TMS320F28069FPZTR [TI]

TMS320F2806x Microcontrollers;
TMS320F28069FPZTR
型号: TMS320F28069FPZTR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TMS320F2806x Microcontrollers

微控制器
文件: 总185页 (文件大小:5091K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062,TMS320F28062F
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
TMS320F2806x Microcontrollers  
– 16 PWM channels total (8 HRPWM-capable)  
– Independent 16-bit timer in each module  
Three input Enhanced Capture (eCAP) modules  
Up to 4 High-Resolution Capture (HRCAP)  
modules  
Up to 2 Enhanced Quadrature Encoder Pulse  
(eQEP) modules  
12-bit Analog-to-Digital Converter (ADC), dual  
Sample-and-Hold (S/H)  
1 Features  
High-efficiency 32-bit CPU (TMS320C28x)  
– 90 MHz (11.11-ns cycle time)  
– 16 × 16 and 32 × 32 Multiply and Accumulate  
(MAC) operations  
– 16 × 16 dual MAC  
– Harvard bus architecture  
– Atomic operations  
– Fast interrupt response and processing  
– Unified memory programming model  
– Code-efficient (in C/C++ and Assembly)  
Floating-Point Unit (FPU)  
– Native single-precision floating-point operations  
Programmable Control Law Accelerator (CLA)  
– 32-bit floating-point math accelerator  
– Executes code independently of the main CPU  
Viterbi, Complex Math, CRC Unit (VCU)  
– Extends C28x instruction set to support  
complex multiply, Viterbi operations, and Cyclic  
Redundency Check (CRC)  
– Up to 3.46 MSPS  
– Up to 16 channels  
On-chip temperature sensor  
128-bit security key and lock  
– Protects secure memory blocks  
– Prevents reverse-engineering of firmware  
Serial port peripherals  
– Two Serial Communications Interface (SCI)  
[UART] modules  
– Two Serial Peripheral Interface (SPI) modules  
– One Inter-Integrated-Circuit (I2C) bus  
– One Multichannel Buffered Serial Port (McBSP)  
bus  
Embedded memory  
– Up to 256KB of flash  
– Up to 100KB of RAM  
– One Enhanced Controller Area Network  
(eCAN)  
– 2KB of One-Time Programmable (OTP) ROM  
6-channel Direct Memory Access (DMA)  
Low device and system cost  
– Universal Serial Bus (USB) 2.0  
(see Device Comparison for availability)  
Full-speed device mode  
Full-speed or low-speed host mode  
– Single 3.3-V supply  
Up to 54 individually programmable, multiplexed  
General-Purpose Input/Output (GPIO) pins with  
input filtering  
Advanced emulation features  
– Analysis and breakpoint functions  
– Real-time debug through hardware  
Package options  
– 80-pin PFP and 100-pin PZP PowerPAD™  
Thermally Enhanced Thin Quad Flatpacks  
(HTQFPs)  
– 80-pin PN and 100-pin PZ Low-Profile Quad  
Flatpacks (LQFPs)  
Temperature options  
T: 40°C to 105°C  
– S: –40°C to 125°C  
– Q: –40°C to 125°C (AEC Q100 qualification for  
automotive applications)  
– No power sequencing requirement  
– Integrated power-on reset and brownout reset  
– Low-power operating modes  
– No analog support pin  
Endianness: Little endian  
JTAG boundary scan support  
– IEEE Standard 1149.1-1990 Standard Test  
Access Port and Boundary Scan Architecture  
Clocking  
– Two internal zero-pin oscillators  
– On-chip crystal oscillator/external clock input  
– Watchdog timer module  
– Missing clock detection circuitry  
Peripheral Interrupt Expansion (PIE) block that  
supports all peripheral interrupts  
Three 32-bit CPU timers  
Advanced control peripherals  
Up to 8 Enhanced Pulse-Width Modulator (ePWM)  
modules  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Micro inverter  
Solar power optimizer  
String inverter  
2 Applications  
Air conditioner outdoor unit  
Door operator drive control  
Inverter & motor control  
On-board (OBC) & wireless charger  
Automated sorting equipment  
CNC control  
Textile machine  
Welding machine  
EV charging station power module  
Wireless vehicle charging module  
Energy storage power conversion system (PCS)  
Central inverter  
AC drive control module  
AC drive power stage module  
Linear motor power stage  
Servo drive control module  
Servo drive power stage module  
AC-input BLDC motor drive  
DC-input BLDC motor drive  
Industrial AC-DC  
Three phase UPS  
3 Description  
C2000™ 32-bit microcontrollers are optimized for processing, sensing, and actuation to improve closed-loop  
performance in real-time control applications such as industrial motor drives; solar inverters and digital power;  
electrical vehicles and transportation; motor control; and sensing and signal processing. The C2000 line includes  
the Premium performance MCUs and the Entry performance MCUs.  
The F2806x family of microcontrollers (MCUs) provides the power of the C28x core and CLA coupled with highly  
integrated control peripherals in low pin-count devices. This family is code-compatible with previous C28x-based  
code, and also provides a high level of analog integration.  
An internal voltage regulator allows for single-rail operation. Enhancements have been made to the HRPWM  
module to allow for dual-edge control (frequency modulation). Analog comparators with internal 10-bit references  
have been added and can be routed directly to control the ePWM outputs. The ADC converts from 0 to 3.3-V  
fixed full-scale range and supports ratio-metric VREFHI/VREFLO references. The ADC interface has been  
optimized for low overhead and latency.  
To learn more about the C2000 MCUs, visit the C2000 Overview at www.ti.com/c2000.  
Device Information  
PART NUMBER(1)  
TMS320F28069PZP  
PACKAGE  
HTQFP (100)  
HTQFP (80)  
LQFP (100)  
LQFP (80)  
BODY SIZE  
14.0 mm × 14.0 mm  
12.0 mm × 12.0 mm  
14.0 mm × 14.0 mm  
12.0 mm × 12.0 mm  
TMS320F28069PFP  
TMS320F28069PZ  
TMS320F28069PN  
(1) For more information on these devices, see Mechanical, Packaging, and Orderable Information.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
3.1 Functional Block Diagram  
Figure 3-1 shows a functional block diagram of the device.  
M0 SARAM (1K´16)  
(0-wait, Nonsecure)  
L0 DPSARAM (2K´16)  
(0-wait, Secure)  
CLA Data RAM2  
OTP 1K´16  
Secure  
M1 SARAM (1K´16)  
(0-wait, Nonsecure)  
L1 DPSARAM (1K´16)  
(0-wait, Secure)  
CLA Data RAM0  
FLASH  
128K´16  
64K´16  
L5 DPSARAM (8K´16)  
(0-wait, Nonsecure)  
DMA RAM0  
Code  
Security  
Module  
(CSM)  
L2 DPSARAM (1K´16)  
(0-wait, Secure)  
CLA Data RAM1  
8 equal sectors  
Secure  
L6 DPSARAM (8K´16)  
(0-wait, Nonsecure)  
DMA RAM1  
L3 DPSARAM (4K´16)  
(0-wait, Secure)  
CLA Program RAM  
PUMP  
L7 DPSARAM (8K´16)  
(0-wait, Nonsecure)  
DMA RAM2  
OTP/Flash  
Wrapper  
L4 SARAM (8K´16)  
(0-wait, Secure)  
PSWD  
L8 DPSARAM (8K´16)  
(0-wait, Nonsecure)  
DMA RAM3  
Memory Bus  
DMA Bus  
Boot-ROM  
(32K´16)  
(0-wait,  
COMP1OUT  
Nonsecure)  
TRST  
COMP2OUT  
COMP3OUT  
C28x 32-bit CPU  
FPU  
VCU  
TCK, TDI, TMS  
TDO  
COMP  
+
DAC  
COMP1A  
COMP1B  
COMP2A  
COMP2B  
XCLKIN  
CLA +  
Message  
RAMs  
OSC1, OSC2,  
Ext, PLLs,  
LPM, WD,  
LPM Wakeup  
3 Ext. Interrupts  
CPU Timer 0,  
CPU Timer 1,  
CPU Timer 2,  
PIE  
COMP3A  
COMP3B  
X1  
X2  
DMA  
6-ch  
XRS  
ADC  
0-wait  
Result  
Regs  
CLA Bus  
DMA Bus  
A7:0  
B7:0  
Memory Bus  
ADC  
32-Bit Peripheral  
Bus  
32-Bit  
Peripheral Bus  
(CLA accessible)  
32-Bit Peripheral Bus  
(CLA accessible)  
32-Bit Peripheral  
Bus  
32-Bit Peripheral  
Bus  
16-Bit Peripheral Bus  
HRCAP1  
HRCAP2  
HRCAP3  
HRCAP4  
ePWM1 to ePWM8  
HRPWM (8ch)  
SCI-A SPI-A  
SCI-B SPI-B  
(4L FIFO) (4L FIFO)  
eCAP1  
eCAP2  
eCAP3  
I2C-A  
(4L FIFO)  
eCAN-A  
(32-mbox)  
eQEP1  
eQEP2  
USB-0  
McBSP-A  
GPIO Mux  
Copyright © 2017, Texas Instruments Incorporated  
A. Not all peripheral pins are available at the same time due to multiplexing.  
Figure 3-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
3.2 System Device Diagram  
C28x  
Core  
(90-MHz)  
PWM-1A  
PWM-1B  
PWM1  
(DMA-accessible)  
ADC  
(DMA-  
accessible)  
VREFLO  
VREFHI  
PWM-2A  
PWM-2B  
PWM2  
(DMA-accessible)  
FPU  
VCU  
VREF  
PWM-3A  
PWM-3B  
PWM3  
(DMA-accessible)  
Flash Memory  
RAM  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
PWM-4A  
PWM-4B  
PWM4  
(DMA-accessible)  
RAM  
(Dual-Access)  
12-Bit  
3.46-MSPS  
Dual  
Sample-  
and-  
Hold  
PWM-5A  
PWM-5B  
PWM5  
(DMA-accessible)  
PWM-6A  
PWM-6B  
PWM6  
(DMA-accessible)  
CLA Core  
90-MHz Floating-Point  
(Accelerator)  
PWM-7A  
PWM-7B  
PWM7  
(DMA-accessible)  
SOC-based  
(DMA-accessible)  
PWM-8A  
PWM-8B  
PWM8  
(DMA-accessible)  
Temp  
Sensor  
6
TZ1  
TZ2  
TZ3  
Trip Zone  
CMP1-Out  
CMP2-Out  
CMP1-out  
CMP2-out  
CMP3-out  
10-Bit  
DAC  
3
8
4
eCAP  
eCAP ´ 3  
eQEP ´ 2  
10-Bit  
DAC  
CMP3-Out  
eQEP  
10-Bit  
DAC  
Analog  
Comparators  
HRCAP  
HRCAP ´ 4  
COMMS  
Timers 32-bit  
Vreg  
Timer-0  
Timer-1  
Timer-2  
4
8
2
2
6
2
UART ´ 2  
SPI ´ 2  
Int-Osc-1  
Int-Osc-2  
WD  
PLL  
X1  
X2  
On-chip Osc  
POR/BOR  
System  
GPIO  
Control  
I2C  
CAN  
McBSP  
(DMA-accessible)  
USB  
(DMA-accessible)  
Figure 3-2. Peripheral Blocks  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................2  
3 Description.......................................................................2  
3.1 Functional Block Diagram...........................................3  
3.2 System Device Diagram............................................. 4  
4 Revision History.............................................................. 6  
5 Device Comparison.........................................................7  
5.1 Related Products........................................................ 8  
6 Terminal Configuration and Functions..........................9  
6.1 Pin Diagrams.............................................................. 9  
6.2 Signal Descriptions................................................... 12  
7 Specifications................................................................ 21  
7.1 Absolute Maximum Ratings...................................... 21  
7.2 ESD Ratings – Commercial...................................... 22  
7.3 ESD Ratings – Automotive....................................... 22  
7.4 Recommended Operating Conditions.......................23  
7.5 Power Consumption Summary................................. 24  
7.6 Electrical Characteristics...........................................28  
7.7 Thermal Resistance Characteristics......................... 29  
7.8 Thermal Design Considerations................................32  
7.9 Debug Probe Connection Without Signal  
7.14 Flash Timing............................................................40  
8 Detailed Description......................................................43  
8.1 Overview...................................................................43  
8.2 Memory Maps........................................................... 53  
8.3 Register Maps...........................................................65  
8.4 Device Emulation Registers......................................67  
8.5 VREG, BOR, POR.................................................... 69  
8.6 System Control......................................................... 71  
8.7 Low-power Modes Block...........................................80  
8.8 Interrupts...................................................................81  
8.9 Peripherals................................................................86  
9 Applications, Implementation, and Layout............... 163  
9.1 TI Reference Design...............................................163  
10 Device and Documentation Support........................164  
10.1 Device and Development Support Tool  
Nomenclature............................................................164  
10.2 Tools and Software............................................... 165  
10.3 Documentation Support........................................ 167  
10.4 Support Resources............................................... 168  
10.5 Trademarks...........................................................168  
10.6 Electrostatic Discharge Caution............................168  
10.7 Glossary................................................................168  
11 Mechanical, Packaging, and Orderable  
Buffering for the MCU..................................................32  
7.10 Parameter Information............................................ 33  
7.11 Test Load Circuit..................................................... 33  
7.12 Power Sequencing..................................................34  
7.13 Clock Specifications................................................37  
Information.................................................................. 169  
11.1 Packaging Information.......................................... 169  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
4 Revision History  
Changes from March 19, 2020 to February 1, 2021 (from Revision H (March 2020) to Revision I  
(February 2021))  
Page  
Added Q1 Part Numbers................................................................................................................................ 0  
Table 5-1: Added Q1 Part Numbers....................................................................................................................7  
Figure 10-1: Added GPN information............................................................................................................. 164  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
5 Device Comparison  
Table 5-1 lists the features of the TMS320F2806x devices.  
Table 5-1. Device Comparison  
28069  
28069-Q1  
28062  
28069U(2) (5)  
28069M (2) (3)  
28069M-Q1  
28069F (2) (3)  
28069F-Q1  
(90 MHz)  
28068U(2) (5)  
28068M (2) (3)  
28068F (2) (3)  
(90 MHz)  
28067  
28067-Q1  
28067U(2) (5)  
(90 MHz)  
28066  
28066-Q1  
28066U(2) (5)  
(90 MHz)  
28065  
28065-Q1  
28065U(2) (5)  
(90 MHz)  
28062-Q1  
28062U(2) (5)  
28062F (2) (3)  
28062F-Q1  
(90 MHz)  
28064  
28063  
TYPE  
FEATURE  
28064U(2) (5)  
(90 MHz)  
28063U(2) (5)  
(90 MHz)  
(1)  
Package Type  
(PFP and PZP are  
PowerPAD HTQFPs.  
PN and PZ are LQFPs.)  
100-  
80-Pin  
Pin  
100-  
80-Pin  
Pin  
100-  
80-Pin  
Pin  
100-  
80-Pin  
Pin  
100-  
80-Pin  
Pin  
100-  
80-Pin  
Pin  
100-  
80-Pin  
Pin  
100-  
80-Pin  
Pin  
PN  
PN  
PN  
PN  
PN  
PN  
PN  
PN  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
PFP  
PZP  
PFP  
PZP  
PFP  
PZP  
PFP  
PZP  
PFP  
PZP  
PFP  
PZP  
PFP  
PZP  
PFP  
PZP  
Instruction cycle  
Floating-Point Unit (FPU)  
VCU  
11.11 ns  
Yes  
11.11 ns  
Yes  
11.11 ns  
Yes  
11.11 ns  
Yes  
11.11 ns  
Yes  
11.11 ns  
Yes  
11.11 ns  
Yes  
11.11 ns  
Yes  
Yes  
Yes  
No  
No  
Yes  
Yes  
No  
No  
CLA  
0
0
Yes  
No  
No  
No  
Yes  
No  
No  
No  
6-Channel DMA  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
On-chip Flash (16-bit word)  
On-chip SARAM (16-bit word)  
128K  
50K  
128K  
50K  
128K  
50K  
128K  
34K  
64K  
64K  
50K  
64K  
34K  
64K  
26K  
50K  
Code security for on-chip  
Flash, SARAM, and OTP  
blocks  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Boot ROM (32K × 16)  
One-time programmable  
(OTP) ROM  
(16-bit word)  
ePWM channels  
1
1
16  
14  
16  
14  
16  
14  
16  
14  
16  
14  
16  
14  
16  
14  
16  
14  
High-resolution ePWM  
Channels  
8
3
8
3
8
3
8
3
8
3
8
3
8
3
8
3
eCAP inputs  
HRCAP  
0
0
0
4
2
1
1
4
2
1
1
4
2
1
1
4
2
1
1
4
2
1
1
4
2
1
1
4
2
1
1
4
2
1
1
eQEP modules  
Watchdog timer  
MSPS  
Yes  
3.46  
Yes  
3.46  
Yes  
3.46  
Yes  
3.46  
Yes  
3.46  
Yes  
3.46  
Yes  
3.46  
Yes  
3.46  
Conversion Time  
289 ns  
289 ns  
289 ns  
289 ns  
289 ns  
289 ns  
289 ns  
289 ns  
Channels  
12-Bit  
16  
12  
16  
12  
16  
12  
16  
12  
16  
12  
16  
12  
16  
12  
16  
12  
3
ADC  
Temperature  
Sensor  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Dual Sample-  
and-Hold  
Yes  
3
Yes  
3
Yes  
3
Yes  
3
Yes  
3
Yes  
3
Yes  
3
Yes  
3
32-Bit CPU timers  
0
Comparators with Integrated  
DACs  
3
3
3
3
3
3
3
3
I2C  
0
1
0
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
McBSP  
eCAN  
1
1
1
1
1
1
1
1
SPI  
2
2
2
2
2
2
2
2
SCI  
2
2
2
2
2
2
2
2
USB  
1(2)  
1
1(2)  
1
1(2)  
1
1(2)  
1
1(2)  
1
1(2)  
1
1(2)  
1
1(2)  
1
2-pin Oscillator  
0-pin Oscillator  
2
2
2
2
2
2
2
2
GPIO  
54  
40  
54  
40  
54  
40  
54  
40  
54  
40  
54  
40  
54  
40  
54  
40  
I/O pins  
(shared)  
AIO  
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
External interrupts  
Supply voltage (nominal)  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Table 5-1. Device Comparison (continued)  
28069  
28069-Q1  
28062  
28069U(2) (5)  
28069M (2) (3)  
28069M-Q1  
28069F (2) (3)  
28069F-Q1  
(90 MHz)  
28068U(2) (5)  
28068M (2) (3)  
28068F (2) (3)  
(90 MHz)  
28067  
28067-Q1  
28067U(2) (5)  
(90 MHz)  
28066  
28066-Q1  
28066U(2) (5)  
(90 MHz)  
28065  
28065-Q1  
28065U(2) (5)  
(90 MHz)  
28062-Q1  
28062U(2) (5)  
28062F (2) (3)  
28062F-Q1  
(90 MHz)  
28064  
28063  
TYPE  
FEATURE  
28064U(2) (5)  
(90 MHz)  
28063U(2) (5)  
(90 MHz)  
(1)  
Package Type  
(PFP and PZP are  
PowerPAD HTQFPs.  
PN and PZ are LQFPs.)  
100-  
80-Pin  
Pin  
100-  
80-Pin  
Pin  
100-  
80-Pin  
Pin  
100-  
80-Pin  
Pin  
100-  
80-Pin  
Pin  
100-  
80-Pin  
Pin  
100-  
80-Pin  
Pin  
100-  
80-Pin  
Pin  
PN  
PN  
PN  
PN  
PN  
PN  
PN  
PN  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
PFP  
PZP  
PFP  
PZP  
PFP  
PZP  
PFP  
PZP  
PFP  
PZP  
PFP  
PZP  
PFP  
PZP  
PFP  
PZP  
T: 40°C to  
105°C  
PZ  
PN  
PZ  
PN  
PZ  
PN  
PZ  
PN  
PZ  
PN  
PZ  
PN  
PZ  
PN  
PZ  
PN  
Temperatu S: –40°C to  
re options 125°C  
PZP  
PZP  
PFP  
PFP  
PZP  
PZP  
PFP  
PFP  
PZP  
PZP  
PFP  
PFP  
PZP  
PZP  
PFP  
PFP  
PZP  
PZP  
PFP  
PFP  
PZP  
PZP  
PFP  
PFP  
PZP  
PZP  
PFP  
PFP  
PZP  
PZP  
PFP  
PFP  
Q: –40°C to  
125°C(5) (4)  
(1) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor  
differences between devices that do not affect the basic functionality of the module. These device-specific differences are listed in the  
C2000 Real-Time Control Peripherals Reference Guide and in the peripheral reference guides.  
(2) USB is present on TMS320F2806xU, TMS320F2806xM, and TMS320F2806xF devices.  
(3) TMS320F2806xM devices are InstaSPIN-MOTION-enabled MCUs. TMS320F2806xF devices are InstaSPIN-FOC-enabled MCUs.  
For more information, see Section 10.3 for a list of InstaSPIN Technical Reference Manuals.  
(4) The letter Q refers to AEC Q100 qualification for automotive applications.  
(5) The Q temperature option is not available on the TMS320F2806xU devices.  
5.1 Related Products  
For information about similar products, see the following links:  
TMS320F2802x Microcontrollers  
The F2802x series offers the lowest pin-count and Flash memory size options. InstaSPIN-FOC™ versions are  
available.  
TMS320F2803x Microcontrollers  
The F2803x series increases the pin-count and memory size options. The F2803x series also introduces the  
parallel control law accelerator (CLA) option.  
TMS320F2805x Microcontrollers  
The F2805x series is similar to the F2803x series but adds on-chip programmable gain amplifiers (PGAs).  
InstaSPIN-FOC and InstaSPIN-MOTION™ versions are available.  
TMS320F2806x Microcontrollers  
The F2806x series is the first to include a floating-point unit (FPU). The F2806x series also increases the pin-  
count, memory size options, and the quantity of peripherals. InstaSPIN-FOC™ and InstaSPIN-MOTION™  
versions are available.  
TMS320F2807x Microcontrollers  
The F2807x series offers the most performance, largest pin counts, flash memory sizes, and peripheral options.  
The F2807x series includes the latest generation of accelerators, ePWM peripherals, and analog technology.  
TMS320F28004x Microcontrollers  
The F28004x series is a reduced version of the F2807x series with the latest generational enhancements. The  
F28004x series is the best roadmap option for those using the F2806x series. InstaSPIN-FOC and configurable  
logic block (CLB) versions are available.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
6 Terminal Configuration and Functions  
6.1 Pin Diagrams  
Figure 6-1 shows the pin assignments on the 80-pin PN and PFP packages. Figure 6-2 shows the pin  
assignments on the 100-pin PZ and PZP packages.  
GPIO27/HRCAP2/SPISTEB/USB0DM  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
GPIO28/SCIRXDA/SDAA/TZ2  
GPIO26/ECAP3/SPICLKB/USB0DP  
GPIO9/EPWM5B/SCITXDB/ECAP3  
VDDIO  
VSS  
VSS  
VDD3VFL  
VDD  
TEST2  
GPIO3/EPWM2B/SPISOMIA/COMP2OUT  
GPIO2/EPWM2A  
GPIO12/TZ1/SCITXDA/SPISIMOB  
GPIO29/SCITXDA/SCLA/TZ3  
GPIO30/CANRXA/EPWM7A  
GPIO31/CANTXA/EPWM8A  
GPIO25/ECAP2/SPISOMIB  
VDDIO  
GPIO1/EPWM1B/COMP1OUT  
GPIO0/EPWM1A  
GPIO15/ECAP2/SCIRXDB/SPISTEB  
VREGENZ  
VDD  
VDD  
VSS  
VSS  
VDDIO  
ADCINB6/COMP3B/AIO14  
ADCINB5  
GPIO13/TZ2/SPISOMIB  
GPIO14/TZ3/SCITXDB/SPICLKB  
GPIO24/ECAP1/SPISIMOB  
ADCINB4/COMP2B/AIO12  
ADCINB2/COMP1B/AIO10  
ADCINB1  
GPIO22/EQEP1S/MCLKXA/SCITXDB  
ADCINB0  
GPIO32/SDAA/EPWMSYNCI/ADCSOCAO  
GPIO33/SCLA/EPWMSYNCO/ADCSOCBO  
VREFLO, VSSA  
A. Pin 19: VREFHI and ADCINA0 share the same pin on the 80-pin PN and PFP devices and their use is mutually exclusive to one another.  
Pin 21: VREFLO is always connected to VSSA on the 80-pin PN and PFP devices.  
B. The PowerPAD is not connected to the ground on the die. To facilitate effective heat dissipation, the PowerPAD must be connected to the  
ground plane of the PCB. It should not be left unconnected. For more details, see PowerPAD™ Thermally Enhanced Package.  
Figure 6-1. 80-Pin PN and PFP Packages (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
GPIO41/EPWM7B/SCIRXDB  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
GPIO28/SCIRXDA/SDAA/TZ2  
GPIO27/HRCAP2/EQEP2S/SPISTEB/USB0DM  
GPIO9/EPWM5B/SCITXDB/ECAP3  
GPIO26/ECAP3/EQEP2I/SPICLKB/USB0DP  
GPIO51/EQEP1B/MDRA/TZ2  
VSS  
VDDIO  
VSS  
VDD3VFL  
TEST2  
VDD  
GPIO40/EPWM7A/SCITXDB  
GPIO3/EPWM2B/SPISOMIA/COMP2OUT  
GPIO2/EPWM2A  
GPIO12/TZ1/SCITXDA/SPISIMOB  
GPIO29/SCITXDA/SCLA/TZ3  
GPIO50/EQEP1A/MDXA/TZ1  
GPIO30/CANRXA/EQEP2I/EPWM7A  
GPIO31/CANTXA/EQEP2S/EPWM8A  
GPIO25/ECAP2/EQEP2B/SPISOMIB  
VDDIO  
GPIO56/SPICLKA/EQEP2I/HRCAP3  
GPIO1/EPWM1B/COMP1OUT  
GPIO0/EPWM1A  
GPIO15/ECAP2/SCIRXDB/SPISTEB  
GPIO57/SPISTEA/EQEP2S/HRCAP4  
VDD  
VSS  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
VREGENZ  
VDD  
ADCINB7  
VSS  
ADCINB6/COMP3B/AIO14  
ADCINB5  
VDDIO  
GPIO58/MCLKRA/SCITXDB/EPWM7A  
ADCINB4/COMP2B/AIO12  
ADCINB3  
GPIO13/TZ2/SPISOMIB  
GPIO14/TZ3/SCITXDB/SPICLKB  
ADCINB2/COMP1B/AIO10  
ADCINB1  
GPIO24/ECAP1/EQEP2A/SPISIMOB  
GPIO22/EQEP1S/MCLKXA/SCITXDB  
ADCINB0  
VREFLO  
GPIO32/SDAA/EPWMSYNCI/ADCSOCAO  
GPIO33/SCLA/EPWMSYNCO/ADCSOCBO  
VSSA  
A. The PowerPAD is not connected to the ground on the die. To facilitate effective heat dissipation, the PowerPAD must be connected to the  
ground plane of the PCB. It should not be left unconnected. For more details, see PowerPAD™ Thermally Enhanced Package.  
Figure 6-2. 100-Pin PZ and PZP Packages (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Note  
The PowerPADshould be soldered to the ground (GND) plane of the PCB because this will provide  
the best thermal conduction path. For this device, the PowerPAD is not electrically shorted to the  
internal die VSS; therefore, the PowerPAD does not provide an electrical connection to the PCB  
ground. To make optimum use of the thermal efficiencies designed into the PowerPAD package, the  
PCB must be designed with this technology in mind. A thermal land is required on the surface of the  
PCB directly underneath the body of the PowerPAD. The thermal land should be soldered to the  
exposed lead frame die pad of the PowerPad package; the thermal land should be as large as needed  
to dissipate the required heat. An array of thermal vias should be used to connect the thermal pad to  
the internal GND plane of the board. See PowerPAD™ Thermally Enhanced Package for more details  
on using the PowerPAD package.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
6.2 Signal Descriptions  
Section 6.2.1 describes the signals. With the exception of the JTAG pins, the GPIO function is the default at  
reset, unless otherwise mentioned. The peripheral signals that are listed under them are alternate functions.  
Some peripheral functions may not be available in all devices. See Table 5-1 for details. Inputs are not 5-V  
tolerant. All GPIO pins are I/O/Z and have an internal pullup (PU), which can be selectively enabled or disabled  
on a per-pin basis. This feature only applies to the GPIO pins. The pullups on the PWM pins are not enabled at  
reset. The pullups on other GPIO pins are enabled upon reset. The AIO pins do not have an internal pullup.  
Note  
When the on-chip voltage regulator (VREG) is used, the GPIO19, GPIO26–27, and GPIO34–38 pins  
could glitch during power up. This potential glitch will finish before the boot mode pins are read and  
will not affect boot behavior. If glitching is unacceptable in an application, 1.8 V could be supplied  
externally. Alternatively, adding a current-limiting resistor (for example, 470 Ω) in series with these pins  
and any external driver could be considered to limit the potential for degradation to the pin and/or  
external circuitry. There is no power-sequencing requirement when using an external 1.8-V supply.  
However, if the 3.3-V transistors in the level-shifting output buffers of the I/O pins are powered before  
the 1.8-V transistors, it is possible for the output buffers to turn on, causing a glitch to occur on the pin  
during power up. To avoid this behavior, power the VDD pins before or simultaneously with the VDDIO  
pins, ensuring that the VDD pins have reached 0.7 V before the VDDIO pins reach 0.7 V.  
6.2.1 Signal Descriptions (1)  
PIN NO.  
PIN NAME  
I/O/Z  
DESCRIPTION  
PZ  
PN  
PZP  
PFP  
JTAG  
JTAG test reset with internal pulldown (PD). TRST, when driven high, gives the scan  
system control of the operations of the device. If this signal is not connected or driven  
low, the device operates in its functional mode, and the test reset signals are ignored.  
NOTE: TRST is an active-high test pin and must be maintained low at all times during  
normal device operation. An external pulldown resistor is required on this pin. The  
value of this resistor should be based on drive strength of the debugger pods applicable  
to the design. A 2.2-kΩ resistor generally offers adequate protection. Because this is  
application-specific, TI recommends validating each target board for proper operation of  
the debugger and the application. (↓)  
TRST  
12  
10  
I
TCK  
TMS  
See GPIO38  
I
I
See GPIO38. JTAG test clock with internal pullup. (↑)  
See GPIO36. JTAG test-mode select (TMS) with internal pullup. This serial control input  
is clocked into the TAP controller on the rising edge of TCK. (↑)  
See GPIO36  
See GPIO35  
See GPIO35. JTAG test data input (TDI) with internal pullup. TDI is clocked into the  
selected register (instruction or data) on a rising edge of TCK. (↑)  
TDI  
I
See GPIO37. JTAG scan out, test data output (TDO). The contents of the selected  
register (instruction or data) are shifted out of TDO on the falling edge of TCK.  
(8-mA drive)  
TDO  
See GPIO37  
O/Z  
FLASH  
VDD3VFL  
TEST2  
46  
45  
37  
36  
3.3-V Flash Core Power Pin. This pin should be connected to 3.3 V at all times.  
Test Pin. Reserved for TI. Must be left unconnected.  
I/O  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
PIN NO.  
PIN NAME  
I/O/Z  
DESCRIPTION  
PZ  
PZP  
PN  
PFP  
CLOCK  
See GPIO18. Output clock derived from SYSCLKOUT. XCLKOUT is either the same  
frequency, one-half the frequency, or one-fourth the frequency of SYSCLKOUT. This is  
controlled by bits 1:0 (XCLKOUTDIV) in the XCLK register. At reset, XCLKOUT =  
SYSCLKOUT/4. The XCLKOUT signal can be turned off by setting XCLKOUTDIV to 3.  
The mux control for GPIO18 must also be set to XCLKOUT for this signal to propogate  
to the pin.  
XCLKOUT  
See GPIO18  
O/Z  
See GPIO19 and GPIO38. External oscillator input. Pin source for the clock is  
controlled by the XCLKINSEL bit in the XCLK register, GPIO38 is the default selection.  
This pin feeds a clock from an external 3.3-V oscillator. In this case, the X1 pin, if  
available, must be tied to GND and the on-chip crystal oscillator must be disabled  
through bit 14 in the CLKCTL register. If a crystal or resonator is used, the XCLKIN  
path must be disabled by bit 13 in the CLKCTL register.  
NOTE: Designs that use the GPIO38/XCLKIN/TCK pin to supply an external clock for  
normal device operation may need to incorporate some hooks to disable this path  
during debug using the JTAG connector. This is to prevent contention with the TCK  
signal, which is active during JTAG debug sessions. The zero-pin internal oscillators  
may be used during this time to clock the device.  
See GPIO19 and  
GPIO38  
XCLKIN  
I
On-chip 1.8-V crystal-oscillator input. To use this oscillator, a quartz crystal or a ceramic  
resonator must be connected across X1 and X2. In this case, the XCLKIN path must be  
disabled by bit 13 in the CLKCTL register. If this pin is not used, it must be tied to GND.  
X1  
X2  
60  
59  
48  
47  
I
On-chip crystal-oscillator output. A quartz crystal or a ceramic resonator must be  
connected across X1 and X2. If X2 is not used, it must be left unconnected.  
O
RESET  
Device Reset (in) and Watchdog Reset (out). These devices have a built-in power-on  
reset (POR) and brownout reset (BOR) circuitry. During a power-on or brownout  
condition, this pin is driven low by the device. An external circuit may also drive this pin  
to assert a device reset. This pin is also driven low by the MCU when a watchdog reset  
occurs. During watchdog reset, the XRS pin is driven low for the watchdog reset  
duration of 512 OSCCLK cycles. A resistor with a value from 2.2 kΩ to 10 kΩ should be  
placed between XRS and VDDIO. If a capacitor is placed between XRS and VSS for  
noise filtering, it should be 100 nF or smaller. These values will allow the watchdog to  
properly drive the XRS pin to VOL within 512 OSCCLK cycles when the watchdog reset  
is asserted. Regardless of the source, a device reset causes the device to terminate  
execution. The program counter points to the address contained at the location  
0x3F FFC0. When reset is deactivated, execution begins at the location designated by  
the program counter. The output buffer of this pin is an open-drain device with an  
internal pullup. (↑) If this pin is driven by an external device, it should be done using an  
open-drain device.  
XRS  
11  
9
I/OD  
ADC, COMPARATOR, ANALOG I/O  
ADC Group A, Channel 7 input  
ADC Group A, Channel 6 input  
Comparator Input 3A  
ADCINA7  
ADCINA6  
COMP3A  
AIO6  
16  
17  
18  
19  
20  
21  
22  
I
I
14  
15  
16  
I
I/O  
Digital AIO 6  
ADCINA5  
ADCINA4  
COMP2A  
AIO4  
I
ADC Group A, Channel 5 input  
ADC Group A, Channel 4 input  
Comparator Input 2A  
I
I
I/O  
Digital AIO 4  
ADCINA3  
ADCINA2  
COMP1A  
AIO2  
I
ADC Group A, Channel 3 input  
ADC Group A, Channel 2 input  
Comparator Input 1A  
I
I
17  
18  
I/O  
I
Digital AIO 2  
ADCINA1  
ADC Group A, Channel 1 input  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
PIN NO.  
PIN NAME  
I/O/Z  
DESCRIPTION  
PZ  
PN  
PZP  
PFP  
ADC Group A, Channel 0 input.  
ADCINA0  
23  
19  
I
NOTE: VREFHI and ADCINA0 share the same pin on the 80-pin PN and PFP devices  
and their use is mutually exclusive to one another.  
ADC External Reference High – only used when in ADC external reference mode. See  
Section 8.9.2.1.  
NOTE: VREFHI and ADCINA0 share the same pin on the 80-pin PN and PFP devices  
and their use is mutually exclusive to one another.  
VREFHI  
24  
35  
34  
33  
32  
31  
30  
19  
ADCINB7  
ADCINB6  
COMP3B  
AIO14  
I
ADC Group B, Channel 7 input  
ADC Group B, Channel 6 input  
Comparator Input 3B  
I
27  
26  
25  
I
I/O  
Digital AIO 14  
ADCINB5  
ADCINB4  
COMP2B  
AIO12  
I
ADC Group B, Channel 5 input  
ADC Group B, Channel 4 input  
Comparator Input 2B  
I
I
I/O  
Digital AIO12  
ADCINB3  
ADCINB2  
COMP1B  
AIO10  
I
ADC Group B, Channel 3 input  
ADC Group B, Channel 2 input  
Comparator Input 1B  
I
24  
I
I/O  
I
Digital AIO 10  
ADCINB1  
ADCINB0  
29  
28  
23  
22  
ADC Group B, Channel 1 input  
ADC Group B, Channel 0 input  
I
ADC External Reference Low.  
NOTE: VREFLO is always connected to VSSA on the 80-pin PN and PFP devices.  
VREFLO  
27  
21  
CPU AND I/O POWER  
VDDA  
VSSA  
25  
26  
20  
21  
Analog Power Pin. Tie with a 2.2-μF capacitor (typical) close to the pin.  
Analog Ground Pin.  
NOTE: VREFLO is always connected to VSSA on the 80-pin PN and PFP devices.  
3
2
14  
37  
63  
81  
91  
5
12  
29  
51  
65  
72  
4
CPU and Logic Digital Power Pins. When using internal VREG, place one 1.2-µF  
capacitor between each VDD pin and ground. Higher value capacitors may be used.  
VDD  
13  
38  
61  
79  
93  
4
11  
30  
49  
63  
74  
3
Digital I/O Buffers Power Pin. Single supply source when VREG is enabled. Place a  
decoupling capacitor on each pin. The exact value should be determined by the system  
voltage regulation solution.  
VDDIO  
15  
36  
47  
62  
80  
92  
13  
28  
38  
50  
64  
73  
VSS  
Digital Ground Pins  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
PIN NO.  
PIN NAME  
I/O/Z  
DESCRIPTION  
PZ  
PN  
PZP  
PFP  
VOLTAGE REGULATOR CONTROL SIGNAL  
VREGENZ  
90  
71  
69  
I
Internal VREG Enable/Disable. Pull low to enable VREG, pull high to disable VREG.  
GPIO AND PERIPHERAL SIGNALS (2)  
General-purpose input/output 0  
Enhanced PWM1 Output A and HRPWM channel  
Reserved  
GPIO0  
I/O/Z  
O
EPWM1A  
Reserved  
Reserved  
GPIO1  
87  
86  
84  
83  
9
Reserved  
I/O/Z  
O
General-purpose input/output 1  
Enhanced PWM1 Output B  
Reserved  
EPWM1B  
Reserved  
COMP1OUT  
GPIO2  
68  
67  
66  
7
O
Direct output of Comparator 1  
General-purpose input/output 2  
Enhanced PWM2 Output A and HRPWM channel  
Reserved  
I/O/Z  
O
EPWM2A  
Reserved  
Reserved  
GPIO3  
Reserved  
I/O/Z  
O
General-purpose input/output 3  
Enhanced PWM2 Output B  
SPI-A slave out, master in  
EPWM2B  
SPISOMIA  
COMP2OUT  
GPIO4  
I/O  
O
Direct output of Comparator 2  
General-purpose input/output 4  
Enhanced PWM3 output A and HRPWM channel  
Reserved  
I/O/Z  
O
EPWM3A  
Reserved  
Reserved  
GPIO5  
Reserved  
I/O/Z  
O
General-purpose input/output 5  
Enhanced PWM3 output B  
EPWM3B  
SPISIMOA  
ECAP1  
10  
58  
57  
54  
49  
8
I/O  
I/O  
I/O/Z  
O
SPI-A slave in, master out  
Enhanced Capture input/output 1  
General-purpose input/output 6  
Enhanced PWM4 output A and HRPWM channel  
External ePWM sync pulse input  
External ePWM sync pulse output  
General-purpose input/output 7  
Enhanced PWM4 output B  
GPIO6  
EPWM4A  
EPWMSYNCI  
EPWMSYNCO  
GPIO7  
46  
45  
43  
39  
I
O
I/O/Z  
O
EPWM4B  
SCIRXDA  
ECAP2  
I
SCI-A receive data  
I/O  
I/O/Z  
O
Enhanced Capture input/output 2  
General-purpose input/output 8  
Enhanced PWM5 output A and HRPWM channel  
Reserved  
GPIO8  
EPWM5A  
Reserved  
ADCSOCAO  
GPIO9  
O
ADC start-of-conversion A  
I/O/Z  
O
General-purpose input/output 9  
Enhanced PWM5 output B  
EPWM5B  
SCITXDB  
ECAP3  
O
SCI-B transmit data  
I/O  
Enhanced Capture input/output 3  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
PIN NO.  
PIN NAME  
I/O/Z  
DESCRIPTION  
PZ  
PN  
PZP  
PFP  
GPIO10  
I/O/Z  
O
General-purpose input/output 10  
EPWM6A  
Reserved  
ADCSOCBO  
GPIO11  
EPWM6B  
SCIRXDB  
ECAP1  
Enhanced PWM6 output A and HRPWM channel  
Reserved  
74  
73  
44  
95  
96  
88  
55  
52  
60  
59  
35  
75  
76  
70  
44  
42  
O
ADC start-of-conversion B  
General-purpose input/output 11  
Enhanced PWM6 output B  
SCI-B receive data  
I/O/Z  
O
I
I/O  
I/O/Z  
I
Enhanced Capture input/output 1  
General-purpose input/output 12  
Trip Zone input 1  
GPIO12  
TZ1  
SCITXDA  
SPISIMOB  
GPIO13  
TZ2  
O
SCI-A transmit data  
I/O  
I/O/Z  
I
SPI-B slave in, master out  
General-purpose input/output 13  
Trip Zone input 2  
Reserved  
SPISOMIB  
GPIO14  
TZ3  
Reserved  
I/O  
I/O/Z  
I
SPI-B slave out, master in  
General-purpose input/output 14  
Trip zone input 3  
SCITXDB  
SPICLKB  
GPIO15  
ECAP2  
O
SCI-B transmit data  
I/O  
I/O/Z  
I/O  
I
SPI-B clock input/output  
General-purpose input/output 15  
Enhanced Capture input/output 2  
SCI-B receive data  
SCIRXDB  
SPISTEB  
GPIO16  
SPISIMOA  
Reserved  
TZ2  
I/O  
I/O/Z  
I/O  
SPI-B slave transmit enable input/output  
General-purpose input/output 16  
SPI-A slave in, master out  
Reserved  
I
Trip Zone input 2  
GPIO17  
SPISOMIA  
Reserved  
TZ3  
I/O/Z  
I/O  
General-purpose input/output 17  
SPI-A slave out, master in  
Reserved  
I
Trip zone input 3  
GPIO18  
SPICLKA  
SCITXDB  
I/O/Z  
I/O  
O
General-purpose input/output 18  
SPI-A clock input/output  
SCI-B transmit data  
51  
41  
Output clock derived from SYSCLKOUT. XCLKOUT is either the same frequency, one-  
half the frequency, or one-fourth the frequency of SYSCLKOUT. This is controlled by  
bits 1:0 (XCLKOUTDIV) in the XCLK register. At reset, XCLKOUT = SYSCLKOUT/4.  
The XCLKOUT signal can be turned off by setting XCLKOUTDIV to 3. The mux control  
for GPIO18 must also be set to XCLKOUT for this signal to propogate to the pin.  
XCLKOUT  
O/Z  
GPIO19  
I/O/Z  
I
General-purpose input/output 19  
External Oscillator Input. The path from this pin to the clock block is not gated by the  
mux function of this pin. Care must be taken not to enable this path for clocking if it is  
being used for the other peripheral functions.  
XCLKIN  
64  
52  
SPISTEA  
SCIRXDB  
ECAP1  
I/O  
I
SPI-A slave transmit enable input/output  
SCI-B receive data  
I/O  
Enhanced Capture input/output 1  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
PIN NO.  
PIN NAME  
I/O/Z  
DESCRIPTION  
PZ  
PN  
PZP  
PFP  
GPIO20  
EQEP1A  
MDXA  
I/O/Z  
I
General-purpose input/output 20  
Enhanced QEP1 input A  
6
5
6
O
McBSP transmit serial data  
Direct output of Comparator 1  
General-purpose input/output 21  
Enhanced QEP1 input B  
COMP1OUT  
GPIO21  
EQEP1B  
MDRA  
O
I/O/Z  
I
7
98  
2
I
McBSP receive serial data  
Direct output of Comparator 2  
General-purpose input/output 22  
Enhanced QEP1 strobe  
COMP2OUT  
GPIO22  
EQEP1S  
MCLKXA  
SCITXDB  
GPIO23  
EQEP1I  
MFSXA  
O
I/O/Z  
I/O  
I/O  
O
78  
1
McBSP transmit clock  
SCI-B transmit data  
I/O/Z  
I/O  
I/O  
I
General-purpose input/output 23  
Enhanced QEP1 index  
McBSP transmit frame synch  
SCI-B receive data  
SCIRXDB  
GPIO24  
ECAP1  
I/O/Z  
I/O  
General-purpose input/output 24  
Enhanced Capture input/output 1  
Enhanced QEP2 input A.  
97  
39  
77  
31  
EQEP2A  
I
NOTE: eQEP2 is available only in the PZ and PZP packages.  
SPISIMOB  
GPIO25  
ECAP2  
I/O  
I/O/Z  
I/O  
SPI-B slave in, master out  
General-purpose input/output 25  
Enhanced Capture input/output 2  
Enhanced QEP2 input B.  
NOTE: eQEP2 is available only in the PZ and PZP packages.  
EQEP2B  
I
SPISOMIB  
GPIO26  
ECAP3  
I/O  
I/O/Z  
I/O  
SPI-B slave out, master in  
General-purpose input/output 26  
Enhanced Capture input/output 3  
Enhanced QEP2 index.  
NOTE: eQEP2 is available only in the PZ and PZP packages.  
EQEP2I  
I/O  
I/O  
I/O  
78  
62  
SPICLKB  
USB0DP(3)  
SPI-B clock input/output  
Positive Differential half of USB signal. To enable USB functionality on this pin, set the  
USBIOEN bit in the GPACTRL2 register.  
GPIO27  
I/O/Z  
I
General-purpose input/output 27  
High-Resolution Input Capture 2  
HRCAP2  
Enhanced QEP2 strobe.  
NOTE: eQEP2 is available only in the PZ and PZP packages.  
EQEP2S  
SPISTEB  
USB0DM(3)  
I/O  
I/O  
I/O  
77  
50  
61  
40  
SPI-B slave transmit enable input/output  
Negative Differential half of USB signal. To enable USB functionality on this pin, set the  
USBIOEN bit in the GPACTRL2 register.  
GPIO28  
SCIRXDA  
SDAA  
I/O/Z  
General-purpose input/output 28  
SCI-A receive data  
I
I/OD  
I
I2C data open-drain bidirectional port  
Trip zone input 2  
TZ2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
PIN NO.  
PIN NAME  
I/O/Z  
DESCRIPTION  
PZ  
PN  
PZP  
PFP  
GPIO29  
I/O/Z  
General-purpose input/output 29  
SCI-A transmit data  
SCITXDA  
SCLA  
O
43  
41  
34  
33  
I/OD  
I2C clock open-drain bidirectional port  
Trip zone input 3  
TZ3  
I
I/O/Z  
I
GPIO30  
CANRXA  
General-purpose input/output 30  
CAN receive  
Enhanced QEP2 index.  
NOTE: eQEP2 is available only in the PZ and PZP packages.  
EQEP2I  
I/O  
EPWM7A  
GPIO31  
O
I/O/Z  
O
Enhanced PWM7 Output A and HRPWM channel  
General-purpose input/output 31  
CAN transmit  
CANTXA  
40  
32  
Enhanced QEP2 strobe.  
NOTE: eQEP2 is available only in the PZ and PZP packages.  
EQEP2S  
I/O  
EPWM8A  
GPIO32  
O
I/O/Z  
I/OD  
I
Enhanced PWM8 Output A and HRPWM channel  
General-purpose input/output 32  
I2C data open-drain bidirectional port  
Enhanced PWM external sync pulse input  
ADC start-of-conversion A  
SDAA  
99  
100  
68  
79  
80  
55  
EPWMSYNCI  
ADCSOCAO  
GPIO33  
O
I/O/Z  
I/OD  
O
General-purpose input/output 33  
I2C clock open-drain bidirectional port  
Enhanced PWM external synch pulse output  
ADC start-of-conversion B  
SCLA  
EPWMSYNCO  
ADCSOCBO  
GPIO34  
O
I/O/Z  
O
General-purpose input/output 34  
Direct output of Comparator 2  
COMP2OUT  
Reserved  
COMP3OUT  
GPIO35  
Reserved  
O
Direct output of Comparator 3  
I/O/Z  
General-purpose input/output 35  
JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register  
(instruction or data) on a rising edge of TCK.  
TDI  
I
71  
72  
70  
57  
58  
56  
Reserved  
Reserved  
Reserved  
GPIO36  
Reserved  
Reserved  
Reserved  
I/O/Z  
General-purpose input/output 36  
JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked  
into the TAP controller on the rising edge of TCK.  
TMS  
I
Reserved  
Reserved  
Reserved  
GPIO37  
Reserved  
Reserved  
Reserved  
I/O/Z  
General-purpose input/output 37  
JTAG scan out, test data output (TDO). The contents of the selected register  
(instruction or data) are shifted out of TDO on the falling edge of TCK (8 mA drive).  
TDO  
O/Z  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
PIN NO.  
PIN NAME  
I/O/Z  
DESCRIPTION  
PZ  
PN  
PZP  
PFP  
GPIO38  
XCLKIN  
I/O/Z  
I
General-purpose input/output 38  
External Oscillator Input. The path from this pin to the clock block is not gated by the  
mux function of this pin. Care must be taken to not enable this path for clocking if it is  
being used for the other functions.  
67  
54  
TCK  
I
JTAG test clock with internal pullup  
Reserved  
Reserved  
Reserved  
Reserved  
GPIO39  
Reserved  
Reserved  
Reserved  
GPIO40  
EPWM7A  
SCITXDB  
Reserved  
GPIO41  
EPWM7B  
SCIRXDB  
Reserved  
GPIO42  
EPWM8A  
TZ1  
Reserved  
Reserved  
I/O/Z  
General-purpose input/output 39  
Reserved  
66  
82  
76  
1
53  
Reserved  
Reserved  
I/O/Z  
General-purpose input/output 40  
Enhanced PWM7 output A and HRPWM channel  
SCI-B transmit data  
O
O
Reserved  
I/O/Z  
General-purpose input/output 41  
Enhanced PWM7 output B  
SCI-B receive data  
O
I
Reserved  
I/O/Z  
General-purpose input/output 42  
Enhanced PWM8 output A and HRPWM channel  
Trip zone input 1  
O
I
COMP1OUT  
GPIO43  
EPWM8B  
TZ2  
O
Direct output of Comparator 1  
General-purpose input/output 43  
Enhanced PWM8 output B  
Trip zone input 2  
I/O/Z  
O
8
I
COMP2OUT  
GPIO44  
MFSRA  
SCIRXDB  
EPWM7B  
GPIO50  
EQEP1A  
MDXA  
O
Direct output of Comparator 2  
General-purpose input/output 44  
McBSP receive frame synch  
SCI-B receive data  
I/O/Z  
I/O  
56  
42  
48  
53  
I
O
Enhanced PWM7 output B  
General-purpose input/output 50  
Enhanced QEP1 input A  
McBSP transmit serial data  
Trip zone input 1  
I/O/Z  
I
O
TZ1  
I
GPIO51  
EQEP1B  
MDRA  
I/O/Z  
General-purpose input/output 51  
Enhanced QEP1 input B  
McBSP receive serial data  
Trip zone input 2  
I
I
I
TZ2  
GPIO52  
EQEP1S  
MCLKXA  
TZ3  
I/O/Z  
I/O  
I/O  
I
General-purpose input/output 52  
Enhanced QEP1 strobe  
McBSP transmit clock  
Trip zone input 3  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
PIN NO.  
PIN NAME  
I/O/Z  
DESCRIPTION  
PZ  
PN  
PZP  
PFP  
GPIO53  
I/O/Z  
I/O  
I/O  
General-purpose input/output 53  
Enhanced QEP1 index  
EQEP1I  
65  
69  
75  
85  
89  
94  
MFSXA  
McBSP transmit frame synch  
Reserved  
Reserved  
GPIO54  
I/O/Z  
I/O  
I
General-purpose input/output 54  
SPI-A slave in, master out  
Enhanced QEP2 input A  
SPISIMOA  
EQEP2A  
HRCAP1  
GPIO55  
I
High-Resolution Input Capture 1  
General-purpose input/output 55  
SPI-A slave out, master in  
Enhanced QEP2 input B  
I/O/Z  
I/O  
I
SPISOMIA  
EQEP2B  
HRCAP2  
GPIO56  
I
High-Resolution Input Capture 2  
General-purpose input/output 56  
SPI-A clock input/output  
I/O/Z  
I/O  
I/O  
I
SPICLKA  
EQEP2I  
Enhanced QEP2 index  
HRCAP3  
GPIO57  
High-Resolution Input Capture 3  
General-purpose input/output 57  
I/O/Z  
I/O  
I/O  
I
SPISTEA  
EQEP2S  
HRCAP4  
GPIO58  
SPI-A slave transmit enable input/output  
Enhanced QEP2 strobe  
High-Resolution Input Capture 4  
General-purpose input/output 58  
McBSP receive clock  
I/O/Z  
I/O  
O
MCLKRA  
SCITXDB  
EPWM7A  
SCI-B transmit data  
O
Enhanced PWM7 output A and HRPWM channel  
(1) I = Input, O = Output, Z = High Impedance, OD = Open Drain, ↑ = Pullup, ↓ = Pulldown  
(2) The GPIO function (shown in bold italics) is the default at reset. The peripheral signals that are listed under them are alternate  
functions. For JTAG pins that have the GPIO functionality multiplexed, the input path to the GPIO block is always valid. The output  
path from the GPIO block and the path to the JTAG block from a pin is enabled or disabled based on the condition of the TRST signal.  
See the Systems Control and Interrupts chapter of the TMS320x2806x Technical Reference Manual .  
(3) Depending on your USB application, additional pins may be required to maintain compliance with the USB 2.0 Specification. For more  
information, see the Universal Serial Bus (USB) Controller chapter of the TMS320x2806x Technical Reference Manual .  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–20  
MAX  
4.6  
2.5  
4.6  
4.6  
2.5  
4.6  
20  
UNIT  
VDDIO (I/O and Flash) with respect to VSS  
Supply voltage  
V
V
V
V
VDD with respect to VSS  
Analog voltage  
Input voltage  
Output voltage  
VDDA with respect to VSSA  
VIN (3.3 V)  
VIN (X1)  
VO  
(3)  
Digital input (per pin), IIK (VIN < VSS or VIN > VDDIO  
Analog input (per pin), IIKANALOG  
)
–20  
–20  
20  
20  
Input clamp current  
(VIN < VSSA or VIN > VDDA  
)
mA  
Total for all inputs, IIKTOTAL  
(VIN < VSS/VSSA or VIN > VDDIO/VDDA  
)
Output clamp current  
Junction temperature(4)  
Storage temperature(4)  
IOK (VO < 0 or VO > VDDIO  
)
–20  
–40  
–65  
20  
150  
150  
mA  
°C  
TJ  
Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Section 7.4 is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) Continuous clamp current per pin is ±2 mA.  
(4) Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device  
life. For additional information, see Semiconductor and IC Package Thermal Metrics.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
7.2 ESD Ratings – Commercial  
VALUE  
UNIT  
TMS320F2806x, TMS320F2806xM, TMS320F2806xF, and TMS320F2806xU in 100-pin PZ package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge (ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101 or ANSI/ESDA/JEDEC JS-002(2)  
TMS320F2806x, TMS320F2806xM, TMS320F2806xF, and TMS320F2806xU in 80-pin PN package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge (ESD)  
V
V
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101 or ANSI/ESDA/JEDEC JS-002(2)  
TMS320F2806xU in 100-pin PZP package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge (ESD)  
Charged-device model (CDM), per JEDEC specification JESD22-  
C101 or ANSI/ESDA/JEDEC JS-002(2)  
TMS320F2806xU in 80-pin PFP package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge (ESD)  
Charged-device model (CDM), per JEDEC specification JESD22-  
C101 or ANSI/ESDA/JEDEC JS-002(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 ESD Ratings – Automotive  
VALUE  
UNIT  
TMS320F2806x, TMS320F2806xM, and TMS320F2806xF in 100-pin PZP package  
Human body model (HBM), per  
AEC Q100-002(1)  
All pins  
±2000  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM),  
per AEC Q100-011  
All pins  
±500  
±750  
V
Corner pins on 100-pin PZP:  
1, 25, 26, 50, 51, 75, 76, 100  
TMS320F2806x, TMS320F2806xM, and TMS320F2806xF in 80-pin PFP packages  
Human body model (HBM), per  
AEC Q100-002(1)  
All pins  
±2000  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM),  
per AEC Q100-011  
All pins  
±500  
±750  
V
Corner pins on 80-pin PFP:  
1, 20, 21, 40, 41, 60, 61, 80  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
7.4 Recommended Operating Conditions  
MIN  
2.97  
1.71  
NOM  
3.3  
MAX  
3.63  
UNIT  
Device supply voltage, I/O, VDDIO  
V
Device supply voltage CPU, VDD (When internal VREG is  
disabled and 1.8 V is supplied externally)  
1.8  
1.995  
V
Supply ground, VSS  
0
3.3  
0
V
V
Analog supply voltage, VDDA  
2.97  
3.63  
Analog ground, VSSA  
V
Device clock frequency (system clock)  
High-level input voltage, VIH (3.3 V)  
Low-level input voltage, VIL (3.3 V)  
High-level output source current, VOH = VOH(MIN) , IOH  
2
2
90  
MHz  
V
VDDIO + 0.3  
VSS – 0.3  
0.8  
–4  
V
All GPIO/AIO pins  
Group 2(1)  
mA  
mA  
–8  
Low-level output sink current, VOL = VOL(MAX), IOL  
Junction temperature, TJ  
All GPIO/AIO pins  
Group 2(1)  
4
8
T version  
–40  
–40  
–40  
105  
125  
125  
°C  
°C  
S version  
Ambient temperature, TA  
Q version(2)  
(AEC Q100 qualification)  
(1) Group 2 pins are as follows: GPIO16, GPIO17, GPIO18, GPIO19, GPIO28, GPIO29, GPIO36, GPIO37.  
(2) The Q temperature option is not available on the 2806xU devices.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
7.5 Power Consumption Summary  
7.5.1 TMS320F2806x Current Consumption at 90-MHz SYSCLKOUT  
VREG ENABLED  
VREG DISABLED  
(1)  
(2)  
(1)  
(2)  
MODE  
TEST CONDITIONS  
IDDIO  
TYP(3)  
IDDA  
MAX TYP(3)  
IDD3VFL  
MAX TYP(3)  
IDD  
TYP(3)  
IDDIO  
IDDA  
MAX TYP(3)  
IDD3VFL  
MAX  
MAX TYP(3)  
MAX TYP(3)  
MAX  
The following  
peripheral clocks are  
enabled:  
ePWM1, ePWM2,  
ePWM3, ePWM4,  
ePWM5, ePWM6,  
ePWM7, ePWM8  
eCAP1, eCAP2,  
eCAP3  
eQEP1, eQEP2  
eCAN  
CLA  
HRPWM  
SCI-A, SCI-B  
SPI-A, SPI-B  
ADC  
Operational  
(Flash)  
185 mA(7) 245 mA(7) 16 mA 22 mA 35 mA 40 mA 165 mA(7) 220 mA(7) 15 mA 20 mA 16 mA 22 mA 35 mA 40 mA  
I2C  
COMP1, COMP2,  
COMP3  
CPU-TIMER0,  
CPU-TIMER1,  
CPU-TIMER2  
McBSP  
USB  
All PWM pins are  
toggled at 90 kHz.  
All I/O pins are left  
unconnected.(4) (6)  
Code is running out of  
flash with 3 wait states.  
XCLKOUT is turned off.  
Flash is powered down.  
XCLKOUT is turned off.  
All peripheral clocks  
are turned off.  
IDLE  
22 mA  
9 mA  
27 mA  
11 mA  
15 µA  
15 µA  
25 µA  
25 µA  
5 µA  
5 µA  
10 µA  
10 µA  
21 mA  
8 mA  
26 mA 120 µA 400 µA  
10 mA 120 µA 400 µA  
15 µA  
15 µA  
25 µA  
25 µA  
5 µA  
5 µA  
10 µA  
10 µA  
Flash is powered down.  
Peripheral clocks are  
off.  
STANDBY  
Flash is powered down.  
Peripheral clocks are  
off.  
HALT  
75 µA  
15 µA  
25 µA  
5 µA  
10 µA  
25 µA(8)  
40 µA  
15 µA  
25 µA  
5 µA  
10 µA  
Input clock is disabled.  
(5)  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) To realize the IDDA currents shown for IDLE, STANDBY, and HALT, clock to the ADC module must be turned off explicitly by writing to  
the PCLKCR0 register.  
(3) The TYP numbers are applicable over room temperature and nominal voltage.  
(4) The following is done in a loop:  
Data is continuously transmitted out of SPI-A, SPI-B, SCI-A, eCAN-A, McBSP-A, and I2C ports.  
The hardware multiplier is exercised.  
Watchdog is reset.  
ADC is performing continuous conversion.  
COMP1 and COMP2 are continuously switching voltages.  
GPIO17 is toggled.  
(5) If a quartz crystal or ceramic resonator is used as the clock source, the HALT mode shuts down the on-chip crystal oscillator.  
(6) CLA is continuously performing polynomial calculations.  
(7) For F2806x devices that do not have CLA, subtract the IDD current number for CLA (see Table 7-1) from the IDD (VREG disabled)/IDDIO  
(VREG enabled) current numbers listed in Section 7.5.1 for operational mode.  
(8) To realize the IDD number shown for HALT mode, the following must be done:  
PLL2 must be shut down by clearing bit 2 of the PLLCTL register.  
A value of 0x00FF must be written to the HRCAL register at address 0x6822.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
 
 
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Note  
The peripheral - I/O multiplexing implemented in the device prevents all available peripherals from  
being used at the same time. This is because more than one peripheral function may share an I/O pin.  
It is, however, possible to turn on the clocks to all the peripherals at the same time, although such a  
configuration is not useful. If this is done, the current drawn by the device will be more than the  
numbers specified in the current consumption tables.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
7.5.2 Reducing Current Consumption  
The 2806x devices incorporate a method to reduce the device current consumption. Because each peripheral  
unit has an individual clock-enable bit, significant reduction in current consumption can be achieved by turning  
off the clock to any peripheral module that is not used in a given application. Furthermore, any one of the three  
low-power modes could be taken advantage of to reduce the current consumption even further. Table 7-1  
indicates the typical reduction in current consumption achieved by turning off the clocks.  
Table 7-1. Typical Current Consumption by Various  
Peripherals (at 90 MHz) (1)  
PERIPHERAL  
MODULE(3)  
IDD CURRENT  
REDUCTION (mA)  
ADC  
2(2)  
I2C  
3
ePWM  
2
eCAP  
2
eQEP  
2
SCI  
SPI  
2
2
COMP/DAC  
HRPWM  
1
3
HRCAP  
3
USB  
12  
1
CPU-TIMER  
Internal zero-pin oscillator  
CAN  
0.5  
2.5  
20  
6
CLA  
McBSP  
(1) All peripheral clocks (except CPU Timer clock) are disabled  
upon reset. Writing to or reading from peripheral registers is  
possible only after the peripheral clocks are turned on.  
(2) This number represents the current drawn by the digital portion  
of the ADC module. Turning off the clock to the ADC module  
results in the elimination of the current drawn by the analog  
portion of the ADC (IDDA) as well.  
(3) For peripherals with multiple instances, the current quoted is per  
module. For example, the 2 mA value quoted for ePWM is for  
one ePWM module.  
Note  
IDDIO current consumption is reduced by 15 mA (typical) when XCLKOUT is turned off.  
Note  
The baseline IDD current (current when the core is executing a dummy loop with no peripherals  
enabled) is 40 mA, typical. To arrive at the IDD current for a given application, the current-drawn by the  
peripherals (enabled by that application) must be added to the baseline IDD current.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Following are other methods to reduce power consumption further:  
The flash module may be powered down if code is run off SARAM. This results in a current reduction of 18  
mA (typical) in the VDD rail and 13 mA (typical) in the VDDIO rail.  
Savings in IDDIO may be realized by disabling the pullups on pins that assume an output function.  
To realize the lowest VDDA current consumption in a low-power mode, see the respective analog chapter of  
the TMS320x2806x Technical Reference Manual to ensure each module is powered down as well.  
Power savings can be achieved by powering down the flash. This must be done by code running off RAM  
(not flash).  
7.5.3 Current Consumption Graphs (VREG Enabled)  
250  
200  
150  
100  
50  
IDDIO  
IDDA  
IDD3VFL  
Total  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
SYSCLKOUT (MHz)  
Figure 7-1. Typical Operational Current (Flash) Versus Frequency (Internal VREG)  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
SYSCLKOUT (MHz)  
Figure 7-2. Typical Operational Power Versus Frequency (Internal VREG)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
7.6 Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.4  
TYP  
MAX UNIT  
IOH = IOH MAX  
IOH = 50 μA  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
V
VDDIO – 0.2  
IOL = IOL MAX  
0.4  
–205  
–375  
V
All GPIO  
–80 –140  
Pin with pullup  
VDDIO = 3.3 V, VIN = 0 V  
enabled  
Input current  
(low level)  
XRS pin  
–230 –300  
IIL  
μA  
Pin with pulldown  
enabled  
VDDIO = 3.3 V, VIN = 0 V  
VDDIO = 3.3 V, VIN = VDDIO  
VDDIO = 3.3 V, VIN = VDDIO  
VO = VDDIO or 0 V  
±2  
±2  
80  
Pin with pullup  
enabled  
Input current  
(high level)  
IIH  
μA  
Pin with pulldown  
enabled  
28  
50  
Output current, pullup or pulldown  
disabled  
IOZ  
CI  
±2 μA  
pF  
Input capacitance  
2
2.78  
35  
VDDIO BOR trip point  
VDDIO BOR hysteresis  
Falling VDDIO  
2.50  
400  
2.96  
V
mV  
Supervisor reset release delay  
time  
Time after BOR/POR/OVR event is removed to XRS  
release  
800 μs  
V
VREG VDD output  
Internal VREG on  
1.9  
(1) When the on-chip VREG is used, its output is monitored by the POR/BOR circuit, which will reset the device should the core voltage  
(VDD) go out of range.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
7.7 Thermal Resistance Characteristics  
7.7.1 PFP PowerPAD Package  
°C/W(1)  
9.4  
AIR FLOW (lfm)(2)  
JC  
JB  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
0
4.6  
0
25.8  
16.3  
15.2  
13.6  
0.3  
0
150  
250  
500  
0
JA  
(High k PCB)  
Junction-to-free air thermal resistance  
Junction-to-package top  
0.4  
150  
250  
500  
0
PsiJT  
0.4  
0.5  
4.6  
4.4  
150  
250  
500  
PsiJB  
Junction-to-board  
4.3  
4.3  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
7.7.2 PZP PowerPAD Package  
°C/W(1)  
9.4  
AIR FLOW (lfm)(2)  
JC  
JB  
Junction-to-case thermal resistance  
0
Junction-to-board thermal resistance  
4.4  
0
24.4  
15.1  
13.9  
12.4  
0.3  
0
150  
250  
500  
0
JA  
(High k PCB)  
Junction-to-free air thermal resistance  
0.4  
150  
250  
500  
0
PsiJT  
Junction-to-package top  
Junction-to-board  
0.4  
0.5  
4.5  
4.2  
150  
250  
500  
PsiJB  
4.2  
4.2  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
(2) lfm = linear feet per minute  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
7.7.3 PN Package  
°C/W(1)  
7.9  
AIR FLOW (lfm)(2)  
JC  
JB  
Junction-to-case thermal resistance  
0
Junction-to-board thermal resistance  
15.6  
41.1  
31.2  
29.7  
27.5  
0.4  
0
0
150  
250  
500  
0
JA  
(High k PCB)  
Junction-to-free air thermal resistance  
0.6  
150  
250  
500  
0
PsiJT  
Junction-to-package top  
Junction-to-board  
0.7  
0.9  
15.3  
14.6  
14.4  
14.1  
150  
250  
500  
PsiJB  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
7.7.4 PZ Package  
°C/W(1)  
7.2  
AIR FLOW (lfm)(2)  
JC  
JB  
Junction-to-case thermal resistance  
0
Junction-to-board thermal resistance  
19.6  
42.2  
32.4  
30.9  
28.7  
0.4  
0
0
150  
250  
500  
0
JA  
(High k PCB)  
Junction-to-free air thermal resistance  
0.6  
150  
250  
500  
0
PsiJT  
Junction-to-package top  
Junction-to-board  
0.7  
0.9  
19.1  
18.2  
17.9  
14.1  
150  
250  
500  
PsiJB  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
7.8 Thermal Design Considerations  
Based on the end application design and operational profile, the IDD and IDDIO currents could vary. Systems that  
exceed the recommended maximum power dissipation in the end product may require additional thermal  
enhancements. Ambient temperature (TA) varies with the end application and product design. The critical factor  
that affects reliability and functionality is TJ, the junction temperature, not the ambient temperature. Hence, care  
should be taken to keep TJ within the specified limits. Tcase should be measured to estimate the operating  
junction temperature TJ. Tcase is normally measured at the center of the package top-side surface. The thermal  
application report Semiconductor and IC Package Thermal Metrics helps to understand the thermal metrics and  
definitions.  
7.9 Debug Probe Connection Without Signal Buffering for the MCU  
Figure 7-3 shows the connection between the MCU and JTAG header for a single-processor configuration. If the  
distance between the JTAG header and the MCU is greater than 6 inches, the emulation signals must be  
buffered. If the distance is less than 6 inches, buffering is typically not needed. Figure 7-3 shows the simpler, no-  
buffering situation. For the pullup and pulldown resistor values, see Section 6.2.  
6 inches or less  
VDDIO  
VDDIO  
13  
14  
2
5
EMU0  
EMU1  
TRST  
TMS  
PD  
4
6
8
TRST  
TMS  
TDI  
GND  
1
GND  
GND  
GND  
GND  
3
TDI  
7
10  
12  
TDO  
TCK  
TDO  
11  
9
TCK  
TCK_RET  
MCU  
JTAG Header  
A. See Figure 8-54 for JTAG/GPIO multiplexing.  
Figure 7-3. Debug Probe Connection Without Signal Buffering for the MCU  
Note  
The 2806x devices do not have EMU0/EMU1 pins. For designs that have a JTAG Header onboard,  
the EMU0/EMU1 pins on the header must be tied to VDDIO through a 4.7-kΩ (typical) resistor.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
7.10 Parameter Information  
7.10.1 Timing Parameter Symbology  
Timing parameter symbols used are created in accordance with JEDEC Standard 100. To shorten the symbols,  
some of the pin names and other related terminology have been abbreviated as follows:  
LOWERCASE SUBSCRIPTS AND THEIR MEANINGS:  
LETTERS AND SYMBOLS AND THEIR MEANINGS:  
a
c
d
f
access time  
cycle time (period)  
delay time  
H
L
High  
Low  
V
X
Z
Valid  
fall time  
Unknown, changing, or don't care level  
High impedance  
h
r
hold time  
rise time  
su  
t
setup time  
transition time  
valid time  
v
w
pulse duration (width)  
7.10.2 General Notes on Timing Parameters  
All output signals from the 28x devices (including XCLKOUT) are derived from an internal clock such that all  
output transitions for a given half-cycle occur with a minimum of skewing relative to each other.  
The signal combinations shown in the following timing diagrams may not necessarily represent actual cycles. For  
actual cycle examples, see the appropriate cycle description section of this document.  
7.11 Test Load Circuit  
This test load circuit is used to measure all switching characteristics provided in this document.  
Tester Pin Electronics  
Data Sheet Timing Reference Point  
W
3.5 nH  
Output  
Under  
Test  
42  
Transmission Line  
(A)  
Z0 = 50 W  
Device Pin(B)  
4.0 pF  
1.85 pF  
A. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin.  
B. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects  
must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line  
effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer)  
from the data sheet timing.  
Figure 7-4. 3.3-V Test Load Circuit  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
7.12 Power Sequencing  
There is no power sequencing requirement needed to ensure the device is in the proper state after reset or to  
prevent the I/Os from glitching during power up or power down (GPIO19, GPIO26–27, GPIO34–38 do not have  
glitch-free I/Os). No voltage larger than a diode drop (0.7 V) above VDDIO should be applied to any digital pin (for  
analog pins, this value is 0.7 V above VDDA) before powering up the device. Voltages applied to pins on an  
unpowered device can bias internal p-n junctions in unintended ways and produce unpredictable results.  
VDDIO, VDDA  
(3.3 V)  
VDD (1.8 V)  
INTOSC1  
tINTOSCST  
X1/X2  
tOSCST  
(B)  
(A)  
XCLKOUT  
User-code dependent  
t
w(RSL1)  
XRS(D)  
Address/data valid, internal boot-ROM code execution phase  
Address/Data/  
Control  
(Internal)  
User-code execution phase  
User-code dependent  
t
d(EX)  
(C)  
h(boot-mode)  
t
Boot-Mode  
Pins  
GPIO pins as input  
Peripheral/GPIO function  
Based on boot code  
Boot-ROM execution starts  
(E)  
GPIO pins as input [state depends on internal pullup/pulldown (PU/PD)]  
I/O Pins  
User-code dependent  
A. Upon power up, SYSCLKOUT is OSCCLK/4. Because the XCLKOUTDIV bits in the XCLK register come up with a reset state of 0,  
SYSCLKOUT is further divided by 4 before it appears at XCLKOUT. XCLKOUT = OSCCLK/16 during this phase.  
B. Boot ROM configures the DIVSEL bits for /1 operation. XCLKOUT = OSCCLK/4 during this phase. XCLKOUT will not be visible at the  
pin until explicitly configured by user code.  
C. After reset, the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode pin, the boot code branches to  
destination memory or boot code function. If boot ROM code executes after power-on conditions (in debugger environment), the boot  
code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT will be based on user environment and could be  
with or without PLL enabled.  
D. Using the XRS pin is optional due to the on-chip POR circuitry.  
E. The internal pullup or pulldown will take effect when BOR is driven high.  
Figure 7-5. Power-on Reset  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.1 Reset ( XRS) Timing Requirements  
MIN  
1000tc(SCO)  
32tc(OSCCLK)  
MAX  
UNIT  
cycles  
cycles  
th(boot-mode)  
tw(RSL2)  
Hold time for boot-mode pins  
Pulse duration, XRS low on warm reset  
7.12.2 Reset ( XRS) Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
μs  
tw(RSL1)  
tw(WDRS)  
td(EX)  
Pulse duration, XRS driven by device  
600  
Pulse duration, reset pulse generated by watchdog  
Delay time, address/data valid after XRS high  
Start-up time, internal zero-pin oscillator  
On-chip crystal-oscillator start-up time  
512tc(OSCCLK)  
cycles  
cycles  
μs  
32tc(OSCCLK)  
tINTOSCST  
3
(1)  
tOSCST  
1
10  
ms  
(1) Dependent on crystal/resonator and board design.  
INTOSC1  
X1/X2  
XCLKOUT  
User-Code Dependent  
t
w(RSL2)  
XRS  
User-Code Execution Phase  
t
d(EX)  
Address/Data/  
User-Code Execution  
Control  
(Internal)  
(A)  
t
Boot-ROM Execution Starts  
GPIO Pins as Input  
h(boot-mode)  
Boot-Mode  
Pins  
Peripheral/GPIO Function  
User-Code Dependent  
Peripheral/GPIO Function  
User-Code Execution Starts  
I/O Pins  
GPIO Pins as Input (State Depends on Internal PU/PD)  
User-Code Dependent  
A. After reset, the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to  
destination memory or boot code function. If Boot ROM code executes after power-on conditions (in debugger environment), the Boot  
code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT will be based on user environment and could be  
with or without PLL enabled.  
Figure 7-6. Warm Reset  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 7-7 shows an example for the effect of writing into PLLCR register. In the first phase, PLLCR = 0x0004  
and SYSCLKOUT = OSCCLK × 2. The PLLCR is then written with 0x0008. Right after the PLLCR register is  
written, the PLL lock-up phase begins. During this phase, SYSCLKOUT = OSCCLK/2. After the PLL lock-up is  
complete, SYSCLKOUT reflects the new operating frequency, OSCCLK × 4.  
OSCCLK  
Write to PLLCR  
SYSCLKOUT  
OSCCLK * 2  
OSCCLK/2  
OSCCLK * 4  
(CPU frequency while PLL is stabilizing  
with the desired frequency. This period  
(PLL lock-up time tp) is 1 ms long.)  
(Current CPU  
Frequency)  
(Changed CPU frequency)  
Figure 7-7. Example of Effect of Writing Into PLLCR Register  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
7.13 Clock Specifications  
7.13.1 Device Clock Table  
This section provides the timing requirements and switching characteristics for the various clock options  
available on the 2806x MCUs. Section 7.13.1.1 lists the cycle times of various clocks.  
7.13.1.1 2806x Clock Table and Nomenclature (90-MHz Devices)  
MIN  
11.11  
2
NOM  
MAX UNIT  
tc(SCO), Cycle time  
Frequency  
500  
90  
ns  
MHz  
ns  
SYSCLKOUT  
LSPCLK(1)  
ADC clock  
tc(LCO), Cycle time  
Frequency  
11.11  
44.4(2)  
22.5(2)  
90  
45  
MHz  
ns  
tc(ADCCLK), Cycle time  
Frequency  
22.22  
MHz  
(1) Lower LSPCLK will reduce device power consumption.  
(2) This is the default reset value if SYSCLKOUT = 90 MHz.  
7.13.1.2 Device Clocking Requirements/Characteristics  
MIN  
50  
NOM  
MAX UNIT  
tc(OSC), Cycle time  
Frequency  
200  
20  
ns  
MHz  
ns  
On-chip oscillator (X1/X2 pins)  
(Crystal/Resonator)  
5
tc(CI), Cycle time (C8)  
Frequency  
33.3  
5
200  
30  
External oscillator/clock source  
(XCLKIN pin) — PLL Enabled  
MHz  
ns  
tc(CI), Cycle time (C8)  
Frequency  
11.11  
4
250  
90  
External oscillator/clock source  
(XCLKIN pin) — PLL Disabled  
MHz  
Limp mode SYSCLKOUT  
(with /2 enabled)  
Frequency range  
1 to 5  
MHz  
tc(XCO), Cycle time (C1)  
44.44  
0.5  
2000  
22.5  
1
ns  
MHz  
ms  
XCLKOUT  
Frequency  
tp  
PLL lock time(1)  
(1) The PLLLOCKPRD register must be updated based on the number of OSCCLK cycles. If the zero-pin internal oscillators (10 MHz) are  
used as the clock source, then the PLLLOCKPRD register must be written with a value of 10,000 (minimum).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
7.13.1.3 Internal Zero-Pin Oscillator (INTOSC1/INTOSC2) Characteristics  
PARAMETER  
Internal zero-pin oscillator 1 (INTOSC1) at 30°C(1) (2)  
Internal zero-pin oscillator 2 (INTOSC2) at 30°C(1) (2)  
Step size (coarse trim)  
MIN  
TYP  
10.000  
10.000  
55  
MAX  
UNIT  
MHz  
Frequency  
Frequency  
MHz  
kHz  
Step size (fine trim)  
14  
kHz  
Temperature drift(3)  
3.03  
4.85  
kHz/°C  
Hz/mV  
Voltage (VDD) drift(3)  
175  
(1) In order to achieve better oscillator accuracy (10 MHz ± 1% or better) than shown, refer to the Oscillator Compensation Guide.  
(2) Frequency range ensured only when VREG is enabled, VREGENZ = VSS  
.
(3) Output frequency of the internal oscillators follows the direction of both the temperature gradient and voltage (VDD) gradient. For  
example:  
Increase in temperature will cause the output frequency to increase per the temperature coefficient.  
Decrease in voltage (VDD) will cause the output frequency to decrease per the voltage coefficient.  
10.6  
10.5  
10.4  
10.3  
10.2  
10.1  
10  
9.9  
9.8  
9.7  
9.6  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
Typical  
Max  
Temperature (°C)  
Figure 7-8. Zero-Pin Oscillator Frequency Movement With Temperature  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
7.13.2 Clock Requirements and Characteristics  
7.13.2.1 XCLKIN Timing Requirements – PLL Enabled  
NO.  
MIN  
MAX UNIT  
C9  
tf(CI)  
Fall time, XCLKIN  
6
6
ns  
ns  
C10 tr(CI)  
Rise time, XCLKIN  
C11 tw(CIL)  
C12 tw(CIH)  
Pulse duration, XCLKIN low as a percentage of tc(OSCCLK)  
Pulse duration, XCLKIN high as a percentage of tc(OSCCLK)  
45%  
45%  
55%  
55%  
7.13.2.2 XCLKIN Timing Requirements – PLL Disabled  
NO.  
MIN  
MAX UNIT  
Up to 20 MHz  
6
C9  
tf(CI)  
Fall time, XCLKIN  
Rise time, XCLKIN  
ns  
2
20 MHz to 90 MHz  
Up to 20 MHz  
6
C10 tr(CI)  
ns  
2
20 MHz to 90 MHz  
C11 tw(CIL)  
C12 tw(CIH)  
Pulse duration, XCLKIN low as a percentage of tc(OSCCLK)  
Pulse duration, XCLKIN high as a percentage of tc(OSCCLK)  
45%  
45%  
55%  
55%  
The possible configuration modes are shown in Table 8-15.  
7.13.2.3 XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)  
over recommended operating conditions (unless otherwise noted)(1) (2)  
NO.  
C3  
C4  
C5  
C6  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
tf(XCO)  
Fall time, XCLKOUT  
Rise time, XCLKOUT  
5
5
tr(XCO)  
ns  
tw(XCOL)  
tw(XCOH)  
Pulse duration, XCLKOUT low  
Pulse duration, XCLKOUT high  
H – 2  
H – 2  
H + 2  
H + 2  
ns  
ns  
(1) A load of 40 pF is assumed for these parameters.  
(2) H = 0.5tc(XCO)  
C10  
C9  
C8  
(A)  
XCLKIN  
C6  
C3  
C1  
C4  
C5  
(B)  
XCLKOUT  
A. The relationship of XCLKIN to XCLKOUT depends on the divide factor chosen. The waveform relationship shown is intended to illustrate  
the timing parameters only and may differ based on actual configuration.  
B. XCLKOUT configured to reflect SYSCLKOUT.  
Figure 7-9. Clock Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
7.14 Flash Timing  
7.14.1 Flash/OTP Endurance for T Temperature Material  
ERASE/PROGRAM  
MIN  
20000  
TYP  
MAX  
UNIT  
TEMPERATURE(1)  
0°C to 105°C (ambient)  
0°C to 30°C (ambient)  
Nf  
Flash endurance for the array (write/erase cycles)  
50000  
cycles  
write  
NOTP OTP endurance for the array (write cycles)  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
7.14.2 Flash/OTP Endurance for S Temperature Material  
ERASE/PROGRAM  
MIN  
TYP  
MAX  
UNIT  
TEMPERATURE(1)  
0°C to 125°C (ambient)  
0°C to 30°C (ambient)  
Nf  
Flash endurance for the array (write/erase cycles)  
20000  
50000  
cycles  
write  
NOTP OTP endurance for the array (write cycles)  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
7.14.3 Flash/OTP Endurance for Q Temperature Material  
ERASE/PROGRAM  
MIN  
TYP  
MAX  
UNIT  
TEMPERATURE(1) (2)  
–40°C to 125°C (ambient)  
–40°C to 30°C (ambient)  
Nf  
Flash endurance for the array (write/erase cycles)  
20000  
50000  
cycles  
write  
NOTP OTP endurance for the array (write cycles)  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
(2) The "Q" temperature option is not available on the 2806xU devices.  
7.14.4 Flash Parameters at 90-MHz SYSCLKOUT  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX UNIT  
16-Bit Word  
16K Sector  
8K Sector  
4K Sector  
16K Sector  
8K Sector  
4K Sector  
50  
500  
250  
125  
2
μs  
2000(2)  
ms  
ms  
ms  
Program Time(1)  
Erase Time(3)  
2000(2)  
2000(2)  
15(2)  
2
15(2)  
s
2
15(2)  
(4)  
IDDP  
VDD current consumption during Erase/Program cycle  
VDDIO current consumption during Erase/Program cycle  
VDDIO current consumption during Erase/Program cycle  
80  
60  
120  
VREG disabled  
VREG enabled  
mA  
mA  
(4)  
IDDIOP  
(4)  
IDDIOP  
(1) Program time is at the maximum device frequency. The programming time indicated in this table is applicable only when all the  
required code/data is available in the device RAM, ready for programming. Program time includes overhead of the flash state machine  
but does not include the time to transfer the following into RAM:  
the code that uses flash API to program the flash  
the Flash API itself  
Flash data to be programmed  
(2) The parameters mentioned in the MAX column are for the first 100 Erase/Program cycles.  
(3) The on-chip flash memory is in an erased state when the device is shipped from TI. As such, erasing the flash memory is not required  
before programming, when programming the device for the first time. However, the erase operation is needed on all subsequent  
programming operations.  
(4) Typical parameters as seen at room temperature including function call overhead, with all peripherals off. It is important to maintain a  
stable power supply during the entire flash programming process. It is conceivable that device current consumption during flash  
programming could be higher than normal operating conditions. The power supply used should ensure VMIN on the supply rails at all  
times, as specified in the Recommended Operating Conditions of the data sheet. Any brownout or interruption to power during erasing/  
programming could potentially corrupt the password locations and lock the device permanently. Powering a target board (during flash  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
 
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
programming) through the USB port is not recommended, as the port may be unable to respond to the power demands placed during  
the programming process.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
7.14.5 Flash/OTP Access Timing  
PARAMETER  
MIN  
36  
MAX UNIT  
ta(fp)  
Paged Flash access time  
Random Flash access time  
OTP access time  
ns  
ns  
ns  
ta(fr)  
36  
ta(OTP)  
60  
7.14.6 Flash Data Retention Duration  
PARAMETER  
TEST CONDITIONS  
TJ = 55°C  
MIN  
15  
MAX UNIT  
tretention  
Data retention duration  
years  
Table 7-2. Minimum Required Flash/OTP Wait States at Different Frequencies  
SYSCLKOUT  
SYSCLKOUT  
(ns)  
PAGE  
RANDOM  
OTP  
WAIT STATE  
(MHz)  
WAIT STATE(1)  
WAIT STATE(1)  
90  
11.11  
12.5  
3
2
2
2
1
1
1
1
1
1
3
2
2
2
1
1
1
1
1
1
5
4
4
3
3
2
2
2
2
1
80  
70  
14.29  
16.67  
18.18  
20  
60  
55  
50  
45  
22.22  
25  
40  
35  
28.57  
33.33  
30  
(1) Page and random wait state must be ≥ 1.  
The equations to compute the Flash page wait state and random wait state in Table 7-2 are as follows:  
é
ê
ë
ù
æ
ç
ç
è
ö
÷
÷
ø
ta(f ×p)  
Flash Page Wait State =  
-1 round up to the next highest integer, or 1, whichever is larger  
ú
tc(SCO)  
ê
ú
û
é
ê
ë
ù
æ
ç
ç
è
ö
÷
÷
ø
ta(f ×r)  
Flash Random Wait State =  
-1 round up to the next highest integer, or 1, whichever is larger  
ú
tc(SCO)  
ê
ú
û
The equation to compute the OTP wait state in Table 7-2 is as follows:  
é
ê
ë
ù
æ
ç
ç
è
ö
÷
÷
ø
ta(OTP)  
OTP Wait State =  
-1 round up to the next highest integer, or 1, whichever is larger  
ú
tc(SCO)  
ê
ú
û
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
8.1.1 CPU  
The 2806x (C28x) family is a member of the TMS320C2000microcontroller (MCU) platform. The C28x-based  
controllers have the same 32-bit fixed-point architecture as existing C28x MCUs. Each C28x-based controller,  
including the 2806x device, is a very efficient C/C++ engine, enabling users to develop not only their system  
control software in a high-level language, but also enabling development of math algorithms using C/C++. The  
device is as efficient at MCU math tasks as it is at system control tasks that typically are handled by  
microcontroller devices. This efficiency removes the need for a second processor in many systems. The 32 × 32-  
bit MAC 64-bit processing capabilities enable the controller to handle higher numerical resolution problems  
efficiently. Add to this the fast interrupt response with automatic context save of critical registers, resulting in a  
device that is capable of servicing many asynchronous events with minimal latency. The device has an 8-level-  
deep protected pipeline with pipelined memory accesses. This pipelining enables it to execute at high speeds  
without resorting to expensive high-speed memories. Special branch-look-ahead hardware minimizes the latency  
for conditional discontinuities. Special store conditional operations further improve performance.  
8.1.2 Control Law Accelerator (CLA)  
The C28x CLA is a single-precision (32-bit) floating-point unit that extends the capabilities of the C28x CPU by  
adding parallel processing. The CLA is an independent processor with its own bus structure, fetch mechanism,  
and pipeline. Eight individual CLA tasks, or routines, can be specified. Each task is started by software or a  
peripheral such as the ADC, ePWM, eCAP, eQEP, or CPU Timer 0. The CLA executes one task at a time to  
completion. When a task completes, the main CPU is notified by an interrupt to the PIE and the CLA  
automatically begins the next highest-priority pending task. The CLA can directly access the ADC Result  
registers, ePWM+HRPWM, eCAP, and eQEP registers. Dedicated message RAMs provide a method to pass  
additional data between the main CPU and the CLA.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.1.3 Viterbi, Complex Math, CRC Unit (VCU)  
The C28x VCU enhances the processing power of C2000devices by adding additional assembly instructions  
to target complex math, Viterbi decode, and CRC calculations. The VCU instructions accelerate many  
applications, including the following:  
Orthogonal frequency-division multiplex (OFDM) used in the PRIME and G3 standards for power line  
communications  
Short-range radar complex math calculations  
Power calculations  
Memory and data communication packet checks (CRC)  
The VCU features include:  
Instructions to support Cyclic Redundancy Checks (CRCs), which is a polynomial code checksum.  
– CRC8  
– CRC16  
– CRC32  
Instructions to support a flexible software implementation of a Viterbi decoder  
– Branch metric calculations for a code rate of 1/2 or 1/3  
– Add-Compare Select or Viterbi Butterfly in five cycles per butterfly  
– Traceback in three cycles per stage  
– Easily supports a constraint length of K = 7 used in PRIME and G3 standards  
Complex math arithmetic unit  
– Single-cycle Add or Subtract  
– 2-cycle multiply  
– 2-cycle multiply and accumulate (MAC)  
– Single-cycle repeat MAC  
Independent register space  
8.1.4 Memory Bus (Harvard Bus Architecture)  
As with many MCU-type devices, multiple buses are used to move data between the memories and peripherals  
and the CPU. The memory bus architecture contains a program read bus, data read bus, and data write bus.  
The program read bus consists of 22 address lines and 32 data lines. The data read and write buses consist of  
32 address lines and 32 data lines each. The 32-bit-wide data buses enable single cycle 32-bit operations. The  
multiple bus architecture, commonly termed Harvard Bus, enables the C28x to fetch an instruction, read a data  
value and write a data value in a single cycle. All peripherals and memories attached to the memory bus  
prioritize memory accesses. Generally, the priority of memory bus accesses can be summarized as follows:  
Highest:  
Data Writes  
Program Writes  
Data Reads  
Program Reads  
Fetches  
(Simultaneous data and program writes cannot occur on the memory bus.)  
(Simultaneous data and program writes cannot occur on the memory bus.)  
(Simultaneous program reads and fetches cannot occur on the memory bus.)  
(Simultaneous program reads and fetches cannot occur on the memory bus.)  
Lowest:  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.1.5 Peripheral Bus  
To enable migration of peripherals between various Texas Instruments (TI) MCU family of devices, the devices  
adopt a peripheral bus standard for peripheral interconnect. The peripheral bus bridge multiplexes the various  
buses that make up the processor Memory Bus into a single bus consisting of 16 address lines and 16 or 32  
data lines and associated control signals. Three versions of the peripheral bus are supported. One version  
supports only 16-bit accesses (called peripheral frame 2). Another version supports both 16- and 32-bit  
accesses (called peripheral frame 1).  
8.1.6 Real-Time JTAG and Analysis  
1
The devices implement the standard IEEE 1149.1 JTAG interface for in-circuit based debug. Additionally, the  
devices support real-time mode of operation allowing modification of the contents of memory, peripheral, and  
register locations while the processor is running and executing code and servicing interrupts. The user can also  
single step through non-time-critical code while enabling time-critical interrupts to be serviced without  
interference. The device implements the real-time mode in hardware within the CPU. This is a feature unique to  
the 28x family of devices, requiring no software monitor. Additionally, special analysis hardware is provided that  
allows setting of hardware breakpoint or data/address watch-points and generating various user-selectable  
break events when a match occurs.  
8.1.7 Flash  
The F28069, F28069F, F28069M, F28068F, F28068M, F28067, and F28066 devices contain 128K × 16 of  
embedded flash memory, segregated into eight 16K × 16 sectors. The F28065, F28064, F28063, F28062, and  
F28062F devices contain 64K × 16 of embedded flash memory, segregated into eight 8K × 16 sectors. All  
devices also contain a single 1K × 16 of OTP memory at address range 0x3D 7800 to 0x3D 7BF9. The user can  
individually erase, program, and validate a flash sector while leaving other sectors untouched. However, it is not  
possible to use one sector of the flash or the OTP to execute flash algorithms that erase or program other  
sectors. Special memory pipelining is provided to enable the flash module to achieve higher performance. The  
flash/OTP is mapped to both program and data space; therefore, it can be used to execute code or store data  
information. Addresses 0x3F 7FF0 to 0x3F 7FF5 are reserved for data variables and should not contain program  
code.  
Note  
The Flash and OTP wait states can be configured by the application. This allows applications running  
at slower frequencies to configure the flash to use fewer wait states.  
Flash effective performance can be improved by enabling the flash pipeline mode in the Flash options  
register. With this mode enabled, effective performance of linear code execution will be much faster  
than the raw performance indicated by the wait-state configuration alone. The exact performance gain  
when using the Flash pipeline mode is application-dependent.  
For more information on the Flash options, Flash wait state, and OTP wait-state registers, see the  
Systems Control and Interrupts chapter of the TMS320x2806x Technical Reference Manual .  
1
IEEE Standard 1149.1-1990 Standard Test Access Port and Boundary Scan Architecture  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.1.8 M0, M1 SARAMs  
All devices contain these two blocks of single-access memory, each 1K × 16 in size. The stack pointer points to  
the beginning of block M1 on reset. The M0 and M1 blocks, like all other memory blocks on C28x devices, are  
mapped to both program and data space. Hence, the user can use M0 and M1 to execute code or for data  
variables. The partitioning is performed within the linker. The C28x device presents a unified memory map to the  
programmer. This makes for easier programming in high-level languages.  
8.1.9 L4 SARAM, and L0, L1, L2, L3, L5, L6, L7, and L8 DPSARAMs  
The device contains up to 48K × 16 of single-access RAM. To ascertain the exact size for a given device, see  
the device-specific memory map figures in Section 8.2. This block is mapped to both program and data space.  
L0 is 2K in size. L1 and L2 are each 1K in size. L3 is 4K in size. L4, L5, L6, L7, and L8 are each 8K in size. L0,  
L1, and L2 are shared with the CLA, which can use these blocks for its data space. L3 is shared with the CLA,  
which can use this block for its program space. L5, L6, L7, and L8 are shared with the DMA, which can use  
these blocks for its data space. DPSARAM refers to the dual-port configuration of these blocks.  
8.1.10 Boot ROM  
The Boot ROM is factory-programmed with boot-loading software. Boot-mode signals are provided to tell the  
bootloader software what boot mode to use on power up. The user can select to boot normally or to download  
new software from an external connection or to select boot software that is programmed in the internal Flash/  
ROM. The Boot ROM also contains standard tables, such as SIN/COS waveforms, for use in math-related  
algorithms.  
Table 8-1. Boot Mode Selection  
GPIO34/COMP2OUT/  
MODE  
GPIO37/TDO  
TRST  
MODE  
COMP3OUT  
3
2
1
1
0
0
x
1
0
1
0
x
0
0
0
0
1
GetMode  
Wait (see Section 8.1.11 for description)  
1
SCI  
0
Parallel IO  
Emulation Boot  
EMU  
8.1.10.1 Emulation Boot  
When the debug probe is connected, the GPIO37/TDO pin cannot be used for boot mode selection. In this case,  
the boot ROM detects that a debug probe is connected and uses the contents of two reserved SARAM locations  
in the PIE vector table to determine the boot mode. If the content of either location is invalid, then the Wait boot  
option is used. All boot mode options can be accessed in emulation boot.  
8.1.10.2 GetMode  
The default behavior of the GetMode option is to boot to flash. This behavior can be changed to another boot  
option by programming two locations in the OTP. If the content of either OTP location is invalid, then boot to flash  
is used. One of the following loaders can be specified: SCI, SPI, I2C, CAN, or OTP.  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.1.10.3 Peripheral Pins Used by the Bootloader  
Table 8-2 shows which GPIO pins are used by each peripheral bootloader. Refer to the GPIO mux table to see if  
these conflict with any of the peripherals you would like to use in your application.  
Table 8-2. Peripheral Bootload Pins  
BOOTLOADER  
PERIPHERAL LOADER PINS  
SCI  
SCIRXDA (GPIO28)  
SCITXDA (GPIO29)  
Parallel Boot  
SPI  
Data (GPIO31,30,5:0)  
28x Control (AIO6)  
Host Control (AIO12)  
SPISIMOA (GPIO16)  
SPISOMIA (GPIO17)  
SPICLKA (GPIO18)  
SPISTEA (GPIO19)  
I2C  
SDAA (GPIO28)  
SCLA (GPIO29)  
CAN  
CANRXA (GPIO30)  
CANTXA (GPIO31)  
8.1.11 Security  
The devices support high levels of security to protect the user firmware from being reverse-engineered. The  
security features a 128-bit password (hardcoded for 16 wait states), which the user programs into the flash. One  
code security module (CSM) is used to protect the flash/OTP and the L0/L1 SARAM blocks. The security feature  
prevents unauthorized users from examining the memory contents through the JTAG port, executing code from  
external memory or trying to boot-load some undesirable software that would export the secure memory  
contents. To enable access to the secure blocks, the user must write the correct 128-bit KEY value that matches  
the value stored in the password locations within the Flash.  
In addition to the CSM, the emulation code security logic (ECSL) has been implemented to prevent unauthorized  
users from stepping through secure code. Any code or data access to CSM secure memory while the debug  
probe is connected will trip the ECSL and break the emulation connection. To allow emulation of secure code,  
while maintaining the CSM protection against secure memory reads, the user must write the correct value into  
the lower 64 bits of the KEY register, which matches the value stored in the lower 64 bits of the password  
locations within the flash. Dummy reads of all 128 bits of the password in the flash must still be performed. If the  
lower 64 bits of the password locations are all ones (unprogrammed), then the KEY value does not need to  
match.  
When initially debugging a device with the password locations in flash programmed (that is, secured), the CPU  
will start running and may execute an instruction that performs an access to a protected ECSL area. If this  
happens, the ECSL will trip and cause the debug probe connection to be broken.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
The solution is to use the Wait boot option. This will sit in a loop around a software breakpoint to allow a debug  
probe to be connected without tripping security. These devices do not support a hardware wait-in-reset mode.  
Note  
When the code-security passwords are programmed, all addresses from 0x3F 7F80 to 0x3F 7FF5  
cannot be used as program code or data. These locations must be programmed to 0x0000.  
If the code security feature is not used, addresses 0x3F 7F80 to 0x3F 7FEF may be used for code  
or data. Addresses 0x3F 7FF0 to 0x3F 7FF5 are reserved for data and should not contain program  
code.  
The 128-bit password (at 0x3F 7FF8 to 0x3F 7FFF) must not be programmed to zeros. Doing so  
would permanently lock the device.  
Note  
Code Security Module Disclaimer  
THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS DESIGNED TO  
PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY (EITHER ROM OR  
FLASH) AND IS WARRANTED BY TEXAS INSTRUMENTS (TI), IN ACCORDANCE WITH ITS  
STANDARD TERMS AND CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS  
FOR THE WARRANTY PERIOD APPLICABLE FOR THIS DEVICE.  
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE  
COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED MEMORY  
CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT AS SET FORTH  
ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS CONCERNING THE CSM OR  
OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY  
OR FITNESS FOR A PARTICULAR PURPOSE.  
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT,  
INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY OUT OF  
YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN ADVISED OF THE  
POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED  
TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR  
OTHER ECONOMIC LOSS.  
8.1.12 Peripheral Interrupt Expansion (PIE) Block  
The PIE block serves to multiplex numerous interrupt sources into a smaller set of interrupt inputs. The PIE block  
can support up to 96 peripheral interrupts. On the F2806x, 72 of the possible 96 interrupts are used by  
peripherals. The 96 interrupts are grouped into blocks of 8 and each group is fed into 1 of 12 CPU interrupt lines  
(INT1 to INT12). Each of the 96 interrupts is supported by its own vector stored in a dedicated RAM block that  
can be overwritten by the user. The vector is automatically fetched by the CPU on servicing the interrupt. Eight  
CPU clock cycles are needed to fetch the vector and save critical CPU registers. Hence the CPU can quickly  
respond to interrupt events. Prioritization of interrupts is controlled in hardware and software. Each individual  
interrupt can be enabled or disabled within the PIE block.  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.1.13 External Interrupts (XINT1 to XINT3)  
The devices support three masked external interrupts (XINT1–XINT3). Each of the interrupts can be selected for  
negative, positive, or both negative and positive edge triggering and can also be enabled or disabled. These  
interrupts also contain a 16-bit free-running up counter, which is reset to zero when a valid interrupt edge is  
detected. This counter can be used to accurately time-stamp the interrupt. There are no dedicated pins for the  
external interrupts. XINT1, XINT2, and XINT3 interrupts can accept inputs from GPIO0–GPIO31 pins.  
8.1.14 Internal Zero Pin Oscillators, Oscillator, and PLL  
The device can be clocked by either of the two internal zero-pin oscillators, an external oscillator, or by a crystal  
attached to the on-chip oscillator circuit. A PLL is provided supporting up to 16 input-clock-scaling ratios. The  
PLL ratios can be changed on-the-fly in software, enabling the user to scale back on operating frequency if lower  
power operation is desired. Refer to Section 7, Specifications, for timing details. The PLL block can be set in  
bypass mode. A second PLL (PLL2) feeds the HRCAP module.  
8.1.15 Watchdog  
Each device contains two watchdogs: CPU-watchdog that monitors the core and NMI-watchdog that is a missing  
clock-detect circuit. The user software must regularly reset the CPU-watchdog counter within a certain time  
frame; otherwise, the CPU-watchdog generates a reset to the processor. The CPU-watchdog can be disabled if  
necessary. The NMI-watchdog engages only in case of a clock failure and can either generate an interrupt or a  
device reset.  
8.1.16 Peripheral Clocking  
The clocks to each individual peripheral can be enabled or disabled to reduce power consumption when a  
peripheral is not in use. Additionally, the system clock to the serial ports (except I2C) can be scaled relative to  
the CPU clock.  
8.1.17 Low-power Modes  
The devices are full static CMOS devices. Three low-power modes are provided:  
IDLE:  
Places CPU in low-power mode. Peripheral clocks may be turned off selectively and only those peripherals that  
must function during IDLE are left operating. An enabled interrupt from an active peripheral or the watchdog timer  
will wake the processor from IDLE mode.  
STANDBY:  
HALT:  
Turns off clock to CPU and peripherals. This mode leaves the oscillator and PLL functional. An external interrupt  
event will wake the processor and the peripherals. Execution begins on the next valid cycle after detection of the  
interrupt event  
This mode basically shuts down the device and places it in the lowest possible power-consumption mode. If the  
internal zero-pin oscillators are used as the clock source, the HALT mode turns them off, by default. To keep  
these oscillators from shutting down, the INTOSCnHALTI bits in CLKCTL register may be used. The zero-pin  
oscillators may thus be used to clock the CPU-watchdog in this mode. If the on-chip crystal oscillator is used as  
the clock source, it is shut down in this mode. A reset or an external signal (through a GPIO pin) or the CPU-  
watchdog can wake the device from this mode.  
The CPU clock (OSCCLK) and WDCLK should be from the same clock source before attempting to put the  
device into HALT or STANDBY.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.1.18 Peripheral Frames 0, 1, 2, 3 (PFn)  
The device segregates peripherals into four sections. The mapping of peripherals is as follows:  
PF0:  
PIE:  
PIE Interrupt Enable and Control Registers Plus PIE Vector Table  
Flash Waitstate Registers  
Flash:  
Timers:  
CSM:  
ADC:  
CPU-Timers 0, 1, 2 Registers  
Code Security Module KEY Registers  
ADC Result Registers  
CLA:  
Control Law Accelrator Registers and Message RAMs  
GPIO MUX Configuration and Control Registers  
Enhanced Control Area Network Configuration and Control Registers  
System Control Registers  
PF1:  
PF2:  
GPIO:  
eCAN:  
SYS:  
SCI:  
Serial Communications Interface (SCI) Control and RX/TX Registers  
Serial Port Interface (SPI) Control and RX/TX Registers  
ADC Status, Control, and Configuration Registers  
Inter-Integrated Circuit Module and Registers  
External Interrupt Registers  
SPI:  
ADC:  
I2C:  
XINT:  
PF3:  
McBSP:  
ePWM:  
eCAP:  
eQEP:  
Comparators:  
USB:  
Multichannel Buffered Serial Port Registers  
Enhanced Pulse Width Modulator Module and Registers  
Enhanced Capture Module and Registers  
Enhanced Quadrature Encoder Pulse Module and Registers  
Comparator Modules  
Universal Serial Bus Module and Registers  
8.1.19 General-Purpose Input/Output (GPIO) Multiplexer  
Most of the peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. This enables  
the user to use a pin as GPIO if the peripheral signal or function is not used. On reset, GPIO pins are configured  
as inputs. The user can individually program each pin for GPIO mode or peripheral signal mode. For specific  
inputs, the user can also select the number of input qualification cycles. This is to filter unwanted noise glitches.  
The GPIO signals can also be used to bring the device out of specific low-power modes.  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.1.20 32-Bit CPU-Timers (0, 1, 2)  
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock prescaling. The  
timers have a 32-bit count-down register, which generates an interrupt when the counter reaches zero. The  
counter is decremented at the CPU clock speed divided by the prescale value setting. When the counter reaches  
zero, it is automatically reloaded with a 32-bit period value.  
CPU-Timer 0 is for general use and is connected to the PIE block. CPU-Timer 1 is also for general use and can  
be connected to INT13 of the CPU. CPU-Timer 2 is reserved for SYS/BIOS. CPU-Timer 2 is connected to INT14  
of the CPU. If SYS/BIOS is not being used, CPU-Timer 2 is available for general use.  
CPU-Timer 2 can be clocked by any one of the following:  
SYSCLKOUT (default)  
Internal zero-pin oscillator 1 (INTOSC1)  
Internal zero-pin oscillator 2 (INTSOC2)  
External clock source  
8.1.21 Control Peripherals  
The devices support the following peripherals that are used for embedded control and communication:  
ePWM:  
The enhanced PWM peripheral supports independent/complementary PWM generation, adjustable dead-  
band generation for leading/trailing edges, latched/cycle-by-cycle trip mechanism. Some of the PWM pins  
support the HRPWM high-resolution duty and period features. The type 1 module found on 2806x devices  
also supports increased dead-band resolution, enhanced SOC and interrupt generation, and advanced  
triggering including trip functions based on comparator outputs.  
eCAP:  
eQEP:  
The enhanced capture peripheral uses a 32-bit time base and registers up to four programmable events in  
continuous/one-shot capture modes.  
This peripheral can also be configured to generate an auxiliary PWM signal.  
The enhanced QEP peripheral uses a 32-bit position counter, supports low-speed measurement using  
capture unit and high-speed measurement using a 32-bit unit timer. This peripheral has a watchdog timer to  
detect motor stall and input error detection logic to identify simultaneous edge transition in QEP signals.  
ADC:  
The ADC block is a 12-bit converter. The ADC has up to 16 single-ended channels pinned out, depending on  
the device. The ADC also contains two sample-and-hold units for simultaneous sampling.  
Comparator:  
HRCAP:  
Each comparator block consists of one analog comparator along with an internal 10-bit reference for  
supplying one input of the comparator.  
The high-resolution capture peripheral operates in normal capture mode through a 16-bit counter clocked off  
of the HCCAPCLK or in high-resolution capture mode by using built-in calibration logic in conjunction with a  
TI-supplied calibration library.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.1.22 Serial Port Peripherals  
The devices support the following serial communication peripherals:  
SPI:  
The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of programmed length (1 to  
16 bits) to be shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used  
for communications between the MCU and external peripherals or another processor. Typical applications  
include external I/O or peripheral expansion through devices such as shift registers, display drivers, and  
ADCs. Multidevice communications are supported by the master/slave operation of the SPI. The SPI contains  
a 4-level receive and transmit FIFO for reducing interrupt servicing overhead.  
SCI:  
I2C:  
The serial communications interface is a 2-wire asynchronous serial port, commonly known as UART. The SCI  
contains a 4-level receive and transmit FIFO for reducing interrupt servicing overhead.  
The inter-integrated circuit (I2C) module provides an interface between an MCU and other devices compliant  
with Philips Semiconductors Inter-IC bus ( I2C-bus®) specification version 2.1 and connected by way of an  
I2C-bus. External components attached to this 2-wire serial bus can transmit/receive up to 8-bit data to or from  
the MCU through the I2C module. The I2C contains a 4-level receive-and-transmit FIFO for reducing interrupt  
servicing overhead.  
eCAN:  
This is the enhanced version of the CAN peripheral. The eCAN supports 32 mailboxes, time-stamping of  
messages, and is compliant with ISO 11898-1 (CAN 2.0B).  
McBSP:  
The multichannel buffered serial port (McBSP) connects to E1/T1 lines, phone-quality codecs for modem  
applications or high-quality stereo audio DAC devices. The McBSP receive and transmit registers are  
supported by the DMA to significantly reduce the overhead for servicing this peripheral. Each McBSP module  
can be configured as an SPI as required.  
USB:  
The USB peripheral, which conforms to the USB 2.0 specification, may be used as either a full-speed (12-  
Mbps) device controller, or a full-speed (12-Mbps) or low-speed (1.5-Mbps) host controller. The controller  
supports a total of six user-configurable endpoints—all of which can be accessed through DMA, in addition to  
a dedicated control endpoint for endpoint zero. All packets transmitted or received are buffered in 4KB of  
dedicated endpoint memory. The USB peripheral supports all three transfer types: Control, Interrupt, and Bulk.  
Because of the complexity of the USB peripheral and the associated protocol overhead, a full software library  
with application examples is provided within C2000Ware.  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.2 Memory Maps  
In Figure 8-1 through Figure 8-8, the following apply:  
Memory blocks are not to scale.  
Peripheral Frame 0, Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 memory maps are  
restricted to data memory only. A user program cannot access these memory maps in program space.  
Protected means the order of Write-followed-by-Read operations is preserved rather than the pipeline order.  
Certain memory ranges are EALLOW protected against spurious writes after configuration.  
Locations 0x3D 7C80–0x3D 7CC0 contain the internal oscillator and ADC calibration routines. These  
locations are not programmable by the user.  
All devices with USB have the USB control registers mapped from 0x4000 to 0x4FFF and 2K ×16 RAM from  
0x40000 to 0x40800. When the clock to the USB module is enabled, this RAM is connected to the USB  
controller and acts as the FIFO RAM. When the clock to the USB module is disabled, this RAM is remapped  
to the CPU-accessible address space and can be used as general-purpose RAM.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 1400  
Peripheral Frame 0  
CLA Registers  
0x00 1480  
0x00 1500  
0x00 1580  
0x00 2000  
0x00 4000  
CLA-to-CPU Message RAM  
CPU-to-CLA Message RAM  
Reserved  
Reserved  
(A)  
USB Control Registers  
0x00 5000  
Peripheral Frame 3  
(4K ´ 16, Protected)  
DMA-Accessible  
Reserved  
0x00 6000  
0x00 7000  
Peripheral Frame 1  
(4K ´ 16, Protected)  
Peripheral Frame 2  
(4K ´ 16, Protected)  
0x00 8000  
0x00 8800  
0x00 8C00  
0x00 9000  
0x00 A000  
0x00 C000  
0x00 E000  
0x01 0000  
0x01 2000  
L0 DPSARAM (2K ´ 16)  
(0-Wait, Secure Zone + ECSL, CLA Data RAM2)  
L1 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL, CLA Data RAM 0)  
L2 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL, CLA Data RAM 1)  
L3 DPSARAM (4K ´ 16)  
(0-Wait, Secure Zone + ECSL, CLA Program RAM)  
L4 SARAM (8K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L5 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 0)  
L6 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 1)  
L7 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 2)  
L8 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 3)  
0x01 4000  
0x3D 7800  
0x3D 7BFA  
0x3D 7C80  
Reserved  
User OTP (1K ´ 16, Secure Zone + ECSL)  
Reserved  
Calibration Data  
Get_mode function  
Reserved  
0x3D 7CC0  
0x3D 7CD0  
0x3D 7E80  
0x3D 7E82  
PARTID  
Calibration Data  
Reserved  
0x3D 7EB0  
0x3D 8000  
FLASH  
(128K ´ 16, 8 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
(B)(C)  
FAST, SpinTAC, and IQmath Libraries  
(16K ´ 16, 0-Wait State)  
0x3F F3B0  
0x3F FFC0  
Boot ROM (16K ´ 16, 0-Wait State)  
CPU Vector Table (32 Vectors, Enabled if VMAP = 1)  
A. On non-USB devices, 0x00 4000–0x00 4FFF is Reserved.  
B. FASTand SpinTAClibraries exist only on F2806xM and F2806xF devices.  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
C. The ROM contents from 0x3F 8000–0x3F F3AF differ between F2806x parts and F2806xM/F2806xF parts. See the respective memory  
map figures in the Boot ROM chapter of the TMS320x2806x Technical Reference Manual .  
Figure 8-1. 28069, 28069F, 28069M Memory Map  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 1400  
0x00 4000  
Peripheral Frame 0  
Reserved  
(A)  
USB Control Registers  
0x00 5000  
Peripheral Frame 3  
(4K ´ 16, Protected)  
DMA-Accessible  
Reserved  
0x00 6000  
0x00 7000  
Peripheral Frame 1  
(4K ´ 16, Protected)  
Peripheral Frame 2  
(4K ´ 16, Protected)  
0x00 8000  
0x00 8800  
0x00 8C00  
0x00 9000  
0x00 A000  
0x00 C000  
0x00 E000  
0x01 0000  
0x01 2000  
L0 DPSARAM (2K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L1 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L2 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L3 DPSARAM (4K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L4 SARAM (8K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L5 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 0)  
L6 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 1)  
L7 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 2)  
L8 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 3)  
0x01 4000  
0x3D 7800  
0x3D 7BFA  
0x3D 7C80  
Reserved  
User OTP (1K ´ 16, Secure Zone + ECSL)  
Reserved  
Calibration Data  
Get_mode function  
Reserved  
0x3D 7CC0  
0x3D 7CD0  
0x3D 7E80  
0x3D 7E82  
PARTID  
Calibration Data  
Reserved  
0x3D 7EB0  
0x3D 8000  
FLASH  
(128K ´ 16, 8 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
(B)(C)  
FAST, SpinTAC, and IQmath Libraries  
(16K ´ 16, 0-Wait State)  
0x3F F3B0  
0x3F FFC0  
Boot ROM (16K ´ 16, 0-Wait State)  
CPU Vector Table (32 Vectors, Enabled if VMAP = 1)  
A. On non-USB devices, 0x00 4000–0x00 4FFF is Reserved.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
B. FASTand SpinTAClibraries exist only on F2806xM and F2806xF devices.  
C. The ROM contents from 0x3F 8000–0x3F F3AF differ between F2806x parts and F2806xM/F2806xF parts. See the respective memory  
map figures in the Boot ROM chapter of the TMS320x2806x Technical Reference Manual .  
Figure 8-2. 28068F, 28068M Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 1400  
0x00 4000  
Peripheral Frame 0  
Reserved  
(A)  
USB Control Registers  
0x00 5000  
Peripheral Frame 3  
(4K ´ 16, Protected)  
DMA-Accessible  
Reserved  
0x00 6000  
0x00 7000  
Peripheral Frame 1  
(4K ´ 16, Protected)  
Peripheral Frame 2  
(4K ´ 16, Protected)  
0x00 8000  
0x00 8800  
0x00 8C00  
0x00 9000  
0x00 A000  
0x00 C000  
0x00 E000  
0x01 0000  
0x01 2000  
L0 DPSARAM (2K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L1 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L2 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L3 DPSARAM (4K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L4 SARAM (8K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L5 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 0)  
L6 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 1)  
L7 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 2)  
L8 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 3)  
0x01 4000  
0x3D 7800  
0x3D 7BFA  
0x3D 7C80  
Reserved  
User OTP (1K ´ 16, Secure Zone + ECSL)  
Reserved  
Calibration Data  
Get_mode function  
Reserved  
0x3D 7CC0  
0x3D 7CD0  
0x3D 7E80  
0x3D 7E82  
PARTID  
Calibration Data  
Reserved  
0x3D 7EB0  
0x3D 8000  
FLASH  
(128K ´ 16, 8 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
IQmath Libraries  
(16K ´ 16, 0-Wait State)  
0x3F F3B0  
0x3F FFC0  
Boot ROM (16K ´ 16, 0-Wait State)  
CPU Vector Table (32 Vectors, Enabled if VMAP = 1)  
A. On non-USB devices, 0x00 4000–0x00 4FFF is Reserved.  
Figure 8-3. 28067 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 1400  
0x00 4000  
Peripheral Frame 0  
Reserved  
(A)  
USB Control Registers  
0x00 5000  
Peripheral Frame 3  
(4K ´ 16, Protected)  
DMA-Accessible  
Reserved  
0x00 6000  
0x00 7000  
Peripheral Frame 1  
(4K ´ 16, Protected)  
Peripheral Frame 2  
(4K ´ 16, Protected)  
0x00 8000  
0x00 8800  
0x00 8C00  
0x00 9000  
0x00 A000  
0x00 C000  
0x00 E000  
L0 DPSARAM (2K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L1 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L2 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L3 DPSARAM (4K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L4 SARAM (8K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L5 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 0)  
L6 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 1)  
0x01 0000  
0x3D 7800  
0x3D 7BFA  
0x3D 7C80  
Reserved  
User OTP (1K ´ 16, Secure Zone + ECSL)  
Reserved  
Calibration Data  
Get_mode function  
Reserved  
0x3D 7CC0  
0x3D 7CD0  
0x3D 7E80  
0x3D 7E82  
PARTID  
Calibration Data  
Reserved  
0x3D 7EB0  
0x3D 8000  
FLASH  
(128K ´ 16, 8 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
IQmath Libraries  
(16K ´ 16, 0-Wait State)  
0x3F F3B0  
0x3F FFC0  
Boot ROM (16K ´ 16, 0-Wait State)  
CPU Vector Table (32 Vectors, Enabled if VMAP = 1)  
A. On non-USB devices, 0x00 4000–0x00 4FFF is Reserved.  
Figure 8-4. 28066 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 1400  
Peripheral Frame 0  
CLA Registers  
0x00 1480  
0x00 1500  
0x00 1580  
0x00 2000  
0x00 4000  
CLA-to-CPU Message RAM  
CPU-to-CLA Message RAM  
Reserved  
Reserved  
(A)  
USB Control Registers  
0x00 5000  
Peripheral Frame 3  
(4K ´ 16, Protected)  
DMA-Accessible  
Reserved  
0x00 6000  
0x00 7000  
Peripheral Frame 1  
(4K ´ 16, Protected)  
Peripheral Frame 2  
(4K ´ 16, Protected)  
0x00 8000  
0x00 8800  
0x00 8C00  
0x00 9000  
0x00 A000  
0x00 C000  
0x00 E000  
0x01 0000  
0x01 2000  
L0 DPSARAM (2K ´ 16)  
(0-Wait, Secure Zone + ECSL, CLA Data RAM2)  
L1 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL, CLA Data RAM 0)  
L2 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL, CLA Data RAM 1)  
L3 DPSARAM (4K ´ 16)  
(0-Wait, Secure Zone + ECSL, CLA Program RAM)  
L4 SARAM (8K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L5 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 0)  
L6 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 1)  
L7 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 2)  
L8 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 3)  
0x01 4000  
0x3D 7800  
0x3D 7BFA  
0x3D 7C80  
Reserved  
User OTP (1K ´ 16, Secure Zone + ECSL)  
Reserved  
Calibration Data  
Get_mode function  
Reserved  
0x3D 7CC0  
0x3D 7CD0  
0x3D 7E80  
0x3D 7E82  
PARTID  
Calibration Data  
Reserved  
0x3D 7EB0  
0x3E 8000  
FLASH  
(64K ´ 16, 8 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
IQmath Libraries  
(16K ´ 16, 0-Wait State)  
0x3F F3B0  
0x3F FFC0  
Boot ROM (16K ´ 16, 0-Wait State)  
CPU Vector Table (32 Vectors, Enabled if VMAP = 1)  
A. On non-USB devices, 0x00 4000–0x00 4FFF is Reserved.  
Figure 8-5. 28065 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 1400  
0x00 4000  
Peripheral Frame 0  
Reserved  
(A)  
USB Control Registers  
0x00 5000  
Peripheral Frame 3  
(4K ´ 16, Protected)  
DMA-Accessible  
Reserved  
0x00 6000  
0x00 7000  
Peripheral Frame 1  
(4K ´ 16, Protected)  
Peripheral Frame 2  
(4K ´ 16, Protected)  
L0 DPSARAM (2K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
0x00 8800  
0x00 8C00  
0x00 9000  
0x00 A000  
0x00 C000  
0x00 E000  
0x01 0000  
0x01 2000  
L1 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L2 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L3 DPSARAM (4K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L4 SARAM (8K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L5 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 0)  
L6 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 1)  
L7 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 2)  
L8 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 3)  
0x01 4000  
0x3D 7800  
0x3D 7BFA  
0x3D 7C80  
Reserved  
User OTP (1K ´ 16, Secure Zone + ECSL)  
Reserved  
Calibration Data  
Get_mode function  
Reserved  
0x3D 7CC0  
0x3D 7CD0  
0x3D 7E80  
0x3D 7E82  
PARTID  
Calibration Data  
Reserved  
0x3D 7EB0  
0x3E 8000  
FLASH  
(64K ´ 16, 8 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
IQmath Libraries  
(16K ´ 16, 0-Wait State)  
0x3F F3B0  
0x3F FFC0  
Boot ROM (16K ´ 16, 0-Wait State)  
CPU Vector Table (32 Vectors, Enabled if VMAP = 1)  
A. On non-USB devices, 0x00 4000–0x00 4FFF is Reserved.  
Figure 8-6. 28064 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 1400  
0x00 4000  
Peripheral Frame 0  
Reserved  
(A)  
USB Control Registers  
0x00 5000  
Peripheral Frame 3  
(4K ´ 16, Protected)  
DMA-Accessible  
Reserved  
0x00 6000  
0x00 7000  
Peripheral Frame 1  
(4K ´ 16, Protected)  
Peripheral Frame 2  
(4K ´ 16, Protected)  
0x00 8000  
0x00 8800  
0x00 8C00  
0x00 9000  
0x00 A000  
0x00 C000  
0x00 E000  
L0 DPSARAM (2K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L1 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L2 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L3 DPSARAM (4K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L4 SARAM (8K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L5 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 0)  
L6 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 1)  
0x01 0000  
0x3D 7800  
0x3D 7BFA  
0x3D 7C80  
Reserved  
User OTP (1K ´ 16, Secure Zone + ECSL)  
Reserved  
Calibration Data  
Get_mode function  
Reserved  
0x3D 7CC0  
0x3D 7CD0  
0x3D 7E80  
0x3D 7E82  
PARTID  
Calibration Data  
Reserved  
0x3D 7EB0  
0x3E 8000  
FLASH  
(64K ´ 16, 8 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
IQmath Libraries  
(16K ´ 16, 0-Wait State)  
0x3F F3B0  
0x3F FFC0  
Boot ROM (16K ´ 16, 0-Wait State)  
CPU Vector Table (32 Vectors, Enabled if VMAP = 1)  
A. On non-USB devices, 0x00 4000–0x00 4FFF is Reserved.  
Figure 8-7. 28063 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K ´ 16, 0-Wait)  
M1 SARAM (1K ´ 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 ´ 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 1400  
0x00 4000  
Peripheral Frame 0  
Reserved  
(A)  
USB Control Registers  
0x00 5000  
Peripheral Frame 3  
(4K ´ 16, Protected)  
DMA-Accessible  
Reserved  
0x00 6000  
0x00 7000  
Peripheral Frame 1  
(4K ´ 16, Protected)  
Peripheral Frame 2  
(4K ´ 16, Protected)  
0x00 8000  
0x00 8800  
0x00 8C00  
0x00 9000  
0x00 A000  
0x00 C000  
L0 DPSARAM (2K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L1 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L2 DPSARAM (1K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L3 DPSARAM (4K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L4 SARAM (8K ´ 16)  
(0-Wait, Secure Zone + ECSL)  
L5 DPSARAM (8K ´ 16)  
(0-Wait, DMA RAM 0)  
0x00 E000  
0x3D 7800  
0x3D 7BFA  
0x3D 7C80  
Reserved  
User OTP (1K ´ 16, Secure Zone + ECSL)  
Reserved  
Calibration Data  
Get_mode function  
Reserved  
0x3D 7CC0  
0x3D 7CD0  
0x3D 7E80  
0x3D 7E82  
PARTID  
Calibration Data  
Reserved  
0x3D 7EB0  
0x3E 8000  
FLASH  
(64K ´ 16, 8 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
(B)(C)  
FAST, SpinTAC, and IQmath Libraries  
(16K ´ 16, 0-Wait State)  
0x3F F3B0  
0x3F FFC0  
Boot ROM (16K ´ 16, 0-Wait State)  
CPU Vector Table (32 Vectors, Enabled if VMAP = 1)  
A. On non-USB devices, 0x00 4000–0x00 4FFF is Reserved.  
B. FASTand SpinTAClibraries exist only on F2806xM and F2806xF devices.  
C. The ROM contents from 0x3F 8000–0x3F F3AF differ between F2806x parts and F2806xM/F2806xF parts. See the respective memory  
map figures in the Boot ROM chapter of the TMS320x2806x Technical Reference Manual .  
Figure 8-8. 28062, 28062F Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-3. Addresses of Flash Sectors in 28069, 28069F, 28069M,  
28068F, 28068M, F28067, F28066  
ADDRESS RANGE  
0x3D 8000 to 0x3D BFFF  
0x3D C000 to 0x3D FFFF  
0x3E 0000 to 0x3E 3FFF  
0x3E 4000 to 0x3E 7FFF  
0x3E 8000 to 0x3E BFFF  
0x3E C000 to 0x3E FFFF  
0x3F 0000 to 0x3F 3FFF  
0x3F 4000 to 0x3F 7FF5  
PROGRAM AND DATA SPACE  
Sector H (16K × 16)  
Sector G (16K × 16)  
Sector F (16K × 16)  
Sector E (16K × 16)  
Sector D (16K × 16)  
Sector C (16K × 16)  
Sector B (16K × 16)  
Sector A (16K × 16)  
Boot-to-Flash Entry Point  
(program branch instruction here)  
0x3F 7FF6 to 0x3F 7FF7  
0x3F 7FF8 to 0x3F 7FFF  
Security Password (128-Bit)  
(Do not program to all zeros)  
Table 8-4. Addresses of Flash Sectors in F28065, F28064, F28063, 28062,  
28062F  
ADDRESS RANGE  
0x3E 8000 to 0x3E 9FFF  
0x3E A000 to 0x3E BFFF  
0x3E C000 to 0x3E DFFF  
0x3E E000 to 0x3E FFFF  
0x3F 0000 to 0x3F 1FFF  
0x3F 2000 to 0x3F 3FFF  
0x3F 4000 to 0x3F 5FFF  
0x3F 6000 to 0x3F 7FF5  
PROGRAM AND DATA SPACE  
Sector H (8K × 16)  
Sector G (8K × 16)  
Sector F (8K × 16)  
Sector E (8K × 16)  
Sector D (8K × 16)  
Sector C (8K × 16)  
Sector B (8K × 16)  
Sector A (8K × 16)  
Boot-to-Flash Entry Point  
(program branch instruction here)  
0x3F 7FF6 to 0x3F 7FF7  
0x3F 7FF8 to 0x3F 7FFF  
Security Password (128-Bit)  
(Do not program to all zeros)  
Note  
Addresses 0x3F 7FF0 to 0x3F 7FF5 are reserved for data and should not contain program code.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Peripheral Frame 1 and Peripheral Frame 2 are grouped together to enable these blocks to be write/read  
peripheral block protected. The protected mode makes sure that all accesses to these blocks happen as written.  
Because of the pipeline, a write immediately followed by a read to different memory locations, will appear in  
reverse order on the memory bus of the CPU. This can cause problems in certain peripheral applications where  
the user expected the write to occur first (as written). The CPU supports a block protection mode where a region  
of memory can be protected so that operations occur as written (the penalty is extra cycles are added to align  
the operations). This mode is programmable and by default, it protects the selected zones.  
The wait states for the various spaces in the memory map area are listed in Table 8-5.  
Table 8-5. Wait States  
AREA  
WAIT STATES (CPU)  
COMMENTS  
M0 and M1 SARAMs  
Peripheral Frame 0  
Peripheral Frame 1  
0-wait  
Fixed  
0-wait  
0-wait (writes)  
2-wait (reads)  
Cycles can be extended by peripheral-generated ready.  
Back-to-back write operations to Peripheral Frame 1 registers will incur  
a 1-cycle stall (1-cycle delay).  
Peripheral Frame 2  
Peripheral Frame 3  
0-wait (writes)  
2-wait (reads)  
0-wait (writes)  
Fixed. Cycles cannot be extended by the peripheral.  
Assumes no conflict between CPU and CLA/DMA cycles. The wait  
states can be extended by peripheral-generated ready.  
2-wait (reads)  
0-wait data and program  
Programmable  
L0–L8 SARAM  
OTP  
Assumes no CPU conflicts  
Programmed through the Flash registers.  
1-wait is minimum number of wait states allowed.  
Programmed through the Flash registers.  
1-wait minimum  
FLASH  
Programmable  
0-wait Paged min  
1-wait Random min  
Random ≥ Paged  
FLASH Password  
Boot-ROM  
16-wait fixed  
0-wait  
Wait states of password locations are fixed.  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.3 Register Maps  
The devices contain four peripheral register spaces. The spaces are categorized as follows:  
Peripheral Frame 0:  
Peripheral Frame 1:  
Peripheral Frame 2:  
Peripheral Frame 3:  
These are peripherals that are mapped directly to the CPU memory bus. See Table 8-6.  
These are peripherals that are mapped to the 32-bit peripheral bus. See Table 8-7.  
These are peripherals that are mapped to the 16-bit peripheral bus. See Table 8-8.  
McBSP registers are mapped to this. See Table 8-9.  
Table 8-6. Peripheral Frame 0 Registers  
NAME(1)  
Device Emulation registers  
System Power Control registers  
FLASH registers(3)  
ADDRESS RANGE  
0x00 0880 to 0x00 0984  
0x00 0985 to 0x00 0987  
0x00 0A80 to 0x00 0ADF  
0x00 0AE0 to 0x00 0AEF  
0x00 0B00 to 0x00 0B0F  
SIZE (×16)  
EALLOW PROTECTED(2)  
261  
3
Yes  
Yes  
Yes  
Yes  
No  
96  
16  
16  
Code Security Module registers  
ADC registers (0 wait read only)  
CPU-TIMER0, CPU-TIMER1, CPU-TIMER2  
registers  
0x00 0C00 to 0x00 0C3F  
64  
No  
PIE registers  
0x00 0CE0 to 0x00 0CFF  
0x00 0D00 to 0x00 0DFF  
0x00 1000 to 0x00 11FF  
0x00 1400 to 0x00 147F  
0x00 1480 to 0x00 14FF  
0x00 1500 to 0x00 157F  
32  
No  
Yes  
Yes  
Yes  
NA  
NA  
PIE Vector Table  
256  
512  
128  
128  
128  
DMA registers  
CLA registers  
CLA to CPU Message RAM (CPU writes ignored)  
CPU to CLA Message RAM (CLA writes ignored)  
(1) Registers in Frame 0 support 16-bit and 32-bit accesses.  
(2) If registers are EALLOW protected, then writes cannot be performed until the EALLOW instruction is executed. The EDIS instruction  
disables writes to prevent stray code or pointers from corrupting register contents.  
(3) The Flash Registers are also protected by the Code Security Module (CSM).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-7. Peripheral Frame 1 Registers  
NAME  
ADDRESS RANGE  
0x00 6000 to 0x00 61FF  
0x00 6AC0 to 0x00 6ADF  
0x00 6AE0 to 0x00 6AFF  
0x00 6C80 to 0x00 6C9F  
0x00 6CA0 to 0x00 6CBF  
0x00 6F80 to 0x00 6FFF  
SIZE (×16)  
EALLOW PROTECTED  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
eCAN-A registers  
HRCAP1 registers  
HRCAP2 registers  
HRCAP3 registers  
HRCAP4 registers  
GPIO registers  
512  
32  
32  
32  
32  
128  
(1) Some registers are EALLOW protected. See the module reference guide for more information.  
Table 8-8. Peripheral Frame 2 Registers  
NAME  
System Control registers  
ADDRESS RANGE  
0x00 7010 to 0x00 702F  
0x00 7040 to 0x00 704F  
0x00 7050 to 0x00 705F  
0x00 7060 to 0x00 706F  
0x00 7070 to 0x00 707F  
0x00 7100 to 0x00 717F  
0x00 7740 to 0x00 774F  
0x00 7750 to 0x00 775F  
0x00 7900 to 0x00 793F  
SIZE (×16)  
EALLOW PROTECTED  
32  
16  
16  
16  
16  
128  
16  
16  
64  
Yes  
No  
SPI-A registers  
SCI-A registers  
No  
NMI Watchdog Interrupt registers  
External Interrupt registers  
ADC registers  
Yes  
Yes  
(1)  
SPI-B registers  
No  
SCI-B registers  
No  
(1)  
I2C-A registers  
(1) Some registers are EALLOW protected. See the module reference guide for more information.  
Table 8-9. Peripheral Frame 3 Registers  
NAME  
ADDRESS RANGE  
0x00 4000 to 0x00 4FFF  
0x00 5000 to 0x00 503F  
0x00 6400 to 0x00 641F  
0x00 6420 to 0x00 643F  
0x00 6440 to 0x00 645F  
0x00 6800 to 0x00 683F  
0x00 6840 to 0x00 687F  
0x00 6880 to 0x00 68BF  
0x00 68C0 to 0x00 68FF  
0x00 6900 to 0x00 693F  
0x00 6940 to 0x00 697F  
0x00 6980 to 0x00 69BF  
0x00 69C0 to 0x00 69FF  
0x00 6A00 to 0x00 6A1F  
0x00 6A20 to 0x00 6A3F  
0x00 6A40 to 0x00 6A57  
0x00 6B00 to 0x00 6B3F  
0x00 6B40 to 0x00 6B7F  
SIZE (×16)  
4096  
64  
EALLOW PROTECTED  
USB0 registers  
No  
McBSP-A registers  
No  
(1)  
Comparator 1 registers  
Comparator 2 registers  
Comparator 3 registers  
ePWM1 + HRPWM1 registers  
ePWM2 + HRPWM2 registers  
ePWM3 + HRPWM3 registers  
ePWM4 + HRPWM4 registers  
ePWM5 + HRPWM5 registers  
ePWM6 + HRPWM6 registers  
ePWM7 + HRPWM7 registers  
ePWM8 + HRPWM8 registers  
eCAP1 registers  
32  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
32  
32  
64  
64  
64  
64  
64  
64  
64  
64  
32  
No  
No  
eCAP2 registers  
32  
eCAP3 registers  
32  
No  
(1)  
eQEP1 registers  
64  
(1)  
eQEP2 registers  
64  
(1) Some registers are EALLOW protected. See the module reference guide for more information.  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.4 Device Emulation Registers  
These registers are used to control the protection mode of the C28x CPU and to monitor some critical device  
signals. The registers are defined in Table 8-10.  
Table 8-10. Device Emulation Registers  
EALLOW  
PROTECTED  
NAME  
ADDRESS RANGE  
SIZE (×16)  
DESCRIPTION  
Device Configuration Register  
Part ID Register  
0x0880–  
0x0881  
DEVICECNF  
PARTID  
2
1
Yes  
0x3D 7E80  
TMS320F28069PZP/PZ  
TMS320F28069UPZP/PZ  
TMS320F28069MPZP/PZ  
TMS320F28069FPZP/PZ  
TMS320F28069PFP/PN  
TMS320F28069UPFP/PN  
TMS320F28069MPFP/PN  
TMS320F28069FPFP/PN  
TMS320F28068UPZP/PZ  
TMS320F28068MPZP/PZ  
TMS320F28068FPZP/PZ  
TMS320F28068UPFP/PN  
TMS320F28068MPFP/PN  
TMS320F28068FPFP/PN  
TMS320F28067PZP/PZ  
TMS320F28067UPZP/PZ  
TMS320F28067PFP/PN  
TMS320F28067UPFP/PN  
TMS320F28066PZP/PZ  
TMS320F28066UPZP/PZ  
TMS320F28066PFP/PN  
TMS320F28066UPFP/PN  
TMS320F28065PZP/PZ  
TMS320F28065UPZP/PZ  
TMS320F28065PFP/PN  
TMS320F28065UPFP/PN  
TMS320F28064PZP/PZ  
TMS320F28064UPZP/PZ  
TMS320F28064PFP/PN  
TMS320F28064UPFP/PN  
TMS320F28063PZP/PZ  
TMS320F28063UPZP/PZ  
TMS320F28063PFP/PN  
TMS320F28063UPFP/PN  
TMS320F28062PZP/PZ  
TMS320F28062UPZP/PZ  
TMS320F28062FPZP/PZ  
TMS320F28062PFP/PN  
TMS320F28062UPFP/PN  
TMS320F28062FPFP/PN  
0x009E  
0x009F  
0x009E  
0x009E  
0x009C  
0x009D  
0x009C  
0x009C  
0x008F  
0x008E  
0x008E  
0x008D  
0x008C  
0x008C  
0x008A  
0x008B  
0x0088  
0x0089  
0x0086  
0x0087  
0x0084  
0x0085  
0x007E  
0x007F  
0x007C  
0x007D  
0x006E  
0x006F  
0x006C  
0x006D  
0x006A  
0x006B  
0x0068  
0x0069  
0x0066  
0x0067  
0x0066  
0x0064  
0x0065  
0x0064  
No  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-10. Device Emulation Registers (continued)  
EALLOW  
PROTECTED  
NAME  
CLASSID  
ADDRESS RANGE  
SIZE (×16)  
DESCRIPTION  
0x0882  
1
Class ID Register  
TMS320F28069  
0x009F  
0x009F  
0x009F  
0x009F  
0x008F  
0x008F  
0x008F  
0x008F  
0x008F  
0x008F  
0x008F  
0x007F  
0x007F  
0x006F  
0x006F  
0x006F  
0x006F  
0x006F  
0x006F  
0x006F  
TMS320F28069U  
TMS320F28069M  
TMS320F28069F  
TMS320F28068U  
TMS320F28068M  
TMS320F28068F  
TMS320F28067  
TMS320F28067U  
TMS320F28066  
No  
TMS320F28066U  
TMS320F28065  
TMS320F28065U  
TMS320F28064  
TMS320F28064U  
TMS320F28063  
TMS320F28063U  
TMS320F28062  
TMS320F28062U  
TMS320F28062F  
0x0000 - Silicon Rev. 0 - TMX  
0x0001 - Silicon Rev. A - TMS  
0x0002 - Silicon Rev. B - TMS  
REVID  
0x0883  
1
Revision ID Register  
No  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.5 VREG, BOR, POR  
Although the core and I/O circuitry operate on two different voltages, these devices have an on-chip VREG to  
generate the VDD voltage from the VDDIO supply. This eliminates the cost and space of a second external  
regulator on an application board. Additionally, internal power-on reset (POR) and brownout reset (BOR) circuits  
monitor both the VDD and VDDIO rails during power-up and run mode.  
8.5.1 On-chip VREG  
A linear regulator generates the core voltage (VDD) from the VDDIO supply. Therefore, although capacitors are  
required on each VDD pin to stabilize the generated voltage, power need not be supplied to these pins to operate  
the device. Conversely, the VREG can be disabled, should power or redundancy be the primary concern of the  
application.  
8.5.1.1 Using the On-chip VREG  
To use the on-chip VREG, the VREGENZ pin should be tied low and the appropriate recommended operating  
voltage should be supplied to the VDDIO and VDDA pins. In this case, the VDD voltage needed by the core logic  
will be generated by the VREG. Each VDD pin requires on the order of 1.2 μF (minimum) capacitance for proper  
regulation of the VREG. These capacitors should be located as close as possible to the VDD pins. Driving an  
external load with the internal VREG is not supported.  
8.5.1.2 Disabling the On-chip VREG  
To conserve power, it is also possible to disable the on-chip VREG and supply the core logic voltage to the VDD  
pins with a more efficient external regulator. To enable this option, the VREGENZ pin must be tied high.  
8.5.2 On-chip Power-On Reset (POR) and Brownout Reset (BOR) Circuit  
Two on-chip supervisory circuits, the power-on reset (POR) and the brownout reset (BOR) remove the burden of  
monitoring the VDD and VDDIO supply rails from the application board. The purpose of the POR is to create a  
clean reset throughout the device during the entire power-up procedure. The trip point is a looser, lower trip point  
than the BOR, which watches for dips in the VDD or VDDIO rail during device operation. The POR function is  
present on both VDD and VDDIO rails at all times. After initial device power-up, the BOR function is present on  
VDDIO at all times, and on VDD when the internal VREG is enabled ( VREGENZ pin is tied low). Both functions tie  
the XRS pin low when one of the voltages is below their respective trip point. VDD BOR and overvoltage trip  
points are outside of the recommended operating voltages. Proper device operation cannot be ensured. If  
overvoltage or undervoltage conditions affecting the system is a concern for an application, an external voltage  
supervisor should be added. Figure 8-9 shows the VREG, POR, and BOR. To disable both the VDD and VDDIO  
BOR functions, a bit is provided in the BORCFG register. For details, see the Systems Control and Interrupts  
chapter of the TMS320x2806x Technical Reference Manual .  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
In  
I/O Pin  
Out  
(Force Hi-Z When High)  
DIR (0 = Input, 1 = Output)  
SYSRS  
Internal  
Weak PU  
SYSCLKOUT  
Sync  
Deglitch  
Filter  
RS  
WDRST  
C28  
Core  
MCLKRS  
JTAG  
TCK  
PLL  
Detect  
Logic  
XRS  
Pin  
+
Clocking  
Logic  
VREGHALT  
WDRST(A)  
PBRS(B)  
POR/BOR  
On-Chip  
Generating  
Voltage  
VREGENZ  
Module  
Regulator  
(VREG)  
A. WDRST is the reset signal from the CPU-watchdog.  
B. PBRS is the reset signal from the POR/BOR module.  
Figure 8-9. VREG + POR + BOR + Reset Signal Connectivity  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.6 System Control  
This section describes the oscillator and clocking mechanisms, the watchdog function and the low-power modes.  
Table 8-11. PLL, Clocking, Watchdog, and Low-Power Mode Registers  
NAME  
ADDRESS  
0x00 0985  
0x00 7010  
0x00 7011  
0x00 7012  
0x00 7013  
0x00 7014  
0x00 7016  
0x00 7019  
0x00 701B  
0x00 701C  
0x00 701D  
0x00 701E  
0x00 7020  
0x00 7021  
0x00 7022  
0x00 7023  
0x00 7025  
0x00 7029  
0x00 702A  
0x00 7030  
0x00 7032  
0x00 7034  
0x00 7036  
0x00 703A  
SIZE (×16)  
DESCRIPTION(1)  
BORCFG  
XCLK  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
BOR Configuration Register  
XCLKOUT Control  
PLLSTS  
CLKCTL  
PLL Status Register  
Clock Control Register  
PLLLOCKPRD  
INTOSC1TRIM  
INTOSC2TRIM  
PCLKCR2  
LOSPCP  
PLL Lock Period  
Internal Oscillator 1 Trim Register  
Internal Oscillator 2 Trim Register  
Peripheral Clock Control Register 2  
Low-Speed Peripheral Clock Prescaler Register  
Peripheral Clock Control Register 0  
Peripheral Clock Control Register 1  
Low-Power Mode Control Register 0  
Peripheral Clock Control Register 3  
PLL Control Register  
PCLKCR0  
PCLKCR1  
LPMCR0  
PCLKCR3  
PLLCR  
SCSR  
System Control and Status Register  
Watchdog Counter Register  
Watchdog Reset Key Register  
Watchdog Control Register  
WDCNTR  
WDKEY  
WDCR  
JTAGDEBUG  
PLL2CTL  
JTAG Port Debug Register  
PLL2 Configuration Register  
PLL2 Multiplier Register  
PLL2MULT  
PLL2STS  
PLL2 Lock Status Register  
SYSCLK2CNTR  
EPWMCFG  
SYSCLK2 Clock Counter Register  
ePWM DMA/CLA Configuration Register  
(1) All registers in this table are EALLOW protected.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 8-10 shows the various clock domains that are discussed. Figure 8-11 shows the various clock sources  
(both internal and external) that can provide a clock for device operation.  
SYSCLKOUT  
PCLKCR0/1/2/3  
(System Ctrl Regs)  
LOSPCP  
(System Ctrl Regs)  
PLL2  
C28x Core  
CLKIN  
LSPCLK  
Clock Enables  
SPI-A, SPI-B, SCI-A, SCI-B  
Clock Enables  
USB  
Peripheral  
Registers  
I/O  
I/O  
PF2  
Peripheral  
Registers  
PF3  
LOSPCP  
(System Ctrl Regs)  
Clock Enables  
LSPCLK  
Peripheral  
Registers  
I/O  
I/O  
I/O  
I/O  
McBSP  
Clock Enables  
eCAN-A  
PF3  
PF1  
PF3  
PF3  
PF2  
PF1  
/2  
Peripheral  
Registers  
GPIO  
Mux  
Clock Enables  
Peripheral  
Registers  
eCAP1, eCAP2, eCAP3  
eQEP1, eQEP2  
Clock Enables  
ePWM1, ePWM2,  
ePWM3, ePWM4, ePWM5,  
ePWM6, ePWM7, ePWM8  
Peripheral  
Registers  
Clock Enables  
Peripheral  
Registers  
I2C-A  
I/O  
I/O  
Clock Enables  
Peripheral  
Registers  
HRCAP1, HRCAP2,  
HRCAP3, HRCAP4  
Clock Enables  
12-Bit ADC  
ADC  
Registers  
PF2  
PF0  
16 Ch  
Analog  
GPIO  
Mux  
Clock Enables  
COMP  
Registers  
COMP1, COMP2, COMP3  
6
PF3  
A. CLKIN is the clock into the CPU. CLKIN is passed out of the CPU as SYSCLKOUT (that is, CLKIN is the same frequency as  
SYSCLKOUT).  
Figure 8-10. Clock and Reset Domains  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
CLKCTL[WDCLKSRCSEL]  
Internal  
OSC 1  
(10 MHz)  
0
OSC1CLK  
INTOSC1TRIM Reg(A)  
OSCCLKSRC1  
WDCLK  
CPU-Watchdog  
(OSC1CLK on XRS reset)  
OSCE  
1
CLKCTL[INTOSC1OFF]  
1 = Turn OSC Off  
CLKCTL[OSCCLKSRCSEL]  
CLKCTL[INTOSC1HALT]  
1 = Ignore HALT  
WAKEOSC  
OSC2CLK  
0
1
Internal  
OSC 2  
(10 MHz)  
INTOSC2TRIM Reg(A)  
OSCCLK  
PLL  
Missing-Clock-Detect Circuit(B)  
SYSCLKOUT  
(OSC1CLK on XRS reset)  
OSCE  
CLKCTL[TRM2CLKPRESCALE]  
CLKCTL[TMR2CLKSRCSEL]  
1 = Turn OSC Off  
10  
11  
CLKCTL[INTOSC2OFF]  
Prescale  
/1, /2, /4,  
/8, /16  
SYNC  
Edge  
Detect  
01, 10, 11  
CPUTMR2CLK  
1 = Ignore HALT  
01  
1
0
00  
CLKCTL[INTOSC2HALT]  
SYSCLKOUT  
OSCCLKSRC2  
CLKCTL[OSCCLKSRC2SEL]  
0 = GPIO38  
1 = GPIO19  
XCLK[XCLKINSEL]  
PLL2CTL.PLL2CLKSRCSEL  
PLL2CTL.PLL2EN  
CLKCTL[XCLKINOFF]  
0
1
0
DEVICECNF[SYSCLK2DIV2DIS]  
PLL2  
GPIO19  
or  
XCLKIN  
0
/2  
GPIO38  
XCLKIN  
SYSCLK2 to USB  
HRCAP  
1
X1  
X2  
PLL2CLK  
EXTCLK  
(Crystal)  
OSC  
XTAL  
WAKEOSC  
(Oscillators enabled when this signal is high)  
0 = OSC on (default on reset)  
1 = Turn OSC off  
CLKCTL[XTALOSCOFF]  
A. Register loaded from TI OTP-based calibration function.  
B. See Section 8.6.5 for details on missing clock detection.  
Figure 8-11. Clock Tree  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.6.1 Internal Zero Pin Oscillators  
The F2806x devices contain two independent internal zero pin oscillators. By default both oscillators are turned  
on at power up, and internal oscillator 1 is the default clock source at this time. For power savings, unused  
oscillators may be powered down by the user. The center frequency of these oscillators is determined by their  
respective oscillator trim registers, written to in the calibration routine as part of the boot ROM execution. See  
Section 8.9 for more information on these oscillators.  
8.6.2 Crystal Oscillator Option  
The on-chip crystal oscillator X1 and X2 pins are 1.8-V level signals and must never have 3.3-V level signals  
applied to them. If a system 3.3-V external oscillator is to be used as a clock source, it should be connected to  
the XCLKIN pin only. The X1 pin is not intended to be used as a single-ended clock input, it should be used with  
X2 and a crystal.  
The typical specifications for the external quartz crystal (fundamental mode, parallel resonant) are listed in Table  
8-12. Furthermore, ESR range = 30 to 150 Ω.  
Table 8-12. Typical Specifications for External Quartz Crystal (1)  
FREQUENCY (MHz)  
Rd (Ω)  
2200  
470  
0
CL1 (pF)  
CL2 (pF)  
5
18  
18  
10  
15  
20  
15  
15  
15  
15  
0
12  
12  
(1) Cshunt should be less than or equal to 5 pF.  
XCLKIN/GPIO19/38  
X1  
X2  
Rd  
Turn off  
XCLKIN path  
in CLKCTL  
register  
Crystal  
CL1  
CL2  
Figure 8-12. Using the On-chip Crystal Oscillator  
Note  
1. CL1 and CL2 are the total capacitance of the circuit board and components excluding the IC and  
crystal. The value is usually approximately twice the value of the load capacitance of the crystal.  
2. The load capacitance of the crystal is described in the crystal specifications of the manufacturers.  
3. TI recommends that customers have the resonator/crystal vendor characterize the operation of  
their device with the MCU chip. The resonator/crystal vendor has the equipment and expertise to  
tune the tank circuit. The vendor can also advise the customer regarding the proper tank  
component values that will produce proper start-up and stability over the entire operating range.  
XCLKIN/GPIO19/38  
X1  
X2  
NC  
External Clock Signal  
(Toggling 0−V  
)
DDIO  
Figure 8-13. Using a 3.3-V External Oscillator  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.6.3 PLL-Based Clock Module  
The devices have an on-chip, PLL-based clock module. This module provides all the necessary clocking signals  
for the device, as well as control for low-power mode entry. The PLL has a 5-bit ratio control PLLCR[DIV] to  
select different CPU clock rates. The watchdog module should be disabled before writing to the PLLCR register.  
The watchdog module can be re-enabled (if need be) after the PLL module has stabilized, which takes 1 ms.  
The input clock and PLLCR[DIV] bits should be chosen in such a way that the output frequency of the PLL  
(VCOCLK) is at least 50 MHz.  
Table 8-13. PLL Settings  
SYSCLKOUT (CLKIN)  
PLLCR[DIV] VALUE(2) (3)  
PLLSTS[DIVSEL] = 0 or 1(1)  
OSCCLK/4 (Default)(2)  
(OSCCLK * 1)/4  
(OSCCLK * 2)/4  
(OSCCLK * 3)/4  
(OSCCLK * 4)/4  
(OSCCLK * 5)/4  
(OSCCLK * 6)/4  
(OSCCLK * 7)/4  
(OSCCLK * 8)/4  
(OSCCLK * 9)/4  
(OSCCLK * 10)/4  
(OSCCLK * 11)/4  
(OSCCLK * 12)/4  
(OSCCLK * 13)/4  
(OSCCLK * 14)/4  
(OSCCLK * 15)/4  
(OSCCLK * 16)/4  
(OSCCLK * 17)/4  
(OSCCLK * 18)/4  
PLLSTS[DIVSEL] = 2  
OSCCLK/2  
PLLSTS[DIVSEL] = 3  
OSCCLK  
00000 (PLL bypass)  
00001  
00010  
00011  
(OSCCLK * 1)/2  
(OSCCLK * 2)/2  
(OSCCLK * 3)/2  
(OSCCLK * 4)/2  
(OSCCLK * 5)/2  
(OSCCLK * 6)/2  
(OSCCLK * 7)/2  
(OSCCLK * 8)/2  
(OSCCLK * 9)/2  
(OSCCLK * 10)/2  
(OSCCLK * 11)/2  
(OSCCLK * 12)/2  
(OSCCLK * 13)/2  
(OSCCLK * 14)/2  
(OSCCLK * 15)/2  
(OSCCLK * 16)/2  
(OSCCLK * 17)/2  
(OSCCLK * 18)/2  
(OSCCLK * 1)/1  
(OSCCLK * 2)/1  
(OSCCLK * 3)/1  
(OSCCLK * 4)/1  
(OSCCLK * 5)/1  
(OSCCLK * 6)/1  
(OSCCLK * 7)/1  
(OSCCLK * 8)/1  
(OSCCLK * 9)/1  
(OSCCLK * 10)/1  
(OSCCLK * 11)/1  
(OSCCLK * 12)/1  
(OSCCLK * 13)/1  
(OSCCLK * 14)/1  
(OSCCLK * 15)/1  
(OSCCLK * 16)/1  
(OSCCLK * 17)/1  
(OSCCLK * 18)/1  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
(1) By default, PLLSTS[DIVSEL] is configured for /4. (The boot ROM changes this to /1.) PLLSTS[DIVSEL] must be 0 before writing to the  
PLLCR and should be changed only after PLLSTS[PLLLOCKS] = 1.  
(2) The PLL control register (PLLCR) and PLL Status Register (PLLSTS) are reset to their default state by the XRS signal or a watchdog  
reset only. A reset issued by the debugger or the missing clock detect logic has no effect.  
(3) This register is EALLOW protected. See the Systems Control and Interrupts chapter of the TMS320x2806x Technical Reference  
Manual for more information.  
Table 8-14. CLKIN Divide Options  
PLLSTS [DIVSEL]  
CLKIN DIVIDE  
0
1
2
3
/4  
/4  
/2  
/1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
The PLL-based clock module provides four modes of operation:  
INTOSC1 (Internal Zero-pin Oscillator 1): This is the on-chip internal oscillator 1. This can provide the clock  
for the Watchdog block, core and CPU-Timer 2  
INTOSC2 (Internal Zero-pin Oscillator 2): This is the on-chip internal oscillator 2. This can provide the clock  
for the Watchdog block, core and CPU-Timer 2. Both INTOSC1 and INTOSC2 can be independently chosen  
for the Watchdog block, core and CPU-Timer 2.  
Crystal/Resonator Operation: The on-chip (crystal) oscillator enables the use of an external crystal/  
resonator attached to the device to provide the time base. The crystal/resonator is connected to the X1/X2  
pins. Some devices may not have the X1/X2 pins. See Section 6.2.1 for details.  
External Clock Source Operation: If the on-chip (crystal) oscillator is not used, this mode allows it to be  
bypassed. The device clocks are generated from an external clock source input on the XCLKIN pin. The  
XCLKIN is multiplexed with GPIO19 or GPIO38 pin. The XCLKIN input can be selected as GPIO19 or  
GPIO38 through the XCLKINSEL bit in XCLK register. The CLKCTL[XCLKINOFF] bit disables this clock input  
(forced low). If the clock source is not used or the respective pins are used as GPIOs, the user should disable  
at boot time.  
Before changing clock sources, ensure that the target clock is present. If a clock is not present, then that clock  
source must be disabled (using the CLKCTL register) before switching clocks.  
Table 8-15. Possible PLL Configuration Modes  
PLL MODE  
REMARKS  
PLLSTS[DIVSEL] CLKIN AND SYSCLKOUT  
PLL Off  
Invoked by the user setting the PLLOFF bit in the PLLSTS register. The  
PLL block is disabled in this mode. This can be useful to reduce system  
noise and for low-power operation. The PLLCR register must first be set  
to 0x0000 (PLL Bypass) before entering this mode. The CPU clock  
(CLKIN) is derived directly from the input clock on either X1/X2, X1 or  
XCLKIN.  
0, 1  
2
OSCCLK/4  
OSCCLK/2  
OSCCLK/1  
3
PLL Bypass PLL Bypass is the default PLL configuration upon power-up or after an  
external reset ( XRS). This mode is selected when the PLLCR register is  
set to 0x0000 or while the PLL locks to a new frequency after the PLLCR  
register has been modified. In this mode, the PLL is bypassed but the  
PLL is not turned off.  
0, 1  
2
OSCCLK/4  
OSCCLK/2  
OSCCLK/1  
3
PLL Enable Achieved by writing a non-zero value n into the PLLCR register. Upon  
writing to the PLLCR the device will switch to PLL Bypass mode until the  
PLL locks.  
0, 1  
2
OSCCLK * n/4  
OSCCLK * n/2  
OSCCLK * n/1  
3
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.6.4 USB and HRCAP PLL Module (PLL2)  
In addition to the main system PLL, these devices also contain a second PLL (PLL2) which can be used to clock  
the USB and HRCAP peripherals. The PLL supports multipliers of 1 to 15 and has a fixed divide-by-two on its  
output.  
PLL2 may be clocked from the following three sources by modifying the PLL2CLKSRCSEL bits appropriately in  
the PLL2CTL register:  
INTOSC1 (Internal Zero-pin Oscillator 1): This is the on-chip internal oscillator 1 and provides a 10-MHz  
clock. If used as a clock source for HRCAP, the oscillator compensation routine should be called frequently.  
Because of accuracy requirements, INTOSC1 cannot be used as a clock source for the USB.  
Crystal/Resonator Operation: The (crystal) oscillator enables the use of an external crystal or resonator  
attached to the device to provide the time base. The crystal or resonator is connected to the X1/X2 pins.  
External Clock Source Operation: This mode allows the reference clock to be derived from an external single-  
ended clock source connected to either GPIO19 or GPIO38. The XCLKINSEL bit in the XCLK register should  
be set appropriately to enable the selected GPIO to drive XCLKIN.  
Note  
For proper operation of the USB module, PLL2 should be configured to generate a 120-MHz clock.  
This will be divided by two to yield the desired 60 MHz for the USB peripheral.  
HRCAP supports a maximum clock input frequency of 120 MHz.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.6.5 Loss of Input Clock (NMI Watchdog Function)  
The 2806x devices may be clocked from either one of the internal zero-pin oscillators (INTOSC1/INTOSC2), the  
on-chip crystal oscillator, or from an external clock input. Regardless of the clock source, in PLL-enabled and  
PLL-bypass mode, if the input clock to the PLL vanishes, the PLL will issue a limp-mode clock at its output. This  
limp-mode clock continues to clock the CPU and peripherals at a typical frequency of 1–5 MHz.  
When the limp mode is activated, a CLOCKFAIL signal is generated that is latched as an NMI interrupt.  
Depending on how the NMIRESETSEL bit has been configured, a reset to the device can be fired immediately or  
the NMI watchdog counter can issue a reset when it overflows. In addition to this, the Missing Clock Status  
(MCLKSTS) bit is set. The NMI interrupt could be used by the application to detect the input clock failure and  
initiate necessary corrective action such as switching over to an alternative clock source (if available) or initiate a  
shut-down procedure for the system.  
If the software does not respond to the clock-fail condition, the NMI watchdog triggers a reset after a  
preprogrammed time interval. Figure 8-14 shows the interrupt mechanisms involved.  
NMIFLG[NMINT]  
NMIFLGCLR[NMINT]  
Clear  
Latch  
Set  
Clear  
XRS  
Generate  
Interrupt  
Pulse  
When  
Input = 1  
NMIFLG[CLOCKFAIL]  
Clear  
Latch  
1
0
0
NMIFLGCLR[CLOCKFAIL]  
CLOCKFAIL  
NMINT  
SYNC?  
Set  
Clear  
SYSCLKOUT  
NMICFG[CLOCKFAIL]  
NMIFLGFRC[CLOCKFAIL]  
XRS  
SYSCLKOUT  
SYSRS  
NMIWDPRD[15:0]  
NMIWDCNT[15:0]  
See System  
Control Section  
NMI Watchdog  
NMIRS  
Figure 8-14. NMI-Watchdog  
8.6.6 CPU Watchdog Module  
The CPU watchdog module on the 2806x device is similar to the one used on the 281x/280x/283xx devices. This  
module generates an output pulse, 512 oscillator clocks wide (OSCCLK), whenever the 8-bit watchdog up  
counter has reached its maximum value. To prevent this, the user must disable the counter or the software must  
periodically write a 0x55 + 0xAA sequence into the watchdog key register that resets the watchdog counter.  
Figure 8-15 shows the various functional blocks within the watchdog module.  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Normally, when the input clocks are present, the CPU-watchdog counter decrements to initiate a CPU-watchdog  
reset or WDINT interrupt. However, when the external input clock fails, the CPU-watchdog counter stops  
decrementing (that is, the watchdog counter does not change with the limp-mode clock).  
Note  
The CPU-watchdog is different from the NMI watchdog. The CPU-watchdog is the legacy watchdog  
that is present in all 28x devices.  
Note  
Applications in which the correct CPU operating frequency is absolutely critical should implement a  
mechanism by which the MCU will be held in reset, should the input clocks ever fail. For example, an  
R-C circuit may be used to trigger the XRS pin of the MCU, should the capacitor ever get fully  
charged. An I/O pin may be used to discharge the capacitor on a periodic basis to prevent it from  
getting fully charged. Such a circuit would also help in detecting failure of the flash memory.  
WDCR (WDPS[2:0])  
WDCR (WDDIS)  
WDCNTR(7:0)  
WDCLK  
WDCLK  
8-Bit  
Watchdog  
Counter  
CLR  
Watchdog  
Prescaler  
/512  
SCSR(WDOVERRIDE)  
Clear Counter  
Internal  
Pullup  
WDKEY(7:0)  
WDRST  
WDINT  
Generate  
Watchdog  
55 + AA  
Output Pulse  
(512 OSCCLKs)  
Good Key  
Key Detector  
XRS  
Bad  
WDCHK  
Key  
Core-reset  
SCSR (WDENINT)  
WDCR (WDCHK[2:0])  
1
0
1
(A)  
WDRST  
A. The WDRST signal is driven low for 512 OSCCLK cycles.  
Figure 8-15. CPU Watchdog Module  
The WDINT signal enables the watchdog to be used as a wakeup from IDLE/STANDBY mode.  
In STANDBY mode, all peripherals are turned off on the device. The only peripheral that remains functional is  
the CPU-watchdog. This module will run off OSCCLK. The WDINT signal is fed to the LPM block so that it can  
wake the device from STANDBY (if enabled). See Section 8.7 for more details.  
In IDLE mode, the WDINT signal can generate an interrupt to the CPU, through the PIE, to take the CPU out of  
IDLE mode.  
In HALT mode, the CPU-watchdog can be used to wake up the device through a device reset.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.7 Low-power Modes Block  
Table 8-16 summarizes the various modes.  
Table 8-16. Low-power Modes  
MODE  
LPMCR0(1:0)  
OSCCLK  
CLKIN  
SYSCLKOUT  
EXIT(1)  
XRS, CPU-watchdog interrupt, any  
enabled interrupt  
IDLE  
00  
On  
On  
On  
On  
XRS, CPU-watchdog interrupt, GPIO  
Port A signal, debugger(2)  
STANDBY  
HALT(3)  
01  
1X  
Off  
Off  
Off  
Off  
(CPU-watchdog still running)  
Off  
(on-chip crystal oscillator and PLL  
turned off, zero-pin oscillator and  
CPU-watchdog state dependent  
on user code.)  
XRS, GPIO Port A signal, debugger(2)  
CPU-watchdog  
,
(1) The EXIT column lists which signals or under what conditions the low-power mode is exited. A low signal, on any of the signals, exits  
the low-power condition. This signal must be kept low long enough for an interrupt to be recognized by the device. Otherwise, the low-  
power mode will not be exited and the device will go back into the indicated low-power mode.  
(2) The JTAG port can still function even if the CPU clock (CLKIN) is turned off.  
(3) The WDCLK must be active for the device to go into HALT mode.  
The various low-power modes operate as follows:  
IDLE Mode:  
This mode is exited by any enabled interrupt that is recognized by the processor. The LPM block  
performs no tasks during this mode as long as the LPMCR0(LPM) bits are set to 0,0.  
STANDBY Mode:  
Any GPIO port A signal (GPIO[31:0]) can wake the device from STANDBY mode. The user must  
select which signals will wake the device in the GPIOLPMSEL register. The selected signals are also  
qualified by the OSCCLK before waking the device. The number of OSCCLKs is specified in the  
LPMCR0 register.  
HALT Mode:  
CPU-watchdog, XRS, and any GPIO port A signal (GPIO[31:0]) can wake the device from HALT  
mode. The user selects the signal in the GPIOLPMSEL register.  
Note  
The low-power modes do not affect the state of the output pins (PWM pins included). They will be in  
whatever state the code left them in when the IDLE instruction was executed. See the Systems  
Control and Interrupts chapter of the TMS320x2806x Technical Reference Manual for more details.  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.8 Interrupts  
Figure 8-16 shows how the various interrupt sources are multiplexed.  
Peripherals  
(SPI, SCI, I2C, eCAN, eCAP, eQEP,  
HRCAP, CLA)  
Peripherals  
(USB, McBSP, ePWM, ADC)  
clear  
DMA  
C28x  
Core  
WDINT  
Watchdog  
WAKEINT  
Sync  
LPMINT  
Low-Power Modes  
SYSCLKOUT  
DMA  
M
U
X
XINT1  
XINT1  
Interrupt Control  
XINT1CR[15:0]  
XINT1CTR[15:0]  
INT1  
to  
INT12  
GPIOXINT1SEL[4:0]  
XINT2SOC  
DMA  
ADC  
M
U
X
XINT2  
XINT2  
Interrupt Control  
XINT2CR[15:0]  
XINT2CTR[15:0]  
GPIOXINT2SEL[4:0]  
GPIO0.int  
DMA  
DMA  
M
XINT3  
XINT3  
U
GPIO  
MUX  
Interrupt Control  
XINT3CR[15:0]  
XINT3CTR[15:0]  
X
GPIO31.int  
GPIOXINT3SEL[4:0]  
TINT0  
TINT1  
TINT2  
CPU TIMER 0  
CPU TIMER 1  
CPU TIMER 2  
TOUT1  
Flash Wrapper  
INT13  
INT14  
CPUTMR2CLK  
CLOCKFAIL  
NMIRS  
NMI Interrupt With Watchdog Function  
(See the NMI Watchdog section.)  
System Control  
(See the System Control section.)  
NMI  
Figure 8-16. External and PIE Interrupt Sources  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Eight PIE block interrupts are grouped into one CPU interrupt. In total, 12 CPU interrupt groups, with 8 interrupts  
per group equals 96 possible interrupts. Table 8-17 shows the interrupts used by 2806x devices.  
The TRAP #VectorNumber instruction transfers program control to the interrupt service routine (ISR)  
corresponding to the vector specified. The TRAP #0 instruction attempts to transfer program control to the  
address pointed to by the reset vector. The PIE vector table does not, however, include a reset vector. Therefore,  
the TRAP #0 instruction should not be used when the PIE is enabled. Doing so will result in undefined behavior.  
When the PIE is enabled, the TRAP #1 to TRAP #12 instructions will transfer program control to the ISR  
corresponding to the first vector within the PIE group. For example: the TRAP #1 instruction fetches the vector  
from INT1.1, the TRAP #2 instruction fetches the vector from INT2.1, and so forth.  
IFR[12:1]  
IER[12:1]  
INTM  
INT1  
INT2  
1
CPU  
MUX  
0
INT11  
INT12  
Global  
Enable  
(Flag)  
(Enable)  
INTx.1  
INTx.2  
INTx.3  
INTx.4  
INTx.5  
From  
Peripherals  
or  
External  
Interrupts  
INTx  
MUX  
INTx.6  
INTx.7  
INTx.8  
PIEACKx  
(Enable)  
(Flag)  
(Enable/Flag)  
PIEIERx[8:1]  
PIEIFRx[8:1]  
Figure 8-17. Multiplexing of Interrupts Using the PIE Block  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-17. PIE MUXed Peripheral Interrupt Vector Table (1)  
INTx.8  
WAKEINT  
(LPM/WD)  
0xD4E  
INTx.7  
INTx.6  
ADCINT9  
(ADC)  
INTx.5  
INTx.4  
INTx.3  
Reserved  
INTx.2  
ADCINT2  
(ADC)  
INTx.1  
ADCINT1  
(ADC)  
INT1.y  
INT2.y  
INT3.y  
INT4.y  
INT5.y  
INT6.y  
INT7.y  
INT8.y  
INT9.y  
INT10.y  
INT11.y  
INT12.y  
TINT0  
XINT2  
XINT1  
(TIMER 0)  
0xD4C  
Ext. int. 2  
0xD48  
Ext. int. 1  
0xD46  
0xD4A  
0xD44  
0xD42  
0xD40  
EPWM8_TZINT  
(ePWM8)  
0xD5E  
EPWM7_TZINT  
(ePWM7)  
0xD5C  
EPWM6_TZINT  
(ePWM6)  
0xD5A  
EPWM5_TZINT  
(ePWM5)  
0xD58  
EPWM4_TZINT  
(ePWM4)  
0xD56  
EPWM3_TZINT  
(ePWM3)  
0xD54  
EPWM2_TZINT  
(ePWM2)  
0xD52  
EPWM1_TZINT  
(ePWM1)  
0xD50  
EPWM8_INT  
(ePWM8)  
0xD6E  
EPWM7_INT  
(ePWM7)  
0xD6C  
EPWM6_INT  
(ePWM6)  
0xD6A  
EPWM5_INT  
(ePWM5)  
0xD68  
EPWM4_INT  
(ePWM4)  
0xD66  
EPWM3_INT  
(ePWM3)  
0xD64  
EPWM2_INT  
(ePWM2)  
0xD62  
EPWM1_INT  
(ePWM1)  
0xD60  
HRCAP2_INT  
(HRCAP2)  
0xD7E  
HRCAP1_INT  
(HRCAP1)  
0xD7C  
Reserved  
Reserved  
Reserved  
ECAP3_INT  
(eCAP3)  
0xD74  
ECAP2_INT  
(eCAP2)  
0xD72  
ECAP1_INT  
(eCAP1)  
0xD70  
0xD7A  
0xD78  
0xD76  
USB0_INT  
(USB0)  
0xD8E  
Reserved  
Reserved  
HRCAP4_INT  
(HRCAP4)  
0xD88  
HRCAP3_INT  
(HRCAP3)  
0xD86  
Reserved  
EQEP2_INT  
(eQEP2)  
0xD82  
EQEP1_INT  
(eQEP1)  
0xD80  
0xD8C  
0xD8A  
0xD84  
Reserved  
Reserved  
MXINTA  
(McBSP-A)  
0xD9A  
MRINTA  
(McBSP-A)  
0xD98  
SPITXINTB  
(SPI-B)  
0xD96  
SPIRXINTB  
(SPI-B)  
0xD94  
SPITXINTA  
(SPI-A)  
SPIRXINTA  
(SPI-A)  
0xD9E  
0xD9C  
0xD92  
0xD90  
Reserved  
Reserved  
DINTCH6  
(DMA)  
DINTCH5  
(DMA)  
DINTCH4  
(DMA)  
DINTCH3  
(DMA)  
DINTCH2  
(DMA)  
DINTCH1  
(DMA)  
0xDAE  
0xDAC  
Reserved  
0xDAA  
0xDA8  
0xDA6  
0xDA4  
0xDA2  
0xDA0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
I2CINT2A  
(I2C-A)  
I2CINT1A  
(I2C-A)  
0xDBE  
0xDBC  
Reserved  
0xDBA  
0xDB8  
0xDB6  
0xDB4  
0xDB2  
0xDB0  
Reserved  
ECAN1_INTA  
(CAN-A)  
0xDCA  
ECAN0_INTA  
(CAN-A)  
0xDC8  
SCITXINTB  
(SCI-B)  
0xDC6  
SCIRXINTB  
(SCI-B)  
0xDC4  
SCITXINTA  
(SCI-A)  
SCIRXINTA  
(SCI-A)  
0xDCE  
0xDCC  
ADCINT7  
(ADC)  
0xDC2  
0xDC0  
ADCINT8  
(ADC)  
ADCINT6  
(ADC)  
ADCINT5  
(ADC)  
ADCINT4  
(ADC)  
ADCINT3  
(ADC)  
ADCINT2  
(ADC)  
ADCINT1  
(ADC)  
0xDDE  
0xDDC  
CLA1_INT7  
(CLA)  
0xDDA  
0xDD8  
0xDD6  
0xDD4  
0xDD2  
0xDD0  
CLA1_INT8  
(CLA)  
CLA1_INT6  
(CLA)  
CLA1_INT5  
(CLA)  
CLA1_INT4  
(CLA)  
CLA1_INT3  
(CLA)  
CLA1_INT2  
(CLA)  
CLA1_INT1  
(CLA)  
0xDEE  
0xDEC  
LVF  
0xDEA  
0xDE8  
0xDE6  
0xDE4  
0xDE2  
0xDE0  
LUF  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
XINT3  
(CLA)  
(CLA)  
Ext. Int. 3  
0xDF0  
0xDFE  
0xDFC  
0xDFA  
0xDF8  
0xDF6  
0xDF4  
0xDF2  
(1) Out of 96 possible interrupts, some interrupts are not used. These interrupts are reserved for future devices. These interrupts can be  
used as software interrupts if they are enabled at the PIEIFRx level, provided none of the interrupts within the group is being used by a  
peripheral. Otherwise, interrupts coming in from peripherals may be lost by accidentally clearing their flag while modifying the PIEIFR.  
To summarize, there are two safe cases when the reserved interrupts could be used as software interrupts:  
a. No peripheral within the group is asserting interrupts.  
b. No peripheral interrupts are assigned to the group (for example, PIE group 7).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-18. PIE Configuration and Control Registers  
NAME  
PIECTRL  
ADDRESS  
0x0CE0  
0x0CE1  
0x0CE2  
0x0CE3  
0x0CE4  
0x0CE5  
0x0CE6  
0x0CE7  
0x0CE8  
0x0CE9  
0x0CEA  
0x0CEB  
0x0CEC  
0x0CED  
0x0CEE  
0x0CEF  
0x0CF0  
0x0CF1  
0x0CF2  
0x0CF3  
0x0CF4  
0x0CF5  
0x0CF6  
0x0CF7  
0x0CF8  
0x0CF9  
SIZE (×16)  
DESCRIPTION(1)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
PIE, Control Register  
PIEACK  
PIEIER1  
PIEIFR1  
PIEIER2  
PIEIFR2  
PIEIER3  
PIEIFR3  
PIEIER4  
PIEIFR4  
PIEIER5  
PIEIFR5  
PIEIER6  
PIEIFR6  
PIEIER7  
PIEIFR7  
PIEIER8  
PIEIFR8  
PIEIER9  
PIEIFR9  
PIEIER10  
PIEIFR10  
PIEIER11  
PIEIFR11  
PIEIER12  
PIEIFR12  
Reserved  
PIE, Acknowledge Register  
PIE, INT1 Group Enable Register  
PIE, INT1 Group Flag Register  
PIE, INT2 Group Enable Register  
PIE, INT2 Group Flag Register  
PIE, INT3 Group Enable Register  
PIE, INT3 Group Flag Register  
PIE, INT4 Group Enable Register  
PIE, INT4 Group Flag Register  
PIE, INT5 Group Enable Register  
PIE, INT5 Group Flag Register  
PIE, INT6 Group Enable Register  
PIE, INT6 Group Flag Register  
PIE, INT7 Group Enable Register  
PIE, INT7 Group Flag Register  
PIE, INT8 Group Enable Register  
PIE, INT8 Group Flag Register  
PIE, INT9 Group Enable Register  
PIE, INT9 Group Flag Register  
PIE, INT10 Group Enable Register  
PIE, INT10 Group Flag Register  
PIE, INT11 Group Enable Register  
PIE, INT11 Group Flag Register  
PIE, INT12 Group Enable Register  
PIE, INT12 Group Flag Register  
Reserved  
0x0CFA –  
0x0CFF  
(1) The PIE configuration and control registers are not protected by EALLOW mode. The PIE vector  
table is protected.  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.8.1 External Interrupts  
Table 8-19. External Interrupt Registers  
NAME  
XINT1CR  
ADDRESS  
0x00 7070  
0x00 7071  
0x00 7072  
0x00 7078  
0x00 7079  
0x00 707A  
SIZE (×16)  
DESCRIPTION  
XINT1 configuration register  
XINT2 configuration register  
XINT3 configuration register  
XINT1 counter register  
1
1
1
1
1
1
XINT2CR  
XINT3CR  
XINT1CTR  
XINT2CTR  
XINT3CTR  
XINT2 counter register  
XINT3 counter register  
Each external interrupt can be enabled or disabled or qualified using positive, negative, or both positive and  
negative edge. For more information, see the Systems Control and Interrupts chapter of the TMS320x2806x  
Technical Reference Manual .  
8.8.1.1 External Interrupt Electrical Data/Timing  
8.8.1.1.1 External Interrupt Timing Requirements  
MIN(1)  
1tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
Synchronous  
With qualifier  
(2)  
tw(INT)  
Pulse duration, INT input low/high  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 8.9.15.1.2.1.  
(2) This timing is applicable to any GPIO pin configured for ADCSOC functionality.  
8.8.1.1.2 External Interrupt Switching Characteristics  
over recommended operating conditions (unless otherwise noted)(1)  
PARAMETER  
MIN  
MAX  
tw(IQSW) + 12tc(SCO)  
UNIT  
td(INT)  
Delay time, INT low/high to interrupt-vector fetch  
cycles  
(1) For an explanation of the input qualifier parameters, see Section 8.9.15.1.2.1.  
t
w(INT)  
XINT1, XINT2, XINT3  
t
d(INT)  
Address bus  
(internal)  
Interrupt Vector  
Figure 8-18. External Interrupt Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9 Peripherals  
8.9.1 CLA Overview  
The CLA extends the capabilities of the C28x CPU by adding parallel processing. Time-critical control loops  
serviced by the CLA can achieve low ADC sample to output delay. Thus, the CLA enables faster system  
response and higher frequency control loops. Using the CLA for time-critical tasks frees the main CPU to  
perform other system and communication functions concurently. A list of major features of the CLA follows.  
Clocked at the same rate as the main CPU (SYSCLKOUT)  
An independent architecture allowing CLA algorithm execution independent of the main C28x CPU  
– Complete bus architecture:  
Program address bus and program data bus  
Data address bus, data read bus, and data write bus  
– Independent eight-stage pipeline  
– 12-bit program counter (MPC)  
– Four 32-bit result registers (MR0 to MR3)  
– Two 16-bit auxillary registers (MAR0, MAR1)  
– Status register (MSTF)  
Instruction set includes:  
– IEEE single-precision (32-bit) floating-point math operations  
– Floating-point math with parallel load or store  
– Floating-point multiply with parallel add or subtract  
– 1/X and 1/sqrt(X) estimations  
– Data type conversions  
– Conditional branch and call  
– Data load and store operations  
The CLA program code can consist of up to eight tasks or ISRs.  
– The start address of each task is specified by the MVECT registers.  
– No limit on task size as long as the tasks fit within the CLA program memory space.  
– One task at a time is serviced to completion. Tasks are not nested.  
– Upon task completion, a task-specific interrupt is flagged within the PIE.  
– When a task finishes, the next highest-priority pending task is automatically started.  
Task trigger mechanisms:  
– C28x CPU through the IACK instruction  
Task1 to Task7: the corresponding ADC, ePWM, eQEP, or eCAP module interrupt. For example:  
Task1: ADCINT1 or EPWM1_INT  
Task2: ADCINT2 or EPWM2_INT  
Task4: ADCINT4 or EPWM4_INT or EQEPx_INT or ECAPx_INT  
Task7: ADCINT7 or EPWM7_INT or EQEPx_INT or ECAPx_INT  
Task8: ADCINT8 or by CPU Timer 0 or EQEPx_INT or ECAPx_INT.  
Memory and Shared Peripherals:  
– Two dedicated message RAMs for communication between the CLA and the main CPU  
– The C28x CPU can map CLA program and data memory to the main CPU space or CLA space.  
– The CLA has direct access to the ADC Result registers, comparator registers, and the eCAP, eQEP, and  
ePWM+HRPWM registers.  
Figure 8-19 shows the CLA block diagram. Table 8-20 lists the CLA control registers.  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Peripheral Interrupts  
CLA Control  
Registers  
IACK  
ADCINT1 to ADCINT8  
ECAP1_INT to ECAP3_INT  
EQEP1_INT and EQEP2_INT  
EPWM1_INT to EPWM8_INT  
CPU Timer 0  
MIFR  
MIOVF  
MICLR  
MICLROVF  
MIFRC  
MIER  
CLA_INT1 to CLA_INT8  
Main  
28x  
CPU  
INT11  
INT12  
MPERINT1  
to  
MPERINT8  
PIE  
LVF  
LUF  
MIRUN  
Main CPU Read/Write Data Bus  
MPISRCSEL1  
MVECT1  
MVECT2  
MVECT3  
MVECT4  
MVECT5  
MVECT6  
MVECT7  
MVECT8  
CLA Program Address Bus  
CLA Program Data Bus  
CLA  
Program  
Memory  
CLA  
Data  
Memory  
Map to CLA or  
CPU Space  
Map to CLA or  
CPU Space  
MMEMCFG  
MCTL  
CLA  
Shared  
Message  
RAMs  
SYSCLKOUT  
CLAENCLK  
SYSRS  
ADC  
Result  
Registers  
MEALLOW  
CLA Execution  
Registers  
ePWM  
and  
CLA Data Read Address Bus  
HRPWM  
Registers  
MPC(12)  
MSTF(32)  
MR0(32)  
MR1(32)  
MR2(32)  
MR3(32)  
CLA Data Read Data Bus  
CLA Data Write Address Bus  
CLA Data Write Data Bus  
Main CPU Read Data Bus  
Comparator  
Registers  
MAR0(32)  
MAR1(32)  
eCAP  
Registers  
eQEP  
Registers  
Figure 8-19. CLA Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-20. CLA Control Registers  
CLA1  
ADDRESS  
EALLOW  
PROTECTED  
REGISTER NAME  
MVECT1  
SIZE (×16)  
DESCRIPTION(1)  
0x1400  
0x1401  
0x1402  
0x1403  
0x1404  
0x1405  
0x1406  
0x1407  
0x1410  
0x1411  
0x1414  
0x1420  
0x1421  
0x1422  
0x1423  
0x1424  
0x1425  
0x1426  
0x1427  
0x1428  
0x142A  
0x142B  
0x142E  
0x1430  
0x1434  
0x1438  
0x143C  
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
CLA Interrupt/Task 1 Start Address  
CLA Interrupt/Task 2 Start Address  
CLA Interrupt/Task 3 Start Address  
CLA Interrupt/Task 4 Start Address  
CLA Interrupt/Task 5 Start Address  
CLA Interrupt/Task 6 Start Address  
CLA Interrupt/Task 7 Start Address  
CLA Interrupt/Task 8 Start Address  
CLA Control Register  
MVECT2  
MVECT3  
MVECT4  
MVECT5  
MVECT6  
MVECT7  
MVECT8  
MCTL  
MMEMCFG  
MPISRCSEL1  
MIFR  
CLA Memory Configure Register  
Peripheral Interrupt Source Select Register 1  
Interrupt Flag Register  
Interrupt Overflow Register  
Interrupt Force Register  
Interrupt Clear Register  
Interrupt Overflow Clear Register  
Interrupt Enable Register  
Interrupt RUN Register  
Interrupt Priority Control Register  
CLA Program Counter  
CLA Aux Register 0  
MIOVF  
MIFRC  
MICLR  
MICLROVF  
MIER  
MIRUN  
MIPCTL  
MPC(2)  
MAR0(2)  
MAR1(2)  
MSTF(2)  
MR0(2)  
CLA Aux Register 1  
CLA STF Register  
CLA R0H Register  
MR1(2)  
CLA R1H Register  
MR2(2)  
CLA R2H Register  
MR3(2)  
CLA R3H Register  
(1) All registers in this table are CSM-protected.  
(2) The main C28x CPU has read-only access to this register for debug purposes. The main CPU cannot perform CPU or debugger writes  
to this register.  
Table 8-21. CLA Message RAM  
ADDRESS RANGE  
0x1480 – 0x14FF  
0x1500 – 0x157F  
SIZE (×16)  
DESCRIPTION  
128  
CLA to CPU Message RAM  
CPU to CLA Message RAM  
128  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.2 Analog Block  
A 12-bit ADC core is implemented that has different timings than the 12-bit ADC used on the F280x and F2833x  
devices. The ADC wrapper is modified to incorporate the new timings and also other enhancements to improve  
the timing control of start of conversions. Figure 8-20 shows the interaction of the analog module with the rest of  
the F2806x system.  
80-Pin 100-Pin  
(3.3 V) VDDA  
(Agnd) VSSA  
VDDA  
VDDA  
VSSA  
VREFLO  
VREFLO  
Tied To  
VSSA  
Interface Reference  
Diff  
VREFLO  
VREFHI  
A0  
VREFHI  
Tied To  
A0  
VREFHI  
A0  
B0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
A1  
A2  
A1  
B1  
COMP1OUT  
A2  
A4  
A5  
A6  
AIO2  
AIO10  
10-Bit  
DAC  
Comp1  
Comp2  
B2  
A3  
B3  
ADC  
B0  
B1  
B2  
COMP2OUT  
A4  
B4  
AIO4  
AIO12  
10-Bit  
DAC  
B4  
B5  
B6  
B5  
Temperature Sensor  
A5  
A6  
COMP3OUT  
Signal Pinout  
AIO6  
AIO14  
10-Bit  
DAC  
Comp3  
B6  
A7  
B7  
Figure 8-20. Analog Pin Configurations  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.2.1 Analog-to-Digital Converter (ADC)  
8.9.2.1.1 Features  
The core of the ADC contains a single 12-bit converter fed by two sample-and-hold circuits. The sample-and-  
hold circuits can be sampled simultaneously or sequentially. These, in turn, are fed by a total of up to 16 analog  
input channels. The converter can be configured to run with an internal band-gap reference to create true-  
voltage based conversions or with a pair of external voltage references (VREFHI/VREFLO) to create ratiometric-  
based conversions.  
Contrary to previous ADC types, this ADC is not sequencer-based. The user can easily create a series of  
conversions from a single trigger. However, the basic principle of operation is centered around the configurations  
of individual conversions, called SOCs, or Start-Of-Conversions.  
Functions of the ADC module include:  
12-bit ADC core with built-in dual sample-and-hold (S/H)  
Simultaneous sampling or sequential sampling modes  
Full range analog input: 0 V to 3.3 V fixed, or VREFHI/VREFLO ratiometric. The digital value of the input analog  
voltage is derived by:  
– Internal Reference (VREFLO = VSSA. VREFHI must not exceed VDDA when using either internal or external  
reference modes.)  
Digital Value = 0,  
when input £ 0 V  
Input Analog Voltage -  
VREFLO  
Digital Value = 4096 ´  
when 0 V < input < 3.3 V  
3.3  
Digital Value = 4095,  
when input ³ 3.3 V  
– External Reference (VREFHI/VREFLO connected to external references. VREFHI must not exceed VDDA when  
using either internal or external reference modes.)  
Digital Value = 0,  
when input £ 0 V  
Input Analog Voltage -  
VREFLO  
Digital Value = 4096 ´  
when 0 V < input <  
VREFHI  
-
VREFHI VREFLO  
Digital Value = 4095,  
when input ³  
VREFHI  
Up to 16-channel, multiplexed inputs  
16 SOCs, configurable for trigger, sample window, and channel  
16 result registers (individually addressable) to store conversion values  
Multiple trigger sources  
– S/W – software immediate start  
– ePWM 1–8  
– GPIO XINT2  
– CPU Timer 0, CPU Timer 1, CPU Timer 2  
– ADCINT1, ADCINT2  
9 flexible PIE interrupts, can configure interrupt request after any conversion  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-22. ADC Configuration and Control Registers  
EALLOW  
PROTECTE  
D
SIZE  
(×16)  
REGISTER NAME  
ADDRESS  
DESCRIPTION  
ADCCTL1  
0x7100  
0x7101  
0x7104  
0x7105  
0x7106  
0x7107  
0x7108  
0x7109  
0x710A  
0x710B  
0x710C  
0x7110  
0x7112  
0x7114  
0x7115  
0x7118  
0x711A  
0x711C  
0x711E  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Yes  
Yes  
No  
Control 1 Register  
Control 2 Register  
Interrupt Flag Register  
ADCCTL2  
ADCINTFLG  
ADCINTFLGCLR  
ADCINTOVF  
No  
Interrupt Flag Clear Register  
No  
Interrupt Overflow Register  
ADCINTOVFCLR  
INTSEL1N2  
No  
Interrupt Overflow Clear Register  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Interrupt 1 and 2 Selection Register  
INTSEL3N4  
Interrupt 3 and 4 Selection Register  
INTSEL5N6  
Interrupt 5 and 6 Selection Register  
INTSEL7N8  
Interrupt 7 and 8 Selection Register  
INTSEL9N10  
Interrupt 9 Selection Register (reserved Interrupt 10 Selection)  
SOC Priority Control Register  
SOCPRICTL  
ADCSAMPLEMODE  
ADCINTSOCSEL1  
ADCINTSOCSEL2  
ADCSOCFLG1  
ADCSOCFRC1  
ADCSOCOVF1  
ADCSOCOVFCLR1  
Sampling Mode Register  
Interrupt SOC Selection 1 Register (for 8 channels)  
Interrupt SOC Selection 2 Register (for 8 channels)  
SOC Flag 1 Register (for 16 channels)  
SOC Force 1 Register (for 16 channels)  
SOC Overflow 1 Register (for 16 channels)  
SOC Overflow Clear 1 Register (for 16 channels)  
SOC0 Control Register to SOC15 Control Register  
No  
No  
No  
ADCSOC0CTL to  
ADCSOC15CTL  
0x7120 –  
0x712F  
1
Yes  
ADCREFTRIM  
ADCOFFTRIM  
COMPHYSTCTL  
ADCREV  
0x7140  
0x7141  
0x714C  
0x714F  
1
1
1
1
Yes  
Yes  
Yes  
No  
Reference Trim Register  
Offset Trim Register  
Comparator Hysteresis Control Register  
Revision Register  
Table 8-23. ADC Result Registers (Mapped to PF0)  
SIZE  
(×16)  
EALLOW  
PROTECTED  
REGISTER NAME  
ADCRESULT0 to ADCRESULT15  
ADDRESS  
DESCRIPTION  
0xB00 to  
0xB0F  
1
No  
ADC Result 0 Register to ADC Result 15 Register  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
0-Wait  
Result  
Registers  
PF0 (CPU)  
PF2 (CPU)  
SYSCLKOUT  
ADCENCLK  
ADCINT 1  
PIE  
ADCINT 9  
TINT 0  
CPUTIMER 0  
CPUTIMER 1  
CPUTIMER 2  
ADCTRIG 1  
ADCTRIG 2  
ADCTRIG 3  
TINT 1  
TINT 2  
ADC  
Core  
12-Bit  
XINT 2SOC  
AIO  
MUX  
ADC  
Channels  
XINT 2  
EPWM 1  
EPWM 2  
EPWM 3  
EPWM 4  
EPWM 5  
EPWM 6  
EPWM 7  
EPWM 8  
ADCTRIG 4  
SOCA 1  
SOCB 1  
SOCA 2  
SOCB 2  
SOCA 3  
SOCB 3  
SOCA 4  
SOCB 4  
SOCA 5  
SOCB 5  
SOCA 6  
SOCB 6  
SOCA 7  
SOCB 7  
SOCA 8  
SOCB 8  
ADCTRIG 5  
ADCTRIG 6  
ADCTRIG 7  
ADCTRIG 8  
ADCTRIG 9  
ADCTRIG 10  
ADCTRIG 11  
ADCTRIG 12  
ADCTRIG 13  
ADCTRIG 14  
ADCTRIG 15  
ADCTRIG 16  
ADCTRIG 17  
ADCTRIG 18  
ADCTRIG 19  
ADCTRIG 20  
Figure 8-21. ADC Connections  
ADC Connections if the ADC is Not Used  
TI recommends keeping the connections for the analog power pins, even if the ADC is not used. Following is a  
summary of how the ADC pins should be connected, if the ADC is not used in an application:  
VDDA – Connect to VDDIO  
VSSA – Connect to VSS  
VREFLO – Connect to VSS  
ADCINAn, ADCINBn, VREFHI – Connect to VSSA  
When the ADC module is used in an application, unused ADC input pins should be connected to analog ground  
(VSSA).  
Note  
TI recommends that unused ADCIN pins which are multiplexed with AIO function be grounded through  
a 1-kΩ resistor. This recommendation is intended to prevent any inadvertent software activation of the  
AIO output logic-high driving directly to ground; this condition can cause permanent device damage by  
exceeding IOH Absolute Maximum.  
When the ADC is not used, be sure that the clock to the ADC module is not turned on to realize power savings.  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.2.1.2 ADC Start-of-Conversion Electrical Data/Timing  
8.9.2.1.2.1 External ADC Start-of-Conversion Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
tw(ADCSOCL)  
Pulse duration, ADCSOCxO low  
32tc(HCO)  
cycles  
tw(ADCSOCL)  
ADCSOCAO  
or  
ADCSOCBO  
Figure 8-22. ADCSOCAO or ADCSOCBO Timing  
8.9.2.1.3 On-Chip Analog-to-Digital Converter (ADC) Electrical Data/Timing  
8.9.2.1.3.1 ADC Electrical Characteristics  
PARAMETER  
DC SPECIFICATIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
12  
Bits  
ADC clock  
90-MHz device  
0.001  
45  
64  
MHz  
ADC  
Clocks  
Sample Window  
7
ACCURACY  
INL (Integral nonlinearity)(1)  
–4  
–1  
4
LSB  
LSB  
DNL (Differential nonlinearity), no missing codes  
1.5  
Executing a single self-  
recalibration(3)  
–20  
–4  
20  
4
Offset error (2)  
LSB  
Executing periodic self-  
recalibration(4)  
Overall gain error with internal reference  
Overall gain error with external reference  
Channel-to-channel offset variation  
Channel-to-channel gain variation  
ADC temperature coefficient with internal reference  
ADC temperature coefficient with external reference  
VREFLO  
–60  
–40  
–4  
60  
40  
4
LSB  
LSB  
LSB  
–4  
4
LSB  
–50  
–20  
ppm/°C  
ppm/°C  
µA  
–100  
100  
VREFHI  
µA  
ANALOG INPUT  
Analog input voltage with internal reference  
Analog input voltage with external reference  
VREFLO input voltage(5)  
0
VREFLO  
VSSA  
3.3  
VREFHI  
0.66  
V
V
V
2.64  
VDDA  
VDDA  
VREFHI input voltage(6)  
V
with VREFLO = VSSA  
1.98  
Input capacitance  
5
pF  
μA  
Input leakage current  
±2  
(1) INL will degrade when the ADC input voltage goes above VDDA  
.
(2) 1 LSB has the weighted value of full-scale range (FSR)/4096. FSR is 3.3 V with internal reference and VREFHI - VREFLO for external  
reference.  
(3) For more details, see the TMS320F2806x MCUs Silicon Errata.  
(4) Periodic self-recalibration will remove system-level and temperature dependencies on the ADC zero offset error.  
(5) VREFLO is always connected to VSSA on the 80-pin PN and PFP devices.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
(6) VREFHI must not exceed VDDA when using either internal or external reference modes. Because VREFHI is tied to ADCINA0 on the 80-  
pin PN and PFP devices, the input signal on ADCINA0 must not exceed VDDA  
.
8.9.2.1.3.2 ADC Power Modes  
ADC OPERATING MODE  
CONDITIONS  
IDDA  
UNIT  
ADC Clock Enabled  
Band gap On (ADCBGPWD = 1)  
Reference On (ADCREFPWD = 1)  
ADC Powered Up (ADCPWDN = 1)  
Mode A – Operating Mode  
16  
mA  
ADC Clock Enabled  
Band gap On (ADCBGPWD = 1)  
Reference On (ADCREFPWD = 1)  
ADC Powered Up (ADCPWDN = 0)  
Mode B – Quick Wake Mode  
Mode C – Comparator-Only Mode  
Mode D – Off Mode  
4
mA  
mA  
mA  
ADC Clock Enabled  
Band gap On (ADCBGPWD = 1)  
Reference On (ADCREFPWD = 0)  
ADC Powered Up (ADCPWDN = 0)  
1.5  
ADC Clock Enabled  
Band gap On (ADCBGPWD = 0)  
Reference On (ADCREFPWD = 0)  
ADC Powered Up (ADCPWDN = 0)  
0.075  
8.9.2.1.3.3 Internal Temperature Sensor  
8.9.2.1.3.3.1 Temperature Sensor Coefficient  
PARAMETER(1)  
MIN  
TYP  
0.18(3) (2)  
1750  
MAX  
UNIT  
°C/LSB  
LSB  
Degrees C of temperature movement per measured ADC LSB change of  
the temperature sensor  
TSLOPE  
TOFFSET  
ADC output at 0°C of the temperature sensor  
(1) The temperature sensor slope and offset are given in terms of ADC LSBs using the internal reference of the ADC. Values must be  
adjusted accordingly in external reference mode to the external reference voltage.  
(2) Output of the temperature sensor (in terms of LSBs) is sign-consistent with the direction of the temperature movement. Increasing  
temperatures will give increasing ADC values relative to an initial value; decreasing temperatures will give decreasing ADC values  
relative to an initial value.  
(3) ADC temperature coeffieicient is accounted for in this specification  
8.9.2.1.3.4 ADC Power-Up Control Bit Timing  
8.9.2.1.3.4.1 ADC Power-Up Delays  
PARAMETER(1)  
MIN  
MAX  
UNIT  
td(PWD)  
Delay time for the ADC to be stable after power up  
1
ms  
(1) Timings maintain compatibility to the ADC module. The 2806x ADC supports driving all 3 bits at the same time td(PWD) ms before first  
conversion.  
ADCPWDN/  
ADCBGPWD/  
ADCREFPWD/  
ADCENABLE  
td(PWD)  
Request for ADC  
Conversion  
Figure 8-23. ADC Conversion Timing  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Ron  
3.4 kW  
Switch  
Rs  
ADCIN  
Cp  
Ch  
Source  
Signal  
ac  
5 pF  
1.6 pF  
28x DSP  
Typical Values of the Input Circuit Components:  
Switch Resistance (Ron): 3.4 kW  
Sampling Capacitor (Ch): 1.6 pF  
Parasitic Capacitance (Cp): 5 pF  
Source Resistance (Rs): 50 W  
Figure 8-24. ADC Input Impedance Model  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.2.1.3.5 ADC Sequential and Simultaneous Timings  
Analog Input  
SOC0 Sample  
Window  
SOC1 Sample  
Window  
SOC2 Sample  
Window  
0
2
9
15  
22 24  
37  
ADCCLK  
ADCCTL1.INTPULSEPOS  
ADCSOCFLG1.SOC0  
ADCSOCFLG1.SOC1  
ADCSOCFLG1.SOC2  
S/H Window Pulse to Core  
ADCRESULT 0  
SOC0  
SOC1  
SOC2  
Result 0 Latched  
2 ADCCLKs  
ADCRESULT 1  
EOC0 Pulse  
EOC1 Pulse  
ADCINTFLG.ADCINTx  
Minimum  
7 ADCCLKs  
Conversion 0  
13 ADC Clocks  
1 ADCCLK  
6
Minimum  
ADCCLKs 7 ADCCLKs  
Conversion 1  
13 ADC Clocks  
Figure 8-25. Timing Example for Sequential Mode / Late Interrupt Pulse  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Analog Input  
SOC0 Sample  
Window  
SOC1 Sample  
Window  
SOC2 Sample  
Window  
0
2
9
15  
22 24  
37  
ADCCLK  
ADCCTL1.INTPULSEPOS  
ADCSOCFLG1.SOC0  
ADCSOCFLG1.SOC1  
ADCSOCFLG1.SOC2  
S/H Window Pulse to Core  
ADCRESULT 0  
SOC0  
SOC1  
SOC2  
Result 0 Latched  
ADCRESULT 1  
EOC0 Pulse  
EOC1 Pulse  
EOC2 Pulse  
ADCINTFLG.ADCINTx  
Minimum  
7 ADCCLKs  
Conversion 0  
13 ADC Clocks  
2 ADCCLKs  
6
Minimum  
ADCCLKs 7 ADCCLKs  
Conversion 1  
13 ADC Clocks  
Figure 8-26. Timing Example for Sequential Mode / Early Interrupt Pulse  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Analog Input A  
SOC0 Sample  
A Window  
SOC2 Sample  
A Window  
Analog Input B  
SOC0 Sample  
B Window  
SOC2 Sample  
B Window  
0
2
9
22 24  
37  
50  
ADCCLK  
ADCCTL1.INTPULSEPOS  
ADCSOCFLG1.SOC0  
ADCSOCFLG1.SOC1  
ADCSOCFLG1.SOC2  
S/H Window Pulse to Core  
ADCRESULT 0  
SOC0 (A/B)  
SOC2 (A/B)  
2 ADCCLKs  
Result 0 (A) Latched  
ADCRESULT 1  
Result 0 (B) Latched  
ADCRESULT 2  
EOC0 Pulse  
EOC1 Pulse  
1 ADCCLK  
EOC2 Pulse  
ADCINTFLG .ADCINTx  
Minimum  
7 ADCCLKs  
Conversion 0 (A)  
13 ADC Clocks  
Conversion 0 (B)  
13 ADC Clocks  
2 ADCCLKs  
19  
ADCCLKs  
Minimum  
7 ADCCLKs  
Conversion 1 (A)  
13 ADC Clocks  
Figure 8-27. Timing Example for Simultaneous Mode / Late Interrupt Pulse  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Analog Input A  
Analog Input B  
SOC0 Sample  
A Window  
SOC2 Sample  
A Window  
SOC0 Sample  
B Window  
SOC2 Sample  
B Window  
0
2
9
22 24  
37  
50  
ADCCLK  
ADCCTL1.INTPULSEPOS  
ADCSOCFLG1.SOC0  
ADCSOCFLG1.SOC1  
ADCSOCFLG1.SOC2  
S/H Window Pulse to Core  
ADCRESULT 0  
SOC0 (A/B)  
SOC2 (A/B)  
Result 0 (A) Latched  
2 ADCCLKs  
Result 0 (B) Latched  
ADCRESULT 1  
ADCRESULT 2  
EOC0 Pulse  
EOC1 Pulse  
EOC2 Pulse  
ADCINTFLG.ADCINTx  
Conversion 0 (A)  
13 ADC Clocks  
Conversion 0 (B)  
13 ADC Clocks  
Minimum  
2 ADCCLKs  
7 ADCCLKs  
19  
Minimum  
7 ADCCLKs  
Conversion 1 (A)  
13 ADC Clocks  
ADCCLKs  
Figure 8-28. Timing Example for Simultaneous Mode / Early Interrupt Pulse  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.2.2 ADC MUX  
To COMPy A or B input  
To ADC Channel X  
Logic implemented in GPIO MUX block  
AIOx Pin  
SYSCLK  
AIOxIN  
1
AIOxINE  
AIODAT Reg  
(Read)  
SYNC  
0
AIODAT Reg  
(Latch)  
AIOMUX 1 Reg  
AIOSET,  
AIOCLEAR,  
AIOTOGGLE  
Regs  
AIODIR Reg  
(Latch)  
1
(0 = Input, 1 = Output)  
0
0
Figure 8-29. AIOx Pin Multiplexing  
The ADC channel and Comparator functions are always available. The digital I/O function is available only when  
the respective bit in the AIOMUX1 register is 0. In this mode, reading the AIODAT register reflects the actual pin  
state.  
The digital I/O function is disabled when the respective bit in the AIOMUX1 register is 1. In this mode, reading  
the AIODAT register reflects the output latch of the AIODAT register and the input digital I/O buffer is disabled to  
prevent analog signals from generating noise.  
On reset, the digital function is disabled. If the pin is used as an analog input, users should keep the AIO  
function disabled for that pin.  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.2.3 Comparator Block  
Figure 8-30 shows the interaction of the Comparator modules with the rest of the system.  
COMP x A  
+
COMP x B  
COMP  
TZ1/2/3  
-
GPIO  
MUX  
COMP x  
+
DAC x  
Wrapper  
ePWM  
AIO  
MUX  
COMPxOUT  
DAC  
Core  
10-Bit  
Figure 8-30. Comparator Block Diagram  
Table 8-24. Comparator Control Registers  
REGISTER  
NAME  
COMP1  
ADDRESS  
COMP2  
ADDRESS  
COMP3  
ADDRESS  
SIZE  
(×16)  
EALLOW  
PROTECTED  
DESCRIPTION  
COMPCTL  
0x6400  
0x6402  
0x6404  
0x6406  
0x6420  
0x6422  
0x6424  
0x6426  
0x6440  
0x6442  
0x6444  
0x6446  
1
1
1
1
Yes  
No  
Comparator Control Register  
Comparator Status Register  
DAC Control Register  
COMPSTS  
DACCTL  
DACVAL  
Yes  
No  
DAC Value Register  
RAMPMAXREF_  
ACTIVE  
Ramp Generator Maximum Reference  
(Active) Register  
0x6408  
0x640A  
0x640C  
0x6428  
0x642A  
0x642C  
0x6448  
0x644A  
0x644C  
1
1
1
No  
No  
No  
RAMPMAXREF_  
SHDW  
Ramp Generator Maximum Reference  
(Shadow) Register  
RAMPDECVAL_  
ACTIVE  
Ramp Generator Decrement Value  
(Active) Register  
RAMPDECVAL_  
SHDW  
Ramp Generator Decrement Value  
(Shadow) Register  
0x640E  
0x6410  
0x642E  
0x6430  
0x644E  
0x6450  
1
1
No  
No  
RAMPSTS  
Ramp Generator Status Register  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
www.ti.com  
UNIT  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
8.9.2.3.1 On-Chip Comparator/DAC Electrical Data/Timing  
8.9.2.3.1.1 Electrical Characteristics of the Comparator/DAC  
CHARACTERISTIC  
MIN  
TYP  
MAX  
Comparator  
Comparator Input Range  
VSSA – VDDA  
V
Comparator response time to PWM Trip Zone (Async)  
30  
±5  
35  
ns  
Input Offset  
mV  
mV  
Input Hysteresis(1)  
DAC  
DAC Output Range  
DAC resolution  
DAC settling time  
DAC Gain  
VSSA – VDDA  
V
10  
bits  
See Figure 8-31.  
–1.5%  
10  
DAC Offset  
Monotonic  
mV  
Yes  
±3  
INL  
LSB  
(1) Hysteresis on the comparator inputs is achieved with a Schmidt trigger configuration. This results in an effective 100-kΩ feedback  
resistance between the output of the comparator and the non-inverting input of the comparator.  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
DAC Step Size (Codes)  
DAC Accuracy  
15 Codes  
7 Codes  
3 Codes  
1 Code  
Figure 8-31. DAC Settling Time  
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.3 Detailed Descriptions  
Integral Nonlinearity  
Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero to full scale. The  
point used as zero occurs one-half LSB before the first code transition. The full-scale point is defined as level  
one-half LSB beyond the last code transition. The deviation is measured from the center of each particular code  
to the true straight line between these two points.  
Differential Nonlinearity  
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. A  
differential nonlinearity error of less than ±1 LSB ensures no missing codes.  
Zero Offset  
The major carry transition should occur when the analog input is at zero volts. Zero error is defined as the  
deviation of the actual transition from that point.  
Gain Error  
The first code transition should occur at an analog value one-half LSB above negative full scale. The last  
transition should occur at an analog value one and one-half LSB below the nominal full scale. Gain error is the  
deviation of the actual difference between first and last code transitions and the ideal difference between first  
and last code transitions.  
Signal-to-Noise Ratio + Distortion (SINAD)  
SINAD is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components  
below the Nyquist frequency, including harmonics but excluding DC. The value for SINAD is expressed in  
decibels.  
Effective Number of Bits (ENOB)  
For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following formula,  
(SINAD -1.76)  
N =  
6.02  
it is possible to get a measure of performance expressed as N, the effective number of bits.  
Thus, effective number of bits for a device for sine wave inputs at a given input frequency can be calculated  
directly from its measured SINAD.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first nine harmonic components to the rms value of the measured input  
signal and is expressed as a percentage or in decibels.  
Spurious Free Dynamic Range (SFDR)  
SFDR is the difference in dB between the rms amplitude of the input signal and the peak spurious signal.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.4 Serial Peripheral Interface (SPI) Module  
The device includes the 4-pin serial peripheral interface (SPI) module. Up to two SPI modules are available. The  
SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of programmed length (1 to  
16 bits) to be shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used for  
communications between the MCU and external peripherals or another processor. Typical applications include  
external I/O or peripheral expansion through devices such as shift registers, display drivers, and ADCs.  
Multidevice communications are supported by the master/slave operation of the SPI.  
The SPI module features include:  
Four external pins:  
– SPISOMI: SPI slave-output/master-input pin  
– SPISIMO: SPI slave-input/master-output pin  
– SPISTE: SPI slave transmit-enable pin  
– SPICLK: SPI serial-clock pin  
Note  
All four pins can be used as GPIO if the SPI module is not used.  
Two operational modes: master and slave  
Baud rate: 125 different programmable rates.  
LSPCLK  
Baud rate =  
Baud rate =  
when SPIBRR = 3 to127  
when SPIBRR = 0,1, 2  
(SPIBRR + 1)  
LSPCLK  
4
Data word length: 1 to 16 data bits  
Four clocking schemes (controlled by clock polarity and clock phase bits) include:  
– Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the  
SPICLK signal and receives data on the rising edge of the SPICLK signal.  
– Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling  
edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.  
– Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the  
SPICLK signal and receives data on the falling edge of the SPICLK signal.  
– Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the rising  
edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Simultaneous receive and transmit operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithms.  
Nine SPI module control registers: In control register frame beginning at address 7040h.  
Note  
All registers in this module are 16-bit registers that are connected to Peripheral Frame 2. When a  
register is accessed, the register data is in the lower byte (7–0), and the upper byte (15–8) is read  
as zeros. Writing to the upper byte has no effect.  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Enhanced feature:  
4-level transmit/receive FIFO  
Delayed transmit control  
Bidirectional 3 wire SPI mode support  
Audio data receive support through SPISTE inversion  
The SPI port operation is configured and controlled by the registers listed in Table 8-25 and Table 8-26.  
Table 8-25. SPI-A Registers  
NAME  
SPICCR  
ADDRESS  
0x7040  
0x7041  
0x7042  
0x7044  
0x7046  
0x7047  
0x7048  
0x7049  
0x704A  
0x704B  
0x704C  
0x704F  
SIZE (×16) EALLOW PROTECTED  
DESCRIPTION(1)  
SPI-A Configuration Control Register  
SPI-A Operation Control Register  
SPI-A Status Register  
1
1
1
1
1
1
1
1
1
1
1
1
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
SPICTL  
SPISTS  
SPIBRR  
SPI-A Baud Rate Register  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
SPI-A Receive Emulation Buffer Register  
SPI-A Serial Input Buffer Register  
SPI-A Serial Output Buffer Register  
SPI-A Serial Data Register  
SPIFFTX  
SPIFFRX  
SPIFFCT  
SPIPRI  
SPI-A FIFO Transmit Register  
SPI-A FIFO Receive Register  
SPI-A FIFO Control Register  
SPI-A Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined  
results.  
Table 8-26. SPI-B Registers  
NAME  
SPICCR  
ADDRESS  
0x7740  
0x7741  
0x7742  
0x7744  
0x7746  
0x7747  
0x7748  
0x7749  
0x774A  
0x774B  
0x774C  
0x774F  
SIZE (×16) EALLOW PROTECTED  
DESCRIPTION(1)  
SPI-B Configuration Control Register  
SPI-B Operation Control Register  
SPI-B Status Register  
1
1
1
1
1
1
1
1
1
1
1
1
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
SPICTL  
SPISTS  
SPIBRR  
SPI-B Baud Rate Register  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
SPI-B Receive Emulation Buffer Register  
SPI-B Serial Input Buffer Register  
SPI-B Serial Output Buffer Register  
SPI-B Serial Data Register  
SPIFFTX  
SPIFFRX  
SPIFFCT  
SPIPRI  
SPI-B FIFO Transmit Register  
SPI-B FIFO Receive Register  
SPI-B FIFO Control Register  
SPI-B Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined  
results.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 8-32 is a block diagram of the SPI in slave mode.  
SPIFFENA  
Overrun  
INT ENA  
Receiver  
Overrun Flag  
SPIFFTX.14  
RX FIFO Registers  
SPIRXBUF  
SPISTS.7  
SPICTL.4  
RX FIFO _0  
RX FIFO _1  
-----  
SPIINT  
RX FIFO Interrupt  
RX Interrupt  
Logic  
RX FIFO _3  
16  
SPIRXBUF  
Buffer Register  
SPIFFOVF  
FLAG  
SPIFFRX.15  
To CPU  
TX FIFO Registers  
SPITXBUF  
TX FIFO _3  
TX Interrupt  
Logic  
TX FIFO Interrupt  
-----  
TX FIFO _1  
SPITX  
TX FIFO _0  
16  
SPI INT  
ENA  
16  
SPI INT FLAG  
SPITXBUF  
Buffer Register  
SPISTS.6  
SPICTL.0  
TRIWIRE  
SPIPRI.0  
16  
M
S
M
SPIDAT  
Data Register  
TW  
S
SW1  
SW2  
SPISIMO  
SPISOMI  
M
S
TW  
SPIDAT.15 - 0  
M
S
TW  
STEINV  
SPIPRI.1  
Talk  
STEINV  
SPICTL.1  
SPISTE  
State Control  
Master/Slave  
SPICTL.2  
SPI Char  
LSPCLK  
SPICCR.3 - 0  
S
SW3  
3
2
1
0
Clock  
Polarity  
Clock  
Phase  
M
S
SPI Bit Rate  
SPIBRR.6 - 0  
SPICCR.6  
SPICTL.3  
SPICLK  
M
6
5
4
3
2
1
0
A. SPISTE is driven low by the master for a slave device.  
Figure 8-32. SPI Module Block Diagram (Slave Mode)  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.4.1 SPI Master Mode Electrical Data/Timing  
Section 8.9.4.1.1 lists the master mode timing (clock phase = 0) and Section 8.9.4.1.2 lists the master mode  
timing (clock phase = 1). Figure 8-33 and Figure 8-34 show the timing waveforms.  
8.9.4.1.1 SPI Master Mode External Timing (Clock Phase = 0)  
NO.(1)  
BRR EVEN  
MIN  
BRR ODD  
MIN  
(2) (3) (4)  
PARAMETER  
UNIT  
(5)  
MAX  
MAX  
1
tc(SPC)M  
Cycle time, SPICLK  
4tc(LSPCLK)  
128tc(LSPCLK)  
5tc(LSPCLK)  
127tc(LSPCLK)  
ns  
ns  
Pulse duration, SPICLK first  
pulse  
0.5tc(SPC)M + 0.5tc(LSPCLK)  
– 10  
0.5tc(SPC)M  
+
2
3
tw(SPC1)M  
0.5tc(SPC)M – 10  
0.5tc(SPC)M + 10  
0.5tc(SPC)M + 10  
10  
0.5tc(LSPCLK) + 10  
Pulse duration, SPICLK second  
pulse  
0.5tc(SPC)M – 0.5tc(LSPCLK)  
– 10  
0.5tc(SPC)M  
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
tsu(SOMI)M  
th(SOMI)M  
td(SPC)M  
td(STE)M  
0.5tc(SPC)M – 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5tc(LSPCLK) + 10  
Delay time, SPICLK to  
SPISIMO valid  
4
10  
Valid time, SPISIMO valid after  
SPICLK  
0.5tc(SPC)M – 0.5tc(LSPCLK)  
– 10  
5
0.5tc(SPC)M – 10  
Setup time, SPISOMI before  
SPICLK  
8
26  
0
26  
0
Hold time, SPISOMI valid after  
SPICLK  
9
Delay time, SPISTE active to  
SPICLK  
1.5tc(SPC)M  
1.5tc(SPC)M –  
3tc(SYSCLK) – 10  
23  
24  
3tc(SYSCLK) – 10  
Delay time, SPICLK to SPISTE  
inactive  
0.5tc(SPC)M – 0.5tc(LSPCLK)  
– 10  
0.5tc(SPC)M – 10  
(1) The MASTER / SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR +1)  
(3) tc(LCO) = LSPCLK cycle time  
(4) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MAX, slave mode receive 12.5-MHz MAX.  
(5) The active edge of the SPICLK signal referenced is controlled by the clock polarity bit (SPICCR.6).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
SPISTE  
24  
23  
Figure 8-33. SPI Master Mode External Timing (Clock Phase = 0)  
8.9.4.1.2 SPI Master Mode External Timing (Clock Phase = 1)  
NO.(1)  
BRR EVEN  
MIN  
BRR ODD  
MIN  
(2) (3) (4)  
PARAMETER  
UNIT  
(5)  
MAX  
MAX  
127tc(LSPCLK)  
0.5tc(SPC)M –  
1
tc(SPC)M  
Cycle time, SPICLK  
4tc(LSPCLK)  
128tc(LSPCLK)  
5tc(LSPCLK)  
0.5tc(SPC)M  
ns  
ns  
Pulse duration, SPICLK first  
pulse  
2
3
tw(SPC1)M  
0.5tc(SPC)M – 10  
0.5tc(SPC)M + 10  
0.5tc(SPC)M + 10  
0.5tc(LSPCLK) – 10  
0.5tc(LSPCLK) + 10  
Pulse duration, SPICLK second  
pulse  
0.5tc(SPC)M  
+
0.5tc(SPC)M  
0.5tc(LSPCLK) + 10  
+
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
tsu(SOMI)M  
th(SOMI)M  
td(SPC)M  
td(STE)M  
0.5tc(SPC)M – 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5tc(LSPCLK) – 10  
Delay time, SPISIMO valid to  
SPICLK  
0.5tc(SPC)M  
+
6
0.5tc(SPC)M – 10  
0.5tc(LSPCLK) – 10  
Valid time, SPISIMO valid after  
SPICLK  
0.5tc(SPC)M  
7
0.5tc(SPC)M – 10  
0.5tc(LSPCLK) – 10  
Setup time, SPISOMI before  
SPICLK  
10  
11  
23  
24  
26  
0
26  
Hold time, SPISOMI valid after  
SPICLK  
0
Delay time, SPISTE active to  
SPICLK  
2tc(SPC)M  
2tc(SPC)M  
3tc(SYSCLK) – 10  
3tc(SYSCLK) – 10  
Delay time, SPICLK to SPISTE  
inactive  
0.5tc(SPC)  
0.5tc(SPC) – 10  
0.5tc(LSPCLK) – 10  
(1) The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is set.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25 MHz MAX, master mode receive 12.5 MHz MAX  
Slave mode transmit 12.5 MHz MAX, slave mode receive 12.5 MHz MAX.  
(4) tc(LCO) = LSPCLK cycle time  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
Copyright © 2021 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
6
7
SPISIMO  
Master Out Data Is Valid  
10  
11  
Master In Data Must  
Be Valid  
SPISOMI  
SPISTE  
24  
23  
Figure 8-34. SPI Master Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.4.2 SPI Slave Mode Electrical Data/Timing  
Section 8.9.4.2.1 lists the slave mode timing (clock phase = 0) and Section 8.9.4.2.2 lists the slave mode timing  
(clock phase = 1). Figure 8-35 and Figure 8-36 show the timing waveforms.  
8.9.4.2.1 SPI Slave Mode External Timing (Clock Phase = 0) (1) (2) (4) (3) (5)  
NO.  
PARAMETER  
Cycle time, SPICLK  
MIN  
4tc(SYSCLK)  
MAX UNIT  
12 tc(SPC)S  
13 tw(SPC1)S  
14 tw(SPC2)S  
15 td(SOMI)S  
16 tv(SOMI)S  
19 tsu(SIMO)S  
20 th(SIMO)S  
25 tsu(STE)S  
26 th(STE)S  
ns  
ns  
ns  
Pulse duration, SPICLK first pulse  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
Pulse duration, SPICLK second pulse  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI data valid after SPICLK  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO data valid after SPICLK  
Setup time, SPISTE active before SPICLK  
Hold time, SPISTE inactive after SPICLK  
21  
ns  
ns  
ns  
ns  
ns  
ns  
0
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) tc(LCO) = LSPCLK cycle time  
(4) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
16  
SPISOMI  
SPISOMI Data Is Valid  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
25  
26  
Figure 8-35. SPI Slave Mode External Timing (Clock Phase = 0)  
Copyright © 2021 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.4.2.2 SPI Slave Mode External Timing (Clock Phase = 1) (1) (2) (3) (4)  
NO.  
PARAMETER  
Cycle time, SPICLK  
MIN  
4tc(SYSCLK)  
MAX UNIT  
12 tc(SPC)S  
13 tw(SPC1)S  
14 tw(SPC2)S  
17 td(SOMI)S  
18 tv(SOMI)S  
21 tsu(SIMO)S  
22 th(SIMO)S  
25 tsu(STE)S  
26 th(STE)S  
ns  
ns  
ns  
Pulse duration, SPICLK first pulse  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
Pulse duration, SPICLK second pulse  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI data valid after SPICLK  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO data valid after SPICLK  
Setup time, SPISTE active before SPICLK  
Hold time, SPISTE inactive after SPICLK  
21  
ns  
ns  
ns  
ns  
ns  
ns  
0
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
17  
SPISOMI  
SPISOMI Data Is Valid  
Data Valid  
Data Valid  
18  
21  
22  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
26  
25  
Figure 8-36. SPI Slave Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.5 Serial Communications Interface (SCI) Module  
The devices include two serial communications interface (SCI) modules (SCI-A, SCI-B). The SCI module  
supports digital communications between the CPU and other asynchronous peripherals that use the standard  
non-return-to-zero (NRZ) format. The SCI receiver and transmitter are double-buffered, and each has its own  
separate enable and interrupt bits. Both can be operated independently or simultaneously in the full-duplex  
mode. To ensure data integrity, the SCI checks received data for break detection, parity, overrun, and framing  
errors. The bit rate is programmable to over 65000 different speeds through a 16-bit baud-select register.  
Features of each SCI module include:  
Two external pins:  
– SCITXD: SCI transmit-output pin  
– SCIRXD: SCI receive-input pin  
Note  
Both pins can be used as GPIO if not used for SCI.  
– Baud rate programmable to 64K different rates:  
LSPCLK  
Baud rate =  
Baud rate =  
when BRR ¹ 0  
when BRR = 0  
(BRR + 1) * 8  
LSPCLK  
16  
Data-word format  
– One start bit  
– Data-word length programmable from 1 to 8 bits  
– Optional even/odd/no parity bit  
– One or 2 stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: idle-line and address bit  
Half- or full-duplex operation  
Double-buffered receive and transmit functions  
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with  
status flags.  
– Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY  
flag (transmitter-shift register is empty)  
– Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break  
condition occurred), and RX ERROR flag (monitoring four interrupt conditions)  
Separate enable bits for transmitter and receiver interrupts (except BRKDT)  
NRZ (non-return-to-zero) format  
Note  
All registers in this module are 8-bit registers that are connected to Peripheral Frame 2. When a  
register is accessed, the register data is in the lower byte (7–0), and the upper byte (15–8) is read  
as zeros. Writing to the upper byte has no effect.  
Enhanced features:  
Auto baud-detect hardware logic  
4-level transmit/receive FIFO  
Copyright © 2021 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
The SCI port operation is configured and controlled by the registers listed in Table 8-27 and Table 8-28.  
Table 8-27. SCI-A Registers  
EALLOW  
PROTECTED  
NAME(1)  
SCICCRA  
ADDRESS  
SIZE (×16)  
DESCRIPTION  
0x7050  
0x7051  
0x7052  
0x7053  
0x7054  
0x7055  
0x7056  
0x7057  
0x7059  
0x705A  
0x705B  
0x705C  
0x705F  
1
1
1
1
1
1
1
1
1
1
1
1
1
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
SCI-A Communications Control Register  
SCI-A Control Register 1  
SCICTL1A  
SCIHBAUDA  
SCILBAUDA  
SCICTL2A  
SCI-A Baud Register, High Bits  
SCI-A Baud Register, Low Bits  
SCI-A Control Register 2  
SCIRXSTA  
SCIRXEMUA  
SCIRXBUFA  
SCITXBUFA  
SCIFFTXA(2)  
SCIFFRXA(2)  
SCIFFCTA(2)  
SCIPRIA  
SCI-A Receive Status Register  
SCI-A Receive Emulation Data Buffer Register  
SCI-A Receive Data Buffer Register  
SCI-A Transmit Data Buffer Register  
SCI-A FIFO Transmit Register  
SCI-A FIFO Receive Register  
SCI-A FIFO Control Register  
SCI-A Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. 32-bit accesses produce  
undefined results.  
(2) These registers are new registers for the FIFO mode.  
Table 8-28. SCI-B Registers  
NAME(1)  
SCICCRB  
ADDRESS  
0x7750  
0x7751  
0x7752  
0x7753  
0x7754  
0x7755  
0x7756  
0x7757  
0x7759  
0x775A  
0x775B  
0x775C  
0x775F  
SIZE (×16)  
DESCRIPTION  
SCI-B Communications Control Register  
SCI-B Control Register 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
SCICTL1B  
SCIHBAUDB  
SCILBAUDB  
SCICTL2B  
SCI-B Baud Register, High Bits  
SCI-B Baud Register, Low Bits  
SCI-B Control Register 2  
SCIRXSTB  
SCIRXEMUB  
SCIRXBUFB  
SCITXBUFB  
SCIFFTXB(2)  
SCIFFRXB(2)  
SCIFFCTB(2)  
SCIPRIB  
SCI-B Receive Status Register  
SCI-B Receive Emulation Data Buffer Register  
SCI-B Receive Data Buffer Register  
SCI-B Transmit Data Buffer Register  
SCI-B FIFO Transmit Register  
SCI-B FIFO Receive Register  
SCI-B FIFO Control Register  
SCI-B Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. 32-bit accesses produce  
undefined results.  
(2) These registers are new registers for the FIFO mode.  
Figure 8-37 shows the SCI module block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
TXENA  
SCICTL1.1  
Frame Format and Mode  
Parity  
SCITXD  
SCITXD  
TXSHF  
Register  
TXEMPTY  
SCICTL2.6  
Even/Odd  
Enable  
TXINTENA  
SCICTL2.0  
8
SCICCR.6 SCICCR.5  
TXRDY  
Transmitter Data  
Buffer register  
SCICTL2.7  
SCITXBUF.7−0  
8
TXWAKE  
SCICTL1.3  
TX FIFO_0  
TX FIFO_1  
−−−−−  
TXINT  
TX Interrupt  
Logic  
1
TX FIFO Interrupt  
To CPU  
TX FIFO_3  
SCI TX Interrupt select logic  
Auto baud detect logic  
WUT  
SCITXBUF.7−0  
TX FIFO  
SCIFFENA  
SCIFFTX.14  
RXENA  
SCICTL1.0  
SCIHBAUD. 15 − 8  
SCIRXD  
RXSHF  
Register  
Baud Rate  
MSbyte  
SCIRXD  
Register  
RXWAKE  
LSPCLK  
SCIRXST.1  
SCILBAUD. 7 − 0  
RXENA  
SCICTL1.0  
8
Baud Rate  
LSbyte  
RXBKINTENA  
SCICTL2.1  
Register  
RXRDY  
Receive Data  
Buffer register  
SCIRXST.6  
SCIRXBUF.7−0  
8
BRKDT  
SCIRXST.5  
RX FIFO_0  
−−−−−  
RX FIFO_2  
RX FIFO_3  
SCIRXBUF.7−0  
RX Interrupt  
Logic  
RXINT  
RX FIFO Interrupt  
To CPU  
RX FIFO  
RXFFOVF  
SCIFFRX.15  
SCIRXST.7  
RX Error  
SCIRXST.5 – 2  
BRKDT FE OE PE  
RX Error  
RXERRINTENA  
SCICTL1.6  
SCI RX Interrupt select logic  
Figure 8-37. Serial Communications Interface (SCI) Module Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.6 Multichannel Buffered Serial Port (McBSP) Module  
The McBSP module has the following features:  
Compatible to McBSP in TMS320C28x/TMS320F28x DSP devices  
Full-duplex communication  
Double-buffered data registers that allow a continuous data stream  
Independent framing and clocking for receive and transmit  
External shift clock generation or an internal programmable frequency shift clock  
A wide selection of data sizes including 8-, 12-, 16-, 20-, 24-, or 32-bits  
8-bit data transfers with LSB or MSB first  
Programmable polarity for both frame synchronization and data clocks  
Highly programmable internal clock and frame generation  
Direct interface to industry-standard CODECs, Analog Interface Chips (AICs), and other serially connected  
analog-to-digital (A/D) and digital-to-analog (D/A) devices  
Works with SPI-compatible devices  
The following application interfaces can be supported on the McBSP:  
– T1/E1 framers  
– IOM-2 compliant devices  
– AC97-compliant devices (the necessary multiphase frame synchronization capability is provided.)  
– IIS-compliant devices  
– SPI  
McBSP clock rate,  
CLKSRG  
CLKG =  
1+ CLKGDV  
(
)
where CLKSRG source could be LSPCLK, CLKX, or CLKR. Serial port performance is limited by I/O buffer  
switching speed. Internal prescalers must be adjusted such that the peripheral speed is less than the I/O  
buffer speed limit.  
Note  
See Section 8.9 for maximum I/O pin toggling speed.  
Note  
On the 80-pin package, only the clock-stop mode (SPI) of the McBSP is supported.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 8-38 shows the block diagram of the McBSP module.  
TX  
Interrupt  
MXINT  
Peripheral Write Bus  
CPU  
TX Interrupt Logic  
To CPU  
16  
16  
McBSP Transmit  
Interrupt Select Logic  
DXR2 Transmit Buffer  
16  
DXR1 Transmit Buffer  
16  
LSPCLK  
MFSXx  
MCLKXx  
Compand Logic  
XSR2  
XSR1  
MDXx  
MDRx  
CPU  
DMA Bus  
RSR1  
16  
RSR2  
16  
MCLKRx  
Expand Logic  
MFSRx  
RBR2 Register  
16  
RBR1 Register  
16  
DRR2 Receive Buffer  
DRR1 Receive Buffer  
McBSP Receive  
16  
16  
Interrupt Select Logic  
RX  
Interrupt  
RX Interrupt Logic  
MRINT  
CPU  
Peripheral Read Bus  
To CPU  
Figure 8-38. McBSP Module  
Copyright © 2021 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-29 provides a summary of the McBSP registers.  
Table 8-29. McBSP Register Summary  
McBSP-A  
ADDRESS  
NAME  
TYPE  
RESET VALUE  
DESCRIPTION  
Data Registers, Receive, Transmit  
DRR2  
DRR1  
DXR2  
DXR1  
0x5000  
0x5001  
0x5002  
0x5003  
R
R
0x0000  
0x0000  
0x0000  
0x0000  
McBSP Data Receive Register 2  
McBSP Data Receive Register 1  
W
W
McBSP Data Transmit Register 2  
McBSP Data Transmit Register 1  
McBSP Control Registers  
SPCR2  
SPCR1  
RCR2  
0x5004  
0x5005  
0x5006  
0x5007  
0x5008  
0x5009  
0x500A  
0x500B  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
McBSP Serial Port Control Register 2  
McBSP Serial Port Control Register 1  
McBSP Receive Control Register 2  
McBSP Receive Control Register 1  
McBSP Transmit Control Register 2  
McBSP Transmit Control Register 1  
McBSP Sample Rate Generator Register 2  
McBSP Sample Rate Generator Register 1  
RCR1  
XCR2  
XCR1  
SRGR2  
SRGR1  
Multichannel Control Registers  
McBSP Multichannel Register 2  
MCR2  
0x500C  
0x500D  
0x500E  
0x500F  
0x5010  
0x5011  
0x5012  
0x5013  
0x5014  
0x5015  
0x5016  
0x5017  
0x5018  
0x5019  
0x501A  
0x501B  
0x501C  
0x501D  
0x501E  
0x5023  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
MCR1  
McBSP Multichannel Register 1  
RCERA  
RCERB  
XCERA  
XCERB  
PCR  
McBSP Receive Channel Enable Register Partition A  
McBSP Receive Channel Enable Register Partition B  
McBSP Transmit Channel Enable Register Partition A  
McBSP Transmit Channel Enable Register Partition B  
McBSP Pin Control Register  
RCERC  
RCERD  
XCERC  
XCERD  
RCERE  
RCERF  
XCERE  
XCERF  
RCERG  
RCERH  
XCERG  
XCERH  
MFFINT  
McBSP Receive Channel Enable Register Partition C  
McBSP Receive Channel Enable Register Partition D  
McBSP Transmit Channel Enable Register Partition C  
McBSP Transmit Channel Enable Register Partition D  
McBSP Receive Channel Enable Register Partition E  
McBSP Receive Channel Enable Register Partition F  
McBSP Transmit Channel Enable Register Partition E  
McBSP Transmit Channel Enable Register Partition F  
McBSP Receive Channel Enable Register Partition G  
McBSP Receive Channel Enable Register Partition H  
McBSP Transmit Channel Enable Register Partition G  
McBSP Transmit Channel Enable Register Partition H  
McBSP Interrupt Enable Register  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.6.1 McBSP Electrical Data/Timing  
8.9.6.1.1 McBSP Transmit and Receive Timing  
8.9.6.1.1.1 McBSP Timing Requirements  
NO.(1)  
MIN  
MAX  
UNIT  
(2)  
1
kHz  
MHz  
ns  
McBSP module clock (CLKG, CLKX, CLKR) range  
McBSP module cycle time (CLKG, CLKX, CLKR) range  
20(3) (4)  
50(4)  
1
ms  
ns  
M11 tc(CKRX)  
M12 tw(CKRX)  
M13 tr(CKRX)  
M14 tf(CKRX)  
Cycle time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
CLKR/X ext  
CLKR/X ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKX int  
2P  
Pulse duration, CLKR/X high or CLKR/X low  
Rise time, CLKR/X  
P – 7  
ns  
7
7
ns  
Fall time, CLKR/X  
ns  
18  
2
M15 tsu(FRH-CKRL)  
M16 th(CKRL-FRH)  
M17 tsu(DRV-CKRL)  
M18 th(CKRL-DRV)  
M19 tsu(FXH-CKXL)  
M20 th(CKXL-FXH)  
Setup time, external FSR high before CLKR low  
Hold time, external FSR high after CLKR low  
Setup time, DR valid before CLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
0
6
18  
2
0
Hold time, DR valid after CLKR low  
6
18  
2
Setup time, external FSX high before CLKX low  
Hold time, external FSX high after CLKX low  
CLKX ext  
CLKX int  
0
CLKX ext  
6
(1) Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that  
signal are also inverted.  
(2) 2P = 1/CLKG in ns. CLKG is the output of sample rate generator mux. CLKG = CLKSRG/(1 + CLKGDV). CLKSRG can be LSPCLK,  
CLKX, CLKR as source. CLKSRG ≤ (SYSCLKOUT/2). McBSP performance is limited by I/O buffer switching speed.  
(3) Internal clock prescalers must be adjusted such that the McBSP clock (CLKG, CLKX, CLKR) speeds are not greater than the I/O buffer  
speed limit (20 MHz).  
(4) Maximum McBSP module clock frequency decreases to 10 MHz for internal CLKR.  
Copyright © 2021 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.6.1.1.2 McBSP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)(1) (2)  
NO.  
M1  
M2  
M3  
PARAMETER  
MIN  
MAX UNIT  
tc(CKRX)  
Cycle time, CLKR/X  
CLKR/X int  
CLKR/X int  
CLKR/X int  
CLKR int  
CLKR ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
2P  
ns  
tw(CKRXH)  
tw(CKRXL)  
Pulse duration, CLKR/X high  
Pulse duration, CLKR/X low  
D – 5(3)  
D + 5(3)  
ns  
ns  
C – 5(3)  
C + 5(3)  
0
3
0
3
4
27  
4
M4  
M5  
M6  
td(CKRH-FRV)  
td(CKXH-FXV)  
tdis(CKXH-DXHZ)  
Delay time, CLKR high to internal FSR valid  
Delay time, CLKX high to internal FSX valid  
ns  
ns  
ns  
27  
8
Disable time, CLKX high to DX high impedance  
following last data bit  
14  
9
Delay time, CLKX high to DX valid.  
This applies to all bits except the first bit transmitted.  
28  
8
Delay time, CLKX high to DX valid  
DXENA = 0  
M7  
td(CKXH-DXV)  
ns  
ns  
14  
P + 8  
Only applies to first bit transmitted when  
in Data Delay 1 or 2 (XDATDLY=01b or DXENA = 1  
10b) modes  
CLKX ext  
P + 14  
CLKX int  
CLKX ext  
CLKX int  
0
6
Enable time, CLKX high to DX driven  
Only applies to first bit transmitted when  
in Data Delay 1 or 2 (XDATDLY=01b or DXENA = 1  
10b) modes  
DXENA = 0  
M8  
M9  
ten(CKXH-DX)  
P
CLKX ext  
P + 6  
FSX int  
FSX ext  
FSX int  
FSX ext  
FSX int  
FSX ext  
FSX int  
FSX ext  
8
14  
Delay time, FSX high to DX valid  
DXENA = 0  
DXENA = 1  
DXENA = 0  
DXENA = 1  
td(FXH-DXV)  
ns  
ns  
P + 8  
P + 14  
Only applies to first bit transmitted when  
in Data Delay 0 (XDATDLY=00b) mode.  
0
6
Enable time, FSX high to DX driven  
M10 ten(FXH-DX)  
P
Only applies to first bit transmitted when  
in Data Delay 0 (XDATDLY=00b) mode  
P + 6  
(1) Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that  
signal are also inverted.  
(2) 2P = 1/CLKG in ns.  
(3) C = CLKRX low pulse width = P  
D = CLKRX high pulse width = P  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
M1, M11  
M2, M12  
M3, M12  
M13  
CLKR  
M4  
M4  
M14  
FSR (int)  
M15  
M16  
FSR (ext)  
M18  
M17  
DR  
(RDATDLY=00b)  
Bit (n−1)  
M17  
(n−2)  
(n−3)  
(n−2)  
(n−4)  
M18  
DR  
(RDATDLY=01b)  
Bit (n−1)  
(n−3)  
(n−2)  
M17  
M18  
DR  
(RDATDLY=10b)  
Bit (n−1)  
Figure 8-39. McBSP Receive Timing  
M1, M11  
M2, M12  
M13  
M14  
M3, M12  
CLKX  
FSX (int)  
FSX (ext)  
M5  
M5  
M19  
M20  
M9  
M7  
M10  
Bit 0  
DX  
(XDATDLY=00b)  
Bit (n−1)  
(n−2)  
(n−3)  
(n−2)  
(n−4)  
(n−3)  
(n−2)  
M7  
M8  
DX  
(XDATDLY=01b)  
Bit (n−1)  
M8  
Bit 0  
M6  
M7  
DX  
(XDATDLY=10b)  
Bit 0  
Bit (n−1)  
Figure 8-40. McBSP Transmit Timing  
Copyright © 2021 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.6.1.2 McBSP as SPI Master or Slave Timing  
8.9.6.1.2.1 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0)  
MASTER  
SLAVE  
MIN MAX  
NO.(1)  
UNIT  
MIN  
30  
1
MAX  
M30 tsu(DRV-CKXL)  
M31 th(CKXL-DRV)  
M32 tsu(BFXL-CKXH)  
M33 tc(CKX)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
Setup time, FSX low before CLKX high  
Cycle time, CLKX  
8P – 10  
ns  
ns  
ns  
ns  
8P – 10  
8P + 10  
16P  
2P(2)  
(1) For all SPI slave modes, CLKX has to be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM =  
CLKGDV = 1.  
(2) 2P = 1/CLKG  
8.9.6.1.2.2 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0)  
over recommended operating conditions (unless otherwise noted)  
MASTER  
MIN  
SLAVE  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
M24  
M25  
M26  
th(CKXL-FXL)  
td(FXL-CKXH)  
td(CKXH-DXV)  
Hold time, FSX low after CLKX low  
Delay time, FSX low to CLKX high  
Delay time, CLKX high to DX valid  
2P(1)  
ns  
ns  
ns  
P
–2  
0
3P + 6  
5P + 20  
Disable time, DX high impedance following  
last data bit from FSX high  
M28  
M29  
tdis(FXH-DXHZ)  
td(FXL-DXV)  
6
6
6P + 6  
4P + 6  
ns  
ns  
Delay time, FSX low to DX valid  
(1) 2P = 1/CLKG  
M33  
M32  
MSB  
LSB  
CLKX  
M25  
M26  
M24  
FSX  
M28  
M29  
DX  
DR  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
M30  
M31  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
Figure 8-41. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
www.ti.com  
UNIT  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
8.9.6.1.2.3 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0)  
MASTER  
SLAVE  
MIN MAX  
NO.(1)  
MIN  
30  
1
MAX  
M39 tsu(DRV-CKXH)  
M40 th(CKXH-DRV)  
M41 tsu(FXL-CKXH)  
M42 tc(CKX)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
Setup time, FSX low before CLKX high  
Cycle time, CLKX  
8P – 10  
ns  
ns  
ns  
ns  
8P – 10  
16P + 10  
16P  
2P(2)  
(1) For all SPI slave modes, CLKX has to be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM =  
CLKGDV = 1.  
(2) 2P = 1/CLKG  
8.9.6.1.2.4 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0)  
over recommended operating conditions (unless otherwise noted)  
MASTER  
MIN  
SLAVE  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
M34 th(CKXL-FXL)  
M35 td(FXL-CKXH)  
M36 td(CKXL-DXV)  
Hold time, FSX low after CLKX low  
Delay time, FSX low to CLKX high  
Delay time, CLKX low to DX valid  
P
2P(1)  
–2  
ns  
ns  
ns  
0
3P + 6 5P + 20  
7P + 6  
Disable time, DX high impedance following last data bit  
from CLKX low  
M37 tdis(CKXL-DXHZ)  
M38 td(FXL-DXV)  
P + 6  
6
ns  
ns  
Delay time, FSX low to DX valid  
4P + 6  
(1) 2P = 1/CLKG  
M42  
MSB  
LSB  
M41  
CLKX  
M36  
M35  
M34  
FSX  
M37  
M38  
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
M40  
(n-2)  
(n-3)  
(n-4)  
M39  
Bit 0  
(n-3)  
(n-4)  
Figure 8-42. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
Copyright © 2021 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.6.1.2.5 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1)  
MASTER  
SLAVE  
MIN MAX  
NO.(1)  
UNIT  
MIN  
30  
1
MAX  
M49 tsu(DRV-CKXH)  
M50 th(CKXH-DRV)  
M51 tsu(FXL-CKXL)  
M52 tc(CKX)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
Setup time, FSX low before CLKX low  
Cycle time, CLKX  
8P – 10  
ns  
ns  
ns  
ns  
8P – 10  
8P + 10  
16P  
2P(2)  
(1) For all SPI slave modes, CLKX has to be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM =  
CLKGDV = 1.  
(2) 2P = 1/CLKG  
8.9.6.1.2.6 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1)  
over recommended operating conditions (unless otherwise noted)  
MASTER  
SLAVE  
MIN MAX  
NO.  
PARAMETER  
UNIT  
MIN  
2P(1)  
P
MAX  
M43 th(CKXH-FXL)  
M44 td(FXL-CKXL)  
M45 td(CKXL-DXV)  
Hold time, FSX low after CLKX high  
Delay time, FSX low to CLKX low  
Delay time, CLKX low to DX valid  
ns  
ns  
ns  
–2  
0
3P + 6 5P + 20  
6P + 6  
Disable time, DX high impedance following last data bit from  
FSX high  
M47 tdis(FXH-DXHZ)  
M48 td(FXL-DXV)  
6
6
ns  
ns  
Delay time, FSX low to DX valid  
4P + 6  
(1) 2P = 1/CLKG  
M52  
M51  
MSB  
LSB  
CLKX  
M45  
M43  
M44  
FSX  
M48  
M47  
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
(n-4)  
M49  
M50  
(n-2)  
Bit 0  
(n-3)  
Figure 8-43. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
www.ti.com  
UNIT  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
8.9.6.1.2.7 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1)  
MASTER  
SLAVE  
MIN MAX  
NO.(1)  
MIN  
30  
1
MAX  
M58 tsu(DRV-CKXL)  
M59 th(CKXL-DRV)  
M60 tsu(FXL-CKXL)  
M61 tc(CKX)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
Setup time, FSX low before CLKX low  
Cycle time, CLKX  
8P – 10  
ns  
ns  
ns  
ns  
8P – 10  
16P + 10  
16P  
2P(2)  
(1) For all SPI slave modes, CLKX has to be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM =  
CLKGDV = 1.  
(2) 2P = 1/CLKG  
8.9.6.1.2.8 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1)  
over recommended operating conditions (unless otherwise noted)(1)  
MASTER  
MIN  
SLAVE  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
M53 th(CKXH-FXL)  
M54 td(FXL-CKXL)  
M55 td(CKXH-DXV)  
Hold time, FSX low after CLKX high  
Delay time, FSX low to CLKX low  
Delay time, CLKX high to DX valid  
P
ns  
ns  
ns  
2P(1)  
–2  
0
3P + 6  
5P + 20  
Disable time, DX high impedance following last data  
bit from CLKX high  
M56 tdis(CKXH-DXHZ)  
M57 td(FXL-DXV)  
P + 6  
6
7P + 6  
4P + 6  
ns  
ns  
Delay time, FSX low to DX valid  
(1) 2P = 1/CLKG  
M61  
M60  
MSB  
LSB  
CLKX  
M53  
M54  
FSX  
M56  
M55  
M57  
DX  
DR  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
(n-4)  
M58  
M59  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
Figure 8-44. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
Copyright © 2021 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.7 Enhanced Controller Area Network (eCAN) Module  
The CAN module (eCAN-A) has the following features:  
Fully compliant with CAN protocol, version 2.0B  
Supports data rates up to 1 Mbps  
Thirty-two mailboxes, each with the following properties:  
– Configurable as receive or transmit  
– Configurable with standard or extended identifier  
– Has a programmable receive mask  
– Supports data and remote frame  
– Composed of 0 to 8 bytes of data  
– Uses a 32-bit timestamp on receive and transmit message  
– Protects against reception of new message  
– Holds the dynamically programmable priority of transmit message  
– Employs a programmable interrupt scheme with two interrupt levels  
– Employs a programmable alarm on transmission or reception time-out  
Low-power mode  
Programmable wake-up on bus activity  
Automatic reply to a remote request message  
Automatic retransmission of a frame in case of loss of arbitration or error  
32-bit local network time counter synchronized by a specific message (communication in conjunction with  
mailbox 16)  
Self-test mode  
– Operates in a loopback mode receiving its own message. A "dummy" acknowledge is provided, thereby  
eliminating the need for another node to provide the acknowledge bit.  
Note  
For a SYSCLKOUT of 90 MHz, the smallest bit rate possible is 6.25 kbps.  
The F2806x CAN has passed the conformance test per ISO/DIS 16845. Contact TI for test report and  
exceptions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
eCAN0INT  
eCAN1INT  
Controls Address  
Data  
32  
Enhanced CAN Controller  
Message Controller  
Mailbox RAM  
(512 Bytes)  
Memory Management  
Unit  
eCAN Memory  
(512 Bytes)  
Registers and  
CPU Interface,  
Receive Control Unit,  
Timer Management Unit  
32-Message Mailbox  
of 4 ´ 32-Bit Words  
Message Objects Control  
32  
32  
32  
eCAN Protocol Kernel  
Receive Buffer  
Transmit Buffer  
Control Buffer  
Status Buffer  
SN65HVD23x  
3.3-V CAN Transceiver  
CAN Bus  
Figure 8-45. eCAN Block Diagram and Interface Circuit  
Table 8-30. 3.3-V eCAN Transceivers  
SUPPLY  
VOLTAGE  
LOW-POWER  
MODE  
SLOPE  
CONTROL  
PART NUMBER  
VREF  
OTHER  
TA  
–40°C to 85°C  
SN65HVD230  
SN65HVD230Q  
SN65HVD231  
SN65HVD231Q  
SN65HVD232  
SN65HVD232Q  
SN65HVD233  
SN65HVD234  
SN65HVD235  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
Standby  
Standby  
Sleep  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
None  
Yes  
Yes  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
Yes  
Sleep  
Yes  
None  
None  
None  
None  
None  
None  
None  
None  
Standby  
Standby and Sleep  
Standby  
Adjustable  
Adjustable  
Adjustable  
Diagnostic Loopback  
Autobaud Loopback  
Built-in Isolation  
Low Prop Delay  
ISO1050  
3–5.5 V  
None  
None  
None  
Thermal Shutdown  
Fail-safe Operation  
Dominant Time-Out  
–55°C to 105°C  
Copyright © 2021 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
eCAN-A Control and Status Registers  
Mailbox Enable - CANME  
Mailbox Direction - CANMD  
Transmission Request Set - CANTRS  
Transmission Request Reset - CANTRR  
Transmission Acknowledge - CANTA  
eCAN-A Memory (512 Bytes)  
Control and Status Registers  
Abort Acknowledge - CANAA  
Received Message Pending - CANRMP  
Received Message Lost - CANRML  
Remote Frame Pending - CANRFP  
Global Acceptance Mask - CANGAM  
6000h  
603Fh  
6040h  
Local Acceptance Masks (LAM)  
(32 ´ 32-Bit RAM)  
607Fh  
6080h  
Master Control - CANMC  
Message Object Timestamps (MOTS)  
(32 ´ 32-Bit RAM)  
Bit-Timing Configuration - CANBTC  
60BFh  
60C0h  
Error and Status - CANES  
Message Object Time-Out (MOTO)  
(32 ´ 32-Bit RAM)  
Transmit Error Counter - CANTEC  
Receive Error Counter - CANREC  
Global Interrupt Flag 0 - CANGIF0  
Global Interrupt Mask - CANGIM  
Global Interrupt Flag 1 - CANGIF1  
Mailbox Interrupt Mask - CANMIM  
Mailbox Interrupt Level - CANMIL  
60FFh  
eCAN-A Memory RAM (512 Bytes)  
6100h-6107h  
6108h-610Fh  
6110h-6117h  
6118h-611Fh  
6120h-6127h  
Mailbox 0  
Mailbox 1  
Mailbox 2  
Mailbox 3  
Mailbox 4  
Overwrite Protection Control - CANOPC  
TX I/O Control - CANTIOC  
RX I/O Control - CANRIOC  
Timestamp Counter - CANTSC  
Time-Out Control - CANTOC  
Time-Out Status - CANTOS  
61E0h-61E7h  
61E8h-61EFh  
61F0h-61F7h  
61F8h-61FFh  
Mailbox 28  
Mailbox 29  
Mailbox 30  
Mailbox 31  
Reserved  
Message Mailbox (16 Bytes)  
Message Identifier - MSGID  
Message Control - MSGCTRL  
Message Data Low - MDL  
Message Data High - MDH  
61E8h-61E9h  
61EAh-61EBh  
61ECh-61EDh  
61EEh-61EFh  
Figure 8-46. eCAN-A Memory Map  
Note  
If the eCAN module is not used in an application, the RAM available (LAM, MOTS, MOTO, and  
mailbox RAM) can be used as general-purpose RAM. The CAN module clock should be enabled for  
this.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
The CAN registers listed in Table 8-31 are used by the CPU to configure and control the CAN controller and the  
message objects. eCAN control registers only support 32-bit read/write operations. Mailbox RAM can be  
accessed as 16 bits or 32 bits. All 32-bit accesses are aligned to an even boundary.  
Table 8-31. CAN Registers  
eCAN-A  
REGISTER NAME(1)  
SIZE (×32)  
DESCRIPTION  
ADDRESS  
0x6000  
0x6002  
0x6004  
0x6006  
0x6008  
0x600A  
0x600C  
0x600E  
0x6010  
0x6012  
0x6014  
0x6016  
0x6018  
0x601A  
0x601C  
0x601E  
0x6020  
0x6022  
0x6024  
0x6026  
0x6028  
0x602A  
0x602C  
0x602E  
0x6030  
0x6032  
CANME  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Mailbox enable  
CANMD  
Mailbox direction  
CANTRS  
CANTRR  
CANTA  
Transmit request set  
Transmit request reset  
Transmission acknowledge  
Abort acknowledge  
Receive message pending  
Receive message lost  
Remote frame pending  
Global acceptance mask  
Master control  
CANAA  
CANRMP  
CANRML  
CANRFP  
CANGAM  
CANMC  
CANBTC  
CANES  
Bit-timing configuration  
Error and status  
CANTEC  
CANREC  
CANGIF0  
CANGIM  
CANGIF1  
CANMIM  
CANMIL  
CANOPC  
CANTIOC  
CANRIOC  
CANTSC  
CANTOC  
CANTOS  
Transmit error counter  
Receive error counter  
Global interrupt flag 0  
Global interrupt mask  
Global interrupt flag 1  
Mailbox interrupt mask  
Mailbox interrupt level  
Overwrite protection control  
TX I/O control  
RX I/O control  
Timestamp counter (Reserved in SCC mode)  
Time-out control (Reserved in SCC mode)  
Time-out status (Reserved in SCC mode)  
(1) These registers are mapped to Peripheral Frame 1.  
Copyright © 2021 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.8 Inter-Integrated Circuit (I2C)  
The device contains one I2C Serial Port. Figure 8-47 shows how the I2C peripheral module interfaces within the  
device.  
The I2C module has the following features:  
Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):  
– Support for 1-bit to 8-bit format transfers  
– 7-bit and 10-bit addressing modes  
– General call  
– START byte mode  
– Support for multiple master-transmitters and slave-receivers  
– Support for multiple slave-transmitters and master-receivers  
– Combined master transmit/receive and receive/transmit mode  
– Data transfer rate of from 10 kbps up to 400 kbps (I2C Fast-mode rate)  
One 4-word receive FIFO and one 4-word transmit FIFO  
One interrupt that can be used by the CPU. This interrupt can be generated as a result of one of the following  
conditions:  
– Transmit-data ready  
– Receive-data ready  
– Register-access ready  
– No-acknowledgment received  
– Arbitration lost  
– Stop condition detected  
– Addressed as slave  
An additional interrupt that can be used by the CPU when in FIFO mode  
Module enable/disable capability  
Free data format mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
I2C Module  
I2CXSR  
I2CDXR  
TX FIFO  
RX FIFO  
FIFO Interrupt to  
CPU/PIE  
SDA  
Peripheral Bus  
I2CRSR  
I2CDRR  
Control/Status  
Registers  
CPU  
Clock  
Synchronizer  
SCL  
Prescaler  
Noise Filters  
Arbitrator  
Interrupt to  
CPU/PIE  
I2C INT  
A. The I2C registers are accessed at the SYSCLKOUT rate. The internal timing and signal waveforms of the I2C port are also at the  
SYSCLKOUT rate.  
B. The clock enable bit (I2CAENCLK) in the PCLKCRO register turns off the clock to the I2C port for low-power operation. Upon reset,  
I2CAENCLK is clear, which indicates the peripheral internal clocks are off.  
Figure 8-47. I2C Peripheral Module Interfaces  
The registers in Table 8-32 configure and control the I2C port operation.  
Table 8-32. I2C-A Registers  
EALLOW  
PROTECTED  
NAME  
ADDRESS  
DESCRIPTION  
I2C own address register  
I2COAR  
I2CIER  
0x7900  
0x7901  
0x7902  
0x7903  
0x7904  
0x7905  
0x7906  
0x7907  
0x7908  
0x7909  
0x790A  
0x790C  
0x7920  
0x7921  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
I2C interrupt enable register  
I2C status register  
I2CSTR  
I2CCLKL  
I2CCLKH  
I2CCNT  
I2CDRR  
I2CSAR  
I2CDXR  
I2CMDR  
I2CISRC  
I2CPSC  
I2CFFTX  
I2CFFRX  
I2CRSR  
I2C clock low-time divider register  
I2C clock high-time divider register  
I2C data count register  
I2C data receive register  
I2C slave address register  
I2C data transmit register  
I2C mode register  
I2C interrupt source register  
I2C prescaler register  
I2C FIFO transmit register  
I2C FIFO receive register  
I2C receive shift register (not accessible to the CPU)  
Copyright © 2021 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-32. I2C-A Registers (continued)  
EALLOW  
PROTECTED  
NAME  
ADDRESS  
DESCRIPTION  
I2CXSR  
No  
I2C transmit shift register (not accessible to the CPU)  
8.9.8.1 I2C Electrical Data/Timing  
Section 8.9.8.1.1 shows the I2C timing requirements. Section 8.9.8.1.2 shows the I2C switching characteristics.  
8.9.8.1.1 I2C Timing Requirements  
MIN  
MAX UNIT  
Hold time, START condition, SCL fall delay  
after SDA fall  
th(SDA-SCL)START  
tsu(SCL-SDA)START  
0.6  
µs  
Setup time, Repeated START, SCL rise  
before SDA fall delay  
0.6  
µs  
th(SCL-DAT)  
tsu(DAT-SCL)  
tr(SDA)  
Hold time, data after SCL fall  
Setup time, data before SCL rise  
Rise time, SDA  
0
100  
20  
µs  
ns  
Input tolerance  
Input tolerance  
Input tolerance  
Input tolerance  
300  
300  
300  
300  
ns  
ns  
ns  
ns  
tr(SCL)  
Rise time, SCL  
20  
tf(SDA)  
Fall time, SDA  
11.4  
11.4  
tf(SCL)  
Fall time, SCL  
Setup time, STOP condition, SCL rise before  
SDA rise delay  
tsu(SCL-SDA)STOP  
0.6  
µs  
8.9.8.1.2 I2C Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
I2C clock module frequency is from 7 MHz to  
12 MHz and I2C prescaler and clock divider  
registers are configured appropriately.  
fSCL  
SCL clock frequency  
400  
kHz  
Vil  
Low level input voltage  
High level input voltage  
Input hysteresis  
0.3 VDDIO  
V
V
V
V
Vih  
Vhys  
Vol  
0.7 VDDIO  
0.05 VDDIO  
0
Low level output voltage  
3-mA sink current  
0.4  
I2C clock module frequency is from 7 MHz to  
12 MHz and I2C prescaler and clock divider  
registers are configured appropriately.  
tLOW Low period of SCL clock  
tHIGH High period of SCL clock  
1.3  
μs  
I2C clock module frequency is from 7 MHz to  
12 MHz and I2C prescaler and clock divider  
registers are configured appropriately.  
0.6  
μs  
Input current with an input voltage from  
0.1 VDDIO to 0.9 VDDIO MAX  
lI  
–10  
10  
μA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.9 Enhanced Pulse Width Modulator (ePWM) Modules (ePWM1 to ePWM8)  
The devices contain up to eight enhanced PWM (ePWM) modules. Figure 8-48 shows a block diagram of  
multiple ePWM modules. Figure 8-49 shows the signal interconnections with the ePWM.  
Table 8-33 and Table 8-34 show the complete ePWM register set per module.  
EPWMSYNCI  
EPWM1SYNCI  
EPWM1B  
EPWM1TZINT  
EPWM1  
Module  
TZ1 to TZ3  
EPWM1INT  
EQEP1ERR(A)  
EPWM2TZINT  
TZ4  
PIE  
EPWM2INT  
CLOCKFAIL  
TZ5  
EPWMxTZINT  
EMUSTOP  
TZ6  
EPWMxINT  
EPWM1ENCLK  
TBCLKSYNC  
eCAPI  
EPWM1SYNCO  
EPWM2SYNCI  
EPWM1SYNCO  
TZ1 to TZ3  
COMPOUT1  
COMPOUT2  
EPWM2B  
EPWM2  
Module  
EQEP1ERR(A)  
CLOCKFAIL  
EMUSTOP  
COMP  
EPWM1A  
EPWM2A  
TZ4  
TZ5  
TZ6  
H
R
P
W
M
EPWM2ENCLK  
TBCLKSYNC  
EPWMxA  
G
P
I
EPWM2SYNCO  
O
M
U
X
SOCA1  
SOCB1  
SOCA2  
SOCB2  
SOCAx  
SOCBx  
ADC  
EPWMxB  
EPWMxSYNCI  
TZ1 to TZ3  
EPWMx  
Module  
EQEP1ERR(A)  
CLOCKFAIL  
EMUSTOP  
EQEP1ERR  
TZ4  
TZ5  
TZ6  
eQEP1  
EPWMxENCLK  
TBCLKSYNC  
System Control  
C28x CPU  
SOCA1  
SOCA2  
SPCAx  
ADCSOCAO  
ADCSOCBO  
Pulse Stretch  
(32 SYSCLKOUT Cycles, Active-Low Output)  
SOCB1  
SOCB2  
SPCBx  
Pulse Stretch  
(32 SYSCLKOUT Cycles, Active-Low Output)  
A. This signal exists only on devices with an eQEP1 module.  
Figure 8-48. ePWM  
Copyright © 2021 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
www.ti.com  
NAME  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
Table 8-33. ePWM1–ePWM4 Control and Status Registers  
SIZE (×16)/  
#SHADOW  
ePWM1  
ePWM2  
ePWM3  
ePWM4  
DESCRIPTION  
TBCTL  
0x6800  
0x6801  
0x6802  
0x6803  
0x6804  
0x6805  
0x6806  
0x6807  
0x6808  
0x6809  
0x680A  
0x680B  
0x680C  
0x680D  
0x6840  
0x6841  
0x6842  
0x6843  
0x6844  
0x6845  
0x6846  
0x6847  
0x6848  
0x6849  
0x684A  
0x684B  
0x684C  
0x684D  
0x6880  
0x6881  
0x6882  
0x6883  
0x6884  
0x6885  
0x6886  
0x6887  
0x6888  
0x6889  
0x688A  
0x688B  
0x688C  
0x688D  
0x68C0  
0x68C1  
0x68C2  
0x68C3  
0x68C4  
0x68C5  
0x68C6  
0x68C7  
0x68C8  
0x68C9  
0x68CA  
0x68CB  
0x68CC  
0x68CD  
1/0  
Time Base Control Register  
TBSTS  
1/0  
Time Base Status Register  
TBPHSHR  
TBPHS  
1/0  
Time Base Phase HRPWM Register  
Time Base Phase Register  
1/0  
TBCTR  
1/0  
Time Base Counter Register  
TBPRD  
1/1  
Time Base Period Register Set  
TBPRDHR  
CMPCTL  
CMPAHR  
CMPA  
1/1  
Time Base Period High-Resolution Register(1)  
Counter Compare Control Register  
Time Base Compare A HRPWM Register  
Counter Compare A Register Set  
Counter Compare B Register Set  
Action Qualifier Control Register For Output A  
Action Qualifier Control Register For Output B  
Action Qualifier Software Force Register  
1/0  
1/1  
1/1  
CMPB  
1/1  
AQCTLA  
AQCTLB  
AQSFRC  
1/0  
1/0  
1/0  
Action Qualifier Continuous S/W Force  
Register Set  
AQCSFRC  
DBCTL  
0x680E  
0x680F  
0x6810  
0x684E  
0x684F  
0x6850  
0x688E  
0x688F  
0x6890  
0x68CE  
0x68CF  
0x68D0  
1/1  
1/1  
1/0  
Dead-Band Generator Control Register  
Dead-Band Generator Rising Edge Delay  
Count Register  
DBRED  
Dead-Band Generator Falling Edge Delay  
Count Register  
DBFED  
0x6811  
0x6851  
0x6891  
0x68D1  
1/0  
TZSEL  
0x6812  
0x6813  
0x6814  
0x6815  
0x6816  
0x6817  
0x6818  
0x6819  
0x681A  
0x681B  
0x681C  
0x681D  
0x681E  
0x6820  
0x6826  
0x6828  
0x682A  
0x682B  
0x682C  
0x682D  
0x6830  
0x6831  
0x6832  
0x6833  
0x6834  
0x6852  
0x6853  
0x6854  
0x6855  
0x6856  
0x6857  
0x6858  
0x6859  
0x685A  
0x685B  
0x685C  
0x685D  
0x685E  
0x6860  
-
0x6892  
0x6893  
0x6894  
0x6895  
0x6896  
0x6897  
0x6898  
0x6899  
0x689A  
0x689B  
0x689C  
0x689D  
0x689E  
0x68A0  
-
0x68D2  
0x68D3  
0x68D4  
0x68D5  
0x68D6  
0x68D7  
0x68D8  
0x68D9  
0x68DA  
0x68DB  
0x68DC  
0x68DD  
0x68DE  
0x68E0  
-
1/0  
1/0  
Trip Zone Select Register(1)  
TZDCSEL  
TZCTL  
Trip Zone Digital Compare Register  
Trip Zone Control Register(1)  
1/0  
TZEINT  
1/0  
Trip Zone Enable Interrupt Register(1)  
Trip Zone Flag Register (1)  
TZFLG  
1/0  
TZCLR  
1/0  
Trip Zone Clear Register(1)  
TZFRC  
1/0  
Trip Zone Force Register(1)  
ETSEL  
1/0  
Event Trigger Selection Register  
Event Trigger Prescale Register  
Event Trigger Flag Register  
ETPS  
1/0  
ETFLG  
1/0  
ETCLR  
1/0  
Event Trigger Clear Register  
ETFRC  
1/0  
Event Trigger Force Register  
PCCTL  
1/0  
PWM Chopper Control Register  
HRPWM Configuration Register(1)  
HRPWM MEP Step Register  
HRCNFG  
HRMSTEP  
HRPCTL  
TBPRDHRM  
TBPRDM  
CMPAHRM  
CMPAM  
DCTRIPSEL  
DCACTL  
DCBCTL  
DCFCTL  
DCCAPCT  
1/0  
1/0  
0x6868  
0x686A  
0x686B  
0x686C  
0x686D  
0x6870  
0x6871  
0x6872  
0x6873  
0x6874  
0x68A8  
0x68AA  
0x68AB  
0x68AC  
0x68AD  
0x68B0  
0x68B1  
0x68B2  
0x68B3  
0x68B4  
0x68E8  
0x68EA  
0x68EB  
0x68EC  
0x68ED  
0x68F0  
0x68F1  
0x68F2  
0x68F3  
0x68F4  
1/0  
High-resolution Period Control Register(1)  
Time Base Period HRPWM Register Mirror  
Time Base Period Register Mirror  
Compare A HRPWM Register Mirror  
Compare A Register Mirror  
1/W(2)  
1/W(2)  
1/W(2)  
1/W(2)  
1/0  
Digital Compare Trip Select Register (1)  
Digital Compare A Control Register(1)  
Digital Compare B Control Register(1)  
Digital Compare Filter Control Register(1)  
Digital Compare Capture Control Register(1)  
1/0  
1/0  
1/0  
1/0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-33. ePWM1–ePWM4 Control and Status Registers (continued)  
SIZE (×16)/  
#SHADOW  
NAME  
ePWM1  
0x6835  
0x6836  
0x6837  
0x6838  
0x6839  
ePWM2  
0x6875  
0x6876  
0x6877  
0x6878  
0x6879  
ePWM3  
0x68B5  
0x68B6  
0x68B7  
0x68B8  
0x68B9  
ePWM4  
0x68F5  
0x68F6  
0x68F7  
0x68F8  
0x68F9  
DESCRIPTION  
DCFOFFSET  
1/1  
Digital Compare Filter Offset Register  
Digital Compare Filter Offset Counter Register  
Digital Compare Filter Window Register  
DCFOFFSETCN  
T
1/0  
1/0  
1/0  
1/1  
DCFWINDOW  
DCFWINDOWCN  
T
Digital Compare Filter Window Counter  
Register  
DCCAP  
Digital Compare Counter Capture Register  
(1) Registers that are EALLOW protected.  
(2) W = Write to shadow register  
Copyright © 2021 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-34. ePWM5–ePWM8 Control and Status Registers  
SIZE (×16)/  
#SHADOW  
NAME  
ePWM5  
ePWM6  
ePWM7  
ePWM8  
DESCRIPTION  
TBCTL  
0x6900  
0x6901  
0x6902  
0x6903  
0x6904  
0x6905  
0x6940  
0x6941  
0x6942  
0x6943  
0x6944  
0x6945  
0x6980  
0x6981  
0x6982  
0x6983  
0x6984  
0x6985  
0x69C0  
0x69C1  
0x69C2  
0x69C3  
0x69C4  
0x69C5  
1/0  
1/0  
1/0  
1/0  
1/0  
1/1  
Time Base Control Register  
Time Base Status Register  
Time Base Phase HRPWM Register  
Time Base Phase Register  
Time Base Counter Register  
Time Base Period Register Set  
TBSTS  
TBPHSHR  
TBPHS  
TBCTR  
TBPRD  
Time Base Period High-Resolution  
Register(1)  
TBPRDHR  
0x6906  
0x6946  
0x6986  
0x69C6  
1/1  
CMPCTL  
CMPAHR  
CMPA  
0x6907  
0x6908  
0x6909  
0x690A  
0x6947  
0x6948  
0x6949  
0x694A  
0x6987  
0x6988  
0x6989  
0x698A  
0x69C7  
0x69C8  
0x69C9  
0x69CA  
1/0  
1/1  
1/1  
1/1  
Counter Compare Control Register  
Time Base Compare A HRPWM Register  
Counter Compare A Register Set  
Counter Compare B Register Set  
CMPB  
Action Qualifier Control Register For  
Output A  
AQCTLA  
0x690B  
0x694B  
0x698B  
0x69CB  
1/0  
Action Qualifier Control Register For  
Output B  
AQCTLB  
AQSFRC  
AQCSFRC  
DBCTL  
0x690C  
0x690D  
0x690E  
0x690F  
0x6910  
0x694C  
0x694D  
0x694E  
0x694F  
0x6950  
0x698C  
0x698D  
0x698E  
0x698F  
0x6990  
0x69CC  
0x69CD  
0x69CE  
0x69CF  
0x69D0  
1/0  
1/0  
1/1  
1/1  
1/0  
Action Qualifier Software Force Register  
Action Qualifier Continuous S/W Force  
Register Set  
Dead-Band Generator Control Register  
Dead-Band Generator Rising Edge Delay  
Count Register  
DBRED  
Dead-Band Generator Falling Edge Delay  
Count Register  
DBFED  
0x6911  
0x6951  
0x6991  
0x69D1  
1/0  
TZSEL  
0x6912  
0x6913  
0x6914  
0x6915  
0x6916  
0x6917  
0x6918  
0x6919  
0x691A  
0x691B  
0x691C  
0x691D  
0x691E  
0x6920  
-
0x6952  
0x6953  
0x6954  
0x6955  
0x6956  
0x6957  
0x6958  
0x6959  
0x695A  
0x695B  
0x695C  
0x695D  
0x695E  
0x6960  
-
0x6992  
0x6993  
0x6994  
0x6995  
0x6996  
0x6997  
0x6998  
0x6999  
0x699A  
0x699B  
0x699C  
0x699D  
0x699E  
0x69A0  
-
0x69D2  
0x69D3  
0x69D4  
0x69D5  
0x69D6  
0x69D7  
0x69D8  
0x69D9  
0x69DA  
0x69DB  
0x69DC  
0x69DD  
0x69DE  
0x69E0  
-
1/0  
1/0  
Trip Zone Select Register(1)  
TZDCSEL  
TZCTL  
Trip Zone Digital Compare Register  
Trip Zone Control Register(1)  
1/0  
TZEINT  
TZFLG  
1/0  
Trip Zone Enable Interrupt Register(1)  
Trip Zone Flag Register (1)  
1/0  
TZCLR  
1/0  
Trip Zone Clear Register(1)  
TZFRC  
1/0  
Trip Zone Force Register(1)  
ETSEL  
1/0  
Event Trigger Selection Register  
Event Trigger Prescale Register  
Event Trigger Flag Register  
ETPS  
1/0  
ETFLG  
1/0  
ETCLR  
1/0  
Event Trigger Clear Register  
ETFRC  
1/0  
Event Trigger Force Register  
PCCTL  
1/0  
PWM Chopper Control Register  
HRPWM Configuration Register(1)  
HRPWM MEP Step Register  
HRCNFG  
HRMSTEP  
HRPCTL  
TBPRDHRM  
TBPRDM  
CMPAHRM  
CMPAM  
DCTRIPSEL  
DCACTL  
DCBCTL  
1/0  
1/0  
0x6928  
0x692A  
0x692B  
0x692C  
0x692D  
0x6930  
0x6931  
0x6932  
0x6968  
0x696A  
0x696B  
0x696C  
0x696D  
0x6970  
0x6971  
0x6972  
0x69A8  
0x69AA  
0x69AB  
0x69AC  
0x69AD  
0x69B0  
0x69B1  
0x69B2  
0x69E8  
0x69EA  
0x69EB  
0x69EC  
0x69ED  
0x69F0  
0x69F1  
0x69F2  
1/0  
High-resolution Period Control Register(1)  
Time Base Period HRPWM Register Mirror  
Time Base Period Register Mirror  
Compare A HRPWM Register Mirror  
Compare A Register Mirror  
1/W(2)  
1/W(2)  
1/W(2)  
1/W(2)  
1/0  
Digital Compare Trip Select Register (1)  
Digital Compare A Control Register(1)  
Digital Compare B Control Register(1)  
1/0  
1/0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-34. ePWM5–ePWM8 Control and Status Registers (continued)  
SIZE (×16)/  
#SHADOW  
NAME  
DCFCTL  
ePWM5  
0x6933  
0x6934  
0x6935  
0x6936  
0x6937  
0x6938  
0x6939  
ePWM6  
0x6973  
0x6974  
0x6975  
0x6976  
0x6977  
0x6978  
0x6979  
ePWM7  
0x69B3  
0x69B4  
0x69B5  
0x69B6  
0x69B7  
0x69B8  
0x69B9  
ePWM8  
0x69F3  
0x69F4  
0x69F5  
0x69F6  
0x69F7  
0x69F8  
0x69F9  
DESCRIPTION  
1/0  
Digital Compare Filter Control Register(1)  
Digital Compare Capture Control  
Register(1)  
DCCAPCT  
1/0  
1/1  
1/0  
1/0  
1/0  
1/1  
DCFOFFSET  
DCFOFFSETCNT  
DCFWINDOW  
DCFWINDOWCNT  
DCCAP  
Digital Compare Filter Offset Register  
Digital Compare Filter Offset Counter  
Register  
Digital Compare Filter Window Register  
Digital Compare Filter Window Counter  
Register  
Digital Compare Counter Capture Register  
(1) Registers that are EALLOW protected.  
(2) W = Write to shadow register  
Copyright © 2021 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Time-Base (TB)  
CTR=ZERO  
Sync  
In/Out  
TBPRD Shadow (24)  
TBPRD Active (24)  
EPWMxSYNCO  
CTR=CMPB  
Disabled  
Select  
Mux  
TBPRDHR (8)  
8
CTR=PRD  
TBCTL[SYNCOSEL]  
TBCTL[PHSEN]  
EPWMxSYNCI  
DCAEVT1.sync  
DCBEVT1.sync  
Counter  
Up/Down  
(16 Bit)  
TBCTL[SWFSYNC]  
(Software Forced  
Sync)  
CTR=ZERO  
CTR_Dir  
TCBNT  
Active (16)  
CTR=PRD  
CTR=ZERO  
TBPHSHR (8)  
EPWMxINT  
CTR=PRD or ZERO  
CTR=CMPA  
Event  
Trigger  
and  
Interrupt  
(ET)  
16  
8
EPWMxSOCA  
Phase  
Control  
CTR=CMPB  
CTR_Dir  
(A)  
DCAEVT1.soc  
(A)  
TBPHS Active (24)  
EPWMxSOCB  
EPWMxSOCA  
ADC  
DCBEVT1.soc  
EPWMxSOCB  
Action  
Qualifier  
(AQ)  
CTR=CMPA  
CMPAHR (8)  
16  
High-resolution PWM (HRPWM)  
CMPA Active (24)  
CMPA Shadow (24)  
EPWMxA  
EPWMA  
EPWMB  
PWM  
Chopper  
(PC)  
Trip  
Zone  
(TZ)  
Dead  
Band  
(DB)  
CTR=CMPB  
16  
EPWMxB  
EPWMxTZINT  
TZ1 to TZ3  
EMUSTOP  
CMPB Active (16)  
CMPB Shadow (16)  
CLOCKFAIL  
(B)  
EQEP1ERR  
CTR=ZERO  
DCAEVT1.inter  
DCBEVT1.inter  
(A)  
(A)  
(A)  
(A)  
DCAEVT1.force  
DCAEVT2.force  
DCBEVT1.force  
DCBEVT2.force  
DCAEVT2.inter  
DCBEVT2.inter  
Copyright © 2017, Texas Instruments Incorporated  
A. These events are generated by the Type 1 ePWM digital compare (DC) submodule based on the levels of the COMPxOUT and TZ  
signals.  
B. This signal exists only on devices with an eQEP1 module.  
Figure 8-49. ePWM Submodules Showing Critical Internal Signal Interconnections  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.9.1 ePWM Electrical Data/Timing  
PWM refers to PWM outputs on ePWM1–8. Section 8.9.9.1.1 shows the PWM timing requirements and Section  
8.9.9.1.2, switching characteristics.  
8.9.9.1.1 ePWM Timing Requirements  
MIN(1)  
2tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
cycles  
Asynchronous  
Synchronous  
tw(SYCIN)  
Sync input pulse width  
2tc(SCO)  
With input qualifier  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 8.9.15.1.2.1.  
8.9.9.1.2 ePWM Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
33.33  
MAX  
UNIT  
ns  
tw(PWM)  
Pulse duration, PWMx output high/low  
Sync output pulse width  
tw(SYNCOUT)  
8tc(SCO)  
cycles  
Delay time, trip input active to PWM forced high  
Delay time, trip input active to PWM forced low  
td(PWM)tza  
no pin load  
25  
20  
ns  
ns  
td(TZ-PWM)HZ  
Delay time, trip input active to PWM Hi-Z  
8.9.9.2 Trip-Zone Input Timing  
Section 8.9.9.2.1 lists the trip-zone input timing requirements. Figure 8-50 shows the PWM Hi-Z characteristics.  
8.9.9.2.1 Trip-Zone Input Timing Requirements  
MIN(1)  
2tc(TBCLK)  
MAX UNIT  
cycles  
Asynchronous  
Synchronous  
tw(TZ)  
Pulse duration, TZx input low  
2tc(TBCLK)  
cycles  
With input qualifier  
2tc(TBCLK) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Section 8.9.15.1.2.1.  
SYSCLK  
tw(TZ)  
TZ(A)  
td(TZ-PWM)HZ  
PWM(B)  
A. TZ - TZ1, TZ2, TZ3, TZ4, TZ5, TZ6  
B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software.  
Figure 8-50. PWM Hi-Z Characteristics  
Copyright © 2021 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.10 High-Resolution PWM (HRPWM)  
This module combines multiple delay lines in a single module and a simplified calibration system by using a  
dedicated calibration delay line. For each ePWM module there is one HR delay line.  
The HRPWM module offers PWM resolution (time granularity) that is significantly better than what can be  
achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are:  
Significantly extends the time resolution capabilities of conventionally derived digital PWM  
This capability can be used in both single edge (duty cycle and phase-shift control) as well as dual edge  
control for frequency/period modulation.  
Finer time granularity control or edge positioning is controlled through extensions to the Compare A and  
Phase registers of the ePWM module.  
HRPWM capabilities, when available on a particular device, are offered only on the A signal path of an  
ePWM module (that is, on the EPWMxA output). EPWMxB output has conventional PWM capabilities.  
Note  
The minimum SYSCLKOUT frequency allowed for HRPWM is 60 MHz.  
Note  
When dual-edge high-resolution is enabled (high-resolution period mode), the PWMxB channel will  
have ±1–2 TBCLK cycles of jitter on the output.  
8.9.10.1 HRPWM Electrical Data/Timing  
Section 8.9.10.1.1 shows the high-resolution PWM switching characteristics.  
8.9.10.1.1 High-Resolution PWM Characteristics  
PARAMETER(1)  
MIN  
TYP  
MAX UNIT  
310 ps  
Micro Edge Positioning (MEP) step size(2)  
150  
(1) The HRPWM operates at a minimum SYSCLKOUT frequency of 60 MHz.  
(2) The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher  
temperature and lower voltage and decrease with lower temperature and higher voltage.  
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI  
software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per  
SYSCLKOUT period dynamically while the HRPWM is in operation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.11 Enhanced Capture Module (eCAP1)  
The device contains an enhanced capture (eCAP) module. Figure 8-51 shows a functional block diagram of a  
module.  
CTRPHS  
(phase register−32 bit)  
APWM mode  
SYNCIn  
CTR_OVF  
OVF  
CTR [0−31]  
PRD [0−31]  
CMP [0−31]  
TSCTR  
(counter−32 bit)  
SYNCOut  
PWM  
compare  
logic  
Delta−mode  
RST  
32  
CTR=PRD  
CTR=CMP  
CTR [0−31]  
PRD [0−31]  
32  
eCAPx  
32  
LD1  
CAP1  
(APRD active)  
Polarity  
select  
LD  
APRD  
shadow  
32  
CMP [0−31]  
32  
32  
LD2  
CAP2  
(ACMP active)  
Polarity  
select  
LD  
Event  
qualifier  
Event  
Pre-scale  
32  
ACMP  
shadow  
Polarity  
select  
32  
32  
LD3  
LD4  
CAP3  
(APRD shadow)  
LD  
CAP4  
(ACMP shadow)  
Polarity  
select  
LD  
4
Capture events  
4
CEVT[1:4]  
Interrupt  
Trigger  
and  
Flag  
control  
Continuous /  
Oneshot  
Capture Control  
to PIE  
CTR_OVF  
CTR=PRD  
CTR=CMP  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-51. eCAP Functional Block Diagram  
The eCAP module is clocked at the SYSCLKOUT rate.  
The clock enable bits (ECAP1 ENCLK) in the PCLKCR1 register turn off the eCAP module individually (for low-  
power operation). Upon reset, ECAP1ENCLK is set to low, indicating that the peripheral clock is off.  
Copyright © 2021 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
www.ti.com  
NAME  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
Table 8-35. eCAP Control and Status Registers  
EALLOW  
PROTECTED  
eCAP1  
eCAP2  
eCAP3  
SIZE (×16)  
DESCRIPTION  
Timestamp Counter  
TSCTR  
CTRPHS  
CAP1  
0x6A00  
0x6A02  
0x6A04  
0x6A06  
0x6A08  
0x6A0A  
0x6A20  
0x6A22  
0x6A24  
0x6A26  
0x6A28  
0x6A2A  
0x6A40  
0x6A42  
0x6A44  
0x6A46  
0x6A48  
0x6A4A  
2
2
2
2
2
2
No  
No  
No  
No  
No  
No  
Counter Phase Offset Value Register  
Capture 1 Register  
CAP2  
Capture 2 Register  
CAP3  
Capture 3 Register  
CAP4  
Capture 4 Register  
0x6A0C to  
0x6A12  
0x6A2C to  
0x6A32  
0x6A4C to  
0x6A52  
Reserved  
8
No  
Reserved  
ECCTL1  
ECCTL2  
ECEINT  
ECFLG  
ECCLR  
ECFRC  
0x6A14  
0x6A15  
0x6A16  
0x6A17  
0x6A18  
0x6A19  
0x6A34  
0x6A35  
0x6A36  
0x6A37  
0x6A38  
0x6A39  
0x6A54  
0x6A55  
0x6A56  
0x6A57  
0x6A58  
0x6A59  
1
1
1
1
1
1
No  
No  
No  
No  
No  
No  
Capture Control Register 1  
Capture Control Register 2  
Capture Interrupt Enable Register  
Capture Interrupt Flag Register  
Capture Interrupt Clear Register  
Capture Interrupt Force Register  
0x6A1A to  
0x6A1F  
0x6A3A to  
0x6A3F  
0x6A5A to  
0x6A5F  
Reserved  
6
No  
Reserved  
8.9.11.1 eCAP Electrical Data/Timing  
Section 8.9.11.1.1 shows the eCAP timing requirement and Section 8.9.11.1.2 shows the eCAP switching  
characteristics.  
8.9.11.1.1 Enhanced Capture (eCAP) Timing Requirement  
MIN(1)  
2tc(SCO)  
MAX UNIT  
Asynchronous  
Synchronous  
tw(CAP)  
Capture input pulse width  
2tc(SCO)  
cycles  
With input qualifier  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 8.9.15.1.2.1.  
8.9.11.1.2 eCAP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
tw(APWM)  
Pulse duration, APWMx output high/low  
20  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.12 High-Resolution Capture Modules (HRCAP1 to HRCAP4)  
The device contains up to four high-resolution capture (HRCAP) modules. The High-Resolution Capture  
(HRCAP) module measures the difference between external pulses with a typical resolution of 300 ps.  
Uses for the HRCAP include:  
Capacitive touch applications  
High-resolution period and duty cycle measurements of pulse train cycles  
Instantaneous speed measurements  
Instantaneous frequency measurements  
Voltage measurements across an isolation boundary  
Distance measurement (sonar) and scanning  
The HRCAP module features include:  
Pulse width capture in either non-high-resolution or high-resolution modes  
Difference (Delta) mode pulse width capture  
Typical high-resolution capture on the order of 300 ps resolution on each edge  
Interrupt on either falling or rising edge  
Continuous mode capture of pulse widths in 2-deep buffer  
Calibration logic for precision high-resolution capture  
All of the above resources are dedicated to a single input pin  
HRCAP calibration software library supplied by TI is used for both calibration and calculating fractional pulse  
widths  
The HRCAP module includes one capture channel in addition to a high-resolution calibration block, which  
connects internally to the last available ePWMxA HRPWM channel when calibrating (that is, if there are eight  
ePWMs with HRPWM capability, it will be HRPWM8A).  
Each HRCAP channel has the following independent key resources:  
Dedicated input capture pin  
16-bit HRCAP clock which is either equal to the PLL2 output frequency (asynchronous to SYSCLK2) or  
SYSCLKOUT  
High-resolution pulse width capture in a 2-deep buffer  
HRCAP Calibration Logic  
EPWMx  
EPWMxA  
HRPWM  
HRCAPxENCLK  
SYSCLKOUT  
PLL2CLK  
HRCAPx  
Module  
GPIO  
Mux  
HRCAP Calibration Signal (Internal)  
PIE  
HRCAPxINTn  
HRCAPx  
Figure 8-52. HRCAP Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-36. HRCAP Registers  
SIZE  
(×16)  
NAME  
HRCAP1  
HRCAP2  
HRCAP3  
HRCAP4  
DESCRIPTION  
HCCTL  
0x6AC0  
0x6AC1  
0x6AC2  
0x6AC3  
0x6AC4  
0x6AE0  
0x6AE1  
0x6AE2  
0x6AE3  
0x6AE4  
0x6C80  
0x6C81  
0x6C82  
0x6C83  
0x6C84  
0x6CA0  
0x6CA1  
0x6CA2  
0x6CA3  
0x6CA4  
1
1
1
1
1
HRCAP Control Register(1)  
HCIFR  
HRCAP Interrupt Flag Register  
HRCAP Interrupt Clear Register(1)  
HRCAP Interrupt Force Register(1)  
HRCAP 16-bit Counter Register  
HCICLR  
HCIFRC  
HCCOUNTER  
HRCAP Capture Counter on Rising Edge  
0 Register  
HCCAPCNTRISE0  
HCCAPCNTFALL0  
HCCAPCNTRISE1  
HCCAPCNTFALL1  
0x6AD0  
0x6AD2  
0x6AD8  
0x6ADA  
0x6AF0  
0x6AF2  
0x6AF8  
0x6AFA  
0x6C90  
0x6C92  
0x6C98  
0x6C9A  
0x6CB0  
0x6CB2  
0x6CB8  
0x6CBA  
1
1
1
1
HRCAP Capture Counter on  
Falling Edge 0 Register  
HRCAP Capture Counter on Rising Edge  
1 Register  
HRCAP Capture Counter on  
Falling Edge 1 Register  
(1) Registers that are EALLOW-protected.  
8.9.12.1 HRCAP Electrical Data/Timing  
8.9.12.1.1 High-Resolution Capture (HRCAP) Timing Requirements  
MIN  
NOM  
MAX UNIT  
tc(HCCAPCLK)  
tw(HRCAP)  
Cycle time, HRCAP capture clock  
Pulse width, HRCAP capture  
HRCAP step size(2)  
8.333  
10.204  
ns  
ns  
ps  
(1)  
7tc(HCCAPCLK)  
300  
(1) The listed minimum pulse width does not take into account the limitation that all relevant HCCAP registers must be read and RISE/  
FALL event flags cleared within the pulse width to ensure valid capture data.  
(2) HRCAP step size will increase with low voltage and high temperature and decrease with high voltage and low temperature.  
Applications that use the HRCAP in high-resolution mode should use the HRCAP calibration functions to dynamically calibrate for  
varying operating conditions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.13 Enhanced Quadrature Encoder Modules (eQEP1, eQEP2)  
The device contains up to two enhanced quadrature encoder (eQEP) modules. Table 8-37 provides a summary  
of the eQEP registers.  
Table 8-37. eQEP Control and Status Registers  
eQEP1  
SIZE(×16)/  
#SHADOW  
eQEP1  
ADDRESS  
eQEP2  
ADDRESS  
NAME  
QPOSCNT  
REGISTER DESCRIPTION  
0x6B00  
0x6B02  
0x6B04  
0x6B06  
0x6B08  
0x6B0A  
0x6B0C  
0x6B0E  
0x6B10  
0x6B12  
0x6B13  
0x6B14  
0x6B15  
0x6B16  
0x6B17  
0x6B18  
0x6B19  
0x6B1A  
0x6B1B  
0x6B1C  
0x6B1D  
0x6B1E  
0x6B1F  
0x6B20  
0x6B40  
0x6B42  
0x6B44  
0x6B46  
0x6B48  
0x6B4A  
0x6B4C  
0x6B4E  
0x6B50  
0x6B52  
0x6B53  
0x6B54  
0x6B55  
0x6B56  
0x6B57  
0x6B58  
0x6B59  
0x6B5A  
0x6B5B  
0x6B5C  
0x6B5D  
0x6B5E  
0x6B5F  
0x6B60  
2/0  
2/0  
2/0  
2/1  
2/0  
2/0  
2/0  
2/0  
2/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
eQEP Position Counter  
QPOSINIT  
QPOSMAX  
QPOSCMP  
QPOSILAT  
QPOSSLAT  
QPOSLAT  
QUTMR  
eQEP Initialization Position Count  
eQEP Maximum Position Count  
eQEP Position-compare  
eQEP Index Position Latch  
eQEP Strobe Position Latch  
eQEP Position Latch  
eQEP Unit Timer  
QUPRD  
eQEP Unit Period Register  
eQEP Watchdog Timer  
QWDTMR  
QWDPRD  
QDECCTL  
QEPCTL  
QCAPCTL  
QPOSCTL  
QEINT  
eQEP Watchdog Period Register  
eQEP Decoder Control Register  
eQEP Control Register  
eQEP Capture Control Register  
eQEP Position-compare Control Register  
eQEP Interrupt Enable Register  
eQEP Interrupt Flag Register  
eQEP Interrupt Clear Register  
eQEP Interrupt Force Register  
eQEP Status Register  
QFLG  
QCLR  
QFRC  
QEPSTS  
QCTMR  
eQEP Capture Timer  
QCPRD  
eQEP Capture Period Register  
eQEP Capture Timer Latch  
eQEP Capture Period Latch  
QCTMRLAT  
QCPRDLAT  
0x6B21 to  
0x6B3F  
0x6B61 to  
0x6B7F  
Reserved  
31/0  
Copyright © 2021 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 8-53 shows the block diagram of the eQEP module.  
System Control  
Registers  
To CPU  
EQEPxENCLK  
SYSCLKOUT  
QCPRD  
QCAPCTL  
16  
QCTMR  
16  
16  
Quadrature  
Capture  
Unit  
QCTMRLAT  
QCPRDLAT  
(QCAP)  
QUTMR  
QUPRD  
QWDTMR  
QWDPRD  
Registers  
Used by  
Multiple Units  
32  
16  
QEPCTL  
QEPSTS  
QFLG  
UTOUT  
QWDOG  
UTIME  
QDECCTL  
16  
WDTOUT  
EQEPxAIN  
EQEPxBIN  
EQEPxIIN  
EQEPxA/XCLK  
EQEPxB/XDIR  
EQEPxI  
QCLK  
QDIR  
QI  
EQEPxINT  
16  
PIE  
Position Counter/  
Control Unit  
(PCCU)  
EQEPxIOUT  
EQEPxIOE  
EQEPxSIN  
EQEPxSOUT  
EQEPxSOE  
Quadrature  
Decoder  
(QDU)  
QS  
GPIO  
MUX  
QPOSLAT  
QPOSSLAT  
QPOSILAT  
PHE  
PCSOUT  
EQEPxS  
32  
32  
16  
QPOSCNT  
QPOSINIT  
QPOSMAX  
QEINT  
QFRC  
QPOSCMP  
QCLR  
QPOSCTL  
Enhanced QEP (eQEP) Peripheral  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-53. eQEP Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.13.1 eQEP Electrical Data/Timing  
Section 8.9.13.1.1 shows the eQEP timing requirement and Section 8.9.13.1.2 shows the eQEP switching  
characteristics.  
8.9.13.1.1 Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements  
MIN(1)  
MAX  
UNIT  
Asynchronous(2)/Synchronous  
With input qualifier  
2tc(SCO)  
tw(QEPP)  
QEP input period  
cycles  
2[1tc(SCO) + tw(IQSW)  
]
Asynchronous(2)/Synchronous  
2tc(SCO)  
2tc(SCO) +tw(IQSW)  
2tc(SCO)  
tw(INDEXH)  
tw(INDEXL)  
tw(STROBH)  
tw(STROBL)  
QEP Index Input High time  
QEP Index Input Low time  
QEP Strobe High time  
QEP Strobe Input Low time  
cycles  
cycles  
cycles  
cycles  
With input qualifier  
Asynchronous(2)/Synchronous  
With input qualifier  
2tc(SCO) + tw(IQSW)  
2tc(SCO)  
2tc(SCO) + tw(IQSW)  
2tc(SCO)  
Asynchronous(2)/Synchronous  
With input qualifier  
Asynchronous(2)/Synchronous  
With input qualifier  
2tc(SCO) +tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 8.9.15.1.2.1.  
(2) Refer to the TMS320F2806x MCUs Silicon Errata for limitations in the asynchronous mode.  
8.9.13.1.2 eQEP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
4tc(SCO)  
6tc(SCO)  
UNIT  
cycles  
cycles  
td(CNTR)xin  
Delay time, external clock to counter increment  
td(PCS-OUT)QEP  
Delay time, QEP input edge to position compare sync output  
Copyright © 2021 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.14 JTAG Port  
On the 2806x device, the JTAG port is reduced to five pins ( TRST, TCK, TDI, TMS, TDO). TCK, TDI, TMS, and  
TDO pins are also GPIO pins. The TRST signal selects either JTAG or GPIO operating mode for the pins in  
Figure 8-54. During emulation/debug, the GPIO function of these pins are not available. If the GPIO38/TCK/  
XCLKIN pin is used to provide an external clock, an alternate clock source should be used to clock the device  
during emulation/debug because this pin will be needed for the TCK function.  
Note  
In 2806x devices, the JTAG pins may also be used as GPIO pins. Care should be taken in the board  
design to ensure that the circuitry connected to these pins do not affect the emulation capabilities of  
the JTAG pin function. Any circuitry connected to these pins should not prevent the debug probe from  
driving (or being driven by) the JTAG pins for successful debug.  
TRST = 0: JTAG Disabled (GPIO Mode)  
TRST = 1: JTAG Mode  
TRST  
TRST  
XCLKIN  
GPIO38_in  
TCK  
TCK/GPIO38  
GPIO38_out  
C28x  
Core  
GPIO37_in  
TDO  
TDO/GPIO37  
1
0
GPIO37_out  
GPIO36_in  
1
0
TMS  
TMS/GPIO36  
TDI/GPIO35  
1
GPIO36_out  
GPIO35_in  
1
0
TDI  
1
GPIO35_out  
Figure 8-54. JTAG/GPIO Multiplexing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.15 General-Purpose Input/Output (GPIO) MUX  
The GPIO MUX can multiplex up to three independent peripheral signals on a single GPIO pin in addition to  
providing individual pin bit-banging I/O capability.  
The device supports 45 GPIO pins. The GPIO control and data registers are mapped to Peripheral Frame 1 to  
enable 32-bit operations on the registers (along with 16-bit operations). Table 8-38 shows the GPIO register  
mapping.  
Table 8-38. GPIO Registers  
NAME  
ADDRESS  
SIZE (×16)  
DESCRIPTION  
GPIO CONTROL REGISTERS (EALLOW PROTECTED)  
GPACTRL  
GPAQSEL1  
GPAQSEL2  
GPAMUX1  
GPAMUX2  
GPADIR  
0x6F80  
0x6F82  
0x6F84  
0x6F86  
0x6F88  
0x6F8A  
0x6F8C  
0x6F90  
0x6F92  
0x6F94  
0x6F96  
0x6F98  
0x6F9A  
0x6F9C  
0x6FB6  
0x6FBA  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
GPIO A Control Register (GPIO0 to 31)  
GPIO A Qualifier Select 1 Register (GPIO0 to 15)  
GPIO A Qualifier Select 2 Register (GPIO16 to 31)  
GPIO A MUX 1 Register (GPIO0 to 15)  
GPIO A MUX 2 Register (GPIO16 to 31)  
GPIO A Direction Register (GPIO0 to 31)  
GPIO A Pullup Disable Register (GPIO0 to 31)  
GPIO B Control Register (GPIO32 to 44)  
GPIO B Qualifier Select 1 Register (GPIO32 to 44)  
GPIO B Qualifier Select 2 Register  
GPAPUD  
GPBCTRL  
GPBQSEL1  
GPBQSEL2  
GPBMUX1  
GPBMUX2  
GPBDIR  
GPIO B MUX 1 Register (GPIO32 to 44)  
GPIO B MUX 2 Register (GPIO50 to 58)  
GPIO B Direction Register (GPIO32 to 44)  
GPIO B Pullup Disable Register (GPIO32 to 44)  
Analog, I/O mux 1 register (AIO0 to AIO15)  
Analog, I/O Direction Register (AIO0 to AIO15)  
GPBPUD  
AIOMUX1  
AIODIR  
GPIO DATA REGISTERS (NOT EALLOW PROTECTED)  
GPADAT  
0x6FC0  
0x6FC2  
0x6FC4  
0x6FC6  
0x6FC8  
0x6FCA  
0x6FCC  
0x6FCE  
0x6FD8  
0x6FDA  
0x6FDC  
0x6FDE  
2
2
2
2
2
2
2
2
2
2
2
2
GPIO A Data Register (GPIO0 to 31)  
GPASET  
GPIO A Data Set Register (GPIO0 to 31)  
GPIO A Data Clear Register (GPIO0 to 31)  
GPIO A Data Toggle Register (GPIO0 to 31)  
GPIO B Data Register (GPIO32 to 44)  
GPACLEAR  
GPATOGGLE  
GPBDAT  
GPBSET  
GPIO B Data Set Register (GPIO32 to 44)  
GPIO B Data Clear Register (GPIO32 to 44)  
GPIO B Data Toggle Register (GPIO32 to 44)  
Analog I/O Data Register (AIO0 to AIO15)  
Analog I/O Data Set Register (AIO0 to AIO15)  
Analog I/O Data Clear Register (AIO0 to AIO15)  
Analog I/O Data Toggle Register (AIO0 to AIO15)  
GPBCLEAR  
GPBTOGGLE  
AIODAT  
AIOSET  
AIOCLEAR  
AIOTOGGLE  
GPIO INTERRUPT AND LOW-POWER MODES SELECT REGISTERS (EALLOW PROTECTED)  
GPIOXINT1SEL  
GPIOXINT2SEL  
GPIOXINT3SEL  
GPIOLPMSEL  
0x6FE0  
0x6FE1  
0x6FE2  
0x6FE8  
1
1
1
2
XINT1 GPIO Input Select Register (GPIO0 to 31)  
XINT2 GPIO Input Select Register (GPIO0 to 31)  
XINT3 GPIO Input Select Register (GPIO0 to 31)  
LPM GPIO Select Register (GPIO0 to 31)  
Note  
There is a two-SYSCLKOUT cycle delay from when the write to the GPxMUXn/AIOMUXn and  
GPxQSELn registers occurs to when the action is valid.  
Copyright © 2021 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-39. GPIOA MUX  
DEFAULT AT RESET  
PRIMARY I/O  
PERIPHERAL  
SELECTION 1  
PERIPHERAL  
SELECTION 2  
PERIPHERAL  
SELECTION 3  
FUNCTION(1) (2)  
GPAMUX1 REGISTER  
(GPAMUX1 BITS = 00)  
(GPAMUX1 BITS = 01)  
(GPAMUX1 BITS = 10)  
(GPAMUX1 BITS = 11)  
BITS  
1-0  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
EPWM1A (O)  
EPWM1B (O)  
EPWM2A (O)  
EPWM2B (O)  
EPWM3A (O)  
EPWM3B (O)  
EPWM4A (O)  
EPWM4B (O)  
EPWM5A (O)  
EPWM5B (O)  
EPWM6A (O)  
EPWM6B (O)  
TZ1 (I)  
Reserved  
Reserved  
Reserved  
COMP1OUT (O)  
Reserved  
3-2  
5-4  
Reserved  
7-6  
SPISOMIA (I/O)  
Reserved  
COMP2OUT (O)  
Reserved  
9-8  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
SPISIMOA (I/O)  
EPWMSYNCI (I)  
SCIRXDA (I)  
Reserved  
ECAP1 (I/O)  
EPWMSYNCO (O)  
ECAP2 (I/O)  
ADCSOCAO (O)  
ECAP3 (I/O)  
SCITXDB (O)  
Reserved  
ADCSOCBO (O)  
ECAP1 (I/O)  
SCIRXDB (I)  
SCITXDA (O)  
Reserved  
SPISIMOB (I/O)  
SPISOMIB (I/O)  
SPICLKB (I/O)  
SPISTEB (I/O)  
TZ2 (I)  
TZ3 (I)  
SCITXDB (O)  
SCIRXDB (I)  
ECAP2 (I/O)  
GPAMUX2 REGISTER  
BITS  
(GPAMUX2 BITS = 00)  
(GPAMUX2 BITS = 01)  
(GPAMUX2 BITS = 10)  
(GPAMUX2 BITS = 11)  
1-0  
GPIO16  
GPIO17  
SPISIMOA (I/O)  
SPISOMIA (I/O)  
SPICLKA (I/O)  
SPISTEA (I/O)  
EQEP1A (I)  
Reserved  
Reserved  
TZ2 (I)  
3-2  
TZ3 (I)  
5-4  
GPIO18  
SCITXDB (O)  
SCIRXDB (I)  
MDXA (O)  
XCLKOUT (O)  
ECAP1 (I/O)  
COMP1OUT (O)  
COMP2OUT (O)  
SCITXDB (O)  
SCIRXDB (I)  
SPISIMOB (I/O)  
SPISOMIB (I/O)  
SPICLKB (I/O)  
SPISTEB (I/O)  
TZ2 (I)  
7-6  
GPIO19/XCLKIN  
GPIO20  
9-8  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
GPIO21  
EQEP1B (I)  
MDRA (I)  
GPIO22  
EQEP1S (I/O)  
EQEP1I (I/O)  
ECAP1 (I/O)  
ECAP2 (I/O)  
ECAP3 (I/O)  
HRCAP2 (I)  
MCLKXA (I/O)  
MFSXA (I/O)  
EQEP2A(3) (I)  
EQEP2B(3) (I)  
EQEP2I(3) (I/O)  
EQEP2S(3) (I/O)  
SDAA (I/OD)  
SCLA (I/OD)  
EQEP2I(3) (I/O)  
EQEP2S(3) (I/O)  
GPIO23  
GPIO24  
GPIO25  
GPIO26(4)  
GPIO27(4)  
GPIO28  
SCIRXDA (I)  
SCITXDA (O)  
CANRXA (I)  
CANTXA (O)  
GPIO29  
TZ3 (I)  
GPIO30  
EPWM7A (O)  
EPWM8A (O)  
GPIO31  
(1) The word "Reserved" means that there is no peripheral assigned to this GPxMUX1/2 register setting. Should it be selected, the state of  
the pin will be undefined and the pin may be driven. This selection is a reserved configuration for future expansion.  
(2) I = Input, O = Output, OD = Open Drain  
(3) The eQEP2 peripheral is not available on the 80-pin PN or PFP package.  
(4) To enable the USB functionality on GPIO26 (USB0DP, positive differential half of the USB signal) and GPIO27 (USB0DM, negative  
differential half of the USB signal), set the USBIOEN bit in the GPACTRL2 register. Depending on your USB application, additional pins  
may be required to maintain compliance with the USB 2.0 Specification. For more information, see the Universal Serial Bus (USB)  
Controller chapter of the TMS320x2806x Technical Reference Manual .  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-40. GPIOB MUX  
DEFAULT AT RESET  
PERIPHERAL  
SELECTION 1  
PERIPHERAL  
SELECTION 2  
PERIPHERAL  
SELECTION 3  
PRIMARY I/O  
FUNCTION(1) (2)  
GPBMUX1 REGISTER  
BITS  
(GPBMUX1 BITS = 00)  
(GPBMUX1 BITS = 01)  
(GPBMUX1 BITS = 10)  
(GPBMUX1 BITS = 11)  
1-0  
GPIO32  
GPIO33  
SDAA (I/OD)  
SCLA (I/OD)  
COMP2OUT (O)  
Reserved  
EPWMSYNCI (I)  
EPWMSYNCO (O)  
Reserved  
ADCSOCAO (O)  
ADCSOCBO (O)  
COMP3OUT (O)  
Reserved  
3-2  
5-4  
GPIO34  
7-6  
GPIO35 (TDI)  
GPIO36 (TMS)  
GPIO37 (TDO)  
GPIO38/XCLKIN (TCK)  
GPIO39  
Reserved  
9-8  
Reserved  
Reserved  
Reserved  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
GPIO40(3)  
EPWM7A (O)  
EPWM7B (O)  
EPWM8A (O)  
EPWM8B (O)  
MFSRA (I/O)  
Reserved  
SCITXDB (O)  
SCIRXDB (I)  
TZ1 (I)  
Reserved  
GPIO41(3)  
Reserved  
GPIO42(3)  
COMP1OUT (O)  
COMP2OUT (O)  
EPWM7B (O)  
Reserved  
GPIO43(3)  
TZ2 (I)  
GPIO44(3)  
SCIRXDB (I)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
GPBMUX2 REGISTER  
BITS  
(GPBMUX2 BITS = 00)  
(GPBMUX2 BITS = 01)  
(GPBMUX2 BITS = 10)  
(GPBMUX2 BITS = 11)  
1-0  
Reserved  
Reserved  
GPIO50(3)  
GPIO51(3)  
GPIO52(3)  
GPIO53(3)  
GPIO54(3)  
GPIO55(3)  
GPIO56(3)  
GPIO57(3)  
GPIO58(3)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TZ1 (I)  
3-2  
5-4  
EQEP1A (I)  
EQEP1B (I)  
EQEP1S (I/O)  
EQEP1I (I/O)  
SPISIMOA (I/O)  
SPISOMIA (I/O)  
SPICLKA (I/O)  
SPISTEA (I/O)  
MCLKRA (I/O)  
Reserved  
MDXA (O)  
MDRA (I)  
7-6  
TZ2 (I)  
9-8  
MCLKXA (I/O)  
MFSXA (I/O)  
EQEP2A (I)  
EQEP2B (I)  
EQEP2I (I/O)  
EQEP2S (I/O)  
SCITXDB (O)  
Reserved  
TZ3 (I)  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
Reserved  
HRCAP1 (I)  
HRCAP2 (I)  
HRCAP3 (I)  
HRCAP4 (I)  
EPWM7A (O)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
(1) The word "Reserved" means that there is no peripheral assigned to this GPxMUX1/2 register setting. Should it be selected, the state of  
the pin will be undefined and the pin may be driven. This selection is a reserved configuration for future expansion.  
(2) I = Input, O = Output, OD = Open Drain  
(3) This pin is not available in the 80-pin PN or PFP package.  
Copyright © 2021 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-41. Analog MUX for 100-Pin PZ and 100-Pin PZP Packages  
DEFAULT AT RESET(1)  
PERIPHERAL SELECTION 2 AND  
AIOx AND PERIPHERAL SELECTION 1  
PERIPHERAL SELECTION 3  
AIOMUX1 REGISTER BITS  
AIOMUX1 BITS = 0,x  
ADCINA0 (I)  
ADCINA1 (I)  
AIO2 (I/O)  
AIOMUX1 BITS = 1,x  
ADCINA0 (I)  
1-0  
3-2  
ADCINA1 (I)  
5-4  
ADCINA2 (I), COMP1A (I)  
ADCINA3 (I)  
7-6  
ADCINA3 (I)  
AIO4 (I/O)  
9-8  
ADCINA4 (I), COMP2A (I)  
ADCINA5 (I)  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
ADCINA5 (I)  
AIO6 (I/O)  
ADCINA6 (I), COMP3A (I)  
ADCINA7 (I)  
ADCINA7 (I)  
ADCINB0 (I)  
ADCINB1 (I)  
AIO10 (I/O)  
ADCINB3 (I)  
AIO12 (I/O)  
ADCINB5 (I)  
AIO14 (I/O)  
ADCINB7 (I)  
ADCINB0 (I)  
ADCINB1 (I)  
ADCINB2 (I), COMP1B (I)  
ADCINB3 (I)  
ADCINB4 (I), COMP2B (I)  
ADCINB5 (I)  
ADCINB6 (I), COMP3B (I)  
ADCINB7 (I)  
(1) I = Input, O = Output  
Table 8-42. Analog MUX for 80-Pin PN and 80-Pin PFP Packages  
DEFAULT AT RESET(1)  
PERIPHERAL SELECTION 2 AND  
PERIPHERAL SELECTION 3  
AIOx AND PERIPHERAL SELECTION 1  
AIOMUX1 REGISTER BITS  
AIOMUX1 BITS = 0,x  
ADCINA0 (I), VREFHI (I)  
ADCINA1 (I)  
AIO2 (I/O)  
AIOMUX1 BITS = 1,x  
ADCINA0 (I), VREFHI (I)  
ADCINA1 (I)  
1-0  
3-2  
5-4  
ADCINA2 (I), COMP1A (I)  
7-6  
9-8  
AIO4 (I/O)  
ADCINA5 (I)  
AIO6 (I/O)  
ADCINA4 (I), COMP2A (I)  
ADCINA5 (I)  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
ADCINA6 (I), COMP3A (I)  
ADCINB0 (I)  
ADCINB1 (I)  
AIO10 (I/O)  
ADCINB0 (I)  
ADCINB1 (I)  
ADCINB2 (I), COMP1B (I)  
AIO12 (I/O)  
ADCINB5 (I)  
AIO14 (I/O)  
ADCINB4 (I), COMP2B (I)  
ADCINB5 (I)  
ADCINB6 (I), COMP3B (I)  
(1) I = Input, O = Output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
The user can select the type of input qualification for each GPIO pin through the GPxQSEL1/2 registers from  
four choices:  
Synchronization To SYSCLKOUT Only (GPxQSEL1/2 = 0, 0): This is the default mode of all GPIO pins at  
reset and it simply synchronizes the input signal to the system clock (SYSCLKOUT).  
Qualification Using Sampling Window (GPxQSEL1/2 = 0, 1 and 1, 0): In this mode the input signal, after  
synchronization to the system clock (SYSCLKOUT), is qualified by a specified number of cycles before the  
input is allowed to change.  
The sampling period is specified by the QUALPRD bits in the GPxCTRL register and is configurable in  
groups of 8 signals. The sampling period specifies a multiple of SYSCLKOUT cycles for sampling the input  
signal. The sampling window is either 3-samples or 6-samples wide and the output is only changed when  
ALL samples are the same (all 0s or all 1s) as shown in Figure 4-18 (for 6 sample mode).  
No Synchronization (GPxQSEL1/2 = 1,1): This mode is used for peripherals where synchronization is not  
required (synchronization is performed within the peripheral).  
Due to the multilevel multiplexing that is required on the device, there may be cases where a peripheral input  
signal can be mapped to more then one GPIO pin. Also, when an input signal is not selected, the input signal will  
default to either a 0 or 1 state, depending on the peripheral.  
Copyright © 2021 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
GPIOXINT1SEL  
GPIOLMPSEL  
LPMCR0  
GPIOXINT2SEL  
GPIOXINT3SEL  
External Interrupt  
MUX  
Low-Power  
Modes Block  
PIE  
Asynchronous  
path  
GPxDAT (read)  
GPxQSEL1/2  
GPxCTRL  
GPxPUD  
N/C  
00  
01  
Peripheral 1 Input  
Peripheral 2 Input  
Input  
Internal  
Pullup  
Qualification  
10  
11  
Peripheral 3 Input  
GPxTOGGLE  
Asynchronous path  
GPIOx pin  
GPxCLEAR  
GPxSET  
00  
01  
GPxDAT (latch)  
Peripheral 1 Output  
10  
11  
Peripheral 2 Output  
Peripheral 3 Output  
High Impedance  
Output Control  
GPxDIR (latch)  
00  
01  
Peripheral 1 Output Enable  
Peripheral 2 Output Enable  
0 = Input, 1 = Output  
XRS  
10  
11  
Peripheral 3 Output Enable  
= Default at Reset  
GPxMUX1/2  
A. x stands for the port, either A or B. For example, GPxDIR refers to either the GPADIR and GPBDIR register depending on the particular  
GPIO pin selected.  
B. GPxDAT latch/read are accessed at the same memory location.  
C. This is a generic GPIO MUX block diagram. Not all options may be applicable for all GPIO pins. See the Systems Control and Interrupts  
chapter of the TMS320x2806x Technical Reference Manual for pin-specific variations.  
Figure 8-55. GPIO Multiplexing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.15.1 GPIO Electrical Data/Timing  
8.9.15.1.1 GPIO Output Timing  
8.9.15.1.1.1 General-Purpose Output Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
13(1)  
13(1)  
22.5  
UNIT  
ns  
tr(GPO)  
tf(GPO)  
fGPO  
Rise time, GPIO switching low to high  
Fall time, GPIO switching high to low  
Toggling frequency  
All GPIOs  
All GPIOs  
ns  
MHz  
(1) Rise time and fall time vary with electrical loading on I/O pins. Values given in Section 8.9.15.1.1.1 are applicable for a 40-pF load on  
I/O pins.  
GPIO  
t
r(GPO)  
t
f(GPO)  
Figure 8-56. General-Purpose Output Timing  
Copyright © 2021 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.15.1.2 GPIO Input Timing  
8.9.15.1.2.1 General-Purpose Input Timing Requirements  
MIN  
1tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
cycles  
QUALPRD = 0  
tw(SP)  
Sampling period  
QUALPRD ≠ 0  
2tc(SCO) * QUALPRD  
tw(SP) * (n(1) – 1)  
2tc(SCO)  
tw(IQSW)  
Input qualifier sampling window  
Pulse duration, GPIO low/high  
Synchronous mode  
With input qualifier  
(2)  
tw(GPI)  
tw(IQSW) + tw(SP) + 1tc(SCO)  
(1) "n" represents the number of qualification samples as defined by GPxQSELn register.  
(2) For tw(GPI), pulse width is measured from VIL to VIL for an active-low signal and VIH to VIH for an active-high signal.  
(A)  
GPIO Signal  
GPxQSELn = 1,0 (6 samples)  
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
tw(SP)  
Sampling Period determined  
by GPxCTRL[QUALPRD](B)  
tw(IQSW)  
[(SYSCLKOUT cycle * 2 * QUALPRD) * 5(C)  
]
Sampling Window  
SYSCLKOUT  
QUALPRD = 1  
(SYSCLKOUT/2)  
(D)  
Output From  
Qualifier  
A. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. The QUALPRD bit  
field value can vary from 00 to 0xFF. If QUALPRD = 00, then the sampling period is one SYSCLKOUT cycle. For any other value "n", the  
qualification sampling period in 2n SYSCLKOUT cycles (that is, at every 2n SYSCLKOUT cycles, the GPIO pin will be sampled).  
B. The qualification period selected through the GPxCTRL register applies to groups of eight GPIO pins.  
C. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is used.  
D. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLKOUT cycles or greater. In other  
words, the inputs should be stable for (5 × QUALPRD × 2) SYSCLKOUT cycles. This would ensure five sampling periods for detection to  
occur. Because external signals are driven asynchronously, an 13-SYSCLKOUT-wide pulse ensures reliable recognition.  
Figure 8-57. Sampling Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.15.1.3 Sampling Window Width for Input Signals  
The following section summarizes the sampling window width for input signals for various input qualifier  
configurations.  
Sampling frequency denotes how often a signal is sampled with respect to SYSCLKOUT.  
Sampling frequency = SYSCLKOUT/(2 × QUALPRD), if QUALPRD ≠ 0  
Sampling frequency = SYSCLKOUT, if QUALPRD = 0  
Sampling period = SYSCLKOUT cycle × 2 × QUALPRD, if QUALPRD ≠ 0  
In the preceding samples, SYSCLKOUT cycle indicates the time period of SYSCLKOUT.  
Sampling period = SYSCLKOUT cycle, if QUALPRD = 0  
In a given sampling window, either three or six samples of the input signal are taken to determine the validity of  
the signal. This is determined by the value written to GPxQSELn register.  
Case 1:  
Qualification using three samples  
Sampling window width = (SYSCLKOUT cycle × 2 × QUALPRD) × 2, if QUALPRD ≠ 0  
Sampling window width = (SYSCLKOUT cycle) × 2, if QUALPRD = 0  
Case 2:  
Qualification using six samples  
Sampling window width = (SYSCLKOUT cycle × 2 × QUALPRD) × 5, if QUALPRD ≠ 0  
Sampling window width = (SYSCLKOUT cycle) × 5, if QUALPRD = 0  
SYSCLK  
GPIOxn  
tw(GPI)  
Figure 8-58. General-Purpose Input Timing  
Copyright © 2021 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
VDDIO  
> 1 MS  
2 pF  
VSS  
VSS  
Figure 8-59. Input Resistance Model for a GPIO Pin With an Internal Pullup  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.15.1.4 Low-Power Mode Wakeup Timing  
Section 8.9.15.1.4.1 shows the timing requirements, Section 8.9.15.1.4.2 shows the switching characteristics,  
and Figure 8-60 shows the timing diagram for IDLE mode.  
8.9.15.1.4.1 IDLE Mode Timing Requirements  
MIN(1)  
2tc(SCO)  
MAX  
UNIT  
Without input qualifier  
With input qualifier  
tw(WAKE-INT)  
Pulse duration, external wake-up signal  
cycles  
5tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 8.9.15.1.2.1.  
8.9.15.1.4.2 IDLE Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Delay time, external wake signal to program execution resume (2)  
cycles  
Wake up from flash  
Flash module in active state  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
20tc(SCO)  
cycles  
cycles  
cycles  
20tc(SCO) + tw(IQSW)  
1050tc(SCO)  
td(WAKE-IDLE)  
Wake up from flash  
Flash module in sleep state  
1050tc(SCO) + tw(IQSW)  
20tc(SCO)  
Wake up from SARAM  
20tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 8.9.15.1.2.1.  
(2) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up signal) involves additional latency.  
t
d(WAKE−IDLE)  
Address/Data  
(internal)  
XCLKOUT  
t
w(WAKE−INT)  
WAKE INT(A)(B)  
A. WAKE INT can be any enabled interrupt, WDINT or XRS. After the IDLE instruction is executed, a delay of five OSCCLK cycles  
(minimum) is needed before the wake-up signal could be asserted.  
B. From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be initiated until at  
least four OSCCLK cycles have elapsed.  
Figure 8-60. IDLE Entry and Exit Timing  
Copyright © 2021 Texas Instruments Incorporated  
158 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.15.1.4.3 STANDBY Mode Timing Requirements  
MIN MAX  
3tc(OSCCLK)  
UNIT  
Without input qualification  
Pulse duration, external  
tw(WAKE-INT)  
cycles  
(2 + QUALSTDBY) *  
tc(OSCCLK)  
With input qualification(1)  
wake-up signal  
(1) QUALSTDBY is a 6-bit field in the LPMCR0 register.  
8.9.15.1.4.4 STANDBY Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Delay time, IDLE instruction  
executed to XCLKOUT low  
td(IDLE-XCOL)  
32tc(SCO)  
45tc(SCO) cycles  
cycles  
Delay time, external wake signal to program execution  
resume(1)  
Wake up from flash  
Flash module in active state  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
100tc(SCO)  
cycles  
100tc(SCO) + tw(WAKE-INT)  
td(WAKE-STBY)  
Wake up from flash  
Flash module in sleep state  
1125tc(SCO)  
1125tc(SCO) + tw(WAKE-INT)  
100tc(SCO)  
cycles  
cycles  
Wake up from SARAM  
100tc(SCO) + tw(WAKE-INT)  
(1) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up signal) involves additional latency.  
(C)  
(F)  
(A)  
(B)  
(D)(E)  
(G)  
Device  
Status  
STANDBY  
STANDBY  
Normal Execution  
Flushing Pipeline  
Wake-up  
Signal(H)  
t
w(WAKE-INT)  
t
d(WAKE-STBY)  
X1/X2 or  
XCLKIN  
XCLKOUT  
t
d(IDLE−XCOL)  
A. IDLE instruction is executed to put the device into STANDBY mode.  
B. The PLL block responds to the STANDBY signal. SYSCLKOUT is held for the number of cycles indicated below before being turned off:  
16 cycles, when DIVSEL = 00 or 01  
32 cycles, when DIVSEL = 10  
64 cycles, when DIVSEL = 11  
This delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in STANDBY mode. After  
the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.  
D. The external wake-up signal is driven active.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal  
must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the device will not be deterministic and the device  
may not exit low-power mode for subsequent wake-up pulses.  
F. After a latency period, the STANDBY mode is exited.  
G. Normal execution resumes. The device will respond to the interrupt (if enabled).  
H. From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be initiated until at  
least four OSCCLK cycles have elapsed.  
Figure 8-61. STANDBY Entry and Exit Timing Diagram  
8.9.15.1.4.5 HALT Mode Timing Requirements  
MIN  
toscst + 2tc(OSCCLK)  
toscst + 8tc(OSCCLK)  
MAX  
UNIT  
cycles  
cycles  
tw(WAKE-GPIO)  
tw(WAKE-XRS)  
Pulse duration, GPIO wake-up signal  
Pulse duration, XRS wake-up signal  
8.9.15.1.4.6 HALT Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
45tc(SCO)  
1
UNIT  
cycles  
ms  
td(IDLE-XCOL)  
tp  
Delay time, IDLE instruction executed to XCLKOUT low  
PLL lock-up time  
32tc(SCO)  
Delay time, PLL lock to program execution resume  
Wake up from flash  
– Flash module in sleep state  
1125tc(SCO)  
cycles  
td(WAKE-HALT)  
Wake up from SARAM  
35tc(SCO)  
cycles  
(C)  
(F)  
(A)  
(H)  
(B)  
(G)  
(D)(E)  
Device  
Status  
HALT  
HALT  
Flushing Pipeline  
PLL Lock-up Time  
Normal  
Execution  
Wake-up Latency  
GPIOn(I)  
t
)
d(WAKE−HALT  
t
w(WAKE-GPIO)  
tp  
X1/X2 or  
XCLKIN  
Oscillator Start-up Time  
XCLKOUT  
t
d(IDLE−XCOL)  
A. IDLE instruction is executed to put the device into HALT mode.  
B. The PLL block responds to the HALT signal. SYSCLKOUT is held for the number of cycles indicated below before oscillator is turned off  
and the CLKIN to the core is stopped:  
16 cycles, when DIVSEL = 00 or 01  
32 cycles, when DIVSEL = 10  
64 cycles, when DIVSEL = 11  
This delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as the clock source,  
the internal oscillator is shut down as well. The device is now in HALT mode and consumes absolute minimum power. It is possible to  
keep the zero-pin internal oscillators (INTOSC1 and INTOSC2) and the watchdog alive in HALT mode. This is done by writing to the  
appropriate bits in the CLKCTL register. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed  
before the wake-up signal could be asserted.  
Copyright © 2021 Texas Instruments Incorporated  
160 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
D. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator wake-up sequence  
is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This enables the provision of a clean clock signal  
during the PLL lock sequence. Because the falling edge of the GPIO pin asynchronously begins the wake-up procedure, care should be  
taken to maintain a low-noise environment before entering and during HALT mode.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal  
must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the device will not be deterministic and the device  
may not exit low-power mode for subsequent wake-up pulses.  
F. Once the oscillator has stabilized, the PLL lock sequence is initiated, which takes 1 ms.  
G. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after a latency. The HALT mode is now exited.  
H. Normal operation resumes.  
I. From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be initiated until at  
least four OSCCLK cycles have elapsed.  
Figure 8-62. HALT Mode Wakeup Using GPIOn  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.16 Universal Serial Bus (USB)  
8.9.16.1 USB Electrical Data/Timing  
8.9.16.1.1 USB Input Ports DP and DM Timing Requirements  
VCC  
MIN  
0.8  
MAX  
UNIT  
V
V(CM)  
Z(IN)  
VCRS  
VIL  
Differential input common mode range  
Input impedance  
2.5  
300  
1.3  
kΩ  
V
Crossover voltage  
2.0  
Static SE input logic-low level  
Static SE input logic-high level  
Differential input voltage  
0.8  
V
VIH  
2.0  
0.2  
V
VDI  
V
8.9.16.1.2 USB Output Ports DP and DM Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
D+, D– single-ended  
D+, D– single-ended  
D+, D– impedance  
TEST CONDITIONS  
VCC  
MIN  
MAX  
UNIT  
V
VOH  
USB 2.0 load conditions  
2.8  
0
3.6  
0.3  
50  
VOL  
USB 2.0 load conditions  
V
Z(DRV)  
28  
Ω
Full speed, differential, CL = 50 pF,  
10%/90%, Rpu on D+  
tr  
tf  
Rise time  
Fall time  
4
4
20  
20  
ns  
ns  
Full speed, differential, CL = 50 pF,  
10%/90%, Rpu on D+  
Copyright © 2021 Texas Instruments Incorporated  
162 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
9 Applications, Implementation, and Layout  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 TI Reference Design  
The TI Reference Design Library is a robust reference design library spanning analog, embedded processor,  
and connectivity. Created by TI experts to help you jump start your system design, all reference designs include  
schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download  
designs at the Select TI reference designs page.  
Digitally Controlled Non-Isolated DC/DC Buck Converter Reference Design  
This design implements a non-isolated DC/DC buck converter that is digitally controlled using a C2000  
microcontroller. The main purpose of this design is to evaluate the powerSUITE Digital Power Software tools.  
The design consists of two separate boards: 1) Digital Power BoosterPackPlug-in Module and 2) C2000  
F28069M LaunchPadDevelopment Kit or C2000 F28377S LaunchPad Development Kit.  
672W Highly Integrated Reference Design for Automotive Bidirectional 48V-12V Converter  
Today's automotive power consumption is 3KW, which will increase to 10KW in the next 5 years. A 12-V battery  
is unable to provide that much power. The 48-12V bidirectional convertor provides a high-power requirement  
solution with two phases, each capable of running 28 A. This solution allows bidirectional current control of both  
phases using a C2000 control stick and firmware OCP and OVP. The 48-12V bidirectional converter removes the  
voltage conditioner need and distributes loads more evenly. The 48-V battery is used to power high-torque  
motors and other high-power components, such as A/C compressors and EPS, with no change to 12-V battery  
loads.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
10 Device and Documentation Support  
10.1 Device and Development Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
TMS320MCU devices and support tools. Each TMS320 MCU commercial family member has one of three  
prefixes: TMX, TMP, or TMS (for example, TMS320F28069). Texas Instruments recommends two of three  
possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages  
of product development from engineering prototypes (with TMX for devices and TMDX for tools) to fully qualified  
production devices/tools (with TMS for devices and TMDS for tools).  
Device development evolutionary flow:  
TMX  
TMP  
Experimental device that is not necessarily representative of the final device's electrical specifications  
Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability  
verification  
TMS  
Fully qualified production device  
Support tool development evolutionary flow:  
TMDX  
TMDS  
Development-support product that has not yet completed Texas Instruments internal qualification testing  
Fully qualified development-support product  
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability  
of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, PZP) and temperature range (for example, S). Figure 10-1 provides a legend for reading the  
complete device name for any family member.  
For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your TI  
sales representative.  
For additional description of the device nomenclature markings on the die, see the TMS320F2806x MCUs  
Silicon Errata.  
Copyright © 2021 Texas Instruments Incorporated  
164 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
A. USB is present on TMS320F2806xU, TMS320F2806xM, and TMS320F2806xF devices.  
B. TMS320F2806xM devices are InstaSPIN-MOTION-enabled MCUs. TMS320F2806xF devices are InstaSPIN-FOC-enabled MCUs. For  
more information, see Section 10.3 for a list of InstaSPIN Technical Reference Manuals.  
C. For more information on peripheral, temperature, and package availability for a specific device, see Table 5-1.  
Figure 10-1. Device Nomenclature  
10.2 Tools and Software  
TI offers an extensive line of development tools. Some of the tools and software to evaluate the performance of  
the device, generate code, and develop solutions are listed below. To view all available tools and software for  
C2000™ real-time control MCUs, visit the C2000 real-time control MCUs – Design & development page.  
Development Tools  
C2000 F28069M LaunchPad™ development kit  
LAUNCHXL-F28069M is a low cost evaluation and development tool for the F2806x series as well as the  
InstaSPIN-FOC and InstaSPIN-MOTION enabled F2806x series in the TI MCU LaunchPad ecosystem which is  
compatible with various plug-on BoosterPacks. This extended version of the LaunchPad supports the connection  
of two BoosterPacks. The LaunchPad provides a standardized and easy to use platform to use while developing  
your next application.  
F28069 controlCARD  
The C2000 controlCARDs from Texas Instruments are ideal products for OEMs to use for initial software  
development and short-run builds for system prototypes, test stands, and many other projects that require easy  
access to high-performance controllers. The controlCARDs are complete board-level modules that use an  
industry-standard DIMM form factor to provide a low-profile, single-board controller solution. All of the C2000  
controlCARDs use the same 100-pin connector footprint to provide the analog and digital I/Os onboard controller  
and are completely interchangeable. The host system must provide only a single 5-V power rail to the  
controlCARD for it to function fully.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
F28069 Experimenter Kit  
The C2000 experimenter kits from Texas Instruments are ideal products for OEMs to use for initial device  
exploration and testing. The F28069 Experimenter Kit has a docking station that features onboard USB JTAG  
emulation, access to all controlCARD signals, breadboard areas, and RS-232 and JTAG connectors. Each kit  
contains an F28069 controlCARD. The controlCARD is a complete board-level module that uses an industry-  
standard DIMM form factor to provide a low-profile, single-board controller solution. The kit is complete with  
Code Composer Studio IDE and USB cable.  
Software Tools  
C2000Ware for C2000 MCUs  
C2000Ware for C2000™ microcontrollers is a cohesive set of development software and documentation  
designed to minimize software development time. From device-specific drivers and libraries to device peripheral  
examples, C2000Ware provides a solid foundation to begin development and evaluation of your product.  
Code Composer Studio(CCS) Integrated Development Environment (IDE) for C2000 Microcontrollers  
Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and  
Embedded Processors portfolio. CCS comprises a suite of tools used to develop and debug embedded  
applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger,  
profiler, and many other features. The intuitive IDE provides a single user interface taking the user through each  
step of the application development flow. Familiar tools and interfaces let users get started faster than ever  
before. CCS combines the advantages of the Eclipse software framework with advanced embedded debug  
capabilities from TI resulting in a compelling feature-rich development environment for embedded developers.  
Pin Mux Tool  
The Pin Mux Utility is a software tool which provides a Graphical User Interface for configuring pin multiplexing  
settings, resolving conflicts and specifying I/O cell characteristics for TI MPUs.  
UniFlash Standalone Flash Tool  
UniFlash is a standalone tool used to program on-chip flash memory through a GUI, command line, or scripting  
interface.  
Models  
Various models are available for download from the product Tools & Software pages. These include I/O Buffer  
Information Specification (IBIS) Models and Boundary-Scan Description Language (BSDL) Models. To view all  
available models, visit the Models section of the Tools & Software page for each device.  
Training  
To help assist design engineers in taking full advantage of the C2000 microcontroller features and performance,  
TI has developed a variety of training resources. Utilizing the online training materials and downloadable hands-  
on workshops provides an easy means for gaining a complete working knowledge of the C2000 microcontroller  
family. These training resources have been designed to decrease the learning curve, while reducing  
development time, and accelerating product time to market. For more information on the various training  
resources, visit the C2000™ real-time control MCUs – Support & training site.  
Specific TMS320F2806x hands-on training resources can be found at C2000™ MCU Device Workshops.  
Copyright © 2021 Texas Instruments Incorporated  
166 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
10.3 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper-  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
The current documentation that describes the processor, related peripherals, and other technical collateral is  
listed below.  
Errata  
TMS320F2806x MCUs Silicon Errata describes known advisories on silicon and provides workarounds.  
InstaSPIN Technical Reference Manuals  
InstaSPIN-FOC™ and InstaSPIN-MOTION™ User's Guide describes the InstaSPIN-FOC and InstaSPIN-  
MOTION devices.  
TMS320F28069F, TMS320F28068F, TMS320F28062F InstaSPIN-FOC™ Software Technical Reference Manual  
describes the TMS320F28069F, TMS320F28068F, and TMS320F28062F InstaSPIN-FOC™ software.  
TMS320F28069M, TMS320F28068M InstaSPIN-MOTION™ Software Technical Reference Manual describes  
the TMS320F28069M and TMS320F28068M InstaSPIN-MOTION™ software.  
CPU User's Guides  
TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and the  
assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). This reference  
guide also describes emulation features available on these DSPs.  
Peripheral Guides and Technical Reference Manuals  
C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the 28x  
digital signal processors (DSPs).  
TMS320x2806x Technical Reference Manual details the integration, the environment, the functional description,  
and the programming models for each peripheral and subsystem in the device.  
Tools Guides  
TMS320C28x Assembly Language Tools v19.6.0.STS User's Guide describes the assembly language tools  
(assembler and other tools used to develop assembly language code), assembler directives, macros, common  
object file format, and symbolic debugging directives for the TMS320C28x device.  
TMS320C28x Optimizing C/C++ Compiler v19.6.0.STS User's Guide describes the TMS320C28x C/C++  
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly  
language source code for the TMS320C28x device.  
Application Reports  
Semiconductor Packing Methodology describes the packing methodologies employed to prepare semiconductor  
devices for shipment to end users.  
Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful lifetime  
of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general  
engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement.  
An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS  
including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/  
output structures and future trends.  
Serial Flash Programming of C2000™ Microcontrollers discusses using a flash kernel and ROM loaders for  
serial programming a device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 167  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
10.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
10.5 Trademarks  
PowerPAD, InstaSPIN-MOTION, InstaSPIN-FOC, TMS320C2000, C2000, FAST, BoosterPack,  
LaunchPad, TMS320, Code Composer Studio, and TI E2Eare trademarks of Texas Instruments.  
SpinTACare trademarks of LineStream Technologies, Inc.  
I2C-bus® is a registered trademark of NXP B.V. Corporation.  
All trademarks are the property of their respective owners.  
10.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
168 Submit Document Feedback  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
 
 
TMS320F28069, TMS320F28069M, TMS320F28069F, TMS320F28068M, TMS320F28068F  
TMS320F28067, TMS320F28066, TMS320F28065, TMS320F28064, TMS320F28063  
TMS320F28062, TMS320F28062F  
SPRS698I – NOVEMBER 2010 – REVISED FEBRUARY 2021  
www.ti.com  
11 Mechanical, Packaging, and Orderable Information  
11.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
For packages with a thermal pad, the MECHANICAL DATA figure shows a generic thermal pad without  
dimensions. For the actual thermal pad dimensions that are applicable to this device, see the THERMAL PAD  
MECHANICAL DATA figure.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 169  
Product Folder Links: TMS320F28069 TMS320F28069M TMS320F28069F TMS320F28068M  
TMS320F28068F TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063  
TMS320F28062 TMS320F28062F  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Feb-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
PFP  
PN  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS320F28062FPFPQ  
TMS320F28062FPNT  
TMS320F28062FPZT  
TMS320F28062PFPQ  
TMS320F28062PFPQR  
TMS320F28062PFPS  
TMS320F28062PNT  
TMS320F28062PZPQ  
TMS320F28062PZPS  
TMS320F28062PZT  
TMS320F28062PZTR  
TMS320F28062UPNT  
TMS320F28062UPZT  
TMS320F28063PNT  
TMS320F28063PZT  
TMS320F28064PZT  
TMS320F28065PFPS  
ACTIVE  
HTQFP  
LQFP  
80  
80  
96  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 105  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 125  
F28062FPFPQ  
TMS320  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
119  
90  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
F28062FPNT  
TMS320  
LQFP  
PZ  
100  
80  
F28062FPZT  
TMS320  
HTQFP  
HTQFP  
HTQFP  
LQFP  
PFP  
PFP  
PFP  
PN  
96  
F28062PFPQ  
TMS320  
80  
1000 RoHS & Green  
F28062PFPQ  
TMS320  
80  
96  
119  
90  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
F28062PFPS  
TMS320  
80  
320F28062PNT  
TMS  
HTQFP  
HTQFP  
LQFP  
PZP  
PZP  
PZ  
100  
100  
100  
100  
80  
F28062PZPQ  
TMS320  
90  
F28062PZPS  
TMS320  
90  
320F28062PZT  
TMS  
LQFP  
PZ  
1000 RoHS & Green  
320F28062PZT  
TMS  
LQFP  
PN  
119  
90  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
320F28062UPNT  
TMS  
LQFP  
PZ  
100  
80  
F28062UPZT  
TMS320  
LQFP  
PN  
119  
90  
320F28063PNT  
TMS  
LQFP  
PZ  
100  
100  
80  
320F28063PZT  
TMS  
LQFP  
PZ  
90  
320F28064PZT  
TMS  
HTQFP  
PFP  
96  
F28065PFPS  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Feb-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS320  
TMS320F28065PNT  
TMS320F28065PZPQ  
TMS320F28065PZPS  
TMS320F28065PZT  
TMS320F28065UPZPS  
TMS320F28065UPZT  
TMS320F28066PFPQ  
TMS320F28066PFPS  
TMS320F28066PNT  
TMS320F28066PZPQ  
TMS320F28066PZPS  
TMS320F28066PZT  
TMS320F28067PFPS  
TMS320F28067PNT  
TMS320F28067PZPQ  
TMS320F28067PZPS  
TMS320F28067PZT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
HTQFP  
HTQFP  
LQFP  
PN  
PZP  
PZP  
PZ  
80  
100  
100  
100  
100  
100  
80  
119  
90  
90  
90  
90  
90  
96  
96  
119  
90  
90  
90  
96  
119  
90  
90  
90  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
F28065PNT  
TMS320  
F28065PZPQ  
TMS320  
F28065PZPS  
TMS320  
320F28065PZT  
TMS  
HTQFP  
LQFP  
PZP  
PZ  
F28065UPZPS  
TMS320  
F28065UPZT  
TMS320  
HTQFP  
HTQFP  
LQFP  
PFP  
PFP  
PN  
F28066PFPQ  
TMS320  
80  
F28066PFPS  
TMS320  
80  
320F28066PNT  
TMS  
HTQFP  
HTQFP  
LQFP  
PZP  
PZP  
PZ  
100  
100  
100  
80  
F28066PZPQ  
TMS320  
F28066PZPS  
TMS320  
320F28066PZT  
TMS  
HTQFP  
LQFP  
PFP  
PN  
F28067PFPS  
TMS320  
80  
320F28067PNT  
TMS  
HTQFP  
HTQFP  
LQFP  
PZP  
PZP  
PZ  
100  
100  
100  
F28067PZPQ  
TMS320  
F28067PZPS  
TMS320  
320F28067PZT  
TMS  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Feb-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
119  
90  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS320F28068FPNT  
TMS320F28068FPZT  
TMS320F28068MPNT  
TMS320F28068MPZT  
TMS320F28069FPFPQ  
TMS320F28069FPNT  
TMS320F28069FPZPQ  
TMS320F28069FPZT  
TMS320F28069FPZTR  
TMS320F28069MPFPQ  
TMS320F28069MPNT  
TMS320F28069MPZPQ  
TMS320F28069MPZT  
TMS320F28069PFPQ  
TMS320F28069PFPS  
TMS320F28069PNT  
TMS320F28069PZA  
TMS320F28069PZPQ  
ACTIVE  
LQFP  
LQFP  
PN  
80  
100  
80  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 85  
F28068FPNT  
TMS320  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PZ  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
F28068FPZT  
TMS320  
LQFP  
PN  
119  
90  
F28068MPNT  
TMS320  
LQFP  
PZ  
100  
80  
F28068MPZT  
TMS320  
HTQFP  
LQFP  
PFP  
PN  
96  
F28069FPFPQ  
TMS320  
80  
119  
90  
F28069FPNT  
TMS320  
HTQFP  
LQFP  
PZP  
PZ  
100  
100  
100  
80  
F28069FPZPQ  
TMS320  
90  
F28069FPZT  
TMS320  
LQFP  
PZ  
1000 RoHS & Green  
F28069FPZT  
TMS320  
HTQFP  
LQFP  
PFP  
PN  
96  
119  
90  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
F28069MPFPQ  
TMS320  
80  
F28069MPNT  
TMS320  
HTQFP  
LQFP  
PZP  
PZ  
100  
100  
80  
F28069MPZPQ  
TMS320  
90  
F28069MPZT  
TMS320  
HTQFP  
HTQFP  
LQFP  
PFP  
PFP  
PN  
96  
F28069PFPQ  
TMS320  
80  
96  
F28069PFPS  
TMS320  
80  
119  
90  
320F28069PNT  
TMS  
LQFP  
PZ  
100  
100  
320F28069PZA  
TMS  
HTQFP  
PZP  
90  
-40 to 125  
F28069PZPQ  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Feb-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS320  
TMS320F28069PZPS  
TMS320F28069PZT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTQFP  
LQFP  
PZP  
PZ  
100  
100  
80  
90  
90  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
F28069PZPS  
TMS320  
320F28069PZT  
TMS  
TMS320F28069UPFPS  
TMS320F28069UPNT  
TMS320F28069UPZPS  
TMS320F28069UPZT  
HTQFP  
LQFP  
PFP  
PN  
96  
F28069UPFPS  
TMS320  
80  
119  
90  
F28069UPNT  
TMS320  
HTQFP  
LQFP  
PZP  
PZ  
100  
100  
F28069UPZPS  
TMS320  
90  
F28069UPZT  
TMS320  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Feb-2021  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TMS320F28062, TMS320F28062-Q1, TMS320F28062F, TMS320F28062F-Q1, TMS320F28065, TMS320F28065-Q1, TMS320F28066,  
TMS320F28066-Q1, TMS320F28067, TMS320F28067-Q1, TMS320F28069, TMS320F28069-Q1, TMS320F28069F, TMS320F28069F-Q1, TMS320F28069M, TMS320F28069M-  
Q1 :  
Catalog: TMS320F28062, TMS320F28062F, TMS320F28065, TMS320F28066, TMS320F28067, TMS320F28069, TMS320F28069F, TMS320F28069M  
Automotive: TMS320F28062-Q1, TMS320F28062F-Q1, TMS320F28065-Q1, TMS320F28066-Q1, TMS320F28067-Q1, TMS320F28069-Q1, TMS320F28069F-Q1,  
TMS320F28069M-Q1  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 5  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMS320F28062PFPQR HTQFP  
TMS320F28069FPZTR LQFP  
PFP  
PZ  
80  
1000  
1000  
330.0  
330.0  
24.4  
32.4  
15.0  
16.9  
15.0  
16.9  
1.5  
2.0  
20.0  
24.0  
24.0  
32.0  
Q2  
Q2  
100  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMS320F28062PFPQR  
TMS320F28069FPZTR  
HTQFP  
LQFP  
PFP  
PZ  
80  
1000  
1000  
367.0  
367.0  
367.0  
367.0  
55.0  
55.0  
100  
Pack Materials-Page 2  
www.ti.com  
MECHANICAL DATA  
MTQF010A – JANUARY 1995 – REVISED DECEMBER 1996  
PN (S-PQFP-G80)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
60  
M
0,08  
41  
61  
40  
0,13 NOM  
80  
21  
1
20  
Gage Plane  
9,50 TYP  
0,25  
12,20  
SQ  
11,80  
0,05 MIN  
0°7°  
14,20  
SQ  
13,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040135 /B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TMS320F28069M

具有 90MHz 频率、FPU、VCU、CLA、256KB 闪存、InstaSPIN-MOTION 的 C2000™ 32 位 MCU

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28069M-Q1

TMS320F2806x Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28069MPFPQ

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28069MPNT

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28069MPZPQ

暂无描述

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28069MPZT

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28069PFPQ

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28069PFPS

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28069PNT

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28069PZA

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28069PZPQ

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28069PZPS

Piccolo Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI