purpose Input/Output 36  
JTAG test-mode select (TMS) with internal pullup. This serial control input is  
clocked into the TAP controller on the rising edge of TCK.  
GPIO37  
TDO  
I/O/Z  
O/Z  
General-Purpose Input/Output 37  
JTAG scan out, test data output (TDO). The contents of the selected register  
(instruction or data) are shifted out of TDO on the falling edge of TCK (8 mA drive)  
GPIO38  
TCK  
I/O/Z  
General-Purpose Input/Output 38  
JTAG test clock with internal pullup  
I
I
23  
31  
XCLKIN  
External Oscillator Input. The path from this pin to the clock block is not gated by  
the mux function of this pin. Care must be taken to not enable this path for clocking  
if it is being used for the other functions.  
(1) I = Input, O = Output, Z = High Impedance, OD = Open Drain, ↑ = Pullup, ↓ = Pulldown  
(2) The GPIO function (shown in bold italics) is the default at reset. The peripheral signals that are listed under them are alternate  
functions. For JTAG pins that have the GPIO functionality multiplexed, the input path to the GPIO block is always valid. The output  
path from the GPIO block and the path to the JTAG block from a pin is enabled/disabled based on the condition of the TRST signal.  
See the System Control chapter in the TMS320F2802x,TMS320F2802xx Technical Reference Manual for details.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
4.6  
2.5  
4.6  
4.6  
2.5  
4.6  
UNIT  
VDDIO (I/O and Flash) with respect to VSS  
Supply voltage  
V
V
V
V
VDD with respect to VSS  
Analog voltage  
Input voltage  
Output voltage  
VDDA with respect to VSSA  
VIN (3.3 V)  
VIN (X1)  
VO  
Digital/analog input (per pin), IIK  
–20  
–20  
–20  
20  
20  
20  
(3)  
(VIN < VSS or VIN > VDDIO  
)
Analog input (per pin), IIKANALOG  
(VIN < VSSA or VIN > VDDA  
Input clamp current  
mA  
)
Total for all inputs, IIKTOTAL  
(VIN < VSS/VSSA or VIN > VDDIO/VDDA  
)
Output clamp current  
Junction temperature(4)  
Storage temperature(4)  
IOK (VO < 0 or VO > VDDIO  
)
–20  
–40  
–65  
20  
150  
150  
mA  
°C  
TJ  
Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Section 8.4 is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) Continuous clamp current per pin is ±2 mA. Do not operate in this condition continuously as VDDIO/VDDA voltage may internally rise and  
impact other electrical specifications.  
(4) Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device  
life. For additional information, see Semiconductor and IC Package Thermal Metrics; Calculating Useful Lifetimes of Embedded  
Processors; and Calculating FIT for a Mission Profile.  
8.2 ESD Ratings – Automotive  
VALUE  
UNIT  
TMS320F28027-Q1, TMS320F28027F-Q1, TMS320F28026-Q1, TMS320F28026F-Q1, TMS320F28023-Q1, TMS320F28022-Q in 48-pin  
PT package  
Human body model (HBM), per AEC Q100-002(1)  
All pins  
±2000  
±500  
All pins except corner pins  
V(ESD) Electrostatic discharge  
V
Corner pins on 48-pin PT:  
1, 12, 13, 24, 25, 36, 37,  
48  
Charged device model (CDM), per AEC Q100-011  
±750  
TMS320F28027-Q1, TMS320F28027F-Q1, TMS320F28026-Q1, TMS320F28026F-Q1, TMS320F28023-Q1, TMS320F28022-Q1 in 38-pin  
DA package  
Human body model (HBM), per AEC Q100-002(1)  
All pins  
±2000  
±500  
All pins except corner pins  
V(ESD) Electrostatic discharge  
V
Charged device model (CDM), per AEC Q100-011  
Corner pins on 38-pin DA:  
1, 19, 20, 38  
±750  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
UNIT  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
8.3 ESD Ratings – Commercial  
VALUE  
TMS320F28027-Q1, TMS320F28027F-Q1, TMS320F28026-Q1, TMS320F28026F-Q1, TMS320F28023-Q1, TMS320F28022-Q1,  
TMS320F28021, TMS320F28020, TMS320F280200 in 48-pin PT package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge  
V
V
Charged-device model (CDM), per JEDEC specification JESD22-C101  
or ANSI/ESDA/JEDEC JS-002(2)  
TMS320F28027-Q1, TMS320F28027F-Q1, TMS320F28026-Q1, TMS320F28026F-Q1, TMS320F28023-Q1, TMS320F28022-Q1,  
TMS320F28021, TMS320F28020, TMS320F280200 in 38-pin DA package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge  
Charged-device model (CDM), per JEDEC specification JESD22-C101  
or ANSI/ESDA/JEDEC JS-002(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.4 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
(1)  
Device supply voltage, I/O, VDDIO  
2.97  
3.3  
3.63  
V
Device supply voltage CPU, VDD (When internal VREG is  
disabled and 1.8 V is supplied externally)  
1.71  
1.8  
1.995  
V
Supply ground, VSS  
0
3.3  
0
V
V
V
Analog supply voltage, VDDA  
Analog ground, VSSA  
2.97  
3.63  
28020, 28021, 280200  
28022, 28023  
2
40  
Device clock frequency (system clock)  
2
50  
MHz  
28026, 28027  
2
2
60  
High-level input voltage, VIH (3.3 V)  
Low-level input voltage, VIL (3.3 V)  
VDDIO + 0.3  
V
VSS – 0.3  
0.8  
–4  
–8  
4
V
All GPIO/AIO pins  
Group 2(2)  
mA  
mA  
mA  
mA  
High-level output source current, VOH = VOH(MIN), IOH  
Low-level output sink current, VOL = VOL(MAX), IOL  
All GPIO/AIO pins  
Group 2(2)  
8
T version  
–40  
–40  
105  
125  
S version  
(3)  
Junction temperature, TJ  
°C  
Q version  
(AEC Q100  
Qualification)  
–40  
125  
(1) A tolerance of ±10% may be used for VDDIO if the BOR is not used. See the TMS320F2802x, TMS320F2802xx MCUs Silicon Errata for  
more information. VDDIO tolerance is ±5% if the BOR is enabled.  
(2) Group 2 pins are as follows: GPIO16, GPIO17, GPIO18, GPIO19, GPIO28, GPIO29, GPIO36, GPIO37  
(3) TA (Ambient temperature) is product- and application-dependent and can go up to the specified TJ max of the device. See Section 8.8,  
Thermal Design Considerations.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
8.5 Power Consumption Summary  
8.5.1 TMS320F2802x/F280200 Current Consumption at 40-MHz SYSCLKOUT  
VREG ENABLED  
VREG DISABLED  
MODE(1)  
TEST CONDITIONS  
IDDIO  
TYP(4)  
IDDA  
TYP(4)  
IDD  
IDDIO  
IDDA  
TYP(4)  
MAX  
(2)  
(3)  
(2)  
(3)  
MAX  
MAX  
TYP(4)  
MAX  
TYP(4)  
MAX  
The following peripheral clocks are  
enabled:  
ePWM1/2/3/4  
eCAP1  
SCI-A  
SPI-A  
ADC  
Operational  
(Flash)  
I2C  
70 mA 80 mA  
13 mA 18 mA  
62 mA  
70 mA  
15 mA  
18 mA 13 mA  
18 mA  
COMP1/2  
CPU Timer0/1/2  
All PWM pins are toggled at 40 kHz.  
All I/O pins are left unconnected.(5)  
Code is running out of flash with 1 wait-  
state.  
XCLKOUT is turned off.  
Flash is powered down.  
XCLKOUT is turned off.  
All peripheral clocks are off.  
IDLE  
13 mA 16 mA  
53 μA  
10 μA  
10 μA  
58 μA  
15 μA  
15 μA  
15 mA  
3 mA  
17 mA  
6 mA  
120 μA  
120 μA  
25 μA  
400 μA 53 μA  
400 μA 10 μA  
10 μA  
58 μA  
15 μA  
15 μA  
Flash is powered down.  
Peripheral clocks are off.  
STANDBY  
HALT  
3 mA  
6 mA  
Flash is powered down.  
Peripheral clocks are off.  
Input clock is disabled.(6)  
50 μA  
15 μA  
(1) For the TMS320F280200 device, subtract the IDD current number for eCAP (see Table 8-1) from IDD (VREG disabled)/IDDIO (VREG  
enabled) current numbers shown in Section 8.5.1 for operational mode.  
(2) IDDIO current is dependent on the electrical loading on the I/O pins.  
(3) To realize the IDDA currents shown for IDLE, STANDBY, and HALT, clock to the ADC module must be turned off explicitly by writing to  
the PCLKCR0 register.  
(4) The TYP numbers are applicable over room temperature and nominal voltage.  
(5) The following is done in a loop:  
Data is continuously transmitted out of SPI-A and SCI-A ports.  
The hardware multiplier is exercised.  
Watchdog is reset.  
ADC is performing continuous conversion.  
COMP1/2 are continuously switching voltages.  
GPIO17 is toggled.  
(6) If a quartz crystal or ceramic resonator is used as the clock source, the HALT mode shuts down the on-chip crystal oscillator.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
8.5.2 TMS320F2802x Current Consumption at 50-MHz SYSCLKOUT  
VREG ENABLED  
VREG DISABLED  
(1)  
(2)  
(1)  
(2)  
MODE  
TEST CONDITIONS  
IDDIO  
TYP(3)  
IDDA  
TYP(3)  
IDD  
IDDIO  
TYP(3)  
IDDA  
MAX  
MAX  
TYP(3)  
MAX  
MAX  
TYP(3)  
MAX  
The following peripheral clocks are  
enabled:  
ePWM1/2/3/4  
eCAP1  
SCI-A  
SPI-A  
ADC  
Operational  
(Flash)  
I2C  
80 mA 90 mA  
13 mA 18 mA  
71 mA  
80 mA  
15 mA  
18 mA 13 mA  
18 mA  
COMP1/2  
CPU Timer0/1/2  
All PWM pins are toggled at 40 kHz.  
All I/O pins are left unconnected.(4)  
Code is running out of flash with 1 wait-  
state.  
XCLKOUT is turned off.  
Flash is powered down.  
XCLKOUT is turned off.  
All peripheral clocks are off.  
IDLE  
16 mA 19 mA  
64 μA  
10 μA  
10 μA  
69 μA  
15 μA  
15 μA  
17 mA  
4 mA  
20 mA  
7 mA  
120 μA  
120 μA  
25 μA  
400 μA 64 μA  
400 μA 10 μA  
10 μA  
69 μA  
15 μA  
15 μA  
Flash is powered down.  
Peripheral clocks are off.  
STANDBY  
HALT  
4 mA  
7 mA  
Flash is powered down.  
Peripheral clocks are off.  
Input clock is disabled.(5)  
50 μA  
15 μA  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) To realize the IDDA currents shown for IDLE, STANDBY, and HALT, clock to the ADC module must be turned off explicitly by writing to  
the PCLKCR0 register.  
(3) The TYP numbers are applicable over room temperature and nominal voltage.  
(4) The following is done in a loop:  
Data is continuously transmitted out of SPI-A and SCI-A ports.  
The hardware multiplier is exercised.  
Watchdog is reset.  
ADC is performing continuous conversion.  
COMP1/2 are continuously switching voltages.  
GPIO17 is toggled.  
(5) If a quartz crystal or ceramic resonator is used as the clock source, the HALT mode shuts down the on-chip crystal oscillator.  
8.5.3 TMS320F2802x Current Consumption at 60-MHz SYSCLKOUT  
VREG ENABLED  
VREG DISABLED  
(1)  
(2)  
(1)  
(2)  
MODE  
TEST CONDITIONS  
IDDIO  
TYP(3)  
IDDA  
TYP(3)  
IDD  
IDDIO  
IDDA  
TYP(3)  
MAX  
MAX  
MAX  
TYP(3)  
MAX  
TYP(3)  
MAX  
The following peripheral clocks  
are enabled:  
ePWM1/2/3/4  
eCAP1  
SCI-A  
SPI-A  
ADC  
I2C  
Operational  
(Flash)  
90 mA  
100 mA  
13 mA 18 mA  
80 mA  
90 mA  
15 mA 18 mA  
13 mA 18 mA  
COMP1/2  
CPU-TIMER0/1/2  
All PWM pins are toggled at  
60 kHz.  
All I/O pins are left  
unconnected.(4)  
Code is running out of flash  
with 2 wait states.  
XCLKOUT is turned off.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
MODE  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
VREG ENABLED  
VREG DISABLED  
(1)  
(2)  
(1)  
(2)  
TEST CONDITIONS  
IDDIO  
TYP(3)  
IDDA  
TYP(3)  
IDD  
IDDIO  
IDDA  
TYP(3)  
MAX  
MAX  
MAX  
TYP(3)  
MAX  
TYP(3)  
MAX  
Flash is powered down.  
XCLKOUT is turned off.  
All peripheral clocks are turned  
off.  
IDLE  
18 mA  
23 mA  
75 μA  
80 μA  
19 mA  
24 mA  
120 μA 400 μA 75 μA  
120 μA 400 μA 10 μA  
80 μA  
Flash is powered down.  
Peripheral clocks are off.  
STANDBY  
HALT  
4 mA  
7 mA  
10 μA  
10 μA  
15 μA  
15 μA  
4 mA  
7 mA  
15 μA  
15 μA  
Flash is powered down.  
Peripheral clocks are off.  
Input clock is disabled.(5)  
50 μA  
15 μA  
25 μA  
10 μA  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) To realize the IDDA currents shown for IDLE, STANDBY, and HALT, clock to the ADC module must be turned off explicitly by writing to  
the PCLKCR0 register.  
(3) The TYP numbers are applicable over room temperature and nominal voltage.  
(4) The following is done in a loop:  
Data is continuously transmitted out of SPI-A and SCI-A ports.  
The hardware multiplier is exercised.  
Watchdog is reset.  
ADC is performing continuous conversion.  
COMP1/2 are continuously switching voltages.  
GPIO17 is toggled.  
(5) If a quartz crystal or ceramic resonator is used as the clock source, the HALT mode shuts down the on-chip crystal oscillator.  
Note  
The peripheral - I/O multiplexing implemented in the device prevents all available peripherals from  
being used at the same time. This is because more than one peripheral function may share an I/O pin.  
It is, however, possible to turn on the clocks to all the peripherals at the same time, although such a  
configuration is not useful. If this is done, the current drawn by the device will be more than the  
numbers specified in the current consumption tables.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
8.5.4 Reducing Current Consumption  
The 2802x/280200 devices incorporate a method to reduce the device current consumption. Because each  
peripheral unit has an individual clock-enable bit, significant reduction in current consumption can be achieved  
by turning off the clock to any peripheral module that is not used in a given application. Furthermore, any one of  
the three low-power modes could be taken advantage of to reduce the current consumption even further. Table  
8-1 indicates the typical reduction in current consumption achieved by turning off the clocks.  
Table 8-1. Typical Current Consumption by Various  
Peripherals (at 60 MHz)  
PERIPHERAL  
MODULE(1) (3)  
IDD CURRENT  
REDUCTION (mA)  
ADC  
2(2)  
I2C  
ePWM  
3
2
eCAP  
2
SCI  
2
SPI  
2
COMP/DAC  
HRPWM  
1
3
CPU-TIMER  
Internal zero-pin oscillator  
1
0.5  
(1) All peripheral clocks (except CPU Timer clocks) are disabled  
upon reset. Writing to/reading from peripheral registers is  
possible only after the peripheral clocks are turned on.  
(2) This number represents the current drawn by the digital portion  
of the ADC module. Turning off the clock to the ADC module  
results in the elimination of the current drawn by the analog  
portion of the ADC (IDDA) as well.  
(3) For peripherals with multiple instances, the current quoted is per  
module. For example, the 2 mA value quoted for ePWM is for  
one ePWM module.  
Note  
IDDIO current consumption is reduced by 15 mA (typical) when XCLKOUT is turned off.  
Note  
The baseline IDD current (current when the core is executing a dummy loop with no peripherals  
enabled) is 45 mA, typical. To arrive at the IDD current for a given application, the current-drawn by the  
peripherals (enabled by that application) must be added to the baseline IDD current.  
Following are other methods to reduce power consumption further:  
The flash module may be powered down if code is run off SARAM. This results in a current reduction of 18  
mA (typical) in the VDD rail and 13 mA (typical) in the VDDIO rail.  
Savings in IDDIO may be realized by disabling the pullups on pins that assume an output function.  
To realize the lowest VDDA current consumption in a low-power mode, see the respective analog chapter of  
the TMS320F2802x,TMS320F2802xx Technical Reference Manual to ensure each module is powered down  
as well.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
8.5.5 Current Consumption Graphs (VREG Enabled)  
Operational Current vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
SYSCLKOUT (MHz)  
IDDIO (mA)  
IDDA  
Figure 8-1. Typical Operational Current Versus Frequency (F2802x/F280200)  
Operational Power vs Frequency  
450  
400  
350  
300  
250  
200  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
SYSCLKOUT (MHz)  
Figure 8-2. Typical Operational Power Versus Frequency (F2802x/F280200)  
8.6 Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.4  
TYP  
MAX UNIT  
IOH = IOH MAX  
IOH = 50 μA  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
V
VDDIO – 0.2  
IOL = IOL MAX  
0.4  
–205  
–360  
V
All GPIO  
XRS pin  
–80 –140  
Pin with pullup  
VDDIO = 3.3 V, VIN = 0 V  
VDDIO = 3.3 V, VIN = 0 V  
enabled  
Input current  
(low level)  
–225 –290  
IIL  
μA  
Pin with pulldown  
enabled  
±2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
MAX UNIT  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
over recommended operating conditions (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
Pin with pullup  
enabled  
VDDIO = 3.3 V, VIN = VDDIO  
±2  
μA  
80  
Input current  
(high level)  
IIH  
Pin with pulldown  
enabled  
VDDIO = 3.3 V, VIN = VDDIO  
VO = VDDIO or 0 V  
28  
50  
Output current, pullup or pulldown  
disabled  
IOZ  
CI  
±2 μA  
pF  
Input capacitance  
2
2.65  
35  
VDDIO BOR trip point  
VDDIO BOR hysteresis  
Falling VDDIO  
2.42  
400  
3.135  
V
mV  
Supervisor reset release delay  
time  
Time after BOR/POR/OVR event is removed to XRS  
release  
800 μs  
V
VREG VDD output  
Internal VREG on  
1.9  
(1) When the on-chip VREG is used, its output is monitored by the POR/BOR circuit, which will reset the device should the core voltage  
(VDD) go out of range.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
8.7 Thermal Resistance Characteristics  
8.7.1 PT Package  
°C/W(1)  
13.6  
30.6  
64  
AIR FLOW (lfm)(2)  
JC  
JB  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
N/A  
N/A  
0
50.4  
48.2  
45  
150  
250  
500  
0
JA  
(High k PCB)  
Junction-to-free air thermal resistance  
Junction-to-package top  
0.56  
0.94  
1.1  
150  
250  
500  
0
PsiJT  
1.38  
30.1  
28.7  
28.4  
28  
150  
250  
500  
PsiJB  
Junction-to-board  
(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
8.7.2 DA Package  
°C/W(1)  
12.8  
33  
AIR FLOW (lfm)(2)  
JC  
JB  
Junction-to-case thermal resistance  
N/A  
N/A  
0
Junction-to-board thermal resistance  
70.1  
56.4  
53.9  
50.2  
0.34  
0.61  
0.74  
0.98  
32.5  
32.1  
31.7  
31.1  
150  
250  
500  
0
JA  
(High k PCB)  
Junction-to-free air thermal resistance  
150  
250  
500  
0
PsiJT  
Junction-to-package top  
Junction-to-board  
150  
250  
500  
PsiJB  
(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
(2) lfm = linear feet per minute  
8.8 Thermal Design Considerations  
Based on the end application design and operational profile, the IDD and IDDIO currents could vary. Systems that  
exceed the recommended maximum power dissipation in the end product may require additional thermal  
enhancements. Ambient temperature (TA) varies with the end application and product design. The critical factor  
that affects reliability and functionality is TJ, the junction temperature, not the ambient temperature. Hence, care  
should be taken to keep TJ within the specified limits. Tcase should be measured to estimate the operating  
junction temperature TJ. Tcase is normally measured at the center of the package top-side surface. The thermal  
application report Semiconductor and IC Package Thermal Metrics helps to understand the thermal metrics and  
definitions.  
8.9 JTAG Debug Probe Connection Without Signal Buffering for the MCU  
Figure 8-3 shows the connection between the MCU and JTAG header for a single-processor configuration. If the  
distance between the JTAG header and the MCU is greater than 6 inches, the emulation signals must be  
buffered. If the distance is less than 6 inches, buffering is typically not needed. Figure 8-3 shows the simpler, no-  
buffering situation. For the pullup/pulldown resistor values, see Section 7.2, Signal Descriptions.  
6 inches or less  
VDDIO  
VDDIO  
13  
14  
2
5
EMU0  
EMU1  
TRST  
TMS  
PD  
4
6
8
TRST  
TMS  
TDI  
GND  
1
GND  
GND  
GND  
GND  
3
TDI  
7
10  
12  
TDO  
TCK  
TDO  
11  
9
TCK  
TCK_RET  
MCU  
JTAG Header  
A. See Figure 9-39 for JTAG/GPIO multiplexing.  
Figure 8-3. JTAG Debug Probe Connection Without Signal Buffering for the MCU  
Note  
The 2802x devices do not have EMU0/EMU1 pins. For designs that have a JTAG Header onboard,  
the EMU0/EMU1 pins on the header must be tied to VDDIO through a 4.7-kΩ (typical) resistor.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
8.10 Parameter Information  
8.10.1 Timing Parameter Symbology  
Timing parameter symbols used are created in accordance with JEDEC Standard 100. To shorten the symbols,  
some of the pin names and other related terminology have been abbreviated as follows:  
Lowercase subscripts and their  
meanings:  
Letters and symbols and their  
meanings:  
a
c
d
f
access time  
cycle time (period)  
delay time  
H
L
High  
Low  
V
X
Z
Valid  
fall time  
Unknown, changing, or don't care level  
High impedance  
h
r
hold time  
rise time  
su  
t
setup time  
transition time  
valid time  
v
w
pulse duration (width)  
8.10.2 General Notes on Timing Parameters  
All output signals from the 28x devices (including XCLKOUT) are derived from an internal clock such that all  
output transitions for a given half-cycle occur with a minimum of skewing relative to each other.  
The signal combinations shown in the following timing diagrams may not necessarily represent actual cycles. For  
actual cycle examples, see the appropriate cycle description section of this document.  
8.11 Test Load Circuit  
This test load circuit is used to measure all switching characteristics provided in this document.  
Tester Pin Electronics  
Data Sheet Timing Reference Point  
W
3.5 nH  
Output  
Under  
Test  
42  
Transmission Line  
(A)  
Z0 = 50 W  
Device Pin(B)  
4.0 pF  
1.85 pF  
A. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin.  
B. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects  
must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line  
effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer)  
from the data sheet timing.  
Figure 8-4. 3.3-V Test Load Circuit  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
8.12 Power Sequencing  
There is no power sequencing requirement needed to ensure the device is in the proper state after reset or to  
prevent the I/Os from glitching during power up/down (GPIO19, GPIO34–38 do not have glitch-free I/Os). No  
voltage larger than a diode drop (0.7 V) above VDDIO should be applied to any digital pin (for analog pins, this  
value is 0.7 V above VDDA) before powering up the device. Voltages applied to pins on an unpowered device can  
bias internal p-n junctions in unintended ways and produce unpredictable results.  
VDDIO, VDDA  
(3.3 V)  
VDD (1.8 V)  
INTOSC1  
tINTOSCST  
X1/X2  
tOSCST  
(B)  
(A)  
XCLKOUT  
User-code dependent  
t
w(RSL1)  
XRS(D)  
Address/data valid, internal boot-ROM code execution phase  
Address/Data/  
Control  
(Internal)  
User-code execution phase  
User-code dependent  
t
d(EX)  
(C)  
h(boot-mode)  
t
Boot-Mode  
Pins  
GPIO pins as input  
Peripheral/GPIO function  
Boot-ROM execution starts  
(E)  
Based on boot code  
GPIO pins as input (state depends on internal PU/PD)  
I/O Pins  
User-code dependent  
A. Upon power up, SYSCLKOUT is OSCCLK/4. Because the XCLKOUTDIV bits in the XCLK register come up with a reset state of 0,  
SYSCLKOUT is further divided by 4 before it appears at XCLKOUT. XCLKOUT = OSCCLK/16 during this phase.  
B. Boot ROM configures the DIVSEL bits for /1 operation. XCLKOUT = OSCCLK/4 during this phase. XCLKOUT will not be visible at the  
pin until explicitly configured by user code.  
C. After reset, the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode pin, the boot code branches to  
destination memory or boot code function. If boot ROM code executes after power-on conditions (in debugger environment), the boot  
code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT will be based on user environment and could be  
with or without PLL enabled.  
D. Using the XRS pin is optional due to the on-chip power-on reset (POR) circuitry.  
E. The internal pullup/pulldown will take effect when BOR is driven high.  
Figure 8-5. Power-on Reset  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
8.12.1 Reset ( XRS) Timing Requirements  
MIN  
1000tc(SCO)  
32tc(OSCCLK)  
MAX  
UNIT  
cycles  
cycles  
th(boot-mode)  
tw(RSL2)  
Hold time for boot-mode pins  
Pulse duration, XRS low on warm reset  
8.12.2 Reset ( XRS) Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
tw(RSL1)  
Pulse duration, XRS driven by device  
600  
μs  
Pulse duration, reset pulse generated by  
watchdog  
tw(WDRS)  
512tc(OSCCLK)  
cycles  
td(EX)  
Delay time, address/data valid after XRS high  
Start-up time, internal zero-pin oscillator  
On-chip crystal-oscillator start-up time  
32tc(OSCCLK)  
cycles  
μs  
tINTOSCST  
3
(1)  
tOSCST  
1
10  
ms  
(1) Dependent on crystal/resonator and board design.  
INTOSC1  
X1/X2  
XCLKOUT  
User-Code Dependent  
t
w(RSL2)  
XRS  
User-Code Execution Phase  
t
d(EX)  
Address/Data/  
User-Code Execution  
Control  
(Internal)  
(A)  
t
Boot-ROM Execution Starts  
GPIO Pins as Input  
h(boot-mode)  
Boot-Mode  
Pins  
Peripheral/GPIO Function  
User-Code Dependent  
Peripheral/GPIO Function  
User-Code Execution Starts  
I/O Pins  
GPIO Pins as Input (State Depends on Internal PU/PD)  
User-Code Dependent  
A. After reset, the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to  
destination memory or boot code function. If Boot ROM code executes after power-on conditions (in debugger environment), the Boot  
code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT will be based on user environment and could be  
with or without PLL enabled.  
Figure 8-6. Warm Reset  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 8-7 shows an example for the effect of writing into PLLCR register. In the first phase, PLLCR = 0x0004  
and SYSCLKOUT = OSCCLK x 2. The PLLCR is then written with 0x0008. Right after the PLLCR register is  
written, the PLL lock-up phase begins. During this phase, SYSCLKOUT = OSCCLK/2. After the PLL lock-up is  
complete, SYSCLKOUT reflects the new operating frequency, OSCCLK x 4.  
OSCCLK  
Write to PLLCR  
SYSCLKOUT  
OSCCLK * 2  
OSCCLK/2  
OSCCLK * 4  
(CPU frequency while PLL is stabilizing  
with the desired frequency. This period  
(PLL lock-up time tp) is 1 ms long.)  
(Current CPU  
Frequency)  
(Changed CPU frequency)  
Figure 8-7. Example of Effect of Writing Into PLLCR Register  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
8.13 Clock Specifications  
8.13.1 Device Clock Table  
This section provides the timing requirements and switching characteristics for the various clock options  
available on the 2802x MCUs. Section 8.13.1.1, Section 8.13.1.2, and Section 8.13.1.3 list the cycle times of  
various clocks.  
8.13.1.1 2802x Clock Table and Nomenclature (40-MHz Devices)  
MIN  
25  
2
NOM  
MAX UNIT  
tc(SCO), Cycle time  
Frequency  
500  
40  
ns  
MHz  
ns  
SYSCLKOUT  
LSPCLK(1)  
ADC clock  
tc(LCO), Cycle time  
Frequency  
25  
100(2)  
10(2)  
40  
40  
MHz  
ns  
tc(ADCCLK), Cycle time  
Frequency  
25  
MHz  
(1) Lower LSPCLK will reduce device power consumption.  
(2) This is the default reset value if SYSCLKOUT = 40 MHz.  
8.13.1.2 2802x Clock Table and Nomenclature (50-MHz Devices)  
MIN  
20  
2
NOM  
MAX UNIT  
tc(SCO), Cycle time  
500  
50  
ns  
MHz  
ns  
SYSCLKOUT  
Frequency  
tc(LCO), Cycle time  
20  
80(2)  
LSPCLK(1)  
Frequency  
12.5(2)  
50  
50  
MHz  
ns  
tc(ADCCLK), Cycle time  
ADC clock  
Frequency  
20  
MHz  
(1) Lower LSPCLK will reduce device power consumption.  
(2) This is the default reset value if SYSCLKOUT = 50 MHz.  
8.13.1.3 2802x Clock Table and Nomenclature (60-MHz Devices)  
MIN  
16.67  
2
NOM  
MAX UNIT  
tc(SCO), Cycle time  
500  
60  
ns  
MHz  
ns  
SYSCLKOUT  
Frequency  
tc(LCO), Cycle time  
16.67  
66.67(2)  
15(2)  
LSPCLK(1)  
Frequency  
60  
60  
MHz  
ns  
tc(ADCCLK), Cycle time  
ADC clock  
Frequency  
16.67  
MHz  
(1) Lower LSPCLK will reduce device power consumption.  
(2) This is the default reset value if SYSCLKOUT = 60 MHz.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
 
 
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
8.13.1.4 Device Clocking Requirements/Characteristics  
MIN  
NOM  
MAX UNIT  
tc(OSC), Cycle time  
Frequency  
50  
5
200  
20  
ns  
MHz  
ns  
On-chip oscillator (X1/X2 pins)  
(Crystal/Resonator)  
tc(CI), Cycle time (C8)  
Frequency  
33.3  
5
200  
30  
External oscillator/clock source  
(XCLKIN pin) — PLL Enabled  
MHz  
ns  
tc(CI), Cycle time (C8)  
Frequency  
33.33  
4
250  
30  
External oscillator/clock source  
(XCLKIN pin) — PLL Disabled  
MHz  
Limp mode SYSCLKOUT  
(with /2 enabled)  
Frequency range  
1 to 5  
MHz  
tc(XCO), Cycle time (C1)  
66.67  
0.5  
2000  
15  
ns  
MHz  
ms  
XCLKOUT  
Frequency  
tp  
PLL lock time(1)  
1
(1) The PLLLOCKPRD register must be updated based on the number of OSCCLK cycles. If the zero-pin internal oscillators (10 MHz) are  
used as the clock source, then the PLLLOCKPRD register must be written with a value of 10,000 (minimum).  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
8.13.1.5 Internal Zero-Pin Oscillator (INTOSC1/INTOSC2) Characteristics  
PARAMETER  
MIN  
TYP  
10  
MAX  
UNIT  
MHz  
MHz  
kHz  
Internal zero-pin oscillator 1 (INTOSC1)(1) (2)  
Internal zero-pin oscillator 2 (INTOSC2)(1) (2)  
Step size (coarse trim)  
Frequency  
Frequency  
10  
55  
Step size (fine trim)  
14  
kHz  
Temperature drift(3)  
3.03  
175  
4.85 kHz/°C  
Hz/mV  
Voltage (VDD) drift(3)  
(1) Oscillator frequency will vary over temperature, see Figure 8-8. To compensate for oscillator temperature drift, see the Oscillator  
Compensation Guide and C2000Ware.  
(2) Frequency range ensured only when VREG is enabled, VREGENZ = VSS  
.
(3) Output frequency of the internal oscillators follows the direction of both the temperature gradient and voltage (VDD) gradient. For  
example:  
Increase in temperature will cause the output frequency to increase per the temperature coefficient.  
Decrease in voltage (VDD) will cause the output frequency to decrease per the voltage coefficient.  
Zero-Pin Oscillator Frequency Movement With Temperature  
10.6  
10.5  
10.4  
10.3  
10.2  
10.1  
10  
9.9  
9.8  
9.7  
9.6  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
Typical  
Max  
Temperature (°C)  
Figure 8-8. Zero-Pin Oscillator Frequency Movement With Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
8.13.2 Clock Requirements and Characteristics  
8.13.2.1 XCLKIN Timing Requirements – PLL Enabled  
NO.  
MIN  
MAX  
6
UNIT  
ns  
C9  
tf(CI)  
Fall time, XCLKIN  
C10  
C11  
C12  
tr(CI)  
Rise time, XCLKIN  
6
ns  
tw(CIL)  
tw(CIH)  
Pulse duration, XCLKIN low as a percentage of tc(OSCCLK)  
Pulse duration, XCLKIN high as a percentage of tc(OSCCLK)  
45%  
45%  
55%  
55%  
8.13.2.2 XCLKIN Timing Requirements – PLL Disabled  
NO.  
MIN  
MAX  
UNIT  
Up to 20 MHz  
6
2
6
2
C9  
tf(Cl)  
Fall time, XCLKIN  
Rise time, XCLKIN  
ns  
20 MHz to 30 MHz  
Up to 20 MHz  
C10 tr(CI)  
ns  
20 MHz to 30 MHz  
Pulse duration, XCLKIN low as a percentage of  
tc(OSCCLK)  
C11  
tw(CIL)  
45%  
45%  
55%  
55%  
Pulse duration, XCLKIN high as a percentage of  
tc(OSCCLK)  
C12 tw(CIH)  
The possible configuration modes are shown in Table 9-16.  
8.13.2.3 XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)  
over recommended operating conditions (unless otherwise noted)(1) (2)  
NO.  
C3  
C4  
C5  
C6  
PARAMETER  
MIN  
MAX  
11  
UNIT  
ns  
tf(XCO)  
Fall time, XCLKOUT  
Rise time, XCLKOUT  
tr(XCO)  
11  
ns  
tw(XCOL)  
tw(XCOH)  
Pulse duration, XCLKOUT low  
Pulse duration, XCLKOUT high  
H – 2  
H – 2  
H + 2  
H + 2  
ns  
ns  
(1) A load of 40 pF is assumed for these parameters.  
(2) H = 0.5tc(XCO)  
C10  
C9  
C8  
(A)  
XCLKIN  
C6  
C3  
C1  
C4  
C5  
(B)  
XCLKOUT  
A. The relationship of XCLKIN to XCLKOUT depends on the divide factor chosen. The waveform relationship shown is intended to illustrate  
the timing parameters only and may differ based on actual configuration.  
B. XCLKOUT configured to reflect SYSCLKOUT.  
Figure 8-9. Clock Timing  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
8.14 Flash Timing  
8.14.1 Flash/OTP Endurance for T Temperature Material  
ERASE/PROGRAM  
MIN  
TYP  
MAX  
UNIT  
TEMPERATURE(1)  
0°C to 105°C (ambient)  
0°C to 30°C (ambient)  
Nf  
Flash endurance for the array (write/erase cycles)  
20000  
50000  
cycles  
write  
NOTP OTP endurance for the array (write cycles)  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
8.14.2 Flash/OTP Endurance for S Temperature Material  
ERASE/PROGRAM  
MIN  
TYP  
MAX  
UNIT  
TEMPERATURE(1)  
0°C to 125°C (ambient)  
0°C to 30°C (ambient)  
Nf  
Flash endurance for the array (write/erase cycles)  
20000  
50000  
cycles  
write  
NOTP OTP endurance for the array (write cycles)  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
8.14.3 Flash/OTP Endurance for Q Temperature Material  
ERASE/PROGRAM  
MIN  
TYP  
MAX  
UNIT  
TEMPERATURE(1)  
–40°C to 125°C (ambient)  
–40°C to 30°C (ambient)  
Nf  
Flash endurance for the array (write/erase cycles)  
20000  
50000  
cycles  
write  
NOTP OTP endurance for the array (write cycles)  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
8.14.4 Flash Parameters at 60-MHz SYSCLKOUT  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
(1)  
IDDP  
IDDIOP  
IDDIOP  
VDD current consumption during Erase/Program cycle  
VDDIO current consumption during Erase/Program cycle  
VREG  
disabled  
80  
60  
mA  
mA  
mA  
(1)  
(1)  
VDDIO current consumption during Erase/Program cycle VREG  
enabled  
120  
(1) Typical parameters as seen at room temperature including function call overhead, with all peripherals off. It is important to maintain a  
stable power supply during the entire flash programming process. It is conceivable that device current consumption during flash  
programming could be higher than normal operating conditions. The power supply used should ensure VMIN on the supply rails at all  
times, as specified in the Recommended Operating Conditions of the data sheet. Any brown-out or interruption to power during  
erasing/programming could potentially corrupt the password locations and lock the device permanently. Powering a target board  
(during flash programming) through the USB port is not recommended, as the port may be unable to respond to the power demands  
placed during the programming process.  
8.14.5 Flash Parameters at 50-MHz SYSCLKOUT  
TEST  
PARAMETER  
MIN  
TYP  
MAX UNIT  
CONDITIONS  
VREG disabled  
VREG enabled  
(1)  
IDDP  
IDDIOP  
IDDIOP  
VDD current consumption during Erase/Program cycle  
VDDIO current consumption during Erase/Program cycle  
VDDIO current consumption during Erase/Program cycle  
70  
60  
mA  
mA  
(1)  
(1)  
110  
(1) Typical parameters as seen at room temperature including function call overhead, with all peripherals off. It is important to maintain a  
stable power supply during the entire flash programming process. It is conceivable that device current consumption during flash  
programming could be higher than normal operating conditions. The power supply used should ensure VMIN on the supply rails at all  
times, as specified in the Recommended Operating Conditions of the data sheet. Any brown-out or interruption to power during  
erasing/programming could potentially corrupt the password locations and lock the device permanently. Powering a target board  
(during flash programming) through the USB port is not recommended, as the port may be unable to respond to the power demands  
placed during the programming process.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
MAX UNIT  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
8.14.6 Flash Parameters at 40-MHz SYSCLKOUT  
TEST  
PARAMETER  
CONDITIONS  
MIN  
TYP  
(1)  
IDDP  
VDD current consumption during Erase/Program cycle  
VDDIO current consumption during Erase/Program cycle  
VDDIO current consumption during Erase/Program cycle  
60  
60  
VREG disabled  
VREG enabled  
mA  
mA  
(1)  
(1)  
IDDIOP  
IDDIOP  
100  
(1) Typical parameters as seen at room temperature including function call overhead, with all peripherals off. It is important to maintain a  
stable power supply during the entire flash programming process. It is conceivable that device current consumption during flash  
programming could be higher than normal operating conditions. The power supply used should ensure VMIN on the supply rails at all  
times, as specified in the Recommended Operating Conditions of the data sheet. Any brown-out or interruption to power during  
erasing/programming could potentially corrupt the password locations and lock the device permanently. Powering a target board  
(during flash programming) through the USB port is not recommended, as the port may be unable to respond to the power demands  
placed during the programming process.  
8.14.7 Flash Program/Erase Time  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP MAX(2) UNIT  
Program Time(1) 8K Sector  
4K Sector  
250  
125  
50  
2
2000  
2000  
ms  
ms  
μs  
s
16-Bit Word  
Erase Time(3)  
8K Sector  
4K Sector  
12  
12  
2
s
(1) Program time is at the maximum device frequency. The programming time indicated in this table is applicable only when all the  
required code/data is available in the device RAM, ready for programming. Program time includes overhead of the flash state machine  
but does not include the time to transfer the following into RAM:  
the code that uses flash API to program the flash  
the Flash API itself  
Flash data to be programmed  
(2) Maximum flash parameter mentioned are for the first 100 program and erase cycles.  
(3) The on-chip flash memory is in an erased state when the device is shipped from TI. As such, erasing the flash memory is not required  
prior to programming, when programming the device for the first time. However, the erase operation is needed on all subsequent  
programming operations.  
8.14.8 Flash/OTP Access Timing  
PARAMETER  
MIN  
40  
MAX UNIT  
ta(fp)  
Paged Flash access time  
Random Flash access time  
OTP access time  
ns  
ns  
ns  
ta(fr)  
40  
ta(OTP)  
60  
8.14.9 Flash Data Retention Duration  
PARAMETER  
TEST CONDITIONS  
TJ = 55°C  
MIN  
15  
MAX UNIT  
tretention  
Data retention duration  
years  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
Table 8-2. Minimum Required Flash/OTP Wait States at Different Frequencies  
SYSCLKOUT  
SYSCLKOUT  
(ns)  
PAGE  
RANDOM  
OTP  
WAIT STATE  
(MHz)  
WAIT STATE(1)  
WAIT STATE(1)  
60  
16.67  
18.18  
20  
2
2
1
1
1
1
1
0
2
2
1
1
1
1
1
1
3
3
2
2
2
2
1
1
55  
50  
45  
22.22  
25  
40  
35  
28.57  
33.33  
40  
30  
25  
(1) Random wait state must be ≥ 1.  
The equations to compute the Flash page wait state and random wait state in Table 8-2 are as follows:  
é
ê
ë
ù
æ
ç
ç
è
ö
÷
÷
ø
ta(f ·p)  
Flash Page Wait State =  
-1 round up to the next highest integer  
ú
tc(SCO)  
ê
ú
û
é
ê
ë
ù
æ
ç
ç
è
ö
÷
÷
ø
ta(f ×r)  
Flash Random Wait State =  
-1 round up to the next highest integer, or 1, whichever is larger  
ú
tc(SCO)  
ê
ú
û
The equation to compute the OTP wait state in Table 8-2 is as follows:  
é
ê
ë
ù
æ
ç
ç
è
ö
÷
÷
ø
ta(OTP)  
OTP Wait State =  
-1 round up to the next highest integer, or 1, whichever is larger  
ú
tc(SCO)  
ê
ú
û
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9 Detailed Description  
9.1 Overview  
9.1.1 CPU  
The 2802x (C28x) family is a member of the TMS320C2000microcontroller (MCU) platform. The C28x-based  
controllers have the same 32-bit fixed-point architecture as existing C28x MCUs. It is a very efficient C/C++  
engine, enabling users to develop not only their system control software in a high-level language, but also  
enabling development of math algorithms using C/C++. The device is as efficient at MCU math tasks as it is at  
system control tasks that typically are handled by microcontroller devices. This efficiency removes the need for a  
second processor in many systems. The 32 × 32-bit MAC 64-bit processing capabilities enable the controller to  
handle higher numerical resolution problems efficiently. Add to this the fast interrupt response with automatic  
context save of critical registers, resulting in a device that is capable of servicing many asynchronous events  
with minimal latency. The device has an 8-level-deep protected pipeline with pipelined memory accesses. This  
pipelining enables it to execute at high speeds without resorting to expensive high-speed memories. Special  
branch-look-ahead hardware minimizes the latency for conditional discontinuities. Special store conditional  
operations further improve performance.  
9.1.2 Memory Bus (Harvard Bus Architecture)  
As with many MCU-type devices, multiple buses are used to move data between the memories and peripherals  
and the CPU. The memory bus architecture contains a program read bus, data read bus, and data write bus.  
The program read bus consists of 22 address lines and 32 data lines. The data read and write buses consist of  
32 address lines and 32 data lines each. The 32-bit-wide data buses enable single cycle 32-bit operations. The  
multiple bus architecture, commonly termed Harvard Bus, enables the C28x to fetch an instruction, read a data  
value and write a data value in a single cycle. All peripherals and memories attached to the memory bus  
prioritize memory accesses. Generally, the priority of memory bus accesses can be summarized as follows:  
Highest:  
Data Writes  
Program Writes  
Data Reads  
Program Reads  
Fetches  
(Simultaneous data and program writes cannot occur on the memory bus.)  
(Simultaneous data and program writes cannot occur on the memory bus.)  
(Simultaneous program reads and fetches cannot occur on the memory bus.)  
(Simultaneous program reads and fetches cannot occur on the memory bus.)  
Lowest:  
9.1.3 Peripheral Bus  
To enable migration of peripherals between various Texas Instruments (TI) MCU family of devices, the devices  
adopt a peripheral bus standard for peripheral interconnect. The peripheral bus bridge multiplexes the various  
buses that make up the processor Memory Bus into a single bus consisting of 16 address lines and 16 or 32  
data lines and associated control signals. Three versions of the peripheral bus are supported. One version  
supports only 16-bit accesses (called peripheral frame 2). Another version supports both 16- and 32-bit  
accesses (called peripheral frame 1).  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.1.4 Real-Time JTAG and Analysis  
1
The devices implement the standard IEEE 1149.1 JTAG interface for in-circuit based debug. Additionally, the  
devices support real-time mode of operation allowing modification of the contents of memory, peripheral, and  
register locations while the processor is running and executing code and servicing interrupts. The user can also  
single step through non-time-critical code while enabling time-critical interrupts to be serviced without  
interference. The device implements the real-time mode in hardware within the CPU. This is a feature unique to  
the 28x family of devices, requiring no software monitor. Additionally, special analysis hardware is provided that  
allows setting of hardware breakpoint or data/address watch-points and generating various user-selectable  
break events when a match occurs. These devices do not support boundary scan; however, IDCODE and  
BYPASS features are available if the following considerations are taken into account. The IDCODE does not  
come by default. The user must go through a sequence of SHIFT IR and SHIFT DR state of JTAG to get the  
IDCODE. For BYPASS instruction, the first shifted DR value would be 1.  
9.1.5 Flash  
The F280200 device contains 8K × 16 of embedded flash memory, segregated into two 4K × 16 sectors. The  
F28021/23/27 devices contain 32K × 16 of embedded flash memory, segregated into four 8K × 16 sectors. The  
F28020/22/26 devices contain 16K × 16 of embedded flash memory, segregated into four 4K × 16 sectors. All  
devices also contain a single 1K × 16 of OTP memory at address range 0x3D 7800 to 0x3D 7BFF. The user can  
individually erase, program, and validate a flash sector while leaving other sectors untouched. However, it is not  
possible to use one sector of the flash or the OTP to execute flash algorithms that erase/program other sectors.  
Special memory pipelining is provided to enable the flash module to achieve higher performance. The flash/OTP  
is mapped to both program and data space; therefore, it can be used to execute code or store data information.  
Addresses 0x3F 7FF0 to 0x3F 7FF5 are reserved for data variables and should not contain program code.  
Note  
The Flash and OTP wait states can be configured by the application. This allows applications running  
at slower frequencies to configure the flash to use fewer wait states.  
Flash effective performance can be improved by enabling the flash pipeline mode in the Flash options  
register. With this mode enabled, effective performance of linear code execution will be much faster  
than the raw performance indicated by the wait-state configuration alone. The exact performance gain  
when using the Flash pipeline mode is application-dependent.  
For more information on the Flash options, Flash wait state, and OTP wait-state registers, see the  
System Control chapter in the TMS320F2802x,TMS320F2802xx Technical Reference Manual .  
9.1.6 M0, M1 SARAMs  
All devices contain these two blocks of single access memory, each 1K × 16 in size. The stack pointer points to  
the beginning of block M1 on reset. The M0 and M1 blocks, like all other memory blocks on C28x devices, are  
mapped to both program and data space. Hence, the user can use M0 and M1 to execute code or for data  
variables. The partitioning is performed within the linker. The C28x device presents a unified memory map to the  
programmer. This makes for easier programming in high-level languages.  
9.1.7 L0 SARAM  
The device contains up to 4K × 16 of single-access RAM. Refer to the device-specific memory map figures in  
Section 9.2 to ascertain the exact size for a given device. This block is mapped to both program and data space.  
1
IEEE Standard 1149.1-1990 Standard Test Access Port and Boundary Scan Architecture  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.1.8 Boot ROM  
The Boot ROM is factory-programmed with bootloader software. The Boot ROM uses the boot-mode-select  
GPIO pins to determine what boot mode to use upon power up. The user can select to boot normally to  
application code, to download new software from an external connection, or to select boot software that is  
programmed in the internal Flash/ROM. The Boot ROM also contains standard tables, such as SIN/COS  
waveforms, for use in math-related algorithms. The boot-ROM content, and hence the checksum value, may  
vary for different silicon revisions. For details, see the Boot ROM chapter in the  
TMS320F2802x,TMS320F2802xx Technical Reference Manual .  
Table 9-1. Boot Mode Selection  
MODE  
GPIO37/TDO  
GPIO34/COMP2OUT  
TRST  
MODE  
3
2
1
1
0
0
x
1
0
1
0
x
0
0
0
0
1
GetMode  
Wait (see Section 9.1.9 for description)  
1
SCI  
0
Parallel IO  
Emulation Boot  
EMU  
9.1.8.1 Emulation Boot  
When the JTAG debug probe is connected, the GPIO37/TDO pin cannot be used for boot mode selection. In this  
case, the boot ROM detects that a JTAG debug probe is connected and uses the contents of two reserved  
SARAM locations in the PIE vector table to determine the boot mode. If the content of either location is invalid,  
then the Wait boot option is used. All boot mode options can be accessed in emulation boot.  
9.1.8.2 GetMode  
The default behavior of the GetMode option is to boot to flash. This behavior can be changed to another boot  
option by programming two locations in the OTP. If the content of either OTP location is invalid, then boot to flash  
is used. One of the following loaders can be specified: SCI, SPI, I2C, or OTP.  
9.1.8.3 Peripheral Pins Used by the Bootloader  
Table 9-2 shows which GPIO pins are used by each peripheral bootloader. Refer to the GPIO mux table to see if  
these conflict with any of the peripherals you would like to use in your application.  
Table 9-2. Peripheral Bootload Pins  
BOOTLOADER  
PERIPHERAL LOADER PINS  
SCI  
SCIRXDA (GPIO28)  
SCITXDA (GPIO29)  
Parallel Boot  
SPI  
Data (GPIO[7:0])  
28x Control (GPIO16)  
Host Control (GPIO12)  
SPISIMOA (GPIO16)  
SPISOMIA (GPIO17)  
SPICLKA (GPIO18)  
SPISTEA (GPIO19)  
I2C  
SDAA (GPIO32)(1)  
SCLA (GPIO33)(1)  
(1) GPIO pins 32 and 33 may not be available on your device package. On these devices, this  
bootload option is unavailable.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.1.9 Security  
The devices support high levels of security to protect the user firmware from being reverse engineered. The  
security features a 128-bit password (hardcoded for 16 wait states), which the user programs into the flash. One  
code security module (CSM) is used to protect the flash/OTP and the L0/L1 SARAM blocks. The security feature  
prevents unauthorized users from examining the memory contents through the JTAG port or trying to boot-load  
some undesirable software that would export the secure memory contents. To enable access to the secure  
blocks, the user must write the correct 128-bit KEY value that matches the value stored in the password  
locations within the Flash.  
In addition to the CSM, the emulation code security logic (ECSL) has been implemented to prevent unauthorized  
users from stepping through secure code. Any code or data access to flash, user OTP, or L0 memory while the  
JTAG debug probe is connected will trip the ECSL and break the debug probe connection. To allow debug of  
secure code, while maintaining the CSM protection against secure memory reads, the user must write the  
correct value into the lower 64 bits of the KEY register (KEY0 - KEY3), which matches the value stored in the  
lower 64 bits of the password locations (PWL0 - PWL3) within the flash. Dummy reads of all 128 bits of the  
password in the flash must still be performed. If the lower 64 bits of the password locations are all ones  
(unprogrammed), then the KEY value does not need to match. During debug of secure code, operations like  
single-stepping is possible. However, the actual contents of the secure memory cannot be seen in the CCS  
window.  
When power is applied to a secure device that is connected to a JTAG debug probe, the CPU will start executing  
and may execute an instruction that performs an access to a protected area. If this happens, the ECSL will trip  
and cause the JTAG circuitry to be deactivated. Under this condition, a host (such as a computer running CCS or  
flash programing software) would not be able to establish connection with the device.  
The solution is to use the Wait boot option. In this mode, the device loops around a software breakpoint to allow  
a JTAG debug probe to be connected without tripping security. The user can then exit this mode once the JTAG  
debug probe is connected by using one of the emulation boot options as described in the Boot ROM chapter in  
the TMS320F2802x,TMS320F2802xx Technical Reference Manual. These devices do not support a hardware  
wait-in-reset mode.  
Note  
When the code-security passwords are programmed, all addresses from 0x3F7F80 to 0x3F7FF5  
cannot be used as program code or data. These locations must be programmed to 0x0000.  
If reprogramming of a secure device via JTAG may be needed in future, it is important to design  
the board in such a way that the device could be put in Wait boot mode upon power-up (when  
reprogramming is warranted). Otherwise, ECSL may deactivate the JTAG circuitry and prevent  
connection to the device, as mentioned earlier. If reconfiguring the device for Wait boot mode in the  
field is not practical, some mechanism must be implemented in the firmware to detect when a  
firmware update is warranted. Code could then branch to the desired bootloader in the bootROM. It  
could also branch to the Wait bootmode, at which point the JTAG debug probe could be connected,  
device unsecured and programming accomplished through JTAG itself.  
If the code security feature is not used, addresses 0x3F7F80 to 0x3F7FEF may be used for code  
or data. Addresses 0x3F7FF0 to 0x3F7FF5 are reserved for data and should not contain program  
code.  
The 128-bit password (at 0x3F 7FF8 to 0x3F 7FFF) must not be programmed to zeros. Doing so  
would permanently lock the device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
Note  
Code Security Module Disclaimer  
THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS DESIGNED TO  
PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY (EITHER ROM OR  
FLASH) AND IS WARRANTED BY TEXAS INSTRUMENTS (TI), IN ACCORDANCE WITH ITS  
STANDARD TERMS AND CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS  
FOR THE WARRANTY PERIOD APPLICABLE FOR THIS DEVICE.  
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE  
COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED MEMORY  
CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT AS SET FORTH  
ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS CONCERNING THE CSM OR  
OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY  
OR FITNESS FOR A PARTICULAR PURPOSE.  
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT,  
INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY OUT OF  
YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN ADVISED OF THE  
POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED  
TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR  
OTHER ECONOMIC LOSS.  
9.1.10 Peripheral Interrupt Expansion (PIE) Block  
The PIE block serves to multiplex numerous interrupt sources into a smaller set of interrupt inputs. The PIE block  
can support up to 96 peripheral interrupts. On the F2802x, 33 of the possible 96 interrupts are used by  
peripherals. The 96 interrupts are grouped into blocks of 8 and each group is fed into 1 of 12 CPU interrupt lines  
(INT1 to INT12). Each of the 96 interrupts is supported by its own vector stored in a dedicated RAM block that  
can be overwritten by the user. The vector is automatically fetched by the CPU on servicing the interrupt. It takes  
8 CPU clock cycles to fetch the vector and save critical CPU registers. Hence the CPU can quickly respond to  
interrupt events. Prioritization of interrupts is controlled in hardware and software. Each individual interrupt can  
be enabled/disabled within the PIE block.  
9.1.11 External Interrupts (XINT1–XINT3)  
The devices support three masked external interrupts (XINT1–XINT3). Each of the interrupts can be selected for  
negative, positive, or both negative and positive edge triggering and can also be enabled/disabled. These  
interrupts also contain a 16-bit free running up counter, which is reset to zero when a valid interrupt edge is  
detected. This counter can be used to accurately time stamp the interrupt. There are no dedicated pins for the  
external interrupts. XINT1, XINT2, and XINT3 interrupts can accept inputs from GPIO0–GPIO31 pins.  
9.1.12 Internal Zero Pin Oscillators, Oscillator, and PLL  
The device can be clocked by either of the two internal zero-pin oscillators, an external oscillator, or by a crystal  
attached to the on-chip oscillator circuit (48-pin devices only). A PLL is provided supporting up to 12 input-clock-  
scaling ratios. The PLL ratios can be changed on-the-fly in software, enabling the user to scale back on  
operating frequency if lower power operation is desired. Refer to Section 8, Electrical Specifications, for timing  
details. The PLL block can be set in bypass mode.  
9.1.13 Watchdog  
Each device contains two watchdogs: CPU watchdog that monitors the core and NMI watchdog that is a missing  
clock-detect circuit. The user software must regularly reset the CPU watchdog counter within a certain time  
frame; otherwise, the CPU watchdog generates a reset to the processor. The CPU watchdog can be disabled if  
necessary. The NMI watchdog engages only in case of a clock failure and can either generate an interrupt or a  
device reset.  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.1.14 Peripheral Clocking  
The clocks to each individual peripheral can be enabled/disabled to reduce power consumption when a  
peripheral is not in use. Additionally, the system clock to the serial ports (except I2C) can be scaled relative to  
the CPU clock.  
9.1.15 Low-power Modes  
The devices are full static CMOS devices. Three low-power modes are provided:  
IDLE:  
Place CPU in low-power mode. Peripheral clocks may be turned off selectively and only those peripherals that  
must function during IDLE are left operating. An enabled interrupt from an active peripheral or the watchdog timer  
will wake the processor from IDLE mode.  
STANDBY:  
HALT:  
Turns off clock to CPU and peripherals. This mode leaves the oscillator and PLL functional. An external interrupt  
event will wake the processor and the peripherals. Execution begins on the next valid cycle after detection of the  
interrupt event  
This mode basically shuts down the device and places it in the lowest possible power consumption mode. If the  
internal zero-pin oscillators are used as the clock source, the HALT mode turns them off, by default. To keep  
these oscillators from shutting down, the INTOSCnHALTI bits in CLKCTL register may be used. The zero-pin  
oscillators may thus be used to clock the CPU watchdog in this mode. If the on-chip crystal oscillator is used as  
the clock source, it is shut down in this mode. A reset or an external signal (through a GPIO pin) or the CPU  
watchdog can wake the device from this mode.  
The CPU clock (OSCCLK) and watchdog clock source should be from the same clock source before attempting  
to put the device into HALT or STANDBY.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.1.16 Peripheral Frames 0, 1, 2 (PFn)  
The device segregates peripherals into three sections. The mapping of peripherals is as follows:  
PF0:  
PIE:  
PIE Interrupt Enable and Control Registers Plus PIE Vector Table  
Flash Waitstate Registers  
Flash:  
Timers:  
CSM:  
ADC:  
CPU-Timers 0, 1, 2 Registers  
Code Security Module KEY Registers  
ADC Result Registers  
PF1:  
PF2:  
GPIO:  
ePWM:  
eCAP:  
Comparators:  
SYS:  
GPIO MUX Configuration and Control Registers  
Enhanced Pulse Width Modulator Module and Registers  
Enhanced Capture Module and Registers  
Comparator Modules  
System Control Registers  
SCI:  
Serial Communications Interface (SCI) Control and RX/TX Registers  
Serial Port Interface (SPI) Control and RX/TX Registers  
ADC Status, Control, and Configuration Registers  
Inter-Integrated Circuit Module and Registers  
External Interrupt Registers  
SPI:  
ADC:  
I2C:  
XINT:  
9.1.17 General-Purpose Input/Output (GPIO) Multiplexer  
Most of the peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. This enables  
the user to use a pin as GPIO if the peripheral signal or function is not used. On reset, GPIO pins are configured  
as inputs. The user can individually program each pin for GPIO mode or peripheral signal mode. For specific  
inputs, the user can also select the number of input qualification cycles. This is to filter unwanted noise glitches.  
The GPIO signals can also be used to bring the device out of specific low-power modes.  
9.1.18 32-Bit CPU-Timers (0, 1, 2)  
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock prescaling. The  
timers have a 32-bit count-down register, which generates an interrupt when the counter reaches zero. The  
counter is decremented at the CPU clock speed divided by the prescale value setting. When the counter reaches  
zero, it is automatically reloaded with a 32-bit period value.  
CPU-Timer 0 is for general use and is connected to the PIE block. CPU-Timer 1 is also for general use and can  
be connected to INT13 of the CPU. CPU-Timer 2 is reserved for DSP/BIOS. It is connected to INT14 of the CPU.  
If DSP/BIOS is not being used, CPU-Timer 2 is available for general use.  
CPU-Timer 2 can be clocked by any one of the following:  
SYSCLKOUT (default)  
Internal zero-pin oscillator 1 (INTOSC1)  
Internal zero-pin oscillator 2 (INTOSC2)  
External clock source  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.1.19 Control Peripherals  
The devices support the following peripherals that are used for embedded control and communication:  
ePWM:  
The enhanced PWM peripheral supports independent/complementary PWM generation, adjustable dead-  
band generation for leading/trailing edges, latched/cycle-by-cycle trip mechanism. Some of the PWM pins  
support the HRPWM high resolution duty and period features. The type 1 module found on 2802x devices  
also supports increased dead-band resolution, enhanced SOC and interrupt generation, and advanced  
triggering including trip functions based on comparator outputs.  
eCAP:  
The enhanced capture peripheral uses a 32-bit time base and registers up to four programmable events in  
continuous/one-shot capture modes.  
This peripheral can also be configured to generate an auxiliary PWM signal.  
ADC:  
The ADC block is a 12-bit converter. It has up to 13 single-ended channels pinned out, depending on the  
device. It contains two sample-and-hold units for simultaneous sampling.  
Comparator:  
Each comparator block consists of one analog comparator along with an internal 10-bit reference for  
supplying one input of the comparator.  
9.1.20 Serial Port Peripherals  
The devices support the following serial communication peripherals:  
SPI:  
The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of programmed length (1 to  
16 bits) to be shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used  
for communications between the MCU and external peripherals or another processor. Typical applications  
include external I/O or peripheral expansion through devices such as shift registers, display drivers, and  
ADCs. Multidevice communications are supported by the master/slave operation of the SPI. The SPI contains  
a 4-level receive and transmit FIFO for reducing interrupt servicing overhead.  
SCI:  
I2C:  
The serial communications interface is a two-wire asynchronous serial port, commonly known as UART. The  
SCI contains a 4-level receive and transmit FIFO for reducing interrupt servicing overhead.  
The inter-integrated circuit (I2C) module provides an interface between an MCU and other devices compliant  
with Philips Semiconductors Inter-IC bus ( I2C-bus®) specification version 2.1 and connected by way of an  
I2C-bus. External components attached to this 2-wire serial bus can transmit/receive up to 8-bit data to/from  
the MCU through the I2C module. The I2C contains a 4-level receive and transmit FIFO for reducing interrupt  
servicing overhead.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.2 Memory Maps  
In Figure 9-1, Figure 9-2, Figure 9-3, Figure 9-4, and Figure 9-5, the following apply:  
Memory blocks are not to scale.  
Peripheral Frame 0, Peripheral Frame 1 and Peripheral Frame 2 memory maps are restricted to data memory  
only. A user program cannot access these memory maps in program space.  
Protected means the order of Write-followed-by-Read operations is preserved rather than the pipeline order.  
Certain memory ranges are EALLOW protected against spurious writes after configuration.  
Locations 0x3D7C80 to 0x3D7CC0 contain the internal oscillator and ADC calibration routines. These  
locations are not programmable by the user.  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 2000  
0x00 6000  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(4K ´ 16, Protected)  
Reserved  
0x00 7000  
0x00 8000  
Peripheral Frame 2  
(4K ´ 16, Protected)  
L0 SARAM (4K ´ 16)  
(0-Wait, Secure Zone + ECSL, Dual Mapped)  
0x00 9000  
0x3D 7800  
0x3D 7C00  
Reserved  
User OTP (1K ´ 16, Secure Zone + ECSL)  
Reserved  
0x3D 7C80  
0x3D 7CC0  
0x3D 7CE0  
0x3D 7E80  
Calibration Data  
Get_mode function  
Reserved  
Calibration Data  
Reserved  
0x3D 7EB0  
0x3D 7FFF  
PARTID  
0x3D 8000  
0x3F 0000  
Reserved  
FLASH  
(32K ´ 16, 4 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
L0 SARAM (4K ´ 16)  
(0-Wait, Secure Zone + ECSL, Dual Mapped)  
0x3F 9000  
0x3F E000  
0x3F FFC0  
Reserved  
Boot ROM (8K ´ 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
A. Memory locations 0x3D 7E80–0x3D 7EAF are reserved in TMX/TMP silicon.  
Figure 9-1. 28023-Q1/28027-Q1 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 2000  
0x00 6000  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(4K ´ 16, Protected)  
Reserved  
0x00 7000  
0x00 8000  
Peripheral Frame 2  
(4K ´ 16, Protected)  
L0 SARAM (4K ´ 16)  
(0-Wait, Secure Zone + ECSL, Dual Mapped)  
0x00 9000  
0x3D 7800  
0x3D 7C00  
Reserved  
User OTP (1K ´ 16, Secure Zone + ECSL)  
Reserved  
0x3D 7C80  
0x3D 7CC0  
Calibration Data  
Get_mode function  
Reserved  
0x3D 7CE0  
0x3D 7E80  
Calibration Data  
Reserved  
0x3D 7EB0  
0x3D 7FFF  
PARTID  
0x3D 8000  
0x3F 4000  
Reserved  
FLASH  
(16K ´ 16, 4 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
L0 SARAM (4K ´ 16)  
(0-Wait, Secure Zone + ECSL, Dual Mapped)  
0x3F 9000  
0x3F E000  
0x3F FFC0  
Reserved  
Boot ROM (8K ´ 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
A. Memory locations 0x3D 7E80–0x3D 7EAF are reserved in TMX/TMP silicon.  
Figure 9-2. 28022-Q1/28026-Q1 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 2000  
0x00 6000  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(4K ´ 16, Protected)  
Reserved  
0x00 7000  
0x00 8000  
Peripheral Frame 2  
(4K ´ 16, Protected)  
L0 SARAM (3K ´ 16)  
(0-Wait, Secure Zone + ECSL, Dual Mapped)  
0x00 8C00  
0x3D 7800  
0x3D 7C00  
Reserved  
User OTP (1K ´ 16, Secure Zone + ECSL)  
Reserved  
0x3D 7C80  
0x3D 7CC0  
Calibration Data  
Get_mode function  
Reserved  
0x3D 7CE0  
0x3D 7E80  
Calibration Data  
Reserved  
0x3D 7EB0  
0x3D 7FFF  
PARTID  
0x3D 8000  
0x3F 0000  
Reserved  
FLASH  
(32K ´ 16, 4 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
L0 SARAM (3K ´ 16)  
(0-Wait, Secure Zone + ECSL, Dual Mapped)  
0x3F 8C00  
0x3F E000  
0x3F FFC0  
Reserved  
Boot ROM (8K ´ 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
A. Memory locations 0x3D 7E80–0x3D 7EAF are reserved in TMX/TMP silicon.  
Figure 9-3. 28021 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 2000  
0x00 6000  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(4K ´ 16, Protected)  
Reserved  
0x00 7000  
0x00 8000  
Peripheral Frame 2  
(4K ´ 16, Protected)  
L0 SARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL, Dual Mapped)  
0x00 8400  
0x3D 7800  
0x3D 7C00  
Reserved  
User OTP (1K ´ 16, Secure Zone + ECSL)  
Reserved  
0x3D 7C80  
0x3D 7CC0  
0x3D 7CE0  
0x3D 7E80  
Calibration Data  
Get_mode function  
Reserved  
Calibration Data  
Reserved  
0x3D 7EB0  
0x3D 7FFF  
PARTID  
0x3D 8000  
0x3F 4000  
Reserved  
FLASH  
(16K ´ 16, 4 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
L0 SARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL, Dual Mapped)  
0x3F 8400  
0x3F E000  
0x3F FFC0  
Reserved  
Boot ROM (8K ´ 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
A. Memory locations 0x3D 7E80–0x3D 7EAF are reserved in TMX/TMP silicon.  
Figure 9-4. 28020 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 2000  
0x00 6000  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(4K ´ 16, Protected)  
Reserved  
0x00 7000  
0x00 8000  
Peripheral Frame 2  
(4K ´ 16, Protected)  
L0 SARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL, Dual Mapped)  
0x00 8400  
0x3D 7800  
0x3D 7C00  
Reserved  
User OTP (1K ´ 16, Secure Zone + ECSL)  
Reserved  
0x3D 7C80  
0x3D 7CC0  
Calibration Data  
Get_mode function  
Reserved  
0x3D 7CE0  
0x3D 7E80  
Calibration Data  
Reserved  
0x3D 7EB0  
0x3D 7FFF  
PARTID  
0x3D 8000  
0x3F 6000  
Reserved  
FLASH  
(8K ´ 16, 2 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
L0 SARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL, Dual Mapped)  
0x3F 8400  
0x3F E000  
0x3F FFC0  
Reserved  
Boot ROM (8K ´ 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
A. Memory locations 0x3D 7E80–0x3D 7EAF are reserved in TMX/TMP silicon.  
Figure 9-5. 280200 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
Table 9-3. Addresses of Flash Sectors in F28021/28023-Q1/28027-Q1  
ADDRESS RANGE  
0x3F 0000 to 0x3F 1FFF  
0x3F 2000 to 0x3F 3FFF  
0x3F 4000 to 0x3F 5FFF  
0x3F 6000 to 0x3F 7F7F  
PROGRAM AND DATA SPACE  
Sector D (8K × 16)  
Sector C (8K × 16)  
Sector B (8K × 16)  
Sector A (8K × 16)  
Program to 0x0000 when using the  
Code Security Module  
0x3F 7F80 to 0x3F 7FF5  
0x3F 7FF6 to 0x3F 7FF7  
0x3F 7FF8 to 0x3F 7FFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password (128-Bit)  
(Do not program to all zeros)  
Table 9-4. Addresses of Flash Sectors in F28020/28022-Q1/28026-Q1  
ADDRESS RANGE  
0x3F 4000 to 0x3F 4FFF  
0x3F 5000 to 0x3F 5FFF  
0x3F 6000 to 0x3F 6FFF  
0x3F 7000 to 0x3F 7F7F  
PROGRAM AND DATA SPACE  
Sector D (4K × 16)  
Sector C (4K × 16)  
Sector B (4K × 16)  
Sector A (4K × 16)  
Program to 0x0000 when using the  
Code Security Module  
0x3F 7F80 to 0x3F 7FF5  
0x3F 7FF6 to 0x3F 7FF7  
0x3F 7FF8 to 0x3F 7FFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password (128-Bit)  
(Do not program to all zeros)  
Table 9-5. Addresses of Flash Sectors in F280200  
ADDRESS RANGE  
0x3F 6000 to 0x3F 6FFF  
0x3F 7000 to 0x3F 7F7F  
PROGRAM AND DATA SPACE  
Sector B (4K × 16)  
Sector A (4K × 16)  
Program to 0x0000 when using the  
Code Security Module  
0x3F 7F80 to 0x3F 7FF5  
0x3F 7FF6 to 0x3F 7FF7  
0x3F 7FF8 to 0x3F 7FFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password (128-Bit)  
(Do not program to all zeros)  
Note  
When the code-security passwords are programmed, all addresses from 0x3F 7F80 to 0x3F 7FF5  
cannot be used as program code or data. These locations must be programmed to 0x0000.  
If the code security feature is not used, addresses 0x3F 7F80 to 0x3F 7FEF may be used for code  
or data. Addresses 0x3F 7FF0 to 0x3F 7FF5 are reserved for data and should not contain program  
code.  
Table 9-6 shows how to handle these memory locations.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-6. Impact of Using the Code Security Module  
FLASH  
ADDRESS  
CODE SECURITY ENABLED  
CODE SECURITY DISABLED  
0x3F 7F80 to 0x3F 7FEF  
0x3F 7FF0 to 0x3F 7FF5  
Application code and data  
Reserved for data only  
Fill with 0x0000  
Peripheral Frame 1 and Peripheral Frame 2 are grouped together to enable these blocks to be write/read  
peripheral block protected. The protected mode makes sure that all accesses to these blocks happen as written.  
Because of the pipeline, a write immediately followed by a read to different memory locations, will appear in  
reverse order on the memory bus of the CPU. This can cause problems in certain peripheral applications where  
the user expected the write to occur first (as written). The CPU supports a block protection mode where a region  
of memory can be protected so that operations occur as written (the penalty is extra cycles are added to align  
the operations). This mode is programmable and by default, it protects the selected zones.  
The wait states for the various spaces in the memory map area are listed in Table 9-7 .  
Table 9-7. Wait States  
AREA  
M0 and M1 SARAMs  
Peripheral Frame 0  
Peripheral Frame 1  
WAIT STATES (CPU)  
COMMENTS  
0-wait  
Fixed  
0-wait  
0-wait (writes)  
2-wait (reads)  
Cycles can be extended by peripheral generated ready.  
Back-to-back write operations to Peripheral Frame 1 registers will incur  
a 1-cycle stall (1-cycle delay).  
Peripheral Frame 2  
0-wait (writes)  
2-wait (reads)  
Fixed. Cycles cannot be extended by the peripheral.  
L0 SARAM  
OTP  
0-wait data and program  
Programmable  
Assumes no CPU conflicts  
Programmed through the Flash registers.  
1-wait is minimum number of wait states allowed.  
Programmed through the Flash registers.  
1-wait minimum  
Programmable  
FLASH  
0-wait Paged min  
1-wait Random min  
Random ≥ Paged  
FLASH Password  
Boot-ROM  
16-wait fixed  
0-wait  
Wait states of password locations are fixed.  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.3 Register Maps  
The devices contain three peripheral register spaces. The spaces are categorized as follows:  
Peripheral Frame 0:  
Peripheral Frame 1:  
Peripheral Frame 2:  
These are peripherals that are mapped directly to the CPU memory bus. See Table 9-8.  
These are peripherals that are mapped to the 32-bit peripheral bus. See Table 9-9.  
These are peripherals that are mapped to the 16-bit peripheral bus. See Table 9-10.  
Table 9-8. Peripheral Frame 0 Registers  
NAME(1)  
Device Emulation Registers  
System Power Control Registers  
FLASH Registers(3)  
ADDRESS RANGE  
0x00 0880 to 0x00 0984  
0x00 0985 to 0x00 0987  
0x00 0A80 to 0x00 0ADF  
0x00 0AE0 to 0x00 0AEF  
0x00 0B00 to 0x00 0B0F  
0x00 0C00 to 0x00 0C3F  
0x00 0CE0 to 0x00 0CFF  
0x00 0D00 to 0x00 0DFF  
SIZE (×16)  
EALLOW PROTECTED(2)  
261  
3
Yes  
Yes  
Yes  
Yes  
No  
96  
16  
16  
64  
32  
256  
Code Security Module Registers  
ADC registers (0 wait read only)  
CPU–TIMER0/1/2 Registers  
PIE Registers  
No  
No  
PIE Vector Table  
No  
(1) Registers in Frame 0 support 16-bit and 32-bit accesses.  
(2) If registers are EALLOW protected, then writes cannot be performed until the EALLOW instruction is executed. The EDIS instruction  
disables writes to prevent stray code or pointers from corrupting register contents.  
(3) The Flash Registers are also protected by the Code Security Module (CSM).  
Table 9-9. Peripheral Frame 1 Registers  
NAME  
Comparator 1 registers  
ADDRESS RANGE  
0x00 6400 to 0x00 641F  
0x00 6420 to 0x00 643F  
0x00 6800 to 0x00 683F  
0x00 6840 to 0x00 687F  
0x00 6880 to 0x00 68BF  
0x00 68C0 to 0x00 68FF  
0x00 6A00 to 0x00 6A1F  
0x00 6F80 to 0x00 6FFF  
SIZE (×16)  
EALLOW PROTECTED  
(1)  
32  
32  
64  
64  
64  
64  
32  
128  
(1)  
(1)  
(1)  
(1)  
(1)  
Comparator 2 registers  
ePWM1 + HRPWM1 registers  
ePWM2 + HRPWM2 registers  
ePWM3 + HRPWM3 registers  
ePWM4 + HRPWM4 registers  
eCAP1 registers  
No  
(1)  
GPIO registers  
(1) Some registers are EALLOW protected. For more information, see the TMS320F2802x,TMS320F2802xx Technical Reference  
Manual .  
Table 9-10. Peripheral Frame 2 Registers  
NAME  
System Control Registers  
ADDRESS RANGE  
0x00 7010 to 0x00 702F  
0x00 7040 to 0x00 704F  
0x00 7050 to 0x00 705F  
0x00 7060 to 0x00 706F  
0x00 7070 to 0x00 707F  
0x00 7100 to 0x00 717F  
0x00 7900 to 0x00 793F  
SIZE (×16)  
EALLOW PROTECTED  
32  
16  
Yes  
No  
SPI-A Registers  
SCI-A Registers  
16  
No  
NMI Watchdog Interrupt Registers  
External Interrupt Registers  
ADC Registers  
16  
Yes  
16  
Yes  
(1)  
128  
64  
(1)  
I2C-A Registers  
(1) Some registers are EALLOW protected. For more information, see the TMS320F2802x,TMS320F2802xx Technical Reference  
Manual .  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
 
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.4 Device Emulation Registers  
These registers are used to control the protection mode of the C28x CPU and to monitor some critical device  
signals. The registers are defined in Table 9-11 .  
Table 9-11. Device Emulation Registers  
ADDRESS  
RANGE  
EALLOW  
PROTECTED  
NAME  
SIZE (x16)  
DESCRIPTION  
Device Configuration Register  
Part ID Register  
0x0880  
0x0881  
DEVICECNF  
PARTID  
2
1
Yes  
0x3D 7FFF  
TMS320F280200PT  
TMS320F280200DA  
TMS320F28027PT  
TMS320F28027DA  
TMS320F28027FPT  
TMS320F28027FDA  
TMS320F28026PT  
TMS320F28026DA  
TMS320F28026FPT  
TMS320F28026FDA  
TMS320F28023PT  
TMS320F28023DA  
TMS320F28022PT  
TMS320F28022DA  
TMS320F28021PT  
TMS320F28021DA  
TMS320F28020PT  
TMS320F28020DA  
TMS320F280200PT/DA  
TMS320F28027PT/DA  
0x00C1  
0x00C0  
0x00CF  
0x00CE  
0x00CF  
0x00CE  
0x00C7  
0x00C6  
0x00C7  
0x00C6  
0x00CD  
0x00CC  
0x00C5  
0x00C4  
0x00CB  
0x00CA  
0x00C3  
0x00C2  
0x00C7  
0x00CF  
No  
CLASSID  
0x0882  
1
Class ID Register  
TMS320F28027FPT/DA 0x00CF  
TMS320F28026PT/DA 0x00C7  
TMS320F28026FPT/DA 0x00C7  
No  
TMS320F28023PT/DA  
TMS320F28022PT/DA  
TMS320F28021PT/DA  
TMS320F28020PT/DA  
0x00CF  
0x00C7  
0x00CF  
0x00C7  
REVID  
0x0883  
1
Revision ID  
Register  
0x0000 - Silicon Rev. 0 - TMS  
0x0001 - Silicon Rev. A - TMS  
0x0002 - Silicon Rev. B - TMS  
No  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.5 VREG/BOR/POR  
Although the core and I/O circuitry operate on two different voltages, these devices have an on-chip voltage  
regulator (VREG) to generate the VDD voltage from the VDDIO supply. This eliminates the cost and space of a  
second external regulator on an application board. Additionally, internal power-on reset (POR) and brown-out  
reset (BOR) circuits monitor both the VDD and VDDIO rails during power-up and run mode.  
9.5.1 On-chip Voltage Regulator (VREG)  
A linear regulator generates the core voltage (VDD) from the VDDIO supply. Therefore, although capacitors are  
required on each VDD pin to stabilize the generated voltage, power need not be supplied to these pins to operate  
the device. Conversely, the VREG can be disabled, should power or redundancy be the primary concern of the  
application.  
9.5.1.1 Using the On-chip VREG  
To use the on-chip VREG, the VREGENZ pin should be tied low and the appropriate recommended operating  
voltage should be supplied to the VDDIO and VDDA pins. In this case, the VDD voltage needed by the core logic  
will be generated by the VREG. Each VDD pin requires on the order of 1.2 μF (minimum) capacitance for proper  
regulation of the VREG. These capacitors should be located as close as possible to the VDD pins. Driving an  
external load with the internal VREG is not supported.  
9.5.1.2 Disabling the On-chip VREG  
To conserve power, it is also possible to disable the on-chip VREG and supply the core logic voltage to the VDD  
pins with a more efficient external regulator. To enable this option, the VREGENZ pin must be tied high.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.5.2 On-chip Power-On Reset (POR) and Brown-Out Reset (BOR) Circuit  
Two on-chip supervisory circuits, the power-on reset (POR) and the brown-out reset (BOR) remove the burden  
of monitoring the VDD and VDDIO supply rails from the application board. The purpose of the POR is to create a  
clean reset throughout the device during the entire power-up procedure. The trip point is a looser, lower trip point  
than the BOR, which watches for dips in the VDD or VDDIO rail during device operation. The POR function is  
present on both VDD and VDDIO rails at all times. After initial device power-up, the BOR function is present on  
VDDIO at all times, and on VDD when the internal VREG is enabled ( VREGENZ pin is tied low). Both functions tie  
the XRS pin low when one of the voltages is below their respective trip point. VDD BOR and overvoltage trip  
points are outside of the recommended operating voltages. Proper device operation cannot be ensured. If  
overvoltage or undervoltage conditions affecting the system is a concern for an application, an external voltage  
supervisor should be added. Figure 9-6 shows the VREG, POR, and BOR. To disable both the VDD and VDDIO  
BOR functions, a bit is provided in the BORCFG register. For details, see the System Control chapter in the  
TMS320F2802x,TMS320F2802xx Technical Reference Manual .  
In  
I/O Pin  
Out  
(Force Hi-Z When High)  
DIR (0 = Input, 1 = Output)  
Internal  
Weak PU  
SYSRS  
SYSCLKOUT  
Deglitch  
Filter  
Sync  
RS  
WDRST  
C28  
Core  
MCLKRS  
PLL  
JTAG  
TCK  
Detect  
Logic  
XRS  
Pin  
+
Clocking  
Logic  
VREGHALT  
WDRST(A)  
PBRS(B)  
POR/BOR  
Generating  
Module  
On-Chip  
Voltage  
Regulator  
(VREG)  
VREGENZ  
A. WDRST is the reset signal from the CPU watchdog.  
B. PBRS is the reset signal from the POR/BOR module.  
Figure 9-6. VREG + POR + BOR + Reset Signal Connectivity  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.6 System Control  
This section describes the oscillator and clocking mechanisms, the watchdog function and the low-power modes.  
Table 9-12. PLL, Clocking, Watchdog, and Low-Power Mode Registers  
NAME  
BORCFG  
ADDRESS  
0x00 0985  
0x00 7010  
0x00 7011  
0x00 7012  
0x00 7013  
0x00 7014  
0x00 7016  
0x00 701B  
0x00 701C  
0x00 701D  
0x00 701E  
0x00 7020  
0x00 7021  
0x00 7022  
0x00 7023  
0x00 7025  
0x00 7029  
SIZE (x16)  
DESCRIPTION(1)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
BOR Configuration Register  
XCLK  
XCLKOUT Control  
PLLSTS  
PLL Status Register  
CLKCTL  
Clock Control Register  
PLLLOCKPRD  
INTOSC1TRIM  
INTOSC2TRIM  
LOSPCP  
PCLKCR0  
PCLKCR1  
LPMCR0  
PCLKCR3  
PLLCR  
PLL Lock Period  
Internal Oscillator 1 Trim Register  
Internal Oscillator 2 Trim Register  
Low-Speed Peripheral Clock Prescaler Register  
Peripheral Clock Control Register 0  
Peripheral Clock Control Register 1  
Low-Power Mode Control Register 0  
Peripheral Clock Control Register 3  
PLL Control Register  
SCSR  
System Control and Status Register  
Watchdog Counter Register  
Watchdog Reset Key Register  
Watchdog Control Register  
WDCNTR  
WDKEY  
WDCR  
(1) All registers in this table are EALLOW protected.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 9-7 shows the various clock domains that are discussed. Figure 9-8 shows the various clock sources  
(both internal and external) that can provide a clock for device operation.  
SYSCLKOUT  
PCLKCR0/1/3  
(System Ctrl Regs)  
LOSPCP  
(System Ctrl Regs)  
C28x Core  
CLKIN  
Clock Enables  
LSPCLK  
Peripheral  
Registers  
SPI-A, SCI-A  
I/O  
I/O  
I/O  
I/O  
PF2  
Clock Enables  
eCAP1  
Peripheral  
Registers  
PF1  
PF1  
PF2  
GPIO  
Mux  
Clock Enables  
ePWM1/.../4  
Clock Enables  
I2C-A  
Peripheral  
Registers  
Peripheral  
Registers  
Clock Enables  
ADC  
Registers  
PF2  
PF0  
16 Ch  
12-Bit ADC  
Analog  
GPIO  
Mux  
Clock Enables  
COMP1/2  
COMP  
Registers  
6
PF1  
A. CLKIN is the clock into the CPU. It is passed out of the CPU as SYSCLKOUT (that is, CLKIN is the same frequency as SYSCLKOUT).  
Figure 9-7. Clock and Reset Domains  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
A. Register loaded from TI OTP-based calibration function.  
B. See Section 9.6.4 for details on missing clock detection.  
Figure 9-8. Clock Tree  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.6.1 Internal Zero Pin Oscillators  
The F2802x devices contain two independent internal zero pin oscillators. By default both oscillators are turned  
on at power up, and internal oscillator 1 is the default clock source at this time. For power savings, unused  
oscillators may be powered down by the user. The center frequency of these oscillators is determined by their  
respective oscillator trim registers, written to in the calibration routine as part of the boot ROM execution. See  
Section 8, Electrical Specifications, for more information on these oscillators.  
9.6.2 Crystal Oscillator Option  
The on-chip crystal oscillator X1 and X2 pins are 1.8-V level signals and must never have 3.3-V level signals  
applied to them. If a system 3.3-V external oscillator is to be used as a clock source, it should be connected to  
the XCLKIN pin only. The X1 pin is not intended to be used as a single-ended clock input, it should be used with  
X2 and a crystal.  
The typical specifications for the external quartz crystal (fundamental mode, parallel resonant) are listed in Table  
9-13. Furthermore, ESR range = 30 to 150 Ω.  
Table 9-13. Typical Specifications for External Quartz Crystal (1)  
FREQUENCY (MHz)  
Rd (Ω)  
2200  
470  
0
CL1 (pF)  
CL2 (pF)  
5
18  
18  
10  
15  
20  
15  
15  
15  
15  
0
12  
12  
(1) Cshunt should be less than or equal to 5 pF.  
XCLKIN/GPIO19/38  
X1  
X2  
Rd  
Turn off  
XCLKIN path  
in CLKCTL  
register  
Crystal  
CL1  
CL2  
A. X1/X2 pins are available in 48-pin package only.  
Figure 9-9. Using the On-chip Crystal Oscillator  
Note  
1. CL1 and CL2 are the total capacitance of the circuit board and components excluding the IC and  
crystal. The value is usually approximately twice the value of the crystal's load capacitance.  
2. The load capacitance of the crystal is described in the crystal specifications of the manufacturers.  
3. TI recommends that customers have the resonator/crystal vendor characterize the operation of  
their device with the MCU chip. The resonator/crystal vendor has the equipment and expertise to  
tune the tank circuit. The vendor can also advise the customer regarding the proper tank  
component values that will produce proper start-up and stability over the entire operating range.  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
XCLKIN/GPIO19/38  
X1  
X2  
NC  
External Clock Signal  
(Toggling 0−V  
)
DDIO  
Figure 9-10. Using a 3.3-V External Oscillator  
9.6.3 PLL-Based Clock Module  
The devices have an on-chip, PLL-based clock module. This module provides all the necessary clocking signals  
for the device, as well as control for low-power mode entry. The PLL has a 4-bit ratio control PLLCR[DIV] to  
select different CPU clock rates. The watchdog module should be disabled before writing to the PLLCR register.  
It can be re-enabled (if need be) after the PLL module has stabilized, which takes  
1 ms. The input clock and PLLCR[DIV] bits should be chosen in such a way that the output frequency of the PLL  
(VCOCLK) is at least 50 MHz.  
Table 9-14. PLL Settings  
SYSCLKOUT (CLKIN)  
PLLCR[DIV] VALUE(2) (3)  
PLLSTS[DIVSEL] = 0 or 1(1)  
OSCCLK/4 (Default)(2)  
(OSCCLK * 1)/4  
PLLSTS[DIVSEL] = 2  
OSCCLK/2  
PLLSTS[DIVSEL] = 3  
OSCCLK  
0000 (PLL bypass)  
0001  
(OSCCLK * 1)/2  
(OSCCLK * 2)/2  
(OSCCLK * 3)/2  
(OSCCLK * 4)/2  
(OSCCLK * 5)/2  
(OSCCLK * 6)/2  
(OSCCLK * 7)/2  
(OSCCLK * 8)/2  
(OSCCLK * 9)/2  
(OSCCLK * 10)/2  
(OSCCLK * 11)/2  
(OSCCLK * 12)/2  
(OSCCLK * 1)/1  
(OSCCLK * 2)/1  
(OSCCLK * 3)/1  
(OSCCLK * 4)/1  
(OSCCLK * 5)/1  
(OSCCLK * 6)/1  
(OSCCLK * 7)/1  
(OSCCLK * 8)/1  
(OSCCLK * 9)/1  
(OSCCLK * 10)/1  
(OSCCLK * 11)/1  
(OSCCLK * 12)/1  
0010  
(OSCCLK * 2)/4  
0011  
(OSCCLK * 3)/4  
0100  
(OSCCLK * 4)/4  
0101  
(OSCCLK * 5)/4  
0110  
(OSCCLK * 6)/4  
0111  
(OSCCLK * 7)/4  
1000  
(OSCCLK * 8)/4  
1001  
(OSCCLK * 9)/4  
1010  
(OSCCLK * 10)/4  
(OSCCLK * 11)/4  
(OSCCLK * 12)/4  
1011  
1100  
(1) By default, PLLSTS[DIVSEL] is configured for /4. (The boot ROM changes this to /1.) PLLSTS[DIVSEL] must be 0 before writing to the  
PLLCR and should be changed only after PLLSTS[PLLLOCKS] = 1.  
(2) The PLL control register (PLLCR) and PLL Status Register (PLLSTS) are reset to their default state by the XRS signal or a watchdog  
reset only. A reset issued by the debugger or the missing clock detect logic has no effect.  
(3) This register is EALLOW protected. See the System Control chapter in the TMS320F2802x,TMS320F2802xx Technical Reference  
Manual for more information.  
Table 9-15. CLKIN Divide Options  
PLLSTS [DIVSEL]  
CLKIN DIVIDE  
0
1
2
3
/4  
/4  
/2  
/1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
The PLL-based clock module provides four modes of operation:  
INTOSC1 (Internal Zero-pin Oscillator 1): This is the on-chip internal oscillator 1. This can provide the clock  
for the Watchdog block, core and CPU-Timer 2  
INTOSC2 (Internal Zero-pin Oscillator 2): This is the on-chip internal oscillator 2. This can provide the clock  
for the Watchdog block, core and CPU-Timer 2. Both INTOSC1 and INTOSC2 can be independently chosen  
for the Watchdog block, core and CPU-Timer 2.  
Crystal/Resonator Operation: The on-chip (crystal) oscillator enables the use of an external crystal/  
resonator attached to the device to provide the time base. The crystal/resonator is connected to the X1/X2  
pins. Some devices may not have the X1/X2 pins. See Section 7.2.1 for details.  
External Clock Source Operation: If the on-chip (crystal) oscillator is not used, this mode allows it to be  
bypassed. The device clocks are generated from an external clock source input on the XCLKIN pin. The  
XCLKIN is multiplexed with GPIO19 or GPIO38 pin. The XCLKIN input can be selected as GPIO19 or  
GPIO38 through the XCLKINSEL bit in XCLK register. The CLKCTL[XCLKINOFF] bit disables this clock input  
(forced low). If the clock source is not used or the respective pins are used as GPIOs, the user should disable  
at boot time.  
Before changing clock sources, ensure that the target clock is present. If a clock is not present, then that clock  
source must be disabled (using the CLKCTL register) before switching clocks.  
Table 9-16. Possible PLL Configuration Modes  
CLKIN AND  
SYSCLKOUT  
PLL MODE  
REMARKS  
PLLSTS[DIVSEL]  
Invoked by the user setting the PLLOFF bit in the PLLSTS register. The PLL block  
is disabled in this mode. This can be useful to reduce system noise and for low-  
power operation. The PLLCR register must first be set to 0x0000 (PLL Bypass)  
before entering this mode. The CPU clock (CLKIN) is derived directly from the  
input clock on either X1/X2, X1 or XCLKIN.  
0, 1  
2
3
OSCCLK/4  
OSCCLK/2  
OSCCLK/1  
PLL Off  
PLL Bypass is the default PLL configuration upon power-up or after an external  
reset ( XRS). This mode is selected when the PLLCR register is set to 0x0000 or  
while the PLL locks to a new frequency after the PLLCR register has been  
modified. In this mode, the PLL is bypassed but the PLL is not turned off.  
0, 1  
2
3
OSCCLK/4  
OSCCLK/2  
OSCCLK/1  
PLL Bypass  
PLL Enable  
0, 1  
2
3
OSCCLK * n/4  
OSCCLK * n/2  
OSCCLK * n/1  
Achieved by writing a nonzero value n into the PLLCR register. Upon writing to the  
PLLCR the device will switch to PLL Bypass mode until the PLL locks.  
9.6.4 Loss of Input Clock (NMI Watchdog Function)  
The 2802x devices may be clocked from either one of the internal zero-pin oscillators (INTOSC1/INTOSC2), the  
on-chip crystal oscillator, or from an external clock input. Regardless of the clock source, in PLL-enabled and  
PLL-bypass mode, if the input clock to the PLL vanishes, the PLL will issue a limp-mode clock at its output. This  
limp-mode clock continues to clock the CPU and peripherals at a typical frequency of 1–5 MHz.  
When the limp mode is activated, a CLOCKFAIL signal is generated that is latched as an NMI interrupt.  
Depending on how the NMIRESETSEL bit has been configured, a reset to the device can be fired immediately or  
the NMI watchdog counter can issue a reset when it overflows. In addition to this, the Missing Clock Status  
(MCLKSTS) bit is set. The NMI interrupt could be used by the application to detect the input clock failure and  
initiate necessary corrective action such as switching over to an alternative clock source (if available) or initiate a  
shut-down procedure for the system.  
If the software does not respond to the clock-fail condition, the NMI watchdog triggers a reset after a  
preprogrammed time interval. Figure 9-11 shows the interrupt mechanisms involved.  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
NMIFLG[NMINT]  
NMIFLGCLR[NMINT]  
Clear  
Latch  
Set  
Clear  
XRS  
Generate  
NMIFLG[CLOCKFAIL]  
Clear  
Latch  
1
0
0
Interrupt  
Pulse  
When  
NMIFLGCLR[CLOCKFAIL]  
CLOCKFAIL  
NMINT  
SYNC?  
Input = 1  
Set  
Clear  
SYSCLKOUT  
NMICFG[CLOCKFAIL]  
NMIFLGFRC[CLOCKFAIL]  
XRS  
SYSCLKOUT  
SYSRS  
NMIWDPRD[15:0]  
NMIWDCNT[15:0]  
See System  
Control Section  
NMI Watchdog  
NMIRS  
Figure 9-11. NMI Watchdog  
9.6.5 CPU Watchdog Module  
The CPU watchdog module on the 2802x device is similar to the one used on the 281x/280x/283xx devices. This  
module generates an output pulse, 512 oscillator clocks wide (OSCCLK), whenever the 8-bit watchdog up  
counter has reached its maximum value. To prevent this, the user must disable the counter or the software must  
periodically write a 0x55 + 0xAA sequence into the watchdog key register that resets the watchdog counter.  
Figure 9-12 shows the various functional blocks within the watchdog module.  
Normally, when the input clocks are present, the CPU watchdog counter decrements to initiate a CPU watchdog  
reset or WDINT interrupt. However, when the external input clock fails, the CPU watchdog counter stops  
decrementing (that is, the watchdog counter does not change with the limp-mode clock).  
Note  
The CPU watchdog is different from the NMI watchdog. It is the legacy watchdog that is present in all  
28x devices.  
Note  
Applications in which the correct CPU operating frequency is absolutely critical should implement a  
mechanism by which the MCU will be held in reset, should the input clocks ever fail. For example, an  
R-C circuit may be used to trigger the XRS pin of the MCU, should the capacitor ever get fully  
charged. An I/O pin may be used to discharge the capacitor on a periodic basis to prevent it from  
getting fully charged. Such a circuit would also help in detecting failure of the flash memory.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
A. The WDRST signal is driven low for 512 OSCCLK cycles.  
Figure 9-12. CPU Watchdog Module  
The WDINT signal enables the watchdog to be used as a wakeup from IDLE/STANDBY mode.  
In STANDBY mode, all peripherals are turned off on the device. The only peripheral that remains functional is  
the CPU watchdog. This module will run off OSCCLK. The WDINT signal is fed to the LPM block so that it can  
wake the device from STANDBY (if enabled). See Section 9.7, Low-power Modes Block, for more details.  
In IDLE mode, the WDINT signal can generate an interrupt to the CPU, through the PIE, to take the CPU out of  
IDLE mode.  
In HALT mode, the CPU watchdog can be used to wake up the device through a device reset.  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.7 Low-power Modes Block  
Table 9-17 summarizes the various modes.  
Table 9-17. Low-power Modes  
MODE  
LPMCR0(1:0)  
OSCCLK  
CLKIN  
SYSCLKOUT  
EXIT(1)  
XRS, CPU watchdog interrupt, any  
enabled interrupt  
IDLE  
00  
On  
On  
On  
On  
XRS, CPU watchdog interrupt, GPIO  
Port A signal, debugger(2)  
STANDBY  
HALT(3)  
01  
1X  
Off  
Off  
Off  
Off  
(CPU watchdog still running)  
Off  
(on-chip crystal oscillator and PLL  
turned off, zero-pin oscillator and  
CPU watchdog state dependent  
on user code.)  
XRS, GPIO Port A signal, debugger(2)  
CPU watchdog  
,
(1) The EXIT column lists which signals or under what conditions the low-power mode is exited. A low signal, on any of the signals, exits  
the low-power condition. This signal must be kept low long enough for an interrupt to be recognized by the device. Otherwise, the low-  
power mode will not be exited and the device will go back into the indicated low-power mode.  
(2) The JTAG port can still function even if the CPU clock (CLKIN) is turned off.  
(3) The WDCLK must be active for the device to go into HALT mode.  
The various low-power modes operate as follows:  
IDLE Mode:  
This mode is exited by any enabled interrupt that is recognized by the processor. The LPM block  
performs no tasks during this mode as long as the LPMCR0(LPM) bits are set to 0,0.  
STANDBY Mode:  
Any GPIO port A signal (GPIO[31:0]) can wake the device from STANDBY mode. The user must  
select which signal(s) will wake the device in the GPIOLPMSEL register. The selected signal(s) are  
also qualified by the OSCCLK before waking the device. The number of OSCCLKs is specified in the  
LPMCR0 register.  
HALT Mode:  
CPU watchdog, XRS, and any GPIO port A signal (GPIO[31:0]) can wake the device from HALT  
mode. The user selects the signal in the GPIOLPMSEL register.  
Note  
The low-power modes do not affect the state of the output pins (PWM pins included). They will be in  
whatever state the code left them in when the IDLE instruction was executed. See the System Control  
chapter in the TMS320F2802x,TMS320F2802xx Technical Reference Manual for more details.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.8 Interrupts  
Figure 9-13 shows how the various interrupt sources are multiplexed.  
Peripherals  
(SPI, SCI, ePWM, I2C, HRPWM, eCAP, ADC)  
WDINT  
Watchdog  
WAKEINT  
Sync  
LPMINT  
Low-Power Modes  
SYSCLKOUT  
Interrupt Control  
XINT1CR(15:0)  
XINT1CTR(15:0)  
XINT1  
XINT1  
GPIOXINT1SEL(4:0)  
XINT2SOC  
ADC  
INT1  
to  
INT12  
XINT2  
XINT2  
Interrupt Control  
XINT2CR(15:0)  
XINT2CTR(15:0)  
C28  
Core  
GPIOXINT2SEL(4:0)  
GPIO0.int  
XINT3  
TINT0  
XINT3  
GPIO  
MUX  
Interrupt Control  
XINT3CR(15:0)  
XINT3CTR(15:0)  
GPIO31.int  
GPIOXINT3SEL(4:0)  
CPU TIMER 0  
CPU TIMER 1  
CPU TIMER 2  
TINT1  
TINT2  
INT13  
INT14  
CPUTMR2CLK  
CLOCKFAIL  
NMIRS  
System Control  
(See the System  
Control section.)  
NMI interrupt with watchdog function  
(See the NMI Watchdog section.)  
NMI  
Figure 9-13. External and PIE Interrupt Sources  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
Eight PIE block interrupts are grouped into one CPU interrupt. In total, 12 CPU interrupt groups, with 8 interrupts  
per group equals 96 possible interrupts. Table 9-18 shows the interrupts used by 2802x devices.  
The TRAP #VectorNumber instruction transfers program control to the interrupt service routine corresponding to  
the vector specified. The TRAP #0 instruction attempts to transfer program control to the address pointed to by  
the reset vector. The PIE vector table does not, however, include a reset vector. Therefore, the TRAP #0  
instruction should not be used when the PIE is enabled. Doing so will result in undefined behavior.  
When the PIE is enabled, the TRAP #1 to TRAP #12 instructions will transfer program control to the interrupt  
service routine corresponding to the first vector within the PIE group. For example: the TRAP #1 instruction  
fetches the vector from INT1.1, the TRAP #2 instruction fetches the vector from INT2.1, and so forth.  
IFR[12:1]  
IER[12:1]  
INTM  
INT1  
INT2  
1
CPU  
MUX  
0
INT11  
INT12  
Global  
Enable  
(Flag)  
(Enable)  
INTx.1  
INTx.2  
INTx.3  
INTx.4  
INTx.5  
From  
Peripherals  
or  
External  
Interrupts  
INTx  
MUX  
INTx.6  
INTx.7  
INTx.8  
PIEACKx  
(Enable/Flag)  
(Enable)  
(Flag)  
PIEIERx[8:1]  
PIEIFRx[8:1]  
Figure 9-14. Multiplexing of Interrupts Using the PIE Block  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-18. PIE MUXed Peripheral Interrupt Vector Table  
INTx.8(1)  
WAKEINT  
(LPM/WD)  
0xD4E  
Reserved  
INTx.7  
TINT0  
(TIMER 0)  
0xD4C  
Reserved  
INTx.6  
ADCINT9  
(ADC)  
0xD4A  
Reserved  
INTx.5  
XINT2  
Ext. int. 2  
0xD48  
Reserved  
INTx.4  
XINT1  
Ext. int. 1  
0xD46  
EPWM4_TZINT  
(ePWM4)  
0xD56  
EPWM4_INT  
(ePWM4)  
0xD66  
Reserved  
INTx.3  
Reserved  
INTx.2  
ADCINT2  
(ADC)  
INTx.1  
ADCINT1  
(ADC)  
INT1.y  
INT2.y  
INT3.y  
INT4.y  
INT5.y  
INT6.y  
INT7.y  
INT8.y  
INT9.y  
INT10.y  
INT11.y  
INT12.y  
0xD44  
EPWM3_TZINT  
(ePWM3)  
0xD54  
EPWM3_INT  
(ePWM3)  
0xD64  
Reserved  
0xD42  
0xD40  
EPWM2_TZINT  
(ePWM2)  
0xD52  
EPWM1_TZINT  
(ePWM1)  
0xD50  
0xD5E  
Reserved  
0xD5C  
Reserved  
0xD5A  
Reserved  
0xD58  
Reserved  
EPWM2_INT  
(ePWM2)  
0xD62  
EPWM1_INT  
(ePWM1)  
0xD60  
0xD6E  
Reserved  
0xD6C  
Reserved  
0xD6A  
Reserved  
0xD68  
Reserved  
Reserved  
ECAP1_INT  
(eCAP1)  
0xD70  
0xD7E  
Reserved  
0xD7C  
Reserved  
0xD7A  
Reserved  
0xD78  
Reserved  
0xD76  
Reserved  
0xD74  
Reserved  
0xD72  
Reserved  
Reserved  
0xD8E  
Reserved  
0xD8C  
Reserved  
0xD8A  
Reserved  
0xD88  
Reserved  
0xD86  
Reserved  
0xD84  
Reserved  
0xD82  
0xD80  
SPITXINTA  
(SPI-A)  
0xD92  
SPIRXINTA  
(SPI-A)  
0xD90  
0xD9E  
Reserved  
0xD9C  
Reserved  
0xD9A  
Reserved  
0xD98  
Reserved  
0xD96  
Reserved  
0xD94  
Reserved  
Reserved  
Reserved  
0xDAE  
Reserved  
0xDAC  
Reserved  
0xDAA  
Reserved  
0xDA8  
Reserved  
0xDA6  
Reserved  
0xDA4  
Reserved  
0xDA2  
0xDA0  
I2CINT2A  
(I2C-A)  
0xDB2  
I2CINT1A  
(I2C-A)  
0xDBE  
Reserved  
0xDBC  
Reserved  
0xDBA  
Reserved  
0xDB8  
Reserved  
0xDB6  
Reserved  
0xDB4  
Reserved  
0xDB0  
SCITXINTA  
(SCI-A)  
0xDC2  
SCIRXINTA  
(SCI-A)  
0xDC0  
0xDCE  
ADCINT8  
(ADC)  
0xDDE  
Reserved  
0xDCC  
ADCINT7  
(ADC)  
0xDDC  
Reserved  
0xDCA  
ADCINT6  
(ADC)  
0xDDA  
Reserved  
0xDC8  
ADCINT5  
(ADC)  
0xDD8  
Reserved  
0xDC6  
ADCINT4  
(ADC)  
0xDC4  
ADCINT3  
(ADC)  
0xDD4  
Reserved  
ADCINT2  
(ADC)  
ADCINT1  
(ADC)  
0xDD6  
Reserved  
0xDD2  
0xDD0  
Reserved  
Reserved  
0xDEE  
Reserved  
0xDEC  
Reserved  
0xDEA  
Reserved  
0xDE8  
Reserved  
0xDE6  
Reserved  
0xDE4  
Reserved  
0xDE2  
0xDE0  
Reserved  
XINT3  
Ext. Int. 3  
0xDF0  
0xDFE  
0xDFC  
0xDFA  
0xDF8  
0xDF6  
0xDF4  
0xDF2  
(1) Out of 96 possible interrupts, some interrupts are not used. These interrupts are reserved for future devices. These interrupts can be  
used as software interrupts if they are enabled at the PIEIFRx level, provided none of the interrupts within the group is being used by a  
peripheral. Otherwise, interrupts coming in from peripherals may be lost by accidentally clearing their flag while modifying the PIEIFR.  
To summarize, there are two safe cases when the reserved interrupts could be used as software interrupts:  
a. No peripheral within the group is asserting interrupts.  
b. No peripheral interrupts are assigned to the group (for example, PIE groups 5, 7, or 11) .  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
Table 9-19. PIE Configuration and Control Registers  
NAME  
PIECTRL  
PIEACK  
PIEIER1  
PIEIFR1  
PIEIER2  
PIEIFR2  
PIEIER3  
PIEIFR3  
PIEIER4  
PIEIFR4  
PIEIER5  
PIEIFR5  
PIEIER6  
PIEIFR6  
PIEIER7  
PIEIFR7  
PIEIER8  
PIEIFR8  
PIEIER9  
PIEIFR9  
PIEIER10  
PIEIFR10  
PIEIER11  
PIEIFR11  
PIEIER12  
PIEIFR12  
Reserved  
ADDRESS  
0x0CE0  
0x0CE1  
0x0CE2  
0x0CE3  
0x0CE4  
0x0CE5  
0x0CE6  
0x0CE7  
0x0CE8  
0x0CE9  
0x0CEA  
0x0CEB  
0x0CEC  
0x0CED  
0x0CEE  
0x0CEF  
0x0CF0  
0x0CF1  
0x0CF2  
0x0CF3  
0x0CF4  
0x0CF5  
0x0CF6  
0x0CF7  
0x0CF8  
0x0CF9  
SIZE (x16)  
DESCRIPTION(1)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
PIE, Control Register  
PIE, Acknowledge Register  
PIE, INT1 Group Enable Register  
PIE, INT1 Group Flag Register  
PIE, INT2 Group Enable Register  
PIE, INT2 Group Flag Register  
PIE, INT3 Group Enable Register  
PIE, INT3 Group Flag Register  
PIE, INT4 Group Enable Register  
PIE, INT4 Group Flag Register  
PIE, INT5 Group Enable Register  
PIE, INT5 Group Flag Register  
PIE, INT6 Group Enable Register  
PIE, INT6 Group Flag Register  
PIE, INT7 Group Enable Register  
PIE, INT7 Group Flag Register  
PIE, INT8 Group Enable Register  
PIE, INT8 Group Flag Register  
PIE, INT9 Group Enable Register  
PIE, INT9 Group Flag Register  
PIE, INT10 Group Enable Register  
PIE, INT10 Group Flag Register  
PIE, INT11 Group Enable Register  
PIE, INT11 Group Flag Register  
PIE, INT12 Group Enable Register  
PIE, INT12 Group Flag Register  
Reserved  
0x0CFA –  
0x0CFF  
(1) The PIE configuration and control registers are not protected by EALLOW mode. The PIE vector  
table is protected.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.8.1 External Interrupts  
Table 9-20. External Interrupt Registers  
NAME  
XINT1CR  
XINT2CR  
XINT3CR  
XINT1CTR  
XINT2CTR  
XINT3CTR  
ADDRESS  
0x00 7070  
0x00 7071  
0x00 7072  
0x00 7078  
0x00 7079  
0x00 707A  
SIZE (x16)  
DESCRIPTION  
XINT1 configuration register  
XINT2 configuration register  
XINT3 configuration register  
XINT1 counter register  
1
1
1
1
1
1
XINT2 counter register  
XINT3 counter register  
Each external interrupt can be enabled/disabled or qualified using positive, negative, or both positive and  
negative edge. For more information, see the System Control chapter in the TMS320F2802x,TMS320F2802xx  
Technical Reference Manual .  
9.8.1.1 External Interrupt Electrical Data/Timing  
9.8.1.1.1 External Interrupt Timing Requirements  
MIN(1)  
1tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
Synchronous  
With qualifier  
(2)  
tw(INT)  
Pulse duration, INT input low/high  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 9.9.10.1.2.1.  
(2) This timing is applicable to any GPIO pin configured for ADCSOC functionality.  
9.8.1.1.2 External Interrupt Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN(1)  
MAX  
tw(IQSW) + 12tc(SCO)  
UNIT  
td(INT)  
Delay time, INT low/high to interrupt-vector fetch  
cycles  
(1) For an explanation of the input qualifier parameters, see Section 9.9.10.1.2.1.  
t
w(INT)  
XINT1, XINT2, XINT3  
t
d(INT)  
Address bus  
(internal)  
Interrupt Vector  
Figure 9-15. External Interrupt Timing  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.9 Peripherals  
9.9.1 Analog Block  
A 12-bit ADC core is implemented that has different timings than the 12-bit ADC used on F280x/F2833x. The  
ADC wrapper is modified to incorporate the new timings and also other enhancements to improve the timing  
control of start of conversions. Figure 9-16 shows the interaction of the analog module with the rest of the  
F2802x system.  
For more information on the ADC, see the Analog-to-Digital Converter and Comparator chapter in the  
TMS320F2802x,TMS320F2802xx Technical Reference Manual .  
(3.3 V) VDDA  
(Agnd) VSSA  
VREFLO  
38-Pin  
VDDA  
48-Pin  
VDDA  
VREFLO VREFLO  
Tied To Tied To  
Interface Reference  
Diff  
VSSA  
VSSA  
VREFHI VREFHI  
Tied To Tied To  
VREFHI  
A0  
B0  
A0  
A2  
A4  
A6  
A0  
A1  
A2  
A3  
A4  
A1  
B1  
COMP1OUT  
A2  
AIO2  
AIO10  
10-Bit  
DAC  
Comp1  
Comp2  
B2  
A6  
A7  
A3  
B3  
ADC  
COMP2OUT  
(See Note A)  
A4  
B4  
B1  
B2  
B3  
B4  
AIO4  
AIO12  
10-Bit  
DAC  
B2  
B4  
B6  
B5  
B6  
B7  
Temperature Sensor  
A5  
A6  
Signal Pinout  
AIO6  
AIO14  
B6  
A7  
B7  
A. Comparator 2 is available only on the 48-pin PT package.  
Figure 9-16. Analog Pin Configurations  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.9.1.1 Analog-to-Digital Converter (ADC)  
9.9.1.1.1 Features  
The core of the ADC contains a single 12-bit converter fed by two sample-and-hold circuits. The sample-and-  
hold circuits can be sampled simultaneously or sequentially. These, in turn, are fed by a total of up to 13 analog  
input channels. The converter can be configured to run with an internal band-gap reference to create true-  
voltage based conversions or with a pair of external voltage references (VREFHI/VREFLO) to create ratiometric-  
based conversions.  
Contrary to previous ADC types, this ADC is not sequencer-based. It is easy for the user to create a series of  
conversions from a single trigger. However, the basic principle of operation is centered around the configurations  
of individual conversions, called SOCs, or Start-Of-Conversions.  
Functions of the ADC module include:  
12-bit ADC core with built-in dual sample-and-hold (S/H)  
Simultaneous sampling or sequential sampling modes  
Full range analog input: 0 V to 3.3 V fixed, or VREFHI/VREFLO ratiometric. The digital value of the input analog  
voltage is derived by:  
– Internal Reference (VREFLO = VSSA. VREFHI must not exceed VDDA when using either internal or external  
reference modes.)  
Digital Value = 0,  
when input £ 0 V  
Input Analog Voltage -  
VREFLO  
Digital Value = 4096 ´  
when 0 V < input < 3.3 V  
3.3  
Digital Value = 4095,  
when input ³ 3.3 V  
– External Reference (VREFHI/VREFLO connected to external references. VREFHI must not exceed VDDA when  
using either internal or external reference modes.)  
Digital Value = 0,  
when input £ 0 V  
Input Analog Voltage -  
VREFLO  
Digital Value = 4096 ´  
when 0 V < input <  
VREFHI  
-
VREFHI VREFLO  
Digital Value = 4095,  
when input ³  
VREFHI  
Up to 16-channel, multiplexed inputs  
16 SOCs, configurable for trigger, sample window, and channel  
16 result registers (individually addressable) to store conversion values  
Multiple trigger sources  
– S/W – software immediate start  
– ePWM 1–4  
– GPIO XINT2  
– CPU Timers 0/1/2  
– ADCINT1/2  
9 flexible PIE interrupts, can configure interrupt request after any conversion  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
Table 9-21. ADC Configuration and Control Registers  
EALLOW  
PROTECTE  
D
SIZE  
(x16)  
REGISTER NAME  
ADDRESS  
DESCRIPTION  
ADCCTL1  
0x7100  
0x7101  
0x7104  
0x7105  
0x7106  
0x7107  
0x7108  
0x7109  
0x710A  
0x710B  
0x710C  
0x7110  
0x7112  
0x7114  
0x7115  
0x7118  
0x711A  
0x711C  
0x711E  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Yes  
Yes  
No  
Control 1 Register  
Control 2 Register  
Interrupt Flag Register  
ADCCTL2  
ADCINTFLG  
ADCINTFLGCLR  
ADCINTOVF  
No  
Interrupt Flag Clear Register  
No  
Interrupt Overflow Register  
ADCINTOVFCLR  
INTSEL1N2  
No  
Interrupt Overflow Clear Register  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Interrupt 1 and 2 Selection Register  
INTSEL3N4  
Interrupt 3 and 4 Selection Register  
INTSEL5N6  
Interrupt 5 and 6 Selection Register  
INTSEL7N8  
Interrupt 7 and 8 Selection Register  
INTSEL9N10  
Interrupt 9 Selection Register (reserved Interrupt 10 Selection)  
SOC Priority Control Register  
SOCPRICTL  
ADCSAMPLEMODE  
ADCINTSOCSEL1  
ADCINTSOCSEL2  
ADCSOCFLG1  
ADCSOCFRC1  
ADCSOCOVF1  
ADCSOCOVFCLR1  
Sampling Mode Register  
Interrupt SOC Selection 1 Register (for 8 channels)  
Interrupt SOC Selection 2 Register (for 8 channels)  
SOC Flag 1 Register (for 16 channels)  
SOC Force 1 Register (for 16 channels)  
SOC Overflow 1 Register (for 16 channels)  
SOC Overflow Clear 1 Register (for 16 channels)  
SOC0 Control Register to SOC15 Control Register  
No  
No  
No  
ADCSOC0CTL to  
ADCSOC15CTL  
0x7120 –  
0x712F  
Yes  
ADCREFTRIM  
ADCOFFTRIM  
COMPHYSTCTL  
ADCREV  
0x7140  
0x7141  
0x714C  
0x714F  
1
1
1
1
Yes  
Yes  
Yes  
No  
Reference Trim Register  
Offset Trim Register  
Comparator Hysteresis Control Register  
Revision Register  
Table 9-22. ADC Result Registers (Mapped to PF0)  
SIZE  
(x16)  
EALLOW  
PROTECTED  
REGISTER NAME  
ADDRESS  
DESCRIPTION  
ADCRESULT0 to ADCRESULT15  
0xB00 to 0xB0F  
1
No  
ADC Result 0 Register to ADC Result 15  
Register  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
0-Wait  
Result  
Registers  
PF0 (CPU)  
PF2 (CPU)  
SYSCLKOUT  
ADCENCLK  
ADCINT 1  
PIE  
ADCINT 9  
TINT 0  
TINT 1  
TINT 2  
ADC  
Core  
12-Bit  
CPUTIMER 0  
CPUTIMER 1  
CPUTIMER 2  
AIO  
MUX  
ADC  
Channels  
ADCTRIG 1  
ADCTRIG 2  
ADCTRIG 3  
XINT 2SOC  
XINT 2  
ePWM 1  
ePWM 2  
ePWM 3  
ePWM 4  
ADCTRIG 4  
SOCA 1  
SOCB 1  
SOCA 2  
SOCB 2  
SOCA 3  
SOCB 3  
SOCA 4  
SOCB 4  
ADCTRIG 5  
ADCTRIG 6  
ADCTRIG 7  
ADCTRIG 8  
ADCTRIG 9  
ADCTRIG 10  
ADCTRIG 11  
ADCTRIG 12  
Figure 9-17. ADC Connections  
ADC Connections if the ADC is Not Used  
TI recommends keeping the connections for the analog power pins, even if the ADC is not used. Following is a  
summary of how the ADC pins should be connected, if the ADC is not used in an application:  
VDDA – Connect to VDDIO  
VSSA – Connect to VSS  
VREFLO – Connect to VSS  
ADCINAn, ADCINBn, VREFHI – Connect to VSSA  
When the ADC module is used in an application, unused ADC input pins should be connected to analog ground  
(VSSA).  
Note  
Unused ADCIN pins that are multiplexed with AIO function should not be directly connected to analog  
ground. They should be grounded through a 1-kΩ resistor. This is to prevent an errant code from  
configuring these pins as AIO outputs and driving grounded pins to a logic-high state.  
When the ADC is not used, be sure that the clock to the ADC module is not turned on to realize power savings.  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.9.1.1.2 ADC Start-of-Conversion Electrical Data/Timing  
9.9.1.1.2.1 External ADC Start-of-Conversion Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
tw(ADCSOCL)  
Pulse duration, ADCSOCxO low  
32tc(HCO)  
cycles  
tw(ADCSOCL)  
ADCSOCAO  
or  
ADCSOCBO  
Figure 9-18. ADCSOCAO or ADCSOCBO Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
UNIT  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.9.1.1.3 On-Chip Analog-to-Digital Converter (ADC) Electrical Data/Timing  
9.9.1.1.3.1 ADC Electrical Characteristics  
PARAMETER  
MIN  
TYP  
MAX  
DC SPECIFICATIONS  
Resolution  
12  
0.001  
7
Bits  
ADC clock  
60-MHz device  
28027/26/23/22  
28021/20/200  
60  
64  
64  
MHz  
Sample Window  
ADC  
Clocks  
14  
ACCURACY  
INL (Integral nonlinearity) at ADC Clock ≤ 30 MHz(1)  
–4  
–1  
4
1
LSB  
LSB  
DNL (Differential nonlinearity) at ADC Clock ≤ 30 MHz,  
no missing codes  
Offset error (2)  
Executing Device_Cal  
function  
–20  
–4  
0
0
20  
4
LSB  
Executing periodic self-  
recalibration(3)  
Overall gain error with internal reference  
Overall gain error with external reference  
Channel-to-channel offset variation  
Channel-to-channel gain variation  
ADC temperature coefficient with internal reference  
ADC temperature coefficient with external reference  
VREFLO  
–60  
–40  
–4  
60  
40  
4
LSB  
LSB  
LSB  
–4  
4
LSB  
–50  
–20  
ppm/°C  
ppm/°C  
µA  
–100  
100  
VREFHI  
µA  
ANALOG INPUT  
Analog input voltage with internal reference  
Analog input voltage with external reference  
VREFLO input voltage(4)  
0
VREFLO  
VSSA  
3.3  
VREFHI  
VSSA  
V
V
V
VREFHI input voltage(5)  
with VREFLO = VSSA  
1.98  
VDDA  
V
Input capacitance  
5
pF  
μA  
Input leakage current  
±5  
(1) INL will degrade when the ADC input voltage goes above VDDA  
.
(2) 1 LSB has the weighted value of full-scale range (FSR)/4096. FSR is 3.3 V with internal reference and VREFHI - VREFLO for external  
reference.  
(3) Periodic self-recalibration will remove system-level and temperature dependencies on the ADC zero offset error. This can be  
performed as needed in the application without sacrificing an ADC channel by using the procedure listed in the "ADC Zero Offset  
Calibration" section of the Analog-to-Digital Converter and Comparator chapter in the TMS320F2802x,TMS320F2802xx Technical  
Reference Manual .  
(4) VREFLO is always connected to VSSA  
.
(5) VREFHI must not exceed VDDA when using either internal or external reference modes. Because VREFHI is tied to ADCINA0 , the input  
signal on ADCINA0 must not exceed VDDA  
.
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.9.1.1.3.2 ADC Power Modes  
ADC OPERATING MODE  
CONDITIONS  
IDDA  
UNITS  
ADC Clock Enabled  
Band gap On (ADCBGPWD = 1)  
Reference On (ADCREFPWD = 1)  
ADC Powered Up (ADCPWDN = 1)  
Mode A – Operating Mode  
Mode B – Quick Wake Mode  
Mode C – Comparator-Only Mode  
Mode D – Off Mode  
13  
mA  
ADC Clock Enabled  
Band gap On (ADCBGPWD = 1)  
Reference On (ADCREFPWD = 1)  
ADC Powered Up (ADCPWDN = 0)  
4
mA  
mA  
mA  
ADC Clock Enabled  
Band gap On (ADCBGPWD = 1)  
Reference On (ADCREFPWD = 0)  
ADC Powered Up (ADCPWDN = 0)  
1.5  
ADC Clock Enabled  
Band gap On (ADCBGPWD = 0)  
Reference On (ADCREFPWD = 0)  
ADC Powered Up (ADCPWDN = 0)  
0.075  
9.9.1.1.3.3 Internal Temperature Sensor  
9.9.1.1.3.3.1 Temperature Sensor Coefficient  
PARAMETER(1)  
MIN  
TYP  
0.18(3) (2)  
1750  
MAX  
UNIT  
°C/LSB  
LSB  
TSLOPE  
Degrees C of temperature movement per measured ADC LSB change  
of the temperature sensor  
TOFFSET  
ADC output at 0°C of the temperature sensor  
(1) The temperature sensor slope and offset are given in terms of ADC LSBs using the internal reference of the ADC. Values must be  
adjusted accordingly in external reference mode to the external reference voltage.  
(2) Output of the temperature sensor (in terms of LSBs) is sign-consistent with the direction of the temperature movement. Increasing  
temperatures will give increasing ADC values relative to an initial value; decreasing temperatures will give decreasing ADC values  
relative to an initial value.  
(3) ADC temperature coeffieicient is accounted for in this specification  
9.9.1.1.3.4 ADC Power-Up Control Bit Timing  
9.9.1.1.3.4.1 ADC Power-Up Delays  
PARAMETER(1)  
MIN  
MAX  
UNIT  
td(PWD)  
Delay time for the ADC to be stable after power up  
1
ms  
(1) Timings maintain compatibility to the ADC module. The 2802x ADC supports driving all 3 bits at the same time td(PWD) ms before first  
conversion.  
ADCPWDN/  
ADCBGPWD/  
ADCREFPWD/  
ADCENABLE  
td(PWD)  
Request for ADC  
Conversion  
Figure 9-19. ADC Conversion Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
Ron  
3.4 kW  
Switch  
Rs  
ADCIN  
Cp  
Ch  
Source  
Signal  
ac  
5 pF  
1.6 pF  
28x DSP  
Typical Values of the Input Circuit Components:  
Switch Resistance (Ron): 3.4 kW  
Sampling Capacitor (Ch): 1.6 pF  
Parasitic Capacitance (Cp): 5 pF  
Source Resistance (Rs): 50 W  
Figure 9-20. ADC Input Impedance Model  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.9.1.1.3.5 ADC Sequential and Simultaneous Timings  
Analog Input  
SOC0 Sample  
Window  
SOC1 Sample  
Window  
SOC2 Sample  
Window  
0
2
9
15  
22 24  
37  
ADCCLK  
ADCCTL 1.INTPULSEPOS  
ADCSOCFLG 1.SOC0  
ADCSOCFLG 1.SOC1  
ADCSOCFLG 1.SOC2  
S/H Window Pulse to Core  
ADCRESULT 0  
SOC0  
SOC1  
SOC2  
Result 0 Latched  
2 ADCCLKs  
ADCRESULT 1  
EOC0 Pulse  
EOC1 Pulse  
ADCINTFLG.ADCINTx  
Minimum  
7 ADCCLKs  
Conversion 0  
13 ADC Clocks  
1 ADCCLK  
6
Minimum  
ADCCLKs 7 ADCCLKs  
Conversion 1  
13 ADC Clocks  
Figure 9-21. Timing Example for Sequential Mode / Late Interrupt Pulse  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
Analog Input  
SOC0 Sample  
Window  
SOC1 Sample  
Window  
SOC2 Sample  
Window  
0
2
9
15  
22 24  
37  
ADCCLK  
ADCCTL1.INTPULSEPOS  
ADCSOCFLG 1.SOC0  
ADCSOCFLG 1.SOC1  
ADCSOCFLG 1.SOC2  
S/H Window Pulse to Core  
ADCRESULT 0  
SOC0  
SOC1  
SOC2  
Result 0 Latched  
ADCRESULT 1  
EOC0 Pulse  
EOC1 Pulse  
EOC2 Pulse  
ADCINTFLG.ADCINTx  
Minimum  
7 ADCCLKs  
Conversion 0  
13 ADC Clocks  
2 ADCCLKs  
6
Minimum  
ADCCLKs 7 ADCCLKs  
Conversion 1  
13 ADC Clocks  
Figure 9-22. Timing Example for Sequential Mode / Early Interrupt Pulse  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
Analog Input A  
Analog Input B  
SOC0 Sample  
A Window  
SOC2 Sample  
A Window  
SOC0 Sample  
B Window  
SOC2 Sample  
B Window  
0
2
9
22 24  
37  
50  
ADCCLK  
ADCCTL1.INTPULSEPOS  
ADCSOCFLG 1.SOC0  
ADCSOCFLG 1.SOC1  
ADCSOCFLG 1.SOC2  
S/H Window Pulse to Core  
ADCRESULT 0  
SOC0 (A/B)  
SOC2 (A/B)  
2 ADCCLKs  
Result 0 (A) Latched  
ADCRESULT 1  
Result 0 (B) Latched  
ADCRESULT 2  
EOC0 Pulse  
EOC1 Pulse  
1 ADCCLK  
EOC2 Pulse  
ADCINTFLG .ADCINTx  
Minimum  
7 ADCCLKs  
Conversion 0 (A)  
13 ADC Clocks  
Conversion 0 (B)  
13 ADC Clocks  
2 ADCCLKs  
19  
ADCCLKs  
Minimum  
7 ADCCLKs  
Conversion 1 (A)  
13 ADC Clocks  
Figure 9-23. Timing Example for Simultaneous Mode / Late Interrupt Pulse  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
Analog Input A  
SOC0 Sample  
A Window  
SOC2 Sample  
A Window  
Analog Input B  
SOC0 Sample  
B Window  
SOC2 Sample  
B Window  
0
2
9
22 24  
37  
50  
ADCCLK  
ADCCTL1.INTPULSEPOS  
ADCSOCFLG1.SOC0  
ADCSOCFLG1.SOC1  
ADCSOCFLG1.SOC2  
S/H Window Pulse to Core  
ADCRESULT 0  
SOC0 (A/B)  
SOC2 (A/B)  
Result 0 (A) Latched  
2 ADCCLKs  
Result 0 (B) Latched  
ADCRESULT 1  
ADCRESULT 2  
EOC0 Pulse  
EOC1 Pulse  
EOC2 Pulse  
ADCINTFLG.ADCINTx  
Conversion 0 (A)  
13 ADC Clocks  
Conversion 0 (B)  
13 ADC Clocks  
Minimum  
2 ADCCLKs  
7 ADCCLKs  
19  
Minimum  
7 ADCCLKs  
Conversion 1 (A)  
13 ADC Clocks  
ADCCLKs  
Figure 9-24. Timing Example for Simultaneous Mode / Early Interrupt Pulse  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.9.1.2 ADC MUX  
To COMPy A or B input  
To ADC Channel X  
Logic implemented in GPIO MUX block  
AIOx Pin  
SYSCLK  
AIOxIN  
1
AIOxINE  
AIODAT Reg  
(Read)  
SYNC  
0
AIODAT Reg  
(Latch)  
AIOMUX 1 Reg  
AIOSET,  
AIOCLEAR,  
AIOTOGGLE  
Regs  
AIODIR Reg  
(Latch)  
1
(0 = Input, 1 = Output)  
0
0
Figure 9-25. AIOx Pin Multiplexing  
The ADC channel and Comparator functions are always available. The digital I/O function is available only when  
the respective bit in the AIOMUX1 register is 0. In this mode, reading the AIODAT register reflects the actual pin  
state.  
The digital I/O function is disabled when the respective bit in the AIOMUX1 register is 1. In this mode, reading  
the AIODAT register reflects the output latch of the AIODAT register and the input digital I/O buffer is disabled to  
prevent analog signals from generating noise.  
On reset, the digital function is disabled. If the pin is used as an analog input, users should keep the AIO  
function disabled for that pin.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.9.1.3 Comparator Block  
Figure 9-26 shows the interaction of the Comparator modules with the rest of the system.  
COMP x A  
+
COMP x B  
COMP  
TZ1/2/3  
-
GPIO  
MUX  
COMP x  
+
DAC x  
Wrapper  
ePWM  
AIO  
MUX  
COMPxOUT  
DAC  
Core  
10-Bit  
Figure 9-26. Comparator Block Diagram  
Table 9-23. Comparator Control Registers  
COMP1  
ADDRESS  
COMP2  
SIZE  
(x16)  
EALLOW  
PROTECTED  
REGISTER NAME  
COMPCTL  
DESCRIPTION  
ADDRESS(1)  
0x6400  
0x6402  
0x6404  
0x6406  
0x6420  
0x6422  
0x6424  
0x6426  
1
1
1
1
Yes  
No  
Comparator Control Register  
Comparator Status Register  
DAC Control Register  
COMPSTS  
DACCTL  
DACVAL  
Yes  
No  
DAC Value Register  
RAMPMAXREF_ACTIVE  
RAMPMAXREF_SHDW  
RAMPDECVAL_ACTIVE  
RAMPDECVAL_SHDW  
RAMPSTS  
Ramp Generator Maximum  
Reference (Active) Register  
0x6408  
0x640A  
0x640C  
0x6428  
0x642A  
0x642C  
1
1
1
No  
No  
No  
Ramp Generator Maximum  
Reference (Shadow) Register  
Ramp Generator Decrement Value  
(Active) Register  
Ramp Generator Decrement Value  
(Shadow) Register  
0x640E  
0x6410  
0x642E  
0x6430  
1
1
No  
No  
Ramp Generator Status Register  
(1) Comparator 2 is available only on the 48-pin PT package.  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.9.1.3.1 On-Chip Comparator/DAC Electrical Data/Timing  
9.9.1.3.1.1 Electrical Characteristics of the Comparator/DAC  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
Comparator  
Comparator Input Range  
Comparator response time to PWM Trip Zone (Async)  
Input Offset  
VSSA – VDDA  
V
30  
±5  
35  
ns  
mV  
mV  
Input Hysteresis(1)  
DAC  
DAC Output Range  
DAC resolution  
DAC settling time  
DAC Gain  
VSSA – VDDA  
V
10  
bits  
See Figure 9-27  
–1.5%  
10  
DAC Offset  
Monotonic  
mV  
Yes  
±3  
INL  
LSB  
(1) Hysteresis on the comparator inputs is achieved with a Schmidt trigger configuration. This results in an effective 100-kΩ feedback  
resistance between the output of the comparator and the noninverting input of the comparator. There is an option to disable the  
hysteresis and, with it, the feedback resistance; see the Analog-to-Digital Converter and Comparator chapter in the  
TMS320F2802x,TMS320F2802xx Technical Reference Manual for more information on this option if needed in your system.  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
DAC Step Size (Codes)  
DAC Accuracy  
15 Codes  
7 Codes  
3 Codes  
1 Code  
Figure 9-27. DAC Settling Time  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.9.2 Detailed Descriptions  
Integral Nonlinearity  
Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero to full scale. The  
point used as zero occurs one-half LSB before the first code transition. The full-scale point is defined as level  
one-half LSB beyond the last code transition. The deviation is measured from the center of each particular code  
to the true straight line between these two points.  
Differential Nonlinearity  
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. A  
differential nonlinearity error of less than ±1 LSB ensures no missing codes.  
Zero Offset  
The major carry transition should occur when the analog input is at zero volts. Zero error is defined as the  
deviation of the actual transition from that point.  
Gain Error  
The first code transition should occur at an analog value one-half LSB above negative full scale. The last  
transition should occur at an analog value one and one-half LSB below the nominal full scale. Gain error is the  
deviation of the actual difference between first and last code transitions and the ideal difference between first  
and last code transitions.  
Signal-to-Noise Ratio + Distortion (SINAD)  
SINAD is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components  
below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is expressed in  
decibels.  
Effective Number of Bits (ENOB)  
For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following formula,  
(SINAD -1.76)  
N =  
6.02  
it is possible to get a measure of performance expressed as N, the effective number of bits.  
Thus, effective number of bits for a device for sine wave inputs at a given input frequency can be calculated  
directly from its measured SINAD.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first nine harmonic components to the rms value of the measured input  
signal and is expressed as a percentage or in decibels.  
Spurious Free Dynamic Range (SFDR)  
SFDR is the difference in dB between the rms amplitude of the input signal and the peak spurious signal.  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.9.3 Serial Peripheral Interface (SPI) Module  
The device includes the four-pin serial peripheral interface (SPI) module. One SPI module (SPI-A) is available.  
The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of programmed length (1 to  
16 bits) to be shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used for  
communications between the MCU and external peripherals or another processor. Typical applications include  
external I/O or peripheral expansion through devices such as shift registers, display drivers, and ADCs.  
Multidevice communications are supported by the master/slave operation of the SPI.  
The SPI module features include:  
Four external pins:  
– SPISOMI: SPI slave-output/master-input pin  
– SPISIMO: SPI slave-input/master-output pin  
– SPISTE: SPI slave transmit-enable pin  
– SPICLK: SPI serial-clock pin  
Note  
All four pins can be used as GPIO if the SPI module is not used.  
Two operational modes: master and slave  
Baud rate: 125 different programmable rates.  
LSPCLK  
Baud rate =  
when SPIBRR = 3 to127  
when SPIBRR = 0,1, 2  
(SPIBRR + 1)  
LSPCLK  
4
Baud rate =  
Data word length: 1 to 16 data bits  
Four clocking schemes (controlled by clock polarity and clock phase bits) include:  
– Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the  
SPICLK signal and receives data on the rising edge of the SPICLK signal.  
– Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling  
edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.  
– Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the  
SPICLK signal and receives data on the falling edge of the SPICLK signal.  
– Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the rising  
edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Simultaneous receive and transmit operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithms.  
Nine SPI module control registers: In control register frame beginning at address 7040h.  
Note  
All registers in this module are 16-bit registers that are connected to Peripheral Frame 2. When a  
register is accessed, the register data is in the lower byte (7–0), and the upper byte (15–8) is read  
as zeros. Writing to the upper byte has no effect.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
Enhanced feature:  
4-level transmit/receive FIFO  
Delayed transmit control  
Bidirectional 3 wire SPI mode support  
The SPI port operation is configured and controlled by the registers listed in Table 9-24 .  
Table 9-24. SPI-A Registers  
NAME  
SPICCR  
ADDRESS  
0x7040  
0x7041  
0x7042  
0x7044  
0x7046  
0x7047  
0x7048  
0x7049  
0x704A  
0x704B  
0x704C  
0x704F  
SIZE (x16) EALLOW PROTECTED  
DESCRIPTION(1)  
SPI-A Configuration Control Register  
SPI-A Operation Control Register  
SPI-A Status Register  
1
1
1
1
1
1
1
1
1
1
1
1
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
SPICTL  
SPISTS  
SPIBRR  
SPI-A Baud Rate Register  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
SPI-A Receive Emulation Buffer Register  
SPI-A Serial Input Buffer Register  
SPI-A Serial Output Buffer Register  
SPI-A Serial Data Register  
SPIFFTX  
SPIFFRX  
SPIFFCT  
SPIPRI  
SPI-A FIFO Transmit Register  
SPI-A FIFO Receive Register  
SPI-A FIFO Control Register  
SPI-A Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined  
results.  
For more information on the SPI, see the Serial Peripheral Interface (SPI) chapter in the  
TMS320F2802x,TMS320F2802xx Technical Reference Manual .  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
Figure 9-28 is a block diagram of the SPI in slave mode.  
SPIFFENA  
Overrun  
INT ENA  
Receiver  
Overrun Flag  
SPIFFTX.14  
SPISTS.7  
RX FIFO Registers  
SPICTL.4  
SPIRXBUF  
RX FIFO _0  
RX FIFO _1  
-----  
SPIINT  
RX FIFO Interrupt  
RX Interrupt  
Logic  
RX FIFO _3  
16  
SPIRXBUF  
Buffer Register  
SPIFFOVF  
FLAG  
SPIFFRX.15  
To CPU  
TX FIFO Registers  
SPITXBUF  
TX FIFO _3  
TX Interrupt  
Logic  
TX FIFO Interrupt  
-----  
TX FIFO _1  
SPITX  
TX FIFO _0  
16  
SPI INT  
ENA  
16  
SPI INT FLAG  
SPITXBUF  
Buffer Register  
SPISTS.6  
SPICTL.0  
TRIWIRE  
SPIPRI.0  
16  
M
S
M
SPIDAT  
Data Register  
TW  
S
SW1  
SW2  
SPISIMO  
M
S
TW  
SPIDAT.15 - 0  
M
TW  
S
SPISOMI  
SPISTE  
Talk  
SPICTL.1  
State Control  
Master/Slave  
SPICTL.2  
SPI Char  
LSPCLK  
SPICCR.3 - 0  
S
SW3  
3
2
1
0
Clock  
Polarity  
Clock  
Phase  
M
S
SPI Bit Rate  
SPIBRR.6 - 0  
SPICCR.6  
SPICTL.3  
SPICLK  
M
6
5
4
3
2
1
0
A. SPISTE is driven low by the master for a slave device.  
Figure 9-28. SPI Module Block Diagram (Slave Mode)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.9.3.1 SPI Master Mode Electrical Data/Timing  
Section 9.9.3.1.1 lists the master mode timing (clock phase = 0) and Section 9.9.3.1.2 lists the master mode  
timing (clock phase = 1). Figure 9-29 and Figure 9-30 show the timing waveforms.  
9.9.3.1.1 SPI Master Mode External Timing (Clock Phase = 0)  
NO.(1)  
BRR EVEN  
MIN  
BRR ODD  
MIN  
(2) (3) (4)  
PARAMETER  
UNIT  
(5)  
MAX  
MAX  
1
tc(SPC)M  
Cycle time, SPICLK  
4tc(LSPCLK)  
128tc(LSPCLK)  
5tc(LSPCLK)  
127tc(LSPCLK)  
ns  
ns  
Pulse duration, SPICLK first  
pulse  
0.5tc(SPC)M + 0.5tc(LSPCLK)  
– 10  
0.5tc(SPC)M  
+
2
3
tw(SPC1)M  
0.5tc(SPC)M – 10  
0.5tc(SPC)M + 10  
0.5tc(SPC)M + 10  
10  
0.5tc(LSPCLK) + 10  
Pulse duration, SPICLK second  
pulse  
0.5tc(SPC)M – 0.5tc(LSPCLK)  
– 10  
0.5tc(SPC)M  
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
tsu(SOMI)M  
th(SOMI)M  
td(SPC)M  
td(STE)M  
0.5tc(SPC)M – 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5tc(LSPCLK) + 10  
Delay time, SPICLK to  
SPISIMO valid  
4
10  
Valid time, SPISIMO valid after  
SPICLK  
0.5tc(SPC)M – 0.5tc(LSPCLK)  
– 10  
5
0.5tc(SPC)M – 10  
Setup time, SPISOMI before  
SPICLK  
8
26  
0
26  
0
Hold time, SPISOMI valid after  
SPICLK  
9
Delay time, SPISTE active to  
SPICLK  
1.5tc(SPC)M  
1.5tc(SPC)M –  
3tc(SYSCLK) – 10  
23  
24  
3tc(SYSCLK) – 10  
Delay time, SPICLK to SPISTE  
inactive  
0.5tc(SPC)M – 0.5tc(LSPCLK)  
– 10  
0.5tc(SPC)M – 10  
(1) The MASTER / SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR +1)  
(3) tc(LCO) = LSPCLK cycle time  
(4) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MAX, slave mode receive 12.5-MHz MAX.  
(5) The active edge of the SPICLK signal referenced is controlled by the clock polarity bit (SPICCR.6).  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
SPISTE  
24  
23  
Figure 9-29. SPI Master Mode External Timing (Clock Phase = 0)  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.9.3.1.2 SPI Master Mode External Timing (Clock Phase = 1)  
NO.(1)  
BRR EVEN  
MIN  
BRR ODD  
MIN  
(2) (3) (4)  
PARAMETER  
UNIT  
(5)  
MAX  
MAX  
1
tc(SPC)M  
Cycle time, SPICLK  
4tc(LSPCLK)  
128tc(LSPCLK)  
5tc(LSPCLK)  
0.5tc(SPC)M  
127tc(LSPCLK)  
ns  
ns  
Pulse duration, SPICLK first  
pulse  
0.5tc(SPC)M  
2
3
tw(SPC1)M  
0.5tc(SPC)M – 10  
0.5tc(SPC)M + 10  
0.5tc(SPC)M + 10  
0.5tc(LSPCLK) – 10  
0.5tc(LSPCLK) + 10  
Pulse duration, SPICLK second  
pulse  
0.5tc(SPC)M  
+
0.5tc(SPC)M  
+
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
tsu(SOMI)M  
th(SOMI)M  
td(SPC)M  
td(STE)M  
0.5tc(SPC)M – 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5tc(LSPCLK) – 10  
0.5tc(LSPCLK) + 10  
Delay time, SPISIMO valid to  
SPICLK  
0.5tc(SPC)M  
+
6
0.5tc(SPC)M – 10  
0.5tc(LSPCLK) – 10  
Valid time, SPISIMO valid after  
SPICLK  
0.5tc(SPC)M  
7
0.5tc(SPC)M – 10  
0.5tc(LSPCLK) – 10  
Setup time, SPISOMI before  
SPICLK  
10  
11  
23  
24  
26  
0
26  
Hold time, SPISOMI valid after  
SPICLK  
0
Delay time, SPISTE active to  
SPICLK  
2tc(SPC)M  
2tc(SPC)M  
3tc(SYSCLK) – 10  
3tc(SYSCLK) – 10  
Delay time, SPICLK to SPISTE  
inactive  
0.5tc(SPC)  
0.5tc(SPC) – 10  
0.5tc(LSPCLK) – 10  
(1) The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is set.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25 MHz MAX, master mode receive 12.5 MHz MAX  
Slave mode transmit 12.5 MHz MAX, slave mode receive 12.5 MHz MAX.  
(4) tc(LCO) = LSPCLK cycle time  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
6
7
SPISIMO  
Master Out Data Is Valid  
10  
11  
Master In Data Must  
Be Valid  
SPISOMI  
SPISTE  
24  
23  
Figure 9-30. SPI Master Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.9.3.2 SPI Slave Mode Electrical Data/Timing  
Section 9.9.3.2.1 lists the slave mode timing (clock phase = 0) and Section 9.9.3.2.2 lists the slave mode timing  
(clock phase = 1). Figure 9-31 and Figure 9-32 show the timing waveforms.  
9.9.3.2.1 SPI Slave Mode External Timing (Clock Phase = 0)  
NO.  
(1) (2)  
PARAMETER  
MIN  
MAX UNIT  
(4) (3)  
(5)  
12 tc(SPC)S  
13 tw(SPC1)S  
14 tw(SPC2)S  
15 td(SOMI)S  
16 tv(SOMI)S  
19 tsu(SIMO)S  
20 th(SIMO)S  
25 tsu(STE)S  
26 th(STE)S  
Cycle time, SPICLK  
4tc(SYSCLK)  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
ns  
ns  
ns  
Pulse duration, SPICLK first pulse  
Pulse duration, SPICLK second pulse  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI data valid after SPICLK  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO data valid after SPICLK  
Setup time, SPISTE active before SPICLK  
Hold time, SPISTE inactive after SPICLK  
21  
ns  
ns  
ns  
ns  
ns  
ns  
0
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) tc(LCO) = LSPCLK cycle time  
(4) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
16  
SPISOMI  
SPISOMI Data Is Valid  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
25  
26  
Figure 9-31. SPI Slave Mode External Timing (Clock Phase = 0)  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.9.3.2.2 SPI Slave Mode External Timing (Clock Phase = 1)  
NO.  
(1) (2)  
PARAMETER  
MIN  
MAX UNIT  
(3) (4)  
12 tc(SPC)S  
13 tw(SPC1)S  
14 tw(SPC2)S  
17 td(SOMI)S  
18 tv(SOMI)S  
21 tsu(SIMO)S  
22 th(SIMO)S  
25 tsu(STE)S  
26 th(STE)S  
Cycle time, SPICLK  
4tc(SYSCLK)  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
ns  
ns  
ns  
Pulse duration, SPICLK first pulse  
Pulse duration, SPICLK second pulse  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI data valid after SPICLK  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO data valid after SPICLK  
Setup time, SPISTE active before SPICLK  
Hold time, SPISTE inactive after SPICLK  
21  
ns  
ns  
ns  
ns  
ns  
ns  
0
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
17  
SPISOMI  
SPISOMI Data Is Valid  
Data Valid  
Data Valid  
18  
21  
22  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
26  
25  
Figure 9-32. SPI Slave Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.9.4 Serial Communications Interface (SCI) Module  
The devices include one serial communications interface (SCI) module (SCI-A). The SCI module supports digital  
communications between the CPU and other asynchronous peripherals that use the standard nonreturn-to-zero  
(NRZ) format. The SCI receiver and transmitter are double-buffered, and each has its own separate enable and  
interrupt bits. Both can be operated independently or simultaneously in the full-duplex mode. To ensure data  
integrity, the SCI checks received data for break detection, parity, overrun, and framing errors. The bit rate is  
programmable to over 65000 different speeds through a 16-bit baud-select register.  
Features of each SCI module include:  
Two external pins:  
– SCITXD: SCI transmit-output pin  
– SCIRXD: SCI receive-input pin  
Note  
Both pins can be used as GPIO if not used for SCI.  
– Baud rate programmable to 64K different rates:  
LSPCLK  
Baud rate =  
when BRR ¹ 0  
when BRR = 0  
(BRR + 1) * 8  
LSPCLK  
Baud rate =  
16  
Data-word format  
– One start bit  
– Data-word length programmable from 1 to 8 bits  
– Optional even/odd/no parity bit  
– One or 2 stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: idle-line and address bit  
Half- or full-duplex operation  
Double-buffered receive and transmit functions  
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with  
status flags.  
– Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY  
flag (transmitter-shift register is empty)  
– Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break  
condition occurred), and RX ERROR flag (monitoring four interrupt conditions)  
Separate enable bits for transmitter and receiver interrupts (except BRKDT)  
NRZ (nonreturn-to-zero) format  
Note  
All registers in this module are 8-bit registers that are connected to Peripheral Frame 2. When a  
register is accessed, the register data is in the lower byte (7–0), and the upper byte (15–8) is read  
as zeros. Writing to the upper byte has no effect.  
Enhanced features:  
Auto baud-detect hardware logic  
4-level transmit/receive FIFO  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
The SCI port operation is configured and controlled by the registers listed in Table 9-25.  
Table 9-25. SCI-A Registers  
EALLOW  
PROTECTED  
NAME(1)  
SCICCRA  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
0x7050  
0x7051  
0x7052  
0x7053  
0x7054  
0x7055  
0x7056  
0x7057  
0x7059  
0x705A  
0x705B  
0x705C  
0x705F  
1
1
1
1
1
1
1
1
1
1
1
1
1
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
SCI-A Communications Control Register  
SCI-A Control Register 1  
SCICTL1A  
SCIHBAUDA  
SCILBAUDA  
SCICTL2A  
SCI-A Baud Register, High Bits  
SCI-A Baud Register, Low Bits  
SCI-A Control Register 2  
SCIRXSTA  
SCIRXEMUA  
SCIRXBUFA  
SCITXBUFA  
SCIFFTXA(2)  
SCIFFRXA(2)  
SCIFFCTA(2)  
SCIPRIA  
SCI-A Receive Status Register  
SCI-A Receive Emulation Data Buffer Register  
SCI-A Receive Data Buffer Register  
SCI-A Transmit Data Buffer Register  
SCI-A FIFO Transmit Register  
SCI-A FIFO Receive Register  
SCI-A FIFO Control Register  
SCI-A Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. 32-bit accesses produce  
undefined results.  
(2) These registers are new registers for the FIFO mode.  
For more information on the SCI, see the Serial Communications Interface (SCI) chapter in the  
TMS320F2802x,TMS320F2802xx Technical Reference Manual .  
Figure 9-33 shows the SCI module block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
TXENA  
SCICTL1.1  
TXSHF  
Register  
SCITXD  
Frame  
Format and Mode  
8
Parity  
Even/Odd  
SCICCR.6  
TXEMPTY  
SCICTL2.6  
0
1
8
Enable  
TX FIFO_0  
TX FIFO_1  
TXINT  
To CPU  
SCICCR.5  
TX Interrupt  
Logic  
TX FIFO Interrupts  
8
TX FIFO_N  
TXINTENA  
SCICTL2.0  
TXRDY  
8
1
0
TXWAKE  
SCICTL2.7  
SCICTL1.3  
SCI TX Interrupt Select Logic  
8
WUT  
Transmit Data  
Buffer Register  
SCITXBUF.7-0  
Auto Baud Detect Logic  
RXENA  
Baud Rate  
MSB/LSB  
Registers  
SCICTL1.0  
LSPCLK  
RXSHF  
Register  
SCIRXD  
SCIHBAUD.15-8  
SCILBAUD.7-0  
RXWAKE  
8
SCIRXST.1  
0
1
8
SCIFFENA  
SCIFFTX.14  
RX FIFO_0  
RX FIFO_1  
RXINT  
To CPU  
8
RX FIFO Interrupts  
RX Interrupt  
Logic  
RX FIFO_N  
RXFFOVF  
8
1
SCIFFRX.15  
0
RXBKINTENA  
SCICTL2.1  
RXRDY  
SCIRXST.6  
RXENA  
BRKDT  
RXERRINTENA  
SCICTL1.6  
SCICTL1.0  
SCIRXST.5  
SCI RX Interrupt Select Logic  
8
SCIRXST.5-2  
BRKDT FE OE PE  
RXERROR  
Receive Data  
Buffer Register  
SCIRXBUF.7-0  
SCIRXST.7  
Figure 9-33. Serial Communications Interface (SCI) Module Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.9.5 Inter-Integrated Circuit (I2C)  
The device contains one I2C Serial Port. Figure 9-34 shows how the I2C peripheral module interfaces within the  
device.  
The I2C module has the following features:  
Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):  
– Support for 1-bit to 8-bit format transfers  
– 7-bit and 10-bit addressing modes  
– General call  
– START byte mode  
– Support for multiple master-transmitters and slave-receivers  
– Support for multiple slave-transmitters and master-receivers  
– Combined master transmit/receive and receive/transmit mode  
– Data transfer rate of from 10 kbps up to 400 kbps (I2C Fast-mode rate)  
One 4-word receive FIFO and one 4-word transmit FIFO  
One interrupt that can be used by the CPU. This interrupt can be generated as a result of one of the following  
conditions:  
– Transmit-data ready  
– Receive-data ready  
– Register-access ready  
– No-acknowledgment received  
– Arbitration lost  
– Stop condition detected  
– Addressed as slave  
An additional interrupt that can be used by the CPU when in FIFO mode  
Module enable/disable capability  
Free data format mode  
For more information on the I2C, see the Inter-Integrated Circuit Module (I2C) chapter in the  
TMS320F2802x,TMS320F2802xx Technical Reference Manual .  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
I2C Module  
I2CXSR  
I2CDXR  
TX FIFO  
RX FIFO  
FIFO Interrupt to  
CPU/PIE  
SDA  
Peripheral Bus  
I2CRSR  
I2CDRR  
Control/Status  
Registers  
CPU  
Clock  
Synchronizer  
SCL  
Prescaler  
Noise Filters  
Arbitrator  
Interrupt to  
CPU/PIE  
I2C INT  
A. The I2C registers are accessed at the SYSCLKOUT rate. The internal timing and signal waveforms of the I2C port are also at the  
SYSCLKOUT rate.  
B. The clock enable bit (I2CAENCLK) in the PCLKCRO register turns off the clock to the I2C port for low-power operation. Upon reset,  
I2CAENCLK is clear, which indicates the peripheral internal clocks are off.  
Figure 9-34. I2C Peripheral Module Interfaces  
The registers in Table 9-26 configure and control the I2C port operation.  
Table 9-26. I2C-A Registers  
EALLOW  
PROTECTED  
NAME  
ADDRESS  
DESCRIPTION  
I2C own address register  
I2COAR  
I2CIER  
0x7900  
0x7901  
0x7902  
0x7903  
0x7904  
0x7905  
0x7906  
0x7907  
0x7908  
0x7909  
0x790A  
0x790C  
0x7920  
0x7921  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
I2C interrupt enable register  
I2C status register  
I2CSTR  
I2CCLKL  
I2CCLKH  
I2CCNT  
I2CDRR  
I2CSAR  
I2CDXR  
I2CMDR  
I2CISRC  
I2CPSC  
I2CFFTX  
I2CFFRX  
I2CRSR  
I2CXSR  
I2C clock low-time divider register  
I2C clock high-time divider register  
I2C data count register  
I2C data receive register  
I2C slave address register  
I2C data transmit register  
I2C mode register  
I2C interrupt source register  
I2C prescaler register  
I2C FIFO transmit register  
I2C FIFO receive register  
I2C receive shift register (not accessible to the CPU)  
I2C transmit shift register (not accessible to the CPU)  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.9.5.1 I2C Electrical Data/Timing  
Section 9.9.5.1.1 shows the I2C timing requirements. Section 9.9.5.1.2 shows the I2C switching characteristics.  
9.9.5.1.1 I2C Timing Requirements  
MIN  
MAX UNIT  
Hold time, START condition, SCL fall delay  
after SDA fall  
th(SDA-SCL)START  
tsu(SCL-SDA)START  
0.6  
µs  
Setup time, Repeated START, SCL rise  
before SDA fall delay  
0.6  
µs  
th(SCL-DAT)  
tsu(DAT-SCL)  
tr(SDA)  
Hold time, data after SCL fall  
Setup time, data before SCL rise  
Rise time, SDA  
0
100  
20  
µs  
ns  
Input tolerance  
Input tolerance  
Input tolerance  
Input tolerance  
300  
300  
300  
300  
ns  
ns  
ns  
ns  
tr(SCL)  
Rise time, SCL  
20  
tf(SDA)  
Fall time, SDA  
11.4  
11.4  
tf(SCL)  
Fall time, SCL  
Setup time, STOP condition, SCL rise before  
SDA rise delay  
tsu(SCL-SDA)STOP  
0.6  
µs  
9.9.5.1.2 I2C Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
I2C clock module frequency is from 7 MHz to  
12 MHz and I2C prescaler and clock divider  
registers are configured appropriately.  
fSCL  
SCL clock frequency  
400  
kHz  
Vil  
Low level input voltage  
High level input voltage  
Input hysteresis  
0.3 VDDIO  
V
V
V
V
Vih  
Vhys  
Vol  
0.7 VDDIO  
0.05 VDDIO  
0
Low level output voltage  
3-mA sink current  
0.4  
I2C clock module frequency is from 7 MHz to  
12 MHz and I2C prescaler and clock divider  
registers are configured appropriately.  
tLOW Low period of SCL clock  
tHIGH High period of SCL clock  
1.3  
μs  
I2C clock module frequency is from 7 MHz to  
12 MHz and I2C prescaler and clock divider  
registers are configured appropriately.  
0.6  
μs  
Input current with an input voltage from  
0.1 VDDIO to 0.9 VDDIO MAX  
lI  
–10  
10  
μA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.9.6 Enhanced PWM Modules (ePWM1/2/3/4)  
The devices contain up to four enhanced PWM Modules (ePWM). Figure 9-35 shows a block diagram of multiple  
ePWM modules. Figure 9-36 shows the signal interconnections with the ePWM. For more details, see the  
Enhanced Pulse Width Modulator (ePWM) chapter in the TMS320F2802x,TMS320F2802xx Technical Reference  
Manual .  
Table 9-27 shows the complete ePWM register set per module.  
EPWMSYNCI  
EPWM1SYNCI  
EPWM1B  
EPWM1TZINT  
ePWM1  
Module  
TZ1 to TZ3  
EPWM1INT  
EPWM2TZINT  
PIE  
CLOCKFAIL  
EMUSTOP  
EPWM2INT  
EPWMxTZINT  
EPWMxINT  
TZ5  
TZ6  
EPWM1ENCLK  
TBCLKSYNC  
eCAPI  
EPWM1SYNCO  
EPWM2SYNCI  
EPWM1SYNCO  
TZ1 to TZ3  
COMPOUT1  
COMPOUT2  
EPWM2B  
ePWM2  
Module  
COMP  
CLOCKFAIL  
EMUSTOP  
EPWM1A  
EPWM2A  
TZ5  
TZ6  
H
R
P
W
M
EPWM2ENCLK  
TBCLKSYNC  
EPWMxA  
G
P
I
EPWM2SYNCO  
O
M
U
X
SOCA1  
SOCB1  
SOCA2  
SOCB2  
SOCAx  
SOCBx  
ADC  
EPWMxSYNCI  
EPWMxB  
TZ1 to TZ3  
ePWMx  
Module  
CLOCKFAIL  
EMUSTOP  
TZ5  
TZ6  
EPWMxENCLK  
TBCLKSYNC  
System Control  
C28x CPU  
SOCA1  
SOCA2  
SPCAx  
ADCSOCAO  
Pulse Stretch  
(32 SYSCLKOUT Cycles, Active-Low Output)  
SOCB1  
SOCB2  
SPCBx  
ADCSOCBO  
Pulse Stretch  
(32 SYSCLKOUT Cycles, Active-Low Output)  
Copyright © 2017, Texas Instruments Incorporated  
Figure 9-35. ePWM  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
NAME  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
Table 9-27. ePWM Control and Status Registers  
SIZE (x16) /  
#SHADOW  
ePWM1  
ePWM2  
ePWM3  
ePWM4  
DESCRIPTION  
TBCTL  
0x6800  
0x6801  
0x6802  
0x6803  
0x6804  
0x6805  
0x6806  
0x6807  
0x6808  
0x6809  
0x680A  
0x680B  
0x680C  
0x680D  
0x6840  
0x6841  
0x6842  
0x6843  
0x6844  
0x6845  
0x6846  
0x6847  
0x6848  
0x6849  
0x684A  
0x684B  
0x684C  
0x684D  
0x6880  
0x6881  
0x6882  
0x6883  
0x6884  
0x6885  
0x6886  
0x6887  
0x6888  
0x6889  
0x688A  
0x688B  
0x688C  
0x688D  
0x68C0  
0x68C1  
0x68C2  
0x68C3  
0x68C4  
0x68C5  
0x68C6  
0x68C7  
0x68C8  
0x68C9  
0x68CA  
0x68CB  
0x68CC  
0x68CD  
1 / 0  
Time Base Control Register  
TBSTS  
1 / 0  
Time Base Status Register  
TBPHSHR  
TBPHS  
1 / 0  
Time Base Phase HRPWM Register  
Time Base Phase Register  
1 / 0  
TBCTR  
1 / 0  
Time Base Counter Register  
TBPRD  
1 / 1  
Time Base Period Register Set  
TBPRDHR  
CMPCTL  
CMPAHR  
CMPA  
1 / 1  
Time Base Period High Resolution Register(1)  
Counter Compare Control Register  
Time Base Compare A HRPWM Register  
Counter Compare A Register Set  
Counter Compare B Register Set  
Action Qualifier Control Register For Output A  
Action Qualifier Control Register For Output B  
Action Qualifier Software Force Register  
1 / 0  
1 / 1  
1 / 1  
CMPB  
1 / 1  
AQCTLA  
AQCTLB  
AQSFRC  
1 / 0  
1 / 0  
1 / 0  
Action Qualifier Continuous S/W Force  
Register Set  
AQCSFRC  
DBCTL  
0x680E  
0x680F  
0x6810  
0x684E  
0x684F  
0x6850  
0x688E  
0x688F  
0x6890  
0x68CE  
0x68CF  
0x68D0  
1 / 1  
1 / 1  
1 / 0  
Dead-Band Generator Control Register  
Dead-Band Generator Rising Edge Delay  
Count Register  
DBRED  
Dead-Band Generator Falling Edge Delay  
Count Register  
DBFED  
0x6811  
0x6851  
0x6891  
0x68D1  
1 / 0  
TZSEL  
0x6812  
0x6813  
0x6814  
0x6815  
0x6816  
0x6817  
0x6818  
0x6819  
0x681A  
0x681B  
0x681C  
0x681D  
0x681E  
0x6820  
0x6821  
0x6826  
0x6828  
0x682A  
0x682B  
0x682C  
0x682D  
0x6830  
0x6831  
0x6832  
0x6833  
0x6852  
0x6853  
0x6854  
0x6855  
0x6856  
0x6857  
0x6858  
0x6859  
0x685A  
0x685B  
0x685C  
0x685D  
0x685E  
0x6860  
-
0x6892  
0x6893  
0x6894  
0x6895  
0x6896  
0x6897  
0x6898  
0x6899  
0x689A  
0x689B  
0x689C  
0x689D  
0x689E  
0x68A0  
-
0x68D2  
0x98D3  
0x68D4  
0x68D5  
0x68D6  
0x68D7  
0x68D8  
0x68D9  
0x68DA  
0x68DB  
0x68DC  
0x68DD  
0x68DE  
0x68E0  
-
1 / 0  
1 / 0  
Trip Zone Select Register(1)  
TZDCSEL  
TZCTL  
Trip Zone Digital Compare Register  
Trip Zone Control Register(1)  
1 / 0  
TZEINT  
TZFLG  
1 / 0  
Trip Zone Enable Interrupt Register(1)  
Trip Zone Flag Register (1)  
1 / 0  
TZCLR  
1 / 0  
Trip Zone Clear Register(1)  
TZFRC  
1 / 0  
Trip Zone Force Register(1)  
ETSEL  
1 / 0  
Event Trigger Selection Register  
Event Trigger Prescale Register  
Event Trigger Flag Register  
ETPS  
1 / 0  
ETFLG  
1 / 0  
ETCLR  
1 / 0  
Event Trigger Clear Register  
ETFRC  
1 / 0  
Event Trigger Force Register  
PCCTL  
1 / 0  
PWM Chopper Control Register  
HRPWM Configuration Register(1)  
HRPWM Power Register  
HRCNFG  
HRPWR  
HRMSTEP  
HRPCTL  
TBPRDHRM  
TBPRDM  
CMPAHRM  
CMPAM  
DCTRIPSEL  
DCACTL  
DCBCTL  
DCFCTL  
1 / 0  
1 / 0  
-
-
-
1 / 0  
HRPWM MEP Step Register  
0x6868  
0x686A  
0x686B  
0x686C  
0x686D  
0x6870  
0x6871  
0x6872  
0x6873  
0x68A8  
0x68AA  
0x68AB  
0x68AC  
0x68AD  
0x68B0  
0x68B1  
0x68B2  
0x68B3  
0x68E8  
0x68EA  
0x68EB  
0x68EC  
0x68ED  
0x68F0  
0x68F1  
0x68F2  
0x68F3  
1 / 0  
High resolution Period Control Register(1)  
Time Base Period HRPWM Register Mirror  
Time Base Period Register Mirror  
Compare A HRPWM Register Mirror  
Compare A Register Mirror  
1 / W(2)  
1 / W(2)  
1 / W(2)  
1 / W(2)  
1 / 0  
Digital Compare Trip Select Register (1)  
Digital Compare A Control Register(1)  
Digital Compare B Control Register(1)  
Digital Compare Filter Control Register(1)  
1 / 0  
1 / 0  
1 / 0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-27. ePWM Control and Status Registers (continued)  
SIZE (x16) /  
#SHADOW  
NAME  
ePWM1  
ePWM2  
ePWM3  
ePWM4  
DESCRIPTION  
DCCAPCT  
0x6834  
0x6835  
0x6874  
0x6875  
0x68B4  
0x68B5  
0x68F4  
0x68F5  
1 / 0  
Digital Compare Capture Control Register(1)  
Digital Compare Filter Offset Register  
DCFOFFSET  
1 / 1  
DCFOFFSETCN  
T
0x6836  
0x6837  
0x6838  
0x6839  
0x6876  
0x6877  
0x6878  
0x6879  
0x68B6  
0x68B7  
0x68B8  
0x68B9  
0x68F6  
0x68F7  
0x68F8  
0x68F9  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
Digital Compare Filter Offset Counter Register  
Digital Compare Filter Window Register  
DCFWINDOW  
DCFWINDOWCN  
T
Digital Compare Filter Window Counter  
Register  
DCCAP  
Digital Compare Counter Capture Register  
(1) Registers that are EALLOW protected.  
(2) W = Write to shadow register  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
Time-Base (TB)  
CTR=ZERO  
Sync  
In/Out  
TBPRD Shadow (24)  
TBPRD Active (24)  
EPWMxSYNCO  
CTR=CMPB  
Disabled  
Select  
Mux  
TBPRDHR (8)  
8
CTR=PRD  
TBCTL[SYNCOSEL]  
TBCTL[PHSEN]  
EPWMxSYNCI  
DCAEVT1.sync  
DCBEVT1.sync  
Counter  
Up/Down  
(16 Bit)  
TBCTL[SWFSYNC]  
(Software Forced  
Sync)  
CTR=ZERO  
CTR_Dir  
TCBNT  
Active (16)  
CTR=PRD  
CTR=ZERO  
TBPHSHR (8)  
EPWMxINT  
CTR=PRD or ZERO  
CTR=CMPA  
Event  
Trigger  
and  
Interrupt  
(ET)  
16  
8
EPWMxSOCA  
Phase  
Control  
CTR=CMPB  
CTR_Dir  
(A)  
DCAEVT1.soc  
(A)  
TBPHS Active (24)  
EPWMxSOCB  
EPWMxSOCA  
ADC  
DCBEVT1.soc  
EPWMxSOCB  
Action  
Qualifier  
(AQ)  
CTR=CMPA  
CMPAHR (8)  
16  
High-resolution PWM (HRPWM)  
CMPA Active (24)  
CMPA Shadow (24)  
EPWMxA  
EPWMA  
PWM  
Chopper  
(PC)  
Trip  
Zone  
(TZ)  
Dead  
Band  
(DB)  
CTR=CMPB  
16  
CMPB Active (16)  
EPWMB  
EPWMxB  
EPWMxTZINT  
TZ1 to TZ3  
CMPB Shadow (16)  
EMUSTOP  
CTR=ZERO  
CLOCKFAIL  
DCAEVT1.inter  
DCBEVT1.inter  
(A)  
(A)  
(A)  
(A)  
DCAEVT1.force  
DCAEVT2.force  
DCBEVT1.force  
DCBEVT2.force  
DCAEVT2.inter  
DCBEVT2.inter  
A. These events are generated by the Type 1 ePWM digital compare (DC) submodule based on the levels of the COMPxOUT and TZ  
signals.  
Figure 9-36. ePWM Submodules Showing Critical Internal Signal Interconnections  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.9.6.1 ePWM Electrical Data/Timing  
PWM refers to PWM outputs on ePWM1–4. Section 9.9.6.1.1 shows the PWM timing requirements and Section  
9.9.6.1.2, switching characteristics.  
9.9.6.1.1 ePWM Timing Requirements  
MIN(1)  
2tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
cycles  
Asynchronous  
Synchronous  
tw(SYCIN)  
Sync input pulse width  
2tc(SCO)  
With input qualifier  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 9.9.10.1.2.1.  
9.9.6.1.2 ePWM Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
33.33  
MAX  
UNIT  
ns  
tw(PWM)  
Pulse duration, PWMx output high/low  
Sync output pulse width  
tw(SYNCOUT)  
8tc(SCO)  
cycles  
Delay time, trip input active to PWM forced high  
Delay time, trip input active to PWM forced low  
td(PWM)tza  
no pin load  
25  
20  
ns  
ns  
td(TZ-PWM)HZ  
Delay time, trip input active to PWM Hi-Z  
9.9.6.2 Trip-Zone Input Timing  
9.9.6.2.1 Trip-Zone Input Timing Requirements  
MIN(1)  
2tc(TBCLK)  
2tc(TBCLK)  
MAX UNIT  
cycles  
Asynchronous  
Synchronous  
tw(TZ)  
Pulse duration, TZx input low  
cycles  
With input qualifier  
2tc(TBCLK) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Section 9.9.10.1.2.1.  
SYSCLK  
tw(TZ)  
TZ(A)  
td(TZ-PWM)HZ  
PWM(B)  
A. TZ - TZ1, TZ2, TZ3  
B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software.  
Figure 9-37. PWM Hi-Z Characteristics  
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.9.7 High-Resolution PWM (HRPWM)  
This module combines multiple delay lines in a single module and a simplified calibration system by using a  
dedicated calibration delay line. For each ePWM module there is one HR delay line.  
The HRPWM module offers PWM resolution (time granularity) that is significantly better than what can be  
achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are:  
Significantly extends the time resolution capabilities of conventionally derived digital PWM  
This capability can be used in both single edge (duty cycle and phase-shift control) as well as dual edge  
control for frequency/period modulation.  
Finer time granularity control or edge positioning is controlled through extensions to the Compare A and  
Phase registers of the ePWM module.  
HRPWM capabilities, when available on a particular device, are offered only on the A signal path of an  
ePWM module (that is, on the EPWMxA output). EPWMxB output has conventional PWM capabilities.  
Note  
The minimum SYSCLKOUT frequency allowed for HRPWM is 50 MHz.  
Note  
When dual-edge high-resolution is enabled (high-resolution period mode), the PWMxB output is not  
available for use.  
9.9.7.1 HRPWM Electrical Data/Timing  
Section 9.9.7.1.1 shows the high-resolution PWM switching characteristics.  
9.9.7.1.1 High-Resolution PWM Characteristics at SYSCLKOUT = 50 MHz–60 MHz  
PARAMETER(1)  
MIN  
TYP MAX UNIT  
150 310 ps  
Micro Edge Positioning (MEP) step size(2)  
(1) The HRPWM operates at a minimum SYSCLKOUT frequency of 50 MHz. Below 50 MHz, with device process variation, the MEP step  
size may decrease under cold temperature and high core voltage conditions to such a point that 255 MEP steps will not span an entire  
SYSCLKOUT cycle.  
(2) The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher  
temperature and lower voltage and decrease with lower temperature and higher voltage.  
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI  
software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per  
SYSCLKOUT period dynamically while the HRPWM is in operation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.9.8 Enhanced Capture Module (eCAP1)  
The device contains an enhanced capture (eCAP) module. Figure 9-38 shows a functional block diagram of a  
module.  
CTRPHS  
(phase register−32 bit)  
APWM mode  
SYNCIn  
CTR_OVF  
OVF  
CTR [0−31]  
PRD [0−31]  
CMP [0−31]  
TSCTR  
(counter−32 bit)  
SYNCOut  
PWM  
compare  
logic  
Delta−mode  
RST  
32  
CTR=PRD  
CTR=CMP  
CTR [0−31]  
PRD [0−31]  
32  
eCAPx  
32  
LD1  
CAP1  
(APRD active)  
Polarity  
select  
LD  
APRD  
shadow  
32  
CMP [0−31]  
32  
32  
LD2  
CAP2  
(ACMP active)  
Polarity  
select  
LD  
Event  
qualifier  
Event  
Prescale  
32  
ACMP  
shadow  
Polarity  
select  
32  
32  
LD3  
LD4  
CAP3  
(APRD shadow)  
LD  
CAP4  
(ACMP shadow)  
Polarity  
select  
LD  
4
Capture events  
CEVT[1:4]  
4
Interrupt  
Trigger  
and  
Flag  
control  
Continuous /  
Oneshot  
Capture Control  
to PIE  
CTR_OVF  
CTR=PRD  
CTR=CMP  
Copyright © 2017, Texas Instruments Incorporated  
Figure 9-38. eCAP Functional Block Diagram  
The eCAP module is clocked at the SYSCLKOUT rate.  
The clock enable bits (ECAP1 ENCLK) in the PCLKCR1 register turn off the eCAP module individually (for low-  
power operation). Upon reset, ECAP1ENCLK is set to low, indicating that the peripheral clock is off.  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
Table 9-28. eCAP Control and Status Registers  
NAME  
TSCTR  
CTRPHS  
CAP1  
eCAP1  
0x6A00  
SIZE (x16) EALLOW PROTECTED  
DESCRIPTION  
2
2
2
2
2
2
8
1
1
1
1
1
1
6
Time-Stamp Counter  
0x6A02  
Counter Phase Offset Value Register  
Capture 1 Register  
0x6A04  
CAP2  
0x6A06  
Capture 2 Register  
CAP3  
0x6A08  
Capture 3 Register  
CAP4  
0x6A0A  
Capture 4 Register  
Reserved  
ECCTL1  
ECCTL2  
ECEINT  
ECFLG  
ECCLR  
ECFRC  
Reserved  
0x6A0C to 0x6A12  
0x6A14  
Reserved  
Capture Control Register 1  
Capture Control Register 2  
Capture Interrupt Enable Register  
Capture Interrupt Flag Register  
Capture Interrupt Clear Register  
Capture Interrupt Force Register  
Reserved  
0x6A15  
0x6A16  
0x6A17  
0x6A18  
0x6A19  
0x6A1A to 0x6A1F  
For more information on the eCAP, see the Enhanced Capture (eCAP) Module chapter in the  
TMS320F2802x,TMS320F2802xx Technical Reference Manual .  
9.9.8.1 eCAP Electrical Data/Timing  
Section 9.9.8.1.1 shows the eCAP timing requirement and Section 9.9.8.1.2 shows the eCAP switching  
characteristics.  
9.9.8.1.1 Enhanced Capture (eCAP) Timing Requirement  
MIN(1)  
2tc(SCO)  
MAX UNIT  
cycles  
Asynchronous  
Synchronous  
tw(CAP)  
Capture input pulse width  
2tc(SCO)  
cycles  
With input qualifier  
1tc(SCO) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Section 9.9.10.1.2.1.  
9.9.8.1.2 eCAP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
tw(APWM)  
Pulse duration, APWMx output high/low  
20  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.9.9 JTAG Port  
On the 2802x device, the JTAG port is reduced to 5 pins ( TRST, TCK, TDI, TMS, TDO). TCK, TDI, TMS and  
TDO pins are also GPIO pins. The TRST signal selects either JTAG or GPIO operating mode for the pins in  
Figure 9-39. During emulation/debug, the GPIO function of these pins are not available. If the GPIO38/TCK/  
XCLKIN pin is used to provide an external clock, an alternate clock source should be used to clock the device  
during emulation/debug because this pin will be needed for the TCK function.  
Note  
In 2802x devices, the JTAG pins may also be used as GPIO pins. Care should be taken in the board  
design to ensure that the circuitry connected to these pins do not affect the emulation capabilities of  
the JTAG pin function. Any circuitry connected to these pins should not prevent the JTAG debug probe  
from driving (or being driven by) the JTAG pins for successful debug.  
TRST = 0: JTAG Disabled (GPIO Mode)  
TRST = 1: JTAG Mode  
TRST  
TRST  
XCLKIN  
GPIO38_in  
TCK  
TCK/GPIO38  
GPIO38_out  
C28x  
Core  
GPIO37_in  
TDO  
TDO/GPIO37  
1
0
GPIO37_out  
GPIO36_in  
1
0
TMS  
TMS/GPIO36  
TDI/GPIO35  
1
GPIO36_out  
GPIO35_in  
1
0
TDI  
1
GPIO35_out  
Figure 9-39. JTAG/GPIO Multiplexing  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.9.10 General-Purpose Input/Output (GPIO) MUX  
The GPIO MUX can multiplex up to three independent peripheral signals on a single GPIO pin in addition to  
providing individual pin bit-banging I/O capability.  
The device supports 22 GPIO pins. The GPIO control and data registers are mapped to Peripheral Frame 1 to  
enable 32-bit operations on the registers (along with 16-bit operations). Table 9-29 shows the GPIO register  
mapping.  
Table 9-29. GPIO Registers  
NAME  
ADDRESS  
GPIO CONTROL REGISTERS (EALLOW PROTECTED)  
0x6F80 GPIO A Control Register (GPIO0 to 31)  
SIZE (x16)  
DESCRIPTION  
GPACTRL  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
GPAQSEL1  
GPAQSEL2  
GPAMUX1  
GPAMUX2  
GPADIR  
0x6F82  
0x6F84  
0x6F86  
0x6F88  
0x6F8A  
0x6F8C  
0x6F90  
0x6F92  
0x6F96  
0x6F9A  
0x6F9C  
0x6FB6  
0x6FBA  
GPIO A Qualifier Select 1 Register (GPIO0 to 15)  
GPIO A Qualifier Select 2 Register (GPIO16 to 31)  
GPIO A MUX 1 Register (GPIO0 to 15)  
GPIO A MUX 2 Register (GPIO16 to 31)  
GPIO A Direction Register (GPIO0 to 31)  
GPIO A Pullup Disable Register (GPIO0 to 31)  
GPIO B Control Register (GPIO32 to 38)  
GPIO B Qualifier Select 1 Register (GPIO32 to 38)  
GPIO B MUX 1 Register (GPIO32 to 38)  
GPAPUD  
GPBCTRL  
GPBQSEL1  
GPBMUX1  
GPBDIR  
GPIO B Direction Register (GPIO32 to 38)  
GPIO B Pullup Disable Register (GPIO32 to 38)  
Analog, I/O mux 1 register (AIO0 to AIO15)  
Analog, I/O Direction Register (AIO0 to AIO15)  
GPBPUD  
AIOMUX1  
AIODIR  
GPIO DATA REGISTERS (NOT EALLOW PROTECTED)  
GPADAT  
0x6FC0  
0x6FC2  
0x6FC4  
0x6FC6  
0x6FC8  
0x6FCA  
0x6FCC  
0x6FCE  
0x6FD8  
0x6FDA  
0x6FDC  
0x6FDE  
2
2
2
2
2
2
2
2
2
2
2
2
GPIO A Data Register (GPIO0 to 31)  
GPASET  
GPIO A Data Set Register (GPIO0 to 31)  
GPIO A Data Clear Register (GPIO0 to 31)  
GPIO A Data Toggle Register (GPIO0 to 31)  
GPIO B Data Register (GPIO32 to 38)  
GPACLEAR  
GPATOGGLE  
GPBDAT  
GPBSET  
GPIO B Data Set Register (GPIO32 to 38)  
GPIO B Data Clear Register (GPIO32 to 38)  
GPIO B Data Toggle Register (GPIO32 to 38)  
Analog I/O Data Register (AIO0 to AIO15)  
Analog I/O Data Set Register (AIO0 to AIO15)  
Analog I/O Data Clear Register (AIO0 to AIO15)  
Analog I/O Data Toggle Register (AIO0 to AIO15)  
GPBCLEAR  
GPBTOGGLE  
AIODAT  
AIOSET  
AIOCLEAR  
AIOTOGGLE  
GPIO INTERRUPT AND LOW-POWER MODES SELECT REGISTERS (EALLOW PROTECTED)  
GPIOXINT1SEL  
GPIOXINT2SEL  
GPIOXINT3SEL  
GPIOLPMSEL  
0x6FE0  
0x6FE1  
0x6FE2  
0x6FE8  
1
1
1
2
XINT1 GPIO Input Select Register (GPIO0 to 31)  
XINT2 GPIO Input Select Register (GPIO0 to 31)  
XINT3 GPIO Input Select Register (GPIO0 to 31)  
LPM GPIO Select Register (GPIO0 to 31)  
Note  
There is a two-SYSCLKOUT cycle delay from when the write to the GPxMUXn/AIOMUXn and  
GPxQSELn registers occurs to when the action is valid.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-30. GPIOA MUX  
DEFAULT AT RESET  
PERIPHERAL  
SELECTION 1  
PERIPHERAL  
SELECTION 2  
PERIPHERAL  
SELECTION 3  
PRIMARY I/O  
FUNCTION(1) (2)  
GPAMUX1 REGISTER  
BITS  
(GPAMUX1 BITS = 00)  
(GPAMUX1 BITS = 01)  
(GPAMUX1 BITS = 10)  
(GPAMUX1 BITS = 11)  
1-0  
GPIO0  
GPIO1  
EPWM1A (O)  
EPWM1B (O)  
EPWM2A (O)  
EPWM2B (O)  
EPWM3A (O)  
EPWM3B (O)  
EPWM4A (O)  
EPWM4B (O)  
Reserved  
Reserved  
Reserved  
Reserved  
COMP1OUT (O)  
Reserved  
3-2  
5-4  
GPIO2  
Reserved  
7-6  
GPIO3  
Reserved  
COMP2OUT(3) (O)  
9-8  
GPIO4  
Reserved  
Reserved  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
GPIO5  
Reserved  
ECAP1 (I/O)  
EPWMSYNCO (O)  
Reserved  
GPIO6  
EPWMSYNCI (I)  
SCIRXDA (I)  
Reserved  
GPIO7  
Reserved  
Reserved  
Reserved  
Reserved  
GPIO12  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TZ1 (I)  
SCITXDA (O)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
GPAMUX2 REGISTER  
BITS  
(GPAMUX2 BITS = 00)  
(GPAMUX2 BITS = 01)  
(GPAMUX2 BITS = 10)  
(GPAMUX2 BITS = 11)  
1-0  
GPIO16  
GPIO17  
SPISIMOA (I/O)  
SPISOMIA (I/O)  
SPICLKA (I/O)  
SPISTEA (I/O)  
Reserved  
Reserved  
Reserved  
SCITXDA (O)  
SCIRXDA (I)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SDAA (I/OD)  
SCLA (I/OD)  
Reserved  
Reserved  
TZ2 (I)  
TZ3 (I)  
3-2  
5-4  
GPIO18  
XCLKOUT (O)  
ECAP1 (I/O)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TZ2 (I)  
7-6  
GPIO19/XCLKIN  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
GPIO28  
9-8  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SCIRXDA (I)  
SCITXDA (O)  
Reserved  
GPIO29  
TZ3 (I)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
(1) The word reserved means that there is no peripheral assigned to this GPxMUX1/2 register setting. Should it be selected, the state of  
the pin will be undefined and the pin may be driven. This selection is a reserved configuration for future expansion.  
(2) I = Input, O = Output, OD = Open Drain  
(3) These functions are not available in the 38-pin package.  
Copyright © 2021 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
Table 9-31. GPIOB MUX  
DEFAULT AT RESET  
PRIMARY I/O  
PERIPHERAL  
SELECTION 1  
PERIPHERAL  
SELECTION 2  
PERIPHERAL  
SELECTION 3  
FUNCTION(1)  
GPBMUX1 REGISTER  
(GPBMUX1 BITS = 00)  
(GPBMUX1 BITS = 01)  
(GPBMUX1 BITS = 10)  
(GPBMUX1 BITS = 11)  
BITS  
1-0  
GPIO32(2)  
GPIO33(2)  
SDAA(2) (I/OD)  
SCLA(2) (I/OD)  
COMP2OUT (O)  
Reserved  
EPWMSYNCI(2) (I)  
EPWMSYNCO(2) (O)  
Reserved  
ADCSOCAO (2) (O)  
ADCSOCBO (2) (O)  
Reserved  
3-2  
5-4  
GPIO34  
7-6  
GPIO35 (TDI)  
GPIO36 (TMS)  
GPIO37 (TDO)  
GPIO38/XCLKIN (TCK)  
Reserved  
Reserved  
Reserved  
9-8  
Reserved  
Reserved  
Reserved  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
(1) I = Input, O = Output, OD = Open Drain  
(2) These pins are not available in the 38-pin package.  
Table 9-32. Analog MUX for 48-Pin PT Package  
DEFAULT AT RESET(1)  
PERIPHERAL SELECTION 2 AND  
PERIPHERAL SELECTION 3  
AIOx AND PERIPHERAL SELECTION 1  
AIOMUX1 REGISTER BITS  
AIOMUX1 BITS = 0,x  
ADCINA0 (I), VREFHI (I)  
ADCINA1 (I)  
AIO2 (I/O)  
ADCINA3 (I)  
AIO4 (I/O)  
AIOMUX1 BITS = 1,x  
ADCINA0 (I), VREFHI (I)  
ADCINA1 (I)  
1-0  
3-2  
5-4  
ADCINA2 (I), COMP1A (I)  
ADCINA3 (I)  
7-6  
9-8  
ADCINA4 (I), COMP2A (I)  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
AIO6 (I/O)  
ADCINA7 (I)  
ADCINA6 (I)  
ADCINA7 (I)  
ADCINB1 (I)  
AIO10 (I/O)  
ADCINB3 (I)  
AIO12 (I/O)  
ADCINB1 (I)  
ADCINB2 (I), COMP1B (I)  
ADCINB3 (I)  
ADCINB4 (I), COMP2B (I)  
AIO14 (I/O)  
ADCINB7 (I)  
ADCINB6 (I)  
ADCINB7 (I)  
(1) I = Input, O = Output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-33. Analog MUX for 38-Pin DA Package  
DEFAULT AT RESET(1)  
PERIPHERAL SELECTION 2 AND  
PERIPHERAL SELECTION 3  
AIOx AND PERIPHERAL SELECTION 1  
AIOMUX1 REGISTER BITS  
AIOMUX1 BITS = 0,x  
AIOMUX1 BITS = 1,x  
1-0  
ADCINA0 (I), VREFHI (I)  
ADCINA0 (I), VREFHI (I)  
3-2  
5-4  
AIO2 (I/O)  
ADCINA2 (I), COMP1A (I)  
7-6  
9-8  
AIO4 (I/O)  
ADCINA4 (I)  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
AIO6 (I/O)  
ADCINA6 (I)  
AIO10 (I/O)  
ADCINB2 (I), COMP1B (I)  
AIO12 (I/O)  
ADCINB4 (I)  
AIO14 (I/O)  
ADCINB6 (I)  
(1) I = Input, O = Output  
The user can select the type of input qualification for each GPIO pin through the GPxQSEL1/2 registers from  
four choices:  
Synchronization To SYSCLKOUT Only (GPxQSEL1/2 = 0, 0): This is the default mode of all GPIO pins at  
reset and it simply synchronizes the input signal to the system clock (SYSCLKOUT).  
Qualification Using Sampling Window (GPxQSEL1/2 = 0, 1 and 1, 0): In this mode the input signal, after  
synchronization to the system clock (SYSCLKOUT), is qualified by a specified number of cycles before the  
input is allowed to change.  
The sampling period is specified by the QUALPRD bits in the GPxCTRL register and is configurable in  
groups of 8 signals. It specifies a multiple of SYSCLKOUT cycles for sampling the input signal. The sampling  
window is either 3-samples or 6-samples wide and the output is only changed when ALL samples are the  
same (all 0s or all 1s) as shown in Figure 9-42 (for 6 sample mode).  
No Synchronization (GPxQSEL1/2 = 1,1): This mode is used for peripherals where synchronization is not  
required (synchronization is performed within the peripheral).  
Due to the multilevel multiplexing that is required on the device, there may be cases where a peripheral input  
signal can be mapped to more then one GPIO pin. Also, when an input signal is not selected, the input signal will  
default to either a 0 or 1 state, depending on the peripheral.  
Copyright © 2021 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
GPIOXINT1SEL  
GPIOLMPSEL  
LPMCR0  
GPIOXINT2SEL  
GPIOXINT3SEL  
External Interrupt  
MUX  
Low-Power  
Modes Block  
PIE  
Asynchronous  
path  
GPxDAT (read)  
GPxQSEL1/2  
GPxCTRL  
GPxPUD  
N/C  
00  
01  
Peripheral 1 Input  
Peripheral 2 Input  
Input  
Internal  
Pullup  
Qualification  
10  
11  
Peripheral 3 Input  
GPxTOGGLE  
Asynchronous path  
GPIOx pin  
GPxCLEAR  
GPxSET  
00  
01  
GPxDAT (latch)  
Peripheral 1 Output  
10  
11  
Peripheral 2 Output  
Peripheral 3 Output  
High Impedance  
Output Control  
GPxDIR (latch)  
00  
01  
Peripheral 1 Output Enable  
Peripheral 2 Output Enable  
0 = Input, 1 = Output  
XRS  
10  
11  
Peripheral 3 Output Enable  
= Default at Reset  
GPxMUX1/2  
A. x stands for the port, either A or B. For example, GPxDIR refers to either the GPADIR and GPBDIR register depending on the particular  
GPIO pin selected.  
B. GPxDAT latch/read are accessed at the same memory location.  
C. This is a generic GPIO MUX block diagram. Not all options may be applicable for all GPIO pins. For pin-specific variations, see the  
System Control chapter in the TMS320F2802x,TMS320F2802xx Technical Reference Manual .  
Figure 9-40. GPIO Multiplexing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.9.10.1 GPIO Electrical Data/Timing  
9.9.10.1.1 GPIO - Output Timing  
9.9.10.1.1.1 General-Purpose Output Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
13(1)  
13(1)  
15  
UNIT  
ns  
tr(GPO)  
tf(GPO)  
tfGPO  
Rise time, GPIO switching low to high  
Fall time, GPIO switching high to low  
Toggling frequency  
All GPIOs  
All GPIOs  
ns  
MHz  
(1) Rise time and fall time vary with electrical loading on I/O pins. Values given in Section 9.9.10.1.1.1 are applicable for a 40-pF load on  
I/O pins.  
GPIO  
t
r(GPO)  
t
f(GPO)  
Figure 9-41. General-Purpose Output Timing  
Copyright © 2021 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.9.10.1.2 GPIO - Input Timing  
9.9.10.1.2.1 General-Purpose Input Timing Requirements  
MIN  
1tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
cycles  
cycles  
cycles  
QUALPRD = 0  
tw(SP)  
Sampling period  
QUALPRD ≠ 0  
2tc(SCO) * QUALPRD  
tw(SP) * (n(1) – 1)  
2tc(SCO)  
tw(IQSW)  
Input qualifier sampling window  
Pulse duration, GPIO low/high  
Synchronous mode  
With input qualifier  
(2)  
tw(GPI)  
tw(IQSW) + tw(SP) + 1tc(SCO)  
(1) "n" represents the number of qualification samples as defined by GPxQSELn register.  
(2) For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal.  
(A)  
GPIO Signal  
GPxQSELn = 1,0 (6 samples)  
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
tw(SP)  
Sampling Period determined  
by GPxCTRL[QUALPRD](B)  
tw(IQSW)  
[(SYSCLKOUT cycle * 2 * QUALPRD) * 5(C)  
]
Sampling Window  
SYSCLKOUT  
QUALPRD = 1  
(SYSCLKOUT/2)  
(D)  
Output From  
Qualifier  
A. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It can vary from 00 to  
0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLKOUT cycle. For any other value "n", the qualification sampling period in  
2n SYSCLKOUT cycles (that is, at every 2n SYSCLKOUT cycles, the GPIO pin will be sampled).  
B. The qualification period selected through the GPxCTRL register applies to groups of 8 GPIO pins.  
C. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is used.  
D. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLKOUT cycles or greater. In other  
words, the inputs should be stable for (5 x QUALPRD x 2) SYSCLKOUT cycles. This would ensure 5 sampling periods for detection to  
occur. Because external signals are driven asynchronously, an 13-SYSCLKOUT-wide pulse ensures reliable recognition.  
Figure 9-42. Sampling Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.9.10.1.3 Sampling Window Width for Input Signals  
The following section summarizes the sampling window width for input signals for various input qualifier  
configurations.  
Sampling frequency denotes how often a signal is sampled with respect to SYSCLKOUT.  
Sampling frequency = SYSCLKOUT/(2 × QUALPRD), if QUALPRD ≠ 0  
Sampling frequency = SYSCLKOUT, if QUALPRD = 0  
Sampling period = SYSCLKOUT cycle × 2 × QUALPRD, if QUALPRD ≠ 0  
In the above equations, SYSCLKOUT cycle indicates the time period of SYSCLKOUT.  
Sampling period = SYSCLKOUT cycle, if QUALPRD = 0  
In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of the  
signal. This is determined by the value written to GPxQSELn register.  
Case 1:  
Qualification using 3 samples  
Sampling window width = (SYSCLKOUT cycle × 2 × QUALPRD) × 2, if QUALPRD ≠ 0  
Sampling window width = (SYSCLKOUT cycle) × 2, if QUALPRD = 0  
Case 2:  
Qualification using 6 samples  
Sampling window width = (SYSCLKOUT cycle × 2 × QUALPRD) × 5, if QUALPRD ≠ 0  
Sampling window width = (SYSCLKOUT cycle) × 5, if QUALPRD = 0  
SYSCLK  
GPIOxn  
tw(GPI)  
Figure 9-43. General-Purpose Input Timing  
VDDIO  
> 1 MS  
2 pF  
VSS  
VSS  
Figure 9-44. Input Resistance Model for a GPIO Pin With an Internal Pullup  
Copyright © 2021 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
9.9.10.1.4 Low-Power Mode Wakeup Timing  
Section 9.9.10.1.4.1 shows the timing requirements, Section 9.9.10.1.4.2 shows the switching characteristics,  
and Figure 9-45 shows the timing diagram for IDLE mode.  
9.9.10.1.4.1 IDLE Mode Timing Requirements  
MIN(1)  
2tc(SCO)  
MAX  
UNIT  
Without input qualifier  
With input qualifier  
tw(WAKE-INT)  
Pulse duration, external wake-up signal  
cycles  
5tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 9.9.10.1.2.1.  
9.9.10.1.4.2 IDLE Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Delay time, external wake signal to program execution resume (2)  
cycles  
Wake up from Flash  
Flash module in active state  
Without input qualifier  
With input qualifier  
20tc(SCO)  
cycles  
cycles  
cycles  
20tc(SCO) + tw(IQSW)  
1050tc(SCO)  
Without input qualifier  
td(WAKE-IDLE)  
Wake up from Flash  
Flash module in sleep state  
1050tc(SCO)  
+
With input qualifier  
tw(IQSW)  
Without input qualifier  
With input qualifier  
20tc(SCO)  
Wake up from SARAM  
20tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 9.9.10.1.2.1.  
(2) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up signal) involves additional latency.  
t
d(WAKE−IDLE)  
Address/Data  
(internal)  
XCLKOUT  
t
w(WAKE−INT)  
WAKE INT(A)(B)  
A. WAKE INT can be any enabled interrupt, WDINT or XRS.  
B. From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be initiated until at  
least 4 OSCCLK cycles have elapsed.  
Figure 9-45. IDLE Entry and Exit Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
9.9.10.1.4.3 STANDBY Mode Timing Requirements  
MIN  
MAX  
UNIT  
Without input qualification  
With input qualification(1)  
3tc(OSCCLK)  
Pulse duration, external  
wake-up signal  
tw(WAKE-INT)  
cycles  
(2 + QUALSTDBY) * tc(OSCCLK)  
(1) QUALSTDBY is a 6-bit field in the LPMCR0 register.  
9.9.10.1.4.4 STANDBY Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Delay time, IDLE instruction  
executed to XCLKOUT low  
td(IDLE-XCOL)  
32tc(SCO)  
45tc(SCO) cycles  
cycles  
Delay time, external wake signal to program execution  
resume(1)  
Wake up from flash  
Flash module in active state  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
100tc(SCO)  
cycles  
100tc(SCO) + tw(WAKE-INT)  
td(WAKE-STBY)  
Wake up from flash  
Flash module in sleep state  
1125tc(SCO)  
1125tc(SCO) + tw(WAKE-INT)  
100tc(SCO)  
cycles  
cycles  
Wake up from SARAM  
100tc(SCO) + tw(WAKE-INT)  
(1) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up signal) involves additional latency.  
Copyright © 2021 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
(C)  
(F)  
(A)  
(B)  
(D)(E)  
(G)  
Device  
Status  
STANDBY  
STANDBY  
Normal Execution  
Flushing Pipeline  
Wake-up  
Signal(H)  
t
w(WAKE-INT)  
t
d(WAKE-STBY)  
X1/X2 or  
XCLKIN  
XCLKOUT  
t
d(IDLE−XCOL)  
A. IDLE instruction is executed to put the device into STANDBY mode.  
B. The PLL block responds to the STANDBY signal. SYSCLKOUT is held for the number of cycles indicated below before being turned off:  
16 cycles, when DIVSEL = 00 or 01  
32 cycles, when DIVSEL = 10  
64 cycles, when DIVSEL = 11  
This delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in STANDBY mode.  
D. The external wake-up signal is driven active.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal  
must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the device will not be deterministic and the device  
may not exit low-power mode for subsequent wake-up pulses.  
F. After a latency period, the STANDBY mode is exited.  
G. Normal execution resumes. The device will respond to the interrupt (if enabled).  
H. From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be initiated until at  
least 4 OSCCLK cycles have elapsed.  
Figure 9-46. STANDBY Entry and Exit Timing Diagram  
9.9.10.1.4.5 HALT Mode Timing Requirements  
MIN  
toscst + 2tc(OSCCLK)  
toscst + 8tc(OSCCLK)  
MAX  
UNIT  
cycles  
cycles  
tw(WAKE-GPIO)  
tw(WAKE-XRS)  
Pulse duration, GPIO wake-up signal  
Pulse duration, XRS wake-up signal  
9.9.10.1.4.6 HALT Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
45tc(SCO)  
1
UNIT  
td(IDLE-XCOL)  
tp  
Delay time, IDLE instruction executed to XCLKOUT low  
PLL lock-up time  
32tc(SCO)  
cycles  
ms  
Delay time, PLL lock to program execution resume  
Wake up from flash  
– Flash module in sleep state  
1125tc(SCO)  
cycles  
cycles  
td(WAKE-HALT)  
Wake up from SARAM  
35tc(SCO)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
(C)  
(F)  
(A)  
(H)  
(B)  
(G)  
(D)(E)  
Device  
Status  
HALT  
HALT  
Flushing Pipeline  
PLL Lock-up Time  
Normal  
Execution  
Wake-up Latency  
GPIOn(I)  
t
)
d(WAKE−HALT  
t
w(WAKE-GPIO)  
tp  
X1/X2 or  
XCLKIN  
Oscillator Start-up Time  
XCLKOUT  
t
d(IDLE−XCOL)  
A. IDLE instruction is executed to put the device into HALT mode.  
B. The PLL block responds to the HALT signal. SYSCLKOUT is held for the number of cycles indicated below before oscillator is turned off  
and the CLKIN to the core is stopped:  
16 cycles, when DIVSEL = 00 or 01  
32 cycles, when DIVSEL = 10  
64 cycles, when DIVSEL = 11  
This delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as the clock source,  
the internal oscillator is shut down as well. The device is now in HALT mode and consumes absolute minimum power. It is possible to  
keep the zero-pin internal oscillators (INTOSC1 and INTOSC2) and the watchdog alive in HALT mode. This is done by writing to the  
appropriate bits in the CLKCTL register.  
D. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator wake-up sequence  
is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This enables the provision of a clean clock signal  
during the PLL lock sequence. Because the falling edge of the GPIO pin asynchronously begins the wake-up procedure, care should be  
taken to maintain a low noise environment prior to entering and during HALT mode.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal  
must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the device will not be deterministic and the device  
may not exit low-power mode for subsequent wake-up pulses.  
F. Once the oscillator has stabilized, the PLL lock sequence is initiated, which takes 1 ms.  
G. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after a latency. The HALT mode is now exited.  
H. Normal operation resumes.  
I. From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be initiated until at  
least 4 OSCCLK cycles have elapsed.  
Figure 9-47. HALT Mode Wakeup Using GPIOn  
Copyright © 2021 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
10 Applications, Implementation, and Layout  
Note  
Information in the following sections is not part of the TI component specification, and TI does not  
warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of  
components for their purposes. Customers should validate and test their design implementation to  
confirm system functionality.  
10.1 TI Reference Design  
The TI Reference Design Library is a robust reference design library spanning analog, embedded processor,  
and connectivity. Created by TI experts to help you jump start your system design, all reference designs include  
schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download  
designs at the Select TI reference designs page.  
36V/1kW Brushless DC Motor Drive with Stall Current Limit of <1us Response Time Reference Design  
This reference design is a power stage for brushless motors in battery-powered garden and power tools rated up  
to 1 kW, operating from a 10-cell lithium-ion battery with a voltage range from 36 V to 42 V. The design uses 60-  
V, N-channel NexFETtechnology featuring a very low drain-to-source resistance (RDS_ON) of 1.8 mΩ in a  
SON5x6 SMD package, which results in a very small PCB form factor of 57 mm × 59 mm. The 3-phase gate-  
driver is used to drive a 3-phase MOSFET bridge, which can operate from 6 V to 60 V and supports  
programmable gate current with a maximum setting of 2.3-A sink/1.7-A source. The C2000 F28027 LaunchPad™  
development kit (LAUNCHXL-F28027) is used with this power stage, and 120-degree trapezoidal control of  
BLDC motor with Hall sensors is implemented in software. The cycle-by-cycle current limit feature in the gate-  
driver protects the board from excessive current that is caused during motor stalls, by limiting the maximum  
current allowed in the power stage to a safe level.  
Single-Ended Signal Conditioning Circuit for Current and Voltage Measurement Using Fluxgate Sensors  
This design provides a 4-channel signal conditioning solution for single-ended SAR ADCs integrated into a  
microcontroller measuring motor current using fluxgate sensors. Also provided is an alternative measurement  
circuit with external SAR ADCs as well as circuits for high-speed overcurrent and earth fault detection. Proper  
signal conditioning improves noise immunity on critical current measurements in motor drives. This reference  
design can help increase the effective resolution of the analog-to-digital conversion, improving motor drive  
efficiency.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
11 Device and Documentation Support  
11.1 Device and Development Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
TMS320MCU devices and support tools. Each TMS320 MCU commercial family member has one of three  
prefixes: TMX, TMP, or TMS (for example, TMS320F28023). Texas Instruments recommends two of three  
possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages  
of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/  
tools (TMS/TMDS).  
Device development evolutionary flow:  
TMX  
TMP  
Experimental device that is not necessarily representative of the final device's electrical specifications  
Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability  
verification  
TMS  
Fully qualified production device  
Support tool development evolutionary flow:  
TMDX  
TMDS  
Development-support product that has not yet completed Texas Instruments internal qualification testing  
Fully qualified development-support product  
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability  
of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, PT) and temperature range (for example, S). Figure 11-1 provides a legend for reading the  
complete device name for any family member.  
For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your TI  
sales representative.  
For additional description of the device nomenclature markings on the die, see the TMS320F2802x,  
TMS320F2802xx MCUs Silicon Errata .  
Copyright © 2021 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
A. For more information on peripheral, temperature, and package availability for a specific device, see Table 6-1.  
Figure 11-1. Device Nomenclature  
11.2 Tools and Software  
TI offers an extensive line of development tools. Some of the tools and software to evaluate the performance of  
the device, generate code, and develop solutions are listed below. To view all available tools and software for  
C2000™ real-time control MCUs, visit the C2000 real-time control MCUs – Design & development page.  
Development Tools  
Code Composer Studio (CCS) Integrated Development Environment (IDE) for C2000 Microcontrollers  
Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and  
Embedded Processors portfolio. CCS comprises a suite of tools used to develop and debug embedded  
applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger,  
profiler, and many other features. The intuitive IDE provides a single user interface taking you through each step  
of the application development flow. Familiar tools and interfaces allow users to get started faster than ever  
before. CCS combines the advantages of the Eclipse software framework with advanced embedded debug  
capabilities from TI resulting in a compelling feature-rich development environment for embedded developers.  
C2000 F28027 LaunchPad™ development kit  
The C2000 F28027 LaunchPad™ development kit is an inexpensive, modular, and fun evaluation platform,  
enabling you to dive into real-time, closed-loop control development with Texas Instruments’ C2000 32-bit  
microcontroller family. This platform provides a great starting point for development of many common power  
electronics applications, including motor control, digital power supplies, solar inverters, digital LED lighting,  
precision sensing, and more.  
To view all available C2000 LaunchPad development kits and BoosterPackplug-in modules, visit the  
Embedded development hardware kits & boards site.  
Software Tools  
powerSUITE - Digital Power Supply Design Software Tools for C2000™ MCUs  
powerSUITE is a suite of digital power supply design software tools for Texas Instruments' C2000 real-time  
microcontroller (MCU) family. powerSUITE helps power supply engineers drastically reduce development time  
as they design digitally-controlled power supplies based on C2000 real-time control MCUs.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
C2000Ware for C2000 MCUs  
C2000Ware for C2000™ microcontrollers is a cohesive set of development software and documentation  
designed to minimize software development time. From device-specific drivers and libraries to device peripheral  
examples, C2000Ware provides a solid foundation to begin development and evaluation of your product.  
UniFlash Standalone Flash Tool  
UniFlash is a standalone tool used to program on-chip flash memory through a GUI, command line, or scripting  
interface.  
Models  
Various models are available for download from the product Tools & Software pages. These include I/O Buffer  
Information Specification (IBIS) Models and Boundary-Scan Description Language (BSDL) Models. To view all  
available models, visit the Models section of the Tools & Software page for each device.  
Training  
To help assist design engineers in taking full advantage of the C2000 microcontroller features and performance,  
TI has developed a variety of training resources. Utilizing the online training materials and downloadable hands-  
on workshops provides an easy means for gaining a complete working knowledge of the C2000 microcontroller  
family. These training resources have been designed to decrease the learning curve, while reducing  
development time, and accelerating product time to market. For more information on the various training  
resources, visit the C2000™ real-time control MCUs – Support & training site.  
Specific TMS320F2802x hands-on training resources can be found at C2000™ MCU Device Workshops.  
InstaSPIN-FOC LaunchPad and BoosterPack  
This 6-part series provides information about the C2000 InstaSPIN-FOC Motor Control LaunchPad Development  
Kit and BoosterPack Plug-in Module.  
The InstaSPIN-FOC enabled C2000 F28027 LaunchPad™ development kit is an inexpensive evaluation  
platform designed to help you leap right into the world of sensorless motor control using the InstaSPIN-FOC  
solution.  
Part 1: Introduction and Overview  
Part 2: Identifying Your Motor  
Part 3: Zero Speed, Low Speed, & Tuning  
Part 4: Accelerations & Speed Reversals with Texas Instruments  
Part 5: High, Higher, Highest Speeds with Texas Instruments  
BOOSTXL-DRV8301 BoosterPack with Texas Instruments  
Copyright © 2021 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
11.3 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
The current documentation that describes the processor, related peripherals, and other technical collateral is  
listed below.  
Errata  
TMS320F2802x, TMS320F2802xx MCUs Silicon Errata describes known advisories on silicon and provides  
workarounds.  
Technical Reference Manual  
TMS320F2802x,TMS320F2802xx Technical Reference Manual details the integration, the environment, the  
functional description, and the programming models for each peripheral and subsystem in the device.  
InstaSPIN Technical Reference Manuals  
InstaSPIN-FOC™ and InstaSPIN-MOTIONUser's Guide describes the InstaSPIN-FOC and InstaSPIN-  
MOTION devices.  
TMS320F28026F, TMS320F28027F InstaSPIN™-FOC Software Technical Reference Manual describes the  
TMS320F28026F and TMS320F28027F InstaSPIN-FOC software.  
CPU User's Guides  
TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and the  
assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). This reference  
guide also describes emulation features available on these DSPs.  
Peripheral Guides  
C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the 28x  
digital signal processors (DSPs).  
Tools Guides  
TMS320C28x Assembly Language Tools v20.2.0.LTS User's Guide describes the assembly language tools  
(assembler and other tools used to develop assembly language code), assembler directives, macros, common  
object file format, and symbolic debugging directives for the TMS320C28x device.  
TMS320C28x Optimizing C/C++ Compiler v20.2.0.LTS User's Guide describes the TMS320C28x C/C++  
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly  
language source code for the TMS320C28x device.  
Application Reports  
Semiconductor Packing Methodology describes the packing methodologies employed to prepare semiconductor  
devices for shipment to end users.  
Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful lifetime  
of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general  
engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement.  
Semiconductor and IC Package Thermal Metrics describes traditional and new thermal metrics and puts their  
application in perspective with respect to system-level junction temperature estimation.  
Calculating FIT for a Mission Profile explains how use TI’s reliability de-rating tools to calculate a component  
level FIT under power on conditions for a system mission profile.  
Oscillator Compensation Guide describes a factory supplied method for compensating the internal oscillators for  
frequency drift caused by temperature.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
www.ti.com  
An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS  
including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/  
output structures and future trends.  
Serial Flash Programming of C2000™ Microcontrollers discusses using a flash kernel and ROM loaders for  
serial programming a device.  
11.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 Trademarks  
InstaSPIN-FOC, TMS320C2000, NexFET, LaunchPad, TMS320, BoosterPack, InstaSPIN-MOTION,  
and TI E2Eare trademarks of Texas Instruments.  
I2C-bus® is a registered trademark of NXP B.V. Corporation.  
All trademarks are the property of their respective owners.  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
 
 
TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1, TMS320F28026  
TMS320F28026-Q1, TMS320F28026F, TMS320F28026F-Q1, TMS320F28023  
TMS320F28023-Q1, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523P – NOVEMBER 2008 – REVISED FEBRUARY 2021  
12 Mechanical, Packaging, and Orderable Information  
12.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: TMS320F28027 TMS320F28027-Q1 TMS320F28027F TMS320F28027F-Q1  
TMS320F28026 TMS320F28026-Q1 TMS320F28026F TMS320F28026F-Q1 TMS320F28023 TMS320F28023-  
Q1 TMS320F28022 TMS320F28021 TMS320F28020 TMS320F280200  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Feb-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
DA  
DA  
PT  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS320F280200DAS  
TMS320F280200DAT  
TMS320F280200PTT  
TMS320F28020DAS  
TMS320F28020DAT  
TMS320F28020PTS  
TMS320F28020PTT  
TMS320F28021DAS  
TMS320F28021DAT  
TMS320F28021PTS  
TMS320F28021PTT  
TMS320F28022DAQ  
TMS320F28022DAQR  
TMS320F28022DAS  
TMS320F28022DAT  
TMS320F28022PTQ  
TMS320F28022PTS  
ACTIVE  
TSSOP  
TSSOP  
LQFP  
38  
38  
48  
38  
38  
48  
48  
38  
38  
48  
48  
38  
38  
38  
38  
48  
48  
40  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 105  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
F280200DAS  
S320  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
40  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
F280200DAT  
S320  
250  
40  
S320 980  
F280200PTT  
TSSOP  
TSSOP  
LQFP  
DA  
DA  
PT  
F28020DAS  
S320  
40  
F28020DAT  
S320  
250  
250  
40  
S320 980  
F28020PTS  
LQFP  
PT  
S320 980  
F28020PTT  
TSSOP  
TSSOP  
LQFP  
DA  
DA  
PT  
F28021DAS  
S320  
40  
F28021DAT  
S320  
250  
250  
40  
S320 980  
F28021PTS  
LQFP  
PT  
S320 980  
F28021PTT  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
LQFP  
DA  
DA  
DA  
DA  
PT  
F28022DAQ  
S320  
2000 RoHS & Green  
F28022DAQ  
S320  
40  
40  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
F28022DAS  
S320  
F28022DAT  
S320  
250  
250  
S320 980  
F28022PTQ  
LQFP  
PT  
S320 980  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Feb-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
F28022PTS  
TMS320F28022PTT  
TMS320F28023DAQ  
TMS320F28023DAS  
TMS320F28023DAT  
TMS320F28023PTQ  
TMS320F28023PTS  
TMS320F28023PTT  
TMS320F28026DAQ  
TMS320F28026DAS  
TMS320F28026DAT  
TMS320F28026FPTQ  
TMS320F28026FPTT  
TMS320F28026PTQ  
TMS320F28026PTS  
TMS320F28026PTT  
TMS320F28027DAQ  
TMS320F28027DAS  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
TSSOP  
TSSOP  
TSSOP  
LQFP  
PT  
DA  
DA  
DA  
PT  
PT  
PT  
DA  
DA  
DA  
PT  
PT  
PT  
PT  
PT  
DA  
DA  
48  
38  
38  
38  
48  
48  
48  
38  
38  
38  
48  
48  
48  
48  
48  
38  
38  
250  
40  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
S320 980  
F28022PTT  
F28023DAQ  
S320  
40  
F28023DAS  
S320  
40  
F28023DAT  
S320  
250  
250  
250  
40  
S320 980  
F28023PTQ  
LQFP  
S320 980  
F28023PTS  
LQFP  
S320 980  
F28023PTT  
TSSOP  
TSSOP  
TSSOP  
LQFP  
F28026DAQ  
S320  
40  
F28026DAS  
S320  
40  
F28026DAT  
S320  
250  
250  
250  
250  
250  
40  
S320F 980  
28026FPTQ  
LQFP  
S320 980  
F28026FPTT  
LQFP  
S320 980  
F28026PTQ  
LQFP  
S320 980  
F28026PTS  
LQFP  
S320 980  
F28026PTT  
TSSOP  
TSSOP  
F28027DAQ  
S320  
40  
F28027DAS  
S320  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Feb-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS320F28027DASR  
TMS320F28027DAT  
TMS320F28027DATR  
TMS320F28027FPTQ  
TMS320F28027FPTT  
TMS320F28027PTQ  
TMS320F28027PTQR  
TMS320F28027PTR  
TMS320F28027PTS  
TMS320F28027PTT  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
DA  
38  
38  
38  
48  
48  
48  
48  
48  
48  
48  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 105  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
F28027DAS  
S320  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DA  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
F28027DAT  
S320  
DA  
F28027DAT  
S320  
PT  
250  
250  
250  
RoHS & Green  
RoHS & Green  
RoHS & Green  
S320 980  
F28027FPTQ  
PT  
S320 980  
F28027FPTT  
PT  
S320 980  
F28027PTQ  
PT  
1000 RoHS & Green  
1000 RoHS & Green  
S320 980  
F28027PTQ  
PT  
S320 980  
F28027PTT  
PT  
250  
250  
RoHS & Green  
RoHS & Green  
S320 980  
F28027PTS  
PT  
S320 980  
F28027PTT  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Feb-2021  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TMS320F28022, TMS320F28022-Q1, TMS320F28023, TMS320F28023-Q1, TMS320F28026, TMS320F28026-Q1, TMS320F28026F,  
TMS320F28026F-Q1, TMS320F28027, TMS320F28027-Q1, TMS320F28027F, TMS320F28027F-Q1 :  
Catalog: TMS320F28022, TMS320F28023, TMS320F28026, TMS320F28026F, TMS320F28027, TMS320F28027F  
Automotive: TMS320F28022-Q1, TMS320F28023-Q1, TMS320F28026-Q1, TMS320F28026F-Q1, TMS320F28027-Q1, TMS320F28027F-Q1  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMS320F28022DAQR  
TMS320F28027DASR  
TMS320F28027DATR  
TMS320F28027PTR  
TSSOP  
TSSOP  
TSSOP  
LQFP  
DA  
DA  
DA  
PT  
38  
38  
38  
48  
2000  
2000  
2000  
1000  
330.0  
330.0  
330.0  
330.0  
24.4  
24.4  
24.4  
16.4  
8.6  
8.6  
8.6  
9.6  
13.0  
13.0  
13.0  
9.6  
1.8  
1.8  
1.8  
1.9  
12.0  
12.0  
12.0  
12.0  
24.0  
24.0  
24.0  
16.0  
Q1  
Q1  
Q1  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMS320F28022DAQR  
TMS320F28027DASR  
TMS320F28027DATR  
TMS320F28027PTR  
TSSOP  
TSSOP  
TSSOP  
LQFP  
DA  
DA  
DA  
PT  
38  
38  
38  
48  
2000  
2000  
2000  
1000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
Pack Materials-Page 2  
MECHANICAL DATA  
MTQF003A – OCTOBER 1994 – REVISED DECEMBER 1996  
PT (S-PQFP-G48)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
M
0,08  
0,50  
36  
25  
37  
24  
48  
13  
0,13 NOM  
1
12  
5,50 TYP  
7,20  
SQ  
6,80  
Gage Plane  
9,20  
SQ  
8,80  
0,25  
0,05 MIN  
0°7°  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,10  
1,60 MAX  
4040052/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
D. This may also be a thermally enhanced plastic package with leads conected to the die pads.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TMS320F280230

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280230DAS

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280230DAT

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280230PTS

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F280230PTT

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F2802338A

TMS320x28027, TMS320x28026, TMS320x28025,TMS320x28024, TMS320x28023, TMS320x28022 Piccolo MCU

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F2802338S

TMS320x28027, TMS320x28026, TMS320x28025,TMS320x28024, TMS320x28023, TMS320x28022 Piccolo MCU

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F2802348A

TMS320x28027, TMS320x28026, TMS320x28025,TMS320x28024, TMS320x28023, TMS320x28022 Piccolo MCU

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F2802348S

TMS320x28027, TMS320x28026, TMS320x28025,TMS320x28024, TMS320x28023, TMS320x28022 Piccolo MCU

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28023DAQ

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28023DAS

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28023DAT

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI