TMS320F28235PTP [TI]

TMS320F2833x, TMS320F2823x Digital Signal Controllers (DSCs);
TMS320F28235PTP
型号: TMS320F28235PTP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TMS320F2833x, TMS320F2823x Digital Signal Controllers (DSCs)

文件: 总208页 (文件大小:6019K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1,TMS320F28232,TMS320F28232-Q1
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
TMS320F2833x, TMS320F2823x Digital Signal Controllers (DSCs)  
(6 for eCAPs and 2 for eQEPs)  
– Up to 9 16-bit timers  
(6 for ePWMs and 3 XINTCTRs)  
Three 32-bit CPU timers  
Serial port peripherals  
– Up to 2 CAN modules  
– Up to 3 SCI (UART) modules  
– Up to 2 McBSP modules (configurable as SPI)  
– One SPI module  
– One Inter-Integrated Circuit (I2C) bus  
12-bit ADC, 16 channels  
1 Features  
High-performance static CMOS technology  
– Up to 150 MHz (6.67-ns cycle time)  
– 1.9-V/1.8-V core, 3.3-V I/O design  
High-performance 32-bit CPU (TMS320C28x)  
– IEEE 754 single-precision Floating-Point Unit  
(FPU) (F2833x only)  
– 16 × 16 and 32 × 32 MAC operations  
– 16 × 16 dual MAC  
– Harvard bus architecture  
– Fast interrupt response and processing  
– Unified memory programming model  
– Code-efficient (in C/C++ and Assembly)  
Six-channel DMA controller (for ADC, McBSP,  
ePWM, XINTF, and SARAM)  
16-bit or 32-bit External Interface (XINTF)  
– More than 2M × 16 address reach  
On-chip memory  
– F28335, F28333, F28235:  
256K × 16 flash, 34K × 16 SARAM  
– F28334, F28234:  
128K × 16 flash, 34K × 16 SARAM  
– F28332, F28232:  
64K × 16 flash, 26K × 16 SARAM  
– 1K × 16 OTP ROM  
– 80-ns conversion rate  
– 2 × 8 channel input multiplexer  
– Two sample-and-hold  
– Single/simultaneous conversions  
– Internal or external reference  
Up to 88 individually programmable, multiplexed  
GPIO pins with input filtering  
JTAG boundary scan support  
– IEEE Standard 1149.1-1990 Standard Test  
Access Port and Boundary Scan Architecture  
Advanced emulation features  
– Analysis and breakpoint functions  
– Real-time debug using hardware  
Development support includes  
– ANSI C/C++ compiler/assembler/linker  
– Code Composer StudioIDE  
– DSP/BIOSand SYS/BIOS  
– Digital motor control and digital power software  
libraries  
Low-power modes and power savings  
– IDLE, STANDBY, HALT modes supported  
– Disable individual peripheral clocks  
Endianness: Little endian  
Boot ROM (8K × 16)  
– With software boot modes (through SCI, SPI,  
CAN, I2C, McBSP, XINTF, and parallel I/O)  
– Standard math tables  
Clock and system control  
– On-chip oscillator  
– Watchdog timer module  
GPIO0 to GPIO63 pins can be connected to one of  
the eight external core interrupts  
Peripheral Interrupt Expansion (PIE) block that  
supports all 58 peripheral interrupts  
128-bit security key/lock  
– Protects flash/OTP/RAM blocks  
– Prevents firmware reverse-engineering  
Enhanced control peripherals  
– Up to 18 PWM outputs  
– Up to 6 HRPWM outputs with 150-ps MEP  
resolution  
– Up to 6 event capture inputs  
– Up to 2 Quadrature Encoder interfaces  
– Up to 8 32-bit timers  
Package options:  
– Lead-free, green packaging  
– 176-ball plastic Ball Grid Array (BGA) (ZJZ)  
– 179-ball MicroStar BGA(ZHH)  
– 176-pin Low-Profile Quad Flatpack (LQFP)  
(PGF)  
– 176-pin Thermally Enhanced Low-Profile Quad  
Flatpack (HLQFP) (PTP)  
Temperature options:  
– A: –40°C to 85°C (PGF, ZHH, ZJZ)  
– S: –40°C to 125°C (PTP, ZJZ)  
– Q: –40°C to 125°C (PTP, ZJZ)  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
(AEC Q100 qualification for automotive  
applications)  
Factory automation  
Grid infrastructure  
Industrial transport  
Medical, healthcare and fitness  
Motor drives  
Power delivery  
Telecom infrastructure  
Test and measurement  
2 Applications  
Advanced Driver Assistance Systems (ADAS)  
Building automation  
Electronic point of sale  
Electric Vehicle/Hybrid Electric Vehicle (EV/HEV)  
powertrain  
3 Description  
C2000™ 32-bit microcontrollers are optimized for processing, sensing, and actuation to improve closed-loop  
performance in real-time control applications such as industrial motor drives; solar inverters and digital power;  
electrical vehicles and transportation; motor control; and sensing and signal processing. The C2000 line includes  
the Delfino™ Premium Performance family and the Piccolo™ Entry Performance family.  
TMS320C200032-bit microcontrollers are optimized for processing, sensing, and actuation to improve closed-  
loop performance in real-time control applications. The C2000™ microcontrollers line includes the Delfino™  
Premium Performance microcontroller family and the Piccolo™ Entry Performance microcontroller family.  
The TMS320F28335, TMS320F28334, TMS320F28333, TMS320F28332, TMS320F28235, TMS320F28234,  
and TMS320F28232 devices, members of the TMS320C28x/ DelfinoDSC/MCU generation, are highly  
integrated, high-performance solutions for demanding control applications.  
Throughout this document, the devices are abbreviated as F28335, F28334, F28333, F28332, F28235, F28234,  
and F28232, respectively. F2833x Device Comparison and F2823x Device Comparison provide a summary of  
features for each device.  
To learn more about the C2000 MCUs, visit the C2000 Overview at www.ti.com/c2000.  
Device Information (1)  
PART NUMBER  
TMS320F28335ZHH  
PACKAGE  
BGA MicroStar (179)  
BGA MicroStar (179)  
BGA MicroStar (179)  
BGA MicroStar (179)  
BGA MicroStar (179)  
BGA MicroStar (179)  
BGA (176)  
BODY SIZE  
12.0 mm × 12.0 mm  
12.0 mm × 12.0 mm  
12.0 mm × 12.0 mm  
12.0 mm × 12.0 mm  
12.0 mm × 12.0 mm  
12.0 mm × 12.0 mm  
15.0 mm × 15.0 mm  
15.0 mm × 15.0 mm  
15.0 mm × 15.0 mm  
15.0 mm × 15.0 mm  
15.0 mm × 15.0 mm  
15.0 mm × 15.0 mm  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
TMS320F28334ZHH  
TMS320F28332ZHH  
TMS320F28235ZHH  
TMS320F28234ZHH  
TMS320F28232ZHH  
TMS320F28335ZJZ  
TMS320F28334ZJZ  
TMS320F28332ZJZ  
TMS320F28235ZJZ  
TMS320F28234ZJZ  
TMS320F28232ZJZ  
TMS320F28335PGF  
TMS320F28334PGF  
TMS320F28333PGF  
TMS320F28332PGF  
TMS320F28235PGF  
TMS320F28234PGF  
TMS320F28232PGF  
TMS320F28335PTP  
TMS320F28334PTP  
BGA (176)  
BGA (176)  
BGA (176)  
BGA (176)  
BGA (176)  
LQFP (176)  
LQFP (176)  
LQFP (176)  
LQFP (176)  
LQFP (176)  
LQFP (176)  
LQFP (176)  
HLQFP (176)  
HLQFP (176)  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Device Information (1) (continued)  
PART NUMBER  
TMS320F28332PTP  
PACKAGE  
HLQFP (176)  
HLQFP (176)  
HLQFP (176)  
HLQFP (176)  
BODY SIZE  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
TMS320F28235PTP  
TMS320F28234PTP  
TMS320F28232PTP  
(1) For more information on these devices, see Mechanical, Packaging, and Orderable Information.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
3.1 Functional Block Diagram  
M0 SARAM 1Kx16  
(0-Wait)  
L0 SARAM 4K x 16  
(0-Wait, Dual Map)  
OTP 1K x 16  
M1 SARAM 1Kx16  
(0-Wait)  
L1 SARAM 4K x 16  
(0-Wait, Dual Map)  
Flash  
256K x 16  
8 Sectors  
L2 SARAM 4K x 16  
(0-Wait, Dual Map)  
Code  
Security  
Module  
L3 SARAM 4K x 16  
(0-Wait, Dual Map)  
TEST2  
TEST1  
L4 SARAM 4K x 16  
(0-W Data, 1-W Prog)  
Pump  
PSWD  
L5 SARAM 4K x 16  
(0-W Data, 1-W Prog)  
Boot ROM  
8K x 16  
Flash  
Wrapper  
L6 SARAM 4K x 16  
(0-W Data, 1-W Prog)  
L7 SARAM 4K x 16  
(0-W Data, 1-W Prog)  
Memory Bus  
XD31:0  
FPU  
TCK  
TDI  
XHOLDA  
XHOLD  
XREADY  
XR/W  
TMS  
32-bit CPU  
(150 MHZ @ 1.9 V)  
(100 MHz @ 1.8 V)  
TDO  
GPIO  
MUX  
88 GPIOs  
TRST  
EMU0  
EMU1  
XZCS0  
XZCS7  
XZCS6  
XWE0  
XCLKIN  
X1  
CPU Timer 0  
XA0/XWE1  
XA19:1  
OSC,  
DMA  
6 Ch  
PLL,  
LPM,  
WD  
CPU Timer 1  
CPU Timer 2  
X2  
XRS  
XCLKOUT  
XRD  
PIE  
(Interrupts)  
88 GPIOs  
A7:0  
8 External Interrupts  
GPIO  
MUX  
XINTF  
Memory Bus  
12-Bit  
ADC  
2-S/H  
B7:0  
DMA Bus  
REFIN  
32-bit peripheral bus  
(DMA accessible)  
32-bit peripheral bus  
16-bit peripheral bus  
FIFO  
(16 Levels)  
FIFO  
(16 Levels)  
FIFO  
(16 Levels)  
ePWM-1/../6  
CAN-A/B  
(32-mbox)  
eQEP-1/2  
McBSP-A/B  
eCAP-1/../6  
SCI-A/B/C  
SPI-A  
I2C  
HRPWM-1/../6  
GPIO MUX  
88 GPIOs  
Secure zone  
Figure 3-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................2  
3 Description.......................................................................2  
3.1 Functional Block Diagram...........................................4  
4 Revision History.............................................................. 5  
5 Device Comparison.........................................................6  
5.1 Related Products........................................................ 8  
6 Terminal Configuration and Functions..........................9  
6.1 Pin Diagrams.............................................................. 9  
6.2 Signal Descriptions................................................... 19  
7 Specifications................................................................ 30  
7.1 Absolute Maximum Ratings...................................... 30  
7.2 ESD Ratings – Automotive....................................... 31  
7.3 ESD Ratings – Commercial...................................... 31  
7.4 Recommended Operating Conditions.......................32  
7.5 Power Consumption Summary................................. 33  
7.6 Electrical Characteristics...........................................37  
7.7 Thermal Resistance Characteristics......................... 38  
7.8 Thermal Design Considerations................................41  
7.9 Timing and Switching Characteristics....................... 42  
7.10 On-Chip Analog-to-Digital Converter...................... 96  
7.11 Migrating Between F2833x Devices and  
8 Detailed Description....................................................104  
8.1 Brief Descriptions....................................................104  
8.2 Peripherals..............................................................112  
8.3 Memory Maps......................................................... 156  
8.4 Register Map...........................................................163  
8.5 Interrupts.................................................................166  
8.6 System Control....................................................... 171  
8.7 Low-Power Modes Block........................................ 177  
9 Applications, Implementation, and Layout............... 178  
9.1 TI Design or Reference Design...............................178  
10 Device and Documentation Support........................179  
10.1 Getting Started......................................................179  
10.2 Device and Development Support Tool  
Nomenclature............................................................179  
10.3 Tools and Software............................................... 181  
10.4 Documentation Support........................................ 182  
10.5 Support Resources............................................... 185  
10.6 Trademarks...........................................................185  
10.7 Electrostatic Discharge Caution............................185  
10.8 Glossary................................................................185  
11 Mechanical, Packaging, and Orderable  
Information.................................................................. 186  
11.1 Packaging Information.......................................... 186  
F2823x Devices.........................................................103  
4 Revision History  
Changes from April 22, 2019 to February 1, 2021 (from Revision O (April 2019) to Revision P  
(February 2021))  
Page  
Added Q1 Part Numbers................................................................................................................................ 0  
Table 5-1, Table 5-2: Added Q1 Part Numbers...................................................................................................6  
Figure 10-1: Added GPN information............................................................................................................. 179  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
5 Device Comparison  
Table 5-1. F2833x Device Comparison  
F28335  
F28335-Q1  
(150 MHz)  
F28334  
(150 MHz)  
F28333  
(100 MHz)  
F28332  
(100 MHz)  
FEATURE  
Instruction cycle  
TYPE(1)  
6.67 ns  
Yes  
6.67 ns  
Yes  
10 ns  
Yes  
10 ns  
Yes  
Floating-point unit  
3.3-V on-chip flash (16-bit word)  
256K  
128K  
256K  
64K  
Single-access RAM (SARAM)  
(16-bit word)  
34K  
1K  
34K  
1K  
34K  
1K  
26K  
1K  
One-time programmable (OTP) ROM  
(16-bit word)  
Code security for on-chip flash/  
SARAM/OTP blocks  
Yes  
Yes  
Yes  
Yes  
Boot ROM (8K × 16)  
1
0
0
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
16/32-bit External Interface (XINTF)  
6-channel Direct Memory Access (DMA)  
PWM channels  
Yes  
Yes  
Yes  
Yes  
ePWM1/2/3/4/5/6  
ePWM1/2/3/4/5/6  
ePWM1/2/3/4/5/6  
ePWM1/2/3/4/5/6  
ePWM1A/2A/3A/4A/ ePWM1A/2A/3A/4A/ ePWM1A/2A/3A/4A/  
HRPWM channels  
0
0
ePWM1A/2A/3A/4A  
eCAP1/2/3/4  
eQEP1/2  
5A/6A  
5A/6A  
5A/6A  
32-bit capture inputs or auxiliary PWM  
outputs  
eCAP1/2/3/4/5/6  
eCAP1/2/3/4  
eCAP1/2/3/4/5/6  
32-bit QEP channels (four inputs/  
channel)  
0
eQEP1/2  
eQEP1/2  
eQEP1/2  
Watchdog timer  
No. of channels  
Yes  
16  
Yes  
16  
Yes  
16  
Yes  
16  
12-bit ADC  
MSPS  
2
12.5  
80 ns  
3
12.5  
80 ns  
3
12.5  
80 ns  
3
12.5  
80 ns  
3
Conversion time  
32-bit CPU timers  
1
Multichannel Buffered Serial Port  
(McBSP)/SPI  
2 (A/B)  
2 (A/B)  
2 (A/B)  
1 (A)  
Serial Peripheral Interface (SPI)  
0
0
1
1
1
1
Serial Communications Interface (SCI)  
3 (A/B/C)  
3 (A/B/C)  
3 (A/B/C)  
2 (A/B)  
Enhanced Controller Area Network  
(eCAN)  
0
2 (A/B)  
2 (A/B)  
2 (A/B)  
2 (A/B)  
Inter-Integrated Circuit (I2C)  
General-purpose I/O pins (shared)  
External interrupts  
0
1
1
1
88  
8
1
88  
88  
88  
8
Yes  
8
Yes  
8
Yes  
176-Pin PGF  
Yes  
176-Pin PTP  
Packaging  
Yes  
Yes  
Yes  
179-Ball ZHH  
Yes  
Yes  
Yes  
176-Ball ZJZ  
Yes  
Yes  
Yes  
A: –40°C to 85°C  
PGF, ZHH, ZJZ  
PTP, ZJZ  
PGF, ZHH, ZJZ  
PTP, ZJZ  
PGF  
PGF, ZHH, ZJZ  
PTP, ZJZ  
S: –40°C to 125°C  
Temperature  
Q: –40°C to 125°C  
options  
(AEC Q100  
PTP, ZJZ  
PTP, ZJZ  
PTP, ZJZ  
Qualification)  
(1) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor  
differences between devices that do not affect the basic functionality of the module. These device-specific differences are listed in the  
C2000 real-time control peripherals reference guide and in the peripheral reference guides.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Table 5-2. F2823x Device Comparison  
F28235  
F28235-Q1  
(150 MHz)  
F28234  
F28234-Q1  
(150 MHz)  
F28232  
F28232-Q1  
(100 MHz)  
FEATURE  
TYPE(1)  
Instruction cycle  
6.67 ns  
No  
6.67 ns  
No  
10 ns  
No  
Floating-point unit  
3.3-V on-chip flash (16-bit word)  
256K  
128K  
64K  
Single-access RAM (SARAM)  
(16-bit word)  
34K  
1K  
34K  
1K  
26K  
1K  
One-time programmable (OTP) ROM  
(16-bit word)  
Code security for on-chip flash/  
SARAM/OTP blocks  
Yes  
Yes  
Yes  
Boot ROM (8K × 16)  
1
0
0
0
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
16/32-bit External Interface (XINTF)  
6-channel Direct Memory Access (DMA)  
PWM channels  
Yes  
Yes  
Yes  
ePWM1/2/3/4/5/6  
ePWM1/2/3/4/5/6  
ePWM1/2/3/4/5/6  
ePWM1A/2A/3A/4A  
HRPWM channels  
ePWM1A/2A/3A/4A/5A/6A ePWM1A/2A/3A/4A/5A/6A  
32-bit capture inputs or auxiliary PWM  
outputs  
0
eCAP1/2/3/4/5/6  
eCAP1/2/3/4  
eCAP1/2/3/4  
32-bit QEP channels (four inputs/channel)  
Watchdog timer  
0
eQEP1/2  
Yes  
eQEP1/2  
Yes  
eQEP1/2  
Yes  
No. of channels  
16  
16  
16  
12-bit ADC  
MSPS  
2
12.5  
80 ns  
3
12.5  
80 ns  
3
12.5  
80 ns  
3
Conversion time  
32-bit CPU timers  
1
Multichannel Buffered Serial Port  
(McBSP)/SPI  
2 (A/B)  
2 (A/B)  
1 (A)  
Serial Peripheral Interface (SPI)  
Serial Communications Interface (SCI)  
Enhanced Controller Area Network (eCAN)  
Inter-Integrated Circuit (I2C)  
General-purpose I/O pins (shared)  
External interrupts  
0
0
0
0
1
1
1
3 (A/B/C)  
3 (A/B/C)  
2 (A/B)  
2 (A/B)  
2 (A/B)  
2 (A/B)  
1
1
1
88  
88  
88  
8
Yes  
8
Yes  
8
Yes  
176-Pin PGF  
176-Pin PTP  
Packaging  
Yes  
Yes  
Yes  
179-Ball ZHH  
Yes  
Yes  
Yes  
176-Ball ZJZ  
Yes  
Yes  
Yes  
A: –40°C to 85°C  
S: –40°C to 125°C  
PGF, ZHH, ZJZ  
PTP, ZJZ  
PGF, ZHH, ZJZ  
PTP, ZJZ  
PGF, ZHH, ZJZ  
PTP, ZJZ  
Temperature options  
Q: –40°C to 125°C  
(AEC Q100  
PTP, ZJZ  
PTP, ZJZ  
PTP, ZJZ  
Qualification)  
(1) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor  
differences between devices that do not affect the basic functionality of the module. These device-specific differences are listed in the  
C2000 real-time control peripherals reference guide and in the peripheral reference guides.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
5.1 Related Products  
For information about other devices in the Delfino family of products, see the following links:  
Original Delfino™ series:  
TMS320F2833x Delfino™ Microcontrollers  
The F2833x series is the original Delfino MCU. It is the first C2000MCU that is offered with a floating-point unit  
(FPU). It has the first-generation ePWM timers that are used throughout the rest of the Delfino and Piccolo™  
families. The 12.5-MSPS, 12-bit ADC is still class-leading for an integrated analog-to-digital converter. The  
F2833x has a 150-MHz CPU and up to 512KB of on-chip Flash. It is available in a 176-pin QFP or 179-ball BGA  
package.  
TMS320C2834x Delfino™ Microcontrollers  
The C2834x series removes the on-chip Flash memory and integrated ADC to enable the fastest available clock  
speeds of up to 300 MHz. It is available in a 179-ball BGA or 256-ball BGA package.  
Newest Delfino™ series:  
TMS320F2837xD Delfino™ Microcontrollers  
The F2837xD series sets a new standard for performance with dual subsystems. Each subsystem consists of a  
C28x CPU and a parallel control law accelerator (CLA), each running at 200 MHz. Enhancing performance are  
TMU and VCU accelerators. New capabilities include multiple 16-bit/12-bit mode ADCs, DAC, Sigma-Delta  
filters, USB, configurable logic block (CLB), on-chip oscillators, and enhanced versions of all peripherals. The  
F2837xD is available with up to 1MB of Flash. It is available in a 176-pin QFP or 337-pin BGA package.  
TMS320F2837xS Delfino™ Microcontrollers  
The F2837xS series is a pin-to-pin compatible version of F2837xD but with only one C28x-CPU-and-CLA  
subsystem enabled. It is also available in a 100-pin QFP to enable compatibility with the Piccolo™  
TMS320F2807x series.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
6 Terminal Configuration and Functions  
6.1 Pin Diagrams  
The 176-pin PGF/PTP low-profile quad flatpack (LQFP) pin assignments are shown in Figure 6-1. The 179-ball  
ZHH ball grid array (BGA) terminal assignments are shown in Figure 6-2 through Figure 6-5. The 176-ball ZJZ  
plastic BGA terminal assignments are shown in Figure 6-6 through Figure 6-9. Table 6-1 describes the  
function(s) of each pin.  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
GPIO76/XD3  
GPIO77/XD2  
GPIO78/XD1  
GPIO79/XD0  
88 GPIO48/ECAP5/XD31  
87 TCK  
86 EMU1  
85  
84  
83  
EMU0  
V
DD3VFL  
GPIO38/XWE0  
XCLKOUT  
V
SS  
V
82 TEST2  
81 TEST1  
80  
79 TMS  
78  
DD  
CIRXDA/XZCS6  
V
SS  
XRS  
GPIO28/SCIRXDA/XZCS6  
GPIO34/ECAP1/XREADY  
V
TRST  
DDIO  
V
77 TDO  
76 TDI  
SS  
GPIO36/SCIRXDA/XZCS0  
V
75 GPIO33/SCLA/EPWMSYNCO/ADCSOCBO  
74 GPIO32/SDAA/EPWMSYNCI/ADCSOCAO  
73 GPIO27/ECAP4/EQEP2S/MFSXB  
72 GPIO26/ECAP3/EQEP2I/MCLKXB  
DD  
V
SS  
GPIO35/SCITXDA/XR/W  
XRD  
GPIO37/ECAP2/XZCS7  
GPIO40/XA0/XWE1  
V
71  
70  
DDIO  
V
SS  
GPIO41/XA1  
GPIO42/XA2  
69 GPIO25/ECAP2/EQEP2B/MDRB  
68 GPIO24/ECAP1/EQEP2A/MDXB  
67 GPIO23/EQEP1I/MFSXA/SCIRXDB  
66 GPIO22/EQEP1S/MCLKXA/SCITXDB  
65 GPIO21/EQEP1B/MDRA/CANRXB  
64 GPIO20/EQEP1A/MDXA/CANTXB  
63 GPIO19/SPISTEA/SCIRXDB/CANTXA  
62 GPIO18/SPICLKA/SCITXDB/CANRXA  
V
V
DD  
V
SS  
GPIO43/XA3  
GPIO44/XA4  
GPIO45/XA5  
V
DDIO  
V
61  
60  
59  
58  
SS  
GPIO46/XA6  
GPIO47/XA7  
DD  
V
V
V
SS  
DD2A18  
SS2AGND  
GPIO80/XA8 163  
164  
165  
166  
167  
168  
169  
170  
171  
GPIO81/XA9  
GPIO82/XA10  
57 ADCRESEXT  
56 ADCREFP  
55 ADCREFM  
54 ADCREFIN  
53 ADCINB7  
V
SS  
V
DD  
GPIO83/XA11  
ADCINB6  
ADCINB5  
ADCINB4  
ADCINB3  
ADCINB2  
ADCINB1  
ADCINB0  
GPIO84/XA12  
V
52  
51  
50  
49  
48  
47  
46  
45  
DDIO  
V
SS  
GPIO85/XA13 172  
GPIO86/XA14  
GPIO87/XA15  
173  
174  
175  
176  
GPIO39/XA16  
GPIO31/CANTXA/XA17  
V
DDAIO  
Figure 6-1. F2833x, F2823x 176-Pin PGF/PTP LQFP (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
Note  
The thermal pad should be soldered to the ground (GND) plane of the PCB because this will provide  
the best thermal conduction path. For this device, the thermal pad is not electrically shorted to the  
internal die VSS; therefore, the thermal pad does not provide an electrical connection to the PCB  
ground. To make optimum use of the thermal efficiencies designed into the PowerPADpackage, the  
PCB must be designed with this technology in mind. A thermal land is required on the surface of the  
PCB directly underneath the thermal pad. The thermal land should be soldered to the thermal pad; the  
thermal land should be as large as needed to dissipate the required heat. An array of thermal vias  
should be used to connect the thermal pad to the internal GND plane of the board. See PowerPAD™  
thermally enhanced package for more details on using the PowerPAD package.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
1
2
3
4
5
6
7
GPIO21/  
EQEP1B/  
MDRA/  
VSSAIO  
VSS  
P
N
ADCINB0  
ADCINB2  
ADCINB6  
ADCREFP  
P
N
CANRXB  
GPIO22/  
EQEP1S/  
MCLKXA/  
SCITXDB  
VDDAIO  
VDD  
ADCINA1  
ADCINB1  
ADCINB5  
ADCREFM  
GPIO23/  
EQEP1I/  
MFSXA/  
SCIRXDB  
VDD2A18  
M
ADCINA2  
ADCINA5  
VSS1AGND  
ADCLO  
ADCINA4  
VDDA2  
ADCINA0  
ADCINA3  
VSSA2  
ADCINB4  
ADCINB3  
ADCRESEXT  
ADCREFIN  
ADCINB7  
M
GPIO18/  
SPICLKA/  
SCITXDB/  
CANRXA  
GPIO20/  
EQEP1A/  
MDXA/  
L
L
CANTXB  
GPIO19/  
SPISTEA/  
SCIRXDB/  
CANTXA  
VSS2AGND  
K
ADCINA7  
K
6
7
GPIO17/  
SPISOMIA/  
CANRXB/  
TZ6  
VDD  
VSS  
VDD1A18  
J
ADCINA6  
GPIO16/  
J
GPIO14/  
TZ3/XHOLD/  
SCITXDB/  
MCLKXB  
GPIO13/  
TZ2/  
GPIO15/  
TZ4/XHOLDA/ SPISIMOA/  
H
H
VDD  
CANRXB/  
MDRB  
SCIRXDB/  
MFSXB  
CANTXB/  
TZ5  
1
2
3
4
5
Figure 6-2. F2833x, F2823x 179-Ball ZHH MicroStar BGA (Upper-Left Quadrant) (Bottom View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
8
9
10  
11  
12  
13  
14  
GPIO33/  
SCLA/  
GPIO48/  
ECAP5/  
XD31  
GPIO50/  
EQEP1A/  
XD29  
VSS  
P
N
TMS  
TEST2  
EMU1  
P
N
EPWMSYNCO/  
ADCSOCBO  
GPIO25/  
ECAP2/  
EQEP2B/  
MDRB  
GPIO32/  
SDAA/  
GPIO49/  
ECAP6/  
XD30  
VSS  
VSS  
VDDIO  
TCK  
EPWMSYNCI/  
ADCSOCAO  
GPIO24/  
ECAP1/  
EQEP2A/  
MDXB  
GPIO51/  
EQEP1B/  
XD28  
GPIO52/  
EQEP1S/  
XD27  
VDD3VFL  
VSS  
M
TDI  
M
TRST  
GPIO27/  
ECAP4/  
EQEP2S/  
MFSXB  
GPIO53/  
EQEP1I/  
XD26  
GPIO54/  
SPISIMOA/  
XD25  
GPIO55/  
SPISOMIA/  
XD24  
VDDIO  
L
EMU0  
L
XRS  
TEST1  
VSS  
GPIO26/  
ECAP3/  
EQEP2I/  
MCLKXB  
GPIO56/  
SPICLKA/  
XD23  
GPIO58/  
MCLKRA/  
XD21  
GPIO57/  
SPISTEA/  
XD22  
VDD  
K
TDO  
K
8
9
VSS  
J
X2  
X1  
XCLKIN  
J
GPIO59/  
MFSRA/  
XD20  
VSS  
VDDIO  
VDD  
VSS  
H
H
10  
11  
12  
13  
14  
Figure 6-3. F2833x, F2823x 179-Ball ZHH MicroStar BGA (Upper-Right Quadrant) (Bottom View)  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
1
2
3
4
5
GPIO11/  
EPWM6B/  
SCIRXDB/  
ECAP4  
GPIO12/  
TZ1/  
GPIO10/  
EPWM6A/  
CANRXB/  
GPIO9/  
EPWM5B/  
SCITXDB/  
ECAP3  
VSS  
G
G
CANTXB/  
MDXB  
ADCSOCBO  
GPIO8/  
EPWM5A/  
CANTXB/  
GPIO7/  
EPWM4B/  
MCLKRA/  
ECAP2  
VDD  
VSS  
VDDIO  
F
F
ADCSOCAO  
6
7
GPIO6/  
GPIO5/  
EPWM3B/  
MFSRA/  
ECAP1  
GPIO3/  
EPWM2B/  
ECAP5/  
EPWM4A/  
GPIO4/  
GPIO84/  
XA12  
GPIO81/  
XA9  
VDDIO  
E
D
E
EPWMSYNCI/  
EPWMSYNCO  
EPWM3A  
MCLKRB  
GPIO1/  
EPWM1B/  
ECAP6/  
MFSRB  
GPIO2/  
GPIO86/  
XA14  
GPIO83/  
XA11  
GPIO45/  
XA5  
VSS  
VSS  
D
EPWM2A  
GPIO29/  
SCITXDA/  
XA19  
GPIO0/  
GPIO85/  
XA13  
GPIO82/  
XA10  
GPIO80/  
XA8  
VSS  
VSS  
C
B
C
B
EPWM1A  
GPIO30/  
CANRXA/  
XA18  
GPIO39/  
XA16  
GPIO46/  
XA6  
GPIO43/  
XA3  
VDD  
VSS  
VDD  
GPIO31/  
CANTXA/  
XA17  
GPIO87/  
XA15  
GPIO47/  
XA7  
GPIO44/  
XA4  
VDDIO  
VSS  
A
A
1
2
3
4
5
6
7
Figure 6-4. F2833x, F2823x 179-Ball ZHH MicroStar BGA (Lower-Left Quadrant) (Bottom View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
10  
11  
12  
13  
14  
GPIO63/  
SCITXDC/  
XD16  
GPIO61/  
MFSRB/  
XD18  
GPIO62/  
SCIRXDC  
XD17  
GPIO60/  
MCLKRB/  
XD19  
GPIO64/  
XD15  
G
G
GPIO69/  
XD10  
GPIO66/  
XD13  
GPIO65/  
XD14  
VSS  
VDD  
F
F
8
9
GPIO28/  
SCIRXDA/  
XZCS6  
GPIO68/  
XD11  
GPIO67/  
XD12  
VSS  
VDD  
VDDIO  
VSS  
E
D
C
B
A
E
D
C
B
A
GPIO40/  
XA0/  
GPIO37/  
ECAP2/  
XZCS7  
GPIO34/  
ECAP1/  
XREADY  
GPIO38/  
XWE0  
GPIO70/  
XD9  
VDD  
VSS  
XWE1  
GPIO36/  
SCIRXDA/  
XZCS0  
GPIO73/  
XD6  
GPIO74/  
XD5  
GPIO71/  
XD8  
VDD  
VSS  
XCLKOUT  
GPIO42/  
XA2  
GPIO78/  
XD1  
GPIO76/  
XD3  
GPIO72/  
XD7  
VDD  
VDDIO  
XRD  
GPIO35/  
GPIO41/  
XA1  
GPIO79/  
XD0  
GPIO77/  
XD2  
GPIO75/  
XD4  
VSS  
VSS  
SCITXDA/  
XR/W  
8
9
10  
11  
12  
13  
14  
Figure 6-5. F2833x, F2823x 179-Ball ZHH MicroStar BGA (Lower-Right Quadrant) (Bottom View)  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
1
2
3
4
5
6
7
P
N
ADCINB0  
ADCREFM  
ADCREFP ADCRESEXT ADCREFIN  
VSSA2  
VSS2AGND  
ADCLO  
ADCINB1  
ADCINB3  
ADCINB5  
ADCINB7  
EMU0  
VSSAIO  
M
ADCINA2  
ADCINA5  
ADCINA1  
ADCINA4  
ADCINA0  
ADCINA3  
VDD1A18  
ADCINB2  
VSS1AGND  
VDDA2  
ADCINB4  
ADCINB6  
TEST1  
TEST2  
VDDAIO  
VDD2A18  
L
ADCINA7  
GPIO15/  
ADCINA6  
GPIO16/  
K
GPIO17/  
SPISOMIA/  
CANRXB/  
TZ6  
TZ4/XHOLDA/ SPISIMOA/  
VDD  
VSS  
VSS  
J
SCIRXDB/  
MFSXB  
CANTXB/  
TZ5  
GPIO12/  
TZ1/  
GPIO13/  
TZ2/  
GPIO14/  
TZ3/XHOLD/  
SCITXDB/  
MCLKXB  
VDD  
VSS  
VSS  
H
CANTXB/  
MDXB  
CANRXB/  
MDRB  
Figure 6-6. F2833x, F2823x 176-Ball ZJZ Plastic BGA (Upper-Left Quadrant) (Bottom View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
8
9
10  
11  
12  
13  
14  
GPIO20/  
EQEP1A/  
MDXA/  
GPIO23/  
EQEP1I/  
MFSXA/  
SCIRXDB  
GPIO26/  
ECAP3/  
EQEP2I/  
MCLKXB  
GPIO33/  
SCLA/  
VSS  
VSS  
EMU1  
P
N
M
L
EPWMSYNCO/  
ADCSOCBO  
CANTXB  
GPIO18/  
SPICLKA/  
SCITXDB/  
CANRXA  
GPIO21/  
EQEP1B/  
MDRA/  
GPIO24/  
ECAP1/  
EQEP2A/  
MDXB  
GPIO27/  
ECAP4/  
EQEP2S/  
MFSXB  
VDDIO  
TDI  
TDO  
XRS  
CANRXB  
GPIO19/  
SPISTEA/  
SCIRXDB/  
CANTXA  
GPIO22/  
EQEP1S/  
MCLKXA/  
SCITXDB  
GPIO25/  
ECAP2/  
GPIO32/  
SDAA/  
TMS  
TCK  
EQEP2B/ EPWMSYNCI/  
MDRB  
ADSOCAO  
GPIO50/  
EQEP1A/  
XD29  
GPIO49/  
ECAP6/  
XD30  
GPIO48/  
ECAP5/  
XD31  
VDD  
VDD3VFL  
VDDIO  
TRST  
GPIO53  
EQEP1I/  
XD26  
GPIO52/  
EQEP1S/  
XD27  
GPIO51/  
EQEP1B/  
XD28  
VDD  
K
GPIO56/  
SPICLKA/  
XD23  
GPIO55/  
SPISOMIA/  
XD24  
GPIO54/  
SPISIMOA/  
XD25  
VSS  
VSS  
VDD  
J
GPIO59/  
MFSRA/  
XD20  
GPIO58/  
MCLKRA/  
XD21  
GPIO57/  
SPISTEA/  
XD22  
VSS  
VSS  
X2  
H
Figure 6-7. F2833x, F2823x 176-Ball ZJZ Plastic BGA (Upper-Right Quadrant) (Bottom View)  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
GPIO9/  
EPWM5B/  
SCITXDB/  
ECAP3  
GPIO10/  
EPWM6A/  
CANRXB/  
GPIO11/  
EPWM6B/  
SCIRXDB/  
ECAP4  
VDDIO  
VSS  
VSS  
G
ADCSOCBO  
GPIO6/  
GPIO7/  
EPWM4B/  
MCLKRA/  
ECAP2  
GPIO8/  
EPWM5A/  
CANTXB/  
EPWM4A/  
VDD  
VSS  
VSS  
F
EPWMSYNCI/  
EPWMSYNCO  
ADCSOCAO  
GPIO3/  
EPWM2B/  
ECAP5/  
GPIO5/  
EPWM3B/  
MFSRA/  
ECAP1  
GPIO4/  
VDDIO  
E
D
C
B
A
EPWM3A  
MCLKRB  
GPIO1/  
EPWM1B/  
ECAP6/  
MFSRB  
GPIO0/  
GPIO2/  
GPIO47/  
XA7  
VDD  
VDD  
VDDIO  
EPWM1A  
EPWM2A  
GPIO29/  
SCITXDA/  
XA19  
GPIO30/  
CANRXA/  
XA18  
GPIO39/  
XA16  
GPIO85/  
XA13  
GPIO82/  
XA10  
GPIO46/  
XA6  
GPIO43/  
XA3  
GPIO31/  
CANTXA/  
XA17  
GPIO87/  
XA15  
GPIO84/  
XA12  
GPIO81/  
XA9  
GPIO45/  
XA5  
GPIO42/  
XA2  
VDDIO  
GPIO86/  
XA14  
GPIO83/  
XA11  
GPIO80/  
XA8  
GPIO44/  
XA4  
GPIO41/  
XA1  
VSS  
VSS  
1
2
3
4
5
6
7
Figure 6-8. F2833x, F2823x 176-Ball ZJZ Plastic BGA (Lower-Left Quadrant) (Bottom View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
GPIO60/  
MCLKRB/  
XD19  
VSS  
VSS  
VDDIO  
XCLKIN  
X1  
G
GPIO63/  
SCITXDC/  
XD16  
GPIO62/  
SCIRXDC/  
XD17  
GPIO61/  
MFSRB/  
XD18  
VSS  
VSS  
VDD  
F
GPIO66/  
XD13  
GPIO65/  
XD14  
GPIO64/  
XD15  
VDD  
E
D
C
B
A
GPIO28/  
SCIRXDA/  
XZCS6  
GPIO69/  
XD10  
GPIO68/  
XD11  
GPIO67/  
XD12  
VDD  
VDD  
VDDIO  
GPIO36/  
SCIRXDA/  
XZCS0  
GPIO40/  
GPIO38/  
XWE0  
GPIO78/  
XD1  
GPIO75/  
XD4  
GPIO71/  
XD8  
GPIO70/  
XD9  
XA0/XWE1  
GPIO37/  
ECAP2/  
XZCS7  
GPIO35/  
SCITXDA/  
XR/W  
GPIO79/  
XD0  
GPIO77/  
XD2  
GPIO74/  
XD5  
GPIO72  
XD7  
VSS  
GPIO34/  
ECAP1/  
XREADY  
GPIO76/  
XD3  
GPIO73/  
XD6  
VDDIO  
VSS  
XCLKOUT  
XRD  
8
9
10  
11  
12  
13  
14  
Figure 6-9. F2833x, F2823x 176-Ball ZJZ Plastic BGA (Lower-Right Quadrant) (Bottom View)  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
6.2 Signal Descriptions  
Table 6-1 describes the signals. The GPIO function (shown in Italics) is the default at reset. The peripheral  
signals that are listed under them are alternate functions. Some peripheral functions may not be available in all  
devices. See Table 5-1 and Table 5-2 for details. Inputs are not 5-V tolerant. All pins capable of producing an  
XINTF output function have a drive strength of 8 mA (typical). This is true even if the pin is not configured for  
XINTF functionality. All other pins have a drive strength of 4-mA drive typical (unless otherwise indicated). All  
GPIO pins are I/O/Z and have an internal pullup, which can be selectively enabled or disabled on a per-pin  
basis. This feature only applies to the GPIO pins. The pullups on GPIO0–GPIO11 pins are not enabled at reset.  
The pullups on GPIO12–GPIO87 are enabled upon reset.  
Table 6-1. Signal Descriptions  
PIN NO.  
DESCRIPTION (1)  
PGF,  
PTP  
PIN #  
NAME  
ZHH  
ZJZ  
BALL # BALL #  
JTAG  
JTAG test reset with internal pulldown. TRST, when driven high, gives the scan system  
control of the operations of the device. If this signal is not connected or driven low, the  
device operates in its functional mode, and the test reset signals are ignored.  
NOTE: TRST is an active high test pin and must be maintained low at all times during  
normal device operation. An external pulldown resistor is required on this pin. The value of  
this resistor should be based on drive strength of the debugger pods applicable to the  
design. A 2.2-kΩ resistor generally offers adequate protection. Because this is application-  
specific, TI recommends validating each target board for proper operation of the debugger  
and the application. (I, ↓)  
TRST  
78  
M10  
L11  
TCK  
TMS  
87  
79  
N12  
P10  
M14  
M12  
JTAG test clock with internal pullup (I, ↑)  
JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into  
the TAP controller on the rising edge of TCK. (I, ↑)  
JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register  
(instruction or data) on a rising edge of TCK. (I, ↑)  
TDI  
76  
77  
M9  
K9  
N12  
N13  
JTAG scan out, test data output (TDO). The contents of the selected register (instruction or  
data) are shifted out of TDO on the falling edge of TCK. (O/Z 8 mA drive)  
TDO  
Emulator pin 0. When TRST is driven high, this pin is used as an interrupt to or from the  
emulator system and is defined as input/output through the JTAG scan. This pin is also  
used to put the device into boundary-scan mode. With the EMU0 pin at a logic-high state  
and the EMU1 pin at a logic-low state, a rising edge on the TRST pin would latch the  
device into boundary-scan mode. (I/O/Z, 8 mA drive ↑)  
EMU0  
85  
L11  
N7  
NOTE: An external pullup resistor is required on this pin. The value of this resistor should  
be based on the drive strength of the debugger pods applicable to the design. A 2.2-kΩ to  
4.7-kΩ resistor is generally adequate. Because this is application-specific, TI recommends  
validating each target board for proper operation of the debugger and the application.  
Emulator pin 1. When TRST is driven high, this pin is used as an interrupt to or from the  
emulator system and is defined as input/output through the JTAG scan. This pin is also  
used to put the device into boundary-scan mode. With the EMU0 pin at a logic-high state  
and the EMU1 pin at a logic-low state, a rising edge on the TRST pin would latch the  
device into boundary-scan mode. (I/O/Z, 8 mA drive ↑)  
EMU1  
86  
P12  
P8  
NOTE: An external pullup resistor is required on this pin. The value of this resistor should  
be based on the drive strength of the debugger pods applicable to the design. A 2.2-kΩ to  
4.7-kΩ resistor is generally adequate. Because this is application-specific, TI recommends  
validating each target board for proper operation of the debugger and the application.  
FLASH  
VDD3VFL  
TEST1  
TEST2  
84  
81  
82  
M11  
K10  
P11  
L9  
M7  
L7  
3.3-V Flash Core Power Pin. This pin should be connected to 3.3 V at all times.  
Test Pin. Reserved for TI. Must be left unconnected. (I/O)  
Test Pin. Reserved for TI. Must be left unconnected. (I/O)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Signal Descriptions (continued)  
PIN NO.  
DESCRIPTION (1)  
PGF,  
PTP  
PIN #  
NAME  
ZHH  
ZJZ  
BALL # BALL #  
CLOCK  
Output clock derived from SYSCLKOUT. XCLKOUT is either the same frequency, one-half  
the frequency, or one-fourth the frequency of SYSCLKOUT. This is controlled by bits 18:16  
(XTIMCLK) and bit 2 (CLKMODE) in the XINTCNF2 register. At reset, XCLKOUT =  
SYSCLKOUT/4. The XCLKOUT signal can be turned off by setting XINTCNF2[CLKOFF]  
to 1. Unlike other GPIO pins, the XCLKOUT pin is not placed in high-impedance state  
during a reset. (O/Z, 8 mA drive).  
XCLKOUT  
XCLKIN  
138  
105  
C11  
J14  
A10  
G13  
External Oscillator Input. This pin is to feed a clock from an external 3.3-V oscillator. In this  
case, the X1 pin must be tied to GND. If a crystal/resonator is used (or if an external 1.9-V  
oscillator is used to feed clock to X1 pin), this pin must be tied to GND. (I)  
Internal/External Oscillator Input. To use the internal oscillator, a quartz crystal or a  
ceramic resonator may be connected across X1 and X2. The X1 pin is referenced to the  
1.9-V/1.8-V core digital power supply. A 1.9-V/1.8-V external oscillator may be connected  
to the X1 pin. In this case, the XCLKIN pin must be connected to ground. If a 3.3-V  
external oscillator is used with the XCLKIN pin, X1 must be tied to GND. (I)  
X1  
X2  
104  
102  
J13  
J11  
G14  
H14  
Internal Oscillator Output. A quartz crystal or a ceramic resonator may be connected  
across X1 and X2. If X2 is not used, it must be left unconnected. (O)  
RESET  
Device Reset (in) and Watchdog Reset (out).  
Device reset. XRS causes the device to terminate execution. The PC will point to the  
address contained at the location 0x3FFFC0. When XRS is brought to a high level,  
execution begins at the location pointed to by the PC. This pin is driven low by the DSC  
when a watchdog reset occurs. During watchdog reset, the XRS pin is driven low for the  
watchdog reset duration of 512 OSCCLK cycles. (I/OD, ↑)  
XRS  
80  
L10  
M13  
The output buffer of this pin is an open drain with an internal pullup. If this pin is driven by  
an external device, it should be done using an open-drain device.  
ADC SIGNALS  
ADCINA7  
ADCINA6  
ADCINA5  
ADCINA4  
ADCINA3  
ADCINA2  
ADCINA1  
ADCINA0  
ADCINB7  
ADCINB6  
ADCINB5  
ADCINB4  
ADCINB3  
ADCINB2  
ADCINB1  
ADCINB0  
ADCLO  
35  
36  
37  
38  
39  
40  
41  
42  
53  
52  
51  
50  
49  
48  
47  
46  
43  
57  
54  
K4  
J5  
K1  
K2  
L1  
ADC Group A, Channel 7 input (I)  
ADC Group A, Channel 6 input (I)  
ADC Group A, Channel 5 input (I)  
ADC Group A, Channel 4 input (I)  
ADC Group A, Channel 3 input (I)  
ADC Group A, Channel 2 input (I)  
ADC Group A, Channel 1 input (I)  
ADC Group A, Channel 0 input (I)  
ADC Group B, Channel 7 input (I)  
ADC Group B, Channel 6 input (I)  
ADC Group B, Channel 5 input (I)  
ADC Group B, Channel 4 input (I)  
ADC Group B, Channel 3 input (I)  
ADC Group B, Channel 2 input (I)  
ADC Group B, Channel 1 input (I)  
ADC Group B, Channel 0 input (I)  
Low Reference (connect to analog ground) (I)  
ADC External Current Bias Resistor. Connect a 22-kΩ resistor to analog ground.  
External reference input (I)  
L1  
L2  
L2  
L3  
L3  
M1  
N1  
M3  
K5  
P4  
N4  
M4  
L4  
M1  
M2  
M3  
N6  
M6  
N5  
M5  
N4  
M4  
N3  
P3  
N2  
P6  
P7  
P3  
N3  
P2  
M2  
M5  
L5  
ADCRESEXT  
ADCREFIN  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
NAME  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Table 6-1. Signal Descriptions (continued)  
PIN NO.  
ZHH  
DESCRIPTION (1)  
PGF,  
PTP  
PIN #  
ZJZ  
BALL # BALL #  
Internal Reference Positive Output. Requires a low ESR (under 1.5 Ω) ceramic bypass  
capacitor of 2.2 μF to analog ground. (O)  
NOTE: Use the ADC Clock rate to derive the ESR specification from the capacitor data  
sheet that is used in the system.  
ADCREFP  
ADCREFM  
56  
55  
P5  
N5  
P5  
P4  
Internal Reference Medium Output. Requires a low ESR (under 1.5 Ω) ceramic bypass  
capacitor of 2.2 μF to analog ground. (O)  
NOTE: Use the ADC Clock rate to derive the ESR specification from the capacitor data  
sheet that is used in the system.  
CPU AND I/O POWER PINS  
ADC Analog Power Pin  
VDDA2  
VSSA2  
VDDAIO  
VSSAIO  
VDD1A18  
VSS1AGND  
VDD2A18  
VSS2AGND  
VDD  
34  
33  
K2  
K3  
K4  
P1  
L5  
ADC Analog Ground Pin  
ADC Analog I/O Power Pin  
ADC Analog I/O Ground Pin  
ADC Analog Power Pin  
45  
N2  
P1  
44  
N1  
K3  
L4  
31  
J4  
32  
K1  
ADC Analog Ground Pin  
ADC Analog Power Pin  
59  
M6  
K6  
L6  
58  
P2  
D4  
D5  
D8  
D9  
E11  
F4  
ADC Analog Ground Pin  
4
B1  
VDD  
15  
B5  
VDD  
23  
B11  
C8  
D13  
E9  
VDD  
29  
VDD  
61  
VDD  
101  
109  
117  
126  
139  
146  
154  
167  
9
VDD  
F3  
F11  
H4  
J4  
CPU and Logic Digital Power Pins  
VDD  
F13  
H1  
H12  
J2  
VDD  
VDD  
J11  
K11  
L8  
VDD  
VDD  
K14  
N6  
A4  
VDD  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
A13  
B1  
71  
B10  
E7  
93  
D7  
107  
121  
143  
159  
170  
E12  
F5  
D11  
E4  
Digital I/O Power Pin  
L8  
G4  
H11  
N14  
G11  
L10  
N14  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Signal Descriptions (continued)  
PIN NO.  
DESCRIPTION (1)  
PGF,  
PTP  
PIN #  
NAME  
ZHH  
ZJZ  
BALL # BALL #  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
3
A5  
A10  
A11  
B4  
A1  
A2  
A14  
B14  
F6  
8
14  
22  
30  
C3  
60  
C7  
F7  
70  
C9  
F8  
83  
D1  
F9  
92  
D6  
G6  
G7  
G8  
G9  
H6  
H7  
H8  
H9  
J6  
103  
106  
108  
118  
120  
125  
140  
144  
147  
155  
160  
166  
171  
D14  
E8  
E14  
F4  
Digital Ground Pins  
F12  
G1  
H10  
H13  
J3  
J7  
J10  
J12  
M12  
N10  
N11  
P6  
J8  
J9  
P13  
P14  
P8  
GPIO AND PERIPHERAL SIGNALS  
GPIO0  
General-purpose input/output 0 (I/O/Z)  
EPWM1A  
-
-
Enhanced PWM1 Output A and HRPWM channel (O)  
-
-
5
6
C1  
D3  
D2  
E4  
E2  
D1  
D2  
D3  
E1  
E2  
GPIO1  
General-purpose input/output 1 (I/O/Z)  
Enhanced PWM1 Output B (O)  
Enhanced Capture 6 input/output (I/O)  
McBSP-B receive frame synch (I/O)  
EPWM1B  
ECAP6  
MFSRB  
GPIO2  
EPWM2A  
-
-
General-purpose input/output 2 (I/O/Z)  
Enhanced PWM2 Output A and HRPWM channel (O)  
-
-
7
GPIO3  
EPWM2B  
ECAP5  
General-purpose input/output 3 (I/O/Z)  
Enhanced PWM2 Output B (O)  
Enhanced Capture 5 input/output (I/O)  
McBSP-B receive clock (I/O)  
10  
11  
MCLKRB  
GPIO4  
EPWM3A  
-
-
General-purpose input/output 4 (I/O/Z)  
Enhanced PWM3 output A and HRPWM channel (O)  
-
-
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
NAME  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Table 6-1. Signal Descriptions (continued)  
PIN NO.  
ZHH  
DESCRIPTION (1)  
PGF,  
PTP  
PIN #  
ZJZ  
BALL # BALL #  
GPIO5  
General-purpose input/output 5 (I/O/Z)  
Enhanced PWM3 output B (O)  
McBSP-A receive frame synch (I/O)  
Enhanced Capture input/output 1 (I/O)  
EPWM3B  
MFSRA  
ECAP1  
12  
13  
16  
17  
18  
19  
20  
21  
24  
E3  
E1  
F2  
F1  
G5  
G4  
G2  
G3  
H3  
E3  
F1  
F2  
F3  
G1  
G2  
G3  
H1  
H2  
GPIO6  
EPWM4A  
EPWMSYNCI  
EPWMSYNCO  
General-purpose input/output 6 (I/O/Z)  
Enhanced PWM4 output A and HRPWM channel (O)  
External ePWM sync pulse input (I)  
External ePWM sync pulse output (O)  
GPIO7  
General-purpose input/output 7 (I/O/Z)  
Enhanced PWM4 output B (O)  
McBSP-A receive clock (I/O)  
EPWM4B  
MCLKRA  
ECAP2  
Enhanced capture input/output 2 (I/O)  
GPIO8  
General-purpose Input/Output 8 (I/O/Z)  
Enhanced PWM5 output A and HRPWM channel (O)  
Enhanced CAN-B transmit (O)  
EPWM5A  
CANTXB  
ADCSOCAO  
ADC start-of-conversion A (O)  
GPIO9  
General-purpose input/output 9 (I/O/Z)  
Enhanced PWM5 output B (O)  
SCI-B transmit data(O)  
EPWM5B  
SCITXDB  
ECAP3  
Enhanced capture input/output 3 (I/O)  
GPIO10  
General-purpose input/output 10 (I/O/Z)  
Enhanced PWM6 output A and HRPWM channel (O)  
Enhanced CAN-B receive (I)  
EPWM6A  
CANRXB  
ADCSOCBO  
ADC start-of-conversion B (O)  
GPIO11  
General-purpose input/output 11 (I/O/Z)  
Enhanced PWM6 output B (O)  
SCI-B receive data (I)  
EPWM6B  
SCIRXDB  
ECAP4  
Enhanced CAP Input/Output 4 (I/O)  
GPIO12  
TZ1  
CANTXB  
MDXB  
General-purpose input/output 12 (I/O/Z)  
Trip Zone input 1 (I)  
Enhanced CAN-B transmit (O)  
McBSP-B transmit serial data (O)  
GPIO13  
TZ2  
CANRXB  
MDRB  
General-purpose input/output 13 (I/O/Z)  
Trip Zone input 2 (I)  
Enhanced CAN-B receive (I)  
McBSP-B receive serial data (I)  
GPIO14  
General-purpose input/output 14 (I/O/Z)  
Trip Zone input 3/External Hold Request. XHOLD, when active (low), requests the external  
interface (XINTF) to release the external bus and place all buses and strobes into a high-  
impedance state. To prevent this from happening when TZ3 signal goes active, disable this  
function by writing XINTCNF2[HOLD] = 1. If this is not done, the XINTF bus will go into  
high impedance anytime TZ3 goes low. On the ePWM side, TZn signals are ignored by  
default, unless they are enabled by the code. The XINTF will release the bus when any  
current access is complete and there are no pending accesses on the XINTF. (I)  
TZ3/ XHOLD  
25  
H2  
H3  
SCITXDB  
MCLKXB  
SCI-B Transmit (O)  
McBSP-B transmit clock (I/O)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Signal Descriptions (continued)  
PIN NO.  
DESCRIPTION (1)  
PGF,  
PTP  
PIN #  
NAME  
ZHH  
ZJZ  
BALL # BALL #  
GPIO15  
General-purpose input/output 15 (I/O/Z)  
Trip Zone input 4/External Hold Acknowledge. The pin function for this option is based on  
the direction chosen in the GPADIR register. If the pin is configured as an input, then TZ4  
function is chosen. If the pin is configured as an output, then XHOLDA function is chosen.  
XHOLDA is driven active (low) when the XINTF has granted an XHOLD request. All XINTF  
buses and strobe signals will be in a high-impedance state. XHOLDA is released when the  
XHOLD signal is released. External devices should only drive the external bus when  
XHOLDA is active (low). (I/O)  
TZ4/ XHOLDA  
26  
H4  
J1  
SCIRXDB  
MFSXB  
SCI-B receive (I)  
McBSP-B transmit frame synch (I/O)  
GPIO16  
SPISIMOA  
CANTXB  
TZ5  
General-purpose input/output 16 (I/O/Z)  
SPI slave in, master out (I/O)  
Enhanced CAN-B transmit (O)  
Trip Zone input 5 (I)  
27  
28  
62  
63  
64  
65  
66  
67  
68  
69  
72  
H5  
J1  
J2  
J3  
GPIO17  
SPISOMIA  
CANRXB  
TZ6  
General-purpose input/output 17 (I/O/Z)  
SPI-A slave out, master in (I/O)  
Enhanced CAN-B receive (I)  
Trip zone input 6 (I)  
GPIO18  
General-purpose input/output 18 (I/O/Z)  
SPI-A clock input/output (I/O)  
SCI-B transmit (O)  
SPICLKA  
SCITXDB  
CANRXA  
L6  
N8  
Enhanced CAN-A receive (I)  
GPIO19  
General-purpose input/output 19 (I/O/Z)  
SPI-A slave transmit enable input/output (I/O)  
SCI-B receive (I)  
SPISTEA  
SCIRXDB  
CANTXA  
K7  
L7  
M8  
P9  
Enhanced CAN-A transmit (O)  
GPIO20  
EQEP1A  
MDXA  
General-purpose input/output 20 (I/O/Z)  
Enhanced QEP1 input A (I)  
McBSP-A transmit serial data (O)  
Enhanced CAN-B transmit (O)  
CANTXB  
GPIO21  
EQEP1B  
MDRA  
General-purpose input/output 21 (I/O/Z)  
Enhanced QEP1 input B (I)  
McBSP-A receive serial data (I)  
Enhanced CAN-B receive (I)  
P7  
N7  
M7  
M8  
N8  
K8  
N9  
CANRXB  
GPIO22  
General-purpose input/output 22 (I/O/Z)  
Enhanced QEP1 strobe (I/O)  
McBSP-A transmit clock (I/O)  
SCI-B transmit (O)  
EQEP1S  
MCLKXA  
SCITXDB  
M9  
P10  
N10  
M10  
P11  
GPIO23  
EQEP1I  
MFSXA  
SCIRXDB  
General-purpose input/output 23 (I/O/Z)  
Enhanced QEP1 index (I/O)  
McBSP-A transmit frame synch (I/O)  
SCI-B receive (I)  
GPIO24  
ECAP1  
EQEP2A  
MDXB  
General-purpose input/output 24 (I/O/Z)  
Enhanced capture 1 (I/O)  
Enhanced QEP2 input A (I)  
McBSP-B transmit serial data (O)  
GPIO25  
ECAP2  
EQEP2B  
MDRB  
General-purpose input/output 25 (I/O/Z)  
Enhanced capture 2 (I/O)  
Enhanced QEP2 input B (I)  
McBSP-B receive serial data (I)  
GPIO26  
ECAP3  
EQEP2I  
MCLKXB  
General-purpose input/output 26 (I/O/Z)  
Enhanced capture 3 (I/O)  
Enhanced QEP2 index (I/O)  
McBSP-B transmit clock (I/O)  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
NAME  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Table 6-1. Signal Descriptions (continued)  
PIN NO.  
ZHH  
DESCRIPTION (1)  
PGF,  
PTP  
PIN #  
ZJZ  
BALL # BALL #  
GPIO27  
ECAP4  
EQEP2S  
MFSXB  
General-purpose input/output 27 (I/O/Z)  
Enhanced capture 4 (I/O)  
Enhanced QEP2 strobe (I/O)  
73  
L9  
N11  
McBSP-B transmit frame synch (I/O)  
GPIO28  
SCIRXDA  
XZCS6  
General-purpose input/output 28 (I/O/Z)  
SCI receive data (I)  
External Interface zone 6 chip select (O)  
141  
2
E10  
C2  
B2  
D10  
C1  
C2  
B2  
GPIO29  
SCITXDA  
XA19  
General-purpose input/output 29. (I/O/Z)  
SCI transmit data (O)  
External Interface Address Line 19 (O)  
GPIO30  
CANRXA  
XA18  
General-purpose input/output 30 (I/O/Z)  
Enhanced CAN-A receive (I)  
External Interface Address Line 18 (O)  
1
GPIO31  
CANTXA  
XA17  
General-purpose input/output 31 (I/O/Z)  
Enhanced CAN-A transmit (O)  
External Interface Address Line 17 (O)  
176  
A2  
GPIO32  
SDAA  
EPWMSYNCI  
ADCSOCAO  
General-purpose input/output 32 (I/O/Z)  
I2C data open-drain bidirectional port (I/OD)  
Enhanced PWM external sync pulse input (I)  
ADC start-of-conversion A (O)  
74  
75  
N9  
P9  
M11  
P12  
GPIO33  
SCLA  
EPWMSYNCO  
ADCSOCBO  
General-purpose Input/Output 33 (I/O/Z)  
I2C clock open-drain bidirectional port (I/OD)  
Enhanced PWM external synch pulse output (O)  
ADC start-of-conversion B (O)  
General-purpose Input/Output 34 (I/O/Z)  
GPIO34  
ECAP1  
XREADY  
Enhanced Capture input/output 1 (I/O)  
142  
D10  
A9  
External Interface Ready signal. Note that this pin is always (directly) connected to the  
XINTF. If an application uses this pin as a GPIO while also using the XINTF, it should  
configure the XINTF to ignore READY.  
GPIO35  
SCITXDA  
XR/ W  
General-purpose Input/Output 35 (I/O/Z)  
SCI-A transmit data (O)  
External Interface read, not write strobe  
148  
145  
150  
137  
175  
151  
152  
153  
A9  
C10  
D9  
B9  
C9  
B8  
GPIO36  
SCIRXDA  
XZCS0  
General-purpose Input/Output 36 (I/O/Z)  
SCI receive data (I)  
External Interface zone 0 chip select (O)  
GPIO37  
ECAP2  
XZCS7  
General-purpose Input/Output 37 (I/O/Z)  
Enhanced Capture input/output 2 (I/O)  
External Interface zone 7 chip select (O)  
GPIO38  
-
XWE0  
General-purpose Input/Output 38 (I/O/Z)  
-
External Interface Write Enable 0 (O)  
D11  
B3  
C10  
C3  
C8  
A7  
GPIO39  
-
XA16  
General-purpose Input/Output 39 (I/O/Z)  
-
External Interface Address Line 16 (O)  
GPIO40  
-
XA0/ XWE1  
General-purpose Input/Output 40 (I/O/Z)  
-
External Interface Address Line 0/External Interface Write Enable 1 (O)  
D8  
GPIO41  
-
XA1  
General-purpose Input/Output 41 (I/O/Z)  
-
External Interface Address Line 1 (O)  
A8  
GPIO42  
-
General-purpose Input/Output 42 (I/O/Z)  
-
B8  
B7  
XA2  
External Interface Address Line 2 (O)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Signal Descriptions (continued)  
PIN NO.  
DESCRIPTION (1)  
PGF,  
PTP  
PIN #  
NAME  
ZHH  
ZJZ  
BALL # BALL #  
GPIO43  
General-purpose Input/Output 43 (I/O/Z)  
-
156  
157  
158  
161  
162  
88  
B7  
A7  
C7  
A6  
-
XA3  
External Interface Address Line 3 (O)  
GPIO44  
-
XA4  
General-purpose Input/Output 44 (I/O/Z)  
-
External Interface Address Line 4 (O)  
GPIO45  
-
XA5  
General-purpose Input/Output 45 (I/O/Z)  
D7  
B6  
-
External Interface Address Line 5 (O)  
GPIO46  
-
XA6  
General-purpose Input/Output 46 (I/O/Z)  
B6  
C6  
-
External Interface Address Line 6 (O)  
GPIO47  
-
XA7  
General-purpose Input/Output 47 (I/O/Z)  
A6  
D6  
-
External Interface Address Line 7 (O)  
GPIO48  
ECAP5  
XD31  
General-purpose Input/Output 48 (I/O/Z)  
Enhanced Capture input/output 5 (I/O)  
External Interface Data Line 31 (I/O/Z)  
P13  
N13  
P14  
M13  
M14  
L12  
L13  
L14  
K11  
K13  
K12  
H14  
G14  
L14  
L13  
L12  
K14  
K13  
K12  
J14  
J13  
J12  
H13  
H12  
H11  
G12  
GPIO49  
ECAP6  
XD30  
General-purpose Input/Output 49 (I/O/Z)  
Enhanced Capture input/output 6 (I/O)  
External Interface Data Line 30 (I/O/Z)  
89  
GPIO50  
EQEP1A  
XD29  
General-purpose Input/Output 50 (I/O/Z)  
Enhanced QEP1 input A (I)  
External Interface Data Line 29 (I/O/Z)  
90  
GPIO51  
EQEP1B  
XD28  
General-purpose Input/Output 51 (I/O/Z)  
Enhanced QEP1 input B (I)  
External Interface Data Line 28 (I/O/Z)  
91  
GPIO52  
EQEP1S  
XD27  
General-purpose Input/Output 52 (I/O/Z)  
Enhanced QEP1 Strobe (I/O)  
External Interface Data Line 27 (I/O/Z)  
94  
GPIO53  
EQEP1I  
XD26  
General-purpose Input/Output 53 (I/O/Z)  
Enhanced QEP1 lndex (I/O)  
External Interface Data Line 26 (I/O/Z)  
95  
GPIO54  
SPISIMOA  
XD25  
General-purpose Input/Output 54 (I/O/Z)  
SPI-A slave in, master out (I/O)  
External Interface Data Line 25 (I/O/Z)  
96  
GPIO55  
SPISOMIA  
XD24  
General-purpose Input/Output 55 (I/O/Z)  
SPI-A slave out, master in (I/O)  
External Interface Data Line 24 (I/O/Z)  
97  
GPIO56  
SPICLKA  
XD23  
General-purpose Input/Output 56 (I/O/Z)  
SPI-A clock (I/O)  
External Interface Data Line 23 (I/O/Z)  
98  
GPIO57  
SPISTEA  
XD22  
General-purpose Input/Output 57 (I/O/Z)  
SPI-A slave transmit enable (I/O)  
External Interface Data Line 22 (I/O/Z)  
99  
GPIO58  
MCLKRA  
XD21  
General-purpose Input/Output 58 (I/O/Z)  
McBSP-A receive clock (I/O)  
External Interface Data Line 21 (I/O/Z)  
100  
110  
111  
GPIO59  
MFSRA  
XD20  
General-purpose Input/Output 59 (I/O/Z)  
McBSP-A receive frame synch (I/O)  
External Interface Data Line 20 (I/O/Z)  
GPIO60  
MCLKRB  
XD19  
General-purpose Input/Output 60 (I/O/Z)  
McBSP-B receive clock (I/O)  
External Interface Data Line 19 (I/O/Z)  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
NAME  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Table 6-1. Signal Descriptions (continued)  
PIN NO.  
ZHH  
DESCRIPTION (1)  
PGF,  
PTP  
PIN #  
ZJZ  
BALL # BALL #  
GPIO61  
MFSRB  
XD18  
General-purpose Input/Output 61 (I/O/Z)  
McBSP-B receive frame synch (I/O)  
External Interface Data Line 18 (I/O/Z)  
112  
113  
114  
115  
116  
119  
122  
123  
124  
127  
128  
129  
130  
131  
132  
133  
134  
135  
G12  
G13  
G11  
G10  
F14  
F11  
E13  
E11  
F10  
D12  
C14  
B14  
C12  
C13  
A14  
B13  
A13  
B12  
F14  
F13  
F12  
E14  
E13  
E12  
D14  
D13  
D12  
C14  
C13  
B13  
A12  
B12  
C12  
A11  
B11  
C11  
GPIO62  
SCIRXDC  
XD17  
General-purpose Input/Output 62 (I/O/Z)  
SCI-C receive data (I)  
External Interface Data Line 17 (I/O/Z)  
GPIO63  
SCITXDC  
XD16  
General-purpose Input/Output 63 (I/O/Z)  
SCI-C transmit data (O)  
External Interface Data Line 16 (I/O/Z)  
GPIO64  
-
XD15  
General-purpose Input/Output 64 (I/O/Z)  
-
External Interface Data Line 15 (I/O/Z)  
GPIO65  
-
XD14  
General-purpose Input/Output 65 (I/O/Z)  
-
External Interface Data Line 14 (I/O/Z)  
GPIO66  
-
XD13  
General-purpose Input/Output 66 (I/O/Z)  
-
External Interface Data Line 13 (I/O/Z)  
GPIO67  
-
XD12  
General-purpose Input/Output 67 (I/O/Z)  
-
External Interface Data Line 12 (I/O/Z)  
GPIO68  
-
XD11  
General-purpose Input/Output 68 (I/O/Z)  
-
External Interface Data Line 11 (I/O/Z)  
GPIO69  
-
XD10  
General-purpose Input/Output 69 (I/O/Z)  
-
External Interface Data Line 10 (I/O/Z)  
GPIO70  
-
XD9  
General-purpose Input/Output 70 (I/O/Z)  
-
External Interface Data Line 9 (I/O/Z)  
GPIO71  
-
XD8  
General-purpose Input/Output 71 (I/O/Z)  
-
External Interface Data Line 8 (I/O/Z)  
GPIO72  
-
XD7  
General-purpose Input/Output 72 (I/O/Z)  
-
External Interface Data Line 7 (I/O/Z)  
GPIO73  
-
XD6  
General-purpose Input/Output 73 (I/O/Z)  
-
External Interface Data Line 6 (I/O/Z)  
GPIO74  
-
XD5  
General-purpose Input/Output 74 (I/O/Z)  
-
External Interface Data Line 5 (I/O/Z)  
GPIO75  
-
XD4  
General-purpose Input/Output 75 (I/O/Z)  
-
External Interface Data Line 4 (I/O/Z)  
GPIO76  
-
XD3  
General-purpose Input/Output 76 (I/O/Z)  
-
External Interface Data Line 3 (I/O/Z)  
GPIO77  
-
XD2  
General-purpose Input/Output 77 (I/O/Z)  
-
External Interface Data Line 2 (I/O/Z)  
GPIO78  
-
General-purpose Input/Output 78 (I/O/Z)  
-
XD1  
External Interface Data Line 1 (I/O/Z)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Signal Descriptions (continued)  
PIN NO.  
DESCRIPTION (1)  
PGF,  
PTP  
PIN #  
NAME  
ZHH  
ZJZ  
BALL # BALL #  
GPIO79  
General-purpose Input/Output 79 (I/O/Z)  
-
136  
163  
164  
165  
168  
169  
172  
173  
A12  
C6  
E6  
C5  
D5  
E5  
C4  
D4  
B10  
A5  
B5  
C5  
A4  
B4  
C4  
A3  
-
XD0  
External Interface Data Line 0 (I/O/Z)  
GPIO80  
-
XA8  
General-purpose Input/Output 80 (I/O/Z)  
-
External Interface Address Line 8 (O)  
GPIO81  
-
XA9  
General-purpose Input/Output 81 (I/O/Z)  
-
External Interface Address Line 9 (O)  
GPIO82  
-
XA10  
General-purpose Input/Output 82 (I/O/Z)  
-
External Interface Address Line 10 (O)  
GPIO83  
-
XA11  
General-purpose Input/Output 83 (I/O/Z)  
-
External Interface Address Line 11 (O)  
GPIO84  
-
XA12  
General-purpose Input/Output 84 (I/O/Z)  
External Interface Address Line 12 (O)  
GPIO85  
-
XA13  
General-purpose Input/Output 85 (I/O/Z)  
-
External Interface Address Line 13 (O)  
GPIO86  
-
General-purpose Input/Output 86 (I/O/Z)  
-
XA14  
External Interface Address Line 14 (O)  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
NAME  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Table 6-1. Signal Descriptions (continued)  
PIN NO.  
ZHH  
DESCRIPTION (1)  
PGF,  
PTP  
PIN #  
ZJZ  
BALL # BALL #  
GPIO87  
-
XA15  
General-purpose Input/Output 87 (I/O/Z)  
-
External Interface Address Line 15 (O)  
174  
149  
A3  
B9  
B3  
A8  
XRD  
External Interface Read Enable  
(1) I = Input, O = Output, Z = High impedance, OD = Open drain, ↑ = Pullup, ↓ = Pulldown  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7 Specifications  
This section provides the absolute maximum ratings and the recommended operating conditions.  
7.1 Absolute Maximum Ratings  
Unless otherwise noted, the list of absolute maximum ratings are specified over operating temperature ranges.  
MIN (1) (2)  
MAX  
UNIT  
VDDIO, VDD3VFL with respect to VSS  
VDDA2, VDDAIO with respect to VSSA  
VDD with respect to VSS  
–0.3  
4.6  
4.6  
2.5  
2.5  
–0.3  
–0.3  
Supply voltage  
V
VDD1A18, VDD2A18 with respect to VSSA  
–0.3  
VSSA2, VSSAIO, VSS1AGND, VSS2AGND  
with respect to VSS  
–0.3  
0.3  
Input voltage  
VIN  
–0.3  
–0.3  
–20  
–20  
–40  
–40  
–40  
–40  
–65  
4.6  
4.6  
20  
V
V
Output voltage  
VO  
(3)  
Input clamp current  
Output clamp current  
IIK (VIN < 0 or VIN > VDDIO  
)
mA  
mA  
IOK (VO < 0 or VO > VDDIO  
A version(4)  
)
20  
85  
Operating ambient temperature, TA  
S version  
125  
125  
150  
150  
°C  
Q version  
(4)  
Junction temperature  
Storage temperature  
TJ  
°C  
°C  
(4)  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Section 7.4 is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) Continuous clamp current per pin is ±2 mA. This includes the analog inputs which have an internal clamping circuit that clamps the  
voltage to a diode drop above VDDA2 or below VSSA2  
.
(4) One or both of the following conditions may result in a reduction of overall device life:  
long-term high-temperature storage  
extended use at maximum temperature  
For additional information, see Semiconductor and IC package thermal metrics.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.2 ESD Ratings – Automotive  
VALUE  
UNIT  
TMS320F2833x, TMS320F2823x in PTP Package  
Human body model (HBM), per AEC Q100-002(1)  
±2000  
±500  
All pins  
V(ESD) Electrostatic discharge  
V
Corner pins on 176-pin  
PTP: 1, 44, 45, 88, 89,  
132, 133, 176  
Charged-device model (CDM), per AEC Q100-011  
±750  
TMS320F2833x, TMS320F2823x in ZJZ Package  
Human body model (HBM), per AEC Q100-002(1)  
±2000  
±500  
All pins  
V(ESD) Electrostatic discharge  
V
Charged-device model (CDM), per AEC Q100-011  
Corner pins on 176-ball  
ZJZ: A1, A14, P1, P14  
±750  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 ESD Ratings – Commercial  
VALUE  
UNIT  
TMS320F2833x, TMS320F2823x in PGF Package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
TMS320F2833x, TMS320F2823x in ZHH Package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.135  
1.805  
1.71  
NOM  
3.3  
MAX UNIT  
Device supply voltage, I/O, VDDIO  
3.465  
1.995  
1.89  
V
Device operation @ 150 MHz  
Device supply voltage CPU, VDD  
1.9  
V
Device operation @ 100 MHz  
1.8  
Supply ground, VSS, VSSIO, VSSAIO  
VSSA2, VSS1AGND, VSS2AGND  
,
0
V
V
ADC supply voltage (3.3 V),  
VDDA2, VDDAIO  
3.135  
3.3  
3.465  
Device operation @ 150 MHz  
Device operation @ 100 MHz  
1.805  
1.9  
1.8  
3.3  
1.995  
ADC supply voltage,  
VDD1A18, VDD2A18  
V
V
1.71  
1.89  
Flash supply voltage, VDD3VFL  
3.135  
3.465  
F28335/F28334/F28235/F28234  
F28333/F28332/F28232  
All inputs except X1  
X1  
2
150  
Device clock frequency (system clock),  
fSYSCLKOUT  
MHz  
2
2
100  
VDDIO  
High-level input voltage, VIH  
Low-level input voltage, VIL  
V
V
0.7 * VDD – 0.05  
VDD  
All inputs except X1  
X1  
0.8  
0.3 * VDD + 0.05  
All I/Os except Group 2  
Group 2(1)  
–4  
–8  
High-level output source current,  
VOH = 2.4 V, IOH  
mA  
mA  
All I/Os except Group 2  
Group 2(1)  
4
Low-level output sink current,  
VOL = VOL MAX, IOL  
8
A version  
–40  
–40  
–40  
85  
Ambient temperature, TA  
Junction temperature, TJ  
S version  
125  
125  
125  
°C  
°C  
Q version  
(1) Group 2 pins are as follows: GPIO28, GPIO29, GPIO30, GPIO31, TDO, XCLKOUT, EMU0, EMU1, XINTF pins, GPIO35-87, XRD.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.5 Power Consumption Summary  
7.5.1 TMS320F28335/F28235 Current Consumption by Power-Supply Pins at 150-MHz SYSCLKOUT  
(1)  
(9)  
(2)  
(3)  
IDD  
IDDIO  
TYP(4)  
IDD3VFL  
TYP  
IDDA18  
TYP(4)  
IDDA33  
TYP(4)  
MODE  
TEST CONDITIONS  
TYP(4)  
MAX  
MAX  
MAX  
MAX  
MAX  
The following peripheral clocks  
are enabled:  
ePWM1, ePWM2,  
ePWM3, ePWM4,  
ePWM5, ePWM6  
eCAP1, eCAP2, eCAP3,  
eCAP4, eCAP5, eCAP6  
eQEP1, eQEP2  
eCAN-A  
SCI-A, SCI-B  
(FIFO mode)  
Operational  
(Flash)(6)  
290 mA  
315 mA  
30 mA  
50 mA  
35 mA  
40 mA  
30 mA  
35 mA  
1.5 mA  
2 mA  
SPI-A (FIFO mode)  
ADC  
I2C  
CPU-Timer 0,  
CPU-Timer 1,  
CPU-Timer 2  
All PWM pins are toggled at  
150 kHz.  
All I/O pins are left  
unconnected.(5)  
Flash is powered down.  
XCLKOUT is turned off.  
The following peripheral clocks  
are enabled:  
IDLE  
eCAN-A  
SCI-A  
SPI-A  
I2C  
100 mA  
120 mA  
15 mA  
60 μA  
120 μA  
2 μA  
10 μA  
5 μA  
60 μA  
15 μA  
20 μA  
Flash is powered down.  
Peripheral clocks are off.  
STANDBY  
HALT(8)  
8 mA  
60 μA  
60 μA  
120 μA  
120 μA  
2 μA  
2 μA  
10 μA  
10 μA  
5 μA  
5 μA  
60 μA  
60 μA  
15 μA  
15 μA  
20 μA  
20 μA  
Flash is powered down.  
Peripheral clocks are off.  
Input clock is disabled.(7)  
150 μA  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) IDDA18 includes current into VDD1A18 and VDD2A18 pins. To realize the IDDA18 currents shown for IDLE, STANDBY, and HALT, clock to the  
ADC module must be turned off explicitly by writing to the PCLKCR0 register.  
(3) IDDA33 includes current into VDDA2 and VDDAIO pins.  
(4) The TYP numbers are applicable over room temperature and nominal voltage. MAX numbers are at 125°C, and MAX voltage (VDD  
2.0 V; VDDIO, VDD3VFL, VDDA = 3.6 V).  
=
(5) The following is done in a loop:  
Data is continuously transmitted out of the SCI-A, SCI-B, SPI-A, McBSP-A, and eCAN-A ports.  
Multiplication/addition operations are performed.  
Watchdog is reset.  
ADC is performing continuous conversion. Data from ADC is transferred to SARAM through the DMA.  
32-bit read/write of the XINTF is performed.  
GPIO19 is toggled.  
(6) When the identical code is run off SARAM, IDD would increase as the code operates with zero wait states.  
(7) If a quartz crystal or ceramic resonator is used as the clock source, the HALT mode shuts down the internal oscillator.  
(8) HALT mode IDD currents will increase with temperature in a nonlinear fashion.  
(9) The IDD3VFL current indicated in this table is the flash read-current and does not include additional current for erase/write operations.  
During flash programming, extra current is drawn from the VDD and VDD3VFL rails, as indicated in Section 7.9.7.3. If the user application  
involves on-board flash programming, this extra current must be taken into account while architecting the power-supply stage.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
Note  
The peripheral - I/O multiplexing implemented in the device prevents all available peripherals from  
being used at the same time. This is because more than one peripheral function may share an I/O pin.  
It is, however, possible to turn on the clocks to all the peripherals at the same time, although such a  
configuration is not useful. If this is done, the current drawn by the device will be more than the  
numbers specified in the current consumption tables.  
7.5.2 TMS320F28334/F28234 Current Consumption by Power-Supply Pins at 150-MHz SYSCLKOUT  
(1)  
(9)  
(2)  
(3)  
IDD  
IDDIO  
TYP(4)  
IDD3VFL  
TYP  
IDDA18  
TYP(4)  
IDDA33  
TYP(4)  
MODE  
TEST CONDITIONS  
TYP(4)  
MAX  
MAX  
MAX  
MAX  
MAX  
The following peripheral  
clocks are enabled:  
ePWM1, ePWM2,  
ePWM3, ePWM4,  
ePWM5, ePWM6  
eCAP1, eCAP2,  
eCAP3, eCAP4,  
eCAP5, eCAP6  
eQEP1, eQEP2  
eCAN-A  
SCI-A, SCI-B  
(FIFO mode)  
Operational  
(Flash)(6)  
290 mA  
315 mA  
30 mA  
50 mA  
35 mA  
40 mA  
30 mA  
35 mA  
1.5 mA  
2 mA  
SPI-A (FIFO mode)  
ADC  
I2C  
CPU-Timer 0,  
CPU-Timer 1,  
CPU-Timer 2  
All PWM pins are toggled at  
150 kHz.  
All I/O pins are left  
unconnected. (5)  
Flash is powered down.  
XCLKOUT is turned off.  
The following peripheral  
clocks are enabled:  
IDLE  
eCAN-A  
SCI-A  
SPI-A  
I2C  
100 mA  
120 mA  
15 mA  
60 μA  
120 mA  
2 μA  
10 μA  
5 μA  
60 μA  
15 μA  
20 μA  
Flash is powered down.  
Peripheral clocks are off.  
STANDBY  
HALT(8)  
8 mA  
60 μA  
60 μA  
120 μA  
120 μA  
2 μA  
2 μA  
10 μA  
10 μA  
5 μA  
5 μA  
60 μA  
60 μA  
15 μA  
15 μA  
20 μA  
20 μA  
Flash is powered down.  
Peripheral clocks are off.  
Input clock is disabled.(7)  
150 μA  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) IDDA18 includes current into VDD1A18 and VDD2A18 pins. To realize the IDDA18 currents shown for IDLE, STANDBY, and HALT, clock to the  
ADC module must be turned off explicitly by writing to the PCLKCR0 register.  
(3) IDDA33 includes current into VDDA2 and VDDAIO pins.  
(4) The TYP numbers are applicable over room temperature and nominal voltage. MAX numbers are at 125°C, and MAX voltage (VDD  
2.0 V; VDDIO, VDD3VFL, VDDA = 3.6 V).  
=
(5) The following is done in a loop:  
Data is continuously transmitted out of the SCI-A, SCI-B, SPI-A, McBSP-A, and eCAN-A ports.  
Multiplication/addition operations are performed.  
Watchdog is reset.  
ADC is performing continuous conversion. Data from ADC is transferred to SARAM through the DMA.  
32-bit read/write of the XINTF is performed.  
GPIO19 is toggled.  
(6) When the identical code is run off SARAM, IDD would increase as the code operates with zero wait states.  
(7) If a quartz crystal or ceramic resonator is used as the clock source, the HALT mode shuts down the internal oscillator.  
(8) HALT mode IDD currents will increase with temperature in a nonlinear fashion.  
(9) The IDD3VFL current indicated in this table is the flash read-current and does not include additional current for erase/write operations.  
During flash programming, extra current is drawn from the VDD and VDD3VFL rails, as indicated in Section 7.9.7.3. If the user application  
involves on-board flash programming, this extra current must be taken into account while architecting the power-supply stage.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.5.3 Reducing Current Consumption  
The 2833x and 2823x DSCs incorporate a method to reduce the device current consumption. Because each  
peripheral unit has an individual clock-enable bit, reduction in current consumption can be achieved by turning  
off the clock to any peripheral module that is not used in a given application. Furthermore, any one of the three  
low-power modes could be taken advantage of to reduce the current consumption even further. Table 7-1  
indicates the typical reduction in current consumption achieved by turning off the clocks.  
Table 7-1. Typical Current Consumption by Various  
Peripherals (at 150 MHz) (1)  
PERIPHERAL  
MODULE  
IDD CURRENT  
REDUCTION/MODULE (mA)(2)  
ADC  
I2C  
8(3)  
2.5  
5
eQEP  
ePWM  
eCAP  
SCI  
5
2
5
SPI  
4
eCAN  
McBSP  
CPU-Timer  
XINTF  
DMA  
8
7
2
10(4)  
10  
15  
FPU  
(1) All peripheral clocks are disabled upon reset. Writing to or  
reading from peripheral registers is possible only after the  
peripheral clocks are turned on.  
(2) For peripherals with multiple instances, the current quoted is per  
module. For example, the 5 mA number quoted for ePWM is for  
one ePWM module.  
(3) This number represents the current drawn by the digital portion  
of the ADC module. Turning off the clock to the ADC module  
results in the elimination of the current drawn by the analog  
portion of the ADC (IDDA18) as well.  
(4) Operating the XINTF bus has a significant effect on IDDIO  
current. It will increase considerably based on the following:  
How many address/data pins toggle from one cycle to  
another  
How fast they toggle  
Whether 16-bit or 32-bit interface is used and  
The load on these pins.  
Following are other methods to reduce power consumption further:  
The Flash module may be powered down if code is run off SARAM. This results in a current reduction of 35  
mA (typical) in the VDD3VFL rail.  
IDDIO current consumption is reduced by 15 mA (typical) when XCLKOUT is turned off.  
Significant savings in IDDIO may be realized by disabling the pullups on pins that assume an output function  
and on XINTF pins. A savings of 35 mW (typical) can be achieved by this.  
The baseline IDD current (current when the core is executing a dummy loop with no peripherals enabled) is 165  
mA, (typical). To arrive at the IDD current for a given application, the current-drawn by the peripherals (enabled  
by that application) must be added to the baseline IDD current.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.5.4 Current Consumption Graphs  
Current Vs Frequency  
350.00  
300.00  
250.00  
200.00  
150.00  
100.00  
50.00  
0.00  
10 20  
30 40 50 60 70  
80 90 100 110 120 130 140 150  
SYSCLKOUT (MHz)  
IDD  
IDDIO  
IDDA18  
IDD3VFL  
1.8-V Current  
3.3-V Current  
Figure 7-1. Typical Operational Current Versus Frequency (F28335, F28235, F28334, F28234)  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Device Power Vs SYSCLKOUT  
1000.0  
900.0  
800.0  
700.0  
600.0  
500.0  
400.0  
300.0  
200.0  
100.0  
0.0  
SYSCLKOUT (MHz)  
Figure 7-2. Typical Operational Power Versus Frequency (F28335, F28235, F28334, F28234)  
Note  
Typical operational current for 100-MHz devices (28x32) can be estimated from Figure 7-1. Compared  
to 150-MHz devices, the analog and flash module currents remain unchanged. While a marginal  
decrease in IDDIO current can be expected due to the reduced external activity of peripheral pins,  
current reduction is primarily in IDD  
.
7.6 Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.4  
TYP  
MAX UNIT  
IOH = IOH MAX  
IOH = 50 μA  
VOH High-level output voltage  
V
VDDIO – 0.2  
VOL  
Low-level output voltage  
Pin with pullup  
IOL = IOL MAX  
0.4  
V
VDDIO = 3.3 V, VIN = 0 V  
VDDIO = 3.3 V, VIN = 0 V  
VDDIO = 3.3 V, VIN = VDDIO  
VDDIO = 3.3 V, VIN = VDDIO  
VO = VDDIO or 0 V  
All I/Os (including XRS)  
–80  
–140  
–190  
enabled  
Input current  
(low level)  
IIL  
μA  
Pin with pulldown  
enabled  
±2  
±2  
80  
±2  
Pin with pullup  
enabled  
Input current  
(high level)  
IIH  
μA  
Pin with pulldown  
enabled  
28  
50  
2
Output current, pullup or pulldown  
disabled  
IOZ  
CI  
μA  
pF  
Input capacitance  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.7 Thermal Resistance Characteristics  
7.7.1 PGF Package  
°C/W(1) (2)  
8.2  
AIR FLOW (lfm)(3)  
JC  
JB  
Junction-to-case  
Junction-to-board  
0
28.1  
44  
0
0
34.5  
33  
150  
250  
500  
0
JA  
(High k PCB)  
Junction-to-free air  
Junction-to-package top  
Junction-to-board  
31  
0.12  
0.48  
0.57  
0.74  
28.1  
26.3  
25.9  
25.2  
150  
250  
500  
0
PsiJT  
150  
250  
500  
PsiJB  
(1) °C/W = degrees Celsius per watt  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(3) lfm = linear feet per minute  
7.7.2 PTP Package  
°C/W(1) (2)  
12.1  
5.1  
AIR FLOW (lfm)(3)  
JC  
JB  
Junction-to-case  
Junction-to-board  
0
0
17.4  
11.7  
10.1  
8.8  
0
150  
250  
500  
0
JA  
(High k PCB)  
Junction-to-free air  
Junction-to-package top  
Junction-to-board  
0.2  
0.3  
150  
250  
500  
0
PsiJT  
0.4  
0.5  
5.0  
4.7  
150  
250  
500  
PsiJB  
4.7  
4.6  
(1) °C/W = degrees Celsius per watt  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(3) lfm = linear feet per minute  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.7.3 ZHH Package  
°C/W(1) (2)  
8.8  
AIR FLOW (lfm)(3)  
JC  
JB  
Junction-to-case  
Junction-to-board  
0
12.5  
32.8  
24.1  
22.9  
20.9  
0.09  
0.3  
0
0
150  
250  
500  
0
JA  
(High k PCB)  
Junction-to-free air  
Junction-to-package top  
Junction-to-board  
150  
250  
500  
0
PsiJT  
0.36  
0.48  
12.4  
11.8  
11.7  
11.5  
150  
250  
500  
PsiJB  
(1) °C/W = degrees Celsius per watt  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(3) lfm = linear feet per minute  
7.7.4 ZJZ Package  
°C/W(1) (2)  
11.4  
12  
AIR FLOW (lfm)(3)  
JC  
JB  
Junction-to-case  
Junction-to-board  
0
0
29.6  
20.9  
19.7  
18  
0
150  
250  
500  
0
JA  
(High k PCB)  
Junction-to-free air  
Junction-to-package top  
Junction-to-board  
0.2  
0.78  
0.91  
1.11  
12.2  
11.6  
11.5  
11.3  
150  
250  
500  
0
PsiJT  
150  
250  
500  
PsiJB  
(1) °C/W = degrees Celsius per watt  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(3) lfm = linear feet per minute  
7.8 Thermal Design Considerations  
Based on the end application design and operational profile, the IDD and IDDIO currents could vary. Systems with  
more than 1 Watt power dissipation may require a product level thermal design. Care should be taken to keep Tj  
within specified limits. In the end applications, Tcase should be measured to estimate the operating junction  
temperature Tj. Tcase is normally measured at the center of the package top side surface. The thermal  
application note Semiconductor and IC package thermal metrics helps to understand the thermal metrics and  
definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.9 Timing and Switching Characteristics  
7.9.1 Timing Parameter Symbology  
Timing parameter symbols used are created in accordance with JEDEC Standard 100. To shorten the symbols,  
some of the pin names and other related terminology have been abbreviated as follows:  
Lowercase subscripts and their  
meanings:  
Letters and symbols and their  
meanings:  
a
c
d
f
access time  
cycle time (period)  
delay time  
H
L
High  
Low  
V
X
Z
Valid  
fall time  
Unknown, changing, or don't care level  
High impedance  
h
r
hold time  
rise time  
su  
t
setup time  
transition time  
valid time  
v
w
pulse duration (width)  
7.9.1.1 General Notes on Timing Parameters  
All output signals from the 28x devices (including XCLKOUT) are derived from an internal clock such that all  
output transitions for a given half-cycle occur with a minimum of skewing relative to each other.  
The signal combinations shown in the following timing diagrams may not necessarily represent actual cycles. For  
actual cycle examples, see the appropriate cycle description section of this document.  
7.9.1.2 Test Load Circuit  
This test load circuit is used to measure all switching characteristics provided in this document.  
Tester Pin Electronics  
Data Sheet Timing Reference Point  
Output  
Under  
Test  
42 Ω  
3.5 nH  
Transmission Line  
(Α)  
Z0 = 50 Ω  
(B)  
Device Pin  
4.0 pF  
1.85 pF  
A. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin.  
B. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects  
must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line  
effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer)  
from the data sheet timing.  
Figure 7-3. 3.3-V Test Load Circuit  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.1.3 Device Clock Table  
This section provides the timing requirements and switching characteristics for the various clock options  
available. Section 7.9.1.3.1 and Section 7.9.1.3.2 list the cycle times of various clocks.  
7.9.1.3.1 Clocking and Nomenclature (150-MHz Devices)  
MIN  
28.6  
20  
NOM  
MAX UNIT  
tc(OSC), Cycle time  
Frequency  
50  
35  
ns  
MHz  
ns  
On-chip oscillator clock  
XCLKIN(1)  
tc(CI), Cycle time  
Frequency  
6.67  
4
250  
150  
500  
150  
2000  
150  
MHz  
ns  
tc(SCO), Cycle time  
Frequency  
6.67  
2
SYSCLKOUT  
XCLKOUT  
MHz  
ns  
tc(XCO), Cycle time  
Frequency  
6.67  
0.5  
MHz  
ns  
tc(HCO), Cycle time  
Frequency  
6.67  
13.3(3)  
75(3)  
HSPCLK(2)  
150  
75(4)  
25  
MHz  
ns  
tc(LCO), Cycle time  
Frequency  
13.3  
40  
26.7(3)  
37.5(3)  
LSPCLK(2)  
MHz  
ns  
tc(ADCCLK), Cycle time  
Frequency  
ADC clock  
MHz  
(1) This also applies to the X1 pin if a 1.9-V oscillator is used.  
(2) Lower LSPCLK and HSPCLK will reduce device power consumption.  
(3) This is the default value if SYSCLKOUT = 150 MHz.  
(4) Although LSPCLK is capable of reaching 100 MHz, it is specified at 75 MHz because the smallest valid "Low-speed peripheral clock  
prescaler register" value is "1" for 150-MHz devices.  
7.9.1.3.2 Clocking and Nomenclature (100-MHz Devices)  
MIN  
28.6  
20  
10  
4
NOM  
MAX UNIT  
tc(OSC), Cycle time  
Frequency  
50  
35  
ns  
MHz  
ns  
On-chip oscillator clock  
XCLKIN(1)  
tc(CI), Cycle time  
Frequency  
250  
100  
500  
100  
2000  
100  
MHz  
ns  
tc(SCO), Cycle time  
Frequency  
10  
2
SYSCLKOUT  
XCLKOUT  
MHz  
ns  
tc(XCO), Cycle time  
Frequency  
10  
0.5  
10  
MHz  
ns  
tc(HCO), Cycle time  
Frequency  
20(3)  
50(3)  
40(3)  
25(3)  
HSPCLK(2)  
100  
100  
25  
MHz  
ns  
tc(LCO), Cycle time  
Frequency  
10  
40  
LSPCLK(2)  
MHz  
ns  
tc(ADCCLK), Cycle time  
Frequency  
ADC clock  
MHz  
(1) This also applies to the X1 pin if a 1.8-V oscillator is used.  
(2) Lower LSPCLK and HSPCLK will reduce device power consumption.  
(3) This is the default value if SYSCLKOUT = 100 MHz.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.2 Power Sequencing  
No requirements are placed on the power-up and power-down sequences of the various power pins to ensure  
the correct reset state for all the modules. However, if the 3.3-V transistors in the level shifting output buffers of  
the I/O pins are powered prior to the 1.9-V/1.8-V transistors, it is possible for the output buffers to turn on,  
causing a glitch to occur on the pin during power up. To avoid this behavior, power the VDD pins prior to or  
simultaneously with the VDDIO pins, ensuring that the VDD pins have reached 0.7 V before the VDDIO pins reach  
0.7 V.  
There are some requirements on the XRS pin:  
1. During power up, the XRS pin must be held low for tw(RSL1) after the input clock is stable (see Section  
7.9.2.2). This is to enable the entire device to start from a known condition.  
2. During power down, the XRS pin must be pulled low at least 8 μs prior to VDD reaching 1.5 V. Meeting this  
requirement is important to help prevent unintended flash program or erase.  
No voltage larger than a diode drop (0.7 V) above VDDIO should be applied to any digital pin (for analog pins, this  
value is 0.7 V above VDDA) before powering up the device. Furthermore, VDDIO and VDDA should always be  
within 0.3 V of each other. Voltages applied to pins on an unpowered device can bias internal P-N junctions in  
unintended ways and produce unpredictable results.  
7.9.2.1 Power Management and Supervisory Circuit Solutions  
LDO selection depends on the total power consumed in the end application. Go to the Power Management page  
for a list of TI power management ICs. Click the Reference designs tab for specific power management  
reference designs.  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
, V  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
V
DDIO DD3VFL  
V , V  
DDA2 DDAIO  
(3.3 V)  
V , V  
DD DD1A18,  
V
DD2A18  
(1.9 V/1.8 V)  
XCLKIN  
X1/X2  
(A)  
OSCCLK/8  
OSCCLK/16  
XCLKOUT  
User-Code Dependent  
t
OSCST  
t
w(RSL1)  
XRS  
Address/Data Valid. Internal Boot-ROM Code Execution Phase  
Address/Data/  
Control  
(Internal)  
User-Code Execution Phase  
User-Code Dependent  
t
d(EX)  
(B)  
h(boot-mode)  
t
Boot-Mode  
Pins  
GPIO Pins as Input  
Boot-ROM Execution Starts  
Peripheral/GPIO Function  
Based on Boot Code  
(C)  
GPIO Pins as Input (State Depends on Internal PU/PD)  
User-Code Dependent  
I/O Pins  
A. Upon power up, SYSCLKOUT is OSCCLK/4. Because both the XTIMCLK and CLKMODE bits in the XINTCNF2 register come up with a  
reset state of 1, SYSCLKOUT is further divided by 4 before it appears at XCLKOUT. This explains why XCLKOUT = OSCCLK/16 during  
this phase. Subsequently, boot ROM changes SYSCLKOUT to OSCCLK/2. Because the XTIMCLK register is unchanged by the boot  
ROM, XCLKOUT is OSCCLK/8 during this phase.  
B. After reset, the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode pin, the boot code branches to  
destination memory or boot code function. If boot ROM code executes after power-on conditions (in debugger environment), the boot  
code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT will be based on user environment and could be  
with or without PLL enabled.  
C. See Section 7.9.2 for requirements to ensure a high-impedance state for GPIO pins during power up.  
Figure 7-4. Power-on Reset  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.2.2 Reset ( XRS) Timing Requirements  
MIN  
32tc(OSCCLK)  
32tc(OSCCLK)  
NOM  
MAX UNIT  
(1)  
tw(RSL1)  
tw(RSL2)  
Pulse duration, stable input clock to XRS high  
Pulse duration, XRS low  
cycles  
cycles  
Warm reset  
Pulse duration, reset pulse generated by  
watchdog  
tw(WDRS)  
td(EX)  
512tc(OSCCLK)  
cycles  
Delay time, address/data valid after XRS high  
Oscillator start-up time  
32tc(OSCCLK)  
10  
cycles  
ms  
(2)  
tOSCST  
1
th(boot-mode)  
Hold time for boot-mode pins  
200tc(OSCCLK)  
cycles  
(1) In addition to the tw(RSL1) requirement, XRS must be low at least for 1 ms after VDD reaches 1.5 V.  
(2) Dependent on crystal/resonator and board design.  
XCLKIN  
X1/X2  
OSCCLK/8  
XCLKOUT  
XRS  
User-Code Dependent  
OSCCLK * 5  
t
w(RSL2)  
User-Code Execution Phase  
t
d(EX)  
Address/Data/  
Control  
(Internal)  
(Don’t Care)  
User-Code Execution  
(A)  
t
Boot-ROM Execution Starts  
GPIO Pins as Input  
h(boot-mode)  
Boot-Mode  
Pins  
Peripheral/GPIO Function  
User-Code Dependent  
Peripheral/GPIO Function  
User-Code Execution Starts  
I/O Pins  
GPIO Pins as Input (State Depends on Internal PU/PD)  
User-Code Dependent  
A. After reset, the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to  
destination memory or boot code function. If Boot ROM code executes after power-on conditions (in debugger environment), the Boot  
code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT will be based on user environment and could be  
with or without PLL enabled.  
Figure 7-5. Warm Reset  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Figure 7-6 shows an example for the effect of writing into PLLCR register. In the first phase, PLLCR = 0x0004  
and SYSCLKOUT = OSCCLK × 2. The PLLCR is then written with 0x0008. Right after the PLLCR register is  
written, the PLL lock-up phase begins. During this phase, SYSCLKOUT = OSCCLK/2. After the PLL lock-up is  
complete (which takes 131072 OSCCLK cycles), SYSCLKOUT reflects the new operating frequency, OSCCLK ×  
4.  
OSCCLK  
Write to PLLCR  
SYSCLKOUT  
OSCCLK * 2  
OSCCLK/2  
OSCCLK * 4  
(Current CPU  
Frequency)  
(CPU Frequency While PLL is Stabilizing  
With the Desired Frequency. This Period  
(PLL Lock-up Time, t ) is  
(Changed CPU Frequency)  
p
131072 OSCCLK Cycles Long.)  
Figure 7-6. Example of Effect of Writing Into PLLCR Register  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.3 Clock Requirements and Characteristics  
7.9.3.1 Input Clock Frequency  
PARAMETER  
MIN  
20  
20  
4
TYP MAX UNIT  
Resonator (X1/X2)  
Crystal (X1/X2)  
35  
35  
MHz  
150  
fx  
Input clock frequency  
150-MHz device  
100-MHz device  
External oscillator/clock  
source (XCLKIN or X1 pin)  
4
100  
fl  
Limp mode SYSCLKOUT frequency range (with /2 enabled)  
1 - 5  
MHz  
7.9.3.2 XCLKIN Timing Requirements – PLL Enabled  
NO.  
MIN  
MAX UNIT  
C8  
C9  
tc(CI)  
tf(CI)  
Cycle time, XCLKIN  
33.3  
200  
6
ns  
ns  
ns  
Fall time, XCLKIN(1)  
C10 tr(CI)  
Rise time, XCLKIN(1)  
6
(1)  
C11 tw(CIL)  
C12 tw(CIH)  
Pulse duration, XCLKIN low as a percentage of tc(CI)  
45%  
45%  
55%  
55%  
(1)  
Pulse duration, XCLKIN high as a percentage of tc(CI)  
(1) This applies to the X1 pin also.  
7.9.3.3 XCLKIN Timing Requirements – PLL Disabled  
NO.  
MIN  
6.67  
10  
MAX UNIT  
150-MHz device  
100-MHz device  
Up to 30 MHz  
250  
ns  
250  
C8 tc(CI)  
C9 tf(CI)  
C10 tr(CI)  
Cycle time, XCLKIN  
Fall time, XCLKIN(1)  
Rise time, XCLKIN(1)  
6
ns  
2
30 MHz to 150 MHz  
Up to 30 MHz  
6
ns  
2
30 MHz to 150 MHz  
(1)  
C11 tw(CIL)  
C12 tw(CIH)  
Pulse duration, XCLKIN low as a percentage of tc(CI)  
Pulse duration, XCLKIN high as a percentage of tc(CI)  
45%  
45%  
55%  
55%  
(1)  
(1) This applies to the X1 pin also.  
The possible configuration modes are shown in Table 8-38.  
7.9.3.4 XCLKOUT Switching Characteristics (PLL Bypassed or Enabled) (1) (2)  
NO.  
PARAMETER  
Cycle time, XCLKOUT  
MIN  
6.67  
10  
TYP  
MAX UNIT  
150-MHz device  
100-MHz device  
C1 tc(XCO)  
ns  
C3 tf(XCO)  
C4 tr(XCO)  
C5 tw(XCOL)  
C6 tw(XCOH)  
tp  
Fall time, XCLKOUT  
2
2
ns  
ns  
Rise time, XCLKOUT  
Pulse duration, XCLKOUT low  
Pulse duration, XCLKOUT high  
PLL lock time  
H – 2  
H – 2  
H + 2  
ns  
ns  
H + 2  
(3)  
131072tc(OSCCLK)  
cycles  
(1) A load of 40 pF is assumed for these parameters.  
(2) H = 0.5tc(XCO)  
(3) OSCCLK is either the output of the on-chip oscillator or the output from an external oscillator.  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.3.5 Timing Diagram  
C10  
C9  
C8  
(A)  
XCLKIN  
C6  
C3  
C1  
C4  
C5  
(B)  
XCLKOUT  
A. The relationship of XCLKIN to XCLKOUT depends on the divide factor chosen. The waveform relationship shown is intended to illustrate  
the timing parameters only and may differ based on actual configuration.  
B. XCLKOUT configured to reflect SYSCLKOUT.  
Figure 7-7. Clock Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.4 Peripherals  
7.9.4.1 General-Purpose Input/Output (GPIO)  
7.9.4.1.1 GPIO - Output Timing  
7.9.4.1.1.1 General-Purpose Output Switching Characteristics  
PARAMETER  
MIN  
MAX  
8
UNIT  
ns  
tr(GPO)  
tf(GPO)  
tfGPO  
Rise time, GPIO switching low to high  
Fall time, GPIO switching high to low  
Toggling frequency, GPO pins  
All GPIOs  
All GPIOs  
8
ns  
25  
MHz  
GPIO  
t
r(GPO)  
t
f(GPO)  
Figure 7-8. General-Purpose Output Timing  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.4.1.2 GPIO - Input Timing  
7.9.4.1.2.1 General-Purpose Input Timing Requirements  
MIN  
1tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
cycles  
QUALPRD = 0  
QUALPRD ≠ 0  
tw(SP)  
Sampling period  
2tc(SCO) * QUALPRD  
tw(SP) * (n(1) – 1)  
2tc(SCO)  
tw(IQSW)  
Input qualifier sampling window  
Pulse duration, GPIO low/high  
Synchronous mode  
With input qualifier  
(2)  
tw(GPI)  
tw(IQSW) + tw(SP) + 1tc(SCO)  
(1) "n" represents the number of qualification samples as defined by GPxQSELn register.  
(2) For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal.  
(A)  
GPIO Signal  
GPxQSELn = 1,0 (6 samples)  
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
t
Sampling Period determined  
(B)  
w(SP)  
by GPxCTRL[QUALPRD]  
t
w(IQSW)  
(C)  
(SYSCLKOUT cycle * 2 * QUALPRD) * 5  
)
Sampling Window  
SYSCLKOUT  
QUALPRD = 1  
(SYSCLKOUT/2)  
(D)  
Output From  
Qualifier  
A. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It can vary from 00 to  
0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLKOUT cycle. For any other value "n", the qualification sampling period in  
2n SYSCLKOUT cycles (that is, at every 2n SYSCLKOUT cycles, the GPIO pin will be sampled).  
B. The qualification period selected through the GPxCTRL register applies to groups of 8 GPIO pins.  
C. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is used.  
D. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLKOUT cycles or greater. In other  
words, the inputs should be stable for (5 × QUALPRD × 2) SYSCLKOUT cycles. This would ensure 5 sampling periods for detection to  
occur. Because external signals are driven asynchronously, an 13-SYSCLKOUT-wide pulse ensures reliable recognition.  
Figure 7-9. Sampling Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.4.1.3 Sampling Window Width for Input Signals  
The following section summarizes the sampling window width for input signals for various input qualifier  
configurations.  
Sampling frequency denotes how often a signal is sampled with respect to SYSCLKOUT.  
Sampling frequency = SYSCLKOUT/(2 * QUALPRD), if QUALPRD ≠ 0  
Sampling frequency = SYSCLKOUT, if QUALPRD = 0  
Sampling period = SYSCLKOUT cycle × 2 × QUALPRD, if QUALPRD ≠ 0  
In the above equations, SYSCLKOUT cycle indicates the time period of SYSCLKOUT.  
Sampling period = SYSCLKOUT cycle, if QUALPRD = 0  
In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of the  
signal. This is determined by the value written to GPxQSELn register.  
Case 1:  
Qualification using three samples  
Sampling window width = (SYSCLKOUT cycle × 2 × QUALPRD) × 2, if QUALPRD ≠ 0  
Sampling window width = (SYSCLKOUT cycle) × 2, if QUALPRD = 0  
Case 2:  
Qualification using six samples  
Sampling window width = (SYSCLKOUT cycle × 2 × QUALPRD) × 5, if QUALPRD ≠ 0  
Sampling window width = (SYSCLKOUT cycle) × 5, if QUALPRD = 0  
SYSCLK  
GPIOxn  
tw(GPI)  
Figure 7-10. General-Purpose Input Timing  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.4.1.4 Low-Power Mode Wakeup Timing  
Section 7.9.4.1.4.1 shows the timing requirements, Section 7.9.4.1.4.2 shows the switching characteristics, and  
Figure 7-11 shows the timing diagram for IDLE mode.  
7.9.4.1.4.1 IDLE Mode Timing Requirements (1)  
MIN  
2tc(SCO)  
MAX  
UNIT  
Without input qualifier  
With input qualifier  
tw(WAKE-INT)  
Pulse duration, external wake-up signal  
cycles  
5tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 7.9.4.1.2.1.  
7.9.4.1.4.2 IDLE Mode Switching Characteristics (1)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Delay time, external wake signal to  
program execution resume (2)  
Wake-up from flash  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
20tc(SCO)  
cycles  
cycles  
cycles  
Flash module in active state  
20tc(SCO) + tw(IQSW)  
1050tc(SCO)  
td(WAKE-IDLE)  
Wake-up from flash  
Flash module in sleep state  
1050tc(SCO) + tw(IQSW)  
20tc(SCO)  
Wake-up from SARAM  
20tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 7.9.4.1.2.1.  
(2) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. execution of an ISR (triggered  
by the wake up) signal involves additional latency.  
7.9.4.1.4.3 IDLE Mode Timing Diagram  
t
d(WAKE−IDLE)  
Address/Data  
(internal)  
XCLKOUT  
t
w(WAKE−INT)  
(A)(B)  
WAKE INT  
A. WAKE INT can be any enabled interrupt, WDINT, XNMI, or XRS.  
B. From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be initiated until at  
least 4 OSCCLK cycles have elapsed.  
Figure 7-11. IDLE Entry and Exit Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.4.1.4.4 STANDBY Mode Timing Requirements  
MIN  
3tc(OSCCLK)  
MAX  
UNIT  
Without input qualification  
With input qualification(1)  
Pulse duration, external  
wake-up signal  
tw(WAKE-INT)  
cycles  
(2 + QUALSTDBY) * tc(OSCCLK)  
(1) QUALSTDBY is a 6-bit field in the LPMCR0 register.  
7.9.4.1.4.5 STANDBY Mode Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Delay time, IDLE instruction  
executed to XCLKOUT low  
td(IDLE-XCOL)  
32tc(SCO)  
45tc(SCO)  
cycles  
Delay time, external wake signal to  
program execution resume(1)  
Wake up from flash  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
100tc(SCO)  
Flash module in active  
state  
cycles  
100tc(SCO) + tw(WAKE-INT)  
1125tc(SCO)  
td(WAKE-STBY)  
Wake up from flash  
Flash module in sleep  
state  
cycles  
cycles  
1125tc(SCO) + tw(WAKE-INT)  
Without input qualifier  
With input qualifier  
100tc(SCO)  
Wake up from SARAM  
100tc(SCO) + tw(WAKE-INT)  
(1) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. execution of an ISR (triggered  
by the wake up signal) involves additional latency.  
7.9.4.1.4.6 STANDBY Mode Timing Diagram  
(A)  
(C)  
(E)  
(D)  
(B)  
(F)  
Device  
Status  
STANDBY  
STANDBY  
Normal Execution  
Flushing Pipeline  
Wake-up  
(G)  
Signal  
t
w(WAKE-INT)  
t
d(WAKE-STBY)  
X1/X2 or  
X1 or  
XCLKIN  
XCLKOUT  
t
d(IDLE−XCOL)  
A. IDLE instruction is executed to put the device into STANDBY mode.  
B. The PLL block responds to the STANDBY signal. SYSCLKOUT is held for the number of cycles indicated below before being turned off:  
16 cycles, when DIVSEL = 00 or 01  
32 cycles, when DIVSEL = 10  
64 cycles, when DIVSEL = 11  
This delay enables the CPU pipeline and any other pending operations to flush properly. If an access to  
XINTF is in progress and its access time is longer than this number then it will fail. It is recommended to  
enter STANDBY mode from SARAM without an XINTF access in progress.  
C. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in STANDBY mode.  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
D. The external wake-up signal is driven active.  
E. After a latency period, the STANDBY mode is exited.  
F. Normal execution resumes. The device will respond to the interrupt (if enabled).  
G. From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be initiated until at  
least 4 OSCCLK cycles have elapsed.  
Figure 7-12. STANDBY Entry and Exit Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.4.1.4.7 HALT Mode Timing Requirements  
MIN  
MAX  
UNIT  
cycles  
cycles  
(1)  
tw(WAKE-GPIO)  
tw(WAKE-XRS)  
Pulse duration, GPIO wake-up signal  
Pulse duration, XRS wakeup signal  
toscst + 2tc(OSCCLK)  
toscst + 8tc(OSCCLK)  
(1) See Section 7.9.2.2 for an explanation of toscst  
.
7.9.4.1.4.8 HALT Mode Switching Characteristics  
PARAMETER  
MIN  
32tc(SCO)  
MAX  
45tc(SCO)  
UNIT  
cycles  
cycles  
td(IDLE-XCOL)  
tp  
Delay time, IDLE instruction executed to XCLKOUT low  
PLL lock-up time  
131072tc(OSCCLK)  
Delay time, PLL lock to program execution resume  
Wake up from flash  
Flash module in sleep state  
1125tc(SCO)  
cycles  
cycles  
td(WAKE-HALT)  
Wake up from SARAM  
35tc(SCO)  
7.9.4.1.4.9 HALT Mode Timing Diagram  
(G)  
(A)  
(C)  
(E)  
(B)  
(D)  
(F)  
Device  
Status  
HALT  
HALT  
Flushing Pipeline  
PLL Lock-up Time  
Normal  
Execution  
Wake-up Latency  
(H)  
GPIOn  
t
d(WAKE−HALT)  
t
w(WAKE-GPIO)  
t
p
X1/X2  
or XCLKIN  
Oscillator Start-up Time  
XCLKOUT  
t
d(IDLE−XCOL)  
A. IDLE instruction is executed to put the device into HALT mode.  
B. The PLL block responds to the HALT signal. SYSCLKOUT is held for the number of cycles indicated below before oscillator is turned off  
and the CLKIN to the core is stopped:  
16 cycles, when DIVSEL = 00 or 01  
32 cycles, when DIVSEL = 10  
64 cycles, when DIVSEL = 11  
This delay enables the CPU pipeline and any other pending operations to flush properly. If an access to XINTF is in progress and its  
access time is longer than this number then it will fail. It is recommended to enter HALT mode from SARAM without an XINTF access in  
progress.  
C. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as the clock source,  
the internal oscillator is shut down as well. The device is now in HALT mode and consumes absolute minimum power.  
D. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator wake-up sequence  
is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This enables the provision of a clean clock signal  
during the PLL lock sequence. Because the falling edge of the GPIO pin asynchronously begins the wakeup process, care should be  
taken to maintain a low noise environment prior to entering and during HALT mode.  
E. Once the oscillator has stabilized, the PLL lock sequence is initiated, which takes 131,072 OSCCLK (X1/X2 or X1 or XCLKIN) cycles.  
Note that these 131,072 clock cycles are applicable even when the PLL is disabled (that is, code execution will be delayed by this  
duration even when the PLL is disabled).  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
F. Clocks to the core and peripherals are enabled. The HALT mode is now exited. The device will respond to the interrupt (if enabled), after  
a latency.  
G. Normal operation resumes.  
H. From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be initiated until at  
least 4 OSCCLK cycles have elapsed.  
Figure 7-13. HALT Wakeup Using GPIOn  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.4.2 Enhanced Control Peripherals  
7.9.4.2.1 Enhanced Pulse Width Modulator (ePWM) Timing  
PWM refers to PWM outputs on ePWM1–6. Section 7.9.4.2.1.1 shows the ePWM timing requirements and  
Section 7.9.4.2.1.2, ePWM switching characteristics.  
7.9.4.2.1.1 ePWM Timing Requirements (1)  
MIN  
2tc(SCO)  
MAX  
UNIT  
Asynchronous  
Synchronous  
tw(SYCIN)  
Sync input pulse width  
2tc(SCO)  
cycles  
With input qualifier  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 7.9.4.1.2.1.  
7.9.4.2.1.2 ePWM Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
20  
MAX  
UNIT  
ns  
tw(PWM)  
Pulse duration, PWMx output high/low  
Sync output pulse width  
tw(SYNCOUT)  
8tc(SCO)  
cycles  
Delay time, trip input active to PWM forced high  
Delay time, trip input active to PWM forced low  
td(PWM)tza  
no pin load  
25  
20  
ns  
ns  
td(TZ-PWM)HZ  
Delay time, trip input active to PWM Hi-Z  
7.9.4.2.2 Trip-Zone Input Timing  
SYSCLK  
tw(TZ)  
TZ(A)  
td(TZ-PWM)HZ  
PWM(B)  
A. TZ - TZ1, TZ2, TZ3, TZ4, TZ5, TZ6  
B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software.  
Figure 7-14. PWM Hi-Z Characteristics  
7.9.4.2.2.1 Trip-Zone Input Timing Requirements (1)  
MIN  
1tc(SCO)  
MAX UNIT  
Asynchronous  
Synchronous  
tw(TZ)  
Pulse duration, TZx input low  
2tc(SCO)  
cycles  
With input qualifier  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 7.9.4.1.2.1.  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.4.2.3 High-Resolution PWM Timing  
Section 7.9.4.2.3.1 shows the high-resolution PWM switching characteristics.  
7.9.4.2.3.1 High-Resolution PWM Characteristics at SYSCLKOUT = (60–150 MHz)  
MIN  
TYP  
MAX UNIT  
310 ps  
Micro Edge Positioning (MEP) step size(1)  
150  
(1) The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher  
temperature and lower voltage and decrease with lower temperature and higher voltage.  
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI  
software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per  
SYSCLKOUT period dynamically while the HRPWM is in operation.  
7.9.4.2.4 Enhanced Capture (eCAP) Timing  
Section 7.9.4.2.4.1 shows the eCAP timing requirement and Section 7.9.4.2.4.2 shows the eCAP switching  
characteristics.  
7.9.4.2.4.1 Enhanced Capture (eCAP) Timing Requirements (1)  
MIN  
2tc(SCO)  
MAX UNIT  
Asynchronous  
Synchronous  
tw(CAP)  
Capture input pulse width  
2tc(SCO)  
cycles  
With input qualifier  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 7.9.4.1.2.1.  
7.9.4.2.4.2 eCAP Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
tw(APWM)  
Pulse duration, APWMx output high/low  
20  
ns  
7.9.4.2.5 Enhanced Quadrature Encoder Pulse (eQEP) Timing  
Section 7.9.4.2.5.1 shows the eQEP timing requirement and Section 7.9.4.2.5.2 shows the eQEP switching  
characteristics.  
7.9.4.2.5.1 Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements (1)  
MIN  
MAX  
UNIT  
Asynchronous(2)/synchronous  
With input qualifier  
2tc(SCO)  
tw(QEPP)  
QEP input period  
cycles  
2[1tc(SCO) + tw(IQSW)  
]
Asynchronous(2)/synchronous  
2tc(SCO)  
2tc(SCO) + tw(IQSW)  
2tc(SCO)  
tw(INDEXH)  
tw(INDEXL)  
tw(STROBH)  
tw(STROBL)  
QEP Index Input High time  
QEP Index Input Low time  
QEP Strobe High time  
QEP Strobe Input Low time  
cycles  
cycles  
cycles  
cycles  
With input qualifier  
Asynchronous(2)/synchronous  
With input qualifier  
2tc(SCO) + tw(IQSW)  
2tc(SCO)  
2tc(SCO) + tw(IQSW)  
2tc(SCO)  
Asynchronous(2)/synchronous  
With input qualifier  
Asynchronous(2)/synchronous  
With input qualifier  
2tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 7.9.4.1.2.1.  
(2) Refer to the TMS320F2833x, TMS320F2823x DSC silicon errata for limitations in the asynchronous mode.  
7.9.4.2.5.2 eQEP Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
td(CNTR)xin  
Delay time, external clock to counter increment  
4tc(SCO)  
cycles  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
UNIT  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
Delay time, QEP input edge to position compare sync  
output  
td(PCS-OUT)QEP  
6tc(SCO)  
cycles  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.4.2.6 ADC Start-of-Conversion Timing  
7.9.4.2.6.1 External ADC Start-of-Conversion Switching Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
tw(ADCSOCL)  
Pulse duration, ADCSOCxO low  
32tc(HCO )  
cycles  
7.9.4.2.6.2 ADCSOCAO or ADCSOCBO Timing  
t
w(ADCSOCL)  
ADCSOCAO  
or  
ADCSOCBO  
Figure 7-15. ADCSOCAO or ADCSOCBO Timing  
7.9.4.3 External Interrupt Timing  
7.9.4.3.1 External Interrupt Timing Requirements (1)  
MIN  
1tc(SCO)  
MAX  
UNIT  
Synchronous  
With qualifier  
(2)  
tw(INT)  
Pulse duration, INT input low/high  
cycles  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 7.9.4.1.2.1.  
(2) This timing is applicable to any GPIO pin configured for ADCSOC functionality.  
7.9.4.3.2 External Interrupt Switching Characteristics (1)  
PARAMETER  
MIN  
MAX  
tw(IQSW) + 12tc(SCO)  
UNIT  
td(INT)  
Delay time, INT low/high to interrupt-vector fetch  
cycles  
(1) For an explanation of the input qualifier parameters, see Section 7.9.4.1.2.1.  
7.9.4.3.3 External Interrupt Timing Diagram  
t
w(INT)  
XNMI, XINT1, XINT2  
t
d(INT)  
Address bus  
(internal)  
Interrupt Vector  
Figure 7-16. External Interrupt Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.4.4 I2C Electrical Specification and Timing  
7.9.4.4.1 I2C Timing  
TEST CONDITIONS  
MIN  
MAX  
400  
UNIT  
I2C clock module frequency is between  
7 MHz and 12 MHz and I2C prescaler and  
clock divider registers are configured  
appropriately  
fSCL  
SCL clock frequency  
kHz  
vil  
Low level input voltage  
High level input voltage  
Input hysteresis  
0.3 VDDIO  
V
V
V
V
Vih  
Vhys  
Vol  
0.7 VDDIO  
0.05 VDDIO  
0
Low level output voltage  
3-mA sink current  
0.4  
I2C clock module frequency is between  
7 MHz and 12 MHz and I2C prescaler and  
clock divider registers are configured  
appropriately  
tLOW  
Low period of SCL clock  
High period of SCL clock  
1.3  
μs  
I2C clock module frequency is between  
7 MHz and 12 MHz and I2C prescaler and  
clock divider registers are configured  
appropriately  
tHIGH  
0.6  
μs  
Input current with an input voltage  
between 0.1 VDDIO and 0.9 VDDIO MAX  
lI  
–10  
10  
μA  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.4.5 Serial Peripheral Interface (SPI) Timing  
This section contains both Master Mode and Slave Mode timing data.  
7.9.4.5.1 Master Mode Timing  
Section 7.9.4.5.1.1 lists the master mode timing (clock phase = 0) and Section 7.9.4.5.1.2 lists the master mode  
timing (clock phase = 1). Figure 7-17 and Figure 7-18 show the timing waveforms.  
7.9.4.5.1.1 SPI Master Mode External Timing (Clock Phase = 0) (1) (2) (3) (4) (5)  
BRR EVEN  
MIN  
BRR ODD  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
1
2
tc(SPC)M  
Cycle time, SPICLK  
4tc(LSPCLK)  
128tc(LSPCLK)  
5tc(LSPCLK)  
127tc(LSPCLK)  
ns  
ns  
Pulse duration, SPICLK first  
pulse  
0.5tc(SPC)M + 0.5tc(LSPCLK)  
– 10  
0.5tc(SPC)M  
+
tw(SPC1)M  
0.5tc(SPC)M – 10  
0.5tc(SPC)M + 10  
0.5tc(SPC)M + 10  
10  
0.5tc(LSPCLK) + 10  
Pulse duration, SPICLK second  
pulse  
0.5tc(SPC)M – 0.5tc(LSPCLK)  
– 10  
0.5tc(SPC)M  
3
4
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
tsu(SOMI)M  
th(SOMI)M  
td(SPC)M  
td(STE)M  
0.5tc(SPC)M – 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5tc(LSPCLK) + 10  
Delay time, SPICLK to  
SPISIMO valid  
10  
Valid time, SPISIMO valid after  
SPICLK  
0.5tc(SPC)M – 0.5tc(LSPCLK)  
– 10  
5
0.5tc(SPC)M – 10  
Setup time, SPISOMI before  
SPICLK  
8
35  
0
35  
0
Hold time, SPISOMI valid after  
SPICLK  
9
Delay time, SPISTE active to  
SPICLK  
1.5tc(SPC)M  
1.5tc(SPC)M –  
3tc(SYSCLK) – 10  
23  
24  
3tc(SYSCLK) – 10  
Delay time, SPICLK to SPISTE  
inactive  
0.5tc(SPC)M – 0.5tc(LSPCLK)  
– 10  
0.5tc(SPC)M – 10  
(1) The MASTER / SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR +1)  
(3) tc(LCO) = LSPCLK cycle time  
(4) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MAX, slave mode receive 12.5-MHz MAX.  
(5) The active edge of the SPICLK signal referenced is controlled by the clock polarity bit (SPICCR.6).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
SPISTE  
24  
23  
Figure 7-17. SPI Master Mode External Timing (Clock Phase = 0)  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.4.5.1.2 SPI Master Mode External Timing (Clock Phase = 1) (1) (2) (3) (4) (5)  
BRR EVEN  
BRR ODD  
MIN  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MAX  
1
2
tc(SPC)M  
Cycle time, SPICLK  
4tc(LSPCLK)  
128tc(LSPCLK)  
5tc(LSPCLK)  
127tc(LSPCLK)  
ns  
ns  
Pulse duration, SPICLK first  
pulse  
0.5tc(SPC)M  
0.5tc(SPC)M  
tw(SPC1)M  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
35  
0.5tc(SPC)M + 10  
0.5tc(SPC)M + 10  
0.5tc(LSPCLK) – 10  
0.5tc(LSPCLK) + 10  
Pulse duration, SPICLK second  
pulse  
0.5tc(SPC)M  
+
0.5tc(SPC)M  
+
3
6
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
tsu(SOMI)M  
th(SOMI)M  
td(SPC)M  
td(STE)M  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5tc(LSPCLK) – 10  
0.5tc(LSPCLK) + 10  
Delay time, SPISIMO valid to  
SPICLK  
0.5tc(SPC)M  
+
0.5tc(LSPCLK) – 10  
Valid time, SPISIMO valid after  
SPICLK  
0.5tc(SPC)M  
7
0.5tc(LSPCLK) – 10  
Setup time, SPISOMI before  
SPICLK  
10  
11  
23  
24  
35  
Hold time, SPISOMI valid after  
SPICLK  
0
0
Delay time, SPISTE active to  
SPICLK  
2tc(SPC)M  
2tc(SPC)M  
3tc(SYSCLK) – 10  
3tc(SYSCLK) – 10  
Delay time, SPICLK to SPISTE  
inactive  
0.5tc(SPC)  
0.5tc(SPC) – 10  
0.5tc(LSPCLK) – 10  
(1) The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is set.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25 MHz MAX, master mode receive 12.5 MHz MAX  
Slave mode transmit 12.5 MHz MAX, slave mode receive 12.5 MHz MAX.  
(4) tc(LCO) = LSPCLK cycle time  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
6
7
SPISIMO  
Master Out Data Is Valid  
10  
11  
Master In Data Must  
Be Valid  
SPISOMI  
SPISTE  
24  
23  
Figure 7-18. SPI Master Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.4.5.2 Slave Mode Timing  
Section 7.9.4.5.2.1 lists the slave mode timing (clock phase = 0) and Section 7.9.4.5.2.2 lists the slave mode  
timing (clock phase = 1). Figure 7-19 and Figure 7-20 show the timing waveforms.  
7.9.4.5.2.1 SPI Slave Mode External Timing (Clock Phase = 0) (1) (2) (4) (3) (5)  
NO.  
PARAMETER  
Cycle time, SPICLK  
MIN  
4tc(SYSCLK)  
MAX UNIT  
12 tc(SPC)S  
13 tw(SPC1)S  
14 tw(SPC2)S  
15 td(SOMI)S  
16 tv(SOMI)S  
19 tsu(SIMO)S  
20 th(SIMO)S  
25 tsu(STE)S  
26 th(STE)S  
ns  
ns  
ns  
Pulse duration, SPICLK first pulse  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
Pulse duration, SPICLK second pulse  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI data valid after SPICLK  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO data valid after SPICLK  
Setup time, SPISTE active before SPICLK  
Hold time, SPISTE inactive after SPICLK  
35  
ns  
ns  
ns  
ns  
ns  
ns  
0
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) tc(LCO) = LSPCLK cycle time  
(4) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
16  
SPISOMI  
SPISOMI Data Is Valid  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
25  
26  
Figure 7-19. SPI Slave Mode External Timing (Clock Phase = 0)  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.4.5.2.2 SPI Slave Mode External Timing (Clock Phase = 1) (1) (2) (3) (4)  
NO.  
PARAMETER  
Cycle time, SPICLK  
MIN  
4tc(SYSCLK)  
MAX UNIT  
12 tc(SPC)S  
13 tw(SPC1)S  
14 tw(SPC2)S  
17 td(SOMI)S  
18 tv(SOMI)S  
21 tsu(SIMO)S  
22 th(SIMO)S  
25 tsu(STE)S  
26 th(STE)S  
ns  
ns  
ns  
Pulse duration, SPICLK first pulse  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
Pulse duration, SPICLK second pulse  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI data valid after SPICLK  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO data valid after SPICLK  
Setup time, SPISTE active before SPICLK  
Hold time, SPISTE inactive after SPICLK  
35  
ns  
ns  
ns  
ns  
ns  
ns  
0
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
17  
SPISOMI  
SPISOMI Data Is Valid  
Data Valid  
Data Valid  
18  
21  
22  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
26  
25  
Figure 7-20. SPI Slave Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.4.6 Multichannel Buffered Serial Port (McBSP) Timing  
7.9.4.6.1 McBSP Transmit and Receive Timing  
7.9.4.6.1.1 McBSP Timing Requirements (1) (2)  
NO.  
MIN  
MAX UNIT  
1
kHz  
MHz  
ns  
McBSP module clock (CLKG, CLKX, CLKR) range  
25 (3)  
40  
McBSP module cycle time (CLKG, CLKX, CLKR) range  
1
ms  
ns  
M11 tc(CKRX)  
M12 tw(CKRX)  
M13 tr(CKRX)  
M14 tf(CKRX)  
Cycle time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
CLKR/X ext  
CLKR/X ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKX int  
2P  
Pulse duration, CLKR/X high or CLKR/X low  
Rise time, CLKR/X  
P – 7  
ns  
7
7
ns  
Fall time, CLKR/X  
ns  
18  
2
M15 tsu(FRH-CKRL)  
M16 th(CKRL-FRH)  
M17 tsu(DRV-CKRL)  
M18 th(CKRL-DRV)  
M19 tsu(FXH-CKXL)  
M20 th(CKXL-FXH)  
Setup time, external FSR high before CLKR low  
Hold time, external FSR high after CLKR low  
Setup time, DR valid before CLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
0
6
18  
2
0
Hold time, DR valid after CLKR low  
6
18  
2
Setup time, external FSX high before CLKX low  
Hold time, external FSX high after CLKX low  
CLKX ext  
CLKX int  
0
CLKX ext  
6
(1) Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that  
signal are also inverted.  
CLKSRG  
(1 ) CLKGDV)  
(2) 2P = 1/CLKG in ns. CLKG is the output of sample rate generator mux. CLKG =  
CLKSRG can be LSPCLK, CLKX,  
CLKR as source. CLKSRG ≤ (SYSCLKOUT/2). McBSP performance is limited by I/O buffer switching speed.  
(3) Internal clock prescalers must be adjusted such that the McBSP clock (CLKG, CLKX, CLKR) speeds are not greater than the I/O buffer  
speed limit (25 MHz).  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.4.6.1.2 McBSP Switching Characteristics (1) (2)  
NO.  
M1  
M2  
M3  
PARAMETER  
MIN  
MAX UNIT  
tc(CKRX)  
Cycle time, CLKR/X  
CLKR/X int  
CLKR/X int  
CLKR/X int  
CLKR int  
CLKR ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
2P  
ns  
tw(CKRXH)  
tw(CKRXL)  
Pulse duration, CLKR/X high  
Pulse duration, CLKR/X low  
D – 5 (3)  
D + 5 (3)  
ns  
ns  
C – 5 (3)  
C + 5 (3)  
0
3
0
3
4
27  
4
M4  
M5  
M6  
td(CKRH-FRV)  
td(CKXH-FXV)  
tdis(CKXH-DXHZ)  
Delay time, CLKR high to internal FSR valid  
Delay time, CLKX high to internal FSX valid  
ns  
ns  
ns  
27  
8
Disable time, CLKX high to DX high impedance  
following last data bit  
14  
9
Delay time, CLKX high to DX valid.  
This applies to all bits except the first bit transmitted.  
28  
8
Delay time, CLKX high to DX valid  
DXENA = 0  
M7  
td(CKXH-DXV)  
ns  
ns  
14  
P + 8  
Only applies to first bit transmitted when  
in Data Delay 1 or 2 (XDATDLY=01b or DXENA = 1  
10b) modes  
CLKX ext  
P + 14  
CLKX int  
CLKX ext  
CLKX int  
0
6
Enable time, CLKX high to DX driven  
Only applies to first bit transmitted when  
in Data Delay 1 or 2 (XDATDLY=01b or DXENA = 1  
10b) modes  
DXENA = 0  
M8  
M9  
ten(CKXH-DX)  
P
CLKX ext  
P + 6  
FSX int  
FSX ext  
FSX int  
FSX ext  
FSX int  
FSX ext  
FSX int  
FSX ext  
8
14  
Delay time, FSX high to DX valid  
DXENA = 0  
DXENA = 1  
DXENA = 0  
DXENA = 1  
td(FXH-DXV)  
ns  
ns  
P + 8  
P + 14  
Only applies to first bit transmitted when  
in Data Delay 0 (XDATDLY=00b) mode.  
0
6
Enable time, FSX high to DX driven  
M10 ten(FXH-DX)  
P
Only applies to first bit transmitted when  
in Data Delay 0 (XDATDLY=00b) mode  
P + 6  
(1) Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that  
signal are also inverted.  
(2) 2P = 1/CLKG in ns.  
(3) C = CLKRX low pulse width = P  
D = CLKRX high pulse width = P  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
M1, M11  
M2, M12  
M3, M12  
M13  
CLKR  
M4  
M4  
M14  
FSR (int)  
M15  
M16  
FSR (ext)  
M18  
M17  
DR  
(RDATDLY=00b)  
Bit (n−1)  
M17  
(n−2)  
(n−3)  
(n−2)  
(n−4)  
M18  
DR  
(RDATDLY=01b)  
Bit (n−1)  
(n−3)  
(n−2)  
M17  
M18  
DR  
(RDATDLY=10b)  
Bit (n−1)  
Figure 7-21. McBSP Receive Timing  
M1, M11  
M2, M12  
M13  
M3, M12  
CLKX  
FSX (int)  
FSX (ext)  
DX  
M5  
M5  
M19  
M20  
M9  
M7  
M7  
M10  
Bit 0  
Bit (n−1)  
(n−2)  
(n−3)  
(n−2)  
(XDATDLY=00b)  
M8  
DX  
(XDATDLY=01b)  
Bit (n−1)  
M8  
Bit 0  
M6  
M7  
DX  
(XDATDLY=10b)  
Bit 0  
Bit (n−1)  
Figure 7-22. McBSP Transmit Timing  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.4.6.2 McBSP as SPI Master or Slave Timing  
7.9.4.6.2.1 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0) (1)  
MASTER  
SLAVE  
MIN MAX  
NO.  
UNIT  
MIN  
30  
1
MAX  
M30 tsu(DRV-CKXL)  
M31 th(CKXL-DRV)  
M32 tsu(BFXL-CKXH)  
M33 tc(CKX)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
Setup time, FSX low before CLKX high  
Cycle timez, CLKX  
8P – 10  
ns  
ns  
ns  
ns  
8P – 10  
8P + 10  
16P  
2P(2)  
(1) For all SPI slave modes, CLKX must be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM =  
CLKGDV = 1.  
(2) 2P = 1/CLKG  
7.9.4.6.2.2 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0)  
MASTER  
MIN  
SLAVE  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
M24  
M25  
th(CKXL-FXL)  
td(FXL-CKXH)  
Hold time, FSX low after CLKX low  
Delay time, FSX low to CLKX high  
2P(1)  
ns  
ns  
P
Disable time, DX high impedance following  
last data bit from FSX high  
M28  
M29  
tdis(FXH-DXHZ)  
td(FXL-DXV)  
6
6
6P + 6  
4P + 6  
ns  
ns  
Delay time, FSX low to DX valid  
(1) 2P = 1/CLKG  
M33  
M32  
MSB  
LSB  
CLKX  
M25  
M24  
FSX  
M28  
M29  
DX  
DR  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
M30  
M31  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
Figure 7-23. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
UNIT  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.4.6.2.3 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0) (1)  
MASTER  
SLAVE  
MIN MAX  
NO.  
MIN  
30  
1
MAX  
M39 tsu(DRV-CKXH)  
M40 th(CKXH-DRV)  
M41 tsu(FXL-CKXH)  
M42 tc(CKX)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
Setup time, FSX low before CLKX high  
Cycle time, CLKX  
8P – 10  
ns  
ns  
ns  
ns  
8P – 10  
16P + 10  
16P  
2P(2)  
(1) For all SPI slave modes, CLKX must be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM =  
CLKGDV = 1.  
(2) 2P = 1/CLKG  
7.9.4.6.2.4 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0)  
MASTER  
MIN  
SLAVE  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
M34 th(CKXL-FXL)  
M35 td(FXL-CKXH)  
Hold time, FSX low after CLKX low  
Delay time, FSX low to CLKX high  
P
ns  
ns  
2P(1)  
Disable time, DX high impedance following last data bit  
from CLKX low  
M37 tdis(CKXL-DXHZ)  
M38 td(FXL-DXV)  
P + 6  
6
7P + 6  
4P + 6  
ns  
ns  
Delay time, FSX low to DX valid  
(1) 2P = 1/CLKG  
M42  
MSB  
LSB  
M41  
CLKX  
M35  
M34  
FSX  
M37  
M38  
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
M40  
(n-2)  
(n-3)  
(n-4)  
M39  
Bit 0  
(n-3)  
(n-4)  
Figure 7-24. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.4.6.2.5 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1) (1)  
MASTER  
SLAVE  
MIN MAX  
NO.  
UNIT  
MIN  
30  
1
MAX  
M49 tsu(DRV-CKXH)  
M50 th(CKXH-DRV)  
M51 tsu(FXL-CKXL)  
M52 tc(CKX)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
Setup time, FSX low before CLKX low  
Cycle time, CLKX  
8P – 10  
ns  
ns  
ns  
ns  
8P – 10  
8P + 10  
16P  
2P(2)  
(1) For all SPI slave modes, CLKX must be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM =  
CLKGDV = 1.  
(2) 2P = 1/CLKG  
7.9.4.6.2.6 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1)  
MASTER  
SLAVE  
MIN MAX  
NO.  
PARAMETER  
UNIT  
MIN  
2P(1)  
P
MAX  
M43 th(CKXH-FXL)  
M44 td(FXL-CKXL)  
Hold time, FSX low after CLKX high  
Delay time, FSX low to CLKX low  
ns  
ns  
Disable time, DX high impedance following last data bit from  
FSX high  
M47 tdis(FXH-DXHZ)  
M48 td(FXL-DXV)  
6
6
6P + 6  
4P + 6  
ns  
ns  
Delay time, FSX low to DX valid  
(1) 2P = 1/CLKG  
M52  
M51  
MSB  
LSB  
CLKX  
M43  
M44  
FSX  
M48  
M47  
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
M49  
M50  
(n-2)  
Bit 0  
(n-3)  
(n-4)  
Figure 7-25. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
UNIT  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.4.6.2.7 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1) (1)  
MASTER  
SLAVE  
MIN MAX  
NO.  
MIN  
30  
1
MAX  
M58 tsu(DRV-CKXL)  
M59 th(CKXL-DRV)  
M60 tsu(FXL-CKXL)  
M61 tc(CKX)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
Setup time, FSX low before CLKX low  
Cycle time, CLKX  
8P – 10  
ns  
ns  
ns  
ns  
8P – 10  
16P + 10  
16P  
2P(2)  
(1) For all SPI slave modes, CLKX must be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM =  
CLKGDV = 1.  
(2) 2P = 1/CLKG  
7.9.4.6.2.8 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1) (1)  
MASTER(2)  
SLAVE  
MIN  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MAX  
M53 th(CKXH-FXL)  
M54 td(FXL-CKXL)  
M55 td(CLKXH-DXV)  
Hold time, FSX low after CLKX high  
Delay time, FSX low to CLKX low  
Delay time, CLKX high to DX valid  
P
ns  
ns  
ns  
2P(1)  
–2  
0
3P + 6  
7P + 6  
4P + 6  
5P + 20  
Disable time, DX high impedance following last data  
bit from CLKX high  
M56 tdis(CKXH-DXHZ)  
M57 td(FXL-DXV)  
P + 6  
6
ns  
ns  
Delay time, FSX low to DX valid  
(1) 2P = 1/CLKG  
(2) C = CLKX low pulse width = P  
D = CLKX high pulse width = P  
M61  
M60  
MSB  
M54  
LSB  
CLKX  
M53  
FSX  
M56  
M55  
M57  
DX  
DR  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
(n-4)  
M58  
M59  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
Figure 7-26. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.5 Emulator Connection Without Signal Buffering for the DSP  
Figure 7-27 shows the connection between the DSP and JTAG header for a single-processor configuration. If the  
distance between the JTAG header and the DSP is greater than 6 inches, the emulation signals must be  
buffered. If the distance is less than 6 inches, buffering is typically not needed. Figure 7-27 shows the simpler,  
no-buffering situation. For the pullup/pulldown resistor values, see the pin description section. For details on  
buffering JTAG signals and multiple processor connections, see the TMS320F/C24x DSP controllers CPU and  
instruction set reference guide.  
6 inches or less  
VDDIO  
VDDIO  
13  
14  
2
5
EMU0  
EMU1  
TRST  
TMS  
TDI  
EMU0  
EMU1  
TRST  
TMS  
PD  
4
GND  
1
6
GND  
GND  
GND  
GND  
3
8
TDI  
7
10  
12  
TDO  
TDO  
11  
9
TCK  
TCK  
TCK_RET  
DSC  
JTAG Header  
Figure 7-27. Emulator Connection Without Signal Buffering for the DSP  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.6 External Interface (XINTF) Timing  
Each XINTF access consists of three parts: Lead, Active, and Trail. The user configures the Lead/Active/Trail  
wait states in the XTIMING registers. There is one XTIMING register for each XINTF zone. Table 7-2 shows the  
relationship between the parameters configured in the XTIMING register and the duration of the pulse in terms of  
XTIMCLK cycles.  
Table 7-2. Relationship Between Parameters Configured in XTIMING and Duration of Pulse  
DURATION (ns)(1) (2)  
DESCRIPTION  
X2TIMING = 0  
XRDLEAD × tc(XTIM)  
X2TIMING = 1  
(XRDLEAD × 2) × tc(XTIM)  
LR  
Lead period, read access  
Active period, read access  
Trail period, read access  
Lead period, write access  
Active period, write access  
Trail period, write access  
AR  
TR  
LW  
AW  
TW  
(XRDACTIVE + WS + 1) × tc(XTIM)  
XRDTRAIL × tc(XTIM)  
(XRDACTIVE × 2 + WS + 1) × tc(XTIM)  
(XRDTRAIL × 2) × tc(XTIM)  
XWRLEAD × tc(XTIM)  
(XWRLEAD × 2) × tc(XTIM)  
(XWRACTIVE + WS + 1) × tc(XTIM)  
XWRTRAIL × tc(XTIM)  
(XWRACTIVE × 2 + WS + 1) × tc(XTIM)  
(XWRTRAIL × 2) × tc(XTIM)  
(1) tc(XTIM) − Cycle time, XTIMCLK  
(2) WS refers to the number of wait states inserted by hardware when using XREADY. If the zone is configured to ignore XREADY  
(USEREADY = 0), then WS = 0.  
Minimum wait-state requirements must be met when configuring each zone’s XTIMING register. These  
requirements are in addition to any timing requirements as specified by that device’s data sheet. No internal  
device hardware is included to detect illegal settings.  
7.9.6.1 USEREADY = 0  
If the XREADY signal is ignored (USEREADY = 0), then:  
Lead:  
LR ≥ tc(XTIM)  
LW ≥ tc(XTIM)  
These requirements result in the following XTIMING register configuration restrictions:  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
≥ 1  
≥ 0  
≥ 0  
≥ 1  
≥ 0  
≥ 0  
0, 1  
Examples of valid and invalid timing when not sampling XREADY:  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
0, 1  
Invalid(1)  
Valid  
0
1
0
0
0
0
0
1
0
0
0
0
0, 1  
(1) No hardware to detect illegal XTIMING configurations  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.6.2 Synchronous Mode (USEREADY = 1, READYMODE = 0)  
If the XREADY signal is sampled in the synchronous mode (USEREADY = 1, READYMODE = 0), then:  
1
Lead:  
LR ≥ tc(XTIM)  
LW ≥ tc(XTIM)  
2
Active:  
AR ≥ 2 × tc(XTIM)  
AW ≥ 2 × tc(XTIM)  
Note  
Restriction does not include external hardware wait states.  
These requirements result in the following XTIMING register configuration restrictions :  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
≥ 1  
≥ 2  
≥ 0  
≥ 1  
≥ 2  
≥ 0  
0, 1  
Examples of valid and invalid timing when using synchronous XREADY:  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
0, 1  
Invalid(1)  
Invalid(1)  
Valid  
0
1
1
0
0
2
0
0
0
0
1
1
0
0
2
0
0
0
0, 1  
0, 1  
(1) No hardware to detect illegal XTIMING configurations  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.6.3 Asynchronous Mode (USEREADY = 1, READYMODE = 1)  
If the XREADY signal is sampled in the asynchronous mode (USEREADY = 1, READYMODE = 1), then:  
1
2
3
Lead:  
LR ≥ tc(XTIM)  
LW ≥ tc(XTIM)  
Active:  
AR ≥ 2 × tc(XTIM)  
AW ≥ 2 × tc(XTIM)  
LR + AR ≥ 4 × tc(XTIM)  
LW + AW ≥ 4 × tc(XTIM)  
Lead + Active:  
Note  
Restrictions do not include external hardware wait states.  
These requirements result in the following XTIMING register configuration restrictions :  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
≥ 1  
≥ 2  
0
≥ 1  
≥ 2  
0
0, 1  
or  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
≥ 2  
≥ 1  
0
≥ 2  
≥ 1  
0
0, 1  
Examples of valid and invalid timing when using asynchronous XREADY:  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
Invalid(1)  
Invalid(1)  
Invalid(1)  
Valid  
0
1
1
1
1
2
0
0
1
2
2
1
0
0
0
0
0
0
0
1
1
1
1
2
0
0
1
2
2
1
0
0
0
0
0
0
0, 1  
0, 1  
0
1
Valid  
0, 1  
0, 1  
Valid  
(1) No hardware to detect illegal XTIMING configurations  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Unless otherwise specified, all XINTF timing is applicable for the clock configurations listed in Table 7-3.  
Table 7-3. XINTF Clock Configurations  
MODE  
SYSCLKOUT  
XTIMCLK  
SYSCLKOUT  
150 MHz  
XCLKOUT  
SYSCLKOUT  
150 MHz  
1
Example:  
2
150 MHz  
SYSCLKOUT  
150 MHz  
1/2 SYSCLKOUT  
75 MHz  
Example:  
3
150 MHz  
1/2 SYSCLKOUT  
75 MHz  
1/2 SYSCLKOUT  
75 MHz  
Example:  
4
150 MHz  
1/2 SYSCLKOUT  
75 MHz  
1/4 SYSCLKOUT  
37.5 MHz  
Example:  
150 MHz  
The relationship between SYSCLKOUT and XTIMCLK is shown in Figure 7-28.  
PCLKR3[XINTFENCLK]  
XTIMING0  
LEAD/ACTIVE/TRAIL  
XTIMING6  
XTIMING7  
XBANK  
0
0
1
SYSCLKOUT  
C28x  
CPU  
XTIMCLK  
/2  
1
0
XCLKOUT  
/2  
1
0
XINTCNF2 (XTIMCLK)  
XINTCNF2  
(CLKMODE)  
XINTCNF2  
(CLKOFF)  
Figure 7-28. Relationship Between SYSCLKOUT and XTIMCLK  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.6.4 XINTF Signal Alignment to XCLKOUT  
For each XINTF access, the number of lead, active, and trail cycles is based on the internal clock XTIMCLK.  
Strobes such as XRD, XWE0, XWE1, and zone chip-select ( XZCS) change state in relationship to the rising  
edge of XTIMCLK. The external clock, XCLKOUT, can be configured to be either equal to or one-half the  
frequency of XTIMCLK.  
For the case where XCLKOUT = XTIMCLK, all of the XINTF strobes will change state with respect to the rising  
edge of XCLKOUT. For the case where XCLKOUT = one-half XTIMCLK, some strobes will change state either  
on the rising edge of XCLKOUT or the falling edge of XCLKOUT. In the XINTF timing tables, the notation  
XCOHL is used to indicate that the parameter is with respect to either case; XCLKOUT rising edge (high) or  
XCLKOUT falling edge (low). If the parameter is always with respect to the rising edge of XCLKOUT, the notation  
XCOH is used.  
For the case where XCLKOUT = one-half XTIMCLK, the XCLKOUT edge with which the change will be aligned  
can be determined based on the number of XTIMCLK cycles from the start of the access to the point at which  
the signal changes. If this number of XTIMCLK cycles is even, the alignment will be with respect to the rising  
edge of XCLKOUT. If this number is odd, then the signal will change with respect to the falling edge of  
XCLKOUT. Examples include the following:  
Strobes that change at the beginning of an access always align to the rising edge of XCLKOUT. This is  
because all XINTF accesses begin with respect to the rising edge of XCLKOUT.  
Examples:  
XZCSL  
Zone chip-select active low  
XRNWL  
XR/ W active low  
Strobes that change at the beginning of the active period will align to the rising edge of XCLKOUT if the total  
number of lead XTIMCLK cycles for the access is even. If the number of lead XTIMCLK cycles is odd, then  
the alignment will be with respect to the falling edge of XCLKOUT.  
Examples:  
XRDL  
XRD active low  
XWEL  
XWE1 or XWE0 active low  
Strobes that change at the beginning of the trail period will align to the rising edge of XCLKOUT if the total  
number of lead + active XTIMCLK cycles (including hardware waitstates) for the access is even. If the  
number of lead + active XTIMCLK cycles (including hardware waitstates) is odd, then the alignment will be  
with respect to the falling edge of XCLKOUT.  
Examples:  
XRDH  
XRD inactive high  
XWEH  
XWE1 or XWE0 inactive high  
Strobes that change at the end of the access will align to the rising edge of XCLKOUT if the total number of  
lead + active + trail XTIMCLK cycles (including hardware waitstates) is even. If the number of lead + active +  
trail XTIMCLK cycles (including hardware waitstates) is odd, then the alignment will be with respect to the  
falling edge of XCLKOUT.  
Examples:  
XZCSH  
Zone chip-select inactive high  
XRNWH  
XR/ W inactive high  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.6.5 External Interface Read Timing  
7.9.6.5.1 External Interface Read Timing Requirements  
MIN  
MAX  
(LR + AR) – 16 (1)  
AR – 14 (1)  
UNIT  
ns  
ta(A)  
Access time, read data from address valid  
ta(XRD)  
Access time, read data valid from XRD active low  
Setup time, read data valid before XRD strobe inactive high  
Hold time, read data valid after XRD inactive high  
ns  
tsu(XD)XRD  
th(XD)XRD  
14  
0
ns  
ns  
(1) LR = Lead period, read access. AR = Active period, read access. See Table 7-2.  
7.9.6.5.2 External Interface Read Switching Characteristics  
PARAMETER  
MIN  
MAX  
1
UNIT  
ns  
td(XCOH-XZCSL)  
td(XCOHL-XZCSH)  
td(XCOH-XA)  
Delay time, XCLKOUT high to zone chip-select active low  
Delay time, XCLKOUT high/low to zone chip-select inactive high  
Delay time, XCLKOUT high to address valid  
–1  
0.5  
1.5  
0.5  
0.5  
ns  
ns  
td(XCOHL-XRDL)  
td(XCOHL-XRDH)  
th(XA)XZCSH  
Delay time, XCLKOUT high/low to XRD active low  
Delay time, XCLKOUT high/low to XRD inactive high  
Hold time, address valid after zone chip-select inactive high  
Hold time, address valid after XRD inactive high  
ns  
–1.5  
ns  
(1)  
ns  
(1)  
th(XA)XRD  
ns  
(1) During inactive cycles, the XINTF address bus always holds the last address put out on the bus except XA0, which remains high. This  
includes alignment cycles.  
Trail  
(A)(B)  
(C)  
Active  
Lead  
XCLKOUT = XTIMCLK  
XCLKOUT = 1/2 XTIMCLK  
t
d(XCOH-XZCSL)  
t
d(XCOHL-XZCSH)  
XZCS0, XZCS6, XZCS7  
XA[0:19]  
t
d(XCOH-XA)  
t
d(XCOHL-XRDH)  
t
d(XCOHL-XRDL)  
XRD  
XWE0, XWE1(D)  
XR/W  
t
su(XD)XRD  
t
a(A)  
t
h(XD)XRD  
t
a(XRD)  
XD[0:31], XD[0:15]  
XREADY(E)  
DIN  
A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an alignment cycle before  
an access to meet this requirement.  
B. During alignment cycles, all signals transition to their inactive state.  
C. XA[0:19] holds the last address put on the bus during inactive cycles, including alignment cycles except XA0, which remains high.  
D. XWE1 is used in 32-bit data bus mode. In 16-bit mode, this signal is XA0.  
E. For USEREADY = 0, the external XREADY input signal is ignored.  
Figure 7-29. Example Read Access  
XTIMING register parameters used for this example :  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
USEREADY  
X2TIMING  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
READYMODE  
≥ 1  
≥ 0  
≥ 0  
0
0
N/A(1)  
N/A(1)  
N/A(1)  
N/A(1)  
(1) N/A = Not applicable (or “Don’t care”) for this example  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.6.6 External Interface Write Timing  
7.9.6.6.1 External Interface Write Switching Characteristics  
PARAMETER  
MIN  
MAX  
1
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(XCOH-XZCSL)  
td(XCOHL-XZCSH)  
td(XCOH-XA)  
Delay time, XCLKOUT high to zone chip-select active low  
Delay time, XCLKOUT high or low to zone chip-select inactive high  
Delay time, XCLKOUT high to address valid  
–1  
0.5  
1.5  
2
td(XCOHL-XWEL)  
td(XCOHL-XWEH)  
td(XCOH-XRNWL)  
td(XCOHL-XRNWH)  
ten(XD)XWEL  
Delay time, XCLKOUT high/low to XWE0, XWE1 (3) low  
Delay time, XCLKOUT high/low to XWE0, XWE1 high  
Delay time, XCLKOUT high to XR/ W low  
2
1
Delay time, XCLKOUT high/low to XR/ W high  
–1  
0
0.5  
Enable time, data bus driven from XWE0, XWE1 low  
Delay time, data valid after XWE0, XWE1 active low  
Hold time, address valid after zone chip-select inactive high  
Hold time, write data valid after XWE0, XWE1 inactive high  
Maximum time for DSP to release the data bus after XR/ W inactive high  
td(XWEL-XD)  
1
(1)  
th(XA)XZCSH  
th(XD)XWE  
TW – 2 (2)  
tdis(XD)XRNW  
4
(1) During inactive cycles, the XINTF address bus will always hold the last address put out on the bus except XA0, which remains high.  
This includes alignment cycles.  
(2) TW = Trail period, write access. See Table 7-2.  
(3) XWE1 is used in 32-bit data bus mode only. In 16-bit mode, this signal is XA0.  
Active  
(A) (B)  
(C)  
Lead  
Trail  
XCLKOUT = XTIMCLK  
XCLKOUT = 1/2 XTIMCLK  
t
d(XCOHL-XZCSH)  
t
d(XCOH-XZCSL)  
XZCS0, XZCS6, XZCS7  
t
d(XCOH-XA)  
XA[0:19]  
XRD  
t
t
d(XCOHL-XWEH)  
d(XCOHL-XWEL)  
XWE0, XWE1(D)  
XR/W  
t
t
d(XCOHL-XRNWH)  
d(XCOH-XRNWL)  
t
t
dis(XD)XRNW  
d(XWEL-XD)  
t
t
en(XD)XWEL  
h(XD)XWEH  
XD[0:31], XD[0:15]  
XREADY(E)  
DOUT  
A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an alignment cycle before  
an access to meet this requirement.  
B. During alignment cycles, all signals transition to their inactive state.  
C. XA[0:19] holds the last address put on the bus during inactive cycles, including alignment cycles except XA0, which remains high.  
D. XWE1 is used in 32-bit data bus mode. In 16-bit mode, this signal is XA0.  
E. For USEREADY = 0, the external XREADY input signal is ignored.  
Figure 7-30. Example Write Access  
XTIMING register parameters used for this example :  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
USEREADY  
X2TIMING  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
READYMODE  
N/A(1)  
N/A(1)  
N/A(1)  
N/A(1)  
0
0
≥ 1  
≥ 0  
≥ 0  
(1) N/A = Not applicable (or “Don’t care”) for this example  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.6.7 External Interface Ready-on-Read Timing With One External Wait State  
7.9.6.7.1 External Interface Read Switching Characteristics (Ready-on-Read, One Wait State)  
PARAMETER  
MIN  
MAX  
1
UNIT  
ns  
td(XCOH-XZCSL)  
td(XCOHL-XZCSH)  
td(XCOH-XA)  
Delay time, XCLKOUT high to zone chip-select active low  
Delay time, XCLKOUT high/low to zone chip-select inactive high  
Delay time, XCLKOUT high to address valid  
–1  
0.5  
1.5  
0.5  
0.5  
ns  
ns  
td(XCOHL-XRDL)  
td(XCOHL-XRDH)  
th(XA)XZCSH  
Delay time, XCLKOUT high/low to XRD active low  
Delay time, XCLKOUT high/low to XRD inactive high  
Hold time, address valid after zone chip-select inactive high  
Hold time, address valid after XRD inactive high  
ns  
– 1.5  
ns  
(1)  
ns  
(1)  
th(XA)XRD  
ns  
(1) During inactive cycles, the XINTF address bus always holds the last address put out on the bus, except XA0, which remains high. This  
includes alignment cycles.  
7.9.6.7.2 External Interface Read Timing Requirements (Ready-on-Read, One Wait State)  
MIN  
MAX  
(LR + AR) – 16 (1)  
AR – 14 (1)  
UNIT  
ns  
ta(A)  
Access time, read data from address valid  
ta(XRD)  
Access time, read data valid from XRD active low  
Setup time, read data valid before XRD strobe inactive high  
Hold time, read data valid after XRD inactive high  
ns  
tsu(XD)XRD  
th(XD)XRD  
14  
0
ns  
ns  
(1) LR = Lead period, read access. AR = Active period, read access. See Table 7-2.  
7.9.6.7.3 Synchronous XREADY Timing Requirements (Ready-on-Read, One Wait State) (1)  
MIN  
12  
6
MAX  
UNIT  
ns  
tsu(XRDYsynchL)XCOHL  
th(XRDYsynchL)  
Setup time, XREADY (synchronous) low before XCLKOUT high/low  
Hold time, XREADY (synchronous) low  
ns  
Earliest time XREADY (synchronous) can go high before the sampling  
XCLKOUT edge  
te(XRDYsynchH)  
3
ns  
tsu(XRDYsynchH)XCOHL  
th(XRDYsynchH)XZCSH  
Setup time, XREADY (synchronous) high before XCLKOUT high/low  
Hold time, XREADY (synchronous) held high after zone chip select high  
12  
0
ns  
ns  
(1) The first XREADY (synchronous) sample occurs with respect to E in Figure 7-31:  
E = (XRDLEAD + XRDACTIVE) tc(XTIM)  
When first sampled, if XREADY (synchronous) is found to be high, then the access will finish. If XREADY (synchronous) is found to be  
low, it is sampled again each tc(XTIM) until it is found to be high.  
For each sample (n) the setup time (F) with respect to the beginning of the access can be calculated as:  
F = (XRDLEAD + XRDACTIVE +n − 1) tc(XTIM) − tsu(XRDYsynchL)XCOHL  
where n is the sample number: n = 1, 2, 3, and so forth.  
7.9.6.7.4 Asynchronous XREADY Timing Requirements (Ready-on-Read, One Wait State)  
MIN  
11  
MAX UNIT  
tsu(XRDYAsynchL)XCOHL  
th(XRDYAsynchL)  
Setup time, XREADY (asynchronous) low before XCLKOUT high/low  
Hold time, XREADY (asynchronous) low  
ns  
ns  
6
Earliest time XREADY (asynchronous) can go high before the sampling  
XCLKOUT edge  
te(XRDYAsynchH)  
3
ns  
tsu(XRDYAsynchH)XCOHL  
th(XRDYasynchH)XZCSH  
Setup time, XREADY (asynchronous) high before XCLKOUT high/low  
Hold time, XREADY (asynchronous) held high after zone chip select high  
11  
0
ns  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
WS (Synch)  
(C)  
(A) (B)  
Active  
Lead  
Trail  
XCLKOUT = XTIMCLK  
XCLKOUT = 1/2 XTIMCLK  
t
t
d(XCOHL-XZCSH)  
d(XCOH-XZCSL)  
XZCS0 XZCS6, XZCS7  
t
d(XCOH-XA)  
XA[0:19]  
XRD  
t
d(XCOHL-XRDH)  
t
d(XCOHL-XRDL)  
t
su(XD)XRD  
(D)  
XWE0, XWE1  
t
a(XRD)  
XR/W  
t
a(A)  
t
h(XD)XRD  
XD[0:31], XD[0:15]  
DIN  
t
su(XRDYsynchL)XCOHL  
t
e(XRDYsynchH)  
t
h(XRDYsynchL)  
t
h(XRDYsynchH)XZCSH  
t
su(XRDHsynchH)XCOHL  
XREADY(Synch)  
Legend:  
(E)  
(F)  
= Don’t care. Signal can be high or low during this time.  
A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an alignment cycle before  
an access to meet this requirement.  
B. During alignment cycles, all signals transition to their inactive state.  
C. During inactive cycles, the XINTF address bus always holds the last address put out on the bus except XA0, which remains high. This  
includes alignment cycles.  
D. XWE1 is valid only in 32-bit data bus mode. In 16-bit mode, this signal is XA0.  
E. For each sample, setup time from the beginning of the access (E) can be calculated as: D = (XRDLEAD + XRDACTIVE +n - 1) tc(XTIM)  
tsu(XRDYsynchL)XCOHL  
F. Reference for the first sample is with respect to this point: F = (XRDLEAD + XRDACTIVE) tc(XTIM) where n is the sample number: n = 1,  
2, 3, and so forth.  
Figure 7-31. Example Read With Synchronous XREADY Access  
XTIMING register parameters used for this example :  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
USEREADY  
X2TIMING  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
READYMODE  
≥ 1  
3
≥ 1  
1
0
N/A(1)  
N/A(1)  
N/A(1)  
0 = XREADY  
(Synch)  
(1) N/A = “Don’t care” for this example  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
WS (Async)  
Active  
(A) (B)  
Lead  
Trail  
(C)  
XCLKOUT = XTIMCLK  
XCLKOUT = 1/2 XTIMCLK  
XZCS0, XZCS6, XZCS7  
t
t
t
d(XCOH-XZCSL)  
d(XCOHL-XZCSH)  
d(XCOH-XA)  
XA[0:19]  
XRD  
t
d(XCOHL-XRDH)  
t
d(XCOHL-XRDL)  
t
su(XD)XRD  
(D)  
XWE0, XWE1  
t
a(XRD)  
XR/W  
t
a(A)  
t
h(XD)XRD  
DIN  
XD[0:31], XD[0:15]  
t
su(XRDYasynchL)XCOHL  
t
e(XRDYasynchH)  
t
h(XRDYasynchH)XZCSH  
t
h(XRDYasynchL)  
t
su(XRDYasynchH)XCOHL  
XREADY(Asynch)  
(E)  
(F)  
Legend:  
= Don’t care. Signal can be high or low during this time.  
A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device will insert an alignment cycle  
before an access to meet this requirement.  
B. During alignment cycles, all signals will transition to their inactive state.  
C. During inactive cycles, the XINTF address bus will always hold the last address put out on the bus except XA0, which remains high. This  
includes alignment cycles.  
D. XWE1 is valid only in 32-bit data bus mode. In 16-bit mode, this signal is XA0.  
E. For each sample, setup time from the beginning of the access can be calculated as: E = (XRDLEAD + XRDACTIVE -3 +n) tc(XTIM)  
tsu(XRDYasynchL)XCOHL where n is the sample number: n = 1, 2, 3, and so forth.  
F. Reference for the first sample is with respect to this point: F = (XRDLEAD + XRDACTIVE –2) tc(XTIM)  
Figure 7-32. Example Read With Asynchronous XREADY Access  
XTIMING register parameters used for this example :  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
USEREADY  
X2TIMING  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
READYMODE  
≥ 1  
3
≥ 1  
1
0
N/A(1)  
N/A(1)  
N/A(1)  
1 = XREADY  
(Async)  
(1) N/A = “Don’t care” for this example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.6.8 External Interface Ready-on-Write Timing With One External Wait State  
7.9.6.8.1 External Interface Write Switching Characteristics (Ready-on-Write, One Wait State)  
PARAMETER  
MIN  
MAX  
1
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(XCOH-XZCSL)  
td(XCOHL-XZCSH)  
td(XCOH-XA)  
Delay time, XCLKOUT high to zone chip-select active low  
Delay time, XCLKOUT high or low to zone chip-select inactive high  
Delay time, XCLKOUT high to address valid  
– 1  
0.5  
1.5  
2
td(XCOHL-XWEL)  
td(XCOHL-XWEH)  
td(XCOH-XRNWL)  
td(XCOHL-XRNWH)  
ten(XD)XWEL  
Delay time, XCLKOUT high/low to XWE0, XWE1 low(3)  
Delay time, XCLKOUT high/low to XWE0, XWE1 high(3)  
Delay time, XCLKOUT high to XR/ W low  
2
1
Delay time, XCLKOUT high/low to XR/ W high  
– 1  
0
0.5  
Enable time, data bus driven from XWE0, XWE1 low(3)  
Delay time, data valid after XWE0, XWE1 active low(3)  
Hold time, address valid after zone chip-select inactive high  
Hold time, write data valid after XWE0, XWE1 inactive high(3)  
Maximum time for DSP to release the data bus after XR/ W inactive high  
td(XWEL-XD)  
1
(1)  
th(XA)XZCSH  
th(XD)XWE  
TW – 2 (2)  
tdis(XD)XRNW  
4
(1) During inactive cycles, the XINTF address bus always holds the last address put out on the bus except XA0, which remains high. This  
includes alignment cycles.  
(2) TW = trail period, write access (see Table 7-2)  
(3) XWE1 is used in 32-bit data bus mode only. In 16-bit, this signal is XA0.  
7.9.6.8.2 Synchronous XREADY Timing Requirements (Ready-on-Write, One Wait State) Table 8-27  
MIN  
12  
6
MAX  
UNIT  
ns  
tsu(XRDYsynchL)XCOHL  
th(XRDYsynchL)  
Setup time, XREADY (synchronous) low before XCLKOUT high/low  
Hold time, XREADY (synchronous) low  
ns  
Earliest time XREADY (synchronous) can go high before the sampling  
XCLKOUT edge  
te(XRDYsynchH)  
3
ns  
tsu(XRDYsynchH)XCOHL  
th(XRDYsynchH)XZCSH  
Setup time, XREADY (synchronous) high before XCLKOUT high/low  
Hold time, XREADY (synchronous) held high after zone chip select high  
12  
0
ns  
ns  
7.9.6.8.3 Asynchronous XREADY Timing Requirements (Ready-on-Write, One Wait State) (1)  
MIN  
MAX UNIT  
tsu(XRDYasynchL)XCOHL  
th(XRDYasynchL)  
Setup time, XREADY (asynchronous) low before XCLKOUT high/low  
Hold time, XREADY (asynchronous) low  
11  
6
ns  
ns  
Earliest time XREADY (asynchronous) can go high before the sampling  
XCLKOUT edge  
te(XRDYasynchH)  
3
ns  
tsu(XRDYasynchH)XCOHL  
th(XRDYasynchH)XZCSH  
Setup time, XREADY (asynchronous) high before XCLKOUT high/low  
Hold time, XREADY (asynchronous) held high after zone chip select high  
11  
0
ns  
ns  
(1) The first XREADY (synchronous) sample occurs with respect to E in Figure 7-33:  
E = (XWRLEAD + XWRACTIVE –2) tc(XTIM). When first sampled, if XREADY (asynchronous) is high, then the access will complete. If  
XREADY (asynchronous) is low, it is sampled again each tc(XTIM) until it is high.  
For each sample, setup time from the beginning of the access can be calculated as:  
F = (XWRLEAD + XWRACTIVE –3 + n) tc(XTIM) – tsu(XRDYasynchL)XCOHL  
where n is the sample number: n = 1, 2, 3, and so forth.  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
WS (Synch)  
(A) (B)  
(C)  
Trail  
Active  
Lead 1  
XCLKOUT = XTIMCLK(D)  
t
t
d(XCOHL-XZCSH)  
d(XCOH-XZCSL)  
XZCS0AND1, XZCS2,  
XZCS6AND7  
t
t
h(XRDYsynchH)XZCSH  
d(XCOH-XA)  
XA[0:18]  
XRD  
t
t
d(XCOHL-XWEH)  
d(XCOHL-XWEL)  
XWE  
t
t
d(XCOHL-XRNWH)  
d(XCOH-XRNWL)  
XR/W  
t
dis(XD)XRNW  
t
d(XWEL-XD  
)
t
h(XD)XWEH  
t
en(XD)XWEL  
XD[0:15]  
DOUT  
t
su(XRDYsynchL)XCOHL  
t
h(XRDYsynchL)  
t
su(XRDHsynchH)XCOHL  
XREADY (Synch)  
(E)  
(F)  
Legend:  
= Don’t care. Signal can be high or low during this time.  
A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an alignment cycle before  
an access to meet this requirement.  
B. During alignment cycles, all signals will transition to their inactive state.  
C. During inactive cycles, the XINTF address bus always holds the last address put out on the bus except XA0, which remains high. This  
includes alignment cycles.  
D. XWE1 is used in 32-bit data bus mode only. In 16-bit, this signal is XA0.  
E. For each sample, setup time from the beginning of the access can be calculated as E = (XWRLEAD + XWRACTIVE + n –1) tc(XTIM)  
tsu(XRDYsynchL)XCOH where n is the sample number: n = 1, 2, 3, and so forth.  
F. Reference for the first sample is with respect to this point: F = (XWRLEAD + XWRACTIVE) tc(XTIM)  
Figure 7-33. Write With Synchronous XREADY Access  
XTIMING register parameters used for this example :  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
USEREADY  
X2TIMING  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
READYMODE  
N/A(1)  
N/A(1)  
N/A(1)  
1
0
≥ 1  
3
≥ 1  
0 = XREADY  
(Synch)  
(1) N/A = "Don't care" for this example.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
WS (Async)  
Active  
(A) (B)  
(C)  
Trail  
Lead 1  
XCLKOUT = XTIMCLK  
XCLKOUT = 1/2 XTIMCLK  
t
t
d(XCOH-XZCSL)  
d(XCOHL-XZCSH)  
XZCS0, XZCS6, XZCS7  
t
h(XRDYasynchH)XZCSH  
t
d(XCOH-XA)  
XA[0:19]  
XRD  
t
t
d(XCOHL-XWEH)  
d(XCOHL-XWEL)  
(D)  
XWE0, XWE1  
t
t
d(XCOH-XRNWL)  
d(XCOHL-XRNWH)  
XR/W  
t
dis(XD)XRNW  
t
d(XWEL-XD  
)
t
h(XD)XWEH  
t
en(XD)XWEL  
XD[31:0], XD[15:0]  
DOUT  
t
su(XRDYasynchL)XCOHL  
t
h(XRDYasynchL)  
t
e(XRDYasynchH)  
t
su(XRDYasynchH)XCOHL  
XREADY(Asynch)  
(D)  
(E)  
Legend:  
= Don’t care. Signal can be high or low during this time.  
A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an alignment cycle before  
an access to meet this requirement.  
B. During alignment cycles, all signals transition to their inactive state.  
C. During inactive cycles, the XINTF address bus always holds the last address put out on the bus except XA0, which remains high. This  
includes alignment cycles.  
D. XWE1 is used in 32-bit data bus mode only. In 16-bit, this signal is XA0.  
E. For each sample, set up time from the beginning of the access can be calculated as: E = (XWRLEAD + XWRACTIVE -3 + n) tc(XTIM)  
tsu(XRDYasynchL)XCOHL where n is the sample number: n = 1, 2, 3, and so forth.  
F. Reference for the first sample is with respect to this point: F = (XWRLEAD + XWRACTIVE – 2) tc(XTIM)  
Figure 7-34. Write With Asynchronous XREADY Access  
XTIMING register parameters used for this example :  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
USEREADY  
X2TIMING  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
READYMODE  
N/A(1)  
N/A(1)  
N/A(1)  
1
0
≥ 1  
3
≥ 1  
1 = XREADY  
(Async)  
(1) N/A = “Don’t care” for this example  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.6.9 XHOLD and XHOLDA Timing  
If the HOLD mode bit is set while XHOLD and XHOLDA are both low (external bus accesses granted), the  
XHOLDA signal is forced high (at the end of the current cycle) and the external interface is taken out of high-  
impedance mode.  
On a reset ( XRS), the HOLD mode bit is set to 0. If the XHOLD signal is active low on a system reset, the bus  
and all signal strobes must be in high-impedance mode, and the XHOLDA signal is also driven active low.  
When HOLD mode is enabled and XHOLDA is active low (external bus grant active), the CPU can still execute  
code from internal memory. If an access is made to the external interface, the CPU is stalled until the XHOLD  
signal is removed.  
An external DMA request, when granted, places the following signals in a high-impedance mode:  
XA[19:0]  
XZCS0  
XZCS6  
XZCS7  
XD[31:0], XD[15:0]  
XWE0, XWE1, XRD  
XR/ W  
All other signals not listed in this group remain in their default or functional operational modes during these  
signal events.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.6.9.1 XHOLD/ XHOLDA Timing Requirements (XCLKOUT = XTIMCLK) (1) (2)  
MIN  
MAX  
4tc(XTIM) + 30  
UNIT  
ns  
td(HL-HiZ)  
td(HL-HAL)  
td(HH-HAH)  
td(HH-BV)  
td(HL-HAL)  
Delay time, XHOLD low to Hi-Z on all address, data, and control  
Delay time, XHOLD low to XHOLDA low  
5tc(XTIM) + 30  
ns  
Delay time, XHOLD high to XHOLDA high  
Delay time, XHOLD high to bus valid  
3tc(XTIM) + 30  
ns  
4tc(XTIM) + 30  
ns  
Delay time, XHOLD low to XHOLDA low  
4tc(XTIM) + 2tc(XCO) + 30  
ns  
(1) When a low signal is detected on XHOLD, all pending XINTF accesses will be completed before the bus is placed in a high-impedance  
state.  
(2) The state of XHOLD is latched on the rising edge of XTIMCLK.  
XCLKOUT  
(/1 Mode)  
t
d(HL-Hiz)  
XHOLD  
t
d(HH-HAH)  
XHOLDA  
t
d(HL-HAL)  
t
d(HH-BV)  
XR/W  
High-Impedance  
XZCS0, XZCS6, XZCS7  
Valid  
XA[19:0]  
Valid  
High-Impedance  
XD[31:0], XD[15:0]  
Valid  
(A)  
(B)  
A. All pending XINTF accesses are completed.  
B. Normal XINTF operation resumes.  
Figure 7-35. External Interface Hold Waveform  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.9.6.9.2 XHOLD/ XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK) (1) (2) (3)  
MIN  
MAX  
UNIT  
Delay time, XHOLD low to Hi-Z on all address, data, and  
control  
td(HL-HiZ)  
4tc(XTIM) + tc(XCO) + 30  
ns  
td(HL-HAL)  
td(HH-HAH)  
td(HH-BV)  
Delay time, XHOLD low to XHOLDA low  
Delay time, XHOLD high to XHOLDA high  
Delay time, XHOLD high to bus valid  
4tc(XTIM) + 2tc(XCO) + 30  
4tc(XTIM) + 30  
ns  
ns  
ns  
6tc(XTIM) + 30  
(1) When a low signal is detected on XHOLD, all pending XINTF accesses will be completed before the bus is placed in a high-impedance  
state.  
(2) The state of XHOLD is latched on the rising edge of XTIMCLK.  
(3) After the XHOLD is detected low or high, all bus transitions and XHOLDA transitions occur with respect to the rising edge of  
XCLKOUT. Thus, for this mode where XCLKOUT = 1/2 XTIMCLK, the transitions can occur up to 1 XTIMCLK cycle earlier than the  
maximum value specified.  
XCLKOUT  
(1/2 XTIMCLK)  
t
d(HL-HAL)  
XHOLD  
t
d(HH-HAH)  
XHOLDA  
t
d(HL-HiZ)  
t
d(HH-BV)  
XR/W,  
XZCS0,  
XZCS6,  
XZCS7  
High-Impedance  
High-Impedance  
High-Impedance  
Valid  
XA[19:0]  
Valid  
XD[0:31]XD[15:0]  
Valid  
(B)  
(A)  
A. All pending XINTF accesses are completed.  
B. Normal XINTF operation resumes.  
Figure 7-36. XHOLD/ XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.7 Flash Timing  
7.9.7.1 Flash Endurance for A and S Temperature Material (1)  
ERASE/PROGRAM  
MIN  
TYP  
MAX  
UNIT  
TEMPERATURE  
0°C to 85°C (ambient)  
0°C to 85°C (ambient)  
Nf  
Flash endurance for the array (write/erase cycles)  
20000  
50000  
cycles  
write  
NOTP OTP endurance for the array (write cycles)  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
7.9.7.2 Flash Endurance for Q Temperature Material (1)  
ERASE/PROGRAM  
TEMPERATURE  
MIN  
TYP  
MAX  
UNIT  
Nf  
Flash endurance for the array (write/erase cycles)  
–40°C to 125°C (ambient)  
–40°C to 125°C (ambient)  
20000  
50000  
cycles  
write  
NOTP OTP endurance for the array (write cycles)  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
7.9.7.3 Flash Parameters at 150-MHz SYSCLKOUT  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
16-Bit Word  
32K Sector  
16K Sector  
32K Sector  
16K Sector  
32K Sector  
16K Sector  
50  
1000  
500  
2
μs  
ms  
ms  
Program  
Time(3)  
2000(2)  
2000(2)  
12(2)  
Erase Time(1)  
Erase Time(1)  
Q grade  
s
s
2
12(2)  
2
15(2)  
A, S grade  
2
15(2)  
Erase  
75  
35  
180  
20  
mA  
mA  
mA  
mA  
VDD3VFL current consumption during the Erase/Program  
cycle  
(4)  
IDD3VFLP  
Program  
(4)  
IDDP  
VDD current consumption during Erase/Program cycle  
VDDIO current consumption during Erase/Program cycle  
(4)  
IDDIOP  
(1) The on-chip flash memory is in an erased state when the device is shipped from TI. As such, erasing the flash memory is not required  
prior to programming, when programming the device for the first time. However, the erase operation is needed on all subsequent  
programming operations.  
(2) Maximum flash parameter mentioned are for the first 100 program and erase cycles.  
(3) Program time is at the maximum device frequency. The programming time indicated in this table is applicable only when all the  
required code/data is available in the device RAM, ready for programming. Program time includes overhead of the flash state machine  
but does not include the time to transfer the following into RAM:  
the code that uses flash API to program the flash  
the Flash API itself  
Flash data to be programmed  
(4) Typical parameters as seen at room temperature including function call overhead, with all peripherals off. It is important to maintain a  
stable power supply during the entire flash programming process. It is conceivable that device current consumption during flash  
programming could be higher than normal operating conditions. The power supply used should ensure VMIN on the supply rails at all  
times, as specified in the Recommended Operating Conditions of the data sheet. Any brown-out or interruption to power during  
erasing/programming could potentially corrupt the password locations and lock the device permanently. Powering a target board  
(during flash programming) through the USB port is not recommended, as the port may be unable to respond to the power demands  
placed during the programming process.  
7.9.7.4 Flash/OTP Access Timing  
PARAMETER  
MIN  
37  
MAX UNIT  
ta(fp)  
ta(fr)  
Paged Flash access time  
Random Flash access time  
ns  
ns  
37  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
PARAMETER  
MIN  
MAX UNIT  
ta(OTP)  
OTP access time  
60  
ns  
7.9.7.5 Flash Data Retention Duration  
PARAMETER  
TEST CONDITIONS  
TJ = 55°C  
MIN  
15  
MAX UNIT  
tretention  
Data retention duration  
years  
Table 7-4. Minimum Required Flash/OTP Wait-States at Different Frequencies  
SYSCLKOUT (MHz)  
SYSCLKOUT (ns)  
PAGE WAIT-STATE  
RANDOM WAIT-STATE(1)  
OTP WAIT-STATE  
150  
120  
100  
75  
6.67  
8.33  
10  
5
4
3
2
1
1
1
1
1
5
4
3
2
1
1
1
1
1
8
7
5
4
2
1
1
1
1
13.33  
20  
50  
30  
33.33  
40  
25  
15  
66.67  
250  
4
(1) Page and random wait-state must be ≥ 1.  
The equations to compute the Flash page wait-state and random wait-state in Table 7-4 are as follows:  
ta(f@p)  
ǒ Ǔ* 1 round up to the next highest integer or 1, whichever is larger  
Flash Page Wait State  
+
+
ƪ ƫ  
tc(SCO)  
ta(f@r)  
Flash Random Wait State  
round up to the next highest integer or 1, whichever is larger  
ǒ Ǔ* 1  
ƪ ƫ  
tc(SCO)  
The equation to compute the OTP wait-state in Table 7-4 is as follows:  
ta(OTP)  
ǒ Ǔ* 1 round up to the next highest integer or 1, whichever is larger  
OTP Wait State  
+
ƪ ƫ  
tc(SCO)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.10 On-Chip Analog-to-Digital Converter  
7.10.1 ADC Electrical Characteristics (over recommended operating conditions) (1) (2)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
DC SPECIFICATIONS (3)  
Resolution  
12  
Bits  
ADC clock  
0.001  
25  
MHz  
ACCURACY  
1-12.5 MHz ADC clock (6.25 MSPS)  
±1.5  
±2  
LSB  
LSB  
INL (Integral nonlinearity)  
12.5-25 MHz ADC clock  
(12.5 MSPS)  
DNL (Differential nonlinearity)(4)  
Offset error(5) (3)  
±1  
15  
30  
30  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
–15  
–30  
–30  
Overall gain error with internal reference(6) (3)  
Overall gain error with external reference(3)  
Channel-to-channel offset variation  
Channel-to-channel gain variation  
ANALOG INPUT  
±4  
±4  
Analog input voltage (ADCINx to ADCLO)(7)  
0
3
5
V
ADCLO  
–5  
0
mV  
pF  
μA  
Input capacitance  
10  
Input leakage current  
±5  
INTERNAL VOLTAGE REFERENCE (6)  
VADCREFP - ADCREFP output voltage at the pin based on  
internal reference  
1.275  
0.525  
V
V
VADCREFM - ADCREFM output voltage at the pin based on  
internal reference  
Voltage difference, ADCREFP - ADCREFM  
0.75  
50  
V
Temperature coefficient  
PPM/°C  
EXTERNAL VOLTAGE REFERENCE (6) (8)  
ADCREFSEL[15:14] = 11b  
ADCREFSEL[15:14] = 10b  
ADCREFSEL[15:14] = 01b  
1.024  
1.500  
2.048  
V
V
V
VADCREFIN - External reference voltage input on ADCREFIN  
pin 0.2% or better accurate reference recommended  
AC SPECIFICATIONS  
SINAD (100 kHz) Signal-to-noise ratio + distortion  
SNR (100 kHz) Signal-to-noise ratio  
THD (100 kHz) Total harmonic distortion  
ENOB (100 kHz) Effective number of bits  
SFDR (100 kHz) Spurious free dynamic range  
67.5  
68  
dB  
dB  
–79  
10.9  
83  
dB  
Bits  
dB  
(1) Tested at 25 MHz ADCCLK.  
(2) All voltages listed in this table are with respect to VSSA2  
.
(3) ADC parameters for gain error and offset error are only specified if the ADC calibration routine is executed from the Boot ROM. See  
Section 8.2.7.3 for more information.  
(4) TI specifies that the ADC will have no missing codes.  
(5) 1 LSB has the weighted value of 3.0/4096 = 0.732 mV.  
(6) A single internal/external band gap reference sources both ADCREFP and ADCREFM signals, and hence, these voltages track  
together. The ADC converter uses the difference between these two as its reference. The total gain error listed for the internal  
reference is inclusive of the movement of the internal bandgap over temperature. Gain error over temperature for the external  
reference option will depend on the temperature profile of the source used.  
(7) Voltages above VDDA + 0.3 V or below VSS - 0.3 V applied to an analog input pin may temporarily affect the conversion of another pin.  
To avoid this, the analog inputs should be kept within these limits.  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
(8) TI recommends using high precision external reference TI part REF3020/3120 or equivalent for 2.048-V reference.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.2 ADC Power-Up Control Bit Timing  
ADC Power Up Delay  
ADC Ready for Conversions  
PWDNBG  
PWDNREF  
t
d(BGR)  
PWDNADC  
t
d(PWD)  
Request for  
ADC  
Conversion  
Figure 7-37. ADC Power-Up Control Bit Timing  
7.10.2.1 ADC Power-Up Delays  
PARAMETER(1)  
MIN  
TYP  
MAX  
UNIT  
ms  
Delay time for band gap reference to be stable. Bits 7 and 6 of the ADCTRL3 register  
(ADCBGRFDN1/0) must be set to 1 before the PWDNADC bit is enabled.  
td(BGR)  
5
Delay time for power-down control to be stable. Bit delay time for band-gap reference  
to be stable. Bits 7 and 6 of the ADCTRL3 register (ADCBGRFDN1/0) must be set to  
1 before the PWDNADC bit is enabled. Bit 5 of the ADCTRL3 register (PWDNADC)  
must be set to 1 before any ADC conversions are initiated.  
20  
50  
μs  
td(PWD)  
1
ms  
(1) Timings maintain compatibility to the 281x ADC module. The 2833x/2823x ADC also supports driving all 3 bits at the same time and  
waiting td(BGR) ms before first conversion.  
7.10.2.2 Typical Current Consumption for Different ADC Configurations (at 25-MHz ADCCLK) (1) (2)  
ADC OPERATING MODE  
CONDITIONS  
BG and REF enabled  
VDDA18  
VDDA3.3  
UNIT  
Mode A (Operational Mode):  
30  
2
mA  
PWD disabled  
ADC clock enabled  
BG and REF enabled  
PWD enabled  
Mode B:  
Mode C:  
Mode D:  
9
5
5
0.5  
20  
15  
mA  
μA  
μA  
ADC clock enabled  
BG and REF disabled  
PWD enabled  
ADC clock disabled  
BG and REF disabled  
PWD enabled  
(1) Test Conditions:  
SYSCLKOUT = 150 MHz  
ADC module clock = 25 MHz  
ADC performing a continuous conversion of all 16 channels in Mode A  
(2) VDDA18 includes current into VDD1A18 and VDD2A18. VDDA3.3 includes current into VDDA2 and VDDAIO  
.
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
R
on  
Switch  
R
s
ADCIN0  
1 k  
C
C
h
p
Source  
Signal  
ac  
10 pF  
1.64 pF  
28x DSP  
Typical Values of the Input Circuit Components:  
Switch Resistance (R ):  
on  
Sampling Capacitor (C ):  
1 kΩ  
1.64 pF  
h
Parasitic Capacitance (C ): 10 pF  
p
Source Resistance (R ):  
s
50 Ω  
Figure 7-38. ADC Analog Input Impedance Model  
7.10.3 Definitions  
Reference Voltage  
The on-chip ADC has a built-in reference, which provides the reference voltages for the ADC.  
Analog Inputs  
The on-chip ADC consists of 16 analog inputs, which are sampled either one at a time or two channels at a time.  
These inputs are software-selectable.  
Converter  
The on-chip ADC uses a 12-bit four-stage pipeline architecture, which achieves a high sample rate with low  
power consumption.  
Conversion Modes  
The conversion can be performed in two different conversion modes:  
Sequential sampling mode (SMODE = 0)  
Simultaneous sampling mode (SMODE = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.4 Sequential Sampling Mode (Single-Channel) (SMODE = 0)  
In sequential sampling mode, the ADC can continuously convert input signals on any of the channels (Ax to Bx).  
The ADC can start conversions on event triggers from the ePWM, software trigger, or from an external ADCSOC  
signal. If the SMODE bit is 0, the ADC will do conversions on the selected channel on every Sample/Hold pulse.  
The conversion time and latency of the Result register update are explained below. The ADC interrupt flags are  
set a few SYSCLKOUT cycles after the Result register update. The selected channels will be sampled at every  
falling edge of the Sample/Hold pulse. The Sample/Hold pulse width can be programmed to be 1 ADC clock  
wide (minimum) or 16 ADC clocks wide (maximum).  
Sample n+2  
Sample n+1  
Analog Input on  
Sample n  
Channel Ax or Bx  
ADC Clock  
Sample and Hold  
SH Pulse  
SMODE Bit  
t
d(SH)  
t
dschx_n+1  
t
dschx_n  
ADC Event Trigger from  
ePWM or Other Sources  
t
SH  
Figure 7-39. Sequential Sampling Mode (Single-Channel) Timing  
7.10.4.1 Sequential Sampling Mode Timing  
AT 25-MHz  
ADC CLOCK,  
SAMPLE n  
SAMPLE n + 1  
REMARKS  
tc(ADCCLK) = 40 ns  
Delay time from event trigger to  
sampling  
td(SH)  
2.5tc(ADCCLK)  
Sample/Hold width/Acquisition  
Width  
(1 + Acqps) *  
tc(ADCCLK)  
Acqps value = 0-15  
ADCTRL1[8:11]  
tSH  
40 ns with Acqps = 0  
160 ns  
Delay time for first result to appear  
in Result register  
td(schx_n)  
td(schx_n+1)  
4tc(ADCCLK)  
Delay time for successive results to  
appear in Result register  
(2 + Acqps) *  
tc(ADCCLK)  
80 ns  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.10.5 Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1)  
In simultaneous mode, the ADC can continuously convert input signals on any one pair of channels (A0/B0 to  
A7/B7). The ADC can start conversions on event triggers from the ePWM, software trigger, or from an external  
ADCSOC signal. If the SMODE bit is 1, the ADC will do conversions on two selected channels on every Sample/  
Hold pulse. The conversion time and latency of the result register update are explained below. The ADC interrupt  
flags are set a few SYSCLKOUT cycles after the Result register update. The selected channels will be sampled  
simultaneously at the falling edge of the Sample/Hold pulse. The Sample/Hold pulse width can be programmed  
to be 1 ADC clock wide (minimum) or 16 ADC clocks wide (maximum).  
Note  
In simultaneous mode, the ADCIN channel pair select must be A0/B0, A1/B1, ..., A7/B7, and not in  
other combinations (such as A1/B3, and so on).  
Sample n  
Sample n+2  
Sample n+1  
Analog Input on  
Channel Ax  
Analog Input on  
Channel Bx  
ADC Clock  
Sample and Hold  
SH Pulse  
SMODE Bit  
t
d(SH)  
t
dschA0_n+1  
t
SH  
ADC Event Trigger from  
ePWM or Other Sources  
t
t
dschA0_n  
dschB0_n+1  
t
dschB0_n  
Figure 7-40. Simultaneous Sampling Mode Timing  
7.10.5.1 Simultaneous Sampling Mode Timing  
AT 25-MHz  
SAMPLE n  
SAMPLE n + 1  
ADC CLOCK,  
REMARKS  
tc(ADCCLK) = 40 ns  
Delay time from event trigger to  
sampling  
td(SH)  
2.5tc(ADCCLK)  
Sample/Hold width/Acquisition  
Width  
(1 + Acqps) *  
tc(ADCCLK)  
Acqps value = 0-15  
ADCTRL1[8:11]  
tSH  
40 ns with Acqps = 0  
160 ns  
Delay time for first result to  
appear in Result register  
td(schA0_n)  
td(schB0_n )  
td(schA0_n+1)  
td(schB0_n+1 )  
4tc(ADCCLK)  
5tc(ADCCLK)  
Delay time for first result to  
appear in Result register  
200 ns  
Delay time for successive results  
to appear in Result register  
(3 + Acqps) * tc(ADCCLK)  
(3 + Acqps) * tc(ADCCLK)  
120 ns  
Delay time for successive results  
to appear in Result register  
120 ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.6 Detailed Descriptions  
Integral Nonlinearity  
Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero through full scale.  
The point used as zero occurs one-half LSB before the first code transition. The full-scale point is defined as  
level one-half LSB beyond the last code transition. The deviation is measured from the center of each particular  
code to the true straight line between these two points.  
Differential Nonlinearity  
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. A  
differential nonlinearity error of less than ±1 LSB ensures no missing codes.  
Zero Offset  
The major carry transition should occur when the analog input is at zero volts. Zero error is defined as the  
deviation of the actual transition from that point.  
Gain Error  
The first code transition should occur at an analog value one-half LSB above negative full scale. The last  
transition should occur at an analog value one and one-half LSB below the nominal full scale. Gain error is the  
deviation of the actual difference between first and last code transitions and the ideal difference between first  
and last code transitions.  
Signal-to-Noise Ratio + Distortion (SINAD)  
SINAD is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components  
below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is expressed in  
decibels.  
Effective Number of Bits (ENOB)  
For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following formula,  
(
)
SINAD * 1.76  
N +  
6.02  
it is possible to get a measure of performance expressed as N, the effective number of  
bits. Thus, effective number of bits for a device for sine wave inputs at a given input frequency can be calculated  
directly from its measured SINAD.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first nine harmonic components to the rms value of the measured input  
signal and is expressed as a percentage or in decibels.  
Spurious Free Dynamic Range (SFDR)  
SFDR is the difference in dB between the rms amplitude of the input signal and the peak spurious signal.  
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
7.11 Migrating Between F2833x Devices and F2823x Devices  
The principal difference between these two devices is the absence of the floating-point unit (FPU) in the F2823x  
devices. This section describes how to build an application for each:  
For F2833x devices:  
– Code Composer Studio 3.3 with Service Release 9 or later is required for debug support of C28x +  
floating-point devices.  
– Use -v28 --float_support = fpu32 compiler options. The --float_support option is available in compiler  
v5.0.2 or later. In Code Composer Studio, the --float_support option is located on the advanced tab of the  
compiler options (Project → Build_Options → Compiler → Advanced tab).  
– Include the compiler’s run-time support library for native 32-bit floating-point. For example, use  
rts2800_fpu32.lib for C code or rts2800_fpu32_eh.lib for C++ code.  
– Consider using the C28x FPU Fast RTS Library for high-performance floating-point math functions such  
as sin, cos, div, sqrt, and atan. The Fast RTS library should be linked in before the normal run-time  
support library.  
For F2823x devices:  
– Either leave off the --float_support switch or use -v28 --float_support=none  
– Include the appropriate run-time support library for fixed point code. For example, use rts2800_ml.lib for C  
code or rts2800_ml_eh.lib for C++ code.  
– Consider using the C28x IQmath library - A Virtual Floating Point Engine to achieve a performance boost  
from math functions such as sin, cos, div, sqrt, and atan.  
Code built in this manner will also run on F2833x devices, but it will not make use of the on-chip floating-  
point unit.  
In either case, to allow for quick portability between native floating-point and fixed-point devices, TI suggests  
writing your code using the IQmath macro language described in C28x IQMath Library.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
8 Detailed Description  
8.1 Brief Descriptions  
8.1.1 C28x CPU  
The F2833x (C28x+FPU)/F2823x (C28x) family is a member of the TMS320C2000™ digital signal controller  
(DSC) platform. The C28x+FPU based controllers have the same 32-bit fixed-point architecture as TI's existing  
C28x DSCs, but also include a single-precision (32-bit) IEEE 754 floating-point unit (FPU). It is a very efficient  
C/C++ engine, enabling users to develop their system control software in a high-level language. It also enables  
math algorithms to be developed using C/C++. The device is as efficient at DSP math tasks as it is at system  
control tasks that typically are handled by microcontroller devices. This efficiency removes the need for a second  
processor in many systems. The 32 × 32-bit MAC 64-bit processing capabilities enable the controller to handle  
higher numerical resolution problems efficiently. Add to this the fast interrupt response with automatic context  
save of critical registers, resulting in a device that is capable of servicing many asynchronous events with  
minimal latency. The device has an 8-level-deep protected pipeline with pipelined memory accesses. This  
pipelining enables it to execute at high speeds without resorting to expensive high-speed memories. Special  
branch-look-ahead hardware minimizes the latency for conditional discontinuities. Special store conditional  
operations further improve performance.  
The F2823x family is also a member of the TMS320C2000™ digital signal controller (DSC) platform but it does  
not include a floating-point unit (FPU).  
8.1.2 Memory Bus (Harvard Bus Architecture)  
As with many DSC type devices, multiple buses are used to move data between the memories and peripherals  
and the CPU. The C28x memory bus architecture contains a program read bus, data read bus and data write  
bus. The program read bus consists of 22 address lines and 32 data lines. The data read and write buses  
consist of 32 address lines and 32 data lines each. The 32-bit-wide data buses enable single cycle 32-bit  
operations. The multiple bus architecture, commonly termed Harvard Bus, enables the C28x to fetch an  
instruction, read a data value and write a data value in a single cycle. All peripherals and memories attached to  
the memory bus will prioritize memory accesses. Generally, the priority of memory bus accesses can be  
summarized as follows:  
Highest:  
Data Writes  
Program Writes  
Data Reads  
Program Reads  
Fetches  
(Simultaneous data and program writes cannot occur on the memory bus.)  
(Simultaneous data and program writes cannot occur on the memory bus.)  
(Simultaneous program reads and fetches cannot occur on the memory bus.)  
(Simultaneous program reads and fetches cannot occur on the memory bus.)  
Lowest:  
8.1.3 Peripheral Bus  
To enable migration of peripherals between various TI DSC family of devices, the 2833x/2823x devices adopt a  
peripheral bus standard for peripheral interconnect. The peripheral bus bridge multiplexes the various buses that  
make up the processor Memory Bus into a single bus consisting of 16 address lines and 16 or 32 data lines and  
associated control signals. Three versions of the peripheral bus are supported. One version supports only 16-bit  
accesses (called peripheral frame 2). Another version supports both 16- and 32-bit accesses (called peripheral  
frame 1). The third version supports DMA access and both 16- and 32-bit accesses (called peripheral frame 3).  
8.1.4 Real-Time JTAG and Analysis  
The 2833x/2823x devices implement the standard IEEE 1149.1 JTAG interface. Additionally, the devices support  
real-time mode of operation whereby the contents of memory, peripheral and register locations can be modified  
while the processor is running and executing code and servicing interrupts. The user can also single step  
through nontime-critical code while enabling time-critical interrupts to be serviced without interference. The  
device implements the real-time mode in hardware within the CPU. This is a feature unique to the 2833x/2823x  
device, requiring no software monitor. Additionally, special analysis hardware is provided that allows setting of  
hardware breakpoint or data/address watch-points and generate various user-selectable break events when a  
match occurs.  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
8.1.5 External Interface (XINTF)  
This asynchronous interface consists of 20 address lines, 32 data lines, and three chip-select lines. The chip-  
select lines are mapped to three external zones, Zones 0, 6, and 7. Each of the three zones can be programmed  
with a different number of wait states, strobe signal setup and hold timing and each zone can be programmed for  
extending wait states externally or not. The programmable wait state, chip-select and programmable strobe  
timing enables glueless interface to external memories and peripherals.  
8.1.6 Flash  
The F28335/F28333/F28235 devices contain 256K × 16 of embedded flash memory, segregated into eight 32K  
× 16 sectors. The F28334/F28234 devices contain 128K × 16 of embedded flash memory, segregated into eight  
16K × 16 sectors. The F28332/F28232 devices contain 64K × 16 of embedded flash, segregated into four 16K ×  
16 sectors. All the devices also contain a single 1K × 16 of OTP memory at address range 0x380400–0x3807FF.  
The user can individually erase, program, and validate a flash sector while leaving other sectors untouched.  
However, it is not possible to use one sector of the flash or the OTP to execute flash algorithms that erase/  
program other sectors. Special memory pipelining is provided to enable the flash module to achieve higher  
performance. The flash/OTP is mapped to both program and data space; therefore, it can be used to execute  
code or store data information. Note that addresses 0x33FFF0–0x33FFF5 are reserved for data variables and  
should not contain program code.  
Note  
The Flash and OTP wait-states can be configured by the application. This allows applications running  
at slower frequencies to configure the flash to use fewer wait-states.  
Flash effective performance can be improved by enabling the flash pipeline mode in the Flash options  
register. With this mode enabled, effective performance of linear code execution will be much faster  
than the raw performance indicated by the wait-state configuration alone. The exact performance gain  
when using the Flash pipeline mode is application-dependent.  
For more information on the Flash options, Flash wait-state, and OTP wait-state registers, see the  
TMS320x2833x, 2823x system control and interrupts reference guide.  
8.1.7 M0, M1 SARAMs  
All 2833x/2823x devices contain these two blocks of single access memory, each 1K × 16 in size. The stack  
pointer points to the beginning of block M1 on reset. The M0 and M1 blocks, like all other memory blocks on  
C28x devices, are mapped to both program and data space. Hence, the user can use M0 and M1 to execute  
code or for data variables. The partitioning is performed within the linker. The C28x device presents a unified  
memory map to the programmer. This makes for easier programming in high-level languages.  
8.1.8 L0, L1, L2, L3, L4, L5, L6, L7 SARAMs  
The F28335/F28333/F28235 and F28334/F28234 each contain 32K × 16 of single-access RAM, divided into  
8 blocks (L0–L7 with 4K each). The F28332/F28232 contain 24K × 16 of single-access RAM, divided into  
6 blocks (L0–L5 with 4K each). Each block can be independently accessed to minimize CPU pipeline stalls.  
Each block is mapped to both program and data space. L4, L5, L6, and L7 are DMA-accessible.  
8.1.9 Boot ROM  
The Boot ROM is factory-programmed with boot-loading software. Boot-mode signals are provided to tell the  
bootloader software what boot mode to use on power up. The user can select to boot normally or to download  
new software from an external connection or to select boot software that is programmed in the internal Flash/  
ROM. The Boot ROM also contains standard tables, such as SIN/COS waveforms, for use in math related  
algorithms.  
Table 8-1. Boot Mode Selection  
MODE  
GPIO87/XA15  
GPIO86/XA14  
GPIO85/XA13  
GPIO84/XA12  
MODE(1)  
F
E
1
1
1
1
1
1
1
0
Jump to Flash  
SCI-A boot  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-1. Boot Mode Selection (continued)  
MODE  
GPIO87/XA15  
GPIO86/XA14  
GPIO85/XA13  
GPIO84/XA12  
MODE(1)  
D
C
B
A
9
8
7
6
5
4
3
2
1
1
1
1
1
1
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
SPI-A boot  
I2C-A boot  
eCAN-A boot  
McBSP-A boot  
Jump to XINTF x16  
Jump to XINTF x32  
Jump to OTP  
Parallel GPIO I/O boot  
Parallel XINTF boot  
Jump to SARAM  
Branch to check boot mode  
Branch to Flash, skip ADC calibration  
Branch to SARAM, skip ADC  
calibration  
1
0
0
0
0
0
0
0
1
0
Branch to SCI, skip ADC calibration  
(1) All four GPIO pins have an internal pullup.  
Note  
Modes 0, 1, and 2 in Table 8-1 are for TI debug only. Skipping the ADC calibration function in an  
application will cause the ADC to operate outside of the stated specifications  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
8.1.9.1 Peripheral Pins Used by the Bootloader  
Table 8-2 shows which GPIO pins are used by each peripheral bootloader. Refer to the GPIO mux table to see if  
these conflict with any of the peripherals you would like to use in your application.  
Table 8-2. Peripheral Bootload Pins  
BOOTLOADER  
PERIPHERAL LOADER PINS  
SCIRXDA (GPIO28)  
SCITXDA (GPIO29)  
SCI-A  
SPI-A  
SPISIMOA (GPIO16)  
SPISOMIA (GPIO17)  
SPICLKA (GPIO18)  
SPISTEA (GPIO19)  
SDAA (GPIO32)  
SCLA (GPIO33)  
I2C  
CANRXA (GPIO30)  
CANTXA (GPIO31)  
CAN  
MDXA (GPIO20)  
MDRA (GPIO21)  
MCLKXA (GPIO22)  
MFSXA (GPIO23)  
MCLKRA (GPIO7)  
MFSRA (GPIO5)  
McBSP  
8.1.10 Security  
The devices support high levels of security to protect the user firmware from being reverse engineered. The  
security features a 128-bit password (hardcoded for 16 wait-states), which the user programs into the flash. One  
code security module (CSM) is used to protect the flash/OTP and the L0/L1/L2/L3 SARAM blocks. The security  
feature prevents unauthorized users from examining the memory contents via the JTAG port, executing code  
from external memory or trying to boot-load some undesirable software that would export the secure memory  
contents. To enable access to the secure blocks, the user must write the correct 128-bit KEY value, which  
matches the value stored in the password locations within the Flash.  
In addition to the CSM, the emulation code security logic (ECSL) has been implemented to prevent unauthorized  
users from stepping through secure code. Any code or data access to flash, user OTP, L0, L1, L2, or L3 memory  
while the emulator is connected will trip the ECSL and break the emulation connection. To allow emulation of  
secure code, while maintaining the CSM protection against secure memory reads, the user must write the  
correct value into the lower 64 bits of the KEY register, which matches the value stored in the lower 64 bits of the  
password locations within the flash. Note that dummy reads of all 128 bits of the password in the flash must still  
be performed. If the lower 64 bits of the password locations are all ones (unprogrammed), then the KEY value  
does not need to match.  
When initially debugging a device with the password locations in flash programmed (that is, secured), the  
emulator takes some time to take control of the CPU. During this time, the CPU will start running and may  
execute an instruction that performs an access to a protected ECSL area. If this happens, the ECSL will trip and  
cause the emulator connection to be cut. Two solutions to this problem exist:  
1. The first is to use the Wait-In-Reset emulation mode, which will hold the device in reset until the emulator  
takes control. The emulator must support this mode for this option.  
2. The second option is to use the “Branch to check boot mode” boot option. This will sit in a loop and  
continuously poll the boot mode select pins. The user can select this boot mode and then exit this mode once  
the emulator is connected by re-mapping the PC to another address or by changing the boot mode selection  
pin to the desired boot mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
Note  
When the code-security passwords are programmed, all addresses from 0x33FF80 to 0x33FFF5  
cannot be used as program code or data. These locations must be programmed to 0x0000.  
If the code security feature is not used, addresses 0x33FF80 to 0x33FFEF may be used for code  
or data. Addresses 0x33FFF0 to 0x33FFF5 are reserved for data and should not contain program  
code.  
The 128-bit password (at 0x33FFF8 to 0x33FFFF) must not be programmed to zeros. Doing so would  
permanently lock the device.  
Note  
THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS DESIGNED TO  
PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY (EITHER ROM OR  
FLASH) AND IS WARRANTED BY TEXAS INSTRUMENTS (TI), IN ACCORDANCE WITH ITS  
STANDARD TERMS AND CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS  
FOR THE WARRANTY PERIOD APPLICABLE FOR THIS DEVICE.  
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE  
COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED MEMORY  
CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT AS SET FORTH  
ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS CONCERNING THE CSM OR  
OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY  
OR FITNESS FOR A PARTICULAR PURPOSE.  
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT,  
INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY OUT OF  
YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN ADVISED OF THE  
POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED  
TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR  
OTHER ECONOMIC LOSS.  
Copyright © 2021 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
8.1.11 Peripheral Interrupt Expansion (PIE) Block  
The PIE block serves to multiplex numerous interrupt sources into a smaller set of interrupt inputs. The PIE block  
can support up to 96 peripheral interrupts. On the 2833x/2823x, 58 of the possible 96 interrupts are used by  
peripherals. The 96 interrupts are grouped into blocks of 8 and each group is fed into 1 of 12 CPU interrupt lines  
(INT1 to INT12). Each of the 96 interrupts is supported by its own vector stored in a dedicated RAM block that  
can be overwritten by the user. The vector is automatically fetched by the CPU on servicing the interrupt. It takes  
eight CPU clock cycles to fetch the vector and save critical CPU registers. Hence the CPU can quickly respond  
to interrupt events. Prioritization of interrupts is controlled in hardware and software. Each individual interrupt can  
be enabled or disabled within the PIE block.  
8.1.12 External Interrupts (XINT1–XINT7, XNMI)  
The devices support eight masked external interrupts (XINT1–XINT7, XNMI). XNMI can be connected to the  
INT13 or NMI interrupt of the CPU. Each of the interrupts can be selected for negative, positive, or both negative  
and positive edge triggering and can also be enabled or disabled (including the XNMI). XINT1, XINT2, and XNMI  
also contain a 16-bit free-running up counter, which is reset to zero when a valid interrupt edge is detected. This  
counter can be used to accurately time-stamp the interrupt. Unlike the 281x devices, there are no dedicated pins  
for the external interrupts. XINT1 XINT2, and XNMI interrupts can accept inputs from GPIO0–GPIO31 pins.  
XINT3–XINT7 interrupts can accept inputs from GPIO32–GPIO63 pins.  
8.1.13 Oscillator and PLL  
The device can be clocked by an external oscillator or by a crystal attached to the on-chip oscillator circuit. A  
PLL is provided supporting up to 10 input-clock-scaling ratios. The PLL ratios can be changed on-the-fly in  
software, enabling the user to scale back on operating frequency if lower power operation is desired. Refer to  
Section 7.9.4.4 for timing details. The PLL block can be set in bypass mode.  
8.1.14 Watchdog  
The devices contain a watchdog timer. The user software must regularly reset the watchdog counter within a  
certain time frame; otherwise, the watchdog will generate a reset to the processor. The watchdog can be  
disabled if necessary.  
8.1.15 Peripheral Clocking  
The clocks to each individual peripheral can be enabled or disabled so as to reduce power consumption when a  
peripheral is not in use. Additionally, the system clock to the serial ports (except I2C and eCAN) and the ADC  
blocks can be scaled relative to the CPU clock. This enables the timing of peripherals to be decoupled from  
increasing CPU clock speeds.  
8.1.16 Low-Power Modes  
The devices are full static CMOS devices. Three low-power modes are provided:  
IDLE:  
Place CPU into low-power mode. Peripheral clocks may be turned off selectively and only those peripherals that  
need to function during IDLE are left operating. An enabled interrupt from an active peripheral or the watchdog  
timer will wake the processor from IDLE mode.  
STANDBY:  
HALT:  
Turns off clock to CPU and peripherals. This mode leaves the oscillator and PLL functional. An external interrupt  
event will wake the processor and the peripherals. Execution begins on the next valid cycle after detection of the  
interrupt event  
Turns off the internal oscillator. This mode basically shuts down the device and places it in the lowest possible  
power consumption mode. A reset or external signal can wake the device from this mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
8.1.17 Peripheral Frames 0, 1, 2, 3 (PFn)  
The device segregates peripherals into four sections. The mapping of peripherals is as follows:  
PF0:  
PIE:  
PIE Interrupt Enable and Control Registers Plus PIE Vector Table  
Flash Waitstate Registers  
Flash:  
XINTF:  
DMA  
External Interface Registers  
DMA Registers  
Timers:  
CSM:  
ADC:  
eCAN:  
GPIO:  
ePWM:  
eCAP:  
eQEP:  
SYS:  
CPU-Timers 0, 1, 2 Registers  
Code Security Module KEY Registers  
ADC Result Registers (dual-mapped)  
PF1:  
PF2:  
eCAN Mailbox and Control Registers  
GPIO MUX Configuration and Control Registers  
Enhanced Pulse Width Modulator Module and Registers (dual mapped)  
Enhanced Capture Module and Registers  
Enhanced Quadrature Encoder Pulse Module and Registers  
System Control Registers  
SCI:  
Serial Communications Interface (SCI) Control and RX/TX Registers  
Serial Port Interface (SPI) Control and RX/TX Registers  
ADC Status, Control, and Result Register  
Inter-Integrated Circuit Module and Registers  
External Interrupt Registers  
SPI:  
ADC:  
I2C:  
XINT  
PF3:  
McBSP  
ePWM:  
Multichannel Buffered Serial Port Registers  
Enhanced Pulse Width Modulator Module and Registers (dual mapped)  
8.1.18 General-Purpose Input/Output (GPIO) Multiplexer  
Most of the peripheral signals are multiplexed with GPIO signals. This enables the user to use a pin as GPIO if  
the peripheral signal or function is not used. On reset, GPIO pins are configured as inputs. The user can  
individually program each pin for GPIO mode or peripheral signal mode. For specific inputs, the user can also  
select the number of input qualification cycles. This is to filter unwanted noise glitches. The GPIO signals can  
also be used to bring the device out of specific low-power modes.  
8.1.19 32-Bit CPU-Timers (0, 1, 2)  
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock prescaling. The  
timers have a 32-bit count down register, which generates an interrupt when the counter reaches zero. The  
counter is decremented at the CPU clock speed divided by the prescale value setting. When the counter reaches  
zero, it is automatically reloaded with a 32-bit period value. CPU-Timer 2 is reserved for Real-Time OS (RTOS)/  
BIOS applications. It is connected to INT14 of the CPU. If DSP/BIOS or SYS/BIOS is not being used, CPU-Timer  
2 is available for general use. CPU-Timer 1 is for general use and can be connected to INT13 of the CPU. CPU-  
Timer 0 is also for general use and is connected to the PIE block.  
Copyright © 2021 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
8.1.20 Control Peripherals  
The 2833x/2823x devices support the following peripherals which are used for embedded control and  
communication:  
ePWM:  
The enhanced PWM peripheral supports independent and complementary PWM generation, adjustable dead-  
band generation for leading and trailing edges, latched and cycle-by-cycle trip mechanism. Some of the PWM  
pins support HRPWM features. The ePWM registers are supported by the DMA to reduce the overhead for  
servicing this peripheral.  
eCAP:  
eQEP:  
The enhanced capture peripheral uses a 32-bit time base and registers up to four programmable events in  
continuous/one-shot capture modes.  
This peripheral can also be configured to generate an auxiliary PWM signal.  
The enhanced QEP peripheral uses a 32-bit position counter, supports low-speed measurement using capture  
unit and high-speed measurement using a 32-bit unit timer.  
This peripheral has a watchdog timer to detect motor stall and input error detection logic to identify simultaneous  
edge transition in QEP signals.  
ADC:  
The ADC block is a 12-bit converter, single ended, 16-channels. It contains two sample-and-hold units for  
simultaneous sampling. The ADC registers are supported by the DMA to reduce the overhead for servicing this  
peripheral.  
8.1.21 Serial Port Peripherals  
The devices support the following serial communication peripherals:  
eCAN:  
This is the enhanced version of the CAN peripheral. It supports 32 mailboxes, time-stamping of messages, and is  
compliant with ISO 11898-1 (CAN 2.0B).  
McBSP:  
The multichannel buffered serial port (McBSP) connects to E1/T1 lines, phone-quality codecs for modem  
applications or high-quality stereo audio DAC devices. The McBSP receive and transmit registers are supported  
by the DMA to significantly reduce the overhead for servicing this peripheral. Each McBSP module can be  
configured as an SPI as required.  
SPI:  
The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of programmed length (1 to  
16 bits) to be shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used for  
communications between the DSC and external peripherals or another processor. Typical applications include  
external I/O or peripheral expansion through devices such as shift registers, display drivers, and ADCs.  
Multidevice communications are supported by the master/slave operation of the SPI. On the 2833x/2823x, the  
SPI contains a 16-level receive and transmit FIFO for reducing interrupt servicing overhead.  
SCI:  
I2C:  
The serial communications interface is a 2-wire asynchronous serial port, commonly known as UART. The SCI  
contains a 16-level receive and transmit FIFO for reducing interrupt servicing overhead.  
The inter-integrated circuit (I2C) module provides an interface between a DSC and other devices compliant with  
Philips Semiconductors Inter-IC bus (I2C-bus) specification version 2.1 and connected by way of an I2C-bus.  
External components attached to this 2-wire serial bus can transmit/receive up to 8-bit data to/from the DSC  
through the I2C module. On the 2833x/2823x, the I2C contains a 16-level receive and transmit FIFO for reducing  
interrupt servicing overhead.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
8.2 Peripherals  
The integrated peripherals of the 2833x and 2823x devices are described in the following subsections:  
6-channel Direct Memory Access (DMA)  
Three 32-bit CPU-Timers  
Up to six enhanced PWM modules (ePWM1, ePWM2, ePWM3, ePWM4, ePWM5, ePWM6)  
Up to six enhanced capture modules (eCAP1, eCAP2, eCAP3, eCAP4, eCAP5, eCAP6)  
Up to two enhanced QEP modules (eQEP1, eQEP2)  
Enhanced analog-to-digital converter (ADC) module  
Up to two enhanced controller area network (eCAN) modules (eCAN-A, eCAN-B)  
Up to three serial communications interface modules (SCI-A, SCI-B, SCI-C)  
One serial peripheral interface (SPI) module (SPI-A)  
Inter-integrated circuit (I2C) module  
Up to two multichannel buffered serial port (McBSP-A, McBSP-B) modules  
Digital I/O and shared pin functions  
External Interface (XINTF)  
8.2.1 DMA Overview  
Features:  
6 channels with independent PIE interrupts  
Trigger sources:  
– ePWM SOCA/SOCB  
– ADC Sequencer 1 and Sequencer 2  
– McBSP-A and McBSP-B transmit and receive logic  
– XINT1–7 and XINT13  
– CPU timers  
– Software  
Data sources and destinations:  
– L4–L7 16K × 16 SARAM  
– All XINTF zones  
– ADC Memory Bus mapped RESULT registers  
– McBSP-A and McBSP-B transmit and receive buffers  
– ePWM registers  
Word Size: 16-bit or 32-bit (McBSPs limited to 16-bit)  
Throughput: 4 cycles/word (5 cycles/word for McBSP reads)  
Copyright © 2021 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
CPU bus  
INT7  
ADC  
CPU  
PF0  
I/F  
External  
interrupts  
CPU  
timers  
ADC  
control  
and  
ADC  
RESULT  
PIE  
ADC  
PF2  
I/F  
ADC  
DMA  
PF0  
I/F  
registers RESULT  
registers  
L4  
SARAM  
(4Kx16)  
L4  
I/F  
CPU  
L5  
SARAM  
(4Kx16)  
McBSP A  
L5  
I/F  
Event  
triggers  
DMA  
6-ch  
McBSP B  
ePWM/  
HRPWM(A)  
registers  
PF3  
I/F  
L6  
SARAM  
(4Kx16)  
L6  
I/F  
L7  
SARAM  
(4Kx16)  
L7  
I/F  
DMA bus  
A. The ePWM and HRPWM registers must be remapped to PF3 (through bit 0 of the MAPCNF register) before they can be accessed by the  
DMA. The ePWM or HRPWM connection to DMA is not present in silicon revision 0.  
Figure 8-1. DMA Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
8.2.2 32-Bit CPU-Timer 0, CPU-Timer 1, CPU-Timer 2  
There are three 32-bit CPU-timers on the devices (CPU-Timer 0, CPU-Timer 1, CPU-Timer 2).  
CPU-Timer 2 is reserved for DSP/BIOS or SYS/BIOS. CPU-Timer 0 and CPU-Timer 1 can be used in user  
applications. These timers are different from the timers that are present in the ePWM modules.  
Note  
If the application is not using DSP/BIOS or SYS/BIOS, then CPU-Timer 2 can be used in the  
application.  
Reset  
Timer Reload  
16-Bit Timer Divide-Down  
32-Bit Timer Period  
TDDRH:TDDR  
PRDH:PRD  
16-Bit Prescale Counter  
PSCH:PSC  
SYSCLKOUT  
TCR.4  
(Timer Start Status)  
32-Bit Counter  
TIMH:TIM  
Borrow  
Borrow  
TINT  
Figure 8-2. CPU-Timers  
The timer interrupt signals ( TINT0, TINT1, TINT2) are connected as shown in Figure 8-3.  
INT1  
TINT0  
PIE  
CPU-TIMER 0  
to  
INT12  
28x  
CPU  
TINT1  
CPU-TIMER 1  
INT13  
INT14  
XINT13  
CPU-TIMER 2  
(Reserved for  
DSP/BIOS or SYS/BIOS)  
TINT2  
A. The timer registers are connected to the memory bus of the C28x processor.  
B. The timing of the timers is synchronized to SYSCLKOUT of the processor clock.  
Figure 8-3. CPU-Timer Interrupt Signals and Output Signal  
The general operation of the timer is as follows: The 32-bit counter register "TIMH:TIM" is loaded with the value  
in the period register "PRDH:PRD". The counter register decrements at the SYSCLKOUT rate of the C28x.  
When the counter reaches 0, a timer interrupt output signal generates an interrupt pulse. The registers listed in  
Table 8-3 are used to configure the timers. For more information, see the TMS320x2833x, 2823x system control  
and interrupts reference guide .  
Copyright © 2021 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Table 8-3. CPU-Timers 0, 1, 2 Configuration and Control Registers  
NAME  
ADDRESS  
0x0C00  
0x0C01  
0x0C02  
0x0C03  
0x0C04  
0x0C05  
0x0C06  
0x0C07  
0x0C08  
0x0C09  
0x0C0A  
0x0C0B  
0x0C0C  
0x0C0D  
0x0C0E  
0x0C0F  
0x0C10  
0x0C11  
SIZE (x16)  
DESCRIPTION  
TIMER0TIM  
TIMER0TIMH  
TIMER0PRD  
TIMER0PRDH  
TIMER0TCR  
Reserved  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
40  
CPU-Timer 0, Counter Register  
CPU-Timer 0, Counter Register High  
CPU-Timer 0, Period Register  
CPU-Timer 0, Period Register High  
CPU-Timer 0, Control Register  
TIMER0TPR  
TIMER0TPRH  
TIMER1TIM  
TIMER1TIMH  
TIMER1PRD  
TIMER1PRDH  
TIMER1TCR  
Reserved  
CPU-Timer 0, Prescale Register  
CPU-Timer 0, Prescale Register High  
CPU-Timer 1, Counter Register  
CPU-Timer 1, Counter Register High  
CPU-Timer 1, Period Register  
CPU-Timer 1, Period Register High  
CPU-Timer 1, Control Register  
TIMER1TPR  
TIMER1TPRH  
TIMER2TIM  
TIMER2TIMH  
TIMER2PRD  
TIMER2PRDH  
TIMER2TCR  
Reserved  
CPU-Timer 1, Prescale Register  
CPU-Timer 1, Prescale Register High  
CPU-Timer 2, Counter Register  
CPU-Timer 2, Counter Register High  
CPU-Timer 2, Period Register  
0x0C12  
0x0C13  
0x0C14  
0x0C15  
0x0C16  
0x0C17  
0x0C18 – 0x0C3F  
CPU-Timer 2, Period Register High  
CPU-Timer 2, Control Register  
TIMER2TPR  
TIMER2TPRH  
Reserved  
CPU-Timer 2, Prescale Register  
CPU-Timer 2, Prescale Register High  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
8.2.3 Enhanced PWM Modules  
The 2833x/2823x devices contain up to six enhanced PWM (ePWM) modules (ePWM1 to ePWM6). Figure 8-4  
shows the time-base counter synchronization scheme 3. Figure 8-5 shows the signal interconnections with the  
ePWM.  
Table 8-4 shows the complete ePWM register set per module and Table 8-5 shows the remapped register  
configuration.  
eCAP4  
EPWM1SYNCI  
GPIO  
ePWM1  
MUX  
EPWM1SYNCO  
SYNCI  
eCAP1  
EPWM4SYNCI  
ePWM4  
EPWM2SYNCI  
ePWM2  
EPWM4SYNCO  
EPWM2SYNCO  
EPWM5SYNCI  
ePWM5  
EPWM3SYNCI  
ePWM3  
EPWM5SYNCO  
EPWM3SYNCO  
EPWM6SYNCI  
ePWM6  
A. By default, ePWM and HRPWM registers are mapped to Peripheral Frame 1 (PF1). Table 8-4 shows this configuration. To re-map the  
registers to Peripheral Frame 3 (PF3) to enable DMA access, bit 0 (MAPEPWM) of MAPCNF register (address 0x702E) must be set to  
1. Table 8-5 shows the remapped configuration.  
Figure 8-4. Time-Base Counter Synchronization Scheme 3  
Table 8-4. ePWM Control and Status Registers (Default Configuration in PF1)  
SIZE (x16) /  
#SHADOW  
NAME  
ePWM1 ePWM2 ePWM3 ePWM4  
ePWM5  
ePWM6  
DESCRIPTION  
TBCTL  
TBSTS  
0x6800  
0x6801  
0x6802  
0x6840  
0x6841  
0x6842  
0x6880  
0x6881  
0x6882  
0x68C0  
0x68C1  
0x68C2  
0x6900  
0x6901  
0x6902  
0x6940  
0x6941  
0x6942  
1 / 0  
Time Base Control Register  
Time Base Status Register  
1 / 0  
TBPHSH  
R
Time Base Phase HRPWM Register  
1 / 0  
TBPHS  
TBCTR  
TBPRD  
CMPCTL  
0x6803  
0x6804  
0x6805  
0x6807  
0x6843  
0x6844  
0x6845  
0x6847  
0x6848  
0x6883  
0x6884  
0x6885  
0x6887  
0x6888  
0x68C3  
0x68C4  
0x68C5  
0x68C7  
0x68C8  
0x6903  
0x6904  
0x6905  
0x6907  
0x6908  
0x6943  
0x6944  
0x6945  
0x6947  
0x6948  
1 / 0  
1 / 0  
1 / 1  
1 / 0  
1 / 1  
Time Base Phase Register  
Time Base Counter Register  
Time Base Period Register Set  
Counter Compare Control Register  
Time Base Compare A HRPWM Register  
CMPAHR 0x6808  
Copyright © 2021 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Table 8-4. ePWM Control and Status Registers (Default Configuration in PF1) (continued)  
SIZE (x16) /  
#SHADOW  
NAME  
CMPA  
ePWM1 ePWM2 ePWM3 ePWM4  
ePWM5  
ePWM6  
DESCRIPTION  
0x6809  
0x680A  
0x680B  
0x6849  
0x684A  
0x684B  
0x6889  
0x688A  
0x688B  
0x68C9  
0x68CA  
0x68CB  
0x6909  
0x690A  
0x690B  
0x6949  
0x694A  
0x694B  
1 / 1  
Counter Compare A Register Set  
Counter Compare B Register Set  
CMPB  
1 / 1  
AQCTLA  
Action Qualifier Control Register For  
Output A  
1 / 0  
AQCTLB  
0x680C  
0x684C  
0x688C 0x68CC  
0x688D 0x68CD  
0x690C  
0x694C  
Action Qualifier Control Register For  
Output B  
1 / 0  
1 / 0  
1 / 1  
1 / 1  
1 / 0  
AQSFRC 0x680D  
0x684D  
0x684E  
0x690D  
0x690E  
0x694D  
0x694E  
Action Qualifier Software Force Register  
AQCSFR 0x680E  
C
0x688E  
0x68CE  
Action Qualifier Continuous S/W Force  
Register Set  
DBCTL  
DBRED  
0x680F  
0x6810  
0x684F  
0x6850  
0x688F  
0x6890  
0x68CF  
0x68D0  
0x690F  
0x6910  
0x694F  
0x6950  
Dead-Band Generator Control Register  
Dead-Band Generator Rising Edge Delay  
Count Register  
DBFED  
0x6811  
0x6851  
0x6891  
0x68D1  
0x6911  
0x6951  
Dead-Band Generator Falling Edge Delay  
Count Register  
1 / 0  
TZSEL  
TZCTL  
TZEINT  
TZFLG  
TZCLR  
TZFRC  
ETSEL  
ETPS  
0x6812  
0x6814  
0x6815  
0x6816  
0x6817  
0x6818  
0x6819  
0x681A  
0x681B  
0x681C  
0x681D  
0x681E  
0x6852  
0x6854  
0x6855  
0x6856  
0x6857  
0x6858  
0x6859  
0x685A  
0x685B  
0x685C  
0x685D  
0x685E  
0x6860  
0x6892  
0x6894  
0x6895  
0x6896  
0x6897  
0x6898  
0x6899  
0x689A  
0x689B  
0x68D2  
0x68D4  
0x68D5  
0x68D6  
0x68D7  
0x68D8  
0x68D9  
0x68DA  
0x68DB  
0x6912  
0x6914  
0x6915  
0x6916  
0x6917  
0x6918  
0x6919  
0x691A  
0x691B  
0x691C  
0x691D  
0x691E  
0x6920  
0x6952  
0x6954  
0x6955  
0x6956  
0x6957  
0x6958  
0x6959  
0x695A  
0x695B  
0x695C  
0x695D  
0x695E  
0x6960  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
Trip Zone Select Register(1)  
Trip Zone Control Register(1)  
Trip Zone Enable Interrupt Register(1)  
Trip Zone Flag Register  
Trip Zone Clear Register(1)  
Trip Zone Force Register(1)  
Event Trigger Selection Register  
Event Trigger Prescale Register  
Event Trigger Flag Register  
Event Trigger Clear Register  
Event Trigger Force Register  
PWM Chopper Control Register  
HRPWM Configuration Register(1)  
ETFLG  
ETCLR  
ETFRC  
PCCTL  
0x689C 0x68DC  
0x689D 0x68DD  
0x689E  
0x68A0  
0x68DE  
0x68E0  
HRCNFG 0x6820  
(1) Registers that are EALLOW protected.  
Table 8-5. ePWM Control and Status Registers (Remapped Configuration in PF3 - DMA-Accessible)  
SIZE (x16) /  
#SHADOW  
NAME  
ePWM1 ePWM2 ePWM3 ePWM4  
ePWM5  
ePWM6  
DESCRIPTION  
TBCTL  
TBSTS  
0x5800  
0x5801  
0x5802  
0x5840  
0x5841  
0x5842  
0x5880  
0x5881  
0x5882  
0x58C0  
0x58C1  
0x58C2  
0x5900  
0x5901  
0x5902  
0x5940  
0x5941  
0x5942  
1 / 0  
Time Base Control Register  
Time Base Status Register  
1 / 0  
TBPHSH  
R
Time Base Phase HRPWM Register  
1 / 0  
TBPHS  
TBCTR  
TBPRD  
CMPCTL  
0x5803  
0x5804  
0x5805  
0x5807  
0x5843  
0x5844  
0x5845  
0x5847  
0x5848  
0x5849  
0x584A  
0x584B  
0x5883  
0x5884  
0x5885  
0x5887  
0x5888  
0x5889  
0x588A  
0x588B  
0x58C3  
0x58C4  
0x58C5  
0x58C7  
0x58C8  
0x58C9  
0x58CA  
0x58CB  
0x5903  
0x5904  
0x5905  
0x5907  
0x5908  
0x5909  
0x590A  
0x590B  
0x5943  
0x5944  
0x5945  
0x5947  
0x5948  
0x5949  
0x594A  
0x594B  
1 / 0  
1 / 0  
1 / 1  
1 / 0  
1 / 1  
1 / 1  
1 / 1  
Time Base Phase Register  
Time Base Counter Register  
Time Base Period Register Set  
Counter Compare Control Register  
Time Base Compare A HRPWM Register  
Counter Compare A Register Set  
Counter Compare B Register Set  
CMPAHR 0x5808  
CMPA  
0x5809  
0x580A  
0x580B  
CMPB  
AQCTLA  
Action Qualifier Control Register For  
Output A  
1 / 0  
AQCTLB  
0x580C  
0x584C  
0x584D  
0x588C 0x58CC  
0x588D 0x58CD  
0x590C  
0x590D  
0x594C  
0x594D  
Action Qualifier Control Register For  
Output B  
1 / 0  
1 / 0  
AQSFRC 0x580D  
Action Qualifier Software Force Register  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-5. ePWM Control and Status Registers (Remapped Configuration in PF3 - DMA-Accessible)  
(continued)  
SIZE (x16) /  
#SHADOW  
NAME  
ePWM1 ePWM2 ePWM3 ePWM4  
ePWM5  
ePWM6  
DESCRIPTION  
AQCSFR 0x580E  
C
0x584E  
0x588E  
0x58CE  
0x590E  
0x594E  
Action Qualifier Continuous S/W Force  
Register Set  
1 / 1  
DBCTL  
DBRED  
0x580F  
0x5810  
0x584F  
0x5850  
0x588F  
0x5890  
0x58CF  
0x58D0  
0x590F  
0x5910  
0x594F  
0x5950  
1 / 1  
Dead-Band Generator Control Register  
Dead-Band Generator Rising Edge Delay  
Count Register  
1 / 0  
DBFED  
0x5811  
0x5851  
0x5891  
0x58D1  
0x5911  
0x5951  
Dead-Band Generator Falling Edge Delay  
Count Register  
1 / 0  
TZSEL  
TZCTL  
TZEINT  
TZFLG  
TZCLR  
TZFRC  
ETSEL  
ETPS  
0x5812  
0x5814  
0x5815  
0x5816  
0x5817  
0x5818  
0x5819  
0x581A  
0x581B  
0x581C  
0x581D  
0x581E  
0x5852  
0x5854  
0x5855  
0x5856  
0x5857  
0x5858  
0x5859  
0x585A  
0x585B  
0x585C  
0x585D  
0x585E  
0x5860  
0x5892  
0x5894  
0x5895  
0x5896  
0x5897  
0x5898  
0x5899  
0x589A  
0x589B  
0x58D2  
0x58D4  
0x58D5  
0x58D6  
0x58D7  
0x58D8  
0x58D9  
0x58DA  
0x58DB  
0x5912  
0x5914  
0x5915  
0x5916  
0x5917  
0x5918  
0x5919  
0x591A  
0x591B  
0x591C  
0x591D  
0x591E  
0x5920  
0x5952  
0x5954  
0x5955  
0x5956  
0x5957  
0x5958  
0x5959  
0x595A  
0x595B  
0x595C  
0x595D  
0x595E  
0x5960  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
Trip Zone Select Register(1)  
Trip Zone Control Register(1)  
Trip Zone Enable Interrupt Register(1)  
Trip Zone Flag Register  
Trip Zone Clear Register(1)  
Trip Zone Force Register(1)  
Event Trigger Selection Register  
Event Trigger Prescale Register  
Event Trigger Flag Register  
Event Trigger Clear Register  
Event Trigger Force Register  
PWM Chopper Control Register  
HRPWM Configuration Register(1)  
ETFLG  
ETCLR  
ETFRC  
PCCTL  
0x589C 0x58DC  
0x589D 0x58DD  
0x589E  
0x58A0  
0x58DE  
058E0  
HRCNFG 0x5820  
(1) Registers that are EALLOW protected.  
Copyright © 2021 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Time−base (TB)  
Sync  
CTR=ZERO  
CTR=CMPB  
Disabled  
in/out  
select  
Mux  
TBPRD shadow (16)  
TBPRD active (16)  
EPWMxSYNCO  
EPWMxSYNCI  
CTR=PRD  
TBCTL[SYNCOSEL]  
TBCTL[PHSEN]  
Counter  
up/down  
(16 bit)  
TBCTL[SWFSYNC]  
(software forced sync)  
CTR=ZERO  
CTR_Dir  
TBCTR  
active (16)  
TBPHSHR (8)  
16  
8
CTR = PRD  
CTR = ZERO  
Phase  
control  
Event  
trigger  
and  
interrupt  
(ET)  
EPWMxINT  
TBPHS active (24)  
CTR = CMPA  
CTR = CMPB  
CTR_Dir  
EPWMxSOCA  
EPWMxSOCB  
Counter compare (CC)  
CTR=CMPA  
CMPAHR (8)  
Action  
qualifier  
(AQ)  
16  
8
HRPWM  
CMPA active (24)  
EPWMA  
EPWMB  
EPWMxAO  
CMPA shadow (24)  
CTR=CMPB  
Dead  
band  
(DB)  
PWM  
chopper  
(PC)  
Trip  
zone  
(TZ)  
16  
EPWMxBO  
EPWMxTZINT  
TZ1 to TZ6  
CMPB active (16)  
CMPB shadow (16)  
CTR = ZERO  
Figure 8-5. ePWM Submodules Showing Critical Internal Signal Interconnections  
8.2.4 High-Resolution PWM (HRPWM)  
The HRPWM module offers PWM resolution (time granularity) which is significantly better than what can be  
achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are:  
Significantly extends the time resolution capabilities of conventionally derived digital PWM  
Typically used when effective PWM resolution falls below approximately 9 or 10 bits. This occurs at PWM  
frequencies greater than approximately 200 kHz when using a CPU/System clock of 100 MHz.  
This capability can be used in both duty cycle and phase-shift control methods.  
Finer time granularity control or edge positioning is controlled through extensions to the Compare A and  
Phase registers of the ePWM module.  
HRPWM capabilities are offered only on the A signal path of an ePWM module (that is, on the EPWMxA  
output). EPWMxB output has conventional PWM capabilities.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
8.2.5 Enhanced CAP Modules  
The 2833x/2823x device contains up to six enhanced capture (eCAP) modules (eCAP1 to eCAP6). Figure 8-6  
shows a functional block diagram of a module.  
CTRPHS  
(Phase Register - 32-bit)  
APWM Mode  
SYNCIn  
CTR_OVF  
OVF  
CTR [0-31]  
PRD [0-31]  
CMP [0-31]  
TSCTR  
(Counter - 32-bit)  
SYNCOut  
PWM  
Compare  
Logic  
Delta Mode  
RST  
32  
CTR=PRD  
CTR=CMP  
CTR [0-31]  
PRD [0-31]  
32  
32  
LD1  
CAP1  
(APRD Active)  
Polarity  
Select  
eCAPx  
LD  
APRD  
Shadow  
32  
CMP [0-31]  
32  
Polarity  
Select  
LD2  
32  
CAP2  
(ACMP Active)  
LD  
Event  
Qualifier  
ACMP  
Shadow  
Event  
Prescale  
32  
Polarity  
Select  
LD3  
LD4  
32  
32  
CAP3  
(APRD Shadow)  
LD  
CAP4  
(ACMP Shadow)  
Polarity  
Select  
LD  
4
Capture Events  
4
CEVT[1:4]  
Interrupt  
Trigger  
and  
Flag  
Control  
Continuous/  
One-Shot  
Capture Control  
to PIE  
CTR_OVF  
CTR=PRD  
CTR=CMP  
Figure 8-6. eCAP Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
The eCAP modules are clocked at the SYSCLKOUT rate.  
The clock enable bits (ECAP1ENCLK, ECAP2ENCLK, ECAP3ENCLK, ECAP4ENCLK, ECAP5ENCLK,  
ECAP6ENCLK) in the PCLKCR1 register are used to turn off the eCAP modules individually (for low power  
operation). Upon reset, ECAP1ENCLK, ECAP2ENCLK, ECAP3ENCLK, ECAP4ENCLK, ECAP5ENCLK, and  
ECAP6ENCLK are set to low, indicating that the peripheral clock is off.  
Table 8-6. eCAP Control and Status Registers  
SIZE  
(x16)  
NAME  
TSCTR  
eCAP1  
eCAP2  
eCAP3  
eCAP4  
eCAP5  
eCAP6  
DESCRIPTION  
Timestamp Counter  
0x6A00  
0x6A02  
0x6A04  
0x6A06  
0x6A08  
0x6A0A  
0x6A20  
0x6A22  
0x6A24  
0x6A26  
0x6A28  
0x6A2A  
0x6A40  
0x6A42  
0x6A44  
0x6A46  
0x6A48  
0x6A4A  
0x6A60  
0x6A62  
0x6A64  
0x6A66  
0x6A68  
0x6A6A  
0x6A80  
0x6A82  
0x6A84  
0x6A86  
0x6A88  
0x6A8A  
0x6AA0  
0x6AA2  
0x6AA4  
0x6AA6  
0x6AA8  
0x6AAA  
2
2
2
2
2
2
CTRPHS  
CAP1  
Counter Phase Offset Value Register  
Capture 1 Register  
CAP2  
Capture 2 Register  
CAP3  
Capture 3 Register  
CAP4  
Capture 4 Register  
0x6A0C- 0x6A2C-0x6  
0x6A4C-  
0x6A52  
0x6A6C-  
0x6A72  
0x6A8C-0 0x6AAC-  
Reserved  
8
Reserved  
0x6A12  
0x6A14  
0x6A15  
0x6A16  
0x6A17  
0x6A18  
0x6A19  
A32  
x6A92  
0x6A94  
0x6A95  
0x6A96  
0x6A97  
0x6A98  
0x6A99  
0x6AB2  
0x6AB4  
0x6AB5  
0x6AB6  
0x6AB7  
0x6AB8  
0x6AB9  
ECCTL1  
ECCTL2  
ECEINT  
ECFLG  
ECCLR  
ECFRC  
0x6A34  
0x6A35  
0x6A36  
0x6A37  
0x6A38  
0x6A39  
0x6A54  
0x6A55  
0x6A56  
0x6A57  
0x6A58  
0x6A59  
0x6A74  
0x6A75  
0x6A76  
0x6A77  
0x6A78  
0x6A79  
1
1
1
1
1
1
Capture Control Register 1  
Capture Control Register 2  
Capture Interrupt Enable Register  
Capture Interrupt Flag Register  
Capture Interrupt Clear Register  
Capture Interrupt Force Register  
0x6A1A-  
0x6A1F  
0x6A3A-  
0x6A3F  
0x6A5A-  
0x6A5F  
0x6A7A-  
0x6A7F  
0x6A9A-0x 0x6ABA-  
6A9F 0x6ABF  
Reserved  
6
Reserved  
8.2.6 Enhanced QEP Modules  
The device contains up to two enhanced quadrature encoder (eQEP) modules (eQEP1, eQEP2). Figure 8-7  
shows the block diagram of the eQEP module.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
System Control  
Registers  
To CPU  
EQEPxENCLK  
SYSCLKOUT  
QCPRD  
QCAPCTL  
16  
QCTMR  
16  
16  
Quadrature  
Capture  
Unit  
QCTMRLAT  
QCPRDLAT  
(QCAP)  
QUTMR  
QUPRD  
QWDTMR  
QWDPRD  
Registers  
Used by  
Multiple Units  
32  
16  
QEPCTL  
QEPSTS  
QFLG  
UTOUT  
QWDOG  
UTIME  
QDECCTL  
16  
WDTOUT  
EQEPxAIN  
EQEPxBIN  
EQEPxIIN  
EQEPxA/XCLK  
EQEPxB/XDIR  
EQEPxI  
QCLK  
QDIR  
QI  
EQEPxINT  
16  
PIE  
Position Counter/  
Control Unit  
(PCCU)  
EQEPxIOUT  
EQEPxIOE  
EQEPxSIN  
EQEPxSOUT  
EQEPxSOE  
Quadrature  
Decoder  
(QDU)  
QS  
GPIO  
MUX  
QPOSLAT  
QPOSSLAT  
QPOSILAT  
PHE  
PCSOUT  
EQEPxS  
32  
32  
16  
QPOSCNT  
QPOSINIT  
QPOSMAX  
QEINT  
QFRC  
QPOSCMP  
QCLR  
QPOSCTL  
Enhanced QEP (eQEP) Peripheral  
Figure 8-7. eQEP Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Table 8-7 provides a summary of the eQEP registers.  
Table 8-7. eQEP Control and Status Registers  
eQEP1  
SIZE(x16)/  
#SHADOW  
eQEP1  
ADDRESS  
eQEP2  
ADDRESS  
NAME  
REGISTER DESCRIPTION  
QPOSCNT  
0x6B00  
0x6B02  
0x6B04  
0x6B06  
0x6B08  
0x6B0A  
0x6B0C  
0x6B0E  
0x6B10  
0x6B12  
0x6B13  
0x6B14  
0x6B15  
0x6B16  
0x6B17  
0x6B18  
0x6B19  
0x6B1A  
0x6B1B  
0x6B1C  
0x6B1D  
0x6B1E  
0x6B1F  
0x6B20  
0x6B40  
0x6B42  
0x6B44  
0x6B46  
0x6B48  
0x6B4A  
0x6B4C  
0x6B4E  
0x6B50  
0x6B52  
0x6B53  
0x6B54  
0x6B55  
0x6B56  
0x6B57  
0x6B58  
0x6B59  
0x6B5A  
0x6B5B  
0x6B5C  
0x6B5D  
0x6B5E  
0x6B5F  
0x6B60  
2/0  
2/0  
2/0  
2/1  
2/0  
2/0  
2/0  
2/0  
2/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
eQEP Position Counter  
QPOSINIT  
QPOSMAX  
QPOSCMP  
QPOSILAT  
QPOSSLAT  
QPOSLAT  
QUTMR  
eQEP Initialization Position Count  
eQEP Maximum Position Count  
eQEP Position-compare  
eQEP Index Position Latch  
eQEP Strobe Position Latch  
eQEP Position Latch  
eQEP Unit Timer  
QUPRD  
eQEP Unit Period Register  
eQEP Watchdog Timer  
QWDTMR  
QWDPRD  
QDECCTL  
QEPCTL  
QCAPCTL  
QPOSCTL  
QEINT  
eQEP Watchdog Period Register  
eQEP Decoder Control Register  
eQEP Control Register  
eQEP Capture Control Register  
eQEP Position-compare Control Register  
eQEP Interrupt Enable Register  
eQEP Interrupt Flag Register  
eQEP Interrupt Clear Register  
eQEP Interrupt Force Register  
eQEP Status Register  
QFLG  
QCLR  
QFRC  
QEPSTS  
QCTMR  
eQEP Capture Timer  
QCPRD  
eQEP Capture Period Register  
eQEP Capture Timer Latch  
eQEP Capture Period Latch  
QCTMRLAT  
QCPRDLAT  
0x6B21 –  
0x6B3F  
0x6B61 –  
0x6B7F  
Reserved  
31/0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
8.2.7 Analog-to-Digital Converter (ADC) Module  
A simplified functional block diagram of the ADC module is shown in Figure 8-8. The ADC module consists of a  
12-bit ADC with a built-in sample-and-hold (S/H) circuit. Functions of the ADC module include:  
12-bit ADC core with built-in S/H  
Analog input: 0.0 V to 3.0 V (Voltages above 3.0 V produce full-scale conversion results.)  
Fast conversion rate: Up to 80 ns at 25-MHz ADC clock, 12.5 MSPS  
16 dedicated ADC channels. 8 channels multiplexed per Sample/Hold  
Autosequencing capability provides up to 16 "autoconversions" in a single session. Each conversion can be  
programmed to select any 1 of 16 input channels  
Sequencer can be operated as two independent 8-state sequencers or as one large 16-state sequencer (that  
is, two cascaded 8-state sequencers)  
Sixteen result registers (individually addressable) to store conversion values  
– The digital value of the input analog voltage is derived by:  
, when ADCIN £ ADCLO  
, when ADCLO < ADCIN < 3 V  
, when ADCIN ³ 3 V  
Digital Value = 0  
ADCIN - ADCLO  
4096 ´  
(
Digital Value = floor  
(
3
Digital Value = 4095  
Multiple triggers as sources for the start-of-conversion (SOC) sequence  
– S/W - software immediate start  
– ePWM start of conversion  
– XINT2 ADC start of conversion  
Flexible interrupt control allows interrupt request on every end-of-sequence (EOS) or every other EOS.  
Sequencer can operate in "start/stop" mode, allowing multiple "time-sequenced triggers" to synchronize  
conversions.  
SOCA and SOCB triggers can operate independently in dual-sequencer mode.  
Sample-and-hold (S/H) acquisition time window has separate prescale control.  
The ADC module in the 2833x/2823x devices has been enhanced to provide flexible interface to ePWM  
peripherals. The ADC interface is built around a fast, 12-bit ADC module with a fast conversion rate of up to 80  
ns at 25-MHz ADC clock. The ADC module has 16 channels, configurable as two independent 8-channel  
modules. The two independent 8-channel modules can be cascaded to form a 16-channel module. Although  
there are multiple input channels and two sequencers, there is only one converter in the ADC module. Figure 8-8  
shows the block diagram of the ADC module.  
The two 8-channel modules have the capability to autosequence a series of conversions, each module has the  
choice of selecting any one of the respective eight channels available through an analog MUX. In the cascaded  
mode, the autosequencer functions as a single 16-channel sequencer. On each sequencer, once the conversion  
is complete, the selected channel value is stored in its respective RESULT register. Autosequencing allows the  
system to convert the same channel multiple times, allowing the user to perform oversampling algorithms. This  
gives increased resolution over traditional single-sampled conversion results.  
Copyright © 2021 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
SYSCLKOUT  
System  
Control Block  
High-Speed  
Prescaler  
DSP  
HALT  
HSPCLK  
ADCENCLK  
Analog  
MUX  
Result Registers  
70A8h  
Result Reg 0  
Result Reg 1  
ADCINA0  
S/H  
ADCINA7  
ADCINB0  
ADCINB7  
12-Bit  
ADC  
Module  
Result Reg 7  
Result Reg 8  
70AFh  
70B0h  
S/H  
Result Reg 15  
70B7h  
ADC Control Registers  
S/W  
S/W  
EPWMSOCB  
EPWMSOCA  
GPIO/  
SOC  
SOC  
Sequencer 2  
Sequencer 1  
XINT2_ADCSOC  
Figure 8-8. Block Diagram of the ADC Module  
To obtain the specified accuracy of the ADC, proper board layout is very critical. To the best extent possible,  
traces leading to the ADCIN pins should not run in close proximity to the digital signal paths. This is to minimize  
switching noise on the digital lines from getting coupled to the ADC inputs. Furthermore, proper isolation  
techniques must be used to isolate the ADC module power pins ( VDD1A18, VDD2A18 , VDDA2, VDDAIO) from the  
digital supply.Figure 8-9 shows the ADC pin connections for the devices.  
Note  
1. The ADC registers are accessed at the SYSCLKOUT rate. The internal timing of the ADC module  
is controlled by the high-speed peripheral clock (HSPCLK).  
2. The behavior of the ADC module based on the state of the ADCENCLK and HALT signals is as  
follows:  
ADCENCLK: On reset, this signal will be low. While reset is active-low ( XRS) the clock to the  
register will still function. This is necessary to make sure all registers and modes go into their  
default reset state. The analog module, however, will be in a low-power inactive state. As soon  
as reset goes high, then the clock to the registers will be disabled. When the user sets the  
ADCENCLK signal high, then the clocks to the registers will be enabled and the analog module  
will be enabled. There will be a certain time delay (ms range) before the ADC is stable and can  
be used.  
HALT: This mode only affects the analog module. It does not affect the registers. In this mode,  
the ADC module goes into low-power mode. This mode also will stop the clock to the CPU,  
which will stop the HSPCLK; therefore, the ADC register logic will be turned off indirectly.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 8-9 shows the ADC pin-biasing for internal reference and Figure 8-10 shows the ADC pin-biasing for  
external reference.  
ADCINA[7:0]  
ADCINB[7:0]  
ADCLO  
ADC 16-Channel Analog Inputs  
Analog input 0−3 V with respect to ADCLO  
Connect to analog ground  
Connect to analog ground if internal reference is used  
ADCREFIN  
22 k  
ADC External Current Bias Resistor ADCRESEXT  
2.2 μF(A)  
ADC Reference Positive Output  
ADC Reference Medium Output  
ADCREFP  
ADCREFM  
ADCREFP and ADCREFM should not  
be loaded by external circuitry  
2.2 μF(A)  
V
ADC Analog Power Pin (1.9 V/1.8 V)  
ADC Analog Power Pin (1.9 V/1.8 V)  
ADC Analog Ground Pin  
DD1A18  
V
DD2A18  
V
V
SS1AGND  
SS2AGND  
ADC Analog Ground Pin  
ADC Analog Power Pin (3.3 V)  
ADC Analog Ground Pin  
V
DDA2  
V
SSA2  
V
V
ADC Analog Power Pin (3.3 V)  
ADC Analog I/O Ground Pin  
DDAIO  
Reference I/O Power  
SSAIO  
A. TAIYO YUDEN LMK212BJ225MG-T or equivalent  
B. External decoupling capacitors are recommended on all power pins.  
C. Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance.  
Figure 8-9. ADC Pin Connections With Internal Reference  
Copyright © 2021 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
ADCINA[7:0]  
ADC 16-Channel Analog Inputs  
Analog input 0-3 V with respect to ADCLO  
ADCINB[7:0]  
ADCLO  
ADCREFIN  
Connect to Analog Ground  
Connect to 1.500, 1.024, or 2.048-V precision source(D)  
22 k  
ADC External Current Bias Resistor ADCRESEXT  
2.2 μF(A)  
2.2 μF(A)  
ADC Reference Positive Output  
ADC Reference Medium Output  
ADCREFP  
ADCREFM  
ADCREFP and ADCREFM should not  
be loaded by external circuitry  
VDD1A18  
VDD2A18  
VSS1AGND  
VSS2AGND  
ADC Analog Power Pin (1.9 V/1.8 V)  
ADC Analog Power Pin (1.9 V/1.8 V)  
ADC Analog Ground Pin  
ADC Analog Ground Pin  
VDDA2  
VSSA2  
ADC Analog Power Pin (3.3 V)  
ADC Analog Ground Pin  
VDDAIO  
VSSAIO  
ADC Analog Power Pin (3.3 V)  
ADC Analog I/O Ground Pin  
Reference I/O Power  
A. TAIYO YUDEN LMK212BJ225MG-T or equivalent  
B. External decoupling capacitors are recommended on all power pins.  
C. Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance.  
D. External voltage on ADCREFIN is enabled by changing bits 15:14 in the ADC Reference Select register depending on the voltage used  
on this pin. TI recommends TI part REF3020 or equivalent for 2.048-V generation. Overall gain accuracy will be determined by accuracy  
of this voltage source.  
Figure 8-10. ADC Pin Connections With External Reference  
Note  
The temperature rating of any recommended component must match the rating of the end product.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
8.2.7.1 ADC Connections if the ADC Is Not Used  
It is recommended to keep the connections for the analog power pins, even if the ADC is not used. Following is a  
summary of how the ADC pins should be connected, if the ADC is not used in an application:  
VDD1A18/VDD2A18 – Connect to VDD  
VDDA2, VDDAIO – Connect to VDDIO  
VSS1AGND/VSS2AGND, VSSA2, VSSAIO – Connect to VSS  
ADCLO – Connect to VSS  
ADCREFIN – Connect to VSS  
ADCREFP/ADCREFM – Connect a 100-nF cap to VSS  
ADCRESEXT – Connect a 20-kΩ resistor (very loose tolerance) to VSS  
ADCINAn, ADCINBn – Connect to VSS  
.
When the ADC is not used, be sure that the clock to the ADC module is not turned on to realize power savings.  
When the ADC module is used in an application, unused ADC input pins should be connected to analog ground  
(VSS1AGND/VSS2AGND  
)
Note  
ADC parameters for gain error and offset error are specified only if the ADC calibration routine is  
executed from the Boot ROM. See Section 8.2.7.3 for more information.  
Copyright © 2021 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
8.2.7.2 ADC Registers  
The ADC operation is configured, controlled, and monitored by the registers listed in Table 8-8.  
Table 8-8. ADC Registers (1)  
NAME  
ADDRESS(1) ADDRESS(2) SIZE (x16)  
DESCRIPTION  
ADCTRL1  
0x7100  
0x7101  
0x7102  
0x7103  
0x7104  
0x7105  
0x7106  
0x7107  
0x7108  
0x7109  
0x710A  
0x710B  
0x710C  
0x710D  
0x710E  
0x710F  
0x7110  
0x7111  
0x7112  
0x7113  
0x7114  
0x7115  
0x7116  
0x7117  
0x7118  
0x7119  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
ADC Control Register 1  
ADC Control Register 2  
ADCTRL2  
ADCMAXCONV  
ADCCHSELSEQ1  
ADCCHSELSEQ2  
ADCCHSELSEQ3  
ADCCHSELSEQ4  
ADCASEQSR  
ADCRESULT0  
ADCRESULT1  
ADCRESULT2  
ADCRESULT3  
ADCRESULT4  
ADCRESULT5  
ADCRESULT6  
ADCRESULT7  
ADCRESULT8  
ADCRESULT9  
ADCRESULT10  
ADCRESULT11  
ADCRESULT12  
ADCRESULT13  
ADCRESULT14  
ADCRESULT15  
ADCTRL3  
ADC Maximum Conversion Channels Register  
ADC Channel Select Sequencing Control Register 1  
ADC Channel Select Sequencing Control Register 2  
ADC Channel Select Sequencing Control Register 3  
ADC Channel Select Sequencing Control Register 4  
ADC Auto-Sequence Status Register  
0x0B00  
0x0B01  
0x0B02  
0x0B03  
0x0B04  
0x0B05  
0x0B06  
0x0B07  
0x0B08  
0x0B09  
0x0B0A  
0x0B0B  
0x0B0C  
0x0B0D  
0x0B0E  
0x0B0F  
ADC Conversion Result Buffer Register 0  
ADC Conversion Result Buffer Register 1  
ADC Conversion Result Buffer Register 2  
ADC Conversion Result Buffer Register 3  
ADC Conversion Result Buffer Register 4  
ADC Conversion Result Buffer Register 5  
ADC Conversion Result Buffer Register 6  
ADC Conversion Result Buffer Register 7  
ADC Conversion Result Buffer Register 8  
ADC Conversion Result Buffer Register 9  
ADC Conversion Result Buffer Register 10  
ADC Conversion Result Buffer Register 11  
ADC Conversion Result Buffer Register 12  
ADC Conversion Result Buffer Register 13  
ADC Conversion Result Buffer Register 14  
ADC Conversion Result Buffer Register 15  
ADC Control Register 3  
ADCST  
ADC Status Register  
0x711A –  
0x711B  
Reserved  
2
ADCREFSEL  
ADCOFFTRIM  
0x711C  
0x711D  
1
1
ADC Reference Select Register  
ADC Offset Trim Register  
0x711E –  
0x711F  
Reserved  
2
(1) The registers in this column are Peripheral Frame 2 Registers.  
(2) The ADC result registers are dual mapped. Locations in Peripheral Frame 2 (0x7108–0x7117) are 2 wait-states and left justified.  
Locations in Peripheral frame 0 space (0x0B00–0x0B0F) are 1 wait-state for CPU accesses and 0 wait state for DMA accesses and  
right justified. During high speed/continuous conversion use of the ADC, use the 0 wait-state locations for fast transfer of ADC results  
to user memory.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
8.2.7.3 ADC Calibration  
The ADC_cal() routine is programmed into TI reserved OTP memory by the factory. The boot ROM automatically  
calls the ADC_cal() routine to initialize the ADCREFSEL and ADCOFFTRIM registers with device specific  
calibration data. During normal operation, this process occurs automatically and no action is required by the  
user.  
If the boot ROM is bypassed by Code Composer Studio during the development process, then ADCREFSEL and  
ADCOFFTRIM must be initialized by the application. Methods for calling the ADC_cal() routine from an  
application are described in the TMS320x2833x, F2823x Analog-to-Digital Converter (ADC) module reference  
guide.  
CAUTION  
FAILURE TO INITIALIZE THESE REGISTERS WILL CAUSE THE ADC TO FUNCTION OUT OF  
SPECIFICATION.  
If the system is reset or the ADC module is reset using Bit 14 (RESET) from the ADC Control  
Register 1, the routine must be repeated.  
8.2.8 Multichannel Buffered Serial Port (McBSP) Module  
The McBSP module has the following features:  
Compatible to McBSP in TMS320C54x/TMS320C55x DSP devices  
Full-duplex communication  
Double-buffered data registers that allow a continuous data stream  
Independent framing and clocking for receive and transmit  
External shift clock generation or an internal programmable frequency shift clock  
A wide selection of data sizes including 8, 12, 16, 20, 24, or 32 bits  
8-bit data transfers with LSB or MSB first  
Programmable polarity for both frame synchronization and data clocks  
Highly programmable internal clock and frame generation  
Direct interface to industry-standard CODECs, Analog Interface Chips (AICs), and other serially connected  
A/D and D/A devices  
Works with SPI-compatible devices  
The following application interfaces can be supported on the McBSP:  
– T1/E1 framers  
– IOM-2 compliant devices  
– AC97-compliant devices (the necessary multiphase frame synchronization capability is provided.)  
– IIS-compliant devices  
– SPI  
McBSP clock rate,  
CLKSRG  
CLKG =  
1+ CLKGDV  
(
)
where CLKSRG source could be LSPCLK, CLKX, or CLKR. Serial port performance is limited by I/O buffer  
switching speed. Internal prescalers must be adjusted such that the peripheral speed is less than the I/O  
buffer speed limit.  
Note  
See Section 7 for maximum I/O pin toggling speed.  
Copyright © 2021 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Figure 8-11 shows the block diagram of the McBSP module.  
TX  
Interrupt  
MXINT  
Peripheral Write Bus  
CPU  
TX Interrupt Logic  
To CPU  
16  
16  
McBSP Transmit  
Interrupt Select Logic  
DXR2 Transmit Buffer  
16  
DXR1 Transmit Buffer  
16  
LSPCLK  
MFSXx  
MCLKXx  
Compand Logic  
XSR2  
XSR1  
MDXx  
MDRx  
CPU  
DMA Bus  
RSR1  
16  
RSR2  
16  
MCLKRx  
Expand Logic  
MFSRx  
RBR2 Register  
16  
RBR1 Register  
16  
DRR2 Receive Buffer  
DRR1 Receive Buffer  
McBSP Receive  
16  
16  
Interrupt Select Logic  
RX  
Interrupt  
RX Interrupt Logic  
MRINT  
CPU  
Peripheral Read Bus  
To CPU  
Figure 8-11. McBSP Module  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-9 provides a summary of the McBSP registers.  
Table 8-9. McBSP Register Summary  
McBSP-A  
ADDRESS  
McBSP-B  
ADDRESS  
NAME  
TYPE  
RESET VALUE  
DESCRIPTION  
Data Registers, Receive, Transmit  
DRR2  
0x5000  
0x5001  
0x5002  
0x5003  
0x5040  
0x5041  
0x5042  
0x5043  
R
R
0x0000  
0x0000  
0x0000  
0x0000  
McBSP Data Receive Register 2  
DRR1  
DXR2  
DXR1  
McBSP Data Receive Register 1  
McBSP Data Transmit Register 2  
McBSP Data Transmit Register 1  
W
W
McBSP Control Registers  
SPCR2  
SPCR1  
RCR2  
0x5004  
0x5005  
0x5006  
0x5007  
0x5008  
0x5009  
0x500A  
0x500B  
0x5044  
0x5045  
0x5046  
0x5047  
0x5048  
0x5049  
0x504A  
0x504B  
R/W  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
McBSP Serial Port Control Register 2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
McBSP Serial Port Control Register 1  
McBSP Receive Control Register 2  
McBSP Receive Control Register 1  
McBSP Transmit Control Register 2  
McBSP Transmit Control Register 1  
McBSP Sample Rate Generator Register 2  
McBSP Sample Rate Generator Register 1  
RCR1  
XCR2  
XCR1  
SRGR2  
SRGR1  
Multichannel Control Registers  
MCR2  
0x500C  
0x500D  
0x500E  
0x500F  
0x5010  
0x5011  
0x5012  
0x5013  
0x5014  
0x5015  
0x5016  
0x5017  
0x5018  
0x5019  
0x501A  
0x501B  
0x501C  
0x501D  
0x501E  
0x5023  
0x504C  
0x504D  
0x504E  
0x504F  
0x5050  
0x5051  
0x5052  
0x5053  
0x5054  
0x5055  
0x5056  
0x5057  
0x5058  
0x5059  
0x505A  
0x505B  
0x505C  
0x505D  
0x505E  
0x5063  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
McBSP Multichannel Register 2  
McBSP Multichannel Register 1  
MCR1  
RCERA  
RCERB  
XCERA  
XCERB  
PCR  
McBSP Receive Channel Enable Register Partition A  
McBSP Receive Channel Enable Register Partition B  
McBSP Transmit Channel Enable Register Partition A  
McBSP Transmit Channel Enable Register Partition B  
McBSP Pin Control Register  
RCERC  
RCERD  
XCERC  
XCERD  
RCERE  
RCERF  
XCERE  
XCERF  
RCERG  
RCERH  
XCERG  
XCERH  
MFFINT  
McBSP Receive Channel Enable Register Partition C  
McBSP Receive Channel Enable Register Partition D  
McBSP Transmit Channel Enable Register Partition C  
McBSP Transmit Channel Enable Register Partition D  
McBSP Receive Channel Enable Register Partition E  
McBSP Receive Channel Enable Register Partition F  
McBSP Transmit Channel Enable Register Partition E  
McBSP Transmit Channel Enable Register Partition F  
McBSP Receive Channel Enable Register Partition G  
McBSP Receive Channel Enable Register Partition H  
McBSP Transmit Channel Enable Register Partition G  
McBSP Transmit Channel Enable Register Partition H  
McBSP Interrupt Enable Register  
Copyright © 2021 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
8.2.9 Enhanced Controller Area Network (eCAN) Modules (eCAN-A and eCAN-B)  
The CAN module has the following features:  
Fully compliant with ISO 11898-1 (CAN 2.0B)  
Supports data rates up to 1 Mbps  
Thirty-two mailboxes, each with the following properties:  
– Configurable as receive or transmit  
– Configurable with standard or extended identifier  
– Has a programmable receive mask  
– Supports data and remote frame  
– Composed of 0 to 8 bytes of data  
– Uses a 32-bit timestamp on receive and transmit message  
– Protects against reception of new message  
– Holds the dynamically programmable priority of transmit message  
– Employs a programmable interrupt scheme with two interrupt levels  
– Employs a programmable alarm on transmission or reception time-out  
Low-power mode  
Programmable wake-up on bus activity  
Automatic reply to a remote request message  
Automatic retransmission of a frame in case of loss of arbitration or error  
32-bit local network time counter synchronized by a specific message (communication in conjunction with  
mailbox 16)  
Self-test mode  
– Operates in a loopback mode receiving its own message. A "dummy" acknowledge is provided, thereby  
eliminating the need for another node to provide the acknowledge bit.  
Note  
For a SYSCLKOUT of 100 MHz, the smallest bit rate possible is 7.812 kbps.  
For a SYSCLKOUT of 150 MHz, the smallest bit rate possible is 11.719 kbps.  
The F2833x/F2823x CAN has passed the conformance test per ISO/DIS 16845. Contact TI for test report and  
exceptions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
eCAN0INT  
eCAN1INT  
Controls Address  
Data  
32  
Enhanced CAN Controller  
Message Controller  
Mailbox RAM  
(512 Bytes)  
Memory Management  
Unit  
eCAN Memory  
(512 Bytes)  
Registers and  
CPU Interface,  
Receive Control Unit,  
Timer Management Unit  
32-Message Mailbox  
of 4 x 32-Bit Words  
Message Objects Control  
32  
32  
32  
eCAN Protocol Kernel  
Receive Buffer  
Transmit Buffer  
Control Buffer  
Status Buffer  
SN65HVD23x  
3.3-V CAN Transceiver  
CAN Bus  
Figure 8-12. eCAN Block Diagram and Interface Circuit  
Copyright © 2021 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Table 8-10. 3.3-V eCAN Transceivers  
SUPPLY  
VOLTAGE  
LOW-POWER  
MODE  
SLOPE  
CONTROL  
PART NUMBER  
VREF  
OTHER  
TA  
SN65HVD230  
SN65HVD230Q  
SN65HVD231  
SN65HVD231Q  
SN65HVD232  
SN65HVD232Q  
SN65HVD233  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
Standby  
Standby  
Sleep  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
None  
Yes  
Yes  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
Yes  
Sleep  
Yes  
None  
None  
None  
None  
None  
None  
Standby  
Adjustable  
Diagnostic  
Loopback  
SN65HVD234  
SN65HVD235  
3.3 V  
3.3 V  
Standby and Sleep  
Standby  
Adjustable  
Adjustable  
None  
None  
–40°C to 125°C  
–40°C to 125°C  
Autobaud  
Loopback  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
eCAN-A Control and Status Registers  
Mailbox Enable - CANME  
Mailbox Direction - CANMD  
Transmission Request Set - CANTRS  
Transmission Request Reset - CANTRR  
Transmission Acknowledge - CANTA  
Abort Acknowledge - CANAA  
eCAN-A Memory (512 Bytes)  
6000h  
Received Message Pending - CANRMP  
Received Message Lost - CANRML  
Remote Frame Pending - CANRFP  
Global Acceptance Mask - CANGAM  
Control and Status Registers  
603Fh  
6040h  
Local Acceptance Masks (LAM)  
(32 x 32-Bit RAM)  
607Fh  
6080h  
Master Control - CANMC  
Message Object Timestamps (MOTS)  
(32 x 32-Bit RAM)  
Bit-Timing Configuration - CANBTC  
60BFh  
60C0h  
Error and Status - CANES  
Message Object Time-Out (MOTO)  
(32 x 32-Bit RAM)  
Transmit Error Counter - CANTEC  
Receive Error Counter - CANREC  
Global Interrupt Flag 0 - CANGIF0  
Global Interrupt Mask - CANGIM  
Global Interrupt Flag 1 - CANGIF1  
Mailbox Interrupt Mask - CANMIM  
Mailbox Interrupt Level - CANMIL  
60FFh  
eCAN-A Memory RAM (512 Bytes)  
6100h-6107h  
6108h-610Fh  
6110h-6117h  
6118h-611Fh  
6120h-6127h  
Mailbox 0  
Mailbox 1  
Mailbox 2  
Mailbox 3  
Mailbox 4  
Overwrite Protection Control - CANOPC  
TX I/O Control - CANTIOC  
RX I/O Control - CANRIOC  
Timestamp Counter - CANTSC  
Time-Out Control - CANTOC  
Time-Out Status - CANTOS  
61E0h-61E7h  
61E8h-61EFh  
61F0h-61F7h  
61F8h-61FFh  
Mailbox 28  
Mailbox 29  
Mailbox 30  
Mailbox 31  
Reserved  
Message Mailbox (16 Bytes)  
Message Identifier - MSGID  
Message Control - MSGCTRL  
Message Data Low - MDL  
Message Data High - MDH  
61E8h-61E9h  
61EAh-61EBh  
61ECh-61EDh  
61EEh-61EFh  
Figure 8-13. eCAN-A Memory Map  
Note  
If the eCAN module is not used in an application, the RAM available (LAM, MOTS, MOTO, and  
mailbox RAM) can be used as general-purpose RAM. The CAN module clock should be enabled for  
this.  
Copyright © 2021 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
eCAN-B Control and Status Registers  
Mailbox Enable - CANME  
Mailbox Direction - CANMD  
Transmission Request Set - CANTRS  
Transmission Request Reset - CANTRR  
Transmission Acknowledge - CANTA  
eCAN-B Memory (512 Bytes)  
Abort Acknowledge - CANAA  
Received Message Pending - CANRMP  
Received Message Lost - CANRML  
Remote Frame Pending - CANRFP  
Global Acceptance Mask - CANGAM  
6200h  
Control and Status Registers  
623Fh  
6240h  
Local Acceptance Masks (LAM)  
(32 x 32-Bit RAM)  
627Fh  
6280h  
Master Control - CANMC  
Message Object Timestamps (MOTS)  
(32 x 32-Bit RAM)  
Bit-Timing Configuration - CANBTC  
62BFh  
62C0h  
Error and Status - CANES  
Message Object Time-Out (MOTO)  
(32 x 32-Bit RAM)  
Transmit Error Counter - CANTEC  
Receive Error Counter - CANREC  
Global Interrupt Flag 0 - CANGIF0  
Global Interrupt Mask - CANGIM  
Global Interrupt Flag 1 - CANGIF1  
Mailbox Interrupt Mask - CANMIM  
Mailbox Interrupt Level - CANMIL  
62FFh  
eCAN-B Memory RAM (512 Bytes)  
6300h-6307h  
6308h-630Fh  
6310h-6317h  
6318h-631Fh  
6320h-6327h  
Mailbox 0  
Mailbox 1  
Mailbox 2  
Mailbox 3  
Mailbox 4  
Overwrite Protection Control - CANOPC  
TX I/O Control - CANTIOC  
RX I/O Control - CANRIOC  
Timestamp Counter - CANTSC  
Time-Out Control - CANTOC  
Time-Out Status - CANTOS  
63E0h-63E7h  
63E8h-63EFh  
63F0h-63F7h  
63F8h-63FFh  
Mailbox 28  
Mailbox 29  
Mailbox 30  
Mailbox 31  
Reserved  
Message Mailbox (16 Bytes)  
Message Identifier - MSGID  
Message Control - MSGCTRL  
Message Data Low - MDL  
Message Data High - MDH  
63E8h-63E9h  
63EAh-63EBh  
63ECh-63EDh  
63EEh-63EFh  
Figure 8-14. eCAN-B Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
The CAN registers listed in Table 8-11 are used by the CPU to configure and control the CAN controller and the  
message objects. eCAN control registers only support 32-bit read/write operations. Mailbox RAM can be  
accessed as 16 bits or 32 bits. Thirty-two-bit accesses are aligned to an even boundary.  
Table 8-11. CAN Register Map (1)  
eCAN-A  
ADDRESS  
eCAN-B  
ADDRESS  
SIZE  
(x32)  
REGISTER NAME  
DESCRIPTION  
CANME  
0x6000  
0x6002  
0x6004  
0x6006  
0x6008  
0x600A  
0x600C  
0x600E  
0x6010  
0x6012  
0x6014  
0x6016  
0x6018  
0x601A  
0x601C  
0x601E  
0x6020  
0x6022  
0x6024  
0x6026  
0x6028  
0x602A  
0x602C  
0x602E  
0x6030  
0x6032  
0x6200  
0x6202  
0x6204  
0x6206  
0x6208  
0x620A  
0x620C  
0x620E  
0x6210  
0x6212  
0x6214  
0x6216  
0x6218  
0x621A  
0x621C  
0x621E  
0x6220  
0x6222  
0x6224  
0x6226  
0x6228  
0x622A  
0x622C  
0x622E  
0x6230  
0x6232  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Mailbox enable  
CANMD  
Mailbox direction  
CANTRS  
CANTRR  
CANTA  
Transmit request set  
Transmit request reset  
Transmission acknowledge  
Abort acknowledge  
CANAA  
CANRMP  
CANRML  
CANRFP  
CANGAM  
CANMC  
Receive message pending  
Receive message lost  
Remote frame pending  
Global acceptance mask  
Master control  
CANBTC  
CANES  
Bit-timing configuration  
Error and status  
CANTEC  
CANREC  
CANGIF0  
CANGIM  
CANGIF1  
CANMIM  
CANMIL  
CANOPC  
CANTIOC  
CANRIOC  
CANTSC  
CANTOC  
CANTOS  
Transmit error counter  
Receive error counter  
Global interrupt flag 0  
Global interrupt mask  
Global interrupt flag 1  
Mailbox interrupt mask  
Mailbox interrupt level  
Overwrite protection control  
TX I/O control  
RX I/O control  
Timestamp counter (Reserved in SCC mode)  
Time-out control (Reserved in SCC mode)  
Time-out status (Reserved in SCC mode)  
(1) These registers are mapped to Peripheral Frame 1.  
Copyright © 2021 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
8.2.10 Serial Communications Interface (SCI) Modules (SCI-A, SCI-B, SCI-C)  
The devices include three serial communications interface (SCI) modules. The SCI modules support digital  
communications between the CPU and other asynchronous peripherals that use the standard nonreturn-to-zero  
(NRZ) format. The SCI receiver and transmitter are double-buffered, and each has its own separate enable and  
interrupt bits. Both can be operated independently or simultaneously in the full-duplex mode. To ensure data  
integrity, the SCI checks received data for break detection, parity, overrun, and framing errors. The bit rate is  
programmable to more than 65000 different speeds through a 16-bit baud-select register.  
Features of each SCI module include:  
Two external pins:  
– SCITXD: SCI transmit-output pin  
– SCIRXD: SCI receive-input pin  
Note  
Both pins can be used as GPIO if not used for SCI.  
– Baud rate programmable to 64K different rates:  
LSPCLK  
Baud rate =  
when BRR ¹ 0  
when BRR = 0  
(BRR + 1) * 8  
LSPCLK  
Baud rate =  
16  
Note  
See Section 7 for maximum I/O pin toggling speed.  
Data-word format  
– One start bit  
– Data-word length programmable from one to eight bits  
– Optional even/odd/no parity bit  
– One or two stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: idle-line and address bit  
Half- or full-duplex operation  
Double-buffered receive and transmit functions  
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with  
status flags.  
– Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY  
flag (transmitter-shift register is empty)  
– Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break  
condition occurred), and RX ERROR flag (monitoring four interrupt conditions)  
Separate enable bits for transmitter and receiver interrupts (except BRKDT)  
NRZ (nonreturn-to-zero) format  
Note  
All registers in this module are 8-bit registers that are connected to Peripheral Frame 2. When a  
register is accessed, the register data is in the lower byte (7-0), and the upper byte (15-8) is read as  
zeros. Writing to the upper byte has no effect.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
Enhanced features:  
Auto baud-detect hardware logic  
16-level transmit/receive FIFO  
The SCI port operation is configured and controlled by the registers listed in Table 8-12, Table 8-13, and Table  
8-14.  
Table 8-12. SCI-A Registers (1)  
NAME  
SCICCRA  
ADDRESS  
0x7050  
0x7051  
0x7052  
0x7053  
0x7054  
0x7055  
0x7056  
0x7057  
0x7059  
0x705A  
0x705B  
0x705C  
0x705F  
SIZE (x16)  
DESCRIPTION  
SCI-A Communications Control Register  
SCI-A Control Register 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
SCICTL1A  
SCIHBAUDA  
SCILBAUDA  
SCICTL2A  
SCI-A Baud Register, High Bits  
SCI-A Baud Register, Low Bits  
SCI-A Control Register 2  
SCIRXSTA  
SCIRXEMUA  
SCIRXBUFA  
SCITXBUFA  
SCIFFTXA(2)  
SCIFFRXA(2)  
SCIFFCTA(2)  
SCIPRIA  
SCI-A Receive Status Register  
SCI-A Receive Emulation Data Buffer Register  
SCI-A Receive Data Buffer Register  
SCI-A Transmit Data Buffer Register  
SCI-A FIFO Transmit Register  
SCI-A FIFO Receive Register  
SCI-A FIFO Control Register  
SCI-A Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. 32-bit accesses produce  
undefined results.  
(2) These registers are new registers for the FIFO mode.  
Table 8-13. SCI-B Registers (1) (2)  
NAME  
SCICCRB  
ADDRESS  
0x7750  
0x7751  
0x7752  
0x7753  
0x7754  
0x7755  
0x7756  
0x7757  
0x7759  
0x775A  
0x775B  
0x775C  
0x775F  
SIZE (x16)  
DESCRIPTION  
SCI-B Communications Control Register  
SCI-B Control Register 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
SCICTL1B  
SCIHBAUDB  
SCILBAUDB  
SCICTL2B  
SCI-B Baud Register, High Bits  
SCI-B Baud Register, Low Bits  
SCI-B Control Register 2  
SCIRXSTB  
SCIRXEMUB  
SCIRXBUFB  
SCITXBUFB  
SCIFFTXB(2)  
SCIFFRXB(2)  
SCIFFCTB(2)  
SCIPRIB  
SCI-B Receive Status Register  
SCI-B Receive Emulation Data Buffer Register  
SCI-B Receive Data Buffer Register  
SCI-B Transmit Data Buffer Register  
SCI-B FIFO Transmit Register  
SCI-B FIFO Receive Register  
SCI-B FIFO Control Register  
SCI-B Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. 32-bit accesses produce  
undefined results.  
(2) These registers are new registers for the FIFO mode.  
Copyright © 2021 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Table 8-14. SCI-C Registers (1) (2)  
NAME  
ADDRESS  
0x7770  
0x7771  
0x7772  
0x7773  
0x7774  
0x7775  
0x7776  
0x7777  
0x7779  
0x777A  
0x777B  
0x777C  
0x777F  
SIZE (x16)  
DESCRIPTION  
SCI-C Communications Control Register  
SCI-C Control Register 1  
SCICCRC  
1
1
1
1
1
1
1
1
1
1
1
1
1
SCICTL1C  
SCIHBAUDC  
SCILBAUDC  
SCICTL2C  
SCI-C Baud Register, High Bits  
SCI-C Baud Register, Low Bits  
SCI-C Control Register 2  
SCIRXSTC  
SCIRXEMUC  
SCIRXBUFC  
SCITXBUFC  
SCIFFTXC(2)  
SCIFFRXC(2)  
SCIFFCTC(2)  
SCIPRC  
SCI-C Receive Status Register  
SCI-C Receive Emulation Data Buffer Register  
SCI-C Receive Data Buffer Register  
SCI-C Transmit Data Buffer Register  
SCI-C FIFO Transmit Register  
SCI-C FIFO Receive Register  
SCI-C FIFO Control Register  
SCI-C Priority Control Register  
Figure 8-15 shows the SCI module block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
SCICTL1.1  
SCITXD  
SCITXD  
TXSHF  
Register  
Frame Format and Mode  
TXENA  
TX EMPTY  
Parity  
Even/Odd Enable  
SCICTL2.6  
8
SCICCR.6 SCICCR.5  
TX INT ENA  
TXRDY  
Transmitter-Data  
Buffer Register  
SCICTL2.7  
SCICTL2.0  
8
TXWAKE  
TXINT  
To CPU  
TX FIFO _0  
SCICTL1.3  
TX Interrupt Logic  
TX FIFO _1  
- - - - -  
TX  
FIFO  
Interrupts  
1
SCI TX Interrupt Select Logic  
TX FIFO _15  
WUT  
SCITXBUF.7-0  
TX FIFO Registers  
SCIFFENA  
AutoBaud Detect Logic  
SCIRXD  
SCIFFTX.14  
SCIHBAUD. 15 - 8  
Baud Rate  
MSbyte  
Register  
SCIRXD  
RXSHF Register  
RXWAKE  
LSPCLK  
SCIRXST.1  
SCILBAUD. 7 - 0  
RXENA  
SCICTL1.0  
8
Baud Rate  
LSbyte  
Register  
SCICTL2.1  
RXRDY  
RX/BK INT ENA  
Receive-Data  
Buffer Register  
SCIRXBUF.7-0  
SCIRXST.6  
BRKDT  
8
SCIRXST.5  
RX FIFO _15  
- - - - -  
RX  
FIFO  
Interrupts  
RX FIFO _1  
RX FIFO _0  
RXINT  
To CPU  
RX Interrupt Logic  
SCIRXBUF.7-0  
RX FIFO Registers  
RXFFOVF  
SCIRXST.7 SCIRXST.4 - 2  
SCIFFRX.15  
RX Error  
FE OE PE  
RX Error  
RX ERR INT ENA  
SCI RX Interrupt Select Logic  
SCICTL1.6  
Figure 8-15. Serial Communications Interface (SCI) Module Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
8.2.11 Serial Peripheral Interface (SPI) Module (SPI-A)  
The device includes the four-pin serial peripheral interface (SPI) module. One SPI module (SPI-A) is available.  
The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of programmed length (1 to  
16 bits) to be shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used for  
communications between the DSC controller and external peripherals or another processor. Typical applications  
include external I/O or peripheral expansion through devices such as shift registers, display drivers, and ADCs.  
Multidevice communications are supported by the master/slave operation of the SPI.  
The SPI module features include:  
Four external pins:  
– SPISOMI: SPI slave-output/master-input pin  
– SPISIMO: SPI slave-input/master-output pin  
– SPISTE: SPI slave transmit-enable pin  
– SPICLK: SPI serial-clock pin  
Note  
All four pins can be used as GPIO if the SPI module is not used.  
Two operational modes: master and slave  
Baud rate: 125 different programmable rates.  
LSPCLK  
Baud rate =  
when SPIBRR = 3 to127  
when SPIBRR = 0,1, 2  
(SPIBRR + 1)  
LSPCLK  
4
Baud rate =  
Note  
See Section 7 for maximum I/O pin toggling speed.  
Data word length: 1 to 16 data bits  
Four clocking schemes (controlled by clock polarity and clock phase bits) include:  
– Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the  
SPICLK signal and receives data on the rising edge of the SPICLK signal.  
– Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling  
edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.  
– Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the  
SPICLK signal and receives data on the falling edge of the SPICLK signal.  
– Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the rising  
edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Simultaneous receive and transmit operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithms.  
Nine SPI module control registers: Located in control register frame beginning at address 7040h.  
Note  
All registers in this module are 16-bit registers that are connected to Peripheral Frame 2. When a  
register is accessed, the register data is in the lower byte (7–0), and the upper byte (15–8) is read  
as zeros. Writing to the upper byte has no effect.  
Enhanced features:  
16-level transmit/receive FIFO  
Delayed transmit control  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
The SPI port operation is configured and controlled by the registers listed in Table 8-15 .  
Table 8-15. SPI-A Registers  
SIZE (x16)  
NAME  
ADDRESS  
0x7040  
0x7041  
0x7042  
0x7044  
0x7046  
0x7047  
0x7048  
0x7049  
0x704A  
0x704B  
0x704C  
0x704F  
DESCRIPTION(1)  
SPICCR  
SPICTL  
SPISTS  
SPIBRR  
1
1
1
1
1
1
1
1
1
1
1
1
SPI-A Configuration Control Register  
SPI-A Operation Control Register  
SPI-A Status Register  
SPI-A Baud Rate Register  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
SPI-A Receive Emulation Buffer Register  
SPI-A Serial Input Buffer Register  
SPI-A Serial Output Buffer Register  
SPI-A Serial Data Register  
SPIFFTX  
SPIFFRX  
SPIFFCT  
SPIPRI  
SPI-A FIFO Transmit Register  
SPI-A FIFO Receive Register  
SPI-A FIFO Control Register  
SPI-A Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined  
results.  
Figure 8-16 is a block diagram of the SPI in slave mode.  
Copyright © 2021 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
SPIFFENA  
Overrun  
INT ENA  
Receiver  
Overrun Flag  
SPIFFTX.14  
RX FIFO registers  
SPIRXBUF  
SPISTS.7  
SPICTL.4  
RX FIFO _0  
RX FIFO _1  
SPIINT/SPIRXINT  
RX FIFO Interrupt  
−−−−−  
RX FIFO _15  
RX Interrupt  
Logic  
16  
SPIRXBUF  
Buffer Register  
SPIFFOVF FLAG  
SPIFFRX.15  
To CPU  
TX FIFO registers  
SPITXBUF  
TX FIFO _15  
TX Interrupt  
Logic  
TX FIFO Interrupt  
−−−−−  
TX FIFO _1  
SPITXINT  
TX FIFO _0  
16  
SPI INT  
ENA  
SPI INT FLAG  
SPISTS.6  
SPITXBUF  
Buffer Register  
16  
SPICTL.0  
16  
M
S
M
SPIDAT  
Data Register  
S
SW1  
SW2  
SPISIMO  
SPISOMI  
M
S
M
SPIDAT.15 − 0  
S
Talk  
SPICTL.1  
(A)  
SPISTE  
State Control  
Master/Slave  
SPICTL.2  
SPI Char  
SPICCR.3 − 0  
S
3
2
1
0
SW3  
Clock  
Polarity  
Clock  
Phase  
M
S
SPI Bit Rate  
LSPCLK  
SPICCR.6  
SPICTL.3  
SPICLK  
SPIBRR.6 − 0  
M
6
5
4
3
2
1
0
A. SPISTE is driven low by the master for a slave device.  
Figure 8-16. SPI Module Block Diagram (Slave Mode)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
8.2.12 Inter-Integrated Circuit (I2C)  
The device contains one I2C Serial Port. Figure 8-17 shows how the I2C peripheral module interfaces within the  
device.  
System Control Block  
C28x CPU  
I2CAENCLK  
SYSCLKOUT  
SYSRS  
Control  
Data[16]  
Data[16]  
SDAA  
SCLA  
I2C-A  
Addr[16]  
I2CINT1A  
I2CINT2A  
GPIO  
MUX  
PIE  
Block  
A. The I2C registers are accessed at the SYSCLKOUT rate. The internal timing and signal waveforms of the I2C port are also at the  
SYSCLKOUT rate.  
B. The clock enable bit (I2CAENCLK) in the PCLKCR0 register turns off the clock to the I2C port for low power operation. Upon reset,  
I2CAENCLK is clear, which indicates the peripheral internal clocks are off.  
Figure 8-17. I2C Peripheral Module Interfaces  
Copyright © 2021 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
The I2C module has the following features:  
Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):  
– Support for 1-bit to 8-bit format transfers  
– 7-bit and 10-bit addressing modes  
– General call  
– START byte mode  
– Support for multiple master-transmitters and slave-receivers  
– Support for multiple slave-transmitters and master-receivers  
– Combined master transmit/receive and receive/transmit mode  
– Data transfer rate from 10 kbps up to 400 kbps (I2C Fast-mode rate)  
One 16-word receive FIFO and one 16-word transmit FIFO  
One interrupt that can be used by the CPU. This interrupt can be generated as a result of one of the following  
conditions:  
– Transmit-data ready  
– Receive-data ready  
– Register-access ready  
– No-acknowledgment received  
– Arbitration lost  
– Stop condition detected  
– Addressed as slave  
An additional interrupt that can be used by the CPU when in FIFO mode  
Module-enable and module-disable capability  
Free data format mode  
The registers in Table 8-16 configure and control the I2C port operation.  
Table 8-16. I2C-A Registers  
NAME  
ADDRESS  
0x7900  
0x7901  
0x7902  
0x7903  
0x7904  
0x7905  
0x7906  
0x7907  
0x7908  
0x7909  
0x790A  
0x790C  
0x7920  
0x7921  
DESCRIPTION  
I2COAR  
I2CIER  
I2C own address register  
I2C interrupt enable register  
I2C status register  
I2CSTR  
I2CCLKL  
I2CCLKH  
I2CCNT  
I2CDRR  
I2CSAR  
I2CDXR  
I2CMDR  
I2CISRC  
I2CPSC  
I2CFFTX  
I2CFFRX  
I2CRSR  
I2CXSR  
I2C clock low-time divider register  
I2C clock high-time divider register  
I2C data count register  
I2C data receive register  
I2C slave address register  
I2C data transmit register  
I2C mode register  
I2C interrupt source register  
I2C prescaler register  
I2C FIFO transmit register  
I2C FIFO receive register  
I2C receive shift register (not accessible to the CPU)  
I2C transmit shift register (not accessible to the CPU)  
8.2.13 GPIO MUX  
On the 2833x/2823x devices, the GPIO MUX can multiplex up to three independent peripheral signals on a  
single GPIO pin in addition to providing individual pin bit-banging I/O capability. The GPIO MUX block diagram  
per pin is shown in Figure 8-18. Because of the open-drain capabilities of the I2C pins, the GPIO MUX block  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
diagram for these pins differ. See the TMS320x2833x, 2823x system control and interrupts reference guide for  
details.  
Note  
There is a 2-SYSCLKOUT cycle delay from when the write to the GPxMUXn and GPxQSELn registers  
occurs to when the action is valid.  
GPIOXINT1SEL  
GPIOXINT2SEL  
GPIOXINT3SEL  
GPIOLMPSEL  
LPMCR0  
GPIOXINT7SEL  
GPIOXNMISEL  
Low-Power  
Modes Block  
External Interrupt  
MUX  
PIE  
GPxDAT (read)  
Asynchronous  
path  
GPxQSEL1/2  
GPxCTRL  
GPxPUD  
00  
01  
N/C  
Peripheral 1 Input  
Input  
Qualification  
Internal  
Pullup  
Peripheral 2 Input  
Peripheral 3 Input  
10  
11  
Asynchronous path  
GPxTOGGLE  
GPxCLEAR  
GPxSET  
GPIOx pin  
00  
01  
10  
11  
GPxDAT (latch)  
Peripheral 1 Output  
Peripheral 2 Output  
Peripheral 3 Output  
High-Impedance  
Output Control  
00  
01  
GPxDIR (latch)  
Peripheral 1 Output Enable  
0 = Input, 1 = Output  
XRS  
Peripheral 2 Output Enable  
Peripheral 3 Output Enable  
10  
11  
= Default at Reset  
GPxMUX1/2  
A. x stands for the port, either A or B. For example, GPxDIR refers to either the GPADIR and GPBDIR register depending on the particular  
GPIO pin selected.  
B. GPxDAT latch/read are accessed at the same memory location.  
Copyright © 2021 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
C. This is a generic GPIO MUX block diagram. Not all options may be applicable for all GPIO pins. See the TMS320x2833x, 2823x system  
control and interrupts reference guide for pin-specific variations.  
Figure 8-18. GPIO MUX Block Diagram  
The device supports 88 GPIO pins. The GPIO control and data registers are mapped to Peripheral Frame 1 to  
enable 32-bit operations on the registers (along with 16-bit operations). Table 8-17 shows the GPIO register  
mapping.  
Table 8-17. GPIO Registers  
NAME  
ADDRESS  
GPIO CONTROL REGISTERS (EALLOW PROTECTED)  
0x6F80 GPIO A Control Register (GPIO0 to 31)  
SIZE (x16)  
DESCRIPTION  
GPACTRL  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
8
2
2
2
2
18  
GPAQSEL1  
GPAQSEL2  
GPAMUX1  
GPAMUX2  
GPADIR  
0x6F82  
0x6F84  
GPIO A Qualifier Select 1 Register (GPIO0 to 15)  
GPIO A Qualifier Select 2 Register (GPIO16 to 31)  
GPIO A MUX 1 Register (GPIO0 to 15)  
0x6F86  
0x6F88  
GPIO A MUX 2 Register (GPIO16 to 31)  
0x6F8A  
GPIO A Direction Register (GPIO0 to 31)  
GPIO A Pullup Disable Register (GPIO0 to 31)  
GPAPUD  
0x6F8C  
Reserved  
GPBCTRL  
GPBQSEL1  
GPBQSEL2  
GPBMUX1  
GPBMUX2  
GPBDIR  
0x6F8E – 0x6F8F  
0x6F90  
GPIO B Control Register (GPIO32 to 63)  
GPIO B Qualifier Select 1 Register (GPIO32 to 47)  
GPIOB Qualifier Select 2 Register (GPIO48 to 63)  
GPIO B MUX 1 Register (GPIO32 to 47)  
0x6F92  
0x6F94  
0x6F96  
0x6F98  
GPIO B MUX 2 Register (GPIO48 to 63)  
0x6F9A  
GPIO B Direction Register (GPIO32 to 63)  
GPIO B Pullup Disable Register (GPIO32 to 63)  
GPBPUD  
Reserved  
GPCMUX1  
GPCMUX2  
GPCDIR  
0x6F9C  
0x6F9E – 0x6FA5  
0x6FA6  
GPIO C MUX1 Register (GPIO64 to 79)  
GPIO C MUX2 Register (GPIO80 to 87)  
GPIO C Direction Register (GPIO64 to 87)  
GPIO C Pullup Disable Register (GPIO64 to 87)  
0x6FA8  
0x6FAA  
GPCPUD  
Reserved  
0x6FAC  
0x6FAE – 0x6FBF  
GPIO DATA REGISTERS (NOT EALLOW PROTECTED)  
GPADAT  
0x6FC0  
0x6FC2  
2
2
2
2
2
2
2
2
2
2
2
2
8
GPIO A Data Register (GPIO0 to 31)  
GPASET  
GPIO A Data Set Register (GPIO0 to 31)  
GPIO A Data Clear Register (GPIO0 to 31)  
GPIO A Data Toggle Register (GPIO0 to 31)  
GPIO B Data Register (GPIO32 to 63)  
GPACLEAR  
GPATOGGLE  
GPBDAT  
0x6FC4  
0x6FC6  
0x6FC8  
GPBSET  
0x6FCA  
GPIO B Data Set Register (GPIO32 to 63)  
GPIO B Data Clear Register (GPIO32 to 63)  
GPIOB Data Toggle Register (GPIO32 to 63)  
GPIO C Data Register (GPIO64 to 87)  
GPIO C Data Set Register (GPIO64 to 87)  
GPIO C Data Clear Register (GPIO64 to 87)  
GPIO C Data Toggle Register (GPIO64 to 87)  
GPBCLEAR  
GPBTOGGLE  
GPCDAT  
0x6FCC  
0x6FCE  
0x6FD0  
GPCSET  
0x6FD2  
GPCCLEAR  
GPCTOGGLE  
Reserved  
0x6FD4  
0x6FD6  
0x6FD8 – 0x6FDF  
GPIO INTERRUPT AND LOW-POWER MODES SELECT REGISTERS (EALLOW PROTECTED)  
GPIOXINT1SEL  
GPIOXINT2SEL  
0x6FE0  
0x6FE1  
1
1
XINT1 GPIO Input Select Register (GPIO0 to 31)  
XINT2 GPIO Input Select Register (GPIO0 to 31)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-17. GPIO Registers (continued)  
NAME  
GPIOXNMISEL  
GPIOXINT3SEL  
GPIOXINT4SEL  
GPIOXINT5SEL  
GPIOXINT6SEL  
GPIOINT7SEL  
GPIOLPMSEL  
Reserved  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
0x6FE2  
1
1
XNMI GPIO Input Select Register (GPIO0 to 31)  
XINT3 GPIO Input Select Register (GPIO32 to 63)  
XINT4 GPIO Input Select Register (GPIO32 to 63)  
XINT5 GPIO Input Select Register (GPIO32 to 63)  
XINT6 GPIO Input Select Register (GPIO32 to 63)  
XINT7 GPIO Input Select Register (GPIO32 to 63)  
LPM GPIO Select Register (GPIO0 to 31)  
0x6FE3  
0x6FE4  
1
0x6FE5  
1
0x6FE6  
1
0x6FE7  
1
0x6FE8  
2
0x6FEA – 0x6FFF  
22  
Table 8-18. GPIO-A Mux Peripheral Selection Matrix  
REGISTER BITS  
PERIPHERAL SELECTION  
GPADIR  
GPADAT  
GPASET  
GPAMUX1  
GPAQSEL1  
GPIOx  
GPAMUX1 = 0,0  
PER1  
GPAMUX1 = 0, 1  
PER2  
GPAMUX1 = 1, 0  
PER3  
GPAMUX1 = 1, 1  
GPACLR  
GPATOGGLE  
0
1
1, 0  
GPIO0 (I/O)  
GPIO1 (I/O)  
GPIO2 (I/O)  
GPIO3 (I/O)  
GPIO4 (I/O)  
GPIO5 (I/O)  
GPIO6 (I/O)  
GPIO7 (I/O)  
GPIO8 (I/O)  
GPIO9 (I/O)  
GPIO10 (I/O)  
GPIO11 (I/O)  
GPIO12 (I/O)  
GPIO13 (I/O)  
GPIO14 (I/O)  
GPIO15 (I/O)  
EPWM1A (O)  
EPWM1B (O)  
EPWM2A (O)  
EPWM2B (O)  
EPWM3A (O)  
EPWM3B (O)  
EPWM4A (O)  
EPWM4B (O)  
EPWM5A (O)  
EPWM5B (O)  
EPWM6A (O)  
EPWM6B (O)  
TZ1 (I)  
Reserved  
ECAP6 (I/O)  
Reserved  
Reserved  
MFSRB (I/O)  
Reserved  
3, 2  
2
5, 4  
3
7, 6  
ECAP5 (I/O)  
Reserved  
MCLKRB (I/O)  
Reserved  
QUALPRD0  
4
9, 8  
5
11, 10  
13, 12  
15, 14  
17, 16  
19, 18  
21, 20  
23, 22  
25, 24  
27, 26  
29, 28  
31, 30  
MFSRA (I/O)  
EPWMSYNCI (I)  
MCLKRA (I/O)  
CANTXB (O)  
SCITXDB (O)  
CANRXB (I)  
SCIRXDB (I)  
CANTXB (O)  
CANRXB (I)  
SCITXDB (O)  
SCIRXDB (I)  
ECAP1 (I/O)  
EPWMSYNCO (O)  
ECAP2 (I/O)  
ADCSOCAO (O)  
ECAP3 (I/O)  
ADCSOCBO (O)  
ECAP4 (I/O)  
MDXB (O)  
6
7
8
9
10  
11  
12  
13  
14  
15  
QUALPRD1  
TZ2 (I)  
MDRB (I)  
TZ3 (I)/ XHOLD (I)  
TZ4 (I)/ XHOLDA (O)  
MCLKXB (I/O)  
MFSXB (I/O)  
GPAMUX2  
GPAQSEL2  
GPAMUX2 = 0, 0  
GPAMUX2 = 0, 1  
GPAMUX2 = 1, 0  
GPAMUX2 = 1, 1  
16  
17  
18  
19  
20  
21  
22  
23  
1, 0  
3, 2  
GPIO16 (I/O)  
GPIO17 (I/O)  
GPIO18 (I/O)  
GPIO19 (I/O)  
GPIO20 (I/O)  
GPIO21 (I/O)  
GPIO22 (I/O)  
GPIO23 (I/O)  
SPISIMOA (I/O)  
SPISOMIA (I/O)  
SPICLKA (I/O)  
SPISTEA (I/O)  
EQEP1A (I)  
CANTXB (O)  
CANRXB (I)  
SCITXDB (O)  
SCIRXDB (I)  
MDXA (O)  
TZ5 (I)  
TZ6 (I)  
5, 4  
CANRXA (I)  
CANTXA (O)  
CANTXB (O)  
CANRXB (I)  
SCITXDB (O)  
SCIRXDB (I)  
7, 6  
QUALPRD2  
9, 8  
11, 10  
13, 12  
15, 14  
EQEP1B (I)  
MDRA (I)  
EQEP1S (I/O)  
EQEP1I (I/O)  
MCLKXA (I/O)  
MFSXA (I/O)  
Copyright © 2021 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Table 8-18. GPIO-A Mux Peripheral Selection Matrix (continued)  
REGISTER BITS  
PERIPHERAL SELECTION  
GPADIR  
GPADAT  
GPASET  
GPACLR  
GPAMUX1  
GPAQSEL1  
GPIOx  
GPAMUX1 = 0,0  
PER1  
GPAMUX1 = 0, 1  
PER2  
GPAMUX1 = 1, 0  
PER3  
GPAMUX1 = 1, 1  
GPATOGGLE  
24  
25  
26  
27  
28  
29  
30  
31  
17, 16  
19, 18  
21, 20  
23, 22  
25, 24  
27, 26  
29, 28  
31, 30  
GPIO24 (I/O)  
GPIO25 (I/O)  
GPIO26 (I/O)  
GPIO27 (I/O)  
GPIO28 (I/O)  
GPIO29 (I/O)  
GPIO30 (I/O)  
GPIO31 (I/O)  
ECAP1 (I/O)  
ECAP2 (I/O)  
ECAP3 (I/O)  
ECAP4 (I/O)  
SCIRXDA (I)  
SCITXDA (O)  
CANRXA (I)  
CANTXA (O)  
EQEP2A (I)  
EQEP2B (I)  
MDXB (O)  
MDRB (I)  
EQEP2I (I/O)  
EQEP2S (I/O)  
MCLKXB (I/O)  
MFSXB (I/O)  
QUALPRD3  
XZCS6 (O)  
XA19 (O)  
XA18 (O)  
XA17 (O)  
Table 8-19. GPIO-B Mux Peripheral Selection Matrix  
REGISTER BITS  
GPBDIR  
PERIPHERAL SELECTION  
GPBDAT  
GPBSET  
GPBCLR  
GPBMUX1  
GPBQSEL1  
GPIOx  
GPBMUX1 = 0, 0  
PER1  
GPBMUX1 = 0, 1  
PER2  
GPBMUX1 = 1, 0  
PER3  
GPBMUX1 = 1, 1  
GPBTOGGLE  
0
1
1, 0  
GPIO32 (I/O)  
GPIO33 (I/O)  
GPIO34 (I/O)  
GPIO35 (I/O)  
GPIO36 (I/O)  
GPIO37 (I/O)  
GPIO38 (I/O)  
GPIO39 (I/O)  
GPIO40 (I/O)  
GPIO41 (I/O)  
GPIO42 (I/O)  
GPIO43 (I/O)  
GPIO44 (I/O)  
GPIO45 (I/O)  
GPIO46 (I/O)  
GPIO47 (I/O)  
SDAA (I/OC)(1)  
SCLA (I/OC)(1)  
ECAP1 (I/O)  
SCITXDA (O)  
SCIRXDA (I)  
ECAP2 (I/O)  
EPWMSYNCI (I)  
ADCSOCAO (O)  
ADCSOCBO (O)  
3, 2  
EPWMSYNCO (O)  
2
5, 4  
XREADY (I)  
3
7, 6  
XR/ W (O)  
XZCS0 (O)  
XZCS7 (O)  
XWE0 (O)  
XA16 (O)  
XA0/ XWE1 (O)  
XA1 (O)  
QUALPRD0  
4
9, 8  
5
11, 10  
13, 12  
15, 14  
17, 16  
19, 18  
21, 20  
23, 22  
25, 24  
27, 26  
29, 28  
31, 30  
6
7
8
9
10  
11  
12  
13  
14  
15  
XA2 (O)  
Reserved  
XA3 (O)  
QUALPRD1  
XA4 (O)  
XA5 (O)  
XA6 (O)  
XA7 (O)  
GPBMUX2  
GPBQSEL2  
GPBMUX2 = 0, 0  
GPBMUX2 = 0, 1  
GPBMUX2 = 1, 0  
GPBMUX2 = 1, 1  
16  
17  
18  
19  
20  
21  
22  
23  
1, 0  
3, 2  
GPIO48 (I/O)  
GPIO49 (I/O)  
GPIO50 (I/O)  
GPIO51 (I/O)  
GPIO52 (I/O)  
GPIO53 (I/O)  
GPIO54 (I/O)  
GPIO55 (I/O)  
ECAP5 (I/O)  
ECAP6 (I/O)  
EQEP1A (I)  
XD31 (I/O)  
XD30 (I/O)  
XD29 (I/O)  
XD28 (I/O)  
XD27 (I/O)  
XD26 (I/O)  
XD25 (I/O)  
XD24 (I/O)  
5, 4  
7, 6  
EQEP1B (I)  
QUALPRD2  
9, 8  
EQEP1S (I/O)  
EQEP1I (I/O)  
SPISIMOA (I/O)  
SPISOMIA (I/O)  
11, 10  
13, 12  
15, 14  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-19. GPIO-B Mux Peripheral Selection Matrix (continued)  
REGISTER BITS  
PERIPHERAL SELECTION  
GPBDIR  
GPBDAT  
GPBSET  
GPBCLR  
GPBMUX1  
GPBQSEL1  
GPIOx  
GPBMUX1 = 0, 0  
PER1  
GPBMUX1 = 0, 1  
PER2  
GPBMUX1 = 1, 0  
PER3  
GPBMUX1 = 1, 1  
GPBTOGGLE  
24  
25  
26  
27  
28  
29  
30  
31  
17, 16  
19, 18  
21, 20  
23, 22  
25, 24  
27, 26  
29, 28  
31, 30  
GPIO56 (I/O)  
GPIO57 (I/O)  
GPIO58 (I/O)  
GPIO59 (I/O)  
GPIO60 (I/O)  
GPIO61 (I/O)  
GPIO62 (I/O)  
GPIO63 (I/O)  
SPICLKA (I/O)  
SPISTEA (I/O)  
MCLKRA (I/O)  
MFSRA (I/O)  
MCLKRB (I/O)  
MFSRB (I/O)  
SCIRXDC (I)  
SCITXDC (O)  
XD23 (I/O)  
XD22 (I/O)  
XD21 (I/O)  
XD20 (I/O)  
XD19 (I/O)  
XD18 (I/O)  
XD17 (I/O)  
XD16 (I/O)  
QUALPRD3  
(1) Open drain  
Table 8-20. GPIO-C Mux Peripheral Selection Matrix  
REGISTER BITS  
PERIPHERAL SELECTION  
GPCDIR  
GPCDAT  
GPCSET  
GPCCLR  
GPIOx or PER1  
GPCMUX1 = 0, 0 or 0, 1  
PER2 or PER3  
GPCMUX1 = 1, 0 or 1, 1  
GPCMUX1  
GPCTOGGLE  
0
1
2
3
4
5
6
7
8
9
1, 0  
3, 2  
GPIO64 (I/O)  
GPIO65 (I/O)  
GPIO66 (I/O)  
GPIO67 (I/O)  
GPIO68 (I/O)  
GPIO69 (I/O)  
GPIO70 (I/O)  
GPIO71 (I/O)  
GPIO72 (I/O)  
GPIO73 (I/O)  
GPIO74 (I/O)  
GPIO75 (I/O)  
GPIO76 (I/O)  
GPIO77 (I/O)  
GPIO78 (I/O)  
GPIO79 (I/O)  
GPCMUX2 = 0, 0 or 0, 1  
GPIO80 (I/O)  
GPIO81 (I/O)  
GPIO82 (I/O)  
GPIO83 (I/O)  
GPIO84 (I/O)  
GPIO85 (I/O)  
GPIO86 (I/O)  
GPIO87 (I/O)  
XD15 (I/O)  
XD14 (I/O)  
XD13 (I/O)  
XD12 (I/O)  
XD11 (I/O)  
XD10 (I/O)  
XD9 (I/O)  
5, 4  
7, 6  
no qual  
9, 8  
11, 10  
13, 12  
15, 14  
17, 16  
19, 18  
21, 20  
23, 22  
25, 24  
27, 26  
29, 28  
31, 30  
GPCMUX2  
1, 0  
XD8 (I/O)  
XD7 (I/O)  
XD6 (I/O)  
10  
11  
12  
13  
14  
15  
XD5 (I/O)  
XD4 (I/O)  
no qual  
XD3 (I/O)  
XD2 (I/O)  
XD1 (I/O)  
XD0 (I/O)  
GPCMUX2 = 1, 0 or 1, 1  
XA8 (O)  
16  
17  
18  
19  
20  
21  
22  
23  
3, 2  
XA9 (O)  
5, 4  
XA10 (O)  
7, 6  
XA11 (O)  
no qual  
9, 8  
XA12 (O)  
11, 10  
13, 12  
15, 14  
XA13 (O)  
XA14 (O)  
XA15 (O)  
Copyright © 2021 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
The user can select the type of input qualification for each GPIO pin through the GPxQSEL1/2 registers from  
four choices:  
Synchronization To SYSCLKOUT Only (GPxQSEL1/2 = 0, 0): This is the default mode of all GPIO pins at  
reset and it simply synchronizes the input signal to the system clock (SYSCLKOUT).  
Qualification Using Sampling Window (GPxQSEL1/2 = 0, 1 and 1, 0): In this mode the input signal, after  
synchronization to the system clock (SYSCLKOUT), is qualified by a specified number of cycles before the  
input is allowed to change.  
Time Between Samples  
GPyCTRL Reg  
Input Signal  
Qualified by  
3 or 6 Samples  
Qualification  
GPIOx  
SYNC  
GPxQSEL  
SYSCLKOUT  
Number of Samples  
Figure 8-19. Qualification Using Sampling Window  
The sampling period is specified by the QUALPRD bits in the GPxCTRL register and is configurable in  
groups of 8 signals. It specifies a multiple of SYSCLKOUT cycles for sampling the input signal. The sampling  
window is either 3-samples or 6-samples wide and the output is only changed when all samples are the same  
(all 0s or all 1s) as shown in Figure 8-19 (for 6-sample mode).  
No Synchronization (GPxQSEL1/2 = 1,1): This mode is used for peripherals where synchronization is not  
required (synchronization is performed within the peripheral).  
Due to the multilevel multiplexing that is required on the device, there may be cases where a peripheral input  
signal can be mapped to more then one GPIO pin. Also, when an input signal is not selected, the input signal will  
default to either a 0 or 1 state, depending on the peripheral.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
8.2.14 External Interface (XINTF)  
This section gives a top-level view of the external interface (XINTF) that is implemented on the 2833x/2823x  
devices.  
The XINTF is a nonmultiplexed asynchronous bus, similar to the 2812 XINTF. The XINTF is mapped into three  
fixed zones shown in Figure 8-20.  
Data Space  
Prog Space  
0x0000-0000  
XD[31:0]  
XA[19:0]  
XZCS0  
0x0000-4000  
0x0000-5000  
XINTF Zone 0  
(8K x 16)  
0x0010-0000  
0x0020-0000  
0x0030-0000  
XINTF Zone 6  
(1M x 16)  
XZCS6  
XINTF Zone 7  
(1M x 16)  
XZCS7  
XA0/XWE1  
XWE0  
XRD  
XR/W  
XREADY  
XHOLD  
XHOLDA  
XCLKOUT  
A. Each zone can be programmed with different wait states, setup and hold timings, and is supported by zone chip selects that toggle when  
an access to a particular zone is performed. These features enable glueless connection to many external memories and peripherals.  
B. Zones 1 – 5 are reserved for future expansion.  
C. Zones 0, 6, and 7 are always enabled.  
Figure 8-20. External Interface Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Figure 8-21 and Figure 8-22 show typical 16-bit and 32-bit data bus XINTF connections, illustrating how the  
functionality of the XA0 and XWE1 signals change, depending on the configuration. Table 8-21 defines XINTF  
configuration and control registers.  
XINTF  
External  
wait-state  
generator  
XREADY  
16-bits  
XCLKOUT  
XZCS0, XZCS6, XZCS7  
XA(19:1)  
CS  
A(19:1)  
A(0)  
XA0/XWE1  
XRD  
OE  
WE  
XWE0  
D(15:0)  
XD(15:0)  
Figure 8-21. Typical 16-Bit Data Bus XINTF Connections  
XINTF  
External  
wait-state  
generator  
XREADY  
Low 16-bits  
XCLKOUT  
CS  
A(18:0)  
OE  
XA(19:1)  
XRD  
WE  
XWE0  
D(15:0)  
XD(15:0)  
High 16-bits  
A(18:0)  
XZCS0, XZCS6, XZCS7  
CS  
OE  
WE  
XA0/XWE1  
(select XWE1)  
D(31:16)  
XD(31:16)  
Figure 8-22. Typical 32-Bit Data Bus XINTF Connections  
Table 8-21. XINTF Configuration and Control Register Mapping  
NAME  
ADDRESS  
0x00−0B20  
0x00−0B2C  
0x00−0B2E  
0x00−0B34  
0x00−0B38  
0x00−0B3A  
0x00−0B3D  
SIZE (x16)  
DESCRIPTION  
XTIMING0  
XTIMING6(1)  
XTIMING7  
XINTCNF2(2)  
XBANK  
2
2
2
2
1
1
1
XINTF Timing Register, Zone 0  
XINTF Timing Register, Zone 6  
XINTF Timing Register, Zone 7  
XINTF Configuration Register  
XINTF Bank Control Register  
XINTF Revision Register  
XREVISION  
XRESET  
XINTF Reset Register  
(1) XTIMING1 - XTIMING5 are reserved for future expansion and are not currently used.  
(2) XINTCNF1 is reserved and not currently used.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
8.3 Memory Maps  
In Figure 8-23 to Figure 8-25, the following apply:  
Memory blocks are not to scale.  
Peripheral Frame 0, Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 memory maps are  
restricted to data memory only. A user program cannot access these memory maps in program space.  
Protected means the order of "Write followed by Read" operations is preserved rather than the pipeline order.  
See the TMS320x2833x, 2823x system control and interrupts reference guide for more details.  
Certain memory ranges are EALLOW protected against spurious writes after configuration.  
Locations 0x38 0080–0x38 008F contain the ADC calibration routine. It is not programmable by the user.  
If the eCAN module is not used in an application, the RAM available (LAM, MOTS, MOTO, and mailbox  
RAM) can be used as general-purpose RAM. The CAN module clock should be enabled for this.  
Copyright © 2021 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Block  
Start Address  
On-Chip Memory  
External Memory XINTF  
Data Space  
Prog Space  
Data Space  
Prog Space  
0x00 0000  
M0 Vector - RAM (32 x 32)  
(Enabled if VMAP = 0)  
0x00 0040  
0x00 0400  
0x00 0800  
M0 SARAM (1K x 16)  
M1 SARAM (1K x 16)  
Peripheral Frame 0  
Reserved  
0x00 0D00  
PIE Vector - RAM  
(256 x 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 2000  
Peripheral Frame 0  
0x00 4000  
0x00 5000  
XINTF Zone 0 (4K x 16, XZCS0)  
(Protected) DMA-Accessible  
Reserved  
0x00 5000  
0x00 6000  
0x00 7000  
Peripheral Frame 3  
(Protected) DMA-Accessible  
Peripheral Frame 1  
(Protected)  
Reserved  
Peripheral Frame 2  
(Protected)  
0x00 8000  
L0 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
L1 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
L2 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
L3 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
L4 SARAM (4K x 16, DMA-Accessible)  
0x00 9000  
0x00 A000  
0x00 B000  
0x00 C000  
Reserved  
0x00 D000  
0x00 E000  
0x00 F000  
0x01 0000  
L5 SARAM (4K x 16, DMA-Accessible)  
L6 SARAM (4K x 16, DMA-Accessible)  
L7 SARAM (4K x 16, DMA-Accessible)  
0x10 0000  
0x20 0000  
0x30 0000  
XINTF Zone 6 (1M x 16, XZCS6) (DMA-Accessible)  
XINTF Zone 7 (1M x 16, XZCS7) (DMA-Accessible)  
Reserved  
0x30 0000  
0x33 FFF8  
FLASH (256K x 16, Secure Zone)  
128-bit Password  
Reserved  
0x34 0000  
0x38 0080  
ADC Calibration Data and PARTID (Secure Zone)  
0x38 0091  
Reserved  
0x38 0400  
0x38 0800  
User OTP (1K x 16, Secure Zone)  
Reserved  
0x3F 8000  
L0 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
L1 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
L2 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
L3 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
0x3F 9000  
0x3F A000  
0x3F B000  
0x3F C000  
Reserved  
Reserved  
0x3F E000  
0x3F FFC0  
Boot ROM (8K x 16)  
BROM Vector - ROM (32 x 32)  
(Enabled if VMAP = 1, ENPIE = 0)  
LEGEND:  
Only one of these vector maps-M0 vector, PIE vector, BROM vector- should be enabled at a time.  
Figure 8-23. F28335, F28333, F28235 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
Block  
On-Chip Memory  
Start Address  
External Memory XINTF  
Data Space  
Prog Space  
Data Space  
Prog Space  
0x00 0000  
M0 Vector - RAM (32 x 32)  
(Enabled if VMAP = 0)  
0x00 0040  
0x00 0400  
0x00 0800  
M0 SARAM (1K x 16)  
M1 SARAM (1K x 16)  
Peripheral Frame 0  
Reserved  
0x00 0D00  
PIE Vector - RAM  
(256 x 16)  
Reserved  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
0x00 0E00  
0x00 2000  
Peripheral Frame 0  
0x00 4000  
Reserved  
XINTF Zone 0 (4K x 16, XZCS0)  
(Protected) DMA-Accessible  
0x00 5000  
0x00 5000  
Peripheral Frame 3  
(Protected)  
DMA-Accessible  
0x00 6000  
0x00 7000  
Peripheral Frame 1  
(Protected)  
Reserved  
Peripheral Frame 2  
(Protected)  
0x00 8000  
L0 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
L1 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
L2 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
L3 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
L4 SARAM (4K x 16, DMA-Accessible)  
0x00 9000  
0x00 A000  
0x00 B000  
Reserved  
0x00 C000  
0x00 D000  
0x00 E000  
0x00 F000  
0x01 0000  
L5 SARAM (4K x 16, DMA-Accessible)  
L6 SARAM (4K x 16, DMA-Accessible)  
L7 SARAM (4K x 16, DMA-Accessible)  
0x10 0000  
0x20 0000  
0x30 0000  
XINTF Zone 6 (1M x 16, XZCS6) (DMA-Accessible)  
XINTF Zone 7 (1M x 16, XZCS7) (DMA-Accessible)  
Reserved  
0x32 0000  
0x33 FFF8  
FLASH (128K x 16, Secure Zone)  
128-bit Password  
0x34 0000  
0x38 0080  
Reserved  
ADC Calibration Data and PARTID (Secure Zone)  
0x38 0091  
0x38 0400  
Reserved  
User OTP (1K x 16, Secure Zone)  
Reserved  
0x38 0800  
0x3F 8000  
0x3F 9000  
0x3F A000  
L0 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
Reserved  
L1 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
L2 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
L3 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
0x3F B000  
0x3F C000  
0x3F E000  
Reserved  
Boot ROM (8K x 16)  
0x3F FFC0  
BROM Vector - ROM (32 x 32)  
(Enabled if VMAP = 1, ENPIE = 0)  
LEGEND:  
Only one of these vector maps-M0 vector, PIE vector, BROM vector-should be enabled at a time.  
Figure 8-24. F28334, F28234 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
158 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Block  
Start Address  
On-Chip Memory  
External Memory XINTF  
Data Space  
Prog Space  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
M0 Vector - RAM (32 x 32)  
(Enabled if VMAP = 0)  
M0 SARAM (1K x 16)  
M1 SARAM (1K x 16)  
0x00 0400  
0x00 0800  
Peripheral Frame 0  
Reserved  
0x00 0D00  
PIE Vector - RAM  
(256 x 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 2000  
Peripheral Frame 0  
0x00 4000  
0x00 5000  
XINTF Zone 0 (4K x 16, XZCS0)  
(Protected) DMA-Accessible  
Reserved  
0x00 5000  
0x00 6000  
0x00 7000  
Peripheral Frame 3  
(Protected) DMA-Accessible  
Peripheral Frame 1  
(Protected)  
Reserved  
Peripheral Frame 2  
(Protected)  
0x00 8000  
L0 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
L1 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
L2 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
L3 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
L4 SARAM (4K x 16, DMA-Accessible)  
Reserved  
0x00 9000  
0x00 A000  
0x00 B000  
0x00 C000  
0x00 D000  
0x00 E000  
L5 SARAM (4K x 16, DMA-Accessible)  
0x10 0000  
0x20 0000  
0x30 0000  
XINTF Zone 6 (1M x 16, XZCS6) (DMA-Accessible)  
XINTF Zone 7 (1M x 16, XZCS7) (DMA-Accessible)  
Reserved  
0x33 0000  
0x33 FFF8  
FLASH (64K x 16, Secure Zone)  
128-bit Password  
0x34 0000  
0x38 0080  
Reserved  
ADC Calibration Data and PARTID (Secure Zone)  
Reserved  
0x38 0091  
0x38 0400  
User OTP (1K x 16, Secure Zone)  
Reserved  
0x38 0800  
0x3F 8000  
0x3F 9000  
0x3F A000  
L0 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
L1 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
L2 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
L3 SARAM (4K x 16, Secure Zone, Dual-Mapped)  
Reserved  
0x3F B000  
0x3F C000  
Reserved  
0x3F E000  
0x3F FFC0  
Boot ROM (8K x 16)  
BROM Vector - ROM (32 x 32)  
(Enabled if VMAP = 1, ENPIE = 0)  
LEGEND:  
Only one of these vector maps-M0 vector, PIE vector, BROM vector-should be enabled at a time.  
Figure 8-25. F28332, F28232 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-22. Addresses of Flash Sectors in F28335, F28333, F28235  
ADDRESS RANGE  
0x30 0000 - 0x30 7FFF  
0x30 8000 - 0x30 FFFF  
0x31 0000 - 0x31 7FFF  
0x31 8000 - 0x31 FFFF  
0x32 0000 - 0x32 7FFF  
0x32 8000 - 0x32 FFFF  
0x33 0000 - 0x33 7FFF  
0x33 8000 - 0x33 FF7F  
PROGRAM AND DATA SPACE  
Sector H (32K × 16)  
Sector G (32K × 16)  
Sector F (32K × 16)  
Sector E (32K × 16)  
Sector D (32K × 16)  
Sector C (32K × 16)  
Sector B (32K × 16)  
Sector A (32K × 16)  
Program to 0x0000 when using the  
Code Security Module  
0x33 FF80 - 0x33 FFF5  
0x33 FFF6 - 0x33 FFF7  
0x33 FFF8 - 0x33 FFFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password  
(128-Bit) (Do Not Program to all zeros)  
Table 8-23. Addresses of Flash Sectors in F28334, F28234  
ADDRESS RANGE  
0x32 0000 - 0x32 3FFF  
0x32 4000 - 0x32 7FFF  
0x32 8000 - 0x32 BFFF  
0x32 C000 - 0x32 FFFF  
0x33 0000 - 0x33 3FFF  
0x33 4000 - 0x33 7FFFF  
0x33 8000 - 0x33 BFFF  
0x33 C000 - 0x33 FF7F  
PROGRAM AND DATA SPACE  
Sector H (16K × 16)  
Sector G (16K × 16)  
Sector F (16K × 16)  
Sector E (16K × 16)  
Sector D (16K × 16)  
Sector C (16K × 16)  
Sector B (16K × 16)  
Sector A (16K × 16)  
Program to 0x0000 when using the  
Code Security Module  
0x33 FF80 - 0x33 FFF5  
0x33 FFF6 - 0x33 FFF7  
0x33 FFF8 - 0x33 FFFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password (128-Bit)  
(Do Not Program to all zeros)  
Table 8-24. Addresses of Flash Sectors in F28332, F28232  
ADDRESS RANGE  
PROGRAM AND DATA SPACE  
0x33 0000 - 0x33 3FFF  
0x33 4000 - 0x33 7FFFF  
0x33 8000 - 0x33 BFFF  
0x33 C000 - 0x33 FF7F  
0x33 FF80 - 0x33 FFF5  
0x33 FFF6 - 0x33 FFF7  
0x33 FFF8 - 0x33 FFFF  
Sector D (16K × 16)  
Sector C (16K × 16)  
Sector B (16K × 16)  
Sector A (16K × 16)  
Program to 0x0000 when using the Code Security Module  
Boot-to-Flash Entry Point (program branch instruction here)  
Security Password (128-Bit) (Do Not Program to all zeros)  
Note  
When the code-security passwords are programmed, all addresses from 0x33FF80 to 0x33FFF5  
cannot be used as program code or data. These locations must be programmed to 0x0000.  
If the code security feature is not used, addresses 0x33FF80 to 0x33FFEF may be used for code  
or data. Addresses 0x33FFF0 to 0x33FFF5 are reserved for data and should not contain program  
code.  
Table 8-25 shows how to handle these memory locations.  
Copyright © 2021 Texas Instruments Incorporated  
160 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Table 8-25. Handling Security Code Locations  
FLASH  
ADDRESS  
CODE SECURITY ENABLED  
CODE SECURITY DISABLED  
Application code and data  
Reserved for data only  
0x33FF80 – 0x33FFEF  
0x33FFF0 – 0x33FFF5  
Fill with 0x0000  
Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 are grouped together to enable these blocks to  
be write/read peripheral block protected. The protected mode ensures that all accesses to these blocks happen  
as written. Because of the C28x pipeline, a write immediately followed by a read, to different memory locations,  
will appear in reverse order on the memory bus of the CPU. This can cause problems in certain peripheral  
applications where the user expected the write to occur first (as written). The C28x CPU supports a block  
protection mode where a region of memory can be protected so as to make sure that operations occur as written  
(the penalty is extra cycles are added to align the operations). This mode is programmable and by default, it will  
protect the selected zones.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
The wait states for the various spaces in the memory map area are listed in Table 8-26.  
Table 8-26. Wait States  
WAIT STATES  
(CPU)  
WAIT STATES  
(DMA)(1)  
AREA  
COMMENTS  
M0 and M1 SARAMs  
Peripheral Frame 0  
0-wait  
Fixed  
0-wait (writes)  
1-wait (reads)  
0-wait (writes)  
2-wait (reads)  
0-wait (writes)  
2-wait (reads)  
0-wait (reads)  
No access (writes)  
0-wait (writes)  
1-wait (reads)  
No access  
Peripheral Frame 3  
Peripheral Frame 1  
Assumes no conflicts between CPU and DMA.  
Cycles can be extended by peripheral generated ready.  
Consecutive (back-to-back) writes to Peripheral Frame 1  
registers will experience a 1-cycle pipeline hit (1-cycle delay)  
Peripheral Frame 2  
0-wait (writes)  
2-wait (reads)  
0-wait  
No access  
No access  
Fixed. Cycles cannot be extended by the peripheral.  
L0 SARAM  
L1 SARAM  
L2 SARAM  
L3 SARAM  
L4 SARAM  
L5 SARAM  
L6 SARAM  
L7 SARAM  
XINTF  
Assumes no CPU conflicts  
0-wait data (reads)  
0-wait data (writes)  
1-wait program (reads)  
1-wait program (writes)  
Programmable  
0-wait  
Assumes no conflicts between CPU and DMA.  
Programmable  
Programmed through the XTIMING registers or extendable  
through external XREADY signal to meet system timing  
requirements.  
1-wait is minimum wait states allowed on external waveforms  
for both reads and writes on XINTF.  
0-wait minimum writes 0-wait minimum writes 0-wait minimum for writes assumes write buffer enabled and  
with write buffer  
enabled  
with write buffer enabled not full.  
Assumes no conflicts between CPU and DMA. When DMA and  
CPU try simultaneously (conflict), a 1-cycle delay is added for  
arbitration.  
OTP  
Programmable  
1-wait minimum  
No access  
No access  
Programmed via the Flash registers.  
1-wait is minimum number of wait states allowed. 1-wait-state  
operation is possible at a reduced CPU frequency.  
FLASH  
Programmable  
Programmed via the Flash registers.  
1-wait Paged min  
0-wait minimum for paged access is not allowed  
1-wait Random min  
Random ≥ Paged  
FLASH Password  
Boot-ROM  
16-wait fixed  
1-wait  
No access  
No access  
Wait states of password locations are fixed.  
0-wait speed is not possible.  
(1) The DMA has a base of four cycles/word.  
Copyright © 2021 Texas Instruments Incorporated  
162 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
8.4 Register Map  
The devices contain four peripheral register spaces. The spaces are categorized as follows:  
Peripheral Frame 0:  
Peripheral Frame 1  
These are peripherals that are mapped directly to the CPU memory bus. See Table 8-27.  
These are peripherals that are mapped to the 32-bit peripheral bus.  
See Table 8-28.  
Peripheral Frame 2:  
Peripheral Frame 3:  
These are peripherals that are mapped to the 16-bit peripheral bus.  
See Table 8-29.  
These are peripherals that are mapped to the 32-bit DMA-accessible peripheral bus. See Table 8-30.  
Table 8-27. Peripheral Frame 0 Registers (1)  
NAME  
Device Emulation Registers  
FLASH Registers(3)  
ADDRESS RANGE  
0x00 0880 – 0x00 09FF  
0x00 0A80 – 0x00 0ADF  
0x00 0AE0 – 0x00 0AEF  
SIZE (x16)  
ACCESS TYPE(2)  
EALLOW protected  
384  
96  
EALLOW protected  
EALLOW protected  
Code Security Module Registers  
16  
ADC registers (dual-mapped)  
0 wait (DMA), 1 wait (CPU), read only  
0x00 0B00 – 0x00 0B0F  
0x00 0B20 – 0x00 0B3F  
0x00 0C00 – 0x00 0C3F  
16  
32  
64  
Not EALLOW protected  
EALLOW protected  
XINTF Registers  
CPU-Timer 0, CPU-Timer 1, CPU-Timer 2  
Registers  
Not EALLOW protected  
PIE Registers  
0x00 0CE0 – 0x00 0CFF  
0x00 0D00 – 0x00 0DFF  
0x00 1000 – 0x00 11FF  
32  
Not EALLOW protected  
EALLOW protected  
EALLOW protected  
PIE Vector Table  
DMA Registers  
256  
512  
(1) Registers in Frame 0 support 16-bit and 32-bit accesses.  
(2) If registers are EALLOW protected, then writes cannot be performed until the EALLOW instruction is executed. The EDIS instruction  
disables writes to prevent stray code or pointers from corrupting register contents.  
(3) The Flash Registers are also protected by the Code Security Module (CSM).  
Table 8-28. Peripheral Frame 1 Registers  
NAME  
ADDRESS RANGE  
0x00 6000 – 0x00 61FF  
0x00 6200 – 0x00 63FF  
0x00 6800 – 0x00 683F  
0x00 6840 – 0x00 687F  
0x00 6880 – 0x00 68BF  
0x00 68C0 – 0x00 68FF  
0x00 6900 – 0x00 693F  
0x00 6940 – 0x00 697F  
0x00 6A00 – 0x00 6A1F  
0x00 6A20 – 0x00 6A3F  
0x00 6A40 – 0x00 6A5F  
0x00 6A60 – 0x00 6A7F  
0x00 6A80 – 0x00 6A9F  
0x00 6AA0 – 0x00 6ABF  
0x00 6B00 – 0x00 6B3F  
0x00 6B40 – 0x00 6B7F  
0x00 6F80 – 0x00 6FFF  
SIZE (x16)  
512  
512  
64  
eCAN-A Registers  
eCAN-B Registers  
ePWM1 + HRPWM1 Registers  
ePWM2 + HRPWM2 Registers  
ePWM3 + HRPWM3 Registers  
ePWM4 + HRPWM4 Registers  
ePWM5 + HRPWM5 Registers  
ePWM6 + HRPWM6 Registers  
eCAP1 Registers  
64  
64  
64  
64  
64  
32  
eCAP2 Registers  
32  
eCAP3 Registers  
32  
eCAP4 Registers  
32  
eCAP5 Registers  
32  
eCAP6 Registers  
32  
eQEP1 Registers  
64  
eQEP2 Registers  
64  
GPIO Registers  
128  
Table 8-29. Peripheral Frame 2 Registers  
NAME  
ADDRESS RANGE  
SIZE (x16)  
System Control Registers  
0x00 7010 – 0x00 702F  
32  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-29. Peripheral Frame 2 Registers (continued)  
NAME  
ADDRESS RANGE  
SIZE (x16)  
SPI-A Registers  
SCI-A Registers  
0x00 7040 – 0x00 704F  
0x00 7050 – 0x00 705F  
0x00 7070 – 0x00 707F  
0x00 7100 – 0x00 711F  
0x00 7750 – 0x00 775F  
0x00 7770 – 0x00 777F  
0x00 7900 – 0x00 793F  
16  
16  
16  
32  
16  
16  
64  
External Interrupt Registers  
ADC Registers  
SCI-B Registers  
SCI-C Registers  
I2C-A Registers  
Table 8-30. Peripheral Frame 3 Registers  
NAME  
ADDRESS RANGE  
SIZE (x16)  
McBSP-A Registers (DMA)  
McBSP-B Registers (DMA)  
ePWM1 + HRPWM1 (DMA)(1)  
ePWM2 + HRPWM2 (DMA)  
ePWM3 + HRPWM3 (DMA)  
ePWM4 + HRPWM4 (DMA)  
ePWM5 + HRPWM5 (DMA)  
ePWM6 + HRPWM6 (DMA)  
0x5000 – 0x503F  
0x5040 – 0x507F  
0x5800 – 0x583F  
0x5840 – 0x587F  
0x5880 – 0x58BF  
0x58C0 – 0x58FF  
0x5900 – 0x593F  
0x5940 – 0x597F  
64  
64  
64  
64  
64  
64  
64  
64  
(1) The ePWM and HRPWM modules can be re-mapped to Peripheral Frame 3 where they can be accessed by the DMA module. To  
achieve this, bit 0 (MAPEPWM) of MAPCNF register (address 0x702E) must be set to 1. This register is EALLOW protected. When  
this bit is 0, the ePWM and HRPWM modules are mapped to Peripheral Frame 1.  
Copyright © 2021 Texas Instruments Incorporated  
164 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
8.4.1 Device Emulation Registers  
These registers are used to control the protection mode of the C28x CPU and to monitor some critical device  
signals. The registers are defined in Table 8-31.  
Table 8-31. Device Emulation Registers  
ADDRESS  
RANGE  
NAME  
SIZE (x16)  
DESCRIPTION  
0x0880  
0x0881  
DEVICECNF  
PARTID  
2
1
Device Configuration Register  
0x380090  
Part ID Register  
TMS320F28335  
0x00EF  
TMS320F28334  
TMS320F28333  
TMS320F28332  
TMS320F28235  
TMS320F28234  
TMS320F28232  
TMS320F28335  
TMS320F28334  
TMS320F28333  
TMS320F28332  
TMS320F28235  
TMS320F28234  
TMS320F28232  
0x00EE  
0x00E0  
0x00ED  
0x00E8  
0x00E7  
0x00E6  
0x00EF  
0x00EF  
0x00EF  
0x00EF  
0x00E8  
0x00E8  
0x00E8  
CLASSID  
0x0882  
1
TMS320F2833x  
Floating-Point  
Class Device  
TMS320F2823x  
Fixed-Point  
Class Device  
REVID  
0x0883  
1
Revision ID  
Register  
0x0001 – Silicon Rev. A – TMS  
PROTSTART  
PROTRANGE  
0x0884  
0x0885  
1
1
Block Protection Start Address Register  
Block Protection Range Address Register  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
8.5 Interrupts  
Figure 8-26 shows how the various interrupt sources are multiplexed.  
Peripherals  
(SPI, SCI, I2C, CAN, McBSP(A),  
ePWM(A), eCAP, eQEP, ADC(A))  
Clear  
DMA  
WDINT  
Watchdog  
Low-Power Models  
WAKEINT  
DMA  
Sync  
LPMINT  
SYSCLKOUT  
XINT1  
XINT1  
Latch  
Interrupt Control  
XINT1CR(15:0)  
XINT1CTR(15:0)  
INT1  
to  
INT12  
GPIOXINT1SEL(4:0)  
XINT2SOC  
XINT2  
DMA  
XINT2  
ADC  
Latch  
Interrupt Control  
XINT2CR(15:0)  
XINT2CTR(15:0)  
C28  
Core  
GPIOXINT2SEL(4:0)  
DMA  
TINT0  
CPU Timer 0  
DMA  
TINT2  
CPU Timer 2  
CPU Timer 1  
INT14  
INT13  
TINT1  
GPIO0.int  
XNMI_  
XINT13  
GPIO  
Mux  
Latch  
Interrupt Control  
XNMICR(15:0)  
XNMICTR(15:0)  
NMI  
GPIO31.int  
1
GPIOXNMISEL(4:0)  
DMA  
A. DMA-accessible  
Figure 8-26. External and PIE Interrupt Sources  
Copyright © 2021 Texas Instruments Incorporated  
166 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
DMA  
XINT3  
Interrupt Control  
XINT3CR(15:0)  
Latch  
GPIOXINT3SEL(4:0)  
DMA  
XINT4  
Interrupt Control  
XINT4CR(15:0)  
Latch  
GPIOXINT4SEL(4:0)  
DMA  
XINT5  
INT1  
to  
INT12  
PIE  
Latch  
Interrupt Control  
XINT5CR(15:0)  
C28  
Core  
GPIOXINT5SEL(4:0)  
DMA  
XINT6  
Interrupt Control  
XINT6CR(15:0)  
Latch  
GPIOXINT6SEL(4:0)  
DMA  
XINT7  
GPIO32.int  
GPIO63.int  
GPIO  
Mux  
Interrupt Control  
XINT7CR(15:0)  
Latch  
GPIOXINT7SEL(4:0)  
Figure 8-27. External Interrupts  
Eight PIE block interrupts are grouped into one CPU interrupt. In total, 12 CPU interrupt groups, with 8 interrupts  
per group equals 96 possible interrupts. On the 2833x/2823x devices, 58 of these are used by peripherals as  
shown in Table 8-32.  
The TRAP #VectorNumber instruction transfers program control to the interrupt service routine corresponding to  
the vector specified. TRAP #0 tries to transfer program control to the address pointed to by the reset vector. The  
PIE vector table does not, however, include a reset vector. Therefore, TRAP #0 should not be used when the  
PIE is enabled. Doing so will result in undefined behavior.  
When the PIE is enabled, TRAP #1 to TRAP #12 will transfer program control to the interrupt service routine  
corresponding to the first vector within the PIE group. For example: TRAP #1 fetches the vector from INT1.1,  
TRAP #2 fetches the vector from INT2.1, and so forth.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 167  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
IFR(12:1)  
IER(12:1)  
INTM  
INT1  
INT2  
1
CPU  
MUX  
0
INT11  
INT12  
Global  
Enable  
(Flag)  
(Enable)  
INTx.1  
INTx.2  
INTx.3  
INTx.4  
INTx.5  
From  
Peripherals  
or  
External  
Interrupts  
INTx  
MUX  
INTx.6  
INTx.7  
INTx.8  
PIEACKx  
(Enable)  
(Flag)  
(Enable/Flag)  
PIEIERx(8:1)  
PIEIFRx(8:1)  
Figure 8-28. Multiplexing of Interrupts Using the PIE Block  
Table 8-32. PIE Peripheral Interrupts (1)  
PIE INTERRUPTS  
CPU  
INTERRUPTS  
INTx.8  
INTx.7  
INTx.6  
INTx.5  
INTx.4  
INTx.3  
INTx.2  
INTx.1  
WAKEINT  
(LPM/WD)  
TINT0  
(TIMER 0)  
ADCINT(2)  
(ADC)  
SEQ2INT  
(ADC)  
SEQ1INT  
(ADC)  
INT1  
INT2  
INT3  
INT4  
INT5  
INT6  
INT7  
INT8  
INT9  
XINT2  
XINT1  
Reserved  
EPWM6_TZINT  
(ePWM6)  
EPWM5_TZINT  
(ePWM5)  
EPWM4_TZINT  
(ePWM4)  
EPWM3_TZINT  
(ePWM3)  
EPWM2_TZINT  
(ePWM2)  
EPWM1_TZINT  
(ePWM1)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
EPWM6_INT  
(ePWM6)  
EPWM5_INT  
(ePWM5)  
EPWM4_INT  
(ePWM4)  
EPWM3_INT  
(ePWM3)  
EPWM2_INT  
(ePWM2)  
EPWM1_INT  
(ePWM1)  
ECAP6_INT  
(eCAP6)  
ECAP5_INT  
(eCAP5)  
ECAP4_INT  
(eCAP4)  
ECAP3_INT  
(eCAP3)  
ECAP2_INT  
(eCAP2)  
ECAP1_INT  
(eCAP1)  
EQEP2_INT  
(eQEP2)  
EQEP1_INT  
(eQEP1)  
Reserved  
Reserved  
Reserved  
Reserved  
MXINTA  
(McBSP-A)  
MRINTA  
(McBSP-A)  
MXINTB  
(McBSP-B)  
MRINTB  
(McBSP-B)  
SPITXINTA  
(SPI-A)  
SPIRXINTA  
(SPI-A)  
DINTCH6  
(DMA)  
DINTCH5  
(DMA)  
DINTCH4  
(DMA)  
DINTCH3  
(DMA)  
DINTCH2  
(DMA)  
DINTCH1  
(DMA)  
SCITXINTC  
(SCI-C)  
SCIRXINTC  
(SCI-C)  
I2CINT2A  
(I2C-A)  
I2CINT1A  
(I2C-A)  
Reserved  
Reserved  
ECAN1_INTB  
(CAN-B)  
ECAN0_INTB  
(CAN-B)  
ECAN1_INTA  
(CAN-A)  
ECAN0_INTA  
(CAN-A)  
SCITXINTB  
(SCI-B)  
SCIRXINTB  
(SCI-B)  
SCITXINTA  
(SCI-A)  
SCIRXINTA  
(SCI-A)  
INT10  
INT11  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
LUF  
(FPU)  
LVF  
(FPU)  
INT12  
Reserved  
XINT7  
XINT6  
XINT5  
XINT4  
XINT3  
(1) Out of the 96 possible interrupts, 58 interrupts are currently used. The remaining interrupts are reserved for future devices. These  
interrupts can be used as software interrupts if they are enabled at the PIEIFRx level, provided none of the interrupts within the group  
is being used by a peripheral. Otherwise, interrupts coming in from peripherals may be lost by accidentally clearing their flag while  
modifying the PIEIFR. To summarize, there are two safe cases when the reserved interrupts could be used as software interrupts:  
1) No peripheral within the group is asserting interrupts.  
2) No peripheral interrupts are assigned to the group (example PIE group 11).  
(2) ADCINT is sourced as a logical "OR" of both the SEQ1INT and SEQ2INT signals. This is to support backward compatibility with the  
implementation found on the TMS320F281x series of devices, where SEQ1INT and SEQ2INT did not exist, only ADCINT. For new  
implementations, TI recommends using SEQ1INT and SEQ2INT and not enabling ADCINT in the PIEIER register.  
Copyright © 2021 Texas Instruments Incorporated  
168 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Table 8-33. PIE Configuration and Control Registers  
NAME  
PIECTRL  
PIEACK  
PIEIER1  
PIEIFR1  
PIEIER2  
PIEIFR2  
PIEIER3  
PIEIFR3  
PIEIER4  
PIEIFR4  
PIEIER5  
PIEIFR5  
PIEIER6  
PIEIFR6  
PIEIER7  
PIEIFR7  
PIEIER8  
PIEIFR8  
PIEIER9  
PIEIFR9  
PIEIER10  
PIEIFR10  
PIEIER11  
PIEIFR11  
PIEIER12  
PIEIFR12  
Reserved  
ADDRESS  
0x0CE0  
0x0CE1  
0x0CE2  
0x0CE3  
0x0CE4  
0x0CE5  
0x0CE6  
0x0CE7  
0x0CE8  
0x0CE9  
0x0CEA  
0x0CEB  
0x0CEC  
0x0CED  
0x0CEE  
0x0CEF  
0x0CF0  
0x0CF1  
0x0CF2  
0x0CF3  
0x0CF4  
0x0CF5  
0x0CF6  
0x0CF7  
0x0CF8  
0x0CF9  
0x0CFA – 0x0CFF  
SIZE (x16)  
DESCRIPTION(1)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
PIE, Control Register  
PIE, Acknowledge Register  
PIE, INT1 Group Enable Register  
PIE, INT1 Group Flag Register  
PIE, INT2 Group Enable Register  
PIE, INT2 Group Flag Register  
PIE, INT3 Group Enable Register  
PIE, INT3 Group Flag Register  
PIE, INT4 Group Enable Register  
PIE, INT4 Group Flag Register  
PIE, INT5 Group Enable Register  
PIE, INT5 Group Flag Register  
PIE, INT6 Group Enable Register  
PIE, INT6 Group Flag Register  
PIE, INT7 Group Enable Register  
PIE, INT7 Group Flag Register  
PIE, INT8 Group Enable Register  
PIE, INT8 Group Flag Register  
PIE, INT9 Group Enable Register  
PIE, INT9 Group Flag Register  
PIE, INT10 Group Enable Register  
PIE, INT10 Group Flag Register  
PIE, INT11 Group Enable Register  
PIE, INT11 Group Flag Register  
PIE, INT12 Group Enable Register  
PIE, INT12 Group Flag Register  
Reserved  
(1) The PIE configuration and control registers are not protected by EALLOW mode. The PIE vector  
table is protected.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 169  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
8.5.1 External Interrupts  
Table 8-34. External Interrupt Registers  
NAME  
XINT1CR  
ADDRESS  
0x00 7070  
0x00 7071  
0x00 7072  
0x00 7073  
0x00 7074  
0x00 7075  
0x00 7076  
0x00 7077  
0x00 7078  
0x00 7079  
0x707A – 0x707E  
0x00 707F  
SIZE (x16)  
DESCRIPTION  
XINT1 configuration register  
XINT2 configuration register  
XINT3 configuration register  
XINT4 configuration register  
XINT5 configuration register  
XINT6 configuration register  
XINT7 configuration register  
XNMI configuration register  
XINT1 counter register  
1
1
1
1
1
1
1
1
1
1
5
1
XINT2CR  
XINT3CR  
XINT4CR  
XINT5CR  
XINT6CR  
XINT7CR  
XNMICR  
XINT1CTR  
XINT2CTR  
Reserved  
XNMICTR  
XINT2 counter register  
XNMI counter register  
Each external interrupt can be enabled or disabled or qualified using positive, negative, or both positive and  
negative edge. For more information, see the TMS320x2833x, 2823x system control and interrupts reference  
guide.  
Copyright © 2021 Texas Instruments Incorporated  
170 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
8.6 System Control  
This section describes the oscillator, PLL and clocking mechanisms, the watchdog function and the low-power  
modes. Figure 8-29 shows the various clock and reset domains that will be discussed.  
C28x Core  
SYSCLKOUT  
CLKIN  
System  
Control  
Register  
Clock Enables  
LSPCLK  
LOSPCP  
Bridge  
I/O  
Peripheral  
Registers  
SPI-A, SCI-A/B/C  
Clock Enables  
I2C-A  
Clock Enables  
/2  
Bridge  
Bridge  
Bridge  
I/O  
I/O  
I/O  
Peripheral  
Registers  
eCAN-A/B  
GPIO  
Mux  
Clock Enables  
Peripheral  
Registers  
ePWM1/../6, HRPWM1/../6,  
eCAP1/../6, eQEP1/2  
Clock Enables  
LSPCLK  
LOSPCP  
Peripheral  
Registers  
McBSP-A/B  
Clock Enables  
HSPCLK  
HISPCP  
16 Channels  
ADC  
Registers  
12-Bit ADC  
Result  
Registers  
DMA  
Clock Enables  
A. CLKIN is the clock into the CPU. It is passed out of the CPU as SYSCLKOUT (that is, CLKIN is the same frequency as SYSCLKOUT).  
See Figure 8-30 for an illustration of how CLKIN is derived.  
Figure 8-29. Clock and Reset Domains  
Note  
There is a 2-SYSCLKOUT cycle delay from when the write to the PCLKCR0, PCLKCR1, and  
PCLKCR2 registers (enables peripheral clocks) occurs to when the action is valid. This delay must be  
considered before trying to access the peripheral configuration registers.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 171  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
The PLL, clocking, watchdog and low-power modes, are controlled by the registers listed in Table 8-35.  
Table 8-35. PLL, Clocking, Watchdog, and Low-Power Mode Registers  
NAME  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
PLLSTS  
0x00 7011  
1
7
1
1
1
1
1
1
1
1
1
1
1
1
1
3
1
4
1
PLL Status Register  
Reserved  
Reserved  
Reserved  
HISPCP  
LOSPCP  
PCLKCR0  
PCLKCR1  
LPMCR0  
Reserved  
PCLKCR3  
PLLCR  
0x00 7012 – 0x00 7018  
0x00 7019  
Reserved  
0x00 701A  
High-Speed Peripheral Clock Prescaler Register  
Low-Speed Peripheral Clock Prescaler Register  
Peripheral Clock Control Register 0  
Peripheral Clock Control Register 1  
Low-Power Mode Control Register 0  
Reserved  
0x00 701B  
0x00 701C  
0x00 701D  
0x00 701E  
0x00 701F  
0x00 7020  
Peripheral Clock Control Register 3  
PLL Control Register  
0x00 7021  
SCSR  
0x00 7022  
System Control and Status Register  
Watchdog Counter Register  
Reserved  
WDCNTR  
Reserved  
WDKEY  
0x00 7023  
0x00 7024  
0x00 7025  
Watchdog Reset Key Register  
Reserved  
Reserved  
WDCR  
0x00 7026 – 0x00 7028  
0x00 7029  
Watchdog Control Register  
Reserved  
Reserved  
MAPCNF  
0x00 702A – 0x00 702D  
0x00 702E  
ePWM/HRPWM Re-map Register  
Copyright © 2021 Texas Instruments Incorporated  
172 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
8.6.1 OSC and PLL Block  
Figure 8-30 shows the OSC and PLL block.  
OSCCLK  
OSCCLK  
VCOCLK  
/1  
/2  
/4  
XCLKIN  
(3.3-V clock input  
from external  
0
n
OSCCLK or  
VCOCLK  
CLKIN  
To  
CPU  
PLLSTS[OSCOFF]  
PLLSTS[PLLOFF]  
oscillator)  
PLL  
n 0  
PLLSTS[DIVSEL]  
4-bit Multiplier PLLCR[DIV]  
X1  
On-chip  
oscillator  
External  
Crystal or  
Resonator  
X2  
Figure 8-30. OSC and PLL Block Diagram  
The on-chip oscillator circuit enables a crystal/resonator to be attached to the 2833x/2823x devices using the X1  
and X2 pins. If the on-chip oscillator is not used, an external oscillator can be used in either one of the following  
configurations:  
A 3.3-V external oscillator can be directly connected to the XCLKIN pin. The X2 pin should be left  
unconnected and the X1 pin tied low. The logic-high level in this case should not exceed VDDIO  
.
A 1.9-V (1.8-V for 100 MHz devices) external oscillator can be directly connected to the X1 pin. The X2 pin  
should be left unconnected and the XCLKIN pin tied low. The logic-high level in this case should not exceed  
VDD  
.
The three possible input-clock configurations are shown in Figure 8-31 to Figure 8-33.  
XCLKIN  
X1  
X2  
NC  
External Clock Signal  
(Toggling 0-VDDIO  
)
Figure 8-31. Using a 3.3-V External Oscillator  
XCLKIN  
X1  
X2  
External Clock Signal  
)
NC  
(Toggling 0-VDD  
Figure 8-32. Using a 1.9-V External Oscillator  
XCLKIN  
X1  
X2  
C
L2  
C
L1  
Crystal  
Figure 8-33. Using the Internal Oscillator  
8.6.1.1 External Reference Oscillator Clock Option  
The typical specifications for the external quartz crystal for a frequency of 30 MHz follow:  
Fundamental mode, parallel resonant  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 173  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
CL (load capacitance) = 12 pF  
CL1 = CL2 = 24 pF  
Cshunt = 6 pF  
ESR range = 25 to 40 Ω  
TI recommends that customers have the resonator/crystal vendor characterize the operation of their device with  
the DSC chip. The resonator/crystal vendor has the equipment and expertise to tune the tank circuit. The vendor  
can also advise the customer regarding the proper tank component values that will produce proper start-up and  
stability over the entire operating range.  
8.6.1.2 PLL-Based Clock Module  
The devices have an on-chip, PLL-based clock module. This module provides all the necessary clocking signals  
for the device, as well as control for low-power mode entry. The PLL has a 4-bit ratio control PLLCR[DIV] to  
select different CPU clock rates. The watchdog module should be disabled before writing to the PLLCR register.  
It can be re-enabled (if need be) after the PLL module has stabilized, which takes 131072 OSCCLK cycles. The  
input clock and PLLCR[DIV] bits should be chosen in such a way that the output frequency of the PLL  
(VCOCLK) does not exceed 300 MHz.  
Table 8-36. PLL Settings (1)  
SYSCLKOUT (CLKIN)  
PLLCR[DIV] VALUE(2) (3)  
PLLSTS[DIVSEL] = 0 or 1  
PLLSTS[DIVSEL] = 2  
OSCCLK/2  
PLLSTS[DIVSEL] = 3(4)  
0000 (PLL bypass)  
0001  
OSCCLK/4 (Default)  
(OSCCLK * 1)/4  
(OSCCLK * 2)/4  
(OSCCLK * 3)/4  
(OSCCLK * 4)/4  
(OSCCLK * 5)/4  
(OSCCLK * 6)/4  
(OSCCLK * 7)/4  
(OSCCLK * 8)/4  
(OSCCLK * 9)/4  
(OSCCLK * 10)/4  
Reserved  
OSCCLK  
(OSCCLK * 1)/2  
(OSCCLK * 2)/2  
(OSCCLK * 3)/2  
(OSCCLK * 4)/2  
(OSCCLK * 5)/2  
(OSCCLK * 6)/2  
(OSCCLK * 7)/2  
(OSCCLK * 8)/2  
(OSCCLK * 9)/2  
(OSCCLK * 10)/2  
Reserved  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011 – 1111  
Reserved  
(1) By default, PLLSTS[DIVSEL] is configured for /4. (The boot ROM changes this to /2.) PLLSTS[DIVSEL] must be 0 before writing to the  
PLLCR and should be changed only after PLLSTS[PLLLOCKS] = 1.  
(2) The PLL control register (PLLCR) and PLL Status Register (PLLSTS) are reset to their default state by the XRS signal or a watchdog  
reset only. A reset issued by the debugger or the missing clock detect logic have no effect.  
(3) This register is EALLOW protected. See the TMS320x2833x, 2823x system control and interrupts reference guide for more  
information.  
(4) A divider at the output of the PLL is necessary to ensure correct duty cycle of the clock fed to the core. For this reason, a DIVSEL  
value of 3 is not allowed when the PLL is active.  
Copyright © 2021 Texas Instruments Incorporated  
174 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Table 8-37. CLKIN Divide Options  
PLLSTS [DIVSEL]  
CLKIN DIVIDE  
0
1
2
3
/4  
/4  
/2  
/1(1)  
(1) This mode can be used only when the PLL is bypassed or off.  
The PLL-based clock module provides two modes of operation:  
Crystal-operation - This mode allows the use of an external crystal/resonator to provide the time base to the  
device.  
External clock source operation - This mode allows the internal oscillator to be bypassed. The device clocks  
are generated from an external clock source input on the X1 or the XCLKIN pin.  
Table 8-38. Possible PLL Configuration Modes  
CLKIN AND  
SYSCLKOUT  
PLL MODE  
REMARKS  
PLLSTS[DIVSEL]  
Invoked by the user setting the PLLOFF bit in the PLLSTS register. The PLL block  
is disabled in this mode. This can be useful to reduce system noise and for low  
power operation. The PLLCR register must first be set to 0x0000 (PLL Bypass)  
before entering this mode. The CPU clock (CLKIN) is derived directly from the  
input clock on either X1/X2, X1 or XCLKIN.  
0, 1  
2
3
OSCCLK/4  
OSCCLK/2  
OSCCLK/1  
PLL Off  
PLL Bypass is the default PLL configuration upon power up or after an external  
reset ( XRS). This mode is selected when the PLLCR register is set to 0x0000 or  
while the PLL locks to a new frequency after the PLLCR register has been  
modified. In this mode, the PLL itself is bypassed but the PLL is not turned off.  
0, 1  
2
3
OSCCLK/4  
OSCCLK/2  
OSCCLK/1  
PLL Bypass  
PLL Enable  
Achieved by writing a nonzero value n into the PLLCR register. Upon writing to the  
PLLCR the device will switch to PLL Bypass mode until the PLL locks.  
0, 1  
2
OSCCLK*n/4  
OSCCLK*n/2  
8.6.1.3 Loss of Input Clock  
In PLL-enabled and PLL-bypass mode, if the input clock OSCCLK is removed or absent, the PLL will still issue a  
limp-mode clock. The limp-mode clock continues to clock the CPU and peripherals at a typical frequency of 1–  
5 MHz. Limp mode is not specified to work from power up, only after input clocks have been present initially. In  
PLL bypass mode, the limp mode clock from the PLL is automatically routed to the CPU if the input clock is  
removed or absent.  
Normally, when the input clocks are present, the watchdog counter decrements to initiate a watchdog reset or  
WDINT interrupt. However, when the external input clock fails, the watchdog counter stops decrementing (that is,  
the watchdog counter does not change with the limp-mode clock). In addition to this, the device will be reset and  
the “Missing Clock Status” (MCLKSTS) bit will be set. These conditions could be used by the application  
firmware to detect the input clock failure and initiate necessary shut-down procedure for the system.  
Note  
Applications in which the correct CPU operating frequency is absolutely critical should implement a  
mechanism by which the DSC will be held in reset, should the input clocks ever fail. For example, an  
R-C circuit may be used to trigger the XRS pin of the DSC, should the capacitor ever get fully  
charged. An I/O pin may be used to discharge the capacitor on a periodic basis to prevent it from  
getting fully charged. Such a circuit would also help detect failure of the flash memory and the VDD3VFL  
rail.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 175  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
8.6.2 Watchdog Block  
The watchdog block on the 2833x/2823x device is similar to the one used on the 240x and 281x devices. The  
watchdog module generates an output pulse, 512 oscillator clocks wide (OSCCLK), whenever the 8-bit  
watchdog up counter has reached its maximum value. To prevent this, the user disables the counter or the  
software must periodically write a 0x55 + 0xAA sequence into the watchdog key register which will reset the  
watchdog counter. Figure 8-34 shows the various functional blocks within the watchdog module.  
WDCR (WDPS[2:0])  
WDCR (WDDIS)  
WDCNTR[7:0]  
OSCCLK  
WDCLK  
Watchdog  
Prescaler  
8-Bit  
Watchdog  
Counter  
CLR  
/512  
Clear Counter  
Internal  
Pullup  
WDKEY[7:0]  
WDRST  
WDINT  
Generate  
Output Pulse  
(512 OSCCLKs)  
Watchdog  
55 + AA  
Key Detector  
Good Key  
XRS  
Bad  
WDCHK  
Key  
Core-reset  
SCSR (WDENINT)  
WDCR (WDCHK[2:0])  
WDRST(A)  
A. The WDRST signal is driven low for 512 OSCCLK cycles.  
1
0
1
Figure 8-34. Watchdog Module  
The WDINT signal enables the watchdog to be used as a wakeup from IDLE/STANDBY mode.  
In STANDBY mode, all peripherals are turned off on the device. The only peripheral that remains functional is  
the watchdog. The WATCHDOG module will run off OSCCLK. The WDINT signal is fed to the LPM block so that  
it can wake the device from STANDBY (if enabled). See Section 8.7, Low-Power Modes Block, for more details.  
In IDLE mode, the WDINT signal can generate an interrupt to the CPU, through the PIE, to take the CPU out of  
IDLE mode.  
In HALT mode, this feature cannot be used because the oscillator (and PLL) are turned off and hence so is the  
WATCHDOG.  
Copyright © 2021 Texas Instruments Incorporated  
176 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
8.7 Low-Power Modes Block  
The low-power modes on the 2833x/2823x devices are similar to the 240x devices. Table 8-39 summarizes the  
various modes.  
Table 8-39. Low-Power Modes  
MODE  
LPMCR0(1:0)  
OSCCLK  
CLKIN  
SYSCLKOUT  
EXIT(1)  
XRS, watchdog interrupt, any enabled  
interrupt, XNMI  
IDLE  
00  
On  
On  
On(2)  
On  
XRS, watchdog interrupt, GPIO Port A  
signal, debugger(3), XNMI  
STANDBY  
HALT  
01  
1X  
Off  
Off  
Off  
Off  
(watchdog still running)  
Off  
XRS, GPIO port A signal, XNMI,  
debugger(3)  
(oscillator and PLL turned off,  
watchdog not functional)  
(1) The EXIT column lists which signals or under what conditions the low-power mode will be exited. A low signal, on any of the signals,  
will exit the low power condition. This signal must be kept low long enough for an interrupt to be recognized by the device. Otherwise,  
the IDLE mode will not be exited and the device will go back into the indicated low-power mode.  
(2) The IDLE mode on the C28x behaves differently than on the 24x/240x. On the C28x, the clock output from the CPU (SYSCLKOUT) is  
still functional while on the 24x/240x the clock is turned off.  
(3) On the C28x, the JTAG port can still function even if the CPU clock (CLKIN) is turned off.  
The various low-power modes operate as follows:  
IDLE mode:  
This mode is exited by any enabled interrupt or an XNMI that is recognized by the processor. The  
LPM block performs no tasks during this mode as long as the LPMCR0(LPM) bits are set to 0,0.  
STANDBY mode:  
Any GPIO port A signal (GPIO[31:0]) can wake the device from STANDBY mode. The user must  
select which signal(s) will wake the device in the GPIOLPMSEL register. The selected signal(s) are  
also qualified by the OSCCLK before waking the device. The number of OSCCLKs is specified in the  
LPMCR0 register.  
HALT mode:  
Only the XRS and any GPIO port A signal (GPIO[31:0]) can wake the device from HALT mode. The  
user selects the signal in the GPIOLPMSEL register.  
Note  
The low-power modes do not affect the state of the output pins (PWM pins included). They will be in  
whatever state the code left them in when the IDLE instruction was executed. See the  
TMS320x2833x, 2823x system control and interrupts reference guide for more details.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 177  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
9 Applications, Implementation, and Layout  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 TI Design or Reference Design  
TI Designs Reference Design Library is a robust reference design library spanning analog, embedded processor,  
and connectivity. Created by TI experts to help you jump start your system design, all TI Designs include  
schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download  
designs at TIDesigns.  
EtherCAT Interface for High Performance MCU Reference Design  
This reference design demonstrates how to connect a C2000 Delfino MCU to an EtherCAT® ET1100 slave  
controller. The interface supports both demultiplexed address/data busses for maximum bandwidth and  
minimum latency and a SPI mode for low pin-count EtherCAT communication. The slave controller offloads the  
processing of 100Mbps Ethernet-based fieldbus communication, thereby eliminating CPU overhead for these  
tasks.  
C2000 Resolver to Digital Conversion Kit  
This is a motherboard-style Resolver to Digital conversion kit used to experiment with various C2000  
microcontrollers for software-based resolver to digital conversion using on-chip ADCs. The Resolver Kit also  
allows interface to resolvers and inverter control processor.  
Copyright © 2021 Texas Instruments Incorporated  
178 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
10 Device and Documentation Support  
10.1 Getting Started  
This section gives a brief overview of the steps to take when first developing for a C28x device. For more detail  
on each of these steps, see the following:  
C2000 Real-Time Control MCUs – Getting started  
C2000 Real-Time Control MCUs – Tools & software  
Motor drive and control  
Digital power  
10.2 Device and Development Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
TMS320™ DSC devices and support tools. Each TMS320™ DSP commercial family member has one of three  
prefixes: TMX, TMP, or TMS (for example, TMS 320F28335). Texas Instruments recommends two of three  
possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages  
of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/  
tools (TMS/TMDS).  
Device development evolutionary flow:  
TMX  
TMP  
Experimental device that is not necessarily representative of the final device's electrical specifications  
Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability  
verification  
TMS  
Fully qualified production device  
Support tool development evolutionary flow:  
TMDX  
TMDS  
Development-support product that has not yet completed Texas Instruments internal qualification testing  
Fully qualified development-support product  
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability  
of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, ZJZ) and temperature range (for example, A). Figure 10-1 provides a legend for reading the  
complete device name for any family member.  
For device part numbers and further ordering information, see the Package Option Addendum of this document,  
the TI website (www.ti.com), or contact your TI sales representative.  
For additional description of the device nomenclature markings on the die, see the TMS320F2833x,  
TMS320F2823x DSC silicon errata .  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 179  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
A. BGA = Ball Grid Array LQFP = Low-Profile Quad Flatpack  
Figure 10-1. Example of F2833x, F2823x Device Nomenclature  
Copyright © 2021 Texas Instruments Incorporated  
180 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
10.3 Tools and Software  
TI offers an extensive line of development tools. Some of the tools and software to evaluate the performance of  
the device, generate code, and develop solutions are listed below. To view all available tools and software for  
C2000™ real-time control MCUs, visit the C2000 MCU Tools and Software page.  
Design Kits and Evaluation Modules  
C2000 DesignDRIVE Development Kit for Industrial Motor Control  
DesignDRIVE is a single hardware and software platform that makes it easy to develop and evaluate solutions  
for many industrial drive, motor control, and servo topologies. DesignDRIVE offers support for a wide variety of  
motor types, sensing technologies, encoder standards and communications networks, as well as easy expansion  
to develop with industrial communications and functional safety topologies, thus enabling more comprehensive,  
integrated drive system solutions. Based on the real-time control architecture of TI’s C2000 microcontrollers  
(MCUs), DesignDRIVE is ideal for the development of industrial inverter and servo drives used in robotics,  
computer numerical control machinery (CNC), elevators, materials conveyance and other industrial  
manufacturing applications.  
C2000 Delfino MCUs F28377S LaunchPad Development Kit  
The C2000™ Delfino™ MCUs LaunchPad™ development kit is an inexpensive evaluation platform that provides  
designers with a low-cost development kit for high-performance digital control applications. This tool provides a  
great starting point for development of many high-end digital control applications such as industrial drives and  
automation; power line communications; solar inverters; and more.  
TMS320F28335 Experimenter Kit  
C2000™ MCU Experimenter Kits provide a robust hardware prototyping platform for real-time, closed loop  
control development with C2000 microcontrollers. This platform is a great tool to customize and prove-out  
solutions for many common power electronics applications, including motor control, digital power supplies, solar  
inverters, digital LED lighting, precision sensing, and more.  
Software  
C2000 DesignDRIVE Software for Industrial Drives and Motor Control  
The DesignDRIVE platform combines software solutions with DesignDRIVE Development Kits to make it easy to  
develop and evaluate solutions for many industrial drive and servo topologies. DesignDRIVE offers support for a  
wide variety of motor types, sensing technologies, position sensors and communications networks, including  
specific examples for vector control of motors, incorporating current, speed and position loops, to help  
developers jumpstart their evaluation and development. Based on the real-time control architecture of TI’s  
C2000™ microcontrollers (MCUs), DesignDRIVE is ideal for the development of industrial inverter and servo  
drives used in robotics, computer numerical control machinery (CNC), elevators, materials conveyance and  
other industrial manufacturing applications.  
C2000 SafeTI™ 60730 SW Packages  
The C2000 MCU SafeTI-60730 Software package includes UL-certified, as recognized components, SafeTI™  
software packages that help make designing for functional safety consumer applications with TI C2000™ real-  
time control microcontrollers (MCUs) easier and faster. The software in these SafeTI software packages is UL-  
certified, as recognized components, to the UL 1998:2008 Class 1 standard, and is compliant with IEC  
60730-1:2010 Class B, both of which include home appliances, arc detectors, power converters, power tools, e-  
bikes, and many others. SafeTI software packages are available for select TI C2000 MCUs and can be  
embedded in applications using these MCUs to help customers simplify certification for functional safety-  
compliant consumer devices. Because of the similarity of the two standards, the IEC 60730 software libraries  
can also help assist customers developing consumer applications compliant with the IEC 60335-1:2010  
standard.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 181  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
powerSUITE Digital Power Supply Software Frequency Response Analyzer Tool for C2000™ MCUs  
The Software Frequency Response Analyzer (SFRA) is one of several tools included in the powerSUITE Digital  
Power Supply Design Software Tools for C2000™ Microcontrollers. The SFRA includes a software library that  
enables developers to quickly measure the frequency response of their digital power converter. The SFRA library  
contains software functions that inject a frequency into the control loop and measure the response of the system  
using the C2000 MCUs’ on-chip analog to digital converter (ADC). This process provides the plant frequency  
response characteristics and the open loop gain frequency response of the closed loop system. The user can  
then view the plant and open loop gain frequency response on a PC-based GUI. All of the frequency response  
data is exported into a CSV file, or optionally an Excel spreadsheet, which can then be used to design the  
compensation loop using the Compensation Designer.  
C2000Ware for C2000 MCUs  
C2000Ware for C2000™ microcontrollers is a cohesive set of development software and documentation  
designed to minimize software development time. From device-specific drivers and libraries to device peripheral  
examples, C2000Ware provides a solid foundation to begin development and evaluation of your product.  
Development Tools  
C2000 Gang Programmer  
The C2000 Gang Programmer is a C2000 device programmer that can program up to eight identical C2000  
devices at the same time. The C2000 Gang Programmer connects to a host PC using a standard RS-232 or  
USB connection and provides flexible programming options that allow the user to fully customize the process.  
Code Composer Studio(CCS) Integrated Development Environment (IDE) for C2000 Microcontrollers  
Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and  
Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug  
embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment,  
debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking the user  
through each step of the application development flow. Familiar tools and interfaces allow users to get started  
faster than ever before. Code Composer Studio combines the advantages of the Eclipse software framework  
with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development  
environment for embedded developers.  
Uniflash Standalone Flash Tool  
CCS Uniflash is a standalone tool used to program on-chip flash memory on TI MCUs.  
Models  
Various models are available for download from the product Tools & Software pages. These include I/O Buffer  
Information Specification (IBIS) Models and Boundary-Scan Description Language (BSDL) Models. To view all  
available models, visit the Models section of the Tools & Software page for each device.  
10.4 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
The current documentation that describes the processor, related peripherals, and other technical collateral is  
listed below.  
Errata  
TMS320F2833x, TMS320F2823x DSC silicon errata describes the advisories and usage notes for different  
versions of silicon.  
CPU User's Guides  
TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and the  
assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). It also  
describes emulation features available on these DSPs.  
Copyright © 2021 Texas Instruments Incorporated  
182 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
TMS320C28x Extended Instruction Sets Technical Reference Manual describes the architecture, pipeline, and  
instruction set of the TMU, VCU-II, and FPU accelerators.  
Peripheral Guides  
C2000 Real-Time Control MCU Peripherals Reference Guide describes the peripheral reference guides of the  
28x digital signal processors (DSPs).  
TMS320x2833x, 2823x system control and interrupts reference guide describes the various interrupts and  
system control features of the 2833x and 2823x digital signal controllers (DSCs).  
TMS320x2833x Analog-to-Digital Converter (ADC) module reference guide describes how to configure and use  
the on-chip ADC module, which is a 12-bit pipelined ADC.  
TMS320x2833x, 2823x DSC External Interface (XINTF) reference guide describes the XINTF, which is a  
nonmultiplexed asynchronous bus, as it is used on the 2833x and 2823x devices.  
TMS320x2833x, 2823x Boot ROM reference guide describes the purpose and features of the bootloader  
(factory-programmed boot-loading software) and provides examples of code. It also describes other contents of  
the device on-chip boot ROM and identifies where all of the information is located within that memory.  
TMS320F2833x/2823x Multichannel Buffered Serial Port (McBSP) reference guide describes the McBSP  
available on the 2833x and 2823x devices. The McBSPs allow direct interface between a DSP and other devices  
in a system.  
TMS320x2833x, 2823x Direct Memory Access (DMA) module reference guide describes the DMA on the 2833x  
and 2823x devices.  
TMS320x2833x, 2823x Enhanced Pulse Width Modulator (ePWM) module reference guide describes the main  
areas of the enhanced pulse width modulator that include digital motor control, switch mode power supply  
control, UPS (uninterruptible power supplies), and other forms of power conversion.  
TMS320x2833x, 2823x High Resolution Pulse Width Modulator (HRPWM) reference guide describes the  
operation of the high-resolution extension to the pulse width modulator (HRPWM).  
TMS320x2833x, 2823x Enhanced Capture (eCAP) module reference guide describes the enhanced capture  
module. It includes the module description and registers.  
TMS320x2833x, 2823x Enhanced Quadrature Encoder Pulse (eQEP) module reference guide describes the  
eQEP module, which is used for interfacing with a linear or rotary incremental encoder to get position, direction,  
and speed information from a rotating machine in high-performance motion and position control systems. It  
includes the module description and registers.  
TMS320F2833x, 2823x Enhanced Controller Area Network (eCAN) reference guide describes the eCAN that  
uses established protocol to communicate serially with other controllers in electrically noisy environments.  
TMS320x2833x, 2823x Serial Communications Interface (SCI) reference guide describes the SCI, which is a  
two-wire asynchronous serial port, commonly known as a UART. The SCI modules support digital  
communications between the CPU and other asynchronous peripherals that use the standard nonreturn-to-zero  
(NRZ) format.  
TMS320x2833x, 2823x Serial Peripheral Interface (SPI) reference guide describes the SPI - a high-speed  
synchronous serial input/output (I/O) port - that allows a serial bit stream of programmed length (one to sixteen  
bits) to be shifted into and out of the device at a programmed bit-transfer rate.  
TMS320x2833x, 2823x Inter-Integrated Circuit (I2C) module reference guide describes the features and  
operation of the inter-integrated circuit (I2C) module.  
Tools Guides  
TMS320C28x Assembly Language Tools v20.2.0.LTS User's Guide describes the assembly language tools  
(assembler and other tools used to develop assembly language code), assembler directives, macros, common  
object file format, and symbolic debugging directives for the TMS320C28x device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 183  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
TMS320C28x Optimizing C/C++ Compiler v20.2.0.LTS User's Guide describes the TMS320C28x C/C++  
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly  
language source code for the TMS320C28x device.  
TMS320C28x DSP/BIOS 5.x Application Programming Interface (API) Reference Guide describes development  
using DSP/BIOS.  
Application Reports  
The SMT & packaging application notes website lists documentation on TI’s surface mount technology (SMT)  
and application notes on a variety of packaging-related topics.  
TMS320x281x to TMS320x2833x or 2823x migration overview describes how to migrate from the 281x device  
design to 2833x or 2823x designs.  
TMS320x280x to TMS320x2833x or 2823x migration overview describes how to migrate from a 280x device  
design to 2833x or 2823x designs.  
TMS320C28x FPU Primer provides an overview of the floating-point unit (FPU) in the C2000™ Delfino  
microcontroller devices.  
Running an Application from Internal Flash Memory on the TMS320F28xxx DSP covers the requirements  
needed to properly configure application software for execution from on-chip flash memory. Requirements for  
both DSP/BIOS and non-DSP/BIOS projects are presented. Example code projects are included.  
Programming TMS320x28xx and TMS320x28xxx Peripherals in C/C++ explores a hardware abstraction layer  
implementation to make C/C++ coding easier on 28x DSPs. This method is compared to traditional #define  
macros and topics of code efficiency and special case registers are also addressed.  
Using PWM Output as a Digital-to-Analog Converter on a TMS320F280x Digital Signal Controller presents a  
method for using the on-chip pulse width modulated (PWM) signal generators on the TMS320F280x family of  
digital signal controllers as a digital-to-analog converter (DAC).  
TMS320F280x Digital Signal Controller USB Connectivity using the TUSB3410 USB-to-UART Bridge Chip  
presents hardware connections as well as software preparation and operation of the development system using  
a simple communication echo program.  
Using the Enhanced Quadrature Encoder Pulse (eQEP) Module in TMS320x280x, 28xxx as a Dedicated  
Capture provides a guide for the use of the eQEP module as a dedicated capture unit and is applicable to the  
TMS320x280x, 28xxx family of processors.  
Using the ePWM Module for 0% - 100% Duty Cycle Control provides a guide for the use of the ePWM module to  
provide 0% to 100% duty cycle control and is applicable to the TMS320x280x family of processors.  
TMS320x280x and TMS320F2801x ADC calibration describes a method for improving the absolute accuracy of  
the 12-bit ADC found on the TMS320x280x and TMS320F2801x devices. Inherent gain and offset errors affect  
the absolute accuracy of the ADC. The methods described in this report can improve the absolute accuracy of  
the ADC to levels better than 0.5%. This application report has an option to download an example program that  
executes from RAM on the F2808 EzDSP.  
Online Stack Overflow Detection on the TMS320C28x DSP presents the methodology for online stack overflow  
detection on the TMS320C28x DSP. C-source code is provided that contains functions for implementing the  
overflow detection on both DSP/BIOS and non-DSP/BIOS applications.  
PowerPAD™ thermally enhanced package focuses on the specifics of integrating a PowerPAD™ package into  
the PCB design.  
Semiconductor Packing Methodology describes the packing methodologies employed to prepare semiconductor  
devices for shipment to end users.  
Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful lifetime  
of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general  
engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement.  
Copyright © 2021 Texas Instruments Incorporated  
184 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
www.ti.com  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
Semiconductor and IC Package Thermal Metrics describes traditional and new thermal metrics and puts their  
application in perspective with respect to system-level junction temperature estimation.  
An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS  
including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/  
output structures and future trends.  
Serial flash programming of C2000™ microcontrollers discusses using a flash kernel and ROM loaders for serial  
programming a device.  
10.5 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
10.6 Trademarks  
Code Composer Studio, DSP/BIOS, MicroStar BGA, TMS320C2000, Delfino, C2000, Piccolo,  
PowerPAD, TI E2Eare trademarks of Texas Instruments.  
EtherCAT® is a registered trademark of Beckhoff Automation GmbH, Germany.  
All trademarks are the property of their respective owners.  
10.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.8 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 185  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
 
 
TMS320F28335, TMS320F28335-Q1, TMS320F28334, TMS320F28333  
TMS320F28332, TMS320F28235, TMS320F28235-Q1  
TMS320F28234, TMS320F28234-Q1, TMS320F28232, TMS320F28232-Q1  
SPRS439P – JUNE 2007 – REVISED FEBRUARY 2021  
www.ti.com  
11 Mechanical, Packaging, and Orderable Information  
11.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
For packages with a thermal pad, the MECHANICAL DATA figure shows a generic thermal pad without  
dimensions. For the actual thermal pad dimensions that are applicable to this device, see the THERMAL PAD  
MECHANICAL DATA figure.  
To learn more about TI packaging, visit the Packaging information website.  
Copyright © 2021 Texas Instruments Incorporated  
186 Submit Document Feedback  
Product Folder Links: TMS320F28335 TMS320F28335-Q1 TMS320F28334 TMS320F28333 TMS320F28332  
TMS320F28235 TMS320F28235-Q1 TMS320F28234 TMS320F28234-Q1 TMS320F28232 TMS320F28232-Q1  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jan-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
PGF  
PTP  
PTP  
ZAY  
ZHH  
PGF  
PTP  
PTP  
ZAY  
ZHH  
ZJZ  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS320F28232PGFA  
TMS320F28232PTPQ  
TMS320F28232PTPS  
TMS320F28232ZAYA  
TMS320F28232ZHHA  
TMS320F28234PGFA  
TMS320F28234PTPQ  
TMS320F28234PTPS  
TMS320F28234ZAYA  
TMS320F28234ZHHA  
TMS320F28234ZJZA  
TMS320F28234ZJZQ  
TMS320F28234ZJZS  
TMS320F28235PGFA  
TMS320F28235PTPQ  
TMS320F28235PTPS  
TMS320F28235ZJZA  
ACTIVE  
LQFP  
HLQFP  
HLQFP  
NFBGA  
176  
176  
176  
179  
179  
176  
176  
176  
179  
179  
176  
176  
176  
176  
176  
176  
176  
40  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-4-260C-72 HR  
Level-4-260C-72 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-4-260C-72 HR  
Level-4-260C-72 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-4-260C-72 HR  
Level-4-260C-72 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 125  
-40 to 125  
-40 to 85  
F28232PGFA  
TMS320  
ACTIVE  
ACTIVE  
ACTIVE  
LIFEBUY  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LIFEBUY  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
40  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
TMS320  
F28232PTPQ  
40  
TMS320  
F28232PTPS  
160  
160  
40  
TMS320  
F28232ZAYA  
BGA  
MICROSTAR  
F28232ZHHA  
TMS320  
LQFP  
HLQFP  
HLQFP  
NFBGA  
F28234PGFA  
TMS320  
40  
TMS320  
F28234PTPQ  
40  
TMS320  
F28234PTPS  
160  
160  
126  
126  
126  
40  
TMS320  
F28234ZAYA  
BGA  
MICROSTAR  
F28234ZHHA  
TMS320  
BGA  
320F28234ZJZA  
TMS  
BGA  
ZJZ  
320F28234ZJZQ  
TMS  
BGA  
ZJZ  
320F28234ZJZS  
TMS  
LQFP  
HLQFP  
HLQFP  
BGA  
PGF  
PTP  
PTP  
ZJZ  
F28235PGFA  
TMS320  
40  
TMS320  
F28235PTPQ  
40  
TMS320  
F28235PTPS  
126  
320F28235ZJZA  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jan-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS  
TMS320F28235ZJZQ  
TMS320F28235ZJZQR  
TMS320F28235ZJZS  
TMS320F28332PGFA  
TMS320F28332PTPS  
TMS320F28333PGFA  
TMS320F28334PGFA  
TMS320F28334PTPS  
TMS320F28334ZAYA  
TMS320F28334ZHHA  
TMS320F28334ZJZA  
TMS320F28334ZJZS  
TMS320F28335PGFA  
TMS320F28335PTPQ  
TMS320F28335PTPS  
TMS320F28335ZAYA  
TMS320F28335ZAYAR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LIFEBUY  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
BGA  
BGA  
ZJZ  
ZJZ  
176  
176  
176  
176  
176  
176  
176  
176  
179  
179  
176  
176  
176  
176  
176  
179  
179  
126  
RoHS & Green  
SNAGCU  
SNAGCU  
SNAGCU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-4-260C-72 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-4-260C-72 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-4-260C-72 HR  
Level-4-260C-72 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 125  
-40 to 85  
-40 to 85  
320F28235ZJZQ  
TMS  
1000 RoHS & Green  
320F28235ZJZQ  
TMS  
BGA  
ZJZ  
126  
40  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
320F28235ZJZS  
TMS  
LQFP  
HLQFP  
LQFP  
LQFP  
HLQFP  
NFBGA  
PGF  
PTP  
PGF  
PGF  
PTP  
ZAY  
ZHH  
ZJZ  
F28332PGFA  
TMS320  
40  
TMS320  
F28332PTPS  
40  
F28333PGFA  
TMS320  
40  
F28334PGFA  
TMS320  
40  
TMS320  
F28334PTPS  
160  
160  
126  
126  
40  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 125  
-40 to 85  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 85  
TMS320  
F28334ZAYA  
BGA  
MICROSTAR  
F28334ZHHA  
TMS320  
BGA  
320F28334ZJZA  
TMS  
BGA  
ZJZ  
320F28334ZJZS  
TMS  
LQFP  
PGF  
PTP  
PTP  
ZAY  
ZAY  
F28335PGFA  
TMS320  
HLQFP  
HLQFP  
NFBGA  
NFBGA  
40  
TMS320  
F28335PTPQ  
40  
TMS320  
F28335PTPS  
160  
TMS320  
F28335ZAYA  
1000 RoHS & Green  
TMS320  
F28335ZAYA  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jan-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
ZHH  
ZJZ  
Qty  
160  
126  
126  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS320F28335ZHHA  
TMS320F28335ZJZA  
TMS320F28335ZJZQ  
TMS320F28335ZJZQR  
TMS320F28335ZJZS  
LIFEBUY  
BGA  
MICROSTAR  
179  
176  
176  
176  
176  
RoHS & Green  
RoHS & Green  
RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 125  
-40 to 125  
-40 to 125  
F28335ZHHA  
TMS320  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
BGA  
BGA  
BGA  
BGA  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
320F28335ZJZA  
TMS  
ZJZ  
320F28335ZJZQ  
TMS  
ZJZ  
1000 RoHS & Green  
126 RoHS & Green  
320F28335ZJZQ  
TMS  
ZJZ  
320F28335ZJZS  
TMS  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jan-2021  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 4  
PACKAGE OUTLINE  
PGF0176A  
LQFP - 1.6 mm max height  
SCALE 0.550  
PLASTIC QUAD FLATPACK  
24.2  
23.8  
NOTE 3  
B
PIN 1 ID  
133  
176  
1
132  
24.2  
23.8  
26.2  
TYP  
25.8  
NOTE 3  
44  
89  
45  
88  
0.27  
0.17  
A
176X  
172X 0.5  
0.08  
C A B  
4X 21.5  
C
SEATING PLANE  
1.6 MAX  
SEE DETAIL A  
(0.13)  
TYP  
0.25  
(1.4)  
GAGE PLANE  
0.15  
0.05  
0.08 C  
0 -7  
0.75  
0.45  
A
12  
DETAIL A  
TYPICAL  
4215177/A 05/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs.  
4. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PGF0176A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
176  
133  
176X (1.5)  
1
132  
176X (0.3)  
172X (0.5)  
SYMM  
(25.4)  
(R0.05) TYP  
89  
44  
SEE DETAILS  
45  
88  
(25.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:4X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215177/A 05/2017  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PGF0176A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
176  
133  
176X (1.5)  
176X (0.3)  
1
132  
172X (0.5)  
SYMM  
(25.4)  
(R0.05) TYP  
44  
89  
45  
88  
(25.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4215177/A 05/2017  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
ZHH0179A  
UBGA - 1.4 mm max height  
SCALE 1.200  
BALL GRID ARRAY  
12.1  
11.9  
B
A
BALL A1  
CORNER  
12.1  
11.9  
0.9  
C
SEATING PLANE  
0.1 C  
BALL TYP  
1.4 MAX  
0.45  
0.35  
10.4 TYP  
SYMM  
P
N
M
L
K
10.4  
TYP  
J
H
G
F
SYMM  
E
D
0.8  
C
TYP  
B
A
9
10  
1
2
3
4
5
6
7
8
11  
12  
13 14  
0.55  
0.45  
179X  
0.15  
0.08  
C A B  
C
0.8 TYP  
4220265/A 05/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This is a Pb-free solder ball design.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZHH0179A  
UBGA - 1.4 mm max height  
BALL GRID ARRAY  
(0.8) TYP  
179X ( 0.4)  
1
3
4
5
6
7
8
2
9
10 11 12 13 14  
A
(0.8) TYP  
B
C
D
E
F
G
H
J
SYMM  
K
L
M
N
P
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
(
0.4)  
METAL  
(
0.4)  
EXPOSED  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4220265/A 05/2017  
NOTES: (continued)  
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SSZA002 (www.ti.com/lit/ssza002).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZHH0179A  
UBGA - 1.4 mm max height  
BALL GRID ARRAY  
(0.8) TYP  
179X 0.4  
(0.8) TYP  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
1
A
B
C
D
E
F
G
H
J
SYMM  
K
L
M
N
P
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE: 10X  
4220265/A 05/2017  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
PACKAGE OUTLINE  
PBGA - 2.05 mm max height  
PLASTIC BALL GRID ARRAY  
ZJZ0176A  
15.2  
14.8  
A
B
13.2  
12.8  
BALL A1 CORNER  
13.2 15.2  
12.8 14.8  
2.05 MAX  
C
SEATING PLANE  
0.10 C  
(0.56)  
BALL TYP  
0.6  
0.3  
13 TYP  
SYMM  
TYP  
(0.5) TYP  
(0.5) TYP  
P
N
M
L
K
J
H
G
F
13  
TYP  
SYMM  
E
D
C
0.7  
176X Ø  
B
A
0.4  
0.10  
C A B  
1 TYP  
1
2
3
5
6
8
9
10  
4
7
11 12 14  
13  
1 TYP  
4223413/C 02/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This is a lead-free solder ball design.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PBGA - 2.05 mm max height  
PLASTIC BALL GRID ARRAY  
ZJZ0176A  
176X (Ø 0.5)  
(1) TYP  
SYMM  
A
B
C
(1) TYP  
D
E
F
G
H
J
SYMM  
K
L
M
N
P
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
LAND PATTERN EXAMPLE  
SCALE: 6X  
0.05 MAX  
0.05 MIN  
(Ø0.5)  
METAL  
EXPOSED METAL  
EXPOSED METAL  
(Ø0.5)  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON -SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223413/C 02/2019  
NOTES: (continued)  
4. Final dimension may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas  
Instruments literature number SSZA002 (www.ti.com/lit/ssza002).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PBGA - 2.05 mm max height  
PLASTIC BALL GRID ARRAY  
ZJZ0176A  
176X (Ø 0.5)  
(1) TYP  
SYMM  
A
B
C
(1) TYP  
D
E
F
G
H
J
SYMM  
K
L
M
N
P
1
2
3
4
5
7
6
8
9
10 11 12 13 14  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE: 6X  
4223413/C 02/2019  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
PACKAGE OUTLINE  
ZAY0179A  
NFBGA - 1.4 mm max height  
S
C
A
L
E
1
.
2
0
0
PLASTIC BALL GRID ARRAY  
12.1  
11.9  
B
A
BALL A1  
CORNER  
12.1  
11.9  
1.4 MAX  
C
SEATING PLANE  
0.45  
0.35  
0.12 C  
10.4 TYP  
(0.8)  
(0.8)  
SYMM  
P
N
M
L
K
J
SYMM  
H
G
10.4 TYP  
F
E
D
C
0.55  
179X  
0.45  
B
A
0.15C A B  
0.08C  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0.8 TYP  
0.8 TYP  
4225014/C 07/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZAY0179A  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
(0.8) TYP  
179X ( 0.4)  
(0.8) TYP  
1
2
4
5
7
13  
3
9
10  
11  
14  
6
8
12  
A
B
C
D
E
F
G
H
J
SYMM  
K
L
M
N
P
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
EXPOSED METAL  
(
0.4)  
(
0.4)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL EDGE  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225014/C 07/2020  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZAY0179A  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
(0.8) TYP  
179X ( 0.4)  
(0.8) TYP  
1
2
4
5
7
13  
3
9
10  
11  
14  
6
8
12  
A
B
C
D
E
F
G
H
J
SYMM  
K
L
M
N
P
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.150 mm THICK STENCIL  
SCALE: 10X  
4225014/C 07/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
GENERIC PACKAGE VIEW  
PTP 176  
24 x 24, 0.5 mm pitch  
HLQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226435/A  
www.ti.com  
PACKAGE OUTLINE  
HLQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
PTP0176E  
24.2  
23.8  
NOTE 3  
B
PIN 1 ID  
176  
133  
1
132  
24.2  
23.8  
NOTE 3  
26.2  
25.8  
TYP  
44  
89  
45  
88  
0.27  
0.17  
176X  
172X 0.5  
A
4X 21.5  
0.08  
C A B  
C
1.6 MAX  
SEATING PLANE  
(0.127) TYP  
SEE DETAIL A  
7.16  
6.62  
88  
45  
89  
44  
0.25  
GAGE PLANE  
(1.4)  
0°-7°  
0.15  
0.05  
0.08 C  
7.18  
6.64  
177  
0.75  
0.45  
0.48 KEEPOUT 9 PLACES  
0.75 KEEPOUT 9 PLACES  
132  
1
176  
133  
4218967/A 01/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed  
0.15 per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
HLQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
PTP0176E  
(
22)  
NOTE 7  
(7.16)  
176  
133  
SOLDER MASK  
DEFINED PAD  
176X (1.5)  
1
132  
176X (0.3)  
177  
172X (0.5)  
SYMM  
(7.18) (25.4)  
(Ø0.2) VIA  
TYP  
(1 TYP)  
(R0.05) TYP  
44  
89  
(1 TYP)  
SYMM  
45  
88  
METAL COVERED  
BY SOLDER MASK  
SEE DETAILS  
(25.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 3X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218967/A 01/2019  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. This package is designed to be soldered to a thermal pad on the board. See technical brief. Powerpad thermally enhanced  
package, Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
8. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
HLQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
PTP0176E  
(7.16)  
BASED ON  
0.125 THICK STENCIL  
176  
133  
176X (1.5)  
1
132  
176X (0.3)  
177  
172X (0.5)  
SYMM  
(7.18)(25.4)  
(Ø0.2) VIA  
TYP  
44  
89  
45  
88  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(25.4)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 3X  
4218967/A 01/2019  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TMS320F28235PTPQ

Digital Signal Controllers (DSCs)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28235PTPS

Digital Signal Controllers (DSCs)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28235ZHH

TMS320F2833x, TMS320F2823x Digital Signal Controllers (DSCs)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28235ZHHA

Digital Signal Controllers (DSCs)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28235ZJZ

TMS320F2833x, TMS320F2823x Digital Signal Controllers (DSCs)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28235ZJZA

Digital Signal Controllers (DSCs)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28235ZJZQ

Digital Signal Controllers (DSCs)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28235ZJZQR

TMS320F2833x, TMS320F2823x Digital Signal Controllers (DSCs)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28235ZJZS

Digital Signal Controllers (DSCs)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28332

Digital Signal Controllers (DSCs)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28332PGF

TMS320F2833x, TMS320F2823x Digital Signal Controllers (DSCs)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28332PGFA

Digital Signal Controllers (DSCs)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI