TMS320F2810_V02 [TI]

TMS320F281x Digital Signal Processors;
TMS320F2810_V02
型号: TMS320F2810_V02
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TMS320F281x Digital Signal Processors

文件: 总175页 (文件大小:4795K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
TMS320F281x Digital Signal Processors  
128-bit security key/lock  
1 Features  
– Protects flash/OTP and L0/L1 SARAM  
– Prevents firmware reverse-engineering  
Motor control peripherals  
– Two Event Managers (EVA, EVB)  
– Compatible to 240xA devices  
Serial port peripherals  
– Serial Peripheral Interface (SPI)  
– Two Serial Communications Interfaces (SCIs),  
standard UART  
– Enhanced Controller Area Network (eCAN)  
– Multichannel Buffered Serial Port (McBSP)  
12-bit ADC, 16 channels  
– 2 × 8 channel input multiplexer  
– Two Sample-and-Hold  
– Single/simultaneous conversions  
– Fast conversion rate: 80 ns/12.5 MSPS  
Up to 56 General-Purpose I/O (GPIO) pins  
Advanced emulation features  
– Analysis and breakpoint functions  
– Real-time debug via hardware  
Development tools include  
– ANSI C/C++ compiler/assembler/linker  
– Code Composer StudioIDE  
– DSP/BIOS™  
High-performance static CMOS technology  
– 150 MHz (6.67-ns cycle time)  
– Low-power (1.8-V core at 135 MHz,  
1.9-V core at 150 MHz, 3.3-V I/O) design  
JTAG boundary scan support  
– IEEE Standard 1149.1-1990 IEEE Standard  
Test Access Port and Boundary-Scan  
Architecture  
High-performance 32-bit CPU (TMS320C28x)  
– 16 × 16 and 32 × 32 MAC operations  
– 16 × 16 dual MAC  
– Harvard bus architecture  
– Atomic operations  
– Fast interrupt response and processing  
– Unified memory programming model  
– 4M linear program/data address reach  
– Code-efficient (in C/C++ and Assembly)  
– TMS320F24x/LF240x processor source code  
compatible  
On-chip memory  
– Up to 128K × 16 flash  
(Four 8K × 16 and six 16K × 16 sectors)  
– 1K × 16 OTP ROM  
– L0 and L1: 2 blocks of 4K × 16 each Single-  
Access RAM (SARAM)  
– JTAG scan controllers  
IEEE Standard 1149.1-1990 IEEE Standard  
Test Access Port and Boundary-Scan  
Architecture  
– H0: 1 block of 8K × 16 SARAM  
– M0 and M1: 2 blocks of 1K × 16 each SARAM  
Boot ROM (4K × 16)  
Low-power modes and power savings  
– IDLE, STANDBY, HALT modes supported  
– Disable individual peripheral clocks  
Package options  
– With software boot modes  
– Standard math tables  
External interface (F2812)  
– Over 1M × 16 total memory  
– Programmable wait states  
– Programmable read/write strobe timing  
– Three individual chip selects  
Endianness: Little endian  
Clock and system control  
– On-chip oscillator  
– Watchdog timer module  
Three external interrupts  
– 179-ball MicroStar BGAwith external memory  
interface (GHH, ZHH) (F2812)  
– 176-pin Low-Profile Quad Flatpack (LQFP) with  
external memory interface (PGF) (F2812)  
– 128-pin LQFP without external memory  
interface (PBK) (F2810, F2811)  
Temperature options  
– A: –40°C to 85°C (GHH, ZHH, PGF, PBK)  
– S: –40°C to 125°C (GHH, ZHH, PGF, PBK)  
– Q: –40°C to 125°C (PGF, PBK)  
(AEC-Q100 qualification for automotive  
applications)  
Peripheral Interrupt Expansion (PIE) block that  
supports 45 peripheral interrupts  
Three 32-bit CPU timers  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Grid infrastructure  
2 Applications  
Industrial transport  
Medical, healthcare, and fitness  
Motor drives  
Power delivery  
Telecom infrastructure  
Test and measurement  
Advanced Driver Assistance Systems (ADAS)  
Building automation  
Electronic point of sale  
Electric Vehicle/Hybrid Electric Vehicle (EV/HEV)  
powertrain  
Factory automation  
3 Description  
The TMS320F2810, TMS320F2811, and TMS320F2812-Q1 devices, members of the TMS320C28x DSP  
generation, are highly integrated, high-performance solutions for demanding control applications.  
Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812-Q1 are abbreviated as F2810,  
F2811, and F2812-Q1, respectively. F281x denotes all three devices.  
Device Information  
PART NUMBER(1)  
TMS320F2812ZHH  
PACKAGE  
MicroStar BGA (179)  
MicroStar BGA (179)  
LQFP (176)  
BODY SIZE  
12.0 mm × 12.0 mm  
12.0 mm × 12.0 mm  
24.0 mm × 24.0 mm  
14.0 mm × 14.0 mm  
14.0 mm × 14.0 mm  
TMS320F2812GHH  
TMS320F2812PGF  
TMS320F2811PBK  
TMS320F2810PBK  
LQFP (128)  
LQFP (128)  
(1) For more information on these devices, see Mechanical, Packaging, and Orderable Information.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
4 Functional Block Diagram  
Memory Bus  
TINT0  
CPU-Timer 0  
CPU-Timer 1  
Real-Time JTAG  
CPU-Timer 2  
TINT2  
Control  
INT14  
External  
Interface  
(XINTF)(B)  
Address (19)  
Data (16)  
PIE  
(96 Interrupts)(A)  
INT[12:1]  
TINT1  
INT13  
NMI  
XINT13  
XNMI  
M0 SARAM  
1K x 16  
External Interrupt  
Control  
(XINT1/2/13, XNMI)  
M1 SARAM  
1K x 16  
G
P
I
SCIA/SCIB  
SPI  
FIFO  
FIFO  
FIFO  
L0 SARAM  
4K x 16  
O
GPIO Pins  
McBSP  
L1 SARAM  
4K x 16  
M
U
X
C28x CPU  
eCAN  
Flash  
EVA/EVB  
128K x 16 (F2812)  
128K x 16 (F2811)  
64K x 16 (F2810)  
12-Bit ADC  
16 Channels  
OTP  
1K x 16  
XRS  
X1/XCLKIN  
X2  
System Control  
RS  
CLKIN  
(Oscillator and PLL  
+
Peripheral Clocking  
H0 SARAM  
8K x 16  
+
Low-Power Modes  
+
XF_XPLLDIS  
Memory Bus  
Boot ROM  
4K x 16  
Watchdog)  
Peripheral Bus  
Protected by the code-security module.  
A. 45 of the possible 96 interrupts are used on the devices.  
B. XINTF is available on the F2812 device only.  
Figure 4-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................2  
3 Description.......................................................................2  
4 Functional Block Diagram.............................................. 3  
5 Revision History.............................................................. 4  
6 Device Comparison.........................................................5  
6.1 Related Products........................................................ 6  
7 Terminal Configuration and Functions..........................7  
7.1 Pin Diagrams.............................................................. 7  
7.2 Signal Descriptions................................................... 10  
8 Specifications................................................................ 19  
8.1 Absolute Maximum Ratings...................................... 19  
8.2 ESD Ratings – Commercial...................................... 20  
8.3 ESD Ratings – Automotive....................................... 20  
8.4 Recommended Operating Conditions.......................21  
8.5 Power Consumption Summary................................. 22  
8.6 Electrical Characteristics...........................................25  
8.7 Thermal Resistance Characteristics for 179-Ball  
9.1 Brief Descriptions......................................................87  
9.2 Peripherals................................................................94  
9.3 Memory Maps......................................................... 126  
9.4 Register Map...........................................................131  
9.5 Device Emulation Registers....................................133  
9.6 External Interface, XINTF (F2812 Only)................. 134  
9.7 Interrupts.................................................................136  
9.8 System Control....................................................... 140  
9.9 OSC and PLL Block................................................142  
9.10 PLL-Based Clock Module..................................... 144  
9.11 External Reference Oscillator Clock Option..........144  
9.12 Watchdog Block.................................................... 145  
9.13 Low-Power Modes Block...................................... 146  
10 Applications, Implementation, and Layout............. 147  
10.1 TI Reference Design.............................................147  
11 Device and Documentation Support........................148  
11.1 Getting Started......................................................148  
11.2 Device and Development Support Tool  
GHH Package............................................................. 25  
8.8 Thermal Resistance Characteristics for 179-Ball  
ZHH Package..............................................................25  
8.9 Thermal Resistance Characteristics for 176-Pin  
PGF Package..............................................................26  
8.10 Thermal Resistance Characteristics for 128-Pin  
PBK Package.............................................................. 26  
8.11 Thermal Design Considerations..............................26  
8.12 Timing and Switching Characteristics..................... 27  
9 Detailed Description......................................................87  
Nomenclature............................................................148  
11.3 Tools and Software................................................149  
11.4 Documentation Support........................................ 150  
11.5 Support Resources............................................... 151  
11.6 Trademarks........................................................... 152  
11.7 Electrostatic Discharge Caution............................152  
11.8 Glossary................................................................152  
12 Mechanical, Packaging, and Orderable  
Information.................................................................. 153  
12.1 Packaging Information.......................................... 153  
5 Revision History  
Changes from July 12, 2019 to January 14, 2021 (from Revision U (July 2019) to Revision V  
(January 2021))  
Page  
Global: Updated the numbering format for tables, figures and cross-references throughout the document...... 1  
Device Comparison: Updated part numbers.......................................................................................................5  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
6 Device Comparison  
Table 6-1 provides a summary of each device’s features.  
Table 6-1. Device Comparison  
F2810  
F2810-Q1  
F2811  
F2811-Q1  
F2812  
F2812-Q1  
FEATURE(1)  
Instruction Cycle (at 150 MHz)  
TYPE(2)  
0
0
0
6.67 ns  
6.67 ns  
6.67 ns  
Single-Access RAM (SARAM) (16-bit word)  
3.3-V On-Chip Flash (16-bit word)  
Code Security for On-Chip Flash/SARAM/OTP  
Boot ROM  
18K  
18K  
18K  
64K  
128K  
128K  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
OTP ROM (1K x 16)  
Yes  
Yes  
Yes  
External Memory Interface  
Event Managers A and B (EVA and EVB)  
● General-Purpose (GP) Timers  
● Compare (CMP)/PWM  
Yes  
EVA, EVB  
EVA, EVB  
EVA, EVB  
4
4
4
16  
16  
16  
● Capture (CAP)/QEP Channels  
Watchdog Timer  
6/2  
6/2  
6/2  
Yes  
Yes  
Yes  
12-Bit ADC  
Yes  
Yes  
Yes  
0
● Channels  
16  
16  
16  
32-Bit CPU Timers  
0
0
0
0
3
3
3
Serial Peripheral Interface (SPI)  
Serial Communications Interfaces A and B (SCIA and SCIB)  
Controller Area Network (CAN)  
Multichannel Buffered Serial Port (McBSP)  
Digital I/O Pins (Shared)  
Yes  
Yes  
Yes  
SCIA, SCIB  
SCIA, SCIB  
SCIA, SCIB  
Yes  
Yes  
56  
Yes  
Yes  
56  
Yes  
Yes  
56  
External Interrupts  
3
3
3
Supply Voltage  
1.8-V Core (135 MHz), 1.9-V Core (150 MHz), 3.3-V I/O  
128-pin PBK  
Yes  
Yes  
176-pin PGF  
Yes  
Yes  
Yes  
Yes  
Yes  
Packaging  
179-ball GHH  
179-ball ZHH  
A: –40°C to 85°C  
Yes  
Yes  
Yes  
Yes  
S: –40°C to 125°C  
Temperature Options  
Q: –40°C to 125°C  
(AEC-Q100 Qualification)  
Yes  
Yes  
PGF only  
(1) The TMS320F281x DSPs Silicon Errata has been posted on the Texas Instruments (TI) website. It will be updated as needed.  
(2) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor  
differences between devices that do not affect the basic functionality of the module. These device-specific differences are listed in the  
C2000 Real-Time Control Peripherals Reference Guide and in the peripheral reference guides.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
6.1 Related Products  
For information about other devices in this family of products, see the following links:  
Original Delfino™ series:  
TMS320F2833x Delfino™ Microcontrollers  
The F2833x series is the original Delfino MCU. It is the first C2000MCU that is offered with a floating-point unit  
(FPU). It has the first-generation ePWM timers that are used throughout the rest of the Delfino and Piccolo™  
families. The 12.5-MSPS, 12-bit ADC is still class-leading for an integrated analog-to-digital converter. The  
F2833x has a 150-MHz CPU and up to 512KB of on-chip Flash. It is available in a 176-pin QFP or 179-ball BGA  
package.  
Newest Delfino™ series:  
TMS320F2837xD Delfino™ Microcontrollers  
The F2837xD series sets a new standard for performance with dual subsystems. Each subsystem consists of a  
C28x CPU and a parallel control law accelerator (CLA), each running at 200 MHz. Enhancing performance are  
TMU and VCU accelerators. New capabilities include multiple 16-bit/12-bit mode ADCs, DAC, Sigma-Delta  
filters, USB, configurable logic block (CLB), on-chip oscillators, and enhanced versions of all peripherals. The  
F2837xD is available with up to 1MB of Flash. It is available in a 176-pin QFP or 337-pin BGA package.  
TMS320F2837xS Delfino™ Microcontrollers  
The F2837xS series is a pin-to-pin compatible version of F2837xD but with only one C28x-CPU-and-CLA  
subsystem enabled. It is also available in a 100-pin QFP to enable compatibility with the Piccolo™  
TMS320F2807x series.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
7 Terminal Configuration and Functions  
7.1 Pin Diagrams  
Figure 7-1 shows the ball locations for the 179-ball GHH and ZHH ball grid array (BGA) packages. Figure 7-2  
shows the pin assignments for the 176-pin PGF low-profile quad flatpack (LQFP) and Figure 7-3 shows the pin  
assignments for the 128-pin PBK LQFP. Table 7-1 describes the function(s) of each pin.  
CAP6_  
QEPI2  
T3CTRIP_ T4CTRIP/  
PDPINTB EVBSOC  
VSS  
VDD  
VSS  
VDD  
VDD  
XD[8]  
PWM8  
PWM10  
PWM9  
SCITXDB  
P
N
M
L
XZCS0AND1  
XZCS2  
T4PWM_  
T4CMP  
VDD3VFL  
VDDIO  
XD[11]  
XA[2]  
XWE  
SPISOMIA PWM7  
TEST2  
CANTXA CANRXA  
XR/W  
C4TRIP  
CAP4_  
QEP3  
CAP5_  
QEP4  
VSS  
XA[1]  
XD[9]  
XA[3]  
SPISIMOA  
PWM12  
TEST1  
X2  
PWM1 SCIRXDB PWM2  
XRD  
VDD  
VSS  
VDDIO  
VDDIO  
VSS  
XD[6]  
XD[7]  
XD[10]  
XD[12]  
PWM11  
SPISTEA  
VDDIO  
TDIRB  
TCLKINB  
PWM3  
PWM4  
C5TRIP  
T3PWM_  
T3CMP  
X1/  
XCLKIN  
VSS  
VSS  
VDD  
VSS  
XD[4]  
XD[3]  
XD[1]  
XD[0]  
VSSA1  
SPICLKA  
PWM5  
PWM6  
K
J
C6TRIP  
XHOLDA  
XD[13]  
T1PWM_  
T1CMP  
T2PWM_  
T2CMP  
VSS  
XD[5]  
XD[2]  
XA[4]  
MCLKXA MFSRA  
CAP1_  
QEP1  
CAP2_  
QEP2  
CAP3_  
QEPI1  
T1CTRIP_  
PDPINTA  
VDD  
XA[5]  
MCLKRA  
MFSXA  
H
G
F
T2CTRIP/  
EVASOC  
VSS  
VDDIO  
VDD  
VSS  
XA[0]  
XA[6]  
MDXA  
XMP/MC  
MDRA  
ADC-  
RESEXT  
VDDA1  
XA[7]  
XA[8]  
ADCINB7  
ADCINA5  
XCLKOUT  
TCLKINA TDIRA  
C3TRIP  
XA[13]  
VSS  
ADC-  
REFP  
ADC-  
REFM  
ADC-  
BGREFIN  
XNMI_  
XINT13  
VDDIO  
VSS  
AVDDREFBG  
AVSSREFBG  
E
D
C
B
A
XHOLD  
XA[18]  
C2TRIP  
EMU0  
C1TRIP  
XINT2_  
ADCSOC  
XINT1_  
XBIO  
XA[9]  
ADCINB6 ADCINB5 ADCINB4 ADCINA1 ADCINA6  
TDO  
TMS  
TDI  
XRS  
VSS1  
VSSA2  
VDD  
VSS  
VDD  
XA[12]  
XD[14]  
XA[10]  
ADCINB3 ADCINB0 ADCINB1 ADCINA2  
SCITXDA  
XA[17]  
EMU1  
XA[15]  
XD[15]  
VDDAIO  
VSS  
VDD  
VSS  
ADCINB2  
ADCLO ADCINA3 ADCINA7 XREADY  
TRST XZCS6AND7  
XF_  
XPLLDIS  
VSSAIO  
VDDA2  
VDD1  
XA[16]  
XA[14]  
XA[11]  
ADCINA0 ADCINA4  
SCIRXDA  
TCK  
TESTSEL  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Figure 7-1. TMS320F2812 179-Ball GHH/ZHH MicroStar BGA(Bottom View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
132  
89  
133  
88  
XZCS6AND7  
TESTSEL  
XZCS2  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
87  
CANTXA  
VSS  
XA[3]  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
TRST  
TCK  
EMU0  
XA[12]  
XD[14]  
XWE  
T4CTRIP/EVBSOC  
XHOLDA  
VDDIO  
XA[2]  
XF_XPLLDIS  
XA[13]  
VSS  
T3CTRIP_PDPINTB  
VSS  
VDD  
XA[14]  
VDDIO  
X1/XCLKIN  
X2  
VDD  
XD[11]  
XD[10]  
EMU1  
XD[15]  
XA[15]  
XINT1_XBIO  
XNMI_XINT13  
XINT2_ADCSOC  
XA[16]  
TCLKINB  
TDIRB  
VSS  
VDD3VFL  
XD[9]  
VSS  
VDD  
TEST1  
TEST2  
XD[8]  
VDDIO  
SCITXDA  
XA[17]  
SCIRXDA  
XA[18]  
C6TRIP  
C5TRIP  
C4TRIP  
CAP6_QEPI2  
CAP5_QEP4  
VSS  
XHOLD  
XRS  
XREADY  
VDD1  
VSS1  
CAP4_QEP3  
VDD  
ADCBGREFIN  
VSSA2  
VDDA2  
T4PWM_T4CMP  
XD[7]  
ADCINA7  
ADCINA6  
ADCINA5  
ADCINA4  
ADCINA3  
ADCINA2  
ADCINA1  
ADCINA0  
T3PWM_T3CMP  
VSS  
XR/W  
PWM12  
PWM11  
PWM10  
PWM9  
PWM8  
PWM7  
ADCLO  
VSSAIO  
176  
45  
1
44  
Figure 7-2. TMS320F2812 176-Pin PGF LQFP (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
96  
65  
97  
64  
TESTSEL  
TRST  
TCK  
CANTXA  
VDD  
VSS  
98  
99  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
EMU0  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
T4CTRIP/EVBSOC  
T3CTRIP_PDPINTB  
VSS  
X1/XCLKIN  
X2  
VDD  
TCLKINB  
TDIRB  
VSS  
XF_XPLLDIS  
VDD  
VSS  
VDDIO  
EMU1  
XINT1_XBIO  
XNMI_XINT13  
XINT2_ADCSOC  
VSS  
VDD3VFL  
VDD  
SCITXDA  
SCIRXDA  
TEST1  
TEST2  
VDDIO  
XRS  
VDD1  
VSS1  
C6TRIP  
C5TRIP  
C4TRIP  
CAP6_QEPI2  
ADCBGREFIN  
VSSA2  
VDDA2  
CAP5_QEP4  
CAP4_QEP3  
VDD  
T4PWM_T4CMP  
T3PWM_T3CMP  
VSS  
PWM12  
PWM11  
PWM10  
PWM9  
ADCINA7  
ADCINA6  
ADCINA5  
ADCINA4  
ADCINA3  
ADCINA2  
ADCINA1  
ADCINA0  
ADCLO  
PWM8  
VSSAIO  
PWM7  
128  
33  
1
32  
Figure 7-3. TMS320F2810 and TMS320F2811 128-Pin PBK LQFP (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
7.2 Signal Descriptions  
Table 7-1 specifies the signals on the F281x devices. All digital inputs are TTL-compatible. All outputs are 3.3 V  
with CMOS levels. Inputs are not 5-V tolerant. A 100-µA (or 20-µA) pullup/pulldown is used.  
Table 7-1. Signal Descriptions  
PIN NO. (1)  
NAME  
I/O/Z(2)  
PU/PD(3)  
DESCRIPTION  
179-BALL 176-PIN  
128-PIN  
PBK  
GHH/ZHH  
PGF  
XINTF SIGNALS (F2812 ONLY)  
XA[18]  
XA[17]  
XA[16]  
XA[15]  
XA[14]  
XA[13]  
XA[12]  
XA[11]  
XA[10]  
XA[9]  
D7  
B7  
158  
156  
152  
148  
144  
141  
138  
132  
130  
125  
121  
118  
111  
108  
103  
85  
O/Z  
O/Z  
A8  
O/Z  
B9  
O/Z  
A10  
E10  
C11  
A14  
C12  
D14  
E12  
F12  
G14  
H13  
J12  
M11  
N10  
M2  
G5  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
19-bit XINTF Address Bus  
XA[8]  
O/Z  
XA[7]  
O/Z  
XA[6]  
O/Z  
XA[5]  
O/Z  
XA[4]  
O/Z  
XA[3]  
O/Z  
XA[2]  
80  
O/Z  
XA[1]  
43  
O/Z  
XA[0]  
18  
O/Z  
XD[15]  
XD[14]  
XD[13]  
XD[12]  
XD[11]  
XD[10]  
XD[9]  
XD[8]  
XD[7]  
XD[6]  
XD[5]  
XD[4]  
XD[3]  
XD[2]  
XD[1]  
XD[0]  
A9  
147  
139  
97  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
B11  
J10  
L14  
N9  
96  
74  
L9  
73  
M8  
P7  
68  
65  
16-bit XINTF Data Bus  
L5  
54  
L3  
39  
J5  
36  
K3  
33  
J3  
30  
H5  
27  
H3  
24  
G3  
21  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table 7-1. Signal Descriptions (continued)  
PIN NO. (1)  
NAME  
I/O/Z(2)  
PU/PD(3)  
DESCRIPTION  
179-BALL 176-PIN  
128-PIN  
PBK  
GHH/ZHH  
PGF  
Microprocessor/Microcomputer Mode Select.  
Switches between microprocessor and  
microcomputer mode. When high, Zone 7 is  
enabled on the external interface. When low,  
Zone 7 is disabled from the external interface,  
and on-chip boot ROM may be accessed  
instead. This signal is latched into the  
XMP/ MC  
F1  
17  
I
PD  
XINTCNF2 register on a reset and the user can  
modify this bit in software. The state of the  
XMP/ MC pin is ignored after reset.  
External Hold Request. XHOLD, when active  
(low), requests the XINTF to release the  
external bus and place all buses and strobes  
into a high-impedance state. The XINTF will  
release the bus when any current access is  
complete and there are no pending accesses  
on the XINTF.  
XHOLD  
E7  
159  
I
PU  
External Hold Acknowledge. XHOLDA is driven  
active (low) when the XINTF has granted a  
XHOLD request. All XINTF buses and strobe  
signals will be in a high-impedance state.  
XHOLDA is released when the XHOLD signal  
is released. External devices should only drive  
the external bus when XHOLDA is active (low).  
XHOLDA  
K10  
82  
O/Z  
XINTF Zone 0 and Zone 1 Chip Select.  
XZCS0AND1 is active (low) when an access to  
the XINTF Zone 0 or Zone 1 is performed.  
XZCS0AND1  
XZCS2  
P1  
44  
88  
O/Z  
O/Z  
O/Z  
XINTF Zone 2 Chip Select. XZCS2 is active  
(low) when an access to the XINTF Zone 2 is  
performed.  
P13  
B13  
XINTF Zone 6 and Zone 7 Chip Select.  
XZCS6AND7 is active (low) when an access to  
the XINTF Zone 6 or Zone 7 is performed.  
XZCS6AND7  
133  
Write Enable. Active-low write strobe. The write  
strobe waveform is specified, per zone basis,  
by the Lead, Active, and Trail periods in the  
XTIMINGx registers.  
XWE  
N11  
M3  
N4  
84  
42  
O/Z  
O/Z  
O/Z  
I
Read Enable. Active-low read strobe. The read  
strobe waveform is specified, per zone basis,  
by the Lead, Active, and Trail periods in the  
XTIMINGx registers. NOTE: The XRD and  
XWE signals are mutually exclusive.  
XRD  
Read Not Write Strobe. Normally held high.  
When low, XR/ W indicates write cycle is active;  
when high, XR/ W indicates read cycle is  
active.  
XR/ W  
XREADY  
51  
Ready Signal. Indicates peripheral is ready to  
complete the access when asserted to 1.  
XREADY can be configured to be a  
B6  
161  
PU  
synchronous or an asynchronous input. See  
the timing diagrams for more details.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table 7-1. Signal Descriptions (continued)  
PIN NO. (1)  
NAME  
I/O/Z(2)  
PU/PD(3)  
DESCRIPTION  
179-BALL 176-PIN  
128-PIN  
PBK  
GHH/ZHH  
PGF  
JTAG AND MISCELLANEOUS SIGNALS  
Oscillator Input – input to the internal oscillator.  
This pin is also used to feed an external clock.  
The 28x can be operated with an external clock  
source, provided that the proper voltage levels  
be driven on the X1/XCLKIN pin. It should be  
noted that the X1/XCLKIN pin is referenced to  
the 1.8-V (or 1.9-V) core digital power supply  
(VDD), rather than the 3.3-V I/O supply (VDDIO).  
A clamping diode may be used to clamp a  
buffered clock signal to ensure that the logic-  
high level does not exceed VDD (1.8 V or 1.9 V)  
or a 1.8-V oscillator may be used.  
X1/XCLKIN  
K9  
77  
58  
I
X2  
M9  
76  
57  
87  
O
O
Oscillator Output  
Output clock derived from SYSCLKOUT to be  
used for external wait-state generation and as a  
general-purpose clock source. XCLKOUT is  
either the same frequency, 1/2 the frequency,  
or 1/4 the frequency of SYSCLKOUT. At reset,  
XCLKOUT = SYSCLKOUT/4. The XCLKOUT  
signal can be turned off by setting bit 3  
(CLKOFF) of the XINTCNF2 register to 1.  
Unlike other GPIO pins, the XCLKOUT pin is  
not placed in a high-impedance state during  
reset.  
XCLKOUT  
F11  
119  
Test Pin. Reserved for TI. Must be connected to  
ground.  
TESTSEL  
A13  
134  
97  
I
PD  
Device Reset (in) and Watchdog Reset (out).  
Device reset. XRS causes the device to  
terminate execution. The PC will point to the  
address contained at the location 0x3FFFC0.  
When XRS is brought to a high level, execution  
begins at the location pointed to by the PC.  
This pin is driven low by the DSP when a  
watchdog reset occurs. During watchdog reset,  
the XRS pin will be driven low for the watchdog  
reset duration of 512 XCLKIN cycles. The  
output buffer of this pin is an open-drain with an  
internal pullup (100 µA, typical). If this pin is  
driven by an external device, it should be done  
using an open-drain device.  
XRS  
D6  
160  
113  
I/O  
PU  
Test Pin. Reserved for TI. On F281x devices,  
TEST1 must be left unconnected.  
TEST1  
TEST2  
M7  
N7  
67  
66  
51  
50  
I/O  
I/O  
Test Pin. Reserved for TI. On F281x devices,  
TEST2 must be left unconnected.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table 7-1. Signal Descriptions (continued)  
PIN NO. (1)  
NAME  
I/O/Z(2)  
PU/PD(3)  
DESCRIPTION  
179-BALL 176-PIN  
128-PIN  
PBK  
GHH/ZHH  
PGF  
JTAG  
JTAG test reset with internal pulldown. TRST,  
when driven high, gives the scan system  
control of the operations of the device. If this  
signal is not connected or driven low, the  
device operates in its functional mode, and the  
test reset signals are ignored. NOTE: Do not  
use pullup resistors on TRST; it has an internal  
pulldown device. TRST is an active-high test  
pin and must be maintained low at all times  
during normal device operation. In a low-noise  
environment, TRST may be left floating. In  
other instances, an external pulldown resistor is  
highly recommended. The value of this resistor  
should be based on drive strength of the  
debugger pods applicable to the design. A 2.2-  
kΩ resistor generally offers adequate  
TRST  
B12  
135  
98  
I
PD  
protection. Since this is application-specific, it is  
recommended that each target board be  
validated for proper operation of the debugger  
and the application.  
TCK  
TMS  
A12  
D13  
136  
126  
99  
92  
I
I
PU  
PU  
JTAG test clock with internal pullup  
JTAG test-mode select (TMS) with internal  
pullup. This serial control input is clocked into  
the TAP controller on the rising edge of TCK.  
JTAG test data input (TDI) with internal pullup.  
TDI is clocked into the selected register  
(instruction or data) on a rising edge of TCK.  
TDI  
C13  
D12  
131  
127  
96  
93  
I
PU  
JTAG scan out, test data output (TDO). The  
contents of the selected register (instruction or  
data) is shifted out of TDO on the falling edge  
of TCK.  
TDO  
O/Z  
Emulator pin 0. When TRST is driven high, this  
pin is used as an interrupt to or from the  
emulator system and is defined as input/output  
through the JTAG scan. This pin is also used to  
put the device into boundary-scan mode. With  
the EMU0 pin at a logic-high state and the  
EMU1 pin at a logic-low state, a rising edge on  
the TRST pin would latch the device into  
boundary-scan mode. NOTE: An external  
pullup resistor is recommended on this pin. The  
value of this resistor should be based on the  
drive strength of the debugger pods applicable  
to the design. A 2.2-kΩ to 4.7-kΩ resistor is  
generally adequate. Since this is application-  
specific, it is recommended that each target  
board be validated for proper operation of the  
debugger and the application.  
EMU0  
D11  
137  
100  
I/O/Z  
PU  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table 7-1. Signal Descriptions (continued)  
PIN NO. (1)  
NAME  
I/O/Z(2)  
PU/PD(3)  
DESCRIPTION  
179-BALL 176-PIN  
128-PIN  
PBK  
GHH/ZHH  
PGF  
Emulator pin 1. When TRST is driven high, this  
pin is used as an interrupt to or from the  
emulator system and is defined as input/output  
through the JTAG scan. This pin is also used to  
put the device into boundary-scan mode. With  
the EMU0 pin at a logic-high state and the  
EMU1 pin at a logic-low state, a rising edge on  
the TRST pin would latch the device into  
boundary-scan mode. NOTE: An external  
pullup resistor is recommended on this pin. The  
value of this resistor should be based on the  
drive strength of the debugger pods applicable  
to the design. A 2.2-kΩ to 4.7-kΩ resistor is  
generally adequate. Since this is application-  
specific, it is recommended that each target  
board be validated for proper operation of the  
debugger and the application.  
EMU1  
C9  
146  
105  
I/O/Z  
PU  
ADC ANALOG INPUT SIGNALS  
ADCINA7  
ADCINA6  
ADCINA5  
ADCINA4  
ADCINA3  
ADCINA2  
ADCINA1  
ADCINA0  
ADCINB7  
ADCINB6  
ADCINB5  
ADCINB4  
ADCINB3  
ADCINB2  
ADCINB1  
ADCINB0  
B5  
D5  
E5  
A4  
B4  
C4  
D4  
A3  
F5  
D1  
D2  
D3  
C1  
B1  
C3  
C2  
167  
168  
169  
170  
171  
172  
173  
174  
9
119  
120  
121  
122  
123  
124  
125  
126  
9
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
8-channel analog inputs for  
Sample-and-Hold A. The ADC pins should not  
be driven before the VDDA1, VDDA2, and VDDAIO  
pins have been fully powered up.  
8
8
7
7
8-channel analog inputs for  
6
6
Sample-and-Hold B. The ADC pins should not  
be driven before the VDDA1, VDDA2, and VDDAIO  
pins have been fully powered up.  
5
5
4
4
3
3
2
2
ADC Voltage Reference Output (2 V). Requires  
a low ESR (under 1.5 Ω) ceramic bypass  
capacitor of 10 µF to analog ground.  
[Can accept external reference input (2 V) if the  
software bit is enabled for this mode. 1–10 µF  
low ESR capacitor can be used in the external  
reference mode.]  
ADCREFP  
E2  
11  
11  
I/O  
NOTE: Use the ADC Clock rate to derive the  
ESR specification from the capacitor data sheet  
that is used in the system.  
ADC Voltage Reference Output (1 V). Requires  
a low ESR (under 1.5 Ω) ceramic bypass  
capacitor of 10 µF to analog ground.  
[Can accept external reference input (1 V) if the  
software bit is enabled for this mode. 1–10 µF  
low ESR capacitor can be used in the external  
reference mode.]  
ADCREFM  
E4  
10  
10  
I/O  
NOTE: Use the ADC Clock rate to derive the  
ESR specification from the capacitor data sheet  
that is used in the system.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table 7-1. Signal Descriptions (continued)  
PIN NO. (1)  
NAME  
I/O/Z(2)  
PU/PD(3)  
DESCRIPTION  
179-BALL 176-PIN  
128-PIN  
PBK  
GHH/ZHH  
PGF  
ADC External Current Bias Resistor. Use 24.9  
kΩ ± 5% for ADC clock range 1–18.75 MHz;  
use 20 kΩ ± 5% for ADC clock range  
18.75 MHz–25 MHz.  
ADCRESEXT  
ADCBGREFIN  
F2  
16  
16  
O
Test Pin. Reserved for TI. Must be left  
unconnected.  
E6  
164  
116  
AVSSREFBG  
AVDDREFBG  
E3  
E1  
12  
13  
12  
13  
ADC Analog GND  
ADC Analog Power (3.3-V)  
Common Low Side Analog Input. Connect to  
analog ground.  
ADCLO  
B3  
175  
127  
VSSA1  
VSSA2  
VDDA1  
VDDA2  
VSS1  
F3  
C5  
F4  
A5  
C6  
A6  
B2  
A2  
15  
165  
14  
15  
117  
14  
ADC Analog GND  
ADC Analog GND  
ADC Analog 3.3-V Supply  
ADC Analog 3.3-V Supply  
ADC Digital GND  
166  
163  
162  
1
118  
115  
114  
1
VDD1  
ADC Digital 1.8-V (or 1.9-V) Supply  
3.3-V Analog I/O Power Pin  
Analog I/O Ground Pin  
VDDAIO  
VSSAIO  
176  
128  
POWER SIGNALS  
20  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
H1  
L1  
23  
37  
29  
42  
56  
63  
74  
82  
94  
102  
110  
17  
26  
30  
39  
P5  
56  
P9  
75  
1.8-V or 1.9-V Core Digital Power Pins. See  
Section 8.4, Recommended Operating  
Conditions, for voltage requirements.  
P12  
K12  
G12  
C14  
B10  
C8  
100  
112  
128  
143  
154  
19  
G4  
K1  
32  
L2  
38  
P4  
52  
K6  
58  
P8  
70  
53  
59  
62  
73  
M10  
L11  
K13  
J14  
G13  
E14  
B14  
D10  
C10  
B8  
78  
86  
Core and Digital I/O Ground Pins  
99  
105  
113  
120  
129  
142  
88  
95  
103  
109  
153  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table 7-1. Signal Descriptions (continued)  
PIN NO. (1)  
NAME  
I/O/Z(2)  
PU/PD(3)  
DESCRIPTION  
179-BALL 176-PIN  
128-PIN  
PBK  
GHH/ZHH  
PGF  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
J4  
31  
25  
49  
L7  
64  
L10  
81  
3 3-V I/O Digital Power Pins  
N14  
G11  
E9  
114  
145  
83  
104  
3.3-V Flash Core Power Pin. This pin should be  
connected to 3.3 V at all times after power-up  
sequence requirements have been met.  
VDD3VFL  
N8  
69  
52  
GPIO OR PERIPHERAL SIGNALS  
GPIOA OR EVA SIGNALS  
GPIOA0 - PWM1 (O)  
GPIOA1 - PWM2 (O)  
GPIOA2 - PWM3 (O)  
GPIOA3 - PWM4 (O)  
GPIOA4 - PWM5 (O)  
GPIOA5 - PWM6 (O)  
M12  
M14  
L12  
L13  
K11  
K14  
92  
93  
68  
69  
70  
71  
72  
75  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PU  
PU  
PU  
PU  
PU  
PU  
GPIO or PWM Output Pin #1  
GPIO or PWM Output Pin #2  
GPIO or PWM Output Pin #3  
GPIO or PWM Output Pin #4  
GPIO or PWM Output Pin #5  
GPIO or PWM Output Pin #6  
94  
95  
98  
101  
GPIOA6 -  
T1PWM_T1CMP (I)  
J11  
J13  
102  
104  
76  
77  
I/O  
I/O  
PU  
PU  
GPIO or Timer 1 Output  
GPIO or Timer 2 Output  
GPIOA7 -  
T2PWM_T2CMP (I)  
GPIOA8 - CAP1_QEP1 (I)  
GPIOA9 - CAP2_QEP2 (I)  
GPIOA10 - CAP3_QEPI1 (I)  
GPIOA11 - TDIRA (I)  
H10  
H11  
H12  
F14  
F13  
E13  
E11  
F10  
106  
107  
109  
116  
117  
122  
123  
124  
78  
79  
80  
85  
86  
89  
90  
91  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
GPIO or Capture Input #1  
GPIO or Capture Input #2  
GPIO or Capture Input #3  
GPIO or Timer Direction  
GPIOA12 - TCLKINA (I)  
GPIOA13 - C1TRIP (I)  
GPIOA14 - C2TRIP (I)  
GPIOA15 - C3TRIP (I)  
GPIO or Timer Clock Input  
GPIO or Compare 1 Output Trip  
GPIO or Compare 2 Output Trip  
GPIO or Compare 3 Output Trip  
GPIOB OR EVB SIGNALS  
GPIOB0 - PWM7 (O)  
GPIOB1 - PWM8 (O)  
GPIOB2 - PWM9 (O)  
GPIOB3 - PWM10 (O)  
GPIOB4 - PWM11 (O)  
GPIOB5 - PWM12 (O)  
N2  
P2  
N3  
P3  
L4  
45  
46  
47  
48  
49  
50  
33  
34  
35  
36  
37  
38  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PU  
PU  
PU  
PU  
PU  
PU  
GPIO or PWM Output Pin #7  
GPIO or PWM Output Pin #8  
GPIO or PWM Output Pin #9  
GPIO or PWM Output Pin #10  
GPIO or PWM Output Pin #11  
GPIO or PWM Output Pin #12  
M4  
GPIOB6 -  
T3PWM_T3CMP (I)  
K5  
N5  
53  
55  
40  
41  
I/O  
I/O  
PU  
PU  
GPIO or Timer 3 Output  
GPIO or Timer 4 Output  
GPIOB7 -  
T4PWM_T4CMP (I)  
GPIOB8 - CAP4_QEP3 (I)  
GPIOB9 - CAP5_QEP4 (I)  
GPIOB10 - CAP6_QEPI2 (I)  
GPIOB11 - TDIRB (I)  
M5  
M6  
P6  
L8  
57  
59  
60  
71  
72  
61  
43  
44  
45  
54  
55  
46  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PU  
PU  
PU  
PU  
PU  
PU  
GPIO or Capture Input #4  
GPIO or Capture Input #5  
GPIO or Capture Input #6  
GPIO or Timer Direction  
GPIOB12 - TCLKINB (I)  
GPIOB13 - C4TRIP (I)  
K8  
N6  
GPIO or Timer Clock Input  
GPIO or Compare 4 Output Trip  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table 7-1. Signal Descriptions (continued)  
PIN NO. (1)  
NAME  
I/O/Z(2)  
PU/PD(3)  
DESCRIPTION  
179-BALL 176-PIN  
128-PIN  
PBK  
GHH/ZHH  
PGF  
GPIOB14 - C5TRIP (I)  
GPIOB15 - C6TRIP (I)  
L6  
K7  
62  
47  
48  
I/O  
I/O  
PU  
PU  
GPIO or Compare 5 Output Trip  
GPIO or Compare 6 Output Trip  
63  
GPIOD OR EVA SIGNALS  
GPIOD0 -  
T1CTRIP_PDPINTA (I)  
H14  
G10  
110  
115  
81  
84  
I/O  
I/O  
PU  
PU  
GPIO or Timer 1 Compare Output Trip  
GPIOD1 - T2CTRIP/  
EVASOC (I)  
GPIO or Timer 2 Compare Output Trip or  
External ADC Start-of-Conversion EV-A  
GPIOD OR EVB SIGNALS  
GPIOD5 -  
T3CTRIP_PDPINTB (I)  
P10  
P11  
79  
83  
60  
61  
I/O  
I/O  
PU  
PU  
GPIO or Timer 3 Compare Output Trip  
GPIOD6 - T4CTRIP/  
EVBSOC (I)  
GPIO or Timer 4 Compare Output Trip or  
External ADC Start-of-Conversion EV-B  
GPIOE OR INTERRUPT SIGNALS  
GPIOE0 - XINT1_ XBIO (I)  
D9  
D8  
E8  
149  
151  
150  
106  
108  
107  
I/O/Z  
I/O/Z  
I/O  
GPIO or XINT1 or XBIO input  
GPIOE1 -  
XINT2_ADCSOC (I)  
GPIO or XINT2 or ADC start-of-conversion  
GPIO or XNMI or XINT13  
GPIOE2 - XNMI_XINT13 (I)  
PU  
GPIOF OR SPI SIGNALS  
GPIOF0 - SPISIMOA (O)  
GPIOF1 - SPISOMIA (I)  
GPIOF2 - SPICLKA (I/O)  
GPIOF3 - SPISTEA (I/O)  
M1  
N1  
K2  
K4  
40  
41  
34  
35  
31  
32  
27  
28  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
GPIO or SPI slave in, master out  
GPIO or SPI slave out, master in  
GPIO or SPI clock  
GPIO or SPI slave transmit enable  
GPIOF OR SCI-A SIGNALS  
GPIOF4 - SCITXDA (O)  
GPIOF5 - SCIRXDA (I)  
C7  
A7  
155  
157  
111  
112  
I/O  
I/O  
PU  
PU  
GPIO or SCI asynchronous serial port TX data  
GPIO or SCI asynchronous serial port RX data  
GPIOF OR CAN SIGNALS  
GPIOF6 - CANTXA (O)  
GPIOF7 - CANRXA (I)  
N12  
N13  
87  
89  
64  
65  
I/O  
I/O  
PU  
PU  
GPIO or eCAN transmit data  
GPIO or eCAN receive data  
GPIOF OR McBSP SIGNALS  
GPIOF8 - MCLKXA (I/O)  
GPIOF9 - MCLKRA (I/O)  
GPIOF10 - MFSXA (I/O)  
GPIOF11 - MFSRA (I/O)  
GPIOF12 - MDXA (O)  
GPIOF13 - MDRA (I)  
J1  
H2  
H4  
J2  
28  
25  
26  
29  
22  
20  
23  
21  
22  
24  
19  
18  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PU  
PU  
PU  
PU  
GPIO or McBSP transmit clock  
GPIO or McBSP receive clock  
GPIO or McBSP transmit frame synch  
GPIO or McBSP receive frame synch  
GPIO or McBSP transmitted serial data  
GPIO or McBSP received serial data  
G1  
G2  
PU  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table 7-1. Signal Descriptions (continued)  
PIN NO. (1)  
NAME  
I/O/Z(2)  
PU/PD(3)  
DESCRIPTION  
179-BALL 176-PIN  
128-PIN  
PBK  
GHH/ZHH  
PGF  
GPIOF OR XF CPU OUTPUT SIGNAL  
This pin has three functions:  
1. XF – General-purpose output pin.  
2. XPLLDIS – This pin is sampled during reset  
to check whether the PLL must be  
GPIOF14 - XF_  
XPLLDIS (O)  
A11  
140  
101  
I/O  
PU  
disabled. The PLL will be disabled if this pin  
is sensed low. HALT and STANDBY modes  
cannot be used when the PLL is disabled.  
3. GPIO – GPIO function  
GPIOG OR SCI-B SIGNALS  
GPIO or SCI asynchronous serial port transmit  
data  
GPIOG4 - SCITXDB (O)  
GPIOG5 - SCIRXDB (I)  
P14  
M13  
90  
91  
66  
67  
I/O/Z  
I/O/Z  
GPIO or SCI asynchronous serial port receive  
data  
(1) Typical drive strength of the output buffer for all pins is 4 mA except for TDO, XCLKOUT, XF, XINTF, EMU0, and EMU1 pins, which are  
8 mA.  
(2) I = Input, O = Output, Z = High impedance  
(3) PU = pin has internal pullup; PD = pin has internal pulldown. Pullup/pulldown strength is given in Section 8.6, Electrical Characteristics  
Over Recommended Operating Conditions. The pullups/pulldowns are enabled in boundary scan mode.  
Note  
Other than the power supply pins, no pin should be driven before the 3.3-V rail has reached  
recommended operating conditions. However, it is acceptable for an I/O pin to ramp along with the  
3.3-V supply.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating temperature ranges (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.5  
–0.5  
–0.3  
–0.3  
–20  
MAX  
4.6  
4.6  
4.6  
4.6  
4.6  
4.6  
2.5  
2.5  
4.6  
4.6  
20  
UNIT  
VDDIO  
VDD3VFL  
VDDA1  
Supply voltage  
V
VDDA2  
VDDAIO  
AVDDREFBG  
VDD  
Supply voltage  
VDD1  
V
Input voltage  
VIN  
V
V
Output voltage  
VO  
(2)  
Input clamp current  
Output clamp current  
IIK (VIN < 0 or VIN > VDDIO  
)
mA  
mA  
IOK (VO < 0 or VO > VDDIO  
)
–20  
20  
A version (GHH, ZHH, PGF, PBK)(3)  
S version (GHH, ZHH, PGF, PBK)(3)  
Q version (PGF, PBK)(3)  
TJ  
–40  
85  
Operating ambient temperature, TA  
–40  
125  
125  
150  
150  
°C  
–40  
Junction temperature  
Storage temperature  
–40  
°C  
°C  
(3)  
Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Section 8.4 is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect  
to VSS  
.
(2) Continuous clamp current per pin is ±2 mA  
(3) Long-term high-temperature storage and/or extended use at maximum temperature conditions may result in a reduction of overall  
device life. For additional information, see the Semiconductor and IC Package Thermal Metrics Application Report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.2 ESD Ratings – Commercial  
VALUE  
UNIT  
TMS320F2812 in 179-ball ZHH package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge (ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
TMS320F2812 in 179-ball GHH package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge (ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 ESD Ratings – Automotive  
VALUE  
UNIT  
TMS320F2812 in 176-pin PGF package  
Human body model (HBM), per  
AEC Q100-002(1)  
All pins  
All pins  
±2000  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM),  
per AEC Q100-011  
±500  
±750  
V
Corner pins on 176-pin PGF:  
1, 44, 45, 88, 89, 132, 133, 176  
TMS320F2810 and TMS320F2811 in 128-pin PBK package  
Human body model (HBM), per  
All pins  
All pins  
±2000  
AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM),  
per AEC Q100-011  
±500  
±750  
V
Corner pins on 128-pin PBK:  
1, 32, 33, 64, 65, 96, 97, 128  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.4 Recommended Operating Conditions  
MIN(1)  
3.14  
NOM  
3.3  
1.8  
1.9  
0
MAX  
3.47  
1.89  
2
UNIT  
Device supply voltage, I/O, VDDIO  
V
1.8 V (135 MHz)  
1.71  
Device supply voltage, CPU, VDD, VDD1  
V
1.9 V (150 MHz)  
1.81  
Supply ground, VSS  
V
V
ADC supply voltage, VDDA1, VDDA2, AVDDREFBG,  
VDDAIO  
3.14  
3.3  
3.47  
Flash programming supply voltage, VDD3VFL  
3.14  
3.3  
3.47  
150  
135  
VDDIO  
VDD  
0.8  
V
Device clock frequency (system clock), fSYSCLKOUT  
VDD = 1.9 V ± 5%  
VDD = 1.8 V ± 5%  
All inputs except X1/XCLKIN  
X1/XCLKIN (@ 50 µA max)  
All inputs except X1/XCLKIN  
X1/XCLKIN (@ 50 µA max)  
All I/Os except Group 2  
Group 2(2)  
2
MHz  
2
2
High-level input voltage, VIH  
V
V
0.7VDD  
Low-level input voltage, VIL  
0.3VDD  
–4  
High-level output source current, VOH = 2.4 V, IOH  
mA  
mA  
–8  
Low-level output sink current,  
VOL = VOL MAX, IOL  
All I/Os except Group 2  
Group 2(2)  
4
8
A version  
–40  
–40  
–40  
85  
Ambient temperature, TA  
S version  
125  
125  
°C  
Q version  
(1) See Section 8.12.2 for power sequencing of VDDIO, VDDAIO, VDD, VDDA1/VDDA2/AVDDREFBG, and VDD3VFL  
.
(2) Group 2 pins are as follows: XINTF pins, T1CTRIP_PDPINTA, TDO, XCLKOUT, XF, EMU0, and EMU1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.5 Power Consumption Summary  
8.5.1 TMS320F281x Current Consumption by Power-Supply Pins Over Recommended Operating  
Conditions During Low-Power Modes at 150-MHz SYSCLKOUT  
(1)  
(2)  
IDD  
IDDIO  
TYP  
IDD3VFL  
IDDA  
MODE  
TEST CONDITIONS  
TYP  
MAX(3)  
MAX(3)  
TYP  
MAX(3)  
TYP  
MAX(3)  
All peripheral clocks are enabled. All  
PWM pins are toggled at 100 kHz.  
Data is continuously transmitted out  
of the SCIA, SCIB, and CAN ports.  
The hardware multiplier is exercised.  
Code is running out of flash with  
5 wait-states.  
Operational  
195 mA(4) 230 mA 15 mA  
30 mA  
40 mA  
45 mA  
40 mA  
50 mA  
Flash is powered down  
XCLKOUT is turned off  
IDLE  
125 mA  
5 mA  
150 mA  
10 mA  
5 mA  
5 µA  
10 mA  
20 µA  
2 µA  
2 µA  
4 µA  
4 µA  
1 µA  
1 µA  
20 µA  
20 µA  
All peripheral clocks are on,  
except ADC  
Flash is powered down  
Peripheral clocks are turned off  
STANDBY  
Pins without an internal PU/PD  
are tied high/low  
Flash is powered down  
Peripheral clocks are turned off  
Pins without an internal PU/PD  
are tied high/low  
HALT  
70 µA  
5 µA  
20 µA  
2 µA  
4 µA  
1 µA  
20 µA  
Input clock is disabled  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) IDDA includes current into VDDA1, VDDA2, AVDDREFBG, and VDDAIO pins.  
(3) MAX numbers are at 125°C, and MAX voltage (VDD = 1.89 V; VDDIO, VDD3VFL, VDDA = 3.47 V).  
(4) IDD represents the total current drawn from the 1.8-V rail (VDD). It includes a small amount of current (<1 mA) drawn by VDD1  
.
Note  
HALT and STANDBY modes cannot be used when the PLL is disabled.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.5.2 Current Consumption Graphs  
250  
200  
150  
100  
50  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
SYSCLKOUT (MHz)  
IDD  
IDDIO  
IDD3VFL  
IDDA  
Total 3.3-V current  
A. Test conditions are as defined in Section 8.5.1 for operational currents.  
B. IDD represents the total current drawn from the 1.8-V rail (VDD). It includes a small amount of current (<1 mA) drawn by VDD1  
C. IDDA represents the current drawn by VDDA1 and VDDA2 rails.  
.
D. Total 3.3-V current is the sum of IDDIO, IDD3VFL, and IDDA. It includes a small amount of current (<1 mA) drawn by VDDAIO  
.
Figure 8-1. Typical Current Consumption Over Frequency  
700  
600  
500  
400  
300  
200  
100  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
SYSCLKOUT (MHz)  
Total Power  
Figure 8-2. Typical Power Consumption Over Frequency  
8.5.3 Reducing Current Consumption  
28x DSPs incorporate a unique method to reduce the device current consumption. A reduction in current  
consumption can be achieved by turning off the clock to any peripheral module which is not used in a given  
application. Table 8-1 indicates the typical reduction in current consumption achieved by turning off the clocks to  
various peripherals.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-1. Typical Current Consumption by Various Peripherals (at 150 MHz)  
PERIPHERAL MODULE(1) (3)  
IDD CURRENT REDUCTION (mA)  
eCAN  
EVA  
12  
6
EVB  
6
ADC  
SCI  
8(2)  
4
SPI  
5
McBSP  
13  
(1) All peripheral clocks are disabled upon reset. Writing to/reading from peripheral registers is possible  
only after the peripheral clocks are turned on.  
(2) This number represents the current drawn by the digital portion of the ADC module. Turning off the  
clock to the ADC module results in the elimination of the current drawn by the analog portion of the  
ADC (IDDA) as well.  
(3) Power savings can be achieved by powering down the flash. This must be done by code running off  
RAM (not flash).  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.6 Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.4  
TYP  
MAX UNIT  
VOH  
High-level output voltage  
IOH = IOH MAX  
IOH = 50 µA  
V
VDDIO – 0.2  
VOL  
IIL  
Low-level output voltage  
IOL = IOL MAX  
0.4  
V
Input current  
(low level)  
With pullup  
VDDIO = 3.3 V,  
VIN = 0 V  
All I/Os(1) (including  
XRS) except EVB  
–80  
–13  
–140  
–25  
–190  
µA  
GPIOB/EVB  
–35  
±2  
With pulldown  
With pullup  
VDDIO = 3.3 V, VIN = 0 V  
VDDIO = 3.3 V, VIN = VDD  
VDDIO = 3.3 V, VIN = VDD  
IIH  
Input current  
(high level)  
±2  
µA  
µA  
With pulldown(2)  
28  
50  
80  
±2  
IOZ  
Leakage current (for pins without internal PU/ VO = VDDIO or 0 V  
PD), high-impedance state (off-state)  
Ci  
Input capacitance  
Output capacitance  
2
3
pF  
pF  
Co  
(1) The following pins have no internal PU/PD: GPIOE0, GPIOE1, GPIOF0, GPIOF1, GPIOF2, GPIOF3, GPIOF12, GPIOG4, and  
GPIOG5.  
(2) The following pins have an internal pulldown: XMP/ MC, TESTSEL, and TRST.  
8.7 Thermal Resistance Characteristics for 179-Ball GHH Package  
°C/W(1)  
JC  
JA  
PsiJT  
Junction-to-case thermal resistance  
Junction-to-free air thermal resistance  
Junction-to-package top  
16.08  
42.57  
0.658  
(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
8.8 Thermal Resistance Characteristics for 179-Ball ZHH Package  
°C/W(1)  
16.08  
42.57  
0.658  
JC  
JA  
PsiJT  
Junction-to-case thermal resistance  
Junction-to-free air thermal resistance  
Junction-to-package top  
(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.9 Thermal Resistance Characteristics for 176-Pin PGF Package  
°C/W(1)  
JC  
JA  
PsiJT  
Junction-to-case thermal resistance  
Junction-to-free air thermal resistance  
Junction-to-package top  
9.73  
41.88  
0.247  
(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
8.10 Thermal Resistance Characteristics for 128-Pin PBK Package  
°C/W(1)  
10.76  
41.65  
0.271  
JC  
JA  
PsiJT  
Junction-to-case thermal resistance  
Junction-to-free air thermal resistance  
Junction-to-package top  
(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
8.11 Thermal Design Considerations  
Based on the end application design and operational profile, the IDD and IDDIO currents could vary. Systems that  
exceed the recommended maximum power dissipation in the end product may require additional thermal  
enhancements. Ambient temperature (TA) varies with the end application and product design. The critical factor  
that affects reliability and functionality is TJ, the junction temperature, not the ambient temperature. Hence, care  
should be taken to keep TJ within the specified limits. Tcase should be measured to estimate the operating  
junction temperature TJ. Tcase is normally measured at the center of the package top-side surface. The thermal  
application report Semiconductor and IC Package Thermal Metrics helps to understand the thermal metrics and  
definitions.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12 Timing and Switching Characteristics  
8.12.1 Timing Parameter Symbology  
Timing parameter symbols used are created in accordance with JEDEC Standard 100. To shorten the symbols,  
some of the pin names and other related terminology have been abbreviated as follows:  
Lowercase subscripts and their  
meanings:  
Letters and symbols and their  
meanings:  
a
c
d
f
access time  
cycle time (period)  
delay time  
H
L
High  
Low  
V
X
Z
Valid  
fall time  
Unknown, changing, or don't care level  
High impedance  
h
r
hold time  
rise time  
su  
t
setup time  
transition time  
valid time  
v
w
pulse duration (width)  
8.12.1.1 General Notes on Timing Parameters  
All output signals from the 28x devices (including XCLKOUT) are derived from an internal clock such that all  
output transitions for a given half-cycle occur with a minimum of skewing relative to each other.  
The signal combinations shown in the following timing diagrams may not necessarily represent actual cycles. For  
actual cycle examples, see the appropriate cycle description section of this document.  
8.12.1.2 Test Load Circuit  
This test load circuit is used to measure all switching characteristics provided in this document.  
Tester Pin Electronics  
Data Sheet Timing Reference Point  
W
3.5 nH  
Output  
Under  
Test  
42  
Transmission Line  
(A)  
Z0 = 50 W  
Device Pin(A)  
4.0 pF  
1.85 pF  
A. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects  
must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line  
effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer)  
from the data sheet timing. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns)  
at the device pin.  
Figure 8-3. 3.3-V Test Load Circuit  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.1.3 Signal Transition Levels  
Note that some of the signals use different reference voltages, see the recommended operating conditions table.  
Output levels are driven to a minimum logic-high level of 2.4 V and to a maximum logic-low level of 0.4 V.  
Figure 8-4 shows output levels.  
2.4 V (VOH  
)
0.4 V (VOL  
)
Figure 8-4. Output Levels  
Output transition times are specified as follows:  
For a high-to-low transition, the level at which the output is said to be no longer high is below VOH(MIN) and  
the level at which the output is said to be low is VOL(MAX) and lower.  
For a low-to-high transition, the level at which the output is said to be no longer low is above VOL(MAX) and the  
level at which the output is said to be high is VOH(MIN) and higher.  
Figure 8-5 shows the input levels.  
2.0 V (VIH)  
0.8 V (VIL)  
Figure 8-5. Input Levels  
Input transition times are specified as follows:  
For a high-to-low transition on an input signal, the level at which the input is said to be no longer high is below  
VIH(MIN) and the level at which the input is said to be low is VIL(MAX) and lower.  
For a low-to-high transition on an input signal, the level at which the input is said to be no longer low is above  
VIL(MAX) and the level at which the input is said to be high is VIH(MIN) and higher.  
Note  
See the individual timing diagrams for levels used for testing timing parameters.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.2 Power Supply Sequencing  
TMS320F2812/F2811/F2810 silicon requires dual voltages (1.8-V or 1.9-V and 3.3-V) to power up the CPU,  
Flash, ADC, and the I/Os. To ensure the correct reset state for all modules during power up, there are some  
requirements to be met while powering up/powering down the device.  
Option 1:  
In this approach, an external power sequencing circuit enables VDDIO first, then VDD and VDD1  
(1.8 V or 1.9 V). After 1.8 V (or 1.9 V) ramps, the 3.3 V for Flash (VDD3VFL) and ADC (VDDA1/VDDA2  
/
AVDDREFBG) modules are ramped up. While option 1 is still valid, TI has simplified the requirement.  
Option 2 is the recommended approach.  
Option 2:  
Enable power to all 3.3-V supply pins (VDDIO, VDD3VFL, VDDA1/VDDA2/VDDAIO/AVDDREFBG) and then ramp  
1.8 V (or 1.9 V) (VDD/VDD1) supply pins.  
1.8 V or 1.9 V (VDD/VDD1) should not reach 0.3 V until VDDIO has reached 2.5 V. This ensures the reset signal  
from the I/O pin has propagated through the I/O buffer to provide power-on reset to all the modules inside the  
device. See Figure 8-7 for power-on reset timing.  
Power-Down Sequencing:  
During power-down, the device reset should be asserted low (8 µs, minimum) before the VDD supply reaches  
1.5 V. This will help to keep on-chip flash logic in reset prior to the VDDIO/VDD power supplies ramping down.  
It is recommended that the device reset control from “Low-Dropout (LDO)” regulators or voltage supervisors  
be used to meet this constraint. LDO regulators that facilitate power-sequencing (with the aid of additional  
external components) may be used to meet the power sequencing requirement. See  
www.spectrumdigital.com for F2812 eZdspschematics and updates.  
Note  
The GPIO pins are undefined until VDD = 1 V and VDDIO = 2.5 V.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
2.5 V(C)  
(E)  
3.3 V  
3.3 V  
(A)  
VDD_3.3V  
<10 ms  
1.5 V  
1.8 V  
(or 1.9 V)  
1.8 V  
(or 1.9 V)  
(B)  
VDD_1.8V  
>1 ms(D)  
>8 μs(F)  
XRS  
XRS  
Power-Up Sequence  
Power-Down Sequence  
A. VDD_3.3V – VDDIO, VDD3VFL, VDDAIO, VDDA1, VDDA2, AVDDREFBG  
B. VDD_1.8V – VDD, VDD1  
C. 1.8-V (or 1.9-V) supply should ramp after the 3.3-V supply reaches at least 2.5 V.  
D. Reset ( XRS) should remain low until supplies and clocks are stable. See Figure 8-7, Power-on Reset in Microcomputer Mode (XMP/ MC  
= 0), for minimum requirements.  
E. Voltage supervisor or LDO reset control will trip reset ( XRS) first when the 3.3-V supply is off regulation. Typically, this occurs a few  
milliseconds before the 1.8-V (or 1.9-V) supply reaches 1.5 V.  
F. Keeping reset low ( XRS) at least 8 µs prior to the 1.8-V (or 1.9-V) supply reaching 1.5 V will keep the flash module in complete reset  
before the supplies ramp down.  
G. Since the state of GPIO pins is undefined until the 1.8-V (or 1.9-V) supply reaches at least 1 V, this supply should be ramped as quickly  
as possible (after the 3.3-V supply reaches at least 2.5 V).  
H. Other than the power supply pins, no pin should be driven before the 3.3-V rail has been fully powered up.  
Figure 8-6. F2812/F2811/F2810 Typical Power-Up and Power-Down Sequence – Option 2  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.3 Reset Timing  
8.12.3.1 Reset ( XRS) Timing Requirements  
MIN(1)  
8tc(CI)  
8tc(CI)  
NOM  
MAX  
UNIT  
cycles  
cycles  
tw(RSL1)  
tw(RSL2)  
Pulse duration, stable XCLKIN to XRS high  
Pulse duration, XRS low  
Warm reset  
Pulse duration, reset pulse generated by  
watchdog  
tw(WDRS)  
td(EX)  
512tc(CI)  
cycles  
Delay time, address/data valid after XRS high  
Oscillator start-up time  
32tc(CI)  
10  
cycles  
ms  
(2)  
tOSCST  
1
16tc(CI)  
16tc(CI)  
tsu(XPLLDIS)  
th(XPLLDIS)  
th(XMP/MC)  
th(boot-mode)  
Setup time for XPLLDIS pin  
Hold time for XPLLDIS pin  
cycles  
cycles  
cycles  
cycles  
Hold time for XMP/ MC pin  
16tc(CI)  
(3)  
Hold time for boot-mode pins  
2520tc(CI)  
(1) If external oscillator/clock source are used, reset time has to be low at least for 1 ms after VDD reaches 1.5 V.  
(2) Dependent on crystal/resonator and board design.  
(3) The boot ROM reads the password locations. Therefore, this timing requirement includes the wakeup time for flash. See the  
TMS320x281x DSP Boot ROM Reference Guide and the TMS320x281x DSP System Control and Interrupts Reference Guide for  
further information.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
VDDIO, VDD3VFL  
VDDAn(A), VDDAIO  
2.5 V  
(3.3 V)  
0.3 V  
VDD, VDD1  
[1.8 V (or 1.9 V)]  
XCLKIN  
X1  
XCLKIN/8(B)  
XCLKOUT  
User-Code Dependent  
tOSCST  
tw(RSL1)  
XRS  
Address/Data Valid. Internal Boot-ROM Code Execution Phase  
Address/  
Data/  
Control  
td(EX)  
tsu(XPLLDIS)  
XPLLDIS Sampling  
User-Code Execution Phase  
User-Code Dependent  
th(XPLLDIS)  
XF/XPLLDIS  
XMP/MC  
(Don’t Care)  
GPIOF14  
th(XMP/MC)  
(Don’t Care)  
(C)  
th(boot-mode)  
User-Code Dependent  
Boot-Mode Pins  
(D)  
GPIO Pins as Input  
Peripheral/GPIO Function  
Based on Boot Code  
Boot-ROM Execution Starts  
GPIO Pins as Input (State Depends on Internal PU/PD)  
User-Code Dependent  
I/O Pins  
A. VDDAn – VDDA1/VDDA2 and AVDDREFBG  
B. Upon power up, SYSCLKOUT is XCLKIN/2 if the PLL is enabled. Since both the XTIMCLK and CLKMODE bits in the XINTCNF2 register  
come up with a reset state of 1, SYSCLKOUT is further divided by 4 before it appears at XCLKOUT. This explains why XCLKOUT =  
XCLKIN/8 during this phase.  
C. After reset, the Boot ROM code executes instructions for 1260 SYSCLKOUT cycles (SYSCLKOUT = XCLKIN/2) and then samples  
BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot code function in  
ROM. The BOOT Mode pins should be held high/low for at least 2520 XCLKIN cycles from boot ROM execution time for proper selection  
of Boot modes. If Boot ROM code executes after power-on conditions (in debugger environment), the Boot code execution time is based  
on the current SYSCLKOUT speed. The SYSCLKOUT will be based on user environment and could be with or without PLL enabled.  
D. The state of the GPIO pins is undefined (that is, they could be input or output) until the 1.8-V (or 1.9-V) supply reaches at least 1 V and  
3.3-V supply reaches 2.5 V.  
Figure 8-7. Power-on Reset in Microcomputer Mode (XMP/ MC = 0) (See Note D)  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
VDDIO, VDD3VFL  
VDDAn, VDDAIO  
(3.3 V)  
2.5 V  
0.3 V  
VDD, VDD1  
[1.8 V (or 1.9 V)]  
XCLKIN  
X1  
tOSCST  
XCLKIN/8(A)  
XCLKOUT  
User-Code Dependent  
tw(RSL)  
XRS  
Address/Data/Control Valid Execution  
Begins From External Boot Address 0x3FFFC0  
td(EX)  
Address/  
Data/  
Control  
(Don’t Care)  
(Don’t Care)  
th(XPLLDIS)  
XPLLDIS Sampling  
GPIOF14/XF (User-Code Dependent)  
XF/XPLLDIS  
XMP/MC  
tsu(XPLLDIS)  
th(XMP/MC)  
(Don’t Care)  
User-Code Dependent  
I/O Pins  
(B)  
Input Configuration (State Depends on Internal PU/PD)  
A. Upon power up, SYSCLKOUT is XCLKIN/2 if the PLL is enabled. Since both the XTIMCLK and CLKMODE bits in the XINTCNF2 register  
come up with a reset state of 1, SYSCLKOUT is further divided by 4 before it appears at XCLKOUT. This explains why XCLKOUT =  
XCLKIN/8 during this phase.  
B. The state of the GPIO pins is undefined (that is, they could be input or output) until the 1.8-V (or 1.9-V) supply reaches at least 1 V and  
3.3-V supply reaches 2.5 V.  
Figure 8-8. Power-on Reset in Microprocessor Mode (XMP/ MC = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
XCLKIN  
X1  
XCLKOUT  
XCLKIN/8  
(XCLKIN * 5)  
User-Code Dependent  
tw(RSL2)  
XRS  
User-Code Execution Phase  
td(EX)  
Address/  
Data/  
Control  
(Don’t Care)  
tsu(XPLLDIS)  
User-Code Execution  
GPIOF14/XF  
th(XPLLDIS)  
(Don’t Care)  
GPIOF14  
XF/XPLLDIS  
XMP/MC  
User-Code Dependent  
(Don’t Care)  
XPLLDIS Sampling  
th(XMP/MC)  
(Don’t Care)  
(A)  
th(boot-mode)  
Boot-ROM Execution Starts  
Boot-Mode Pins  
Peripheral/GPIO Function  
User-Code Dependent  
GPIO Pins as Input  
Peripheral/GPIO Function  
User-Code Execution Starts  
I/O Pins  
GPIO Pins as Input (State Depends on Internal PU/PD)  
User-Code Dependent  
A. After reset, the Boot ROM code executes instructions for 1260 SYSCLKOUT cycles (SYSCLKOUT = XCLKIN/2) and then samples  
BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot code function in  
ROM. The BOOT Mode pins should be held high/low for at least 2520 XCLKIN cycles from boot ROM execution time for proper selection  
of Boot modes. If Boot ROM code executes after power-on conditions (in debugger environment), the Boot code execution time is based  
on the current SYSCLKOUT speed. The SYSCLKOUT will be based on user environment and could be with or without PLL enabled.  
Figure 8-9. Warm Reset in Microcomputer Mode  
X1/XCLKIN  
Write to PLLCR  
SYSCLKOUT  
XCLKIN * 2  
XCLKIN/2  
XCLKIN * 4  
(Current  
CPU Frequency)  
[CPU Frequency While PLL is Stabilizing  
With the Desired Frequency.  
(Changed CPU Frequency)  
This Period (PLL Lock-up Time, tp)  
is 131 072 XCLKIN Cycles Long.]  
Figure 8-10. Effect of Writing Into PLLCR Register  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.4 Clock Specifications  
8.12.4.1 Device Clock Table  
This section provides the timing requirements and switching characteristics for the various clock options  
available on the F281x DSPs. Section 8.12.4.1.1 lists the cycle times of various clocks.  
8.12.4.1.1 Clock Table and Nomenclature  
MIN  
28.6  
20  
NOM  
MAX UNIT  
50 ns  
35 MHz  
tc(OSC), Cycle time  
Frequency  
On chip oscillator clock  
XCLKIN  
tc(CI), Cycle time  
Frequency  
6.67  
4
250  
ns  
150 MHz  
tc(SCO), Cycle time  
Frequency  
6.67  
2
500  
150 MHz  
2000 ns  
ns  
SYSCLKOUT  
XCLKOUT  
HSPCLK  
tc(XCO), Cycle time  
Frequency  
6.67  
0.5  
150 MHz  
ns  
tc(HCO), Cycle time  
Frequency  
6.67  
13.3(1)  
75(1)  
150 MHz  
ns  
tc(LCO), Cycle time  
Frequency  
13.3  
40  
26.6(1)  
37.5(1)  
LSPCLK  
75 MHz  
ns  
tc(ADCCLK), Cycle time(2)  
ADC clock  
SPI clock  
Frequency  
25 MHz  
ns  
tc(SPC), Cycle time  
Frequency  
50  
20 MHz  
ns  
tc(CKG), Cycle time  
Frequency  
50  
McBSP  
20 MHz  
ns  
tc(XTIM), Cycle time  
Frequency  
6.67  
XTIMCLK  
150 MHz  
(1) This is the default reset value if SYSCLKOUT = 150 MHz.  
(2) The maximum value for ADCCLK frequency is 25 MHz. For SYSCLKOUT values of 25 MHz or lower, ADCCLK has to be  
SYSCLKOUT/2 or lower. ADCCLK = SYSCLKOUT is not a valid mode for any value of SYSCLKOUT.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.4.2 Clock Requirements and Characteristics  
8.12.4.2.1 Input Clock Requirements  
The clock provided at the XCLKIN pin generates the internal CPU clock cycle.  
8.12.4.2.1.1 Input Clock Frequency  
PARAMETER  
Resonator  
Crystal  
MIN  
20  
20  
4
TYP  
MAX UNIT  
35  
35  
MHz  
150  
fx  
Input clock frequency  
Without PLL  
With PLL  
XCLKIN  
5
100  
fl  
Limp mode clock frequency  
2
MHz  
8.12.4.2.1.2 XCLKIN Timing Requirements – PLL Bypassed or Enabled  
NO.  
MIN  
MAX UNIT  
C8  
C9  
tc(CI)  
tf(CI)  
Cycle time, XCLKIN  
6.67  
250  
6
ns  
ns  
ns  
%
Fall time, XCLKIN  
C10 tr(CI)  
Rise time, XCLKIN  
6
C11 tw(CIL)  
C12 tw(CIH)  
Pulse duration, X1/XCLKIN low as a percentage of tc(CI)  
Pulse duration, X1/XCLKIN high as a percentage of tc(CI)  
40  
40  
60  
60  
%
8.12.4.2.1.3 XCLKIN Timing Requirements – PLL Disabled  
NO.  
MIN MAX UNIT  
C8  
tc(CI)  
tf(CI)  
Cycle time, XCLKIN  
Fall time, XCLKIN  
6.67  
250  
6
ns  
Up to 30 MHz  
C9  
ns  
30 MHz to 150 MHz  
Up to 30 MHz  
2
6
C10 tr(CI)  
Rise time, XCLKIN  
ns  
%
%
30 MHz to 150 MHz  
XCLKIN ≤ 120 MHz  
120 < XCLKIN ≤ 150 MHz  
XCLKIN ≤ 120 MHz  
120 < XCLKIN ≤ 150 MHz  
2
40  
45  
40  
45  
60  
55  
60  
55  
C11 tw(CIL)  
Pulse duration, X1/XCLKIN low as a percentage of tc(CI)  
Pulse duration, X1/XCLKIN high as a percentage of tc(CI)  
C12 tw(CIH)  
Table 8-2. Possible PLL Configuration Modes  
PLL MODE  
REMARKS  
SYSCLKOUT  
Invoked by tying XPLLDIS pin low upon reset. PLL block is completely disabled.  
PLL Disabled  
Clock input to the CPU (CLKIN) is directly derived from the clock signal present at  
the X1/XCLKIN pin.  
XCLKIN  
Default PLL configuration upon power-up, if PLL is not disabled. The PLL itself is  
bypassed. However, the /2 module in the PLL block divides the clock input at the  
X1/XCLKIN pin by two before feeding it to the CPU.  
PLL Bypassed  
PLL Enabled  
XCLKIN/2  
Achieved by writing a non-zero value “n” into PLLCR register. The /2 module in the  
PLL block now divides the output of the PLL by two before feeding it to the CPU.  
(XCLKIN * n) / 2  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.4.2.2 Output Clock Characteristics  
8.12.4.2.2.1 XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)  
NO.(1) (2)  
C1  
PARAMETER  
Cycle time, XCLKOUT  
MIN  
TYP  
MAX UNIT  
tc(XCO)  
tf(XCO)  
tr(XCO)  
tw(XCOL)  
tw(XCOH)  
tp  
6.67(3)  
ns  
ns  
ns  
C3  
Fall time, XCLKOUT  
2
2
C4  
Rise time, XCLKOUT  
C5  
Pulse duration, XCLKOUT low  
Pulse duration, XCLKOUT high  
PLL lock time(4)  
H – 2  
H – 2  
H + 2  
H + 2  
ns  
ns  
ns  
C6  
C7  
131072tc(CI)  
(1) A load of 40 pF is assumed for these parameters.  
(2) H = 0.5tc(XCO)  
(3) The PLL must be used for maximum frequency operation.  
(4) This parameter has changed from 4096 XCLKIN cycles in the earlier revisions of the silicon.  
C10  
C8  
C9  
XCLKIN(A)  
C6  
C3  
C1  
C4  
C5  
XCLKOUT(A)(B)  
A. The relationship of XCLKIN to XCLKOUT depends on the divide factor chosen. The waveform relationship shown in Figure 8-11 is  
intended to illustrate the timing parameters only and may differ based on configuration.  
B. XCLKOUT configured to reflect SYSCLKOUT.  
Figure 8-11. Clock Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5 Peripherals  
8.12.5.1 General-Purpose Input/Output (GPIO) – Output Timing  
8.12.5.1.1 General-Purpose Output Switching Characteristics  
PARAMETER  
MIN  
MAX  
1tc(SCO)  
10  
UNIT  
cycle  
ns  
td(XCOH-GPO)  
tr(GPO)  
Delay time, XCLKOUT high to GPIO low/high  
Rise time, GPIO switching low to high  
Fall time, GPIO switching high to low  
Toggling frequency, GPO pins  
All GPIOs  
All GPIOs  
All GPIOs  
tf(GPO)  
10  
ns  
fGPO  
20  
MHz  
XCLKOUT(A)  
td(XCOH-GPO)  
GPIO  
tr(GPO)  
tf(GPO)  
A. XCLKOUT = SYSCLKOUT  
Figure 8-12. General-Purpose Output Timing  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.2 General-Purpose Input/Output (GPIO) – Input Timing  
See Note (A)  
GPIO  
Signal  
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
Sampling period, determined by GPxQUAL  
[QUALPRD]  
(SYSCLKOUT cycle x 2 x QUALPRD) x 5  
Sampling Window  
SYSCLKOUT  
QUALPRD = 1  
(SYSCLKOUT/2)  
Output  
From Qualifier  
A. This glitch is ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It can vary from 00 to 0xFF.  
Input qualification is not applicable when QUALPRD = 00. For any other value “n”, the qualification sampling period is 2n SYSCLKOUT  
cycles (that is, at every 2n SYSCLKOUT cycle, the GPIO pin will be sampled). Six consecutive samples must be of the same value for a  
given input to be recognized.  
B. For the qualifier to detect the change, the input must be stable for 10 SYSCLKOUT cycles or greater. In other words, the inputs should  
be stable for (5 × QUALPRD × 2) SYSCLKOUT cycles. This would enable five sampling periods for detection to occur. Since external  
signals are driven asynchronously, a 13-SYSCLKOUT-wide pulse provides reliable recognition.  
Figure 8-13. GPIO Input Qualifier – Example Diagram for QUALPRD = 1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.2.1 General-Purpose Input Timing Requirements  
MIN  
2tc(SCO)  
MAX  
UNIT  
With no qualifier  
With qualifier  
Pulse duration GPIO low/  
high  
tw(GPI)  
All GPIOs  
cycles  
1tc(SCO) + IQT(1)  
(1) Input Qualification Time (IQT) = [tc(SCO) × 2 × QUALPRD] × 5 + [tc(SCO) × 2 × QUALPRD].  
SYSCLK  
GPIOxn  
tw(GPI)  
Figure 8-14. General-Purpose Input Timing  
Note  
The pulse width requirement for general-purpose input is applicable for the XBIO and ADCSOC pins  
as well.  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.3 Event Manager Interface  
8.12.5.3.1 PWM Timing  
PWM refers to all PWM outputs on EVA and EVB.  
8.12.5.3.1.1 PWM Switching Characteristics  
PARAMETER(1) (2)  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
(3)  
tw(PWM)  
Pulse duration, PWMx output high/low  
25  
ns  
Delay time, XCLKOUT high to PWMx  
output switching  
td(PWM)XCO  
XCLKOUT = SYSCLKOUT/4  
10  
ns  
(1) See the GPIO output timing for fall/rise times for PWM pins.  
(2) PWM pin toggling frequency is limited by the GPIO output buffer switching frequency (20 MHz).  
(3) PWM outputs may be 100%, 0%, or increments of tc(HCO) with respect to the PWM period.  
8.12.5.3.1.2 Timer and Capture Unit Timing Requirements  
MIN MAX(2) (1)  
2tc(SCO)  
1tc(SCO) + IQT(3)  
2tc(SCO)  
UNIT  
Without input qualifier  
tw(TDIR)  
Pulse duration, TDIRx low/high  
cycles  
With input qualifier  
Without input qualifier  
With input qualifier  
tw(CAP)  
Pulse duration, CAPx input low/high  
cycles  
1tc(SCO) + IQT(3)  
tw(TCLKINL)  
tw(TCLKINH)  
tc(TCLKIN)  
Pulse duration, TCLKINx low as a percentage of TCLKINx cycle time  
Pulse duration, TCLKINx high as a percentage of TCLKINx cycle time  
Cycle time, TCLKINx  
40  
60  
60  
%
%
ns  
40  
4tc(HCO)  
(1) The QUALPRD bit field value can range from 0 (no qualification) through 0xFF (510 SYSCLKOUT cycles). The qualification sampling  
period is 2n SYSCLKOUT cycles, where “n” is the value stored in the QUALPRD bit field. As an example, when QUALPRD = 1, the  
qualification sampling period is 1 × 2 = 2 SYSCLKOUT cycles (that is, the input is sampled every 2 SYSCLKOUT cycles). Six such  
samples will be taken over five sampling windows, each window being 2n SYSCLKOUT cycles. For QUALPRD = 1, the minimum width  
that is needed is 5 × 2 = 10 SYSCLKOUT cycles. However, since the external signal is driven asynchronously, a 11-SYSCLKOUT-wide  
pulse ensures reliable recognition.  
(2) Maximum input frequency to the QEP = min[HSPCLK/2, 20 MHz]  
(3) Input Qualification Time (IQT) = [tc(SCO) × 2 × QUALPRD] × 5 + [tc(SCO) × 2 × QUALPRD].  
XCLKOUT(A)  
td(PWM)XCO  
tw(PWM)  
PWMx  
A. XCLKOUT = SYSCLKOUT  
Figure 8-15. PWM Output Timing  
XCLKOUT(A)  
tw(TDIR)  
TDIRx  
A. XCLKOUT = SYSCLKOUT  
Figure 8-16. TDIRx Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.3.1.3 External ADC Start-of-Conversion – EVA – Switching Characteristics  
PARAMETER(1)  
MIN  
MAX  
UNIT  
cycle  
ns  
td(XCOH-EVASOCL)  
tw(EVASOCL)  
Delay time, XCLKOUT high to EVASOC low  
Pulse duration, EVASOC low  
1tc(SCO)  
32tc(HCO)  
(1) XCLKOUT = SYSCLKOUT  
XCLKOUT  
td(XCOH-EVASOCL)  
tw(EVASOCL)  
EVASOC  
Figure 8-17. EVASOC Timing  
8.12.5.3.1.4 External ADC Start-of-Conversion – EVB – Switching Characteristics  
PARAMETER(1)  
MIN  
MAX  
UNIT  
cycle  
ns  
td(XCOH-EVBSOCL)  
tw(EVBSOCL)  
Delay time, XCLKOUT high to EVBSOC low  
Pulse duration, EVBSOC low  
1tc(SCO)  
32tc(HCO)  
(1) XCLKOUT = SYSCLKOUT  
XCLKOUT  
td(XCOH-EVBSOCL)  
tw(EVBSOCL)  
EVBSOC  
Figure 8-18. EVBSOC Timing  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.4 Low-Power Mode Wakeup Timing  
8.12.5.4.1 IDLE Mode Timing Requirements  
MIN  
2tc(SCO)  
MAX  
UNIT  
Without input qualifier  
With input qualifier  
tw(WAKE-INT)  
Pulse duration, external wake-up signal  
cycles  
1tc(SCO) + IQT(1)  
(1) Input Qualification Time (IQT) = [tc(SCO) × 2 × QUALPRD] × 5 + [tc(SCO) × 2 × QUALPRD].  
8.12.5.4.2 IDLE Mode Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Delay time, external wake signal to program execution resume(1)  
Wake-up from Flash  
Flash module in active state  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
8tc(SCO)  
cycles  
cycles  
cycles  
8tc(SCO) + IQT(2)  
1050tc(SCO)  
td(WAKE-IDLE)  
Wake-up from Flash  
Flash module in sleep state  
1050tc(SCO) + IQT(2)  
8tc(SCO)  
Wake-up from SARAM  
8tc(SCO) + IQT(2)  
(1) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up) signal involves additional latency.  
(2) Input Qualification Time (IQT) = [tc(SCO) × 2 × QUALPRD] × 5 + [tc(SCO) × 2 × QUALPRD].  
td(WAKE-IDLE)  
A0-A15  
XCLKOUT(A)  
tw(WAKE-INT)  
WAKE INT(B)  
A. XCLKOUT = SYSCLKOUT  
B. WAKE INT can be any enabled interrupt, WDINT, XNMI, or XRS.  
Figure 8-19. IDLE Entry and Exit Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.4.3 STANDBY Mode Timing Requirements  
MIN  
MAX  
UNIT  
Without input qualifier  
With input qualifier  
12tc(CI)  
Pulse duration, external wake-up  
signal  
tw(WAKE-INT)  
cycles  
(1)  
(2 + QUALSTDBY) * tc(CI)  
(1) QUALSTDBY is a 6-bit field in the LPMCR0 register.  
8.12.5.4.4 STANDBY Mode Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
32tc(SCO)  
MAX  
UNIT  
Delay time, IDLE instruction  
executed to XCLKOUT high  
td(IDLE-XCOH)  
45tc(SCO)  
cycles  
Delay time, external wake signal to program execution  
resume(1)  
Wake-up from Flash  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
12tc(CI)  
Flash module in active  
state  
cycles  
12tc(CI) + tw(WAKE-INT)  
1125tc(SCO)  
td(WAKE-STBY)  
Wake-up from Flash  
Flash module in sleep  
state  
cycles  
cycles  
1125tc(SCO) + tw(WAKE-INT)  
Without input qualifier  
With input qualifier  
12tc(CI)  
Wake-up from SARAM  
12tc(CI) + tw(WAKE-INT)  
(1) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up) signal involves additional latency.  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
A
C
E
B
D
F
Device  
Status  
STANDBY  
STANDBY  
Normal Execution  
Flushing Pipeline  
Wake-up  
Signal  
tw(WAKE-INT)  
td(WAKE-STBY)  
X1/XCLKIN  
XCLKOUT  
td(IDLE-XCOH)  
32 SYSCLKOUT Cycles  
A. IDLE instruction is executed to put the device into STANDBY mode.  
B. The PLL block responds to the STANDBY signal. SYSCLKOUT is held for the number of cycles indicated below before being turned off:  
16 cycles, when DIVSEL = 00 or 01  
32 cycles, when DIVSEL = 10  
64 cycles, when DIVSEL = 11  
This delay enables the CPU pipeline and any other pending operations to flush properly. If an access to XINTF is in progress and its  
access time is longer than this number, then it will fail. It is recommended that STANDBY mode be entered from SARAM without an  
XINTF access in progress.  
C. Clocks to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in STANDBY mode.  
D. The external wake-up signal is driven active.  
E. After a latency period, the STANDBY mode is exited.  
F. Normal execution resumes. The device will respond to the interrupt (if enabled).  
Figure 8-20. STANDBY Entry and Exit Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.4.5 HALT Mode Timing Requirements  
MIN  
2tc(CI)  
8tc(CI)  
MAX  
UNIT  
cycles  
cycles  
tw(WAKE-XNMI)  
tw(WAKE-XRS)  
Pulse duration, XNMI wakeup signal  
Pulse duration, XRS wakeup signal  
8.12.5.4.6 HALT Mode Switching Characteristics  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
cycles  
cycles  
td(IDLE-XCOH)  
tp  
Delay time, IDLE instruction executed to XCLKOUT high  
32tc(SCO)  
45tc(SCO)  
PLL lock-up time  
131072tc(CI)  
Delay time, PLL lock to program execution resume  
Wake up from flash  
Flash module in sleep state  
1125tc(SCO)  
35tc(SCO)  
cycles  
cycles  
td(WAKE)  
Wake up from SARAM  
A
C
E
G
B
D
F
Device  
Status  
HALT  
HALT  
PLL Lock-up Time  
Flushing Pipeline  
Normal  
Execution  
Wake-up Latency  
XNMI  
tw(WAKE-XNMI)  
td(wake)  
tp  
X1/XCLKIN  
td(IDLE-XCOH)  
Oscillator Start-up Time  
XCLKOUT(H)  
32 SYSCLKOUT Cycles  
A. IDLE instruction is executed to put the device into HALT mode.  
B. The PLL block responds to the HALT signal. SYSCLKOUT is held for another 32 cycles before the oscillator is turned off and the CLKIN  
to the core is stopped. This 32-cycle delay enables the CPU pipe and any other pending operations to flush properly.  
C. Clocks to the peripherals are turned off and the internal oscillator and PLL are shut down. The device is now in HALT mode and  
consumes absolute minimum power.  
D. When XNMI is driven active, the oscillator is turned on; but the PLL is not activated. The pulse duration of 2tc(CI) is applicable when an  
external oscillator is used. If the internal oscillator is used, the oscillator wake-up time should be added to this parameter.  
E. When XNMI is deactivated, it initiates the PLL lock sequence, which takes 131,072 X1/XCLKIN cycles.  
F. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after a latency. The HALT mode is now exited.  
G. Normal operation resumes.  
H. XCLKOUT = SYSCLKOUT  
Figure 8-21. HALT Wakeup Using XNMI  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.5 Serial Peripheral Interface (SPI) Master Mode Timing  
Section 8.12.5.5.1 lists the master mode timing (clock phase = 0) and Section 8.12.5.5.2 lists the master mode  
timing (clock phase = 1). Figure 8-22 and Figure 8-23 show the timing waveforms.  
8.12.5.5.1 SPI Master Mode External Timing (Clock Phase = 0)  
NO.(1)  
BRR EVEN  
MIN  
BRR ODD  
MIN  
(2) (3) (4)  
PARAMETER  
UNIT  
(5)  
MAX  
MAX  
1
tc(SPC)M  
Cycle time, SPICLK  
4tc(LSPCLK)  
128tc(LSPCLK)  
5tc(LSPCLK)  
127tc(LSPCLK)  
ns  
ns  
Pulse duration, SPICLK first  
pulse  
0.5tc(SPC)M + 0.5tc(LSPCLK)  
– 10  
0.5tc(SPC)M  
+
2
3
tw(SPC1)M  
0.5tc(SPC)M – 10  
0.5tc(SPC)M + 10  
0.5tc(SPC)M + 10  
10  
0.5tc(LSPCLK) + 10  
Pulse duration, SPICLK second  
pulse  
0.5tc(SPC)M – 0.5tc(LSPCLK)  
– 10  
0.5tc(SPC)M  
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
tsu(SOMI)M  
th(SOMI)M  
td(SPC)M  
td(STE)M  
0.5tc(SPC)M – 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5tc(LSPCLK) + 10  
Delay time, SPICLK to  
SPISIMO valid  
4
10  
Valid time, SPISIMO valid after  
SPICLK  
0.5tc(SPC)M – 0.5tc(LSPCLK)  
– 10  
5
0.5tc(SPC)M – 10  
Setup time, SPISOMI before  
SPICLK  
8
35  
0
35  
0
Hold time, SPISOMI valid after  
SPICLK  
9
Delay time, SPISTE active to  
SPICLK  
1.5tc(SPC)M  
1.5tc(SPC)M –  
3tc(SYSCLK) – 10  
23  
24  
3tc(SYSCLK) – 10  
Delay time, SPICLK to SPISTE  
inactive  
0.5tc(SPC)M – 0.5tc(LSPCLK)  
– 10  
0.5tc(SPC)M – 10  
(1) The MASTER / SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR +1)  
(3) tc(LCO) = LSPCLK cycle time  
(4) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MAX, slave mode receive 12.5-MHz MAX.  
(5) The active edge of the SPICLK signal referenced is controlled by the clock polarity bit (SPICCR.6).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
SPISTE  
24  
23  
Figure 8-22. SPI Master Mode External Timing (Clock Phase = 0)  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.5.2 SPI Master Mode External Timing (Clock Phase = 1)  
NO.(1)  
BRR EVEN  
MIN  
BRR ODD  
MIN  
(2) (3) (4)  
PARAMETER  
UNIT  
(5)  
MAX  
MAX  
1
tc(SPC)M  
Cycle time, SPICLK  
4tc(LSPCLK)  
128tc(LSPCLK)  
5tc(LSPCLK)  
0.5tc(SPC)M  
127tc(LSPCLK)  
ns  
ns  
Pulse duration, SPICLK first  
pulse  
0.5tc(SPC)M  
2
3
tw(SPC1)M  
0.5tc(SPC)M – 10  
0.5tc(SPC)M + 10  
0.5tc(SPC)M + 10  
0.5tc(LSPCLK) – 10  
0.5tc(LSPCLK) + 10  
Pulse duration, SPICLK second  
pulse  
0.5tc(SPC)M  
+
0.5tc(SPC)M  
+
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
tsu(SOMI)M  
th(SOMI)M  
td(SPC)M  
td(STE)M  
0.5tc(SPC)M – 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5tc(LSPCLK) – 10  
0.5tc(LSPCLK) + 10  
Delay time, SPISIMO valid to  
SPICLK  
0.5tc(SPC)M  
+
6
0.5tc(SPC)M – 10  
0.5tc(LSPCLK) – 10  
Valid time, SPISIMO valid after  
SPICLK  
0.5tc(SPC)M  
7
0.5tc(SPC)M – 10  
0.5tc(LSPCLK) – 10  
Setup time, SPISOMI before  
SPICLK  
10  
11  
23  
24  
35  
0
35  
Hold time, SPISOMI valid after  
SPICLK  
0
Delay time, SPISTE active to  
SPICLK  
2tc(SPC)M  
2tc(SPC)M  
3tc(SYSCLK) – 10  
3tc(SYSCLK) – 10  
Delay time, SPICLK to SPISTE  
inactive  
0.5tc(SPC)  
0.5tc(SPC) – 10  
0.5tc(LSPCLK) – 10  
(1) The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is set.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25 MHz MAX, master mode receive 12.5 MHz MAX  
Slave mode transmit 12.5 MHz MAX, slave mode receive 12.5 MHz MAX.  
(4) tc(LCO) = LSPCLK cycle time  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
6
7
SPISIMO  
Master Out Data Is Valid  
10  
11  
Master In Data Must  
Be Valid  
SPISOMI  
SPISTE  
24  
23  
Figure 8-23. SPI Master Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.6 Serial Peripheral Interface (SPI) Slave Mode Timing  
Section 8.12.5.6.1 lists the slave mode timing (clock phase = 0) and Section 8.12.5.6.2 lists the slave mode  
timing (clock phase = 1). Figure 8-24 and Figure 8-25 show the timing waveforms.  
8.12.5.6.1 SPI Slave Mode External Timing (Clock Phase = 0)  
NO.  
(1) (2)  
PARAMETER  
MIN  
MAX UNIT  
(4) (3)  
(5)  
12 tc(SPC)S  
13 tw(SPC1)S  
14 tw(SPC2)S  
15 td(SOMI)S  
16 tv(SOMI)S  
19 tsu(SIMO)S  
20 th(SIMO)S  
25 tsu(STE)S  
26 th(STE)S  
Cycle time, SPICLK  
4tc(SYSCLK)  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
ns  
ns  
ns  
Pulse duration, SPICLK first pulse  
Pulse duration, SPICLK second pulse  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI data valid after SPICLK  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO data valid after SPICLK  
Setup time, SPISTE active before SPICLK  
Hold time, SPISTE inactive after SPICLK  
35  
ns  
ns  
ns  
ns  
ns  
ns  
0
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) tc(LCO) = LSPCLK cycle time  
(4) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
16  
SPISOMI  
SPISOMI Data Is Valid  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
25  
26  
Figure 8-24. SPI Slave Mode External Timing (Clock Phase = 0)  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.6.2 SPI Slave Mode External Timing (Clock Phase = 1)  
NO.  
(1) (2)  
PARAMETER  
MIN  
MAX UNIT  
(3) (4)  
12 tc(SPC)S  
13 tw(SPC1)S  
14 tw(SPC2)S  
17 td(SOMI)S  
18 tv(SOMI)S  
21 tsu(SIMO)S  
22 th(SIMO)S  
25 tsu(STE)S  
26 th(STE)S  
Cycle time, SPICLK  
4tc(SYSCLK)  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
ns  
ns  
ns  
Pulse duration, SPICLK first pulse  
Pulse duration, SPICLK second pulse  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI data valid after SPICLK  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO data valid after SPICLK  
Setup time, SPISTE active before SPICLK  
Hold time, SPISTE inactive after SPICLK  
35  
ns  
ns  
ns  
ns  
ns  
ns  
0
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
17  
SPISOMI  
SPISOMI Data Is Valid  
Data Valid  
Data Valid  
18  
21  
22  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
26  
25  
Figure 8-25. SPI Slave Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.7 External Interface (XINTF) Timing  
Each XINTF access consists of three parts: Lead, Active, and Trail. The user configures the Lead/Active/Trail  
wait states in the XTIMING registers. There is one XTIMING register for each XINTF zone. Table 8-3 shows the  
relationship between the parameters configured in the XTIMING register and the duration of the pulse in terms of  
XTIMCLK cycles.  
Table 8-3. Relationship Between Parameters Configured in XTIMING and Duration of Pulse  
DURATION (ns)  
DESCRIPTION(1) (2)  
X2TIMING = 0  
XRDLEAD × tc(XTIM)  
X2TIMING = 1  
LR  
Lead period, read access  
Active period, read access  
Trail period, read access  
Lead period, write access  
Active period, write access  
Trail period, write access  
(XRDLEAD × 2) × tc(XTIM)  
AR  
TR  
LW  
AW  
TW  
(XRDACTIVE + WS + 1) × tc(XTIM)  
XRDTRAIL × tc(XTIM)  
(XRDACTIVE × 2 + WS + 1) × tc(XTIM)  
(XRDTRAIL × 2) × tc(XTIM)  
XWRLEAD × tc(XTIM)  
(XWRLEAD × 2) × tc(XTIM)  
(XWRACTIVE + WS + 1) × tc(XTIM)  
XWRTRAIL × tc(XTIM)  
(XWRACTIVE × 2 + WS + 1) × tc(XTIM)  
(XWRTRAIL × 2) × tc(XTIM)  
(1) tc(XTIM) – Cycle time, XTIMCLK  
(2) WS refers to the number of wait states inserted by hardware when using XREADY. If the zone is configured to ignore XREADY  
(USEREADY = 0), then WS = 0.  
Minimum wait state requirements must be met when configuring each zone’s XTIMING register. These  
requirements are in addition to any timing requirements as specified by that device’s data sheet. No internal  
device hardware is included to detect illegal settings.  
8.12.5.7.1 USEREADY = 0  
If the XREADY signal is ignored (USEREADY = 0), then:  
1.  
Lead:  
LR ≥ tc(XTIM)  
LW ≥ tc(XTIM)  
These requirements result in the following XTIMING register configuration restrictions (no hardware to detect  
illegal XTIMING configurations):  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
≥ 1  
≥ 0  
≥ 0  
≥ 1  
≥ 0  
≥ 0  
0, 1  
Examples of valid and invalid timing when not sampling XREADY (no hardware to detect illegal XTIMING  
configurations):  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
0, 1  
Invalid  
Valid  
0
1
0
0
0
0
0
1
0
0
0
0
0, 1  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.7.2 Synchronous Mode (USEREADY = 1, READYMODE = 0)  
If the XREADY signal is sampled in the synchronous mode (USEREADY = 1, READYMODE = 0), then:  
1.  
Lead:  
LR ≥ tc(XTIM)  
LW ≥ tc(XTIM)  
2.  
Active:  
AR ≥ 2 × tc(XTIM)  
AW ≥ 2 × tc(XTIM)  
NOTE: Restriction does not include external hardware wait states.  
These requirements result in the following XTIMING register configuration restrictions (no hardware to detect  
illegal XTIMING configurations):  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
≥ 1  
≥ 2  
≥ 0  
≥ 1  
≥ 2  
≥ 0  
0, 1  
Examples of valid and invalid timing when using synchronous XREADY (no hardware to detect illegal XTIMING  
configurations):  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
0, 1  
Invalid  
Invalid  
Valid  
0
1
1
0
0
2
0
0
0
0
1
1
0
0
2
0
0
0
0, 1  
0, 1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.7.3 Asynchronous Mode (USEREADY = 1, READYMODE = 1)  
If the XREADY signal is sampled in the asynchronous mode (USEREADY = 1, READYMODE = 1), then:  
1.  
Lead:  
LR ≥ tc(XTIM)  
LW ≥ tc(XTIM)  
2.  
Active:  
AR ≥ 2 × tc(XTIM)  
AW ≥ 2 × tc(XTIM)  
NOTE: Restriction does not include external hardware wait states  
3.  
Lead + Active:  
LR + AR ≥ 4 × tc(XTIM)  
LW + AW ≥ 4 × tc(XTIM)  
NOTE: Restriction does not include external hardware wait states  
These requirements result in the following XTIMING register configuration restrictions (no hardware to detect  
illegal XTIMING configurations):  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
≥ 1  
≥ 2  
0
≥ 1  
≥ 2  
0
0, 1  
or (no hardware to detect illegal XTIMING configurations):  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
≥ 2  
≥ 2  
0
≥ 2  
≥ 2  
0
0, 1  
Examples of valid and invalid timing when using asynchronous XREADY (no hardware to detect illegal XTIMING  
configurations):  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
Invalid  
Invalid  
Invalid  
Valid  
0
1
1
1
1
2
0
0
1
2
2
2
0
0
0
0
0
0
0
1
1
1
1
2
0
0
1
2
2
2
0
0
0
0
0
0
0, 1  
0, 1  
0
1
Valid  
0, 1  
0, 1  
Valid  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Unless otherwise specified, all XINTF timing is applicable for the clock configurations shown in Table 8-4.  
Table 8-4. XINTF Clock Configurations  
MODE  
SYSCLKOUT  
XTIMCLK  
XCLKOUT  
1
SYSCLKOUT  
150 MHz  
SYSCLKOUT  
150 MHz  
Example:  
150 MHz  
2
SYSCLKOUT  
150 MHz  
1/2 SYSCLKOUT  
75 MHz  
Example:  
150 MHz  
3
1/2 SYSCLKOUT  
75 MHz  
1/2 SYSCLKOUT  
75 MHz  
Example:  
150 MHz  
4
1/2 SYSCLKOUT  
75 MHz  
1/4 SYSCLKOUT  
37.5 MHz  
Example:  
150 MHz  
The relationship between SYSCLKOUT and XTIMCLK is shown in Figure 8-26.  
XTIMING0  
XTIMING1  
XTIMING2  
XTIMING6  
XTIMING7  
XBANK  
LEAD/ACTIVE/TRAIL  
SYSCLKOUT  
C28x  
CPU  
1(A)  
0
XCLKOUT  
1
0
XTIMCLK  
0
/2  
1(A)  
0
/2  
XINTCNF2  
(CLKOFF)  
XINTCNF2  
(XTIMCLK)  
XINTCNF2  
(CLKMODE)  
(A)  
Default value after reset  
Figure 8-26. Relationship Between XTIMCLK and SYSCLKOUT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.8 XINTF Signal Alignment to XCLKOUT  
For each XINTF access, the number of lead, active, and trail cycles is based on the internal clock XTIMCLK.  
Strobes such as XRD, XWE, and zone chip-select ( XZCS) change state in relationship to the rising edge of  
XTIMCLK. The external clock, XCLKOUT, can be configured to be either equal to or one-half the frequency of  
XTIMCLK.  
For the case where XCLKOUT = XTIMCLK, all of the XINTF strobes will change state with respect to the rising  
edge of XCLKOUT. For the case where XCLKOUT = one-half XTIMCLK, some strobes will change state either  
on the rising edge of XCLKOUT or the falling edge of XCLKOUT. In the XINTF timing tables, the notation  
XCOHL is used to indicate that the parameter is with respect to either case; XCLKOUT rising edge (high) or  
XCLKOUT falling edge (low). If the parameter is always with respect to the rising edge of XCLKOUT, the notation  
XCOH is used.  
For the case where XCLKOUT = one-half XTIMCLK, the XCLKOUT edge with which the change will be aligned  
can be determined based on the number of XTIMCLK cycles from the start of the access to the point at which  
the signal changes. If this number of XTIMCLK cycles is even, the alignment will be with respect to the rising  
edge of XCLKOUT. If this number is odd, then the signal will change with respect to the falling edge of  
XCLKOUT. Examples include the following:  
Strobes that change at the beginning of an access always align to the rising edge of XCLKOUT. This is  
because all XINTF accesses begin with respect to the rising edge of XCLKOUT.  
Examples:  
XZCSL  
Zone chip-select active-low  
XRNWL  
XR/ W active-low  
Strobes that change at the beginning of the active period will align to the rising edge of XCLKOUT if the total  
number of lead XTIMCLK cycles for the access is even. If the number of lead XTIMCLK cycles is odd, then  
the alignment will be with respect to the falling edge of XCLKOUT.  
Examples:  
XRDL  
XRD active-low  
XWEL  
XWE active-low  
Strobes that change at the beginning of the trail period will align to the rising edge of XCLKOUT if the total  
number of lead + active XTIMCLK cycles (including hardware waitstates) for the access is even. If the  
number of lead + active XTIMCLK cycles (including hardware waitstates) is odd, then the alignment will be  
with respect to the falling edge of XCLKOUT.  
Examples:  
XRDH  
XRD inactive-high  
XWEH  
XWE inactive-high  
Strobes that change at the end of the access will align to the rising edge of XCLKOUT if the total number of  
lead + active + trail XTIMCLK cycles (including hardware waitstates) is even. If the number of lead + active +  
trail XTIMCLK cycles (including hardware waitstates) is odd, then the alignment will be with respect to the  
falling edge of XCLKOUT.  
Examples:  
XZCSH  
Zone chip-select inactive-high  
XRNWH  
XR/ W inactive-high  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.9 External Interface Read Timing  
8.12.5.9.1 External Memory Interface Read Switching Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
td(XCOH-XZCSL)  
td(XCOHL-XZCSH)  
td(XCOH-XA)  
Delay time, XCLKOUT high to zone chip-select active-low  
Delay time, XCLKOUT high/low to zone chip-select inactive-high  
Delay time, XCLKOUT high to address valid  
1
3
2
1
1
–2  
ns  
ns  
td(XCOHL-XRDL)  
td(XCOHL-XRDH)  
th(XA)XZCSH  
Delay time, XCLKOUT high/low to XRD active-low  
Delay time, XCLKOUT high/low to XRD inactive-high  
Hold time, address valid after zone chip-select inactive-high  
Hold time, address valid after XRD inactive-high  
ns  
–2  
ns  
(1)  
ns  
(1)  
th(XA)XRD  
ns  
(1) During inactive cycles, the XINTF address bus will always hold the last address put out on the bus. This includes alignment cycles.  
8.12.5.9.2 External Memory Interface Read Timing Requirements  
MIN  
MAX  
(LR + AR) – 14(1)  
AR – 12(1)  
UNIT  
ns  
ta(A)  
Access time, read data from address valid  
ta(XRD)  
Access time, read data valid from XRD active-low  
Setup time, read data valid before XRD strobe inactive-high  
Hold time, read data valid after XRD inactive-high  
ns  
tsu(XD)XRD  
th(XD)XRD  
12  
0
ns  
ns  
(1) LR = Lead period, read access. AR = Active period, read access. See Table 8-3.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Trail  
Active  
Lead  
XCLKOUT = XTIMCLK  
XCLKOUT = 1/2 XTIMCLK  
td(XCOH-XZCSL)  
td(XCOHL-XZCSH)  
XZCS0AND1, XZCS2,  
XZCS6AND7  
td(XCOH-XA)  
XA[0:18]  
td(XCOHL-XRDH)  
tsu(XD)XRD  
td(XCOHL-XRDL)  
XRD  
XWE  
XR/W  
ta(A)  
th(XD)XRD  
ta(XRD)  
DIN  
XD[0:15]  
XREADY  
A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device will insert an alignment cycle  
before an access to meet this requirement.  
B. During alignment cycles, all signals will transition to their inactive state.  
C. For USEREADY = 0, the external XREADY input signal is ignored.  
D. XA[0:18] will hold the last address put on the bus during inactive cycles, including alignment cycles.  
Figure 8-27. Example Read Access  
XTIMING register parameters used for this example:  
XRDLEAD  
XRDACTIVE XRDTRAIL  
≥ 0 ≥ 0  
USEREADY  
X2TIMING  
XWRLEAD XWRACTIVE XWRTRAIL READYMODE  
N/A(1) N/A(1) N/A(1) N/A(1)  
≥ 1  
0
0
(1) N/A = “Don’t care” for this example  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.10 External Interface Write Timing  
8.12.5.10.1 External Memory Interface Write Switching Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(XCOH-XZCSL)  
td(XCOHL-XZCSH)  
td(XCOH-XA)  
Delay time, XCLKOUT high to zone chip-select active-low  
Delay time, XCLKOUT high or low to zone chip-select inactive-high  
Delay time, XCLKOUT high to address valid  
1
3
2
2
2
1
1
–2  
td(XCOHL-XWEL)  
td(XCOHL-XWEH)  
td(XCOH-XRNWL)  
td(XCOHL-XRNWH)  
ten(XD)XWEL  
Delay time, XCLKOUT high/low to XWE low  
Delay time, XCLKOUT high/low to XWE high  
Delay time, XCLKOUT high to XR/ W low  
Delay time, XCLKOUT high/low to XR/ W high  
–2  
0
Enable time, data bus driven from XWE low  
td(XWEL-XD)  
Delay time, data valid after XWE active-low  
4
(1)  
th(XA)XZCSH  
Hold time, address valid after zone chip-select inactive-high  
Hold time, write data valid after XWE inactive-high  
Maximum time for DSP to release the data bus after XR/ W inactive-high  
th(XD)XWE  
TW – 2(2)  
tdis(XD)XRNW  
4
(1) During inactive cycles, the XINTF address bus will always hold the last address put out on the bus. This includes alignment cycles.  
(2) TW = Trail period, write access. See Table 8-3.  
Active  
Lead  
Trail  
XCLKOUT = XTIMCLK  
XCLKOUT = 1/2 XTIMCLK  
td(XCOHL-XZCSH)  
td(XCOH-XZCSL)  
XZCS0AND1, XZCS2,  
XZCS6AND7  
td(XCOH-XA)  
XA[0:18]  
XRD  
td(XCOHL-XWEH)  
td(XCOHL-XRNWH)  
td(XCOHL-XWEL)  
XWE  
XR/W  
td(XCOH-XRNWL)  
tdis(XD)XRNW  
th(XD)XWEH  
td(XWEL-XD)  
ten(XD)XWEL  
XD[0:15]  
XREADY  
DOUT  
A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device will insert an alignment cycle  
before an access to meet this requirement.  
B. During alignment cycles, all signals will transition to their inactive state.  
C. For USEREADY = 0, the external XREADY input signal is ignored.  
D. XA[0:18] will hold the last address put on the bus during inactive cycles, including alignment cycles.  
Figure 8-28. Example Write Access  
XTIMING register parameters used for this example:  
XRDLEAD  
XRDACTIVE XRDTRAIL  
N/A(1) N/A(1)  
USEREADY  
X2TIMING  
XWRLEAD XWRACTIVE XWRTRAIL READYMODE  
≥ 1 ≥ 0 ≥ 0  
N/A(1)  
N/A(1)  
0
0
(1) N/A = “Don’t care” for this example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.11 External Interface Ready-on-Read Timing With One External Wait State  
8.12.5.11.1 External Memory Interface Read Switching Characteristics (Ready-on-Read, 1 Wait State)  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
td(XCOH-XZCSL)  
td(XCOHL-XZCSH)  
td(XCOH-XA)  
Delay time, XCLKOUT high to zone chip-select active-low  
Delay time, XCLKOUT high/low to zone chip-select inactive-high  
Delay time, XCLKOUT high to address valid  
1
3
2
1
1
–2  
ns  
ns  
td(XCOHL-XRDL)  
td(XCOHL-XRDH)  
th(XA)XZCSH  
Delay time, XCLKOUT high/low to XRD active-low  
Delay time, XCLKOUT high/low to XRD inactive-high  
Hold time, address valid after zone chip-select inactive-high  
Hold time, address valid after XRD inactive-high  
ns  
–2  
ns  
(1)  
ns  
(1)  
th(XA)XRD  
ns  
(1) During inactive cycles, the XINTF address bus will always hold the last address put out on the bus. This includes alignment cycles.  
8.12.5.11.2 External Memory Interface Read Timing Requirements (Ready-on-Read, 1 Wait State)  
MIN  
MAX  
(LR + AR) – 14(1)  
AR – 12(1)  
UNIT  
ns  
ta(A)  
Access time, read data from address valid  
ta(XRD)  
Access time, read data valid from XRD active-low  
Setup time, read data valid before XRD strobe inactive-high  
Hold time, read data valid after XRD inactive-high  
ns  
tsu(XD)XRD  
th(XD)XRD  
12  
0
ns  
ns  
(1) LR = Lead period, read access. AR = Active period, read access. See Table 8-3.  
8.12.5.11.3 Synchronous XREADY Timing Requirements (Ready-on-Read, 1 Wait State)  
MIN(1)  
15  
MAX  
UNIT  
ns  
tsu(XRDYsynchL)XCOHL  
th(XRDYsynchL)  
Setup time, XREADY (synchronous) low before XCLKOUT high/low  
Hold time, XREADY (synchronous) low  
12  
ns  
Earliest time XREADY (synchronous) can go high before the sampling  
XCLKOUT edge  
te(XRDYsynchH)  
3
ns  
tsu(XRDYsynchH)XCOHL  
th(XRDYsynchH)XZCSH  
Setup time, XREADY (synchronous) high before XCLKOUT high/low  
Hold time, XREADY (synchronous) held high after zone chip-select high  
15  
0
ns  
ns  
(1) The first XREADY (synchronous) sample occurs with respect to E in Figure 8-29:  
E = (XRDLEAD + XRDACTIVE) tc(XTIM)  
When first sampled, if XREADY (synchronous) is found to be high, then the access will complete. If XREADY (synchronous) is found to  
be low, it will be sampled again each tc(XTIM) until it is found to be high.  
For each sample (n), the setup time (D) with respect to the beginning of the access can be calculated as:  
D = (XRDLEAD + XRDACTIVE + n – 1) tc(XTIM) – tsu(XRDYsynchL)XCOHL  
where n is the sample number (n = 1, 2, 3, and so forth).  
8.12.5.11.4 Asynchronous XREADY Timing Requirements (Ready-on-Read, 1 Wait State)  
MIN(1)  
11  
MAX  
UNIT  
ns  
tsu(XRDYAsynchL)XCOHL  
th(XRDYAsynchL)  
Setup time, XREADY (asynchronous) low before XCLKOUT high/low  
Hold time, XREADY (asynchronous) low  
8
ns  
Earliest time XREADY (asynchronous) can go high before the sampling  
XCLKOUT edge  
te(XRDYAsynchH)  
3
ns  
tsu(XRDYAsynchH)XCOHL  
th(XRDYAsynchH)XZCSH  
Setup time, XREADY (asynchronous) high before XCLKOUT high/low  
Hold time, XREADY (asynchronous) held high after zone chip-select high  
11  
0
ns  
ns  
(1) The first XREADY (asynchronous) sample occurs with respect to E in Figure 8-30:  
E = (XRDLEAD + XRDACTIVE – 2) tc(XTIM)  
When first sampled, if XREADY (asynchronous) is found to be high, then the access will complete. If XREADY (asynchronous) is found  
to be low, it will be sampled again each tc(XTIM) until it is found to be high.  
For each sample, setup time from the beginning of the access can be calculated as:  
D = (XRDLEAD + XRDACTIVE – 3 + n) tc(XTIM) – tsu(XRDYAsynchL)XCOHL  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
where n is the sample number (n = 1, 2, 3, and so forth).  
WS (Synch)  
Active  
See Notes (A) and (B)  
See Note (C)  
Lead  
Trail  
XCLKOUT = XTIMCLK  
XCLKOUT = 1/2 XTIMCLK  
td(XCOHL-XZCSH)  
td(XCOH-XZCSL)  
td(XCOH-XA)  
XZCS0AND1, XZCS2,  
XZCS6AND7  
XA[0:18]  
XRD  
td(XCOHL-XRDH)  
td(XCOHL-XRDL)  
tsu(XD)XRD  
ta(XRD)  
XWE  
XR/W  
ta(A)  
th(XD)XRD  
XD[0:15]  
DIN  
tsu(XRDYsynchL)XCOHL  
te(XRDYsynchH)  
th(XRDYsynchL)  
th(XRDYsynchH)XZCSH  
tsu(XRDHsynchH)XCOHL  
XREADY(Synch)  
See Note (D)  
See Note (E)  
Legend:  
= Don’t care. Signal can be high or low during this time.  
A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device will insert an alignment cycle  
before an access to meet this requirement.  
B. During alignment cycles, all signals will transition to their inactive state.  
C. During inactive cycles, the XINTF address bus will always hold the last address put out on the bus. This includes alignment cycles.  
D. For each sample, setup time from the beginning of the access (D) can be calculated as: D = (XRDLEAD + XRDACTIVE + n – 1) tc(XTIM)  
tsu(XRDYsynchL)XCOHL  
E. Reference for the first sample is with respect to this point E = (XRDLEAD + XRDACTIVE) tc(XTIM) where n is the sample number (n = 1,  
2, 3, and so forth).  
Figure 8-29. Example Read With Synchronous XREADY Access  
XTIMING register parameters used for this example:  
XRDLEAD  
XRDACTIVE XRDTRAIL  
≥ 1  
USEREADY  
X2TIMING  
XWRLEAD XWRACTIVE XWRTRAIL READYMODE  
0 = XREADY  
≥ 1  
3
1
0
N/A(1)  
N/A(1)  
N/A(1)  
(Synch)  
(1) N/A = “Don’t care” for this example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
See  
Notes (A)  
and (B)  
WS (Async)  
Active  
See Note (C)  
Lead  
Trail  
XCLKOUT = XTIMCLK  
XCLKOUT = 1/2 XTIMCLK  
td(XCOHL-XZCSH)  
td(XCOH-XZCSL)  
td(XCOH-XA)  
XZCS0AND1, XZCS2,  
XZCS6AND7  
XA[0:18]  
td(XCOHL-XRDH)  
td(XCOHL-XRDL)  
XRD  
XWE  
XR/W  
tsu(XD)XRD  
ta(XRD)  
ta(A)  
th(XD)XRD  
XD[0:15]  
DIN  
tsu(XRDYasynchL)XCOHL  
te(XRDYasynchH)  
th(XRDYasynchH)XZCSH  
th(XRDYasynchL)  
tsu(XRDYasynchH)XCOHL  
XREADY(Asynch)  
See Note (D)  
See Note (E)  
Legend:  
= Don’t care. Signal can be high or low during this time.  
A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device will insert an alignment cycle  
before an access to meet this requirement.  
B. During alignment cycles, all signals will transition to their inactive state.  
C. During inactive cycles, the XINTF address bus will always hold the last address put out on the bus. This includes alignment cycles.  
D. For each sample, setup time from the beginning of the access can be calculated as: D = (XRDLEAD + XRDACTIVE – 3 + n) tc(XTIM)  
tsu(XRDYAsynchL)XCOHL where n is the sample number (n = 1, 2, 3, and so forth).  
E. Reference for the first sample is with respect to this point: E = (XRDLEAD + XRDACTIVE – 2) tc(XTIM)  
Figure 8-30. Example Read With Asynchronous XREADY Access  
XTIMING register parameters used for this example:  
XRDLEAD  
XRDACTIVE XRDTRAIL  
≥ 1  
USEREADY  
X2TIMING  
XWRLEAD XWRACTIVE XWRTRAIL READYMODE  
1 = XREADY  
(Async)  
≥ 1  
3
1
0
N/A(1)  
N/A(1)  
N/A(1)  
(1) N/A = “Don’t care” for this example  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.12 External Interface Ready-on-Write Timing With One External Wait State  
8.12.5.12.1 External Memory Interface Write Switching Characteristics (Ready-on-Write, 1 Wait State)  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(XCOH-XZCSL)  
td(XCOHL-XZCSH)  
td(XCOH-XA)  
Delay time, XCLKOUT high to zone chip-select active-low  
Delay time, XCLKOUT high or low to zone chip-select inactive-high  
Delay time, XCLKOUT high to address valid  
1
3
2
2
2
1
1
–2  
td(XCOHL-XWEL)  
td(XCOHL-XWEH)  
td(XCOH-XRNWL)  
td(XCOHL-XRNWH)  
ten(XD)XWEL  
Delay time, XCLKOUT high/low to XWE low  
Delay time, XCLKOUT high/low to XWE high  
Delay time, XCLKOUT high to XR/ W low  
Delay time, XCLKOUT high/low to XR/ W high  
Enable time, data bus driven from XWE low  
–2  
0
td(XWEL-XD)  
Delay time, data valid after XWE active-low  
4
(1)  
th(XA)XZCSH  
Hold time, address valid after zone chip-select inactive-high  
Hold time, write data valid after XWE inactive-high  
Maximum time for DSP to release the data bus after XR/ W inactive-high  
th(XD)XWE  
TW – 2(2)  
tdis(XD)XRNW  
4
(1) During inactive cycles, the XINTF address bus will always hold the last address put out on the bus. This includes alignment cycles.  
(2) TW = trail period, write access. See Table 8-3.  
8.12.5.12.2 Synchronous XREADY Timing Requirements (Ready-on-Write, 1 Wait State)  
MIN(1)  
15  
MAX  
UNIT  
ns  
tsu(XRDYsynchL)XCOHL  
th(XRDYsynchL)  
Setup time, XREADY (synchronous) low before XCLKOUT high/low  
Hold time, XREADY (synchronous) low  
12  
ns  
Earliest time XREADY (synchronous) can go high before the sampling  
XCLKOUT edge  
te(XRDYsynchH)  
3
ns  
tsu(XRDYsynchH)XCOHL  
th(XRDYsynchH)XZCSH  
Setup time, XREADY (synchronous) high before XCLKOUT high/low  
Hold time, XREADY (synchronous) held high after zone chip-select high  
15  
0
ns  
ns  
(1) The first XREADY (synchronous) sample occurs with respect to E in Figure 8-31:  
E = (XWRLEAD + XWRACTIVE) tc(XTIM)  
When first sampled, if XREADY (synchronous) is found to be high, then the access will complete. If XREADY (synchronous) is found to  
be low, it will be sampled again each tc(XTIM) until it is found to be high.  
For each sample, setup time from the beginning of the access can be calculated as:  
D = (XWRLEAD + XWRACTIVE + n – 1) tc(XTIM) – tsu(XRDYsynchL)XCOHL  
where n is the sample number (n = 1, 2, 3, and so forth).  
8.12.5.12.3 Asynchronous XREADY Timing Requirements (Ready-on-Write, 1 Wait State)  
MIN(1)  
11  
MAX  
UNIT  
ns  
tsu(XRDYasynchL)XCOHL  
th(XRDYasynchL)  
Setup time, XREADY (asynchronous) low before XCLKOUT high/low  
Hold time, XREADY (asynchronous) low  
8
ns  
Earliest time XREADY (asynchronous) can go high before the sampling  
XCLKOUT edge  
te(XRDYasynchH)  
3
ns  
tsu(XRDYasynchH)XCOHL  
th(XRDYasynchH)XZCSH  
Setup time, XREADY (asynchronous) high before XCLKOUT high/low  
Hold time, XREADY (asynchronous) held high after zone chip-select high  
11  
0
ns  
ns  
(1) The first XREADY (synchronous) sample occurs with respect to E in Figure 8-32:  
E = (XWRLEAD + XWRACTIVE – 2) tc(XTIM)  
When first sampled, if XREADY (asynchronous) is found to be high, then the access will complete. If XREADY (asynchronous) is found  
to be low, it will be sampled again each tc(XTIM) until it is found to be high.  
For each sample, setup time from the beginning of the access can be calculated as:  
D = (XWRLEAD + XWRACTIVE – 3 + n) tc(XTIM) – tsu(XRDYasynchL)XCOHL  
where n is the sample number (n = 1, 2, 3, and so forth).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
See  
Notes (A)  
and (B)  
WS (Synch)  
See Note (C)  
Trail  
Active  
Lead 1  
XCLKOUT = XTIMCLK  
XCLKOUT = 1/2 XTIMCLK  
td(XCOH-XZCSL)  
td(XCOH-XA)  
td(XCOHL-XZCSH)  
XZCS0AND1, XZCS2,  
XZCS6AND7  
th(XRDYsynchH)XZCSH  
XA[0:18]  
XRD  
td(XCOHL-XWEH)  
td(XCOHL-XWEL)  
XWE  
td(XCOHL-XRNWH)  
td(XCOH-XRNWL)  
XR/W  
tdis(XD)XRNW  
th(XD)XWEH  
td(XWEL-XD)  
ten(XD)XWEL  
XD[0:15]  
DOUT  
tsu(XRDYsynchL)XCOHL  
te(XRDYsynchH)  
tsu(XRDHsynchH)XCOHL  
th(XRDYsynchL)  
XREADY(Synch)  
See Note (D)  
See Note (E)  
Legend:  
= Don’t care. Signal can be high or low during this time.  
A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device will insert an alignment cycle  
before an access to meet this requirement.  
B. During alignment cycles, all signals will transition to their inactive state.  
C. During inactive cycles, the XINTF address bus will always hold the last address put out on the bus. This includes alignment cycles.  
D. For each sample, setup time from the beginning of the access can be calculated as: D = (XWRLEAD + XWRACTIVE + n – 1) tc(XTIM)  
tsu(XRDYsynchL)XCOHL where n is the sample number (n = 1, 2, 3 and so forth).  
E. Reference for the first sample is with respect to this point E = (XWRLEAD + XWRACTIVE) tc(XTIM)  
Figure 8-31. Write With Synchronous XREADY Access  
XTIMING register parameters used for this example:  
XRDLEAD  
XRDACTIVE XRDTRAIL  
N/A(1) N/A(1)  
USEREADY  
X2TIMING  
XWRLEAD XWRACTIVE XWRTRAIL READYMODE  
0 = XREADY  
(Synch)  
N/A(1)  
1
0
≥ 1  
3
≥ 1  
(1) N/A = “Don’t care” for this example  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
See  
Notes (A)  
and (B)  
WS (Async)  
See Note (C)  
Trail  
Active  
Lead 1  
XCLKOUT = XTIMCLK  
XCLKOUT = 1/2 XTIMCLK  
td(XCOH-XZCSL)  
td(XCOHL-XZCSH)  
XZCS0AND1, XZCS2,  
XZCS6AND7  
th(XRDYasynchH)XZCSH  
td(XCOH-XA)  
XA[0:18]  
XRD  
td(XCOHL-XWEH)  
td(XCOHL-XRNWH)  
td(XCOHL-XWEL)  
XWE  
td(XCOH-XRNWL)  
XR/W  
tdis(XD)XRNW  
th(XD)XWEH  
td(XWEL-XD)  
ten(XD)XWEL  
XD[0:15]  
DOUT  
tsu(XRDYasynchL)XCOHL  
th(XRDYasynchL)  
te(XRDYasynchH)  
tsu(XRDYasynchH)XCOHL  
XREADY(Asynch)  
See Note (D)  
See Note (E)  
Legend:  
= Don’t care. Signal can be high or low during this time.  
A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device will insert an alignment cycle  
before an access to meet this requirement.  
B. During alignment cycles, all signals will transition to their inactive state.  
C. During inactive cycles, the XINTF address bus will always hold the last address put out on the bus. This includes alignment cycles.  
D. For each sample, setup time from the beginning of the access can be calculated as: D = (XWRLEAD + XWRACTIVE – 3 + n) tc(XTIM)  
tsu(XRDYasynchL)XCOHL where n is the sample number (n = 1, 2, 3 and so forth).  
E. Reference for the first sample is with respect to this point E = (XWRLEAD + XWRACTIVE – 2) tc(XTIM)  
Figure 8-32. Write With Asynchronous XREADY Access  
XTIMING register parameters used for this example:  
XRDLEAD  
XRDACTIVE XRDTRAIL  
N/A(1) N/A(1)  
USEREADY  
X2TIMING  
XWRLEAD XWRACTIVE XWRTRAIL READYMODE  
1 = XREADY  
(Async)  
N/A(1)  
1
0
≥ 1  
3
≥ 1  
(1) N/A = “Don’t care” for this example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.13 XHOLD and XHOLDA  
If the HOLD mode bit is set while XHOLD and XHOLDA are both low (external bus accesses granted), the  
XHOLDA signal is forced high (at the end of the current cycle) and the external interface is taken out of high-  
impedance mode.  
On a reset ( XRS), the HOLD mode bit is set to 0. If the XHOLD signal is active low on a system reset, the bus  
and all signal strobes must be in high-impedance mode, and the XHOLDA signal is also driven active low.  
When HOLD mode is enabled and XHOLDA is active-low (external bus grant active), the CPU can still execute  
code from internal memory. If an access is made to the external interface, the CPU is stalled until the XHOLD  
signal is removed.  
An external DMA request, when granted, places the following signals in a high-impedance mode:  
XA[18:0]  
XD[15:0]  
XWE, XRD  
XR/ W  
XZCS0AND1  
XZCS2  
XZCS6AND7  
All other signals not listed in this group remain in their default or functional operational modes during these  
signal events.  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.14 XHOLD/ XHOLDA Timing  
8.12.5.14.1 XHOLD/ XHOLDA Timing Requirements (XCLKOUT = XTIMCLK)  
MIN(1) (2)  
MAX  
4tc(XTIM)  
5tc(XTIM)  
3tc(XTIM)  
4tc(XTIM)  
UNIT  
ns  
td(HL-HiZ)  
td(HL-HAL)  
td(HH-HAH)  
td(HH-BV)  
Delay time, XHOLD low to Hi-Z on all Address, Data, and Control  
Delay time, XHOLD low to XHOLDA low  
ns  
Delay time, XHOLD high to XHOLDA high  
Delay time, XHOLD high to Bus valid  
ns  
ns  
(1) When a low signal is detected on XHOLD, all pending XINTF accesses will be completed before the bus is placed in a high-impedance  
state.  
(2) The state of XHOLD is latched on the rising edge of XTIMCLK.  
XCLKOUT  
(/1 Mode)  
td(HL-Hiz)  
XHOLD  
td(HH-HAH)  
XHOLDA  
td(HL-HAL)  
td(HH-BV)  
XR/W,  
XZCS0AND1,  
High-Impedance  
XZCS2,  
XZCS6AND7  
XA[18:0]  
XD[15:0]  
High-Impedance  
Valid  
Valid  
Valid  
See Note (A)  
See Note (B)  
A. All pending XINTF accesses are completed.  
B. Normal XINTF operation resumes.  
Figure 8-33. External Interface Hold Waveform  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.14.2 XHOLD/ XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK)  
MIN(1) (2)  
MAX  
UNIT  
(3)  
td(HL-HiZ)  
td(HL-HAL)  
td(HH-HAH)  
td(HH-BV)  
Delay time, XHOLD low to Hi-Z on all Address, Data, and Control  
Delay time, XHOLD low to XHOLDA low  
4tc(XTIM) + tc(XCO)  
4tc(XTIM) + 2tc(XCO)  
4tc(XTIM)  
ns  
ns  
ns  
ns  
Delay time, XHOLD high to XHOLDA high  
Delay time, XHOLD high to Bus valid  
6tc(XTIM)  
(1) When a low signal is detected on XHOLD, all pending XINTF accesses will be completed before the bus is placed in a high-impedance  
state.  
(2) The state of XHOLD is latched on the rising edge of XTIMCLK.  
(3) After the XHOLD is detected low or high, all bus transitions and XHOLDA transitions will occur with respect to the rising edge of  
XCLKOUT. Thus, for this mode where XCLKOUT = 1/2 XTIMCLK, the transitions can occur up to 1 XTIMCLK cycle earlier than the  
maximum value specified.  
XCLKOUT  
(1/2 XTIMCLK)  
td(HL-HAL)  
XHOLD  
td(HH-HAH)  
XHOLDA  
td(HL-HiZ)  
td(HH-BV)  
XR/W,  
XZCS0AND1,  
XZCS2,  
XZCS6AND7  
High-Impedance  
XA[18:0]  
XD[15:0]  
High-Impedance  
High-Impedance  
Valid  
Valid  
Valid  
See Note (B)  
See Note (A)  
A. All pending XINTF accesses are completed.  
B. Normal XINTF operation resumes.  
Figure 8-34. XHOLD/ XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK)  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.15 On-Chip Analog-to-Digital Converter  
8.12.5.15.1 ADC Absolute Maximum Ratings Over Recommended Operating Conditions  
(Unless Otherwise Noted)  
MIN(1)  
–0.3  
MAX  
4.6  
UNIT  
V
Supply voltage range  
Supply voltage range  
VSSA1/VSSA2 to VDDA1/VDDA2/AVDDREFBG  
VSS1 to VDD1  
–0.3  
2.5  
V
Analog Input (ADCIN) Clamp  
Current, total (max)  
–20(2)  
20(2)  
mA  
(1) Unless otherwise noted, the list of absolute maximum ratings are specified over recommended operating conditions. Stresses beyond  
those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions  
is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The analog inputs have an internal clamping circuit that clamps the voltage to a diode drop above VDDA or below VSS. The continuous  
clamp current per pin is ±2 mA.  
8.12.5.15.2 ADC Electrical Characteristics Over Recommended Operating Conditions  
(Unless Otherwise Noted)—AC Specifications  
PARAMETER  
Signal-to-noise ratio + distortion  
Signal-to-noise ratio  
MIN  
TYP  
62  
MAX UNIT  
SINAD  
dB  
dB  
SNR  
62  
THD (100 kHz)  
ENOB (SNR)  
SFDR  
Total harmonic distortion  
–68  
10.1  
69  
dB  
Effective number of bits  
Bits  
dB  
Spurious free dynamic range  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.15.3 ADC Electrical Characteristics Over Recommended Operating Conditions  
(Unless Otherwise Noted)—DC Specifications  
PARAMETER(1)  
MIN  
12  
1
TYP  
MAX  
UNIT  
Bits  
Resolution  
kHz  
ADC clock(2)  
25  
MHz  
ACCURACY  
INL (Integral nonlinearity)(3)  
1–18.75 MHz ADC clock  
1–18.75 MHz ADC clock  
±1.5  
±1  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
DNL (Differential nonlinearity)(3)  
Offset error(4)  
–80  
–200  
–50  
80  
Overall gain error with internal reference(5)  
Overall gain error with external reference(6)  
Channel-to-channel offset variation  
Channel-to-channel Gain variation  
200  
50  
If ADCREFP – ADCREFM = 1 V ± 0.1%  
±8  
±8  
ANALOG INPUT  
Analog input voltage (ADCINx to ADCLO)(7)  
ADCLO  
0
3
5
V
–5  
0
10  
3
mV  
pF  
µA  
Input capacitance  
Input leakage current  
±5  
INTERNAL VOLTAGE REFERENCE (5)  
Accuracy, ADCVREFP  
1.9  
2
1
2.1  
V
Accuracy, ADCVREFM  
0.95  
1.05  
V
V
Voltage difference, ADCREFP – ADCREFM  
Temperature coefficient  
Reference noise  
1
50  
100  
PPM/°C  
µV  
EXTERNAL VOLTAGE REFERENCE (6)  
Accuracy, ADCVREFP  
1.9  
0.95  
0.99  
2
1
1
2.1  
1.05  
1.01  
V
V
V
Accuracy, ADCVREFM  
Input voltage difference, ADCREFP – ADCREFM  
(1) Tested at 12.5-MHz ADCCLK.  
(2) If SYSCLKOUT ≤ 25 MHz, ADC clock ≤ SYSCLKOUT/2.  
(3) The INL degrades for frequencies beyond 18.75 MHz–25 MHz. Applications that require these sampling rates should use a 20K  
resistor as bias resistor on the ADCRESEXT pin. This improves overall linearity and typical current drawn by the ADC will be a few mA  
more than 24.9-kΩ bias.  
(4) 1 LSB has the weighted value of 3.0/4096 = 0.732 mV.  
(5) A single internal band gap reference (±5% accuracy) sources both ADCREFP and ADCREFM signals, and hence, these voltages track  
together. The ADC converter uses the difference between these two as its reference. The total gain error will be the combination of the  
gain error shown here and the voltage reference accuracy (ADCREFP – ADCREFM). A software-based calibration procedure is  
recommended for better accuracy. See the F2810, F2811, and F2812 ADC Calibration Application Report and Section 11.4 for relevant  
documents.  
(6) In this mode, the accuracy of external reference is critical for overall gain. The voltage difference (ADCREFP – ADCREFM) will  
determine the overall accuracy.  
(7) Voltages above VDDA + 0.3 V or below VSS – 0.3 V applied to an analog input pin may temporarily affect the conversion of another pin.  
To avoid this, the analog inputs should be kept within these limits.  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.15.4 Current Consumption for Different ADC Configurations  
8.12.5.15.4.1 Current Consumption for Different ADC Configurations (at 25-MHz ADCCLK)  
IDDA (TYP)(1) (2)  
IDDAIO (TYP)  
IDD1 (TYP)  
ADC OPERATING MODE/CONDITIONS  
Mode A (Operational Mode):  
BG and REF enabled  
PWD disabled  
40 mA  
1 µA  
0.5 mA  
Mode B:  
ADC clock enabled  
7 mA  
1 µA  
0
0
0
5 µA  
5 µA  
0
BG and REF enabled  
PWD enabled  
Mode C:  
ADC clock enabled  
BG and REF disabled  
PWD enabled  
Mode D:  
ADC clock disabled  
1 µA  
BG and REF disabled  
PWD enabled  
(1) Test Conditions:  
SYSCLKOUT = 150 MHz  
ADC module clock = 25 MHz  
ADC performing a continuous conversion of all 16 channels in Mode A  
(2) IDDA – includes current into VDDA1/VDDA2 and AVDDREFBG  
Ron  
1 kW  
Switch  
Rs  
ADCIN0  
Cp  
Ch  
Source  
Signal  
ac  
10 pF  
1.25 pF  
28x DSP  
Typical Values of the Input Circuit Components:  
Switch Resistance (Ron): 1 kW  
Sampling Capacitor (Ch): 1.25 pF  
Parasitic Capacitance (Cp): 10 pF  
Source Resistance (Rs): 50 W  
Figure 8-35. ADC Analog Input Impedance Model  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.15.5 ADC Power-Up Control Bit Timing  
ADC Power Up Delay  
ADC Ready for Conversions  
PWDNBG  
PWDNREF  
td(BGR)  
PWDNADC  
td(PWD)  
Request for  
ADC Conversion  
Figure 8-36. ADC Power-Up Control Bit Timing  
8.12.5.15.5.1 ADC Power-Up Delays  
MIN(1)  
7
TYP  
8
MAX UNIT  
Delay time for band gap reference to be stable. Bits 7 and 6 of the ADCTRL3  
register (ADCBGRFDN1/0) are to be set to 1 before the ADCPWDN bit is  
enabled.  
td(BGR)  
10  
ms  
Delay time for power-down control to be stable. Bit 5 of the ADCTRL3  
register (ADCPWDN) is to be set to 1 before any ADC conversions are  
initiated.  
20  
50  
µs  
td(PWD)  
1
ms  
(1) These delays are necessary and recommended to make the ADC analog reference circuit stable before conversions are initiated. If  
conversions are started without these delays, the ADC results will show a higher gain. For power down, all three bits can be cleared at  
the same time.  
8.12.5.15.6 Detailed Description  
8.12.5.15.6.1 Reference Voltage  
The on-chip ADC has a built-in reference, which provides the reference voltages for the ADC. ADCVREFP is set  
to 2.0 V and ADCVREFM is set to 1.0 V.  
8.12.5.15.6.2 Analog Inputs  
The on-chip ADC consists of 16 analog inputs, which are sampled either one at a time or two channels at a time.  
These inputs are software-selectable.  
8.12.5.15.6.3 Converter  
The on-chip ADC uses a 12-bit four-stage pipeline architecture, which achieves a high sample rate with low  
power consumption.  
8.12.5.15.6.4 Conversion Modes  
The conversion can be performed in two different conversion modes:  
Sequential sampling mode (SMODE = 0)  
Simultaneous sampling mode (SMODE = 1)  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.15.7 Sequential Sampling Mode (Single-Channel) (SMODE = 0)  
In sequential sampling mode, the ADC can continuously convert input signals on any of the channels (Ax to Bx).  
The ADC can start conversions on event triggers from the Event Managers (EVA/EVB), software trigger, or from  
an external ADCSOC signal. If the SMODE bit is 0, the ADC will do conversions on the selected channel on  
every Sample/Hold pulse. The conversion time and latency of the Result register update are explained below.  
The ADC interrupt flags are set a few SYSCLKOUT cycles after the Result register update. The selected  
channels will be sampled at every falling edge of the Sample/Hold pulse. The Sample/Hold pulse width can be  
programmed to be 1 ADC clock wide (minimum) or 16 ADC clocks wide (maximum).  
Sample n+2  
Sample n+1  
Sample n  
Analog Input on  
Channel Ax or Bx  
ADC Clock  
Sample and Hold  
SH Pulse  
SMODE Bit  
tdschx_n+1  
td(SH)  
tdschx_n  
ADC Event Trigger from EV  
or Other Sources  
tSH  
Figure 8-37. Sequential Sampling Mode (Single-Channel) Timing  
8.12.5.15.7.1 Sequential Sampling Mode Timing  
AT 25-MHz  
SAMPLE n  
2.5tc(ADCCLK)  
SAMPLE n + 1  
ADC CLOCK,  
tc(ADCCLK) = 40 ns  
REMARKS  
Delay time from event  
trigger to sampling  
td(SH)  
Sample/  
Hold width/  
Acquisition width  
Acqps value = 0–15  
ADCTRL1[8:11]  
tSH  
(1 + Acqps) * tc(ADCCLK)  
40 ns with Acqps = 0  
160 ns  
Delay time for first  
result to appear in the  
Result register  
td(schx_n)  
4tc(ADCCLK)  
Delay time for  
successive results to  
appear in the Result  
register  
td(schx_n+1)  
(2 + Acqps) * tc(ADCCLK)  
80 ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.15.8 Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1)  
In simultaneous mode, the ADC can continuously convert input signals on any one pair of channels (A0/B0 to  
A7/B7). The ADC can start conversions on event triggers from the Event Managers (EVA/EVB), software trigger,  
or from an external ADCSOC signal. If the SMODE bit is 1, the ADC will do conversions on two selected  
channels on every Sample/Hold pulse. The conversion time and latency of the Result register update are  
explained below. The ADC interrupt flags are set a few SYSCLKOUT cycles after the Result register update. The  
selected channels will be sampled simultaneously at the falling edge of the Sample/Hold pulse. The Sample/  
Hold pulse width can be programmed to be 1 ADC clock wide (minimum) or 16 ADC clocks wide (maximum).  
Note  
In Simultaneous Mode, the ADCIN channel pair select has to be A0/B0, A1/B1, ..., A7/B7, and not in  
other combinations (such as A1/B3, and so forth).  
Sample n  
Sample n+2  
Sample n+1  
Analog Input on  
Channel Ax  
Analog Input on  
Channel Bv  
ADC Clock  
Sample and Hold  
SH Pulse  
SMODE Bit  
td(SH)  
tdschA0_n+1  
tSH  
ADC Event Trigger from EV  
or Other Sources  
tdschA0_n  
tdschB0_n  
tdschB0_n+1  
Figure 8-38. Simultaneous Sampling Mode Timing  
8.12.5.15.8.1 Simultaneous Sampling Mode Timing  
AT 25-MHz  
SAMPLE n  
SAMPLE n + 1  
ADC CLOCK,  
REMARKS  
tc(ADCCLK) = 40 ns  
Delay time from event  
trigger to sampling  
td(SH)  
tSH  
2.5tc(ADCCLK)  
Sample/Hold width/  
Acquisition Width  
Acqps value = 0–15  
ADCTRL1[8:11]  
(1 + Acqps) * tc(ADCCLK)  
40 ns with Acqps = 0  
160 ns  
Delay time for first  
result to appear in  
Result register  
td(schA0_n)  
4tc(ADCCLK)  
Delay time for first  
result to appear in  
Result register  
td(schB0_n)  
5tc(ADCCLK)  
200 ns  
120 ns  
Delay time for  
successive results to  
appear in Result  
register  
td(schA0_n+1)  
(3 + Acqps) * tc(ADCCLK)  
Delay time for  
successive results to  
appear in Result  
register  
td(schB0_n+1)  
(3 + Acqps) * tc(ADCCLK)  
120 ns  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.15.9 Definitions of Specifications and Terminology  
Integral Nonlinearity  
Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero through full scale.  
The point used as zero occurs 1/2 LSB before the first code transition. The full-scale point is defined as level 1/2  
LSB beyond the last code transition. The deviation is measured from the center of each particular code to the  
true straight line between these two points.  
Differential Nonlinearity  
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. A  
differential nonlinearity error of less than ±1 LSB ensures no missing codes.  
Zero Offset  
The major carry transition should occur when the analog input is at zero volt. Zero error is defined as the  
deviation of the actual transition from that point.  
Gain Error  
The first code transition should occur at an analog value 1/2 LSB above negative full scale. The last transition  
should occur at an analog value 1 1/2 LSB below the nominal full scale. Gain error is the deviation of the actual  
difference between first and last code transitions and the ideal difference between first and last code transitions.  
Signal-to-Noise Ratio + Distortion (SINAD)  
SINAD is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components  
below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is expressed in  
decibels.  
Effective Number of Bits (ENOB)  
For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following formula,  
(SINAD -1.76)  
N =  
6.02  
it is possible to get a measure of performance expressed as N, the effective number of bits. Thus, effective  
number of bits for a device for sine wave inputs at a given input frequency can be calculated directly from its  
measured SINAD.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first six harmonic components to the rms value of the measured input  
signal and is expressed as a percentage or in decibels.  
Spurious Free Dynamic Range (SFDR)  
SFDR is the difference in dB between the rms amplitude of the input signal and the peak spurious signal.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.16 Multichannel Buffered Serial Port (McBSP) Timing  
8.12.5.16.1 McBSP Transmit and Receive Timing  
8.12.5.16.1.1 McBSP Timing Requirements  
NO.(1)  
MIN  
MAX UNIT  
(2)  
1
kHz  
20(3) MHz  
ns  
McBSP module clock (CLKG, CLKX, CLKR) range  
McBSP module cycle time (CLKG, CLKX, CLKR) range  
50  
1
ms  
ns  
ns  
ns  
ns  
M11 tc(CKRX)  
M12 tw(CKRX)  
M13 tr(CKRX)  
M14 tf(CKRX)  
Cycle time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
CLKR/X ext  
CLKR/X ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKX int  
2P  
Pulse duration, CLKR/X high or CLKR/X low  
Rise time, CLKR/X  
P – 7  
7
7
Fall time, CLKR/X  
18  
2
M15 tsu(FRH-CKRL)  
M16 th(CKRL-FRH)  
M17 tsu(DRV-CKRL)  
M18 th(CKRL-DRV)  
M19 tsu(FXH-CKXL)  
M20 th(CKXL-FXH)  
Setup time, external FSR high before CLKR low  
Hold time, external FSR high after CLKR low  
Setup time, DR valid before CLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
0
6
18  
2
0
Hold time, DR valid after CLKR low  
6
18  
2
Setup time, external FSX high before CLKX low  
Hold time, external FSX high after CLKX low  
CLKX ext  
CLKX int  
0
CLKX ext  
6
(1) Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that  
signal are also inverted.  
(2) 2P = 1/CLKG in ns. CLKG is the output of sample rate generator mux. CLKG = CLKSRG/(1 + CLKGDV).  
CLKSRG can be LSPCLK, CLKX, CLKR as source. CLKSRG ≤ (SYSCLKOUT/2). McBSP performance is limited by I/O buffer  
switching speed.  
(3) Internal clock prescalers must be adjusted such that the McBSP clock (CLKG, CLKX, CLKR) speeds are not greater than the I/O buffer  
speed limit (20 MHz).  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.16.1.2 McBSP Switching Characteristics  
NO.(1)  
PARAMETER  
MIN  
MAX UNIT  
(2)  
M1  
M2  
M3  
tc(CKRX)  
Cycle time, CLKR/X  
CLKR/X int  
CLKR/X int  
CLKR/X int  
CLKR int  
CLKR ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
FSX int  
2P  
ns  
tw(CKRXH)  
tw(CKRXL)  
Pulse duration, CLKR/X high  
Pulse duration, CLKR/X low  
D – 5(3)  
D + 5(3)  
ns  
ns  
C – 5(3)  
C + 5(3)  
0
3
0
3
4
27  
M4  
M5  
M6  
td(CKRH-FRV)  
td(CKXH-FXV)  
tdis(CKXH-DXHZ)  
Delay time, CLKR high to internal FSR valid  
Delay time, CLKX high to internal FSX valid  
ns  
ns  
ns  
4
27  
8
Disable time, CLKX high to DX high impedance following last  
data bit  
14  
9
Delay time, CLKX high to DX valid.  
This applies to all bits except the first bit transmitted.  
28  
8
M7  
td(CKXH-DXV)  
DXENA = 0  
ns  
Delay time, CLKX high to DX valid. Only applies to  
first bit transmitted when in Data Delay 1 or 2  
(XDATDLY = 01b or 10b) modes.  
14  
P + 8  
P + 14  
DXENA = 1  
0
6
DXENA = 0  
Enable time, CLKX high to DX driven. Only  
applies to first bit transmitted when in Data Delay  
1 or 2 (XDATDLY = 01b or 10b) modes.  
M8  
M9  
ten(CKXH-DX)  
ns  
ns  
ns  
P
DXENA = 1  
P + 6  
8
14  
DXENA = 0  
Delay time, FSX high to DX valid. Only applies to  
first bit transmitted when in Data Delay 0  
(XDATDLY = 00b) mode.  
FSX ext  
td(FXH-DXV)  
FSX int  
P + 8  
P + 14  
DXENA = 1  
FSX ext  
FSX int  
0
6
DXENA = 0  
Enable time, FSX high to DX driven. Only applies  
to first bit transmitted when in Data Delay 0  
(XDATDLY = 00b) mode.  
FSX ext  
M10 ten(FXH-DX)  
FSX int  
P
DXENA = 1  
FSX ext  
P + 6  
(1) Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that  
signal are also inverted.  
(2) 2P = 1/CLKG in ns.  
(3) C = CLKRX low pulse width = P  
D = CLKRX high pulse width = P  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
M1, M11  
M2, M12  
M3, M12  
M13  
CLKR  
FSR (int)  
FSR (ext)  
M4  
M4  
M14  
M15  
M17  
M16  
M18  
DR  
(RDATDLY=00b)  
Bit (n-1)  
M17  
(n-2)  
(n-3)  
(n-2)  
(n-4)  
M18  
DR  
(RDATDLY=01b)  
Bit (n-1)  
(n-3)  
(n-2)  
M17  
M18  
DR  
(RDATDLY=10b)  
Bit (n-1)  
Figure 8-39. McBSP Receive Timing  
M1, M11  
M2, M12  
M13  
M14  
M3, M12  
CLKX  
FSX (int)  
FSX (ext)  
M5  
M5  
M19  
M20  
M9  
M7  
M10  
DX  
(XDATDLY=00b)  
Bit (n-1)  
(n-2)  
(n-3)  
(n-4)  
(n-3)  
(n-2)  
Bit 0  
M7  
M8  
DX  
(XDATDLY=01b)  
Bit (n-1)  
M8  
(n-2)  
M7  
Bit 0  
M6  
DX  
(XDATDLY=10b)  
Bit (n-1)  
Bit 0  
Figure 8-40. McBSP Transmit Timing  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.16.2 McBSP as SPI Master or Slave Timing  
8.12.5.16.2.1 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0)  
MASTER  
SLAVE  
MIN MAX  
NO.(1) (2)  
UNIT  
MIN  
30  
1
MAX  
M30  
M31  
M32  
M33  
tsu(DRV-CKXL)  
th(CKXL-DRV)  
tsu(BFXL-CKXH)  
tc(CKX)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
Setup time, FSX low before CLKX high  
Cycle time, CLKX  
8P – 10  
ns  
ns  
ns  
ns  
8P – 10  
8P + 10  
16P  
2P  
(1) For all SPI slave modes, CLKX has to be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM =  
CLKGDV = 1.  
(2) 2P = 1/CLKG  
8.12.5.16.2.2 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0)  
MASTER  
SLAVE  
MIN MAX  
NO.(1)  
PARAMETER  
UNIT  
MIN  
2P  
P
MAX  
M24  
M25  
th(CKXL-FXL)  
td(FXL-CKXH)  
Hold time, FSX low after CLKX low  
Delay time, FSX low to CLKX high  
ns  
ns  
Disable time, DX high impedance following last data bit  
from FSX high  
M28  
M29  
tdis(FXH-DXHZ)  
td(FXL-DXV)  
6
6
6P + 6  
4P + 6  
ns  
ns  
Delay time, FSX low to DX valid  
(1) 2P = 1/CLKG  
M33  
M32  
M25  
LSB  
MSB  
CLKX  
M24  
FSX  
DX  
M28  
M29  
Bit(n-1)  
Bit(n-1)  
(n-2)  
M31  
(n-3)  
(n-4)  
Bit 0  
M30  
DR  
(n-2)  
(n-3)  
(n-4)  
Bit 0  
Figure 8-41. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
www.ti.com  
UNIT  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
8.12.5.16.2.3 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0)  
MASTER  
SLAVE  
MIN  
NO.(1) (2)  
MIN  
30  
1
MAX  
MAX  
M39  
M40  
M41  
M42  
tsu(DRV-CKXH)  
th(CKXH-DRV)  
tsu(FXL-CKXH)  
tc(CKX)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
Setup time, FSX low before CLKX high  
Cycle time, CLKX  
8P – 10  
8P – 10  
16P + 10  
16P  
ns  
ns  
ns  
ns  
2P  
(1) For all SPI slave modes, CLKX has to be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM =  
CLKGDV = 1.  
(2) 2P = 1/CLKG  
8.12.5.16.2.4 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0)  
MASTER  
SLAVE  
MIN MAX  
NO.(1)  
PARAMETER  
UNIT  
MIN  
P
MAX  
M34  
M35  
th(CKXL-FXL)  
td(FXL-CKXH)  
Hold time, FSX low after CLKX low  
Delay time, FSX low to CLKX high  
ns  
ns  
2P  
Disable time, DX high impedance following last data bit  
from CLKX low  
M37  
M38  
tdis(CKXL-DXHZ)  
td(FXL-DXV)  
P + 6  
6
7P + 6  
4P + 6  
ns  
ns  
Delay time, FSX low to DX valid  
(1) 2P = 1/CLKG  
M42  
LSB  
MSB  
M41  
CLKX  
FSX  
M34  
M35  
M37  
M38  
DX  
DR  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
Bit 0  
M39  
M40  
(n-2)  
Bit 0  
(n-3)  
(n-4)  
Figure 8-42. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.5.16.2.5 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1)  
MASTER  
SLAVE  
MIN MAX  
NO.(1) (2)  
UNIT  
MIN  
30  
1
MAX  
M49  
M50  
M51  
M52  
tsu(DRV-CKXH)  
th(CKXH-DRV)  
tsu(FXL-CKXL)  
tc(CKX)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
Setup time, FSX low before CLKX low  
Cycle time, CLKX  
8P – 10  
ns  
ns  
ns  
ns  
8P – 10  
8P + 10  
16P  
2P  
(1) For all SPI slave modes, CLKX has to be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM =  
CLKGDV = 1.  
(2) 2P = 1/CLKG  
8.12.5.16.2.6 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1)  
MASTER  
SLAVE  
MIN  
NO.(1)  
PARAMETER  
UNIT  
MIN  
2P  
P
MAX  
MAX  
M43  
M44  
th(CKXH-FXL)  
td(FXL-CKXL)  
Hold time, FSX low after CLKX high  
Delay time, FSX low to CLKX low  
ns  
ns  
Disable time, DX high impedance following last data bit  
from FSX high  
M47  
M48  
tdis(FXH-DXHZ)  
td(FXL-DXV)  
6
6
6P + 6  
4P + 6  
ns  
ns  
Delay time, FSX low to DX valid  
(1) 2P = 1/CLKG  
LSB  
MSB  
M51  
M52  
CLKX  
M43  
M44  
M48  
FSX  
DX  
M47  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
(n-4)  
Bit 0  
M49  
M50  
DR  
(n-2)  
(n-3)  
Bit 0  
Figure 8-43. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
www.ti.com  
UNIT  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
8.12.5.16.2.7 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1)  
MASTER  
SLAVE  
MIN  
NO.(1) (2)  
MIN  
30  
1
MAX  
MAX  
M58  
M59  
M60  
M61  
tsu(DRV-CKXL)  
th(CKXL-DRV)  
tsu(FXL-CKXL)  
tc(CKX)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
Setup time, FSX low before CLKX low  
Cycle time, CLKX  
8P – 10  
8P – 10  
16P + 10  
16P  
ns  
ns  
ns  
ns  
2P  
(1) For all SPI slave modes, CLKX has to be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM =  
CLKGDV = 1.  
(2) 2P = 1/CLKG  
8.12.5.16.2.8 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1)  
MASTER  
SLAVE  
MIN MAX  
NO.(1)  
PARAMETER  
UNIT  
MIN  
P
MAX  
M53  
M54  
M55  
th(CKXH-FXL)  
td(FXL-CKXL)  
td(CLKXH-DXV)  
Hold time, FSX low after CLKX high  
Delay time, FSX low to CLKX low  
Delay time, CLKX high to DX valid  
ns  
ns  
ns  
2P  
–2  
0
3P + 6 5P + 20  
7P + 6  
Disable time, DX high impedance following last data bit  
from CLKX high  
M56  
M57  
tdis(CKXH-DXHZ)  
td(FXL-DXV)  
P + 6  
6
ns  
ns  
Delay time, FSX low to DX valid  
4P + 6  
(1) 2P = 1/CLKG  
M61  
M60  
M54  
MSB  
LSB  
CLKX  
FSX  
DX  
M53  
M56  
M57  
M55  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
Bit 0  
M58  
M59  
(n-2)  
DR  
Bit(n-1)  
(n-3)  
(n-4)  
Bit 0  
Figure 8-44. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.6 Emulator Connection Without Signal Buffering for the DSP  
Figure 8-45 shows the connection between the DSP and JTAG header for a single-processor configuration. If the  
distance between the JTAG header and the DSP is greater than 6 inches, the emulation signals must be  
buffered. If the distance is less than 6 inches, buffering is typically not needed. Figure 8-45 shows the simpler,  
no-buffering situation. For the pullup/pulldown resistor values, see the pin description section.  
6 inches or less  
VDDIO  
VDDIO  
13  
5
EMU0  
EMU1  
TRST  
TMS  
TDI  
EMU0  
EMU1  
PD  
14  
2
4
6
8
GND  
GND  
GND  
GND  
GND  
TRST  
TMS  
1
3
TDI  
7
10  
12  
TDO  
TCK  
TDO  
11  
TCK  
9
TCK_RET  
DSP  
JTAG Header  
Figure 8-45. Emulator Connection Without Signal Buffering for the DSP  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.7 Interrupt Timing  
8.12.7.1 Interrupt Switching Characteristics  
PARAMETER  
MIN  
MAX  
12  
UNIT  
Without input qualifier  
Delay time, PDPINTx low to PWM high-  
impedance state  
td(PDP-PWM)HZ  
ns  
With input qualifier  
Without input qualifier  
With input qualifier  
1tc(SCO) + IQT + 12(1)  
3 * tc(SCO)  
Delay time, CxTRIP/ TxCTRIP signals low to  
PWM high-impedance state  
td(TRIP-PWM)HZ  
td(INT)  
ns  
ns  
2tc(SCO) + IQT(1)  
(1)  
Delay time, INT low/high to interrupt-vector fetch  
IQT + 12tc(SCO)  
(1) Input Qualification Time (IQT) = [tc(SCO) × 2 × QUALPRD] × 5 + [tc(SCO) × 2 × QUALPRD].  
8.12.7.2 Interrupt Timing Requirements  
MIN  
MAX  
UNIT  
With no qualifier  
2tc(SCO)  
tw(INT)  
Pulse duration, INT input low/high  
Pulse duration, PDPINTx input low  
Pulse duration, CxTRIP input low  
Pulse duration, TxCTRIP input low  
cycles  
With qualifier  
1tc(SCO) + IQT(1)  
2tc(SCO)  
1tc(SCO) + IQT(1)  
2tc(SCO)  
1tc(SCO) + IQT(1)  
2tc(SCO)  
With no qualifier  
With qualifier  
tw(PDP)  
cycles  
cycles  
cycles  
With no qualifier  
With qualifier  
tw(CxTRIP)  
With no qualifier  
With qualifier  
tw(TxCTRIP)  
1tc(SCO) + IQT(1)  
(1) Input Qualification Time (IQT) = [tc(SCO) × 2 × QUALPRD] × 5 + [tc(SCO) × 2 × QUALPRD].  
XCLKOUT(A)  
tw(PDP), tw(CxTRIP), tw(TxCTRIP)  
TxCTRIP,  
CxTRIP,  
PDPINTx(B)  
td(PDP-PWM)HZ, td(TRIP-PWM)HZ  
PWM(C)  
tw(INT)  
XNMI,  
XINT1, XINT2  
td(INT)  
Interrupt Vector  
A0-A15  
A. XCLKOUT = SYSCLKOUT  
B. TxCTRIP – T1CTRIP, T2CTRIP, T3CTRIP, T4CTRIP CxTRIP – C1TRIP, C2TRIP, C3TRIP, C4TRIP, C5TRIP, or C6TRIP PDPINTx –  
PDPINTA or PDPINTB  
C. PWM refers to all the PWM pins in the device (that is, PWMn and TnPWM pins or PWM pin pair relevant to each CxTRIP pin). The state  
of the PWM pins after PDPINTx is taken high depends on the state of the FCOMPOE bit.  
Figure 8-46. External Interrupt Timing  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.8 Flash Timing  
8.12.8.1 Flash Endurance for A and S Temperature Material  
ERASE/PROGRAM  
MIN  
TYP  
MAX UNIT  
TEMPERATURE(1)  
Nf  
Flash endurance for the array (Write/Erase cycles) 0°C to 85°C (ambient)  
20000(2)  
50000(2)  
cycles  
NOTP  
OTP endurance for the array (Write cycles)  
0°C to 85°C (ambient)  
1
write  
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
(2) The Write/Erase cycle numbers of 20000 (MIN) and 50000 (TYP) are applicable only for silicon revision G. For older silicon revisions,  
the Write/Erase cycle numbers of 100 (MIN) and 1000 (TYP) are applicable.  
8.12.8.2 Flash Endurance for Q Temperature Material  
ERASE/PROGRAM  
MIN  
TYP  
MAX UNIT  
TEMPERATURE(1)  
Nf  
Flash endurance for the array (Write/Erase cycles) –40°C to 125°C (ambient)  
20000(2)  
50000(2)  
cycles  
NOTP  
OTP endurance for the array (Write cycles)  
–40°C to 125°C (ambient)  
1
write  
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
(2) The Write/Erase cycle numbers of 20000 (MIN) and 50000 (TYP) are applicable only for silicon revision G. For older silicon revisions,  
the Write/Erase cycle numbers of 100 (MIN) and 1000 (TYP) are applicable.  
8.12.8.3 Flash Parameters at 150-MHz SYSCLKOUT  
PARAMETER(1)  
MIN  
TYP  
35  
MAX UNIT  
Using Flash API v1(2)  
Using Flash API v2.10  
Using Flash API v1(2)  
Using Flash API v2.10  
Using Flash API v1(2)  
Using Flash API v2.10  
16-Bit Word  
8K Sector  
µs  
50  
170  
250  
320  
500  
10  
Program Time  
ms  
ms  
s
16K Sector  
8K Sector  
Erase Time(3)  
16K Sector  
11  
Erase  
75  
IDD3VFLP  
VDD3VFL current consumption during the Erase/Program cycle  
mA  
Program  
35  
IDDP  
VDD current consumption during Erase/Program cycle  
VDDIO current consumption during Erase/Program cycle  
140  
20  
mA  
mA  
IDDIOP  
(1) Typical parameters as seen at room temperature including function call overhead, with all peripherals off. It is important to maintain a  
stable power supply during the entire flash programming process. It is conceivable that device current consumption during flash  
programming could be higher than normal operating conditions. The power supply used should ensure VMIN on the supply rails at all  
times, as specified in the Recommended Operating Conditions of the data sheet. Any brown-out or interruption to power during  
erasing/programming could potentially corrupt the password locations and lock the device permanently. Powering a target board  
(during flash programming) through the USB port is not recommended, as the port may be unable to respond to the power demands  
placed during the programming process.  
(2) Flash API v1.00 is useable on rev. C silicon only.  
(3) The on-chip flash memory is in an erased state when the device is shipped from TI. As such, erasing the flash memory is not required  
prior to programming, when programming the device for the first time. However, the erase operation is needed on all subsequent  
programming operations.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
8.12.8.4 Flash/OTP Access Timing  
PARAMETER  
MIN  
36  
MAX UNIT  
ta(fp)  
Paged Flash access time  
Random Flash access time  
OTP access time  
ns  
ns  
ns  
ta(fr)  
36  
ta(OTP)  
60  
8.12.8.5 Flash Data Retention Duration  
PARAMETER  
TEST CONDITIONS  
TJ = 55°C  
MIN  
15  
MAX UNIT  
tretention  
Data retention duration  
years  
Table 8-5. Minimum Required Flash Wait States at Different Frequencies  
PAGE  
RANDOM  
SYSCLKOUT (MHz)  
SYSCLKOUT (ns)  
OTP  
WAIT STATE(1)  
WAIT STATE(1) (2)  
150  
120  
100  
75  
6.67  
8.33  
10  
5
4
3
2
1
1
0
0
0
5
4
3
2
1
1
1
1
1
8
7
5
4
2
1
1
1
1
13.33  
20  
50  
30  
33.33  
40  
25  
15  
66.67  
250  
4
(1) Formulas to compute page wait state and random wait state:  
é
ê
ë
ù
æ
ç
ç
è
ö
÷
÷
ø
ta(fp)  
Flash Page Wait State =  
-1 (round up to the next highest integer, or 0, whichever is larger)  
ú
tc(SCO)  
ê
ú
û
é
ê
ë
ù
æ
ç
ç
è
ö
÷
÷
ø
ta(fr)  
Flash Random Wait State =  
-1 (round up to the next highest integer, or 1, whichever is larger)  
ú
tc(SCO)  
ê
ú
û
é
ê
ë
ù
æ
ç
ç
è
ö
÷
÷
ø
ta(OTP)  
OTP Wait State =  
-1 (round up to the next highest integer, or 1, whichever is larger)  
ú
tc(SCO)  
ê
ú
û
(2) Random wait state must be greater than or equal to 1.  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9 Detailed Description  
9.1 Brief Descriptions  
9.1.1 C28x CPU  
The C28x DSP generation is the newest member of the TMS320C2000DSP platform. The C28x is source  
code compatible to the 24x/240x DSP devices, hence existing 240x users can leverage their significant software  
investment. Additionally, the C28x is a very efficient C/C++ engine, enabling users to develop not only their  
system control software in a high-level language, but also enables math algorithms to be developed using C/C+  
+. The C28x is as efficient in DSP math tasks as it is in system control tasks that typically are handled by  
microcontroller devices. This efficiency removes the need for a second processor in many systems. The 32 x 32-  
bit MAC capabilities of the C28x and its 64-bit processing capabilities, enable the C28x to efficiently handle  
higher numerical resolution problems that would otherwise demand a more expensive floating-point processor  
solution. Add to this the fast interrupt response with automatic context save of critical registers, resulting in a  
device that is capable of servicing many asynchronous events with minimal latency. The C28x has an 8-level-  
deep protected pipeline with pipelined memory accesses. This pipelining enables the C28x to execute at high  
speeds without resorting to expensive high-speed memories. Special branch-look-ahead hardware minimizes  
the latency for conditional discontinuities. Special store conditional operations further improve performance.  
9.1.2 Memory Bus (Harvard Bus Architecture)  
As with many DSP type devices, multiple busses are used to move data between the memories and peripherals  
and the CPU. The C28x memory bus architecture contains a program read bus, data read bus and data write  
bus. The program read bus consists of 22 address lines and 32 data lines. The data read and write busses  
consist of 32 address lines and 32 data lines each. The 32-bit-wide data busses enable single cycle 32-bit  
operations. The multiple bus architecture, commonly termed “Harvard Bus”, enables the C28x to fetch an  
instruction, read a data value and write a data value in a single cycle. All peripherals and memories attached to  
the memory bus will prioritize memory accesses. Generally, the priority of Memory Bus accesses can be  
summarized as follows:  
Highest:  
Data Writes (Simultaneous data and program writes cannot occur on the memory bus.)  
Program Writes (Simultaneous data and program writes cannot occur on the memory bus.)  
Data Reads  
Program Reads (Simultaneous program reads and fetches cannot occur on the memory bus.)  
Lowest:  
Fetches (Simultaneous program reads and fetches cannot occur on the memory bus.)  
9.1.3 Peripheral Bus  
To enable migration of peripherals between various Texas Instruments (TI) DSP family of devices, the F281x  
adopts a peripheral bus standard for peripheral interconnect. The peripheral bus bridge multiplexes the various  
busses that make up the processor “Memory Bus” into a single bus consisting of 16 address lines and 16 or  
32 data lines and associated control signals. Two versions of the peripheral bus are supported on the F281x.  
One version only supports 16-bit accesses (called peripheral frame 2). The other version supports both 16- and  
32-bit accesses (called peripheral frame 1).  
9.1.4 Real-Time JTAG and Analysis  
The F281x implements the standard IEEE 1149.1 JTAG interface. Additionally, the F281x supports real-time  
mode of operation whereby the contents of memory, peripheral, and register locations can be modified while the  
processor is running and executing code and servicing interrupts. The user can also single step through non-  
time critical code while enabling time-critical interrupts to be serviced without interference. The F281x  
implements the real-time mode in hardware within the CPU. This is a unique feature to the F281x, no software  
monitor is required. Additionally, special analysis hardware is provided that allows the user to set hardware  
breakpoint or data/address watch-points and generate various user selectable break events when a match  
occurs.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.1.5 External Interface (XINTF) (F2812 Only)  
This asynchronous interface consists of 19 address lines, 16 data lines, and three chip-select lines. The chip-  
select lines are mapped to five external zones, Zones 0, 1, 2, 6, and 7. Zones 0 and 1 share a single chip-select;  
Zones 6 and 7 also share a single chip-select. Each of the five zones can be programmed with a different  
number of wait states, strobe signal setup and hold timing and each zone can be programmed for extending wait  
states externally or not. The programmable wait-state, chip-select and programmable strobe timing enables  
glueless interface to external memories and peripherals.  
9.1.6 Flash  
The F2812 and F2811 contain 128K x 16 of embedded flash memory, segregated into four 8K x 16 sectors, and  
six 16K x 16 sectors. The F2810 has 64K x 16 of embedded flash, segregated into two 8K x 16 sectors, and  
three 16K x 16 sectors. All three devices also contain a single 1K x 16 of OTP memory at address range 0x3D  
7800–0x3D 7BFF. The user can individually erase, program, and validate a flash sector while leaving other  
sectors untouched. However, it is not possible to use one sector of the flash or the OTP to execute flash  
algorithms that erase/program other sectors. Special memory pipelining is provided to enable the flash module to  
achieve higher performance. The flash/OTP is mapped to both program and data space; therefore, it can be  
used to execute code or store data information.  
Note  
The F2810/F2811/F2812 Flash and OTP wait states can be configured by the application. This allows  
applications running at slower frequencies to configure the flash to use fewer wait states.  
Flash effective performance can be improved by enabling the flash pipeline mode in the Flash options  
register. With this mode enabled, effective performance of linear code execution will be much faster  
than the raw performance indicated by the wait state configuration alone. The exact performance gain  
when using the Flash pipeline mode is application-dependent.  
For more information on the Flash options, Flash wait-state, and OTP wait-state registers, see the  
TMS320x281x DSP System Control and Interrupts Reference Guide.  
9.1.7 M0, M1 SARAMs  
All C28x devices contain these two blocks of single access memory, each 1K x 16 in size. The stack pointer  
points to the beginning of block M1 on reset. The M0 block overlaps the 240x device B0, B1, B2 RAM blocks and  
hence the mapping of data variables on the 240x devices can remain at the same physical address on C28x  
devices. The M0 and M1 blocks, like all other memory blocks on C28x devices, are mapped to both program and  
data space. Hence, the user can use M0 and M1 to execute code or for data variables. The partitioning is  
performed within the linker. The C28x device presents a unified memory map to the programmer. This makes for  
easier programming in high-level languages.  
9.1.8 L0, L1, H0 SARAMs  
The F281x contains an additional 16K x 16 of single-access RAM, divided into three blocks (4K + 4K + 8K).  
Each block can be independently accessed hence minimizing pipeline stalls. Each block is mapped to both  
program and data space.  
9.1.9 Boot ROM  
The Boot ROM is factory-programmed with boot-loading software. The Boot ROM program executes after device  
reset and checks several GPIO pins to determine which boot mode to enter. For example, the user can select to  
execute code already present in the internal Flash or download new software to internal RAM through one of  
several serial ports. Other boot modes exist as well. The Boot ROM also contains standard tables, such as  
SIN/COS waveforms, for use in math-related algorithms. Table 9-1 shows the details of how various boot modes  
may be invoked. See the TMS320x281x DSP Boot ROM Reference Guide, for more information.  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-1. Boot Mode Selection  
GPIOF4  
(SCITXDA)  
GPIOF12  
(MDXA)  
GPIOF3  
(SPISTEA)  
GPIOF2  
(SPICLK)  
BOOT MODE SELECTED(1) (2)  
GPIO PU status(3)  
PU  
No PU  
No PU  
x
No PU  
x
Jump to Flash address 0x3F 7FF6.  
A branch instruction must have been programmed here prior to  
reset to re-direct code execution as desired.  
1
x
Call SPI_Boot to load from an external serial SPI EEPROM  
Call SCI_Boot to load from SCI-A  
0
0
0
0
0
1
0
0
0
0
x
1
1
0
0
x
1
0
1
0
Jump to H0 SARAM address 0x3F 8000  
Jump to OTP address 0x3D 7800  
Call Parallel_Boot to load from GPIO Port B  
(1) Extra care must be taken due to any effect toggling SPICLK to select a boot mode may have on external logic.  
(2) If the boot mode selected is Flash, H0, or OTP, then no external code is loaded by the bootloader.  
(3) PU = pin has an internal pullup. No PU = pin does not have an internal pullup.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.1.10 Security  
The F281x supports high levels of security to protect the user firmware from being reverse-engineered. The  
security features a 128-bit password (hardcoded for 16 wait states), which the user programs into the flash. One  
code security module (CSM) is used to protect the flash/OTP and the L0/L1 SARAM blocks. The security feature  
prevents unauthorized users from examining the memory contents via the JTAG port, executing code from  
external memory or trying to boot-load some undesirable software that would export the secure memory  
contents. To enable access to the secure blocks, the user must write the correct 128-bit ”KEY” value, which  
matches the value stored in the password locations within the Flash.  
Note  
When the code-security passwords are programmed, all addresses between 0x3F 7F80 and  
0x3F 7FF5 cannot be used as program code or data. These locations must be programmed to  
0x0000.  
If the code security feature is not used, addresses 0x3F 7F80 through 0x3F 7FEF may be used for  
code or data.  
The 128-bit password (at 0x3F 7FF8–0x3F 7FFF) must not be programmed to zeros. Doing so  
would permanently lock the device.  
Table 9-2. Impact of Using the Code Security Module  
CODE SECURITY STATUS  
ADDRESS  
Code Security Enabled  
Code Security Disabled  
0x3F 7F80 – 0x3F 7FEF  
0x3F 7FF0 – 0x3F 7FF5  
0x3D 7BFC – 0x3D 7BFF  
Fill with 0x0000  
Application code and data(1)  
Application code and data  
(1) See the TMS320F281x DSPs Silicon Errata for some restrictions.  
Note  
Code Security Module Disclaimer  
THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS DESIGNED TO  
PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY (EITHER ROM OR  
FLASH) AND IS WARRANTED BY TEXAS INSTRUMENTS (TI), IN ACCORDANCE WITH ITS  
STANDARD TERMS AND CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS  
FOR THE WARRANTY PERIOD APPLICABLE FOR THIS DEVICE.  
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE  
COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED MEMORY  
CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT AS SET FORTH  
ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS CONCERNING THE CSM OR  
OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANT ABILITY  
OR FITNESS FOR A PARTICULAR PURPOSE.  
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT,  
INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY OUT OF  
YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN ADVISED OF THE  
POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED  
TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR  
OTHER ECONOMIC LOSS.  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.1.11 Peripheral Interrupt Expansion (PIE) Block  
The PIE block serves to multiplex numerous interrupt sources into a smaller set of interrupt inputs. The PIE block  
can support up to 96 peripheral interrupts. On the F281x, 45 of the possible 96 interrupts are used by  
peripherals. The 96 interrupts are grouped into blocks of 8 and each group is fed into 1 of 12 CPU interrupt lines  
(INT1 to INT12). Each of the 96 interrupts is supported by its own vector stored in a dedicated RAM block that  
can be overwritten by the user. The vector is automatically fetched by the CPU on servicing the interrupt. It takes  
8 CPU clock cycles to fetch the vector and save critical CPU registers. Hence the CPU can quickly respond to  
interrupt events. Prioritization of interrupts is controlled in hardware and software. Each individual interrupt can  
be enabled/disabled within the PIE block.  
9.1.12 External Interrupts (XINT1, XINT2, XINT13, XNMI)  
The F281x supports three masked external interrupts (XINT1, 2, 13). XINT13 is combined with one non-masked  
external interrupt (XNMI). The combined signal name is XNMI_XINT13. Each of the interrupts can be selected  
for negative or positive edge triggering and can also be enabled/disabled (including the XNMI). The masked  
interrupts also contain a 16-bit free-running up-counter, which is reset to zero when a valid interrupt edge is  
detected. This counter can be used to accurately time-stamp the interrupt.  
9.1.13 Oscillator and PLL  
The F281x can be clocked by an external oscillator or by a crystal attached to the on-chip oscillator circuit. A PLL  
is provided supporting up to 10-input clock-scaling ratios. The PLL ratios can be changed on-the-fly in software,  
enabling the user to scale back on operating frequency if lower power operation is desired. Refer to Section 8 for  
timing details. The PLL block can be set in bypass mode.  
9.1.14 Watchdog  
The F281x supports a watchdog timer. The user software must regularly reset the watchdog counter within a  
certain time frame; otherwise, the watchdog will generate a reset to the processor. The watchdog can be  
disabled if necessary.  
9.1.15 Peripheral Clocking  
The clocks to each individual peripheral can be enabled/disabled to reduce power consumption when a  
peripheral is not in use. Additionally, the system clock to the serial ports (except eCAN) and the event managers,  
CAP and QEP blocks can be scaled relative to the CPU clock. This enables the timing of peripherals to be  
decoupled from increasing CPU clock speeds.  
9.1.16 Low-Power Modes  
The F281x devices are fully static CMOS devices. Three low-power modes are provided:  
IDLE:  
Place CPU in low-power mode. Peripheral clocks may be turned off selectively and only those peripherals that must  
function during IDLE are left operating. An enabled interrupt from an active peripheral will wake the processor from  
IDLE mode.  
STANDBY:  
HALT:  
Turns off clock to CPU and peripherals. This mode leaves the oscillator and PLL functional. An external interrupt  
event will wake the processor and the peripherals. Execution begins on the next valid cycle after detection of the  
interrupt event.  
Turns off the internal oscillator. This mode basically shuts down the device and places it in the lowest possible power  
consumption mode. Only a reset or XNMI can wake the device from this mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.1.17 Peripheral Frames 0, 1, 2 (PFn)  
The F281x segregates peripherals into three sections. The mapping of peripherals is as follows:  
PF0:  
XINTF:  
PIE:  
External Interface Configuration Registers (F2812 only)  
PIE Interrupt Enable and Control Registers Plus PIE Vector Table  
Flash Control, Programming, Erase, Verify Registers  
CPU-Timers 0, 1, 2 Registers  
Flash:  
Timers:  
CSM:  
eCAN:  
SYS:  
Code Security Module KEY Registers  
PF1:  
PF2:  
eCAN Mailbox and Control Registers  
System Control Registers  
GPIO:  
EV:  
GPIO Mux Configuration and Control Registers  
Event Manager (EVA/EVB) Control Registers  
McBSP Control and TX/RX Registers  
McBSP:  
SCI:  
Serial Communications Interface (SCI) Control and RX/TX Registers  
Serial Peripheral Interface (SPI) Control and RX/TX Registers  
12-Bit ADC Registers  
SPI:  
ADC:  
9.1.18 General-Purpose Input/Output (GPIO) Multiplexer  
Most of the peripheral signals are multiplexed with general-purpose I/O (GPIO) signals. This multiplexing  
enables use of a pin as GPIO if the peripheral signal or function is not used. On reset, all GPIO pins are  
configured as inputs. The user can then individually program each pin for GPIO mode or peripheral signal mode.  
For specific inputs, the user can also select the number of input qualification cycles to filter unwanted noise  
glitches.  
9.1.19 32-Bit CPU-Timers (0, 1, 2)  
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock prescaling. The  
timers have a 32-bit count-down register, which generates an interrupt when the counter reaches zero. The  
counter is decremented at the CPU clock speed divided by the prescale value setting. When the counter reaches  
zero, it is automatically reloaded with a 32-bit period value. CPU-Timer 2 is reserved for the DSP/BIOS Real-  
Time OS, and is connected to INT14 of the CPU. If DSP/BIOS is not being used, CPU-Timer 2 is available for  
general use. CPU-Timer 1 is for general use and can be connected to INT13 of the CPU. CPU-Timer 0 is also for  
general use and is connected to the PIE block.  
9.1.20 Control Peripherals  
The F281x supports the following peripherals that are used for embedded control and communication:  
EV:  
The event manager module includes general-purpose timers, full-compare/PWM units, capture inputs (CAP) and  
quadrature-encoder pulse (QEP) circuits. Two such event managers are provided which enable two three-phase  
motors to be driven or four two-phase motors. The event managers on the F281x are compatible to the event  
managers on the 240x devices (with some minor enhancements).  
ADC:  
The ADC block is a 12-bit converter, single ended, 16-channels. It contains two sample-and-hold units for  
simultaneous sampling.  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.1.21 Serial Port Peripherals  
The F281x supports the following serial communication peripherals:  
eCAN:  
This is the enhanced version of the CAN peripheral. It supports 32 mailboxes, time stamping of messages, and is  
compliant with ISO 11898-1 (CAN 2.0B).  
McBSP:  
The multichannel buffered serial port (McBSP) connects to E1/T1 lines, phone-quality codecs for modem applications  
or high-quality stereo audio DAC devices. The McBSP receive and transmit registers are supported by a 16-level  
FIFO that significantly reduces the overhead for servicing this peripheral.  
SPI:  
SCI:  
The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of programmed length (one to  
sixteen bits) to be shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used for  
communications between the DSP controller and external peripherals or another processor. Typical applications  
include external I/O or peripheral expansion through devices such as shift registers, display drivers, and ADCs. Multi-  
device communications are supported by the master/slave operation of the SPI. On the F281x, the port supports a 16-  
level, receive-and-transmit FIFO for reducing servicing overhead.  
The serial communications interface is a two-wire asynchronous serial port, commonly known as UART. On the  
F281x, the port supports a 16-level, receive-and-transmit FIFO for reducing servicing overhead.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.2 Peripherals  
The integrated peripherals of the F281x are described in the following subsections:  
Three 32-bit CPU-Timers  
Two event-manager modules (EVA, EVB)  
Enhanced analog-to-digital converter (ADC) module  
Enhanced controller area network (eCAN) module  
Multichannel buffered serial port (McBSP) module  
Serial communications interface modules (SCI-A, SCI-B)  
Serial peripheral interface (SPI) module  
Digital I/O and shared pin functions  
9.2.1 32-Bit CPU-Timers 0/1/2  
There are three 32-bit CPU-timers on the F281x devices (CPU-TIMER0/1/2).  
Timer 2 is reserved for DSP/BIOS. CPU-Timer 0 and CPU-Timer 1 can be used in user applications. These  
timers are different from the general-purpose (GP) timers that are present in the Event Manager modules (EVA,  
EVB).  
Note  
If the application is not using DSP/BIOS, then CPU-Timer 2 can be used in the application.  
Reset  
Timer Reload  
16-Bit Timer Divide-Down  
32-Bit Timer Period  
TDDRH:TDDR  
PRDH:PRD  
16-Bit Prescale Counter  
PSCH:PSC  
SYSCLKOUT  
TCR.4  
(Timer Start Status)  
32-Bit Counter  
TIMH:TIM  
Borrow  
Borrow  
TINT  
Figure 9-1. CPU-Timers  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
In the F281x devices, the timer interrupt signals (TINT0, TINT1, TINT2) are connected as shown in Figure 9-2.  
INT1  
to  
INT12  
TINT0  
PIE  
CPU-TIMER 0  
C28x  
CPU  
TINT1  
INT13  
INT14  
CPU-TIMER 1  
XINT13  
CPU-TIMER 2  
(Reserved for  
DSP/BIOS)  
TINT2  
A. The timer registers are connected to the memory bus of the C28x processor.  
B. The timing of the timers is synchronized to SYSCLKOUT of the processor clock.  
Figure 9-2. CPU-Timer Interrupts Signals and Output Signal  
The general operation of the timer is as follows: The 32-bit counter register “TIMH:TIM” is loaded with the value  
in the period register “PRDH:PRD”. The counter register decrements at the SYSCLKOUT rate of the C28x.  
When the counter reaches 0, a timer interrupt output signal generates an interrupt pulse. The registers listed in  
Table 9-3 are used to configure the timers. For more information, see the TMS320x281x DSP System Control  
and Interrupts Reference Guide.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-3. CPU-Timers 0, 1, 2 Configuration and Control Registers  
NAME  
TIMER0TIM  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
0x00 0C00  
1
CPU-Timer 0, Counter Register  
TIMER0TIMH  
TIMER0PRD  
TIMER0PRDH  
TIMER0TCR  
Reserved  
0x00 0C01  
0x00 0C02  
0x00 0C03  
0x00 0C04  
0x00 0C05  
0x00 0C06  
0x00 0C07  
0x00 0C08  
0x00 0C09  
0x00 0C0A  
0x00 0C0B  
0x00 0C0C  
0x00 0C0D  
0x00 0C0E  
0x00 0C0F  
0x00 0C10  
0x00 0C11  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
40  
CPU-Timer 0, Counter Register High  
CPU-Timer 0, Period Register  
CPU-Timer 0, Period Register High  
CPU-Timer 0, Control Register  
TIMER0TPR  
TIMER0TPRH  
TIMER1TIM  
TIMER1TIMH  
TIMER1PRD  
TIMER1PRDH  
TIMER1TCR  
Reserved  
CPU-Timer 0, Prescale Register  
CPU-Timer 0, Prescale Register High  
CPU-Timer 1, Counter Register  
CPU-Timer 1, Counter Register High  
CPU-Timer 1, Period Register  
CPU-Timer 1, Period Register High  
CPU-Timer 1, Control Register  
TIMER1TPR  
TIMER1TPRH  
TIMER2TIM  
TIMER2TIMH  
TIMER2PRD  
TIMER2PRDH  
TIMER2TCR  
Reserved  
CPU-Timer 1, Prescale Register  
CPU-Timer 1, Prescale Register High  
CPU-Timer 2, Counter Register  
CPU-Timer 2, Counter Register High  
CPU-Timer 2, Period Register  
0x00 0C12  
0x00 0C13  
0x00 0C14  
0x00 0C15  
0x00 0C16  
0x00 0C17  
0x00 0C18 – 0x00 0C3F  
CPU-Timer 2, Period Register High  
CPU-Timer 2, Control Register  
TIMER2TPR  
TIMER2TPRH  
Reserved  
CPU-Timer 2, Prescale Register  
CPU-Timer 2, Prescale Register High  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.2.2 Event Manager Modules (EVA, EVB)  
The event-manager modules include general-purpose (GP) timers, full-compare/PWM units, capture units, and  
quadrature-encoder pulse (QEP) circuits. EVA and EVB timers, compare units, and capture units function  
identically. However, timer/unit names differ for EVA and EVB. Table 9-4 shows the module and signal names  
used. Table 9-4 shows the features and functionality available for the event-manager modules and highlights  
EVA nomenclature.  
Event managers A and B have identical peripheral register sets with EVA starting at 7400h and EVB starting at  
7500h. The paragraphs in this section describe the function of GP timers, compare units, capture units, and  
QEPs using EVA nomenclature. These paragraphs are applicable to EVB with regard to function—however,  
module/signal names would differ. Table 9-5 lists the EVA registers. For more information, see the TMS320x281x  
DSP Event Manager (EV) Reference Guide.  
Table 9-4. Module and Signal Names for EVA and EVB  
EVA  
EVB  
EVENT MANAGER  
MODULES  
MODULE  
SIGNAL  
MODULE  
SIGNAL  
GP Timer 1  
GP Timer 2  
T1PWM/T1CMP  
T2PWM/T2CMP  
GP Timer 3  
GP Timer 4  
T3PWM/T3CMP  
T4PWM/T4CMP  
GP Timers  
Compare 1  
Compare 2  
Compare 3  
PWM1/2  
PWM3/4  
PWM5/6  
Compare 4  
Compare 5  
Compare 6  
PWM7/8  
PWM9/10  
PWM11/12  
Compare Units  
Capture 1  
Capture 2  
Capture 3  
CAP1  
CAP2  
CAP3  
Capture 4  
Capture 5  
Capture 6  
CAP4  
CAP5  
CAP6  
Capture Units  
QEP1  
QEP2  
QEPI1  
QEP3  
QEP4  
QEPI2  
QEP1  
QEP2  
QEP3  
QEP4  
QEP Channels  
Direction  
External Clock  
TDIRA  
TCLKINA  
Direction  
External Clock  
TDIRB  
TCLKINB  
External Clock Inputs  
External Trip Inputs  
External Trip Inputs  
C1TRIP  
C2TRIP  
C3TRIP  
C4TRIP  
C5TRIP  
C6TRIP  
Compare  
Compare  
T1CTRIP_PDPINTA (1)  
T2CTRIP/ EVASOC  
T3CTRIP_PDPINTB (1)  
T4CTRIP/ EVBSOC  
(1) In the 24x/240x-compatible mode, the T1CTRIP_PDPINTA pin functions as PDPINTA and the T3CTRIP_PDPINTB pin functions as  
PDPINTB.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-5. EVA Registers  
SIZE (x16)  
NAME(1)  
GPTCONA  
ADDRESS  
0x00 7400  
0x00 7401  
0x00 7402  
0x00 7403  
0x00 7404  
0x00 7405  
0x00 7406  
0x00 7407  
0x00 7408  
0x00 7409  
0x00 7411  
0x00 7413  
0x00 7415  
0x00 7417  
0x00 7418  
0x00 7419  
0x00 7420  
0x00 7422  
0x00 7423  
0x00 7424  
0x00 7425  
0x00 7427  
0x00 7428  
0x00 7429  
0x00 742C  
0x00 742D  
0x00 742E  
0x00 742F  
0x00 7430  
0x00 7431  
DESCRIPTION  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
GP Timer Control Register A  
GP Timer 1 Counter Register  
GP Timer 1 Compare Register  
GP Timer 1 Period Register  
GP Timer 1 Control Register  
GP Timer 2 Counter Register  
GP Timer 2 Compare Register  
GP Timer 2 Period Register  
GP Timer 2 Control Register  
T1CNT  
T1CMPR  
T1PR  
T1CON  
T2CNT  
T2CMPR  
T2PR  
T2CON  
EXTCONA(2)  
COMCONA  
ACTRA  
GP Extension Control Register A  
Compare Control Register A  
Compare Action Control Register A  
Dead-Band Timer Control Register A  
Compare Register 1  
DBTCONA  
CMPR1  
CMPR2  
Compare Register 2  
CMPR3  
Compare Register 3  
CAPCONA  
CAPFIFOA  
CAP1FIFO  
CAP2FIFO  
CAP3FIFO  
CAP1FBOT  
CAP2FBOT  
CAP3FBOT  
EVAIMRA  
EVAIMRB  
EVAIMRC  
EVAIFRA  
EVAIFRB  
EVAIFRC  
Capture Control Register A  
Capture FIFO Status Register A  
Two-Level-Deep Capture FIFO Stack 1  
Two-Level-Deep Capture FIFO Stack 2  
Two-Level-Deep Capture FIFO Stack 3  
Bottom Register of Capture FIFO Stack 1  
Bottom Register of Capture FIFO Stack 2  
Bottom Register of Capture FIFO Stack 3  
Interrupt Mask Register A  
Interrupt Mask Register B  
Interrupt Mask Register C  
Interrupt Flag Register A  
Interrupt Flag Register B  
Interrupt Flag Register C  
(1) The EV-B register set is identical except the address range is from 0x00 7500 to 0x00 753F. The above registers are mapped to Zone  
2. This space allows only 16-bit accesses. 32-bit accesses produce undefined results.  
(2) New register compared to 24x/240x  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
GPTCONA[12:4], CAPCONA[8], EXTCONA[0]  
EVAENCLK  
EVATO ADC (Internal)  
T1CTRIP/PDPINTA, T2CTRIP, C1TRIP, C2TRIP, C3TRIP  
EVASOC ADC (External)  
Control Logic  
Output  
Logic  
T1PWM_T1CMP  
Timer 1 Compare  
T1CON[5,4]  
GPTCONA[1,0]  
Prescaler  
T1CON[1]  
TCLKINA  
HSPCLK  
clock  
GP Timer 1  
dir  
T1CON[10:8]  
TDIRA  
T1CON[15:11,6,3,2]  
PWM1  
PWM2  
PWM3  
Full Compare 1  
Full Compare 2  
Full Compare 3  
SVPWM  
State  
Machine  
Dead-Band  
Logic  
Output  
Logic  
PWM4  
PWM5  
PWM6  
DBTCONA[15:0]  
COMCONA[15:5,2:0]  
ACTRA[15:12],  
COMCONA[12],  
T1CON[13:11]  
ACTRA[11:0]  
Output  
Logic  
Timer 2 Compare  
T2PWM_T2CMP  
T2CON[5,4]  
T2CON[1]  
GPTCONA[3,2]  
TCLKINA  
HSPCLK  
clock  
dir  
reset  
Prescaler  
GP Timer 2  
QEPCLK  
QEPDIR  
T2CON[10:8]  
T2CON[15:11,7,6,3,2,0]  
QEP  
Logic  
CAPCONA[10,9]  
TDIRA  
CAP1_QEP1  
CAP2_QEP2  
Capture Units  
CAP3_QEPI1  
Index Qual  
CAPCONA[15:12,7:0]  
EXTCONA[1:2]  
A. The EVB module is similar to the EVA module.  
Figure 9-3. Event Manager A Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.2.2.1 General-Purpose (GP) Timers  
There are two GP timers. The GP timer x (x = 1 or 2 for EVA; x = 3 or 4 for EVB) includes:  
A 16-bit timer, up-/down-counter, TxCNT, for reads or writes  
A 16-bit timer-compare register, TxCMPR (double-buffered with shadow register), for reads or writes  
A 16-bit timer-period register, TxPR (double-buffered with shadow register), for reads or writes  
A 16-bit timer-control register, TxCON, for reads or writes  
Selectable internal or external input clocks  
A programmable prescaler for internal or external clock inputs  
Control and interrupt logic, for four maskable interrupts: underflow, overflow, timer compare, and period  
interrupts  
A selectable direction input pin (TDIRx) (to count up or down when directional up-/down-count mode is  
selected)  
The GP timers can be operated independently or synchronized with each other. The compare register  
associated with each GP timer can be used for compare function and PWM-waveform generation. There are  
three continuous modes of operations for each GP timer in up- or up/down-counting operations. Internal or  
external input clocks with programmable prescaler are used for each GP timer. GP timers also provide the time  
base for the other event-manager submodules: GP timer 1 for all the compares and PWM circuits, GP timer 2/1  
for the capture units and the quadrature-pulse counting operations. Double-buffering of the period and compare  
registers allows programmable change of the timer (PWM) period and the compare/PWM pulse width as  
needed.  
9.2.2.2 Full-Compare Units  
There are three full-compare units on each event manager. These compare units use GP timer1 as the time  
base and generate six outputs for compare and PWM-waveform generation using programmable deadband  
circuit. The state of each of the six outputs is configured independently. The compare registers of the compare  
units are double-buffered, allowing programmable change of the compare/PWM pulse widths as needed.  
9.2.2.3 Programmable Deadband Generator  
Deadband generation can be enabled/disabled for each compare unit output individually. The deadband-  
generator circuit produces two outputs (with or without deadband zone) for each compare unit output signal. The  
output states of the deadband generator are configurable and changeable as needed by way of the double-  
buffered ACTRx register.  
9.2.2.4 PWM Waveform Generation  
Up to eight PWM waveforms (outputs) can be generated simultaneously by each event manager: three  
independent pairs (six outputs) by the three full-compare units with programmable deadbands, and two  
independent PWMs by the GP-timer compares.  
9.2.2.5 Double Update PWM Mode  
The F281x Event Manager supports “Double Update PWM Mode.” This mode refers to a PWM operation mode  
in which the position of the leading edge and the position of the trailing edge of a PWM pulse are independently  
modifiable in each PWM period. To support this mode, the compare register that determines the position of the  
edges of a PWM pulse must allow (buffered) compare value update once at the beginning of a PWM period and  
another time in the middle of a PWM period. The compare registers in F281x Event Managers are all buffered  
and support three compare value reload/update (value in buffer becoming active) modes. These modes have  
earlier been documented as compare value reload conditions. The reload condition that supports double update  
PWM mode is reloaded on Underflow (beginning of PWM period) OR Period (middle of PWM period). Double  
update PWM mode can be achieved by using this condition for compare value reload.  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.2.2.6 PWM Characteristics  
Characteristics of the PWMs are as follows:  
16-bit registers  
Wide range of programmable deadband for the PWM output pairs  
Change of the PWM carrier frequency for PWM frequency wobbling as needed  
Change of the PWM pulse widths within and after each PWM period as needed  
External-maskable power and drive-protection interrupts  
Pulse-pattern-generator circuit, for programmable generation of asymmetric, symmetric, and four-space  
vector PWM waveforms  
Minimized CPU overhead using auto-reload of the compare and period registers  
The PWM pins are driven to a high-impedance state when the PDPINTx pin is driven low and after PDPINTx  
signal qualification. The PDPINTx pin (after qualification) is reflected in bit 8 of the COMCONx register.  
– PDPINTA pin status is reflected in bit 8 of COMCONA register.  
– PDPINTB pin status is reflected in bit 8 of COMCONB register.  
EXTCON register bits provide options to individually trip control for each PWM pair of signals  
9.2.2.7 Capture Unit  
The capture unit provides a logging function for different events or transitions. The values of the selected GP  
timer counter is captured and stored in the two-level-deep FIFO stacks when selected transitions are detected  
on capture input pins, CAPx (x = 1, 2, or 3 for EVA; and x = 4, 5, or 6 for EVB). The capture unit consists of three  
capture circuits.  
Capture units include the following features:  
One 16-bit capture control register, CAPCONx (R/W)  
One 16-bit capture FIFO status register, CAPFIFOx  
Selection of GP timer 1/2 (for EVA) or 3/4 (for EVB) as the time base  
Three 16-bit 2-level-deep FIFO stacks, one for each capture unit  
Three capture input pins (CAP1/2/3 for EVA, CAP4/5/6 for EVB)—one input pin per capture unit. [All inputs  
are synchronized with the device (CPU) clock. In order for a transition to be captured, the input must hold at  
its current level to meet the input qualification circuitry requirements. The input pins CAP1/2 and CAP4/5 can  
also be used as QEP inputs to the QEP circuit.]  
User-specified transition (rising edge, falling edge, or both edges) detection  
Three maskable interrupt flags, one for each capture unit  
The capture pins can also be used as general-purpose interrupt pins, if they are not used for the capture  
function.  
9.2.2.8 Quadrature-Encoder Pulse (QEP) Circuit  
Two capture inputs (CAP1 and CAP2 for EVA; CAP4 and CAP5 for EVB) can be used to interface the on-chip  
QEP circuit with a quadrature encoder pulse. Full synchronization of these inputs is performed on-chip. Direction  
or leading-quadrature pulse sequence is detected, and GP timer 2/4 is incremented or decremented by the rising  
and falling edges of the two input signals (four times the frequency of either input pulse).  
With EXTCONA register bits, the EVA QEP circuit can use CAP3 as a capture index pin as well. Similarly, with  
EXTCONB register bits, the EVB QEP circuit can use CAP6 as a capture index pin.  
9.2.2.9 External ADC Start-of-Conversion  
EVA/EVB start-of-conversion (SOC) can be sent to an external pin ( EVASOC/ EVBSOC) for external ADC  
interface. EVASOC and EVBSOC are MUXed with T2CTRIP and T4CTRIP, respectively.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.2.3 Enhanced Analog-to-Digital Converter (ADC) Module  
A simplified functional block diagram of the ADC module is shown in Figure 9-4. The ADC module consists of a  
12-bit ADC with a built-in sample-and-hold (S/H) circuit. Functions of the ADC module include:  
12-bit ADC core with built-in S/H  
Analog input: 0.0 V to 3.0 V (voltages above 3.0 V produce full-scale conversion results)  
Fast conversion rate: 80 ns at 25-MHz ADC clock, 12.5 MSPS  
16-channel, MUXed inputs  
Autosequencing capability provides up to 16 “autoconversions” in a single session. Each conversion can be  
programmed to select any 1 of 16 input channels  
Sequencer can be operated as two independent 8-state sequencers or as one large 16-state sequencer (that  
is, two cascaded 8-state sequencers)  
Sixteen result registers (individually addressable) to store conversion values  
– The digital value of the input analog voltage is derived by:  
, when ADCIN £ ADCLO  
, when ADCLO < ADCIN < 3 V  
, when ADCIN ³ 3 V  
Digital Value = 0  
ADCIN - ADCLO  
4096 ´  
(
Digital Value = floor  
(
3
Digital Value = 4095  
Multiple triggers as sources for the start-of-conversion (SOC) sequence  
– S/W – software immediate start  
– EVA – Event manager A (multiple event sources within EVA)  
– EVB – Event manager B (multiple event sources within EVB)  
Flexible interrupt control allows interrupt request on every end-of-sequence (EOS) or every other EOS  
Sequencer can operate in “start/stop” mode, allowing multiple “time-sequenced triggers” to synchronize  
conversions  
EVA and EVB triggers can operate independently in dual-sequencer mode  
Sample-and-hold (S/H) acquisition time window has separate prescale control  
The ADC module in the F281x has been enhanced to provide flexible interface to event managers A and B. The  
ADC interface is built around a fast, 12-bit ADC module with a fast conversion rate of 80 ns at 25-MHz ADC  
clock. The ADC module has 16 channels, configurable as two independent 8-channel modules to service event  
managers A and B. The two independent 8-channel modules can be cascaded to form a 16-channel module.  
Although there are multiple input channels and two sequencers, there is only one converter in the ADC module.  
Figure 9-4 shows the block diagram of the F281x ADC module.  
The two 8-channel modules have the capability to autosequence a series of conversions, each module has the  
choice of selecting any one of the respective eight channels available through an analog MUX. In the cascaded  
mode, the autosequencer functions as a single 16-channel sequencer. On each sequencer, once the conversion  
is complete, the selected channel value is stored in its respective RESULT register. Autosequencing allows the  
system to convert the same channel multiple times, allowing the user to perform oversampling algorithms. This  
gives increased resolution over traditional single-sampled conversion results.  
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
SYSCLKOUT  
System  
Control Block  
High-Speed  
Prescaler  
C28x  
ADCENCLK  
HSPCLK  
Analog  
MUX  
Result Registers  
Result Reg 0  
Result Reg 1  
ADCINA0  
70A8h  
S/H  
ADCINA7  
ADCINB0  
ADCINB7  
12-Bit  
ADC  
Module  
Result Reg 7  
Result Reg 8  
70AFh  
70B0h  
S/H  
Result Reg 15  
70B7h  
ADC Control Registers  
S/W  
EVA  
ADCSOC  
S/W  
EVB  
Sequencer 1  
Sequencer 2  
SOC  
SOC  
Figure 9-4. Block Diagram of the F281x ADC Module  
To obtain the specified accuracy of the ADC, proper board layout is critical. To the best extent possible, traces  
leading to the ADCIN pins should not run in close proximity to the digital signal paths. This is to minimize  
switching noise on the digital lines from getting coupled to the ADC inputs. Furthermore, proper isolation  
techniques must be used to isolate the ADC module power pins (VDDA1/VDDA2, AVDDREFBG) from the digital  
supply. For better accuracy and ESD protection, unused ADC inputs should be connected to analog ground.  
Notes:  
1. The ADC registers are accessed at the SYSCLKOUT rate. The internal timing of the ADC module is  
controlled by the high-speed peripheral clock (HSPCLK).  
2. The behavior of the ADC module based on the state of the ADCENCLK and HALT signals is as follows:  
ADCENCLK: On reset, this signal will be low. While reset is active-low ( XRS) the clock to the register will still  
function. This is necessary to make sure all registers and modes go into their default reset state. The analog  
module will, however, be in a low-power inactive state. As soon as reset goes high, then the clock to the  
registers will be disabled. When the user sets the ADCENCLK signal high, then the clocks to the registers will  
be enabled and the analog module will be enabled. There will be a certain time delay (ms range) before the  
ADC is stable and can be used.  
HALT: This signal only affects the analog module. It does not affect the registers. If low, the ADC module is  
powered. If high, the ADC module goes into low-power mode. The HALT mode will stop the clock to the CPU,  
which will stop the HSPCLK. Therefore the ADC register logic will be turned off indirectly.  
Figure 9-5 shows the ADC pin-biasing for internal reference and Figure 9-6 shows the ADC pin-biasing for  
external reference.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
ADCINA[7:0]  
ADCINB[7:0]  
ADCLO  
ADC 16-Channel Analog Inputs  
Analog input 0-3 V with respect to ADCLO  
Connect to Analog Ground  
Test Pin ADCBGREFIN(A)  
(B)  
24.9 k /20 k  
ADC External Current Bias Resistor  
ADCRESEXT  
ADCREFP  
10 μF(C)  
10 μF(C)  
ADC Reference Positive Output  
ADC Reference Medium Output  
ADCREFP and ADCREFM should not  
be loaded by external circuitry  
ADCREFM  
VDDA1  
VDDA2  
VSSA1  
VSSA2  
Analog 3.3 V  
Analog 3.3 V  
ADC Analog Power  
Analog 3.3 V  
AVDDREFBG  
AVSSREFBG  
VDDAIO  
ADC Reference Power  
ADC Analog I/O Power  
Analog 3.3 V  
VSSAIO  
Analog Ground  
VDD1  
VSS1  
1.8 V can use the same 1.8-V (or 1.9-V) supply as  
the digital core but separate the two with a  
ferrite bead or a filter  
ADC Digital Power  
Digital Ground  
A. Provide access to this pin in PCB layouts. Intended for test purposes only.  
B. Use 24.9 kΩ for ADC clock range 1–18.75 MHz; use 20 kΩ for ADC clock range 18.75–25 MHz.  
C. TAIYO YUDEN EMK325F106ZH, EMK325BJ106MD, or equivalent ceramic capacitor  
D. External decoupling capacitors are recommended on all power pins.  
E. Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance.  
Figure 9-5. ADC Pin Connections With Internal Reference  
Note  
The temperature rating of any recommended component must match the rating of the end product.  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
ADCINA[7:0]  
ADCINB[7:0]  
ADCLO  
ADC 16-Channel Analog Inputs  
Analog Input 0-3 V With Respect to ADCLO  
Connect to Analog Ground  
Test Pin ADCBGREFIN  
(C)  
24.9 k /20 k  
ADC External Current Bias Resistor  
ADCRESEXT  
ADCREFP  
ADC Reference Positive Input  
ADC Reference Medium Input  
2 V  
(D)  
1 V  
ADCREFM  
1 μF - 10 μF  
1 μF - 10 μF  
VDDA1  
VDDA2  
VSSA1  
VSSA2  
Analog 3.3 V  
Analog 3.3 V  
ADC Analog Power  
AVDDREFBG  
AVSSREFBG  
Analog 3.3 V  
ADC Reference Power  
ADC Analog I/O Power  
ADC Digital Power  
VDDAIO  
VSSAIO  
Analog 3.3 V  
Analog Ground  
VDD1  
VSS1  
1.8 V can use the same 1.8-V (or 1.9-V)  
supply as the digital core but separate the  
two with a ferrite bead or a filter  
Digital Ground  
A. External decoupling capacitors are recommended on all power pins.  
B. Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance.  
C. Use 24.9 kΩ for ADC clock range 1–18.75 MHz; use 20 kΩ for ADC clock range 18.75–25 MHz.  
D. It is recommended that buffered external references be provided with a voltage difference of (ADCREFP – ADCREFM) = 1 V ± 0.1% or  
better. External reference is enabled using bit 8 in the ADCTRL3 Register at ADC power up. In this mode, the accuracy of external  
reference is critical for overall gain. The voltage ADCREFP – ADCREFM will determine the overall accuracy. Do not enable internal  
references when external references are connected to ADCREFP and ADCREFM. See the TMS320x281x DSP Analog-to-Digital  
Converter (ADC) Reference Guide for more information.  
Figure 9-6. ADC Pin Connections With External Reference  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
The ADC operation is configured, controlled, and monitored by the registers listed in Table 9-6.  
Table 9-6. ADC Registers  
NAME(1)  
ADDRESS  
0x00 7100  
0x00 7101  
0x00 7102  
0x00 7103  
0x00 7104  
0x00 7105  
0x00 7106  
0x00 7107  
0x00 7108  
0x00 7109  
0x00 710A  
0x00 710B  
0x00 710C  
0x00 710D  
0x00 710E  
0x00 710F  
0x00 7110  
0x00 7111  
SIZE (x16)  
DESCRIPTION  
ADCTRL1  
ADCTRL2  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
ADC Control Register 1  
ADC Control Register 2  
ADCMAXCONV  
ADCCHSELSEQ1  
ADCCHSELSEQ2  
ADCCHSELSEQ3  
ADCCHSELSEQ4  
ADCASEQSR  
ADCRESULT0  
ADCRESULT1  
ADCRESULT2  
ADCRESULT3  
ADCRESULT4  
ADCRESULT5  
ADCRESULT6  
ADCRESULT7  
ADCRESULT8  
ADCRESULT9  
ADCRESULT10  
ADCRESULT11  
ADCRESULT12  
ADCRESULT13  
ADCRESULT14  
ADCRESULT15  
ADCTRL3  
ADC Maximum Conversion Channels Register  
ADC Channel Select Sequencing Control Register 1  
ADC Channel Select Sequencing Control Register 2  
ADC Channel Select Sequencing Control Register 3  
ADC Channel Select Sequencing Control Register 4  
ADC Auto-Sequence Status Register  
ADC Conversion Result Buffer Register 0  
ADC Conversion Result Buffer Register 1  
ADC Conversion Result Buffer Register 2  
ADC Conversion Result Buffer Register 3  
ADC Conversion Result Buffer Register 4  
ADC Conversion Result Buffer Register 5  
ADC Conversion Result Buffer Register 6  
ADC Conversion Result Buffer Register 7  
ADC Conversion Result Buffer Register 8  
ADC Conversion Result Buffer Register 9  
ADC Conversion Result Buffer Register 10  
ADC Conversion Result Buffer Register 11  
ADC Conversion Result Buffer Register 12  
ADC Conversion Result Buffer Register 13  
ADC Conversion Result Buffer Register 14  
ADC Conversion Result Buffer Register 15  
ADC Control Register 3  
0x00 7112  
0x00 7113  
0x00 7114  
0x00 7115  
0x00 7116  
0x00 7117  
0x00 7118  
0x00 7119  
0x00 711C – 0x00 711F  
ADCST  
ADC Status Register  
Reserved  
(1) The above registers are Peripheral Frame 2 Registers.  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.2.4 Enhanced Controller Area Network (eCAN) Module  
The CAN module has the following features:  
Fully compliant with ISO 11898-1 (CAN 2.0B)  
Supports data rates up to 1 Mbps  
Thirty-two mailboxes, each with the following properties:  
– Configurable as receive or transmit  
– Configurable with standard or extended identifier  
– Has a programmable receive mask  
– Supports data and remote frame  
– Composed of 0 to 8 bytes of data  
– Uses a 32-bit time stamp on receive and transmit message  
– Protects against reception of new message  
– Holds the dynamically programmable priority of transmit message  
– Employs a programmable interrupt scheme with two interrupt levels  
– Employs a programmable alarm on transmission or reception time-out  
Low-power mode  
Programmable wake-up on bus activity  
Automatic reply to a remote request message  
Automatic retransmission of a frame in case of loss of arbitration or error  
32-bit local network time counter synchronized by a specific message (communication in conjunction with  
mailbox 16)  
Self-test mode  
– Operates in a loopback mode receiving its own message. A “dummy” acknowledge is provided, thereby  
eliminating the need for another node to provide the acknowledge bit.  
Note  
NOTE: For a SYSCLKOUT of 150 MHz, the smallest bit rate possible is 23.4 kbps.  
The 28x CAN has passed the conformance test per ISO/DIS 16845. Contact TI for details.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
eCAN0INT  
eCAN1INT  
Controls Address  
Data  
32  
Enhanced CAN Controller  
Message Controller  
Mailbox RAM  
(512 Bytes)  
Memory Management  
Unit  
eCAN Memory  
(512 Bytes)  
Registers and  
CPU Interface,  
Receive Control Unit,  
Timer Management Unit  
32-Message Mailbox  
of 4 x 32-Bit Words  
Message Objects Control  
32  
32  
32  
eCAN Protocol Kernel  
Receive Buffer  
Transmit Buffer  
Control Buffer  
Status Buffer  
SN65HVD23x  
3.3-V CAN Transceiver  
CAN Bus  
Figure 9-7. eCAN Block Diagram and Interface Circuit  
Copyright © 2021 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-7. 3.3-V eCAN Transceivers for the TMS320F281x DSPs  
PART  
NUMBER  
SUPPLY  
VOLTAGE  
LOW-POWER  
MODE  
SLOPE  
CONTROL  
VREF  
OTHER  
TA  
SN65HVD230  
SN65HVD230Q  
SN65HVD231  
SN65HVD231Q  
SN65HVD232  
SN65HVD232Q  
SN65HVD233  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
Standby  
Standby  
Sleep  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
None  
Yes  
Yes  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
Yes  
Sleep  
Yes  
None  
None  
None  
None  
None  
None  
Standby  
Adjustable  
Diagnostic Loopback  
Standby  
and  
Sleep  
SN65HVD234  
SN65HVD235  
3.3 V  
3.3 V  
Adjustable  
Adjustable  
None  
None  
–40°C to 125°C  
–40°C to 125°C  
Standby  
Autobaud Loopback  
Built-in Isolation  
Low Prop Delay  
ISO1050  
3–5.5 V  
None  
None  
None  
Thermal Shutdown  
Failsafe Operation  
Dominant Time-out  
–55°C to 105°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
eCAN Control and Status Registers  
Mailbox Enable - CANME  
Mailbox Direction - CANMD  
Transmission Request Set - CANTRS  
Transmission Request Reset - CANTRR  
Transmission Acknowledge - CANTA  
Abort Acknowledge - CANAA  
eCAN Memory (512 Bytes)  
6000h  
Received Message Pending - CANRMP  
Received Message Lost - CANRML  
Remote Frame Pending - CANRFP  
Global Acceptance Mask - CANGAM  
Control and Status Registers  
603Fh  
6040h  
Local Acceptance Masks (LAM)  
(32 x 32-Bit RAM)  
607Fh  
6080h  
Master Control - CANMC  
Message Object Time Stamps (MOTS)  
(32 x 32-Bit RAM)  
Bit-Timing Configuration - CANBTC  
60BFh  
60C0h  
Error and Status - CANES  
Message Object Time-Out (MOTO)  
(32 x 32-Bit RAM)  
Transmit Error Counter - CANTEC  
Receive Error Counter - CANREC  
Global Interrupt Flag 0 - CANGIF0  
Global Interrupt Mask - CANGIM  
Global Interrupt Flag 1 - CANGIF1  
Mailbox Interrupt Mask - CANMIM  
Mailbox Interrupt Level - CANMIL  
60FFh  
eCAN Memory RAM (512 Bytes)  
6100h-6107h  
6108h-610Fh  
6110h-6117h  
6118h-611Fh  
6120h-6127h  
Mailbox 0  
Mailbox 1  
Mailbox 2  
Mailbox 3  
Mailbox 4  
Overwrite Protection Control - CANOPC  
TX I/O Control - CANTIOC  
RX I/O Control - CANRIOC  
Time Stamp Counter - CANTSC  
Time-Out Control - CANTOC  
Time-Out Status - CANTOS  
61E0h-61E7h  
61E8h-61EFh  
61F0h-61F7h  
61F8h-61FFh  
Mailbox 28  
Mailbox 29  
Mailbox 30  
Mailbox 31  
Reserved  
Message Mailbox (16 Bytes)  
Message Identifier - MSGID  
Message Control - MSGCTRL  
Message Data Low - MDL  
Message Data High - MDH  
61E8h-61E9h  
61EAh-61EBh  
61ECh-61EDh  
61EEh-61EFh  
Figure 9-8. eCAN Memory Map  
Note  
If the eCAN module is not used in an application, the RAM available (LAM, MOTS, MOTO, and  
mailbox RAM) can be used as general-purpose RAM. The CAN module clock should be enabled for  
this.  
Copyright © 2021 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
The CAN registers listed in Table 9-8 are used by the CPU to configure and control the CAN controller and the  
message objects. eCAN control registers only support 32-bit read/write operations. Mailbox RAM can be  
accessed as 16 bits or 32 bits. 32-bit accesses are aligned to an even boundary.  
Table 9-8. CAN Registers  
SIZE (x32)  
NAME(1)  
CANME  
ADDRESS  
0x00 6000  
0x00 6002  
0x00 6004  
0x00 6006  
0x00 6008  
0x00 600A  
0x00 600C  
0x00 600E  
0x00 6010  
0x00 6012  
0x00 6014  
0x00 6016  
0x00 6018  
0x00 601A  
0x00 601C  
0x00 601E  
0x00 6020  
0x00 6022  
0x00 6024  
0x00 6026  
0x00 6028  
0x00 602A  
0x00 602C  
0x00 602E  
0x00 6030  
0x00 6032  
DESCRIPTION  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Mailbox enable  
CANMD  
Mailbox direction  
CANTRS  
CANTRR  
CANTA  
Transmit request set  
Transmit request reset  
Transmission acknowledge  
Abort acknowledge  
Receive message pending  
Receive message lost  
Remote frame pending  
Global acceptance mask  
Master control  
CANAA  
CANRMP  
CANRML  
CANRFP  
CANGAM  
CANMC  
CANBTC  
CANES  
Bit-timing configuration  
Error and status  
CANTEC  
CANREC  
CANGIF0  
CANGIM  
CANGIF1  
CANMIM  
CANMIL  
CANOPC  
CANTIOC  
CANRIOC  
CANTSC  
CANTOC  
CANTOS  
Transmit error counter  
Receive error counter  
Global interrupt flag 0  
Global interrupt mask  
Global interrupt flag 1  
Mailbox interrupt mask  
Mailbox interrupt level  
Overwrite protection control  
TX I/O control  
RX I/O control  
Time stamp counter (Reserved in SCC mode)  
Time-out control (Reserved in SCC mode)  
Time-out status (Reserved in SCC mode)  
(1) These registers are mapped to Peripheral Frame 1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.2.5 Multichannel Buffered Serial Port (McBSP) Module  
The McBSP module has the following features:  
Compatible to McBSP in TMS320C54x/TMS320C55x DSP devices, except the DMA features  
Full-duplex communication  
Double-buffered data registers which allow a continuous data stream  
Independent framing and clocking for receive and transmit  
External shift clock generation or an internal programmable frequency shift clock  
A wide selection of data sizes including 8-, 12-, 16-, 20-, 24-, or 32-bits  
8-bit data transfers with LSB or MSB first  
Programmable polarity for both frame synchronization and data clocks  
Highly programmable internal clock and frame generation  
Support A-bis mode  
Direct interface to industry-standard CODECs, Analog Interface Chips (AICs), and other serially connected  
A/D and D/A devices  
Works with SPI-compatible devices  
Two 16 x 16-level FIFO for Transmit channel  
Two 16 x 16-level FIFO for Receive channel  
The following application interfaces can be supported on the McBSP:  
T1/E1 framers  
MVIP switching-compatible and ST-BUS-compliant devices including:  
– MVIP framers  
– H.100 framers  
– SCSA framers  
– IOM-2 compliant devices  
– AC97-compliant devices (the necessary multiphase frame synchronization capability is provided.)  
– IIS-compliant devices  
McBSP clock rate = CLKG = CLKSRG/(1 + CLKGDIV) , where CLKSRG source could be LSPCLK, CLKX, or  
CLKR. 1  
1
Serial port performance is limited by I/O buffer switching speed. Internal prescalers must be adjusted such  
that the peripheral speed is less than the I/O buffer speed limit—20-MHz maximum.  
Copyright © 2021 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 9-9 shows the block diagram of the McBSP module with FIFO, interfaced to the F281x version of  
Peripheral Frame 2.  
Peripheral Write Bus  
TX FIFO  
Interrupt  
TX FIFO _15  
TX FIFO _15  
MXINT  
TX Interrupt Logic  
To CPU  
TX FIFO _1  
TX FIFO _0  
TX FIFO _1  
TX FIFO _0  
McBSP Transmit  
Interrupt Select Logic  
TX FIFO Registers  
16  
16  
DXR2 Transmit Buffer  
16  
DXR1 Transmit Buffer  
16  
LSPCLK  
McBSP Registers  
and  
Control Logic  
FSX  
CLKX  
Compand Logic  
XSR2  
DX  
XSR1  
DR  
RSR1  
16  
RSR2  
16  
CLKR  
Expand Logic  
FSR  
RBR1 Register  
16  
RBR2 Register  
16  
McBSP  
DRR2 Receive Buffer  
16  
DRR1 Receive Buffer  
16  
McBSP Receive  
Interrupt Select Logic  
RX FIFO _15  
RX FIFO _15  
RX FIFO  
Interrupt  
RX FIFO _1  
RX FIFO _0  
RX FIFO _1  
RX FIFO _0  
RX Interrupt Logic  
MRINT  
To CPU  
RX FIFO Registers  
Peripheral Read Bus  
Figure 9-9. McBSP Module With FIFO  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-9 provides a summary of the McBSP registers.  
Table 9-9. McBSP Registers  
ADDRESS  
0x00 78xxh  
TYPE  
(R/W)  
RESET VALUE  
(HEX)  
NAME  
DESCRIPTION  
DATA REGISTERS, RECEIVE, TRANSMIT (1)  
0x0000  
0x0000  
0x0000  
McBSP Receive Buffer Register  
McBSP Receive Shift Register  
McBSP Transmit Shift Register  
McBSP Data Receive Register 2  
Read First if the word size is greater than 16 bits,  
else ignore DRR2  
DRR2  
DRR1  
DXR2  
DXR1  
00  
01  
02  
03  
R
R
0x0000  
0x0000  
0x0000  
0x0000  
McBSP Data Receive Register 1  
Read Second if the word size is greater than 16 bits,  
else read DRR1 only  
McBSP Data Transmit Register 2  
Write First if the word size is greater than 16 bits,  
else ignore DXR2  
W
W
McBSP Data Transmit Register 1  
Write Second if the word size is greater than 16 bits,  
else write to DXR1 only  
McBSP CONTROL REGISTERS  
SPCR2  
SPCR1  
RCR2  
04  
05  
06  
07  
08  
09  
0A  
0B  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
McBSP Serial Port Control Register 2  
McBSP Serial Port Control Register 1  
McBSP Receive Control Register 2  
McBSP Receive Control Register 1  
McBSP Transmit Control Register 2  
McBSP Transmit Control Register 1  
McBSP Sample Rate Generator Register 2  
McBSP Sample Rate Generator Register 1  
RCR1  
XCR2  
XCR1  
SRGR2  
SRGR1  
MULTICHANNEL CONTROL REGISTERS  
MCR2  
MCR1  
0C  
0D  
0E  
0F  
10  
11  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
McBSP Multichannel Register 2  
McBSP Multichannel Register 1  
RCERA  
RCERB  
XCERA  
XCERB  
PCR  
McBSP Receive Channel Enable Register Partition A  
McBSP Receive Channel Enable Register Partition B  
McBSP Transmit Channel Enable Register Partition A  
McBSP Transmit Channel Enable Register Partition B  
McBSP Pin Control Register  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
RCERC  
RCERD  
XCERC  
XCERD  
RCERE  
RCERF  
XCERE  
XCERF  
RCERG  
RCERH  
XCERG  
McBSP Receive Channel Enable Register Partition C  
McBSP Receive Channel Enable Register Partition D  
McBSP Transmit Channel Enable Register Partition C  
McBSP Transmit Channel Enable Register Partition D  
McBSP Receive Channel Enable Register Partition E  
McBSP Receive Channel Enable Register Partition F  
McBSP Transmit Channel Enable Register Partition E  
McBSP Transmit Channel Enable Register Partition F  
McBSP Receive Channel Enable Register Partition G  
McBSP Receive Channel Enable Register Partition H  
McBSP Transmit Channel Enable Register Partition G  
Copyright © 2021 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-9. McBSP Registers (continued)  
ADDRESS  
0x00 78xxh  
TYPE  
(R/W)  
RESET VALUE  
(HEX)  
NAME  
XCERH  
DESCRIPTION  
1E  
R/W  
0x0000  
McBSP Transmit Channel Enable Register Partition H  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-9. McBSP Registers (continued)  
ADDRESS  
0x00 78xxh  
TYPE  
(R/W)  
RESET VALUE  
(HEX)  
NAME  
DESCRIPTION  
FIFO MODE REGISTERS (applicable only in FIFO mode)  
FIFO Data Registers (2)  
McBSP Data Receive Register 2 – Top of receive FIFO  
Read First FIFO pointers will not advance  
DRR2  
DRR1  
DXR2  
DXR1  
00  
01  
02  
03  
R
R
0x0000  
0x0000  
0x0000  
0x0000  
McBSP Data Receive Register 1 – Top of receive FIFO  
Read Second for FIFO pointers to advance  
McBSP Data Transmit Register 2 – Top of transmit FIFO  
Write First FIFO pointers will not advance  
W
W
McBSP Data Transmit Register 1 – Top of transmit FIFO  
Write Second for FIFO pointers to advance  
FIFO Control Registers  
MFFTX  
MFFRX  
MFFCT  
MFFINT  
MFFST  
20  
21  
22  
23  
24  
R/W  
R/W  
R/W  
R/W  
R/W  
0xA000  
0x201F  
0x0000  
0x0000  
0x0000  
McBSP Transmit FIFO Register  
McBSP Receive FIFO Register  
McBSP FIFO Control Register  
McBSP FIFO Interrupt Register  
McBSP FIFO Status Register  
(1) DRR2/DRR1 and DXR2/DXR1 share the same addresses of receive and transmit FIFO registers in FIFO mode.  
(2) FIFO pointers advancing is based on order of access to DRR2/DRR1 and DXR2/DXR1 registers.  
Copyright © 2021 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.2.6 Serial Communications Interface (SCI) Module  
The F281x devices include two serial communications interface (SCI) modules. The SCI modules support digital  
communications between the CPU and other asynchronous peripherals that use the standard non-return-to-zero  
(NRZ) format. The SCI receiver and transmitter are double-buffered, and each has its own separate enable and  
interrupt bits. Both can be operated independently or simultaneously in the full-duplex mode. To ensure data  
integrity, the SCI checks received data for break detection, parity, overrun, and framing errors. The bit rate is  
programmable to over 65000 different speeds through a 16-bit baud-select register.  
Features of each SCI module include:  
Two external pins:  
– SCITXD: SCI transmit-output pin  
– SCIRXD: SCI receive-input pin  
NOTE: Both pins can be used as GPIO if not used for SCI.  
Baud rate programmable to 64K different rates 2  
LSPCLK  
=
Baud rate  
when BRR ¹ 0  
when BRR = 0  
(BRR + 1) * 8  
LSPCLK  
=
16  
Data-word format  
– One start bit  
– Data-word length programmable from one to eight bits  
– Optional even/odd/no parity bit  
– One or two stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: idle-line and address bit  
Half- or full-duplex operation  
Double-buffered receive and transmit functions  
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with  
status flags.  
– Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY  
flag (transmitter-shift register is empty)  
– Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break  
condition occurred), and RX ERROR flag (monitoring four interrupt conditions)  
Separate enable bits for transmitter and receiver interrupts (except BRKDT)  
Max bit rate = 75 MHz/16 = 4.688 x 106 b/s  
NRZ (non-return-to-zero) format  
Ten SCI module control registers located in the control register frame beginning at address 7050h  
NOTE: All registers in this module are 8-bit registers that are connected to Peripheral Frame 2. When a  
register is accessed, the register data is in the lower byte (7–0), and the upper byte (15–8) is read as zeros.  
Writing to the upper byte has no effect.  
Enhanced features:  
Auto baud-detect hardware logic  
16-level transmit/receive FIFO  
2
Serial port performance is limited by I/O buffer switching speed. Internal prescalers must be adjusted such  
that the peripheral speed is less than the I/O buffer speed limit—20 MHz maximum.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
The SCI port operation is configured and controlled by the registers listed in Table 9-10 and Table 9-11.  
Table 9-10. SCI-A Registers  
NAME  
SCICCRA  
ADDRESS  
0x00 7050  
0x00 7051  
0x00 7052  
0x00 7053  
0x00 7054  
0x00 7055  
0x00 7056  
0x00 7057  
0x00 7059  
0x00 705A  
0x00 705B  
0x00 705C  
0x00 705F  
SIZE (x16)  
DESCRIPTION  
1
1
1
1
1
1
1
1
1
1
1
1
1
SCI-A Communications Control Register  
SCICTL1A  
SCI-A Control Register 1  
SCIHBAUDA  
SCILBAUDA  
SCICTL2A  
SCI-A Baud Register, High Bits  
SCI-A Baud Register, Low Bits  
SCI-A Control Register 2  
SCIRXSTA  
SCIRXEMUA  
SCIRXBUFA  
SCITXBUFA  
SCIFFTXA(1)  
SCIFFRXA(1)  
SCIFFCTA(1)  
SCIPRIA  
SCI-A Receive Status Register  
SCI-A Receive Emulation Data Buffer Register  
SCI-A Receive Data Buffer Register  
SCI-A Transmit Data Buffer Register  
SCI-A FIFO Transmit Register  
SCI-A FIFO Receive Register  
SCI-A FIFO Control Register  
SCI-A Priority Control Register  
(1) These registers are new registers for the FIFO mode.  
Table 9-11. SCI-B Registers  
SIZE (x16)  
NAME(1)  
SCICCRB  
ADDRESS  
0x00 7750  
0x00 7751  
0x00 7752  
0x00 7753  
0x00 7754  
0x00 7755  
0x00 7756  
0x00 7757  
0x00 7759  
0x00 775A  
0x00 775B  
0x00 775C  
0x00 775F  
DESCRIPTION  
1
1
1
1
1
1
1
1
1
1
1
1
1
SCI-B Communications Control Register  
SCI-B Control Register 1  
SCICTL1B  
SCIHBAUDB  
SCILBAUDB  
SCICTL2B  
SCI-B Baud Register, High Bits  
SCI-B Baud Register, Low Bits  
SCI-B Control Register 2  
SCIRXSTB  
SCIRXEMUB  
SCIRXBUFB  
SCITXBUFB  
SCIFFTXB(2)  
SCIFFRXB(2)  
SCIFFCTB(2)  
SCIPRIB  
SCI-B Receive Status Register  
SCI-B Receive Emulation Data Buffer Register  
SCI-B Receive Data Buffer Register  
SCI-B Transmit Data Buffer Register  
SCI-B FIFO Transmit Register  
SCI-B FIFO Receive Register  
SCI-B FIFO Control Register  
SCI-B Priority Control Register  
(1) Registers in this table are mapped to peripheral bus 16 space. This space only allows 16-bit accesses. 32-bit accesses produce  
undefined results.  
(2) These registers are new registers for the FIFO mode.  
Figure 9-10 shows the SCI module block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
SCICTL1.1  
SCITXD  
SCITXD  
TXSHF  
Register  
Frame Format and Mode  
Parity  
Even/Odd Enable  
TXENA  
TX EMPTY  
SCICTL2.6  
8
SCICCR.6 SCICCR.5  
TX INT ENA  
TXRDY  
Transmitter-Data  
Buffer Register  
SCICTL2.7  
SCICTL2.0  
8
TXWAKE  
TXINT  
TX FIFO _0  
SCICTL1.3  
TX Interrupt Logic  
TX FIFO _1  
- - - - -  
To CPU  
TX  
FIFO  
Interrupts  
1
SCI TX Interrupt Select Logic  
TX FIFO _15  
WUT  
SCITXBUF.7-0  
TX FIFO Registers  
SCIFFENA  
AutoBaud Detect Logic  
SCIRXD  
SCIFFTX.14  
SCIHBAUD. 15 - 8  
Baud Rate  
MSbyte  
Register  
SCIRXD  
RXSHF Register  
RXWAKE  
LSPCLK  
SCIRXST.1  
SCILBAUD. 7 - 0  
RXENA  
SCICTL1.0  
8
Baud Rate  
LSbyte  
Register  
SCICTL2.1  
RXRDY  
RX/BK INT ENA  
Receive-Data  
Buffer Register  
SCIRXBUF.7-0  
SCIRXST.6  
BRKDT  
8
SCIRXST.5  
RX FIFO _15  
- - - - -  
RX  
FIFO  
Interrupts  
RX FIFO _1  
RX FIFO _0  
RXINT  
To CPU  
RX Interrupt Logic  
SCIRXBUF.7-0  
RX FIFO Registers  
RXFFOVF  
SCIRXST.7 SCIRXST.4 - 2  
SCIFFRX.15  
RX Error  
FE OE PE  
RX Error  
RX ERR INT ENA  
SCI RX Interrupt Select Logic  
SCICTL1.6  
Figure 9-10. Serial Communications Interface (SCI) Module Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.2.7 Serial Peripheral Interface (SPI) Module  
The F281x devices include the four-pin serial peripheral interface (SPI) module. The SPI is a high-speed,  
synchronous serial I/O port that allows a serial bit stream of programmed length (one to sixteen bits) to be  
shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used for  
communications between the DSP controller and external peripherals or another processor. Typical applications  
include external I/O or peripheral expansion through devices such as shift registers, display drivers, and ADCs.  
Multidevice communications are supported by the master/slave operation of the SPI.  
The SPI module features include:  
Four external pins:  
– SPISOMI: SPI slave-output/master-input pin  
– SPISIMO: SPI slave-input/master-output pin  
– SPISTE: SPI slave transmit-enable pin  
– SPICLK: SPI serial-clock pin  
NOTE: All four pins can be used as GPIO, if the SPI module is not used.  
Two operational modes: master and slave  
Baud rate: 125 different programmable rates  
LSPCLK  
=
Baud rate  
when SPIBRR ¹ 0  
(SPIBRR + 1)  
LSPCLK  
4
when SPIBRR = 0,1, 2, 3  
=
Serial port performance is limited by I/O buffer switching speed. Internal prescalers must be adjusted such  
that the peripheral speed is less than the I/O buffer speed limit—20 MHz maximum.  
Data word length: one to sixteen data bits  
Four clocking schemes (controlled by clock polarity and clock phase bits) include:  
– Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the  
SPICLK signal and receives data on the rising edge of the SPICLK signal.  
– Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling  
edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.  
– Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the  
SPICLK signal and receives data on the falling edge of the SPICLK signal.  
– Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the rising  
edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Simultaneous receive and transmit operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithms.  
Nine SPI module control registers: Located in control register frame beginning at address 7040h.  
NOTE: All registers in this module are 16-bit registers that are connected to Peripheral Frame 2. When a  
register is accessed, the register data is in the lower byte (7–0), and the upper byte (15–8) is read as zeros.  
Writing to the upper byte has no effect.  
Enhanced features:  
16-level transmit/receive FIFO  
Delayed transmit control  
Copyright © 2021 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
The SPI port operation is configured and controlled by the registers listed in Table 9-12.  
Table 9-12. SPI Registers  
SIZE (x16)  
NAME(1)  
SPICCR  
ADDRESS  
0x00 7040  
0x00 7041  
0x00 7042  
0x00 7044  
0x00 7046  
0x00 7047  
0x00 7048  
0x00 7049  
0x00 704A  
0x00 704B  
0x00 704C  
0x00 704F  
DESCRIPTION  
1
1
1
1
1
1
1
1
1
1
1
1
SPI Configuration Control Register  
SPICTL  
SPI Operation Control Register  
SPI Status Register  
SPISTS  
SPIBRR  
SPI Baud Rate Register  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
SPI Receive Emulation Buffer Register  
SPI Serial Input Buffer Register  
SPI Serial Output Buffer Register  
SPI Serial Data Register  
SPIFFTX  
SPIFFRX  
SPIFFCT  
SPIPRI  
SPI FIFO Transmit Register  
SPI FIFO Receive Register  
SPI FIFO Control Register  
SPI Priority Control Register  
(1) These registers are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined  
results.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 9-11 is a block diagram of the SPI in slave mode.  
SPIFFENA  
SPIFFTX.14  
Overrun  
INT ENA  
Receiver  
Overrun Flag  
RX FIFO Registers  
SPIRXBUF  
SPISTS.7  
RX FIFO _0  
SPICTL.4  
RX FIFO _1  
- - - - -  
RX  
FIFO  
Interrupt  
RX FIFO _15  
SPIINT/SPIRXINT  
To CPU  
RX Interrupt  
Logic  
16  
SPIFFOVF  
FLAG  
SPIRXBUF Buffer Register  
SPIFFRX.15  
TX  
FIFO  
Interrupt  
TX FIFO Registers  
TX Interrupt  
Logic  
SPITXBUF  
SPITXINT  
TX FIFO _15  
- - - - -  
SPI  
INT FLAG  
SPI  
INT ENA  
TX FIFO _1  
16  
SPISTS.6  
TX FIFO _0  
SPICTL.0  
16  
SPITXBUF Buffer Register  
16  
M
S
M
S
SW1  
SW2  
SPIDAT Data Register  
SPISIMO  
M
S
M
S
SPIDAT.15 - 0  
SPISOMI  
Talk  
SPICTL.1  
SPISTE(A)  
State Control  
Master/Slave  
SPICTL.2  
SPI Char  
SPICCR.3 - 0  
S
3
2
1
0
SW3  
Clock  
Polarity  
Clock  
Phase  
M
S
SPI Bit Rate  
SPICCR.6  
SPICTL.3  
LSPCLK  
SPICLK  
SPIBRR.6 - 0  
M
6
5
4
3
2
1
0
A. SPISTE is driven low by the master for a slave device.  
Figure 9-11. Serial Peripheral Interface Module Block Diagram (Slave Mode)  
Copyright © 2021 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.2.8 GPIO MUX  
The GPIO Mux registers are used to select the operation of shared pins on the F281x devices. The pins can be  
individually selected to operate as “Digital I/O” or connected to “Peripheral I/O” signals (via the GPxMUX  
registers). If selected for “Digital I/O”mode, registers are provided to configure the pin direction (via the GPxDIR  
registers) and to qualify the input signal to remove unwanted noise (via the GPxQUAL) registers). Table 9-13  
lists the GPIO Mux Registers.  
Table 9-13. GPIO Mux Registers  
NAME(1) (2) (3)  
GPAMUX  
ADDRESS  
0x00 70C0  
0x00 70C1  
0x00 70C2  
0x00 70C3  
0x00 70C4  
0x00 70C5  
0x00 70C6  
0x00 70C7  
0x00 70C8  
0x00 70C9  
0x00 70CA  
0x00 70CB  
0x00 70CC  
0x00 70CD  
0x00 70CE  
0x00 70CF  
0x00 70D0  
0x00 70D1  
0x00 70D2  
0x00 70D3  
0x00 70D4  
0x00 70D5  
0x00 70D6  
0x00 70D7  
0x00 70D8  
0x00 70D9  
0x00 70DA  
0x00 70DB  
0x00 70DC – 0x00 70DF  
SIZE (x16)  
DESCRIPTION  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
GPIO A Mux Control Register  
GPADIR  
GPIO A Direction Control Register  
GPAQUAL  
Reserved  
GPBMUX  
GPBDIR  
GPIO A Input Qualification Control Register  
GPIO B Mux Control Register  
GPIO B Direction Control Register  
GPIO B Input Qualification Control Register  
GPBQUAL  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
GPDMUX  
GPDDIR  
GPDQUAL  
Reserved  
GPEMUX  
GPEDIR  
GPIO D Mux Control Register  
GPIO D Direction Control Register  
GPIO D Input Qualification Control Register  
GPIO E Mux Control Register  
GPIO E Direction Control Register  
GPIO E Input Qualification Control Register  
GPEQUAL  
Reserved  
GPFMUX  
GPFDIR  
GPIO F Mux Control Register  
GPIO F Direction Control Register  
Reserved  
Reserved  
GPGMUX  
GPGDIR  
Reserved  
Reserved  
Reserved  
GPIO G Mux Control Register  
GPIO G Direction Control Register  
(1) Reserved locations return undefined values and writes are ignored.  
(2) Not all inputs support input signal qualification.  
(3) These registers are EALLOW protected. This prevents spurious writes from overwriting the contents and corrupting the system.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
If configured for ”Digital I/O” mode, additional registers are provided for setting individual I/O signals (via the  
GPxSET registers), for clearing individual I/O signals (via the GPxCLEAR registers), for toggling individual I/O  
signals (via the GPxTOGGLE registers), or for reading/writing to the individual I/O signals (via the GPxDAT  
registers). Table 9-14 lists the GPIO Data Registers. For more information, see the TMS320x281x DSP System  
Control and Interrupts Reference Guide.  
Table 9-14. GPIO Data Registers  
NAME(1) (2)  
ADDRESS  
0x00 70E0  
0x00 70E1  
0x00 70E2  
0x00 70E3  
0x00 70E4  
0x00 70E5  
0x00 70E6  
0x00 70E7  
0x00 70E8  
0x00 70E9  
0x00 70EA  
0x00 70EB  
0x00 70EC  
0x00 70ED  
0x00 70EE  
0x00 70EF  
0x00 70F0  
0x00 70F1  
0x00 70F2  
0x00 70F3  
0x00 70F4  
0x00 70F5  
0x00 70F6  
0x00 70F7  
0x00 70F8  
0x00 70F9  
0x00 70FA  
0x00 70FB  
0x00 70FC – 0x00 70FF  
SIZE (x16)  
DESCRIPTION  
GPADAT  
GPASET  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
GPIO A Data Register  
GPIO A Set Register  
GPACLEAR  
GPATOGGLE  
GPBDAT  
GPIO A Clear Register  
GPIO A Toggle Register  
GPIO B Data Register  
GPIO B Set Register  
GPIO B Clear Register  
GPIO B Toggle Register  
GPBSET  
GPBCLEAR  
GPBTOGGLE  
Reserved  
Reserved  
Reserved  
Reserved  
GPDDAT  
GPIO D Data Register  
GPIO D Set Register  
GPIO D Clear Register  
GPIO D Toggle Register  
GPIO E Data Register  
GPIO E Set Register  
GPIO E Clear Register  
GPIO E Toggle Register  
GPIO F Data Register  
GPIO F Set Register  
GPIO F Clear Register  
GPIO F Toggle Register  
GPIO G Data Register  
GPIO G Set Register  
GPIO G Clear Register  
GPIO G Toggle Register  
GPDSET  
GPDCLEAR  
GPDTOGGLE  
GPEDAT  
GPESET  
GPECLEAR  
GPETOGGLE  
GPFDAT  
GPFSET  
GPFCLEAR  
GPFTOGGLE  
GPGDAT  
GPGSET  
GPGCLEAR  
GPGTOGGLE  
Reserved  
(1) Reserved locations will return undefined values and writes will be ignored.  
(2) These registers are NOT EALLOW protected. The above registers will typically be accessed regularly by the user.  
Copyright © 2021 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 9-12 shows how the various register bits select the various modes of operation for GPIO function.  
GPxDAT/SET/CLEAR/TOGGLE  
Register Bit(s)  
Digital I/O  
Peripheral I/O  
High-  
Impedance  
Control  
GPxQUAL  
Register  
GPxMUX GPxDIR  
Register Bit Register Bit  
0
1
0
1
MUX  
MUX  
SYSCLKOUT  
Input Qualification  
High-Impedance  
Enable (1)  
XRS  
Internal (Pullup or Pulldown)  
PIN  
A. In the GPIO mode, when the GPIO pin is configured for output operation, reading the GPxDAT data register only gives the value written,  
not the value at the pin. In the peripheral mode, the state of the pin can be read through the GPxDAT register, provided the  
corresponding direction bit is zero (input mode).  
B. Some selected input signals are qualified by the SYSCLKOUT. The GPxQUAL register specifies the qualification sampling period. The  
sampling window is 6 samples wide and the output is only changed when all samples are the same (all 0's or all 1's). This feature  
removes unwanted spikes from the input signal.  
Figure 9-12. GPIO/Peripheral Pin Multiplexing  
Note  
The input function of the GPIO pin and the input path to the peripheral are always enabled. It is the  
output function of the GPIO pin that is multiplexed with the output path of the primary (peripheral)  
function. Since the output buffer of a pin connects back to the input buffer, any GPIO signal present at  
the pin will be propagated to the peripheral module as well. Therefore, when a pin is configured for  
GPIO operation, the corresponding peripheral functionality (and interrupt-generating capability) must  
be disabled. Otherwise, interrupts may be inadvertently triggered. This is especially critical when the  
PDPINTA and PDPINTB pins are used as GPIO pins, since a value of zero for GPDDAT.0 or  
GPDDAT.5 ( PDPINTx) will put PWM pins in a high-impedance state. The CxTRIP and TxCTRIP pins  
will also put the corresponding PWM pins in high impedance, if they are driven low (as GPIO pins) and  
bit EXTCONx.0 = 1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.3 Memory Maps  
Block  
Start Address  
On-Chip Memory  
Data Space  
Prog Space  
External Memory XINTF  
Data Space  
Prog Space  
0x00 0000  
M0 Vector - RAM (32 x 32)  
(Enabled if VMAP = 0)  
0x00 0040  
0x00 0400  
M0 SARAM (1K x 16)  
M1 SARAM (1K x 16)  
0x00 0800  
0x00 0D00  
Reserved  
Peripheral Frame 0  
PIE Vector - RAM  
(256 x 16)  
(Enabled if  
Reserved  
VMAP = 1, ENPIE = 1)  
0x00 0E00  
0x00 2000  
Reserved  
0x00 2000  
0x00 4000  
XINTF Zone 0 (8K x 16, XZCS0AND1)  
Reserved  
XINTF Zone 1 (8K x 16, XZCS0AND1) (Protected)  
0x00 6000  
0x00 7000  
Peripheral Frame 1  
(Protected)  
Reserved  
Peripheral Frame 2  
(Protected)  
Reserved  
0x00 8000  
0x00 9000  
0x00 A000  
L0 SARAM (4K x 16, Secure Block)  
L1 SARAM (4K x 16, Secure Block)  
0x08 0000  
0x10 0000  
0x18 0000  
XINTF Zone 2 (0.5M x 16, XZCS2)  
Reserved  
XINTF Zone 6 (0.5M x 16, XZCS6AND7)  
0x3D 7800  
0x3D 7C00  
0x3D 8000  
OTP (1K x 16, Secure Block)  
Reserved (1K)  
Reserved  
Flash (128K x 16, Secure Block)  
128-Bit Password  
0x3F 7FF8  
0x3F 8000  
H0 SARAM (8K x 16)  
0x3F A000  
Reserved  
0x3F C000  
XINTF Zone 7 (16K x 16, XZCS6AND7)  
(Enabled if MP/MC = 1)  
0x3F F000  
0x3F FFC0  
Boot ROM (4K x 16)  
(Enabled if MP/MC = 0)  
BROM Vector - ROM (32 x 32)  
(Enabled if VMAP = 1, MP/MC = 0, ENPIE = 0)  
XINTF Vector - RAM (32 x 32)  
(Enabled if VMAP = 1, MP/MC = 1, ENPIE = 0)  
LEGEND:  
Only one of these vector maps - M0 vector, PIE vector, BROM vector, XINTF vector - should be enabled at a time.  
A. Memory blocks are not to scale.  
B. Reserved locations are reserved for future expansion. Application should not access these areas.  
C. Boot ROM and Zone 7 memory maps are active either in on-chip or XINTF zone depending on MP/ MC, not in both.  
D. Peripheral Frame 0, Peripheral Frame 1, and Peripheral Frame 2 memory maps are restricted to data memory only. User program  
cannot access these memory maps in program space.  
E. “Protected” means the order of Write followed by Read operations is preserved rather than the pipeline order.  
F. Certain memory ranges are EALLOW protected against spurious writes after configuration.  
G. Zones 0 and 1 and Zones 6 and 7 share the same chip select; hence, these memory blocks have mirrored locations.  
Figure 9-13. F2812 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Block  
Start Address  
On-Chip Memory  
Data Space  
Prog Space  
0x00 0000  
M0 Vector - RAM (32 x 32)  
(Enabled if VMAP = 0)  
M0 SARAM (1K x 16)  
M1 SARAM (1K x 16)  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
Peripheral Frame 0  
PIE Vector - RAM  
(256 x 16)  
(Enabled if  
Reserved  
VMAP = 1, ENPIE = 1)  
0x00 0E00  
0x00 2000  
Reserved  
Reserved  
0x00 6000  
0x00 7000  
Peripheral Frame 1  
(Protected)  
Reserved  
Peripheral Frame 2  
(Protected)  
0x00 8000  
0x00 9000  
0x00 A000  
L0 SARAM (4K x 16, Secure Block)  
L1 SARAM (4K x 16, Secure Block)  
Reserved  
0x3D 7800  
0x3D 7C00  
0x3D 8000  
OTP (1K x 16, Secure Block)  
Reserved (1K)  
Flash (128K x 16, Secure Block)  
128-Bit Password  
0x3F 7FF8  
0x3F 8000  
H0 SARAM (8K x 16)  
0x3F A000  
Reserved  
0x3F F000  
0x3F FFC0  
Boot ROM (4K x 16)  
(Enabled if MP/MC = 0)  
BROM Vector - ROM (32 x 32)  
(Enabled if VMAP = 1, MP/MC = 0, ENPIE = 0)  
LEGEND:  
Only one of these vector maps - M0 vector, PIE vector, BROM vector - should be enabled at a time.  
A. Memory blocks are not to scale.  
B. Reserved locations are reserved for future expansion. Application should not access these areas.  
C. Peripheral Frame 0, Peripheral Frame 1, and Peripheral Frame 2 memory maps are restricted to data memory only. User program  
cannot access these memory maps in program space.  
D. “Protected” means the order of Write followed by Read operations is preserved rather than the pipeline order.  
E. Certain memory ranges are EALLOW protected against spurious writes after configuration.  
Figure 9-14. F2811 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Block  
Start Address  
On-Chip Memory  
Data Space  
Prog Space  
M0 Vector - RAM (32 x 32)  
0x00 0000  
(Enabled if VMAP = 0)  
M0 SARAM (1K x 16)  
M1 SARAM (1K x 16)  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
Peripheral Frame 0  
PIE Vector - RAM  
(256 x 16)  
(Enabled if  
Reserved  
VMAP = 1, ENPIE = 1)  
0x00 0E00  
0x00 2000  
Reserved  
Reserved  
0x00 6000  
0x00 7000  
Peripheral Frame 1  
(Protected)  
Reserved  
Peripheral Frame 2  
(Protected)  
0x00 8000  
0x00 9000  
0x00 A000  
L0 SARAM (4K x 16, Secure Block)  
L1 SARAM (4K x 16, Secure Block)  
Reserved  
0x3D 7800  
0x3D 7C00  
0x3E 8000  
OTP (1K x 16, Secure Block)  
Reserved  
Flash (64K x 16, Secure Block)  
128-Bit Password  
0x3F 7FF8  
0x3F 8000  
H0 SARAM (8K x 16)  
0x3F A000  
Reserved  
0x3F F000  
0x3F FFC0  
Boot ROM (4K x 16)  
(Enabled if MP/MC = 0)  
BROM Vector - ROM (32 x 32)  
(Enabled if VMAP = 1, MP/MC = 0, ENPIE = 0)  
LEGEND:  
Only one of these vector maps - M0 vector, PIE vector, BROM vector - should be enabled at a time.  
A. Memory blocks are not to scale.  
B. Reserved locations are reserved for future expansion. Application should not access these areas.  
C. Peripheral Frame 0, Peripheral Frame 1, and Peripheral Frame 2 memory maps are restricted to data memory only. User program  
cannot access these memory maps in program space.  
D. “Protected” means the order of Write followed by Read operations is preserved rather than the pipeline order.  
E. Certain memory ranges are EALLOW protected against spurious writes after configuration.  
Figure 9-15. F2810 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-15. Addresses of Flash Sectors in F2812 and F2811  
ADDRESS RANGE  
PROGRAM AND DATA SPACE  
0x3D 8000  
0x3D 9FFF  
Sector J, 8K x 16  
0x3D A000  
0x3D BFFF  
Sector I, 8K x 16  
Sector H, 16K x 16  
Sector G, 16K x 16  
Sector F, 16K x 16  
Sector E, 16K x 16  
Sector D, 16K x 16  
Sector C, 16K x 16  
Sector B, 8K x 16  
0x3D C000  
0x3D FFFF  
0x3E 0000  
0x3E 3FFF  
0x3E 4000  
0x3E 7FFF  
0x3E 8000  
0x3E BFFF  
0x3E C000  
0x3E FFFF  
0x3F 0000  
0x3F 3FFF  
0x3F 4000  
0x3F 5FFF  
Sector A, 8K x 16 Program to 0x0000 when using  
the  
Code Security Module Boot-to-Flash Entry Point  
(program branch instruction here) Security  
Password (128-Bit)  
0x3F 6000 0x3F 7F80  
0x3F 7FF5 0x3F 7FF6  
0x3F 7FF7 0x3F 7FF8  
0x3F 7FFF  
(Do not program to all zeros)  
Table 9-16. Addresses of Flash Sectors in F2810  
ADDRESS RANGE  
PROGRAM AND DATA SPACE  
0x3E 8000  
0x3E BFFF  
Sector E, 16K x 16  
Sector D, 16K x 16  
Sector C, 16K x 16  
Sector B, 8K x 16  
0x3E C000  
0x3E FFFF  
0x3F 0000  
0x3F 3FFF  
0x3F 4000  
0x3F 5FFF  
Sector A, 8K x 16 Program to 0x0000 when using  
the  
Code Security Module Boot-to-Flash Entry Point  
(program branch instruction here) Security  
Password (128-Bit)  
0x3F 6000 0x3F 7F80  
0x3F 7FF5 0x3F 7FF6  
0x3F 7FF7 0x3F 7FF8  
0x3F 7FFF  
(Do not program to all zeros)  
The “Low 64K” of the memory address range maps into the data space of the 240x. The “High 64K” of the  
memory address range maps into the program space of the 24x/240x. 24x/240x-compatible code will execute  
only from the “High 64K”memory area. Hence, the top 32K of Flash and H0 SARAM block can be used to run  
24x/240x-compatible code (if MP/ MC mode is low) or, on the F2812, code can be executed from XINTF Zone 7  
(if MP/ MC mode is high).  
The XINTF consists of five independent zones. One zone has its own chip select and the remaining four zones  
share two chip selects. Each zone can be programmed with its own timing (wait states) and to either sample or  
ignore external ready signal. This makes interfacing to external peripherals easy and glueless.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Note  
The chip selects of XINTF Zone 0 and Zone 1 are merged into a single chip select ( XZCS0AND1);  
and the chip selects of XINTF Zone 6 and Zone 7 are merged into a single chip select ( XZCS6AND7).  
See Section 9.6, External Interface, XINTF (F2812 only), for details.  
Peripheral Frame 1, Peripheral Frame 2, and XINTF Zone 1 are grouped together to enable these blocks to be  
“write/read peripheral block protected”. The “protected” mode ensures that all accesses to these blocks happen  
as written. Because of the C28x pipeline, a write immediately followed by a read, to different memory locations,  
will appear in reverse order on the memory bus of the CPU. This can cause problems in certain peripheral  
applications where the user expected the write to occur first (as written). The C28x CPU supports a block  
protection mode where a region of memory can be protected to make sure that operations occur as written (the  
penalty is extra cycles that are added to align the operations). This mode is programmable and, by default, it will  
protect the selected zones.  
On the F2812, at reset, XINTF Zone 7 is accessed if the XMP/ MC pin is pulled high. This signal selects  
microprocessor or microcomputer mode of operation. In microprocessor mode, Zone 7 is mapped to high  
memory such that the vector table is fetched externally. The Boot ROM is disabled in this mode. In  
microcomputer mode, Zone 7 is disabled such that the vectors are fetched from Boot ROM. This allows the user  
to either boot from on-chip memory or from off-chip memory. The state of the XMP/ MC signal on reset is stored  
in an MP/ MC mode bit in the XINTCNF2 register. The user can change this mode in software and hence control  
the mapping of Boot ROM and XINTF Zone 7. No other memory blocks are affected by XMP/ MC.  
I/O space is not supported on the F2812 XINTF.  
The wait states for the various spaces in the memory map area are listed in Table 9-17.  
Table 9-17. Wait States  
AREA  
WAIT-STATES  
0-wait  
COMMENTS  
M0 and M1 SARAMs  
Peripheral Frame 0  
Fixed  
Fixed  
0-wait  
0-wait (writes)  
2-wait (reads)  
Peripheral Frame 1  
Fixed  
0-wait (writes)  
2-wait (reads)  
Peripheral Frame 2  
L0 and L1 SARAMs  
OTP  
Fixed  
Fixed  
0-wait  
Programmable, Programmed via the Flash registers. 1-wait-state operation is possible at a  
1-wait minimum reduced CPU frequency. See Section 9.1.6, Flash, for more information.  
Programmed via the Flash registers. 0-wait-state operation is possible at  
Programmable,  
Flash  
reduced CPU frequency. The CSM password locations are hardwired for  
0-wait minimum  
16 wait states. See Section 9.1.6, Flash, for more information.  
H0 SARAM  
Boot-ROM  
0-wait  
1-wait  
Fixed  
Fixed  
Programmed via the XINTF registers.  
Cycles can be extended by external memory or peripheral.  
0-wait operation is not possible.  
Programmable,  
1-wait minimum  
XINTF  
Copyright © 2021 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.4 Register Map  
The F281x devices contain three peripheral register spaces. The spaces are categorized as follows:  
Peripheral Frame 0:  
Peripheral Frame 1:  
Peripheral Frame 2:  
These are peripherals that are mapped directly to the CPU memory bus.  
See Table 9-18.  
These are peripherals that are mapped to the 32-bit peripheral bus.  
See Table 9-19.  
These are peripherals that are mapped to the 16-bit peripheral bus.  
See Table 9-20.  
Table 9-18. Peripheral Frame 0 Registers  
NAME(1)  
ADDRESS RANGE  
0x00 0880 – 0x00 09FF  
0x00 0A00 – 0x00 0A7F  
SIZE (x16)  
ACCESS TYPE(2)  
EALLOW protected  
Device Emulation Registers  
Reserved  
384  
128  
EALLOW protected  
CSM Protected  
FLASH Registers(3)  
0x00 0A80 – 0x00 0ADF  
96  
Code Security Module Registers  
Reserved  
0x00 0AE0 – 0x00 0AEF  
0x00 0AF0 – 0x00 0B1F  
0x00 0B20 – 0x00 0B3F  
0x00 0B40 – 0x00 0BFF  
0x00 0C00 – 0x00 0C3F  
0x00 0C40 – 0x00 0CDF  
0x00 0CE0 – 0x00 0CFF  
0x00 0D00 – 0x00 0DFF  
0x00 0E00 – 0x00 0FFF  
16  
48  
EALLOW protected  
XINTF Registers  
Reserved  
32  
Not EALLOW protected  
Not EALLOW protected  
192  
64  
CPU-TIMER0/1/2 Registers  
Reserved  
160  
32  
PIE Registers  
Not EALLOW protected  
EALLOW protected  
PIE Vector Table  
Reserved  
256  
512  
(1) Registers in Frame 0 support 16-bit and 32-bit accesses.  
(2) If registers are EALLOW protected, then writes cannot be performed until the user executes the EALLOW instruction. The EDIS  
instruction disables writes. This prevents stray code or pointers from corrupting register contents.  
(3) The Flash Registers are also protected by the Code Security Module (CSM).  
Table 9-19. Peripheral Frame 1 Registers  
NAME(1)  
eCAN Registers  
ADDRESS RANGE  
SIZE (x16)  
ACCESS TYPE  
256  
(128 x 32)  
Some eCAN control registers (and selected bits in  
other eCAN control registers) are EALLOW-protected.  
0x00 6000 – 0x00 60FF  
256  
(128 x 32)  
eCAN Mailbox RAM  
Reserved  
0x00 6100 – 0x00 61FF  
0x00 6200 – 0x00 6FFF  
Not EALLOW-protected  
3584  
(1) The eCAN control registers only support 32-bit read/write operations. All 32-bit accesses are aligned to even address boundaries.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-20. Peripheral Frame 2 Registers  
NAME(1)  
ADDRESS RANGE  
0x00 7000 – 0x00 700F  
0x00 7010 – 0x00 702F  
0x00 7030 – 0x00 703F  
0x00 7040 – 0x00 704F  
0x00 7050 – 0x00 705F  
0x00 7060 – 0x00 706F  
0x00 7070 – 0x00 707F  
0x00 7080 – 0x00 70BF  
0x00 70C0 – 0x00 70DF  
0x00 70E0 – 0x00 70FF  
0x00 7100 – 0x00 711F  
0x00 7120 – 0x00 73FF  
0x00 7400 – 0x00 743F  
0x00 7440 – 0x00 74FF  
0x00 7500 – 0x00 753F  
0x00 7540 – 0x00 774F  
0x00 7750 – 0x00 775F  
0x00 7760 – 0x00 77FF  
0x00 7800 – 0x00 783F  
0x00 7840 – 0x00 7FFF  
SIZE (x16)  
ACCESS TYPE  
Reserved  
16  
System Control Registers  
Reserved  
32  
EALLOW Protected  
16  
SPI-A Registers  
SCI-A Registers  
Reserved  
16  
Not EALLOW Protected  
Not EALLOW Protected  
16  
16  
External Interrupt Registers  
Reserved  
16  
Not EALLOW Protected  
64  
GPIO Mux Registers  
GPIO Data Registers  
ADC Registers  
Reserved  
32  
EALLOW Protected  
32  
Not EALLOW Protected  
Not EALLOW Protected  
32  
736  
64  
EV-A Registers  
Reserved  
Not EALLOW Protected  
Not EALLOW Protected  
Not EALLOW Protected  
Not EALLOW Protected  
192  
64  
EV-B Registers  
Reserved  
528  
16  
SCI-B Registers  
Reserved  
160  
64  
McBSP Registers  
Reserved  
1984  
(1) Peripheral Frame 2 only allows 16-bit accesses. All 32-bit accesses are ignored (invalid data may be returned or written).  
Copyright © 2021 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.5 Device Emulation Registers  
These registers are used to control the protection mode of the C28x CPU and to monitor some critical device  
signals. The registers are defined in Table 9-21.  
Table 9-21. Device Emulation Registers  
SIZE  
(x16)  
NAME  
ADDRESS RANGE  
DESCRIPTION  
DEVICECNF  
PARTID  
0x00 0880 – 0x00 0881  
0x00 0882  
2
1
Device Configuration Register  
Part ID Register  
0x0001 or 0x0002 – F281x  
0x0001 – Silicon Revision A  
0x0002 – Silicon Revision B  
0x0003 – Silicon Revisions C, D  
0x0004 – Reserved  
REVID  
0x00 0883  
1
Revision ID Register  
0x0005 – Silicon Revision E  
0x0006 – Silicon Revision F  
0x0007 – Silicon Revision G  
PROTSTART  
PROTRANGE  
Reserved  
0x00 0884  
0x00 0885  
1
1
Block Protection Start Address Register  
Block Protection Range Address Register  
0x00 0886 – 0x00 09FF  
378  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.6 External Interface, XINTF (F2812 Only)  
This section gives a top-level view of the external interface (XINTF) that is implemented on the F2812 device.  
The external interface is a non-multiplexed asynchronous bus, similar to the C240x external interface. The  
external interface on the F2812 is mapped into five fixed zones shown in Figure 9-16.  
Figure 9-16 shows the F2812 XINTF signals.  
Data Space  
Prog Space  
0x00 0000  
XD[15:0]  
XA[18:0]  
0x00 2000  
0x00 4000  
0x00 6000  
0x08 0000  
XINTF Zone 0  
(8K x 16)  
XZCS0  
XZCS1  
XZCS0AND1  
XINTF Zone 1  
(8K x 16)  
XINTF Zone 2  
(512K x 16)  
XZCS2  
0x10 0000  
XINTF Zone 6  
(512K x 16)  
XZCS6  
XZCS7  
XZCS6AND7  
0x18 0000  
0x3F C000  
XINTF Zone 7  
(16K x 16)  
(mapped here if MP/MC = 1)  
0x40 0000  
XWE  
XRD  
XR/W  
XREADY  
XMP/MC  
XHOLD  
XHOLDA  
XCLKOUT(E)  
A. The mapping of XINTF Zone 7 is dependent on the XMP/ MC device input signal and the MP/ MC mode bit (bit 8 of XINTCNF2 register).  
Zones 0, 1, 2, and 6 are always enabled.  
B. Each zone can be programmed with different wait states, setup and hold timing, and is supported by zone chip selects ( XZCS0AND1,  
XZCS2, XZCS6AND7), which toggle when an access to a particular zone is performed. These features enable glueless connection to  
many external memories and peripherals.  
C. The chip selects for Zone 0 and Zone 1 are ANDed internally together to form one chip select ( XZCS0AND1). Any external memory that  
is connected to XZCS0AND1 is dually mapped to both Zone 0 and Zone 1.  
D. The chip selects for Zone 6 and Zone 7 are ANDed internally together to form one chip select ( XZCS6AND7). Any external memory that  
is connected to XZCS6AND7 is dually mapped to both Zone 6 and Zone 7. This means that if Zone 7 is disabled (via the MP/ MC mode),  
then any external memory is still accessible via Zone 6 address space.  
E. XCLKOUT is also pinned out on the F2810 and F2811 devices.  
Figure 9-16. External Interface Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
The operation and timing of the external interface, can be controlled by the registers listed in Table 9-22.  
Table 9-22. XINTF Configuration and Control Register Mappings  
SIZE  
(x16)  
NAME  
XTIMING0  
ADDRESS  
DESCRIPTION  
0x00 0B20  
0x00 0B22  
0x00 0B24  
0x00 0B2C  
0x00 0B2E  
0x00 0B34  
0x00 0B38  
0x00 0B3A  
2
2
2
2
2
2
1
1
XINTF Timing Register, Zone 0 can access as two 16-bit registers or one 32-bit register.  
XINTF Timing Register, Zone 1 can access as two 16-bit registers or one 32-bit register.  
XINTF Timing Register, Zone 2 can access as two 16-bit registers or one 32-bit register.  
XINTF Timing Register, Zone 6 can access as two 16-bit registers or one 32-bit register.  
XINTF Timing Register, Zone 7 can access as two 16-bit registers or one 32-bit register.  
XINTF Configuration Register can access as two 16-bit registers or one 32-bit register.  
XINTF Bank Control Register  
XTIMING1  
XTIMING2  
XTIMING6  
XTIMING7  
XINTCNF2  
XBANK  
XREVISION  
XINTF Revision Register  
9.6.1 Timing Registers  
XINTF signal timing can be tuned to match specific external device requirements such as setup and hold times  
to strobe signals for contention avoidance and maximizing bus efficiency. The XINTF timing parameters can be  
configured individually for each zone based on the requirements of the memory or peripheral accessed by that  
particular zone. This allows the programmer to maximize the efficiency of the bus on a per-zone basis. All XINTF  
timing values are with respect to XTIMCLK, which is equal to or one-half of the SYSCLKOUT rate, as shown in  
Figure 8-26.  
For detailed information on the XINTF timing and configuration register bit fields, see the TMS320x281x DSP  
External Interface (XINTF) Reference Guide.  
9.6.2 XREVISION Register  
The XREVISION register contains a unique number to identify the particular version of XINTF used in the  
product. For the F2812, this register will be configured as described in Table 9-23.  
Table 9-23. XREVISION Register Bit Definitions  
BIT(S)  
NAME  
TYPE  
RESET  
DESCRIPTION  
Current XINTF Revision. For internal use/reference. Test purposes  
only. Subject to change.  
15–0  
REVISION  
R
0x0004  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.7 Interrupts  
Figure 9-17 shows how the various interrupt sources are multiplexed within the F281x devices.  
Peripherals  
(SPI, SCI, McBSP, CAN, EV, ADC)  
(41 Interrupts)  
WDINT  
Watchdog  
WAKEINT  
LPMINT  
Low-Power Modes  
XINT1  
Interrupt Control  
INT1  
to  
INT12  
PIE  
XINT1CR[15:0]  
XINT1CTR[15:0]  
XINT2  
Interrupt Control  
XINT2CR[15:0]  
XINT2CTR[15:0]  
C28x CPU  
TINT0  
TIMER 0  
GPIO  
MUX  
TINT2  
TINT1  
TIMER 2  
(Reserved for DSP/BIOS)  
INT14  
INT13  
TIMER 1  
select  
enable  
NMI  
XNMI_XINT13  
Interrupt Control  
XNMICR[15:0]  
XNMICTR[15:0]  
A. Out of a possible 96 interrupts, 45 are currently used by peripherals.  
Figure 9-17. Interrupt Sources  
Eight PIE block interrupts are grouped into one CPU interrupt. In total, 12 CPU interrupt groups, with 8 interrupts  
per group equals 96 possible interrupts. On the F281x, 45 of these are used by peripherals as shown in Table  
9-24.  
The TRAP #VectorNumber instruction transfers program control to the interrupt service routine corresponding to  
the vector specified. TRAP #0 attempts to transfer program control to the address pointed to by the reset vector.  
The PIE vector table does not, however, include a reset vector. Therefore, TRAP #0 should not be used when  
the PIE is enabled. Doing so will result in undefined behavior.  
When the PIE is enabled, TRAP #1 through TRAP #12 will transfer program control to the interrupt service  
routine corresponding to the first vector within the PIE group. For example: TRAP #1 fetches the vector from  
INT1.1, TRAP #2 fetches the vector from INT2.1 and so forth.  
Copyright © 2021 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
IFR[12:1]  
IER[12:1]  
INTM  
INT1  
INT2  
1
CPU  
MUX  
0
INT11  
INT12  
Global  
Enable  
(Flag)  
(Enable)  
INTx.1  
INTx.2  
INTx.3  
INTx.4  
INTx.5  
From  
Peripherals  
or  
External  
Interrupts  
INTx  
MUX  
INTx.6  
INTx.7  
INTx.8  
PIEACKx  
(Enable/Flag)  
(Enable)  
(Flag)  
PIEIERx[8:1]  
PIEIFRx[8:1]  
Figure 9-18. Multiplexing of Interrupts Using the PIE Block  
Table 9-24. PIE Peripheral Interrupts  
PIE INTERRUPTS  
CPU  
INTERRUPTS(1)  
INTx.8  
INTx.7  
INTx.6  
INTx.5  
INTx.4  
INTx.3  
INTx.2  
INTx.1  
WAKEINT  
(LPM/WD)  
TINT0  
(TIMER 0)  
ADCINT  
(ADC)  
PDPINTB  
(EV-B)  
PDPINTA  
(EV-A)  
INT1  
XINT2  
XINT1  
Reserved  
T1OFINT  
(EV-A)  
T1UFINT  
(EV-A)  
T1CINT  
(EV-A)  
T1PINT  
(EV-A)  
CMP3INT  
(EV-A)  
CMP2INT  
(EV-A)  
CMP1INT  
(EV-A)  
INT2  
INT3  
INT4  
INT5  
INT6  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CAPINT3  
(EV-A)  
CAPINT2  
(EV-A)  
CAPINT1  
(EV-A)  
T2OFINT  
(EV-A)  
T2UFINT  
(EV-A)  
T2CINT  
(EV-A)  
T2PINT  
(EV-A)  
T3OFINT  
(EV-B)  
T3UFINT  
(EV-B)  
T3CINT  
(EV-B)  
T3PINT  
(EV-B)  
CMP6INT  
(EV-B)  
CMP5INT  
(EV-B)  
CMP4INT  
(EV-B)  
CAPINT6  
(EV-B)  
CAPINT5  
(EV-B)  
CAPINT4  
(EV-B)  
T4OFINT  
(EV-B)  
T4UFINT  
(EV-B)  
T4CINT  
(EV-B)  
T4PINT  
(EV-B)  
MXINT  
(McBSP)  
MRINT  
(McBSP)  
SPITXINTA  
(SPI)  
SPIRXINTA  
(SPI)  
Reserved  
Reserved  
Reserved  
INT7  
INT8  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ECAN1INT  
(CAN)  
ECAN0INT  
(CAN)  
SCITXINTB SCIRXINTB SCITXINTA  
SCIRXINTA  
(SCI-A)  
INT9  
Reserved  
Reserved  
(SCI-B)  
Reserved  
Reserved  
Reserved  
(SCI-B)  
Reserved  
Reserved  
Reserved  
(SCI-A)  
Reserved  
Reserved  
Reserved  
INT10  
INT11  
INT12  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
(1) Out of the 96 possible interrupts, 45 interrupts are currently used. The remaining interrupts are reserved for future devices. These  
interrupts can be used as software interrupts if they are enabled at the PIEIFRx level, provided none of the interrupts within the group  
is being used by a peripheral. Otherwise, interrupts coming in from peripherals may be lost by accidentally clearing their flag while  
modifying the PIEIFR.  
To summarize, there are two safe cases when the reserved interrupts could be used as software interrupts:  
a. No peripheral within the group is asserting interrupts.  
b. No peripheral interrupts are assigned to the group (example PIE group 12).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-25. PIE Configuration and Control Registers  
NAME(1)  
PIECTRL  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
0x0000 0CE0  
1
PIE, Control Register  
PIEACK  
PIEIER1  
PIEIFR1  
PIEIER2  
PIEIFR2  
PIEIER3  
PIEIFR3  
PIEIER4  
PIEIFR4  
PIEIER5  
PIEIFR5  
PIEIER6  
PIEIFR6  
PIEIER7  
PIEIFR7  
PIEIER8  
PIEIFR8  
PIEIER9  
PIEIFR9  
PIEIER10  
PIEIFR10  
PIEIER11  
PIEIFR11  
PIEIER12  
PIEIFR12  
Reserved  
0x0000 0CE1  
0x0000 0CE2  
0x0000 0CE3  
0x0000 0CE4  
0x0000 0CE5  
0x0000 0CE6  
0x0000 0CE7  
0x0000 0CE8  
0x0000 0CE9  
0x0000 0CEA  
0x0000 0CEB  
0x0000 0CEC  
0x0000 0CED  
0x0000 0CEE  
0x0000 0CEF  
0x0000 0CF0  
0x0000 0CF1  
0x0000 0CF2  
0x0000 0CF3  
0x0000 0CF4  
0x0000 0CF5  
0x0000 0CF6  
0x0000 0CF7  
0x0000 0CF8  
0x0000 0CF9  
0x0000 0CFA – 0x0000 0CFF  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
PIE, Acknowledge Register  
PIE, INT1 Group Enable Register  
PIE, INT1 Group Flag Register  
PIE, INT2 Group Enable Register  
PIE, INT2 Group Flag Register  
PIE, INT3 Group Enable Register  
PIE, INT3 Group Flag Register  
PIE, INT4 Group Enable Register  
PIE, INT4 Group Flag Register  
PIE, INT5 Group Enable Register  
PIE, INT5 Group Flag Register  
PIE, INT6 Group Enable Register  
PIE, INT6 Group Flag Register  
PIE, INT7 Group Enable Register  
PIE, INT7 Group Flag Register  
PIE, INT8 Group Enable Register  
PIE, INT8 Group Flag Register  
PIE, INT9 Group Enable Register  
PIE, INT9 Group Flag Register  
PIE, INT10 Group Enable Register  
PIE, INT10 Group Flag Register  
PIE, INT11 Group Enable Register  
PIE, INT11 Group Flag Register  
PIE, INT12 Group Enable Register  
PIE, INT12 Group Flag Register  
Reserved  
(1) The PIE configuration and control registers are not protected by EALLOW mode. The PIE vector table is protected.  
Copyright © 2021 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.7.1 External Interrupts  
Table 9-26. External Interrupts Registers  
NAME  
XINT1CR  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
0x00 7070  
0x00 7071  
1
1
5
1
1
1
5
1
XINT1 control register  
XINT2 control register  
XINT2CR  
Reserved  
0x00 7072 – 0x00 7076  
0x00 7077  
XNMICR  
XNMI control register  
XINT1CTR  
XINT2CTR  
Reserved  
0x00 7078  
XINT1 counter register  
XINT2 counter register  
0x00 7079  
0x00 707A – 0x00 707E  
0x00 707F  
XNMICTR  
XNMI counter register  
Each external interrupt can be enabled/disabled or qualified using positive or negative going edge. For more  
information, see the TMS320x281x DSP System Control and Interrupts Reference Guide.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.8 System Control  
This section describes the F281x oscillator, PLL and clocking mechanisms, the watchdog function and the low-  
power modes. Figure 9-19 shows the various clock and reset domains in the F281x devices that will be  
discussed.  
Reset  
XRS  
Watchdog  
Block  
SYSCLKOUT  
Peripheral Reset  
CLKIN(A)  
X1/XCLKIN  
X2  
PLL  
OSC  
C28x CPU  
Power  
Modes  
Control  
XF_XPLLDIS  
Clock Enables  
System  
Control  
Registers  
Peripheral  
Registers  
I/O  
I/O  
I/O  
eCAN  
LSPCLK  
Low-Speed Prescaler  
Peripheral  
Registers  
Low-Speed Peripherals  
SCI-A/B, SPI, McBSP  
GPIO  
MUX  
GPIOs  
HSPCLK  
High-Speed Prescaler  
Peripheral  
Registers  
High-Speed Peripherals  
EV-A/B  
HSPCLK  
ADC  
Registers  
12-Bit ADC  
16 ADC Inputs  
A. CLKIN is the clock input to the CPU. SYSCLKOUT is the output clock of the CPU. They are of the same frequency.  
Figure 9-19. Clock and Reset Domains  
Copyright © 2021 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
The PLL, clocking, watchdog and low-power modes, are controlled by the registers listed in Table 9-27.  
Table 9-27. PLL, Clocking, Watchdog, and Low-Power Mode Registers  
NAME(1)  
ADDRESS  
0x00 7010 – 0x00 7017  
0x00 7018  
SIZE (x16)  
DESCRIPTION  
Reserved  
Reserved  
Reserved  
8
1
1
0x00 7019  
High-Speed Peripheral Clock Prescaler Register for  
HSPCLK clock  
HISPCP  
LOSPCP  
0x00 701A  
0x00 701B  
1
1
Low-Speed Peripheral Clock Prescaler Register for  
LSPCLK clock  
PCLKCR  
Reserved  
LPMCR0  
LPMCR1  
Reserved  
PLLCR  
0x00 701C  
0x00 701D  
1
1
1
1
1
1
1
1
1
1
3
1
6
Peripheral Clock Control Register  
0x00 701E  
Low-Power Mode Control Register 0  
Low-Power Mode Control Register 1  
0x00 701F  
0x00 7020  
0x00 7021  
PLL Control Register(2)  
SCSR  
0x00 7022  
System Control and Status Register  
Watchdog Counter Register  
WDCNTR  
Reserved  
WDKEY  
Reserved  
WDCR  
0x00 7023  
0x00 7024  
0x00 7025  
Watchdog Reset Key Register  
Watchdog Control Register  
0x00 7026 – 0x00 7028  
0x00 7029  
Reserved  
0x00 702A – 0x00 702F  
(1) All of the above registers can only be accessed by executing the EALLOW instruction.  
(2) The PLL control register (PLLCR) is reset to a known state by the XRS signal only. Emulation reset (through Code Composer Studio)  
will not reset PLLCR.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.9 OSC and PLL Block  
Figure 9-20 shows the OSC and PLL block on F281x.  
XPLLDIS  
XF_XPLLDIS  
Latch  
XRS  
OSCCLK (PLL Disabled)  
XCLKIN  
X1/XCLKIN  
0
1
CLKIN  
SYSCLKOUT  
CPU  
On-Chip  
Oscillator  
(OSC)  
PLL  
Bypass  
/2  
4-Bit PLL Select  
X2  
PLL  
4-Bit PLL Select  
PLL Block  
Figure 9-20. OSC and PLL Block  
The on-chip oscillator circuit enables a crystal to be attached to the F281x devices using the X1/XCLKIN and X2  
pins. If a crystal is not used, then an external oscillator can be directly connected to the X1/XCLKIN pin and the  
X2 pin is left unconnected. The logic-high level in this case should not exceed VDD. The PLLCR bits [3:0] set the  
clocking ratio.  
Copyright © 2021 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-28. PLLCR Register Bit Definitions  
XRS  
BIT(S)  
NAME  
TYPE  
DESCRIPTION  
RESET(1)  
15:4  
Reserved  
R = 0  
0:0  
SYSCLKOUT = (XCLKIN * n)/2, where n is the PLL multiplication  
factor.  
Bit Value  
n
SYSCLKOUT  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
PLL Bypassed XCLKIN/2  
1
XCLKIN/2  
2
XCLKIN  
3
XCLKIN * 1.5  
XCLKIN * 2  
XCLKIN * 2.5  
XCLKIN * 3  
XCLKIN * 3.5  
XCLKIN * 4  
XCLKIN * 4.5  
XCLKIN * 5  
Reserved  
4
5
3:0  
DIV  
R/W  
0,0,0,0  
6
7
8
9
10  
11  
12  
13  
14  
15  
Reserved  
Reserved  
Reserved  
Reserved  
(1) The PLLCR register is reset to a known state by the XRS reset line. If a reset is issued by the debugger, the PLL clocking ratio is  
not changed.  
9.9.1 Loss of Input Clock  
In PLL enabled mode, if the input clock XCLKIN or the oscillator clock is removed or absent, the PLL will still  
issue a “limp-mode” clock. The limp-mode clock will continue to clock the CPU and peripherals at a typical  
frequency of 1–4 MHz. The PLLCR register should have been written to with a non-zero value for this feature to  
work.  
Normally, when the input clocks are present, the watchdog counter will decrement to initiate a watchdog reset or  
WDINT interrupt. However, when the external input clock fails, the watchdog counter will stop decrementing (that  
is, the watchdog counter does not change with the limp-mode clock). This condition could be used by the  
application firmware to detect the input clock failure and initiate necessary shut-down procedure for the system.  
Note  
Applications in which the correct CPU operating frequency is absolutely critical must implement a  
mechanism by which the DSP will be held in reset, should the input clocks ever fail. For example, an  
R-C circuit may be used to trigger the XRS pin of the DSP, should the capacitor ever get fully charged.  
An I/O pin may be used to discharge the capacitor on a periodic basis to prevent it from getting fully  
charged. Such a circuit would also help in detecting failure of the VDD3VFL rail.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.10 PLL-Based Clock Module  
The F281x has an on-chip, PLL-based clock module. This module provides all the necessary clocking signals for  
the device, as well as control for low-power mode entry. The PLL has a 4-bit ratio control to select different CPU  
clock rates. The watchdog module should be disabled before writing to the PLLCR register. It can be re-enabled  
(if need be) after the PLL module has stabilized, which takes 131072 XCLKIN cycles.  
The PLL-based clock module provides two modes of operation:  
Crystal operation: This mode allows the use of an external crystal/resonator to provide the time base to the  
device.  
External clock source operation: This mode allows the internal oscillator to be bypassed. The device  
clocks are generated from an external clock source input on the X1/XCLKIN pin.  
X1/XCLKIN  
X2  
X1/XCLKIN  
X2  
(A)  
(A)  
CL1  
CL2  
External Clock Signal  
)
NC  
(Toggling 0-VDD  
Crystal  
(a)  
(b)  
A. TI recommends that customers have the resonator/crystal vendor characterize the operation of their device with the DSP chip. The  
resonator/crystal vendor has the equipment and expertise to tune the tank circuit. The vendor can also advise the customer regarding  
the proper tank component values that will ensure start-up and stability over the entire operating range.  
Figure 9-21. Recommended Crystal/Clock Connection  
Table 9-29. Possible PLL Configuration Modes  
PLL MODE  
REMARKS  
SYSCLKOUT  
Invoked by tying XPLLDIS pin low upon reset. PLL block is completely disabled.  
Clock input to the CPU (CLKIN) is directly derived from the clock signal present at the  
X1/XCLKIN pin.  
PLL Disabled  
XCLKIN  
Default PLL configuration upon power-up, if PLL is not disabled. The PLL itself is  
bypassed. However, the /2 module in the PLL block divides the clock input at the X1/  
XCLKIN pin by two before feeding it to the CPU.  
PLL Bypassed  
PLL Enabled  
XCLKIN/2  
Achieved by writing a non-zero value “n” into PLLCR register. The /2 module in the  
PLL block now divides the output of the PLL by two before feeding it to the CPU.  
(XCLKIN * n) / 2  
9.11 External Reference Oscillator Clock Option  
The typical specifications for the external quartz crystal for a frequency of 30 MHz are listed below:  
Fundamental mode, parallel resonant  
CL (load capacitance) = 12 pF  
CL1 = CL2 = 24 pF  
Cshunt = 6 pF  
ESR range = 25 to 40 Ω  
Copyright © 2021 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.12 Watchdog Block  
The watchdog block on the F281x is identical to the one used on the 240x devices. The watchdog module  
generates an output pulse, 512 oscillator clocks wide (OSCCLK), whenever the 8-bit watchdog up counter has  
reached its maximum value. To prevent this, the user disables the counter or the software must periodically write  
a 0x55 + 0xAA sequence into the watchdog key register which will reset the watchdog counter. Figure 9-22  
shows the various functional blocks within the watchdog module.  
WDCR (WDPS[2:0])  
WDCR (WDDIS)  
WDCNTR[7:0]  
OSCCLK  
WDCLK  
Watchdog  
Prescaler  
8-Bit  
Watchdog  
Counter  
CLR  
/512  
Clear Counter  
Internal  
Pullup  
WDKEY[7:0]  
WDRST  
WDINT  
Generate  
Output Pulse  
(512 OSCCLKs)  
Bad Key  
Watchdog  
55 + AA  
Key Detector  
Good Key  
XRS  
Bad  
WDCHK  
Key  
Core-reset  
WDCR (WDCHK[2:0])  
SCSR (WDENINT)  
WDRST(A)  
A. The WDRST signal is driven low for 512 OSCCLK cycles.  
1
0
1
Figure 9-22. Watchdog Module  
The WDINT signal enables the watchdog to be used as a wakeup from IDLE/STANDBY mode timer.  
In STANDBY mode, all peripherals are turned off on the device. The only peripheral that remains functional is  
the watchdog. The WATCHDOG module will run off the PLL clock or the oscillator clock. The WDINT signal is  
fed to the LPM block so that it can wake the device from STANDBY (if enabled). See Section 9.13, Low-Power  
Modes Block, for more details.  
In IDLE mode, the WDINT signal can generate an interrupt to the CPU, via the PIE, to take the CPU out of IDLE  
mode.  
In HALT mode, this feature cannot be used because the oscillator (and PLL) are turned off and hence, so is the  
WATCHDOG.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
9.13 Low-Power Modes Block  
The low-power modes on F281x are similar to the 240x devices. Table 9-30 summarizes the various modes.  
Table 9-30. Low-Power Modes  
MODE  
LPM[1:0]  
OSCCLK  
CLKIN  
SYSCLKOUT  
EXIT(1)  
Normal  
X,X  
on  
on  
on  
XRS,  
WDINT,  
IDLE  
0,0  
on  
on  
on(2)  
Any Enabled Interrupt,  
XNMI,  
Debugger(3)  
XRS,  
WDINT,  
XINT1,  
XNMI,  
on  
T1/2/3/4CTRIP,  
C1/2/3/4/5/6TRIP,  
SCIRXDA,  
SCIRXDB,  
CANRX,  
STANDBY  
0,1  
1,X  
off  
off  
off  
off  
(watchdog still running)  
Debugger(3)  
off  
XRS,  
XNMI,  
HALT  
(oscillator and PLL turned off,  
watchdog not functional)  
Debugger(3)  
(1) The Exit column lists which signals or under what conditions the low-power mode will be exited. A low signal, on any of the signals, will  
exit the low-power condition. This signal must be kept low long enough for an interrupt to be recognized by the device. Otherwise, the  
IDLE mode will not be exited and the device will go back into the indicated low-power mode.  
(2) The IDLE mode on the C28x behaves differently than on the 24x/240x. On the C28x, the clock output from the core (SYSCLKOUT) is  
still functional; while on the 24x/240x, the clock is turned off.  
(3) On the C28x, the JTAG port can still function even if the core clock (CLKIN) is turned off.  
The various low-power modes operate as follows:  
IDLE Mode  
This mode is exited by any enabled interrupt or an XNMI that is recognized by the processor. The  
LPM block performs no tasks during this mode as long as the LPMCR0(LPM) bits are set to 0,0.  
STANDBY Mode  
All other signals (including XNMI) will wake the device from STANDBY mode if selected by the  
LPMCR1 register. The user will need to select which signal(s) will wake the device. The selected  
signal(s) are also qualified by the OSCCLK before waking the device. The number of OSCCLKs is  
specified in the LPMCR0 register.  
HALT Mode  
Only the XRS and XNMI external signals can wake the device from HALT mode. The XNMI input to  
the core has an enable/disable bit. Hence, it is safe to use the XNMI signal for this function.  
Note  
The low-power modes do not affect the state of the output pins (PWM pins included). They will be in  
whatever state the code left them when the IDLE instruction was executed.  
Copyright © 2021 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
10 Applications, Implementation, and Layout  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 TI Reference Design  
The TI Reference Design Library is a robust reference design library spanning analog, embedded processor,  
and connectivity. Created by TI experts to help you jump start your system design, all reference designs include  
schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download  
designs at Select TI reference designs.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
11 Device and Documentation Support  
11.1 Getting Started  
This section gives a brief overview of the steps to take when first developing for a C28x device. For more detail  
on each of these steps, see the following:  
C2000 real-time control MCUs – Tools & software  
11.2 Device and Development Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
TMS320DSP devices and support tools. Each TMS320 DSP commercial family member has one of three  
prefixes: TMX, TMP, or TMS (for example, TMS320F2810). Texas Instruments recommends two of three  
possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages  
of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/  
tools (TMS/TMDS).  
TMX  
TMP  
Experimental device that is not necessarily representative of the final device’s electrical specifications  
Final silicon die that conforms to the device’s electrical specifications but has not completed quality and reliability  
verification  
TMS  
Fully qualified production device  
Support tool development evolutionary flow:  
TMDX  
TMDS  
Development-support product that has not yet completed Texas Instruments internal qualification testing  
Fully qualified development-support product  
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability  
of the device have been demonstrated fully. TI’s standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, PBK) and temperature range (for example, A). Figure 11-1 provides a legend for reading the  
complete device name for any TMS320F281x family member.  
For device part numbers and further ordering information, see the Package Option Addendum of this document,  
the TI website (www.ti.com), or contact your TI sales representative.  
For additional description of the device nomenclature markings on the die, see the TMS320F281x DSPs Silicon  
Errata.  
Copyright © 2021 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 11-1. TMS320F281x Device Nomenclature  
11.3 Tools and Software  
TI offers an extensive line of development tools. Some of the tools and software to evaluate the performance of  
the device, generate code, and develop solutions are listed below. To view all available tools and software, visit  
the Tools & software page for each device.  
Development Tools  
TMS320F2812 eZdsp Start Kit (DSK)  
The F2812 eZdspis a standalone module that lets evaluators examine certain characteristics of the F2812  
digital signal processor (DSP) to determine if this DSP meets their application requirements. This module has a  
single chip parallel port to JTAG scan controller. Therefore the module can be operated without additional  
development tools such as an emulator. Furthermore, the module is an excellent platform to develop,  
demonstrate, and run software for the F2812 processor.  
Uniflash Standalone Flash Tool  
CCS Uniflash is a standalone tool used to program on-chip flash memory on TI MCUs.  
Software Tools  
controlSUITE™ Software Suite: Software and Development Tools for C2000™ Microcontrollers  
controlSUITEfor C2000microcontrollers is a cohesive set of software infrastructure, tools, and  
documentation designed to minimize system development time. From device-specific drivers and support  
software to complete examples in sophisticated system applications, controlSUITE provides the needed  
resources at every stage of development and evaluation.  
Code Composer Studio(CCS) Integrated Development Environment (IDE) for C2000 Microcontrollers  
Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and  
Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug  
embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment,  
debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking the user  
through each step of the application development flow. Familiar tools and interfaces allow users to get started  
faster than ever before. Code Composer Studio combines the advantages of the Eclipse software framework  
with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development  
environment for embedded developers.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
Models  
Various models are available for download from the product Tools & Software pages. These include I/O Buffer  
Information Specification (IBIS) Models and Boundary-Scan Description Language (BSDL) Models. To view all  
available models, visit the Models section of the Tools & Software page for each device.  
11.4 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
The current documentation that describes the processor, related peripherals, and other technical collateral is  
listed below.  
Errata  
TMS320F281x DSPs Silicon Errata describes the advisories and usage notes for different versions of silicon.  
CPU User's Guides  
TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and the  
assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). It also  
describes emulation features available on these DSPs.  
Peripheral Guides  
C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the 28x  
digital signal processors (DSPs).  
TMS320x281x DSP Analog-to-Digital Converter (ADC) Reference Guide describes the ADC module. The  
module is a 12-bit pipelined ADC. The analog circuits of this converter, referred to as the core in this document,  
include the front-end analog multiplexers (MUXs), sample-and-hold (S/H) circuits, the conversion core, voltage  
regulators, and other analog supporting circuits. Digital circuits, referred to as the wrapper in this document,  
include programmable conversion sequencer, result registers, interface to analog circuits, interface to device  
peripheral bus, and interface to other on-chip modules.  
TMS320x281x DSP Boot ROM Reference Guide describes the purpose and features of the bootloader (factory-  
programmed boot-loading software). It also describes other contents of the device on-chip boot ROM and  
identifies where all of the information is located within that memory.  
TMS320x281x DSP Event Manager (EV) Reference Guide describes the EV modules that provide a broad range  
of functions and features that are particularly useful in motion control and motor control applications. The EV  
modules include general-purpose (GP) timers, full-compare/PWM units, capture units, and quadrature-encoder  
pulse (QEP) circuits.  
TMS320x281x DSP External Interface (XINTF) Reference Guide describes the external interface (XINTF) of the  
281x digital signal processors (DSPs).  
TMS320x281x DSP Multichannel Buffered Serial Port (McBSP) Reference Guide describes the McBSP available  
on the 281x devices. The McBSPs allow direct interface between a DSP and other devices in a system.  
TMS320x281x DSP System Control and Interrupts Reference Guide describes the various interrupts and system  
control features of the 281x digital signal processors (DSPs).  
TMS320x281x Enhanced Controller Area Network (eCAN) Reference Guide describes the eCAN that uses  
established protocol to communicate serially with other controllers in electrically noisy environments. With 32  
fully configurable mailboxes and time-stamping feature, the eCAN module provides a versatile and robust serial  
communication interface. The eCAN module implemented in the C28x DSP is compatible with the ISO11898-1  
(CAN 2.0B) standard (active).  
TMS320x281x Serial Communications Interface (SCI) Reference Guide describes the SCI that is a two-wire  
asynchronous serial port, commonly known as a UART. The SCI modules support digital communications  
between the CPU and other asynchronous peripherals that use the standard non-return-to-zero (NRZ) format.  
Copyright © 2021 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
TMS320x281x Serial Peripheral Interface Reference Guide describes the SPI—a high-speed synchronous serial  
input/output (I/O) port that allows a serial bit stream of programmed length (one to sixteen bits) to be shifted into  
and out of the device at a programmed bit-transfer rate. The SPI is used for communications between the DSP  
controller and external peripherals or another controller.  
Tools Guides  
TMS320C28x Assembly Language Tools v18.12.0.LTS User's Guide describes the assembly language tools  
(assembler and other tools used to develop assembly language code), assembler directives, macros, common  
object file format, and symbolic debugging directives for the TMS320C28x device.  
TMS320C28x Optimizing C/C++ Compiler v18.12.0.LTS User's Guide describes the TMS320C28x C/C++  
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly  
language source code for the TMS320C28x device.  
TMS320C28x DSP/BIOS 5.x Application Programming Interface (API) Reference Guide describes development  
using DSP/BIOS.  
Application Reports  
The SMT & packaging application notes website lists documentation on TI’s surface mount technology (SMT)  
and application notes on a variety of packaging-related topics.  
Programming Examples for the TMS320x28xx eCAN Application Report contains several programming  
examples to illustrate how the eCAN module is set up for different modes of operation. The objective is to help  
you come up to speed quickly in programming the eCAN. All programs have been extensively commented to aid  
easy understanding.  
F2810, F2811, and F2812 ADC Calibration Application Report describes a method for improving the absolute  
accuracy of the 12-bit analog-to-digital converter (ADC) found on the F2810/F2811/F2812 devices. Due to  
inherent gain and offset errors, the absolute accuracy of the ADC is impacted. The methods described in this  
application note can improve the absolute accuracy of the ADC to achieve levels better than 0.5%. This  
application note is accompanied by an example program (ADCcalibration, spra989.zip) that executes from RAM  
on the F2812 eZdsp.  
An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS  
including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/  
output structures and future trends.  
Semiconductor Packing Methodology describes the packing methodologies employed to prepare semiconductor  
devices for shipment to end users.  
Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful lifetime  
of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general  
engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement.  
Calculating FIT for a Mission Profile explains how to use TI's reliability de-rating tools to calculate a component-  
level FIT under power-on conditions for a system mission profile.  
Semiconductor and IC Package Thermal Metrics describes traditional and new thermal metrics and puts their  
application in perspective with respect to system-level junction temperature estimation.  
Serial Flash Programming of C2000™ Microcontrollers discusses using a flash kernel and ROM loaders for  
serial programming a device.  
11.5 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
11.6 Trademarks  
Code Composer Studio, DSP/BIOS, MicroStar BGA, and are trademarks of TI.  
C2000, Piccolo, TMS320C2000, TMS320, controlSUITE, TI E2Eare trademarks of Texas Instruments.  
eZdspis a trademark of Spectrum Digital Incorporated.  
All trademarks are the property of their respective owners.  
11.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.8 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
 
TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1  
TMS320F2812, TMS320F2812-Q1  
SPRS174V – APRIL 2001 – REVISED FEBRUARY 2021  
www.ti.com  
12 Mechanical, Packaging, and Orderable Information  
12.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
To learn more about TI packaging, visit the Packaging information website.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: TMS320F2810 TMS320F2810-Q1 TMS320F2811 TMS320F2811-Q1 TMS320F2812  
TMS320F2812-Q1  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Feb-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
ZHH  
PBK  
PBK  
PBK  
PBK  
PBK  
PBK  
PBK  
GBB  
GBB  
GBB  
GHH  
GHH  
GHH  
GHH  
PGF  
PGF  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DFDF2812ZHHAR  
TMS320F2810PBKA  
TMS320F2810PBKQ  
TMS320F2810PBKQR  
TMS320F2810PBKS  
TMS320F2811PBKA  
TMS320F2811PBKQ  
TMS320F2811PBKS  
TMS320F2812GBBA  
TMS320F2812GBBAR  
TMS320F2812GBBS  
TMS320F2812GHHA  
TMS320F2812GHHAR  
TMS320F2812GHHQ  
TMS320F2812GHHS  
TMS320F2812PGFA  
TMS320F2812PGFAG4  
LIFEBUY  
BGA  
MICROSTAR  
179  
128  
128  
128  
128  
128  
128  
128  
179  
179  
179  
179  
179  
179  
179  
176  
176  
1000 RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Call TI  
-40 to 85  
-40 to 85  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 85  
-40 to 125  
-40 to 85  
-40 to 85  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 85  
320F2812ZHHA  
TMS  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LIFEBUY  
LIFEBUY  
LIFEBUY  
LIFEBUY  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
90  
90  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Call TI  
320F2810PBKA  
TMS  
320F2810PBKQ  
TMS  
LQFP  
1000 RoHS & Green  
320F2810PBKQ  
TMS  
LQFP  
90  
90  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
320F2810PBKS  
TMS  
LQFP  
320F2811PBKA  
TMS  
LQFP  
90  
320F2811PBKQ  
TMS  
LQFP  
90  
320F2811PBKS  
TMS  
NFBGA  
NFBGA  
NFBGA  
160  
1000  
160  
160  
1000  
160  
160  
40  
Non-RoHS  
& Green  
TMS  
320F2812GBBA  
Non-RoHS  
& Green  
Call TI  
Call TI  
TMS  
320F2812GBBA  
Non-RoHS  
& Green  
Call TI  
Call TI  
TMS  
320F2812GBBS  
BGA  
MICROSTAR  
Non-RoHS  
& Green  
SNPB  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
320F2812GHHA  
TMS  
BGA  
MICROSTAR  
Non-RoHS  
& Green  
SNPB  
320F2812GHHA  
TMS  
BGA  
MICROSTAR  
Non-RoHS  
& Green  
SNPB  
320F2812GHHQ  
TMS  
BGA  
MICROSTAR  
Non-RoHS  
& Green  
SNPB  
320F2812GHHS  
TMS  
LQFP  
RoHS & Green  
NIPDAU  
NIPDAU  
320F2812PGFA  
TMS  
LQFP  
40  
RoHS & Green  
320F2812PGFA  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Feb-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS  
TMS320F2812PGFQ  
TMS320F2812PGFS  
TMS320F2812ZAYA  
TMS320F2812ZAYAR  
TMS320F2812ZAYS  
TMS320F2812ZHHA  
TMS320F2812ZHHAR  
TMS320F2812ZHHS  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LIFEBUY  
LIFEBUY  
LIFEBUY  
LQFP  
LQFP  
PGF  
PGF  
ZAY  
ZAY  
ZAY  
ZHH  
ZHH  
ZHH  
176  
176  
179  
179  
179  
179  
179  
179  
40  
40  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 85  
-40 to 125  
-40 to 85  
-40 to 85  
-40 to 125  
320F2812PGFQ  
TMS  
320F2812PGFS  
TMS  
NFBGA  
NFBGA  
NFBGA  
160  
TMS  
320F2812ZAYA  
1000 RoHS & Green  
TMS  
320F2812ZAYA  
160  
160  
RoHS & Green  
RoHS & Green  
TMS  
320F2812ZAYS  
BGA  
MICROSTAR  
320F2812ZHHA  
TMS  
BGA  
MICROSTAR  
1000 RoHS & Green  
160 RoHS & Green  
320F2812ZHHA  
TMS  
BGA  
MICROSTAR  
320F2812ZHHS  
TMS  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Feb-2021  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TMS320F2810, TMS320F2810-Q1, TMS320F2811, TMS320F2811-Q1, TMS320F2812, TMS320F2812-Q1 :  
Catalog: TMS320F2810, TMS320F2811, SM320F2812, TMS320F2812  
Automotive: TMS320F2810-Q1, TMS320F2811-Q1, TMS320F2812-Q1  
Enhanced Product: SM320F2812-EP  
Military: SMJ320F2812, SMJ320F2812  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Military - QML certified for Military and Defense Applications  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMS320F2812GBBAR  
TMS320F2812ZAYAR  
NFBGA  
NFBGA  
GBB  
ZAY  
179  
179  
1000  
1000  
330.0  
330.0  
24.4  
24.4  
12.35 12.35  
12.35 12.35  
2.3  
2.3  
16.0  
16.0  
24.0  
24.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMS320F2812GBBAR  
TMS320F2812ZAYAR  
NFBGA  
NFBGA  
GBB  
ZAY  
179  
179  
1000  
1000  
336.6  
336.6  
336.6  
336.6  
41.3  
41.3  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PGF0176A  
LQFP - 1.6 mm max height  
SCALE 0.550  
PLASTIC QUAD FLATPACK  
24.2  
23.8  
NOTE 3  
B
PIN 1 ID  
133  
176  
1
132  
24.2  
23.8  
26.2  
TYP  
25.8  
NOTE 3  
44  
89  
45  
88  
0.27  
0.17  
A
176X  
172X 0.5  
0.08  
C A B  
4X 21.5  
C
SEATING PLANE  
1.6 MAX  
SEE DETAIL A  
(0.13)  
TYP  
0.25  
(1.4)  
GAGE PLANE  
0.15  
0.05  
0.08 C  
0 -7  
0.75  
0.45  
A
12  
DETAIL A  
TYPICAL  
4215177/A 05/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs.  
4. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PGF0176A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
176  
133  
176X (1.5)  
1
132  
176X (0.3)  
172X (0.5)  
SYMM  
(25.4)  
(R0.05) TYP  
89  
44  
SEE DETAILS  
45  
88  
(25.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:4X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215177/A 05/2017  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PGF0176A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
176  
133  
176X (1.5)  
176X (0.3)  
1
132  
172X (0.5)  
SYMM  
(25.4)  
(R0.05) TYP  
44  
89  
45  
88  
(25.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4215177/A 05/2017  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
GBB0179A  
A
12.1  
11.9  
B
BALL A1 CORNER  
12.1  
11.9  
1.4 MAX  
C
SEATING PLANE  
0.12 C  
0.45  
0.35  
BALL TYP  
(0.8) TYP  
(0.8) TYP  
10.4 TYP  
P
N
M
L
K
J
SYMM  
H
G
F
10.4  
TYP  
0.55  
179X Ø  
0.45  
E
D
C
0.15  
0.05  
C A B  
C
B
A
0.8 TYP  
0.8 TYP  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
SYMM  
4225682/A 02/2020  
NanoFree is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
GBB0179A  
(0.8) TYP  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
A
B
C
D
E
F
(0.8) TYP  
G
H
J
SYMM  
K
L
179X (Ø 0.4)  
M
N
P
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 8X  
0.05 MIN  
0.05 MAX  
ALL AROUND  
ALL AROUND  
EXPOSED  
METAL  
METAL UNDER  
SOLDER MASK  
(Ø 0.40)  
SOLDER MASK  
OPENING  
(Ø 0.40)  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225682/A 02/2020  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments  
Literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
GBB0179A  
(0.8) TYP  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
A
B
C
D
E
F
(0.8) TYP  
G
H
J
SYMM  
K
L
179X (Ø 0.4)  
M
N
P
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.150 mm THICK STENCIL  
SCALE: 8X  
4225682/A 02/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
PACKAGE OUTLINE  
ZHH0179A  
UBGA - 1.4 mm max height  
SCALE 1.200  
BALL GRID ARRAY  
12.1  
11.9  
B
A
BALL A1  
CORNER  
12.1  
11.9  
0.9  
C
SEATING PLANE  
0.1 C  
BALL TYP  
1.4 MAX  
0.45  
0.35  
10.4 TYP  
SYMM  
P
N
M
L
K
10.4  
TYP  
J
H
G
F
SYMM  
E
D
0.8  
C
TYP  
B
A
9
10  
1
2
3
4
5
6
7
8
11  
12  
13 14  
0.55  
0.45  
179X  
0.15  
0.08  
C A B  
C
0.8 TYP  
4220265/A 05/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This is a Pb-free solder ball design.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZHH0179A  
UBGA - 1.4 mm max height  
BALL GRID ARRAY  
(0.8) TYP  
179X ( 0.4)  
1
3
4
5
6
7
8
2
9
10 11 12 13 14  
A
(0.8) TYP  
B
C
D
E
F
G
H
J
SYMM  
K
L
M
N
P
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
(
0.4)  
METAL  
(
0.4)  
EXPOSED  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4220265/A 05/2017  
NOTES: (continued)  
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SSZA002 (www.ti.com/lit/ssza002).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZHH0179A  
UBGA - 1.4 mm max height  
BALL GRID ARRAY  
(0.8) TYP  
179X 0.4  
(0.8) TYP  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
1
A
B
C
D
E
F
G
H
J
SYMM  
K
L
M
N
P
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE: 10X  
4220265/A 05/2017  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
PACKAGE OUTLINE  
ZAY0179A  
NFBGA - 1.4 mm max height  
S
C
A
L
E
1
.
2
0
0
PLASTIC BALL GRID ARRAY  
12.1  
11.9  
B
A
BALL A1  
CORNER  
12.1  
11.9  
1.4 MAX  
C
SEATING PLANE  
0.45  
0.35  
0.12 C  
10.4 TYP  
(0.8)  
(0.8)  
SYMM  
P
N
M
L
K
J
SYMM  
H
G
10.4 TYP  
F
E
D
C
0.55  
179X  
0.45  
B
A
0.15C A B  
0.08C  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0.8 TYP  
0.8 TYP  
4225014/C 07/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZAY0179A  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
(0.8) TYP  
179X ( 0.4)  
(0.8) TYP  
1
2
4
5
7
13  
3
9
10  
11  
14  
6
8
12  
A
B
C
D
E
F
G
H
J
SYMM  
K
L
M
N
P
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
EXPOSED METAL  
(
0.4)  
(
0.4)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL EDGE  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225014/C 07/2020  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZAY0179A  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
(0.8) TYP  
179X ( 0.4)  
(0.8) TYP  
1
2
4
5
7
13  
3
9
10  
11  
14  
6
8
12  
A
B
C
D
E
F
G
H
J
SYMM  
K
L
M
N
P
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.150 mm THICK STENCIL  
SCALE: 10X  
4225014/C 07/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TMS320F2811

DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

TMS320F2811-Q1

TMS320F281x Digital Signal Processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

TMS320F2811PBK

TMS320F281x Digital Signal Processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

TMS320F2811PBKA

Digital Signal Processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

TMS320F2811PBKQ

Digital Signal Processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

TMS320F2811PBKS

Digital Signal Processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

TMS320F2812

DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

TMS320F2812-Q1

TMS320F281x Digital Signal Processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

TMS320F2812GBBA

TMS320F281x Digital Signal Processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

TMS320F2812GBBAR

TMS320F281x Digital Signal Processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI