TMS320F28030-Q1 [TI]

TMS320F2803x Microcontrollers;
TMS320F28030-Q1
型号: TMS320F28030-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TMS320F2803x Microcontrollers

微控制器
文件: 总167页 (文件大小:2698K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
TMS320F2803x Microcontrollers  
1 Device Overview  
1.1 Features  
1
• High-efficiency 32-bit CPU (TMS320C28x)  
– 60 MHz (16.67-ns cycle time)  
• Code-security module  
• 128-bit security key and lock  
– Protects secure memory blocks  
– Prevents firmware reverse engineering  
• Serial port peripherals  
– 16 × 16 and 32 × 32 MAC operations  
– 16 × 16 dual MAC  
– Harvard bus architecture  
– Atomic operations  
– One Serial Communications Interface (SCI)  
Universal Asynchronous Receiver/Transmitter  
(UART) module  
– Two Serial Peripheral Interface (SPI) modules  
– One Inter-Integrated-Circuit (I2C) module  
– One Local Interconnect Network (LIN) module  
– Fast interrupt response and processing  
– Unified memory programming model  
– Code-efficient (in C/C++ and Assembly)  
• Programmable Control Law Accelerator (CLA)  
– 32-bit floating-point math accelerator  
– Executes code independently of the main CPU  
• Endianness: Little endian  
– One Enhanced Controller Area Network (eCAN)  
module  
• Enhanced control peripherals  
– ePWM  
• JTAG boundary scan support  
– IEEE Standard 1149.1-1990 Standard Test  
Access Port and Boundary Scan Architecture  
• Low cost for both device and system:  
– Single 3.3-V supply  
– High-Resolution PWM (HRPWM)  
– Enhanced Capture (eCAP) module  
– High-Resolution Input Capture (HRCAP) module  
– Enhanced Quadrature Encoder Pulse (eQEP)  
module  
– Analog-to-Digital Converter (ADC)  
– On-chip temperature sensor  
– Comparator  
– No power sequencing requirement  
– Integrated power-on reset and brown-out reset  
– Low power  
– No analog support pins  
• Clocking:  
• Advanced emulation features  
– Analysis and breakpoint functions  
– Real-time debug through hardware  
• Package options  
– 56-Pin RSH Very Thin Quad Flatpack (No lead)  
(VQFN)  
– 64-Pin PAG Thin Quad Flatpack (TQFP)  
– 80-Pin PN Low-Profile Quad Flatpack (LQFP)  
• Temperature options  
– Two internal zero-pin oscillators  
– On-chip crystal oscillator and external clock  
input  
– Watchdog timer module  
– Missing clock detection circuitry  
• Up to 45 individually programmable, multiplexed  
GPIO pins with input filtering  
• Peripheral Interrupt Expansion (PIE) block that  
supports all peripheral interrupts  
– T: –40°C to 105°C  
• Three 32-bit CPU timers  
– S: –40°C to 125°C  
– Q: –40°C to 125°C  
• Independent 16-bit timer in each Enhanced Pulse  
Width Modulator (ePWM)  
(AEC Q100 qualification for automotive  
applications)  
• On-chip memory  
– Flash, SARAM, OTP, Boot ROM available  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
1.2 Applications  
Air conditioner outdoor unit  
Door operator drive control  
DC/DC converter  
Micro inverter  
Solar power optimizer  
String inverter  
Inverter & motor control  
AC drive control module  
Linear motor segment controller  
Servo drive power stage module  
AC-input BLDC motor drive  
DC-input BLDC motor drive  
Industrial AC-DC  
On-board (OBC) & wireless charger  
Automated sorting equipment  
Textile machine  
Welding machine  
AC charging (pile) station  
DC charging (pile) station  
EV charging station power module  
Wireless vehicle charging module  
Energy storage power conversion system (PCS)  
Three phase UPS  
Merchant network & server PSU  
Merchant telecom rectifiers  
1.3 Description  
C2000™ 32-bit microcontrollers are optimized for processing, sensing, and actuation to improve closed-  
loop performance in real-time control applications such as industrial motor drives; solar inverters and  
digital power; electrical vehicles and transportation; motor control; and sensing and signal processing. The  
C2000 line includes the Premium performance MCUs and the Entry performance MCUs.  
The F2803x family of microcontrollers provides the power of the C28x core and Control Law Accelerator  
(CLA) coupled with highly integrated control peripherals in low pin-count devices. This family is code-  
compatible with previous C28x-based code, and also provides a high level of analog integration.  
An internal voltage regulator allows for single-rail operation. Enhancements have been made to the  
HRPWM to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit  
references have been added and can be routed directly to control the PWM outputs. The ADC converts  
from 0 to 3.3-V fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC  
interface has been optimized for low overhead and latency.  
To learn more about the C2000 MCUs, visit the C2000 Overview at www.ti.com/c2000.  
Device Information(1)  
PART NUMBER  
TMS320F28035PN  
PACKAGE  
LQFP (80)  
LQFP (80)  
LQFP (80)  
LQFP (80)  
LQFP (80)  
LQFP (80)  
TQFP (64)  
TQFP (64)  
TQFP (64)  
TQFP (64)  
TQFP (64)  
TQFP (64)  
VQFN (56)  
VQFN (56)  
BODY SIZE  
12.0 mm × 12.0 mm  
12.0 mm × 12.0 mm  
12.0 mm × 12.0 mm  
12.0 mm × 12.0 mm  
12.0 mm × 12.0 mm  
12.0 mm × 12.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
7.0 mm × 7.0 mm  
TMS320F28034PN  
TMS320F28033PN  
TMS320F28032PN  
TMS320F28031PN  
TMS320F28030PN  
TMS320F28035PAG  
TMS320F28034PAG  
TMS320F28033PAG  
TMS320F28032PAG  
TMS320F28031PAG  
TMS320F28030PAG  
TMS320F28035RSH  
TMS320F28034RSH  
7.0 mm × 7.0 mm  
(1) For more information on these devices, see Mechanical, Packaging, and Orderable Information.  
Device Overview  
2
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
 
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Device Information(1) (continued)  
PART NUMBER  
TMS320F28033RSH  
PACKAGE  
VQFN (56)  
VQFN (56)  
VQFN (56)  
VQFN (56)  
BODY SIZE  
7.0 mm × 7.0 mm  
7.0 mm × 7.0 mm  
7.0 mm × 7.0 mm  
7.0 mm × 7.0 mm  
TMS320F28032RSH  
TMS320F28031RSH  
TMS320F28030RSH  
Copyright © 2009–2020, Texas Instruments Incorporated  
Device Overview  
3
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
1.4 Functional Block Diagram  
Functional Block Diagram shows the functional block diagram for the device.  
M0  
SARAM 1K × 16  
(0-wait)  
OTP 1K × 16  
Secure  
SARAM  
4K/6K/8K × 16  
(CLA Only on  
28033 and 28035)  
(0-wait)  
M1  
SARAM 1K × 16  
(0-wait)  
Code  
Security  
Module  
FLASH  
16K/32K/64K × 16  
Secure  
Secure  
Boot-ROM  
8K × 16  
(0-wait)  
OTP/Flash  
Wrapper  
PSWD  
Memory Bus  
CLA  
TRST  
TCK  
TDI  
TMS  
TDO  
COMP1OUT  
COMP2OUT  
COMP3OUT  
GPIO  
MUX  
C28x  
32-Bit CPU  
GPIO  
Mux  
COMP1A  
COMP1B  
COMP2A  
COMP2B  
COMP3A  
COMP3B  
COMP  
3 External Interrupts  
PIE  
XCLKIN  
OSC1,  
OSC2,  
Ext,  
CPU Timer 0  
X1  
X2  
AIO  
CPU Timer 1  
CPU Timer 2  
Memory Bus  
LPM Wakeup  
MUX  
PLL,  
LPM,  
WD  
XRS  
ADC  
A7:0  
B7:0  
POR/  
BOR  
VREG  
32-Bit Peripheral Bus  
(CLA-Accessible)  
32-Bit Peripheral Bus  
16-Bit Peripheral Bus  
eCAN  
(32-mail  
box)  
ePWM  
SCI  
(4L FIFO)  
SPI  
I2C  
LIN  
eCAP  
eQEP  
HRCAP  
(4L FIFO)  
(4L FIFO)  
HRPWM  
From  
COMP1OUT,  
COMP2OUT,  
COMP3OUT  
GPIO MUX  
Copyright © 2017, Texas Instruments Incorporated  
A. Not all peripheral pins are available at the same time due to multiplexing.  
Figure 1-1. Functional Block Diagram  
4
Device Overview  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Table of Contents  
1
Device Overview ......................................... 1  
5.14 Flash Timing ........................................ 39  
Detailed Description ................................... 41  
6.1 Overview ............................................ 41  
6.2 Memory Maps ...................................... 50  
6.3 Register Maps....................................... 57  
6.4 Device Emulation Registers......................... 59  
6.5 VREG/BOR/POR.................................... 60  
6.6 System Control ...................................... 62  
6.7 Low-power Modes Block ............................ 70  
6.8 Interrupts ............................................ 71  
6.9 Peripherals .......................................... 76  
Applications, Implementation, and Layout ...... 145  
7.1 TI Reference Design............................... 145  
Device and Documentation Support.............. 146  
1.1 Features .............................................. 1  
1.2 Applications........................................... 2  
1.3 Description............................................ 2  
1.4 Functional Block Diagram ........................... 4  
Revision History ......................................... 6  
Device Comparison ..................................... 7  
3.1 Related Products ..................................... 9  
Terminal Configuration and Functions ............ 10  
4.1 Pin Diagrams........................................ 10  
4.2 Signal Descriptions.................................. 14  
Specifications ........................................... 22  
5.1 Absolute Maximum Ratings ........................ 22  
5.2 ESD Ratings – Automotive.......................... 22  
5.3 ESD Ratings – Commercial......................... 23  
5.4 Recommended Operating Conditions............... 23  
5.5 Power Consumption Summary...................... 24  
5.6 Electrical Characteristics............................ 28  
5.7 Thermal Resistance Characteristics ................ 29  
5.8 Thermal Design Considerations .................... 31  
6
2
3
4
5
7
8
8.1  
Device and Development Support Tool  
Nomenclature ...................................... 146  
8.2 Tools and Software ................................ 147  
8.3 Documentation Support............................ 149  
8.4 Related Links ...................................... 150  
8.5 Support Resources ................................ 150  
8.6 Trademarks ........................................ 150  
8.7 Electrostatic Discharge Caution ................... 150  
8.8 Glossary............................................ 150  
5.9  
JTAG Debug Probe Connection Without Signal  
Buffering for the MCU............................... 31  
5.10 Parameter Information .............................. 32  
5.11 Test Load Circuit ................................... 32  
5.12 Power Sequencing .................................. 33  
5.13 Clock Specifications................................. 36  
9
Mechanical, Packaging, and Orderable  
Information............................................. 151  
9.1 Packaging Information ............................. 151  
Copyright © 2009–2020, Texas Instruments Incorporated  
Table of Contents  
5
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
2 Revision History  
Changes from January 8, 2019 to June 24, 2020 (from M Revision (January 2019) to N Revision)  
Page  
Global: Changed "emulator" to "JTAG debug probe". .......................................................................... 1  
Section 1.2 (Applications): Updated section. ..................................................................................... 2  
Section 5.1 (Absolute Maximum Ratings): Changed "Input clamp current" condition from "Digital input (per  
pin), ..." to "Digital/analog input (per pin), ...". ................................................................................... 22  
Section 5.1: Updated footnote about continuous clamp current............................................................... 22  
Section 5.1: Updated "Long-term high-temperature storage ..." footnote. .................................................. 22  
Section 5.3 (ESD Ratings – Commercial): Added "ANSI/ESDA/JEDEC JS-002" to Charged-device model  
(CDM). ............................................................................................................................... 23  
Section 5.5.1 (Reducing Current Consumption): Updated list of methods for reducing power consumption. .......... 25  
Figure 6-11 (CPU Watchdog Module): Added SCSR(WDOVERRIDE). .................................................... 69  
Table 6-37 (SPI Master Mode External Timing (Clock Phase = 0)): Updated MIN values of Parameter 23, td(SPC)M. . 98  
Table 6-38 (SPI Master Mode External Timing (Clock Phase = 1)): Updated MIN values of Parameter 23,  
td(SPC)M. ............................................................................................................................... 99  
Figure 6-33 (Serial Communications Interface (SCI) Module Block Diagram): Updated figure. ........................ 105  
Section 7.1 (TI Reference Design): Changed section title from "TI Design or Reference Design" to "TI Reference  
Design". Updated section. ....................................................................................................... 145  
Section 8 (Device and Documentation Support): Removed "Getting Started" section. See the Applications  
section and the Related Links table. ............................................................................................ 146  
Section 8: Changed "Community Resources" section to "Support Resources" section. Updated section............. 146  
Section 8.2 (Tools and Software): Updated section........................................................................... 147  
Section 8.3 (Documentation Support): Updated section. .................................................................... 149  
6
Revision History  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
3 Device Comparison  
Table 3-1 lists the features of the TMS320F2803x devices.  
Table 3-1. Device Comparison  
28030  
(60 MHz)  
28031  
(60 MHz)  
28032  
(60 MHz)  
28033  
(60 MHz)  
28034  
(60 MHz)  
28035  
(60 MHz)  
FEATURE  
TYPE(1)  
80-Pin  
PN  
64-Pin  
PAG  
56-Pin  
RSH  
80-Pin  
PN  
64-Pin  
PAG  
56-Pin  
RSH  
80-Pin  
PN  
64-Pin  
PAG  
56-Pin  
RSH  
80-Pin  
PN  
64-Pin  
PAG  
56-Pin  
RSH  
80-Pin  
PN  
64-Pin  
PAG  
56-Pin  
RSH  
80-Pin  
PN  
64-Pin  
PAG  
56-Pin  
RSH  
Package Type  
LQFP  
TQFP  
VQFN  
LQFP  
TQFP  
VQFN  
LQFP  
TQFP  
VQFN  
LQFP  
TQFP  
VQFN  
LQFP  
TQFP  
VQFN  
LQFP  
TQFP  
VQFN  
Instruction cycle  
0
16.67 ns  
No  
16.67 ns  
No  
16.67 ns  
No  
16.67 ns  
Yes  
16.67 ns  
No  
16.67 ns  
Yes  
Control Law Accelerator (CLA)  
On-chip flash (16-bit word)  
On-chip SARAM (16-bit word)  
16K  
32K  
32K  
32K  
64K  
64K  
6K  
8K  
10K  
10K  
10K  
10K  
Code security for on-chip  
flash/SARAM/OTP blocks  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Boot ROM (8K x 16)  
One-time programmable (OTP) ROM  
(16-bit word)  
ePWM channels  
eCAP inputs  
1
0
0
14  
12  
8
14  
12  
8
14  
12  
8
14  
12  
8
14  
12  
8
14  
12  
8
1
1
1
1
1
1
eQEP modules  
Watchdog timer  
MSPS  
1
Yes  
2.0  
1
Yes  
2.0  
1
Yes  
4.6  
1
Yes  
4.6  
1
Yes  
4.6  
1
Yes  
4.6  
Conversion Time  
500.00 ns  
14  
500.00 ns  
14  
216.67 ns  
14  
216.67 ns  
14  
216.67 ns  
14  
216.67 ns  
14  
12-Bit ADC  
Channels  
3
16  
13  
16  
13  
16  
13  
16  
13  
16  
13  
16  
13  
Temperature Sensor  
Dual Sample-and-Hold  
Yes  
Yes  
3
Yes  
Yes  
3
Yes  
Yes  
3
Yes  
Yes  
3
Yes  
Yes  
3
Yes  
Yes  
3
32-Bit CPU timers  
1
High-resolution ePWM Channels  
7
2
6
4
7
2
6
4
7
2
6
4
7
2
6
4
High-resolution Capture (HRCAP)  
Modules  
0
2
2
2
2
Comparators with Integrated DACs  
Inter-integrated circuit (I2C)  
0
0
3
1
3
1
3
1
3
1
3
1
3
1
Enhanced Controller Area Network  
(eCAN)  
0
1
1
1
1
1
1
Local Interconnect Network (LIN)  
Serial Peripheral Interface (SPI)  
Serial Communications Interface (SCI)  
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
2
1
2
1
2
1
2
1
2
1
2
1
1
1
1
1
1
1
GPIO  
45  
33  
6
26  
45  
33  
6
26  
45  
33  
6
26  
45  
33  
6
26  
45  
33  
6
26  
45  
33  
6
26  
I/O pins  
(shared)  
AIO  
(1) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor differences between devices that do not affect the  
basic functionality of the module. These device-specific differences are listed in the C2000 Real-Time Control Peripherals Reference Guide and in the TMS320F2803x Technical  
Reference Manual.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Device Comparison  
7
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Table 3-1. Device Comparison (continued)  
28030  
(60 MHz)  
28031  
(60 MHz)  
28032  
(60 MHz)  
28033  
(60 MHz)  
28034  
(60 MHz)  
28035  
(60 MHz)  
FEATURE  
TYPE(1)  
80-Pin  
PN  
64-Pin  
PAG  
56-Pin  
RSH  
80-Pin  
PN  
64-Pin  
PAG  
56-Pin  
RSH  
80-Pin  
PN  
64-Pin  
PAG  
56-Pin  
RSH  
80-Pin  
PN  
64-Pin  
PAG  
56-Pin  
RSH  
80-Pin  
PN  
64-Pin  
PAG  
56-Pin  
RSH  
80-Pin  
PN  
64-Pin  
PAG  
56-Pin  
RSH  
Package Type  
LQFP  
TQFP  
VQFN  
LQFP  
TQFP  
VQFN  
LQFP  
TQFP  
VQFN  
LQFP  
TQFP  
VQFN  
LQFP  
TQFP  
VQFN  
LQFP  
TQFP  
VQFN  
External interrupts  
3
3
3
3
3
3
Supply voltage (nominal)  
3.3 V  
Yes  
Yes  
3.3 V  
Yes  
Yes  
3.3 V  
Yes  
Yes  
3.3 V  
Yes  
Yes  
3.3 V  
Yes  
Yes  
3.3 V  
Yes  
Yes  
T: –40°C to 105°C  
Temperature  
options  
S: –40°C to 125°C  
Q: –40°C to 125°C(2)  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
No  
(2) The letter Q refers to AEC Q100 qualification for automotive applications.  
8
Device Comparison  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
3.1 Related Products  
For information about similar products, see the following links:  
TMS320F2802x Microcontrollers  
The F2802x series offers the lowest pin-count and Flash memory size options. InstaSPIN-FOC™ versions  
are available.  
TMS320F2803x Microcontrollers  
The F2803x series increases the pin-count and memory size options. The F2803x series also introduces  
the parallel control law accelerator (CLA) option.  
TMS320F2805x Microcontrollers  
The F2805x series is similar to the F2803x series but adds on-chip programmable gain amplifiers (PGAs).  
InstaSPIN-FOC and InstaSPIN-MOTION™ versions are available.  
TMS320F2806x Microcontrollers  
The F2806x series is the first to include a floating-point unit (FPU). The F2806x series also increases the  
pin-count, memory size options, and the quantity of peripherals. InstaSPIN-FOC™ and InstaSPIN-  
MOTION™ versions are available.  
TMS320F2807x Microcontrollers  
The F2807x series offers the most performance, largest pin counts, flash memory sizes, and peripheral  
options. The F2807x series includes the latest generation of accelerators, ePWM peripherals, and analog  
technology.  
TMS320F28004x Microcontrollers  
The F28004x series is a reduced version of the F2807x series with the latest generational enhancements.  
The F28004x series is the best roadmap option for those using the F2806x series. InstaSPIN-FOC and  
configurable logic block (CLB) versions are available.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Device Comparison  
9
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
4 Terminal Configuration and Functions  
4.1 Pin Diagrams  
Figure 4-1 shows the 56-pin RSH Very Thin Quad Flatpack (No Lead) (VQFN) pin assignments. Figure 4-  
2 shows the 64-pin PAG Thin Quad Flatpack (TQFP) pin assignments. Figure 4-3 shows the 80-pin PN  
Low-Profile Quad Flatpack (LQFP) pin assignments.  
10  
Terminal Configuration and Functions  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
28  
GPIO36/TMS  
GPIO28/SCIRXDA/SDAA/TZ2  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
GPIO5/EPWM3B/SPISIMOA/ECAP1  
TEST2  
VDDIO  
VSS  
GPIO4/EPWM3A  
GPIO3/EPWM2B/SPISOMIA/COMP2OUT  
GPIO2/EPWM2A  
GPIO29/SCITXDA/SCLA/TZ3  
GPIO30/CANRXA  
GPIO31/CANTXA  
ADCINB7  
GPIO1/EPWM1B/COMP1OUT  
GPIO0/EPWM1A  
VDDIO  
VSS  
ADCINB6/COMP3B/AIO14  
ADCINB4/COMP2B/AIO12  
ADCINB3  
VDD  
VREGENZ  
GPIO34/COMP2OUT/COMP3OUT  
GPIO20/EQEP1A/COMP1OUT  
GPIO21/EQEP1B/COMP2OUT  
ADCINB2/COMP1B/AIO10  
ADCINB1  
VSSA/VREFLO  
A. This figure shows the top view of the 56-pin RSH package. Shading denotes that the terminals are actually on the  
bottom side of the package. See Section 9 for the 56-pin RSH mechanical drawing.  
B. Pin 13: VREFHI and ADCINA0 share the same pin on the 56-pin RSH device and their use is mutually exclusive to one  
another.  
C. Pin 15: VREFLO is always connected to VSSA on the 56-pin RSH device.  
Figure 4-1. 2803x 56-Pin RSH VQFN (Top View)  
Copyright © 2009–2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
GPIO11/EPWM6B/LINRXA/HRCAP2  
GPIO5/EPWM3B/SPSIMOA/ECAP1  
GPIO4/EPWM3A  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
GPIO28/SCIRXDA/SDAA/TZ2  
GPIO9/EPWM5B/LINTXA/HRCAP1  
TEST2  
V
DDIO  
GPIO10/EPWM6A/ADCSOCBO  
GPIO3/EPWM2B/SPISOMIA/COMP2OUT  
GPIO2/EPWM2A  
V
SS  
GPIO29/SCITXDA/SCLA/TZ3  
GPIO30/CANRXA  
GPIO31/CANTXA  
ADCINB7  
GPIO1/EPWM1B/COMP1OUT  
GPIO0/EPWM1A  
V
DDIO  
V
ADCINB6/COMP3B/AIO14  
ADCINB4/COMP2B/AIO12  
ADCINB3  
SS  
V
DD  
V
REGENZ  
GPIO34/COMP2OUT/COMP3OUT  
GPIO20/EQEP1A/COMP1OUT  
GPIO21/EQEP1B/COMP2OUT  
GPIO24/ECAP1  
ADCINB2/COMP1B/AIO10  
ADCINB1  
ADCINB0  
V /V  
SSA REFLO  
A. Pin 15: VREFHI and ADCINA0 share the same pin on the 64-pin PAG device and their use is mutually exclusive to one  
another.  
B. Pin 17: VREFLO is always connected to VSSA on the 64-pin PAG device.  
Figure 4-2. 2803x 64-Pin PAG TQFP (Top View)  
12  
Terminal Configuration and Functions  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
GPIO11/EPWM6B/LINRXA/HRCAP2  
GPIO5/EPWM3B/SPISIMOA/ECAP1  
GPIO4/EPWM3A  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
GPIO28/SCIRXDA/SDAA/TZ2  
GPIO9/EPWM5B/LINTXA/HRCAP1  
TEST2  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
GPIO40/EPWM7A  
GPIO26/HRCAP1/SPICLKB  
GPIO10/EPWM6A/ADCSOCBO  
GPIO3/EPWM2B/SPISOMIA/COMP2OUT  
GPIO2/EPWM2A  
V
DDIO  
V
SS  
GPIO29/SCITXDA/SCLA/TZ3  
GPIO30/CANRXA  
GPIO31/CANTXA  
GPIO27/HRCAP2/SPISTEB  
ADCINB7  
GPIO1/EPWM1B/COMP1OUT  
GPIO0/EPWM1A  
V
DDIO  
V
SS  
V
ADCINB6/COMP3B/AIO14  
ADCINB5  
DD  
REGENZ  
V
GPIO34/COMP2OUT/COMP3OUT  
GPIO15/TZ1/LINRXA/SPISTEB  
GPIO13/TZ2/SPISOMIB  
ADCINB4/COMP2B/AIO12  
ADCINB3  
ADCINB2/COMP1B/AIO10  
ADCINB1  
GPIO14/TZ3/LINTXA/SPICLKB  
GPIO20/EQEP1A/COMP1OUT  
GPIO21/EQEP1B/COMP2OUT  
GPIO24/ECAP1/SPISIMOB  
ADCINB0  
V
REFLO  
SSA  
V
Figure 4-3. 2803x 80-Pin PN LQFP (Top View)  
Copyright © 2009–2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
13  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
4.2 Signal Descriptions  
Table 4-1 describes the signals. With the exception of the JTAG pins, the GPIO function is the default at  
reset, unless otherwise mentioned. The peripheral signals that are listed under them are alternate  
functions. Some peripheral functions may not be available in all devices. See Table 3-1 for details. Inputs  
are not 5-V tolerant. All GPIO pins are I/O/Z and have an internal pullup, which can be selectively  
enabled/disabled on a per-pin basis. This feature only applies to the GPIO pins. The pullups on the PWM  
pins are not enabled at reset. The pullups on other GPIO pins are enabled upon reset. The AIO pins do  
not have an internal pullup.  
NOTE  
When the on-chip VREG is used, the GPIO19, GPIO34, GPIO35, GPIO36, GPIO37, and  
GPIO38 pins could glitch during power up. This potential glitch will finish before the boot  
mode pins are read and will not affect boot behavior. If glitching is unacceptable in an  
application, 1.8 V could be supplied externally. Alternatively, adding a current-limiting resistor  
(for example, 470 Ω) in series with these pins and any external driver could be considered to  
limit the potential for degradation to the pin and/or external circuitry. There is no power-  
sequencing requirement when using an external 1.8-V supply. However, if the 3.3-V  
transistors in the level-shifting output buffers of the I/O pins are powered before the 1.8-V  
transistors, it is possible for the output buffers to turn on, causing a glitch to occur on the pin  
during power up. To avoid this behavior, power the VDD pins before or with the VDDIO pins,  
ensuring that the VDD pins have reached 0.7 V before the VDDIO pins reach 0.7 V.  
Table 4-1. Signal Descriptions(1)  
TERMINAL  
I/O/Z  
DESCRIPTION  
PN  
PAG  
RSH  
NAME  
PIN NO. PIN NO. PIN NO.  
JTAG  
JTAG test reset with internal pulldown. TRST, when driven high, gives the scan  
system control of the operations of the device. If this signal is not connected or  
driven low, the device operates in its functional mode, and the test reset signals  
are ignored. NOTE: TRST is an active high test pin and must be maintained low  
at all times during normal device operation. An external pulldown resistor is  
required on this pin. The value of this resistor should be based on drive strength  
of the debugger pods applicable to the design. A 2.2-kresistor generally offers  
adequate protection. Because this is application-specific, TI recommends  
validating each target board for proper operation of the debugger and the  
application. ()  
TRST  
10  
8
6
I
TCK  
TMS  
See GPIO38  
See GPIO36  
I
I
See GPIO38. JTAG test clock with internal pullup. ()  
See GPIO36. JTAG test-mode select (TMS) with internal pullup. This serial  
control input is clocked into the TAP controller on the rising edge of TCK. ()  
See GPIO35. JTAG test data input (TDI) with internal pullup. TDI is clocked into  
the selected register (instruction or data) on a rising edge of TCK. ()  
TDI  
See GPIO35  
See GPIO37  
I
See GPIO37. JTAG scan out, test data output (TDO). The contents of the  
selected register (instruction or data) are shifted out of TDO on the falling edge of  
TCK. (8 mA drive)  
TDO  
O/Z  
FLASH  
TEST2  
38  
30  
27  
I/O  
Test Pin. Reserved for TI. Must be left unconnected.  
(1) I = Input, O = Output, Z = High Impedance, OD = Open Drain, = Pullup, = Pulldown  
14  
Terminal Configuration and Functions  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Table 4-1. Signal Descriptions(1) (continued)  
TERMINAL  
PN  
PIN NO. PIN NO. PIN NO.  
I/O/Z  
DESCRIPTION  
PAG  
RSH  
NAME  
CLOCK  
See GPIO18. Output clock derived from SYSCLKOUT. XCLKOUT is either the  
same frequency, one-half the frequency, or one-fourth the frequency of  
SYSCLKOUT. This is controlled by bits 1:0 (XCLKOUTDIV) in the XCLK register.  
At reset, XCLKOUT = SYSCLKOUT/4. The XCLKOUT signal can be turned off by  
setting XCLKOUTDIV to 3. The mux control for GPIO18 must also be set to  
XCLKOUT for this signal to propogate to the pin.  
XCLKOUT  
See GPIO18  
O/Z  
See GPIO19 and GPIO38. External oscillator input. Pin source for the clock is  
controlled by the XCLKINSEL bit in the XCLK register, GPIO38 is the default  
selection. This pin feeds a clock from an external 3.3-V oscillator. In this case, the  
X1 pin, if available, must be tied to GND and the on-chip crystal oscillator must be  
disabled through bit 14 in the CLKCTL register. If a crystal/resonator is used, the  
XCLKIN path must be disabled by bit 13 in the CLKCTL register.  
XCLKIN  
See GPIO19 and GPIO38  
I
NOTE: Designs that use the GPIO38/TCK/XCLKIN pin to supply an external clock  
for normal device operation may need to incorporate some hooks to disable this  
path during debug using the JTAG connector. This is to prevent contention with  
the TCK signal, which is active during JTAG debug sessions. The zero-pin  
internal oscillators may be used during this time to clock the device.  
On-chip 1.8-V crystal-oscillator input. To use this oscillator, a quartz crystal or a  
ceramic resonator must be connected across X1 and X2. In this case, the  
XCLKIN path must be disabled by bit 13 in the CLKCTL register. If this pin is not  
used, it must be tied to GND. (I)  
X1  
X2  
52  
51  
41  
40  
36  
35  
I
On-chip crystal-oscillator output. A quartz crystal or a ceramic resonator must be  
connected across X1 and X2. If X2 is not used, it must be left unconnected. (O)  
O
RESET  
Device Reset (in) and Watchdog Reset (out). These devices have a built-in  
power-on reset (POR) and brown-out reset (BOR) circuitry. During a power-on or  
brown-out condition, this pin is driven low by the device. An external circuit may  
also drive this pin to assert a device reset. This pin is also driven low by the MCU  
when a watchdog reset occurs. During watchdog reset, the XRS pin is driven low  
for the watchdog reset duration of 512 OSCCLK cycles. A resistor with a value  
from 2.2 kΩ to 10 kΩ should be placed between XRS and VDDIO. If a capacitor is  
placed between XRS and VSS for noise filtering, it should be 100 nF or smaller.  
These values will allow the watchdog to properly drive the XRS pin to VOL within  
512 OSCCLK cycles when the watchdog reset is asserted. Regardless of the  
source, a device reset causes the device to terminate execution. The program  
counter points to the address contained at the location 0x3F FFC0. When reset is  
deactivated, execution begins at the location designated by the program counter.  
The output buffer of this pin is an open-drain device with an internal pullup. () If  
this pin is driven by an external device, it should be done using an open-drain  
device.  
XRS  
9
7
5
I/O  
ADC, COMPARATOR, ANALOG I/O  
ADCINA7  
ADCINA6  
COMP3A  
AIO6  
11  
12  
13  
14  
15  
16  
9
7
8
I
ADC Group A, Channel 7 input  
ADC Group A, Channel 6 input  
Comparator Input 3A  
I
10  
I
I/O  
Digital AIO 6  
ADCINA5  
ADCINA4  
COMP2A  
AIO4  
I
ADC Group A, Channel 5 input  
ADC Group A, Channel 4 input  
Comparator Input 2A  
I
11  
12  
13  
9
I
I/O  
Digital AIO 4  
ADCINA3  
ADCINA2  
COMP1A  
AIO2  
10  
11  
I
I
ADC Group A, Channel 3 input  
ADC Group A, Channel 2 input  
Comparator Input 1A  
I
I/O  
Digital AIO 2  
Copyright © 2009–2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
15  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Table 4-1. Signal Descriptions(1) (continued)  
TERMINAL  
PN  
PIN NO. PIN NO. PIN NO.  
I/O/Z  
DESCRIPTION  
PAG  
RSH  
NAME  
ADCINA1  
17  
14  
12  
I
ADC Group A, Channel 1 input  
ADC Group A, Channel 0 input.  
NOTE: VREFHI and ADCINA0 share the same pin on the 64-pin PAG device and  
their use is mutually exclusive to one another.  
ADCINA0  
18  
15  
13  
I
NOTE: VREFHI and ADCINA0 share the same pin on the 56-pin RSH device and  
their use is mutually exclusive to one another.  
ADC External Reference High – only used when in ADC external reference mode.  
See Section 6.9.2.1, ADC.  
NOTE: VREFHI and ADCINA0 share the same pin on the 64-pin PAG device and  
their use is mutually exclusive to one another.  
VREFHI  
19  
15  
13  
I
NOTE: VREFHI and ADCINA0 share the same pin on the 56-pin RSH device and  
their use is mutually exclusive to one another.  
ADCINB7  
ADCINB6  
COMP3B  
AIO14  
30  
29  
28  
27  
26  
25  
24  
23  
21  
20  
I
ADC Group B, Channel 7 input  
ADC Group B, Channel 6 input  
Comparator Input 3B  
I
I
I/O  
Digital AIO 14  
ADCINB5  
ADCINB4  
COMP2B  
AIO12  
I
ADC Group B, Channel 5 input  
ADC Group B, Channel 4 input  
Comparator Input 2B  
I
22  
21  
20  
19  
18  
17  
I
I/O  
Digital AIO12  
ADCINB3  
ADCINB2  
COMP1B  
AIO10  
I
ADC Group B, Channel 3 input  
ADC Group B, Channel 2 input  
Comparator Input 1B  
I
I
I/O  
I
Digital AIO 10  
ADCINB1  
ADCINB0  
24  
23  
19  
18  
16  
ADC Group B, Channel 1 input  
ADC Group B, Channel 0 input  
I
ADC External Reference Low.  
VREFLO  
22  
17  
15  
I
NOTE: VREFLO is always connected to VSSA on the 64-pin PAG device and on the  
56-pin RSH device.  
CPU AND I/O POWER  
VDDA  
VSSA  
20  
21  
16  
17  
14  
15  
Analog Power Pin. Tie with a 2.2-μF capacitor (typical) close to the pin.  
Analog Ground Pin.  
NOTE: VREFLO is always connected to VSSA on the 64-pin PAG device and on the  
56-pin RSH device.  
7
5
3
CPU and Logic Digital Power Pins. When using internal VREG, place one 1.2-µF  
capacitor between each VDD pin and ground. Higher value capacitors may be  
used.  
VDD  
54  
72  
36  
43  
59  
29  
38  
52  
26  
Digital I/O Buffers and Flash Memory Power Pin. Single supply source when  
VREG is enabled. Place a decoupling capacitor on each pin. The exact value  
should be determined by the system voltage regulation solution.  
VDDIO  
70  
57  
50  
8
6
4
35  
53  
71  
28  
42  
58  
25  
37  
51  
VSS  
Digital Ground Pins  
16  
Terminal Configuration and Functions  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Table 4-1. Signal Descriptions(1) (continued)  
TERMINAL  
PN  
PIN NO. PIN NO. PIN NO.  
I/O/Z  
DESCRIPTION  
PAG  
RSH  
NAME  
VOLTAGE REGULATOR CONTROL SIGNAL  
Internal VREG Enable/Disable – pull low to enable VREG, pull high to disable  
VREG  
VREGENZ  
73  
69  
60  
56  
53  
49  
I
(2)  
GPIO AND PERIPHERAL SIGNALS  
GPIO0  
EPWM1A  
I/O/Z  
O
General-purpose input/output 0  
Enhanced PWM1 Output A and HRPWM channel  
GPIO1  
EPWM1B  
I/O/Z  
O
General-purpose input/output 1  
Enhanced PWM1 Output B  
68  
67  
66  
63  
62  
50  
49  
43  
55  
54  
53  
51  
50  
39  
38  
35  
48  
47  
46  
45  
44  
34  
33  
COMP1OUT  
GPIO2  
EPWM2A  
O
I/O/Z  
O
Direct output of Comparator 1  
General-purpose input/output 2  
Enhanced PWM2 Output A and HRPWM channel  
GPIO3  
EPWM2B  
SPISOMIA  
COMP2OUT  
GPIO4  
EPWM3A  
I/O/Z  
O
General-purpose input/output 3  
Enhanced PWM2 Output B  
SPI-A slave out, master in  
Direct output of Comparator 2  
General-purpose input/output 4  
Enhanced PWM3 output A and HRPWM channel  
I/O  
O
I/O/Z  
O
GPIO5  
EPWM3B  
SPISIMOA  
ECAP1  
GPIO6  
EPWM4A  
EPWMSYNCI  
EPWMSYNCO  
GPIO7  
EPWM4B  
SCIRXDA  
I/O/Z  
O
General-purpose input/output 5  
Enhanced PWM3 output B  
SPI-A slave in, master out  
Enhanced Capture input/output 1  
General-purpose input/output 6  
Enhanced PWM4 output A and HRPWM channel  
External ePWM sync pulse input  
External ePWM sync pulse output  
General-purpose input/output 7  
Enhanced PWM4 output B  
SCI-A receive data  
I/O  
I/O  
I/O/Z  
O
I
O
I/O/Z  
O
I
GPIO8  
EPWM5A  
I/O/Z  
O
General-purpose input/output 8  
Enhanced PWM5 output A and HRPWM channel  
ADCSOCAO  
O
ADC start-of-conversion A  
(2) The GPIO function (shown in bold italics) is the default at reset. The peripheral signals that are listed under them are alternate functions.  
For JTAG pins that have the GPIO functionality multiplexed, the input path to the GPIO block is always valid. The output path from the  
GPIO block and the path to the JTAG block from a pin is enabled/disabled based on the condition of the TRST signal. See the System  
Control chapter in the TMS320F2803x Technical Reference Manual for details.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
17  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Table 4-1. Signal Descriptions(1) (continued)  
TERMINAL  
PN  
PIN NO. PIN NO. PIN NO.  
I/O/Z  
DESCRIPTION  
PAG  
RSH  
NAME  
GPIO9  
I/O/Z  
O
General-purpose input/output 9  
Enhanced PWM5 output B  
LIN transmit A  
EPWM5B  
LINTXA  
HRCAP1  
GPIO10  
EPWM6A  
39  
65  
61  
31  
52  
49  
O
I
High-resolution input capture 1  
General-purpose input/output 10  
I/O/Z  
O
Enhanced PWM6 output A and HRPWM channel  
ADCSOCBO  
GPIO11  
EPWM6B  
LINRXA  
HRCAP2  
GPIO12  
TZ1  
O
ADC start-of-conversion B  
General-purpose input/output 11  
Enhanced PWM6 output B  
LIN receive A  
I/O/Z  
O
I
I
I/O/Z  
I
High-resolution input capture 2  
General-purpose input/output 12  
Trip Zone input 1  
47  
37  
32  
SCITXDA  
O
SCI-A transmit data  
SPI-B slave in, master out.  
NOTE: SPI-B is available only in the PN package.  
SPISIMOB  
I/O  
GPIO13  
TZ2  
I/O/Z  
I
General-purpose input/output 13  
Trip Zone input 2  
76  
77  
75  
46  
42  
SPISOMIB  
GPIO14  
TZ3  
I/O  
I/O/Z  
I
SPI-B slave out, master in  
General-purpose input/output 14  
Trip zone input 3  
LINTXA  
SPICLKB  
GPIO15  
TZ1  
O
LIN transmit  
I/O  
I/O/Z  
I
SPI-B clock input/output  
General-purpose input/output 15  
Trip zone input 1  
LINRXA  
SPISTEB  
GPIO16  
SPISIMOA  
I
LIN receive  
I/O  
I/O/Z  
I/O  
SPI-B slave transmit enable input/output  
General-purpose input/output 16  
SPI-A slave in, master out  
36  
34  
31  
30  
TZ2  
I
Trip Zone input 2  
GPIO17  
SPISOMIA  
I/O/Z  
I/O  
General-purpose input/output 17  
SPI-A slave out, master in  
TZ3  
I
Trip zone input 3  
18  
Terminal Configuration and Functions  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Table 4-1. Signal Descriptions(1) (continued)  
TERMINAL  
PN  
PIN NO. PIN NO. PIN NO.  
I/O/Z  
DESCRIPTION  
PAG  
RSH  
NAME  
GPIO18  
SPICLKA  
LINTXA  
I/O/Z  
I/O  
O
General-purpose input/output 18  
SPI-A clock input/output  
LIN transmit  
Output clock derived from SYSCLKOUT. XCLKOUT is either the same frequency,  
one-half the frequency, or one-fourth the frequency of SYSCLKOUT. This is  
controlled by bits 1:0 (XCLKOUTDIV) in the XCLK register. At reset, XCLKOUT =  
SYSCLKOUT/4. The XCLKOUT signal can be turned off by setting XCLKOUTDIV  
to 3. The mux control for GPIO18 must also be set to XCLKOUT for this signal to  
propogate to the pin.  
41  
33  
29  
XCLKOUT  
O/Z  
GPIO19  
I/O/Z  
General-purpose input/output 19  
External Oscillator Input. The path from this pin to the clock block is not gated by  
the mux function of this pin. Care must be taken not to enable this path for  
clocking if it is being used for the other periperhal functions  
XCLKIN  
55  
44  
39  
SPISTEA  
LINRXA  
ECAP1  
GPIO20  
EQEP1A  
I/O  
SPI-A slave transmit enable input/output  
LIN receive  
I
I/O  
I/O/Z  
I
Enhanced Capture input/output 1  
General-purpose input/output 20  
Enhanced QEP1 input A  
78  
79  
1
62  
63  
1
55  
56  
1
COMP1OUT  
GPIO21  
EQEP1B  
O
I/O/Z  
I
Direct output of Comparator 1  
General-purpose input/output 21  
Enhanced QEP1 input B  
COMP2OUT  
GPIO22  
EQEP1S  
O
Direct output of Comparator 2  
General-purpose input/output 22  
Enhanced QEP1 strobe  
I/O/Z  
I/O  
LINTXA  
GPIO23  
EQEP1I  
O
LIN transmit  
I/O/Z  
I/O  
General-purpose input/output 23  
Enhanced QEP1 index  
4
4
2
LINRXA  
GPIO24  
I
LIN receive  
I/O/Z  
General-purpose input/output 24  
See  
GPIO5  
and  
ECAP1  
I/O  
Enhanced Capture input/output 1  
80  
44  
64  
GPIO19  
SPI-B slave in, master out.  
NOTE: SPI-B is available only in the PN and RSH packages.  
SPISIMOB  
I/O  
GPIO25  
I/O/Z  
General-purpose input/output 25  
SPISOMIB  
I/O  
SPI-B slave out, master in  
Copyright © 2009–2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
19  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Table 4-1. Signal Descriptions(1) (continued)  
TERMINAL  
PN  
PIN NO. PIN NO. PIN NO.  
I/O/Z  
DESCRIPTION  
PAG  
RSH  
NAME  
GPIO26  
I/O/Z  
I
General-purpose input/output 26  
High-resolution input capture 1  
HRCAP1  
37  
31  
40  
34  
33  
32  
2
SPICLKB  
GPIO27  
HRCAP2  
I/O  
I/O/Z  
I
SPI-B clock input/output  
General-purpose input/output 27  
High-resolution input capture 2  
SPISTEB  
GPIO28  
SCIRXDA  
SDAA  
I/O  
SPI-B slave transmit enable input/output  
General-purpose input/output 28  
SCI receive data  
I/O/Z  
I
32  
27  
26  
25  
2
28  
24  
23  
22  
I/OD  
I2C data open-drain bidirectional port  
Trip zone input 2  
TZ2  
I
I/O/Z  
O
GPIO29  
SCITXDA  
SCLA  
General-purpose input/output 29  
SCI transmit data  
I/OD  
I
I2C clock open-drain bidirectional port  
Trip zone input 3  
TZ3  
GPIO30  
CANRXA  
I/O/Z  
I
General-purpose input/output 30  
CAN receive  
GPIO31  
CANTXA  
I/O/Z  
O
General-purpose input/output 31  
CAN transmit  
GPIO32  
SDAA  
I/O/Z  
I/OD  
I
General-purpose input/output 32  
I2C data open-drain bidirectional port  
Enhanced PWM external sync pulse input  
ADC start-of-conversion A  
General-Purpose Input/Output 33  
I2C clock open-drain bidirectional port  
Enhanced PWM external synch pulse output  
ADC start-of-conversion B  
General-Purpose Input/Output 34  
Direct output of Comparator 2  
EPWMSYNCI  
ADCSOCAO  
GPIO33  
SCLA  
O
I/O/Z  
I/OD  
O
3
3
EPWMSYNCO  
ADCSOCBO  
GPIO34  
COMP2OUT  
O
I/O/Z  
O
74  
61  
54  
COMP3OUT  
GPIO35  
O
Direct output of Comparator 3  
General-Purpose Input/Output 35  
I/O/Z  
59  
60  
47  
48  
42  
43  
JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected  
register (instruction or data) on a rising edge of TCK  
TDI  
I
I/O/Z  
I
GPIO36  
TMS  
General-Purpose Input/Output 36  
JTAG test-mode select (TMS) with internal pullup. This serial control input is  
clocked into the TAP controller on the rising edge of TCK.  
20  
Terminal Configuration and Functions  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Table 4-1. Signal Descriptions(1) (continued)  
TERMINAL  
PN  
PIN NO. PIN NO. PIN NO.  
I/O/Z  
DESCRIPTION  
PAG  
RSH  
NAME  
GPIO37  
I/O/Z  
O/Z  
General-Purpose Input/Output 37  
JTAG scan out, test data output (TDO). The contents of the selected register  
(instruction or data) are shifted out of TDO on the falling edge of TCK (8 mA  
drive)  
58  
57  
46  
45  
41  
40  
TDO  
GPIO38  
TCK  
I/O/Z  
I
General-Purpose Input/Output 38  
JTAG test clock with internal pullup  
External Oscillator Input. The path from this pin to the clock block is not gated by  
the mux function of this pin. Care must be taken to not enable this path for  
clocking if it is being used for the other functions.  
XCLKIN  
I
GPIO39  
I/O/Z  
General-Purpose Input/Output 39  
56  
64  
48  
5
GPIO40  
I/O/Z  
O
General-Purpose Input/Output 40  
EPWM7A  
Enhanced PWM7 output A and HRPWM channel  
GPIO41  
I/O/Z  
O
General-Purpose Input/Output 41  
EPWM7B  
Enhanced PWM7 output B  
GPIO42  
I/O/Z  
General-Purpose Input/Output 42  
COMP1OUT  
O
Direct output of Comparator 1  
GPIO43  
I/O/Z  
General-Purpose Input/Output 43  
6
COMP2OUT  
O
Direct output of Comparator 2  
GPIO44  
I/O/Z  
General-Purpose Input/Output 44  
45  
Copyright © 2009–2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
21  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
5 Specifications  
5.1 Absolute Maximum Ratings(1)(2)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
4.6  
2.5  
4.6  
4.6  
2.5  
4.6  
UNIT  
VDDIO (I/O and Flash) with respect to VSS  
Supply voltage  
V
V
V
V
VDD with respect to VSS  
Analog voltage  
Input voltage  
Output voltage  
VDDA with respect to VSSA  
VIN (3.3 V)  
VIN (X1)  
VO  
Digital/analog input (per pin), IIK  
–20  
–20  
–20  
20  
20  
20  
(3)  
(VIN < VSS or VIN > VDDIO  
)
Analog input (per pin), IIKANALOG  
(VIN < VSSA or VIN > VDDA  
Input clamp current  
mA  
)
Total for all inputs, IIKTOTAL  
(VIN < VSS/VSSA or VIN > VDDIO/VDDA  
)
Output clamp current  
Junction temperature(4)  
Storage temperature(4)  
IOK (VO < 0 or VO > VDDIO  
)
–20  
–40  
–65  
20  
150  
150  
mA  
°C  
TJ  
Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Section 5.4 is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) Continuous clamp current per pin is ±2 mA. Do not operate in this condition continuously as VDDIO/VDDA voltage may internally rise and  
impact other electrical specifications.  
(4) Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device life.  
For additional information, see Semiconductor and IC Package Thermal Metrics; Calculating Useful Lifetimes of Embedded Processors;  
and Calculating FIT for a Mission Profile.  
5.2 ESD Ratings – Automotive  
VALUE  
UNIT  
TMS320F2803x in 80-pin PN package  
Human body model (HBM), per AEC Q100-002(1)  
All pins  
±2000  
±500  
All pins except corner  
pins  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per AEC Q100-011  
Corner pins on 80-pin PN:  
1, 20, 21, 40, 41, 60, 61,  
80  
±750  
TMS320F2803x in 64-pin PAG package  
Human body model (HBM), per AEC Q100-002(1)  
All pins  
±2000  
±500  
All pins except corner  
pins  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per AEC Q100-011  
Corner pins on 64-pin  
PAG: 1, 16, 17, 32, 33,  
48, 49, 64  
±750  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
22  
Specifications  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
5.3 ESD Ratings – Commercial  
TMS320F2803x in 56-pin RSH package  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101  
or ANSI/ESDA/JEDEC JS-002(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
5.4 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
Device supply voltage, I/O, VDDIO  
2.97  
3.3  
3.63  
V
Device supply voltage CPU, VDD (When internal VREG is  
disabled and 1.8 V is supplied externally)  
1.71  
2.97  
1.8  
1.995  
3.63  
V
Supply ground, VSS  
0
3.3  
0
V
V
Analog supply voltage, VDDA  
Analog ground, VSSA  
V
Device clock frequency (system clock)  
High-level input voltage, VIH (3.3 V)  
Low-level input voltage, VIL (3.3 V)  
2
2
60  
MHz  
V
VDDIO + 0.3  
VSS – 0.3  
0.8  
–4  
–8  
4
V
All GPIO/AIO pins  
Group 2(1)  
mA  
mA  
mA  
mA  
High-level output source current, VOH = VOH(MIN) , IOH  
Low-level output sink current, VOL = VOL(MAX), IOL  
All GPIO/AIO pins  
Group 2(1)  
8
T version  
–40  
–40  
105  
125  
S version  
Ambient temperature, TA  
Junction temperature, TJ  
°C  
°C  
Q version  
(AEC Q100 qualification)  
–40  
–40  
125  
150  
(1) Group 2 pins are as follows: GPIO16, GPIO17, GPIO18, GPIO19, GPIO28, GPIO29, GPIO36, GPIO37  
Copyright © 2009–2020, Texas Instruments Incorporated  
Specifications  
23  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
5.5 Power Consumption Summary  
Table 5-1. TMS320F2803x Current Consumption at 60-MHz SYSCLKOUT  
VREG ENABLED  
VREG DISABLED  
(1)  
(2)  
(1)  
(2)  
MODE  
TEST CONDITIONS  
IDDIO  
TYP(3)  
IDDA  
TYP(3)  
IDD  
IDDIO  
TYP(3)  
IDDA  
TYP(3)  
MAX  
MAX  
TYP(3)  
MAX  
MAX  
MAX  
The following peripheral clocks  
are enabled:  
ePWM1/2/3/4/5/6/7  
eCAP1  
eQEP1  
eCAN  
LIN  
CLA  
HRPWM  
SCI-A  
Operational  
(Flash)  
114 mA(6) 135 mA(6) 14 mA  
18 mA 101 mA(6) 120 mA(6) 14 mA  
18 mA 14 mA  
18 mA  
SPI-A/B  
ADC  
I2C  
COMP1/2/3  
CPU-TIMER0/1/2  
All PWM pins are toggled at  
60 kHz.  
All I/O pins are left  
unconnected.(4)(5)  
Code is running out of flash  
with 2 wait states.  
XCLKOUT is turned off.  
Flash is powered down.  
XCLKOUT is turned off.  
All peripheral clocks are turned  
off.  
IDLE  
13 mA  
23 mA  
9 mA  
10 μA  
15 μA  
13 mA  
24 mA  
7 mA  
120 μA 400 μA  
10 μA  
15 μA  
Flash is powered down.  
Peripheral clocks are off.  
STANDBY  
HALT  
4 mA  
10 μA  
10 μA  
15 μA  
15 μA  
4 mA  
120 μA 400 μA  
24 μA  
10 μA  
10 μA  
15 μA  
15 μA  
Flash is powered down.  
Peripheral clocks are off.  
Input clock is disabled.(7)  
46 μA  
30 μA  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) To realize the IDDA currents shown for IDLE, STANDBY, and HALT, clock to the ADC module must be turned off explicitly by writing to  
the PCLKCR0 register.  
(3) The TYP numbers are applicable over room temperature and nominal voltage.  
(4) The following is done in a loop:  
Data is continuously transmitted out of SPI-A/B, SCI-A, eCAN, LIN, and I2C ports.  
The hardware multiplier is exercised.  
Watchdog is reset.  
ADC is performing continuous conversion.  
COMP1/2 are continuously switching voltages.  
GPIO17 is toggled.  
(5) CLA is continuously performing polynomial calculations.  
(6) For F2803x devices that do not have CLA, subtract the IDD current number for CLA (see Table 5-2) from the IDD (VREG disabled)/IDDIO  
(VREG enabled) current numbers shown in Table 5-1 for operational mode.  
(7) If a quartz crystal or ceramic resonator is used as the clock source, the HALT mode shuts down the on-chip crystal oscillator.  
NOTE  
The peripheral - I/O multiplexing implemented in the device prevents all available peripherals  
from being used at the same time. This is because more than one peripheral function may  
share an I/O pin. It is, however, possible to turn on the clocks to all the peripherals at the  
same time, although such a configuration is not useful. If this is done, the current drawn by  
the device will be more than the numbers specified in the current consumption tables.  
24  
Specifications  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
5.5.1 Reducing Current Consumption  
The 2803x devices incorporate a method to reduce the device current consumption. Because each  
peripheral unit has an individual clock-enable bit, significant reduction in current consumption can be  
achieved by turning off the clock to any peripheral module that is not used in a given application.  
Furthermore, any one of the three low-power modes could be taken advantage of to reduce the current  
consumption even further. Table 5-2 indicates the typical reduction in current consumption achieved by  
turning off the clocks.  
Table 5-2. Typical Current Consumption by Various  
Peripherals (at 60 MHz)(1)  
PERIPHERAL  
MODULE(2)  
IDD CURRENT  
REDUCTION (mA)  
ADC  
2(3)  
I2C  
3
ePWM  
2
eCAP  
2
eQEP  
2
SCI  
2
SPI  
COMP/DAC  
HRPWM  
2
1
3
HRCAP  
3
CPU-TIMER  
Internal zero-pin oscillator  
CAN  
1
0.5  
2.5  
1.5  
20  
LIN  
CLA  
(1) All peripheral clocks (except CPU Timer clock) are disabled upon  
reset. Writing to/reading from peripheral registers is possible only  
after the peripheral clocks are turned on.  
(2) For peripherals with multiple instances, the current quoted is per  
module. For example, the 2 mA value quoted for ePWM is for one  
ePWM module.  
(3) This number represents the current drawn by the digital portion of  
the ADC module. Turning off the clock to the ADC module results in  
the elimination of the current drawn by the analog portion of the ADC  
(IDDA) as well.  
NOTE  
IDDIO current consumption is reduced by 15 mA (typical) when XCLKOUT is turned off.  
NOTE  
The baseline IDD current (current when the core is executing a dummy loop with no  
peripherals enabled) is 40 mA, typical. To arrive at the IDD current for a given application, the  
current-drawn by the peripherals (enabled by that application) must be added to the baseline  
IDD current.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Specifications  
25  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Following are other methods to reduce power consumption further:  
The flash module may be powered down if code is run off SARAM. This results in a current reduction  
of 18 mA (typical) in the VDD rail and 13 mA (typical) in the VDDIO rail.  
Savings in IDDIO may be realized by disabling the pullups on pins that assume an output function.  
To realize the lowest VDDA current consumption in a low-power mode, see the respective analog  
chapter of the TMS320F2803x Technical Reference Manual to ensure each module is powered down  
as well.  
5.5.2 Current Consumption Graphs (VREG Enabled)  
Operational Current vs Frequency  
140  
120  
100  
80  
60  
40  
20  
0
0
10  
20  
30  
40  
50  
60  
70  
SYSCLKOUT (MHz)  
IDDIO IDDA  
Figure 5-1. Typical Operational Current Versus Frequency (F2803x)  
26  
Specifications  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Operational Power vs Frequency  
500  
450  
400  
350  
300  
250  
200  
0
10  
20  
30  
40  
50  
60  
70  
SYSCLKOUT (MHz)  
Figure 5-2. Typical Operational Power Versus Frequency (F2803x)  
Typical CLA operational current vs SYSCLKOUT  
25  
20  
15  
10  
5
0
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
SYSCLKOUT (MHz)  
Figure 5-3. Typical CLA Operational Current Versus SYSCLKOUT  
Copyright © 2009–2020, Texas Instruments Incorporated  
Specifications  
27  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
5.6 Electrical Characteristics(1)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.4  
TYP  
MAX UNIT  
IOH = IOH MAX  
IOH = 50 μA  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
V
VDDIO – 0.2  
IOL = IOL MAX  
0.4  
–205  
–375  
V
All GPIO  
XRS pin  
–80  
–140  
–300  
Pin with pullup  
VDDIO = 3.3 V, VIN = 0 V  
enabled  
Input current  
(low level)  
–230  
IIL  
μA  
Pin with pulldown  
enabled  
VDDIO = 3.3 V, VIN = 0 V  
VDDIO = 3.3 V, VIN = VDDIO  
VDDIO = 3.3 V, VIN = VDDIO  
VO = VDDIO or 0 V  
±2  
±2  
80  
Pin with pullup  
enabled  
Input current  
(high level)  
IIH  
μA  
Pin with pulldown  
enabled  
28  
50  
Output current, pullup or  
pulldown disabled  
IOZ  
CI  
±2 μA  
Input capacitance  
2
2.78  
35  
pF  
VDDIO BOR trip point  
VDDIO BOR hysteresis  
Falling VDDIO  
2.50  
400  
2.96  
V
mV  
Supervisor reset release delay  
time  
Time after BOR/POR/OVR event is removed to XRS  
release  
800 μs  
VREG VDD output  
Internal VREG on  
1.9  
V
(1) When the on-chip VREG is used, its output is monitored by the POR/BOR circuit, which will reset the device should the core voltage  
(VDD) go out of range.  
28  
Specifications  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
5.7 Thermal Resistance Characteristics  
5.7.1 PN Package  
°C/W(1)  
14.2  
21.9  
49.9  
38.3  
36.7  
34.4  
0.8  
AIR FLOW (lfm)(2)  
RΘJC  
RΘJB  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
N/A  
N/A  
0
150  
250  
500  
0
RΘJA  
(High k PCB)  
Junction-to-free air thermal resistance  
Junction-to-package top  
1.18  
1.34  
1.62  
21.6  
20.7  
20.5  
20.1  
150  
250  
500  
0
PsiJT  
150  
250  
500  
PsiJB  
Junction-to-board  
(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
5.7.2 PAG Package  
°C/W(1)  
7.6  
AIR FLOW (lfm)(2)  
RΘJC  
RΘJB  
Junction-to-case thermal resistance  
N/A  
N/A  
0
Junction-to-board thermal resistance  
Junction-to-free air thermal resistance  
31.3  
56.5  
44.7  
42.9  
40.3  
0.15  
0.42  
0.51  
0.67  
31.1  
29.7  
29.2  
28.4  
150  
250  
500  
0
RΘJA  
(High k PCB)  
150  
250  
500  
0
PsiJT  
Junction-to-package top  
Junction-to-board  
150  
250  
500  
PsiJB  
(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
Copyright © 2009–2020, Texas Instruments Incorporated  
Specifications  
29  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
5.7.3 RSH Package  
°C/W(1)  
14.7  
9.2  
AIR FLOW (lfm)(2)  
RΘJC  
RΘJB  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
N/A  
N/A  
0
34.8  
23.6  
22.3  
20.5  
0.24  
0.36  
0.43  
0.56  
9.2  
150  
250  
500  
0
RΘJA  
(High k PCB)  
Junction-to-free air thermal resistance  
Junction-to-package top  
150  
250  
500  
0
PsiJT  
8.8  
150  
250  
500  
PsiJB  
Junction-to-board  
8.9  
8.8  
(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
30  
Specifications  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
5.8 Thermal Design Considerations  
Based on the end application design and operational profile, the IDD and IDDIO currents could vary.  
Systems that exceed the recommended maximum power dissipation in the end product may require  
additional thermal enhancements. Ambient temperature (TA) varies with the end application and product  
design. The critical factor that affects reliability and functionality is TJ, the junction temperature, not the  
ambient temperature. Hence, care should be taken to keep TJ within the specified limits. Tcase should be  
measured to estimate the operating junction temperature TJ. Tcase is normally measured at the center of  
the package top-side surface. The thermal application report Semiconductor and IC Package Thermal  
Metrics helps to understand the thermal metrics and definitions.  
5.9 JTAG Debug Probe Connection Without Signal Buffering for the MCU  
Figure 5-4 shows the connection between the MCU and JTAG header for a single-processor configuration.  
If the distance between the JTAG header and the MCU is greater than 6 inches, the emulation signals  
must be buffered. If the distance is less than 6 inches, buffering is typically not needed. Figure 5-4 shows  
the simpler, no-buffering situation. For the pullup/pulldown resistor values, see Section 4.2, Signal  
Descriptions.  
6 inches or less  
VDDIO  
VDDIO  
13  
14  
2
5
EMU0  
EMU1  
TRST  
TMS  
PD  
4
6
8
TRST  
TMS  
TDI  
GND  
1
GND  
GND  
GND  
GND  
3
TDI  
7
10  
12  
TDO  
TCK  
TDO  
11  
9
TCK  
TCK_RET  
MCU  
JTAG Header  
A. See Figure 6-44 for JTAG/GPIO multiplexing.  
Figure 5-4. JTAG Debug Probe Connection Without Signal Buffering for the MCU  
NOTE  
The 2803x devices do not have EMU0/EMU1 pins. For designs that have a JTAG Header  
onboard, the EMU0/EMU1 pins on the header must be tied to VDDIO through a 4.7-k  
(typical) resistor.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Specifications  
31  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
5.10 Parameter Information  
5.10.1 Timing Parameter Symbology  
Timing parameter symbols used are created in accordance with JEDEC Standard 100. To shorten the  
symbols, some of the pin names and other related terminology have been abbreviated as follows:  
Lowercase subscripts and their  
meanings:  
Letters and symbols and their  
meanings:  
a
c
d
access time  
H
L
High  
Low  
cycle time (period)  
delay time  
V
Valid  
Unknown, changing, or don't care  
level  
f
fall time  
X
Z
h
r
hold time  
High impedance  
rise time  
su  
t
setup time  
transition time  
valid time  
v
w
pulse duration (width)  
5.10.2 General Notes on Timing Parameters  
All output signals from the 28x devices (including XCLKOUT) are derived from an internal clock such that  
all output transitions for a given half-cycle occur with a minimum of skewing relative to each other.  
The signal combinations shown in the following timing diagrams may not necessarily represent actual  
cycles. For actual cycle examples, see the appropriate cycle description section of this document.  
5.11 Test Load Circuit  
This test load circuit is used to measure all switching characteristics provided in this document.  
Tester Pin Electronics  
Data Sheet Timing Reference Point  
W
3.5 nH  
Output  
Under  
Test  
42  
Transmission Line  
(A)  
Z0 = 50 W  
Device Pin(B)  
4.0 pF  
1.85 pF  
A. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the  
device pin.  
B. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its  
transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to  
produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to  
add or subtract the transmission line delay (2 ns or longer) from the data sheet timing.  
Figure 5-5. 3.3-V Test Load Circuit  
32  
Specifications  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
5.12 Power Sequencing  
There is no power sequencing requirement needed to ensure the device is in the proper state after reset  
or to prevent the I/Os from glitching during power up/down (GPIO19, GPIO34–38 do not have glitch-free  
I/Os). No voltage larger than a diode drop (0.7 V) above VDDIO should be applied to any digital pin (for  
analog pins, this value is 0.7 V above VDDA) before powering up the device. Voltages applied to pins on an  
unpowered device can bias internal p-n junctions in unintended ways and produce unpredictable results.  
VDDIO, VDDA  
(3.3 V)  
VDD (1.8 V)  
INTOSC1  
tINTOSCST  
X1/X2  
tOSCST  
(B)  
(A)  
XCLKOUT  
User-code dependent  
t
w(RSL1)  
XRS(D)  
Address/data valid, internal boot-ROM code execution phase  
Address/Data/  
Control  
(Internal)  
User-code execution phase  
User-code dependent  
t
d(EX)  
(C)  
h(boot-mode)  
t
Boot-Mode  
Pins  
GPIO pins as input  
Peripheral/GPIO function  
Boot-ROM execution starts  
(E)  
Based on boot code  
GPIO pins as input (state depends on internal PU/PD)  
I/O Pins  
User-code dependent  
A. Upon power up, SYSCLKOUT is OSCCLK/4. Because the XCLKOUTDIV bits in the XCLK register come up with a  
reset state of 0, SYSCLKOUT is further divided by 4 before it appears at XCLKOUT. XCLKOUT = OSCCLK/16 during  
this phase.  
B. Boot ROM configures the DIVSEL bits for /1 operation. XCLKOUT = OSCCLK/4 during this phase. XCLKOUT will not  
be visible at the pin until explicitly configured by user code.  
C. After reset, the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode pin, the boot code  
branches to destination memory or boot code function. If boot ROM code executes after power-on conditions (in  
debugger environment), the boot code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT  
will be based on user environment and could be with or without PLL enabled.  
D. Using the XRS pin is optional due to the on-chip power-on reset (POR) circuitry.  
E. The internal pullup/pulldown will take effect when BOR is driven high.  
Figure 5-6. Power-on Reset  
Copyright © 2009–2020, Texas Instruments Incorporated  
Specifications  
33  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Table 5-3. Reset (XRS) Timing Requirements  
MIN  
1000tc(SCO)  
32tc(OSCCLK)  
MAX  
MAX  
UNIT  
cycles  
cycles  
th(boot-mode)  
tw(RSL2)  
Hold time for boot-mode pins  
Pulse duration, XRS low on warm reset  
Table 5-4. Reset (XRS) Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
UNIT  
tw(RSL1)  
Pulse duration, XRS driven by device  
600  
μs  
Pulse duration, reset pulse generated by  
watchdog  
tw(WDRS)  
512tc(OSCCLK)  
cycles  
td(EX)  
Delay time, address/data valid after XRS high  
Start-up time, internal zero-pin oscillator  
On-chip crystal-oscillator start-up time  
32tc(OSCCLK)  
cycles  
μs  
tINTOSCST  
3
(1)  
tOSCST  
1
10  
ms  
(1) Dependent on crystal/resonator and board design.  
INTOSC1  
X1/X2  
XCLKOUT  
User-Code Dependent  
t
w(RSL2)  
XRS  
User-Code Execution Phase  
t
d(EX)  
Address/Data/  
User-Code Execution  
Control  
(Internal)  
(A)  
t
Boot-ROM Execution Starts  
GPIO Pins as Input  
h(boot-mode)  
Boot-Mode  
Pins  
Peripheral/GPIO Function  
User-Code Dependent  
Peripheral/GPIO Function  
User-Code Execution Starts  
I/O Pins  
GPIO Pins as Input (State Depends on Internal PU/PD)  
User-Code Dependent  
A. After reset, the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code  
branches to destination memory or boot code function. If Boot ROM code executes after power-on conditions (in  
debugger environment), the Boot code execution time is based on the current SYSCLKOUT speed. The  
SYSCLKOUT will be based on user environment and could be with or without PLL enabled.  
Figure 5-7. Warm Reset  
34  
Specifications  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Figure 5-8 shows an example for the effect of writing into PLLCR register. In the first phase, PLLCR =  
0x0004 and SYSCLKOUT = OSCCLK x 2. The PLLCR is then written with 0x0008. Right after the PLLCR  
register is written, the PLL lock-up phase begins. During this phase, SYSCLKOUT = OSCCLK/2. After the  
PLL lock-up is complete, SYSCLKOUT reflects the new operating frequency, OSCCLK x 4.  
OSCCLK  
Write to PLLCR  
SYSCLKOUT  
OSCCLK * 2  
OSCCLK/2  
OSCCLK * 4  
(CPU frequency while PLL is stabilizing  
with the desired frequency. This period  
(PLL lock-up time tp) is 1 ms long.)  
(Current CPU  
Frequency)  
(Changed CPU frequency)  
Figure 5-8. Example of Effect of Writing Into PLLCR Register  
Copyright © 2009–2020, Texas Instruments Incorporated  
Specifications  
35  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
5.13 Clock Specifications  
5.13.1 Device Clock Table  
This section provides the timing requirements and switching characteristics for the various clock options  
available on the 2803x MCUs. Table 5-5 lists the cycle times of various clocks.  
Table 5-5. 2803x Clock Table and Nomenclature (60-MHz Devices)  
MIN  
16.67  
2
NOM  
MAX UNIT  
tc(SCO), Cycle time  
Frequency  
500  
60  
ns  
MHz  
ns  
SYSCLKOUT  
LSPCLK(1)  
ADC clock  
tc(LCO), Cycle time  
Frequency  
16.67  
66.67(2)  
15(2)  
60  
60  
MHz  
ns  
tc(ADCCLK), Cycle time  
Frequency  
16.67  
MHz  
(1) Lower LSPCLK will reduce device power consumption.  
(2) This is the default reset value if SYSCLKOUT = 60 MHz.  
Table 5-6. Device Clocking Requirements/Characteristics  
MIN  
NOM  
MAX UNIT  
tc(OSC), Cycle time  
Frequency  
50  
5
200  
20  
ns  
MHz  
ns  
On-chip oscillator (X1/X2 pins)  
(Crystal/Resonator)  
tc(CI), Cycle time (C8)  
Frequency  
33.3  
5
200  
30  
External oscillator/clock source  
(XCLKIN pin) — PLL Enabled  
MHz  
ns  
tc(CI), Cycle time (C8)  
Frequency  
33.33  
4
250  
30  
External oscillator/clock source  
(XCLKIN pin) — PLL Disabled  
MHz  
Limp mode SYSCLKOUT  
(with /2 enabled)  
Frequency range  
1 to 5  
MHz  
tc(XCO), Cycle time (C1)  
66.67  
0.5  
2000  
15  
ns  
MHz  
ms  
XCLKOUT  
Frequency  
tp  
PLL lock time(1)  
1
(1) The PLLLOCKPRD register must be updated based on the number of OSCCLK cycles. If the zero-pin internal oscillators (10 MHz) are  
used as the clock source, then the PLLLOCKPRD register must be written with a value of 10,000 (minimum).  
36  
Specifications  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Table 5-7. Internal Zero-Pin Oscillator (INTOSC1/INTOSC2) Characteristics  
PARAMETER  
MIN  
TYP  
10.000  
10.000  
55  
MAX  
UNIT  
MHz  
MHz  
kHz  
Internal zero-pin oscillator 1 (INTOSC1) at 30°C(1)(2)  
Internal zero-pin oscillator 2 (INTOSC2) at 30°C(1)(2)  
Step size (coarse trim)  
Frequency  
Frequency  
Step size (fine trim)  
14  
kHz  
Temperature drift(3)  
Voltage (VDD) drift(3)  
3.03  
4.85 kHz/°C  
Hz/mV  
175  
(1) Oscillator frequency will vary over temperature, see Figure 5-9. To compensate for oscillator temperature drift, see the Oscillator  
Compensation Guide and C2000Ware.  
(2) Frequency range ensured only when VREG is enabled, VREGENZ = VSS  
.
(3) Output frequency of the internal oscillators follows the direction of both the temperature gradient and voltage (VDD) gradient. For  
example:  
Increase in temperature will cause the output frequency to increase per the temperature coefficient.  
Decrease in voltage (VDD) will cause the output frequency to decrease per the voltage coefficient.  
Zero-Pin Oscillator Frequency Movement With Temperature  
10.6  
10.5  
10.4  
10.3  
10.2  
10.1  
10  
9.9  
9.8  
9.7  
9.6  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
Typical  
Max  
Temperature (°C)  
Figure 5-9. Zero-Pin Oscillator Frequency Movement With Temperature  
Copyright © 2009–2020, Texas Instruments Incorporated  
Specifications  
37  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
5.13.2 Clock Requirements and Characteristics  
Table 5-8. XCLKIN Timing Requirements – PLL Enabled  
NO.  
C9  
MIN  
MAX  
6
UNIT  
ns  
tf(CI)  
Fall time, XCLKIN  
C10  
C11  
C12  
tr(CI)  
Rise time, XCLKIN  
6
ns  
tw(CIL)  
tw(CIH)  
Pulse duration, XCLKIN low as a percentage of tc(OSCCLK)  
Pulse duration, XCLKIN high as a percentage of tc(OSCCLK)  
45%  
45%  
55%  
55%  
Table 5-9. XCLKIN Timing Requirements – PLL Disabled  
NO.  
MIN  
MAX  
UNIT  
Up to 20 MHz  
6
2
6
2
C9  
tf(Cl)  
Fall time, XCLKIN  
20 MHz to 30 MHz  
ns  
Up to 20 MHz  
C10  
tr(CI)  
Rise time, XCLKIN  
20 MHz to 30 MHz  
ns  
Pulse duration, XCLKIN low as a percentage of  
tc(OSCCLK)  
C11  
C12  
tw(CIL)  
tw(CIH)  
45%  
45%  
55%  
55%  
Pulse duration, XCLKIN high as a percentage of  
tc(OSCCLK)  
The possible configuration modes are shown in Table 6-17.  
Table 5-10. XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)(1) (2)  
over recommended operating conditions (unless otherwise noted)  
NO.  
C3  
C4  
C5  
C6  
PARAMETER  
MIN  
MAX  
5
UNIT  
ns  
tf(XCO)  
Fall time, XCLKOUT  
Rise time, XCLKOUT  
tr(XCO)  
5
ns  
tw(XCOL)  
tw(XCOH)  
Pulse duration, XCLKOUT low  
Pulse duration, XCLKOUT high  
H – 2  
H – 2  
H + 2  
H + 2  
ns  
ns  
(1) A load of 40 pF is assumed for these parameters.  
(2) H = 0.5tc(XCO)  
C10  
C9  
C8  
(A)  
XCLKIN  
C6  
C3  
C1  
C4  
C5  
(B)  
XCLKOUT  
A. The relationship of XCLKIN to XCLKOUT depends on the divide factor chosen. The waveform relationship shown is  
intended to illustrate the timing parameters only and may differ based on actual configuration.  
B. XCLKOUT configured to reflect SYSCLKOUT.  
Figure 5-10. Clock Timing  
38  
Specifications  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
5.14 Flash Timing  
Table 5-11. Flash/OTP Endurance for T Temperature Material(1)  
ERASE/PROGRAM  
TEMPERATURE  
MIN  
TYP  
MAX  
UNIT  
Nf  
Flash endurance for the array (write/erase cycles)  
OTP endurance for the array (write cycles)  
0°C to 105°C (ambient)  
0°C to 30°C (ambient)  
20000  
50000  
cycles  
write  
NOTP  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
Table 5-12. Flash/OTP Endurance for S Temperature Material(1)  
ERASE/PROGRAM  
MIN  
TYP  
MAX  
UNIT  
TEMPERATURE  
0°C to 125°C (ambient)  
0°C to 30°C (ambient)  
Nf  
Flash endurance for the array (write/erase cycles)  
OTP endurance for the array (write cycles)  
20000  
50000  
cycles  
write  
NOTP  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
Table 5-13. Flash/OTP Endurance for Q Temperature Material(1)  
ERASE/PROGRAM  
TEMPERATURE  
MIN  
TYP  
MAX  
UNIT  
Nf  
Flash endurance for the array (write/erase cycles)  
OTP endurance for the array (write cycles)  
–40°C to 125°C (ambient)  
–40°C to 30°C (ambient)  
20000  
50000  
cycles  
write  
NOTP  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
Table 5-14. Flash Parameters at 60-MHz SYSCLKOUT  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX UNIT  
Program  
Time(1)  
8K Sector  
4K Sector  
16-Bit Word  
8K Sector  
4K Sector  
250 2000(2)  
125 2000(2)  
50  
ms  
ms  
μs  
s
Erase Time(3)  
2
2
12(2)  
12(2)  
s
(4)  
IDDP  
VDD current consumption during Erase/Program cycle  
VDDIO current consumption during Erase/Program cycle  
VDDIO current consumption during Erase/Program cycle  
VREG disabled  
VREG enabled  
80  
mA  
mA  
(4)  
IDDIOP  
60  
(4)  
IDDIOP  
120  
(1) Program time is at the maximum device frequency. The programming time indicated in this table is applicable only when all the required  
code/data is available in the device RAM, ready for programming. Program time includes overhead of the flash state machine but does  
not include the time to transfer the following into RAM:  
the code that uses flash API to program the flash  
the Flash API itself  
Flash data to be programmed  
(2) Maximum flash parameter mentioned are for the first 100 program and erase cycles.  
(3) The on-chip flash memory is in an erased state when the device is shipped from TI. As such, erasing the flash memory is not required  
prior to programming, when programming the device for the first time. However, the erase operation is needed on all subsequent  
programming operations.  
(4) Typical parameters as seen at room temperature including function call overhead, with all peripherals off. It is important to maintain a  
stable power supply during the entire flash programming process. It is conceivable that device current consumption during flash  
programming could be higher than normal operating conditions. The power supply used should ensure VMIN on the supply rails at all  
times, as specified in the Recommended Operating Conditions of the data sheet. Any brown-out or interruption to power during  
erasing/programming could potentially corrupt the password locations and lock the device permanently. Powering a target board (during  
flash programming) through the USB port is not recommended, as the port may be unable to respond to the power demands placed  
during the programming process.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Specifications  
39  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Table 5-15. Flash/OTP Access Timing  
PARAMETER  
MIN  
40  
MAX UNIT  
ta(fp)  
Paged Flash access time  
Random Flash access time  
OTP access time  
ns  
ns  
ns  
ta(fr)  
40  
ta(OTP)  
60  
Table 5-16. Flash Data Retention Duration  
PARAMETER  
Data retention duration  
TEST CONDITIONS  
TJ = 55°C  
MIN  
15  
MAX UNIT  
tretention  
years  
Table 5-17. Minimum Required Flash/OTP Wait States at Different Frequencies  
SYSCLKOUT  
SYSCLKOUT  
(ns)  
PAGE  
RANDOM  
OTP  
WAIT STATE  
(MHz)  
WAIT STATE(1)  
WAIT STATE(1)  
60  
16.67  
18.18  
20  
2
2
1
1
1
1
1
0
2
2
1
1
1
1
1
1
3
3
2
2
2
2
1
1
55  
50  
45  
22.22  
25  
40  
35  
28.57  
33.33  
40  
30  
25  
(1) Random wait state must be 1.  
The equations to compute the Flash page wait state and random wait state in Table 5-17 are as follows:  
é
ê
ë
ù
æ
ç
ç
è
ö
÷
÷
ø
ta(f ·p)  
Flash Page Wait State =  
-1 round up to the next highest integer  
ú
tc(SCO)  
ê
ú
û
é
ê
ë
ù
æ
ç
ç
è
ö
÷
÷
ø
ta(f ×r)  
Flash Random Wait State =  
-1 round up to the next highest integer, or 1, whichever is larger  
ú
tc(SCO)  
ê
ú
û
The equation to compute the OTP wait state in Table 5-17 is as follows:  
é
ê
ë
ù
æ
ç
ç
è
ö
÷
÷
ø
ta(OTP)  
OTP Wait State =  
-1 round up to the next highest integer, or 1, whichever is larger  
ú
tc(SCO)  
ê
ú
û
40  
Specifications  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6 Detailed Description  
6.1 Overview  
6.1.1 CPU  
The 2803x (C28x) family is a member of the TMS320C2000™ microcontroller (MCU) platform. The C28x-  
based controllers have the same 32-bit fixed-point architecture as existing C28x MCUs. It is a very  
efficient C/C++ engine, enabling users to develop not only their system control software in a high-level  
language, but also enabling development of math algorithms using C/C++. The device is as efficient at  
MCU math tasks as it is at system control tasks that typically are handled by microcontroller devices. This  
efficiency removes the need for a second processor in many systems. The 32 × 32-bit MAC 64-bit  
processing capabilities enable the controller to handle higher numerical resolution problems efficiently.  
Add to this the fast interrupt response with automatic context save of critical registers, resulting in a device  
that is capable of servicing many asynchronous events with minimal latency. The device has an 8-level-  
deep protected pipeline with pipelined memory accesses. This pipelining enables it to execute at high  
speeds without resorting to expensive high-speed memories. Special branch-look-ahead hardware  
minimizes the latency for conditional discontinuities. Special store conditional operations further improve  
performance.  
6.1.2 Control Law Accelerator (CLA)  
The C28x control law accelerator is a single-precision (32-bit) floating-point unit that extends the  
capabilities of the C28x CPU by adding parallel processing. The CLA is an independent processor with its  
own bus structure, fetch mechanism, and pipeline. Eight individual CLA tasks, or routines, can be  
specified. Each task is started by software or a peripheral such as the ADC, an ePWM, or CPU Timer 0.  
The CLA executes one task at a time to completion. When a task completes the main CPU is notified by  
an interrupt to the PIE and the CLA automatically begins the next highest-priority pending task. The CLA  
can directly access the ADC Result registers and the ePWM+HRPWM registers. Dedicated message  
RAMs provide a method to pass additional data between the main CPU and the CLA.  
6.1.3 Memory Bus (Harvard Bus Architecture)  
As with many MCU-type devices, multiple buses are used to move data between the memories and  
peripherals and the CPU. The memory bus architecture contains a program read bus, data read bus, and  
data write bus. The program read bus consists of 22 address lines and 32 data lines. The data read and  
write buses consist of 32 address lines and 32 data lines each. The 32-bit-wide data buses enable single  
cycle 32-bit operations. The multiple bus architecture, commonly termed Harvard Bus, enables the C28x  
to fetch an instruction, read a data value and write a data value in a single cycle. All peripherals and  
memories attached to the memory bus prioritize memory accesses. Generally, the priority of memory bus  
accesses can be summarized as follows:  
Highest:  
Data Writes  
(Simultaneous data and program writes cannot occur on the  
memory bus.)  
Program Writes  
(Simultaneous data and program writes cannot occur on the  
memory bus.)  
Data Reads  
Program Reads  
(Simultaneous program reads and fetches cannot occur on the  
memory bus.)  
Lowest:  
Fetches  
(Simultaneous program reads and fetches cannot occur on the  
memory bus.)  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
41  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.1.4 Peripheral Bus  
To enable migration of peripherals between various Texas Instruments (TI) MCU family of devices, the  
devices adopt a peripheral bus standard for peripheral interconnect. The peripheral bus bridge multiplexes  
the various buses that make up the processor Memory Bus into a single bus consisting of 16 address  
lines and 16 or 32 data lines and associated control signals. Three versions of the peripheral bus are  
supported. One version supports only 16-bit accesses (called peripheral frame 2). Another version  
supports both 16- and 32-bit accesses (called peripheral frame 1). The third version supports CLA access  
and both 16- and 32-bit accesses (called peripheral frame 3).  
6.1.5 Real-Time JTAG and Analysis  
(1)  
The devices implement the standard IEEE 1149.1 JTAG  
interface for in-circuit based debug.  
Additionally, the devices support real-time mode of operation allowing modification of the contents of  
memory, peripheral, and register locations while the processor is running and executing code and  
servicing interrupts. The user can also single step through non-time-critical code while enabling time-  
critical interrupts to be serviced without interference. The device implements the real-time mode in  
hardware within the CPU. This is a feature unique to the 28x family of devices, requiring no software  
monitor. Additionally, special analysis hardware is provided that allows setting of hardware breakpoint or  
data/address watch-points and generating various user-selectable break events when a match occurs.  
6.1.6 Flash  
The F28035/34 devices contain 64K × 16 of embedded flash memory, segregated into eight 8K × 16  
sectors. The F28033/32/31 devices contain 32K × 16 of embedded flash memory, segregated into eight  
4K × 16 sectors. The F28030 device contains 16K × 16 of embedded flash memory, segregated into four  
4K × 16 sectors. All devices also contain a single 1K × 16 of OTP memory at address range 0x3D 7800 to  
0x3D 7BFF. The user can individually erase, program, and validate a flash sector while leaving other  
sectors untouched. However, it is not possible to use one sector of the flash or the OTP to execute flash  
algorithms that erase/program other sectors. Special memory pipelining is provided to enable the flash  
module to achieve higher performance. The flash/OTP is mapped to both program and data space;  
therefore, it can be used to execute code or store data information. Addresses 0x3F 7FF0 to 0x3F 7FF5  
are reserved for data variables and should not contain program code.  
NOTE  
The Flash and OTP wait states can be configured by the application. This allows applications  
running at slower frequencies to configure the flash to use fewer wait states.  
Flash effective performance can be improved by enabling the flash pipeline mode in the  
Flash options register. With this mode enabled, effective performance of linear code  
execution will be much faster than the raw performance indicated by the wait-state  
configuration alone. The exact performance gain when using the Flash pipeline mode is  
application-dependent.  
For more information on the Flash options, Flash wait state, and OTP wait-state registers,  
see the System Control chapter in the TMS320F2803x Technical Reference Manual.  
6.1.7 M0, M1 SARAMs  
All devices contain these two blocks of single access memory, each 1K × 16 in size. The stack pointer  
points to the beginning of block M1 on reset. The M0 and M1 blocks, like all other memory blocks on C28x  
devices, are mapped to both program and data space. Hence, the user can use M0 and M1 to execute  
code or for data variables. The partitioning is performed within the linker. The C28x device presents a  
unified memory map to the programmer. This makes for easier programming in high-level languages.  
(1) IEEE Standard 1149.1-1990 Standard Test Access Port and Boundary Scan Architecture  
42  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.1.8 L0 SARAM, and L1, L2, and L3 DPSARAMs  
The device contains up to 8K × 16 of single-access RAM. To ascertain the exact size for a given device,  
see the device-specific memory map figures in Section 6.2. This block is mapped to both program and  
data space. Block L0 is 2K in size and is dual mapped to both program and data space. Blocks L1 and L2  
are both 1K in size and are shared with the CLA which can ultilize these blocks for its data space. Block  
L3 is 4K (2K on the 28031 device) in size and is shared with the CLA which can ultilize this block for its  
program space. DPSARAM refers to the dual-port configuration of these blocks.  
6.1.9 Boot ROM  
The Boot ROM is factory-programmed with bootloader software. The Boot ROM uses the boot-mode-  
select GPIO pins to determine what boot mode to use upon power up. The user can select to boot  
normally to application code, to download new software from an external connection, or to select boot  
software that is programmed in the internal Flash/ROM. The Boot ROM also contains standard tables,  
such as SIN/COS waveforms, for use in math-related algorithms. The boot-ROM content, and hence the  
checksum value, may vary for different silicon revisions. For details, see the Boot ROM chapter in the  
TMS320F2803x Technical Reference Manual.  
Table 6-1. Boot Mode Selection  
GPIO34/COMP2OUT/  
MODE  
GPIO37/TDO  
TRST  
MODE  
COMP3OUT  
3
2
1
1
0
0
x
1
0
1
0
x
0
0
0
0
1
GetMode  
Wait (see Section 6.1.10 for description)  
1
SCI  
0
Parallel IO  
Emulation Boot  
EMU  
6.1.9.1 Emulation Boot  
When the JTAG debug probe is connected, the GPIO37/TDO pin cannot be used for boot mode selection.  
In this case, the boot ROM detects that a JTAG debug probe is connected and uses the contents of two  
reserved SARAM locations in the PIE vector table to determine the boot mode. If the content of either  
location is invalid, then the Wait boot option is used. All boot mode options can be accessed in emulation  
boot.  
6.1.9.2 GetMode  
The default behavior of the GetMode option is to boot to flash. This behavior can be changed to another  
boot option by programming two locations in the OTP. If the content of either OTP location is invalid, then  
boot to flash is used. One of the following loaders can be specified: SCI, SPI, I2C, CAN, or OTP.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
43  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.1.9.3 Peripheral Pins Used by the Bootloader  
Table 6-2 shows which GPIO pins are used by each peripheral bootloader. Refer to the GPIO mux table  
to see if these conflict with any of the peripherals you would like to use in your application.  
Table 6-2. Peripheral Bootload Pins  
BOOTLOADER  
PERIPHERAL LOADER PINS  
SCIRXDA (GPIO28)  
SCI  
SCITXDA (GPIO29)  
Parallel Boot  
SPI  
Data (GPIO31,30,5:0)  
28x Control (AIO6)  
Host Control (AIO12)  
SPISIMOA (GPIO16)  
SPISOMIA (GPIO17)  
SPICLKA (GPIO18)  
SPISTEA (GPIO19)  
I2C  
SDAA (GPIO32)  
SCLA (GPIO33)  
CAN  
CANRXA (GPIO30)  
CANTXA (GPIO31)  
6.1.10 Security  
The devices support high levels of security to protect the user firmware from being reverse engineered.  
The security features a 128-bit password (hardcoded for 16 wait states), which the user programs into the  
flash. One code security module (CSM) is used to protect the flash/OTP and the L0/L1 SARAM blocks.  
The security feature prevents unauthorized users from examining the memory contents through the JTAG  
port, executing code from external memory or trying to boot-load some undesirable software that would  
export the secure memory contents. To enable access to the secure blocks, the user must write the  
correct 128-bit KEY value that matches the value stored in the password locations within the Flash.  
In addition to the CSM, the emulation code security logic (ECSL) has been implemented to prevent  
unauthorized users from stepping through secure code. Any code or data access to CSM secure memory  
while the JTAG debug probe is connected will trip the ECSL and break the emulation connection. To allow  
emulation of secure code, while maintaining the CSM protection against secure memory reads, the user  
must write the correct value into the lower 64 bits of the KEY register, which matches the value stored in  
the lower 64 bits of the password locations within the flash. Dummy reads of all 128 bits of the password  
in the flash must still be performed. If the lower 64 bits of the password locations are all ones  
(unprogrammed), then the KEY value does not need to match.  
When initially debugging a device with the password locations in flash programmed (that is, secured), the  
CPU will start running and may execute an instruction that performs an access to a protected ECSL area.  
If this happens, the ECSL will trip and cause the JTAG debug probe connection to be cut.  
44  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
The solution is to use the Wait boot option. This will sit in a loop around a software breakpoint to allow a  
JTAG debug probe to be connected without tripping security. These devices do not support a hardware  
wait-in-reset mode.  
NOTE  
When the code-security passwords are programmed, all addresses from 0x3F7F80 to  
0x3F7FF5 cannot be used as program code or data. These locations must be  
programmed to 0x0000.  
If the code security feature is not used, addresses 0x3F7F80 to 0x3F7FEF may be used  
for code or data. Addresses 0x3F7FF0 to 0x3F7FF5 are reserved for data and should not  
contain program code.  
The 128-bit password (at 0x3F 7FF8 to 0x3F 7FFF) must not be programmed to zeros.  
Doing so would permanently lock the device.  
Disclaimer  
Code Security Module Disclaimer  
THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS DESIGNED  
TO PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY  
(EITHER ROM OR FLASH) AND IS WARRANTED BY TEXAS INSTRUMENTS (TI), IN  
ACCORDANCE WITH ITS STANDARD TERMS AND CONDITIONS, TO CONFORM TO  
TI'S PUBLISHED SPECIFICATIONS FOR THE WARRANTY PERIOD APPLICABLE FOR  
THIS DEVICE.  
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE  
COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED  
MEMORY CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT  
AS SET FORTH ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS  
CONCERNING THE CSM OR OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED  
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.  
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT,  
INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY  
OUT OF YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN  
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE,  
BUT ARE NOT LIMITED TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR  
INTERRUPTION OF BUSINESS OR OTHER ECONOMIC LOSS.  
6.1.11 Peripheral Interrupt Expansion (PIE) Block  
The PIE block serves to multiplex numerous interrupt sources into a smaller set of interrupt inputs. The  
PIE block can support up to 96 peripheral interrupts. On the F2803x, 56 of the possible 96 interrupts are  
used by peripherals. The 96 interrupts are grouped into blocks of 8 and each group is fed into 1 of  
12 CPU interrupt lines (INT1 to INT12). Each of the 96 interrupts is supported by its own vector stored in a  
dedicated RAM block that can be overwritten by the user. The vector is automatically fetched by the CPU  
on servicing the interrupt. It takes 8 CPU clock cycles to fetch the vector and save critical CPU registers.  
Hence the CPU can quickly respond to interrupt events. Prioritization of interrupts is controlled in  
hardware and software. Each individual interrupt can be enabled/disabled within the PIE block.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
45  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.1.12 External Interrupts (XINT1–XINT3)  
The devices support three masked external interrupts (XINT1–XINT3). Each of the interrupts can be  
selected for negative, positive, or both negative and positive edge triggering and can also be  
enabled/disabled. These interrupts also contain a 16-bit free running up counter, which is reset to zero  
when a valid interrupt edge is detected. This counter can be used to accurately time stamp the interrupt.  
There are no dedicated pins for the external interrupts. XINT1, XINT2, and XINT3 interrupts can accept  
inputs from GPIO0–GPIO31 pins.  
6.1.13 Internal Zero Pin Oscillators, Oscillator, and PLL  
The device can be clocked by either of the two internal zero-pin oscillators, an external oscillator, or by a  
crystal attached to the on-chip oscillator circuit. A PLL is provided supporting up to 12 input-clock-scaling  
ratios. The PLL ratios can be changed on-the-fly in software, enabling the user to scale back on operating  
frequency if lower power operation is desired. Refer to Section 5, Electrical Specifications, for timing  
details. The PLL block can be set in bypass mode.  
6.1.14 Watchdog  
Each device contains two watchdogs: CPU watchdog that monitors the core and NMI watchdog that is a  
missing clock-detect circuit. The user software must regularly reset the CPU watchdog counter within a  
certain time frame; otherwise, the CPU watchdog generates a reset to the processor. The CPU watchdog  
can be disabled if necessary. The NMI watchdog engages only in case of a clock failure and can either  
generate an interrupt or a device reset.  
6.1.15 Peripheral Clocking  
The clocks to each individual peripheral can be enabled/disabled to reduce power consumption when a  
peripheral is not in use. Additionally, the system clock to the serial ports (except I2C) can be scaled  
relative to the CPU clock.  
6.1.16 Low-power Modes  
The devices are full static CMOS devices. Three low-power modes are provided:  
IDLE:  
Place CPU in low-power mode. Peripheral clocks may be turned off selectively and  
only those peripherals that must function during IDLE are left operating. An enabled  
interrupt from an active peripheral or the watchdog timer will wake the processor from  
IDLE mode.  
STANDBY: Turns off clock to CPU and peripherals. This mode leaves the oscillator and PLL  
functional. An external interrupt event will wake the processor and the peripherals.  
Execution begins on the next valid cycle after detection of the interrupt event  
HALT:  
This mode basically shuts down the device and places it in the lowest possible power  
consumption mode. If the internal zero-pin oscillators are used as the clock source,  
the HALT mode turns them off, by default. To keep these oscillators from shutting  
down, the INTOSCnHALTI bits in CLKCTL register may be used. The zero-pin  
oscillators may thus be used to clock the CPU watchdog in this mode. If the on-chip  
crystal oscillator is used as the clock source, it is shut down in this mode. A reset or  
an external signal (through a GPIO pin) or the CPU watchdog can wake the device  
from this mode.  
The CPU clock (OSCCLK) and WDCLK should be from the same clock source before attempting to put  
the device into HALT or STANDBY.  
46  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.1.17 Peripheral Frames 0, 1, 2, 3 (PFn)  
The device segregates peripherals into four sections. The mapping of peripherals is as follows:  
PF0: PIE:  
Flash:  
PIE Interrupt Enable and Control Registers Plus PIE Vector Table  
Flash Waitstate Registers  
Timers:  
CSM:  
CPU-Timers 0, 1, 2 Registers  
Code Security Module KEY Registers  
ADC:  
ADC Result Registers  
CLA  
Control Law Accelrator Registers and Message RAMs  
GPIO MUX Configuration and Control Registers  
Enhanced Control Area Network Configuration and Control Registers  
Local Interconnect Network Configuration and Control Registers  
Enhanced Capture Module and Registers  
PF1: GPIO:  
eCAN:  
LIN:  
eCAP:  
eQEP:  
Enhanced Quadrature Encoder Pulse Module and Registers  
High-Resolution Capture Module and Registers  
System Control Registers  
HRCAP:  
PF2: SYS:  
SCI:  
Serial Communications Interface (SCI) Control and RX/TX Registers  
Serial Port Interface (SPI) Control and RX/TX Registers  
ADC Status, Control, and Configuration Registers  
Inter-Integrated Circuit Module and Registers  
External Interrupt Registers  
SPI:  
ADC:  
I2C:  
XINT:  
PF3: ePWM:  
HRPWM:  
Enhanced Pulse Width Modulator Module and Registers  
High-Resolution Pulse-Width Modulator Registers  
Comparators: Comparator Modules  
6.1.18 General-Purpose Input/Output (GPIO) Multiplexer  
Most of the peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. This  
enables the user to use a pin as GPIO if the peripheral signal or function is not used. On reset, GPIO pins  
are configured as inputs. The user can individually program each pin for GPIO mode or peripheral signal  
mode. For specific inputs, the user can also select the number of input qualification cycles. This is to filter  
unwanted noise glitches. The GPIO signals can also be used to bring the device out of specific low-power  
modes.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
47  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.1.19 32-Bit CPU-Timers (0, 1, 2)  
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock  
prescaling. The timers have a 32-bit count-down register, which generates an interrupt when the counter  
reaches zero. The counter is decremented at the CPU clock speed divided by the prescale value setting.  
When the counter reaches zero, it is automatically reloaded with a 32-bit period value.  
CPU-Timer 0 is for general use and is connected to the PIE block. CPU-Timer 1 is also for general use  
and can be connected to INT13 of the CPU. CPU-Timer 2 is reserved for DSP/BIOS. It is connected to  
INT14 of the CPU. If DSP/BIOS is not being used, CPU-Timer 2 is available for general use.  
CPU-Timer 2 can be clocked by any one of the following:  
SYSCLKOUT (default)  
Internal zero-pin oscillator 1 (INTOSC1)  
Internal zero-pin oscillator 2 (INTOSC2)  
External clock source  
6.1.20 Control Peripherals  
The devices support the following peripherals that are used for embedded control and communication:  
ePWM:  
The enhanced PWM peripheral supports independent/complementary PWM  
generation, adjustable dead-band generation for leading/trailing edges,  
latched/cycle-by-cycle trip mechanism. Some of the PWM pins support the  
HRPWM high resolution duty and period features. The type 1 module found on  
2803x devices also supports increased dead-band resolution, enhanced SOC and  
interrupt generation, and advanced triggering including trip functions based on  
comparator outputs.  
eCAP:  
eQEP:  
The enhanced capture peripheral uses a 32-bit time base and registers up to four  
programmable events in continuous/one-shot capture modes.  
This peripheral can also be configured to generate an auxiliary PWM signal.  
The enhanced QEP peripheral uses a 32-bit position counter, supports low-speed  
measurement using capture unit and high-speed measurement using a 32-bit unit  
timer. This peripheral has a watchdog timer to detect motor stall and input error  
detection logic to identify simultaneous edge transition in QEP signals.  
ADC:  
The ADC block is a 12-bit converter. It has up to 16 single-ended channels pinned  
out, depending on the device. It contains two sample-and-hold units for  
simultaneous sampling.  
Comparator: Each comparator block consists of one analog comparator along with an internal  
10-bit reference for supplying one input of the comparator.  
HRCAP:  
The high-resolution capture peripheral operates in normal capture mode through a  
16-bit counter clocked off of the HCCAPCLK or in high-resolution capture mode by  
utilizing built-in calibration logic in conjunction with a TI-supplied calibration library.  
48  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.1.21 Serial Port Peripherals  
The devices support the following serial communication peripherals:  
SPI:  
The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream  
of programmed length (1 to 16 bits) to be shifted into and out of the device at a  
programmable bit-transfer rate. Normally, the SPI is used for communications  
between the MCU and external peripherals or another processor. Typical  
applications include external I/O or peripheral expansion through devices such as  
shift registers, display drivers, and ADCs. Multidevice communications are  
supported by the master/slave operation of the SPI. The SPI contains a 4-level  
receive and transmit FIFO for reducing interrupt servicing overhead.  
SCI:  
I2C:  
The serial communications interface is a two-wire asynchronous serial port,  
commonly known as UART. The SCI contains a 4-level receive and transmit FIFO  
for reducing interrupt servicing overhead.  
The inter-integrated circuit (I2C) module provides an interface between an MCU  
and other devices compliant with Philips Semiconductors Inter-IC bus ( I2C-bus®)  
specification version 2.1 and connected by way of an I2C-bus. External  
components attached to this 2-wire serial bus can transmit/receive up to 8-bit data  
to/from the MCU through the I2C module. The I2C contains a 4-level receive and  
transmit FIFO for reducing interrupt servicing overhead.  
eCAN:  
LIN:  
This is the enhanced version of the CAN peripheral. It supports 32 mailboxes, time  
stamping of messages, and is compliant with ISO11898-1 (CAN 2.0B).  
LIN 1.3 or 2.0 compatible peripheral. Can also be configured as additional SCI  
port  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
49  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.2 Memory Maps  
In Figure 6-1 through Figure 6-4, the following apply:  
Memory blocks are not to scale.  
Peripheral Frame 0, Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 memory maps  
are restricted to data memory only. A user program cannot access these memory maps in program  
space.  
Protected means the order of Write-followed-by-Read operations is preserved rather than the pipeline  
order.  
Certain memory ranges are EALLOW protected against spurious writes after configuration.  
Locations 0x3D7C80 to 0x3D7CC0 contain the internal oscillator and ADC calibration routines. These  
locations are not programmable by the user.  
50  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 1400  
Peripheral Frame 0  
CLA Registers  
0x00 1480  
0x00 1500  
0x00 1580  
0x00 2000  
0x00 6000  
CLA-to-CPU Message RAM  
CPU-to-CLA Message RAM  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(1K ´ 16, Protected)  
0x00 6400  
0x00 6A00  
0x00 7000  
0x00 8000  
0x00 8800  
0x00 8C00  
0x00 9000  
Peripheral Frame 3  
(1.5K ´ 16, Protected)  
Reserved  
Peripheral Frame 1  
(1.5K ´ 16, Protected)  
Peripheral Frame 2  
(4K ´ 16, Protected)  
L0 SARAM (2K ´ 16)  
(0-Wait, Secure Zone + ECSL, Dual-Mapped)  
L1 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL, CLA Data RAM 0)  
L2 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL, CLA Data RAM 1)  
L3 DPSARAM (4K ´ 16)  
(0-Wait, Secure Zone + ECSL, CLA Prog RAM)  
0x00 A000  
0x3D 7800  
0x3D 7C00  
0x3D 7C80  
Reserved  
User OTP (1K ´ 16, Secure Zone + ECSL)  
Reserved  
Calibration Data  
Get_mode function  
Reserved  
0x3D 7CC0  
0x3D 7CE0  
0x3D 7E80  
PARTID  
Calibration Data  
0x3D 7EB0  
0x3E 8000  
Reserved  
FLASH  
(64K ´ 16, 8 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
L0 SARAM (2K ´ 16)  
(0-Wait, Secure Zone + ECSL, Dual-Mapped)  
0x3F 8800  
0x3F E000  
0x3F FFC0  
Reserved  
Boot ROM (8K ´ 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
A. CLA-specific registers and RAM apply to the 28035 device only.  
B. Memory locations 0x3D7E80-0x3D7EAF are reserved in TMX silicon.  
Figure 6-1. 28034/28035 Memory Map  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
51  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 1400  
0x00 1480  
0x00 1500  
0x00 1580  
0x00 2000  
0x00 6000  
Peripheral Frame 0  
CLA Registers  
CLA-to-CPU Message RAM  
CPU-to-CLA Message RAM  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(1K ´ 16, Protected)  
0x00 6400  
0x00 6A00  
0x00 7000  
0x00 8000  
0x00 8800  
0x00 8C00  
0x00 9000  
Peripheral Frame 3  
(1.5K ´ 16, Protected)  
Reserved  
Peripheral Frame 1  
(1.5K ´ 16, Protected)  
Peripheral Frame 2  
(4K ´ 16, Protected)  
L0 SARAM (2K ´ 16)  
(0-Wait, Secure Zone + ECSL, Dual-Mapped)  
L1 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL, CLA Data RAM 0)  
L2 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL, CLA Data RAM 1)  
L3 DPSARAM (4K ´ 16)  
(0-Wait, Secure Zone + ECSL, CLA Prog RAM)  
0x00 A000  
0x3D 7800  
0x3D 7C00  
0x3D 7C80  
Reserved  
User OTP (1K ´ 16, Secure Zone + ECSL)  
Reserved  
Calibration Data  
Get_mode function  
Reserved  
0x3D 7CC0  
0x3D 7CE0  
0x3D 7E80  
PARTID  
Calibration Data  
0x3D 7EB0  
0x3F 0000  
Reserved  
FLASH  
(32K ´ 16, 8 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
L0 SARAM (2K ´ 16)  
(0-Wait, Secure Zone + ECSL, Dual-Mapped)  
0x3F 8800  
0x3F E000  
0x3F FFC0  
Reserved  
Boot ROM (8K ´ 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
A. CLA-specific registers and RAM apply to the 28033 device only.  
B. Memory locations 0x3D7E80-0x3D7EAF are reserved in TMX silicon.  
Figure 6-2. 28032/28033 Memory Map  
52  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 2000  
0x00 6000  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(1K ´ 16, Protected)  
0x00 6400  
0x00 6A00  
0x00 7000  
0x00 8000  
0x00 8800  
0x00 8C00  
0x00 9000  
Peripheral Frame 3  
(1.5K ´ 16, Protected)  
Reserved  
Peripheral Frame 1  
(1.5K ´ 16, Protected)  
Peripheral Frame 2  
(4K ´ 16, Protected)  
L0 SARAM (2K ´ 16)  
(0-Wait, Secure Zone + ECSL, Dual-Mapped)  
L1 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL, CLA Data RAM 0)  
L2 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL, CLA Data RAM 1)  
L3 DPSARAM (2K ´ 16)  
(0-Wait, Secure Zone + ECSL, CLA Prog RAM)  
0x00 9800  
0x3D 7800  
0x3D 7C00  
0x3D 7C80  
Reserved  
User OTP (1K ´ 16, Secure Zone + ECSL)  
Reserved  
Calibration Data  
Get_mode function  
Reserved  
0x3D 7CC0  
0x3D 7CE0  
0x3D 7E80  
PARTID  
Calibration Data  
0x3D 7EB0  
0x3F 0000  
Reserved  
FLASH  
(32K ´ 16, 8 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
L0 SARAM (2K ´ 16)  
(0-Wait, Secure Zone + ECSL, Dual-Mapped)  
0x3F 8800  
0x3F E000  
0x3F FFC0  
Reserved  
Boot ROM (8K ´ 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
A. Memory locations 0x3D7E80-0x3D7EAF are reserved in TMX silicon.  
Figure 6-3. 28031 Memory Map  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
53  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 2000  
0x00 6000  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(1K ´ 16, Protected)  
0x00 6400  
0x00 6A00  
0x00 7000  
0x00 8000  
0x00 8800  
0x00 8C00  
0x00 9000  
Peripheral Frame 3  
(1.5K ´ 16, Protected)  
Reserved  
Peripheral Frame 1  
(1.5K ´ 16, Protected)  
Peripheral Frame 2  
(4K ´ 16, Protected)  
L0 SARAM (2K ´ 16)  
(0-Wait, Secure Zone + ECSL, Dual-Mapped)  
L1 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL, CLA Data RAM 0)  
L2 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL, CLA Data RAM 1)  
Reserved  
0x00 A000  
0x3D 7800  
0x3D 7C00  
0x3D 7C80  
Reserved  
User OTP (1K ´ 16, Secure Zone + ECSL)  
Reserved  
Calibration Data  
Get_mode function  
Reserved  
0x3D 7CC0  
0x3D 7CE0  
0x3D 7E80  
PARTID  
Calibration Data  
0x3D 7EB0  
0x3F 4000  
Reserved  
FLASH  
(16K ´ 16, 4 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
L0 SARAM (2K ´ 16)  
(0-Wait, Secure Zone + ECSL, Dual-Mapped)  
0x3F 8800  
0x3F E000  
0x3F FFC0  
Reserved  
Boot ROM (8K ´ 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
A. Memory locations 0x3D7E80-0x3D7EAF are reserved in TMX silicon.  
Figure 6-4. 28030 Memory Map  
54  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Table 6-3. Addresses of Flash Sectors in F28034/28035  
ADDRESS RANGE  
0x3E 8000 to 0x3E 9FFF  
0x3E A000 to 0x3E BFFF  
0x3E C000 to 0x3E DFFF  
0x3E E000 to 0x3E FFFF  
0x3F 0000 to 0x3F 1FFF  
0x3F 2000 to 0x3F 3FFF  
0x3F 4000 to 0x3F 5FFF  
0x3F 6000 to 0x3F 7F7F  
PROGRAM AND DATA SPACE  
Sector H (8K × 16)  
Sector G (8K × 16)  
Sector F (8K × 16)  
Sector E (8K × 16)  
Sector D (8K × 16)  
Sector C (8K × 16)  
Sector B (8K × 16)  
Sector A (8K × 16)  
Program to 0x0000 when using the  
Code Security Module  
0x3F 7F80 to 0x3F 7FF5  
0x3F 7FF6 to 0x3F 7FF7  
0x3F 7FF8 to 0x3F 7FFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password (128-Bit)  
(Do not program to all zeros)  
Table 6-4. Addresses of Flash Sectors in F28031/28032/28033  
ADDRESS RANGE  
PROGRAM AND DATA SPACE  
Sector H (4K × 16)  
Sector G (4K × 16)  
Sector F (4K × 16)  
Sector E (4K × 16)  
Sector D (4K × 16)  
Sector C (4K × 16)  
Sector B (4K × 16)  
Sector A (4K × 16)  
0x3F 0000 to 0x3F 0FFF  
0x3F 1000 to 0x3F 1FFF  
0x3F 2000 to 0x3F 2FFF  
0x3F 3000 to 0x3F 3FFF  
0x3F 4000 to 0x3F 4FFF  
0x3F 5000 to 0x3F 5FFF  
0x3F 6000 to 0x3F 6FFF  
0x3F 7000 to 0x3F 7F7F  
Program to 0x0000 when using the  
Code Security Module  
0x3F 7F80 to 0x3F 7FF5  
0x3F 7FF6 to 0x3F 7FF7  
0x3F 7FF8 to 0x3F 7FFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password (128-Bit)  
(Do not program to all zeros)  
Table 6-5. Addresses of Flash Sectors in F28030  
ADDRESS RANGE  
0x3F 4000 to 0x3F 4FFF  
0x3F 5000 to 0x3F 5FFF  
0x3F 6000 to 0x3F 6FFF  
0x3F 7000 to 0x3F 7F7F  
PROGRAM AND DATA SPACE  
Sector D (4K × 16)  
Sector C (4K × 16)  
Sector B (4K × 16)  
Sector A (4K × 16)  
Program to 0x0000 when using the  
Code Security Module  
0x3F 7F80 to 0x3F 7FF5  
0x3F 7FF6 to 0x3F 7FF7  
0x3F 7FF8 to 0x3F 7FFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password (128-Bit)  
(Do not program to all zeros)  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
55  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
NOTE  
When the code-security passwords are programmed, all addresses from 0x3F 7F80 to  
0x3F 7FF5 cannot be used as program code or data. These locations must be  
programmed to 0x0000.  
If the code security feature is not used, addresses 0x3F 7F80 to 0x3F 7FEF may be  
used for code or data. Addresses 0x3F 7FF0 to 0x3F 7FF5 are reserved for data and  
should not contain program code.  
Table 6-6 shows how to handle these memory locations.  
Table 6-6. Impact of Using the Code Security Module  
FLASH  
ADDRESS  
CODE SECURITY ENABLED  
CODE SECURITY DISABLED  
0x3F 7F80 to 0x3F 7FEF  
0x3F 7FF0 to 0x3F 7FF5  
Application code and data  
Reserved for data only  
Fill with 0x0000  
Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 are grouped together to enable these  
blocks to be write/read peripheral block protected. The protected mode makes sure that all accesses to  
these blocks happen as written. Because of the pipeline, a write immediately followed by a read to  
different memory locations, will appear in reverse order on the memory bus of the CPU. This can cause  
problems in certain peripheral applications where the user expected the write to occur first (as written).  
The CPU supports a block protection mode where a region of memory can be protected so that operations  
occur as written (the penalty is extra cycles are added to align the operations). This mode is  
programmable and by default, it protects the selected zones.  
The wait states for the various spaces in the memory map area are listed in Table 6-7.  
Table 6-7. Wait States  
AREA  
M0 and M1 SARAMs  
Peripheral Frame 0  
Peripheral Frame 1  
WAIT STATES (CPU)  
0-wait  
COMMENTS  
Fixed  
0-wait  
0-wait (writes)  
2-wait (reads)  
Cycles can be extended by peripheral generated ready.  
Back-to-back write operations to Peripheral Frame 1 registers will incur  
a 1-cycle stall (1-cycle delay).  
Peripheral Frame 2  
Peripheral Frame 3  
0-wait (writes)  
2-wait (reads)  
Fixed. Cycles cannot be extended by the peripheral.  
0-wait (writes)  
Assumes no conflict between CPU and CLA.  
Cycles can be extended by peripheral-generated ready.  
Assumes no CPU conflicts  
2-wait (reads)  
L0 SARAM  
L1 SARAM  
L2 SARAM  
L3 SARAM  
OTP  
0-wait data and program  
0-wait data and program  
0-wait data and program  
0-wait data and program  
Programmable  
Assumes no CPU conflicts  
Assumes no CPU conflicts  
Assumes no CPU conflicts  
Programmed through the Flash registers.  
1-wait is minimum number of wait states allowed.  
Programmed through the Flash registers.  
1-wait minimum  
FLASH  
Programmable  
0-wait Paged min  
1-wait Random min  
Random Paged  
FLASH Password  
Boot-ROM  
16-wait fixed  
0-wait  
Wait states of password locations are fixed.  
56  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.3 Register Maps  
The devices contain four peripheral register spaces. The spaces are categorized as follows:  
Peripheral Frame 0: These are peripherals that are mapped directly to the CPU memory bus.  
See Table 6-8.  
Peripheral Frame 1: These are peripherals that are mapped to the 32-bit peripheral bus. See  
Table 6-9.  
Peripheral Frame 2: These are peripherals that are mapped to the 16-bit peripheral bus. See  
Table 6-10.  
Peripheral Frame 3: These are peripherals that are mapped to the 32-bit peripheral bus and are  
accessible by the CLA. See Table 6-11.  
Table 6-8. Peripheral Frame 0 Registers(1)  
NAME  
Device Emulation Registers  
System Power Control Registers  
FLASH Registers(3)  
ADDRESS RANGE  
0x00 0880 to 0x00 0984  
0x00 0985 to 0x00 0987  
0x00 0A80 to 0x00 0ADF  
0x00 0AE0 to 0x00 0AEF  
0x00 0B00 to 0x00 0B0F  
0x00 0C00 to 0x00 0C3F  
0x00 0CE0 to 0x00 0CFF  
0x00 0D00 to 0x00 0DFF  
0x00 1400 to 0x00 147F  
0x00 1480 to 0x00 14FF  
0x00 1500 to 0x00 157F  
SIZE (×16)  
261  
3
EALLOW PROTECTED(2)  
Yes  
Yes  
Yes  
Yes  
No  
96  
Code Security Module Registers  
ADC registers (0 wait read only)  
CPU–TIMER0/1/2 Registers  
PIE Registers  
16  
16  
64  
No  
32  
No  
PIE Vector Table  
256  
128  
128  
128  
No  
CLA Registers  
Yes  
NA  
NA  
CLA to CPU Message RAM (CPU writes ignored)  
CPU to CLA Message RAM (CLA writes ignored)  
(1) Registers in Frame 0 support 16-bit and 32-bit accesses.  
(2) If registers are EALLOW protected, then writes cannot be performed until the EALLOW instruction is executed. The EDIS instruction  
disables writes to prevent stray code or pointers from corrupting register contents.  
(3) The Flash Registers are also protected by the Code Security Module (CSM).  
Table 6-9. Peripheral Frame 1 Registers  
NAME  
ADDRESS RANGE  
0x00 6000 to 0x00 61FF  
0x00 6A00 to 0x00 6A1F  
0x00 6AC0 to 0x00 6ADF  
0x00 6AE0 to 0x00 6AFF  
0x00 6B00 to 0x00 6B3F  
0x00 6C00 to 0x00 6C7F  
0x00 6F80 to 0x00 6FFF  
SIZE (×16)  
EALLOW PROTECTED  
(1)  
eCAN-A registers  
eCAP1 registers  
HRCAP1 registers  
HRCAP2 registers  
eQEP1 registers  
LIN-A registers  
512  
32  
No  
(1)  
32  
(1)  
(1)  
(1)  
(1)  
32  
64  
128  
128  
GPIO registers  
(1) Some registers are EALLOW protected. For more information, see the TMS320F2803x Technical Reference Manual.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
57  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Table 6-10. Peripheral Frame 2 Registers  
NAME  
System Control Registers  
ADDRESS RANGE  
0x00 7010 to 0x00 702F  
0x00 7040 to 0x00 704F  
0x00 7050 to 0x00 705F  
0x00 7060 to 0x00 706F  
0x00 7070 to 0x00 707F  
0x00 7100 to 0x00 717F  
0x00 7900 to 0x00 793F  
0x00 7740 to 0x00 774F  
SIZE (×16)  
EALLOW PROTECTED  
32  
16  
16  
16  
16  
128  
64  
16  
Yes  
No  
SPI-A Registers  
SCI-A Registers  
No  
NMI Watchdog Interrupt Registers  
External Interrupt Registers  
ADC Registers  
Yes  
Yes  
(1)  
(1)  
I2C-A Registers  
SPI-B Registers  
No  
(1) Some registers are EALLOW protected. For more information, see the TMS320F2803x Technical Reference Manual.  
Table 6-11. Peripheral Frame 3 Registers  
NAME  
Comparator 1 registers  
ADDRESS RANGE  
0x00 6400 to 0x00 641F  
0x00 6420 to 0x00 643F  
0x00 6440 to 0x00 645F  
0x00 6800 to 0x00 683F  
0x00 6840 to 0x00 687F  
0x00 6880 to 0x00 68BF  
0x00 68C0 to 0x00 68FF  
0x00 6900 to 0x00 693F  
0x00 6940 to 0x00 697F  
0x00 6980 to 0x00 69BF  
SIZE (×16)  
EALLOW PROTECTED  
(1)  
32  
32  
32  
64  
64  
64  
64  
64  
64  
64  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Comparator 2 registers  
Comparator 3 registers  
ePWM1 + HRPWM1 registers  
ePWM2 + HRPWM2 registers  
ePWM3 + HRPWM3 registers  
ePWM4 + HRPWM4 registers  
ePWM5 + HRPWM5 registers  
ePWM6 + HRPWM6 registers  
ePWM7 + HRPWM7 registers  
(1) Some registers are EALLOW protected. For more information, see the TMS320F2803x Technical Reference Manual.  
58  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.4 Device Emulation Registers  
These registers are used to control the protection mode of the C28x CPU and to monitor some critical  
device signals. The registers are defined in Table 6-12 .  
Table 6-12. Device Emulation Registers  
ADDRESS  
RANGE  
EALLOW  
PROTECTED  
NAME  
SIZE (x16)  
DESCRIPTION  
Device Configuration Register  
Part ID Register  
0x0880  
0x0881  
DEVICECNF  
PARTID(1)  
2
1
Yes  
0x3D 7E80  
TMS320F28035PN  
TMS320F28035PAG  
TMS320F28035RSH  
TMS320F28034PN  
TMS320F28034PAG  
TMS320F28034RSH  
TMS320F28033PN  
TMS320F28033PAG  
TMS320F28033RSH  
TMS320F28032PN  
TMS320F28032PAG  
TMS320F28032RSH  
TMS320F28031PN  
TMS320F28031PAG  
TMS320F28031RSH  
TMS320F28030PN  
TMS320F28030PAG  
TMS320F28030RSH  
TMS320F28035  
0x00BF  
0x00BE  
0x00BD  
0x00BB  
0x00BA  
0x00B9  
0x00B7  
0x00B6  
0x00B5  
0x00B3  
0x00B2  
0x00B1  
0x00AF  
0x00AE  
0x00AD  
0x00AB  
0x00AA  
0x00A9  
0x00BF  
0x00BB  
0x00B7  
0x00B3  
0x00AF  
0x00AB  
No  
CLASSID  
0x0882  
0x0883  
1
1
Class ID Register  
TMS320F28034  
TMS320F28033  
No  
No  
TMS320F28032  
TMS320F28031  
TMS320F28030  
REVID  
Revision ID  
Register  
0x0000 - Silicon Rev. 0 - TMS  
0x0001 - Silicon Rev. A - TMS  
(1) For TMS320F2803x devices, the PARTID register location differs from the TMS320F2802x devices' location of 0x3D7FFF.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
59  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.5 VREG/BOR/POR  
Although the core and I/O circuitry operate on two different voltages, these devices have an on-chip  
voltage regulator (VREG) to generate the VDD voltage from the VDDIO supply. This eliminates the cost and  
space of a second external regulator on an application board. Additionally, internal power-on reset (POR)  
and brown-out reset (BOR) circuits monitor both the VDD and VDDIO rails during power-up and run mode.  
6.5.1 On-chip Voltage Regulator (VREG)  
A linear regulator generates the core voltage (VDD) from the VDDIO supply. Therefore, although capacitors  
are required on each VDD pin to stabilize the generated voltage, power need not be supplied to these pins  
to operate the device. Conversely, the VREG can be disabled, should power or redundancy be the  
primary concern of the application.  
6.5.1.1 Using the On-chip VREG  
To use the on-chip VREG, the VREGENZ pin should be tied low and the appropriate recommended  
operating voltage should be supplied to the VDDIO and VDDA pins. In this case, the VDD voltage needed by  
the core logic will be generated by the VREG. Each VDD pin requires on the order of 1.2 μF (minimum)  
capacitance for proper regulation of the VREG. These capacitors should be located as close as possible  
to the VDD pins. Driving an external load with the internal VREG is not supported.  
6.5.1.2 Disabling the On-chip VREG  
To conserve power, it is also possible to disable the on-chip VREG and supply the core logic voltage to  
the VDD pins with a more efficient external regulator. To enable this option, the VREGENZ pin must be tied  
high.  
60  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.5.2 On-chip Power-On Reset (POR) and Brown-Out Reset (BOR) Circuit  
Two on-chip supervisory circuits, the power-on reset (POR) and the brown-out reset (BOR) remove the  
burden of monitoring the VDD and VDDIO supply rails from the application board. The purpose of the POR is  
to create a clean reset throughout the device during the entire power-up procedure. The trip point is a  
looser, lower trip point than the BOR, which watches for dips in the VDD or VDDIO rail during device  
operation. The POR function is present on both VDD and VDDIO rails at all times. After initial device power-  
up, the BOR function is present on VDDIO at all times, and on VDD when the internal VREG is enabled  
(VREGENZ pin is tied low). Both functions tie the XRS pin low when one of the voltages is below their  
respective trip point. VDD BOR and overvoltage trip points are outside of the recommended operating  
voltages. Proper device operation cannot be ensured. If overvoltage or undervoltage conditions affecting  
the system is a concern for an application, an external voltage supervisor should be added. Figure 6-5  
shows the VREG, POR, and BOR. To disable both the VDD and VDDIO BOR functions, a bit is provided in  
the BORCFG register. For details, see the System Control chapter in the TMS320F2803x Technical  
Reference Manual.  
In  
I/O Pin  
Out  
(Force Hi-Z When High)  
DIR (0 = Input, 1 = Output)  
Internal  
Weak PU  
SYSRS  
SYSCLKOUT  
Deglitch  
Filter  
Sync  
RS  
WDRST  
C28  
Core  
MCLKRS  
PLL  
JTAG  
TCK  
Detect  
Logic  
XRS  
Pin  
+
Clocking  
Logic  
VREGHALT  
WDRST(A)  
PBRS(B)  
POR/BOR  
Generating  
Module  
On-Chip  
Voltage  
Regulator  
(VREG)  
VREGENZ  
A. WDRST is the reset signal from the CPU watchdog.  
B. PBRS is the reset signal from the POR/BOR module.  
Figure 6-5. VREG + POR + BOR + Reset Signal Connectivity  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
61  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.6 System Control  
This section describes the oscillator and clocking mechanisms, the watchdog function and the low-power  
modes.  
Table 6-13. PLL, Clocking, Watchdog, and Low-Power Mode Registers  
NAME  
BORCFG  
ADDRESS  
0x00 0985  
0x00 7010  
0x00 7011  
0x00 7012  
0x00 7013  
0x00 7014  
0x00 7016  
0x00 7019  
0x00 701B  
0x00 701C  
0x00 701D  
0x00 701E  
0x00 7020  
0x00 7021  
0x00 7022  
0x00 7023  
0x00 7025  
0x00 7029  
SIZE (x16)  
DESCRIPTION(1)  
BOR Configuration Register  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
XCLK  
XCLKOUT Control  
PLLSTS  
PLL Status Register  
CLKCTL  
Clock Control Register  
PLLLOCKPRD  
INTOSC1TRIM  
INTOSC2TRIM  
PCLKCR2  
LOSPCP  
PCLKCR0  
PCLKCR1  
LPMCR0  
PCLKCR3  
PLLCR  
PLL Lock Period  
Internal Oscillator 1 Trim Register  
Internal Oscillator 2 Trim Register  
Peripheral Clock Control Register 2  
Low-Speed Peripheral Clock Prescaler Register  
Peripheral Clock Control Register 0  
Peripheral Clock Control Register 1  
Low-Power Mode Control Register 0  
Peripheral Clock Control Register 3  
PLL Control Register  
SCSR  
System Control and Status Register  
Watchdog Counter Register  
Watchdog Reset Key Register  
Watchdog Control Register  
WDCNTR  
WDKEY  
WDCR  
(1) All registers in this table are EALLOW protected.  
62  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Figure 6-6 shows the various clock domains that are discussed. Figure 6-7 shows the various clock  
sources (both internal and external) that can provide a clock for device operation.  
SYSCLKOUT  
PCLKCR0/1/2/3  
(System Ctrl Regs)  
LOSPCP  
(System Ctrl Regs)  
C28x Core  
CLKIN  
Clock Enables  
LSPCLK  
Peripheral  
Registers  
SPI-A, SPI-B, SCI-A  
Clock Enables  
I/O  
I/O  
I/O  
I/O  
I/O  
PF2  
/2  
Peripheral  
Registers  
eCAN-A, LIN-A  
PF1  
PF1  
PF3  
PF2  
Clock Enables  
Peripheral  
Registers  
GPIO  
Mux  
eCAP1, eQEP1, HRCAP1/2  
Clock Enables  
Peripheral  
Registers  
ePWM1/.../7, HRPWM1/.../7  
Clock Enables  
Peripheral  
Registers  
I2C-A  
Clock Enables  
ADC  
Registers  
PF2  
PF0  
16 Ch  
12-Bit ADC  
Analog  
GPIO  
Mux  
Clock Enables  
COMP1/2/3  
COMP  
Registers  
6
PF3  
A. CLKIN is the clock into the CPU. It is passed out of the CPU as SYSCLKOUT (that is, CLKIN is the same frequency  
as SYSCLKOUT).  
Figure 6-6. Clock and Reset Domains  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
63  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
CLKCTL[WDCLKSRCSEL]  
Internal  
OSC 1  
(10 MHz)  
0
OSC1CLK  
INTOSC1TRIM Reg(A)  
OSCCLKSRC1  
WDCLK  
CPU Watchdog  
(OSC1CLK on XRS reset)  
OSCE  
1
CLKCTL[INTOSC1OFF]  
1 = Turn OSC Off  
CLKCTL[OSCCLKSRCSEL]  
OSCCLK  
CLKCTL[INTOSC1HALT]  
1 = Ignore HALT  
WAKEOSC  
OSC2CLK  
0
1
Internal  
OSC 2  
(10 MHz)  
INTOSC2TRIM Reg(A)  
PLL  
Missing-Clock-Detect Circuit(B)  
(OSC1CLK on XRS reset)  
OSCE  
CLKCTL[TRM2CLKPRESCALE]  
CLKCTL[TMR2CLKSRCSEL]  
1 = Turn OSC Off  
10  
11  
CLKCTL[INTOSC2OFF]  
Prescale  
/1, /2, /4,  
/8, /16  
SYNC  
Edge  
Detect  
01, 10, 11  
CPUTMR2CLK  
1 = Ignore HALT  
01  
1
0
00  
CLKCTL[INTOSC2HALT]  
SYSCLKOUT  
OSCCLKSRC2  
CLKCTL[OSCCLKSRC2SEL]  
0 = GPIO38  
1 = GPIO19  
XCLK[XCLKINSEL]  
CLKCTL[XCLKINOFF]  
0
1
0
GPIO19  
or  
XCLKIN  
GPIO38  
XCLKIN  
X1  
X2  
EXTCLK  
(Crystal)  
OSC  
XTAL  
WAKEOSC  
(Oscillators enabled when this signal is high)  
0 = OSC on (default on reset)  
1 = Turn OSC off  
CLKCTL[XTALOSCOFF]  
A. Register loaded from TI OTP-based calibration function.  
B. See Section 6.6.4 for details on missing clock detection.  
Figure 6-7. Clock Tree  
64  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.6.1 Internal Zero Pin Oscillators  
The F2803x devices contain two independent internal zero pin oscillators. By default both oscillators are  
turned on at power up, and internal oscillator 1 is the default clock source at this time. For power savings,  
unused oscillators may be powered down by the user. The center frequency of these oscillators is  
determined by their respective oscillator trim registers, written to in the calibration routine as part of the  
boot ROM execution. See Section 5, Electrical Specifications, for more information on these oscillators.  
6.6.2 Crystal Oscillator Option  
The on-chip crystal oscillator X1 and X2 pins are 1.8-V level signals and must never have 3.3-V level  
signals applied to them. If a system 3.3-V external oscillator is to be used as a clock source, it should be  
connected to the XCLKIN pin only. The X1 pin is not intended to be used as a single-ended clock input, it  
should be used with X2 and a crystal.  
The typical specifications for the external quartz crystal (fundamental mode, parallel resonant) are listed in  
Table 6-14. Furthermore, ESR range = 30 to 150 .  
Table 6-14. Typical Specifications for External Quartz Crystal(1)  
FREQUENCY (MHz)  
Rd ()  
2200  
470  
0
CL1 (pF)  
18  
CL2 (pF)  
18  
5
10  
15  
20  
15  
15  
15  
15  
0
12  
12  
(1) Cshunt should be less than or equal to 5 pF.  
XCLKIN/GPIO19/38  
X1  
X2  
Rd  
Turn off  
XCLKIN path  
in CLKCTL  
register  
CL1  
Crystal  
CL2  
Figure 6-8. Using the On-chip Crystal Oscillator  
NOTE  
1. CL1 and CL2 are the total capacitance of the circuit board and components excluding the  
IC and crystal. The value is usually approximately twice the value of the crystal's load  
capacitance.  
2. The load capacitance of the crystal is described in the crystal specifications of the  
manufacturers.  
3. TI recommends that customers have the resonator/crystal vendor characterize the  
operation of their device with the MCU chip. The resonator/crystal vendor has the  
equipment and expertise to tune the tank circuit. The vendor can also advise the  
customer regarding the proper tank component values that will produce proper start-up  
and stability over the entire operating range.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
65  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
XCLKIN/GPIO19/38  
X1  
X2  
NC  
External Clock Signal  
(Toggling 0−V  
)
DDIO  
Figure 6-9. Using a 3.3-V External Oscillator  
6.6.3 PLL-Based Clock Module  
The devices have an on-chip, PLL-based clock module. This module provides all the necessary clocking  
signals for the device, as well as control for low-power mode entry. The PLL has a 4-bit ratio control  
PLLCR[DIV] to select different CPU clock rates. The watchdog module should be disabled before writing  
to the PLLCR register. It can be re-enabled (if need be) after the PLL module has stabilized, which takes  
1 ms. The input clock and PLLCR[DIV] bits should be chosen in such a way that the output frequency of  
the PLL (VCOCLK) is at least 50 MHz.  
Table 6-15. PLL Settings  
SYSCLKOUT (CLKIN)  
PLLCR[DIV] VALUE(1) (2)  
PLLSTS[DIVSEL] = 0 or 1(3)  
OSCCLK/4 (Default)(1)  
(OSCCLK * 1)/4  
PLLSTS[DIVSEL] = 2  
OSCCLK/2  
PLLSTS[DIVSEL] = 3  
OSCCLK  
0000 (PLL bypass)  
0001  
(OSCCLK * 1)/2  
(OSCCLK * 2)/2  
(OSCCLK * 3)/2  
(OSCCLK * 4)/2  
(OSCCLK * 5)/2  
(OSCCLK * 6)/2  
(OSCCLK * 7)/2  
(OSCCLK * 8)/2  
(OSCCLK * 9)/2  
(OSCCLK * 10)/2  
(OSCCLK * 11)/2  
(OSCCLK * 12)/2  
(OSCCLK * 1)/1  
(OSCCLK * 2)/1  
(OSCCLK * 3)/1  
(OSCCLK * 4)/1  
(OSCCLK * 5)/1  
(OSCCLK * 6)/1  
(OSCCLK * 7)/1  
(OSCCLK * 8)/1  
(OSCCLK * 9)/1  
(OSCCLK * 10)/1  
(OSCCLK * 11)/1  
(OSCCLK * 12)/1  
0010  
(OSCCLK * 2)/4  
0011  
(OSCCLK * 3)/4  
0100  
(OSCCLK * 4)/4  
0101  
(OSCCLK * 5)/4  
0110  
(OSCCLK * 6)/4  
0111  
(OSCCLK * 7)/4  
1000  
(OSCCLK * 8)/4  
1001  
(OSCCLK * 9)/4  
1010  
(OSCCLK * 10)/4  
(OSCCLK * 11)/4  
(OSCCLK * 12)/4  
1011  
1100  
(1) The PLL control register (PLLCR) and PLL Status Register (PLLSTS) are reset to their default state by the XRS signal or a watchdog  
reset only. A reset issued by the debugger or the missing clock detect logic has no effect.  
(2) This register is EALLOW protected. See the System Control chapter in the TMS320F2803x Technical Reference Manual for more  
information.  
(3) By default, PLLSTS[DIVSEL] is configured for /4. (The boot ROM changes this to /1.) PLLSTS[DIVSEL] must be 0 before writing to the  
PLLCR and should be changed only after PLLSTS[PLLLOCKS] = 1.  
Table 6-16. CLKIN Divide Options  
PLLSTS [DIVSEL]  
CLKIN DIVIDE  
0
1
2
3
/4  
/4  
/2  
/1  
66  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
The PLL-based clock module provides four modes of operation:  
INTOSC1 (Internal Zero-pin Oscillator 1): This is the on-chip internal oscillator 1. This can provide  
the clock for the Watchdog block, core and CPU-Timer 2  
INTOSC2 (Internal Zero-pin Oscillator 2): This is the on-chip internal oscillator 2. This can provide  
the clock for the Watchdog block, core and CPU-Timer 2. Both INTOSC1 and INTOSC2 can be  
independently chosen for the Watchdog block, core and CPU-Timer 2.  
Crystal/Resonator Operation: The on-chip (crystal) oscillator enables the use of an external  
crystal/resonator attached to the device to provide the time base. The crystal/resonator is connected to  
the X1/X2 pins. Some devices may not have the X1/X2 pins. See Table 4-1 for details.  
External Clock Source Operation: If the on-chip (crystal) oscillator is not used, this mode allows it to  
be bypassed. The device clocks are generated from an external clock source input on the XCLKIN pin.  
The XCLKIN is multiplexed with GPIO19 or GPIO38 pin. The XCLKIN input can be selected as  
GPIO19 or GPIO38 through the XCLKINSEL bit in XCLK register. The CLKCTL[XCLKINOFF] bit  
disables this clock input (forced low). If the clock source is not used or the respective pins are used as  
GPIOs, the user should disable at boot time.  
Before changing clock sources, ensure that the target clock is present. If a clock is not present, then that  
clock source must be disabled (using the CLKCTL register) before switching clocks.  
Table 6-17. Possible PLL Configuration Modes  
CLKIN AND  
SYSCLKOUT  
PLL MODE  
REMARKS  
PLLSTS[DIVSEL]  
Invoked by the user setting the PLLOFF bit in the PLLSTS register. The PLL block  
is disabled in this mode. This can be useful to reduce system noise and for low-  
power operation. The PLLCR register must first be set to 0x0000 (PLL Bypass)  
before entering this mode. The CPU clock (CLKIN) is derived directly from the  
input clock on either X1/X2, X1 or XCLKIN.  
0, 1  
2
3
OSCCLK/4  
OSCCLK/2  
OSCCLK/1  
PLL Off  
PLL Bypass is the default PLL configuration upon power-up or after an external  
reset (XRS). This mode is selected when the PLLCR register is set to 0x0000 or  
while the PLL locks to a new frequency after the PLLCR register has been  
modified. In this mode, the PLL is bypassed but the PLL is not turned off.  
0, 1  
2
3
OSCCLK/4  
OSCCLK/2  
OSCCLK/1  
PLL Bypass  
PLL Enable  
0, 1  
2
3
OSCCLK * n/4  
OSCCLK * n/2  
OSCCLK * n/1  
Achieved by writing a nonzero value n into the PLLCR register. Upon writing to the  
PLLCR the device will switch to PLL Bypass mode until the PLL locks.  
6.6.4 Loss of Input Clock (NMI Watchdog Function)  
The 2803x devices may be clocked from either one of the internal zero-pin oscillators  
(INTOSC1/INTOSC2), the on-chip crystal oscillator, or from an external clock input. Regardless of the  
clock source, in PLL-enabled and PLL-bypass mode, if the input clock to the PLL vanishes, the PLL will  
issue a limp-mode clock at its output. This limp-mode clock continues to clock the CPU and peripherals at  
a typical frequency of 1–5 MHz.  
When the limp mode is activated, a CLOCKFAIL signal is generated that is latched as an NMI interrupt.  
Depending on how the NMIRESETSEL bit has been configured, a reset to the device can be fired  
immediately or the NMI watchdog counter can issue a reset when it overflows. In addition to this, the  
Missing Clock Status (MCLKSTS) bit is set. The NMI interrupt could be used by the application to detect  
the input clock failure and initiate necessary corrective action such as switching over to an alternative  
clock source (if available) or initiate a shut-down procedure for the system.  
If the software does not respond to the clock-fail condition, the NMI watchdog triggers a reset after a  
preprogrammed time interval. Figure 6-10 shows the interrupt mechanisms involved.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
67  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
NMIFLG[NMINT]  
NMIFLGCLR[NMINT]  
Clear  
Latch  
Set  
Clear  
XRS  
Generate  
Interrupt  
Pulse  
When  
Input = 1  
NMIFLG[CLOCKFAIL]  
Clear  
Latch  
1
0
0
NMIFLGCLR[CLOCKFAIL]  
CLOCKFAIL  
NMINT  
SYNC?  
Set  
Clear  
SYSCLKOUT  
NMICFG[CLOCKFAIL]  
NMIFLGFRC[CLOCKFAIL]  
XRS  
SYSCLKOUT  
SYSRS  
NMIWDPRD[15:0]  
NMIWDCNT[15:0]  
See System  
Control Section  
NMI Watchdog  
NMIRS  
Figure 6-10. NMI Watchdog  
6.6.5 CPU Watchdog Module  
The CPU watchdog module on the 2803x device is similar to the one used on the 281x/280x/283xx  
devices. This module generates an output pulse, 512 oscillator clocks wide (OSCCLK), whenever the 8-bit  
watchdog up counter has reached its maximum value. To prevent this, the user must disable the counter  
or the software must periodically write a 0x55 + 0xAA sequence into the watchdog key register that resets  
the watchdog counter. Figure 6-11 shows the various functional blocks within the watchdog module.  
Normally, when the input clocks are present, the CPU watchdog counter decrements to initiate a CPU  
watchdog reset or WDINT interrupt. However, when the external input clock fails, the CPU watchdog  
counter stops decrementing (that is, the watchdog counter does not change with the limp-mode clock).  
NOTE  
The CPU watchdog is different from the NMI watchdog. It is the legacy watchdog that is  
present in all 28x devices.  
NOTE  
Applications in which the correct CPU operating frequency is absolutely critical should  
implement a mechanism by which the MCU will be held in reset, should the input clocks ever  
fail. For example, an R-C circuit may be used to trigger the XRS pin of the MCU, should the  
capacitor ever get fully charged. An I/O pin may be used to discharge the capacitor on a  
periodic basis to prevent it from getting fully charged. Such a circuit would also help in  
detecting failure of the flash memory.  
68  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
WDCR (WDPS[2:0])  
WDCR (WDDIS)  
WDCNTR(7:0)  
WDCLK  
WDCLK  
8-Bit  
Watchdog  
Counter  
CLR  
Watchdog  
Prescaler  
/512  
SCSR(WDOVERRIDE)  
Clear Counter  
Internal  
Pullup  
WDKEY(7:0)  
WDRST  
WDINT  
Generate  
Watchdog  
55 + AA  
Output Pulse  
Good K ey  
(512 OSCCLKs)  
Key Detector  
XRS  
Bad  
WDCHK  
Key  
Core-reset  
SCSR (WDENINT)  
WDCR (WDCHK[2:0])  
1
0
1
(A)  
WDRST  
A. The WDRST signal is driven low for 512 OSCCLK cycles.  
Figure 6-11. CPU Watchdog Module  
The WDINT signal enables the watchdog to be used as a wakeup from IDLE/STANDBY mode.  
In STANDBY mode, all peripherals are turned off on the device. The only peripheral that remains  
functional is the CPU watchdog. This module will run off OSCCLK. The WDINT signal is fed to the LPM  
block so that it can wake the device from STANDBY (if enabled). See Section 6.7, Low-power Modes  
Block, for more details.  
In IDLE mode, the WDINT signal can generate an interrupt to the CPU, through the PIE, to take the CPU  
out of IDLE mode.  
In HALT mode, the CPU watchdog can be used to wake up the device through a device reset.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
69  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.7 Low-power Modes Block  
Table 6-18 summarizes the various modes.  
Table 6-18. Low-power Modes  
MODE  
LPMCR0(1:0)  
OSCCLK  
CLKIN  
SYSCLKOUT  
EXIT(1)  
XRS, CPU watchdog interrupt, any  
enabled interrupt  
IDLE  
00  
On  
On  
On  
On  
XRS, CPU watchdog interrupt, GPIO  
Port A signal, debugger(2)  
STANDBY  
HALT(3)  
01  
Off  
Off  
(CPU watchdog still running)  
Off  
(on-chip crystal oscillator and  
PLL turned off, zero-pin oscillator  
and CPU watchdog state  
dependent on user code.)  
XRS, GPIO Port A signal, debugger(2)  
CPU watchdog  
,
1X  
Off  
Off  
(1) The EXIT column lists which signals or under what conditions the low-power mode is exited. A low signal, on any of the signals, exits  
the low-power condition. This signal must be kept low long enough for an interrupt to be recognized by the device. Otherwise, the low-  
power mode will not be exited and the device will go back into the indicated low-power mode.  
(2) The JTAG port can still function even if the CPU clock (CLKIN) is turned off.  
(3) The WDCLK must be active for the device to go into HALT mode.  
The various low-power modes operate as follows:  
IDLE Mode:  
This mode is exited by any enabled interrupt that is recognized by the  
processor. The LPM block performs no tasks during this mode as long as  
the LPMCR0(LPM) bits are set to 0,0.  
STANDBY Mode:  
Any GPIO port A signal (GPIO[31:0]) can wake the device from STANDBY  
mode. The user must select which signal(s) will wake the device in the  
GPIOLPMSEL register. The selected signal(s) are also qualified by the  
OSCCLK before waking the device. The number of OSCCLKs is specified in  
the LPMCR0 register.  
HALT Mode:  
CPU watchdog, XRS, and any GPIO port A signal (GPIO[31:0]) can wake  
the device from HALT mode. The user selects the signal in the  
GPIOLPMSEL register.  
NOTE  
The low-power modes do not affect the state of the output pins (PWM pins included). They  
will be in whatever state the code left them in when the IDLE instruction was executed. See  
the System Control chapter in the TMS320F2803x Technical Reference Manual for more  
details.  
70  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.8 Interrupts  
Figure 6-12 shows how the various interrupt sources are multiplexed.  
Peripherals  
(SPI, SCI, ePWM, I2C, HRPWM, HRCAP,  
eCAP, ADC, eQEP, CLA, LIN, eCAN)  
WDINT  
Watchdog  
WAKEINT  
Sync  
LPMINT  
Low Power Modes  
SYSCLKOUT  
XINT1  
XINT1  
Interrupt Control  
XINT1CR(15:0)  
XINT1CTR(15:0)  
GPIOXINT1SEL(4:0)  
XINT2SOC  
INT1  
to  
INT12  
ADC  
XINT2  
XINT2  
Interrupt Control  
XINT2CR(15:0)  
XINT2CTR(15:0)  
C28  
Core  
GPIOXINT2SEL(4:0)  
GPIO0.int  
XINT3  
TINT0  
XINT3  
GPIO  
MUX  
Interrupt Control  
XINT3CR(15:0)  
XINT3CTR(15:0)  
GPIO31.int  
GPIOXINT3SEL(4:0)  
CPU TIMER 0  
CPU TIMER 1  
CPU TIMER 2  
TINT1  
TINT2  
INT13  
INT14  
CPUTMR2CLK  
CLOCKFAIL  
NMIRS  
System Control  
(See the System  
Control section.)  
NMI interrupt with watchdog function  
(See the NMI Watchdog section.)  
NMI  
Figure 6-12. External and PIE Interrupt Sources  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
71  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Eight PIE block interrupts are grouped into one CPU interrupt. In total, 12 CPU interrupt groups, with  
8 interrupts per group equals 96 possible interrupts. Table 6-19 shows the interrupts used by 2803x  
devices.  
The TRAP #VectorNumber instruction transfers program control to the interrupt service routine  
corresponding to the vector specified. The TRAP #0 instruction attempts to transfer program control to the  
address pointed to by the reset vector. The PIE vector table does not, however, include a reset vector.  
Therefore, the TRAP #0 instruction should not be used when the PIE is enabled. Doing so will result in  
undefined behavior.  
When the PIE is enabled, the TRAP #1 to TRAP #12 instructions will transfer program control to the  
interrupt service routine corresponding to the first vector within the PIE group. For example: the TRAP #1  
instruction fetches the vector from INT1.1, the TRAP #2 instruction fetches the vector from INT2.1, and so  
forth.  
IFR[12:1]  
IER[12:1]  
INTM  
INT1  
INT2  
1
CPU  
MUX  
0
INT11  
INT12  
Global  
Enable  
(Flag)  
(Enable)  
INTx.1  
INTx.2  
INTx.3  
INTx.4  
INTx.5  
From  
Peripherals  
or  
External  
Interrupts  
INTx  
MUX  
INTx.6  
INTx.7  
INTx.8  
PIEACKx  
(Enable)  
(Flag)  
(Enable/Flag)  
PIEIERx[8:1]  
PIEIFRx[8:1]  
Figure 6-13. Multiplexing of Interrupts Using the PIE Block  
72  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Table 6-19. PIE MUXed Peripheral Interrupt Vector Table(1)  
INTx.8  
WAKEINT  
(LPM/WD)  
0xD4E  
Reserved  
INTx.7  
TINT0  
INTx.6  
ADCINT9  
(ADC)  
INTx.5  
XINT2  
INTx.4  
XINT1  
INTx.3  
Reserved  
INTx.2  
ADCINT2  
(ADC)  
INTx.1  
ADCINT1  
(ADC)  
INT1.y  
INT2.y  
INT3.y  
INT4.y  
INT5.y  
INT6.y  
INT7.y  
INT8.y  
INT9.y  
INT10.y  
INT11.y  
INT12.y  
(TIMER 0)  
0xD4C  
Ext. int. 2  
0xD48  
Ext. int. 1  
0xD46  
0xD4A  
0xD44  
0xD42  
0xD40  
EPWM7_TZINT  
(ePWM7)  
0xD5C  
EPWM6_TZINT  
(ePWM6)  
0xD5A  
EPWM5_TZINT  
(ePWM5)  
0xD58  
EPWM4_TZINT  
(ePWM4)  
0xD56  
EPWM3_TZINT  
(ePWM3)  
0xD54  
EPWM2_TZINT  
(ePWM2)  
0xD52  
EPWM1_TZINT  
(ePWM1)  
0xD50  
0xD5E  
Reserved  
EPWM7_INT  
(ePWM7)  
0xD6C  
EPWM6_INT  
(ePWM6)  
0xD6A  
EPWM5_INT  
(ePWM5)  
0xD68  
EPWM4_INT  
(ePWM4)  
0xD66  
EPWM3_INT  
(ePWM3)  
0xD64  
EPWM2_INT  
(ePWM2)  
0xD62  
EPWM1_INT  
(ePWM1)  
0xD60  
0xD6E  
HRCAP2_INT  
(HRCAP2)  
0xD7E  
Reserved  
HRCAP1_INT  
(HRCAP1)  
0xD7C  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ECAP1_INT  
(eCAP1)  
0xD70  
0xD7A  
0xD78  
0xD76  
0xD74  
0xD72  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
EQEP1_INT  
(eQEP1)  
0xD80  
0xD8E  
Reserved  
0xD8C  
0xD8A  
0xD88  
0xD86  
0xD84  
0xD82  
Reserved  
Reserved  
Reserved  
SPITXINTB  
(SPI-B)  
0xD96  
SPIRXINTB  
(SPI-B)  
0xD94  
SPITXINTA  
(SPI-A)  
0xD92  
SPIRXINTA  
(SPI-A)  
0xD9E  
Reserved  
0xD9C  
0xD9A  
0xD98  
0xD90  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0xDAE  
Reserved  
0xDAC  
Reserved  
0xDAA  
Reserved  
0xDA8  
0xDA6  
0xDA4  
0xDA2  
0xDA0  
Reserved  
Reserved  
Reserved  
I2CINT2A  
(I2C-A)  
0xDB2  
I2CINT1A  
(I2C-A)  
0xDBE  
Reserved  
0xDBC  
Reserved  
0xDBA  
ECAN1_INTA  
(CAN-A)  
0xDCA  
ADCINT6  
(ADC)  
0xDB8  
0xDB6  
0xDB4  
0xDB0  
ECAN0_INTA  
(CAN-A)  
0xDC8  
ADCINT5  
(ADC)  
LIN1_INTA  
(LIN-A)  
0xDC6  
LIN0_INTA  
(LIN-A)  
0xDC4  
ADCINT3  
(ADC)  
SCITXINTA  
(SCI-A)  
0xDC2  
SCIRXINTA  
(SCI-A)  
0xDCE  
ADCINT8  
(ADC)  
0xDCC  
ADCINT7  
(ADC)  
0xDC0  
ADCINT4  
(ADC)  
ADCINT2  
(ADC)  
ADCINT1  
(ADC)  
0xDDE  
CLA1_INT8  
(CLA)  
0xDDC  
CLA1_INT7  
(CLA)  
0xDDA  
CLA1_INT6  
(CLA)  
0xDD8  
CLA1_INT5  
(CLA)  
0xDD6  
0xDD4  
CLA1_INT3  
(CLA)  
0xDD2  
0xDD0  
CLA1_INT4  
(CLA)  
CLA1_INT2  
(CLA)  
CLA1_INT1  
(CLA)  
0xDEE  
LUF  
0xDEC  
LVF  
0xDEA  
Reserved  
0xDE8  
0xDE6  
0xDE4  
0xDE2  
0xDE0  
Reserved  
Reserved  
Reserved  
Reserved  
XINT3  
(CLA)  
(CLA)  
Ext. Int. 3  
0xDF0  
0xDFE  
0xDFC  
0xDFA  
0xDF8  
0xDF6  
0xDF4  
0xDF2  
(1) Out of 96 possible interrupts, some interrupts are not used. These interrupts are reserved for future devices. These interrupts can be  
used as software interrupts if they are enabled at the PIEIFRx level, provided none of the interrupts within the group is being used by a  
peripheral. Otherwise, interrupts coming in from peripherals may be lost by accidentally clearing their flag while modifying the PIEIFR.  
To summarize, there are two safe cases when the reserved interrupts could be used as software interrupts:  
No peripheral within the group is asserting interrupts.  
No peripheral interrupts are assigned to the group (for example, PIE group 7).  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
73  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Table 6-20. PIE Configuration and Control Registers  
NAME  
PIECTRL  
PIEACK  
PIEIER1  
PIEIFR1  
PIEIER2  
PIEIFR2  
PIEIER3  
PIEIFR3  
PIEIER4  
PIEIFR4  
PIEIER5  
PIEIFR5  
PIEIER6  
PIEIFR6  
PIEIER7  
PIEIFR7  
PIEIER8  
PIEIFR8  
PIEIER9  
PIEIFR9  
PIEIER10  
PIEIFR10  
PIEIER11  
PIEIFR11  
PIEIER12  
PIEIFR12  
Reserved  
ADDRESS  
0x0CE0  
0x0CE1  
0x0CE2  
0x0CE3  
0x0CE4  
0x0CE5  
0x0CE6  
0x0CE7  
0x0CE8  
0x0CE9  
0x0CEA  
0x0CEB  
0x0CEC  
0x0CED  
0x0CEE  
0x0CEF  
0x0CF0  
0x0CF1  
0x0CF2  
0x0CF3  
0x0CF4  
0x0CF5  
0x0CF6  
0x0CF7  
0x0CF8  
0x0CF9  
SIZE (x16)  
DESCRIPTION(1)  
PIE, Control Register  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
PIE, Acknowledge Register  
PIE, INT1 Group Enable Register  
PIE, INT1 Group Flag Register  
PIE, INT2 Group Enable Register  
PIE, INT2 Group Flag Register  
PIE, INT3 Group Enable Register  
PIE, INT3 Group Flag Register  
PIE, INT4 Group Enable Register  
PIE, INT4 Group Flag Register  
PIE, INT5 Group Enable Register  
PIE, INT5 Group Flag Register  
PIE, INT6 Group Enable Register  
PIE, INT6 Group Flag Register  
PIE, INT7 Group Enable Register  
PIE, INT7 Group Flag Register  
PIE, INT8 Group Enable Register  
PIE, INT8 Group Flag Register  
PIE, INT9 Group Enable Register  
PIE, INT9 Group Flag Register  
PIE, INT10 Group Enable Register  
PIE, INT10 Group Flag Register  
PIE, INT11 Group Enable Register  
PIE, INT11 Group Flag Register  
PIE, INT12 Group Enable Register  
PIE, INT12 Group Flag Register  
Reserved  
0x0CFA –  
0x0CFF  
(1) The PIE configuration and control registers are not protected by EALLOW mode. The PIE vector table  
is protected.  
74  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.8.1 External Interrupts  
Table 6-21. External Interrupt Registers  
NAME  
XINT1CR  
XINT2CR  
XINT3CR  
XINT1CTR  
XINT2CTR  
XINT3CTR  
ADDRESS  
0x00 7070  
0x00 7071  
0x00 7072  
0x00 7078  
0x00 7079  
0x00 707A  
SIZE (x16)  
DESCRIPTION  
XINT1 configuration register  
XINT2 configuration register  
XINT3 configuration register  
XINT1 counter register  
1
1
1
1
1
1
XINT2 counter register  
XINT3 counter register  
Each external interrupt can be enabled/disabled or qualified using positive, negative, or both positive and  
negative edge. For more information, see the System Control chapter in the TMS320F2803x Technical  
Reference Manual.  
6.8.1.1 External Interrupt Electrical Data/Timing  
Table 6-22. External Interrupt Timing Requirements(1)  
MIN  
1tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
Synchronous  
With qualifier  
(2)  
tw(INT)  
Pulse duration, INT input low/high  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-68.  
(2) This timing is applicable to any GPIO pin configured for ADCSOC functionality.  
Table 6-23. External Interrupt Switching Characteristics(1)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
tw(IQSW) + 12tc(SCO)  
UNIT  
td(INT)  
Delay time, INT low/high to interrupt-vector fetch  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 6-68.  
t
w(INT)  
XINT1, XINT2, XINT3  
t
d(INT)  
Address bus  
(internal)  
Interrupt Vector  
Figure 6-14. External Interrupt Timing  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
75  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.9 Peripherals  
6.9.1 Control Law Accelerator (CLA) Overview  
The control law accelerator extends the capabilities of the C28x CPU by adding parallel processing. Time-  
critical control loops serviced by the CLA can achieve low ADC sample to output delay. Thus, the CLA  
enables faster system response and higher frequency control loops. Utilizing the CLA for time-critical tasks  
frees up the main CPU to perform other system and communication functions concurently. The following is  
a list of major features of the CLA.  
Clocked at the same rate as the main CPU (SYSCLKOUT).  
An independent architecture allowing CLA algorithm execution independent of the main C28x CPU.  
Complete bus architecture:  
Program address bus and program data bus  
Data address bus, data read bus, and data write bus  
Independent eight-stage pipeline.  
12-bit program counter (MPC)  
Four 32-bit result registers (MR0–MR3)  
Two 16-bit auxillary registers (MAR0, MAR1)  
Status register (MSTF)  
Instruction set includes:  
IEEE single-precision (32-bit) floating-point math operations  
Floating-point math with parallel load or store  
Floating-point multiply with parallel add or subtract  
1/X and 1/sqrt(X) estimations  
Data type conversions.  
Conditional branch and call  
Data load/store operations  
The CLA program code can consist of up to eight tasks or interrupt service routines.  
The start address of each task is specified by the MVECT registers.  
No limit on task size as long as the tasks fit within the CLA program memory space.  
One task is serviced at a time through to completion. There is no nesting of tasks.  
Upon task completion, a task-specific interrupt is flagged within the PIE.  
When a task finishes, the next highest-priority pending task is automatically started.  
Task trigger mechanisms:  
C28x CPU through the IACK instruction  
Task1 to Task7: the corresponding ADC or ePWM module interrupt. For example:  
Task1: ADCINT1 or EPWM1_INT  
Task2: ADCINT2 or EPWM2_INT  
Task7: ADCINT7 or EPWM7_INT  
Task8: ADCINT8 or by CPU Timer 0.  
Memory and Shared Peripherals:  
Two dedicated message RAMs for communication between the CLA and the main CPU.  
The C28x CPU can map CLA program and data memory to the main CPU space or CLA space.  
The CLA has direct access to the ADC Result registers, comparator registers, and the  
ePWM+HRPWM registers.  
For more information on the CLA, see the Control Law Accelerator (CLA) chapter in the TMS320F2803x  
Technical Reference Manual.  
76  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
IACK  
Peripheral Interrupts  
CLA Control  
Registers  
ADCINT1 to  
ADCINT8  
CLA_INT1 to CLA_INT8  
MIFR  
MIOVF  
MICLR  
MICLROVF  
MIFRC  
MIER  
EPWM1_INT to  
EPWM8_INT  
Main  
28x  
CPU  
INT11  
INT12  
MPERINT1  
to  
MPERINT8  
PIE  
CPU Timer 0  
LVF  
LUF  
MIRUN  
Main CPU Read/Write Data Bus  
MPISRCSEL1  
MVECT1  
MVECT2  
MVECT3  
MVECT4  
MVECT5  
MVECT6  
MVECT7  
MVECT8  
CLA Program Address Bus  
CLA Program Data Bus  
CLA  
Program  
Memory  
CLA  
Data  
Memory  
Map to CLA or  
CPU Space  
Map to CLA or  
CPU Space  
MMEMCFG  
MCTL  
CLA  
Shared  
Message  
RAMs  
SYSCLKOUT  
CLAENCLK  
SYSRS  
ADC  
Result  
Registers  
MEALLOW  
CLA Execution  
Registers  
CLA Data Read Address Bus  
MPC(12)  
MSTF(32)  
MR0(32)  
MR1(32)  
MR2(32)  
MR3(32)  
ePWM  
and  
HRPWM  
Registers  
CLA Data Read Data Bus  
CLA Data Write Address Bus  
CLA Data Write Data Bus  
Main CPU Read Data Bus  
Comparator  
Registers  
MAR0(32)  
MAR1(32)  
Figure 6-15. CLA Block Diagram  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
77  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Table 6-24. CLA Control Registers  
CLA1  
ADDRESS  
EALLOW  
PROTECTED  
REGISTER NAME  
MVECT1  
SIZE (x16)  
DESCRIPTION(1)  
0x1400  
0x1401  
0x1402  
0x1403  
0x1404  
0x1405  
0x1406  
0x1407  
0x1410  
0x1411  
0x1414  
0x1420  
0x1421  
0x1422  
0x1423  
0x1424  
0x1425  
0x1426  
0x1427  
0x1428  
0x142A  
0x142B  
0x142E  
0x1430  
0x1434  
0x1438  
0x143C  
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
CLA Interrupt/Task 1 Start Address  
CLA Interrupt/Task 2 Start Address  
CLA Interrupt/Task 3 Start Address  
CLA Interrupt/Task 4 Start Address  
CLA Interrupt/Task 5 Start Address  
CLA Interrupt/Task 6 Start Address  
CLA Interrupt/Task 7 Start Address  
CLA Interrupt/Task 8 Start Address  
CLA Control Register  
MVECT2  
MVECT3  
MVECT4  
MVECT5  
MVECT6  
MVECT7  
MVECT8  
MCTL  
MMEMCFG  
MPISRCSEL1  
MIFR  
CLA Memory Configure Register  
Peripheral Interrupt Source Select Register 1  
Interrupt Flag Register  
Interrupt Overflow Register  
Interrupt Force Register  
Interrupt Clear Register  
Interrupt Overflow Clear Register  
Interrupt Enable Register  
Interrupt RUN Register  
Interrupt Priority Control Register  
CLA Program Counter  
CLA Aux Register 0  
MIOVF  
MIFRC  
MICLR  
MICLROVF  
MIER  
MIRUN  
MIPCTL  
MPC(2)  
MAR0(2)  
MAR1(2)  
MSTF(2)  
MR0(2)  
MR1(2)  
MR2(2)  
MR3(2)  
CLA Aux Register 1  
CLA STF Register  
CLA R0H Register  
CLA R1H Register  
CLA R2H Register  
CLA R3H Register  
(1) All registers in this table are CSM protected  
(2) The main C28x CPU has read only access to this register for debug purposes. The main CPU cannot perform CPU or debugger writes  
to this register.  
Table 6-25. CLA Message RAM  
ADDRESS RANGE  
0x1480 – 0x14FF  
0x1500 – 0x157F  
SIZE (x16)  
128  
DESCRIPTION  
CLA to CPU Message RAM  
CPU to CLA Message RAM  
128  
78  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.9.2 Analog Block  
A 12-bit ADC core is implemented that has different timings than the 12-bit ADC used on F280x/F2833x.  
The ADC wrapper is modified to incorporate the new timings and also other enhancements to improve the  
timing control of start of conversions. Figure 6-16 shows the interaction of the analog module with the rest  
of the F2803x system.  
For more information on the ADC, see the Analog-to-Digital Converter and Comparator chapter in the  
TMS320F2803x Technical Reference Manual.  
56-Pin  
80-Pin  
(3.3 V) VDDA  
(Agnd) VSSA  
VREFLO  
64-Pin  
VDDA  
VDDA  
VSSA  
VREFLO  
Tied To  
VSSA  
Interface Reference  
Diff  
VREFLO  
VREFHI  
A0  
VREFHI  
Tied To  
A0  
VREFHI  
A0  
B0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
A1  
A2  
A3  
A4  
A1  
B1  
COMP1OUT  
A2  
AIO2  
AIO10  
10-Bit  
DAC  
Comp1  
Comp2  
B2  
A6  
A7  
B0  
B1  
B2  
B3  
B4  
A3  
B3  
ADC  
COMP2OUT  
A4  
B4  
AIO4  
AIO12  
10-Bit  
DAC  
B5  
Temperature Sensor  
B6  
B7  
A5  
A6  
COMP3OUT  
Signal Pinout  
AIO6  
AIO14  
10-Bit  
DAC  
Comp3  
B6  
A7  
B7  
Figure 6-16. Analog Pin Configurations  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
79  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.9.2.1 Analog-to-Digital Converter (ADC)  
6.9.2.1.1 Features  
The core of the ADC contains a single 12-bit converter fed by two sample-and-hold circuits. The sample-  
and-hold circuits can be sampled simultaneously or sequentially. These, in turn, are fed by a total of up to  
16 analog input channels. The converter can be configured to run with an internal band-gap reference to  
create true-voltage based conversions or with a pair of external voltage references (VREFHI/VREFLO) to  
create ratiometric-based conversions.  
Contrary to previous ADC types, this ADC is not sequencer-based. It is easy for the user to create a  
series of conversions from a single trigger. However, the basic principle of operation is centered around  
the configurations of individual conversions, called SOCs, or Start-Of-Conversions.  
Functions of the ADC module include:  
12-bit ADC core with built-in dual sample-and-hold (S/H)  
Simultaneous sampling or sequential sampling modes  
Full range analog input: 0 V to 3.3 V fixed, or VREFHI/VREFLO ratiometric. The digital value of the input  
analog voltage is derived by:  
Internal Reference (VREFLO = VSSA. VREFHI must not exceed VDDA when using either internal or  
external reference modes.)  
Digital Value = 0,  
when input £ 0 V  
Input Analog Voltage -  
VREFLO  
Digital Value = 4096 ´  
when 0 V < input < 3.3 V  
3.3  
Digital Value = 4095,  
when input ³ 3.3 V  
External Reference (VREFHI/VREFLO connected to external references. VREFHI must not exceed VDDA  
when using either internal or external reference modes.)  
Digital Value = 0,  
when input £ 0 V  
Input Analog Voltage -  
VREFLO  
Digital Value = 4096 ´  
when 0 V < input <  
VREFHI  
-
VREFHI VREFLO  
Digital Value = 4095,  
when input ³  
VREFHI  
Up to 16-channel, multiplexed inputs  
16 SOCs, configurable for trigger, sample window, and channel  
16 result registers (individually addressable) to store conversion values  
Multiple trigger sources  
S/W – software immediate start  
ePWM 1–7  
GPIO XINT2  
CPU Timers 0/1/2  
ADCINT1/2  
9 flexible PIE interrupts, can configure interrupt request after any conversion  
80  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Table 6-26. ADC Configuration and Control Registers  
SIZE  
(x16)  
EALLOW  
PROTECTED  
REGISTER NAME  
ADDRESS  
DESCRIPTION  
ADCCTL1  
0x7100  
0x7101  
0x7104  
0x7105  
0x7106  
0x7107  
0x7108  
0x7109  
0x710A  
0x710B  
0x710C  
0x7110  
0x7112  
0x7114  
0x7115  
0x7118  
0x711A  
0x711C  
0x711E  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Yes  
Yes  
No  
Control 1 Register  
ADCCTL2  
Control 2 Register  
ADCINTFLG  
Interrupt Flag Register  
ADCINTFLGCLR  
ADCINTOVF  
No  
Interrupt Flag Clear Register  
No  
Interrupt Overflow Register  
ADCINTOVFCLR  
INTSEL1N2  
No  
Interrupt Overflow Clear Register  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Interrupt 1 and 2 Selection Register  
Interrupt 3 and 4 Selection Register  
Interrupt 5 and 6 Selection Register  
Interrupt 7 and 8 Selection Register  
Interrupt 9 Selection Register (reserved Interrupt 10 Selection)  
SOC Priority Control Register  
INTSEL3N4  
INTSEL5N6  
INTSEL7N8  
INTSEL9N10  
SOCPRICTL  
ADCSAMPLEMODE  
ADCINTSOCSEL1  
ADCINTSOCSEL2  
ADCSOCFLG1  
ADCSOCFRC1  
ADCSOCOVF1  
ADCSOCOVFCLR1  
Sampling Mode Register  
Interrupt SOC Selection 1 Register (for 8 channels)  
Interrupt SOC Selection 2 Register (for 8 channels)  
SOC Flag 1 Register (for 16 channels)  
SOC Force 1 Register (for 16 channels)  
SOC Overflow 1 Register (for 16 channels)  
SOC Overflow Clear 1 Register (for 16 channels)  
SOC0 Control Register to SOC15 Control Register  
No  
No  
No  
ADCSOC0CTL to  
ADCSOC15CTL  
0x7120 –  
0x712F  
Yes  
ADCREFTRIM  
ADCOFFTRIM  
COMPHYSTCTL  
ADCREV  
0x7140  
0x7141  
0x714C  
0x714F  
1
1
1
1
Yes  
Yes  
Yes  
No  
Reference Trim Register  
Offset Trim Register  
Comparator Hysteresis Control Register  
Revision Register  
Table 6-27. ADC Result Registers (Mapped to PF0)  
SIZE  
(x16)  
EALLOW  
PROTECTED  
REGISTER NAME  
ADCRESULT0 to ADCRESULT15  
ADDRESS  
DESCRIPTION  
0xB00 to 0xB0F  
1
No  
ADC Result 0 Register to ADC Result 15  
Register  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
81  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
0-Wait  
Result  
Registers  
PF0 (CPU)  
PF2 (CPU)  
SYSCLKOUT  
ADCENCLK  
ADCINT 1  
PIE  
ADCINT 9  
TINT 0  
TINT 1  
TINT 2  
CPUTIMER 0  
CPUTIMER 1  
CPUTIMER 2  
ADCTRIG 1  
ADCTRIG 2  
ADCTRIG 3  
ADC  
Core  
12-Bit  
AIO  
MUX  
ADC  
Channels  
XINT 2SOC  
XINT 2  
EPWM 1  
EPWM 2  
EPWM 3  
EPWM 4  
EPWM 5  
EPWM 6  
EPWM 7  
ADCTRIG 4  
SOCA 1  
SOCB 1  
SOCA 2  
SOCB 2  
SOCA 3  
SOCB 3  
SOCA 4  
SOCB 4  
SOCA 5  
SOCB 5  
SOCA 6  
SOCB 6  
SOCA 7  
SOCB 7  
ADCTRIG 5  
ADCTRIG 6  
ADCTRIG 7  
ADCTRIG 8  
ADCTRIG 9  
ADCTRIG 10  
ADCTRIG 11  
ADCTRIG 12  
ADCTRIG 13  
ADCTRIG 14  
ADCTRIG 15  
ADCTRIG 16  
ADCTRIG 17  
ADCTRIG 18  
Figure 6-17. ADC Connections  
ADC Connections if the ADC is Not Used  
TI recommends keeping the connections for the analog power pins, even if the ADC is not used. Following  
is a summary of how the ADC pins should be connected, if the ADC is not used in an application:  
VDDA – Connect to VDDIO  
VSSA – Connect to VSS  
VREFLO – Connect to VSS  
ADCINAn, ADCINBn, VREFHI – Connect to VSSA  
When the ADC module is used in an application, unused ADC input pins should be connected to analog  
ground (VSSA).  
NOTE  
Unused ADCIN pins that are multiplexed with AIO function should not be directly connected  
to analog ground. They should be grounded through a 1-kΩ resistor. This is to prevent an  
errant code from configuring these pins as AIO outputs and driving grounded pins to a logic-  
high state.  
When the ADC is not used, be sure that the clock to the ADC module is not turned on to realize power  
savings.  
82  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.9.2.1.2 ADC Start-of-Conversion Electrical Data/Timing  
Table 6-28. External ADC Start-of-Conversion Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
tw(ADCSOCL)  
Pulse duration, ADCSOCxO low  
32tc(HCO)  
cycles  
tw(ADCSOCL)  
ADCSOCAO  
or  
ADCSOCBO  
Figure 6-18. ADCSOCAO or ADCSOCBO Timing  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
83  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.9.2.1.3 On-Chip Analog-to-Digital Converter (ADC) Electrical Data/Timing  
Table 6-29. ADC Electrical Characteristics  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
DC SPECIFICATIONS  
Resolution  
12  
0.001  
7
Bits  
ADC clock  
60-MHz device  
28035/34/33/32  
28031/30  
60  
64  
64  
MHz  
Sample Window  
ADC  
Clocks  
24  
ACCURACY  
INL (Integral nonlinearity) at ADC Clock 30 MHz(1)  
–4  
–1  
4
1
LSB  
LSB  
DNL (Differential nonlinearity) at ADC Clock 30 MHz,  
no missing codes  
(2)  
Offset error  
Executing a single self-  
recalibration(3)  
–20  
–4  
0
0
20  
4
LSB  
Executing periodic self-  
recalibration(4)  
Overall gain error with internal reference  
Overall gain error with external reference  
Channel-to-channel offset variation  
Channel-to-channel gain variation  
ADC temperature coefficient with internal reference  
ADC temperature coefficient with external reference  
VREFLO  
–60  
–40  
–4  
60  
40  
4
LSB  
LSB  
LSB  
–4  
4
LSB  
–50  
–20  
ppm/°C  
ppm/°C  
µA  
–100  
100  
VREFHI  
µA  
ANALOG INPUT  
Analog input voltage with internal reference  
Analog input voltage with external reference  
VREFLO input voltage(5)  
0
VREFLO  
VSSA  
3.3  
VREFHI  
0.66  
V
V
V
VREFHI input voltage(6)  
2.64  
VDDA  
VDDA  
V
with VREFLO = VSSA  
1.98  
Input capacitance  
5
pF  
Input leakage current  
±2  
μA  
(1) INL will degrade when the ADC input voltage goes above VDDA  
.
(2) 1 LSB has the weighted value of full-scale range (FSR)/4096. FSR is 3.3 V with internal reference and VREFHI - VREFLO for external  
reference.  
(3) For more details, see the TMS320F2803x MCUs Silicon Errata.  
(4) Periodic self-recalibration will remove system-level and temperature dependencies on the ADC zero offset error. This can be performed  
as needed in the application without sacrificing an ADC channel by using the procedure listed in the "ADC Zero Offset Calibration"  
section of the Analog-to-Digital Converter and Comparator chapter in the TMS320F2803x Technical Reference Manual.  
(5) VREFLO is always connected to VSSA on the 64-pin PAG device.  
(6) VREFHI must not exceed VDDA when using either internal or external reference modes. Because VREFHI is tied to ADCINA0 on the 64-pin  
PAG device, the input signal on ADCINA0 must not exceed VDDA  
.
84  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Table 6-30. ADC Power Modes  
ADC OPERATING MODE  
CONDITIONS  
IDDA  
UNITS  
ADC Clock Enabled  
Band gap On (ADCBGPWD = 1)  
Reference On (ADCREFPWD = 1)  
ADC Powered Up (ADCPWDN = 1)  
Mode A – Operating Mode  
13  
mA  
ADC Clock Enabled  
Band gap On (ADCBGPWD = 1)  
Reference On (ADCREFPWD = 1)  
ADC Powered Up (ADCPWDN = 0)  
Mode B – Quick Wake Mode  
4
mA  
mA  
mA  
ADC Clock Enabled  
Band gap On (ADCBGPWD = 1)  
Reference On (ADCREFPWD = 0)  
ADC Powered Up (ADCPWDN = 0)  
Mode C – Comparator-Only Mode  
Mode D – Off Mode  
1.5  
ADC Clock Enabled  
Band gap On (ADCBGPWD = 0)  
Reference On (ADCREFPWD = 0)  
ADC Powered Up (ADCPWDN = 0)  
0.075  
6.9.2.1.3.1 Internal Temperature Sensor  
Table 6-31. Temperature Sensor Coefficient  
PARAMETER(1)  
MIN  
TYP  
0.18(2)(3)  
1750  
MAX  
UNIT  
°C/LSB  
LSB  
TSLOPE  
Degrees C of temperature movement per measured ADC LSB change  
of the temperature sensor  
TOFFSET  
ADC output at 0°C of the temperature sensor  
(1) The temperature sensor slope and offset are given in terms of ADC LSBs using the internal reference of the ADC. Values must be  
adjusted accordingly in external reference mode to the external reference voltage.  
(2) ADC temperature coeffieicient is accounted for in this specification  
(3) Output of the temperature sensor (in terms of LSBs) is sign-consistent with the direction of the temperature movement. Increasing  
temperatures will give increasing ADC values relative to an initial value; decreasing temperatures will give decreasing ADC values  
relative to an initial value.  
6.9.2.1.3.2 ADC Power-Up Control Bit Timing  
Table 6-32. ADC Power-Up Delays  
PARAMETER(1)  
MIN  
MAX  
UNIT  
td(PWD)  
Delay time for the ADC to be stable after power up  
1
ms  
(1) Timings maintain compatibility to the ADC module. The 2803x ADC supports driving all 3 bits at the same time td(PWD) ms before first  
conversion.  
ADCPWDN/  
ADCBGPWD/  
ADCREFPWD/  
ADCENABLE  
td(PWD)  
Request for ADC  
Conversion  
Figure 6-19. ADC Conversion Timing  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
85  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Ron  
3.4 kW  
Switch  
Rs  
ADCIN  
Cp  
Ch  
Source  
Signal  
ac  
5 pF  
1.6 pF  
28x DSP  
Typical Values of the Input Circuit Components:  
Switch Resistance (Ron): 3.4 kW  
Sampling Capacitor (Ch): 1.6 pF  
Parasitic Capacitance (Cp): 5 pF  
Source Resistance (Rs): 50 W  
Figure 6-20. ADC Input Impedance Model  
86  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.9.2.1.3.3 ADC Sequential and Simultaneous Timings  
Analog Input  
SOC0 Sample  
Window  
SOC1 Sample  
Window  
SOC2 Sample  
Window  
0
2
9
15  
22 24  
37  
ADCCLK  
ADCCTL 1.INTPULSEPOS  
ADCSOCFLG 1.SOC0  
ADCSOCFLG 1.SOC1  
ADCSOCFLG 1.SOC2  
S/H Window Pulse to Core  
ADCRESULT 0  
SOC0  
SOC1  
SOC2  
Result 0 Latched  
2 ADCCLKs  
ADCRESULT 1  
EOC0 Pulse  
EOC1 Pulse  
ADCINTFLG.ADCINTx  
Minimum  
7 ADCCLKs  
Conversion 0  
13 ADC Clocks  
1 ADCCLK  
6
Minimum  
ADCCLKs 7 ADCCLKs  
Conversion 1  
13 ADC Clocks  
Figure 6-21. Timing Example for Sequential Mode / Late Interrupt Pulse  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
87  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Analog Input  
SOC0 Sample  
Window  
SOC1 Sample  
Window  
SOC2 Sample  
Window  
0
2
9
15  
22 24  
37  
ADCCLK  
ADCCTL1.INTPULSEPOS  
ADCSOCFLG 1.SOC0  
ADCSOCFLG 1.SOC1  
ADCSOCFLG 1.SOC2  
S/H Window Pulse to Core  
ADCRESULT 0  
SOC0  
SOC1  
SOC2  
Result 0 Latched  
ADCRESULT 1  
EOC0 Pulse  
EOC1 Pulse  
EOC2 Pulse  
ADCINTFLG.ADCINTx  
Minimum  
7 ADCCLKs  
Conversion 0  
13 ADC Clocks  
2 ADCCLKs  
6
Minimum  
ADCCLKs 7 ADCCLKs  
Conversion 1  
13 ADC Clocks  
Figure 6-22. Timing Example for Sequential Mode / Early Interrupt Pulse  
88  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Analog Input A  
Analog Input B  
SOC0 Sample  
A Window  
SOC2 Sample  
A Window  
SOC0 Sample  
B Window  
SOC2 Sample  
B Window  
0
2
9
22 24  
37  
50  
ADCCLK  
ADCCTL1.INTPULSEPOS  
ADCSOCFLG 1.SOC0  
ADCSOCFLG 1.SOC1  
ADCSOCFLG 1.SOC2  
S/H Window Pulse to Core  
ADCRESULT 0  
SOC0 (A/B)  
SOC2 (A/B)  
Result 0 (A) Latched  
2 ADCCLKs  
ADCRESULT 1  
Result 0 (B) Latched  
ADCRESULT 2  
EOC0 Pulse  
EOC1 Pulse  
1 ADCCLK  
EOC2 Pulse  
ADCINTFLG .ADCINTx  
Minimum  
7 ADCCLKs  
Conversion 0 (A)  
13 ADC Clocks  
Conversion 0 (B)  
13 ADC Clocks  
2 ADCCLKs  
19  
ADCCLKs  
Minimum  
7 ADCCLKs  
Conversion 1 (A)  
13 ADC Clocks  
Figure 6-23. Timing Example for Simultaneous Mode / Late Interrupt Pulse  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
89  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Analog Input A  
SOC0 Sample  
A Window  
SOC2 Sample  
A Window  
Analog Input B  
SOC0 Sample  
B Window  
SOC2 Sample  
B Window  
0
2
9
22 24  
37  
50  
ADCCLK  
ADCCTL1.INTPULSEPOS  
ADCSOCFLG1.SOC0  
ADCSOCFLG1.SOC1  
ADCSOCFLG1.SOC2  
S/H Window Pulse to Core  
ADCRESULT 0  
SOC0 (A/B)  
SOC2 (A/B)  
Result 0 (A) Latched  
2 ADCCLKs  
Result 0 (B) Latched  
ADCRESULT 1  
ADCRESULT 2  
EOC0 Pulse  
EOC1 Pulse  
EOC2 Pulse  
ADCINTFLG.ADCINTx  
Conversion 0 (A)  
13 ADC Clocks  
Conversion 0 (B)  
13 ADC Clocks  
Minimum  
2 ADCCLKs  
7 ADCCLKs  
19  
Minimum  
7 ADCCLKs  
Conversion 1 (A)  
13 ADC Clocks  
ADCCLKs  
Figure 6-24. Timing Example for Simultaneous Mode / Early Interrupt Pulse  
90  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.9.2.2 ADC MUX  
To COMPy A or B input  
To ADC Channel X  
Logic implemented in GPIO MUX block  
AIOx Pin  
SYSCLK  
AIOxIN  
1
AIOxINE  
AIODAT Reg  
(Read)  
SYNC  
0
AIODAT Reg  
(Latch)  
AIOMUX 1 Reg  
AIOSET,  
AIOCLEAR,  
AIOTOGGLE  
Regs  
AIODIR Reg  
(Latch)  
1
(0 = Input, 1 = Output)  
0
0
Figure 6-25. AIOx Pin Multiplexing  
The ADC channel and Comparator functions are always available. The digital I/O function is available only  
when the respective bit in the AIOMUX1 register is 0. In this mode, reading the AIODAT register reflects  
the actual pin state.  
The digital I/O function is disabled when the respective bit in the AIOMUX1 register is 1. In this mode,  
reading the AIODAT register reflects the output latch of the AIODAT register and the input digital I/O buffer  
is disabled to prevent analog signals from generating noise.  
On reset, the digital function is disabled. If the pin is used as an analog input, users should keep the AIO  
function disabled for that pin.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
91  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.9.2.3 Comparator Block  
Figure 6-26 shows the interaction of the Comparator modules with the rest of the system.  
COMP x A  
+
COMP x B  
COMP  
TZ1/2/3  
-
GPIO  
MUX  
COMP x  
+
DAC x  
Wrapper  
ePWM  
AIO  
MUX  
COMPxOUT  
DAC  
Core  
10-Bit  
Figure 6-26. Comparator Block Diagram  
Table 6-33. Comparator Control Registers  
REGISTER  
NAME  
COMP1  
ADDRESS  
COMP2  
ADDRESS  
COMP3  
ADDRESS  
SIZE  
(x16)  
EALLOW  
PROTECTED  
DESCRIPTION  
COMPCTL  
0x6400  
0x6402  
0x6404  
0x6406  
0x6420  
0x6422  
0x6424  
0x6426  
0x6440  
0x6442  
0x6444  
0x6446  
1
1
1
1
Yes  
No  
Comparator Control Register  
Comparator Status Register  
DAC Control Register  
COMPSTS  
DACCTL  
DACVAL  
Yes  
No  
DAC Value Register  
RAMPMAXREF_  
ACTIVE  
Ramp Generator Maximum Reference  
(Active) Register  
0x6408  
0x640A  
0x640C  
0x6428  
0x642A  
0x642C  
0x6448  
0x644A  
0x644C  
1
1
1
No  
No  
No  
RAMPMAXREF_  
SHDW  
Ramp Generator Maximum Reference  
(Shadow) Register  
RAMPDECVAL_  
ACTIVE  
Ramp Generator Decrement Value (Active)  
Register  
RAMPDECVAL_  
SHDW  
Ramp Generator Decrement Value  
(Shadow) Register  
0x640E  
0x6410  
0x642E  
0x6430  
0x644E  
0x6450  
1
1
No  
No  
RAMPSTS  
Ramp Generator Status Register  
92  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.9.2.3.1 On-Chip Comparator/DAC Electrical Data/Timing  
Table 6-34. Electrical Characteristics of the Comparator/DAC  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
Comparator  
Comparator Input Range  
VSSA – VDDA  
V
Comparator response time to PWM Trip Zone (Async)  
30  
±5  
35  
ns  
Input Offset  
Input Hysteresis(1)  
mV  
mV  
DAC  
DAC Output Range  
DAC resolution  
DAC settling time  
DAC Gain  
VSSA – VDDA  
V
10  
bits  
See Figure 6-27  
–1.5%  
10  
DAC Offset  
Monotonic  
mV  
Yes  
±3  
INL  
LSB  
(1) Hysteresis on the comparator inputs is achieved with a Schmidt trigger configuration. This results in an effective 100-kΩ feedback  
resistance between the output of the comparator and the noninverting input of the comparator. There is an option to disable the  
hysteresis and, with it, the feedback resistance; see the Analog-to-Digital Converter and Comparator chapter in the TMS320F2803x  
Technical Reference Manual for more information on this option if needed in your system.  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
DAC Step Size (Codes)  
DAC Accuracy  
15 Codes  
7 Codes  
3 Codes  
1 Code  
Figure 6-27. DAC Settling Time  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
93  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.9.3 Detailed Descriptions  
Integral Nonlinearity  
Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero to full  
scale. The point used as zero occurs one-half LSB before the first code transition. The full-scale point is  
defined as level one-half LSB beyond the last code transition. The deviation is measured from the center  
of each particular code to the true straight line between these two points.  
Differential Nonlinearity  
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal  
value. A differential nonlinearity error of less than ±1 LSB ensures no missing codes.  
Zero Offset  
The major carry transition should occur when the analog input is at zero volts. Zero error is defined as the  
deviation of the actual transition from that point.  
Gain Error  
The first code transition should occur at an analog value one-half LSB above negative full scale. The last  
transition should occur at an analog value one and one-half LSB below the nominal full scale. Gain error is  
the deviation of the actual difference between first and last code transitions and the ideal difference  
between first and last code transitions.  
Signal-to-Noise Ratio + Distortion (SINAD)  
SINAD is the ratio of the rms value of the measured input signal to the rms sum of all other spectral  
components below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is  
expressed in decibels.  
Effective Number of Bits (ENOB)  
For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following formula,  
(SINAD -1.76)  
N =  
6.02  
it is possible to get a measure of performance expressed as N, the effective number of  
bits. Thus, effective number of bits for a device for sine wave inputs at a given input frequency can be  
calculated directly from its measured SINAD.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first nine harmonic components to the rms value of the measured  
input signal and is expressed as a percentage or in decibels.  
Spurious Free Dynamic Range (SFDR)  
SFDR is the difference in dB between the rms amplitude of the input signal and the peak spurious signal.  
94  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.9.4 Serial Peripheral Interface (SPI) Module  
The device includes the four-pin serial peripheral interface (SPI) module. Up to two SPI modules are  
available. The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of  
programmed length (1 to 16 bits) to be shifted into and out of the device at a programmable bit-transfer  
rate. Normally, the SPI is used for communications between the MCU and external peripherals or another  
processor. Typical applications include external I/O or peripheral expansion through devices such as shift  
registers, display drivers, and ADCs. Multidevice communications are supported by the master/slave  
operation of the SPI.  
The SPI module features include:  
Four external pins:  
SPISOMI: SPI slave-output/master-input pin  
SPISIMO: SPI slave-input/master-output pin  
SPISTE: SPI slave transmit-enable pin  
SPICLK: SPI serial-clock pin  
NOTE  
All four pins can be used as GPIO if the SPI module is not used.  
Two operational modes: master and slave  
Baud rate: 125 different programmable rates.  
LSPCLK  
Baud rate =  
when SPIBRR = 3 to127  
when SPIBRR = 0,1, 2  
(SPIBRR + 1)  
LSPCLK  
Baud rate =  
4
Data word length: 1 to 16 data bits  
Four clocking schemes (controlled by clock polarity and clock phase bits) include:  
Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the  
SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the  
falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.  
Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the  
SPICLK signal and receives data on the falling edge of the SPICLK signal.  
Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the  
rising edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Simultaneous receive and transmit operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled  
algorithms.  
Nine SPI module control registers: In control register frame beginning at address 7040h.  
NOTE  
All registers in this module are 16-bit registers that are connected to Peripheral Frame 2.  
When a register is accessed, the register data is in the lower byte (7–0), and the upper byte  
(15–8) is read as zeros. Writing to the upper byte has no effect.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
95  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Enhanced feature:  
4-level transmit/receive FIFO  
Delayed transmit control  
Bidirectional 3 wire SPI mode support  
Audio data receive support through SPISTE inversion  
The SPI port operation is configured and controlled by the registers listed in Table 6-35 and Table 6-36.  
Table 6-35. SPI-A Registers  
NAME  
SPICCR  
ADDRESS  
0x7040  
0x7041  
0x7042  
0x7044  
0x7046  
0x7047  
0x7048  
0x7049  
0x704A  
0x704B  
0x704C  
0x704F  
SIZE (x16) EALLOW PROTECTED  
DESCRIPTION(1)  
SPI-A Configuration Control Register  
SPI-A Operation Control Register  
SPI-A Status Register  
1
1
1
1
1
1
1
1
1
1
1
1
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
SPICTL  
SPISTS  
SPIBRR  
SPI-A Baud Rate Register  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
SPI-A Receive Emulation Buffer Register  
SPI-A Serial Input Buffer Register  
SPI-A Serial Output Buffer Register  
SPI-A Serial Data Register  
SPIFFTX  
SPIFFRX  
SPIFFCT  
SPIPRI  
SPI-A FIFO Transmit Register  
SPI-A FIFO Receive Register  
SPI-A FIFO Control Register  
SPI-A Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined  
results.  
Table 6-36. SPI-B Registers  
NAME  
SPICCR  
ADDRESS  
0x7740  
0x7741  
0x7742  
0x7744  
0x7746  
0x7747  
0x7748  
0x7749  
0x774A  
0x774B  
0x774C  
0x774F  
SIZE (x16) EALLOW PROTECTED  
DESCRIPTION(1)  
SPI-B Configuration Control Register  
SPI-B Operation Control Register  
SPI-B Status Register  
1
1
1
1
1
1
1
1
1
1
1
1
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
SPICTL  
SPISTS  
SPIBRR  
SPI-B Baud Rate Register  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
SPI-B Receive Emulation Buffer Register  
SPI-B Serial Input Buffer Register  
SPI-B Serial Output Buffer Register  
SPI-B Serial Data Register  
SPIFFTX  
SPIFFRX  
SPIFFCT  
SPIPRI  
SPI-B FIFO Transmit Register  
SPI-B FIFO Receive Register  
SPI-B FIFO Control Register  
SPI-B Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined  
results.  
For more information on the SPI, see the Serial Peripheral Interface (SPI) chapter in the TMS320F2803x  
Technical Reference Manual.  
96  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Figure 6-28 is a block diagram of the SPI in slave mode.  
SPIFFENA  
Overrun  
INT ENA  
Receiver  
Overrun Flag  
SPIFFTX.14  
SPISTS.7  
RX FIFO Registers  
SPICTL.4  
SPIRXBUF  
RX FIFO _0  
RX FIFO _1  
-----  
SPIINT  
RX FIFO Interrupt  
RX Interrupt  
Logic  
RX FIFO _3  
16  
SPIRXBUF  
Buffer Register  
SPIFFOVF  
FLAG  
SPIFFRX.15  
To CPU  
TX FIFO Registers  
SPITXBUF  
TX FIFO _3  
TX Interrupt  
Logic  
TX FIFO Interrupt  
-----  
TX FIFO _1  
SPITX  
TX FIFO _0  
16  
SPI INT  
ENA  
16  
SPI INT FLAG  
SPITXBUF  
Buffer Register  
SPISTS.6  
SPICTL.0  
TRIWIRE  
SPIPRI.0  
16  
M
S
M
SPIDAT  
Data Register  
TW  
S
SW1  
SW2  
SPISIMO  
M
S
TW  
SPIDAT.15 - 0  
M
S
TW  
SPISOMI  
STEINV  
SPIPRI.1  
STEINV  
Talk  
SPICTL.1  
SPISTE  
State Control  
Master/Slave  
SPICTL.2  
SPI Char  
LSPCLK  
SPICCR.3 - 0  
S
SW3  
3
2
1
0
Clock  
Polarity  
Clock  
Phase  
M
S
SPI Bit Rate  
SPIBRR.6 - 0  
SPICCR.6  
SPICTL.3  
SPICLK  
M
6
5
4
3
2
1
0
A. SPISTE is driven low by the master for a slave device.  
Figure 6-28. SPI Module Block Diagram (Slave Mode)  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
97  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.9.4.1 SPI Master Mode Electrical Data/Timing  
Table 6-37 lists the master mode timing (clock phase = 0) and Table 6-38 lists the master mode timing  
(clock phase = 1). Figure 6-29 and Figure 6-30 show the timing waveforms.  
Table 6-37. SPI Master Mode External Timing (Clock Phase = 0)(1)(2)(3)(4)(5)  
BRR EVEN  
MIN  
BRR ODD  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
1
2
tc(SPC)M  
Cycle time, SPICLK  
4tc(LSPCLK)  
128tc(LSPCLK)  
5tc(LSPCLK)  
0.5tc(SPC)M  
127tc(LSPCLK)  
ns  
ns  
Pulse duration, SPICLK first  
pulse  
+
0.5tc(SPC)M  
+
tw(SPC1)M  
0.5tc(SPC)M – 10  
0.5tc(SPC)M + 10  
0.5tc(SPC)M + 10  
10  
0.5tc(LSPCLK) – 10  
0.5tc(LSPCLK) + 10  
Pulse duration, SPICLK second  
pulse  
0.5tc(SPC)M  
0.5tc(SPC)M  
3
4
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
tsu(SOMI)M  
th(SOMI)M  
td(SPC)M  
td(STE)M  
0.5tc(SPC)M – 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5tc(LSPCLK) – 10  
0.5tc(LSPCLK) + 10  
Delay time, SPICLK to  
SPISIMO valid  
10  
Valid time, SPISIMO valid after  
SPICLK  
0.5tc(SPC)M  
5
0.5tc(SPC)M – 10  
0.5tc(LSPCLK) – 10  
Setup time, SPISOMI before  
SPICLK  
8
26  
0
26  
Hold time, SPISOMI valid after  
SPICLK  
9
0
Delay time, SPISTE active to  
SPICLK  
1.5tc(SPC)M  
1.5tc(SPC)M  
23  
24  
3tc(SYSCLK) – 10  
3tc(SYSCLK) – 10  
Delay time, SPICLK to SPISTE  
inactive  
0.5tc(SPC)M  
0.5tc(SPC)M – 10  
0.5tc(LSPCLK) – 10  
(1) The MASTER / SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR +1)  
(3) tc(LCO) = LSPCLK cycle time  
(4) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MAX, slave mode receive 12.5-MHz MAX.  
(5) The active edge of the SPICLK signal referenced is controlled by the clock polarity bit (SPICCR.6).  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
SPISTE  
24  
23  
Figure 6-29. SPI Master Mode External Timing (Clock Phase = 0)  
98  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Table 6-38. SPI Master Mode External Timing (Clock Phase = 1)(1)(2)(3)(4)(5)  
BRR EVEN  
MIN  
BRR ODD  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
1
2
tc(SPC)M  
Cycle time, SPICLK  
4tc(LSPCLK)  
128tc(LSPCLK)  
5tc(LSPCLK)  
0.5tc(SPC)M  
127tc(LSPCLK)  
ns  
ns  
Pulse duration, SPICLK first  
pulse  
0.5tc(SPC)M  
tw(SPC1)M  
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
tsu(SOMI)M  
th(SOMI)M  
td(SPC)M  
0.5tc(SPC)M – 10  
0.5tc(SPC)M + 10  
0.5tc(SPC)M + 10  
0.5tc(LSPCLK) – 10  
0.5tc(LSPCLK) + 10  
Pulse duration, SPICLK second  
pulse  
0.5tc(SPC)M  
+
0.5tc(SPC)M  
+
3
6
0.5tc(SPC)M – 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5tc(LSPCLK) – 10  
0.5tc(LSPCLK) + 10  
Delay time, SPISIMO valid to  
SPICLK  
0.5tc(SPC)M  
+
0.5tc(SPC)M – 10  
0.5tc(LSPCLK) – 10  
Valid time, SPISIMO valid after  
SPICLK  
0.5tc(SPC)M  
7
0.5tc(SPC)M – 10  
0.5tc(LSPCLK) – 10  
Setup time, SPISOMI before  
SPICLK  
10  
11  
23  
24  
26  
0
26  
Hold time, SPISOMI valid after  
SPICLK  
0
Delay time, SPISTE active to  
SPICLK  
2tc(SPC)M  
2tc(SPC)M  
3tc(SYSCLK) – 10  
3tc(SYSCLK) – 10  
Delay time, SPICLK to SPISTE  
inactive  
0.5tc(SPC)  
td(STE)M  
0.5tc(SPC) – 10  
0.5tc(LSPCLK) – 10  
(1) The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is set.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25 MHz MAX, master mode receive 12.5 MHz MAX  
Slave mode transmit 12.5 MHz MAX, slave mode receive 12.5 MHz MAX.  
(4) tc(LCO) = LSPCLK cycle time  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
6
7
SPISIMO  
Master Out Data Is Valid  
10  
11  
Master In Data Must  
Be Valid  
SPISOMI  
SPISTE  
24  
23  
Figure 6-30. SPI Master Mode External Timing (Clock Phase = 1)  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
99  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.9.4.2 SPI Slave Mode Electrical Data/Timing  
Table 6-39 lists the slave mode timing (clock phase = 0) and Table 6-40 lists the slave mode timing (clock  
phase = 1). Figure 6-31 and Figure 6-32 show the timing waveforms.  
Table 6-39. SPI Slave Mode External Timing (Clock Phase = 0)(1)(2)(3)(4)(5)  
NO.  
PARAMETER  
Cycle time, SPICLK  
MIN  
4tc(SYSCLK)  
MAX UNIT  
12 tc(SPC)S  
13 tw(SPC1)S  
14 tw(SPC2)S  
15 td(SOMI)S  
16 tv(SOMI)S  
19 tsu(SIMO)S  
20 th(SIMO)S  
25 tsu(STE)S  
26 th(STE)S  
ns  
ns  
ns  
Pulse duration, SPICLK first pulse  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
Pulse duration, SPICLK second pulse  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI data valid after SPICLK  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO data valid after SPICLK  
Setup time, SPISTE active before SPICLK  
Hold time, SPISTE inactive after SPICLK  
21  
ns  
ns  
ns  
ns  
ns  
ns  
0
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.  
(4) tc(LCO) = LSPCLK cycle time  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
16  
SPISOMI  
SPISOMI Data Is Valid  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
25  
26  
Figure 6-31. SPI Slave Mode External Timing (Clock Phase = 0)  
100  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Table 6-40. SPI Slave Mode External Timing (Clock Phase = 1)(1)(2)(3)(4)  
NO.  
PARAMETER  
Cycle time, SPICLK  
MIN  
4tc(SYSCLK)  
MAX UNIT  
12 tc(SPC)S  
13 tw(SPC1)S  
14 tw(SPC2)S  
17 td(SOMI)S  
18 tv(SOMI)S  
21 tsu(SIMO)S  
22 th(SIMO)S  
25 tsu(STE)S  
26 th(STE)S  
ns  
ns  
ns  
Pulse duration, SPICLK first pulse  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
Pulse duration, SPICLK second pulse  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI data valid after SPICLK  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO data valid after SPICLK  
Setup time, SPISTE active before SPICLK  
Hold time, SPISTE inactive after SPICLK  
21  
ns  
ns  
ns  
ns  
ns  
ns  
0
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
17  
SPISOMI  
SPISOMI Data Is Valid  
Data Valid  
Data Valid  
18  
21  
22  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
26  
25  
Figure 6-32. SPI Slave Mode External Timing (Clock Phase = 1)  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
101  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.9.5 Serial Communications Interface (SCI) Module  
The devices include one serial communications interface (SCI) module (SCI-A). The SCI module supports  
digital communications between the CPU and other asynchronous peripherals that use the standard  
nonreturn-to-zero (NRZ) format. The SCI receiver and transmitter are double-buffered, and each has its  
own separate enable and interrupt bits. Both can be operated independently or simultaneously in the full-  
duplex mode. To ensure data integrity, the SCI checks received data for break detection, parity, overrun,  
and framing errors. The bit rate is programmable to over 65000 different speeds through a 16-bit baud-  
select register.  
Features of each SCI module include:  
Two external pins:  
SCITXD: SCI transmit-output pin  
SCIRXD: SCI receive-input pin  
NOTE  
Both pins can be used as GPIO if not used for SCI.  
Baud rate programmable to 64K different rates:  
LSPCLK  
Baud rate =  
when BRR ¹ 0  
when BRR = 0  
(BRR + 1) * 8  
LSPCLK  
Baud rate =  
16  
Data-word format  
One start bit  
Data-word length programmable from 1 to 8 bits  
Optional even/odd/no parity bit  
One or 2 stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: idle-line and address bit  
Half- or full-duplex operation  
Double-buffered receive and transmit functions  
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms  
with status flags.  
Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX  
EMPTY flag (transmitter-shift register is empty)  
Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag  
(break condition occurred), and RX ERROR flag (monitoring four interrupt conditions)  
Separate enable bits for transmitter and receiver interrupts (except BRKDT)  
NRZ (nonreturn-to-zero) format  
NOTE  
All registers in this module are 8-bit registers that are connected to Peripheral Frame 2.  
When a register is accessed, the register data is in the lower byte (7–0), and the upper byte  
(15–8) is read as zeros. Writing to the upper byte has no effect.  
Enhanced features:  
Auto baud-detect hardware logic  
4-level transmit/receive FIFO  
102  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
The SCI port operation is configured and controlled by the registers listed in Table 6-41.  
Table 6-41. SCI-A Registers(1)  
EALLOW  
SIZE (x16)  
NAME  
SCICCRA  
ADDRESS  
DESCRIPTION  
PROTECTED  
0x7050  
0x7051  
0x7052  
0x7053  
0x7054  
0x7055  
0x7056  
0x7057  
0x7059  
0x705A  
0x705B  
0x705C  
0x705F  
1
1
1
1
1
1
1
1
1
1
1
1
1
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
SCI-A Communications Control Register  
SCI-A Control Register 1  
SCICTL1A  
SCIHBAUDA  
SCILBAUDA  
SCICTL2A  
SCI-A Baud Register, High Bits  
SCI-A Baud Register, Low Bits  
SCI-A Control Register 2  
SCIRXSTA  
SCIRXEMUA  
SCIRXBUFA  
SCITXBUFA  
SCIFFTXA(2)  
SCIFFRXA(2)  
SCIFFCTA(2)  
SCIPRIA  
SCI-A Receive Status Register  
SCI-A Receive Emulation Data Buffer Register  
SCI-A Receive Data Buffer Register  
SCI-A Transmit Data Buffer Register  
SCI-A FIFO Transmit Register  
SCI-A FIFO Receive Register  
SCI-A FIFO Control Register  
SCI-A Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. 32-bit accesses produce  
undefined results.  
(2) These registers are new registers for the FIFO mode.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
103  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
For more information on the SCI, see the Serial Communications Interface (SCI) chapter in the  
TMS320F2803x Technical Reference Manual.  
Figure 6-33 shows the SCI module block diagram.  
104  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
TXENA  
SCICTL1.1  
TXSHF  
Register  
SCITXD  
Frame  
Format and Mode  
8
Parity  
Even/Odd  
TXEMPTY  
SCICTL2.6  
0
1
SCICCR.6  
8
Enable  
TX FIFO_0  
TX FIFO_1  
TXINT  
To CPU  
SCICCR.5  
TX Interrupt  
Logic  
TX FIFO Interrupts  
8
TX FIFO_N  
TXINTENA  
SCICTL2.0  
TXRDY  
8
1
0
TXWAKE  
SCICTL2.7  
SCICTL1.3  
SCI TX Interrupt Select Logic  
8
WUT  
Transmit Data  
Buffer Register  
SCITXBUF.7-0  
Auto Baud Detect Logic  
RXENA  
Baud Rate  
MSB/LSB  
Registers  
SCICTL1.0  
LSPCLK  
RXSHF  
Register  
SCIRXD  
SCIHBAUD.15-8  
SCILBAUD.7-0  
RXWAKE  
8
SCIRXST.1  
0
1
8
SCIFFENA  
SCITXFF.14  
RX FIFO_0  
RX FIFO_1  
RXINT  
To CPU  
8
RX FIFO Interrupts  
RX Interrupt  
Logic  
RX FIFO_N  
RXFFOVF  
8
1
SCIFFRX.15  
0
RXBKINTENA  
SCICTL2.1  
RXRDY  
SCIRXST.6  
RXENA  
BRKDT  
RXERRINTENA  
SCICTL1.6  
SCICTL1.0  
SCIRXST.5  
SCI RX Interrupt Select Logic  
8
SCIRXST.5-2  
BRKDT FE OE PE  
RXERROR  
Receive Data  
Buffer Register  
SCIRXBUF.7-0  
SCIRXST.7  
Figure 6-33. Serial Communications Interface (SCI) Module Block Diagram  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
105  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.9.6 Local Interconnect Network (LIN)  
The device contains one LIN controller. The LIN standard is based on the SCI (UART) serial data link  
format. The LIN module can be configured to work as a SCI as well.  
The LIN module has the following features:  
Compatible to LIN 1.3 or 2.0 protocols  
Two external pins: LINRX and LINTX  
Multibuffered receive and transmit units  
Identification masks for message filtering  
Automatic master header generation  
Programmable sync break field  
Sync field  
Identifier field  
Slave automatic synchronization  
Sync break detection  
Optional baudrate update  
Synchronization validation  
231 programmable transmission rates with 7 fractional bits  
Wakeup on LINRX dominant level from transceiver  
Automatic wakeup support  
Wakeup signal generation  
Expiration times on wakeup signals  
Automatic bus idle detection  
Error detection  
Bit error  
Bus error  
No-response error  
Checksum error  
Sync field error  
Parity error  
2 Interrupt lines with priority encoding for:  
Receive  
Transmit  
ID, error and status  
NOTE  
The 2803x devices have passed LIN 2.0 conformance tests (master and slave). Contact TI  
for details.  
For more information on the LIN, see the Local Interconnect Network (LIN) Module chapter in the  
TMS320F2803x Technical Reference Manual.  
106  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
The registers in Table 6-42 configure and control the operation of the LIN module.  
Table 6-42. LIN-A Registers(1)  
NAME  
ADDRESS  
0x6C00  
0x6C02  
0x6C04  
0x6C06  
0x6C08  
0x6C0A  
0x6C0C  
0x6C0E  
0x6C10  
0x6C12  
0x6C14  
0x6C16  
0x6C18  
0x6C1A  
0x6C1C  
0x6C1E  
0x6C22  
0x6C24  
0x6C30  
0x6C32  
0x6C34  
0x6C36  
SIZE (x16)  
DESCRIPTION  
Global Control Register 0  
Global Control Register 1  
SCIGCR0  
SCIGCR1  
SCIGCR2  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
4
2
10  
2
2
2
2
Global Control Register 2  
Interrupt Enable Register  
Interrupt Disable Register  
Set Interrupt Level Register  
Clear Interrupt Level Register  
Flag Register  
SCISETINT  
SCICLEARINT  
SCISETINTLVL  
SCICLEARINTLVL  
SCIFLR  
SCIINTVECT0  
SCIINTVECT1  
SCIFORMAT  
BRSR  
Interrupt Vector Offset Register 0  
Interrupt Vector Offset Register 1  
Length Control register  
Baud Rate Selection Register  
Emulation buffer register  
Receiver data buffer register  
Transmit data buffer register  
RSVD  
SCIED  
SCIRD  
SCITD  
Reserved  
SIPIO2  
Pin control register 2  
Reserved  
LINCOMP  
LINRD0  
RSVD  
Compare register  
Receive data register 0  
Receive data register 1  
Acceptance mask register  
LINRD1  
LINMASK  
Register containing ID- byte, ID-SlaveTask byte, and ID  
received fields.  
LINID  
0x6C38  
2
LINTD0  
0x6C3A  
0x6C3C  
0x6C3E  
0x6C40  
0x6C48  
2
2
2
8
2
Transmit Data Register 0  
Transmit Data Register 1  
Baud Rate Selection Register  
RSVD  
LINTD1  
MBRSR  
Reserved  
IODFTCTRL  
IODFT for BLIN  
(1) Some registers and some bits in other registers are EALLOW-protected. For more details, see the Local Interconnect Network (LIN)  
Module chapter in the TMS320F2803x Technical Reference Manual.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
107  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Figure 6-34 shows the LIN module block diagram.  
READ DATA BUS  
WRITE DATA BUS  
ADDRESS BUS  
CHECKSUM  
CALCULATOR  
INTERFACE  
ID PARTY  
CHECKER  
BIT  
MONITOR  
TXRX ERROR  
DETECTOR (TED)  
TIMEOUT  
CONTROL  
COUNTER  
COMPARE  
LINRX/  
SCIRX  
LINTX/  
SCITX  
MASK  
FILTER  
8 RECEIVE  
BUFFERS  
FSM  
8 TRANSMIT  
BUFFERS  
SYNCHRONIZER  
Figure 6-34. LIN Block Diagram  
108  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.9.7 Enhanced Controller Area Network (eCAN) Module  
The CAN module (eCAN-A) has the following features:  
Fully compliant with ISO11898-1 (CAN 2.0B)  
Supports data rates up to 1 Mbps  
Thirty-two mailboxes, each with the following properties:  
Configurable as receive or transmit  
Configurable with standard or extended identifier  
Has a programmable receive mask  
Supports data and remote frame  
Composed of 0 to 8 bytes of data  
Uses a 32-bit time stamp on receive and transmit message  
Protects against reception of new message  
Holds the dynamically programmable priority of transmit message  
Employs a programmable interrupt scheme with two interrupt levels  
Employs a programmable alarm on transmission or reception time-out  
Low-power mode  
Programmable wake-up on bus activity  
Automatic reply to a remote request message  
Automatic retransmission of a frame in case of loss of arbitration or error  
32-bit local network time counter synchronized by a specific message (communication in conjunction  
with mailbox 16)  
Self-test mode  
Operates in a loopback mode receiving its own message. A "dummy" acknowledge is provided,  
thereby eliminating the need for another node to provide the acknowledge bit.  
NOTE  
For a SYSCLKOUT of 60 MHz, the smallest bit rate possible is 4.6875 kbps.  
The F2803x CAN has passed the conformance test per ISO/DIS 16845. Contact TI for test report and  
exceptions.  
For information on using the CAN module with the on-chip zero-pin oscillators, see MCU CAN Module  
Operation Using the On-Chip Zero-Pin Oscillator.  
For more information on the CAN, see the Controller Area Network (CAN) chapter in the TMS320F2803x  
Technical Reference Manual.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
109  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
eCAN0INT  
eCAN1INT  
Controls Address  
Data  
32  
Enhanced CAN Controller  
Message Controller  
Mailbox RAM  
(512 Bytes)  
Memory Management  
Unit  
eCAN Memory  
(512 Bytes)  
Registers and  
CPU Interface,  
Receive Control Unit,  
Timer Management Unit  
32-Message Mailbox  
of 4 ´ 32-Bit Words  
Message Objects Control  
32  
32  
32  
eCAN Protocol Kernel  
Receive Buffer  
Transmit Buffer  
Control Buffer  
Status Buffer  
SN65HVD23x  
3.3-V CAN Transceiver  
CAN Bus  
Figure 6-35. eCAN Block Diagram and Interface Circuit  
Table 6-43. 3.3-V eCAN Transceivers  
SUPPLY  
VOLTAGE  
LOW-POWER  
MODE  
SLOPE  
CONTROL  
PART NUMBER  
VREF  
OTHER  
TA  
SN65HVD230  
SN65HVD230Q  
SN65HVD231  
SN65HVD231Q  
SN65HVD232  
SN65HVD232Q  
SN65HVD233  
SN65HVD234  
SN65HVD235  
ISO1050  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3–5.5 V  
Standby  
Standby  
Sleep  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
None  
Yes  
Yes  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 105°C  
Yes  
Sleep  
Yes  
None  
None  
None  
None  
None  
None  
None  
None  
None  
Standby  
Standby and Sleep  
Standby  
None  
Adjustable  
Adjustable  
Adjustable  
None  
Diagnostic Loopback  
Autobaud Loopback  
Built-in Isolation  
Low Prop Delay  
Thermal Shutdown  
Failsafe Operation  
Dominant Time-Out  
110  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
eCAN-A Control and Status Registers  
Mailbox Enable - CANME  
Mailbox Direction - CANMD  
Transmission Request Set - CANTRS  
Transmission Request Reset - CANTRR  
Transmission Acknowledge - CANTA  
Abort Acknowledge - CANAA  
eCAN-A Memory (512 Bytes)  
Control and Status Registers  
6000h  
Received Message Pending - CANRMP  
Received Message Lost - CANRML  
Remote Frame Pending - CANRFP  
Global Acceptance Mask - CANGAM  
603Fh  
6040h  
Local Acceptance Masks (LAM)  
(32 ´ 32-Bit RAM)  
607Fh  
6080h  
Master Control - CANMC  
Message Object Time Stamps (MOTS)  
(32 ´ 32-Bit RAM)  
Bit-Timing Configuration - CANBTC  
60BFh  
60C0h  
Error and Status - CANES  
Message Object Time-Out (MOTO)  
(32 ´ 32-Bit RAM)  
Transmit Error Counter - CANTEC  
Receive Error Counter - CANREC  
Global Interrupt Flag 0 - CANGIF0  
Global Interrupt Mask - CANGIM  
Global Interrupt Flag 1 - CANGIF1  
Mailbox Interrupt Mask - CANMIM  
Mailbox Interrupt Level - CANMIL  
60FFh  
eCAN-A Memory RAM (512 Bytes)  
6100h-6107h  
6108h-610Fh  
6110h-6117h  
6118h-611Fh  
6120h-6127h  
Mailbox 0  
Mailbox 1  
Mailbox 2  
Mailbox 3  
Mailbox 4  
Overwrite Protection Control - CANOPC  
TX I/O Control - CANTIOC  
RX I/O Control - CANRIOC  
Time Stamp Counter - CANTSC  
Time-Out Control - CANTOC  
Time-Out Status - CANTOS  
61E0h-61E7h  
61E8h-61EFh  
61F0h-61F7h  
61F8h-61FFh  
Mailbox 28  
Mailbox 29  
Mailbox 30  
Mailbox 31  
Reserved  
Message Mailbox (16 Bytes)  
Message Identifier - MSGID  
Message Control - MSGCTRL  
Message Data Low - MDL  
Message Data High - MDH  
61E8h-61E9h  
61EAh-61EBh  
61ECh-61EDh  
61EEh-61EFh  
Figure 6-36. eCAN-A Memory Map  
NOTE  
If the eCAN module is not used in an application, the RAM available (LAM, MOTS, MOTO,  
and mailbox RAM) can be used as general-purpose RAM. The CAN module clock should be  
enabled for this.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
111  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
The CAN registers listed in Table 6-44 are used by the CPU to configure and control the CAN controller  
and the message objects. eCAN control registers only support 32-bit read/write operations. Mailbox RAM  
can be accessed as 16 bits or 32 bits. 32-bit accesses are aligned to an even boundary.  
Table 6-44. CAN Register Map(1)  
eCAN-A  
REGISTER NAME  
CANME  
SIZE (x32)  
DESCRIPTION  
ADDRESS  
0x6000  
0x6002  
0x6004  
0x6006  
0x6008  
0x600A  
0x600C  
0x600E  
0x6010  
0x6012  
0x6014  
0x6016  
0x6018  
0x601A  
0x601C  
0x601E  
0x6020  
0x6022  
0x6024  
0x6026  
0x6028  
0x602A  
0x602C  
0x602E  
0x6030  
0x6032  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Mailbox enable  
CANMD  
Mailbox direction  
CANTRS  
CANTRR  
CANTA  
Transmit request set  
Transmit request reset  
Transmission acknowledge  
Abort acknowledge  
Receive message pending  
Receive message lost  
Remote frame pending  
Global acceptance mask  
Master control  
CANAA  
CANRMP  
CANRML  
CANRFP  
CANGAM  
CANMC  
CANBTC  
CANES  
Bit-timing configuration  
Error and status  
CANTEC  
CANREC  
CANGIF0  
CANGIM  
CANGIF1  
CANMIM  
CANMIL  
CANOPC  
CANTIOC  
CANRIOC  
CANTSC  
CANTOC  
CANTOS  
Transmit error counter  
Receive error counter  
Global interrupt flag 0  
Global interrupt mask  
Global interrupt flag 1  
Mailbox interrupt mask  
Mailbox interrupt level  
Overwrite protection control  
TX I/O control  
RX I/O control  
Time stamp counter (Reserved in SCC mode)  
Time-out control (Reserved in SCC mode)  
Time-out status (Reserved in SCC mode)  
(1) These registers are mapped to Peripheral Frame 1.  
112  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.9.8 Inter-Integrated Circuit (I2C)  
The device contains one I2C Serial Port. Figure 6-37 shows how the I2C peripheral module interfaces  
within the device.  
The I2C module has the following features:  
Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):  
Support for 1-bit to 8-bit format transfers  
7-bit and 10-bit addressing modes  
General call  
START byte mode  
Support for multiple master-transmitters and slave-receivers  
Support for multiple slave-transmitters and master-receivers  
Combined master transmit/receive and receive/transmit mode  
Data transfer rate of from 10 kbps up to 400 kbps (I2C Fast-mode rate)  
One 4-word receive FIFO and one 4-word transmit FIFO  
One interrupt that can be used by the CPU. This interrupt can be generated as a result of one of the  
following conditions:  
Transmit-data ready  
Receive-data ready  
Register-access ready  
No-acknowledgment received  
Arbitration lost  
Stop condition detected  
Addressed as slave  
An additional interrupt that can be used by the CPU when in FIFO mode  
Module enable/disable capability  
Free data format mode  
For more information on the I2C, see the Inter-Integrated Circuit Module (I2C) chapter in the  
TMS320F2803x Technical Reference Manual.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
113  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
I2C Module  
I2CXSR  
I2CDXR  
TX FIFO  
RX FIFO  
FIFO Interrupt to  
CPU/PIE  
SDA  
Peripheral Bus  
I2CRSR  
I2CDRR  
Control/Status  
Registers  
CPU  
Clock  
Synchronizer  
SCL  
Prescaler  
Noise Filters  
Arbitrator  
Interrupt to  
CPU/PIE  
I2C INT  
A. The I2C registers are accessed at the SYSCLKOUT rate. The internal timing and signal waveforms of the I2C port are  
also at the SYSCLKOUT rate.  
B. The clock enable bit (I2CAENCLK) in the PCLKCRO register turns off the clock to the I2C port for low-power  
operation. Upon reset, I2CAENCLK is clear, which indicates the peripheral internal clocks are off.  
Figure 6-37. I2C Peripheral Module Interfaces  
The registers in Table 6-45 configure and control the I2C port operation.  
Table 6-45. I2C-A Registers  
EALLOW  
PROTECTED  
NAME  
ADDRESS  
DESCRIPTION  
I2C own address register  
I2COAR  
I2CIER  
0x7900  
0x7901  
0x7902  
0x7903  
0x7904  
0x7905  
0x7906  
0x7907  
0x7908  
0x7909  
0x790A  
0x790C  
0x7920  
0x7921  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
I2C interrupt enable register  
I2C status register  
I2CSTR  
I2CCLKL  
I2CCLKH  
I2CCNT  
I2CDRR  
I2CSAR  
I2CDXR  
I2CMDR  
I2CISRC  
I2CPSC  
I2CFFTX  
I2CFFRX  
I2CRSR  
I2CXSR  
I2C clock low-time divider register  
I2C clock high-time divider register  
I2C data count register  
I2C data receive register  
I2C slave address register  
I2C data transmit register  
I2C mode register  
I2C interrupt source register  
I2C prescaler register  
I2C FIFO transmit register  
I2C FIFO receive register  
I2C receive shift register (not accessible to the CPU)  
I2C transmit shift register (not accessible to the CPU)  
114  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.9.8.1 I2C Electrical Data/Timing  
Table 6-46 shows the I2C timing requirements. Table 6-47 shows the I2C switching characteristics.  
Table 6-46. I2C Timing Requirements  
MIN  
MAX  
UNIT  
Hold time, START condition, SCL fall delay  
after SDA fall  
th(SDA-SCL)START  
tsu(SCL-SDA)START  
0.6  
µs  
Setup time, Repeated START, SCL rise before  
SDA fall delay  
0.6  
µs  
th(SCL-DAT)  
tsu(DAT-SCL)  
tr(SDA)  
Hold time, data after SCL fall  
Setup time, data before SCL rise  
Rise time, SDA  
0
100  
20  
µs  
ns  
ns  
ns  
ns  
ns  
Input tolerance  
Input tolerance  
Input tolerance  
Input tolerance  
300  
300  
300  
300  
tr(SCL)  
Rise time, SCL  
20  
tf(SDA)  
Fall time, SDA  
11.4  
11.4  
tf(SCL)  
Fall time, SCL  
Setup time, STOP condition, SCL rise before  
SDA rise delay  
tsu(SCL-SDA)STOP  
0.6  
µs  
Table 6-47. I2C Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
400  
UNIT  
I2C clock module frequency is from 7 MHz to  
12 MHz and I2C prescaler and clock divider  
registers are configured appropriately.  
fSCL  
SCL clock frequency  
kHz  
Vil  
Low level input voltage  
High level input voltage  
Input hysteresis  
0.3 VDDIO  
V
V
V
V
Vih  
Vhys  
Vol  
0.7 VDDIO  
0.05 VDDIO  
0
Low level output voltage  
3-mA sink current  
0.4  
I2C clock module frequency is from 7 MHz to  
12 MHz and I2C prescaler and clock divider  
registers are configured appropriately.  
tLOW  
Low period of SCL clock  
High period of SCL clock  
1.3  
μs  
I2C clock module frequency is from 7 MHz to  
12 MHz and I2C prescaler and clock divider  
registers are configured appropriately.  
tHIGH  
0.6  
μs  
Input current with an input voltage from  
0.1 VDDIO to 0.9 VDDIO MAX  
lI  
–10  
10  
μA  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
115  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.9.9 Enhanced PWM Modules (ePWM1/2/3/4/5/6/7)  
The devices contain up to seven enhanced PWM Modules (ePWM). Figure 6-38 shows a block diagram of  
multiple ePWM modules. Figure 6-39 shows the signal interconnections with the ePWM. For more details,  
see the Enhanced Pulse Width Modulator (ePWM) chapter in the TMS320F2803x Technical Reference  
Manual.  
Table 6-48 and Table 6-49 show the complete ePWM register set per module.  
116  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
EPWMSYNCI  
EPWM1SYNCI  
EPWM1B  
EPWM1TZINT  
EPWM1INT  
EPWM1  
Module  
TZ1 to TZ3  
EQEP1ERR(A)  
CLOCKFAIL  
EMUSTOP  
EPWM2TZINT  
EPWM2INT  
TZ4  
TZ5  
TZ6  
PIE  
EPWMxTZINT  
EPWMxINT  
EPWM1ENCLK  
TBCLKSYNC  
eCAPI  
EPWM1SYNCO  
EPWM2SYNCI  
EPWM1SYNCO  
TZ1 to TZ3  
COMPOUT1  
COMPOUT2  
EPWM2B  
EPWM2  
Module  
EQEP1ERR(A)  
CLOCKFAIL  
EMUSTOP  
COMP  
EPWM1A  
EPWM2A  
TZ4  
TZ5  
TZ6  
H
R
P
W
M
EPWM2ENCLK  
TBCLKSYNC  
EPWMxA  
G
P
I
EPWM2SYNCO  
O
M
U
X
SOCA1  
SOCB1  
SOCA2  
SOCB2  
SOCAx  
SOCBx  
ADC  
EPWMxB  
EPWMxSYNCI  
TZ1 to TZ3  
EPWMx  
Module  
EQEP1ERR(A)  
CLOCKFAIL  
EMUSTOP  
EQEP1ERR  
TZ4  
TZ5  
TZ6  
eQEP1  
EPWMxENCLK  
TBCLKSYNC  
System Control  
C28x CPU  
SOCA1  
SOCA2  
SPCAx  
ADCSOCAO  
ADCSOCBO  
Pulse Stretch  
(32 SYSCLKOUT Cycles, Active-Low Output)  
SOCB1  
SOCB2  
SPCBx  
Pulse Stretch  
(32 SYSCLKOUT Cycles, Active-Low Output)  
Copyright © 2017, Texas Instruments Incorporated  
A. This signal exists only on devices with an eQEP1 module.  
Figure 6-38. ePWM  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
117  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Table 6-48. ePWM1–ePWM4 Control and Status Registers  
SIZE (x16) /  
#SHADOW  
NAME  
ePWM1  
ePWM2  
ePWM3  
ePWM4  
DESCRIPTION  
Time Base Control Register  
TBCTL  
TBSTS  
0x6800  
0x6801  
0x6802  
0x6803  
0x6804  
0x6805  
0x6806  
0x6807  
0x6808  
0x6809  
0x680A  
0x680B  
0x680C  
0x680D  
0x680E  
0x680F  
0x6810  
0x6811  
0x6812  
0x6813  
0x6814  
0x6815  
0x6816  
0x6817  
0x6818  
0x6819  
0x681A  
0x681B  
0x681C  
0x681D  
0x681E  
0x6820  
0x6840  
0x6841  
0x6842  
0x6843  
0x6844  
0x6845  
0x6846  
0x6847  
0x6848  
0x6849  
0x684A  
0x684B  
0x684C  
0x684D  
0x684E  
0x684F  
0x6850  
0x6851  
0x6852  
0x6853  
0x6854  
0x6855  
0x6856  
0x6857  
0x6858  
0x6859  
0x685A  
0x685B  
0x685C  
0x685D  
0x685E  
0x6860  
0x6880  
0x6881  
0x6882  
0x6883  
0x6884  
0x6885  
0x6886  
0x6887  
0x6888  
0x6889  
0x688A  
0x688B  
0x688C  
0x688D  
0x688E  
0x688F  
0x6890  
0x6891  
0x6892  
0x6893  
0x6894  
0x6895  
0x6896  
0x6897  
0x6898  
0x6899  
0x689A  
0x689B  
0x689C  
0x689D  
0x689E  
0x68A0  
0x68C0  
0x68C1  
0x68C2  
0x68C3  
0x68C4  
0x68C5  
0x68C6  
0x68C7  
0x68C8  
0x68C9  
0x68CA  
0x68CB  
0x68CC  
0x68CD  
0x68CE  
0x68CF  
0x68D0  
0x68D1  
0x68D2  
0x98D3  
0x68D4  
0x68D5  
0x68D6  
0x68D7  
0x68D8  
0x68D9  
0x68DA  
0x68DB  
0x68DC  
0x68DD  
0x68DE  
0x68E0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
1 / 1  
1 / 0  
1 / 1  
1 / 1  
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
Time Base Status Register  
TBPHSHR  
TBPHS  
TBCTR  
TBPRD  
TBPRDHR  
CMPCTL  
CMPAHR  
CMPA  
Time Base Phase HRPWM Register  
Time Base Phase Register  
Time Base Counter Register  
Time Base Period Register Set  
Time Base Period High Resolution Register(1)  
Counter Compare Control Register  
Time Base Compare A HRPWM Register  
Counter Compare A Register Set  
CMPB  
Counter Compare B Register Set  
AQCTLA  
AQCTLB  
AQSFRC  
AQCSFRC  
DBCTL  
Action Qualifier Control Register For Output A  
Action Qualifier Control Register For Output B  
Action Qualifier Software Force Register  
Action Qualifier Continuous S/W Force Register Set  
Dead-Band Generator Control Register  
DBRED  
DBFED  
TZSEL  
Dead-Band Generator Rising Edge Delay Count Register  
Dead-Band Generator Falling Edge Delay Count Register  
Trip Zone Select Register(1)  
TZDCSEL  
TZCTL  
Trip Zone Digital Compare Register  
Trip Zone Control Register(1)  
Trip Zone Enable Interrupt Register(1)  
TZEINT  
TZFLG  
(1)  
Trip Zone Flag Register  
TZCLR  
Trip Zone Clear Register(1)  
TZFRC  
Trip Zone Force Register(1)  
Event Trigger Selection Register  
Event Trigger Prescale Register  
Event Trigger Flag Register  
Event Trigger Clear Register  
Event Trigger Force Register  
PWM Chopper Control Register  
HRPWM Configuration Register(1)  
ETSEL  
ETPS  
ETFLG  
ETCLR  
ETFRC  
PCCTL  
HRCNFG  
(1) Registers that are EALLOW protected.  
118 Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Table 6-48. ePWM1–ePWM4 Control and Status Registers (continued)  
SIZE (x16) /  
#SHADOW  
NAME  
ePWM1  
ePWM2  
ePWM3  
ePWM4  
DESCRIPTION  
HRPWR  
0x6821  
0x6826  
0x6828  
0x682A  
0x682B  
0x682C  
0x682D  
0x6830  
0x6831  
0x6832  
0x6833  
0x6834  
0x6835  
0x6836  
0x6837  
0x6838  
0x6839  
-
-
-
1 / 0  
1 / 0  
HRPWM Power Register  
HRMSTEP  
HRPCTL  
-
-
-
HRPWM MEP Step Register  
0x6868  
0x686A  
0x686B  
0x686C  
0x686D  
0x6870  
0x6871  
0x6872  
0x6873  
0x6874  
0x6875  
0x6876  
0x6877  
0x6878  
0x6879  
0x68A8  
0x68AA  
0x68AB  
0x68AC  
0x68AD  
0x68B0  
0x68B1  
0x68B2  
0x68B3  
0x68B4  
0x68B5  
0x68B6  
0x68B7  
0x68B8  
0x68B9  
0x68E8  
0x68EA  
0x68EB  
0x68EC  
0x68ED  
0x68F0  
0x68F1  
0x68F2  
0x68F3  
0x68F4  
0x68F5  
0x68F6  
0x68F7  
0x68F8  
0x68F9  
1 / 0  
High resolution Period Control Register(1)  
Time Base Period HRPWM Register Mirror  
Time Base Period Register Mirror  
Compare A HRPWM Register Mirror  
Compare A Register Mirror  
TBPRDHRM  
TBPRDM  
1 / W(2)  
1 / W(2)  
1 / W(2)  
1 / W(2)  
1 / 0  
CMPAHRM  
CMPAM  
(1)  
DCTRIPSEL  
DCACTL  
Digital Compare Trip Select Register  
Digital Compare A Control Register(1)  
Digital Compare B Control Register(1)  
Digital Compare Filter Control Register(1)  
Digital Compare Capture Control Register(1)  
Digital Compare Filter Offset Register  
1 / 0  
DCBCTL  
1 / 0  
DCFCTL  
1 / 0  
DCCAPCT  
DCFOFFSET  
DCFOFFSETCNT  
DCFWINDOW  
DCFWINDOWCNT  
DCCAP  
1 / 0  
1 / 1  
1 / 0  
Digital Compare Filter Offset Counter Register  
Digital Compare Filter Window Register  
Digital Compare Filter Window Counter Register  
Digital Compare Counter Capture Register  
1 / 0  
1 / 0  
1 / 1  
(2) W = Write to shadow register  
Table 6-49. ePWM5–ePWM7 Control and Status Registers  
SIZE (x16) /  
#SHADOW  
NAME  
ePWM5  
ePWM6  
ePWM7  
DESCRIPTION  
TBCTL  
0x6900  
0x6901  
0x6902  
0x6903  
0x6904  
0x6905  
0x6906  
0x6907  
0x6908  
0x6909  
0x6940  
0x6941  
0x6942  
0x6943  
0x6944  
0x6945  
0x6946  
0x6947  
0x6948  
0x6949  
0x6980  
0x6981  
0x6982  
0x6983  
0x6984  
0x6985  
0x6986  
0x6987  
0x6988  
0x6989  
1 / 0  
Time Base Control Register  
Time Base Status Register  
TBSTS  
1 / 0  
TBPHSHR  
TBPHS  
1 / 0  
Time Base Phase HRPWM Register  
Time Base Phase Register  
1 / 0  
TBCTR  
1 / 0  
Time Base Counter Register  
TBPRD  
1 / 1  
Time Base Period Register Set  
TBPRDHR  
CMPCTL  
CMPAHR  
CMPA  
1 / 1  
Time Base Period High Resolution Register(1)  
Counter Compare Control Register  
Time Base Compare A HRPWM Register  
Counter Compare A Register Set  
1 / 0  
1 / 1  
1 / 1  
(1) Registers that are EALLOW protected.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
119  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Table 6-49. ePWM5–ePWM7 Control and Status Registers (continued)  
SIZE (x16) /  
#SHADOW  
NAME  
ePWM5  
ePWM6  
ePWM7  
DESCRIPTION  
CMPB  
0x690A  
0x690B  
0x690C  
0x690D  
0x690E  
0x690F  
0x6910  
0x6911  
0x6912  
0x6913  
0x6914  
0x6915  
0x6916  
0x6917  
0x6918  
0x6919  
0x691A  
0x691B  
0x691C  
0x691D  
0x691E  
0x6920  
-
0x694A  
0x694B  
0x694C  
0x694D  
0x694E  
0x694F  
0x6950  
0x6951  
0x6952  
0x6953  
0x6954  
0x6955  
0x6956  
0x6957  
0x6958  
0x6959  
0x695A  
0x695B  
0x695C  
0x695D  
0x695E  
0x6960  
-
0x698A  
0x698B  
0x698C  
0x698D  
0x698E  
0x698F  
0x6990  
0x6991  
0x6992  
0x6993  
0x6994  
0x6995  
0x6996  
0x6997  
0x6998  
0x6999  
0x699A  
0x699B  
0x699C  
0x699D  
0x699E  
0x69A0  
-
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / W(2)  
1 / W(2)  
1 / W(2)  
1 / W(2)  
1 / 0  
1 / 0  
1 / 0  
Counter Compare B Register Set  
AQCTLA  
AQCTLB  
AQSFRC  
Action Qualifier Control Register For Output A  
Action Qualifier Control Register For Output B  
Action Qualifier Software Force Register  
Action Qualifier Continuous S/W Force Register Set  
Dead-Band Generator Control Register  
Dead-Band Generator Rising Edge Delay Count Register  
Dead-Band Generator Falling Edge Delay Count Register  
Trip Zone Select Register(1)  
AQCSFRC  
DBCTL  
DBRED  
DBFED  
TZSEL  
TZDCSEL  
TZCTL  
Trip Zone Digital Compare Register  
Trip Zone Control Register(1)  
Trip Zone Enable Interrupt Register(1)  
TZEINT  
TZFLG  
(1)  
Trip Zone Flag Register  
TZCLR  
Trip Zone Clear Register(1)  
Trip Zone Force Register(1)  
TZFRC  
ETSEL  
Event Trigger Selection Register  
Event Trigger Prescale Register  
Event Trigger Flag Register  
ETPS  
ETFLG  
ETCLR  
Event Trigger Clear Register  
ETFRC  
Event Trigger Force Register  
PWM Chopper Control Register  
HRPWM Configuration Register(1)  
HRPWM Power Register  
PCCTL  
HRCNFG  
HRPWR  
HRMSTEP  
HRPCTL  
TBPRDHRM  
TBPRDM  
CMPAHRM  
CMPAM  
DCTRIPSEL  
DCACTL  
DCBCTL  
-
-
-
HRPWM MEP Step Register  
0x6928  
0x692A  
0x692B  
0x692C  
0x692D  
0x6930  
0x6931  
0x6932  
0x6968  
0x696A  
0x696B  
0x696C  
0x696D  
0x6970  
0x6971  
0x6972  
0x69A8  
0x69AA  
0x69AB  
0x69AC  
0x69AD  
0x69B0  
0x69B1  
0x69B2  
High resolution Period Control Register(1)  
Time Base Period HRPWM Register Mirror  
Time Base Period Register Mirror  
Compare A HRPWM Register Mirror  
Compare A Register Mirror  
(1)  
Digital Compare Trip Select Register  
Digital Compare A Control Register(1)  
Digital Compare B Control Register(1)  
(2) W = Write to shadow register  
120  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Table 6-49. ePWM5–ePWM7 Control and Status Registers (continued)  
SIZE (x16) /  
#SHADOW  
NAME  
ePWM5  
ePWM6  
ePWM7  
DESCRIPTION  
DCFCTL  
0x6933  
0x6934  
0x6935  
0x6936  
0x6937  
0x6938  
0x6939  
0x6973  
0x6974  
0x6975  
0x6976  
0x6977  
0x6978  
0x6979  
0x69B3  
0x69B4  
0x69B5  
0x69B6  
0x69B7  
0x69B8  
0x69B9  
1 / 0  
1 / 0  
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
Digital Compare Filter Control Register(1)  
Digital Compare Capture Control Register(1)  
Digital Compare Filter Offset Register  
DCCAPCT  
DCFOFFSET  
DCFOFFSETCNT  
DCFWINDOW  
DCFWINDOWCNT  
DCCAP  
Digital Compare Filter Offset Counter Register  
Digital Compare Filter Window Register  
Digital Compare Filter Window Counter Register  
Digital Compare Counter Capture Register  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
121  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Time-Base (TB)  
CTR=ZERO  
Sync  
In/Out  
Select  
Mux  
TBPRD Shadow (24)  
EPWMxSYNCO  
CTR=CMPB  
Disabled  
TBPRDHR (8)  
TBPRD Active (24)  
8
CTR=PRD  
TBCTL[SYNCOSEL]  
TBCTL[PHSEN]  
EPWMxSYNCI  
DCAEVT1.sync  
DCBEVT1.sync  
Counter  
Up/Down  
(16 Bit)  
TBCTL[SWFSYNC]  
(Software Forced  
Sync)  
CTR=ZERO  
TCBNT  
Active (16)  
CTR_Dir  
CTR=PRD  
CTR=ZERO  
TBPHSHR (8)  
EPWMxINT  
CTR=PRD or ZERO  
CTR=CMPA  
Event  
Trigger  
and  
Interrupt  
(ET)  
16  
8
EPWMxSOCA  
Phase  
Control  
CTR=CMPB  
CTR_Dir  
(A)  
DCAEVT1.soc  
(A)  
TBPHS Active (24)  
EPWMxSOCB  
EPWMxSOCA  
ADC  
DCBEVT1.soc  
EPWMxSOCB  
Action  
Qualifier  
(AQ)  
CTR=CMPA  
CMPAHR (8)  
16  
High-resolution PWM (HRPWM)  
CMPA Active (24)  
CMPA Shadow (24)  
EPWMxA  
EPWMA  
EPWMB  
PWM  
Chopper  
(PC)  
Trip  
Zone  
(TZ)  
Dead  
Band  
(DB)  
CTR=CMPB  
16  
EPWMxB  
EPWMxTZINT  
TZ1 to TZ3  
EMUSTOP  
CMPB Active (16)  
CMPB Shadow (16)  
CLOCKFAIL  
(B)  
EQEP1ERR  
CTR=ZERO  
DCAEVT1.inter  
DCBEVT1.inter  
(A)  
(A)  
(A)  
(A)  
DCAEVT1.force  
DCAEVT2.force  
DCBEVT1.force  
DCBEVT2.force  
DCAEVT2.inter  
DCBEVT2.inter  
A. These events are generated by the Type 1 ePWM digital compare (DC) submodule based on the levels of  
the COMPxOUT and TZ signals.  
B. This signal exists only on devices with an eQEP1 module.  
Figure 6-39. ePWM Submodules Showing Critical Internal Signal Interconnections  
122  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.9.9.1 ePWM Electrical Data/Timing  
PWM refers to PWM outputs on ePWM1–7. Table 6-50 shows the PWM timing requirements and Table 6-  
51, switching characteristics.  
Table 6-50. ePWM Timing Requirements(1)  
MIN  
2tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
cycles  
Asynchronous  
Synchronous  
tw(SYCIN)  
Sync input pulse width  
2tc(SCO)  
With input qualifier  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-68.  
Table 6-51. ePWM Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
33.33  
MAX  
UNIT  
ns  
tw(PWM)  
Pulse duration, PWMx output high/low  
Sync output pulse width  
tw(SYNCOUT)  
8tc(SCO)  
cycles  
Delay time, trip input active to PWM forced high  
Delay time, trip input active to PWM forced low  
td(PWM)tza  
no pin load  
25  
20  
ns  
ns  
td(TZ-PWM)HZ  
Delay time, trip input active to PWM Hi-Z  
6.9.9.2 Trip-Zone Input Timing  
Table 6-52. Trip-Zone Input Timing Requirements(1)  
MIN  
2tc(TBCLK)  
MAX UNIT  
cycles  
Asynchronous  
tw(TZ)  
Pulse duration, TZx input low  
Synchronous  
2tc(TBCLK)  
cycles  
With input qualifier  
2tc(TBCLK) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 6-68.  
SYSCLK  
tw(TZ)  
TZ(A)  
td(TZ-PWM)HZ  
PWM(B)  
A. TZ - TZ1, TZ2, TZ3 , TZ4, TZ5, TZ6  
B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM  
recovery software.  
Figure 6-40. PWM Hi-Z Characteristics  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
123  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.9.10 High-Resolution PWM (HRPWM)  
This module combines multiple delay lines in a single module and a simplified calibration system by using  
a dedicated calibration delay line. For each ePWM module there is one HR delay line.  
The HRPWM module offers PWM resolution (time granularity) that is significantly better than what can be  
achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are:  
Significantly extends the time resolution capabilities of conventionally derived digital PWM  
This capability can be used in both single edge (duty cycle and phase-shift control) as well as dual  
edge control for frequency/period modulation.  
Finer time granularity control or edge positioning is controlled through extensions to the Compare A  
and Phase registers of the ePWM module.  
HRPWM capabilities, when available on a particular device, are offered only on the A signal path of an  
ePWM module (that is, on the EPWMxA output). EPWMxB output has conventional PWM capabilities.  
NOTE  
The minimum SYSCLKOUT frequency allowed for HRPWM is 60 MHz.  
NOTE  
When dual-edge high-resolution is enabled (high-resolution period mode), the PWMxB output  
is not available for use.  
For more information on the HRPWM, see the High-Resolution Pulse Width Modulator (HRPWM) chapter  
in the TMS320F2803x Technical Reference Manual.  
6.9.10.1 HRPWM Electrical Data/Timing  
Table 6-53 shows the high-resolution PWM switching characteristics.  
Table 6-53. High-Resolution PWM Characteristics(1)  
PARAMETER  
MIN  
TYP  
MAX UNIT  
310 ps  
Micro Edge Positioning (MEP) step size(2)  
150  
(1) The HRPWM operates at a minimum SYSCLKOUT frequency of 60 MHz.  
(2) The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher  
temperature and lower voltage and decrease with lower temperature and higher voltage.  
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI  
software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per  
SYSCLKOUT period dynamically while the HRPWM is in operation.  
124  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.9.11 Enhanced Capture Module (eCAP1)  
The device contains an enhanced capture (eCAP) module. Figure 6-41 shows a functional block diagram  
of a module.  
CTRPHS  
(phase register−32 bit)  
APWM mode  
SYNCIn  
CTR_OVF  
OVF  
CTR [0−31]  
PRD [0−31]  
CMP [0−31]  
TSCTR  
(counter−32 bit)  
SYNCOut  
PWM  
compare  
logic  
Delta−mode  
RST  
32  
CTR=PRD  
CTR=CMP  
CTR [0−31]  
PRD [0−31]  
32  
eCAPx  
32  
LD1  
CAP1  
(APRD active)  
Polarity  
select  
LD  
APRD  
shadow  
32  
CMP [0−31]  
32  
32  
LD2  
CAP2  
(ACMP active)  
Polarity  
select  
LD  
Event  
qualifier  
Event  
Prescale  
32  
ACMP  
shadow  
Polarity  
select  
32  
32  
LD3  
LD4  
CAP3  
(APRD shadow)  
LD  
CAP4  
(ACMP shadow)  
Polarity  
select  
LD  
4
Capture events  
CEVT[1:4]  
4
Interrupt  
Trigger  
and  
Flag  
control  
Continuous /  
Oneshot  
Capture Control  
to PIE  
CTR_OVF  
CTR=PRD  
CTR=CMP  
Copyright © 2017, Texas Instruments Incorporated  
Figure 6-41. eCAP Functional Block Diagram  
The eCAP module is clocked at the SYSCLKOUT rate.  
The clock enable bits (ECAP1 ENCLK) in the PCLKCR1 register turn off the eCAP module individually (for  
low-power operation). Upon reset, ECAP1ENCLK is set to low, indicating that the peripheral clock is off.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
125  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Table 6-54. eCAP Control and Status Registers  
NAME  
TSCTR  
eCAP1  
0x6A00  
SIZE (x16) EALLOW PROTECTED  
DESCRIPTION  
Time-Stamp Counter  
2
2
2
2
2
2
8
1
1
1
1
1
1
6
CTRPHS  
CAP1  
0x6A02  
Counter Phase Offset Value Register  
Capture 1 Register  
0x6A04  
CAP2  
0x6A06  
Capture 2 Register  
CAP3  
0x6A08  
Capture 3 Register  
CAP4  
0x6A0A  
Capture 4 Register  
Reserved  
ECCTL1  
ECCTL2  
ECEINT  
ECFLG  
ECCLR  
ECFRC  
Reserved  
0x6A0C to 0x6A12  
0x6A14  
Reserved  
Capture Control Register 1  
Capture Control Register 2  
Capture Interrupt Enable Register  
Capture Interrupt Flag Register  
Capture Interrupt Clear Register  
Capture Interrupt Force Register  
Reserved  
0x6A15  
0x6A16  
0x6A17  
0x6A18  
0x6A19  
0x6A1A to 0x6A1F  
For more information on the eCAP, see the Enhanced Capture (eCAP) Module chapter in the  
TMS320F2803x Technical Reference Manual.  
6.9.11.1 eCAP Electrical Data/Timing  
Table 6-55 shows the eCAP timing requirement and Table 6-56 shows the eCAP switching characteristics.  
Table 6-55. Enhanced Capture (eCAP) Timing Requirement(1)  
MIN  
2tc(SCO)  
MAX UNIT  
cycles  
Asynchronous  
Synchronous  
tw(CAP)  
Capture input pulse width  
2tc(SCO)  
cycles  
With input qualifier  
1tc(SCO) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 6-68.  
Table 6-56. eCAP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
tw(APWM)  
Pulse duration, APWMx output high/low  
20  
ns  
126  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.9.12 High-Resolution Capture (HRCAP) Module  
The High-Resolution Capture (HRCAP) module measures the difference between external pulses with a  
typical resolution of 300 ps.  
Uses for the HRCAP include:  
Capactive touch applications  
High-resolution period and duty cycle measurements of pulse train cycles  
Instantaneous speed measurements  
Instantaneous frequency measurements  
Voltage measurements across an isolation boundary  
Distance/sonar measurement and scanning  
The HRCAP module features include:  
Pulse width capture in either non-high-resolution or high-resolution modes  
Difference (Delta) mode pulse width capture  
Typical high-resolution capture on the order of 300 ps resolution on each edge  
Interrupt on either falling or rising edge  
Continuous mode capture of pulse widths in 2-deep buffer  
Calibration logic for precision high-resolution capture  
All of the above resources are dedicated to a single input pin  
HRCAP calibration software library supplied by TI is used for both calibration and calculating fractional  
pulse widths  
The HRCAP module includes one capture channel in addition to a high-resolution calibration block, which  
connects internally to the last available ePWMxA HRPWM channel when calibrating (that is, if there are  
eight ePWMs with HRPWM capability, it will be HRPWM8A).  
Each HRCAP channel has the following independent key resources:  
Dedicated input capture pin  
16-bit HRCAP clock which is either equal to the PLL output frequency (asynchronous to SYSCLK) or  
equal to the SYSCLK frequency (synchronous to SYSCLK)  
High-resolution pulse width capture in a 2-deep buffer  
HRCAP Calibration Logic  
EPWMx  
EPWMxA  
HRPWM  
HRCAPxENCLK  
SYSCLK  
HRCAPx  
Module  
GPIO  
Mux  
PLLCLK  
HRCAP Calibration Signal (Internal)  
PIE  
HRCAPxINTn  
HRCAPx  
Figure 6-42. HRCAP Functional Block Diagram  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
127  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Table 6-57. HRCAP Registers  
NAME  
HRCAP1  
0x6AC0  
0x6AC1  
0x6AC2  
0x6AC3  
0x6AC4  
0x6AD0  
0x6AD2  
0x6AD8  
0x6ADA  
HRCAP2  
0x6AE0  
0x6AE1  
0x6AE2  
0x6AE3  
0x6AE4  
0x6AF0  
0x6AF2  
0x6AF8  
0x6AFA  
SIZE (x16)  
DESCRIPTION  
HRCAP Control Register(1)  
HCCTL  
HCIFR  
1
1
1
1
1
1
1
1
1
HRCAP Interrupt Flag Register  
HRCAP Interrupt Clear Register  
HRCAP Interrupt Force Register  
HRCAP 16-bit Counter Register  
HCICLR  
HCIFRC  
HCCOUNTER  
HCCAPCNTRISE0  
HCCAPCNTFALL0  
HCCAPCNTRISE1  
HCCAPCNTFALL1  
HRCAP Capture Counter on Rising Edge 0 Register  
HRCAP Capture Counter on Falling Edge 0 Register  
HRCAP Capture Counter on Rising Edge 1 Register  
HRCAP Capture Counter on Falling Edge 1 Register  
(1) Registers that are EALLOW-protected.  
For more information on the HRCAP, see the High Resolution Capture (HRCAP) chapter in the  
TMS320F2803x Technical Reference Manual.  
6.9.12.1 HRCAP Electrical Data/Timing  
Table 6-58. High-Resolution Capture (HRCAP) Timing Requirements  
MIN  
NOM  
MAX UNIT  
tc(HCCAPCLK)  
tw(HRCAP)  
Cycle time, HRCAP capture clock  
Pulse width, HRCAP capture  
HRCAP step size(2)  
8.333  
10.204  
ns  
ns  
ps  
(1)  
7tc(HCCAPCLK)  
300  
(1) The listed minimum pulse width does not take into account the limitation that all relevant HCCAP registers must be read and RISE/FALL  
event flags cleared within the pulse width to ensure valid capture data.  
(2) HRCAP step size will increase with low voltage and high temperature and decrease with high voltage and low temperature. Applications  
that use the HRCAP in high-resolution mode should use the HRCAP calibration functions to dynamically calibrate for varying operating  
conditions.  
128  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.9.13 Enhanced Quadrature Encoder Pulse (eQEP)  
The device contains one enhanced quadrature encoder pulse (eQEP) module.  
Table 6-59. eQEP Control and Status Registers  
eQEP1  
eQEP1  
ADDRESS  
NAME  
QPOSCNT  
SIZE(x16)/  
#SHADOW  
REGISTER DESCRIPTION  
0x6B00  
0x6B02  
0x6B04  
0x6B06  
0x6B08  
0x6B0A  
0x6B0C  
0x6B0E  
0x6B10  
0x6B12  
0x6B13  
0x6B14  
0x6B15  
0x6B16  
0x6B17  
0x6B18  
0x6B19  
0x6B1A  
0x6B1B  
0x6B1C  
0x6B1D  
0x6B1E  
0x6B1F  
0x6B20  
2/0  
2/0  
2/0  
2/1  
2/0  
2/0  
2/0  
2/0  
2/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
eQEP Position Counter  
QPOSINIT  
QPOSMAX  
QPOSCMP  
QPOSILAT  
QPOSSLAT  
QPOSLAT  
QUTMR  
eQEP Initialization Position Count  
eQEP Maximum Position Count  
eQEP Position-compare  
eQEP Index Position Latch  
eQEP Strobe Position Latch  
eQEP Position Latch  
eQEP Unit Timer  
QUPRD  
eQEP Unit Period Register  
eQEP Watchdog Timer  
QWDTMR  
QWDPRD  
QDECCTL  
QEPCTL  
QCAPCTL  
QPOSCTL  
QEINT  
eQEP Watchdog Period Register  
eQEP Decoder Control Register  
eQEP Control Register  
eQEP Capture Control Register  
eQEP Position-compare Control Register  
eQEP Interrupt Enable Register  
eQEP Interrupt Flag Register  
eQEP Interrupt Clear Register  
eQEP Interrupt Force Register  
eQEP Status Register  
QFLG  
QCLR  
QFRC  
QEPSTS  
QCTMR  
eQEP Capture Timer  
QCPRD  
eQEP Capture Period Register  
eQEP Capture Timer Latch  
eQEP Capture Period Latch  
QCTMRLAT  
QCPRDLAT  
0x6B21 –  
0x6B3F  
Reserved  
31/0  
For more information on the eQEP, see the Enhanced QEP (eQEP) Module chapter in the  
TMS320F2803x Technical Reference Manual.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
129  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Figure 6-43 shows the eQEP functional block diagram.  
System Control  
Registers  
To CPU  
EQEPxENCLK  
SYSCLKOUT  
QCPRD  
QCTMR  
QCAPCTL  
16  
16  
16  
Quadrature  
Capture  
Unit  
QCTMRLAT  
QCPRDLAT  
(QCAP)  
QUTMR  
QUPRD  
QWDTMR  
QWDPRD  
Registers  
Used by  
Multiple Units  
32  
16  
QEPCTL  
QEPSTS  
QFLG  
UTOUT  
QWDOG  
UTIME  
QDECCTL  
16  
WDTOUT  
EQEPxAIN  
EQEPxBIN  
EQEPxIIN  
EQEPxA/XCLK  
EQEPxB/XDIR  
EQEPxI  
QCLK  
QDIR  
QI  
EQEPxINT  
16  
PIE  
Position Counter/  
Control Unit  
(PCCU)  
EQEPxIOUT  
EQEPxIOE  
EQEPxSIN  
EQEPxSOUT  
EQEPxSOE  
Quadrature  
Decoder  
(QDU)  
QS  
GPIO  
MUX  
QPOSLAT  
QPOSSLAT  
QPOSILAT  
PHE  
PCSOUT  
EQEPxS  
32  
32  
16  
QPOSCNT  
QPOSINIT  
QPOSMAX  
QEINT  
QFRC  
QPOSCMP  
QCLR  
QPOSCTL  
eQEP Peripheral  
Copyright © 2017, Texas Instruments Incorporated  
Figure 6-43. eQEP Functional Block Diagram  
130  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.9.13.1 eQEP Electrical Data/Timing  
Table 6-60 shows the eQEP timing requirement and Table 6-61 shows the eQEP switching  
characteristics.  
Table 6-60. Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements(1)  
MIN  
MAX  
UNIT  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
Asynchronous(2)/synchronous  
With input qualifier  
2tc(SCO)  
tw(QEPP)  
QEP input period  
2[1tc(SCO) + tw(IQSW)  
]
Asynchronous(2)/synchronous  
2tc(SCO)  
2tc(SCO) +tw(IQSW)  
2tc(SCO)  
tw(INDEXH)  
tw(INDEXL)  
tw(STROBH)  
tw(STROBL)  
QEP Index Input High time  
QEP Index Input Low time  
QEP Strobe High time  
QEP Strobe Input Low time  
With input qualifier  
Asynchronous(2)/synchronous  
With input qualifier  
Asynchronous(2)/synchronous  
2tc(SCO) + tw(IQSW)  
2tc(SCO)  
2tc(SCO) + tw(IQSW)  
2tc(SCO)  
With input qualifier  
Asynchronous(2)/synchronous  
With input qualifier  
2tc(SCO) +tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-68.  
(2) Refer to the TMS320F2803x MCUs Silicon Errata for limitations in the asynchronous mode.  
Table 6-61. eQEP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
4tc(SCO)  
UNIT  
td(CNTR)xin  
Delay time, external clock to counter increment  
cycles  
Delay time, QEP input edge to position compare sync  
output  
td(PCS-OUT)QEP  
6tc(SCO)  
cycles  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
131  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.9.14 JTAG Port  
On the 2803x device, the JTAG port is reduced to 5 pins (TRST, TCK, TDI, TMS, TDO). TCK, TDI, TMS  
and TDO pins are also GPIO pins. The TRST signal selects either JTAG or GPIO operating mode for the  
pins in Figure 6-44. During emulation/debug, the GPIO function of these pins are not available. If the  
GPIO38/TCK/XCLKIN pin is used to provide an external clock, an alternate clock source should be used  
to clock the device during emulation/debug because this pin will be needed for the TCK function.  
NOTE  
In 2803x devices, the JTAG pins may also be used as GPIO pins. Care should be taken in  
the board design to ensure that the circuitry connected to these pins do not affect the  
emulation capabilities of the JTAG pin function. Any circuitry connected to these pins should  
not prevent the JTAG debug probe from driving (or being driven by) the JTAG pins for  
successful debug.  
TRST = 0: JTAG Disabled (GPIO Mode)  
TRST = 1: JTAG Mode  
TRST  
TRST  
XCLKIN  
GPIO38_in  
TCK  
TCK/GPIO38  
GPIO38_out  
C28x  
Core  
GPIO37_in  
TDO  
TDO/GPIO37  
1
0
GPIO37_out  
GPIO36_in  
1
0
TMS  
TMS/GPIO36  
TDI/GPIO35  
1
GPIO36_out  
GPIO35_in  
1
0
TDI  
1
GPIO35_out  
Figure 6-44. JTAG/GPIO Multiplexing  
132  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.9.15 General-Purpose Input/Output (GPIO) MUX  
The GPIO MUX can multiplex up to three independent peripheral signals on a single GPIO pin in addition  
to providing individual pin bit-banging I/O capability.  
The device supports 45 GPIO pins. The GPIO control and data registers are mapped to Peripheral  
Frame 1 to enable 32-bit operations on the registers (along with 16-bit operations). Table 6-62 shows the  
GPIO register mapping.  
Table 6-62. GPIO Registers  
NAME  
ADDRESS  
GPIO CONTROL REGISTERS (EALLOW PROTECTED)  
0x6F80 GPIO A Control Register (GPIO0 to 31)  
SIZE (x16)  
DESCRIPTION  
GPACTRL  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
GPAQSEL1  
GPAQSEL2  
GPAMUX1  
GPAMUX2  
GPADIR  
0x6F82  
0x6F84  
0x6F86  
0x6F88  
0x6F8A  
0x6F8C  
0x6F90  
0x6F92  
0x6F96  
0x6F9A  
0x6F9C  
0x6FB6  
0x6FBA  
GPIO A Qualifier Select 1 Register (GPIO0 to 15)  
GPIO A Qualifier Select 2 Register (GPIO16 to 31)  
GPIO A MUX 1 Register (GPIO0 to 15)  
GPIO A MUX 2 Register (GPIO16 to 31)  
GPIO A Direction Register (GPIO0 to 31)  
GPIO A Pullup Disable Register (GPIO0 to 31)  
GPIO B Control Register (GPIO32 to 44)  
GPIO B Qualifier Select 1 Register (GPIO32 to 44)  
GPIO B MUX 1 Register (GPIO32 to 44)  
GPAPUD  
GPBCTRL  
GPBQSEL1  
GPBMUX1  
GPBDIR  
GPIO B Direction Register (GPIO32 to 44)  
GPIO B Pullup Disable Register (GPIO32 to 44)  
Analog, I/O mux 1 register (AIO0 to AIO15)  
Analog, I/O Direction Register (AIO0 to AIO15)  
GPBPUD  
AIOMUX1  
AIODIR  
GPIO DATA REGISTERS (NOT EALLOW PROTECTED)  
GPADAT  
0x6FC0  
0x6FC2  
0x6FC4  
0x6FC6  
0x6FC8  
0x6FCA  
0x6FCC  
0x6FCE  
0x6FD8  
0x6FDA  
0x6FDC  
0x6FDE  
2
2
2
2
2
2
2
2
2
2
2
2
GPIO A Data Register (GPIO0 to 31)  
GPASET  
GPIO A Data Set Register (GPIO0 to 31)  
GPIO A Data Clear Register (GPIO0 to 31)  
GPIO A Data Toggle Register (GPIO0 to 31)  
GPIO B Data Register (GPIO32 to 44)  
GPACLEAR  
GPATOGGLE  
GPBDAT  
GPBSET  
GPIO B Data Set Register (GPIO32 to 44)  
GPIO B Data Clear Register (GPIO32 to 44)  
GPIO B Data Toggle Register (GPIO32 to 44)  
Analog I/O Data Register (AIO0 to AIO15)  
Analog I/O Data Set Register (AIO0 to AIO15)  
Analog I/O Data Clear Register (AIO0 to AIO15)  
Analog I/O Data Toggle Register (AIO0 to AIO15)  
GPBCLEAR  
GPBTOGGLE  
AIODAT  
AIOSET  
AIOCLEAR  
AIOTOGGLE  
GPIO INTERRUPT AND LOW-POWER MODES SELECT REGISTERS (EALLOW PROTECTED)  
GPIOXINT1SEL  
GPIOXINT2SEL  
GPIOXINT3SEL  
GPIOLPMSEL  
0x6FE0  
0x6FE1  
0x6FE2  
0x6FE8  
1
1
1
2
XINT1 GPIO Input Select Register (GPIO0 to 31)  
XINT2 GPIO Input Select Register (GPIO0 to 31)  
XINT3 GPIO Input Select Register (GPIO0 to 31)  
LPM GPIO Select Register (GPIO0 to 31)  
NOTE  
There is a two-SYSCLKOUT cycle delay from when the write to the GPxMUXn/AIOMUXn  
and GPxQSELn registers occurs to when the action is valid.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
133  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Table 6-63. GPIOA MUX(1) (2)  
DEFAULT AT RESET  
PRIMARY I/O  
PERIPHERAL  
SELECTION 1  
PERIPHERAL  
SELECTION 2  
PERIPHERAL  
SELECTION 3  
FUNCTION  
GPAMUX1 REGISTER  
BITS  
(GPAMUX1 BITS = 00) (GPAMUX1 BITS = 01)  
(GPAMUX1 BITS = 10)  
(GPAMUX1 BITS = 11)  
1-0  
GPIO0  
GPIO1  
EPWM1A (O)  
EPWM1B (O)  
EPWM2A (O)  
EPWM2B (O)  
EPWM3A (O)  
EPWM3B (O)  
EPWM4A (O)  
EPWM4B (O)  
EPWM5A (O)  
EPWM5B (O)  
EPWM6A (O)  
EPWM6B (O)  
TZ1 (I)  
Reserved  
Reserved  
Reserved  
COMP1OUT (O)  
Reserved  
3-2  
5-4  
GPIO2  
Reserved  
7-6  
GPIO3  
SPISOMIA (I/O)  
Reserved  
COMP2OUT (O)  
Reserved  
9-8  
GPIO4  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
GPIO5  
SPISIMOA (I/O)  
EPWMSYNCI (I)  
SCIRXDA (I)  
Reserved  
ECAP1 (I/O)  
GPIO6  
EPWMSYNCO (O)  
Reserved  
GPIO7  
GPIO8  
ADCSOCAO (O)  
HRCAP1 (I)  
GPIO9  
LINTXA (O)  
Reserved  
GPIO10  
GPIO11  
GPIO12  
GPIO13(3)  
GPIO14(3)  
GPIO15(3)  
ADCSOCBO (O)  
HRCAP2 (I)  
LINRXA (I)  
SCITXDA (O)  
Reserved  
SPISIMOB (I/O)  
SPISOMIB (I/O)  
SPICLKB (I/O)  
SPISTEB (I/O)  
TZ2 (I)  
TZ3 (I)  
LINTXA (O)  
LINRXA (I)  
TZ1 (I)  
GPAMUX2 REGISTER  
BITS  
(GPAMUX2 BITS = 00) (GPAMUX2 BITS = 01)  
(GPAMUX2 BITS = 10)  
(GPAMUX2 BITS = 11)  
1-0  
GPIO16  
GPIO17  
SPISIMOA (I/O)  
SPISOMIA (I/O)  
SPICLKA (I/O)  
SPISTEA (I/O)  
EQEP1A (I)  
Reserved  
Reserved  
LINTXA (O)  
LINRXA (I)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SDAA (I/OD)  
SCLA (I/OD)  
Reserved  
Reserved  
TZ2 (I)  
TZ3 (I)  
3-2  
5-4  
GPIO18  
XCLKOUT (O)  
ECAP1 (I/O)  
COMP1OUT (O)  
COMP2OUT (O)  
LINTXA (O)  
LINRXA (I)  
7-6  
GPIO19/XCLKIN  
GPIO20  
9-8  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
GPIO21  
EQEP1B (I)  
GPIO22  
EQEP1S (I/O)  
EQEP1I (I/O)  
ECAP1 (I/O)  
Reserved  
GPIO23  
GPIO24  
SPISIMOB (I/O)  
SPISOMIB (I/O)  
SPICLKB (I/O)  
SPISTEB (I/O)  
TZ2 (I)  
GPIO25(3)  
GPIO26(3)  
GPIO27(3)  
GPIO28  
HRCAP1 (I)  
HRCAP2 (I)  
SCIRXDA (I)  
SCITXDA (O)  
CANRXA (I)  
CANTXA (O)  
GPIO29  
TZ3 (I)  
GPIO30  
Reserved  
GPIO31  
Reserved  
(1) The word reserved means that there is no peripheral assigned to this GPxMUX1/2 register setting. Should it be selected, the state of the  
pin will be undefined and the pin may be driven. This selection is a reserved configuration for future expansion.  
(2) I = Input, O = Output, OD = Open Drain  
(3) These pins are not available in the 64-pin package.  
134  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
Table 6-64. GPIOB MUX(1)  
DEFAULT AT RESET  
PRIMARY I/O FUNCTION  
PERIPHERAL  
SELECTION 1  
PERIPHERAL  
SELECTION 2  
PERIPHERAL  
SELECTION 3  
GPBMUX1 REGISTER  
BITS  
(GPBMUX1 BITS = 00)  
(GPBMUX1 BITS = 01)  
(GPBMUX1 BITS = 10)  
(GPBMUX1 BITS = 11)  
1-0  
GPIO32  
GPIO33  
SDAA (I/OD)  
SCLA (I/OD)  
COMP2OUT (O)  
Reserved  
EPWMSYNCI (I)  
EPWMSYNCO (O)  
Reserved  
ADCSOCAO (O)  
ADCSOCBO (O)  
COMP3OUT (O)  
Reserved  
3-2  
5-4  
GPIO34  
7-6  
GPIO35 (TDI)  
GPIO36 (TMS)  
GPIO37 (TDO)  
GPIO38/XCLKIN (TCK)  
GPIO39(2)  
Reserved  
9-8  
Reserved  
Reserved  
Reserved  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
GPIO40(2)  
GPIO41(2)  
GPIO42(2)  
GPIO43(2)  
EPWM7A (O)  
EPWM7B (O)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
COMP1OUT (O)  
COMP2OUT (O)  
Reserved  
Reserved  
Reserved  
GPIO44(2)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
(1) I = Input, O = Output, OD = Open Drain  
(2) These pins are not available in the 64-pin package.  
Table 6-65. Analog MUX for 80-Pin PN Package(1)  
DEFAULT AT RESET  
PERIPHERAL SELECTION 2 AND  
PERIPHERAL SELECTION 3  
AIOx AND PERIPHERAL SELECTION 1  
AIOMUX1 REGISTER BITS  
AIOMUX1 BITS = 0,x  
ADCINA0 (I)  
ADCINA1 (I)  
AIO2 (I/O)  
AIOMUX1 BITS = 1,x  
ADCINA0 (I)  
1-0  
3-2  
ADCINA1 (I)  
5-4  
ADCINA2 (I), COMP1A (I)  
ADCINA3 (I)  
7-6  
ADCINA3 (I)  
AIO4 (I/O)  
9-8  
ADCINA4 (I), COMP2A (I)  
ADCINA5 (I)  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
ADCINA5 (I)  
AIO6 (I/O)  
ADCINA6 (I), COMP3A (I)  
ADCINA7 (I)  
ADCINA7 (I)  
ADCINB0 (I)  
ADCINB1 (I)  
AIO10 (I/O)  
ADCINB3 (I)  
AIO12 (I/O)  
ADCINB5 (I)  
AIO14 (I/O)  
ADCINB7 (I)  
ADCINB0 (I)  
ADCINB1 (I)  
ADCINB2 (I), COMP1B (I)  
ADCINB3 (I)  
ADCINB4 (I), COMP2B (I)  
ADCINB5 (I)  
ADCINB6 (I), COMP3B (I)  
ADCINB7 (I)  
(1) I = Input, O = Output  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
135  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Table 6-66. Analog MUX for 56-Pin RSH and 64-Pin PAG Packages(1)  
DEFAULT AT RESET  
PERIPHERAL SELECTION 2 AND  
PERIPHERAL SELECTION 3  
AIOx AND PERIPHERAL SELECTION 1  
AIOMUX1 REGISTER BITS  
AIOMUX1 BITS = 0,x  
ADCINA0 (I), VREFHI (I)  
ADCINA1 (I)  
AIO2 (I/O)  
AIOMUX1 BITS = 1,x  
ADCINA0 (I), VREFHI (I)  
ADCINA1 (I)  
1-0  
3-2  
5-4  
ADCINA2 (I), COMP1A (I)  
ADCINA3 (I)  
7-6  
ADCINA3 (I)  
AIO4 (I/O)  
9-8  
ADCINA4 (I), COMP2A (I)  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
AIO6 (I/O)  
ADCINA6 (I), COMP3A (I)  
ADCINA7 (I)  
ADCINA7 (I)  
ADCINB0 (I)  
ADCINB1 (I)  
AIO10 (I/O)  
ADCINB3 (I)  
AIO12 (I/O)  
ADCINB0 (I)  
ADCINB1 (I)  
ADCINB2 (I), COMP1B (I)  
ADCINB3 (I)  
ADCINB4 (I), COMP2B (I)  
AIO14 (I/O)  
ADCINB7 (I)  
ADCINB6 (I), COMP3B (I)  
ADCINB7 (I)  
(1) I = Input, O = Output  
The user can select the type of input qualification for each GPIO pin through the GPxQSEL1/2 registers  
from four choices:  
Synchronization To SYSCLKOUT Only (GPxQSEL1/2 = 0, 0): This is the default mode of all GPIO pins  
at reset and it simply synchronizes the input signal to the system clock (SYSCLKOUT).  
Qualification Using Sampling Window (GPxQSEL1/2 = 0, 1 and 1, 0): In this mode the input signal,  
after synchronization to the system clock (SYSCLKOUT), is qualified by a specified number of cycles  
before the input is allowed to change.  
The sampling period is specified by the QUALPRD bits in the GPxCTRL register and is configurable in  
groups of 8 signals. It specifies a multiple of SYSCLKOUT cycles for sampling the input signal. The  
sampling window is either 3-samples or 6-samples wide and the output is only changed when ALL  
samples are the same (all 0s or all 1s) as shown in Figure 6-47 (for 6 sample mode).  
No Synchronization (GPxQSEL1/2 = 1,1): This mode is used for peripherals where synchronization is  
not required (synchronization is performed within the peripheral).  
Due to the multilevel multiplexing that is required on the device, there may be cases where a peripheral  
input signal can be mapped to more then one GPIO pin. Also, when an input signal is not selected, the  
input signal will default to either a 0 or 1 state, depending on the peripheral.  
136  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
GPIOXINT1SEL  
GPIOXINT2SEL  
GPIOXINT3SEL  
GPIOLMPSEL  
LPMCR0  
External Interrupt  
PIE  
MUX  
Low-Power  
Modes Block  
Asynchronous  
path  
GPxDAT (read)  
GPxQSEL1/2  
GPxCTRL  
GPxPUD  
N/C  
00  
01  
Peripheral 1 Input  
Input  
Internal  
Pullup  
Qualification  
Peripheral 2 Input  
10  
11  
Peripheral 3 Input  
GPxTOGGLE  
Asynchronous path  
GPIOx pin  
GPxCLEAR  
GPxSET  
00  
01  
GPxDAT (latch)  
Peripheral 1 Output  
10  
11  
Peripheral 2 Output  
Peripheral 3 Output  
High Impedance  
Output Control  
GPxDIR (latch)  
00  
01  
Peripheral 1 Output Enable  
Peripheral 2 Output Enable  
0 = Input, 1 = Output  
XRS  
10  
11  
Peripheral 3 Output Enable  
= Default at Reset  
GPxMUX1/2  
A. x stands for the port, either A or B. For example, GPxDIR refers to either the GPADIR and GPBDIR register  
depending on the particular GPIO pin selected.  
B. GPxDAT latch/read are accessed at the same memory location.  
C. This is a generic GPIO MUX block diagram. Not all options may be applicable for all GPIO pins. For pin-specific  
variations, see the System Control chapter in the TMS320F2803x Technical Reference Manual.  
Figure 6-45. GPIO Multiplexing  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
137  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.9.15.1 GPIO Electrical Data/Timing  
6.9.15.1.1 GPIO - Output Timing  
Table 6-67. General-Purpose Output Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
13(1)  
13(1)  
15  
UNIT  
ns  
tr(GPO)  
tf(GPO)  
tfGPO  
Rise time, GPIO switching low to high  
Fall time, GPIO switching high to low  
Toggling frequency  
All GPIOs  
All GPIOs  
ns  
MHz  
(1) Rise time and fall time vary with electrical loading on I/O pins. Values given in Table 6-67 are applicable for a 40-pF load on I/O pins.  
GPIO  
t
r(GPO)  
t
f(GPO)  
Figure 6-46. General-Purpose Output Timing  
138  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.9.15.1.2 GPIO - Input Timing  
Table 6-68. General-Purpose Input Timing Requirements  
MIN  
1tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
cycles  
cycles  
cycles  
QUALPRD = 0  
tw(SP)  
Sampling period  
QUALPRD 0  
2tc(SCO) * QUALPRD  
tw(SP) * (n(1) – 1)  
2tc(SCO)  
tw(IQSW)  
Input qualifier sampling window  
Pulse duration, GPIO low/high  
Synchronous mode  
With input qualifier  
(2)  
tw(GPI)  
tw(IQSW) + tw(SP) + 1tc(SCO)  
(1) "n" represents the number of qualification samples as defined by GPxQSELn register.  
(2) For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal.  
(A)  
GPIO Signal  
GPxQSELn = 1,0 (6 samples)  
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
tw(SP)  
Sampling Period determined  
by GPxCTRL[QUALPRD](B)  
tw(IQSW)  
[(SYSCLKOUT cycle * 2 * QUALPRD) * 5(C)  
]
Sampling Window  
SYSCLKOUT  
QUALPRD = 1  
(SYSCLKOUT/2)  
(D)  
Output From  
Qualifier  
A. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It  
can vary from 00 to 0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLKOUT cycle. For any other value  
"n", the qualification sampling period in 2n SYSCLKOUT cycles (that is, at every 2n SYSCLKOUT cycles, the GPIO  
pin will be sampled).  
B. The qualification period selected through the GPxCTRL register applies to groups of 8 GPIO pins.  
C. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is  
used.  
D. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLKOUT cycles or  
greater. In other words, the inputs should be stable for (5 x QUALPRD x 2) SYSCLKOUT cycles. This would ensure  
5 sampling periods for detection to occur. Because external signals are driven asynchronously, an 13-SYSCLKOUT-  
wide pulse ensures reliable recognition.  
Figure 6-47. Sampling Mode  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
139  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
6.9.15.1.3 Sampling Window Width for Input Signals  
The following section summarizes the sampling window width for input signals for various input qualifier  
configurations.  
Sampling frequency denotes how often a signal is sampled with respect to SYSCLKOUT.  
Sampling frequency = SYSCLKOUT/(2 × QUALPRD), if QUALPRD 0  
Sampling frequency = SYSCLKOUT, if QUALPRD = 0  
Sampling period = SYSCLKOUT cycle × 2 × QUALPRD, if QUALPRD 0  
In the above equations, SYSCLKOUT cycle indicates the time period of SYSCLKOUT.  
Sampling period = SYSCLKOUT cycle, if QUALPRD = 0  
In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of  
the signal. This is determined by the value written to GPxQSELn register.  
Case 1:  
Qualification using 3 samples  
Sampling window width = (SYSCLKOUT cycle × 2 × QUALPRD) × 2, if QUALPRD 0  
Sampling window width = (SYSCLKOUT cycle) × 2, if QUALPRD = 0  
Case 2:  
Qualification using 6 samples  
Sampling window width = (SYSCLKOUT cycle × 2 × QUALPRD) × 5, if QUALPRD 0  
Sampling window width = (SYSCLKOUT cycle) × 5, if QUALPRD = 0  
SYSCLK  
GPIOxn  
tw(GPI)  
Figure 6-48. General-Purpose Input Timing  
VDDIO  
> 1 MS  
2 pF  
VSS  
VSS  
Figure 6-49. Input Resistance Model for a GPIO Pin With an Internal Pullup  
140  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
6.9.15.1.4 Low-Power Mode Wakeup Timing  
Table 6-69 shows the timing requirements, Table 6-70 shows the switching characteristics, and Figure 6-  
50 shows the timing diagram for IDLE mode.  
Table 6-69. IDLE Mode Timing Requirements(1)  
MIN  
2tc(SCO)  
MAX  
UNIT  
Without input qualifier  
With input qualifier  
tw(WAKE-INT)  
Pulse duration, external wake-up signal  
cycles  
5tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-68.  
Table 6-70. IDLE Mode Switching Characteristics(1)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
(2)  
Delay time, external wake signal to program execution resume  
cycles  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
20tc(SCO)  
Wake up from Flash  
Flash module in active state  
cycles  
cycles  
cycles  
20tc(SCO) + tw(IQSW)  
1050tc(SCO)  
td(WAKE-IDLE)  
Wake up from Flash  
Flash module in sleep state  
1050tc(SCO) + tw(IQSW)  
20tc(SCO)  
Wake up from SARAM  
20tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-68.  
(2) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up signal) involves additional latency.  
t
d(WAKE−IDLE)  
Address/Data  
(internal)  
XCLKOUT  
t
w(WAKE−INT)  
WAKE INT(A)(B)  
A. WAKE INT can be any enabled interrupt, WDINT or XRS. After the IDLE instruction is executed, a delay of 5  
OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.  
B. From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be  
initiated until at least 4 OSCCLK cycles have elapsed.  
Figure 6-50. IDLE Entry and Exit Timing  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
141  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
 
 
 
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Table 6-71. STANDBY Mode Timing Requirements  
MIN  
3tc(OSCCLK)  
MAX  
UNIT  
Without input qualification  
With input qualification(1)  
Pulse duration, external  
wake-up signal  
tw(WAKE-INT)  
cycles  
(2 + QUALSTDBY) * tc(OSCCLK)  
(1) QUALSTDBY is a 6-bit field in the LPMCR0 register.  
Table 6-72. STANDBY Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Delay time, IDLE instruction  
executed to XCLKOUT low  
td(IDLE-XCOL)  
32tc(SCO)  
45tc(SCO)  
cycles  
Delay time, external wake signal to program execution  
resume(1)  
cycles  
cycles  
Without input qualifier  
100tc(SCO)  
Wake up from flash  
Flash module in active state With input qualifier  
100tc(SCO) + tw(WAKE-INT)  
1125tc(SCO)  
td(WAKE-STBY)  
Without input qualifier  
Wake up from flash  
cycles  
cycles  
Flash module in sleep state With input qualifier  
1125tc(SCO) + tw(WAKE-INT)  
100tc(SCO)  
Without input qualifier  
Wake up from SARAM  
With input qualifier  
100tc(SCO) + tw(WAKE-INT)  
(1) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up signal) involves additional latency.  
142  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
(C)  
(F)  
(A)  
(B)  
(D)(E)  
(G)  
Device  
Status  
STANDBY  
STANDBY  
Normal Execution  
Flushing Pipeline  
Wake-up  
Signal(H)  
t
w(WAKE-INT)  
t
d(WAKE-STBY)  
X1/X2 or  
XCLKIN  
XCLKOUT  
t
d(IDLE−XCOL)  
A. IDLE instruction is executed to put the device into STANDBY mode.  
B. The PLL block responds to the STANDBY signal. SYSCLKOUT is held for the number of cycles indicated below  
before being turned off:  
16 cycles, when DIVSEL = 00 or 01  
32 cycles, when DIVSEL = 10  
64 cycles, when DIVSEL = 11  
This delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in  
STANDBY mode. After the IDLE instruction is executed, a delay of 5 OSCCLK cycles (minimum) is needed before the  
wake-up signal could be asserted.  
D. The external wake-up signal is driven active.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement.  
Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the  
device will not be deterministic and the device may not exit low-power mode for subsequent wake-up pulses.  
F. After a latency period, the STANDBY mode is exited.  
G. Normal execution resumes. The device will respond to the interrupt (if enabled).  
H. From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be  
initiated until at least 4 OSCCLK cycles have elapsed.  
Figure 6-51. STANDBY Entry and Exit Timing Diagram  
Table 6-73. HALT Mode Timing Requirements  
MIN  
toscst + 2tc(OSCCLK)  
toscst + 8tc(OSCCLK)  
MAX  
UNIT  
cycles  
cycles  
tw(WAKE-GPIO)  
tw(WAKE-XRS)  
Pulse duration, GPIO wake-up signal  
Pulse duration, XRS wake-up signal  
Table 6-74. HALT Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
td(IDLE-XCOL)  
tp  
Delay time, IDLE instruction executed to XCLKOUT low  
PLL lock-up time  
32tc(SCO)  
45tc(SCO)  
1
cycles  
ms  
Delay time, PLL lock to program execution resume  
1125tc(SCO)  
35tc(SCO)  
cycles  
cycles  
Wake up from flash  
Flash module in sleep state  
td(WAKE-HALT)  
Wake up from SARAM  
Copyright © 2009–2020, Texas Instruments Incorporated  
Detailed Description  
143  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
(C)  
(F)  
(A)  
(H)  
(B)  
(G)  
(D)(E)  
Device  
Status  
HALT  
HALT  
Flushing Pipeline  
PLL Lock-up Time  
Normal  
Execution  
Wake-up Latency  
GPIOn(I)  
t
)
d(WAKE−HALT  
t
w(WAKE-GPIO)  
tp  
X1/X2 or  
XCLKIN  
Oscillator Start-up Time  
XCLKOUT  
t
d(IDLE−XCOL)  
A. IDLE instruction is executed to put the device into HALT mode.  
B. The PLL block responds to the HALT signal. SYSCLKOUT is held for the number of cycles indicated below before  
oscillator is turned off and the CLKIN to the core is stopped:  
16 cycles, when DIVSEL = 00 or 01  
32 cycles, when DIVSEL = 10  
64 cycles, when DIVSEL = 11  
This delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as  
the clock source, the internal oscillator is shut down as well. The device is now in HALT mode and consumes  
absolute minimum power. It is possible to keep the zero-pin internal oscillators (INTOSC1 and INTOSC2) and the  
watchdog alive in HALT mode. This is done by writing to the appropriate bits in the CLKCTL register. After the IDLE  
instruction is executed, a delay of 5 OSCCLK cycles (minimum) is needed before the wake-up signal could be  
asserted.  
D. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator  
wake-up sequence is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This  
enables the provision of a clean clock signal during the PLL lock sequence. Because the falling edge of the GPIO pin  
asynchronously begins the wake-up procedure, care should be taken to maintain a low noise environment prior to  
entering and during HALT mode.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement.  
Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the  
device will not be deterministic and the device may not exit low-power mode for subsequent wake-up pulses.  
F. Once the oscillator has stabilized, the PLL lock sequence is initiated, which takes 1 ms.  
G. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after a latency. The HALT  
mode is now exited.  
H. Normal operation resumes.  
I.  
From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be  
initiated until at least 4 OSCCLK cycles have elapsed.  
Figure 6-52. HALT Mode Wakeup Using GPIOn  
144  
Detailed Description  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
7 Applications, Implementation, and Layout  
NOTE  
Information in the following sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes. Customers should validate and test  
their design implementation to confirm system functionality.  
7.1 TI Reference Design  
The TI Reference Design Library is a robust reference design library spanning analog, embedded  
processor, and connectivity. Created by TI experts to help you jump start your system design, all  
reference designs include schematic or block diagrams, BOMs, and design files to speed your time to  
market. Search and download designs at the Select TI reference designs page.  
Multiple Channels of High Density LED Control for Automotive Headlight Applications  
This design, featuring the TMS320F2803x microcontroller, implements a high-efficiency, multichannel DC-  
DC LED control system for typically automotive lighting systems. The design support up to six channels of  
LED controls, each with a maximum of 1.2-A current driving capabilities. With a 2-stage power topology of  
boost and buck, the system can be operated with a wide input DC voltage from 8 V to 20 V, which fits  
perfectly in automotive applications.  
Automotive Digitally Controlled Boost Power Supply  
This TI reference design is an automotive voltage boost converter module. The purpose of this module is  
to supply a steady voltage to vehicle electronics by boosting during voltage droop events such as engine  
crank. The design is based on the C2000 Real-Time Microcontroller, and will provide up to 400 Watts of  
power from a 12-V automotive battery system. This solution supports continuous operational input voltage  
of 6 V to 16 V with protection against 36-V load dump to provide a stable 12-V output supply with reverse  
battery protection.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
145  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
8 Device and Documentation Support  
8.1 Device and Development Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
TMS320™ MCU devices and support tools. Each TMS320 MCU commercial family member has one of  
three prefixes: TMX, TMP, or TMS (for example, TMS320F28032). Texas Instruments recommends two of  
three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent  
evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully  
qualified production devices/tools (TMS/TMDS).  
Device development evolutionary flow:  
TMX  
TMP  
TMS  
Experimental device that is not necessarily representative of the final device's electrical  
specifications  
Final silicon die that conforms to the device's electrical specifications but has not  
completed quality and reliability verification  
Fully qualified production device  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal  
qualification testing  
TMDS Fully qualified development-support product  
TMX and TMP devices and TMDX development-support tools are shipped against the following  
disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard  
production devices. Texas Instruments recommends that these devices not be used in any production  
system because their expected end-use failure rate still is undefined. Only qualified production devices are  
to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the  
package type (for example, PN) and temperature range (for example, T). Figure 8-1 provides a legend for  
reading the complete device name for any family member.  
For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your  
TI sales representative.  
For additional description of the device nomenclature markings on the die, see the TMS320F2803x MCUs  
Silicon Errata.  
146  
Device and Documentation Support  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
TMS 320  
F
28032  
PN  
T
PREFIX  
TEMPERATURE RANGE  
experimental device  
prototype device  
qualified device  
TMX =  
TMP =  
TMS =  
T
S
Q
−40°C to 105°C  
−40°C to 125°C  
=
=
=
−40°C to 125°C  
(Q refers to AEC Q100 qualification for automotive applications.)  
DEVICE FAMILY  
PACKAGE TYPE  
320 = TMS320 MCU Family  
56-Pin RSH Very Thin Quad Flatpack (No Lead) (VQFN)  
64-Pin PAG Thin Quad Flatpack (TQFP)  
80-Pin PN Low-Profile Quad Flatpack (LQFP)  
DEVICE  
TECHNOLOGY  
28035  
28034  
28033  
28032  
28031  
28030  
F = Flash  
A. For more information on peripheral, temperature, and package availability for a specific device, see Table 3-1.  
Figure 8-1. Device Nomenclature  
8.2 Tools and Software  
TI offers an extensive line of development tools. Some of the tools and software to evaluate the  
performance of the device, generate code, and develop solutions are listed below. To view all available  
tools and software for C2000™ real-time control MCUs, visit the C2000 real-time control MCUs – Design  
& development page.  
Development Tools  
Code Composer Studio (CCS) Integrated Development Environment (IDE) for C2000 Microcontrollers  
Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller  
and Embedded Processors portfolio. CCS comprises a suite of tools used to develop and debug  
embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build  
environment, debugger, profiler, and many other features. The intuitive IDE provides a single user  
interface taking you through each step of the application development flow. Familiar tools and interfaces  
allow users to get started faster than ever before. CCS combines the advantages of the Eclipse software  
framework with advanced embedded debug capabilities from TI resulting in a compelling feature-rich  
development environment for embedded developers.  
Software Tools  
powerSUITE - Digital Power Supply Design Software Tools for C2000™ MCUs  
powerSUITE is a suite of digital power supply design software tools for Texas Instruments' C2000 real-  
time microcontroller (MCU) family. powerSUITE helps power supply engineers drastically reduce  
development time as they design digitally-controlled power supplies based on C2000 real-time control  
MCUs.  
C2000Ware for C2000 MCUs  
C2000Ware for C2000™ microcontrollers is a cohesive set of development software and documentation  
designed to minimize software development time. From device-specific drivers and libraries to device  
peripheral examples, C2000Ware provides a solid foundation to begin development and evaluation of your  
product.  
UniFlash Standalone Flash Tool  
UniFlash is a standalone tool used to program on-chip flash memory through a GUI, command line, or  
scripting interface.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Device and Documentation Support  
147  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
Models  
Various models are available for download from the product Tools & Software pages. These include I/O  
Buffer Information Specification (IBIS) Models and Boundary-Scan Description Language (BSDL) Models.  
To view all available models, visit the Models section of the Tools & Software page for each device, which  
can be found in Table 8-1.  
Training  
To help assist design engineers in taking full advantage of the C2000 microcontroller features and  
performance, TI has developed a variety of training resources. Utilizing the online training materials and  
downloadable hands-on workshops provides an easy means for gaining a complete working knowledge of  
the C2000 microcontroller family. These training resources have been designed to decrease the learning  
curve, while reducing development time, and accelerating product time to market. For more information on  
the various training resources, visit the C2000™ real-time control MCUs – Support & training site.  
Specific TMS320F2803x hands-on training resources can be found at C2000™ MCU Device Workshops.  
148  
Device and Documentation Support  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
8.3 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the  
upper right corner, click on Alert me to register and receive a weekly digest of any product information that  
has changed. For change details, review the revision history included in any revised document.  
The current documentation that describes the processor, related peripherals, and other technical collateral  
is listed below.  
Errata  
TMS320F2803x MCUs Silicon Errata describes known advisories on silicon and provides workarounds.  
Technical Reference Manual  
TMS320F2803x Technical Reference Manual details the integration, the environment, the functional  
description, and the programming models for each peripheral and subsystem in the device.  
CPU User's Guides  
TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and  
the assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). It  
also describes emulation features available on these DSPs.  
Peripheral Guides  
C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the  
28x digital signal processors (DSPs).  
Tools Guides  
TMS320C28x Assembly Language Tools v20.2.0.LTS User's Guide describes the assembly language  
tools (assembler and other tools used to develop assembly language code), assembler directives, macros,  
common object file format, and symbolic debugging directives for the TMS320C28x device.  
TMS320C28x Optimizing C/C++ Compiler v20.2.0.LTS User's Guide describes the TMS320C28x C/C++  
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly  
language source code for the TMS320C28x device.  
Application Reports  
Semiconductor Packing Methodology describes the packing methodologies employed to prepare  
semiconductor devices for shipment to end users.  
Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful  
lifetime of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at  
general engineers who wish to determine if the reliability of the TI EP meets the end system reliability  
requirement.  
Semiconductor and IC Package Thermal Metrics describes traditional and new thermal metrics and puts  
their application in perspective with respect to system-level junction temperature estimation.  
Calculating FIT for a Mission Profile explains how use TI’s reliability de-rating tools to calculate a  
component level FIT under power on conditions for a system mission profile.  
Oscillator Compensation Guide describes a factory supplied method for compensating the internal  
oscillators for frequency drift caused by temperature.  
MCU CAN Module Operation Using the On-Chip Zero-Pin Oscillator.  
The TMS320F2803x/TMS320F2805x/TMS320F2806x series of microcontrollers have an on-chip zero-pin  
oscillator that needs no external components. This application report describes how to use the CAN  
module with this oscillator to operate at the maximum bit rate and bus length without the added cost of an  
external clock source.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Device and Documentation Support  
149  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
SPRS584N APRIL 2009REVISED JUNE 2020  
www.ti.com  
An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS  
including its history, advantages, compatibility, model generation flow, data requirements in modeling the  
input/output structures and future trends.  
Serial Flash Programming of C2000™ Microcontrollers discusses using a flash kernel and ROM loaders  
for serial programming a device.  
8.4 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
Table 8-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
TMS320F28030  
TMS320F28031  
TMS320F28032  
TMS320F28033  
TMS320F28034  
TMS320F28035  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
8.5 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help —  
straight from the experts. Search existing answers or ask your own question to get the quick design help  
you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications  
and do not necessarily reflect TI's views; see TI's Terms of Use.  
8.6 Trademarks  
TMS320C2000, TMS320, TI E2E are trademarks of Texas Instruments.  
I2C-bus is a registered trademark of NXP B.V. Corporation.  
All other trademarks are the property of their respective owners.  
8.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
8.8 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
150  
Device and Documentation Support  
Copyright © 2009–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
TMS320F28030, TMS320F28031, TMS320F28032  
TMS320F28033, TMS320F28034, TMS320F28035  
www.ti.com  
SPRS584N APRIL 2009REVISED JUNE 2020  
9 Mechanical, Packaging, and Orderable Information  
9.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the  
most current data available for the designated devices. This data is subject to change without notice and  
revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2009–2020, Texas Instruments Incorporated  
Mechanical, Packaging, and Orderable Information  
Submit Documentation Feedback  
151  
Product Folder Links: TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034  
TMS320F28035  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Jan-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
PAG  
PAG  
PAG  
PN  
Qty  
160  
160  
160  
119  
119  
119  
260  
260  
160  
160  
160  
119  
119  
119  
260  
160  
160  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS320F28030PAGQ  
TMS320F28030PAGS  
TMS320F28030PAGT  
TMS320F28030PNQ  
TMS320F28030PNS  
TMS320F28030PNT  
TMS320F28030RSHS  
TMS320F28030RSHT  
TMS320F28031PAGQ  
TMS320F28031PAGS  
TMS320F28031PAGT  
TMS320F28031PNQ  
TMS320F28031PNS  
TMS320F28031PNT  
TMS320F28031RSHS  
TMS320F28032PAGQ  
TMS320F28032PAGS  
ACTIVE  
TQFP  
TQFP  
TQFP  
LQFP  
LQFP  
LQFP  
VQFN  
VQFN  
TQFP  
TQFP  
TQFP  
LQFP  
LQFP  
LQFP  
VQFN  
TQFP  
TQFP  
64  
64  
64  
80  
80  
80  
56  
56  
64  
64  
64  
80  
80  
80  
56  
64  
64  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 125  
F28030PAGQ  
TMS320  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
F28030PAGS  
TMS320  
F28030PAGT  
TMS320  
F28030PNQ  
TMS320  
PN  
F28030PNS  
TMS320  
PN  
F28030PNT  
TMS320  
RSH  
RSH  
PAG  
PAG  
PAG  
PN  
F28030RSHS  
S320 980  
F28030RSHT  
S320 980  
F28031PAGQ  
TMS320  
F28031PAGS  
TMS320  
F28031PAGT  
TMS320  
F28031PNQ  
TMS320  
PN  
F28031PNS  
TMS320  
PN  
F28031PNT  
TMS320  
RSH  
PAG  
PAG  
F28031RSHS  
S320 980  
F28032PAGQ  
TMS320  
F28032PAGS  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Jan-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS320  
TMS320F28032PAGT  
TMS320F28032PNQ  
TMS320F28032PNS  
TMS320F28032PNT  
TMS320F28032PNTR  
TMS320F28032RSHS  
TMS320F28032RSHT  
TMS320F28033P1PAGS  
TMS320F28033PAGQ  
TMS320F28033PAGS  
TMS320F28033PAGT  
TMS320F28033PNQ  
TMS320F28033PNS  
TMS320F28033PNT  
TMS320F28033RSHS  
TMS320F28033RSHT  
TMS320F28034PAGQ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TQFP  
LQFP  
LQFP  
LQFP  
LQFP  
VQFN  
VQFN  
TQFP  
TQFP  
TQFP  
TQFP  
LQFP  
LQFP  
LQFP  
VQFN  
VQFN  
TQFP  
PAG  
PN  
64  
80  
80  
80  
80  
56  
56  
64  
64  
64  
64  
80  
80  
80  
56  
56  
64  
160  
119  
119  
119  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
F28032PAGT  
TMS320  
F28032PNQ  
TMS320  
PN  
F28032PNS  
TMS320  
PN  
F28032PNT  
TMS320  
PN  
1000 RoHS & Green  
F28032PNT  
TMS320  
RSH  
RSH  
PAG  
PAG  
PAG  
PAG  
PN  
260  
260  
160  
160  
160  
160  
119  
119  
119  
260  
260  
160  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
F28032RSHS  
S320 980  
F28032RSHT  
S320 980  
F28033PAGS  
TMS320  
F28033PAGQ  
TMS320  
F28033PAGS  
TMS320  
F28033PAGT  
TMS320  
F28033PNQ  
TMS320  
PN  
F28033PNS  
TMS320  
PN  
F28033PNT  
TMS320  
RSH  
RSH  
PAG  
F28033RSHS  
S320 980  
F28033RSHT  
S320 980  
F28034PAGQ  
TMS320  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Jan-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
PAG  
PAG  
PAG  
PN  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS320F28034PAGQR  
TMS320F28034PAGS  
TMS320F28034PAGT  
TMS320F28034PNQ  
TMS320F28034PNS  
TMS320F28034PNT  
TMS320F28034PNTR  
TMS320F28034RSHS  
TMS320F28034RSHT  
TMS320F28035PAGQ  
TMS320F28035PAGS  
TMS320F28035PAGT  
TMS320F28035PAGTR  
TMS320F28035PNQ  
TMS320F28035PNQR  
TMS320F28035PNS  
TMS320F28035PNT  
TMS320F28035PNTR  
ACTIVE  
TQFP  
TQFP  
TQFP  
LQFP  
LQFP  
LQFP  
LQFP  
VQFN  
VQFN  
TQFP  
TQFP  
TQFP  
TQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
64  
64  
64  
80  
80  
80  
80  
56  
56  
64  
64  
64  
64  
80  
80  
80  
80  
80  
1500 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 105  
F28034PAGQ  
TMS320  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
160  
160  
119  
119  
119  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
F28034PAGS  
TMS320  
F28034PAGT  
TMS320  
F28034PNQ  
TMS320  
PN  
F28034PNS  
TMS320  
PN  
F28034PNT  
TMS320  
PN  
1000 RoHS & Green  
F28034PNT  
TMS320  
RSH  
RSH  
PAG  
PAG  
PAG  
PAG  
PN  
260  
260  
160  
160  
160  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
F28034RSHS  
S320 980  
F28034RSHT  
S320 980  
F28035PAGQ  
TMS320  
F28035PAGS  
TMS320  
F28035PAGT  
TMS320  
1500 RoHS & Green  
119 RoHS & Green  
1000 RoHS & Green  
F28035PAGT  
TMS320  
F28035PNQ  
TMS320  
PN  
F28035PNQ  
TMS320  
PN  
119  
119  
RoHS & Green  
RoHS & Green  
F28035PNS  
TMS320  
PN  
F28035PNT  
TMS320  
PN  
1000 RoHS & Green  
F28035PNT  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Jan-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS320  
TMS320F28035RSHS  
TMS320F28035RSHT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RSH  
RSH  
56  
56  
260  
260  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 105  
F28035RSHS  
S320 980  
F28035RSHT  
S320 980  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Jan-2021  
OTHER QUALIFIED VERSIONS OF TMS320F28035 :  
Enhanced Product: TMS320F28035-EP  
NOTE: Qualified Version Definitions:  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 5  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMS320F28032PNTR  
LQFP  
PN  
80  
1000  
330.0  
24.4  
16.0  
16.0  
2.0  
24.0  
24.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
LQFP PN 80  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 55.0  
TMS320F28032PNTR  
1000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RSH0056D  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
0
0
0
VQFN  
7.15  
6.85  
A
B
PIN 1 INDEX AREA  
7.15  
6.85  
C
1 MAX  
SEATING PLANE  
0.05  
0.00  
5.3 0.1  
(0.2)  
15  
28  
14  
29  
52X 0.4  
4X  
5.2  
1
42  
0.25  
56X  
PIN 1 ID  
0.15  
43  
56  
(OPTIONAL)  
0.1  
C A  
C
B
0.6  
0.4  
56X  
0.05  
4218794/A 07/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSH0056D  
VQFN - 1 mm max height  
VQFN  
(5.3)  
43  
SYMM  
56  
SEE DETAILS  
56X (0.7)  
56X (0.2)  
1
42  
52X (0.4)  
6X  
(1.12)  
(1.28)  
TYP  
SYMM  
(6.7)  
14  
29  
(
0.2) TYP  
VIA  
15  
28  
(1.28) TYP  
6X (1.12)  
(6.7)  
LAND PATTERN EXAMPLE  
SCALE:10X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
SOLDERMASK  
OPENING  
SOLDERMASK  
OPENING  
METAL  
NON SOLDERMASK  
DEFINED  
SOLDERMASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4218794/A 07/2013  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSH0056D  
VQFN - 1 mm max height  
VQFN  
SYMM  
METAL  
TYP  
(1.28) TYP  
43  
56  
56X (0.7)  
1
42  
56X (0.2)  
52X (0.4)  
(1.28)  
TYP  
SYMM  
(6.7)  
14  
29  
15  
28  
16X (1.08)  
(6.7)  
SOLDERPASTE EXAMPLE  
BASED ON 0.1mm THICK STENCIL  
EXPOSED PAD  
67% PRINTED SOLDER COVERAGE BY AREA  
SCALE:12X  
4218794/A 07/2013  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
MECHANICAL DATA  
MTQF010A – JANUARY 1995 – REVISED DECEMBER 1996  
PN (S-PQFP-G80)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
60  
M
0,08  
41  
61  
40  
0,13 NOM  
80  
21  
1
20  
Gage Plane  
9,50 TYP  
0,25  
12,20  
SQ  
11,80  
0,05 MIN  
0°7°  
14,20  
SQ  
13,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040135 /B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTQF006A – JANUARY 1995 – REVISED DECEMBER 1996  
PAG (S-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
48  
M
0,08  
33  
49  
32  
64  
17  
0,13 NOM  
1
16  
7,50 TYP  
Gage Plane  
10,20  
SQ  
9,80  
0,25  
12,20  
SQ  
0,05 MIN  
11,80  
0°7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4040282/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TMS320F28030PAGQ

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28030PAGS

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28030PAGT

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28030PNQ

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28030PNS

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28030PNT

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28030RSHS

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28030RSHT

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28030_14

Piccolo™ Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28030_V02

TMS320F2803x Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28030_V03

TMS320F2803x Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28031

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI