TMS320F28054F-Q1 [TI]

TMS320F2805x Microcontrollers;
TMS320F28054F-Q1
型号: TMS320F28054F-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TMS320F2805x Microcontrollers

微控制器
文件: 总151页 (文件大小:3411K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F,TMS320F28051,TMS320F28050
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
TMS320F2805x Microcontrollers  
– Three Serial Communications Interface (SCI)  
(Universal Asynchronous Receiver/Transmitter  
[UART]) modules  
– One Serial Peripheral Interface (SPI) module  
– One Inter-Integrated-Circuit (I2C) bus  
– One Enhanced Controller Area Network  
(eCAN) bus  
1 Features  
High-efficiency 32-bit CPU (TMS320C28x)  
– 60 MHz (16.67-ns cycle time)  
– 16 × 16 and 32 × 32 Multiply and Accumulate  
(MAC) operations  
– 16 × 16 dual MAC  
– Harvard bus architecture  
– Atomic operations  
Enhanced control peripherals  
– Enhanced Pulse Width Modulator (ePWM)  
– Enhanced Capture (eCAP) module  
– Enhanced Quadrature Encoder Pulse (eQEP)  
module  
– Fast interrupt response and processing  
– Unified memory programming model  
– Code-efficient (in C/C++ and Assembly)  
Programmable Control Law Accelerator (CLA)  
– 32-bit floating-point math accelerator  
– Executes code independently of the main CPU  
Dual-zone security module  
Analog peripherals  
– One 12-bit Analog-to-Digital Converter (ADC)  
– One on-chip temperature sensor for oscillator  
compensation  
– Up to seven comparators with up to three  
integrated Digital-to-Analog Converters (DACs)  
– One buffered reference DAC  
– Up to four Programmable Gain Amplifiers  
(PGAs)  
Endianness: Little endian  
Low device and system cost:  
– Single 3.3-V supply  
– No power sequencing requirement  
– Integrated power-on reset and brownout reset  
– Low power  
– Up to four digital filters  
Advanced debug features  
– No analog support pins  
– Analysis and breakpoint functions  
– Real-time debug through hardware  
80-pin PN Low-Profile Quad Flatpack (LQFP)  
Temperature options  
T: 40°C to 105°C  
– S: –40°C to 125°C  
Clocking:  
– Two internal zero-pin oscillators  
– On-chip crystal oscillator and external clock  
input  
– Watchdog timer module  
– Missing clock detection circuitry  
Up to 42 individually programmable, multiplexed  
General-Purpose Input/Output (GPIO) pins with  
input filtering  
– Q: –40°C to 125°C  
(AEC Q100 qualification for automotive  
applications)  
JTAG boundary scan support  
2 Applications  
– IEEE Standard 1149.1-1990 Standard Test  
Access Port and Boundary Scan Architecture  
Peripheral Interrupt Expansion (PIE) block that  
supports all peripheral interrupts  
Three 32-bit CPU timers  
Air conditioner outdoor unit  
Door operator drive control  
Inverter & motor control  
AC drive control module  
AC-input BLDC motor drive  
DC-input BLDC motor drive  
Independent 16-bit timer in each ePWM module  
On-chip memory  
– Flash, SARAM, Message RAM, OTP, CLA Data  
ROM, Boot ROM, Secure ROM available  
128-bit security key and lock  
– Protects secure memory blocks  
– Prevents firmware reverse-engineering  
Serial port peripherals  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
3 Description  
C2000™ 32-bit microcontrollers are optimized for processing, sensing, and actuation to improve closed-loop  
performance in real-time control applications such as industrial motor drives; solar inverters and digital power;  
electrical vehicles and transportation; motor control; and sensing and signal processing. The C2000 line includes  
the Premium performance MCUs and the Entry performance MCUs.  
The F2805x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly  
integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based  
code, and also provides a high level of analog integration.  
An internal voltage regulator allows for single-rail operation. Analog comparators with internal 6-bit references  
have been added and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed  
full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been optimized for  
low overhead and latency.  
The Analog Front End (AFE) contains up to seven comparators with up to three integrated DACs, one VREFOUT  
-
buffered DAC, up to four PGAs, and up to four digital filters. The PGAs can amplify the input signal in three  
discrete gain modes. The actual number of AFE peripherals will depend upon the TMS320F2805x device  
number. See Device Comparison for more details.  
To learn more about the C2000 MCUs, visit the C2000 Overview at www.ti.com/c2000.  
Device Information (1)  
PART NUMBER  
TMS320F28055PN  
PACKAGE  
LQFP (80)  
LQFP (80)  
LQFP (80)  
LQFP (80)  
LQFP (80)  
LQFP (80)  
BODY SIZE  
12.0 mm × 12.0 mm  
12.0 mm × 12.0 mm  
12.0 mm × 12.0 mm  
12.0 mm × 12.0 mm  
12.0 mm × 12.0 mm  
12.0 mm × 12.0 mm  
TMS320F28054PN  
TMS320F28053PN  
TMS320F28052PN  
TMS320F28051PN  
TMS320F28050PN  
(1) For more information on these devices, see Mechanical, Packaging, and Orderable Information.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
3.1 Functional Block Diagram  
Figure 3-1 shows a functional block diagram of the device.  
Z1/Z2 User OTP  
Secure  
M0  
SARAM 1K ´ 16  
L0 SARAM (2K ´ 16)  
(0-wait, Secure)  
CLA Data RAM2  
(0-wait)  
FLASH  
M1  
SARAM 1K ´ 16  
L1 DPSARAM (1K ´ 16)  
(0-wait, Secure)  
CLA Data RAM0  
28055, 28054: 64K ´ 16, 10 Sectors  
28053, 28052, 28051: 32K ´ 16, 5 Sectors  
(0-wait)  
Dual-  
Zone  
Security  
Module  
+
L2 DPSARAM (1K ´ 16)  
(0-wait, Secure)  
CLA Data RAM1  
28050: 16K ´ 16, 3 Sectors  
Boot ROM  
12K ´ 16  
Secure  
ECSL  
L3 DPSARAM (4K ´ 16)  
(0-wait, Secure)  
CLA Program RAM  
(0-wait)  
Nonsecure  
PUMP  
Secure ROM(A)  
2K ´ 16  
OTP/Flash Wrapper  
CLA Data ROM  
(0-wait)  
Secure  
PSWD  
(4K ´ 16)  
Memory Bus  
TRST  
TCK  
CLA +  
Message RAMs  
C28x CPU  
(60 MHz)  
TDI  
GPIO  
TMS  
Mux  
TDO  
GPIO  
CTRIPnOUT  
MUX  
X1  
X2  
COMP  
+
CPU Timer 0  
OSC1,  
OSC2,  
Ext,  
XRS  
Digital  
Filter  
COMPAn  
COMPBn  
CPU Timer 1  
POR/  
BOR  
PLL,  
LPM,  
WD  
VREG  
Program-  
mable  
Gain  
CPU Timer 2  
PIE  
(up to 96 interrupts)  
XCLKIN  
LPM Wakeup  
Amps  
ADC  
0-wait  
Result  
Regs  
GPIO  
Mux  
3 External Interrupts  
ADC  
3.75  
MSPS  
Memory Bus  
32-Bit Peripheral Bus  
(CLA-accessible)  
32-Bit Peripheral Bus  
(CLA-accessible)  
32-Bit  
Peripheral Bus  
16-Bit Peripheral Bus  
SCI-A,  
SCI-B, SCI-C  
(4L FIFO)  
eCAN-A  
SPI-A  
I2C-A  
eCAP  
eQEP  
ePWM1–ePWM7  
(4L FIFO)  
(4L FIFO)  
(32-mbox)  
GPIO MUX  
Copyright © 2017, Texas Instruments Incorporated  
A. Stores Secure Copy Code Functions on all devices.  
B. Not all peripheral pins are available at the same time due to multiplexing.  
Figure 3-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................2  
3.1 Functional Block Diagram...........................................3  
4 Revision History.............................................................. 4  
5 Device Comparison.........................................................5  
5.1 Related Products........................................................ 6  
6 Terminal Configuration and Functions..........................7  
6.1 Pin Diagram................................................................ 7  
6.2 Signal Descriptions..................................................... 8  
7 Specifications................................................................ 16  
7.1 Absolute Maximum Ratings (1) (2) .............................16  
7.2 ESD Ratings – Commercial...................................... 16  
7.3 ESD Ratings – Automotive....................................... 16  
7.4 Recommended Operating Conditions.......................17  
7.5 Power Consumption Summary................................. 18  
7.6 Electrical Characteristics (1) ..................................... 21  
7.7 Thermal Resistance Characteristics for PN  
Package...................................................................... 22  
7.8 Thermal Design Considerations................................22  
7.9 JTAG Debug Probe Connection Without Signal  
Buffering for the MCU..................................................23  
7.10 Parameter Information............................................ 24  
7.11 Test Load Circuit..................................................... 24  
7.12 Power Sequencing..................................................25  
7.13 Clock Specifications................................................28  
7.14 Flash Timing............................................................31  
8 Detailed Description......................................................33  
8.1 Overview...................................................................33  
8.2 Memory Maps........................................................... 44  
8.3 Register Map.............................................................51  
8.4 Device Emulation Registers......................................53  
8.5 VREG, BOR, POR.................................................... 55  
8.6 System Control......................................................... 57  
8.7 Low-power Modes Block...........................................65  
8.8 Interrupts...................................................................66  
8.9 Peripherals................................................................71  
9 Applications, Implementation, and Layout............... 141  
9.1 TI Reference Design...............................................141  
10 Device and Documentation Support........................142  
10.1 Getting Started......................................................142  
10.2 Device and Development Support Tool  
Nomenclature............................................................142  
10.3 Tools and Software............................................... 143  
10.4 Documentation Support........................................ 145  
10.5 Support Resources............................................... 146  
10.6 Trademarks...........................................................146  
10.7 Electrostatic Discharge Caution............................146  
10.8 Glossary................................................................146  
11 Mechanical, Packaging, and Orderable  
Information.................................................................. 147  
11.1 Packaging Information.......................................... 147  
4 Revision History  
Changes from June 24, 2020 to February 1, 2021 (from Revision D (June 2020) to Revision E  
(February 2021))  
Page  
Added Q1 Part Numbers................................................................................................................................ 0  
Table 5-1: Added Q1 Part Numbers....................................................................................................................5  
Figure 10-1: Added GPN information............................................................................................................. 142  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
5 Device Comparison  
Table 5-1 lists the features of the TMS320F2805x devices.  
Table 5-1. Device Comparison  
28054  
28052  
28054-Q1  
28054M (1)  
28054M-Q1  
28054F (1)  
28054F-Q1  
(60 MHz)  
28052-Q1  
28052M (1)  
28052M-Q1  
28052F (1)  
28052F-Q1  
(60 MHz)  
28055  
(60 MHz)  
28053  
(60 MHz)  
28051  
(60 MHz)  
28050  
(60 MHz)  
FEATURE  
80-pin PN  
LQFP  
80-pin PN  
LQFP  
80-pin PN  
LQFP  
80-pin PN  
LQFP  
80-pin PN  
LQFP  
80-pin PN  
LQFP  
Package type  
Instruction cycle  
CLA  
16.67 ns  
Yes  
16.67 ns  
No  
16.67 ns  
Yes  
16.67 ns  
No  
16.67 ns  
No  
16.67 ns  
No  
On-chip flash (16-bit word)  
64K  
64K  
32K  
32K  
32K  
16K  
10K (28054)  
8K (28054M)  
8K (28054F)  
10K (28052)  
8K (28052M)  
8K (28052F)  
On-chip SARAM (16-bit word)  
10K  
Yes  
10K  
Yes  
8K  
6K  
Dual-zone security for on-chip flash,  
SARAM, OTP, and secure ROM  
blocks  
Yes  
Yes  
Yes  
Yes  
Boot ROM (12K × 16)  
Yes  
1K  
Yes  
1K  
Yes  
1K  
Yes  
1K  
Yes  
1K  
Yes  
1K  
One-time programmable (OTP) ROM  
(16-bit word)  
ePWM channels  
eCAP inputs  
eQEP modules  
Watchdog timer  
MSPS  
14  
1
14  
1
14  
1
14  
1
14  
1
14  
1
1
1
1
1
1
1
Yes  
3.75  
267 ns  
16  
Yes  
3.75  
267 ns  
16  
Yes  
3.75  
267 ns  
16  
Yes  
3.75  
267 ns  
16  
Yes  
2
Yes  
2
Conversion time  
Channels  
500 ns  
16  
500 ns  
16  
12-Bit ADC  
Temperature  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
sensor  
Dual  
sample-and-hold  
PGA (Gain ≈ 3, 6, or 11)  
Fixed Gain Amplifier (Gain ≈ 3)  
Comparators  
4
3
4
4
3
4
4
3
3
4
3
3
7
7
7
7
7
6
Internal comparator reference DACs  
Buffered reference DAC  
32-Bit CPU timers  
I2C  
3
3
3
3
3
2
1
1
1
1
1
1
3
3
3
3
3
3
1
1
1
1
1
1
eCAN  
1
1
1
1
1
1
SPI  
1
1
1
1
1
1
SCI  
3
3
3
3
3
3
0-pin oscillators  
2
2
2
2
2
2
I/O pins (shared) GPIO  
External interrupts  
Supply voltage (nominal)  
T: 40°C to 105°C  
42  
3
42  
42  
3
42  
42  
3
42  
3
3
3.3 V  
3
3.3 V  
3.3 V  
Yes  
Yes  
3.3 V  
Yes  
Yes  
3.3 V  
Yes  
Yes  
3.3 V  
Yes  
Yes  
Yes  
Yes  
Temperature  
options  
S: –40°C to 125°C  
Yes (28054 only)  
Yes (28052 only)  
Q: –40°C to  
125°C(2)  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
(1) TMS320F2805xM devices are InstaSPIN-MOTION-enabled MCUs. TMS320F2805xF devices are InstaSPIN-FOC-enabled MCUs. On  
these devices, TI has secured Zone1 and allocated RAML0 to Zone1. Because of this, Zone1 and RAML0 are not available for  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
customer applications; only Zone2 is available. For more information, see Section 10.4 for a list of InstaSPIN Technical Reference  
Manuals.  
(2) The letter Q refers to AEC Q100 qualification for automotive applications.  
5.1 Related Products  
For information about similar products, see the following links:  
TMS320F2802x Microcontrollers  
The F2802x series offers the lowest pin-count and Flash memory size options. InstaSPIN-FOC™ versions are  
available.  
TMS320F2803x Microcontrollers  
The F2803x series increases the pin-count and memory size options. The F2803x series also introduces the  
parallel control law accelerator (CLA) option.  
TMS320F2805x Microcontrollers  
The F2805x series is similar to the F2803x series but adds on-chip programmable gain amplifiers (PGAs).  
InstaSPIN-FOC and InstaSPIN-MOTION™ versions are available.  
TMS320F2806x Microcontrollers  
The F2806x series is the first to include a floating-point unit (FPU). The F2806x series also increases the pin-  
count, memory size options, and the quantity of peripherals. InstaSPIN-FOC™ and InstaSPIN-MOTION™  
versions are available.  
TMS320F2807x Microcontrollers  
The F2807x series offers the most performance, largest pin counts, flash memory sizes, and peripheral options.  
The F2807x series includes the latest generation of accelerators, ePWM peripherals, and analog technology.  
TMS320F28004x Microcontrollers  
The F28004x series is a reduced version of the F2807x series with the latest generational enhancements.  
InstaSPIN-FOC and configurable logic block (CLB) versions are available.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
6 Terminal Configuration and Functions  
6.1 Pin Diagram  
Figure 6-1 shows the 80-pin PN Low-Profile Quad Flatpack pin assignments.  
GPIO11/EPWM6B/SCIRXDB  
GPIO5/EPWM3B/SPISIMOA/ECAP1  
GPIO4/EPWM3A  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
GPIO26/SCIRXDC  
TEST2  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
V
DDIO  
V
GPIO40/EPWM7A  
SS  
GPIO10/EPWM6A/ADCSOCBO  
GPIO3/EPWM2B/SPISOMIA  
GPIO2/EPWM2A  
GPIO9/EPWM5B/SCITXDB  
GPIO30/CANRXA/SCIRXDB/EPWM7A  
GPIO31/CANTXA/SCITXDB/EPWM7B  
GPIO27/SCITXDC  
PFCGND  
GPIO1/EPWM1B/CTRIPM1OUT  
GPIO0/EPWM1A  
V
ADCINB7 (op-amp)  
ADCINB0  
DDIO  
VREGENZ  
V
V
ADCINB6 (op-amp)  
ADCINB5  
SS  
DD  
GPIO34/CTRIPPFCOUT  
M2GND  
GPIO15/TZ1/CTRIPM1OUT/SCIRXDB  
GPIO13/TZ2  
ADCINB4 (op-amp)  
ADCINB3  
GPIO14/TZ3/CTRIPPFCOUT/SCITXDB  
GPIO20/EQEP1A/EPWM7A/CTRIPM1OUT  
GPIO21/EQEP1B/EPWM7B  
ADCINA7  
ADCINA6 (op-amp)  
V
V
REFLO  
SSA  
GPIO23/EQEP1I/SCIRXDB  
Figure 6-1. 2805x 80-Pin PN Low-Profile Quad Flatpack (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
6.2 Signal Descriptions  
Section 6.2.1 describes the signals. With the exception of the JTAG pins, the GPIO function is the default at  
reset, unless otherwise mentioned. The peripheral signals that are listed under them are alternate functions.  
Some peripheral functions may not be available in all devices. See Table 5-1 for details. Inputs are not 5-V  
tolerant. All GPIO pins are I/O/Z and have an internal pullup (PU), which can be selectively enabled or disabled  
on a per-pin basis. This feature only applies to the GPIO pins. The pullups on the PWM pins are not enabled at  
reset, except as noted in Section 6.2.1. The pullups on other GPIO pins are enabled upon reset.  
Note  
When the on-chip VREG is used, the GPIO19, GPIO34, GPIO35, GPIO36, GPIO37, and GPIO38 pins  
could glitch during power up. This potential glitch will finish before the boot mode pins are read and  
will not affect boot behavior. If glitching is unacceptable in an application, 1.8 V could be supplied  
externally. Alternatively, adding a current-limiting resistor (for example, 470 Ω) in series with these pins  
and any external driver could be considered to limit the potential for degradation to the pin and/or  
external circuitry. There is no power-sequencing requirement when using an external 1.8-V supply.  
However, if the 3.3-V transistors in the level-shifting output buffers of the I/O pins are powered prior to  
the 1.8-V transistors, it is possible for the output buffers to turn on, causing a glitch to occur on the pin  
during power up. To avoid this behavior, power the VDD pins prior to or simultaneously with the VDDIO  
pins, ensuring that the VDD pins have reached 0.7 V before the VDDIO pins reach 0.7 V.  
6.2.1 Signal Descriptions (1)  
TERMINAL  
I/O/Z  
DESCRIPTION  
PN  
PIN NO.  
NAME  
JTAG  
JTAG test reset with internal pulldown (PD). TRST, when driven high, gives the scan system  
control of the operations of the device. If this signal is not connected or driven low, the device  
operates in its functional mode, and the test reset signals are ignored. NOTE: TRST is an  
active high test pin and must be maintained low at all times during normal device operation. An  
external pulldown resistor is required on this pin. The value of this resistor should be based on  
drive strength of the debugger pods applicable to the design. A 2.2-kΩ resistor generally offers  
adequate protection. Because the value of the resistor is application-specific, TI recommends  
that each target board be validated for proper operation of the debugger and the application.  
(↓)  
TRST  
9
I
See  
GPIO38  
TCK  
TMS  
TDI  
I
See GPIO38. JTAG test clock with internal pullup. (↑)  
See  
GPIO36  
See GPIO36. JTAG test-mode select (TMS) with internal pullup. This serial control input is  
clocked into the TAP controller on the rising edge of TCK.. (↑)  
I
I
See  
GPIO35  
See GPIO35. JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected  
register (instruction or data) on a rising edge of TCK. (↑)  
See  
GPIO37  
See GPIO37. JTAG scan out, test data output (TDO). The contents of the selected register  
(instruction or data) are shifted out of TDO on the falling edge of TCK. (8 mA drive)  
TDO  
O/Z  
FLASH  
TEST2  
39  
I/O  
Test Pin. Reserved for TI. Must be left unconnected.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
TERMINAL  
NAME  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
I/O/Z  
DESCRIPTION  
PN  
PIN NO.  
CLOCK  
See GPIO18. Output clock derived from SYSCLKOUT. XCLKOUT is either the same  
frequency, one-half the frequency, or one-fourth the frequency of SYSCLKOUT. The value of  
XCLKOUT is controlled by bits 1:0 (XCLKOUTDIV) in the XCLK register. At reset, XCLKOUT =  
SYSCLKOUT/4. The XCLKOUT signal can be turned off by setting XCLKOUTDIV to 3. The  
mux control for GPIO18 must also be set to XCLKOUT for this signal to propogate to the pin.  
See  
GPIO18  
XCLKOUT  
O/Z  
See GPIO19 and GPIO38. External oscillator input. Pin source for the clock is controlled by the  
XCLKINSEL bit in the XCLK register, GPIO38 is the default selection. This pin feeds a clock  
from an external 3.3-V oscillator. In this case, the X1 pin, if available, must be tied to GND and  
the on-chip crystal oscillator must be disabled through bit 14 in the CLKCTL register. If a  
crystal/resonator is used, the XCLKIN path must be disabled by bit 13 in the CLKCTL register.  
NOTE: Designs that use the GPIO38/TCK/XCLKIN pin to supply an external clock for normal  
device operation may need to incorporate some hooks to disable this path during debug using  
the JTAG connector. This action is to prevent contention with the TCK signal, which is active  
during JTAG debug sessions. The zero-pin internal oscillators may be used during this time to  
clock the device.  
See  
GPIO19  
and  
XCLKIN  
I
GPIO38  
On-chip 1.8-V crystal-oscillator input. To use this oscillator, a quartz crystal or a ceramic  
resonator must be connected across X1 and X2. In this case, the XCLKIN path must be  
disabled by bit 13 in the CLKCTL register. If this pin is not used, this pin must be tied to GND.  
(I)  
X1  
X2  
52  
51  
I
On-chip crystal-oscillator output. A quartz crystal or a ceramic resonator must be connected  
across X1 and X2. If X2 is not used, X2 must be left unconnected. (O)  
O
RESET  
Device Reset (in) and Watchdog Reset (out). These devices have a built-in power-on reset  
(POR) and brownout reset (BOR) circuitry. During a power-on or brownout condition, this pin is  
driven low by the device. An external circuit may also drive this pin to assert a device reset.  
This pin is also driven low by the MCU when a watchdog reset occurs. During watchdog reset,  
the XRS pin is driven low for the watchdog reset duration of 512 OSCCLK cycles. A resistor  
with a value from 2.2 kΩ to 10 kΩ should be placed between XRS and VDDIO. If a capacitor is  
placed between XRS and VSS for noise filtering, it should be 100 nF or smaller. These values  
will allow the watchdog to properly drive the XRS pin to VOL within 512 OSCCLK cycles when  
the watchdog reset is asserted. Regardless of the source, a device reset causes the device to  
terminate execution. The program counter points to the address contained at the location  
0x3F FFC0. When reset is deactivated, execution begins at the location designated by the  
program counter. The output buffer of this pin is an open-drain with an internal pullup. (↑) If this  
pin is driven by an external device, it should be done using an open-drain device.  
XRS  
8
I/OD  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
TERMINAL  
I/O/Z  
DESCRIPTION  
PN  
PIN NO.  
NAME  
ADC, COMPARATOR, ANALOG I/O  
ADCINA7  
24  
23  
I
I
ADC Group A, Channel 7 input  
ADC Group A, Channel 6 input  
ADCINA6  
(op-amp)  
ADCINA5  
ADCINA4  
10  
11  
I
I
ADC Group A, Channel 5 input  
ADC Group A, Channel 4 input  
ADCINA3  
(op-amp)  
12  
13  
14  
I
I
I
ADC Group A, Channel 3 input  
ADC Group A, Channel 2 input  
ADC Group A, Channel 1 input  
ADCINA2  
ADCINA1  
(op-amp)  
ADCINA0  
VREFOUT  
ADC Group A, Channel 0 input  
18  
I
Voltage Reference out from buffered DAC  
ADC External Reference – used when in ADC external reference mode and used as VREFOUT  
reference  
VREFHI  
19  
31  
I
I
ADCINB7  
(op-amp)  
ADC Group B, Channel 7 input  
ADCINB6  
(op-amp)  
29  
28  
26  
I
I
I
ADC Group B, Channel 6 input  
ADC Group B, Channel 5 input  
ADC Group B, Channel 4 input  
ADCINB5  
ADCINB4  
(op-amp)  
ADCINB3  
ADCINB2  
25  
16  
I
I
ADC Group B, Channel 3 input  
ADC Group B, Channel 2 input  
ADCINB1  
(op-amp)  
17  
I
ADC Group B, Channel 1 input  
ADCINB0  
VREFLO  
30  
22  
I
I
ADC Group B, Channel 0 input  
ADC Low Reference (always tied to ground)  
CPU AND I/O POWER  
VDDA  
VSSA  
20  
21  
6
Analog Power Pin. Tie with a 2.2-μF capacitor (typical) close to the pin.  
Analog Ground Pin  
CPU and Logic Digital Power Pins. When using internal VREG, place one 1.2-µF capacitor  
between each VDD pin and ground. Higher value capacitors may be used.  
VDD  
54  
73  
38  
Digital I/O Buffers and Flash Memory Power Pin. Single supply source when VREG is enabled.  
Place a decoupling capacitor on each pin. The exact value should be determined by the  
system voltage regulation solution.  
VDDIO  
70  
7
37  
53  
72  
15  
27  
32  
VSS  
Digital Ground Pins  
M1GND  
M2GND  
PFCGND  
Ground pin for amplifier (channels A1, A3, B1)  
Ground pin for amplifier (channels A6, B4, B6)  
Ground pin for amplifier (channel B7)  
VOLTAGE REGULATOR CONTROL SIGNAL  
VREGENZ  
71  
I
Internal VREG Enable/Disable – pull low to enable VREG, pull high to disable VREG  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
TERMINAL  
NAME  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
I/O/Z  
DESCRIPTION  
PN  
PIN NO.  
GPIO AND PERIPHERAL SIGNALS (2)  
General-purpose input/output 0  
Enhanced PWM1 Output A  
Reserved  
GPIO0  
I/O/Z  
O
EPWM1A  
Reserved  
Reserved  
GPIO1  
69  
68  
67  
66  
63  
62  
50  
49  
45  
36  
65  
Reserved  
I/O/Z  
O
General-purpose input/output 1  
Enhanced PWM1 Output B  
Reserved  
EPWM1B  
Reserved  
CTRIPM1OUT  
GPIO2  
O
CTRIPM1 CTRIPxx output  
General-purpose input/output 2  
Enhanced PWM2 Output A  
Reserved  
I/O/Z  
O
EPWM2A  
Reserved  
Reserved  
GPIO3  
Reserved  
I/O/Z  
O
General-purpose input/output 3  
Enhanced PWM2 Output B  
SPI-A slave out, master in  
Reserved  
EPWM2B  
SPISOMIA  
Reserved  
GPIO4  
I/O  
I/O/Z  
O
General-purpose input/output 4  
Enhanced PWM3 output A  
Reserved  
EPWM3A  
Reserved  
Reserved  
GPIO5  
Reserved  
I/O/Z  
O
General-purpose input/output 5  
Enhanced PWM3 output B  
SPI-A slave in, master out  
Enhanced Capture input/output 1  
General-purpose input/output 6  
Enhanced PWM4 output A  
External ePWM sync pulse input  
External ePWM sync pulse output  
General-purpose input/output 7  
Enhanced PWM4 output B  
SCI-A receive data  
EPWM3B  
SPISIMOA  
ECAP1  
I/O  
I/O  
I/O/Z  
O
GPIO6  
EPWM4A  
EPWMSYNCI  
EPWMSYNCO  
GPIO7  
I
O
I/O/Z  
O
EPWM4B  
SCIRXDA  
Reserved  
GPIO8  
I
Reserved  
I/O/Z  
O
General-purpose input/output 8  
Enhanced PWM5 output A  
Reserved  
EPWM5A  
Reserved  
ADCSOCAO  
GPIO9  
O
ADC start-of-conversion A  
General-purpose input/output 9  
Enhanced PWM5 output B  
SCI-B transmit data  
I/O/Z  
O
EPWM5B  
SCITXDB  
Reserved  
GPIO10  
O
Reserved  
I/O/Z  
O
General-purpose input/output 10  
Enhanced PWM6 output A  
Reserved  
EPWM6A  
Reserved  
ADCSOCBO  
O
ADC start-of-conversion B  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
TERMINAL  
I/O/Z  
DESCRIPTION  
PN  
PIN NO.  
NAME  
GPIO11  
I/O/Z  
General-purpose input/output 11  
Enhanced PWM6 output B  
SCI-B receive data  
EPWM6B  
SCIRXDB  
Reserved  
GPIO12  
O
61  
48  
76  
77  
I
Reserved  
I/O/Z  
General-purpose input/output 12  
Trip Zone input 1  
TZ1  
I
O
CTRIPM1OUT  
SCITXDA  
Reserved  
GPIO13  
CTRIPM1 CTRIPxx output  
SCI-A transmit data  
Reserved  
O
I/O/Z  
I
General-purpose input/output 13  
Trip zone input 2  
TZ2  
Reserved  
Reserved  
GPIO14  
Reserved  
Reserved  
I/O/Z  
I
General-purpose input/output 14  
Trip zone input 3  
TZ3  
CTRIPPFCOUT  
SCITXDB  
Reserved  
GPIO15  
O
CTRIPPFC output  
O
SCI-B transmit data  
Reserved  
I/O/Z  
I
General-purpose input/output 15  
Trip zone input 1  
TZ1  
CTRIPM1OUT  
SCIRXDB  
Reserved  
GPIO16  
75  
47  
44  
O
CTRIPM1 CTRIPxx output  
SCI-B receive data  
I
Reserved  
I/O/Z  
I/O  
I/O  
I
General-purpose input/output 16  
SPI-A slave in, master out  
Enhanced QEP1 strobe  
Trip Zone input 2  
SPISIMOA  
EQEP1S  
TZ2  
GPIO17  
I/O/Z  
I/O  
I/O  
I
General-purpose input/output 17  
SPI-A slave out, master in  
Enhanced QEP1 index  
Trip zone input 3  
SPISOMIA  
EQEP1I  
TZ3  
CTRIPPFCOUT  
GPIO18  
O
CTRIPPFC output  
I/O/Z  
I/O  
O
General-purpose input/output 18  
SPI-A clock input/output  
SCI-B transmit data  
SPICLKA  
SCITXDB  
XCLKOUT  
43  
O/Z  
Output clock derived from SYSCLKOUT. XCLKOUT is either the same frequency, one-half the  
frequency, or one-fourth the frequency of SYSCLKOUT. The value of XCLKOUT is controlled  
by bits 1:0 (XCLKOUTDIV) in the XCLK register. At reset, XCLKOUT = SYSCLKOUT/4. The  
XCLKOUT signal can be turned off by setting XCLKOUTDIV to 3. The mux control for GPIO18  
must also be set to XCLKOUT for this signal to propogate to the pin.  
GPIO19  
I/O/Z  
I
General-purpose input/output 19  
XCLKIN  
External Oscillator Input. The path from this pin to the clock block is not gated by the mux  
function of this pin. Care must be taken not to enable this path for clocking if this path is being  
used for the other periperhal functions  
55  
SPISTEA  
SCIRXDB  
ECAP1  
I/O  
I
SPI-A slave transmit enable input/output  
SCI-B receive data  
I/O  
Enhanced Capture input/output 1  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
TERMINAL  
NAME  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
I/O/Z  
DESCRIPTION  
PN  
PIN NO.  
GPIO20  
I/O/Z  
General-purpose input/output 20. Internal pullup enabled by default.  
Enhanced QEP1 input A  
Enhanced PWM7 output A  
CTRIPM1 CTRIPxx output  
General-purpose input/output 21. Internal pullup enabled by default.  
Enhanced QEP1 input B  
Enhanced PWM7 output B  
Reserved  
EQEP1A  
EPWM7A  
CTRIPM1OUT  
GPIO21  
I
78  
79  
1
O
O
I/O/Z  
EQEP1B  
EPWM7B  
Reserved  
GPIO22  
I
O
I/O/Z  
General-purpose input/output 22  
Enhanced QEP1 strobe  
Reserved  
EQEP1S  
Reserved  
SCITXDB  
GPIO23  
I/O  
O
SCI-B transmit data  
I/O/Z  
General-purpose input/output 23  
Enhanced QEP1 index  
EQEP1I  
I/O  
80  
4
Reserved  
SCIRXDB  
GPIO24  
Reserved  
I
SCI-B receive data  
I/O/Z  
General-purpose input/output 24. Internal pullup enabled by default.  
Enhanced Capture input/output 1  
Enhanced PWM7 output A  
Reserved  
ECAP1  
I/O  
EPWM7A  
Reserved  
GPIO25  
O
I/O/Z  
General-purpose input/output 25  
Reserved  
Reserved  
Reserved  
Reserved  
GPIO26  
46  
40  
33  
42  
Reserved  
Reserved  
I/O/Z  
General-purpose input/output 26  
Reserved  
Reserved  
SCIRXDC  
Reserved  
GPIO27  
I
SCI-C receive data  
Reserved  
I/O/Z  
General-purpose input/output 27  
Reserved  
Reserved  
SCITXDC  
Reserved  
GPIO28  
O
SCI-C transmit data  
Reserved  
I/O/Z  
General-purpose input/output 28  
SCI-A receive data  
SCIRXDA  
SDAA  
I
I/OD  
I2C data open-drain bidirectional port  
Trip zone input 2  
TZ2  
I
GPIO29  
I/O/Z  
General-purpose input/output 29  
SCI-A transmit data  
SCITXDA  
SCLA  
O
41  
35  
I/OD  
I2C clock open-drain bidirectional port  
Trip zone input 3  
TZ3  
I
CTRIPPFCOUT  
GPIO30  
O
CTRIPPFC output  
I/O/Z  
General-purpose input/output 30. Internal pullup enabled by default.  
CAN receive  
CANRXA  
SCIRXDB  
EPWM7A  
I
I
SCI-B receive data  
O
Enhanced PWM7 output A  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
TERMINAL  
I/O/Z  
DESCRIPTION  
PN  
PIN NO.  
NAME  
GPIO31  
I/O/Z  
O
General-purpose input/output 31. Internal pullup enabled by default.  
CAN transmit  
CANTXA  
SCITXDB  
EPWM7B  
GPIO32  
34  
2
O
SCI-B transmit data  
O
Enhanced PWM7 output B  
I/O/Z  
I/OD  
I
General-purpose input/output 32  
I2C data open-drain bidirectional port  
Enhanced PWM external sync pulse input  
Enhanced QEP1 strobe  
SDAA  
EPWMSYNCI  
EQEP1S  
GPIO33  
I/O  
I/O/Z  
I/OD  
O
General-Purpose Input/Output 33  
I2C clock open-drain bidirectional port  
Enhanced PWM external synch pulse output  
Enhanced QEP1 index  
SCLA  
3
EPWMSYNCO  
EQEP1I  
I/O  
I/O/Z  
GPIO34  
General-Purpose Input/Output 34  
Reserved  
Reserved  
Reserved  
CTRIPPFCOUT  
GPIO35  
74  
Reserved  
O
CTRIPPFC output  
I/O/Z  
I
General-Purpose Input/Output 35  
TDI  
JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register  
(instruction or data) on a rising edge of TCK  
59  
60  
Reserved  
Reserved  
Reserved  
GPIO36  
TMS  
Reserved  
Reserved  
I/O/Z  
I
Reserved  
General-Purpose Input/Output 36  
JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the  
TAP controller on the rising edge of TCK.  
Reserved  
Reserved  
Reserved  
GPIO37  
TDO  
Reserved  
Reserved  
Reserved  
I/O/Z  
O/Z  
General-Purpose Input/Output 37  
JTAG scan out, test data output (TDO). The contents of the selected register (instruction or  
data) are shifted out of TDO on the falling edge of TCK (8 mA drive)  
58  
57  
Reserved  
Reserved  
Reserved  
GPIO38  
Reserved  
Reserved  
Reserved  
I/O/Z  
General-Purpose Input/Output 38  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
TERMINAL  
NAME  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
I/O/Z  
DESCRIPTION  
PN  
PIN NO.  
I
External Oscillator Input. The path from this pin to the clock block is not gated by the mux  
function of this pin. Care must be taken to not enable this path for clocking if this path is being  
used for the other functions.  
XCLKIN  
TCK  
I
JTAG test clock with internal pullup  
Reserved  
Reserved  
Reserved  
GPIO39  
Reserved  
Reserved  
Reserved  
I/O/Z  
General-Purpose Input/Output 39  
Reserved  
SCIRXDC  
CTRIPPFCOUT  
GPIO40  
Reserved  
56  
64  
5
I
SCI-C receive data  
O
CTRIPPFC output  
I/O/Z  
O
General-Purpose Input/Output 40. Internal pullup enabled by default.  
EPWM7A  
Reserved  
Reserved  
GPIO42  
Enhanced PWM7 output A  
Reserved  
Reserved  
I/O/Z  
O
General-Purpose Input/Output 42. Internal pullup enabled by default.  
Enhanced PWM7 output B  
EPWM7B  
SCITXDC  
CTRIPM1OUT  
O
SCI-C transmit data  
O
CTRIPM1 CTRIPxx output  
(1) I = Input, O = Output, Z = High Impedance, OD = Open Drain, ↑ = Pullup, ↓ = Pulldown  
(2) The GPIO function (shown in bold italics) is the default at reset. The peripheral signals that are listed under them are alternate  
functions. For JTAG pins that have the GPIO functionality multiplexed, the input path to the GPIO block is always valid. The output  
path from the GPIO block and the path to the JTAG block from a pin is enabled or disabled based on the condition of the TRST signal.  
For details, see the System Control and Interrupts chapter of the TMS320x2805x Technical Reference Manual.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings (1) (2)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–20  
MAX  
4.6  
2.5  
4.6  
4.6  
2.5  
4.6  
20  
UNIT  
VDDIO (I/O and flash) with respect to VSS  
Supply voltage  
V
V
V
V
VDD with respect to VSS  
Analog voltage  
Input voltage  
Output voltage  
VDDA with respect to VSSA  
VIN (3.3 V)  
VIN (X1)  
VO  
(3)  
Digital input (per pin), IIK (VIN < VSS or VIN > VDDIO  
Analog input (per pin), IIKANALOG  
)
–20  
–20  
20  
20  
Input clamp current  
(VIN < VSSA or VIN > VDDA  
)
mA  
Total for all inputs, IIKTOTAL  
(VIN < VSS/VSSA or VIN > VDDIO/VDDA  
)
Output clamp current  
Junction temperature(4)  
Storage temperature(4)  
IOK (VO < 0 or VO > VDDIO  
)
–20  
–40  
–65  
20  
150  
150  
mA  
°C  
TJ  
Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Section 7.4 is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) Continuous clamp current per pin is ±2 mA.  
(4) Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device  
life. For additional information, see the Semiconductor and IC Package Thermal Metrics Application Report.  
7.2 ESD Ratings – Commercial  
VALUE  
UNIT  
TMS320F2805x, TMS320F2805xM, TMS320F2805xF in 80-pin PN package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge (ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101 or ANSI/ESDA/JEDEC JS-002(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 ESD Ratings – Automotive  
VALUE  
UNIT  
TMS320F2805x, TMS320F2805xM, TMS320F2805xF in 80-pin PN package  
Human body model (HBM), per  
AEC Q100-002(1)  
All pins  
All pins  
±2000  
±500  
±750  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM),  
per AEC Q100-011  
Corner pins on 80-pin PN:  
1, 20, 21, 40, 41, 60, 61, 80  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
 
 
 
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
7.4 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
Device supply voltage, I/O, VDDIO  
2.97  
3.3  
3.63  
V
Device supply voltage CPU, VDD (When internal VREG is  
disabled and 1.8 V is supplied externally)  
1.71  
2.97  
1.8  
1.995  
3.63  
V
Supply ground, VSS  
0
3.3  
0
V
V
Analog supply voltage, VDDA  
Analog ground, VSSA  
V
Device clock frequency (system clock)  
High-level input voltage, VIH (3.3 V)  
Low-level input voltage, VIL (3.3 V)  
2
2
60  
MHz  
V
VDDIO + 0.3  
VSS – 0.3  
0.8  
–4  
–8  
4
V
All GPIO pins  
Group 2(1)  
All GPIO pins  
Group 2(1)  
T version  
High-level output source current, VOH = VOH(MIN) , IOH  
Low-level output sink current, VOL = VOL(MAX), IOL  
mA  
mA  
8
–40  
–40  
105  
125  
S version  
Junction temperature, TJ  
°C  
Q version  
(AEC Q100 qualification)  
–40  
125  
(1) Group 2 pins are as follows: GPIO16, GPIO17, GPIO18, GPIO28, GPIO29, GPIO30, GPIO31, GPIO36, GPIO37  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
7.5 Power Consumption Summary  
Section 7.5.1 lists the current consumption at 60-MHz SYSCLKOUT.  
7.5.1 TMS320F2805x Current Consumption at 60-MHz SYSCLKOUT  
VREG ENABLED  
VREG DISABLED  
(1)  
(2)  
(1)  
(2)  
MODE  
TEST CONDITIONS  
IDDIO  
TYP(3)  
IDDA  
TYP(3)  
IDD  
TYP(3)  
IDDIO  
IDDA  
MAX  
MAX  
MAX  
TYP(3)  
MAX  
TYP(3)  
MAX  
The following peripheral clocks are  
enabled:  
ePWM1, ePWM2, ePWM3,  
ePWM4, ePWM5, ePWM6,  
ePWM7  
eCAP1  
eQEP1  
eCAN-A  
CLA  
SCI-A, SCI-B, SCI-C  
SPI-A  
Operational  
(flash)  
ADC  
95 mA(7)  
132 mA  
40 mA  
60 mA  
85 mA(7)  
110 mA  
14 mA  
25 mA  
40 mA  
60 mA  
I2C-A  
COMPA1, COMPA3,  
COMPB1, COMPB7  
CPU-Timer 0,  
CPU-Timer 1,  
CPU-Timer 2  
All PWM pins are toggled at 60 kHz.  
All I/O pins are left unconnected.(4)  
(6)  
Code is running out of flash with  
2 wait-states.  
XCLKOUT is turned off.  
Flash is powered down.  
IDLE  
XCLKOUT is turned off.  
All peripheral clocks are turned off.  
14 mA  
9 mA  
27 mA  
15 mA  
15 μA  
15 μA  
15 μA  
25 μA  
25 μA  
25 μA  
14 mA  
9 mA  
27 mA  
15 mA  
120 μA  
120 μA  
24 μA  
450 μA  
450 μA  
15 μA  
15 μA  
15 μA  
25 μA  
25 μA  
25 μA  
Flash is powered down.  
Peripheral clocks are off.  
STANDBY  
HALT  
Flash is powered down.  
Peripheral clocks are off.  
Input clock is disabled.(5)  
300 μA  
50 μA  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) To realize the IDDA currents shown for IDLE, STANDBY, and HALT, clock to the ADC module must be turned off explicitly by writing to  
the PCLKCR0 register.  
(3) The TYP numbers are applicable over room temperature and nominal voltage.  
(4) The following is done in a loop:  
Data is continuously transmitted out of SPI-A, SCI-A, SCI-B, SCI-C, eCAN-A, and I2C-A ports.  
The hardware multiplier is exercised.  
Watchdog is reset.  
ADC is performing continuous conversion.  
GPIO17 is toggled.  
(5) If a quartz crystal or ceramic resonator is used as the clock source, the HALT mode shuts down the on-chip crystal oscillator.  
(6) CLA is continuously performing polynomial calculations.  
(7) For F2805x devices that do not have CLA, subtract the IDD current number for CLA (see Table 7-1) from the IDD (VREG disabled)/IDDIO  
(VREG enabled) current numbers listed in Section 7.5.1 for operational mode.  
Note  
The peripheral-I/O multiplexing implemented in the device prevents simultaneous use of all available  
peripherals because more than one peripheral function may share an I/O pin. It is, however, possible  
to turn on the clocks to all the peripherals at the same time, although such a configuration is not  
useful. If the clocks to all the peripherals are turned on at the same time, the current drawn by the  
device will be more than the numbers specified in the current consumption tables.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
 
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
7.5.2 Reducing Current Consumption  
The 2805x devices incorporate a method to reduce the device current consumption. Because each peripheral  
unit has an individual clock-enable bit, significant reduction in current consumption can be achieved by turning  
off the clock to any peripheral module that is not used in a given application. Furthermore, any one of the three  
low-power modes could be taken advantage of to reduce the current consumption even further. Table 7-1  
indicates the typical reduction in current consumption achieved by turning off the clocks.  
Table 7-1. Typical Current Consumption by Various  
Peripherals (at 60 MHz) (1)  
PERIPHERAL  
MODULE(3)  
IDD CURRENT  
REDUCTION (mA)  
ADC  
2(2)  
I2C  
3
ePWM  
2
eCAP  
2
eQEP  
2
SCI  
2
SPI  
COMP/DAC  
PGA  
2
1
2
CPU-TIMER  
Internal zero-pin oscillator  
CAN  
1
0.5  
2.5  
20  
CLA  
(1) All peripheral clocks (except CPU Timer clock) are disabled  
upon reset. Writing to or reading from peripheral registers is  
possible only after the peripheral clocks are turned on.  
(2) This number represents the current drawn by the digital portion  
of the ADC module. Turning off the clock to the ADC module  
results in the elimination of the current drawn by the analog  
portion of the ADC (IDDA) as well.  
(3) For peripherals with multiple instances, the current quoted is per  
module. For example, the 2 mA value quoted for ePWM is for  
one ePWM module.  
Note  
IDDIO current consumption is reduced by 15 mA (typical) when XCLKOUT is turned off.  
Note  
The baseline IDD current (current when the core is executing a dummy loop with no peripherals  
enabled) is 40 mA, typical. To arrive at the IDD current for a given application, the current-drawn by the  
peripherals (enabled by that application) must be added to the baseline IDD current.  
Following are other methods to reduce power consumption further:  
The flash module may be powered down if code is run off SARAM. This method results in a current reduction  
of 18 mA (typical) in the VDD rail and 13 mA (typical) in the VDDIO rail.  
Savings in IDDIO may be realized by disabling the pullups on pins that assume an output function.  
To realize the lowest VDDA current consumption in a low-power mode, see the respective analog chapter of  
the TMS320x2805x Technical Reference Manual to ensure each module is powered down as well.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
Power savings can be achieved by powering down the flash. This must be done by code running off RAM  
(not flash).  
7.5.3 Current Consumption Graphs (VREG Enabled)  
Operational Current vs Frequency  
140  
120  
100  
80  
60  
40  
20  
0
0
10  
20  
30  
40  
50  
60  
70  
SYSCLKOUT (MHz)  
IDDIO IDDA  
Figure 7-1. Typical Operational Current Versus Frequency (F2805x)  
Operational Power vs Frequency  
500  
450  
400  
350  
300  
250  
200  
0
10  
20  
30  
40  
50  
60  
70  
SYSCLKOUT (MHz)  
Figure 7-2. Typical Operational Power Versus Frequency (F2805x)  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
Typical CLA operational current vs SYSCLKOUT  
25  
20  
15  
10  
5
0
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
SYSCLKOUT (MHz)  
Figure 7-3. Typical CLA Operational Current Versus SYSCLKOUT  
7.6 Electrical Characteristics (1)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.4  
TYP  
MAX UNIT  
IOH = IOH MAX  
IOH = 50 μA  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
V
VDDIO – 0.2  
IOL = IOL MAX  
0.4  
–205  
–375  
V
All GPIO pins  
XRS pin  
–80 –140  
Pin with pullup  
VDDIO = 3.3 V, VIN = 0 V  
enabled  
Input current  
(low level)  
–230 –300  
IIL  
μA  
Pin with pullup  
disabled  
VDDIO = 3.3 V, VIN = 0 V  
VDDIO = 3.3 V, VIN = VDDIO  
VDDIO = 3.3 V, VIN = VDDIO  
VO = VDDIO or 0 V  
±2  
±2  
80  
Pin with pulldown  
disabled  
Input current  
(high level)  
IIH  
μA  
Pin with pulldown  
enabled  
28  
50  
Output current, pullup or pulldown  
disabled  
IOZ  
CI  
±2 μA  
Input capacitance  
2
2.78  
35  
pF  
V
VDDIO BOR trip point  
VDDIO BOR hysteresis  
Falling VDDIO  
mV  
Supervisor reset release delay  
time  
Time after BOR/POR/OVR event is removed to XRS  
release  
400  
800 μs  
V
VREG VDD output  
Internal VREG on  
1.9  
(1) When the on-chip VREG is used, its output is monitored by the POR/BOR circuit, which will reset the device should the core voltage  
(VDD) go out of range.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
7.7 Thermal Resistance Characteristics for PN Package  
°C/W(1)  
14.2  
21.9  
49.9  
38.3  
36.7  
34.4  
0.8  
AIR FLOW (lfm)(2)  
JC  
JB  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
0
0
0
150  
250  
500  
0
JA  
(High k PCB)  
Junction-to-free air thermal resistance  
Junction-to-package top  
1.18  
1.34  
1.62  
21.6  
20.7  
20.5  
20.1  
150  
250  
500  
0
PsiJT  
150  
250  
500  
PsiJB  
Junction-to-board  
(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
7.8 Thermal Design Considerations  
Based on the end application design and operational profile, the IDD and IDDIO currents could vary. Systems that  
exceed the recommended maximum power dissipation in the end product may require additional thermal  
enhancements. Ambient temperature (TA) varies with the end application and product design. The critical factor  
that affects reliability and functionality is TJ, the junction temperature, not the ambient temperature. Hence, care  
should be taken to keep TJ within the specified limits. Tcase should be measured to estimate the operating  
junction temperature TJ. Tcase is normally measured at the center of the package top-side surface. The  
Semiconductor and IC Package Thermal Metrics Application Report helps to understand the thermal metrics and  
definitions.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
7.9 JTAG Debug Probe Connection Without Signal Buffering for the MCU  
Figure 7-4 shows the connection between the MCU and JTAG header for a single-processor configuration. If the  
distance between the JTAG header and the MCU is greater than 6 inches, the emulation signals must be  
buffered. If the distance is less than 6 inches, buffering is typically not needed. Figure 7-4 shows the simpler, no-  
buffering situation. For the pullup and pulldown resistor values, see Section 6.2.  
6 inches or less  
VDDIO  
VDDIO  
13  
14  
2
5
EMU0  
EMU1  
TRST  
TMS  
PD  
4
6
8
TRST  
TMS  
TDI  
GND  
1
GND  
GND  
GND  
GND  
3
TDI  
7
10  
12  
TDO  
TCK  
TDO  
11  
9
TCK  
TCK_RET  
MCU  
JTAG Header  
A. See Figure 8-42 for JTAG/GPIO multiplexing.  
Figure 7-4. JTAG Debug Probe Connection Without Signal Buffering for the MCU  
Note  
The 2805x devices do not have EMU0/EMU1 pins. For designs that have a JTAG Header onboard,  
the EMU0/EMU1 pins on the header must be tied to VDDIO through a 4.7-kΩ (typical) resistor.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
7.10 Parameter Information  
7.10.1 Timing Parameter Symbology  
Timing parameter symbols used are created in accordance with JEDEC Standard 100. To shorten the symbols,  
some of the pin names and other related terminology have been abbreviated as follows:  
Lowercase subscripts and their  
meanings:  
Letters and symbols and their  
meanings:  
a
c
d
f
access time  
cycle time (period)  
delay time  
H
L
High  
Low  
V
X
Z
Valid  
fall time  
Unknown, changing, or don't care level  
High impedance  
h
r
hold time  
rise time  
su  
t
setup time  
transition time  
valid time  
v
w
pulse duration (width)  
7.10.2 General Notes on Timing Parameters  
All output signals from the 28x devices (including XCLKOUT) are derived from an internal clock such that all  
output transitions for a given half-cycle occur with a minimum of skewing relative to each other.  
The signal combinations shown in the following timing diagrams may not necessarily represent actual cycles. For  
actual cycle examples, see the appropriate cycle description section of this document.  
7.11 Test Load Circuit  
This test load circuit is used to measure all switching characteristics provided in this document.  
Tester Pin Electronics  
Data Sheet Timing Reference Point  
W
3.5 nH  
Output  
Under  
Test  
42  
Transmission Line  
(A)  
Z0 = 50 W  
Device Pin(B)  
4.0 pF  
1.85 pF  
A. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin.  
B. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects  
must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line  
effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer)  
from the data sheet timing.  
Figure 7-5. 3.3-V Test Load Circuit  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
7.12 Power Sequencing  
There is no power sequencing requirement needed to ensure the device is in the proper state after reset or to  
prevent the I/Os from glitching during power up or power down (GPIO19, GPIO34 to GPIO38 do not have glitch-  
free I/Os). No voltage larger than a diode drop (0.7 V) above VDDIO should be applied to any digital pin (for  
analog pins, this value is 0.7 V above VDDA) before powering up the device. Voltages applied to pins on an  
unpowered device can bias internal p-n junctions in unintended ways and produce unpredictable results.  
VDDIO, VDDA  
(3.3 V)  
VDD (1.8 V)  
INTOSC1  
tINTOSCST  
X1/X2  
tOSCST  
(B)  
(A)  
XCLKOUT  
User-code dependent  
t
w(RSL1)  
XRS(D)  
Address/data valid, internal boot-ROM code execution phase  
Address/Data/  
Control  
(Internal)  
User-code execution phase  
User-code dependent  
t
d(EX)  
(C)  
h(boot-mode)  
t
Boot-Mode  
Pins  
GPIO pins as input  
Peripheral/GPIO function  
Boot-ROM execution starts  
(E)  
Based on boot code  
GPIO pins as input (state depends on internal PU/PD)  
I/O Pins  
User-code dependent  
A. Upon power up, SYSCLKOUT is OSCCLK/4. Because the XCLKOUTDIV bits in the XCLK register come up with a reset state of 0,  
SYSCLKOUT is further divided by 4 before SYSCLKOUT appears at XCLKOUT. XCLKOUT = OSCCLK/16 during this phase.  
B. Boot ROM configures the DIVSEL bits for /1 operation. XCLKOUT = OSCCLK/4 during this phase. XCLKOUT will not be visible at the  
pin until explicitly configured by user code.  
C. After reset, the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode pin, the boot code branches to  
destination memory or boot code function. If boot ROM code executes after power-on conditions (in debugger environment), the boot  
code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT will be based on user environment and could be  
with or without PLL enabled.  
D. Using the XRS pin is optional due to the on-chip POR circuitry.  
E. The internal pullup or pulldown will take effect when BOR is driven high.  
Figure 7-6. Power-on Reset  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.1 Reset ( XRS) Timing Requirements  
MIN  
1000tc(SCO)  
32tc(OSCCLK)  
MAX  
UNIT  
cycles  
cycles  
th(boot-mode)  
tw(RSL2)  
Hold time for boot-mode pins  
Pulse duration, XRS low on warm reset  
7.12.2 Reset ( XRS) Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
μs  
tw(RSL1)  
tw(WDRS)  
td(EX)  
Pulse duration, XRS driven by device  
600  
Pulse duration, reset pulse generated by watchdog  
Delay time, address/data valid after XRS high  
Start-up time, internal zero-pin oscillator  
On-chip crystal-oscillator start-up time  
512tc(OSCCLK)  
cycles  
cycles  
μs  
32tc(OSCCLK)  
tINTOSCST  
3
(1)  
tOSCST  
1
10  
ms  
(1) Dependent on crystal/resonator and board design.  
INTOSC1  
X1/X2  
XCLKOUT  
User-Code Dependent  
t
w(RSL2)  
XRS  
User-Code Execution Phase  
t
d(EX)  
Address/Data/  
User-Code Execution  
Control  
(Internal)  
(A)  
t
Boot-ROM Execution Starts  
GPIO Pins as Input  
h(boot-mode)  
Boot-Mode  
Pins  
Peripheral/GPIO Function  
User-Code Dependent  
Peripheral/GPIO Function  
User-Code Execution Starts  
I/O Pins  
GPIO Pins as Input (State Depends on Internal PU/PD)  
User-Code Dependent  
A. After reset, the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to  
destination memory or boot code function. If Boot ROM code executes after power-on conditions (in debugger environment), the Boot  
code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT will be based on user environment and could be  
with or without PLL enabled.  
Figure 7-7. Warm Reset  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
Figure 7-8 shows an example for the effect of writing into PLLCR register. In the first phase, PLLCR = 0x0004  
and SYSCLKOUT = OSCCLK × 2. The PLLCR is then written with 0x0008. Immediately after the PLLCR register  
is written, the PLL lock-up phase begins. During this phase, SYSCLKOUT = OSCCLK/2. After the PLL lock-up is  
complete, SYSCLKOUT reflects the new operating frequency, OSCCLK × 4.  
OSCCLK  
Write to PLLCR  
SYSCLKOUT  
OSCCLK * 2  
OSCCLK/2  
OSCCLK * 4  
(CPU frequency while PLL is stabilizing  
with the desired frequency. This period  
(PLL lock-up time tp) is 1 ms long.)  
(Current CPU  
Frequency)  
(Changed CPU frequency)  
Figure 7-8. Example of Effect of Writing Into PLLCR Register  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
7.13 Clock Specifications  
7.13.1 Device Clock Table  
This section provides the timing requirements and switching characteristics for the various clock options  
available on the 2805x MCUs. Section 7.13.1.1 lists the cycle times of various clocks.  
7.13.1.1 2805x Clock Table and Nomenclature (60-MHz Devices)  
MIN  
16.67  
2
NOM  
MAX UNIT  
tc(SCO), Cycle time  
Frequency  
500  
60  
ns  
MHz  
ns  
SYSCLKOUT  
LSPCLK(1)  
ADC clock  
tc(LCO), Cycle time  
Frequency  
16.67  
66.67(2)  
15(2)  
60  
60  
MHz  
ns  
tc(ADCCLK), Cycle time  
Frequency  
16.67  
MHz  
(1) Lower LSPCLK will reduce device power consumption.  
(2) This value is the default reset value if SYSCLKOUT = 60 MHz.  
7.13.1.2 Device Clocking Requirements/Characteristics  
MIN  
50  
NOM  
MAX UNIT  
tc(OSC), Cycle time  
Frequency  
200  
20  
ns  
MHz  
ns  
On-chip oscillator (X1/X2 pins)  
(Crystal/Resonator)  
5
tc(CI), Cycle time (C8)  
Frequency  
33.3  
5
200  
30  
External oscillator/clock source  
(XCLKIN pin) — PLL Enabled  
MHz  
ns  
tc(CI), Cycle time (C8)  
Frequency  
33.33  
4
250  
30  
External oscillator/clock source  
(XCLKIN pin) — PLL Disabled  
MHz  
Limp mode SYSCLKOUT  
(with /2 enabled)  
Frequency range  
1 to 5  
MHz  
tc(XCO), Cycle time (C1)  
66.67  
0.5  
2000  
15  
ns  
MHz  
ms  
XCLKOUT  
Frequency  
tp  
PLL lock time(1)  
1
(1) The PLLLOCKPRD register must be updated based on the number of OSCCLK cycles. If the zero-pin internal oscillators (10 MHz) are  
used as the clock source, then the PLLLOCKPRD register must be written with a value of 10,000 (minimum).  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
7.13.1.3 Internal Zero-Pin Oscillator (INTOSC1, INTOSC2) Characteristics  
PARAMETER  
MIN  
TYP  
10.000  
10.000  
±1%  
55  
MAX UNIT  
MHz  
Internal zero-pin oscillator 1 (INTOSC1) at 30°C(1) (2)  
Internal zero-pin oscillator 2 (INTOSC2) at 30°C(1) (2)  
Accuracy using oscillator compensation(1) (2)  
Step size (coarse trim)  
Frequency  
Frequency  
MHz  
kHz  
kHz  
Step size (fine trim)  
14  
Temperature drift(3)  
3.03  
175  
4.85 kHz/°C  
Hz/mV  
Voltage (VDD) drift(3)  
(1) To achieve better oscillator accuracy (10 MHz ± 1% or better) than shown, see the Oscillator Compensation Guide. See Figure 7-9 for  
TYP and MAX values.  
(2) Frequency range is ensured only when VREG is enabled, VREGENZ = VSS  
.
(3) Output frequency of the internal oscillators follows the direction of both the temperature gradient and voltage (VDD) gradient. For  
example:  
An increase in temperature causes the output frequency to increase according to the temperature coefficient.  
A decrease in voltage (VDD) causes the output frequency to decrease according to the voltage coefficient.  
Zero-Pin Oscillator Frequency Movement With Temperature  
10.6  
10.5  
10.4  
10.3  
10.2  
10.1  
10  
9.9  
9.8  
9.7  
9.6  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
Typical  
Max  
Temperature (°C)  
Figure 7-9. Zero-Pin Oscillator Frequency Movement With Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
MAX UNIT  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
7.13.2 Clock Requirements and Characteristics  
7.13.2.1 XCLKIN Timing Requirements - PLL Enabled  
NO.  
MIN  
C9  
tf(CI)  
Fall time, XCLKIN  
6
6
ns  
ns  
C10 tr(CI)  
Rise time, XCLKIN  
C11 tw(CIL)  
C12 tw(CIH)  
Pulse duration, XCLKIN low as a percentage of tc(OSCCLK)  
Pulse duration, XCLKIN high as a percentage of tc(OSCCLK)  
45%  
45%  
55%  
55%  
7.13.2.2 XCLKIN Timing Requirements - PLL Disabled  
NO.  
MIN  
MAX UNIT  
C9  
tf(CI)  
Fall time, XCLKIN  
Rise time, XCLKIN  
Up to 20 MHz  
6
ns  
2
20 MHz to 30 MHz  
Up to 20 MHz  
C10 tr(CI)  
6
ns  
2
20 MHz to 30 MHz  
C11 tw(CIL)  
C12 tw(CIH)  
Pulse duration, XCLKIN low as a percentage of tc(OSCCLK)  
Pulse duration, XCLKIN high as a percentage of tc(OSCCLK)  
45%  
45%  
55%  
55%  
The possible configuration modes are shown in Table 8-21.  
7.13.2.3 XCLKOUT Switching Characteristics (PLL Bypassed or Enabled) (1) (2)  
over recommended operating conditions (unless otherwise noted)  
NO.  
C3  
C4  
C5  
C6  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
tf(XCO)  
Fall time, XCLKOUT  
Rise time, XCLKOUT  
5
5
tr(XCO)  
ns  
tw(XCOL)  
tw(XCOH)  
Pulse duration, XCLKOUT low  
Pulse duration, XCLKOUT high  
H – 2  
H – 2  
H + 2  
H + 2  
ns  
ns  
(1) A load of 40 pF is assumed for these parameters.  
(2) H = 0.5tc(XCO)  
C10  
C9  
C8  
(A)  
XCLKIN  
C6  
C3  
C1  
C4  
C5  
(B)  
XCLKOUT  
A. The relationship of XCLKIN to XCLKOUT depends on the divide factor chosen. The waveform relationship shown is intended to illustrate  
the timing parameters only and may differ based on actual configuration.  
B. XCLKOUT configured to reflect SYSCLKOUT.  
Figure 7-10. Clock Timing  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
7.14 Flash Timing  
7.14.1 Flash/OTP Endurance for T Temperature Material (1)  
ERASE/PROGRAM  
MIN  
TYP  
MAX  
UNIT  
TEMPERATURE  
0°C to 105°C (ambient)  
0°C to 30°C (ambient)  
Nf  
Flash endurance for the array (write/erase cycles)  
20000  
50000  
cycles  
write  
NOTP OTP endurance for the array (write cycles)  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
7.14.2 Flash/OTP Endurance for S Temperature Material (1)  
ERASE/PROGRAM  
MIN  
TYP  
MAX  
UNIT  
TEMPERATURE  
0°C to 125°C (ambient)  
0°C to 30°C (ambient)  
Nf  
Flash endurance for the array (write/erase cycles)  
20000  
50000  
cycles  
write  
NOTP OTP endurance for the array (write cycles)  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
7.14.3 Flash/OTP Endurance for Q Temperature Material (1)  
ERASE/PROGRAM  
TEMPERATURE  
MIN  
TYP  
MAX  
UNIT  
Nf  
Flash endurance for the array (write/erase cycles)  
–40°C to 125°C (ambient)  
–40°C to 30°C (ambient)  
20000  
50000  
cycles  
write  
NOTP OTP endurance for the array (write cycles)  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
7.14.4 Flash Parameters at 60-MHz SYSCLKOUT  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX UNIT  
Program Time(3) 8K Sector  
4K Sector  
250 2000(2)  
125 2000(2)  
50  
ms  
ms  
μs  
s
16-Bit Word  
Erase Time(1)  
8K Sector  
4K Sector  
2
2
12(2)  
12(2)  
s
(4)  
IDDP  
VDD current consumption during Erase/Program cycle  
VDDIO current consumption during Erase/Program cycle  
VDDIO current consumption during Erase/Program cycle  
VREG disabled  
VREG enabled  
80  
60  
120  
mA  
mA  
(4)  
IDDIOP  
(4)  
IDDIOP  
(1) The on-chip flash memory is in an erased state when the device is shipped from TI. As such, erasing the flash memory is not required  
prior to programming, when programming the device for the first time. However, the erase operation is needed on all subsequent  
programming operations.  
(2) Maximum flash parameter mentioned are for the first 100 program and erase cycles.  
(3) Program time is at the maximum device frequency. The programming time indicated in this table is applicable only when all the  
required code/data is available in the device RAM, ready for programming. Program time includes overhead of the flash state machine  
but does not include the time to transfer the following into RAM:  
the code that uses flash API to program the flash  
the Flash API itself  
Flash data to be programmed  
(4) Typical parameters as seen at room temperature including function call overhead, with all peripherals off. It is important to maintain a  
stable power supply during the entire flash programming process. It is conceivable that device current consumption during flash  
programming could be higher than normal operating conditions. The power supply used should ensure VMIN on the supply rails at all  
times, as specified in the Recommended Operating Conditions of the data sheet. Any brown-out or interruption to power during  
erasing/programming could potentially corrupt the password locations and lock the device permanently. Powering a target board  
(during flash programming) through the USB port is not recommended, as the port may be unable to respond to the power demands  
placed during the programming process.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
7.14.5 Flash/OTP Access Timing  
PARAMETER  
MIN  
40  
MAX UNIT  
ta(fp)  
Paged flash access time  
Random flash access time  
OTP access time  
ns  
ns  
ns  
ta(fr)  
40  
ta(OTP)  
60  
7.14.6 Flash Data Retention Duration  
PARAMETER  
TEST CONDITIONS  
TJ = 55°C  
MIN  
15  
MAX UNIT  
tretention  
Data retention duration  
years  
Table 7-2. Minimum Required Flash/OTP Wait-States at Different Frequencies  
SYSCLKOUT  
SYSCLKOUT  
(ns)  
PAGE  
RANDOM  
OTP  
WAIT-STATE  
(MHz)  
WAIT-STATE(1)  
WAIT-STATE(1)  
60  
16.67  
18.18  
20  
2
2
1
1
1
1
1
2
2
1
1
1
1
1
3
3
2
2
2
2
1
55  
50  
45  
22.22  
25  
40  
35  
28.57  
33.33  
30  
(1) Page and random wait-state must be ≥ 1.  
The equations to compute the Flash page wait-state and random wait-state in Table 7-2 are as follows:  
é
ê
ë
ù
æ
ç
ç
è
ö
÷
÷
ø
ta(f ·p)  
Flash Page Wait State =  
-1 round up to the next highest integer  
ú
tc(SCO)  
ê
ú
û
é
ê
ë
ù
æ
ç
ç
è
ö
÷
÷
ø
ta(f ×r)  
Flash Random Wait State =  
-1 round up to the next highest integer, or 1, whichever is larger  
ú
tc(SCO)  
ê
ú
û
The equation to compute the OTP wait-state in Table 7-2 is as follows:  
é
ê
ë
ù
æ
ç
ç
è
ö
÷
÷
ø
ta(OTP)  
OTP Wait State =  
-1 round up to the next highest integer, or 1, whichever is larger  
ú
tc(SCO)  
ê
ú
û
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8 Detailed Description  
8.1 Overview  
8.1.1 CPU  
The 2805x (C28x) family is a member of the TMS320C2000MCU platform. The C28x-based controllers have  
the same 32-bit fixed-point architecture as existing C28x MCUs. Each C28x-based controller, including the  
2805x device, is a very efficient C/C++ engine, enabling users to develop not only their system control software  
in a high-level language, but also enabling development of math algorithms using C/C++. The device is as  
efficient at MCU math tasks as it is at system control tasks. This efficiency removes the need for a second  
processor in many systems. The 32 × 32-bit MAC 64-bit processing capabilities enable the controller to handle  
higher numerical resolution problems efficiently. Add to this feature the fast interrupt response with automatic  
context save of critical registers, resulting in a device that can service many asynchronous events with minimal  
latency. The device has an 8-level-deep protected pipeline with pipelined memory accesses. This pipelining  
enables the device to execute at high speeds without resorting to expensive high-speed memories. Special  
branch-look-ahead hardware minimizes the latency for conditional discontinuities. Special store conditional  
operations further improve performance.  
8.1.2 Control Law Accelerator  
The C28x CLA is a single-precision (32-bit) floating-point unit that extends the capabilities of the C28x CPU by  
adding parallel processing. The CLA is an independent processor with its own bus structure, fetch mechanism,  
and pipeline. Eight individual CLA tasks, or routines, can be specified. Each task is started by software or a  
peripheral such as the ADC, ePWM, eCAP, eQEP, or CPU-Timer 0. The CLA executes one task at a time to  
completion. When a task completes the main CPU is notified by an interrupt to the PIE and the CLA  
automatically begins the next highest-priority pending task. The CLA can directly access the ADC Result  
registers, ePWM, eCAP, eQEP, and the Comparator and DAC registers. Dedicated message RAMs provide a  
method to pass additional data between the main CPU and the CLA.  
8.1.3 Memory Bus (Harvard Bus Architecture)  
As with many MCU-type devices, multiple buses are used to move data between the memories and peripherals  
and the CPU. The memory bus architecture contains a program read bus, data read bus, and data write bus.  
The program read bus consists of 22 address lines and 32 data lines. The data read and write buses consist of  
32 address lines and 32 data lines each. The 32-bit-wide data buses enable single cycle 32-bit operations. The  
multiple bus architecture, commonly termed Harvard Bus, enables the C28x to fetch an instruction, read a data  
value and write a data value in a single cycle. All peripherals and memories attached to the memory bus  
prioritize memory accesses. Generally, the priority of memory bus accesses can be summarized as follows:  
Highest:  
Data Writes  
Program Writes  
Data Reads  
Program Reads  
Fetches  
(Simultaneous data and program writes cannot occur on the memory bus.)  
(Simultaneous data and program writes cannot occur on the memory bus.)  
(Simultaneous program reads and fetches cannot occur on the memory bus.)  
(Simultaneous program reads and fetches cannot occur on the memory bus.)  
Lowest:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.1.4 Peripheral Bus  
To enable migration of peripherals between various Texas Instruments (TI) MCU family of devices, the devices  
adopt a peripheral bus standard for peripheral interconnect. The peripheral bus bridge multiplexes the various  
buses that make up the processor Memory Bus into a single bus consisting of 16 address lines and 16 or 32  
data lines and associated control signals. Three versions of the peripheral bus are supported. One version  
supports only 16-bit accesses (called peripheral frame 2). Another version supports both 16- and 32-bit  
accesses (called peripheral frame 1). The third version supports CLA access and both 16- and 32-bit accesses  
(called peripheral frame 3).  
8.1.5 Real-Time JTAG and Analysis  
1
The devices implement the standard IEEE 1149.1 JTAG interface for in-circuit based debug. Additionally, the  
devices support real-time mode of operation allowing modification of the contents of memory, peripheral, and  
register locations while the processor is running and executing code and servicing interrupts. The user can also  
single step through non-time-critical code while enabling time-critical interrupts to be serviced without  
interference. The device implements the real-time mode in hardware within the CPU. This feature is unique to  
the 28x family of devices, and requires no software monitor. Additionally, special analysis hardware is provided  
that allows setting of hardware breakpoint or data/address watch-points and generating various user-selectable  
break events when a match occurs.  
8.1.6 Flash  
The F28055 and F28054 devices contain 64K × 16 of embedded flash memory, segregated into six 8K × 16  
sectors and four 4K × 16 sectors. The F28053, F28052, and F28051 devices contain 32K × 16 of embedded  
flash memory, segregated into three 8K × 16 sectors and two 4K × 16 sectors. The F28050 device contains 16K  
× 16 of embedded flash memory, segregated into one 8K × 16 sector and two 4K × 16 sectors. The devices also  
contain a single 1K × 16 of OTP memory at address range 0x3D 7800 to 0x3D 7BFF. The user can individually  
erase, program, and validate a flash sector while leaving other sectors untouched. However, it is not possible to  
use one sector of the flash or the OTP to execute flash algorithms that erase or program other sectors. Special  
memory pipelining is provided to enable the flash module to achieve higher performance. The flash/OTP is  
mapped to both program and data space; therefore, the flash/OTP can be used to execute code or store data  
information.  
Note  
The Flash and OTP wait-states can be configured by the application. This feature allows applications  
running at slower frequencies to configure the flash to use fewer wait-states.  
Flash effective performance can be improved by enabling the flash pipeline mode in the Flash options  
register. With this mode enabled, effective performance of linear code execution will be much faster  
than the raw performance indicated by the wait-state configuration alone. The exact performance gain  
when using the flash pipeline mode is application-dependent.  
For more information on the flash options, Flash wait-state, and OTP wait-state registers, see the  
System Control and Interrupts chapter of the TMS320x2805x Technical Reference Manual.  
1
IEEE Standard 1149.1-1990 Standard Test Access Port and Boundary Scan Architecture  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.1.7 M0, M1 SARAMs  
All devices contain these two blocks of single access memory, each 1K × 16 in size. The stack pointer points to  
the beginning of block M1 on reset. The M0 and M1 blocks, like all other memory blocks on C28x devices, are  
mapped to both program and data space. Hence, the user can use M0 and M1 to execute code or for data  
variables. The partitioning is performed within the linker. The C28x device presents a unified memory map to the  
programmer, which makes for easier programming in high-level languages.  
8.1.8 L0 SARAM, and L1, L2, and L3 DPSARAMs  
The device contains up to 8K × 16 of single-access RAM. To ascertain the exact size for a given device, see the  
device-specific memory map figures in Section 8.2. This block is mapped to both program and data space. Block  
L0 is 2K in size and is dual mapped to both program and data space. Blocks L1 and L2 are both 1K in size, and  
together with L0, are shared with the CLA which can use these blocks for its data space. Block L3 is 4K in size  
and is shared with the CLA which can use this block for its program space. DPSARAM refers to the dual-port  
configuration of these blocks.  
8.1.9 Boot ROM  
The Boot ROM is factory-programmed with boot-loading software. Boot-mode signals are provided to tell the  
bootloader software what boot mode to use on power up. The user can select to boot normally or to download  
new software from an external connection or to select boot software that is programmed in the internal flash/  
ROM. The Boot ROM also contains standard tables, such as SIN/COS waveforms, for use in math-related  
algorithms. Table 8-1 provides the boot mode selection.  
Table 8-1. Boot Mode Selection  
GPIO34/COMP2OUT/  
MODE  
GPIO37/TDO  
TRST  
MODE  
COMP3OUT  
3
2
1
1
0
0
x
1
0
1
0
x
0
0
0
0
1
GetMode  
Wait (see Section 8.1.10 for description)  
1
SCI  
0
Parallel IO  
Emulation Boot  
EMU  
8.1.9.1 Emulation Boot  
When the JTAG debug probe is connected, the GPIO37/TDO pin cannot be used for boot mode selection. In this  
case, the boot ROM detects that a JTAG debug probe is connected and uses the contents of two reserved  
SARAM locations in the PIE vector table to determine the boot mode. If the content of either location is invalid,  
then the Wait boot option is used. All boot mode options can be accessed in emulation boot.  
8.1.9.2 GetMode  
The default behavior of the GetMode option is to boot to flash. This behavior can be changed to another boot  
option by programming two locations in the OTP. If the content of either OTP location is invalid, then boot to flash  
is used. One of the following loaders can be specified: SCI, SPI, I2C, CAN, or OTP.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.1.9.3 Peripheral Pins Used by the Bootloader  
Table 8-2 lists the GPIO pins that are used by each peripheral bootloader. See the GPIO mux table to see if  
these conflict with any of the peripherals you want to use in your application.  
Table 8-2. Peripheral Bootload Pins  
BOOTLOADER  
PERIPHERAL LOADER PINS  
SCI  
SCIRXDA (GPIO28)  
SCITXDA (GPIO29)  
Parallel Boot  
SPI  
Data (GPIO31,30,5:0)  
28x Control (GPIO26)  
Host Control (GPIO27)  
SPISIMOA (GPIO16)  
SPISOMIA (GPIO17)  
SPICLKA (GPIO18)  
SPISTEA (GPIO19)  
I2C  
SDAA (GPIO28)  
SCLA (GPIO29)  
CAN  
CANRXA (GPIO30)  
CANTXA (GPIO31)  
8.1.10 Security  
The TMS320F2805x device supports high levels of security with a dual-zone (Z1/Z2) feature to protect user's  
firmware from being reverse-engineered. The dual-zone feature enables the user to co-develop application  
software with a third-party or subcontractor by preventing visibility into each other's software IP. The security  
features a 128-bit password (hardcoded for 16 wait states) for each zone, which the user programs into the  
USER-OTP. Each zone has its own dedicated USER-OTP, which must be programmed by the user with the  
required security settings, including the 128-bit password. Because OTP cannot be erased, to provide the user  
with the flexibility of changing security-related settings and passwords multiple times, a 32-bit link pointer is  
stored at the beginning of each USER-OTP. Because the user can only flip a 1 in USER-OTP to 0, the most  
significant bit position in the link pointer, programmed as 0, defines the USER-OTP region (zone-select) for each  
zone in which security-related settings and passwords are stored. Table 8-3 provides the location of the zone-  
select block based on the link pointer. Table 8-4 shows the zone-select block organization in USER-OTP.  
Table 8-3. Location of Zone-Select Block Based on Link Pointer  
Zx LINK POINTER VALUE  
ADDRESS OFFSET FOR ZONE-SELECT  
32’bxx111111111111111111111111111111  
32’bxx111111111111111111111111111110  
32’bxx11111111111111111111111111110x  
32’bxx1111111111111111111111111110xx  
32’bxx111111111111111111111111110xxx  
32’bxx11111111111111111111111110xxxx  
32’bxx1111111111111111111111110xxxxx  
32’bxx111111111111111111111110xxxxxx  
32’bxx11111111111111111111110xxxxxxx  
32’bxx1111111111111111111110xxxxxxxx  
32’bxx111111111111111111110xxxxxxxxx  
32’bxx11111111111111111110xxxxxxxxxx  
32’bxx1111111111111111110xxxxxxxxxxx  
32’bxx111111111111111110xxxxxxxxxxxx  
32’bxx11111111111111110xxxxxxxxxxxxx  
32’bxx1111111111111110xxxxxxxxxxxxxx  
32’bxx111111111111110xxxxxxxxxxxxxxx  
0x10  
0x20  
0x30  
0x40  
0x50  
0x60  
0x70  
0x80  
0x90  
0xa0  
0xb0  
0xc0  
0xd0  
0xe0  
0xf0  
0x100  
0x110  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
Table 8-3. Location of Zone-Select Block Based on Link Pointer (continued)  
Zx LINK POINTER VALUE  
ADDRESS OFFSET FOR ZONE-SELECT  
32’bxx11111111111110xxxxxxxxxxxxxxxx  
32’bxx1111111111110xxxxxxxxxxxxxxxxx  
32’bxx111111111110xxxxxxxxxxxxxxxxxx  
32’bxx11111111110xxxxxxxxxxxxxxxxxxx  
32’bxx1111111110xxxxxxxxxxxxxxxxxxxx  
32’bxx111111110xxxxxxxxxxxxxxxxxxxxx  
32’bxx11111110xxxxxxxxxxxxxxxxxxxxxx  
32’bxx1111110xxxxxxxxxxxxxxxxxxxxxxx  
32’bxx111110xxxxxxxxxxxxxxxxxxxxxxxx  
32’bxx11110xxxxxxxxxxxxxxxxxxxxxxxxx  
32’bxx1110xxxxxxxxxxxxxxxxxxxxxxxxxx  
32’bxx110xxxxxxxxxxxxxxxxxxxxxxxxxxx  
32’bxx10xxxxxxxxxxxxxxxxxxxxxxxxxxxx  
32’bxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx  
0x120  
0x130  
0x140  
0x150  
0x160  
0x170  
0x180  
0x190  
0x1a0  
0x1b0  
0x1c0  
0x1d0  
0x1e0  
0x1f0  
Table 8-4. Zone-Select Block Organization in USER-OTP  
16-BIT ADDRESS OFFSET  
(WITH RESPECT TO OFFSET OF ZONE-  
SELECT)  
CONTENT  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xa  
0xb  
0xc  
0xd  
0xe  
0xf  
Zx-EXEONLYRAM  
Zx-EXEONLYSECT  
Zx-GRABRAM  
Zx-GRABSECT  
Zx-CSMPSWD0  
Zx-CSMPSWD1  
Zx-CSMPSWD2  
Zx-CSMPSWD3  
The Dual Code Security Module (DCSM) is used to protect the flash/OTP/Lx SARAM blocks/CLA/Secure ROM  
content. Individual flash sectors and SARAM blocks can be attached to any of the secure zone at start-up time.  
Secure ROM and the CLA are always attached to Z1. Resources attached to (owned by) one zone do not have  
any access to code running in the other zone when it is secured. Individual flash sectors, as well as SARAM  
blocks, can be further protected by enabling the EXEONLY protection. EXEONLY flash sectors or SARAM  
blocks do not have READ/WRITE access. Only code execution is allowed from such memory blocks.  
The security feature prevents unauthorized users from examining memory contents through the JTAG port,  
executing code from external memory, or trying to boot load an undesirable software that would export the  
secure memory contents. To enable access to the secure blocks of a particular zone, the user must write a 128-  
bit value in the CSMKEY registers of the zone; this value must match the values stored in the password  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
locations in USER-OTP. If the 128 bits of the password locations in USER-OTP of a particular zone are all 1s  
(unprogrammed), then the security for that zone gets UNLOCKED as soon as a dummy read is done to the  
password locations in USER-OTP (the value in the CSMKEY register becomes "Don’t care" in this case).  
In addition to the DCSM, the Emulation Code Security Logic (ECSL) has been implemented for each zone to  
prevent unauthorized users from stepping through secure code. A halt inside secure code will trip the ECSL and  
break the emulation connection. To allow emulation of secure code while maintaining DCSM protection against  
secure memory reads, the user must write the lower 64 bits of the USER-OTP password into the CSMKEY  
register of the zone to disable the ECSL. Dummy reads of all 128 bits of the password for that particular zone in  
USER-OTP must still be performed. If the lower 64 bits of the password locations of a particular zone are all  
zeros, then the ECSL for that zone gets disabled as soon as a dummy read is done to the password locations in  
USER-OTP (the value in the CSMKEY register becomes "Don’t care" in this case).  
When initially debugging a device with the password locations in OTP (that is, secured), the CPU will start  
running and may execute an instruction that performs an access to ECSL-protected area. If the CPU execution  
is halted when the program counter belongs to the secure code region, the ECSL will trip and cause the JTAG  
debug probe connection to be cut. The solution is to use the Wait boot option. The Wait boot option will sit in a  
loop around a software breakpoint to allow a JTAG debug probe to be connected without tripping security. The  
user can then exit this mode once the JTAG debug probe is connected by using one of the emulation boot  
options as described in the Boot ROM chapter of the TMS320x2805x Technical Reference Manual. The 2805x  
devices do not support hardware wait-in-reset mode.  
To prevent reverse-engineering of the code in secure zone, unauthorized users are prevented from looking at  
the CPU registers in the CCS Expressions Window. The values in the Expressions Window for all of these  
registers, except for PC and some status bits, display false values when code is running from a secure zone.  
This feature gets disabled if the zone is unlocked.  
Note  
The USER-OTP contains security-related settings for their respective zone. Execution is not  
allowed from the USER-OTP; therefore, the user should not keep any code/data in this region.  
The 128-bit password must not be programmed to zeros. Doing so would permanently lock the  
device.  
The user must try not to write into the CPU registers through the debugger watch window when  
code is running/halted from/inside secure zone. This may corrupt the execution of the actual  
program.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
Note  
Dual Code Security Module Disclaimer  
THE DUAL CODE SECURITY MODULE (DCSM) INCLUDED ON THIS DEVICE WAS DESIGNED  
TO PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY (EITHER ROM  
OR FLASH) AND IS WARRANTED BY TEXAS INSTRUMENTS (TI), IN ACCORDANCE WITH ITS  
STANDARD TERMS AND CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS  
FOR THE WARRANTY PERIOD APPLICABLE FOR THIS DEVICE.  
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE DCSM CANNOT BE  
COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED MEMORY  
CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT AS SET FORTH  
ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS CONCERNING THE DCSM OR  
OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY  
OR FITNESS FOR A PARTICULAR PURPOSE.  
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT,  
INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY OUT OF  
YOUR USE OF THE DCSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN ADVISED OF  
THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT  
LIMITED TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR INTERRUPTION OF  
BUSINESS OR OTHER ECONOMIC LOSS.  
8.1.11 Peripheral Interrupt Expansion Block  
The PIE block serves to multiplex numerous interrupt sources into a smaller set of interrupt inputs. The PIE block  
can support up to 96 peripheral interrupts. On the F2805x devices, 54 of the possible 96 interrupts are used by  
peripherals. The 96 interrupts are grouped into blocks of 8 and each group is fed into 1 of 12 CPU interrupt lines  
(INT1 to INT12). Each of the 96 interrupts is supported by its own vector stored in a dedicated RAM block that  
can be overwritten by the user. The vector is automatically fetched by the CPU on servicing the interrupt. Eight  
CPU clock cycles are needed to fetch the vector and save critical CPU registers. Hence the CPU can quickly  
respond to interrupt events. Prioritization of interrupts is controlled in hardware and software. Each individual  
interrupt can be enabled or disabled within the PIE block.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.1.12 External Interrupts (XINT1 to XINT3)  
The devices support three masked external interrupts (XINT1 to XINT3). Each of the interrupts can be selected  
for negative, positive, or both negative and positive edge triggering and can also be enabled or disabled. These  
interrupts also contain a 16-bit free running up counter, which is reset to zero when a valid interrupt edge is  
detected. This counter can be used to accurately time-stamp the interrupt. There are no dedicated pins for the  
external interrupts. XINT1, XINT2, and XINT3 interrupts can accept inputs from the GPIO0 to GPIO31 pins.  
8.1.13 Internal Zero-Pin Oscillators, Oscillator, and PLL  
The device can be clocked by either of the two internal zero-pin oscillators, an external oscillator, or by a crystal  
attached to the on-chip oscillator circuit. A PLL is provided supporting up to 12 input-clock-scaling ratios. The  
PLL ratios can be changed on-the-fly in software, enabling the user to scale back on operating frequency if lower  
power operation is desired. See Section 7.13 for timing details. The PLL block can be set in bypass mode.  
8.1.14 Watchdog  
Each device contains two watchdogs: CPU-watchdog that monitors the core and NMI-watchdog that is a missing  
clock-detect circuit. The user software must regularly reset the CPU-watchdog counter within a certain time  
frame; otherwise, the CPU-watchdog generates a reset to the processor. The CPU-watchdog can be disabled if  
necessary. The NMI-watchdog engages only in case of a clock failure and can either generate an interrupt or a  
device reset.  
8.1.15 Peripheral Clocking  
The clocks to each individual peripheral can be enabled or disabled to reduce power consumption when a  
peripheral is not in use. Additionally, the system clock to the serial ports (except I2C) can be scaled relative to  
the CPU clock.  
8.1.16 Low-power Modes  
The devices are full-static CMOS devices. Three low-power modes are provided:  
IDLE:  
Place CPU in low-power mode. Peripheral clocks may be turned off selectively and only those peripherals that  
must function during IDLE are left operating. An enabled interrupt from an active peripheral or the watchdog timer  
will wake the processor from IDLE mode.  
STANDBY:  
HALT:  
Turns off clock to CPU and peripherals. This mode leaves the oscillator and PLL functional. An external interrupt  
event will wake the processor and the peripherals. Execution begins on the next valid cycle after detection of the  
interrupt event  
This mode basically shuts down the device and places the device in the lowest possible power consumption  
mode. If the internal zero-pin oscillators are used as the clock source, the HALT mode turns them off, by default.  
To keep these oscillators from shutting down, the INTOSCnHALTI bits in CLKCTL register may be used. The  
zero-pin oscillators may thus be used to clock the CPU-watchdog in this mode. If the on-chip crystal oscillator is  
used as the clock source, the crystal oscillator is shut down in this mode. A reset or an external signal (through a  
GPIO pin) or the CPU-watchdog can wake the device from this mode.  
The CPU clock (OSCCLK) and WDCLK should be from the same clock source before trying to put the device  
into HALT or STANDBY.  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.1.17 Peripheral Frames 0, 1, 2, 3 (PFn)  
The device segregates peripherals into four sections. The mapping of peripherals is as follows:  
PF0:  
PIE:  
PIE Interrupt Enable and Control Registers Plus PIE Vector Table  
Flash Waitstate Registers  
Flash:  
Timers:  
DCSM:  
ADC:  
CLA  
CPU-Timers 0, 1, 2 Registers  
Dual Zone Security Module Registers  
ADC Result Registers  
CLA Registers and Message RAMs  
GPIO MUX Configuration and Control Registers  
eCAN Configuration and Control Registers  
eCAP Module and Registers  
PF1:  
PF2:  
GPIO:  
eCAN:  
eCAP:  
eQEP:  
SYS:  
eQEP Module and Registers  
System Control Registers  
SCI:  
SCI Control and RX/TX Registers  
SPI Control and RX/TX Registers  
ADC Status, Control, and Configuration Registers  
I2C Module and Registers  
SPI:  
ADC:  
I2C:  
XINT:  
ePWM:  
AFE:  
External Interrupt Registers  
PF3:  
ePWM Module and Registers  
Comparator Modules, Digital Filters, and PGA Control Registers  
eCAP Module and Registers  
eCAP:  
eQEP:  
ADC:  
ADC:  
DAC:  
eQEP Module and Registers  
ADC Status, Control, and Configuration Registers  
ADC Result Registers  
DAC Control Registers  
8.1.18 General-Purpose Input/Output Multiplexer  
Most of the peripheral signals are multiplexed with GPIO signals. This muxing enables the user to use a pin as  
GPIO if the peripheral signal or function is not used. On reset, GPIO pins are configured as inputs. The user can  
individually program each pin for GPIO mode or peripheral signal mode. For specific inputs, the user can also  
select the number of input qualification cycles. This selection is to filter unwanted noise glitches. The GPIO  
signals can also be used to bring the device out of specific low-power modes.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.1.19 32-Bit CPU-Timers (0, 1, 2)  
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock prescaling. The  
timers have a 32-bit count-down register, which generates an interrupt when the counter reaches zero. The  
counter is decremented at the CPU clock speed divided by the prescale value setting. When the counter reaches  
zero, the counter is automatically reloaded with a 32-bit period value.  
CPU-Timer 0 is for general use and is connected to the PIE block. CPU-Timer 1 is also for general use and can  
be connected to INT13 of the CPU. CPU-Timer 2 is reserved for DSP/BIOS. CPU-Timer 2 is connected to  
INT14 of the CPU. If DSP/BIOS is not being used, CPU-Timer 2 is available for general use.  
CPU-Timer 2 can be clocked by any one of the following:  
SYSCLKOUT (default)  
Internal zero-pin oscillator 1 (INTOSC1)  
Internal zero-pin oscillator 2 (INTSOC2)  
External clock source  
8.1.20 Control Peripherals  
The devices support the following peripherals that are used for embedded control and communication:  
ePWM:  
The ePWM peripheral supports independent/complementary PWM generation, adjustable dead-  
band generation for leading/trailing edges, latched/cycle-by-cycle trip mechanism. The type 1  
module found on 2805x devices also supports increased dead-band resolution, enhanced SOC and  
interrupt generation, and advanced triggering including trip functions based on comparator outputs.  
eCAP:  
eQEP:  
The eCAP peripheral uses a 32-bit time base and registers up to four programmable events in  
continuous/one-shot capture modes.  
This peripheral can also be configured to generate an auxiliary PWM signal.  
The eQEP peripheral uses a 32-bit position counter, supports low-speed measurement using  
capture unit and high-speed measurement using a 32-bit unit timer. This peripheral has a watchdog  
timer to detect motor stall and input error detection logic to identify simultaneous edge transition in  
QEP signals.  
ADC:  
The ADC block is a 12-bit converter. The ADC has up to 16 single-ended channels pinned out,  
depending on the device. The ADC also contains two sample-and-hold units for simultaneous  
sampling. Some ADC channels also have PGAs, which can amplify the input signal by 3, 6, or 11.  
Comparator and  
Digital Filter Subsystems:  
Each comparator block consists of one analog comparator along with an internal 6-bit reference for  
supplying one input of the comparator. The comparator output signal filtering is achieved using the  
digital filter present on each input line and qualifies the output of the COMP/DAC subsystem. The  
filtered or unfiltered output of the COMP/DAC subsystem can be configured to be an input to the  
Digital Compare submodule of the ePWM peripheral. There is also a configurable option to bring  
the output of the COMP/DAC subsystem onto the GPIOs.  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.1.21 Serial Port Peripherals  
The devices support the following serial communication peripherals:  
SPI:  
The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of programmed length (1 to  
16 bits) to be shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used  
for communications between the MCU and external peripherals or another processor. Typical applications  
include external I/O or peripheral expansion through devices such as shift registers, display drivers, and  
ADCs. Multi-device communications are supported by the master/slave operation of the SPI. The SPI contains  
a 4-level receive and transmit FIFO for reducing interrupt servicing overhead.  
SCI:  
I2C:  
The SCI is a 2-wire asynchronous serial port, commonly known as UART. The SCI contains a 4-level receive  
and transmit FIFO for reducing interrupt servicing overhead.  
The I2C module provides an interface between an MCU and other devices compliant with Philips  
Semiconductors Inter-IC bus (I2C-bus) specification version 2.1 and connected by way of an I2C-bus. External  
components attached to this 2-wire serial bus can transmit and receive up to 8-bit data to and from the MCU  
through the I2C module. The I2C contains a 4-level receive and transmit FIFO for reducing interrupt servicing  
overhead.  
eCAN:  
The eCAN is the enhanced version of the CAN peripheral. The eCAN supports 32 mailboxes, time-stamping  
of messages, and is compliant with ISO 11898-1 (CAN 2.0B).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.2 Memory Maps  
In Figure 8-1, Figure 8-2, Figure 8-3, and Figure 8-4, the following apply:  
Memory blocks are not to scale.  
Peripheral Frame 0, Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 memory maps are  
restricted to data memory only. A user program cannot access these memory maps in program space.  
Protected means the order of Write-followed-by-Read operations is preserved rather than the pipeline order.  
Certain memory ranges are EALLOW protected against spurious writes after configuration.  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 1400  
Peripheral Frame 0  
CLA Registers  
0x00 1480  
0x00 1500  
0x00 1580  
0x00 2000  
0x00 6000  
CLA-to-CPU Message RAM  
CPU-to-CLA Message RAM  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(1K ´ 16, Protected)  
0x00 6400  
0x00 6A00  
0x00 7000  
0x00 8000  
0x00 8800  
0x00 8C00  
0x00 9000  
Peripheral Frame 3  
(1.5K ´ 16, Protected)  
Reserved  
Peripheral Frame 1  
(1.5K ´ 16, Protected)  
Peripheral Frame 2  
(4K ´ 16, Protected)  
L0 DPSARAM (2K ´ 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Data RAM 2)  
L1 DPSARAM (1K ´ 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Data RAM 0)  
L2 DPSARAM (1K ´ 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Data RAM 1)  
L3 DPSARAM (4K ´ 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Prog RAM)  
0x00 A000  
0x00 F000  
0x01 0000  
Reserved  
CLA Data ROM (4K ´ 16)  
Reserved  
0x3D 7800  
0x3D 7A00  
0x3D 7C00  
User OTP, Zone 2 Passwords (512 ´ 16)  
User OTP, Zone 1 Passwords (512 ´ 16)  
Reserved  
0x3D 7E00  
0x3D 7FCB  
Calibration Data  
Configuration Data  
Reserved  
0x3D 7FF0  
0x3E 8000  
FLASH  
(64K ´ 16, 10 Sectors, Dual Secure Zone + ECSL)  
(Z1/Z2 User-Selectable Security Zone Per Sector)  
0x3F 7FFF  
0x3F 8000  
Zone 1 Secure Copy Code ROM  
(1K ´ 16)  
0x3F 8400  
Zone 2 Secure Copy Code ROM  
(1K ´ 16)  
0x3F 8800  
0x3F D000  
0x3F FFC0  
Reserved  
Boot ROM (12K ´ 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
A. CLA-specific registers and RAM apply to the 28055 device only.  
Figure 8-1. 28055 and 28054 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 1400  
Peripheral Frame 0  
CLA Registers  
0x00 1480  
0x00 1500  
0x00 1580  
0x00 2000  
0x00 6000  
CLA-to-CPU Message RAM  
CPU-to-CLA Message RAM  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(1K ´ 16, Protected)  
0x00 6400  
0x00 6A00  
0x00 7000  
0x00 8000  
0x00 8800  
0x00 8C00  
0x00 9000  
Peripheral Frame 3  
(1.5K ´ 16, Protected)  
Reserved  
Peripheral Frame 1  
(1.5K ´ 16, Protected)  
Peripheral Frame 2  
(4K ´ 16, Protected)  
L0 DPSARAM (2K ´ 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Data RAM 2)  
L1 DPSARAM (1K ´ 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Data RAM 0)  
L2 DPSARAM (1K ´ 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Data RAM 1)  
L3 DPSARAM (4K ´ 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Prog RAM)  
0x00 A000  
0x00 F000  
0x01 0000  
Reserved  
CLA Data ROM (4K ´ 16)  
Reserved  
0x3D 7800  
0x3D 7A00  
0x3D 7C00  
User OTP, Zone 2 Passwords (512 ´ 16)  
User OTP, Zone 1 Passwords (512 ´ 16)  
Reserved  
0x3D 7E00  
0x3D 7FCB  
Calibration Data  
Configuration Data  
Reserved  
0x3D 7FF0  
0x3F 0000  
FLASH  
(32K ´ 16, 5 Sectors, Dual Secure Zone + ECSL)  
(Z1/Z2 User-Selectable Security Zone Per Sector)  
0x3F 7FFF  
0x3F 8000  
Zone 1 Secure Copy Code ROM  
(1K ´ 16)  
0x3F 8400  
Zone 2 Secure Copy Code ROM  
(1K ´ 16)  
0x3F 8800  
0x3F D000  
0x3F FFC0  
Reserved  
Boot ROM (12K ´ 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
A. CLA-specific registers and RAM apply to the 28053 device only.  
Figure 8-2. 28053 and 28052 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 1400  
Peripheral Frame 0  
CLA Registers  
0x00 1480  
0x00 1500  
0x00 1580  
0x00 2000  
0x00 6000  
CLA-to-CPU Message RAM  
CPU-to-CLA Message RAM  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(1K ´ 16, Protected)  
0x00 6400  
0x00 6A00  
0x00 7000  
0x00 8000  
0x00 8800  
0x00 8C00  
0x00 9000  
Peripheral Frame 3  
(1.5K ´ 16, Protected)  
Reserved  
Peripheral Frame 1  
(1.5K ´ 16, Protected)  
Peripheral Frame 2  
(4K ´ 16, Protected)  
Reserved  
L1 DPSARAM (1K ´ 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Data RAM 0)  
L2 DPSARAM (1K ´ 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Data RAM 1)  
L3 DPSARAM (4K ´ 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Prog RAM)  
0x00 A000  
0x00 F000  
0x01 0000  
Reserved  
CLA Data ROM (4K ´ 16)  
Reserved  
0x3D 7800  
0x3D 7A00  
0x3D 7C00  
User OTP, Zone 2 Passwords (512 ´ 16)  
User OTP, Zone 1 Passwords (512 ´ 16)  
Reserved  
0x3D 7E00  
0x3D 7FCB  
Calibration Data  
Configuration Data  
Reserved  
0x3D 7FF0  
0x3F 0000  
FLASH  
(32K ´ 16, 5 Sectors, Dual Secure Zone + ECSL)  
(Z1/Z2 User-Selectable Security Zone Per Sector)  
0x3F 7FFF  
0x3F 8000  
Zone 1 Secure Copy Code ROM  
(1K ´ 16)  
0x3F 8400  
Zone 2 Secure Copy Code ROM  
(1K ´ 16)  
0x3F 8800  
0x3F D000  
0x3F FFC0  
Reserved  
Boot ROM (12K ´ 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
Figure 8-3. 28051 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 1400  
Peripheral Frame 0  
Reserved  
0x00 1580  
0x00 2000  
0x00 6000  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(1K ´ 16, Protected)  
0x00 6400  
0x00 6A00  
0x00 7000  
0x00 8000  
0x00 8800  
0x00 8C00  
0x00 9000  
Peripheral Frame 3  
(1.5K ´ 16, Protected)  
Reserved  
Peripheral Frame 1  
(1.5K ´ 16, Protected)  
Peripheral Frame 2  
(4K ´ 16, Protected)  
L0 DPSARAM (2K ´ 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL)  
L1 DPSARAM (1K ´ 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL)  
L2 DPSARAM (1K ´ 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL)  
Reserved  
0x00 A000  
0x00 F000  
0x01 0000  
Reserved  
Reserved  
Reserved  
0x3D 7800  
0x3D 7A00  
0x3D 7C00  
User OTP, Zone 2 Passwords (512 ´ 16)  
User OTP, Zone 1 Passwords (512 ´ 16)  
Reserved  
0x3D 7E00  
0x3D 7FCB  
Calibration Data  
Configuration Data  
Reserved  
0x3D 7FF0  
0x3F 4000  
FLASH  
(16K ´ 16, 3 Sectors, Dual Secure Zone + ECSL)  
(Z1/Z2 User-Selectable Security Zone Per Sector)  
0x3F 7FFF  
0x3F 8000  
Zone 1 Secure Copy Code ROM  
(1K ´ 16)  
0x3F 8400  
Zone 2 Secure Copy Code ROM  
(1K ´ 16)  
0x3F 8800  
0x3F D000  
0x3F FFC0  
Reserved  
Boot ROM (12K ´ 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
Figure 8-4. 28050 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
Table 8-5, Table 8-6, and Table 8-7 list the addresses of flash sectors on the TMS320F2805x devices.  
Table 8-5. Addresses of Flash Sectors in F28055 and F28054  
ADDRESS RANGE  
0x3E 8000 to 0x3E 8FFF  
0x3E 9000 to 0x3E 9FFF  
0x3E A000 to 0x3E BFFF  
0x3E C000 to 0x3E DFFF  
0x3E E000 to 0x3E FFFF  
0x3F 0000 to 0x3F 1FFF  
0x3F 2000 to 0x3F 3FFF  
0x3F 4000 to 0x3F 5FFF  
0x3F 6000 to 0x3F 6FFF  
0x3F 7000 to 0x3F 7FFF  
PROGRAM AND DATA SPACE  
Sector J (4K × 16)  
Sector I (4K × 16)  
Sector H (8K × 16)  
Sector G (8K × 16)  
Sector F (8K × 16)  
Sector E (8K × 16)  
Sector D (8K × 16)  
Sector C (8K × 16)  
Sector B (4K × 16)  
Sector A (4K × 16)  
Table 8-6. Addresses of Flash Sectors in F28053, F28052, and F28051  
ADDRESS RANGE  
0x3F 0000 to 0x3F 1FFF  
0x3F 2000 to 0x3F 3FFF  
0x3F 4000 to 0x3F 5FFF  
0x3F 6000 to 0x3F 6FFF  
0x3F 7000 to 0x3F 7FFF  
PROGRAM AND DATA SPACE  
Sector E (8K × 16)  
Sector D (8K × 16)  
Sector C (8K × 16)  
Sector B (4K × 16)  
Sector A (4K × 16)  
Table 8-7. Addresses of Flash Sectors in F28050  
ADDRESS RANGE  
0x3F 4000 to 0x3F 5FFF  
0x3F 6000 to 0x3F 6FFF  
0x3F 7000 to 0x3F 7FFF  
PROGRAM AND DATA SPACE  
Sector C (8K × 16)  
Sector B (4K × 16)  
Sector A (4K × 16)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 are grouped together to enable these blocks to  
be write/read peripheral block protected. The protected mode makes sure that all accesses to these blocks  
happen as written. Because of the pipeline, a write immediately followed by a read to different memory locations  
will appear in reverse order on the memory bus of the CPU. This action can cause problems in certain peripheral  
applications where the user expected the write to occur first (as written). The CPU supports a block protection  
mode where a region of memory can be protected so that operations occur as written (the penalty is extra cycles  
are added to align the operations). This mode is programmable, and by default, it protects the selected zones.  
The wait-states for the various spaces in the memory map area are listed in Table 8-8.  
Table 8-8. Wait-States  
AREA  
WAIT-STATES (CPU)  
COMMENTS  
M0 and M1 SARAMs  
Peripheral Frame 0  
Peripheral Frame 1  
0-wait  
Fixed  
0-wait  
0-wait (writes)  
2-wait (reads)  
Cycles can be extended by peripheral generated ready.  
Back-to-back write operations to Peripheral Frame 1 registers will incur  
a 1-cycle stall (1-cycle delay).  
Peripheral Frame 2  
Peripheral Frame 3  
0-wait (writes)  
2-wait (reads)  
Fixed. Cycles cannot be extended by the peripheral.  
0-wait (writes)  
Assumes no conflict between CPU and CLA.  
Cycles can be extended by peripheral-generated ready.  
Assumes no CPU conflicts  
2-wait (reads)  
L0 SARAM  
L1 SARAM  
L2 SARAM  
L3 SARAM  
OTP  
0-wait data and program  
0-wait data and program  
0-wait data and program  
0-wait data and program  
Programmable  
Assumes no CPU conflicts  
Assumes no CPU conflicts  
Assumes no CPU conflicts  
Programmed through the Flash registers.  
1-wait is minimum number of wait states allowed.  
Programmed through the Flash registers.  
1-wait minimum  
Flash  
Programmable  
0-wait Paged min  
1-wait Random min  
Random ≥ Paged  
Flash Password  
Boot-ROM  
16-wait fixed  
0-wait  
Wait states of password locations are fixed.  
Secure ROM  
0-wait  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.3 Register Map  
The devices contain four peripheral register spaces. The spaces are categorized as follows:  
Peripheral Frame 0:  
Peripheral Frame 1:  
Peripheral Frame 2:  
Peripheral Frame 3:  
These are peripherals that are mapped directly to the CPU memory bus. See Table 8-9.  
These are peripherals that are mapped to the 32-bit peripheral bus. See Table 8-10.  
These are peripherals that are mapped to the 16-bit peripheral bus. See Table 8-11.  
These are peripherals that are mapped to CLA in addition to their respective Peripheral Frame. See  
Table 8-12.  
Table 8-9. Peripheral Frame 0 Registers (1)  
NAME  
Device Emulation Registers  
System Power Control Registers  
FLASH Registers(3)  
ADDRESS RANGE  
0x00 0880 to 0x00 0984  
0x00 0985 to 0x00 0987  
0x00 0A80 to 0x00 0ADF  
0x00 0B00 to 0x00 0B0F  
0x00 0B80 to 0x00 0BBF  
0x00 0BC0 to 0x00 0BEF  
SIZE (×16)  
EALLOW PROTECTED(2)  
261  
3
Yes  
Yes  
Yes  
No  
96  
16  
64  
48  
ADC registers (0 wait read only)  
DCSM Zone 1 Registers  
Yes  
Yes  
DCSM Zone 2 Registers  
CPU-Timer 0, CPU-Timer 1, CPU-Timer 2  
Registers  
0x00 0C00 to 0x00 0C3F  
64  
No  
PIE Registers  
0x00 0CE0 to 0x00 0CFF  
0x00 0D00 to 0x00 0DFF  
0x00 1400 to 0x00 147F  
0x00 1480 to 0x00 14FF  
0x00 1500 to 0x00 157F  
32  
No  
No  
PIE Vector Table  
256  
128  
128  
128  
CLA Registers  
Yes  
NA  
NA  
CLA to CPU Message RAM (CPU writes ignored)  
CPU to CLA Message RAM (CLA writes ignored)  
(1) Registers in Frame 0 support 16-bit and 32-bit accesses.  
(2) If registers are EALLOW protected, then writes cannot be performed until the EALLOW instruction is executed. The EDIS instruction  
disables writes to prevent stray code or pointers from corrupting register contents.  
(3) The Flash Registers are also protected by the Dual Code Security Module.  
Table 8-10. Peripheral Frame 1 Registers  
NAME  
ADDRESS RANGE  
0x00 6000 to 0x00 61FF  
0x00 6A00 to 0x00 6A1F  
0x00 6B00 to 0x00 6B3F  
0x00 6F80 to 0x00 6FFF  
SIZE (×16)  
EALLOW PROTECTED  
(1)  
eCAN-A Registers  
eCAP1 Registers  
eQEP1 Registers  
GPIO Registers  
512  
32  
No  
(1)  
64  
(1)  
128  
(1) Some registers are EALLOW protected. See the module reference guide for more information.  
Table 8-11. Peripheral Frame 2 Registers  
NAME  
System Control Registers  
ADDRESS RANGE  
0x00 7010 to 0x00 702F  
0x00 7040 to 0x00 704F  
0x00 7050 to 0x00 705F  
0x00 7750 to 0x00 775F  
0x00 7770 to 0x00 777F  
0x00 7060 to 0x00 706F  
0x00 7070 to 0x00 707F  
0x00 7100 to 0x00 717F  
0x00 7900 to 0x00 793F  
SIZE (×16)  
EALLOW PROTECTED  
32  
16  
16  
16  
16  
16  
16  
128  
64  
Yes  
No  
No  
No  
No  
Yes  
SPI-A Registers  
SCI-A Registers  
SCI-B Registers  
SCI-C Registers  
NMI Watchdog Interrupt Registers  
External Interrupt Registers  
ADC Registers  
Yes  
(1)  
(1)  
I2C-A Registers  
(1) Some registers are EALLOW protected. See the module reference guide for more information.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
 
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-12. Peripheral Frame 3 Registers  
NAME  
ADC registers (0 wait read only)  
DAC Control Registers  
ADDRESS RANGE  
0x00 0B00 to 0x00 0B0F  
0x00 6400 to 0x00 640F  
SIZE (×16)  
EALLOW PROTECTED  
16  
16  
No  
Yes  
DAC, PGA, Comparator, and Filter Enable  
Registers  
0x00 6410 to 0x00 641F  
16  
Yes  
SWITCH Registers  
Digital Filter and Comparator Control Registers  
LOCK Registers  
0x00 6420 to 0x00 642F  
0x00 6430 to 0x00 647F  
0x00 64F0 to 0x00 64FF  
0x00 6800 to 0x00 683F  
0x00 6840 to 0x00 687F  
0x00 6880 to 0x00 68BF  
0x00 68C0 to 0x00 68FF  
0x00 6900 to 0x00 693F  
0x00 6940 to 0x00 697F  
0x00 6980 to 0x00 69BF  
0x00 6A00 to 0x00 6A1F  
0x00 6B00 to 0x00 6B3F  
16  
80  
16  
64  
64  
64  
64  
64  
64  
64  
32  
64  
Yes  
Yes  
Yes  
(1)  
ePWM1 registers  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
ePWM2 registers  
ePWM3 registers  
ePWM4 registers  
ePWM5 registers  
ePWM6 registers  
ePWM7 registers  
eCAP1 Registers  
No  
(1)  
eQEP1 Registers  
(1) Some registers are EALLOW protected. See the module reference guide for more information.  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.4 Device Emulation Registers  
These registers are used to control the protection mode of the C28x CPU and to monitor some critical device  
signals. Table 8-13 defines the registers.  
Table 8-13. Device Emulation Registers  
ADDRESS  
RANGE  
EALLOW  
PROTECTED  
NAME  
SIZE (×16)  
DESCRIPTION  
Device Configuration Register  
DEVICECNF  
0x0880 to  
0x0881  
2
Yes  
No  
PARTID  
0x0882  
1
PARTID Register  
TMS320F28055  
TMS320F28054  
TMS320F28054M  
TMS320F28054F  
TMS320F28053  
TMS320F28052  
TMS320F28052M  
TMS320F28052F  
TMS320F28051  
TMS320F28050  
0x0105  
0x0104  
0x0184  
0x0144  
0x0103  
0x0102  
0x0182  
0x0142  
0x0101  
0x0100  
REVID(1)  
DC1  
0x0883  
1
2
Revision ID  
Register  
0x0000 - Silicon Rev. 0 - TMX  
0x0000 - Silicon Rev. A - TMS  
No  
0x0886 to  
0x0887  
Device Capability Register 1.  
Yes  
The Device Capability Register is predefined by the part and  
can be used to verify features. If any bit is 0 in this register, the  
module is not present. See Table 8-14.  
DC2  
DC3  
0x0888 to  
0x0889  
2
2
Device Capability Register 2.  
Yes  
Yes  
The Device Capability Register is predefined by the part and  
can be used to verify features. If any bit is 0 in this register, the  
module is not present. See Table 8-15.  
0x088A to  
0x088B  
Device Capability Register 3.  
The Device Capability Register is predefined by the part and  
can be used to verify features. If any bit is 0 in this register, the  
module is not present. See Table 8-16.  
(1) Boot-ROM contents changed from Rev. 0 silicon to Rev. A silicon. For more details, see the TMS320x2805x Technical Reference  
Manual.  
Table 8-14. Device Capability Register 1 (DC1) Field Descriptions (1)  
BIT  
FIELD  
TYPE  
DESCRIPTION  
31:30  
RSVD  
R = 0  
Reserved  
These 8 bits set the PARTNO field value in the PARTID register for the device. They  
are readable in the PARTID[7:0] register bits.  
29:22  
PARTNO  
R
21:14  
13  
12:7  
6
RSVD  
CLA  
RSVD  
L3  
R = 0  
R
Reserved  
CLA is present when this bit is set.  
Reserved  
R = 0  
R
L3 is present when this bit is set.  
L2 is present when this bit is set.  
L1 is present when this bit is set.  
L0 is present when this bit is set.  
Reserved  
5
L2  
R
4
L1  
R
3
L0  
R
2
RSVD  
RSVD  
R = 0  
R = 0  
1:0  
Reserved  
(1) All reserved bits should not be written to, but if any use case demands that reserved bits must be written to, then software must write  
the same value that is read back from the reserved bits. These bits are reserved for future enhancements.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-15. Device Capability Register 2 (DC2) Field Descriptions (1)  
BIT  
31:28  
27  
FIELD  
RSVD  
eCAN-A  
RSVD  
EQEP-1  
RSVD  
ECAP-1  
RSVD  
I2C-A  
TYPE  
R = 0  
R
DESCRIPTION  
Reserved  
eCAN-A is present when this bit is set.  
Reserved  
26:17  
16  
R = 0  
R
eQEP-1 is present when this bit is set.  
Reserved  
15:13  
12  
R = 0  
R
eCAP-1 is present when this bit is set.  
Reserved  
11:9  
8
R = 0  
R
I2C-A is present when this bit is set.  
Reserved  
7:5  
4
RSVD  
SPI-A  
R = 0  
R
SPI-A is present when this bit is set.  
Reserved  
3
RSVD  
SCI-C  
SCI-B  
R = 0  
R
2
SCI-C is present when this bit is set.  
SCI-B is present when this bit is set.  
SCI-A is present when this bit is set.  
1
R
0
SCI-A  
R
(1) All reserved bits should not be written to, but if any use case demands that reserved bits must be written to, then software must write  
the same value that is read back from the reserved bits. These bits are reserved for future enhancements.  
Table 8-16. Device Capability Register 3 (DC3) Field Descriptions (1)  
BIT  
31:20  
19  
18  
17  
16  
15  
14  
13  
12:8  
7
FIELD  
TYPE  
DESCRIPTION  
RSVD  
R = 0  
R
Reserved  
CTRIPFIL7  
CTRIPFIL6  
CTRIPFIL5  
CTRIPFIL4  
CTRIPFIL3  
CTRIPFIL2  
CTRIPFIL1  
RSVD  
CTRIPFIL7(B7) is present when this bit is set.  
CTRIPFIL6(B6) is present when this bit is set.  
CTRIPFIL5(B4) is present when this bit is set.  
CTRIPFIL4(A6) is present when this bit is set.  
CTRIPFIL3(B1) is present when this bit is set.  
CTRIPFIL2(A3) is present when this bit is set.  
CTRIPFIL1(A1) is present when this bit is set.  
Reserved  
R
R
R
R
R
R
R = 0  
R = 0  
R
RSVD  
Reserved  
6
ePWM7  
ePWM7 is present when this bit is set.  
ePWM6 is present when this bit is set.  
ePWM5 is present when this bit is set.  
ePWM4 is present when this bit is set.  
ePWM3 is present when this bit is set.  
ePWM2 is present when this bit is set.  
ePWM1 is present when this bit is set.  
5
ePWM6  
R
4
ePWM5  
R
3
ePWM4  
R
2
ePWM3  
R
1
ePWM2  
R
0
ePWM1  
R
(1) All reserved bits should not be written to, but if any use case demands that reserved bits must be written to, then software must write  
the same value that is read back from the reserved bits. These bits are reserved for future enhancements.  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.5 VREG, BOR, POR  
Although the core and I/O circuitry operate on two different voltages, these devices have an on-chip voltage  
regulator (VREG) to generate the VDD voltage from the VDDIO supply. This feature eliminates the cost and space  
of a second external regulator on an application board. Additionally, internal power-on reset (POR) and brownout  
reset (BOR) circuits monitor both the VDD and VDDIO rails during power-up and run mode.  
8.5.1 On-chip VREG  
A linear regulator generates the core voltage (VDD) from the VDDIO supply. Therefore, although capacitors are  
required on each VDD pin to stabilize the generated voltage, supplying power to these pins is not needed to  
operate the device. Conversely, the VREG can be disabled, if power or redundancy becomes the primary  
concern of the application.  
8.5.1.1 Using the On-chip VREG  
To use the on-chip VREG, the VREGENZ pin should be tied low and the appropriate recommended operating  
voltage should be supplied to the VDDIO and VDDA pins. In this case, the VDD voltage needed by the core logic  
will be generated by the VREG. Each VDD pin requires approximately 1.2 μF (minimum) capacitance for proper  
regulation of the VREG. These capacitors should be located as close as possible to the VDD pins.  
8.5.1.2 Disabling the On-chip VREG  
To conserve power, it is also possible to disable the on-chip VREG and supply the core logic voltage to the VDD  
pins with a more efficient external regulator. To enable this option, the VREGENZ pin must be tied high.  
8.5.2 On-chip Power-On Reset and Brownout Reset Circuit  
The purpose of the POR is to create a clean reset throughout the device during the entire power-up procedure.  
The trip point is a looser, lower trip point than the BOR, which watches for dips in the VDD or VDDIO rail during  
device operation. The POR function is present on both VDD and VDDIO rails at all times. After initial device power-  
up, the BOR function is present on VDDIO at all times, and on VDD when the internal VREG is enabled  
( VREGENZ pin is tied low). Both functions tie the XRS pin low when one of the voltages is below its respective  
trip point. Additionally, when the internal voltage regulator is enabled, an overvoltage protection circuit will tie  
XRS low if the VDD rail rises above its trip point. See Section 7.6 for the various trip points as well as the delay  
time for the device to release the XRS pin after the undervoltage or overvoltage condition is removed. Figure 8-5  
shows the VREG, POR, and BOR. To disable both the VDD and VDDIO BOR functions, a bit is provided in the  
BORCFG register. For details, see the System Control and Interrupts chapter of the TMS320x2805x Technical  
Reference Manual.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
In  
I/O Pin  
Out  
(Force Hi-Z When High)  
DIR (0 = Input, 1 = Output)  
Internal  
Weak Pullup  
SYSRS  
SYSCLKOUT  
Sync  
Deglitch  
Filter  
RS  
WDRST  
C28x  
Core  
MCLKRS  
JTAG  
TCK  
PLL  
+
Clocking  
Logic  
Detect  
Logic  
XRS  
Pin  
VREGHALT  
WDRST(A)  
PBRS(B)  
POR/BOR  
Generating  
Module  
On-Chip  
Voltage  
Regulator  
(VREG)  
VREGENZ  
A. WDRST is the reset signal from the CPU-watchdog.  
B. PBRS is the reset signal from the POR/BOR module.  
Figure 8-5. VREG + POR + BOR + Reset Signal Connectivity  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.6 System Control  
This section describes the oscillator and clocking mechanisms, the watchdog function and the low power modes.  
Table 8-17 lists the PLL, clocking, watchdog, and low-power mode registers.  
Table 8-17. PLL, Clocking, Watchdog, and Low-Power Mode Registers  
NAME  
BORCFG  
ADDRESS  
0x00 0985  
0x00 7010  
0x00 7011  
0x00 7012  
0x00 7013  
0x00 7014  
0x00 7016  
0x00 701B  
0x00 701C  
0x00 701D  
0x00 701E  
0x00 7020  
0x00 7021  
0x00 7022  
0x00 7023  
0x00 7024  
0x00 7025  
0x00 7029  
SIZE (×16)  
DESCRIPTION(1)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
BOR Configuration register  
XCLK  
XCLKOUT Control  
PLLSTS  
PLL Status register  
CLKCTL  
Clock Control register  
PLLLOCKPRD  
INTOSC1TRIM  
INTOSC2TRIM  
LOSPCP  
PCLKCR0  
PCLKCR1  
LPMCR0  
PCLKCR3  
PLLCR  
PLL Lock Period  
Internal Oscillator 1 Trim register  
Internal Oscillator 2 Trim register  
Low-Speed Peripheral Clock Prescaler register  
Peripheral Clock Control Register 0  
Peripheral Clock Control Register 1  
Low Power Mode Control Register 0  
Peripheral Clock Control Register 3  
PLL Control register  
SCSR  
System Control and Status register  
Watchdog Counter register  
WDCNTR  
PCLKCR4  
WDKEY  
Peripheral Clock Control Register 4  
Watchdog Reset Key register  
Watchdog Control register  
WDCR  
(1) All registers in this table are EALLOW protected.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 8-6 shows the various clock domains that are discussed. Figure 8-7 shows the various clock sources  
(both internal and external) that can provide a clock for device operation.  
SYSCLKOUT  
PCLKCR0/1/3/4  
(System Ctrl Regs)  
LOSPCP  
(System Ctrl Regs)  
C28x Core  
CLKIN  
Clock Enables  
LSPCLK  
Peripheral  
Registers  
SPI-A, SCI-A, SCI-B, SCI-C  
Clock Enables  
I/O  
I/O  
I/O  
I/O  
I/O  
Peripheral  
Registers  
eCAP1, eQEP1  
/2  
Peripheral  
Registers  
GPIO  
Mux  
eCAN-A  
Clock Enables  
ePWM1, ePWM2,  
ePWM3, ePWM4,  
ePWM5, ePWM6, ePWM7  
Peripheral  
Registers  
Clock Enables  
I2C-A  
Peripheral  
Registers  
Clock Enables  
ADC  
Registers  
9 Ch  
12-Bit ADC  
Analog  
Clock Enables  
AFE  
AFE  
Registers  
7 Ch  
A. CLKIN is the clock into the CPU. CLKIN is passed out of the CPU as SYSCLKOUT (that is, CLKIN is the same frequency as  
SYSCLKOUT).  
Figure 8-6. Clock and Reset Domains  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
CLKCTL[WDCLKSRCSEL]  
Internal  
OSC 1  
(10 MHz)  
0
OSC1CLK  
OSCCLKSRC1  
INTOSC1TRIM Reg(A)  
WDCLK  
CPU Watchdog  
(OSC1CLK on XRS reset)  
OSCE  
1
CLKCTL[INTOSC1OFF]  
1 = Turn OSC Off  
CLKCTL[OSCCLKSRCSEL]  
CLKCTL[INTOSC1HALT]  
1 = Ignore HALT  
WAKEOSC  
OSC2CLK  
0
1
Internal  
OSC 2  
(10 MHz)  
INTOSC2TRIM Reg(A)  
OSCCLK  
PLL  
Missing-Clock-Detect Circuit(B)  
(OSC1CLK on XRS reset)  
OSCE  
CLKCTL[TRM2CLKPRESCALE]  
CLKCTL[TMR2CLKSRCSEL]  
1 = Turn OSC Off  
10  
11  
CLKCTL[INTOSC2OFF]  
Prescale  
/1, /2, /4,  
/8, /16  
SYNC  
Edge  
Detect  
01, 10, 11  
CPUTMR2CLK  
1 = Ignore HALT  
01  
1
0
00  
CLKCTL[INTOSC2HALT]  
SYSCLKOUT  
OSCCLKSRC2  
CLKCTL[OSCCLKSRC2SEL]  
0 = GPIO38  
1 = GPIO19  
XCLK[XCLKINSEL]  
CLKCTL[XCLKINOFF]  
0
1
0
GPIO19  
or  
XCLKIN  
GPIO38  
XCLKIN  
X1  
X2  
EXTCLK  
(Crystal)  
OSC  
XTAL  
WAKEOSC  
(Oscillators enabled when this signal is high)  
0 = OSC on (default on reset)  
1 = Turn OSC off  
CLKCTL[XTALOSCOFF]  
A. Register loaded from TI OTP-based calibration function.  
B. See Section 8.6.4 for details on missing clock detection.  
Figure 8-7. Clock Tree  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.6.1 Internal Zero-Pin Oscillators  
The F2805x devices contain two independent internal zero-pin oscillators. By default both oscillators are turned  
on at power up, and internal oscillator 1 is the default clock source at this time. For power savings, unused  
oscillators may be powered down by the user. The center frequency of these oscillators is determined by their  
respective oscillator trim registers, written to in the calibration routine as part of the boot ROM execution. See  
Section 7.13.1 for more information on these oscillators.  
8.6.2 Crystal Oscillator Option  
The on-chip crystal oscillator X1 and X2 pins are 1.8-V level signals and must never have 3.3-V level signals  
applied to them. If a system 3.3-V external oscillator is to be used as a clock source, it should be connected to  
the XCLKIN pin only. The X1 pin is not intended to be used as a single-ended clock input, it should be used with  
X2 and a crystal.  
Table 8-18 lists the typical specifications for the external quartz crystal (fundamental mode, parallel resonant).  
Furthermore, ESR range = 30 to 150 Ω.  
Table 8-18. Typical Specifications for External Quartz Crystal (1)  
FREQUENCY (MHz)  
Rd (Ω)  
2200  
470  
0
CL1 (pF)  
CL2 (pF)  
5
18  
18  
10  
15  
20  
15  
15  
15  
15  
0
12  
12  
(1) Cshunt should be less than or equal to 5 pF.  
XCLKIN/GPIO19/38  
X1  
X2  
Rd  
Turn off  
XCLKIN path  
in CLKCTL  
register  
Crystal  
CL1  
CL2  
Figure 8-8. Using the On-chip Crystal Oscillator  
Note  
1. CL1 and CL2 are the total capacitance of the circuit board and components excluding the IC and  
crystal. The value is usually approximately twice the value of the load capacitance of the crystal.  
2. The load capacitance of the crystal is described in the crystal specifications of the manufacturers.  
3. TI recommends that customers have the resonator/crystal vendor characterize the operation of  
their device with the MCU chip. The resonator/crystal vendor has the equipment and expertise to  
tune the tank circuit. The vendor can also advise the customer regarding the proper tank  
component values that will produce proper start-up and stability over the entire operating range.  
XCLKIN/GPIO19/38  
X1  
X2  
NC  
External Clock Signal  
(Toggling 0−V  
)
DDIO  
Figure 8-9. Using a 3.3-V External Oscillator  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.6.3 PLL-Based Clock Module  
The devices have an on-chip, PLL-based clock module. This module provides all the necessary clocking signals  
for the device, as well as control for low-power mode entry. The PLL has a 4-bit ratio control PLLCR[DIV] to  
select different CPU clock rates. The watchdog module should be disabled before writing to the PLLCR register.  
The watchdog module can be re-enabled (if needed) after the PLL module has stabilized, which takes 1 ms. The  
input clock and PLLCR[DIV] bits should be chosen in such a way that the output frequency of the PLL  
(VCOCLK) is at least 50 MHz.  
Table 8-19. PLL Settings  
SYSCLKOUT (CLKIN)  
PLLCR[DIV] VALUE(2) (3)  
PLLSTS[DIVSEL] = 0 or 1(1)  
OSCCLK/4 (Default)(2)  
(OSCCLK × 1)/4  
(OSCCLK × 2)/4  
(OSCCLK × 3)/4  
(OSCCLK × 4)/4  
(OSCCLK × 5)/4  
(OSCCLK × 6)/4  
(OSCCLK × 7)/4  
(OSCCLK × 8)/4  
(OSCCLK × 9)/4  
(OSCCLK × 10)/4  
(OSCCLK × 11)/4  
(OSCCLK × 12)/4  
PLLSTS[DIVSEL] = 2  
OSCCLK/2  
PLLSTS[DIVSEL] = 3  
OSCCLK  
0000 (PLL bypass)  
0001  
(OSCCLK × 1)/2  
(OSCCLK × 2)/2  
(OSCCLK × 3)/2  
(OSCCLK × 4)/2  
(OSCCLK × 5)/2  
(OSCCLK × 6)/2  
(OSCCLK × 7)/2  
(OSCCLK × 8)/2  
(OSCCLK × 9)/2  
(OSCCLK × 10)/2  
(OSCCLK × 11)/2  
(OSCCLK × 12)/2  
(OSCCLK × 1)/1  
(OSCCLK × 2)/1  
(OSCCLK × 3)/1  
(OSCCLK × 4)/1  
(OSCCLK × 5)/1  
(OSCCLK × 6)/1  
(OSCCLK × 7)/1  
(OSCCLK × 8)/1  
(OSCCLK × 9)/1  
(OSCCLK × 10)/1  
(OSCCLK × 11)/1  
(OSCCLK × 12)/1  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
(1) By default, PLLSTS[DIVSEL] is configured for /4. (The boot ROM changes the PLLSTS[DIVSEL] configuration to /1.) PLLSTS[DIVSEL]  
must be 0 before writing to the PLLCR and should be changed only after PLLSTS[PLLLOCKS] = 1.  
(2) The PLL control register (PLLCR) and PLL Status Register (PLLSTS) are reset to their default state by the XRS signal or a watchdog  
reset only. A reset issued by the debugger or the missing clock detect logic has no effect.  
(3) This register is EALLOW protected. For more information, see the System Control and Interrupts chapter of the TMS320x2805x  
Technical Reference Manual.  
Table 8-20. CLKIN Divide Options  
PLLSTS [DIVSEL]  
CLKIN DIVIDE  
0
1
2
3
/4  
/4  
/2  
/1  
The PLL-based clock module provides four modes of operation:  
INTOSC1 (Internal Zero-pin Oscillator 1): INTOSC1 is the on-chip internal oscillator 1. INTOSC1 can  
provide the clock for the Watchdog block, core and CPU-Timer 2.  
INTOSC2 (Internal Zero-pin Oscillator 2): INTOSC2 is the on-chip internal oscillator 2. INTOSC2 can  
provide the clock for the Watchdog block, core and CPU-Timer 2. Both INTOSC1 and INTOSC2 can be  
independently chosen for the Watchdog block, core and CPU-Timer 2.  
Crystal/Resonator Operation: The on-chip (crystal) oscillator enables the use of an external crystal/  
resonator attached to the device to provide the time base. The crystal/resonator is connected to the X1/X2  
pins. Some devices may not have the X1/X2 pins. See Section 6.2.1 for details.  
External Clock Source Operation: If the on-chip (crystal) oscillator is not used, this mode allows the on-chip  
(crystal) oscillator to be bypassed. The device clocks are generated from an external clock source input on  
the XCLKIN pin. The XCLKIN is multiplexed with GPIO19 or GPIO38 pin. The XCLKIN input can be selected  
as GPIO19 or GPIO38 through the XCLKINSEL bit in XCLK register. The CLKCTL[XCLKINOFF] bit disables  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
this clock input (forced low). If the clock source is not used or the respective pins are used as GPIOs, the  
user should disable at boot time.  
Before changing clock sources, ensure that the target clock is present. If a clock is not present, then that clock  
source must be disabled (using the CLKCTL register) before switching clocks.  
Table 8-21. Possible PLL Configuration Modes  
CLKIN AND  
PLL MODE  
REMARKS  
PLLSTS[DIVSEL]  
SYSCLKOUT  
OSCCLK/4  
OSCCLK/2  
Invoked by the user setting the PLLOFF bit in the PLLSTS register. The PLL  
block is disabled in this mode. The PLL block being disabled can be useful in  
reducing system noise and for low-power operation. The PLLCR register must  
first be set to 0x0000 (PLL Bypass) before entering this mode. The CPU clock  
(CLKIN) is derived directly from the input clock on either X1/X2, X1 or XCLKIN.  
0, 1  
2
PLL Off  
3
OSCCLK/1  
PLL Bypass is the default PLL configuration upon power-up or after an external  
reset ( XRS). This mode is selected when the PLLCR register is set to 0x0000 or  
while the PLL locks to a new frequency after the PLLCR register has been  
modified. In this mode, the PLL is bypassed but is not turned off.  
0, 1  
2
OSCCLK/4  
OSCCLK/2  
PLL Bypass  
PLL Enable  
3
OSCCLK/1  
0, 1  
2
OSCCLK × n/4  
OSCCLK × n/2  
OSCCLK × n/1  
Achieved by writing a nonzero value n into the PLLCR register. Upon writing to  
the PLLCR the device will switch to PLL Bypass mode until the PLL locks.  
3
8.6.4 Loss of Input Clock (NMI-watchdog Function)  
The 2805x devices may be clocked from either one of the internal zero-pin oscillators (INTOSC1 or INTOSC2),  
the on-chip crystal oscillator, or from an external clock input. Regardless of the clock source, in PLL-enabled and  
PLL-bypass mode, if the input clock to the PLL vanishes, the PLL will issue a limp-mode clock at its output. This  
limp-mode clock continues to clock the CPU and peripherals at a typical frequency of 1–5 MHz.  
When the limp mode is activated, a CLOCKFAIL signal is generated that is latched as an NMI interrupt.  
Depending on how the NMIRESETSEL bit has been configured, a reset to the device can be fired immediately or  
the NMI-watchdog counter can issue a reset when the counter overflows. In addition to this action, the Missing  
Clock Status (MCLKSTS) bit is set. The NMI interrupt could be used by the application to detect the input clock  
failure and initiate necessary corrective action such as switching over to an alternative clock source (if available)  
or initiate a shutdown procedure for the system.  
If software does not respond to the clock-fail condition, the NMI-watchdog triggers a reset after a  
preprogrammed time interval. Figure 8-10 shows the interrupt mechanisms involved.  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
NMIFLG[NMINT]  
NMIFLGCLR[NMINT]  
Clear  
Latch  
Set  
Clear  
XRS  
Generate  
Interrupt  
Pulse  
When  
Input = 1  
NMIFLG[CLOCKFAIL]  
1
0
0
Clear  
Latch  
Set  
NMIFLGCLR[CLOCKFAIL]  
CLOCKFAIL  
NMINT  
SYNC?  
Clear  
SYSCLKOUT  
NMICFG[CLOCKFAIL]  
NMIFLGFRC[CLOCKFAIL]  
XRS  
SYSCLKOUT  
SYSRS  
NMIWDPRD[15:0]  
NMIWDCNT[15:0]  
See System  
Control Section  
NMI Watchdog  
NMIRS  
Figure 8-10. NMI-watchdog  
8.6.5 CPU-watchdog Module  
The CPU-watchdog module on the 2805x device is similar to the one used on the 281x, 280x, and 283xx  
devices. This module generates an output pulse, 512 oscillator clocks wide (OSCCLK), whenever the 8-bit  
watchdog up counter has reached its maximum value. To prevent this occurrence, the user must disable the  
counter or the software must periodically write a 0x55 + 0xAA sequence into the watchdog key register that  
resets the watchdog counter. Figure 8-11 shows the various functional blocks within the watchdog module.  
Normally, when the input clocks are present, the CPU-watchdog counter decrements to initiate a CPU-watchdog  
reset or WDINT interrupt. However, when the external input clock fails, the CPU-watchdog counter stops  
decrementing (that is, the watchdog counter does not change with the limp-mode clock).  
Note  
The CPU-watchdog is different from the NMI-watchdog. The CPU-watchdog is the legacy watchdog  
that is present in all 28x devices.  
Note  
Applications in which the correct CPU operating frequency is absolutely critical should implement a  
mechanism by which the MCU will be held in reset, should the input clocks ever fail. For example, an  
R-C circuit may be used to trigger the XRS pin of the MCU, should the capacitor ever get fully  
charged. An I/O pin may be used to discharge the capacitor on a periodic basis to prevent the  
capacitor from getting fully charged. Such a circuit would also help detect failure of the flash memory.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
WDCR (WDPS[2:0])  
WDCR (WDDIS)  
WDCNTR(7:0)  
WDCLK  
WDCLK  
8-Bit  
Watchdog  
Counter  
CLR  
Watchdog  
Prescaler  
/512  
SCSR(WDOVERRIDE)  
Clear Counter  
Internal  
Pullup  
WDKEY(7:0)  
WDRST  
WDINT  
Generate  
Watchdog  
55 + AA  
Output Pulse  
Good K ey  
(512 OSCCLKs)  
Key Detector  
XRS  
Bad  
WDCHK  
Key  
Core-reset  
SCSR (WDENINT)  
WDCR (WDCHK[2:0])  
1
0
1
(A)  
WDRST  
A. The WDRST signal is driven low for 512 OSCCLK cycles.  
Figure 8-11. CPU-watchdog Module  
The WDINT signal enables the watchdog to be used as a wakeup from IDLE/STANDBY mode.  
In STANDBY mode, all peripherals are turned off on the device. The only peripheral that remains functional is  
the CPU-watchdog. This module will run off OSCCLK. The WDINT signal is fed to the LPM block so that the  
signal can wake the device from STANDBY (if enabled). For more details, see Section 8.7, Low-power Modes  
Block.  
In IDLE mode, the WDINT signal can generate an interrupt to the CPU, through the PIE, to take the CPU out of  
IDLE mode.  
In HALT mode, the CPU-watchdog can be used to wake up the device through a device reset.  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.7 Low-power Modes Block  
Table 8-22 summarizes the various modes.  
Table 8-22. Low-power Modes  
MODE  
LPMCR0(1:0)  
OSCCLK  
CLKIN  
SYSCLKOUT  
EXIT(1)  
XRS, CPU-watchdog interrupt, any  
enabled interrupt  
IDLE  
00  
On  
On  
On  
On  
XRS, CPU-watchdog interrupt, GPIO  
Port A signal, debugger(2)  
STANDBY  
HALT(3)  
01  
1X  
Off  
Off  
Off  
Off  
(CPU-watchdog still running)  
Off  
(on-chip crystal oscillator and PLL  
turned off, zero-pin oscillator and  
CPU-watchdog state dependent  
on user code.)  
XRS, GPIO Port A signal, debugger(2)  
CPU-watchdog  
,
(1) The EXIT column lists which signals or under what conditions the low power mode is exited. A low signal, on any of the signals, exits  
the low power condition. This signal must be kept low long enough for an interrupt to be recognized by the device. Otherwise, the low-  
power mode will not be exited and the device will go back into the indicated low power mode.  
(2) The JTAG port can still function even if the CPU clock (CLKIN) is turned off.  
(3) The WDCLK must be active for the device to go into HALT mode.  
The various low-power modes operate as follows:  
IDLE Mode:  
This mode is exited by any enabled interrupt that is recognized by the processor. The LPM block  
performs no tasks during this mode as long as the LPMCR0(LPM) bits are set to 0,0.  
STANDBY Mode:  
Any GPIO port A signal (GPIO[31:0]) can wake the device from STANDBY mode. The user must  
select which signals will wake the device in the GPIOLPMSEL register. The selected signals are also  
qualified by the OSCCLK before waking the device. The number of OSCCLKs is specified in the  
LPMCR0 register.  
HALT Mode:  
CPU-watchdog, XRS, and any GPIO port A signal (GPIO[31:0]) can wake the device from HALT  
mode. The user selects the signal in the GPIOLPMSEL register.  
Note  
The low-power modes do not affect the state of the output pins (PWM pins included). They will be in  
whatever state the code left them in when the IDLE instruction was executed. For more information,  
see the System Control and Interrupts chapter of the TMS320x2805x Technical Reference Manual.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.8 Interrupts  
Figure 8-12 shows how the various interrupt sources are multiplexed.  
Peripherals  
(SPI, SCI, ePWM, I2C, eCAP, ADC, eQEP, CLA, eCAN)  
WDINT  
Watchdog  
WAKEINT  
Sync  
LPMINT  
XINT1  
Low Power Modes  
SYSCLKOUT  
XINT1  
Interrupt Control  
XINT1CR(15:0)  
XINT1CTR(15:0)  
GPIOXINT1SEL(4:0)  
XINT2SOC  
ADC  
INT1  
to  
INT12  
XINT2  
XINT2  
Interrupt Control  
XINT2CR(15:0)  
XINT2CTR(15:0)  
C28  
Core  
GPIOXINT2SEL(4:0)  
GPIO0.int  
XINT3  
TINT0  
XINT3  
GPIO  
MUX  
Interrupt Control  
XINT3CR(15:0)  
XINT3CTR(15:0)  
GPIO31.int  
GPIOXINT3SEL(4:0)  
CPU TIMER 0  
CPU TIMER 1  
CPU TIMER 2  
TINT1  
TINT2  
INT13  
INT14  
CPUTMR2CLK  
CLOCKFAIL  
NMIRS  
System Control  
(See the System  
Control section.)  
NMI interrupt with watchdog function  
(See the NMI Watchdog section.)  
NMI  
Figure 8-12. External and PIE Interrupt Sources  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
Eight PIE block interrupts are grouped into one CPU interrupt. In total, 12 CPU interrupt groups, with 8 interrupts  
per group equals 96 possible interrupts. Table 8-23 shows the interrupts used by 2805x devices.  
The TRAP #VectorNumber instruction transfers program control to the interrupt service routine (ISR)  
corresponding to the vector specified. TRAP #0 attempts to transfer program control to the address pointed to by  
the reset vector. The PIE vector table does not, however, include a reset vector. Therefore, TRAP #0 should not  
be used when the PIE is enabled. Doing so will result in undefined behavior.  
When the PIE is enabled, TRAP #1 to TRAP #12 will transfer program control to the ISR corresponding to the  
first vector within the PIE group. For example: TRAP #1 fetches the vector from INT1.1, TRAP #2 fetches the  
vector from INT2.1, and so forth.  
IFR[12:1]  
IER[12:1]  
INTM  
INT1  
INT2  
1
CPU  
MUX  
0
INT11  
INT12  
Global  
Enable  
(Flag)  
(Enable)  
INTx.1  
INTx.2  
INTx.3  
INTx.4  
INTx.5  
From  
Peripherals  
or  
External  
Interrupts  
INTx  
MUX  
INTx.6  
INTx.7  
INTx.8  
PIEACKx  
(Enable/Flag)  
(Enable)  
(Flag)  
PIEIERx[8:1]  
PIEIFRx[8:1]  
Figure 8-13. Multiplexing of Interrupts Using the PIE Block  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-23. PIE MUXed Peripheral Interrupt Vector Table (1)  
INTx.8  
WAKEINT  
(LPM/WD)  
0xD4E  
Reserved  
INTx.7  
INTx.6  
ADCINT9  
(ADC)  
INTx.5  
INTx.4  
INTx.3  
Reserved  
INTx.2  
ADCINT2  
(ADC)  
INTx.1  
ADCINT1  
(ADC)  
INT1.y  
INT2.y  
INT3.y  
INT4.y  
INT5.y  
INT6.y  
INT7.y  
INT8.y  
INT9.y  
INT10.y  
TINT0  
XINT2  
XINT1  
(TIMER 0)  
0xD4C  
EPWM7_TZINT  
(ePWM7)  
0xD5C  
EPWM7_INT  
(ePWM7)  
0xD6C  
Reserved  
Ext. int. 2  
0xD48  
Ext. int. 1  
0xD46  
0xD4A  
0xD44  
0xD42  
0xD40  
EPWM6_TZINT  
(ePWM6)  
0xD5A  
EPWM5_TZINT  
(ePWM5)  
0xD58  
EPWM4_TZINT  
(ePWM4)  
0xD56  
EPWM3_TZINT  
(ePWM3)  
0xD54  
EPWM2_TZINT  
(ePWM2)  
0xD52  
EPWM1_TZINT  
(ePWM1)  
0xD50  
0xD5E  
Reserved  
EPWM6_INT  
(ePWM6)  
0xD6A  
EPWM5_INT  
(ePWM5)  
0xD68  
EPWM4_INT  
(ePWM4)  
0xD66  
EPWM3_INT  
(ePWM3)  
0xD64  
EPWM2_INT  
(ePWM2)  
0xD62  
EPWM1_INT  
(ePWM1)  
0xD60  
0xD6E  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ECAP1_INT  
(eCAP1)  
0xD70  
0xD7E  
Reserved  
0xD7C  
Reserved  
0xD7A  
0xD78  
0xD76  
0xD74  
0xD72  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
EQEP1_INT  
(eQEP1)  
0xD80  
0xD8E  
Reserved  
0xD8C  
Reserved  
0xD8A  
0xD88  
0xD86  
0xD84  
0xD82  
Reserved  
Reserved  
Reserved  
Reserved  
SPITXINTA  
(SPI-A)  
0xD92  
SPIRXINTA  
(SPI-A)  
0xD9E  
Reserved  
0xD9C  
Reserved  
0xD9A  
0xD98  
0xD96  
0xD94  
0xD90  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0xDAE  
Reserved  
0xDAC  
Reserved  
0xDAA  
0xDA8  
0xDA6  
0xDA4  
Reserved  
0xDA2  
0xDA0  
SCITXINTC  
(SCI-C)  
0xDBA  
SCIRXINTC  
(SCI-C)  
0xDB8  
Reserved  
I2CINT2A  
(I2C-A)  
0xDB2  
I2CINT1A  
(I2C-A)  
0xDBE  
Reserved  
0xDBC  
Reserved  
0xDB6  
0xDB4  
SCIRXINTB  
(SCI-B)  
0xDC4  
ADCINT3  
(ADC)  
0xDB0  
ECAN1_INTA  
(CAN-A)  
0xDCA  
ECAN0_INTA  
(CAN-A)  
0xDC8  
SCITXINTB  
(SCI-B)  
0xDC6  
ADCINT4  
(ADC)  
SCITXINTA  
(SCI-A)  
0xDC2  
SCIRXINTA  
(SCI-A)  
0xDCE  
ADCINT8  
(ADC)  
(ePWM16)  
0xDDE  
CLA1_INT8  
(CLA)  
0xDCC  
ADCINT7  
(ADC)  
0xDC0  
ADCINT6  
(ADC)  
ADCINT5  
(ADC)  
ADCINT2  
(ADC)  
ADCINT1  
(ADC)  
(ePWM15)  
0xDDC  
CLA1_INT7  
(CLA)  
(ePWM14)  
0xDDA  
(ePWM13)  
0xDD8  
(ePWM12)  
0xDD6  
CLA1_INT4  
(CLA)  
(ePWM11)  
0xDD4  
CLA1_INT3  
(CLA)  
(ePWM10)  
0xDD2  
(ePWM9)  
0xDD0  
INT11.y  
INT12.y  
CLA1_INT6  
(CLA)  
CLA1_INT5  
(CLA)  
CLA1_INT2  
(CLA)  
CLA1_INT1  
(CLA)  
(ePWM16)  
0xDEE  
LUF  
(ePWM15)  
0xDEC  
LVF  
(ePWM14)  
0xDEA  
(ePWM13)  
0xDE8  
(ePWM12)  
0xDE6  
(ePWM11)  
0xDE4  
Reserved  
(ePWM10)  
0xDE2  
(ePWM9)  
0xDE0  
Reserved  
Reserved  
Reserved  
Reserved  
XINT3  
(CLA)  
(CLA)  
Ext. Int. 3  
0xDF0  
0xDFE  
0xDFC  
0xDFA  
0xDF8  
0xDF6  
0xDF4  
0xDF2  
(1) Out of 96 possible interrupts, some interrupts are not used. These interrupts are reserved for future devices. These interrupts can be  
used as software interrupts if they are enabled at the PIEIFRx level, provided none of the interrupts within the group is being used by a  
peripheral. Otherwise, interrupts coming in from peripherals may be lost by accidentally clearing their flag while modifying the PIEIFR.  
To summarize, there are two safe cases when the reserved interrupts could be used as software interrupts:  
a. No peripheral within the group is asserting interrupts.  
b. No peripheral interrupts are assigned to the group (for example, PIE group 7).  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
Table 8-24. PIE Configuration and Control Registers  
NAME  
PIECTRL  
PIEACK  
PIEIER1  
PIEIFR1  
PIEIER2  
PIEIFR2  
PIEIER3  
PIEIFR3  
PIEIER4  
PIEIFR4  
PIEIER5  
PIEIFR5  
PIEIER6  
PIEIFR6  
PIEIER7  
PIEIFR7  
PIEIER8  
PIEIFR8  
PIEIER9  
PIEIFR9  
PIEIER10  
PIEIFR10  
PIEIER11  
PIEIFR11  
PIEIER12  
PIEIFR12  
Reserved  
ADDRESS  
0x0CE0  
0x0CE1  
0x0CE2  
0x0CE3  
0x0CE4  
0x0CE5  
0x0CE6  
0x0CE7  
0x0CE8  
0x0CE9  
0x0CEA  
0x0CEB  
0x0CEC  
0x0CED  
0x0CEE  
0x0CEF  
0x0CF0  
0x0CF1  
0x0CF2  
0x0CF3  
0x0CF4  
0x0CF5  
0x0CF6  
0x0CF7  
0x0CF8  
0x0CF9  
SIZE (×16)  
DESCRIPTION(1)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
PIE, Control register  
PIE, Acknowledge register  
PIE, INT1 Group Enable register  
PIE, INT1 Group Flag register  
PIE, INT2 Group Enable register  
PIE, INT2 Group Flag register  
PIE, INT3 Group Enable register  
PIE, INT3 Group Flag register  
PIE, INT4 Group Enable register  
PIE, INT4 Group Flag register  
PIE, INT5 Group Enable register  
PIE, INT5 Group Flag register  
PIE, INT6 Group Enable register  
PIE, INT6 Group Flag register  
PIE, INT7 Group Enable register  
PIE, INT7 Group Flag register  
PIE, INT8 Group Enable register  
PIE, INT8 Group Flag register  
PIE, INT9 Group Enable register  
PIE, INT9 Group Flag register  
PIE, INT10 Group Enable register  
PIE, INT10 Group Flag register  
PIE, INT11 Group Enable register  
PIE, INT11 Group Flag register  
PIE, INT12 Group Enable register  
PIE, INT12 Group Flag register  
Reserved  
0x0CFA –  
0x0CFF  
(1) The PIE configuration and control registers are not protected by EALLOW mode. The PIE vector  
table is protected.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.8.1 External Interrupts  
Table 8-25. External Interrupt Registers  
NAME  
XINT1CR  
XINT2CR  
XINT3CR  
XINT1CTR  
XINT2CTR  
XINT3CTR  
ADDRESS  
0x00 7070  
0x00 7071  
0x00 7072  
0x00 7078  
0x00 7079  
0x00 707A  
SIZE (×16)  
DESCRIPTION  
XINT1 configuration register  
XINT2 configuration register  
XINT3 configuration register  
XINT1 counter register  
1
1
1
1
1
1
XINT2 counter register  
XINT3 counter register  
Each external interrupt can be enabled, disabled, or qualified using positive, negative, or both positive and  
negative edge. For more information, see the System Control and Interrupts chapter of the TMS320x2805x  
Technical Reference Manual.  
8.8.1.1 External Interrupt Electrical Data/Timing  
8.8.1.1.1 External Interrupt Timing Requirements (1)  
TEST CONDITIONS  
Synchronous  
MIN  
1tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
(2)  
tw(INT)  
Pulse duration, INT input low/high  
With qualifier  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 8.9.12.3.2.1.  
(2) This timing is applicable to any GPIO pin configured for ADCSOC functionality.  
8.8.1.1.2 External Interrupt Switching Characteristics (1)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
tw(IQSW) + 12tc(SCO)  
UNIT  
td(INT)  
Delay time, INT low/high to interrupt-vector fetch  
cycles  
(1) For an explanation of the input qualifier parameters, see Section 8.9.12.3.2.1.  
t
w(INT)  
XINT1, XINT2, XINT3  
t
d(INT)  
Address bus  
(internal)  
Interrupt Vector  
Figure 8-14. External Interrupt Timing  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.9 Peripherals  
8.9.1 Control Law Accelerator  
8.9.1.1 CLA Device-Specific Information  
The CLA extends the capabilities of the C28x CPU by adding parallel processing. Time-critical control loops  
serviced by the CLA can achieve low ADC sample to output delay. Thus, the CLA enables faster system  
response and higher frequency control loops. Using the CLA for time-critical tasks frees up the main CPU to  
perform other system and communication functions concurently. The following is a list of major features of the  
CLA.  
Clocked at the same rate as the main CPU (SYSCLKOUT).  
An independent architecture allowing CLA algorithm execution independent of the main C28x CPU.  
– Complete bus architecture:  
Program address bus and program data bus  
Data address bus, data read bus, and data write bus  
– Independent eight-stage pipeline.  
– 12-bit program counter (MPC)  
– Four 32-bit result registers (MR0–MR3)  
– Two 16-bit auxillary registers (MAR0, MAR1)  
– Status register (MSTF)  
Instruction set includes:  
– IEEE single-precision (32-bit) floating-point math operations  
– Floating-point math with parallel load or store  
– Floating-point multiply with parallel add or subtract  
– 1/X and 1/sqrt(X) estimations  
– Data type conversions.  
– Conditional branch and call  
– Data load and store operations  
The CLA program code can consist of up to eight tasks or ISRs.  
– The start address of each task is specified by the MVECT registers.  
– No limit on task size as long as the tasks fit within the CLA program memory space.  
– One task is serviced at a time through to completion. There is no nesting of tasks.  
– Upon task completion, a task-specific interrupt is flagged within the PIE.  
– When a task finishes, the next highest-priority pending task is automatically started.  
Task trigger mechanisms:  
– C28x CPU through the IACK instruction  
Task1 to Task7: the corresponding ADC, ePWM, eQEP, or eCAP module interrupt. For example:  
Task1: ADCINT1 or EPWM1_INT  
Task2: ADCINT2 or EPWM2_INT  
Task4: ADCINT4 or EPWM4_INT or EQEPx_INT or ECAPx_INT  
Task7: ADCINT7 or EPWM7_INT or EQEPx_INT or ECAPx_INT  
Task8: ADCINT8 or by CPU Timer 0 or EQEPx_INT or ECAPx_INT  
Memory and Shared Peripherals:  
– Two dedicated message RAMs for communication between the CLA and the main CPU.  
– The C28x CPU can map CLA program and data memory to the main CPU space or CLA space.  
– The CLA has direct access to the CLA Data ROM that stores the math tables required by the routines in  
the CLA Math Library.  
– The CLA has direct access to the ADC Result registers, comparator and DAC registers, eCAP, eQEP, and  
ePWM registers.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
Peripheral Interrupts  
IACK  
CLA Control  
Registers  
ADCINT1 to ADCINT8  
EPWM1_INT to EPWM7_INT  
ECAP1_INT  
CLA_INT1 to CLA_INT8  
MIFR  
MIOVF  
MICLR  
MICLROVF  
MIFRC  
MIER  
Main  
28x  
CPU  
INT11  
INT12  
MPERINT1  
to  
MPERINT8  
PIE  
EQEP1_INT  
LVF  
LUF  
CPU Timer 0  
MIRUN  
Main CPU Read/Write Data Bus  
MPISRCSEL1  
MVECT1  
MVECT2  
MVECT3  
MVECT4  
MVECT5  
MVECT6  
MVECT7  
MVECT8  
CLA Program Address Bus  
CLA Program Data Bus  
CLA  
Program  
Memory  
CLA  
Data  
Memory  
Map to CLA or  
CPU Space  
Map to CLA or  
CPU Space  
MMEMCFG  
MCTL  
SYSCLKOUT  
CLAENCLK  
SYSRS  
CLA  
Data  
ROM  
CLA  
Shared  
Message  
RAMs  
MEALLOW  
CLA Execution  
Registers  
CLA Data Read Address Bus  
ADC  
Result  
Registers  
MPC(12)  
MSTF(32)  
MR0(32)  
MR1(32)  
MR2(32)  
MR3(32)  
CLA Data Read Data Bus  
CLA Data Write Address Bus  
CLA Data Write Data Bus  
Main CPU Read Data Bus  
eCAP  
Registers  
MAR0(32)  
MAR1(32)  
eQEP  
Registers  
ePWM  
Registers  
Comparator  
+ DAC  
Registers  
Figure 8-15. CLA Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.9.1.2 CLA Register Descriptions  
Table 8-26. CLA Control Registers  
CLA1  
REGISTER NAME  
EALLOW  
PROTECTED  
SIZE (×16)  
DESCRIPTION(1)  
ADDRESS  
MVECT1  
MVECT2  
MVECT3  
MVECT4  
MVECT5  
MVECT6  
MVECT7  
MVECT8  
MCTL  
0x1400  
0x1401  
0x1402  
0x1403  
0x1404  
0x1405  
0x1406  
0x1407  
0x1410  
0x1411  
0x1414  
0x1420  
0x1421  
0x1422  
0x1423  
0x1424  
0x1425  
0x1426  
0x1428  
0x142A  
0x142B  
0x142E  
0x1430  
0x1434  
0x1438  
0x143C  
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
CLA Interrupt/Task 1 Start Address  
CLA Interrupt/Task 2 Start Address  
CLA Interrupt/Task 3 Start Address  
CLA Interrupt/Task 4 Start Address  
CLA Interrupt/Task 5 Start Address  
CLA Interrupt/Task 6 Start Address  
CLA Interrupt/Task 7 Start Address  
CLA Interrupt/Task 8 Start Address  
CLA Control register  
MMEMCFG  
MPISRCSEL1  
MIFR  
CLA Memory Configure register  
Peripheral Interrupt Source Select Register 1  
Interrupt Flag register  
MIOVF  
Interrupt Overflow register  
Interrupt Force register  
MIFRC  
MICLR  
Interrupt Clear register  
MICLROVF  
MIER  
Interrupt Overflow Clear register  
Interrupt Enable register  
MIRUN  
Interrupt RUN register  
MPC(2)  
CLA Program Counter  
MAR0(2)  
MAR1(2)  
MSTF(2)  
MR0(2)  
CLA Aux Register 0  
CLA Aux Register 1  
CLA STF register  
CLA R0H register  
MR1(2)  
CLA R1H register  
MR2(2)  
CLA R2H register  
MR3(2)  
CLA R3H register  
(1) All registers in this table are DCSM protected.  
(2) The main C28x CPU has read only access to this register for debug purposes. The main CPU cannot perform CPU or debugger writes  
to this register.  
Table 8-27. CLA Message RAM  
ADDRESS RANGE  
0x1480 to 0x14FF  
0x1500 to 0x157F  
SIZE (×16)  
DESCRIPTION  
128  
CLA to CPU Message RAM  
CPU to CLA Message RAM  
128  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.2 Analog Block  
8.9.2.1 Analog-to-Digital Converter  
8.9.2.1.1 ADC Device-Specific Information  
The core of the ADC contains a single 12-bit converter fed by two sample-and-hold circuits. The sample-and-  
hold circuits can be sampled simultaneously or sequentially. These, in turn, are fed by a total of up to 16 analog  
input channels. The converter can be configured to run with an internal bandgap reference to create true-  
voltage-based conversions or with a pair of external voltage references (VREFHI/VREFLO) to create ratiometric-  
based conversions.  
Contrary to previous ADC types, this ADC is not sequencer-based. The user can easily create a series of  
conversions from a single trigger. However, the basic principle of operation is centered around the configurations  
of individual conversions, called SOCs, or Start-Of-Conversions.  
Functions of the ADC module include:  
12-bit ADC core with built-in dual sample-and-hold (S/H)  
Simultaneous sampling or sequential sampling modes  
Full range analog input: 0 V to 3.3 V fixed, or VREFHI/VREFLO ratiometric. The digital value of the input analog  
voltage is derived by:  
– Internal Reference (VREFLO = VSSA. VREFHI must not exceed VDDA when using either internal or external  
reference modes.)  
Digital Value = 0,  
when input £ 0 V  
Input Analog Voltage -  
VREFLO  
Digital Value = 4096 ´  
when 0 V < input < 3.3 V  
3.3  
Digital Value = 4095,  
when input ³ 3.3 V  
– External Reference (VREFHI/VREFLO connected to external references. VREFHI must not exceed VDDA when  
using either internal or external reference modes.)  
Digital Value = 0,  
when input £ 0 V  
Input Analog Voltage -  
VREFLO  
Digital Value = 4096 ´  
when 0 V < input <  
VREFHI  
-
VREFHI VREFLO  
Digital Value = 4095,  
when input ³  
VREFHI  
Up to 16-channel, multiplexed inputs  
16 SOCs, configurable for trigger, sample window, and channel  
16 result registers (individually addressable) to store conversion values  
Multiple trigger sources  
– S/W – software immediate start  
– ePWM 1–7  
– GPIO XINT2  
– CPU-Timer 0, CPU-Timer 1, CPU-Timer 2  
– ADCINT1, ADCINT2  
9 flexible PIE interrupts, can configure interrupt request after any conversion  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
Table 8-28. ADC Configuration and Control Registers  
EALLOW  
PROTECTE  
D
SIZE  
(×16)  
REGISTER NAME  
ADDRESS  
DESCRIPTION  
ADCCTL1  
0x7100  
0x7101  
0x7104  
0x7105  
0x7106  
0x7107  
0x7108  
0x7109  
0x710A  
0x710B  
0x710C  
0x7110  
0x7112  
0x7114  
0x7115  
0x7118  
0x711A  
0x711C  
0x711E  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Yes  
Yes  
No  
Control 1 register  
Control 2 register  
Interrupt Flag register  
ADCCTL2  
ADCINTFLG  
ADCINTFLGCLR  
ADCINTOVF  
No  
Interrupt Flag Clear register  
No  
Interrupt Overflow register  
ADCINTOVFCLR  
INTSEL1N2  
No  
Interrupt Overflow Clear register  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Interrupt 1 and 2 Selection register  
Interrupt 3 and 4 Selection register  
Interrupt 5 and 6 Selection register  
Interrupt 7 and 8 Selection register  
Interrupt 9 Selection register (reserved Interrupt 10 Selection)  
SOC Priority Control register  
INTSEL3N4  
INTSEL5N6  
INTSEL7N8  
INTSEL9N10  
SOCPRICTL  
ADCSAMPLEMODE  
ADCINTSOCSEL1  
ADCINTSOCSEL2  
ADCSOCFLG1  
ADCSOCFRC1  
ADCSOCOVF1  
ADCSOCOVFCLR1  
Sampling Mode register  
Interrupt SOC Selection 1 register (for 8 channels)  
Interrupt SOC Selection 2 register (for 8 channels)  
SOC Flag 1 register (for 16 channels)  
SOC Force 1 register (for 16 channels)  
SOC Overflow 1 register (for 16 channels)  
SOC Overflow Clear 1 register (for 16 channels)  
No  
No  
No  
ADCSOC0CTL to  
ADCSOC15CTL  
0x7120 to  
0x712F  
1
Yes  
SOC0 Control Register to SOC15 Control register  
ADCREFTRIM  
ADCOFFTRIM  
ADCREV  
0x7140  
0x7141  
0x714F  
1
1
1
Yes  
Yes  
No  
Reference Trim register  
Offset Trim register  
Revision register  
Table 8-29. ADC Result Registers (Mapped to PF0)  
SIZE  
(×16)  
EALLOW  
PROTECTED  
REGISTER NAME  
ADCRESULT0 to ADCRESULT15  
ADDRESS  
DESCRIPTION  
0xB00 to  
0xB0F  
1
No  
ADC Result 0 register to ADC Result 15 register  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
0-Wait  
Result  
Registers  
PF0 (CPU)  
PF2 (CPU)  
SYSCLKOUT  
ADCENCLK  
ADCINT 1  
PIE  
ADCINT 9  
TINT 0  
CPUTIMER 0  
CPUTIMER 1  
CPUTIMER 2  
ADCTRIG 1  
ADCTRIG 2  
ADCTRIG 3  
TINT 1  
TINT 2  
ADC  
Core  
12-Bit  
ADC  
Channels  
XINT 2SOC  
XINT 2  
EPWM 1  
EPWM 2  
EPWM 3  
EPWM 4  
EPWM 5  
EPWM 6  
EPWM 7  
ADCTRIG 4  
SOCA 1  
SOCB 1  
SOCA 2  
SOCB 2  
SOCA 3  
SOCB 3  
SOCA 4  
SOCB 4  
SOCA 5  
SOCB 5  
SOCA 6  
SOCB 6  
SOCA 7  
SOCB 7  
ADCTRIG 5  
ADCTRIG 6  
ADCTRIG 7  
ADCTRIG 8  
ADCTRIG 9  
ADCTRIG 10  
ADCTRIG 11  
ADCTRIG 12  
ADCTRIG 13  
ADCTRIG 14  
ADCTRIG 15  
ADCTRIG 16  
ADCTRIG 17  
ADCTRIG 18  
Figure 8-16. ADC Connections  
ADC Connections if the ADC is Not Used  
TI recommends keeping the connections for the analog power pins, even if the ADC is not used. Following is a  
summary of how the ADC pins should be connected, if the ADC is not used in an application:  
VDDA – Connect to VDDIO  
VSSA – Connect to VSS  
VREFLO – Connect to VSS  
ADCINAn, ADCINBn, VREFHI – Connect to VSSA  
When the ADC module is used in an application, unused ADC input pins should be connected to analog ground  
(VSSA).  
When the ADC is not used, be sure that the clock to the ADC module is not turned on to realize power savings.  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.9.2.1.2 ADC Electrical Data/Timing  
8.9.2.1.2.1 ADC Electrical Characteristics  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
DC SPECIFICATIONS  
Resolution  
12  
Bits  
ADC clock  
0.5  
60  
63  
63  
MHz  
28055, 28054, 28053,  
28052  
10  
24  
Sample Window (see Table 8-30)  
ADC clocks  
28051, 28050  
ACCURACY  
INL (Integral nonlinearity)(1)  
–4  
–1  
4.5  
1.5  
LSB  
LSB  
DNL (Differential nonlinearity), no missing codes  
Executing a single self-  
recalibration(3)  
–20  
–4  
0
0
20  
4
Offset error (2)  
LSB  
Executing periodic self-  
recalibration(4)  
Overall gain error with internal reference  
Overall gain error with external reference  
Channel-to-channel offset variation  
Channel-to-channel gain variation  
ADC temperature coefficient with internal reference  
ADC temperature coefficient with external reference  
VREFLO  
–60  
–40  
–4  
60  
40  
4
LSB  
LSB  
LSB  
–4  
4
LSB  
–50  
–20  
ppm/°C  
ppm/°C  
µA  
–100  
100  
VREFHI  
µA  
ANALOG INPUT  
Analog input voltage with internal reference  
Analog input voltage with external reference  
VREFLO input voltage  
0
VREFLO  
VSSA  
3.3  
VREFHI  
0.66  
V
V
V
2.64  
VDDA  
VDDA  
VREFHI input voltage(5)  
V
with VREFLO = VSSA  
1.98  
Input capacitance  
5
pF  
μA  
Input leakage current  
±2  
(1) INL will degrade when the ADC input voltage goes above VDDA  
.
(2) 1 LSB has the weighted value of full-scale range (FSR)/4096. FSR is 3.3 V with internal reference and VREFHI - VREFLO for external  
reference.  
(3) For more details, see the TMS320F2805x MCUs Silicon Errata .  
(4) Periodic self-recalibration will remove system-level and temperature dependencies on the ADC zero offset error. This can be  
performed as needed in the application without sacrificing an ADC channel by using the procedure listed in the "ADC Zero Offset  
Calibration" section in the Analog-to-Digital Converter and Comparator chapter of the TMS320x2805x Technical Reference Manual .  
(5) VREFHI must not exceed VDDA when using either internal or external reference modes.  
Table 8-30. ACQPS Values (1)  
OVERLAP MODE  
{9, 10, 23, 36, 49, 62}  
{23, 36, 49, 62}  
NONOVERLAP MODE  
{15, 16, 28, 29, 41, 42, 54, 55}  
{15, 16, 28, 29, 41, 42, 54, 55}  
Non-PGA  
PGA  
(1) ACQPS = 6 can be used for the first sample if it is thrown away.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.2.1.2.2 ADC Power Modes  
ADC OPERATING MODE  
Mode A – Operating Mode  
CONDITIONS  
IDDA  
UNITS  
ADC Clock Enabled  
13  
mA  
Bandgap On (ADCBGPWD = 1)  
Reference On (ADCREFPWD = 1)  
ADC Powered Up (ADCPWDN = 1)  
Mode B – Quick Wake Mode  
Mode C – Comparator-Only Mode  
Mode D – Off Mode  
ADC Clock Enabled  
4
mA  
mA  
mA  
Bandgap On (ADCBGPWD = 1)  
Reference On (ADCREFPWD = 1)  
ADC Powered Up (ADCPWDN = 0)  
ADC Clock Enabled  
1.5  
Bandgap On (ADCBGPWD = 1)  
Reference On (ADCREFPWD = 0)  
ADC Powered Up (ADCPWDN = 0)  
ADC Clock Enabled  
0.075  
Bandgap On (ADCBGPWD = 0)  
Reference On (ADCREFPWD = 0)  
ADC Powered Up (ADCPWDN = 0)  
8.9.2.1.2.3 External ADC Start-of-Conversion Electrical Data/Timing  
8.9.2.1.2.3.1 External ADC Start-of-Conversion Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
tw(ADCSOCL)  
Pulse duration, ADCSOCxO low  
32tc(HCO)  
cycles  
tw(ADCSOCL)  
ADCSOCAO  
or  
ADCSOCBO  
Figure 8-17. ADCSOCAO or ADCSOCBO Timing  
8.9.2.1.2.4 Internal Temperature Sensor  
8.9.2.1.2.4.1 Temperature Sensor Coefficient (1)  
PARAMETER(2)  
MIN  
TYP  
0.18(4) (3)  
1750  
MAX  
UNIT  
°C/LSB  
LSB  
Degrees C of temperature movement per measured ADC LSB change  
of the temperature sensor  
TSLOPE  
TOFFSET  
ADC output at 0°C of the temperature sensor  
(1) The accuracy of the temperature sensor for sensing absolute temperature (temperature in degrees) is not specified. The primary use  
of the temperature sensor should be to compensate the internal oscillator for temperature drift (this operation is assured as per Section  
7.13.1.3).  
(2) The temperature sensor slope and offset are given in terms of ADC LSBs using the internal reference of the ADC. Values must be  
adjusted accordingly in external reference mode to the external reference voltage.  
(3) Output of the temperature sensor (in terms of LSBs) is sign-consistent with the direction of the temperature movement. Increasing  
temperatures will give increasing ADC values relative to an initial value; decreasing temperatures will give decreasing ADC values  
relative to an initial value.  
(4) ADC temperature coeffieicient is accounted for in this specification  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.9.2.1.2.5 ADC Power-Up Control Bit Timing  
8.9.2.1.2.5.1 ADC Power-Up Delays  
PARAMETER(1)  
Delay time for the ADC to be stable after power up  
MIN  
MAX  
UNIT  
td(PWD)  
1
ms  
(1) Timings maintain compatibility to the ADC module. The 2805x ADC supports driving all 3 bits at the same time td(PWD) ms before first  
conversion.  
ADCPWDN/  
ADCBGPWD/  
ADCREFPWD/  
ADCENABLE  
td(PWD)  
Request for ADC  
Conversion  
Figure 8-18. ADC Conversion Timing  
Ron  
3.4 kW  
Switch  
Rs  
ADCIN  
Cp  
Ch  
Source  
Signal  
ac  
5 pF  
1.6 pF  
28x DSP  
Typical Values of the Input Circuit Components:  
Switch Resistance (Ron): 3.4 kW  
Sampling Capacitor (Ch): 1.6 pF  
Parasitic Capacitance (Cp): 5 pF  
Source Resistance (Rs): 50 W  
Figure 8-19. ADC Input Impedance Model  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.2.1.2.6 ADC Sequential and Simultaneous Timings  
Analog Input  
SOC0 Sample  
Window  
SOC1 Sample  
Window  
SOC2 Sample  
Window  
0
2
12  
18  
27 28  
43  
ADCCLK  
ADCCTL1.INTPULSEPOS  
ADCSOCFLG1.SOC0  
ADCSOCFLG1.SOC1  
ADCSOCFLG1.SOC2  
S/H Window Pulse to Core  
ADCRESULT0  
SOC0  
SOC1  
SOC2  
2 ADC clocks  
Result 0 Latched  
ADCRESULT1  
EOC0 Pulse  
EOC0 Pulse  
ADCINTFLG.ADCINTx  
Minimum  
Conversion 0  
1 ADC clock  
10 ADC clocks  
13 ADC clocks  
6
Minimum  
Conversion 1  
13 ADC clocks  
ADC clocks  
10 ADC clocks  
Figure 8-20. Timing Example for Sequential Mode / Late Interrupt Pulse  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
Analog Input  
ADCCLK  
SOC0 Sample  
Window  
SOC1 Sample  
Window  
SOC2 Sample  
Window  
0
2
12  
27 28  
43  
18  
ADCCTL1.INTPULSEPOS  
ADCSOCFLG1.SOC0  
ADCSOCFLG1.SOC1  
ADCSOCFLG1.SOC2  
S/H Window Pulse to Core  
ADCRESULT0  
SOC0  
SOC1  
SOC2  
Result 0 Latched  
ADCRESULT1  
EOC0 Pulse  
EOC0 Pulse  
ADCINTFLG.ADCINTx  
Minimum  
Conversion 0  
2 ADC clocks  
10 ADC clocks  
13 ADC clocks  
Minimum  
6
Conversion 1  
13 ADC clocks  
ADC clocks  
10 ADC clocks  
Figure 8-21. Timing Example for Sequential Mode / Early Interrupt Pulse  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
Analog Input A  
SOC0 Sample  
A Window  
SOC2 Sample  
A Window  
Analog Input B  
SOC0 Sample  
B Window  
SOC2 Sample  
B Window  
0
2
12  
25 27  
31  
40 43  
56  
ADCCLK  
ADCCTL1.INTPULSEPOS  
ADCSOCFLG1.SOC0  
ADCSOCFLG1.SOC1  
ADCSOCFLG1.SOC2  
S/H Window Pulse to Core  
SOC0 (A/B)  
SOC2 (A/B)  
Result 0 (A) Latched  
ADCRESULT0  
ADCRESULT1  
ADCRESULT2  
2 ADC clocks  
Result 0 (B) Latched  
EOC0 Pulse  
EOC1 Pulse  
1 ADC clock  
EOC2 Pulse  
ADCINTFLG.ADCINTx  
Minimum  
Conversion 0 (A)  
13 ADC clocks  
Conversion 0 (B)  
13 ADC clocks  
2 ADC clocks  
10 ADC clocks  
Conversion 1 (A)  
13 ADC clocks  
19  
Minimum  
10 ADC clocks  
ADC clocks  
Figure 8-22. Timing Example for Simultaneous Mode / Late Interrupt Pulse  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
Analog Input A  
Analog Input B  
SOC0 Sample  
A Window  
SOC2 Sample  
A Window  
SOC0 Sample  
B Window  
SOC2 Sample  
B Window  
0
2
12  
25 27  
40  
56  
ADCCLK  
ADCCTL1.INTPULSEPOS  
ADCSOCFLG1.SOC0  
ADCSOCFLG1.SOC1  
ADCSOCFLG1.SOC2  
S/H Window Pulse to Core  
SOC0 (A/B)  
SOC2 (A/B)  
Result 0 (A) Latched  
ADCRESULT0  
ADCRESULT1  
ADCRESULT2  
2 ADC clocks  
Result 0 (B) Latched  
EOC0 Pulse  
EOC1 Pulse  
EOC2 Pulse  
ADCINTFLG.ADCINTx  
Minimum  
Conversion 0 (A)  
13 ADC clocks  
Conversion 0 (B)  
13 ADC clocks  
2 ADC clocks  
10 ADC clocks  
Minimum  
10 ADC clocks  
19  
Conversion 1 (A)  
13 ADC clocks  
ADC clocks  
Figure 8-23. Timing Example for Simultaneous Mode / Early Interrupt Pulse  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.2.2 Analog Front End  
8.9.2.2.1 AFE Device-Specific Information  
The AFE contains up to seven comparators with up to three integrated DACs, one VREFOUT-buffered DAC, up to  
four PGAs, and up to four digital filters. Figure 8-24 and Figure 8-25 show the AFE.  
The comparator output signal filtering is achieved using the digital filter present on selective input line and  
qualifies the output of the COMP/DAC subsystem (see Figure 8-27). The filtered or unfiltered output of the  
COMP/DAC subsystem can be configured to be an input to the Digital Compare submodule of the ePWM  
peripheral.  
Note  
The analog inputs are brought in through the AFE subsystem rather than through an AIO Mux, which  
is not present.  
The ADCINSWITCH register is used to control ADC inputs dynamically, and the setting of this register is  
separate from the AFE and digital filter initialization.  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
VREFHI  
VREFHI  
A0  
VREFOUT/A0  
RPD  
_
_
COMPB7  
DFSS  
Amp  
Cmp  
+
+
Buffered  
DAC Output  
6-bit DAC  
VSSA  
B7  
PGA  
G » 3, 6, or 11  
B7  
DAC5 6-bit  
PFCGND  
B0  
A2  
A4  
B2  
B0  
A2  
A4  
B2  
DAC1 6-bit  
COMPA1H  
_
_
COMPA1L  
Cmp  
Cmp  
+
+
ADCIN-  
SWITCH  
A1  
DFSS  
DFSS  
PGA  
G » 3, 6, or 11  
A1  
A3  
M1GND  
_
_
COMPA3H  
DFSS  
COMPA3L  
DFSS  
Cmp  
Cmp  
+
+
A3  
B1  
PGA  
G » 3, 6, or 11  
_
_
M1GND  
M1GND  
COMPB1H  
DFSS  
COMPB1L  
DFSS  
Cmp  
Cmp  
+
+
PGA  
G » 3, 6, or 11  
B1  
A5  
ADCIN-  
SWITCH  
ADC  
DAC2 6-bit  
Temp Sensor  
A5  
ADCCTL1.TEMPCONV  
ADCCTL1.REFLOCONV  
VREFLO  
VREFLO  
B5  
B5  
A7  
B3  
A7  
B3  
ADCIN-  
SWITCH  
GAIN AMP  
G » 3  
A6  
B4  
B6  
A6  
B4  
M2GND  
M2GND  
M2GND  
GAIN AMP  
G » 3  
GAIN AMP  
G » 3  
B6  
ADCIN-  
SWITCH  
Legend  
Cmp - Comparator  
DFSS - Comparator Trip/Digital Filter Subsystem Block  
GAIN AMP - Fixed Gain Amplifier  
PGA - Programmable Gain Amplifier  
Figure 8-24. 28055, 28054, 28053, 28052, and 28051 Analog Front End  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
VREFHI  
VREFHI  
A0  
VREFOUT/A0  
_
RPD  
Amp  
+
6-bit DAC  
Buffered  
DAC Output  
VSSA  
GAIN AMP  
G » 3  
B7  
B7  
PFCGND  
B0  
A2  
A4  
B2  
B0  
A2  
A4  
B2  
DAC1 6-bit  
_
_
COMPA1H  
DFSS  
COMPA1L  
DFSS  
Cmp  
Cmp  
+
+
ADCIN-  
SWITCH  
A1  
PGA  
G » 3, 6, or 11  
A1  
A3  
M1GND  
_
_
COMPA3H  
DFSS  
COMPA3L  
DFSS  
Cmp  
Cmp  
+
+
A3  
B1  
PGA  
G » 3, 6, or 11  
_
_
M1GND  
M1GND  
COMPB1H  
DFSS  
COMPB1L  
DFSS  
Cmp  
Cmp  
+
+
PGA  
G » 3, 6, or 11  
B1  
ADCIN-  
SWITCH  
ADC  
DAC2 6-bit  
Temp Sensor  
A5  
A5  
ADCCTL1.TEMPCONV  
ADCCTL1.REFLOCONV  
VREFLO  
VREFLO  
B5  
B5  
A7  
B3  
A7  
B3  
ADCIN-  
SWITCH  
GAIN AMP  
G » 3  
A6  
B4  
B6  
A6  
B4  
M2GND  
M2GND  
M2GND  
GAIN AMP  
G » 3  
GAIN AMP  
G » 3  
B6  
ADCIN-  
SWITCH  
Legend  
Cmp - Comparator  
DFSS - Comparator Trip/Digital Filter Subsystem Block  
GAIN AMP - Fixed Gain Amplifier  
PGA - Programmable Gain Amplifier  
Figure 8-25. 28050 Analog Front End  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
VREFHI  
6-bit  
+
DAC  
Op Amp  
_
RPD  
VSSA  
VSSA  
Figure 8-26. VREFOUT  
ePWM 1-7  
DCAH  
DCAL  
COMPxINPEN  
ENABLES  
D
CTRIPxx0CTLREGISTER  
CTRIPEN  
C
T
R
I
P
S
E
L
COMPxxPOL  
COMPxxH  
CTRIPFILCTRL  
REGISTER  
1
0
Digital Filter  
SYSCLK  
0
(to all ePWM modules)  
1
DCBH  
DCBL  
COMPxxPOL  
COMPxxL  
CTRIPBYP  
0
CTRIPxxOUTEN  
1
0
CTRIPOUTBYP  
1
CTRIPOUTxxSTS  
CTRIPOUTxxFLG  
CTRIPOUTLATEN  
0
1
GPIO  
MUX  
CTRIPOUTPOL  
Figure 8-27. Comparator Trip/Digital Filter Subsystem  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.2.2.2 AFE Register Descriptions  
Table 8-31. DAC Control Registers  
EALLOW  
PROTECTE  
D
SIZE  
(×16)  
REGISTER NAME  
ADDRESS  
DESCRIPTION  
DAC1CTL  
0x6400  
0x6401  
0x6404  
0x6405  
1
1
1
1
Yes  
Yes  
Yes  
Yes  
DAC1 Control register  
DAC2 Control register  
DAC5 Control register  
DAC2CTL  
DAC5CTL  
VREFOUTCTL  
VREF Output Control Register  
Table 8-32. DAC, PGA, Comparator, and Filter Enable Registers  
EALLOW  
PROTECTE  
D
SIZE  
(×16)  
REGISTER NAME  
ADDRESS  
DESCRIPTION  
DACEN  
0x6410  
0x6411  
0x6412  
0x6413  
0x6414  
0x6416  
1
1
1
1
1
1
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
DAC Enables register  
VREFOUTEN  
PGAEN  
VREF Out Enable Register  
Programmable Gain Amplifier Enable register  
Comparator Enable register  
COMPEN  
AMPM1_GAIN  
AMP_PFC_GAIN  
Motor Unit 1 PGA Gain Controls register  
PFC PGA Gain Controls register  
Table 8-33. SWITCH Registers  
EALLOW  
SIZE  
REGISTER NAME  
ADDRESS  
PROTECTE  
(×16)  
DESCRIPTION  
D
ADCINSWITCH  
Reserved  
0x6421  
1
7
1
Yes  
Yes  
Yes  
ADC Input-Select Switch Control register  
Reserved  
0x6422 to  
0x6428  
COMPHYSTCTL  
0x6429  
Comparator Hysteresis Control register  
Table 8-34. Digital Filter and Comparator Control Registers  
EALLOW  
PROTECTE  
D
SIZE  
(×16)  
REGISTER NAME  
ADDRESS  
DESCRIPTION  
CTRIPA1ICTL  
CTRIPA1FILCTL  
CTRIPA1FILCLKCTL  
Reserved  
0x6430  
0x6431  
0x6432  
0x6433  
0x6434  
0x6435  
0x6436  
0x6437  
0x6438  
0x6439  
0x643A  
0x643B  
0x643C  
0x643D  
0x643E  
0x643F  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
CTRIPA1 Filter Input and Function Control register  
CTRIPA1 Filter Parameters register  
CTRIPA1 Filter Sample Clock Control register  
Reserved  
CTRIPA3ICTL  
CTRIPA3FILCTL  
CTRIPA3FILCLKCTL  
Reserved  
CTRIPA3 Filter Input and Function Control register  
CTRIPA3 Filter Parameters register  
CTRIPA3 Filter Sample Clock Control register  
Reserved  
CTRIPB1ICTL  
CTRIPB1FILCTL  
CTRIPB1FILCLKCTL  
Reserved  
CTRIPB1 Filter Input and Function Control register  
CTRIPB1 Filter Parameters register  
CTRIPB1 Filter Sample Clock Control register  
Reserved  
Reserved  
Reserved  
CTRIPM1OCTL  
CTRIPM1STS  
CTRIPM1FLGCLR  
CTRIPM1 CTRIP Filter Output Control register  
CTRIPM1 CTRIPxx Outputs Status register  
CTRIPM1 CTRIPxx Flag Clear register  
0x6440 to  
0x645F  
Reserved  
16  
Yes  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
Table 8-34. Digital Filter and Comparator Control Registers (continued)  
EALLOW  
PROTECTE  
D
SIZE  
(×16)  
REGISTER NAME  
ADDRESS  
DESCRIPTION  
0x6460 to  
0x646F  
Reserved  
16  
Yes  
Reserved  
CTRIPB7ICTL  
0x6470  
0x6471  
0x6472  
1
1
1
Yes  
Yes  
Yes  
CTRIPB7 Filter Input and Function Control register  
CTRIPB7 Filter Parameters register  
CTRIPB7FILCTL  
CTRIPB7FILCLKCTL  
CTRIPB7 Filter Sample Clock Control register  
0x6473 to  
0x647B  
Reserved  
9
Yes  
Reserved  
Reserved  
0x647C  
0x647D  
0x647E  
0x647F  
1
1
1
1
Yes  
Yes  
Yes  
Yes  
Reserved  
CTRIPPFCOCTL  
CTRIPPFCSTS  
CTRIPPFCFLGCLR  
CTRIPPFC CTRIPxx Outputs Status register  
CTRIPPFC CTRIPxx Flag Clear register  
CTRIPPFC COMP Test Control register  
Table 8-35. LOCK Registers  
EALLOW  
SIZE  
REGISTER NAME  
ADDRESS  
PROTECTE  
(×16)  
DESCRIPTION  
D
LOCKCTRIP  
Reserved  
0x64F0  
0x64F1  
0x64F2  
0x64F3  
0x64F4  
0x64F5  
0x64F6  
1
1
1
1
1
1
1
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Lock Register for CTRIP Filters register  
Reserved  
LOCKDAC  
Lock Register for DACs register  
Reserved  
Reserved  
LOCKAMPCOMP  
Reserved  
Lock Register for Amplifiers and Comparators register  
Reserved  
LOCKSWITCH  
Lock Register for Switches register  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.2.2.3 PGA Electrical Data/Timing  
Table 8-36. Op-Amp Linear Output and ADC Sampling Time Across Gain Settings  
MINIMUM  
EQUIVALENT GAIN FROM  
INPUT TO OUTPUT  
LINEAR OUTPUT RANGE  
OF OP-AMP  
ADC SAMPLING TIME  
TO ACHIEVE SETTLING  
ACCURACY  
INTERNAL RESISTOR RATIO  
10  
5
11  
6
0.6 V to VDDA – 0.6 V  
0.6 V to VDDA – 0.6 V  
0.6 V to VDDA – 0.6 V  
384 ns (ACQPS = 23)  
384 ns (ACQPS = 23)  
384 ns (ACQPS = 23)  
2
3
Table 8-37. PGA Gain Stage: DC Accuracy Across Gain Settings  
COMPENSATED  
GAIN-ERROR ACROSS  
COMPENSATED INPUT  
OFFSET-ERROR ACROSS  
EQUIVALENT GAIN FROM  
INPUT TO OUTPUT  
INTERNAL RESISTOR RATIO  
TEMPERATURE AND SUPPLY TEMPERATURE AND SUPPLY  
VARIATIONS  
VARIATIONS IN mV  
10  
5
11  
6
< ±2.5%  
< ±8 mV  
< ±1.5%  
< ±8 mV  
2
3
< ±1.0%  
< ±8 mV  
8.9.2.2.4 Comparator Block Electrical Data/Timing  
8.9.2.2.4.1 Electrical Characteristics of the Comparator/DAC  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
Comparator  
Comparator Input Range  
VSSA – VDDA  
V
Comparator response time to PWM Trip Zone (Async)  
Comparator large step response time to PWM Trip Zone (Async)  
65  
95  
ns  
ns  
DAC  
DAC Output Range  
DAC resolution  
DAC Gain  
VDDA / 26 – VDDA  
V
6
–1.5%  
10  
bits  
DAC Offset  
Monotonic  
mV  
Yes  
INL  
0.2  
LSB  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.9.2.2.5 VREFOUT Buffered DAC Electrical Data  
8.9.2.2.5.1 Electrical Characteristics of VREFOUT Buffered DAC  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
LSB  
VREFOUT Programmable Range  
VREFOUT resolution  
VREFOUT Gain  
6
56  
6
–1.5%  
10  
bits  
VREFOUT Offset  
Monotonic  
mV  
Yes  
INL  
±0.2  
LSB  
kΩ  
3
Load  
RPD  
100  
pF  
20  
kΩ  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.3 Detailed Descriptions  
Integral Nonlinearity  
Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero through full scale.  
The point used as zero occurs one-half LSB before the first code transition. The full-scale point is defined as  
level one-half LSB beyond the last code transition. The deviation is measured from the center of each particular  
code to the true straight line between these two points.  
Differential Nonlinearity  
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. A  
differential nonlinearity error of less than ±1 LSB ensures no missing codes.  
Zero Offset  
Zero error is the difference between the ideal input voltage and the actual input voltage that just causes a  
transition from an output code of zero to an output code of one.  
Gain Error  
The first code transition should occur at an analog value one-half LSB above negative full scale. The last  
transition should occur at an analog value one and one-half LSB below the nominal full scale. Gain error is the  
deviation of the actual difference between first and last code transitions and the ideal difference between first  
and last code transitions.  
Signal-to-Noise Ratio + Distortion  
Signal-to-noise ratio + distortion (SINAD) is the ratio of the rms value of the measured input signal to the rms  
sum of all other spectral components below the Nyquist frequency, including harmonics but excluding DC. The  
value for SINAD is expressed in decibels.  
Effective Number of Bits  
(SINAD -1.76)  
N =  
6.02  
For a sine wave, SINAD can be expressed in terms of the number of bits. Using the formula  
it is possible to get a measure of performance expressed as N, the effective number of bits (ENOB). Thus, the  
ENOB for a device for sine wave inputs at a given input frequency can be calculated directly from its measured  
SINAD.  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the rms sum of the first nine harmonic components to the rms  
value of the measured input signal and is expressed as a percentage or in decibels.  
Spurious Free Dynamic Range  
Spurious free dynamic range (SFDR) is the difference in dB between the rms amplitude of the input signal and  
the peak spurious signal.  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.9.4 Serial Peripheral Interface  
8.9.4.1 SPI Device-Specific Information  
The device includes the four-pin SPI module. The SPI is a high-speed, synchronous serial I/O port that allows a  
serial bit stream of programmed length (1 to 16 bits) to be shifted into and out of the device at a programmable  
bit-transfer rate. Normally, the SPI is used for communications between the MCU and external peripherals or  
another processor. Typical applications include external I/O or peripheral expansion through devices such as  
shift registers, display drivers, and ADCs. Multidevice communications are supported by the master/slave  
operation of the SPI.  
The SPI module features include:  
Four external pins:  
– SPISOMI: SPI slave-output/master-input pin  
– SPISIMO: SPI slave-input/master-output pin  
– SPISTE: SPI slave transmit-enable pin  
– SPICLK: SPI serial-clock pin  
Note  
All four pins can be used as GPIO if the SPI module is not used.  
Two operational modes: master and slave  
Baud rate: 125 different programmable rates.  
LSPCLK  
Baud rate =  
when SPIBRR = 3 to127  
when SPIBRR = 0,1, 2  
(SPIBRR + 1)  
LSPCLK  
4
Baud rate =  
Data word length: 1 to 16 data bits  
Four clocking schemes (controlled by clock polarity and clock phase bits) include:  
– Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the  
SPICLK signal and receives data on the rising edge of the SPICLK signal.  
– Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling  
edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.  
– Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the  
SPICLK signal and receives data on the falling edge of the SPICLK signal.  
– Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the rising  
edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Simultaneous receive and transmit operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithms.  
Nine SPI module control registers: Located in control register frame beginning at address 7040h.  
Note  
All registers in this module are 16-bit registers that are connected to Peripheral Frame 2. When a  
register is accessed, the register data is in the lower byte (7–0), and the upper byte (15–8) is read  
as zeros. Writing to the upper byte has no effect.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
Enhanced feature:  
4-level transmit/receive FIFO  
Delayed transmit control  
Bi-directional 3-wire SPI mode support  
Audio data receive support through SPISTE inversion  
Figure 8-28 is a block diagram of the SPI in slave mode.  
SPIFFENA  
Overrun  
INT ENA  
Receiver  
Overrun Flag  
SPIFFTX.14  
RX FIFO Registers  
SPIRXBUF  
SPISTS.7  
SPICTL.4  
RX FIFO _0  
RX FIFO _1  
-----  
SPIINT  
RX FIFO Interrupt  
RX Interrupt  
Logic  
RX FIFO _3  
16  
SPIRXBUF  
Buffer Register  
SPIFFOVF  
FLAG  
SPIFFRX.15  
To CPU  
TX FIFO Registers  
SPITXBUF  
TX FIFO _3  
TX Interrupt  
Logic  
TX FIFO Interrupt  
-----  
TX FIFO _1  
SPITX  
TX FIFO _0  
16  
SPI INT  
ENA  
16  
SPI INT FLAG  
SPITXBUF  
Buffer Register  
SPISTS.6  
SPICTL.0  
TRIWIRE  
SPIPRI.0  
16  
M
S
M
SPIDAT  
Data Register  
TW  
S
SW1  
SW2  
SPISIMO  
SPISOMI  
M
S
TW  
SPIDAT.15 - 0  
M
S
TW  
STEINV  
SPIPRI.1  
Talk  
STEINV  
SPICTL.1  
SPISTE  
State Control  
Master/Slave  
SPICTL.2  
SPI Char  
LSPCLK  
SPICCR.3 - 0  
S
SW3  
3
2
1
0
Clock  
Polarity  
Clock  
Phase  
M
S
SPI Bit Rate  
SPIBRR.6 - 0  
SPICCR.6  
SPICTL.3  
SPICLK  
M
6
5
4
3
2
1
0
A. SPISTE is driven low by the master for a slave device.  
Figure 8-28. SPI Module Block Diagram (Slave Mode)  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.9.4.2 SPI Register Descriptions  
The SPI port operation is configured and controlled by the registers listed in Table 8-38.  
Table 8-38. SPI-A Registers  
NAME  
SPICCR  
SPICTL  
ADDRESS  
0x7040  
0x7041  
0x7042  
0x7044  
0x7046  
0x7047  
0x7048  
0x7049  
0x704A  
0x704B  
0x704C  
0x704F  
SIZE (×16) EALLOW PROTECTED  
DESCRIPTION(1)  
SPI-A Configuration Control register  
SPI-A Operation Control register  
SPI-A Status register  
1
1
1
1
1
1
1
1
1
1
1
1
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
SPISTS  
SPIBRR  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
SPI-A Baud Rate register  
SPI-A Receive Emulation Buffer register  
SPI-A Serial Input Buffer register  
SPI-A Serial Output Buffer register  
SPI-A Serial Data register  
SPIFFTX  
SPIFFRX  
SPIFFCT  
SPIPRI  
SPI-A FIFO Transmit register  
SPI-A FIFO Receive register  
SPI-A FIFO Control register  
SPI-A Priority Control register  
(1) Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined  
results.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.4.3 SPI Master Mode Electrical Data/Timing  
Section 8.9.4.3.1 lists the master mode timing (clock phase = 0) and Section 8.9.4.3.2 lists the master mode  
timing (clock phase = 1). Figure 8-29 and Figure 8-30 show the timing waveforms.  
8.9.4.3.1 SPI Master Mode External Timing (Clock Phase = 0) (1) (2) (3) (4) (5)  
BRR EVEN  
MIN  
BRR ODD  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
1
2
tc(SPC)M  
Cycle time, SPICLK  
4tc(LSPCLK)  
128tc(LSPCLK)  
5tc(LSPCLK)  
127tc(LSPCLK)  
ns  
ns  
Pulse duration, SPICLK first  
pulse  
0.5tc(SPC)M + 0.5tc(LSPCLK)  
– 10  
0.5tc(SPC)M  
+
tw(SPC1)M  
0.5tc(SPC)M – 10  
0.5tc(SPC)M + 10  
0.5tc(SPC)M + 10  
10  
0.5tc(LSPCLK) + 10  
Pulse duration, SPICLK second  
pulse  
0.5tc(SPC)M – 0.5tc(LSPCLK)  
– 10  
0.5tc(SPC)M  
3
4
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
tsu(SOMI)M  
th(SOMI)M  
td(SPC)M  
td(STE)M  
0.5tc(SPC)M – 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5tc(LSPCLK) + 10  
Delay time, SPICLK to  
SPISIMO valid  
10  
Valid time, SPISIMO valid after  
SPICLK  
0.5tc(SPC)M – 0.5tc(LSPCLK)  
– 10  
5
0.5tc(SPC)M – 10  
Setup time, SPISOMI before  
SPICLK  
8
26  
0
26  
0
Hold time, SPISOMI valid after  
SPICLK  
9
Delay time, SPISTE active to  
SPICLK  
1.5tc(SPC)M  
1.5tc(SPC)M –  
3tc(SYSCLK) – 10  
23  
24  
3tc(SYSCLK) – 10  
Delay time, SPICLK to SPISTE  
inactive  
0.5tc(SPC)M – 0.5tc(LSPCLK)  
– 10  
0.5tc(SPC)M – 10  
(1) The MASTER / SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR +1)  
(3) tc(LCO) = LSPCLK cycle time  
(4) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MAX, slave mode receive 12.5-MHz MAX.  
(5) The active edge of the SPICLK signal referenced is controlled by the clock polarity bit (SPICCR.6).  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
SPISTE  
24  
23  
Figure 8-29. SPI Master Mode External Timing (Clock Phase = 0)  
8.9.4.3.2 SPI Master Mode External Timing (Clock Phase = 1) (1) (2) (3) (4) (5)  
BRR EVEN  
BRR ODD  
MIN  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MAX  
1
2
tc(SPC)M  
Cycle time, SPICLK  
4tc(LSPCLK)  
128tc(LSPCLK)  
5tc(LSPCLK)  
127tc(LSPCLK)  
ns  
ns  
Pulse duration, SPICLK first  
pulse  
0.5tc(SPC)M  
0.5tc(SPC)M  
tw(SPC1)M  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
26  
0.5tc(SPC)M + 10  
0.5tc(SPC)M + 10  
0.5tc(LSPCLK) – 10  
0.5tc(LSPCLK) + 10  
Pulse duration, SPICLK second  
pulse  
0.5tc(SPC)M  
+
0.5tc(SPC)M  
+
3
6
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
tsu(SOMI)M  
th(SOMI)M  
td(SPC)M  
td(STE)M  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5tc(LSPCLK) – 10  
0.5tc(LSPCLK) + 10  
Delay time, SPISIMO valid to  
SPICLK  
0.5tc(SPC)M  
+
0.5tc(LSPCLK) – 10  
Valid time, SPISIMO valid after  
SPICLK  
0.5tc(SPC)M  
7
0.5tc(LSPCLK) – 10  
Setup time, SPISOMI before  
SPICLK  
10  
11  
23  
24  
26  
Hold time, SPISOMI valid after  
SPICLK  
0
0
Delay time, SPISTE active to  
SPICLK  
2tc(SPC)M  
2tc(SPC)M  
3tc(SYSCLK) – 10  
3tc(SYSCLK) – 10  
Delay time, SPICLK to SPISTE  
inactive  
0.5tc(SPC)  
0.5tc(SPC) – 10  
0.5tc(LSPCLK) – 10  
(1) The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is set.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.  
(4) tc(LCO) = LSPCLK cycle time  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
6
7
SPISIMO  
Master Out Data Is Valid  
10  
11  
Master In Data Must  
Be Valid  
SPISOMI  
SPISTE  
24  
23  
Figure 8-30. SPI Master Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.9.4.4 SPI Slave Mode Electrical Data/Timing  
Section 8.9.4.4.1 lists the slave mode timing (clock phase = 0) and Section 8.9.4.4.2 lists the slave mode timing  
(clock phase = 1). Figure 8-31 and Figure 8-32 show the timing waveforms.  
8.9.4.4.1 SPI Slave Mode External Timing (Clock Phase = 0) (1) (2) (4) (3) (5)  
NO.  
PARAMETER  
Cycle time, SPICLK  
MIN  
4tc(SYSCLK)  
MAX UNIT  
12 tc(SPC)S  
13 tw(SPC1)S  
14 tw(SPC2)S  
15 td(SOMI)S  
16 tv(SOMI)S  
19 tsu(SIMO)S  
20 th(SIMO)S  
25 tsu(STE)S  
26 th(STE)S  
ns  
ns  
ns  
Pulse duration, SPICLK first pulse  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
Pulse duration, SPICLK second pulse  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI data valid after SPICLK  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO data valid after SPICLK  
Setup time, SPISTE active before SPICLK  
Hold time, SPISTE inactive after SPICLK  
21  
ns  
ns  
ns  
ns  
ns  
ns  
0
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) tc(LCO) = LSPCLK cycle time  
(4) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
16  
SPISOMI  
SPISOMI Data Is Valid  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
25  
26  
Figure 8-31. SPI Slave Mode External Timing (Clock Phase = 0)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.4.4.2 SPI Slave Mode External Timing (Clock Phase = 1) (1) (2) (3) (4)  
NO.  
PARAMETER  
Cycle time, SPICLK  
MIN  
4tc(SYSCLK)  
MAX UNIT  
12 tc(SPC)S  
13 tw(SPC1)S  
14 tw(SPC2)S  
17 td(SOMI)S  
18 tv(SOMI)S  
21 tsu(SIMO)S  
22 th(SIMO)S  
25 tsu(STE)S  
26 th(STE)S  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SPICLK first pulse  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
Pulse duration, SPICLK second pulse  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI data valid after SPICLK  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO data valid after SPICLK  
Setup time, SPISTE active before SPICLK  
Hold time, SPISTE inactive after SPICLK  
21  
0
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
17  
SPISOMI  
SPISOMI Data Is Valid  
Data Valid  
Data Valid  
18  
21  
22  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
26  
25  
Figure 8-32. SPI Slave Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.9.5 Serial Communications Interface  
8.9.5.1 SCI Device-Specific Information  
The 2805x devices include three SCI modules (SCI-A, SCI-B, SCI-C). Each SCI module supports digital  
communications between the CPU and other asynchronous peripherals that use the standard non-return-to-zero  
(NRZ) format. The SCI receiver and transmitter are double-buffered, and each has its own separate enable and  
interrupt bits. Both can be operated independently or simultaneously in the full-duplex mode. To ensure data  
integrity, the SCI checks received data for break detection, parity, overrun, and framing errors. The bit rate is  
programmable to over 65000 different speeds through a 16-bit baud-select register.  
Features of each SCI module include:  
Two external pins:  
– SCITXD: SCI transmit-output pin  
– SCIRXD: SCI receive-input pin  
Note  
Both pins can be used as GPIO if not used for SCI.  
– Baud rate programmable to 64K different rates:  
LSPCLK  
Baud rate =  
when BRR ¹ 0  
when BRR = 0  
(BRR + 1) * 8  
LSPCLK  
Baud rate =  
16  
Data-word format  
– One start bit  
– Data-word length programmable from 1 to 8 bits  
– Optional even/odd/no parity bit  
– 1 or 2 stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: idle-line and address bit  
Half- or full-duplex operation  
Double-buffered receive and transmit functions  
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with  
status flags.  
– Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY  
flag (transmitter-shift register is empty)  
– Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break  
condition occurred), and RX ERROR flag (monitoring four interrupt conditions)  
Separate enable bits for transmitter and receiver interrupts (except BRKDT)  
NRZ format  
Note  
All registers in this module are 8-bit registers that are connected to Peripheral Frame 2. When a  
register is accessed, the register data is in the lower byte (7–0), and the upper byte (15–8) is read  
as zeros. Writing to the upper byte has no effect.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
Enhanced features:  
Auto baud-detect hardware logic  
4-level transmit/receive FIFO  
Figure 8-33 shows the SCI module block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
TXENA  
SCICTL1.1  
TXSHF  
SCITXD  
Register  
Frame  
Format and Mode  
8
Parity  
Even/Odd  
TXEMPTY  
0
1
SCICTL2.6  
SCICCR.6  
8
Enable  
TX FIFO_0  
TX FIFO_1  
TXINT  
To CPU  
SCICCR.5  
TX Interrupt  
Logic  
TX FIFO Interrupts  
8
TX FIFO_N  
TXINTENA  
SCICTL2.0  
TXRDY  
8
1
0
TXWAKE  
SCICTL2.7  
SCICTL1.3  
SCI TX Interrupt Select Logic  
8
WUT  
Transmit Data  
Buffer Register  
SCITXBUF.7-0  
Auto Baud Detect Logic  
RXENA  
Baud Rate  
MSB/LSB  
Registers  
SCICTL1.0  
LSPCLK  
RXSHF  
Register  
SCIRXD  
SCIHBAUD.15-8  
SCILBAUD.7-0  
RXWAKE  
8
SCIRXST.1  
0
1
8
SCIFFENA  
SCIFFTX.14  
RX FIFO_0  
RX FIFO_1  
RXINT  
To CPU  
8
RX FIFO Interrupts  
RX Interrupt  
Logic  
RX FIFO_N  
RXFFOVF  
8
1
SCIFFRX.15  
0
RXBKINTENA  
SCICTL2.1  
RXRDY  
SCIRXST.6  
RXENA  
BRKDT  
RXERRINTENA  
SCICTL1.6  
SCICTL1.0  
SCIRXST.5  
SCI RX Interrupt Select Logic  
8
SCIRXST.5-2  
BRKDT FE OE PE  
RXERROR  
Receive Data  
Buffer Register  
SCIRXBUF.7-0  
SCIRXST.7  
Figure 8-33. SCI Module Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.5.2 SCI Register Descriptions  
The SCI port operation is configured and controlled by the registers listed in Table 8-39, Table 8-40, and Table  
8-41.  
Table 8-39. SCI-A Registers (1)  
EALLOW  
PROTECTED  
NAME  
ADDRESS  
SIZE (×16)  
DESCRIPTION  
SCICCRA  
SCICTL1A  
0x7050  
0x7051  
0x7052  
0x7053  
0x7054  
0x7055  
0x7056  
0x7057  
0x7059  
0x705A  
0x705B  
0x705C  
0x705F  
1
1
1
1
1
1
1
1
1
1
1
1
1
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
SCI-A Communications Control register  
SCI-A Control Register 1  
SCIHBAUDA  
SCILBAUDA  
SCICTL2A  
SCI-A Baud register, high bits  
SCI-A Baud register, low bits  
SCI-A Control Register 2  
SCIRXSTA  
SCIRXEMUA  
SCIRXBUFA  
SCITXBUFA  
SCIFFTXA(2)  
SCIFFRXA(2)  
SCIFFCTA(2)  
SCIPRIA  
SCI-A Receive Status register  
SCI-A Receive Emulation Data Buffer register  
SCI-A Receive Data Buffer register  
SCI-A Transmit Data Buffer register  
SCI-A FIFO Transmit register  
SCI-A FIFO Receive register  
SCI-A FIFO Control register  
SCI-A Priority Control register  
(1) Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. All 32-bit accesses produce  
undefined results.  
(2) These registers are new registers for the FIFO mode.  
Table 8-40. SCI-B Registers (1)  
EALLOW  
PROTECTED  
NAME  
ADDRESS  
SIZE (×16)  
DESCRIPTION  
SCICCRB  
SCICTL1B  
0x7750  
0x7751  
0x7752  
0x7753  
0x7754  
0x7755  
0x7756  
0x7757  
0x7759  
0x775A  
0x775B  
0x775C  
0x775F  
1
1
1
1
1
1
1
1
1
1
1
1
1
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
SCI-B Communications Control register  
SCI-B Control Register 1  
SCIHBAUDB  
SCILBAUDB  
SCICTL2B  
SCI-B Baud register, high bits  
SCI-B Baud register, low bits  
SCI-B Control Register 2  
SCIRXSTB  
SCIRXEMUB  
SCIRXBUFB  
SCITXBUFB  
SCIFFTXB(2)  
SCIFFRXB(2)  
SCIFFCTB(2)  
SCIPRIB  
SCI-B Receive Status register  
SCI-B Receive Emulation Data Buffer register  
SCI-B Receive Data Buffer register  
SCI-B Transmit Data Buffer register  
SCI-B FIFO Transmit register  
SCI-B FIFO Receive register  
SCI-B FIFO Control register  
SCI-B Priority Control register  
(1) Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. All 32-bit accesses produce  
undefined results.  
(2) These registers are new registers for the FIFO mode.  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
Table 8-41. SCI-C Registers (1)  
EALLOW  
PROTECTED  
NAME  
ADDRESS  
SIZE (×16)  
DESCRIPTION  
SCICCRC  
SCICTL1C  
0x7770  
0x7771  
0x7772  
0x7773  
0x7774  
0x7775  
0x7776  
0x7777  
0x7779  
0x777A  
0x777B  
0x777C  
0x777F  
1
1
1
1
1
1
1
1
1
1
1
1
1
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
SCI-C Communications Control register  
SCI-C Control Register 1  
SCIHBAUDC  
SCILBAUDC  
SCICTL2C  
SCI-C Baud register, high bits  
SCI-C Baud register, low bits  
SCI-C Control Register 2  
SCIRXSTC  
SCIRXEMUC  
SCIRXBUFC  
SCITXBUFC  
SCIFFTXC(2)  
SCIFFRXC(2)  
SCIFFCTC(2)  
SCIPRIC  
SCI-C Receive Status register  
SCI-C Receive Emulation Data Buffer register  
SCI-C Receive Data Buffer register  
SCI-C Transmit Data Buffer register  
SCI-C FIFO Transmit register  
SCI-C FIFO Receive register  
SCI-C FIFO Control register  
SCI-C Priority Control register  
(1) Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. All 32-bit accesses produce  
undefined results.  
(2) These registers are new registers for the FIFO mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.6 Enhanced Controller Area Network  
8.9.6.1 eCAN Device-Specific Information  
The CAN module (eCAN-A) has the following features:  
Fully compliant with CAN protocol, version 2.0B  
Supports data rates up to 1 Mbps  
Thirty-two mailboxes, each with the following properties:  
– Configurable as receive or transmit  
– Configurable with standard or extended identifier  
– Has a programmable receive mask  
– Supports data and remote frame  
– Composed of 0 to 8 bytes of data  
– Uses a 32-bit timestamp on receive and transmit message  
– Protects against reception of new message  
– Holds the dynamically programmable priority of transmit message  
– Employs a programmable interrupt scheme with two interrupt levels  
– Employs a programmable alarm on transmission or reception time-out  
Low-power mode  
Programmable wakeup on bus activity  
Automatic reply to a remote request message  
Automatic retransmission of a frame in case of loss of arbitration or error  
32-bit local network time counter synchronized by a specific message (communication in conjunction with  
mailbox 16)  
Self-test mode  
– Operates in a loopback mode receiving its own message. A "dummy" acknowledge is provided, thereby  
eliminating the need for another node to provide the acknowledge bit.  
Note  
For a SYSCLKOUT of 60 MHz, the smallest bit rate possible is 4.6875 kbps.  
The F2805x CAN has passed the conformance test per ISO/DIS 16845. Contact TI for test report and  
exceptions.  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
eCAN0INT  
eCAN1INT  
Controls Address  
Data  
32  
Enhanced CAN Controller  
Message Controller  
Mailbox RAM  
(512 Bytes)  
Memory Management  
Unit  
eCAN Memory  
(512 Bytes)  
Registers and  
CPU Interface,  
Receive Control Unit,  
Timer Management Unit  
32-Message Mailbox  
of 4 ´ 32-Bit Words  
Message Objects Control  
32  
32  
32  
eCAN Protocol Kernel  
Receive Buffer  
Transmit Buffer  
Control Buffer  
Status Buffer  
SN65HVD23x  
3.3-V CAN Transceiver  
CAN Bus  
Figure 8-34. eCAN Block Diagram and Interface Circuit  
Table 8-42. 3.3-V eCAN Transceivers  
SUPPLY  
VOLTAGE  
LOW-POWER  
MODE  
SLOPE  
CONTROL  
PART NUMBER  
VREF  
OTHER  
TA  
SN65HVD230  
SN65HVD230Q  
SN65HVD231  
SN65HVD231Q  
SN65HVD232  
SN65HVD232Q  
SN65HVD233  
SN65HVD234  
SN65HVD235  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
Standby  
Standby  
Sleep  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
None  
Yes  
Yes  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
Yes  
Sleep  
Yes  
None  
None  
None  
None  
None  
None  
None  
None  
Standby  
Standby and Sleep  
Standby  
Adjustable  
Adjustable  
Adjustable  
Diagnostic Loopback  
Autobaud Loopback  
Built-in Isolation  
Low Prop Delay  
ISO1050  
3–5.5 V  
None  
None  
None  
Thermal Shutdown  
Failsafe Operation  
Dominant Time-Out  
–55°C to 105°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
eCAN-A Control and Status Registers  
Mailbox Enable - CANME  
Mailbox Direction - CANMD  
Transmission Request Set - CANTRS  
Transmission Request Reset - CANTRR  
Transmission Acknowledge - CANTA  
Abort Acknowledge - CANAA  
eCAN-A Memory (512 Bytes)  
Control and Status Registers  
6000h  
Received Message Pending - CANRMP  
Received Message Lost - CANRML  
Remote Frame Pending - CANRFP  
Global Acceptance Mask - CANGAM  
603Fh  
6040h  
Local Acceptance Masks (LAM)  
(32 ´ 32-Bit RAM)  
607Fh  
6080h  
Master Control - CANMC  
Message Object Time Stamps (MOTS)  
(32 ´ 32-Bit RAM)  
Bit-Timing Configuration - CANBTC  
60BFh  
60C0h  
Error and Status - CANES  
Message Object Time-Out (MOTO)  
(32 ´ 32-Bit RAM)  
Transmit Error Counter - CANTEC  
Receive Error Counter - CANREC  
Global Interrupt Flag 0 - CANGIF0  
Global Interrupt Mask - CANGIM  
Global Interrupt Flag 1 - CANGIF1  
Mailbox Interrupt Mask - CANMIM  
Mailbox Interrupt Level - CANMIL  
60FFh  
eCAN-A Memory RAM (512 Bytes)  
6100h-6107h  
6108h-610Fh  
6110h-6117h  
6118h-611Fh  
6120h-6127h  
Mailbox 0  
Mailbox 1  
Mailbox 2  
Mailbox 3  
Mailbox 4  
Overwrite Protection Control - CANOPC  
TX I/O Control - CANTIOC  
RX I/O Control - CANRIOC  
Time Stamp Counter - CANTSC  
Time-Out Control - CANTOC  
Time-Out Status - CANTOS  
61E0h-61E7h  
61E8h-61EFh  
61F0h-61F7h  
61F8h-61FFh  
Mailbox 28  
Mailbox 29  
Mailbox 30  
Mailbox 31  
Reserved  
Message Mailbox (16 Bytes)  
Message Identifier - MSGID  
Message Control - MSGCTRL  
Message Data Low - MDL  
Message Data High - MDH  
61E8h-61E9h  
61EAh-61EBh  
61ECh-61EDh  
61EEh-61EFh  
Figure 8-35. eCAN-A Memory Map  
Note  
If the eCAN module is not used in an application, the RAM available (LAM, MOTS, MOTO, and  
mailbox RAM) can be used as general-purpose RAM. The CAN module clock should be enabled if the  
eCAN RAM (LAM, MOTS, MOTO, and mailbox RAM) is used as general-purpose RAM.  
Copyright © 2021 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.9.6.2 eCAN Register Descriptions  
The CAN registers listed in Table 8-43 are used by the CPU to configure and control the CAN controller and the  
message objects. eCAN control registers only support 32-bit read/write operations. Mailbox RAM can be  
accessed as 16 bits or 32 bits. 32-bit accesses are aligned to an even boundary.  
Table 8-43. CAN Register Map (1)  
eCAN-A  
REGISTER NAME  
SIZE (×32)  
DESCRIPTION  
ADDRESS  
0x6000  
0x6002  
0x6004  
0x6006  
0x6008  
0x600A  
0x600C  
0x600E  
0x6010  
0x6012  
0x6014  
0x6016  
0x6018  
0x601A  
0x601C  
0x601E  
0x6020  
0x6022  
0x6024  
0x6026  
0x6028  
0x602A  
0x602C  
0x602E  
0x6030  
0x6032  
CANME  
CANMD  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Mailbox enable  
Mailbox direction  
CANTRS  
CANTRR  
CANTA  
Transmit request set  
Transmit request reset  
Transmission acknowledge  
Abort acknowledge  
Receive message pending  
Receive message lost  
Remote frame pending  
Global acceptance mask  
Master control  
CANAA  
CANRMP  
CANRML  
CANRFP  
CANGAM  
CANMC  
CANBTC  
CANES  
Bit-timing configuration  
Error and status  
CANTEC  
CANREC  
CANGIF0  
CANGIM  
CANGIF1  
CANMIM  
CANMIL  
CANOPC  
CANTIOC  
CANRIOC  
CANTSC  
CANTOC  
CANTOS  
Transmit error counter  
Receive error counter  
Global interrupt flag 0  
Global interrupt mask  
Global interrupt flag 1  
Mailbox interrupt mask  
Mailbox interrupt level  
Overwrite protection control  
TX I/O control  
RX I/O control  
Timestamp counter (Reserved in SCC mode)  
Time-out control (Reserved in SCC mode)  
Time-out status (Reserved in SCC mode)  
(1) These registers are mapped to Peripheral Frame 1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.7 Inter-Integrated Circuit  
8.9.7.1 I2C Device-Specific Information  
The device contains one I2C serial port. Figure 8-36 shows how the I2C peripheral module interfaces within the  
device.  
The I2C module has the following features:  
Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):  
– Support for 1-bit to 8-bit format transfers  
– 7-bit and 10-bit addressing modes  
– General call  
– START byte mode  
– Support for multiple master-transmitters and slave-receivers  
– Support for multiple slave-transmitters and master-receivers  
– Combined master transmit/receive and receive/transmit mode  
– Data transfer rate of from 10 kbps up to 400 kbps (I2C Fast-mode rate)  
One 4-word receive FIFO and one 4-word transmit FIFO  
One interrupt that can be used by the CPU. This interrupt can be generated as a result of one of the following  
conditions:  
– Transmit-data ready  
– Receive-data ready  
– Register-access ready  
– No-acknowledgment received  
– Arbitration lost  
– Stop condition detected  
– Addressed as slave  
An additional interrupt that can be used by the CPU when in FIFO mode  
Module enable/disable capability  
Free data format mode  
Copyright © 2021 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
I2C Module  
I2CXSR  
I2CDXR  
TX FIFO  
RX FIFO  
FIFO Interrupt to  
CPU/PIE  
SDA  
Peripheral Bus  
I2CRSR  
I2CDRR  
Control/Status  
Registers  
CPU  
Clock  
Synchronizer  
SCL  
Prescaler  
Noise Filters  
Arbitrator  
Interrupt to  
CPU/PIE  
I2C INT  
A. The I2C registers are accessed at the SYSCLKOUT rate. The internal timing and signal waveforms of the I2C port are also at the  
SYSCLKOUT rate.  
B. The clock enable bit (I2CAENCLK) in the PCLKCRO register turns off the clock to the I2C port for low power operation. Upon reset,  
I2CAENCLK is clear, which indicates the peripheral internal clocks are off.  
Figure 8-36. I2C Peripheral Module Interfaces  
8.9.7.2 I2C Register Descriptions  
The registers in Table 8-44 configure and control the I2C port operation.  
Table 8-44. I2C-A Registers  
EALLOW  
PROTECTED  
NAME  
ADDRESS  
DESCRIPTION  
I2C own address register  
I2COAR  
I2CIER  
0x7900  
0x7901  
0x7902  
0x7903  
0x7904  
0x7905  
0x7906  
0x7907  
0x7908  
0x7909  
0x790A  
0x790C  
0x7920  
0x7921  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
I2C interrupt enable register  
I2C status register  
I2CSTR  
I2CCLKL  
I2CCLKH  
I2CCNT  
I2CDRR  
I2CSAR  
I2CDXR  
I2CMDR  
I2CISRC  
I2CPSC  
I2CFFTX  
I2CFFRX  
I2CRSR  
I2CXSR  
I2C clock low-time divider register  
I2C clock high-time divider register  
I2C data count register  
I2C data receive register  
I2C slave address register  
I2C data transmit register  
I2C mode register  
I2C interrupt source register  
I2C prescaler register  
I2C FIFO transmit register  
I2C FIFO receive register  
I2C receive shift register (not accessible to the CPU)  
I2C transmit shift register (not accessible to the CPU)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.7.3 I2C Electrical Data/Timing  
Section 8.9.7.3.1 shows the I2C timing requirements. Section 8.9.7.3.2 shows the I2C switching characteristics.  
8.9.7.3.1 I2C Timing Requirements  
MIN  
MAX UNIT  
Hold time, START condition, SCL fall delay  
after SDA fall  
th(SDA-SCL)START  
tsu(SCL-SDA)START  
0.6  
µs  
Setup time, Repeated START, SCL rise  
before SDA fall delay  
0.6  
µs  
th(SCL-DAT)  
tsu(DAT-SCL)  
tr(SDA)  
Hold time, data after SCL fall  
Setup time, data before SCL rise  
Rise time, SDA  
0
100  
20  
µs  
ns  
Input tolerance  
Input tolerance  
Input tolerance  
Input tolerance  
300  
300  
300  
300  
ns  
ns  
ns  
ns  
tr(SCL)  
Rise time, SCL  
20  
tf(SDA)  
Fall time, SDA  
11.4  
11.4  
tf(SCL)  
Fall time, SCL  
Setup time, STOP condition, SCL rise before  
SDA rise delay  
tsu(SCL-SDA)STOP  
0.6  
µs  
8.9.7.3.2 I2C Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
fSCL  
SCL clock frequency  
I2C clock module frequency is from 7 MHz to  
12 MHz and I2C prescaler and clock divider  
registers are configured appropriately.  
400  
kHz  
Vil  
Low level input voltage  
High level input voltage  
Input hysteresis  
0.3 VDDIO  
V
V
Vih  
Vhys  
Vol  
0.7 VDDIO  
0.05 VDDIO  
V
Low level output voltage  
3 mA sink current  
0
0.4  
V
tLOW Low period of SCL clock  
I2C clock module frequency is from 7 MHz to  
12 MHz and I2C prescaler and clock divider  
registers are configured appropriately.  
1.3  
μs  
tHIGH High period of SCL clock  
I2C clock module frequency is from 7 MHz to  
12 MHz and I2C prescaler and clock divider  
registers are configured appropriately.  
0.6  
μs  
lI  
Input current with an input voltage from  
0.1 VDDIO to 0.9 VDDIO MAX  
–10  
10  
μA  
Copyright © 2021 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.9.8 Enhanced Pulse Width Modulator  
8.9.8.1 ePWM Device-Specific Information  
The devices contain up to seven enhanced PWM modules (ePWM1 to ePWM7). Figure 8-37 shows a block  
diagram of multiple ePWM modules. Figure 8-38 shows the signal interconnections with the ePWM. For more  
details, see the Enhanced Pulse Width Modulator (ePWM) Module chapter of the TMS320x2805x Technical  
Reference Manual .  
EPWMSYNCI  
EPWM1SYNCI  
EPWM1B  
EPWM1TZINT  
EPWM1  
Module  
TZ1 to TZ3  
EPWM1INT  
EPWM2TZINT  
EPWM2INT  
EQEP1ERR  
CLOCKFAIL  
EMUSTOP  
TZ4  
TZ5  
TZ6  
PIE  
EPWMxTZINT  
EPWMxINT  
EPWM1ENCLK  
TBCLKSYNC  
eCAPI  
EPWM1SYNCO  
EPWM2SYNCI  
EPWM1SYNCO  
TZ1 to TZ3  
EPWM2B  
EPWM2  
Module  
CTRIP  
Output  
Subsystem  
CTRIPxx  
EQEP1ERR  
CLOCKFAIL  
EMUSTOP  
EPWM1A  
EPWM2A  
TZ4  
TZ5  
TZ6  
EPWM2ENCLK  
TBCLKSYNC  
EPWMxA  
G
P
I
EPWM2SYNCO  
O
M
U
X
SOCA1  
SOCB1  
SOCA2  
SOCB2  
SOCAx  
SOCBx  
ADC  
EPWMxB  
EPWMxSYNCI  
TZ1 to TZ3  
EPWMx  
Module  
EQEP1ERR  
CLOCKFAIL  
EMUSTOP  
EQEP1ERR  
TZ4  
TZ5  
TZ6  
eQEP1  
EPWMxENCLK  
TBCLKSYNC  
System Control  
C28x CPU  
SOCA1  
SOCA2  
SPCAx  
ADCSOCAO  
ADCSOCBO  
Pulse Stretch  
(32 SYSCLKOUT Cycles, Active-Low Output)  
SOCB1  
SOCB2  
SPCBx  
Pulse Stretch  
(32 SYSCLKOUT Cycles, Active-Low Output)  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-37. ePWM  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
Time-Base (TB)  
CTR=ZERO  
Sync  
In/Out  
TBPRD Shadow (24)  
CTR=CMPB  
Select  
EPWMxSYNCO  
Mux  
Disabled  
TBPRD Active (24)  
CTR=PRD  
TBCTL[SYNCOSEL]  
TBCTL[PHSEN]  
EPWMxSYNCI  
DCAEVT1.sync  
DCBEVT1.sync  
Counter  
Up/Down  
(16 Bit)  
TBCTL[SWFSYNC]  
(Software Forced  
Sync)  
CTR=ZERO  
CTR_Dir  
TCBNT  
Active (16)  
CTR=PRD  
CTR=ZERO  
EPWMxINT  
CTR=PRD or ZERO  
CTR=CMPA  
Event  
Trigger  
and  
Interrupt  
(ET)  
16  
EPWMxSOCA  
Phase  
Control  
CTR=CMPB  
CTR_Dir  
(A)  
DCAEVT1.soc  
(A)  
TBPHS Active (24)  
EPWMxSOCB  
EPWMxSOCA  
ADC  
DCBEVT1.soc  
EPWMxSOCB  
Action  
Qualifier  
(AQ)  
CTR=CMPA  
16  
CMPA Active (24)  
CMPA Shadow (24)  
EPWMxA  
EPWMA  
EPWMB  
PWM  
Chopper  
(PC)  
Trip  
Zone  
(TZ)  
Dead  
Band  
(DB)  
CTR=CMPB  
16  
EPWMxB  
EPWMxTZINT  
TZ1 to TZ3  
CMPB Active (16)  
CMPB Shadow (16)  
EMUSTOP  
CLOCKFAIL  
CTR=ZERO  
EQEP1ERR  
DCAEVT1.inter  
DCBEVT1.inter  
(A)  
(A)  
(A)  
(A)  
DCAEVT1.force  
DCAEVT2.force  
DCBEVT1.force  
DCBEVT2.force  
DCAEVT2.inter  
DCBEVT2.inter  
Copyright © 2017, Texas Instruments Incorporated  
A. These events are generated by the Type 1 ePWM digital compare (DC) submodule based on the levels of the COMPxOUT and TZ  
signals.  
Figure 8-38. ePWM Submodules Showing Critical Internal Signal Interconnections  
Copyright © 2021 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.9.8.2 ePWM Register Descriptions  
Table 8-45 and Table 8-46 show the complete ePWM register set per module.  
Table 8-45. ePWM1–ePWM4 Control and Status Registers  
SIZE (×16) /  
#SHADOW  
NAME  
ePWM1  
ePWM2  
ePWM3  
ePWM4  
DESCRIPTION  
Time Base Control register  
TBCTL  
TBSTS  
0x6800  
0x6801  
0x6802  
0x6803  
0x6804  
0x6805  
0x6806  
0x6807  
0x6808  
0x6809  
0x680A  
0x680B  
0x680C  
0x680D  
0x680E  
0x680F  
0x6810  
0x6811  
0x6812  
0x6813  
0x6814  
0x6815  
0x6816  
0x6817  
0x6818  
0x6819  
0x681A  
0x681B  
0x681C  
0x6840  
0x6841  
0x6842  
0x6843  
0x6844  
0x6845  
0x6846  
0x6847  
0x6848  
0x6849  
0x684A  
0x684B  
0x684C  
0x684D  
0x684E  
0x684F  
0x6850  
0x6851  
0x6852  
0x6853  
0x6854  
0x6855  
0x6856  
0x6857  
0x6858  
0x6859  
0x685A  
0x685B  
0x685C  
0x6880  
0x6881  
0x6882  
0x6883  
0x6884  
0x6885  
0x6886  
0x6887  
0x6888  
0x6889  
0x688A  
0x688B  
0x688C  
0x688D  
0x688E  
0x688F  
0x6890  
0x6891  
0x6892  
0x6893  
0x6894  
0x6895  
0x6896  
0x6897  
0x6898  
0x6899  
0x689A  
0x689B  
0x689C  
0x68C0  
0x68C1  
0x68C2  
0x68C3  
0x68C4  
0x68C5  
0x68C6  
0x68C7  
0x68C8  
0x68C9  
0x68CA  
0x68CB  
0x68CC  
0x68CD  
0x68CE  
0x68CF  
0x68D0  
0x68D1  
0x68D2  
0x98D3  
0x68D4  
0x68D5  
0x68D6  
0x68D7  
0x68D8  
0x68D9  
0x68DA  
0x68DB  
0x68DC  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
1 / 1  
1 / 0  
1 / 1  
1 / 1  
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
Time Base Status register  
Reserved  
TBPHS  
TBCTR  
TBPRD  
Reserved  
CMPCTL  
Reserved  
CMPA  
Reserved  
Time Base Phase register  
Time Base Counter register  
Time Base Period Register Set  
Reserved  
Counter Compare Control register  
Reserved  
Counter Compare A Register Set  
Counter Compare B Register Set  
Action Qualifier Control register for output A  
Action Qualifier Control register for output B  
Action Qualifier Software Force register  
Action Qualifier Continuous S/W Force Register Set  
Dead-Band Generator Control register  
Dead-Band Generator Rising Edge Delay Count register  
Dead-Band Generator Falling Edge Delay Count register  
Trip Zone Select register(1)  
CMPB  
AQCTLA  
AQCTLB  
AQSFRC  
AQCSFRC  
DBCTL  
DBRED  
DBFED  
TZSEL  
TZDCSEL  
TZCTL  
Trip Zone Digital Compare register  
Trip Zone Control register(1)  
TZEINT  
TZFLG  
Trip Zone Enable Interrupt register(1)  
Trip Zone Flag register (1)  
TZCLR  
Trip Zone Clear register(1)  
TZFRC  
ETSEL  
Trip Zone Force register(1)  
Event Trigger Selection register  
Event Trigger Prescale register  
Event Trigger Flag register  
ETPS  
ETFLG  
ETCLR  
Event Trigger Clear register  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053 TMS320F28052 TMS320F28052M TMS320F28052F  
TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-45. ePWM1–ePWM4 Control and Status Registers (continued)  
SIZE (×16) /  
#SHADOW  
NAME  
ePWM1  
ePWM2  
ePWM3  
ePWM4  
DESCRIPTION  
Event Trigger Force register  
ETFRC  
PCCTL  
0x681D  
0x681E  
0x6820  
0x6821  
0x6826  
0x6828  
0x682A  
0x682B  
0x682C  
0x682D  
0x6830  
0x6831  
0x6832  
0x6833  
0x6834  
0x6835  
0x6836  
0x6837  
0x6838  
0x6839  
0x685D  
0x685E  
0x6860  
-
0x689D  
0x689E  
0x68A0  
-
0x68DD  
0x68DE  
0x68E0  
-
1 / 0  
1 / 0  
PWM Chopper Control register  
Reserved  
Reserved  
1 / 0  
Reserved  
1 / 0  
Reserved  
Reserved  
-
-
-
1 / 0  
Reserved  
Reserved  
0x6868  
0x686A  
0x686B  
0x686C  
0x686D  
0x6870  
0x6871  
0x6872  
0x6873  
0x6874  
0x6875  
0x6876  
0x6877  
0x6878  
0x6879  
0x68A8  
0x68AA  
0x68AB  
0x68AC  
0x68AD  
0x68B0  
0x68B1  
0x68B2  
0x68B3  
0x68B4  
0x68B5  
0x68B6  
0x68B7  
0x68B8  
0x68B9  
0x68E8  
0x68EA  
0x68EB  
0x68EC  
0x68ED  
0x68F0  
0x68F1  
0x68F2  
0x68F3  
0x68F4  
0x68F5  
0x68F6  
0x68F7  
0x68F8  
0x68F9  
1 / 0  
Reserved  
Reserved  
1 / W(2)  
1 / W(2)  
1 / W(2)  
1 / W(2)  
1 / 0  
Reserved  
TBPRDM  
Time Base Period Register Mirror  
Reserved  
Reserved  
CMPAM  
Compare A Register Mirror  
Digital Compare Trip Select register (1)  
Digital Compare A Control register(1)  
Digital Compare B Control register(1)  
Digital Compare Filter Control register(1)  
Digital Compare Capture Control register(1)  
Digital Compare Filter Offset register  
Digital Compare Filter Offset Counter register  
Digital Compare Filter Window register  
Digital Compare Filter Window Counter register  
Digital Compare Counter Capture register  
DCTRIPSEL  
DCACTL  
1 / 0  
DCBCTL  
1 / 0  
DCFCTL  
1 / 0  
DCCAPCT  
DCFOFFSET  
DCFOFFSETCNT  
DCFWINDOW  
DCFWINDOWCNT  
DCCAP  
1 / 0  
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
(1) Registers that are EALLOW protected.  
(2) W = Write to shadow register  
Table 8-46. ePWM5–ePWM7 Control and Status Registers  
SIZE (×16) /  
#SHADOW  
NAME  
ePWM5  
ePWM6  
ePWM7  
DESCRIPTION  
TBCTL  
0x6900  
0x6901  
0x6902  
0x6903  
0x6904  
0x6905  
0x6906  
0x6940  
0x6941  
0x6942  
0x6943  
0x6944  
0x6945  
0x6946  
0x6980  
0x6981  
0x6982  
0x6983  
0x6984  
0x6985  
0x6986  
1 / 0  
Time Base Control register  
Time Base Status register  
Reserved  
TBSTS  
1 / 0  
Reserved  
TBPHS  
TBCTR  
TBPRD  
Reserved  
1 / 0  
1 / 0  
Time Base Phase register  
Time Base Counter register  
1 / 0  
1 / 1  
Time Base Period Register Set  
Reserved  
1 / 1  
Copyright © 2021 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053 TMS320F28052 TMS320F28052M TMS320F28052F  
TMS320F28051 TMS320F28050  
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
Table 8-46. ePWM5–ePWM7 Control and Status Registers (continued)  
SIZE (×16) /  
#SHADOW  
NAME  
ePWM5  
ePWM6  
ePWM7  
DESCRIPTION  
Counter Compare Control register  
CMPCTL  
Reserved  
CMPA  
0x6907  
0x6908  
0x6909  
0x690A  
0x690B  
0x690C  
0x690D  
0x690E  
0x690F  
0x6910  
0x6911  
0x6912  
0x6913  
0x6914  
0x6915  
0x6916  
0x6917  
0x6918  
0x6919  
0x691A  
0x691B  
0x691C  
0x691D  
0x691E  
0x6920  
-
0x6947  
0x6948  
0x6949  
0x694A  
0x694B  
0x694C  
0x694D  
0x694E  
0x694F  
0x6950  
0x6951  
0x6952  
0x6953  
0x6954  
0x6955  
0x6956  
0x6957  
0x6958  
0x6959  
0x695A  
0x695B  
0x695C  
0x695D  
0x695E  
0x6960  
-
0x6987  
0x6988  
0x6989  
0x698A  
0x698B  
0x698C  
0x698D  
0x698E  
0x698F  
0x6990  
0x6991  
0x6992  
0x6993  
0x6994  
0x6995  
0x6996  
0x6997  
0x6998  
0x6999  
0x699A  
0x699B  
0x699C  
0x699D  
0x699E  
0x69A0  
-
1 / 0  
1 / 1  
1 / 1  
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / W(2)  
1 / W(2)  
1 / W(2)  
1 / W(2)  
Reserved  
Counter Compare A Register Set  
Counter Compare B Register Set  
Action Qualifier Control register for output A  
Action Qualifier Control register for output B  
Action Qualifier Software Force register  
Action Qualifier Continuous S/W Force Register Set  
Dead-Band Generator Control register  
Dead-Band Generator Rising Edge Delay Count register  
Dead-Band Generator Falling Edge Delay Count register  
Trip Zone Select register(1)  
Trip Zone Digital Compare register  
Trip Zone Control register(1)  
Trip Zone Enable Interrupt register(1)  
Trip Zone Flag register (1)  
CMPB  
AQCTLA  
AQCTLB  
AQSFRC  
AQCSFRC  
DBCTL  
DBRED  
DBFED  
TZSEL  
TZDCSEL  
TZCTL  
TZEINT  
TZFLG  
TZCLR  
Trip Zone Clear register(1)  
TZFRC  
Trip Zone Force register(1)  
ETSEL  
Event Trigger Selection register  
Event Trigger Prescale register  
Event Trigger Flag register  
Event Trigger Clear register  
Event Trigger Force register  
PWM Chopper Control register  
Reserved  
ETPS  
ETFLG  
ETCLR  
ETFRC  
PCCTL  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TBPRDM  
Reserved  
CMPAM  
Reserved  
-
-
-
Reserved  
0x6928  
0x692A  
0x692B  
0x692C  
0x692D  
0x6968  
0x696A  
0x696B  
0x696C  
0x696D  
0x69A8  
0x69AA  
0x69AB  
0x69AC  
0x69AD  
Reserved  
Reserved  
Time Base Period Register Mirror  
Reserved  
Compare A Register Mirror  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053 TMS320F28052 TMS320F28052M TMS320F28052F  
TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-46. ePWM5–ePWM7 Control and Status Registers (continued)  
SIZE (×16) /  
#SHADOW  
NAME  
DCTRIPSEL  
ePWM5  
ePWM6  
ePWM7  
DESCRIPTION  
0x6930  
0x6931  
0x6932  
0x6933  
0x6934  
0x6935  
0x6936  
0x6937  
0x6938  
0x6939  
0x6970  
0x6971  
0x6972  
0x6973  
0x6974  
0x6975  
0x6976  
0x6977  
0x6978  
0x6979  
0x69B0  
0x69B1  
0x69B2  
0x69B3  
0x69B4  
0x69B5  
0x69B6  
0x69B7  
0x69B8  
0x69B9  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
Digital Compare Trip Select register (1)  
DCACTL  
Digital Compare A Control register(1)  
DCBCTL  
Digital Compare B Control register(1)  
DCFCTL  
Digital Compare Filter Control register(1)  
Digital Compare Capture Control register(1)  
Digital Compare Filter Offset register  
DCCAPCT  
DCFOFFSET  
DCFOFFSETCNT  
DCFWINDOW  
DCFWINDOWCNT  
DCCAP  
Digital Compare Filter Offset Counter register  
Digital Compare Filter Window register  
Digital Compare Filter Window Counter register  
Digital Compare Counter Capture register  
(1) Registers that are EALLOW protected.  
(2) W = Write to shadow register  
Copyright © 2021 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053 TMS320F28052 TMS320F28052M TMS320F28052F  
TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.9.8.3 ePWM Electrical Data/Timing  
PWM refers to PWM outputs on ePWM1 to ePWM7. Section 8.9.8.3.1 shows the PWM timing requirements and  
Section 8.9.8.3.2, switching characteristics.  
8.9.8.3.1 ePWM Timing Requirements (1)  
MIN  
2tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
cycles  
Asynchronous  
Synchronous  
tw(SYCIN)  
Sync input pulse width  
2tc(SCO)  
With input qualifier  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 8.9.12.3.2.1.  
8.9.8.3.2 ePWM Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
33.33  
MAX  
UNIT  
ns  
tw(PWM)  
Pulse duration, PWMx output high/low  
Sync output pulse width  
tw(SYNCOUT)  
8tc(SCO)  
cycles  
Delay time, trip input active to PWM forced high  
Delay time, trip input active to PWM forced low  
td(PWM)tza  
no pin load  
25  
20  
ns  
ns  
td(TZ-PWM)HZ  
Delay time, trip input active to PWM Hi-Z  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.8.3.3 Trip-Zone Input Timing  
8.9.8.3.3.1 Trip-Zone Input Timing Requirements (1)  
MIN  
2tc(TBCLK)  
MAX UNIT  
cycles  
Asynchronous  
tw(TZ)  
Pulse duration, TZx input low  
Synchronous  
2tc(TBCLK)  
cycles  
With input qualifier  
2tc(TBCLK) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Section 8.9.12.3.2.1.  
SYSCLK  
t
w(TZ)  
TZ(A)  
t
d(TZ-PWM)HZ  
PWM(B)  
A. TZ - TZ1, TZ2, TZ3, TZ4, TZ5, TZ6  
B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software.  
Figure 8-39. PWM Hi-Z Characteristics  
Copyright © 2021 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.9.9 Enhanced Capture Module  
8.9.9.1 eCAP Module Device-Specific Information  
The device contains an enhanced capture module (eCAP1). Figure 8-40 shows a functional block diagram of a  
module.  
CTRPHS  
(phase register−32 bit)  
APWM mode  
SYNCIn  
CTR_OVF  
OVF  
CTR [0−31]  
PRD [0−31]  
CMP [0−31]  
TSCTR  
(counter−32 bit)  
SYNCOut  
PWM  
compare  
logic  
Delta−mode  
RST  
32  
CTR=PRD  
CTR=CMP  
CTR [0−31]  
PRD [0−31]  
32  
eCAPx  
32  
LD1  
CAP1  
(APRD active)  
Polarity  
select  
LD  
APRD  
shadow  
32  
CMP [0−31]  
32  
32  
LD2  
CAP2  
(ACMP active)  
Polarity  
select  
LD  
Event  
qualifier  
Event  
Prescale  
32  
ACMP  
shadow  
Polarity  
select  
32  
32  
LD3  
LD4  
CAP3  
(APRD shadow)  
LD  
CAP4  
(ACMP shadow)  
Polarity  
select  
LD  
4
Capture events  
CEVT[1:4]  
4
Interrupt  
Trigger  
and  
Flag  
control  
Continuous /  
Oneshot  
Capture Control  
to PIE  
CTR_OVF  
CTR=PRD  
CTR=CMP  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-40. eCAP Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
The eCAP module is clocked at the SYSCLKOUT rate.  
The clock enable bits (ECAP1ENCLK) in the PCLKCR1 register turn off the eCAP module individually (for low  
power operation). Upon reset, ECAP1ENCLK is set to low, indicating that the peripheral clock is off.  
8.9.9.2 eCAP Module Register Descriptions  
Table 8-47 shows the eCAP Control and Status Registers.  
Table 8-47. eCAP Control and Status Registers  
NAME  
TSCTR  
CTRPHS  
CAP1  
eCAP1  
0x6A00  
SIZE (×16) EALLOW PROTECTED  
DESCRIPTION  
Timestamp Counter  
2
2
2
2
2
2
8
1
1
1
1
1
1
6
0x6A02  
Counter Phase Offset Value register  
Capture 1 register  
0x6A04  
CAP2  
0x6A06  
Capture 2 register  
CAP3  
0x6A08  
Capture 3 register  
CAP4  
0x6A0A  
Capture 4 register  
Reserved  
ECCTL1  
ECCTL2  
ECEINT  
ECFLG  
ECCLR  
ECFRC  
Reserved  
0x6A0C to 0x6A12  
0x6A14  
Reserved  
Capture Control Register 1  
Capture Control Register 2  
Capture Interrupt Enable register  
Capture Interrupt Flag register  
Capture Interrupt Clear register  
Capture Interrupt Force register  
Reserved  
0x6A15  
0x6A16  
0x6A17  
0x6A18  
0x6A19  
0x6A1A to 0x6A1F  
8.9.9.3 eCAP Module Electrical Data/Timing  
Section 8.9.9.3.1 provides the eCAP timing requirement and Section 8.9.9.3.2 provides the eCAP switching  
characteristics.  
8.9.9.3.1 eCAP Timing Requirement (1)  
MIN  
2tc(SCO)  
MAX UNIT  
cycles  
Asynchronous  
Synchronous  
tw(CAP)  
Capture input pulse width  
2tc(SCO)  
cycles  
With input qualifier  
1tc(SCO) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Section 8.9.12.3.2.1.  
8.9.9.3.2 eCAP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
tw(APWM)  
Pulse duration, APWMx output high/low  
20  
ns  
Copyright © 2021 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.9.10 Enhanced Quadrature Encoder Pulse  
8.9.10.1 eQEP Device-Specific Information  
The device contains one eQEP module. Figure 8-41 shows the eQEP functional block diagram.  
System Control  
Registers  
To CPU  
EQEPxENCLK  
SYSCLKOUT  
QCPRD  
QCAPCTL  
16  
QCTMR  
16  
16  
Quadrature  
Capture  
Unit  
QCTMRLAT  
QCPRDLAT  
(QCAP)  
QUTMR  
QUPRD  
QWDTMR  
QWDPRD  
Registers  
Used by  
Multiple Units  
32  
16  
QEPCTL  
QEPSTS  
QFLG  
UTOUT  
QWDOG  
UTIME  
QDECCTL  
16  
WDTOUT  
EQEPxAIN  
EQEPxBIN  
EQEPxIIN  
EQEPxA/XCLK  
EQEPxB/XDIR  
EQEPxI  
QCLK  
QDIR  
QI  
EQEPxINT  
16  
PIE  
Position Counter/  
Control Unit  
(PCCU)  
EQEPxIOUT  
EQEPxIOE  
EQEPxSIN  
EQEPxSOUT  
EQEPxSOE  
Quadrature  
Decoder  
(QDU)  
QS  
GPIO  
MUX  
QPOSLAT  
QPOSSLAT  
QPOSILAT  
PHE  
PCSOUT  
EQEPxS  
32  
32  
16  
QPOSCNT  
QPOSINIT  
QPOSMAX  
QEINT  
QFRC  
QPOSCMP  
QCLR  
QPOSCTL  
eQEP Peripheral  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-41. eQEP Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.10.2 eQEP Register Descriptions  
Table 8-48 lists the eQEP Control and Status Registers.  
Table 8-48. eQEP Control and Status Registers  
eQEP1  
eQEP1  
ADDRESS  
NAME  
QPOSCNT  
SIZE(×16)/  
#SHADOW  
REGISTER DESCRIPTION  
0x6B00  
0x6B02  
0x6B04  
0x6B06  
0x6B08  
0x6B0A  
0x6B0C  
0x6B0E  
0x6B10  
0x6B12  
0x6B13  
0x6B14  
0x6B15  
0x6B16  
0x6B17  
0x6B18  
0x6B19  
0x6B1A  
0x6B1B  
0x6B1C  
0x6B1D  
0x6B1E  
0x6B1F  
0x6B20  
2/0  
2/0  
2/0  
2/1  
2/0  
2/0  
2/0  
2/0  
2/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
eQEP Position Counter  
QPOSINIT  
QPOSMAX  
QPOSCMP  
QPOSILAT  
QPOSSLAT  
QPOSLAT  
QUTMR  
eQEP Initialization Position Count  
eQEP Maximum Position Count  
eQEP Position-compare  
eQEP Index Position Latch  
eQEP Strobe Position Latch  
eQEP Position Latch  
eQEP Unit Timer  
QUPRD  
eQEP Unit Period register  
eQEP Watchdog Timer  
QWDTMR  
QWDPRD  
QDECCTL  
QEPCTL  
QCAPCTL  
QPOSCTL  
QEINT  
eQEP Watchdog Period register  
eQEP Decoder Control register  
eQEP Control register  
eQEP Capture Control register  
eQEP Position-compare Control register  
eQEP Interrupt Enable register  
eQEP Interrupt Flag register  
eQEP Interrupt Clear register  
eQEP Interrupt Force register  
eQEP Status register  
QFLG  
QCLR  
QFRC  
QEPSTS  
QCTMR  
eQEP Capture Timer  
QCPRD  
eQEP Capture Period register  
eQEP Capture Timer Latch  
eQEP Capture Period Latch  
QCTMRLAT  
QCPRDLAT  
0x6B21 to  
0x6B3F  
Reserved  
31/0  
Copyright © 2021 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.9.10.3 eQEP Electrical Data/Timing  
Section 8.9.10.3.1 provides the eQEP timing requirement and Section 8.9.10.3.2 provides the eQEP switching  
characteristics.  
8.9.10.3.1 eQEP Timing Requirements (1)  
TEST CONDITIONS  
Asynchronous(2)/Synchronous  
With input qualifier  
MIN  
MAX  
UNIT  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
tw(QEPP)  
QEP input period  
2tc(SCO)  
2[1tc(SCO) + tw(IQSW)  
]
tw(INDEXH)  
tw(INDEXL)  
tw(STROBH)  
tw(STROBL)  
QEP Index Input High time  
QEP Index Input Low time  
QEP Strobe High time  
QEP Strobe Input Low time  
Asynchronous(2)/Synchronous  
2tc(SCO)  
2tc(SCO) +tw(IQSW)  
2tc(SCO)  
With input qualifier  
Asynchronous(2)/Synchronous  
With input qualifier  
2tc(SCO) + tw(IQSW)  
2tc(SCO)  
2tc(SCO) + tw(IQSW)  
2tc(SCO)  
Asynchronous(2)/Synchronous  
With input qualifier  
Asynchronous(2)/Synchronous  
With input qualifier  
2tc(SCO) +tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 8.9.12.3.2.1.  
(2) See the TMS320F2805x MCUs Silicon Errata for limitations in the asynchronous mode.  
8.9.10.3.2 eQEP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
4tc(SCO)  
6tc(SCO)  
UNIT  
td(CNTR)xin  
Delay time, external clock to counter increment  
cycles  
cycles  
td(PCS-OUT)QEP  
Delay time, QEP input edge to position compare sync output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.11 JTAG Port  
8.9.11.1 JTAG Port Device-Specific Information  
On the 2805x device, the JTAG port is reduced to 5 pins ( TRST, TCK, TDI, TMS, TDO). TCK, TDI, TMS and  
TDO pins are also GPIO pins. The TRST signal selects either JTAG or GPIO operating mode for the pins in  
Figure 8-42. During emulation/debug, the GPIO function of these pins are not available. If the GPIO38/TCK/  
XCLKIN pin is used to provide an external clock, an alternate clock source should be used to clock the device  
during emulation/debug because this pin will be needed for the TCK function.  
Note  
In 2805x devices, the JTAG pins may also be used as GPIO pins. Care should be taken in the board  
design to ensure that the circuitry connected to these pins do not affect the emulation capabilities of  
the JTAG pin function. Any circuitry connected to these pins should not prevent the JTAG debug probe  
from driving (or being driven by) the JTAG pins for successful debug.  
TRST = 0: JTAG Disabled (GPIO Mode)  
TRST = 1: JTAG Mode  
TRST  
TRST  
XCLKIN  
GPIO38_in  
TCK  
TCK/GPIO38  
GPIO38_out  
C28x  
Core  
GPIO37_in  
TDO  
TDO/GPIO37  
1
0
GPIO37_out  
GPIO36_in  
1
0
TMS  
TMS/GPIO36  
TDI/GPIO35  
1
GPIO36_out  
GPIO35_in  
1
0
TDI  
1
GPIO35_out  
Figure 8-42. JTAG/GPIO Multiplexing  
Copyright © 2021 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.9.12 General-Purpose Input/Output  
8.9.12.1 GPIO Device-Specific Information  
The GPIO MUX can multiplex up to three independent peripheral signals on a single GPIO pin in addition to  
providing individual pin bit-banging I/O capability.  
Table 8-49. GPIOA MUX (1) (2)  
DEFAULT AT RESET  
PERIPHERAL  
SELECTION 1  
PERIPHERAL  
SELECTION 2  
PERIPHERAL  
SELECTION 3  
PRIMARY I/O  
FUNCTION  
GPAMUX1 REGISTER  
BITS  
(GPAMUX1 BITS = 00)  
(GPAMUX1 BITS = 01)  
(GPAMUX1 BITS = 10)  
(GPAMUX1 BITS = 11)  
1:0  
3:2  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
EPWM1A (O)  
EPWM1B (O)  
EPWM2A (O)  
EPWM2B (O)  
EPWM3A (O)  
EPWM3B (O)  
EPWM4A (O)  
EPWM4B (O)  
EPWM5A (O)  
EPWM5B (O)  
EPWM6A (O)  
EPWM6B (O)  
Reserved  
Reserved  
Reserved  
CTRIPM1OUT (O)  
Reserved  
5:4  
Reserved  
7:6  
SPISOMIA (I/O)  
Reserved  
Reserved  
9:8  
Reserved  
11:10  
13:12  
15:14  
17:16  
19:18  
21:20  
23:22  
SPISIMOA (I/O)  
EPWMSYNCI (I)  
SCIRXDA (I)  
Reserved  
ECAP1 (I/O)  
EPWMSYNCO (O)  
Reserved  
ADCSOCAO (O)  
Reserved  
SCITXDB (O)  
Reserved  
ADCSOCBO (O)  
Reserved  
SCIRXDB (I)  
TZ1 (I)/  
CTRIPM1OUT (O)  
25:24  
27:26  
29:28  
GPIO12  
GPIO13  
GPIO14  
SCITXDA (O)  
Reserved  
Reserved  
Reserved  
Reserved  
TZ2 (I)  
TZ3 (I)/  
CTRIPPFCOUT (O)  
SCITXDB (O)  
TZ1 (I)/  
CTRIPM1OUT (O)  
31:30  
GPIO15  
SCIRXDB (I)  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-49. GPIOA MUX (1) (2) (continued)  
DEFAULT AT RESET  
PERIPHERAL  
SELECTION 1  
PERIPHERAL  
SELECTION 2  
PERIPHERAL  
SELECTION 3  
PRIMARY I/O  
FUNCTION  
GPAMUX1 REGISTER  
BITS  
(GPAMUX1 BITS = 00)  
(GPAMUX1 BITS = 01)  
(GPAMUX1 BITS = 10)  
(GPAMUX1 BITS = 11)  
GPAMUX2 REGISTER  
BITS  
(GPAMUX2 BITS = 00)  
GPIO16  
(GPAMUX2 BITS = 01)  
SPISIMOA (I/O)  
(GPAMUX2 BITS = 10)  
EQEP1S (I/O)  
(GPAMUX2 BITS = 11)  
1:0  
3:2  
TZ2 (I)  
TZ3 (I)/  
CTRIPPFCOUT (O)  
GPIO17  
SPISOMIA (I/O)  
EQEP1I (I/O)  
5:4  
GPIO18  
GPIO19/XCLKIN  
GPIO20  
SPICLKA (I/O)  
SPISTEA (I/O)  
EQEP1A (I)  
EQEP1B (I)  
EQEP1S (I/O)  
EQEP1I (I/O)  
ECAP1 (I/O)  
Reserved  
SCITXDB (O)  
SCIRXDB (I)  
EPWM7A (O)  
EPWM7B (O)  
Reserved  
XCLKOUT (O/Z)  
ECAP1 (I/O)  
CTRIPM1OUT (O)  
Reserved  
7:6  
9:8  
11:10  
13:12  
15:14  
17:16  
19:18  
21:20  
23:22  
25:24  
GPIO21  
GPIO22  
SCITXDB (O)  
SCIRXDB (I)  
Reserved  
GPIO23  
Reserved  
GPIO24  
EPWM7A (O)  
Reserved  
GPIO25  
Reserved  
GPIO26  
Reserved  
SCIRXDC (I)  
SCITXDC (O)  
SDAA (I/OD)  
Reserved  
GPIO27  
Reserved  
Reserved  
GPIO28  
SCIRXDA (I)  
TZ2 (I)  
TZ3 (I)/  
CTRIPPFCOUT (O)  
27:26  
GPIO29  
SCITXDA (O)  
SCLA (I/OD)  
29:28  
31:30  
GPIO30  
GPIO31  
CANRXA (I)  
CANTXA (O)  
SCIRXDB (I)  
SCITXDB (O)  
EPWM7A (O)  
EPWM7B (O)  
(1) The word reserved means that there is no peripheral assigned to this GPxMUX1/2 register setting. If the Reserved GPxMUX1/2  
register setting is selected, the state of the pin will be undefined and the pin may be driven. This selection is a reserved configuration  
for future expansion.  
(2) I = Input, O = Output, Z = High Impedance, OD = Open Drain  
Table 8-50. GPIOB MUX (1)  
DEFAULT AT RESET  
PRIMARY I/O FUNCTION  
PERIPHERAL  
SELECTION 1  
PERIPHERAL  
SELECTION 2  
PERIPHERAL  
SELECTION 3  
GPBMUX1 REGISTER  
BITS  
(GPBMUX1 BITS = 00)  
(GPBMUX1 BITS = 01)  
(GPBMUX1 BITS = 10)  
(GPBMUX1 BITS = 11)  
1:0  
GPIO32  
GPIO33  
SDAA (I/OD)  
SCLA (I/OD)  
Reserved  
EPWMSYNCI (I)  
EPWMSYNCO (O)  
Reserved  
EQEP1S (I/O)  
EQEP1I (I/O)  
CTRIPPFCOUT (O)  
Reserved  
3:2  
5:4  
GPIO34  
7:6  
GPIO35 (TDI)  
GPIO36 (TMS)  
GPIO37 (TDO)  
GPIO38/XCLKIN (TCK)  
GPIO39  
Reserved  
Reserved  
9:8  
Reserved  
Reserved  
Reserved  
11:10  
13:12  
15:14  
17:16  
19:18  
21:20  
23:22  
25:24  
27:26  
29:28  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SCIRXDC (I)  
Reserved  
CTRIPPFCOUT (O)  
Reserved  
GPIO40  
EPWM7A (O)  
Reserved  
Reserved  
Reserved  
Reserved  
GPIO42  
EPWM7B (O)  
Reserved  
SCITXDC (O)  
Reserved  
CTRIPM1OUT (O)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
Table 8-50. GPIOB MUX (1) (continued)  
DEFAULT AT RESET  
PRIMARY I/O FUNCTION  
PERIPHERAL  
SELECTION 1  
PERIPHERAL  
SELECTION 2  
PERIPHERAL  
SELECTION 3  
GPBMUX1 REGISTER  
(GPBMUX1 BITS = 00)  
(GPBMUX1 BITS = 01)  
(GPBMUX1 BITS = 10)  
(GPBMUX1 BITS = 11)  
BITS  
31:30  
Reserved  
Reserved  
Reserved  
Reserved  
(1) I = Input, O = Output, OD = Open Drain  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
The user can select the type of input qualification for each GPIO pin through the GPxQSEL1/2 registers from  
four choices:  
Synchronization to SYSCLKOUT Only (GPxQSEL1/2 = 0, 0): This mode is the default mode of all GPIO pins  
at reset and this mode simply synchronizes the input signal to the system clock (SYSCLKOUT).  
Qualification Using Sampling Window (GPxQSEL1/2 = 0, 1 and 1, 0): In this mode the input signal, after  
synchronization to the system clock (SYSCLKOUT), is qualified by a specified number of cycles before the  
input is allowed to change.  
The sampling period is specified by the QUALPRD bits in the GPxCTRL register and is configurable in  
groups of 8 signals. The sampling period specifies a multiple of SYSCLKOUT cycles for sampling the input  
signal. The sampling window is either 3-samples or 6-samples wide and the output is only changed when  
ALL samples are the same (all 0s or all 1s) as shown in Figure 8-45 (for 6 sample mode).  
No Synchronization (GPxQSEL1/2 = 1,1): This mode is used for peripherals where synchronization is not  
required (synchronization is performed within the peripheral).  
Due to the multilevel multiplexing that is required on the device, there may be cases where a peripheral input  
signal can be mapped to more then one GPIO pin. Also, when an input signal is not selected, the input signal will  
default to either a 0 or 1 state, depending on the peripheral.  
Copyright © 2021 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
GPIOXINT1SEL  
GPIOLMPSEL  
LPMCR0  
GPIOXINT2SEL  
GPIOXINT3SEL  
External Interrupt  
MUX  
Low-Power  
Modes Block  
PIE  
Asynchronous  
path  
GPxDAT (read)  
GPxQSEL1/2  
GPxCTRL  
GPxPUD  
N/C  
00  
01  
Peripheral 1 Input  
Peripheral 2 Input  
Input  
Internal  
Pullup  
Qualification  
10  
11  
Peripheral 3 Input  
GPxTOGGLE  
Asynchronous path  
GPIOx pin  
GPxCLEAR  
GPxSET  
00  
01  
GPxDAT (latch)  
Peripheral 1 Output  
10  
11  
Peripheral 2 Output  
Peripheral 3 Output  
High Impedance  
Output Control  
GPxDIR (latch)  
00  
01  
Peripheral 1 Output Enable  
Peripheral 2 Output Enable  
0 = Input, 1 = Output  
XRS  
10  
11  
Peripheral 3 Output Enable  
= Default at Reset  
GPxMUX1/2  
A. The letter x stands for the port, either A or B. For example, GPxDIR refers to either the GPADIR and GPBDIR register depending on the  
particular GPIO pin selected.  
B. GPxDAT latch/read are accessed at the same memory location.  
C. This diagram is a generic GPIO MUX block diagram. Not all options may be applicable for all GPIO pins. See the Systems Control and  
Interrupts chapter of the TMS320x2805x Technical Reference Manual for pin-specific variations.  
Figure 8-43. GPIO Multiplexing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.12.2 GPIO Register Descriptions  
The device supports 42 GPIO pins. The GPIO control and data registers are mapped to Peripheral Frame 1 to  
enable 32-bit operations on the registers (along with 16-bit operations). Table 8-51 provides the GPIO register  
mapping.  
Table 8-51. GPIO Registers  
NAME  
ADDRESS  
GPIO CONTROL REGISTERS (EALLOW PROTECTED)  
0x6F80 GPIO A Control register (GPIO0 to 31)  
SIZE (×16)  
DESCRIPTION  
GPACTRL  
GPAQSEL1  
GPAQSEL2  
GPAMUX1  
GPAMUX2  
GPADIR  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
0x6F82  
0x6F84  
0x6F86  
0x6F88  
0x6F8A  
0x6F8C  
0x6F90  
0x6F92  
0x6F96  
0x6F9A  
0x6F9C  
0x6FB6  
0x6FBA  
GPIO A Qualifier Select 1 register (GPIO0 to 15)  
GPIO A Qualifier Select 2 register (GPIO16 to 31)  
GPIO A MUX 1 register (GPIO0 to 15)  
GPIO A MUX 2 register (GPIO16 to 31)  
GPIO A Direction register (GPIO0 to 31)  
GPIO A Pull Up Disable register (GPIO0 to 31)  
GPIO B Control register (GPIO32 to 44)  
GPIO B Qualifier Select 1 register (GPIO32 to 44)  
GPIO B MUX 1 register (GPIO32 to 44)  
GPIO B Direction register (GPIO32 to 44)  
GPIO B Pull Up Disable register (GPIO32 to 44)  
Reserved  
GPAPUD  
GPBCTRL  
GPBQSEL1  
GPBMUX1  
GPBDIR  
GPBPUD  
Reserved  
Reserved  
Reserved  
GPIO DATA REGISTERS (NOT EALLOW PROTECTED)  
GPADAT  
GPASET  
0x6FC0  
0x6FC2  
0x6FC4  
0x6FC6  
0x6FC8  
0x6FCA  
0x6FCC  
0x6FCE  
0x6FD8  
0x6FDA  
0x6FDC  
0x6FDE  
2
2
2
2
2
2
2
2
2
2
2
2
GPIO A Data register (GPIO0 to 31)  
GPIO A Data Set register (GPIO0 to 31)  
GPIO A Data Clear register (GPIO0 to 31)  
GPIO A Data Toggle register (GPIO0 to 31)  
GPIO B Data register (GPIO32 to 44)  
GPIO B Data Set register (GPIO32 to 44)  
GPIO B Data Clear register (GPIO32 to 44)  
GPIO B Data Toggle register (GPIO32 to 44)  
Reserved  
GPACLEAR  
GPATOGGLE  
GPBDAT  
GPBSET  
GPBCLEAR  
GPBTOGGLE  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
GPIO INTERRUPT AND LOW POWER MODES SELECT REGISTERS (EALLOW PROTECTED)  
GPIOXINT1SEL  
GPIOXINT2SEL  
GPIOXINT3SEL  
GPIOLPMSEL  
0x6FE0  
0x6FE1  
0x6FE2  
0x6FE8  
1
1
1
2
XINT1 GPIO Input Select register (GPIO0 to 31)  
XINT2 GPIO Input Select register (GPIO0 to 31)  
XINT3 GPIO Input Select register (GPIO0 to 31)  
LPM GPIO Select register (GPIO0 to 31)  
Note  
There is a two-SYSCLKOUT cycle delay from when the write to the GPxMUXn and GPxQSELn  
registers occurs to when the action is valid.  
Copyright © 2021 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.9.12.3 GPIO Electrical Data/Timing  
8.9.12.3.1 GPIO - Output Timing  
8.9.12.3.1.1 General-Purpose Output Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
13(1)  
13(1)  
15  
UNIT  
ns  
tr(GPO)  
tf(GPO)  
tfGPO  
Rise time, GPIO switching low to high  
Fall time, GPIO switching high to low  
Toggling frequency  
All GPIOs  
All GPIOs  
ns  
MHz  
(1) Rise time and fall time vary with electrical loading on I/O pins. Values given in Section 8.9.12.3.1.1 are applicable for a 40-pF load on  
I/O pins.  
GPIO  
t
r(GPO)  
t
f(GPO)  
Figure 8-44. General-Purpose Output Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.12.3.2 GPIO - Input Timing  
8.9.12.3.2.1 General-Purpose Input Timing Requirements  
MIN  
1tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
cycles  
cycles  
cycles  
QUALPRD = 0  
tw(SP)  
Sampling period  
QUALPRD ≠ 0  
2tc(SCO) * QUALPRD  
tw(SP) * (n(1) – 1)  
2tc(SCO)  
tw(IQSW)  
Input qualifier sampling window  
Pulse duration, GPIO low/high  
Synchronous mode  
With input qualifier  
(2)  
tw(GPI)  
tw(IQSW) + tw(SP) + 1tc(SCO)  
(1) The letter n represents the number of qualification samples as defined by GPxQSELn register.  
(2) For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal.  
(A)  
GPIO Signal  
GPxQSELn = 1,0 (6 samples)  
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
tw(SP)  
Sampling Period determined  
by GPxCTRL[QUALPRD](B)  
tw(IQSW)  
[(SYSCLKOUT cycle * 2 * QUALPRD) * 5(C)  
]
Sampling Window  
SYSCLKOUT  
QUALPRD = 1  
(SYSCLKOUT/2)  
(D)  
Output From  
Qualifier  
A. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. The QUALPRD bit  
field value can vary from 00 to 0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLKOUT cycle. For any other value n, the  
qualification sampling period in 2n SYSCLKOUT cycles (that is, at every 2n SYSCLKOUT cycles, the GPIO pin will be sampled).  
B. The qualification period selected through the GPxCTRL register applies to groups of 8 GPIO pins.  
C. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is used.  
D. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLKOUT cycles or greater. In other  
words, the inputs should be stable for (5 × QUALPRD × 2) SYSCLKOUT cycles. This condition would ensure 5 sampling periods for  
detection to occur. Because external signals are driven asynchronously, an 13-SYSCLKOUT-wide pulse ensures reliable recognition.  
Figure 8-45. Sampling Mode  
Copyright © 2021 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.9.12.3.3 Sampling Window Width for Input Signals  
The following section summarizes the sampling window width for input signals for various input qualifier  
configurations.  
Sampling frequency denotes how often a signal is sampled with respect to SYSCLKOUT.  
Sampling frequency = SYSCLKOUT/(2 × QUALPRD), if QUALPRD ≠ 0  
Sampling frequency = SYSCLKOUT, if QUALPRD = 0  
Sampling period = SYSCLKOUT cycle × 2 × QUALPRD, if QUALPRD ≠ 0  
In the preceding equations, SYSCLKOUT cycle indicates the time period of SYSCLKOUT.  
Sampling period = SYSCLKOUT cycle, if QUALPRD = 0  
In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of the  
signal. The number of samples is determined by the value written to GPxQSELn register.  
Case 1:  
Qualification using 3 samples  
Sampling window width = (SYSCLKOUT cycle × 2 × QUALPRD) × 2, if QUALPRD ≠ 0  
Sampling window width = (SYSCLKOUT cycle) × 2, if QUALPRD = 0  
Case 2:  
Qualification using 6 samples  
Sampling window width = (SYSCLKOUT cycle × 2 × QUALPRD) × 5, if QUALPRD ≠ 0  
Sampling window width = (SYSCLKOUT cycle) × 5, if QUALPRD = 0  
SYSCLK  
GPIOxn  
t
w(GPI)  
Figure 8-46. General-Purpose Input Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
VDDIO  
> 1 MS  
2 pF  
VSS  
VSS  
Figure 8-47. Input Resistance Model for a GPIO Pin With an Internal Pullup  
Copyright © 2021 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
8.9.12.3.4 Low-Power Mode Wakeup Timing  
Section 8.9.12.3.4.1 provides the timing requirements, Section 8.9.12.3.4.2 provides the switching  
characteristics, and Figure 8-48 shows the timing diagram for IDLE mode.  
8.9.12.3.4.1 IDLE Mode Timing Requirements (1)  
MIN  
2tc(SCO)  
MAX  
UNIT  
Without input qualifier  
With input qualifier  
tw(WAKE-INT)  
Pulse duration, external wake-up signal  
cycles  
5tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 8.9.12.3.2.1.  
8.9.12.3.4.2 IDLE Mode Switching Characteristics (1)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Delay time, external wake signal to program execution resume (2)  
cycles  
Wake up from flash  
Flash module in active state  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
20tc(SCO)  
cycles  
cycles  
cycles  
20tc(SCO) + tw(IQSW)  
1050tc(SCO)  
td(WAKE-IDLE)  
Wake up from flash  
Flash module in sleep state  
1050tc(SCO) + tw(IQSW)  
20tc(SCO)  
Wake up from SARAM  
20tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 8.9.12.3.2.1.  
(2) This delay time is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. execution of an ISR  
(triggered by the wakeup) signal involves additional latency.  
t
d(WAKE−IDLE)  
Address/Data  
(internal)  
XCLKOUT  
t
w(WAKE−INT)  
WAKE INT(A)(B)  
A. WAKE INT can be any enabled interrupt, WDINT or XRS. After the IDLE instruction is executed, a delay of 5 OSCCLK cycles (minimum)  
is needed before the wake-up signal could be asserted.  
B. From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be initiated until at  
least 4 OSCCLK cycles have elapsed.  
Figure 8-48. IDLE Entry and Exit Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.12.3.4.3 STANDBY Mode Timing Requirements  
MIN  
3tc(OSCCLK)  
MAX  
UNIT  
Without input qualification  
With input qualification(1)  
Pulse duration, external  
wake-up signal  
tw(WAKE-INT)  
cycles  
(2 + QUALSTDBY) * tc(OSCCLK)  
(1) QUALSTDBY is a 6-bit field in the LPMCR0 register.  
8.9.12.3.4.4 STANDBY Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Delay time, IDLE instruction  
executed to XCLKOUT low  
td(IDLE-XCOL)  
32tc(SCO)  
45tc(SCO) cycles  
cycles  
Delay time, external wake signal to program execution  
resume(1)  
Wake up from flash  
Flash module in active state  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
100tc(SCO)  
cycles  
100tc(SCO) + tw(WAKE-INT)  
td(WAKE-STBY)  
Wake up from flash  
Flash module in sleep state  
1125tc(SCO)  
1125tc(SCO) + tw(WAKE-INT)  
100tc(SCO)  
cycles  
cycles  
Wake up from SARAM  
100tc(SCO) + tw(WAKE-INT)  
(1) This delay time is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. execution of an ISR  
(triggered by the wake up signal) involves additional latency.  
(C)  
(F)  
(A)  
(B)  
(D)(E)  
(G)  
Device  
Status  
STANDBY  
STANDBY  
Normal Execution  
Flushing Pipeline  
Wake-up  
Signal(H)  
t
w(WAKE-INT)  
t
d(WAKE-STBY)  
X1/X2 or  
XCLKIN  
XCLKOUT  
t
d(IDLE−XCOL)  
A. IDLE instruction is executed to put the device into STANDBY mode.  
B. The PLL block responds to the STANDBY signal. SYSCLKOUT is held for the number of cycles indicated as follows before being turned  
off:  
16 cycles, when DIVSEL = 00 or 01  
32 cycles, when DIVSEL = 10  
64 cycles, when DIVSEL = 11  
This delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in STANDBY mode. After  
the IDLE instruction is executed, a delay of 5 OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.  
D. The external wake-up signal is driven active.  
Copyright © 2021 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal  
must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the device will not be deterministic and the device  
may not exit low-power mode for subsequent wake-up pulses.  
F. After a latency period, the STANDBY mode is exited.  
G. Normal execution resumes. The device will respond to the interrupt (if enabled).  
H. From the time the IDLE instruction is executed to place the device into low-power mode, wakeup should not be initiated until at least 4  
OSCCLK cycles have elapsed.  
Figure 8-49. STANDBY Entry and Exit Timing Diagram  
8.9.12.3.4.5 HALT Mode Timing Requirements  
MIN  
toscst + 2tc(OSCCLK)  
toscst + 8tc(OSCCLK)  
MAX  
UNIT  
cycles  
cycles  
tw(WAKE-GPIO)  
tw(WAKE-XRS)  
Pulse duration, GPIO wake-up signal  
Pulse duration, XRS wake-up signal  
8.9.12.3.4.6 HALT Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
32tc(SCO)  
MAX  
45tc(SCO)  
1
UNIT  
cycles  
ms  
td(IDLE-XCOL)  
tp  
Delay time, IDLE instruction executed to XCLKOUT low  
PLL lock-up time  
Delay time, PLL lock to program execution resume  
Wake up from flash  
– Flash module in sleep state  
1125tc(SCO)  
cycles  
td(WAKE-HALT)  
Wake up from SARAM  
35tc(SCO)  
cycles  
(C)  
(F)  
(A)  
(H)  
(B)  
(G)  
(D)(E)  
HALT  
Device  
Status  
HALT  
Flushing Pipeline  
PLL Lock-up Time  
Wake-up Latency  
Normal  
Execution  
GPIOn(I)  
t
)
d(WAKE−HALT  
t
w(WAKE-GPIO)  
tp  
X1/X2 or  
XCLKIN  
Oscillator Start-up Time  
XCLKOUT  
t
d(IDLE−XCOL)  
A. IDLE instruction is executed to put the device into HALT mode.  
B. The PLL block responds to the HALT signal. SYSCLKOUT is held for the number of cycles indicated as follows before oscillator is turned  
off and the CLKIN to the core is stopped:  
16 cycles, when DIVSEL = 00 or 01  
32 cycles, when DIVSEL = 10  
64 cycles, when DIVSEL = 11  
This delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as the clock source,  
the internal oscillator is shut down as well. The device is now in HALT mode and consumes absolute minimum power. It is possible to  
keep the zero-pin internal oscillators (INTOSC1 and INTOSC2) and the watchdog alive in HALT mode. Keeping INTOSC1, INTOSC2,  
and the watchdog alive in HALT mode is done by writing to the appropriate bits in the CLKCTL register. After the IDLE instruction is  
executed, a delay of 5 OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
D. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator wake-up sequence  
is initiated. The GPIO pin should be driven high only after the oscillator has stabilized, which enables the provision of a clean clock signal  
during the PLL lock sequence. Because the falling edge of the GPIO pin asynchronously begins the wake-up procedure, care should be  
taken to maintain a low noise environment prior to entering and during HALT mode.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal  
must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the device will not be deterministic and the device  
may not exit low-power mode for subsequent wake-up pulses.  
F. Once the oscillator has stabilized, the PLL lock sequence is initiated, which takes 1 ms.  
G. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after a latency. The HALT mode is now exited.  
H. Normal operation resumes.  
I. From the time the IDLE instruction is executed to place the device into low-power mode, wakeup should not be initiated until at least 4  
OSCCLK cycles have elapsed.  
Figure 8-50. HALT Wake-Up Using GPIOn  
Copyright © 2021 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
9 Applications, Implementation, and Layout  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 TI Reference Design  
The TI Reference Design Library is a robust reference design library spanning analog, embedded processor,  
and connectivity. Created by TI experts to help you jump start your system design, all reference designs include  
schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download  
designs at the Select TI reference designs page.  
Single-axis Motor Control Reference Design with Integrated Power Factor Correction  
This reference design demonstrates best practices for integrating both single-axis motor control and power factor  
correction (PFC) into a single microcontroller. This practice is popular when designing variable-frequency  
compressors, particularly for HVAC systems. This implementation is optimized to perform using a sensorless  
Field Oriented Control (FOC) algorithm to drive a permanent magnet synchronous motor (PMSM) and two phase  
interleaved PFC on the TMS320F2805x microcontroller. The FOC algorithm maintains efficiency in a wide range  
of speeds and considers torque changes with transient phases by processing a dynamic model of the motor.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
10 Device and Documentation Support  
10.1 Getting Started  
To get started with C2000 real-time microcontrollers, see C2000 real-time control MCUs – Getting started.  
10.2 Device and Development Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
TMS320MCU devices and support tools. Each TMS320 MCU commercial family member has one of three  
prefixes: TMX, TMP, or TMS (for example, TMS320F28055). Texas Instruments recommends two of three  
possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages  
of product development from engineering prototypes (with TMX for devices and TMDX for tools) through fully  
qualified production devices and tools (with TMS for devices and TMDS for tools).  
Device development evolutionary flow:  
TMX  
TMP  
Experimental device that is not necessarily representative of the final device's electrical specifications  
Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability  
verification  
TMS  
Fully qualified production device  
Support tool development evolutionary flow:  
TMDX  
TMDS  
Development-support product that has not yet completed Texas Instruments internal qualification testing  
Fully qualified development-support product  
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability  
of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, PN) and temperature range (for example, T). Figure 10-1 provides a legend for reading the  
complete device name for any family member.  
For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your TI  
sales representative.  
For additional description of the device nomenclature markings on the die, see the TMS320F2805x MCUs  
Silicon Errata.  
Copyright © 2021 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
Figure 10-1. Device Nomenclature  
10.3 Tools and Software  
TI offers an extensive line of development tools. Some of the tools and software to evaluate the performance of  
the device, generate code, and develop solutions are listed here. To view all available tools and software for  
C2000™ real-time control MCUs, visit the C2000 real-time control MCUs – Design & development page.  
Development Tools  
controlCARD with TMS320F28054MPNT, InstaSPIN-FOC and InstaSPIN-MOTION enabled  
Featuring the TMS320F28054M MCU, capable of running the InstaSPIN-FOCand InstaSPIN-MOTION™  
solutions from on-chip ROM, the TMDSCNCD28054MISO controlCARD provides a convenient and standardized  
hardware interface to begin experimentation with the latest motor control technology from Texas Instruments.  
F2805x Isolated USB controlCARD  
C2000™ controlCARDs from Texas Instruments are a unique set of daughtercards enabling experimentation  
with C2000’s broad portfolio of MCUs for device evaluation and application development. Designed with a  
DIM100 or larger, plug-in connector, controlCARDs are easily interchangeable throughout C2000’s collection of  
development kits, giving users the ability to experiment with various C2000 MCUs to find the correct MCU fit for  
an application. controlCARDs give access to all digital I/Os, analog I/Os, and JTAG signals from the C2000  
MCU, providing a simple, modular, and standardized board-level interface to the C2000 MCU. Software, support,  
and documentation, are provided completely free through C2000’s C2000Ware software platform. Learn more  
and download C2000Ware today by clicking the Tools & software tab on the C2000™ 32-bit microcontrollers  
page.  
F2805x Experimenter Kit  
C2000™ Experimenters Kits from Texas Instruments are device evaluation kits, providing a platform for initial  
device exploration and prototyping. Each Experimenters Kit includes a docking station and a plug-in compatible  
controlCARD, which docks directly onto the docking station. The docking station features onboard USB JTAG  
emulation, access to all C2000 MCU signals from the controlCARD, breadboard areas for experimentation, and  
JTAG and RS-232 connectors. For software development, Code Composer Studio (CCS) Integrated  
Development Environment (IDE) is included for free with use of the onboard XDS100 USB JTAG debug probe.  
Device software, support, example projects, libraries, and documentation are provided completely free through  
the C2000 C2000Ware software platform. Learn more and download C2000Ware today by clicking the Tools &  
software tab on the C2000™ 32-bit microcontrollers page.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
Software Tools  
C2000Ware for C2000 MCUs  
C2000Ware for C2000 microcontrollers is a cohesive set of development software and documentation designed  
to minimize software development time. From device-specific drivers and libraries to device peripheral examples,  
C2000Ware provides a solid foundation to begin development and evaluation. C2000Ware is the recommended  
content delivery tool versus controlSUITE.  
Code Composer Studio(CCS) Integrated Development Environment (IDE) for C2000 Microcontrollers  
Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and  
Embedded Processors portfolio. CCS comprises a suite of tools used to develop and debug embedded  
applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger,  
profiler, and many other features. The intuitive IDE provides a single user interface taking the user through each  
step of the application development flow. Familiar tools and interfaces let users get started faster than ever  
before. CCS combines the advantages of the Eclipse software framework with advanced embedded debug  
capabilities from TI resulting in a compelling feature-rich development environment for embedded developers.  
Pin Mux Tool  
The Pin Mux Utility is a software tool which provides a Graphical User Interface for configuring pin multiplexing  
settings, resolving conflicts and specifying I/O cell characteristics for TI MPUs.  
UniFlash Standalone Flash Tool  
UniFlash is a standalone tool used to program on-chip flash memory through a GUI, command line, or scripting  
interface.  
Models  
Various models are available for download from the product Tools & Software pages. These include I/O Buffer  
Information Specification (IBIS) Models and Boundary-Scan Description Language (BSDL) Models. To view all  
available models, visit the Models section of the Tools & Software page for each device.  
Training  
To help assist design engineers in taking full advantage of the C2000 microcontroller features and performance,  
TI has developed a variety of training resources. Utilizing the online training materials and downloadable hands-  
on workshops provides an easy means for gaining a complete working knowledge of the C2000 microcontroller  
family. These training resources have been designed to decrease the learning curve, while reducing  
development time, and accelerating product time to market. For more information on the various training  
resources, visit the C2000™ real-time control MCUs – Support & training site.  
Copyright © 2021 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
10.4 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper-  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
The current documentation that describes the processor, related peripherals, and other technical collateral is  
listed here.  
Errata  
TMS320F2805x MCUs Silicon Errata describes known advisories on silicon and provides workarounds.  
InstaSPIN Technical Reference Manuals  
InstaSPIN-FOC™ and InstaSPIN-MOTION™ User's Guide describes the InstaSPIN-FOC and InstaSPIN-  
MOTION devices.  
TMS320F28054F, TMS320F28052F InstaSPIN-FOC™ Software Technical Reference Manual describes  
TMS320F28054F and TMS320F28052F InstaSPIN-FOC software.  
TMS320F28054M, TMS320F28052M InstaSPIN-MOTION™ Software Technical Reference Manual describes  
TMS320F28054M and TMS320F28052M InstaSPIN-MOTION software.  
CPU User's Guides  
TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and the  
assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). This reference  
guide also describes emulation features available on these DSPs.  
Peripheral Guides and Technical Reference Manuals  
C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the 28x  
digital signal processors (DSPs).  
TMS320x2805x Technical Reference Manual details the integration, the environment, the functional description,  
and the programming models for each peripheral and subsystem in the 2805x microcontrollers.  
Tools Guides  
TMS320C28x Assembly Language Tools v20.2.0.LTS User's Guide describes the assembly language tools  
(assembler and other tools used to develop assembly language code), assembler directives, macros, common  
object file format, and symbolic debugging directives for the TMS320C28x device.  
TMS320C28x Optimizing C/C++ Compiler v20.2.0.LTS User's Guide describes the TMS320C28x C/C++  
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly  
language source code for the TMS320C28x device.  
Application Reports  
Semiconductor Packing Methodology describes the packing methodologies employed to prepare semiconductor  
devices for shipment to end users.  
Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful lifetime  
of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general  
engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement.  
Semiconductor and IC Package Thermal Metrics describes traditional and new thermal metrics and puts their  
application in perspective with respect to system-level junction temperature estimation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
www.ti.com  
MCU CAN Module Operation Using the On-Chip Zero-Pin Oscillator.  
The TMS320F2803x/TMS320F2805x/TMS320F2806x series of microcontrollers have an on-chip zero-pin  
oscillator that needs no external components. This application report describes how to use the CAN module with  
this oscillator to operate at the maximum bit rate and bus length without the added cost of an external clock  
source.  
An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS  
including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/  
output structures and future trends.  
Serial Flash Programming of C2000™ Microcontrollers discusses using a flash kernel and ROM loaders for  
serial programming a device.  
10.5 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
10.6 Trademarks  
TMS320C2000, DSP/BIOS, TMS320, InstaSPIN-FOC, InstaSPIN-MOTION, controlSUITE, Code  
Composer Studio, and TI E2Eare trademarks of Texas Instruments.  
All trademarks are the property of their respective owners.  
10.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.8 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
 
 
TMS320F28055, TMS320F28054, TMS320F28054M, TMS320F28054F, TMS320F28053  
TMS320F28052, TMS320F28052M, TMS320F28052F, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797E – NOVEMBER 2012 – REVISED FEBRUARY 2021  
11 Mechanical, Packaging, and Orderable Information  
11.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28054M TMS320F28054F TMS320F28053  
TMS320F28052 TMS320F28052M TMS320F28052F TMS320F28051 TMS320F28050  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Jan-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS320F28050PNS  
TMS320F28051PNS  
TMS320F28051PNT  
TMS320F28052FPNQ  
TMS320F28052FPNT  
TMS320F28052MPNQ  
TMS320F28052MPNT  
TMS320F28052PNQ  
TMS320F28052PNS  
TMS320F28052PNT  
TMS320F28053PNS  
TMS320F28054FPNQ  
TMS320F28054FPNT  
TMS320F28054MPNQ  
TMS320F28054MPNT  
TMS320F28054PNQ  
TMS320F28054PNS  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PN  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
F28050PNS  
TMS320  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PN  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
F28051PNS  
TMS320  
PN  
F28051PNT  
TMS320  
PN  
F28052FPNQ  
TMS320  
PN  
F28052FPNT  
TMS320  
PN  
F28052MPNQ  
TMS320  
PN  
F28052MPNT  
TMS320  
PN  
F28052PNQ  
TMS320  
PN  
F28052PNS  
TMS320  
PN  
F28052PNT  
TMS320  
PN  
F28053PNS  
TMS320  
PN  
F28054FPNQ  
TMS320  
PN  
F28054FPNT  
TMS320  
PN  
F28054MPNQ  
TMS320  
PN  
F28054MPNT  
TMS320  
PN  
F28054PNQ  
TMS320  
PN  
F28054PNS  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Jan-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS320  
TMS320F28055PNS  
TMS320F28055PNT  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
PN  
PN  
80  
80  
119  
119  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 105  
F28055PNS  
TMS320  
F28055PNT  
TMS320  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MTQF010A – JANUARY 1995 – REVISED DECEMBER 1996  
PN (S-PQFP-G80)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
60  
M
0,08  
41  
61  
40  
0,13 NOM  
80  
21  
1
20  
Gage Plane  
9,50 TYP  
0,25  
12,20  
SQ  
11,80  
0,05 MIN  
0°7°  
14,20  
SQ  
13,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040135 /B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TMS320F28054FPNQ

具有 60MHz 频率、128KB 闪存、InstaSPIN-FOC、PGA 的汽车类 C2000™ 32 位 MCU | PN | 80 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28054FPNT

具有 60MHz 频率、128KB 闪存、InstaSPIN-FOC、PGA 的 C2000™ 32 位 MCU | PN | 80 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28054M

具有 60MHz 频率、128KB 闪存、InstaSPIN-MOTION、PGA 的 C2000™ 32 位 MCU

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28054M-Q1

TMS320F2805x Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28054MPNQ

暂无描述

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28054MPNT

具有 60MHz 频率、128KB 闪存、InstaSPIN-MOTION、PGA 的 C2000™ 32 位 MCU | PN | 80 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28054PNQ

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28054PNS

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28054PNT

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28055

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28055PNQ

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28055PNS

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI