TMS320F28377DPTPEP [TI]

具有 800MIPS、2xCPU、2xCLA、FPU、TMU、1MB 闪存、EMIF、16 位 ADC 的 C2000™ 增强型产品 32 位 MCU | PTP | 176 | -55 to 125;
TMS320F28377DPTPEP
型号: TMS320F28377DPTPEP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 800MIPS、2xCPU、2xCLA、FPU、TMU、1MB 闪存、EMIF、16 位 ADC 的 C2000™ 增强型产品 32 位 MCU | PTP | 176 | -55 to 125

闪存
文件: 总210页 (文件大小:3302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
TMS320F28377D-EP 双核 Delfino™ 微控制器  
1 器件概述  
1.1 特性  
1
两个多通道缓冲串行端口 (McBSP)  
双核架构  
四个串行通信接口 (SCI/UART)(引脚可引导)  
两个 I2C 接口(引脚可引导)  
模拟子系统  
两个 TMS320C28x 32 CPU  
– 200MHz  
– IEEE-754 单精度浮点单元 (FPU)  
三角法数学单元 (TMU)  
– Viterbi / 复杂数学单元 (VCU-II)  
两个可编程控制律加速器 (CLA)  
– 200MHz  
– IEEE 754 单精度浮点指令  
独立于主 CPU 之外执行代码  
片上存储器  
多达四个模数转换器 (ADC)  
– 16 位模式  
每个转换器的吞吐量为 1.1MSPS(系统吞  
吐量高达 4.4MSPS)  
差分输入  
多达 12 个外部通道  
– 12 位模式  
每个转换器的吞吐量为 3.5MSPS(系统吞  
吐量高达 14MSPS)  
单端输入  
– 512KB (256KW) 1MB (512KW) 闪存(ECC  
保护)  
– 172KB (86KW) 204KB (102KW) RAMECC  
保护或奇偶校验保护)  
多达 24 个外部通道  
每个 ADC 上有单个采样与保持 (S/H) 电路  
– ADC 转换的硬件集成后置处理  
支持第三方开发的双区安全  
时钟和系统控制  
饱和偏移校准  
定点计算误差  
两个内部零引脚 10MHz 振荡器  
片上晶体振荡器  
窗口化看门狗定时器模块  
丢失时钟检测电路  
具有中断功能的高、低和过零比较  
触发至采样延迟捕捉  
八个具有 12 位数模转换器 (DAC) 参考的窗口化  
比较器  
• 1.2V 内核,3.3V I/O 设计  
系统外设  
– 3 12 位缓冲 DAC 输出  
增强型控制外设  
两个支持 ASRAM SDRAM 的外部存储器接口  
(EMIF)  
– 24 条具有增强功能的脉宽调制器 (PWM) 通道  
– 16 条高分辨率脉宽调制器 (HRPWM) 通道  
6 通道直接存储器存取 (DMA) 控制器  
多达 169 个支持输入滤波的独立可编程、复用通  
用输入/输出 (GPIO) 引脚  
– 8 PWM 模块的 A B 通道均可实现高分  
辨率  
扩展外设中断控制器 (ePIE)  
死区支持(对于标准和高分辨率均支持)  
– 6 个增强型捕捉 (eCAP) 模块  
多个低功耗模式 (LPM),支持通过外部器件唤醒  
通信外设  
– 3 个增强型正交编码器脉冲 (eQEP)模块  
– USB 2.0 (MAC + PHY)  
八条 Δ-Σ 滤波器模块 (SDFM) 输入通道,每条通  
2 个并联滤波器  
支持 12 引脚 3.3V 兼容通用并行端口 (uPP) 接口  
两个控制器局域网 (CAN) 模块(引脚可引导)  
三个高速(最高 50MHzSPI 端口(引脚可引  
导)  
标准 SDFM 数据滤波  
用于快速响应超范围情况的比较器滤波器  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SPRSP19  
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
封装选项:  
一个制造场所  
– 337 焊球全新细间距球栅阵列 (nFBGA) [后缀  
在扩展温度范围(-55°C 125°C)内可用  
延长的产品生命周期  
GWT]  
– 176 引脚 PowerPAD™散热增强型薄型四方扁平  
封装 (HLQFP) [PTP 后缀]  
支持国防、航天和医疗 应用:  
受控基线  
延长的产品变更通知  
产品可追溯性  
一个组装/测试场所  
1.2 应用  
高级驾驶员辅助系统 (ADAS)  
楼宇自动化  
工业运输  
医疗、保健与健身  
电机驱动器  
电力输送  
电子销售终端  
电动汽车/混合动力电动汽车 (EV/HEV) 动力系统  
工厂自动化  
电信基础设施  
测试和测量  
电网基础设施  
1.3 说明  
Delfino™TMS320F28377D-EP 是一款强大的 32 位浮点微控制器单元 (MCU),专为高级闭环控制 应用 而  
设计,例如工业驱动器和伺服电机控制太阳能逆变器和转换器数字电源电力输送以及电力线通信。数  
字电源和工业驱动器的完整开发包作为 powerSUITE DesignDRIVE 方案的一部分提供。而 Delfino 产品  
系列并不是 TMS320C2000™产品组合的新系列,但 F28377D 可支持新的双核 C28x 架构,进而显著提升  
系统性能。此外,集成式模拟和控制外设还允许设计人员整合控制架构,并消除高端系统对多处理器的需  
求。  
双实时控制子系统基于 TI 32 C28x 浮点 CPU,每个内核均可提供 200MHz 的信号处理性能。C28x  
CPU 的性能通过新型 TMU 加速器和 VCU 加速器得到了进一步提升,TMU 加速器可快速执行包含变换和转  
矩环路计算中常见的三角运算的算法;VCU 加速器可缩短编码应用中常见的复杂数学运算的 时间中经常遇  
到的特定频率下 OPAx189 EMIRR +IN 值。  
F28377D 微控制器 具有 两个 CLA 实时控制协处理器。CLA 是一款独立的 32 位浮点处理器,运行速度与  
CPU 相同。该 CLA 会对外设触发器作出响应,并与主 C28x CPU 同时执行代码。这种并行处理功能可  
有效加倍实时控制系统的计算性能。通过利用 CLA 执行时间关键型功能,主 C28x CPU 可以得到释放,以  
便用于执行通信和诊断等其他任务。双 C28x+CLA 架构可在各种系统任务之间实现智能分区。例如,一个  
C28x+CLA 内核可用于跟踪速度和位置,而另一个 C28x+CLA 内核则可用于控制转矩和电流环路。  
TMS320F28377D-EP 可支持 1MB (512KW) 的板载闪存内存,被配备错误校正代码 (ECC) 204KB  
(102KW) SRAM。每个 CPU 上还提供两个用于代码保护的 128 位安全区。  
F28377D MCU 上集成了性能模拟和控制外设,以进一步支持系统整合。四个独立的 16 ADC 可准确、  
高效地管理多个模拟信号,从而最终提高系统吞吐量。新型 Σ-Δ 滤波器模块 (SDFM) Σ-Δ 调制器配合使  
用可实现隔离分流测量。包含窗口化比较器的比较器子系统 (CMPSS) 可在超过或未满足电流限制条件的情  
况下保护功率级。其他模拟和控制外设包括 DACPWMeCAPseQEP 以及其他外设。  
EMIFCAN 模块(符合 ISO 11898-1/CAN 2.0B 标准)等外设以及新型 uPP 接口扩展了 F28377D 的连接  
功能。uPP 接口是 C2000™MCU 的一个新特性,支持与 FPGA 之间或与具有类似 uPP 接口的其他处理器  
之间的高速并行连接。最后,具有 MAC PHY USB 2.0 端口使用户能够轻松地将通用串行总线 (USB)  
连接功能添加到其应用中。  
Device Information(1)  
PART NUMBER  
PACKAGE  
nFBGA (337)  
HLQFP (176)  
封装尺寸  
16.0mm x 16.0mm  
24.0mm × 24.0mm  
TMS320F28377D-EP  
(1) 有关这些器件的更多信息,请参阅机械封装和可订购信息。  
器件概述  
2
版权 © 2017, Texas Instruments Incorporated  
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
1.4 功能框图  
1-1 显示了 CPU 系统及相关外设。  
User User  
Configurable Configurable  
PSWD  
DCSM  
OTP  
1K x 16  
DCSM  
OTP  
1K x 16  
PSWD  
Dual  
Dual  
Code  
Security  
Module  
+
Emulation  
Code  
Security  
Logic  
(ECSL)  
Code  
Security  
Module  
+
Emulation  
Code  
Security  
Logic  
(ECSL)  
FLASH  
256K x 16  
Secure  
FLASH  
256K x 16  
Secure  
Secure Memories  
shown in Red  
CPU2.CLA1  
PUMP  
OTP/Flash  
Wrapper  
OTP/Flash  
Wrapper  
MEMCPU1  
MEMCPU2  
Low-Power  
Mode Control  
CPU1.M0 RAM 1Kx16  
CPU1.M1 RAM 1Kx16  
GPIO MUX  
INTOSC1  
CPU2 to CPU2.CLA1  
128x16 MSG RAM  
CPU1.CLA1 to CPU1  
128x16 MSG RAM  
C28 CPU-1  
FPU  
VCU-II  
C28 CPU-2  
FPU  
VCU-II  
CPU1.CLA1  
CPU1 to CPU1.CLA1  
128x16 MSG RAM  
CPU2.CLA1 to CPU2  
128x16 MSG RAM  
CPU2.M0 RAM 1Kx16  
CPU2.M1 RAM 1Kx16  
TMU  
TMU  
Watchdog 1/2  
CPU1 Local Shared  
6x 2Kx16  
LS0-LS5 RAMs  
CPU2 Local Shared  
6x 2Kx16  
LS0-LS5 RAMs  
Interprocessor  
Communication  
(IPC)  
CPU1.D0 RAM 2Kx16  
CPU1.D1 RAM 2Kx16  
CPU2.D0 RAM 2Kx16  
CPU2.D1 RAM 2Kx16  
Main PLL  
INTOSC2  
Module  
WD Timer  
NMI-WDT  
WD Timer  
NMI-WDT  
CPU1.CLA1 Data ROM  
(4Kx16)  
CPU2.CLA1 Data ROM  
(4Kx16)  
Global Shared  
16x 4Kx16  
GS0-GS15 RAMs  
External Crystal or  
Oscillator  
CPU Timer 0  
CPU Timer 1  
CPU Timer 2  
CPU Timer 0  
CPU Timer 1  
CPU Timer 2  
Secure-ROM 32Kx16  
Secure  
Secure-ROM 32Kx16  
Secure  
A5:0  
B5:0  
C5:2  
D5:0  
16-/12-bit ADC  
x4  
Aux PLL  
A
AUXCLKIN  
CPU1 to CPU2  
1Kx16 MSG RAM  
B
C
D
Boot-ROM 32Kx16  
Nonsecure  
Boot-ROM 32Kx16  
Nonsecure  
ePIE  
(up to 192  
ePIE  
(up to 192  
ADC  
Result  
Regs  
TRST  
Analog  
MUX  
interrupts)  
interrupts)  
CPU2 to CPU1  
1Kx16 MSG RAM  
TCK  
TDI  
Config  
JTAG  
TMS  
TDO  
ADCIN14  
ADCIN15  
Data Bus  
Bridge  
CPU1.DMA  
CPU2.DMA  
Comparator  
Subsystem  
(CMPSS)  
DAC  
x3  
CPU1 Buses  
CPU2 Buses  
Data Bus  
Bridge  
Data Bus  
Bridge  
Data Bus  
Bridge  
Data Bus  
Bridge  
Data Bus  
Bridge  
Peripheral Frame 1  
Data Bus Bridge  
Peripheral Frame 2  
SCI-  
A/B/C/D  
(16L FIFO)  
USB  
Ctrl /  
PHY  
SPI-  
A/B/C  
(16L FIFO)  
ePWM-1/../12  
CAN-  
A/B  
(32-MBOX)  
RAM  
I2C-A/B  
(16L FIFO)  
McBSP-  
A/B  
eCAP-  
1/../6  
eQEP-1/2/3  
SDFM-1/2  
GPIO  
EMIF1  
EMIF2  
uPP  
HRPWM-1/../8  
(CPU1 only)  
GPIO MUX, Input X-BAR, Output X-BAR  
Copyright © 2017, Texas Instruments Incorporated  
1-1. 功能框图  
版权 © 2017, Texas Instruments Incorporated  
器件概述  
3
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
内容  
1
器件概.................................................... 1  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 2  
1.3 说明 ................................................... 2  
1.4 功能框图 ............................................. 3  
Revision History ......................................... 5  
Terminal Configuration and Functions.............. 6  
3.1 Pin Diagrams ......................................... 6  
3.2 Signal Descriptions.................................. 13  
3.3 Pins With Internal Pullup and Pulldown............. 36  
3.4 Pin Multiplexing...................................... 37  
3.5 Connections for Unused Pins ....................... 44  
Specifications ........................................... 45  
4.1 Absolute Maximum Ratings ........................ 45  
4.2 ESD Ratings ........................................ 46  
4.3 Recommended Operating Conditions............... 47  
4.4 Power Consumption Summary...................... 48  
4.5 Electrical Characteristics............................ 52  
4.6 Thermal Resistance Characteristics ................ 53  
4.7 System .............................................. 54  
4.8 Analog Peripherals .................................. 90  
4.9 Control Peripherals ................................ 116  
4.10 Communications Peripherals ...................... 133  
Detailed Description.................................. 169  
5.1 Overview ........................................... 169  
5.2 Functional Block Diagram ......................... 169  
5.3 Memory ............................................ 171  
5.4 Identification........................................ 178  
5.5  
Bus Architecture – Peripheral Connectivity........ 179  
5.6 C28x Processor .................................... 180  
5.7 Control Law Accelerator ........................... 183  
5.8 Direct Memory Access............................. 184  
2
3
5.9  
Interprocessor Communication Module............ 186  
5.10 Boot ROM and Peripheral Booting................. 187  
5.11 Dual Code Security Module ....................... 190  
5.12 Timers.............................................. 190  
5.13 Nonmaskable Interrupt With Watchdog Timer  
(NMIWD) ........................................... 190  
5.14 Watchdog .......................................... 191  
5.15 Configurable Logic Block (CLB) ................... 191  
Applications, Implementation, and Layout ...... 192  
6.1 TI Design or Reference Design.................... 192  
器件和文档支......................................... 193  
7.1 器件和开发支持工具命名规...................... 193  
7.2 工具和软件 ......................................... 194  
7.3 器件命名规则....................................... 195  
7.4 文档支持 ........................................... 197  
7.5 Community Resources............................. 197  
7.6 商标 ................................................ 197  
7.7 静电放电警告....................................... 198  
7.8 出口管制提示....................................... 198  
7.9 术语.............................................. 198  
机械封装和可订购信息................................. 199  
8.1 Via Channel........................................ 199  
8.2 封装信息 ........................................... 199  
4
6
7
5
8
4
内容  
版权 © 2017, Texas Instruments Incorporated  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
2 Revision History  
注:之前版本的页码可能与当前版本有所不同。  
DATE  
REVISION  
NOTES  
2017 12 月  
*
初始发行版  
Copyright © 2017, Texas Instruments Incorporated  
Revision History  
5
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
3 Terminal Configuration and Functions  
3.1 Pin Diagrams  
Figure 3-1 to Figure 3-4 show the terminal assignments on the 337-ball ZWT New Fine Pitch Ball Grid  
Array. Each figure shows a quadrant of the terminal assignments. Figure 3-5 shows the pin assignments  
on the 176-pin PTP PowerPAD Thermally Enhanced Low-Profile Quad Flatpack.  
1
2
3
4
5
6
7
8
9
10  
GPIO116  
VSSA  
VREFHIB  
VREFLOD  
VSS  
VDDIO  
W
ADCINB1  
ADCINB3  
ADCINB5  
GPIO128  
W
V
U
T
VREFHIA  
ADCINA0  
ADCINA1  
VREFHIC  
VSSA  
VREFHID  
ADCIND1  
ADCIND0  
VSSA  
VREFLOB  
ADCIND3  
ADCIND2  
VDDA  
VSSA  
ADCIND5  
ADCIND4  
VSS  
V
ADCINB0  
ADCINA2  
ADCINA3  
VREFLOA  
VREFLOC  
GPIO109  
GPIO110  
GPIO106  
ADCINB2  
ADCINA4  
ADCINA5  
ADCINC2  
ADCINC3  
GPIO114  
GPIO112  
GPIO107  
ADCINB4  
ADCIN15  
ADCIN14  
ADCINC4  
ADCINC5  
GPIO113  
GPIO111  
GPIO108  
GPIO124  
GPIO123  
GPIO122  
VSS  
GPIO127  
GPIO126  
GPIO125  
VDDIO  
GPIO131  
GPIO130  
GPIO129  
VDD  
U
T
R
P
N
M
L
R
P
VSSA  
VDDA  
VSS  
VSS  
VDDIO  
VDD  
7
8
9
10  
VSS  
VSS  
VSS  
N
VDDIO  
VDDIO  
VDDIO  
VSS  
VSS  
VSS  
M
M
VSS  
VSS  
VSS  
VSS  
VSS  
GPIO27  
L
L
VDD  
VDD  
VSS  
VSS  
VSS  
K
GPIO26  
GPIO25  
GPIO24  
GPIO23  
K
K
1
2
3
4
5
6
8
9
10  
A. Only the GPIO function is shown on GPIO terminals. See Table 3-1 for the complete, muxed signal name.  
Figure 3-1. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View) – [Quadrant A]  
6
Terminal Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
11  
12  
13  
14  
15  
16  
17  
18  
19  
VSS  
W
V
U
T
GPIO29  
FLT1  
TDI  
TMS  
TDO  
GPIO121  
GPIO39  
GPIO132  
GPIO134  
GPIO135  
GPIO137  
GPIO50  
GPIO54  
GPIO57  
GPIO141  
VSS  
W
V
U
T
VDDIO  
ERRORSTS  
GPIO138  
GPIO51  
GPIO28  
GPIO31  
GPIO30  
VDD3VFL  
GPIO115  
GPIO117  
GPIO118  
VDD3VFL  
FLT2  
GPIO32  
GPIO33  
VDD  
TCK  
GPIO120  
GPIO119  
VSS  
GPIO36  
GPIO37  
GPIO38  
GPIO48  
GPIO52  
GPIO56  
GPIO59  
GPIO61  
GPIO40  
GPIO41  
GPIO136  
GPIO49  
GPIO53  
GPIO58  
GPIO60  
GPIO64  
TRST  
GPIO34  
GPIO35  
VSS  
R
R
P
N
M
L
VSS  
VSS  
VDD  
VSS  
VSS  
P
GPIO55  
11  
12  
13  
N
VDDIO  
VDDIO  
GPIO139  
GPIO140  
GPIO142  
VSS  
VSS  
VSS  
VSS  
M
M
VSS  
VSS  
VDDIO  
VDDIO  
L
L
VSS  
VSS  
VSS  
VSS  
K
K
GPIO65  
GPIO66  
GPIO44  
GPIO45  
K
11  
12  
14  
15  
16  
17  
18  
19  
A. Only the GPIO function is shown on GPIO terminals. See Table 3-1 for the complete, muxed signal name.  
Figure 3-2. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View) – [Quadrant B]  
Copyright © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
7
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
11  
12  
14  
15  
16  
17  
18  
19  
VSS  
VSS  
VDD  
VDD  
J
J
H
G
GPIO63  
GPIO62  
VREGENZ  
X2  
J
VSS  
VSS  
VSS  
VSS  
VDDOSC  
VDDOSC  
VSSOSC  
GPIO133  
GPIO143  
GPIO47  
GPIO146  
GPIO68  
GPIO69  
VSSOSC  
H
H
G
F
VDD  
VDD  
VSS  
VSS  
X1  
11  
12  
13  
VDD  
VSS  
VDDIO  
VSS  
VSS  
VDDIO  
F
E
D
C
B
A
GPIO144  
GPIO145  
GPIO147  
GPIO74  
GPIO71  
XRS  
VDD  
VSS  
VDDIO  
VSS  
VSS  
VDDIO  
GPIO46  
GPIO42  
GPIO43  
GPIO67  
E
D
C
B
A
GPIO87  
GPIO86  
GPIO85  
GPIO156  
GPIO155  
GPIO154  
GPIO152  
GPIO151  
GPIO150  
GPIO148  
GPIO83  
GPIO82  
GPIO80  
GPIO79  
GPIO78  
GPIO75  
GPIO76  
GPIO72  
VDDIO  
VSS  
GPIO84  
GPIO153  
GPIO149  
GPIO81  
GPIO77  
GPIO73  
GPIO70  
11  
12  
13  
14  
15  
16  
17  
18  
19  
A. Only the GPIO function is shown on GPIO terminals. See Table 3-1 for the complete, muxed signal name.  
Figure 3-3. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View) – [Quadrant C]  
8
Terminal Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
1
2
3
4
5
6
8
9
10  
VSS  
VSS  
VSS  
VSS  
VSS  
J
H
G
F
GPIO103  
GPIO100  
GPIO99  
GPIO98  
GPIO16  
GPIO13  
GPIO11  
VDDIO  
GPIO104  
GPIO105  
GPIO22  
J
J
VDDIO  
VDDIO  
VDDIO  
VSS  
VSS  
VSS  
VSS  
GPIO101  
GPIO102  
NC  
H
G
H
VDDIO  
VDDIO  
GPIO8  
GPIO9  
7
8
9
10  
VDDIO  
VSS  
VDDIO  
VSS  
VDD  
VDDIO  
GPIO20  
GPIO17  
GPIO14  
GPIO12  
GPIO10  
GPIO21  
GPIO18  
GPIO15  
GPIO96  
GPIO95  
F
VSS  
VSS  
VDDIO  
VSS  
VDD  
VDDIO  
E
D
C
B
A
GPIO19  
GPIO168  
GPIO167  
GPIO93  
E
D
C
B
A
GPIO166  
GPIO165  
GPIO91  
GPIO89  
GPIO88  
GPIO7  
GPIO5  
GPIO4  
GPIO3  
GPIO1  
GPIO0  
GPIO164  
GPIO162  
GPIO161  
GPIO160  
GPIO159  
GPIO158  
GPIO157  
VSS  
VDDIO  
VSS  
GPIO97  
GPIO94  
GPIO92  
GPIO90  
GPIO6  
GPIO2  
GPIO163  
1
2
3
4
5
6
7
8
9
10  
A. Only the GPIO function is shown on GPIO terminals. See Table 3-1 for the complete, muxed signal name.  
Figure 3-4. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View) – [Quadrant D]  
Copyright © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
V
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
GPIO68  
GPIO69  
GPIO70  
GPIO71  
DDIO  
GPIO40  
GPIO39  
GPIO38  
GPIO37  
GPIO36  
V
DD  
V
DDIO  
V
GPIO72  
GPIO73  
GPIO74  
GPIO75  
GPIO76  
GPIO77  
GPIO78  
GPIO79  
DDIO  
TCK  
TMS  
TRST  
TDO  
TDI  
V
DD  
V
DDIO  
V
DDIO  
FLT2  
FLT1  
V
GPIO80  
GPIO81  
GPIO82  
GPIO83  
DD3VFL  
GPIO35  
GPIO34  
GPIO33  
V
DDIO  
V
V
DDIO  
DD  
GPIO32  
GPIO31  
GPIO29  
GPIO28  
GPIO30  
GPIO84  
GPIO85  
GPIO86  
GPIO87  
V
DD  
V
V
DDIO  
DDIO  
V
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
DD  
ADCIND4  
ADCIND3  
ADCIND2  
ADCIND1  
ADCIND0  
V
REFHID  
V
DDA  
V
V
REFHIB  
DDIO  
V
V
SSA  
DD  
V
GPIO88  
GPIO89  
GPIO90  
GPIO91  
GPIO92  
GPIO93  
GPIO94  
REFLOD  
V
REFLOB  
ADCINB3  
ADCINB2  
ADCINB1  
ADCINB0  
ADCIN15  
A. Only the GPIO function is shown on GPIO pins. See Table 3-1 for the complete, muxed signal name.  
Figure 3-5. 176-Pin PTP PowerPAD Thermally Enhanced Low-Profile Quad Flatpack (Top View)  
10  
Terminal Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
NOTE  
The exposed lead frame die pad of the PowerPAD™ package serves two functions: to  
remove heat from the die and to provide ground path for the digital ground (analog ground is  
provided through dedicated pins). Thus, the PowerPAD should be soldered to the ground  
(GND) plane of the PCB because this will provide both the digital ground path and good  
thermal conduction path. To make optimum use of the thermal efficiencies designed into the  
PowerPAD package, the PCB must be designed with this technology in mind. A thermal land  
is required on the surface of the PCB directly underneath the body of the PowerPAD. The  
thermal land should be soldered to the exposed lead frame die pad of the PowerPAD  
package; the thermal land should be as large as needed to dissipate the required heat. An  
array of thermal vias should be used to connect the thermal pad to the internal GND plane of  
the board. See PowerPAD™ Thermally Enhanced Package for more details on using the  
PowerPAD package.  
Copyright © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
NOTE  
PCB footprints and schematic symbols are available for download in a vendor-neutral format,  
which can be exported to the leading EDA CAD/CAE design tools. See the CAD/CAE  
Symbols section in the product folder for each device, under the Packaging section. These  
footprints and symbols can also be searched for at http://webench.ti.com/cad/.  
12  
Terminal Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
3.2 Signal Descriptions  
Table 3-1 describes the signals. The GPIO function is the default at reset, unless otherwise mentioned.  
The peripheral signals that are listed under them are alternate functions. Some peripheral functions may  
not be available in all devices. All GPIO pins are I/O/Z and have an internal pullup, which can be  
selectively enabled or disabled on a per-pin basis. This feature only applies to the GPIO pins. The pullups  
are not enabled at reset.  
Table 3-1. Signal Descriptions  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
ADC, DAC, AND COMPARATOR SIGNALS  
ADC-A high reference. This voltage must be driven into  
the pin from external circuitry. Place at least a 1-µF  
capacitor on this pin for the 12-bit mode, or at least a 22-  
µF capacitor for the 16-bit mode. This capacitor should  
be placed as close to the device as possible between  
the VREFHIA and VREFLOA pins.  
VREFHIA  
VREFHIB  
VREFHIC  
V1  
W5  
R1  
37  
53  
35  
I
I
I
NOTE: Do not load this pin externally.  
ADC-B high reference. This voltage must be driven into  
the pin from external circuitry. Place at least a 1-µF  
capacitor on this pin for the 12-bit mode, or at least a 22-  
µF capacitor for the 16-bit mode. This capacitor should  
be placed as close to the device as possible between  
the VREFHIB and VREFLOB pins.  
NOTE: Do not load this pin externally.  
ADC-C high reference. This voltage must be driven into  
the pin from external circuitry. Place at least a 1-µF  
capacitor on this pin for the 12-bit mode, or at least a 22-  
µF capacitor for the 16-bit mode. This capacitor should  
be placed as close to the device as possible between  
the VREFHIC and VREFLOC pins.  
NOTE: Do not load this pin externally.  
ADC-D high reference. This voltage must be driven into  
the pin from external circuitry. Place at least a 1-µF  
capacitor on this pin for the 12-bit mode, or at least a 22-  
µF capacitor for the 16-bit mode. This capacitor should  
be placed as close to the device as possible between  
the VREFHID and VREFLOD pins.  
VREFHID  
V5  
R2  
55  
33  
I
I
NOTE: Do not load this pin externally.  
ADC-A low reference.  
On the PZP package, pin 17 is double-bonded to VSSA  
and VREFLOA. On the PZP package, pin 17 must be  
connected to VSSA on the system board.  
VREFLOA  
VREFLOB  
VREFLOC  
VREFLOD  
ADCIN14  
V6  
P2  
50  
32  
51  
I
I
I
I
ADC-B low reference  
ADC-C low reference  
ADC-D low reference  
W6  
Input 14 to all ADCs. This pin can be used as a general-  
purpose ADCIN pin or it can be used to calibrate all  
ADCs together (either single-ended or differential) from  
an external reference.  
T4  
U4  
44  
45  
CMPIN4P  
ADCIN15  
I
I
Comparator 4 positive input  
Input 15 to all ADCs. This pin can be used as a general-  
purpose ADCIN pin or it can be used to calibrate all  
ADCs together (either single-ended or differential) from  
an external reference.  
CMPIN4N  
I
Comparator 4 negative input  
Copyright © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
13  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
ADCINA0  
I
ADC-A input 0. There is a 50-kΩ internal pulldown on  
this pin in both an ADC input or DAC output mode which  
cannot be disabled.  
U1  
T1  
43  
42  
DACOUTA  
ADCINA1  
O
I
DAC-A output  
ADC-A input 1. There is a 50-kΩ internal pulldown on  
this pin in both an ADC input or DAC output mode which  
cannot be disabled.  
DACOUTB  
ADCINA2  
CMPIN1P  
ADCINA3  
CMPIN1N  
ADCINA4  
CMPIN2P  
ADCINA5  
CMPIN2N  
ADCINB0  
O
I
DAC-B output  
ADC-A input 2  
U2  
T2  
U3  
T3  
41  
40  
39  
38  
I
Comparator 1 positive input  
ADC-A input 3  
I
I
Comparator 1 negative input  
ADC-A input 4  
I
I
Comparator 2 positive input  
ADC-A input 5  
I
I
Comparator 2 negative input  
I
ADC-B input 0. There is a 100-pF capacitor to VSSA on  
this pin in both ADC input or DAC reference mode which  
cannot be disabled. If this pin is being used as a  
reference for the on-chip DACs, place at least a 1-µF  
capacitor on this pin.  
V2  
46  
VDAC  
I
Optional external reference voltage for on-chip DACs.  
There is a 100-pF capacitor to VSSA on this pin in both  
ADC input or DAC reference mode which cannot be  
disabled. If this pin is being used as a reference for the  
on-chip DACs, place at least a 1-µF capacitor on this  
pin.  
ADCINB1  
I
ADC-B input 1. There is a 50-kΩ internal pulldown on  
this pin in both an ADC input or DAC output mode which  
cannot be disabled.  
W2  
47  
DACOUTC  
ADCINB2  
CMPIN3P  
ADCINB3  
CMPIN3N  
ADCINB4  
ADCINB5  
ADCINC2  
CMPIN6P  
ADCINC3  
CMPIN6N  
ADCINC4  
CMPIN5P  
ADCINC5  
CMPIN5N  
ADCIND0  
CMPIN7P  
ADCIND1  
CMPIN7N  
O
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DAC-C output  
ADC-B input 2  
V3  
48  
49  
Comparator 3 positive input  
ADC-B input 3  
W3  
Comparator 3 negative input  
ADC-B input 4  
V4  
W4  
ADC-B input 5  
ADC-C input 2  
R3  
P3  
R4  
P4  
T5  
U5  
31  
30  
29  
Comparator 6 positive input  
ADC-C input 3  
Comparator 6 negative input  
ADC-C input 4  
Comparator 5 positive input  
ADC-C input 5  
Comparator 5 negative input  
ADC-D input 0  
56  
57  
Comparator 7 positive input  
ADC-D input 1  
Comparator 7 negative input  
14  
Terminal Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
ADCIND2  
CMPIN8P  
ADCIND3  
CMPIN8N  
ADCIND4  
ADCIND5  
I
I
I
I
I
I
ADC-D input 2  
T6  
U6  
58  
59  
Comparator 8 positive input  
ADC-D input 3  
Comparator 8 negative input  
ADC-D input 4  
T7  
U7  
60  
ADC-D input 5  
GPIO AND PERIPHERAL SIGNALS  
GPIO0  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 0  
Enhanced PWM1 output A (HRPWM-capable)  
EPWM1A  
SDAA  
1
C8  
D8  
160  
161  
6
I/OD  
I/O  
O
I2C-A data open-drain bidirectional port  
General-purpose input/output 1  
Enhanced PWM1 output B (HRPWM-capable)  
McBSP-B receive frame synch  
I2C-A clock open-drain bidirectional port  
General-purpose input/output 2  
Enhanced PWM2 output A (HRPWM-capable)  
Output 1 of the output XBAR  
GPIO1  
0, 4, 8, 12  
EPWM1B  
MFSRB  
1
3
I/O  
I/OD  
I/O  
O
SCLA  
6
GPIO2  
0, 4, 8, 12  
EPWM2A  
OUTPUTXBAR1  
SDAB  
1
A7  
B7  
162  
163  
5
O
6
I/OD  
I/O  
O
I2C-B data open-drain bidirectional port  
General-purpose input/output 3  
Enhanced PWM2 output B (HRPWM-capable)  
Output 2 of the output XBAR  
GPIO3  
0, 4, 8, 12  
EPWM2B  
OUTPUTXBAR2  
MCLKRB  
OUTPUTXBAR2  
SCLB  
1
2
O
3
I/O  
O
McBSP-B receive clock  
5
Output 2 of the output XBAR  
6
I/OD  
I/O  
O
I2C-B clock open-drain bidirectional port  
General-purpose input/output 4  
Enhanced PWM3 output A (HRPWM-capable)  
Output 3 of the output XBAR  
GPIO4  
0, 4, 8, 12  
EPWM3A  
OUTPUTXBAR3  
CANTXA  
GPIO5  
1
C7  
D7  
164  
165  
5
O
6
O
CAN-A transmit  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 5  
Enhanced PWM3 output B (HRPWM-capable)  
McBSP-A receive frame synch  
Output 3 of the output XBAR  
EPWM3B  
MFSRA  
1
2
I/O  
O
OUTPUTXBAR3  
CANRXA  
GPIO6  
3
6
I
CAN-A receive  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 6  
Enhanced PWM4 output A (HRPWM-capable)  
Output 4 of the output XBAR  
EPWM4A  
OUTPUTXBAR4  
EXTSYNCOUT  
EQEP3A  
1
2
O
A6  
B6  
166  
167  
3
O
External ePWM synch pulse output  
Enhanced QEP3 input A  
5
I
CANTXB  
GPIO7  
6
O
CAN-B transmit  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 7  
Enhanced PWM4 output B (HRPWM-capable)  
McBSP-A receive clock  
EPWM4B  
MCLKRA  
OUTPUTXBAR5  
EQEP3B  
1
2
3
5
6
I/O  
O
Output 5 of the output XBAR  
I
Enhanced QEP3 input B  
CANRXB  
I
CAN-B receive  
Copyright © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
15  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO8  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 8  
EPWM5A  
CANTXB  
ADCSOCAO  
EQEP3S  
1
Enhanced PWM5 output A (HRPWM-capable)  
CAN-B transmit  
2
O
G2  
G3  
18  
19  
3
O
ADC start-of-conversion A output for external ADC  
Enhanced QEP3 strobe  
5
I/O  
O
SCITXDA  
GPIO9  
6
SCI-A transmit data  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 9  
Enhanced PWM5 output B (HRPWM-capable)  
SCI-B transmit data  
EPWM5B  
SCITXDB  
OUTPUTXBAR6  
EQEP3I  
1
2
O
3
O
Output 6 of the output XBAR  
Enhanced QEP3 index  
5
I/O  
I
SCIRXDA  
GPIO10  
6
SCI-A receive data  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 10  
Enhanced PWM6 output A (HRPWM-capable)  
CAN-B receive  
EPWM6A  
CANRXB  
ADCSOCBO  
EQEP1A  
1
2
I
3
O
ADC start-of-conversion B output for external ADC  
Enhanced QEP1 input A  
B2  
C1  
C2  
1
2
4
5
I
SCITXDB  
UPP-WAIT  
6
O
SCI-B transmit data  
15  
I/O  
Universal parallel port wait. Receiver asserts to request  
a pause in transfer.  
GPIO11  
0, 4, 8, 12  
I/O  
O
I
General-purpose input/output 11  
Enhanced PWM6 output B (HRPWM-capable)  
SCI-B receive data  
EPWM6B  
1
2, 6  
3
SCIRXDB  
OUTPUTXBAR7  
EQEP1B  
O
I
Output 7 of the output XBAR  
Enhanced QEP1 input B  
5
UPP-START  
15  
I/O  
Universal parallel port start. Transmitter asserts at start  
of DMA line.  
GPIO12  
EPWM7A  
CANTXB  
MDXB  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 12  
Enhanced PWM7 output A (HRPWM-capable)  
CAN-B transmit  
1
2
O
3
O
McBSP-B transmit serial data  
Enhanced QEP1 strobe  
EQEP1S  
SCITXDC  
UPP-ENA  
5
I/O  
O
6
SCI-C transmit data  
15  
I/O  
Universal parallel port enable. Transmitter asserts while  
data bus is active.  
GPIO13  
EPWM7B  
CANRXB  
MDRB  
0, 4, 8, 12  
I/O  
O
I
General-purpose input/output 13  
Enhanced PWM7 output B (HRPWM-capable)  
CAN-B receive  
1
2
3
D1  
5
I
McBSP-B receive serial data  
Enhanced QEP1 index  
EQEP1I  
SCIRXDC  
UPP-D7  
5
I/O  
I
6
SCI-C receive data  
15  
I/O  
Universal parallel port data line 7  
16  
Terminal Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO14  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 14  
Enhanced PWM8 output A (HRPWM-capable)  
SCI-B transmit data  
EPWM8A  
SCITXDB  
MCLKXB  
OUTPUTXBAR3  
UPP-D6  
1
2
O
D2  
D3  
6
7
3
I/O  
O
McBSP-B transmit clock  
6
Output 3 of the output XBAR  
Universal parallel port data line 6  
General-purpose input/output 15  
Enhanced PWM8 output B (HRPWM-capable)  
SCI-B receive data  
15  
I/O  
I/O  
O
GPIO15  
0, 4, 8, 12  
EPWM8B  
SCIRXDB  
MFSXB  
1
2
I
3
I/O  
O
McBSP-B transmit frame synch  
Output 4 of the output XBAR  
Universal parallel port data line 5  
General-purpose input/output 16  
SPI-A slave in, master out  
CAN-B transmit  
OUTPUTXBAR4  
UPP-D5  
6
15  
I/O  
I/O  
I/O  
O
GPIO16  
0, 4, 8, 12  
SPISIMOA  
CANTXB  
OUTPUTXBAR7  
EPWM9A  
SD1_D1  
1
2
3
E1  
E2  
E3  
E4  
8
O
Output 7 of the output XBAR  
Enhanced PWM9 output A  
Sigma-Delta 1 channel 1 data input  
Universal parallel port data line 4  
General-purpose input/output 17  
SPI-A slave out, master in  
CAN-B receive  
5
O
7
I
UPP-D4  
15  
I/O  
I/O  
I/O  
I
GPIO17  
0, 4, 8, 12  
SPISOMIA  
CANRXB  
OUTPUTXBAR8  
EPWM9B  
SD1_C1  
1
2
3
9
O
Output 8 of the output XBAR  
Enhanced PWM9 output B  
Sigma-Delta 1 channel 1 clock input  
Universal parallel port data line 3  
General-purpose input/output 18  
SPI-A clock  
5
O
7
I
UPP-D3  
15  
I/O  
I/O  
I/O  
O
GPIO18  
0, 4, 8, 12  
SPICLKA  
SCITXDB  
CANRXA  
EPWM10A  
SD1_D2  
1
2
SCI-B transmit data  
3
10  
I
CAN-A receive  
5
O
Enhanced PWM10 output A  
Sigma-Delta 1 channel 2 data input  
Universal parallel port data line 2  
General-purpose input/output 19  
SPI-A slave transmit enable  
SCI-B receive data  
7
I
UPP-D2  
15  
I/O  
I/O  
I/O  
I
GPIO19  
0, 4, 8, 12  
SPISTEA  
SCIRXDB  
CANTXA  
EPWM10B  
SD1_C2  
1
2
3
12  
O
CAN-A transmit  
5
O
Enhanced PWM10 output B  
Sigma-Delta 1 channel 2 clock input  
Universal parallel port data line 1  
7
I
UPP-D1  
15  
I/O  
Copyright © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
17  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO20  
0, 4, 8, 12  
I/O  
I
General-purpose input/output 20  
Enhanced QEP1 input A  
EQEP1A  
MDXA  
1
2
O
O
O
I
McBSP-A transmit serial data  
CAN-B transmit  
CANTXB  
EPWM11A  
SD1_D3  
UPP-D0  
3
F2  
F3  
J4  
K4  
13  
14  
22  
23  
5
Enhanced PWM11 output A  
Sigma-Delta 1 channel 3 data input  
Universal parallel port data line 0  
General-purpose input/output 21  
Enhanced QEP1 input B  
7
15  
I/O  
I/O  
I
GPIO21  
0, 4, 8, 12  
EQEP1B  
MDRA  
1
2
I
McBSP-A receive serial data  
CAN-B receive  
CANRXB  
EPWM11B  
SD1_C3  
UPP-CLK  
GPIO22  
3
I
5
O
I
Enhanced PWM11 output B  
Sigma-Delta 1 channel 3 clock input  
Universal parallel port transmit clock  
General-purpose input/output 22  
Enhanced QEP1 strobe  
7
15  
I/O  
I/O  
I/O  
I/O  
O
O
I/O  
I
0, 4, 8, 12  
EQEP1S  
MCLKXA  
SCITXDB  
EPWM12A  
SPICLKB  
SD1_D4  
GPIO23  
1
2
McBSP-A transmit clock  
3
SCI-B transmit data  
5
Enhanced PWM12 output A  
SPI-B clock  
6
7
Sigma-Delta 1 channel 4 data input  
General-purpose input/output 23  
Enhanced QEP1 index  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I
EQEP1I  
1
MFSXA  
2
McBSP-A transmit frame synch  
SCI-B receive data  
SCIRXDB  
EPWM12B  
SPISTEB  
SD1_C4  
GPIO24  
3
5
O
I/O  
I
Enhanced PWM12 output B  
SPI-B slave transmit enable  
Sigma-Delta 1 channel 4 clock input  
General-purpose input/output 24  
Output 1 of the output XBAR  
Enhanced QEP2 input A  
6
7
0, 4, 8, 12  
I/O  
O
I
OUTPUTXBAR1  
EQEP2A  
MDXB  
1
2
K3  
K2  
24  
25  
3
O
I/O  
I
McBSP-B transmit serial data  
SPI-B slave in, master out  
Sigma-Delta 2 channel 1 data input  
General-purpose input/output 25  
Output 2 of the output XBAR  
Enhanced QEP2 input B  
SPISIMOB  
SD2_D1  
GPIO25  
6
7
0, 4, 8, 12  
I/O  
O
I
OUTPUTXBAR2  
EQEP2B  
MDRB  
1
2
3
6
7
I
McBSP-B receive serial data  
SPI-B slave out, master in  
Sigma-Delta 2 channel 1 clock input  
SPISOMIB  
SD2_C1  
I/O  
I
18  
Terminal Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO26  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 26  
Output 3 of the output XBAR  
Enhanced QEP2 index  
OUTPUTXBAR3  
EQEP2I  
1
2
I/O  
I/O  
O
MCLKXB  
OUTPUTXBAR3  
SPICLKB  
SD2_D2  
3
K1  
27  
McBSP-B transmit clock  
5
Output 3 of the output XBAR  
SPI-B clock  
6
I/O  
I
7
Sigma-Delta 2 channel 2 data input  
General-purpose input/output 27  
Output 4 of the output XBAR  
Enhanced QEP2 strobe  
GPIO27  
0, 4, 8, 12  
I/O  
O
OUTPUTXBAR4  
EQEP2S  
1
2
I/O  
I/O  
O
MFSXB  
3
L1  
28  
McBSP-B transmit frame synch  
Output 4 of the output XBAR  
SPI-B slave transmit enable  
Sigma-Delta 2 channel 2 clock input  
General-purpose input/output 28  
SCI-A receive data  
OUTPUTXBAR4  
SPISTEB  
SD2_C2  
5
6
I/O  
I
7
GPIO28  
0, 4, 8, 12  
I/O  
I
SCIRXDA  
EM1CS4  
1
2
O
External memory interface 1 chip select 4  
Output 5 of the output XBAR  
Enhanced QEP3 input A  
V11  
W11  
T11  
U11  
64  
65  
63  
66  
OUTPUTXBAR5  
EQEP3A  
5
O
6
I
SD2_D3  
7
I
Sigma-Delta 2 channel 3 data input  
General-purpose input/output 29  
SCI-A transmit data  
GPIO29  
0, 4, 8, 12  
I/O  
O
SCITXDA  
EM1SDCKE  
OUTPUTXBAR6  
EQEP3B  
1
2
O
External memory interface 1 SDRAM clock enable  
Output 6 of the output XBAR  
Enhanced QEP3 input B  
5
O
6
I
SD2_C3  
7
I
Sigma-Delta 2 channel 3 clock input  
General-purpose input/output 30  
CAN-A receive  
GPIO30  
0, 4, 8, 12  
I/O  
I
CANRXA  
EM1CLK  
1
2
O
External memory interface 1 clock  
Output 7 of the output XBAR  
Enhanced QEP3 strobe  
OUTPUTXBAR7  
EQEP3S  
5
O
6
I/O  
I
SD2_D4  
7
Sigma-Delta 2 channel 4 data input  
General-purpose input/output 31  
CAN-A transmit  
GPIO31  
0, 4, 8, 12  
I/O  
O
CANTXA  
1
EM1WE  
2
O
External memory interface 1 write enable  
Output 8 of the output XBAR  
Enhanced QEP3 index  
OUTPUTXBAR8  
EQEP3I  
5
O
6
I/O  
I
SD2_C4  
7
Sigma-Delta 2 channel 4 clock input  
General-purpose input/output 32  
I2C-A data open-drain bidirectional port  
External memory interface 1 chip select 0  
General-purpose input/output 33  
I2C-A clock open-drain bidirectional port  
External memory interface 1 read not write  
GPIO32  
0, 4, 8, 12  
I/O  
I/OD  
O
SDAA  
1
U13  
T13  
67  
69  
EM1CS0  
2
GPIO33  
0, 4, 8, 12  
I/O  
I/OD  
O
SCLA  
1
2
EM1RNW  
Copyright © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
19  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO34  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 34  
Output 1 of the output XBAR  
OUTPUTXBAR1  
EM1CS2  
SDAB  
1
U14  
T14  
V16  
U16  
T16  
70  
71  
83  
84  
85  
2
O
External memory interface 1 chip select 2  
I2C-B data open-drain bidirectional port  
General-purpose input/output 35  
SCI-A receive data  
6
I/OD  
I/O  
I
GPIO35  
0, 4, 8, 12  
SCIRXDA  
EM1CS3  
SCLB  
1
2
O
External memory interface 1 chip select 3  
I2C-B clock open-drain bidirectional port  
General-purpose input/output 36  
SCI-A transmit data  
6
I/OD  
I/O  
O
GPIO36  
0, 4, 8, 12  
SCITXDA  
EM1WAIT  
CANRXA  
GPIO37  
1
2
I
External memory interface 1 Asynchronous SRAM WAIT  
CAN-A receive  
6
I
0, 4, 8, 12  
I/O  
O
General-purpose input/output 37  
Output 2 of the output XBAR  
External memory interface 1 output enable  
CAN-A transmit  
OUTPUTXBAR2  
EM1OE  
1
2
O
CANTXA  
GPIO38  
6
O
0, 4, 8, 12  
I/O  
O
General-purpose input/output 38  
External memory interface 1 address line 0  
SCI-C transmit data  
EM1A0  
2
SCITXDC  
CANTXB  
GPIO39  
5
O
6
O
CAN-B transmit  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 39  
External memory interface 1 address line 1  
SCI-C receive data  
EM1A1  
2
W17  
V17  
86  
87  
SCIRXDC  
CANRXB  
GPIO40  
5
I
6
I
CAN-B receive  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 40  
External memory interface 1 address line 2  
I2C-B data open-drain bidirectional port  
EM1A2  
2
6
SDAB  
I/OD  
I/O  
GPIO41  
0, 4, 8, 12  
General-purpose input/output 41. For applications using  
the Hibernate low-power mode, this pin serves as the  
GPIOHIBWAKE signal. For details, see the Low Power  
Modes section of the System Control chapter in the  
TMS320F2837xD Dual-Core Delfino Microcontrollers  
Technical Reference Manual.  
U17  
D19  
89  
EM1A3  
SCLB  
2
O
I/OD  
I/O  
I/OD  
O
External memory interface 1 address line 3  
I2C-B clock open-drain bidirectional port  
General-purpose input/output 42  
I2C-A data open-drain bidirectional port  
SCI-A transmit data  
6
GPIO42  
SDAA  
0, 4, 8, 12  
6
15  
130  
SCITXDA  
USB0DM  
GPIO43  
SCLA  
Analog  
0, 4, 8, 12  
6
I/O  
I/O  
I/OD  
I
USB PHY differential data  
General-purpose input/output 43  
I2C-A clock open-drain bidirectional port  
SCI-A receive data  
C19  
K18  
131  
113  
SCIRXDA  
USB0DP  
GPIO44  
EM1A4  
15  
Analog  
0, 4, 8, 12  
2
I/O  
I/O  
O
USB PHY differential data  
General-purpose input/output 44  
External memory interface 1 address line 4  
20  
Terminal Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO45  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 45  
External memory interface 1 address line 5  
General-purpose input/output 46  
External memory interface 1 address line 6  
SCI-D receive data  
K19  
115  
EM1A5  
2
GPIO46  
0, 4, 8, 12  
I/O  
O
EM1A6  
2
E19  
128  
SCIRXDD  
GPIO47  
6
I
0, 4, 8, 12  
I/O  
O
General-purpose input/output 47  
External memory interface 1 address line 7  
SCI-D transmit data  
EM1A7  
2
E18  
R16  
129  
90  
SCITXDD  
GPIO48  
6
O
0, 4, 8, 12  
I/O  
O
General-purpose input/output 48  
Output 3 of the output XBAR  
OUTPUTXBAR3  
EM1A8  
1
2
O
External memory interface 1 address line 8  
SCI-A transmit data  
SCITXDA  
SD1_D1  
GPIO49  
6
O
7
I
Sigma-Delta 1 channel 1 data input  
General-purpose input/output 49  
Output 4 of the output XBAR  
0, 4, 8, 12  
I/O  
O
OUTPUTXBAR4  
EM1A9  
1
2
R17  
R18  
R19  
P16  
93  
94  
95  
96  
O
External memory interface 1 address line 9  
SCI-A receive data  
SCIRXDA  
SD1_C1  
GPIO50  
6
I
7
I
Sigma-Delta 1 channel 1 clock input  
General-purpose input/output 50  
Enhanced QEP1 input A  
0, 4, 8, 12  
I/O  
I
EQEP1A  
EM1A10  
SPISIMOC  
SD1_D2  
GPIO51  
1
2
O
External memory interface 1 address line 10  
SPI-C slave in, master out  
6
I/O  
I
7
Sigma-Delta 1 channel 2 data input  
General-purpose input/output 51  
Enhanced QEP1 input B  
0, 4, 8, 12  
I/O  
I
EQEP1B  
EM1A11  
SPISOMIC  
SD1_C2  
GPIO52  
1
2
O
External memory interface 1 address line 11  
SPI-C slave out, master in  
6
I/O  
I
7
Sigma-Delta 1 channel 2 clock input  
General-purpose input/output 52  
Enhanced QEP1 strobe  
0, 4, 8, 12  
I/O  
I/O  
O
EQEP1S  
EM1A12  
SPICLKC  
SD1_D3  
GPIO53  
1
2
External memory interface 1 address line 12  
SPI-C clock  
6
I/O  
I
7
Sigma-Delta 1 channel 3 data input  
General-purpose input/output 53  
Enhanced QEP1 index  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/O  
I/O  
I
EQEP1I  
1
2
3
6
7
EM1D31  
EM2D15  
SPISTEC  
SD1_C3  
External memory interface 1 data line 31  
External memory interface 2 data line 15  
SPI-C slave transmit enable  
P17  
97  
Sigma-Delta 1 channel 3 clock input  
Copyright © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
21  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO54  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/O  
I
General-purpose input/output 54  
SPI-A slave in, master out  
SPISIMOA  
EM1D30  
EM2D14  
EQEP2A  
SCITXDB  
SD1_D4  
GPIO55  
1
2
External memory interface 1 data line 30  
External memory interface 2 data line 14  
Enhanced QEP2 input A  
3
P18  
P19  
N16  
N18  
98  
5
6
O
SCI-B transmit data  
7
I
Sigma-Delta 1 channel 4 data input  
General-purpose input/output 55  
SPI-A slave out, master in  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/O  
I
SPISOMIA  
EM1D29  
EM2D13  
EQEP2B  
SCIRXDB  
SD1_C4  
GPIO56  
1
2
External memory interface 1 data line 29  
External memory interface 2 data line 13  
Enhanced QEP2 input B  
3
100  
101  
102  
5
6
I
SCI-B receive data  
7
I
Sigma-Delta 1 channel 4 clock input  
General-purpose input/output 56  
SPI-A clock  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/O  
I/O  
O
SPICLKA  
EM1D28  
EM2D12  
EQEP2S  
SCITXDC  
SD2_D1  
GPIO57  
1
2
External memory interface 1 data line 28  
External memory interface 2 data line 12  
Enhanced QEP2 strobe  
3
5
6
SCI-C transmit data  
7
I
Sigma-Delta 2 channel 1 data input  
General-purpose input/output 57  
SPI-A slave transmit enable  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/O  
I/O  
I
SPISTEA  
EM1D27  
EM2D11  
EQEP2I  
1
2
External memory interface 1 data line 27  
External memory interface 2 data line 11  
Enhanced QEP2 index  
3
5
SCIRXDC  
SD2_C1  
GPIO58  
6
SCI-C receive data  
7
I
Sigma-Delta 2 channel 1 clock input  
General-purpose input/output 58  
McBSP-A receive clock  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/O  
O
MCLKRA  
EM1D26  
EM2D10  
OUTPUTXBAR1  
SPICLKB  
SD2_D2  
SPISIMOA  
GPIO59  
1
2
External memory interface 1 data line 26  
External memory interface 2 data line 10  
Output 1 of the output XBAR  
SPI-B clock  
3
N17  
103  
5
6
I/O  
I
7
Sigma-Delta 2 channel 2 data input  
SPI-A slave in, master out(2)  
15  
I/O  
I/O  
I/O  
I/O  
I/O  
O
0, 4, 8, 12  
General-purpose input/output 59(3)  
McBSP-A receive frame synch  
External memory interface 1 data line 25  
External memory interface 2 data line 9  
Output 2 of the output XBAR  
SPI-B slave transmit enable  
MFSRA  
1
2
EM1D25  
EM2D9  
3
M16  
104  
OUTPUTXBAR2  
SPISTEB  
SD2_C2  
SPISOMIA  
5
6
I/O  
I
7
Sigma-Delta 2 channel 2 clock input  
SPI-A slave out, master in(2)  
15  
I/O  
22  
Terminal Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO60  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/O  
O
General-purpose input/output 60  
McBSP-B receive clock  
MCLKRB  
EM1D24  
EM2D8  
1
2
External memory interface 1 data line 24  
External memory interface 2 data line 8  
Output 3 of the output XBAR  
SPI-B slave in, master out  
3
M17  
105  
OUTPUTXBAR3  
SPISIMOB  
SD2_D3  
SPICLKA  
GPIO61  
5
6
I/O  
I
7
Sigma-Delta 2 channel 3 data input  
SPI-A clock(2)  
15  
I/O  
I/O  
I/O  
I/O  
I/O  
O
0, 4, 8, 12  
General-purpose input/output 61(3)  
McBSP-B receive frame synch  
External memory interface 1 data line 23  
External memory interface 2 data line 7  
Output 4 of the output XBAR  
SPI-B slave out, master in  
MFSRB  
1
EM1D23  
EM2D7  
2
3
L16  
J17  
J16  
107  
108  
109  
OUTPUTXBAR4  
SPISOMIB  
SD2_C3  
SPISTEA  
GPIO62  
5
6
I/O  
I
7
Sigma-Delta 2 channel 3 clock input  
SPI-A slave transmit enable(2)  
General-purpose input/output 62  
SCI-C receive data  
15  
I/O  
I/O  
I
0, 4, 8, 12  
SCIRXDC  
EM1D22  
EM2D6  
1
2
I/O  
I/O  
I
External memory interface 1 data line 22  
External memory interface 2 data line 6  
Enhanced QEP3 input A  
3
EQEP3A  
CANRXA  
SD2_D4  
GPIO63  
5
6
I
CAN-A receive  
7
I
Sigma-Delta 2 channel 4 data input  
General-purpose input/output 63  
SCI-C transmit data  
0, 4, 8, 12  
I/O  
O
SCITXDC  
EM1D21  
EM2D5  
1
2
I/O  
I/O  
I
External memory interface 1 data line 21  
External memory interface 2 data line 5  
Enhanced QEP3 input B  
3
EQEP3B  
CANTXA  
SD2_C4  
SPISIMOB  
GPIO64  
5
6
O
CAN-A transmit  
7
I
Sigma-Delta 2 channel 4 clock input  
SPI-B slave in, master out(2)  
General-purpose input/output 64(3)  
External memory interface 1 data line 20  
External memory interface 2 data line 4  
Enhanced QEP3 strobe  
15  
I/O  
I/O  
I/O  
I/O  
I/O  
I
0, 4, 8, 12  
EM1D20  
EM2D4  
2
3
L17  
110  
111  
EQEP3S  
SCIRXDA  
SPISOMIB  
GPIO65  
5
6
SCI-A receive data  
15  
I/O  
I/O  
I/O  
I/O  
I/O  
O
SPI-B slave out, master in(2)  
General-purpose input/output 65  
External memory interface 1 data line 19  
External memory interface 2 data line 3  
Enhanced QEP3 index  
0, 4, 8, 12  
EM1D19  
EM2D3  
2
3
K16  
EQEP3I  
5
SCITXDA  
SPICLKB  
6
SCI-A transmit data  
SPI-B clock(2)  
15  
I/O  
Copyright © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
23  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO66  
EM1D18  
EM2D2  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/OD  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/OD  
I/O  
I/O  
I/O  
I
General-purpose input/output 66(3)  
External memory interface 1 data line 18  
External memory interface 2 data line 2  
I2C-B data open-drain bidirectional port  
SPI-B slave transmit enable(2)  
General-purpose input/output 67  
External memory interface 1 data line 17  
External memory interface 2 data line 1  
General-purpose input/output 68  
External memory interface 1 data line 16  
External memory interface 2 data line 0  
General-purpose input/output 69  
External memory interface 1 data line 15  
I2C-B clock open-drain bidirectional port  
SPI-C slave in, master out(2)  
2
3
K17  
112  
SDAB  
6
SPISTEB  
GPIO67  
EM1D17  
EM2D1  
15  
0, 4, 8, 12  
2
B19  
C18  
132  
133  
3
GPIO68  
EM1D16  
EM2D0  
0, 4, 8, 12  
2
3
GPIO69  
EM1D15  
SCLB  
0, 4, 8, 12  
2
B18  
A17  
134  
135  
6
SPISIMOC  
GPIO70  
EM1D14  
CANRXA  
SCITXDB  
SPISOMIC  
GPIO71  
EM1D13  
CANTXA  
SCIRXDB  
SPICLKC  
GPIO72  
15  
0, 4, 8, 12  
General-purpose input/output 70(3)  
External memory interface 1 data line 14  
CAN-A receive  
2
5
6
O
SCI-B transmit data  
SPI-C slave out, master in(2)  
15  
I/O  
I/O  
I/O  
O
0, 4, 8, 12  
General-purpose input/output 71  
External memory interface 1 data line 13  
CAN-A transmit  
2
5
B17  
B16  
136  
139  
6
I
SCI-B receive data  
SPI-C clock(2)  
General-purpose input/output 72.(3) This is the factory  
default boot mode select pin 1.  
15  
I/O  
0, 4, 8, 12  
I/O  
EM1D12  
CANTXB  
SCITXDC  
SPISTEC  
GPIO73  
2
I/O  
O
External memory interface 1 data line 12  
CAN-B transmit  
5
6
O
SCI-C transmit data  
15  
I/O  
I/O  
I/O  
O/Z  
SPI-C slave transmit enable(2)  
General-purpose input/output 73  
External memory interface 1 data line 11  
0, 4, 8, 12  
EM1D11  
XCLKOUT  
2
3
External clock output. This pin outputs a divided-down  
version of a chosen clock signal from within the device.  
The clock signal is chosen using the  
CLKSRCCTL3.XCLKOUTSEL bit field while the divide  
ratio is chosen using the  
A16  
140  
XCLKOUTDIVSEL.XCLKOUTDIV bit field.  
CANRXB  
SCIRXDC  
GPIO74  
EM1D10  
GPIO75  
EM1D9  
5
I
CAN-B receive  
6
I
SCI-C receive  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/O  
General-purpose input/output 74  
External memory interface 1 data line 10  
General-purpose input/output 75  
External memory interface 1 data line 9  
C17  
D16  
141  
142  
2
0, 4, 8, 12  
2
24  
Terminal Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO76  
EM1D8  
SCITXDD  
GPIO77  
EM1D7  
SCIRXDD  
GPIO78  
EM1D6  
EQEP2A  
GPIO79  
EM1D5  
EQEP2B  
GPIO80  
EM1D4  
EQEP2S  
GPIO81  
EM1D3  
EQEP2I  
GPIO82  
EM1D2  
GPIO83  
EM1D1  
0, 4, 8, 12  
I/O  
I/O  
O
General-purpose input/output 76  
External memory interface 1 data line 8  
SCI-D transmit data  
2
C16  
A15  
B15  
C15  
D15  
A14  
143  
144  
145  
146  
148  
149  
6
0, 4, 8, 12  
I/O  
I/O  
I
General-purpose input/output 77  
External memory interface 1 data line 7  
SCI-D receive data  
2
6
0, 4, 8, 12  
I/O  
I/O  
I
General-purpose input/output 78  
External memory interface 1 data line 6  
Enhanced QEP2 input A  
2
6
0, 4, 8, 12  
I/O  
I/O  
I
General-purpose input/output 79  
External memory interface 1 data line 5  
Enhanced QEP2 input B  
2
6
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose input/output 80  
External memory interface 1 data line 4  
Enhanced QEP2 strobe  
2
6
0, 4, 8, 12  
General-purpose input/output 81  
External memory interface 1 data line 3  
Enhanced QEP2 index  
2
6
0, 4, 8, 12  
General-purpose input/output 82  
External memory interface 1 data line 2  
General-purpose input/output 83  
External memory interface 1 data line 1  
B14  
C14  
150  
151  
2
0, 4, 8, 12  
2
General-purpose input/output 84. This is the factory  
default boot mode select pin 0.  
GPIO84  
0, 4, 8, 12  
I/O  
SCITXDA  
MDXB  
5
O
O
SCI-A transmit data  
A11  
B11  
154  
155  
6
McBSP-B transmit serial data  
McBSP-A transmit serial data  
General-purpose input/output 85  
External memory interface 1 data line 0  
SCI-A receive data  
MDXA  
15  
O
GPIO85  
EM1D0  
0, 4, 8, 12  
I/O  
I/O  
I
2
SCIRXDA  
MDRB  
5
6
I
McBSP-B receive serial data  
McBSP-A receive serial data  
General-purpose input/output 86  
External memory interface 1 address line 13  
External memory interface 1 column address strobe  
SCI-B transmit data  
MDRA  
15  
I
GPIO86  
EM1A13  
EM1CAS  
SCITXDB  
MCLKXB  
MCLKXA  
GPIO87  
EM1A14  
EM1RAS  
SCIRXDB  
MFSXB  
MFSXA  
0, 4, 8, 12  
I/O  
O
2
3
O
C11  
D11  
156  
157  
5
O
6
I/O  
I/O  
I/O  
O
McBSP-B transmit clock  
15  
McBSP-A transmit clock  
0, 4, 8, 12  
General-purpose input/output 87  
External memory interface 1 address line 14  
External memory interface 1 row address strobe  
SCI-B receive data  
2
3
O
5
I
6
I/O  
I/O  
McBSP-B transmit frame synch  
McBSP-A transmit frame synch  
15  
Copyright © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
25  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO88  
EM1A15  
EM1DQM0  
GPIO89  
EM1A16  
EM1DQM1  
SCITXDC  
GPIO90  
EM1A17  
EM1DQM2  
SCIRXDC  
GPIO91  
EM1A18  
EM1DQM3  
SDAA  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 88  
2
C6  
170  
External memory interface 1 address line 15  
External memory interface 1 Input/output mask for byte 0  
General-purpose input/output 89  
3
O
0, 4, 8, 12  
I/O  
O
2
External memory interface 1 address line 16  
External memory interface 1 Input/output mask for byte 1  
SCI-C transmit data  
D6  
171  
3
O
6
O
0, 4, 8, 12  
I/O  
O
General-purpose input/output 90  
2
External memory interface 1 address line 17  
External memory interface 1 Input/output mask for byte 2  
SCI-C receive data  
A5  
B5  
172  
173  
3
O
6
I
0, 4, 8, 12  
I/O  
O
General-purpose input/output 91  
2
External memory interface 1 address line 18  
External memory interface 1 Input/output mask for byte 3  
I2C-A data open-drain bidirectional port  
General-purpose input/output 92  
3
O
6
I/OD  
I/O  
O
GPIO92  
EM1A19  
EM1BA1  
SCLA  
0, 4, 8, 12  
2
External memory interface 1 address line 19  
External memory interface 1 bank address 1  
I2C-A clock open-drain bidirectional port  
General-purpose input/output 93  
A4  
B4  
174  
175  
3
O
6
I/OD  
I/O  
O
GPIO93  
EM1BA0  
SCITXDD  
GPIO94  
SCIRXDD  
GPIO95  
GPIO96  
EM2DQM1  
EQEP1A  
GPIO97  
EM2DQM0  
EQEP1B  
GPIO98  
EM2A0  
0, 4, 8, 12  
3
External memory interface 1 bank address 0  
SCI-D transmit data  
6
O
0, 4, 8, 12  
I/O  
I
General-purpose input/output 94  
A3  
B3  
176  
6
SCI-D receive data  
0, 4, 8, 12  
I/O  
I/O  
O
General-purpose input/output 95  
0, 4, 8, 12  
General-purpose input/output 96  
3
C3  
A2  
F1  
G1  
17  
External memory interface 2 Input/output mask for byte 1  
Enhanced QEP1 input A  
5
I
0, 4, 8, 12  
I/O  
O
General-purpose input/output 97  
3
External memory interface 2 Input/output mask for byte 0  
Enhanced QEP1 input B  
5
I
0, 4, 8, 12  
I/O  
O
General-purpose input/output 98  
3
External memory interface 2 address line 0  
Enhanced QEP1 strobe  
EQEP1S  
GPIO99  
EM2A1  
5
I/O  
I/O  
O
0, 4, 8, 12  
General-purpose input/output 99  
3
External memory interface 2 address line 1  
Enhanced QEP1 index  
EQEP1I  
GPIO100  
EM2A2  
5
I/O  
I/O  
O
0, 4, 8, 12  
General-purpose input/output 100  
External memory interface 2 address line 2  
Enhanced QEP2 input A  
3
H1  
H2  
EQEP2A  
SPISIMOC  
GPIO101  
EM2A3  
5
I
6
I/O  
I/O  
O
SPI-C slave in, master out  
0, 4, 8, 12  
General-purpose input/output 101  
External memory interface 2 address line 3  
Enhanced QEP2 input B  
3
5
6
EQEP2B  
SPISOMIC  
I
I/O  
SPI-C slave out, master in  
26  
Terminal Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO102  
EM2A4  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 102  
External memory interface 2 address line 4  
Enhanced QEP2 strobe  
3
H3  
J1  
EQEP2S  
SPICLKC  
GPIO103  
EM2A5  
5
I/O  
I/O  
I/O  
O
6
SPI-C clock  
0, 4, 8, 12  
General-purpose input/output 103  
External memory interface 2 address line 5  
Enhanced QEP2 index  
3
EQEP2I  
SPISTEC  
GPIO104  
SDAA  
5
I/O  
I/O  
I/O  
I/OD  
O
6
SPI-C slave transmit enable  
0, 4, 8, 12  
General-purpose input/output 104  
I2C-A data open-drain bidirectional port  
External memory interface 2 address line 6  
Enhanced QEP3 input A  
1
EM2A6  
3
J2  
J3  
EQEP3A  
SCITXDD  
GPIO105  
SCLA  
5
I
6
O
SCI-D transmit data  
0, 4, 8, 12  
I/O  
I/OD  
O
General-purpose input/output 105  
I2C-A clock open-drain bidirectional port  
External memory interface 2 address line 7  
Enhanced QEP3 input B  
1
EM2A7  
3
EQEP3B  
SCIRXDD  
GPIO106  
EM2A8  
5
I
6
I
SCI-D receive data  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 106  
External memory interface 2 address line 8  
Enhanced QEP3 strobe  
3
L2  
L3  
EQEP3S  
SCITXDC  
GPIO107  
EM2A9  
5
I/O  
O
6
SCI-C transmit data  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 107  
External memory interface 2 address line 9  
Enhanced QEP3 index  
3
EQEP3I  
SCIRXDC  
GPIO108  
EM2A10  
GPIO109  
EM2A11  
GPIO110  
EM2WAIT  
GPIO111  
EM2BA0  
GPIO112  
EM2BA1  
GPIO113  
EM2CAS  
GPIO114  
EM2RAS  
GPIO115  
EM2CS0  
GPIO116  
EM2CS2  
5
I/O  
I
6
SCI-C receive data  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 108  
External memory interface 2 address line 10  
General-purpose input/output 109  
External memory interface 2 address line 11  
General-purpose input/output 110  
External memory interface 2 Asynchronous SRAM WAIT  
General-purpose input/output 111  
External memory interface 2 bank address 0  
General-purpose input/output 112  
External memory interface 2 bank address 1  
General-purpose input/output 113  
External memory interface 2 column address strobe  
General-purpose input/output 114  
External memory interface 2 row address strobe  
General-purpose input/output 115  
External memory interface 2 chip select 0  
General-purpose input/output 116  
External memory interface 2 chip select 2  
L4  
N2  
3
0, 4, 8, 12  
I/O  
O
3
0, 4, 8, 12  
I/O  
I
M2  
M4  
M3  
N4  
3
0, 4, 8, 12  
I/O  
O
3
0, 4, 8, 12  
I/O  
O
3
0, 4, 8, 12  
I/O  
O
3
0, 4, 8, 12  
I/O  
O
N3  
3
0, 4, 8, 12  
I/O  
O
V12  
W10  
3
0, 4, 8, 12  
3
I/O  
O
Copyright © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
27  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO117  
EM2SDCKE  
GPIO118  
EM2CLK  
GPIO119  
EM2RNW  
GPIO120  
EM2WE  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 117  
U12  
T12  
T15  
3
External memory interface 2 SDRAM clock enable  
General-purpose input/output 118  
External memory interface 2 clock  
General-purpose input/output 119  
External memory interface 2 read not write  
General-purpose input/output 120  
External memory interface 2 write enable  
USB external regulator power fault indicator  
General-purpose input/output 121  
External memory interface 2 output enable  
USB external regulator enable  
0, 4, 8, 12  
I/O  
O
3
0, 4, 8, 12  
I/O  
O
3
0, 4, 8, 12  
I/O  
O
3
U15  
W16  
T8  
USB0PFLT  
GPIO121  
EM2OE  
15  
I/O  
I/O  
O
0, 4, 8, 12  
3
USB0EPEN  
GPIO122  
SPISIMOC  
SD1_D1  
15  
I/O  
I/O  
I/O  
I
0, 4, 8, 12  
General-purpose input/output 122  
SPI-C slave in, master out  
6
7
Sigma-Delta 1 channel 1 data input  
General-purpose input/output 123  
SPI-C slave out, master in  
GPIO123  
SPISOMIC  
SD1_C1  
0, 4, 8, 12  
I/O  
I/O  
I
6
U8  
7
Sigma-Delta 1 channel 1 clock input  
General-purpose input/output 124  
SPI-C clock  
GPIO124  
SPICLKC  
SD1_D2  
0, 4, 8, 12  
I/O  
I/O  
I
6
V8  
7
Sigma-Delta 1 channel 2 data input  
General-purpose input/output 125  
SPI-C slave transmit enable  
GPIO125  
SPISTEC  
SD1_C2  
0, 4, 8, 12  
I/O  
I/O  
I
6
T9  
7
Sigma-Delta 1 channel 2 clock input  
General-purpose input/output 126  
Sigma-Delta 1 channel 3 data input  
General-purpose input/output 127  
Sigma-Delta 1 channel 3 clock input  
General-purpose input/output 128  
Sigma-Delta 1 channel 4 data input  
General-purpose input/output 129  
Sigma-Delta 1 channel 4 clock input  
General-purpose input/output 130  
Sigma-Delta 2 channel 1 data input  
General-purpose input/output 131  
Sigma-Delta 2 channel 1 clock input  
General-purpose input/output 132  
Sigma-Delta 2 channel 2 data input  
GPIO126  
SD1_D3  
0, 4, 8, 12  
I/O  
I
U9  
V9  
7
GPIO127  
SD1_C3  
0, 4, 8, 12  
I/O  
I
7
GPIO128  
SD1_D4  
0, 4, 8, 12  
I/O  
I
W9  
7
GPIO129  
SD1_C4  
0, 4, 8, 12  
I/O  
I
T10  
U10  
V10  
W18  
7
GPIO130  
SD2_D1  
0, 4, 8, 12  
I/O  
I
7
GPIO131  
SD2_C1  
0, 4, 8, 12  
7
I/O  
I
GPIO132  
SD2_D2  
0, 4, 8, 12  
7
I/O  
I
GPIO133/AUXCLKIN  
0, 4, 8, 12  
I/O  
General-purpose input/output 133. The AUXCLKIN  
function of this GPIO pin could be used to provide a  
single-ended 3.3-V level clock signal to the Auxiliary  
Phase-Locked Loop (AUXPLL), whose output is used for  
the USB module. The AUXCLKIN clock may also be  
used for the CAN module.  
G18  
118  
SD2_C2  
7
I
Sigma-Delta 2 channel 2 clock input  
28  
Terminal Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO134  
SD2_D3  
0, 4, 8, 12  
I/O  
I
General-purpose input/output 134  
Sigma-Delta 2 channel 3 data input  
General-purpose input/output 135  
SCI-A transmit data  
V18  
7
GPIO135  
SCITXDA  
SD2_C3  
0, 4, 8, 12  
I/O  
O
6
U18  
7
I
Sigma-Delta 2 channel 3 clock input  
General-purpose input/output 136  
SCI-A receive data  
GPIO136  
SCIRXDA  
SD2_D4  
0, 4, 8, 12  
I/O  
I
6
T17  
T18  
7
I
Sigma-Delta 2 channel 4 data input  
General-purpose input/output 137  
SCI-B transmit data  
GPIO137  
SCITXDB  
SD2_C4  
0, 4, 8, 12  
I/O  
O
6
7
I
Sigma-Delta 2 channel 4 clock input  
General-purpose input/output 138  
SCI-B receive data  
GPIO138  
SCIRXDB  
GPIO139  
SCIRXDC  
GPIO140  
SCITXDC  
GPIO141  
SCIRXDD  
GPIO142  
SCITXDD  
GPIO143  
GPIO144  
GPIO145  
EPWM1A  
GPIO146  
EPWM1B  
GPIO147  
EPWM2A  
GPIO148  
EPWM2B  
GPIO149  
EPWM3A  
GPIO150  
EPWM3B  
GPIO151  
EPWM4A  
GPIO152  
EPWM4B  
GPIO153  
EPWM5A  
GPIO154  
EPWM5B  
GPIO155  
EPWM6A  
0, 4, 8, 12  
I/O  
I
T19  
N19  
M19  
M18  
L19  
6
0, 4, 8, 12  
I/O  
I
General-purpose input/output 139  
SCI-C receive data  
6
0, 4, 8, 12  
I/O  
O
General-purpose input/output 140  
SCI-C transmit data  
6
0, 4, 8, 12  
I/O  
I
General-purpose input/output 141  
SCI-D receive data  
6
0, 4, 8, 12  
I/O  
O
General-purpose input/output 142  
SCI-D transmit data  
6
0, 4, 8, 12  
F18  
F17  
I/O  
I/O  
I/O  
O
General-purpose input/output 143  
General-purpose input/output 144  
General-purpose input/output 145  
Enhanced PWM1 output A (HRPWM-capable)  
General-purpose input/output 146  
Enhanced PWM1 output B (HRPWM-capable)  
General-purpose input/output 147  
Enhanced PWM2 output A (HRPWM-capable)  
General-purpose input/output 148  
Enhanced PWM2 output B (HRPWM-capable)  
General-purpose input/output 149  
Enhanced PWM3 output A (HRPWM-capable)  
General-purpose input/output 150  
Enhanced PWM3 output B (HRPWM-capable)  
General-purpose input/output 151  
Enhanced PWM4 output A (HRPWM-capable)  
General-purpose input/output 152  
Enhanced PWM4 output B (HRPWM-capable)  
General-purpose input/output 153  
Enhanced PWM5 output A (HRPWM-capable)  
General-purpose input/output 154  
Enhanced PWM5 output B (HRPWM-capable)  
General-purpose input/output 155  
Enhanced PWM6 output A (HRPWM-capable)  
0, 4, 8, 12  
0, 4, 8, 12  
E17  
D18  
D17  
D14  
A13  
B13  
C13  
D13  
A12  
B12  
C12  
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
1
I/O  
O
Copyright © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
29  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO156  
EPWM6B  
GPIO157  
EPWM7A  
GPIO158  
EPWM7B  
GPIO159  
EPWM8A  
GPIO160  
EPWM8B  
GPIO161  
EPWM9A  
GPIO162  
EPWM9B  
GPIO163  
EPWM10A  
GPIO164  
EPWM10B  
GPIO165  
EPWM11A  
GPIO166  
EPWM11B  
GPIO167  
EPWM12A  
GPIO168  
EPWM12B  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 156  
D12  
B10  
C10  
D10  
B9  
1
Enhanced PWM6 output B (HRPWM-capable)  
General-purpose input/output 157  
Enhanced PWM7 output A (HRPWM-capable)  
General-purpose input/output 158  
Enhanced PWM7 output B (HRPWM-capable)  
General-purpose input/output 159  
Enhanced PWM8 output A (HRPWM-capable)  
General-purpose input/output 160  
Enhanced PWM8 output B (HRPWM-capable)  
General-purpose input/output 161  
Enhanced PWM9 output A  
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
C9  
1
0, 4, 8, 12  
I/O  
O
General-purpose input/output 162  
Enhanced PWM9 output B  
D9  
1
0, 4, 8, 12  
I/O  
O
General-purpose input/output 163  
Enhanced PWM10 output A  
A8  
1
0, 4, 8, 12  
I/O  
O
General-purpose input/output 164  
Enhanced PWM10 output B  
B8  
1
0, 4, 8, 12  
I/O  
O
General-purpose input/output 165  
Enhanced PWM11 output A  
C5  
1
0, 4, 8, 12  
I/O  
O
General-purpose input/output 166  
Enhanced PWM11 output B  
D5  
1
0, 4, 8, 12  
I/O  
O
General-purpose input/output 167  
Enhanced PWM12 output A  
C4  
1
0, 4, 8, 12  
1
I/O  
O
General-purpose input/output 168  
Enhanced PWM12 output B  
D4  
RESET  
Device Reset (in) and Watchdog Reset (out). The  
devices have a built-in power-on reset (POR) circuit.  
During a power-on condition, this pin is driven low by the  
device. An external circuit may also drive this pin to  
assert a device reset. This pin is also driven low by the  
MCU when a watchdog reset or NMI watchdog reset  
occurs. During watchdog reset, the XRS pin is driven low  
for the watchdog reset duration of 512 OSCCLK cycles.  
A resistor with a value from 2.2 kΩ to 10 kΩ should be  
placed between XRS and VDDIO. If a capacitor is placed  
between XRS and VSS for noise filtering, it should be  
100 nF or smaller. These values will allow the watchdog  
to properly drive the XRS pin to VOL within 512 OSCCLK  
cycles when the watchdog reset is asserted. The output  
buffer of this pin is an open drain with an internal pullup.  
If this pin is driven by an external device, an open-drain  
device is recommended.  
XRS  
F19  
124  
I/OD  
30  
Terminal Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
CLOCKS  
On-chip crystal-oscillator input. To use this oscillator, a  
quartz crystal must be connected across X1 and X2. If  
this pin is not used, it must be tied to GND.  
This pin can also be used to feed a single-ended 3.3-V  
level clock. In this case, X2 is a No Connect (NC).  
X1  
X2  
NC  
G19  
J19  
H4  
123  
121  
I
On-chip crystal-oscillator output. A quartz crystal may be  
connected across X1 and X2. If X2 is not used, it must  
be left unconnected.  
O
NO CONNECT  
No connect. BGA ball is electrically open and not  
connected to the die.  
JTAG  
TCK  
TDI  
V15  
81  
77  
I
I
JTAG test clock with internal pullup (see Section 4.5)  
JTAG test data input (TDI) with internal pullup. TDI is  
clocked into the selected register (instruction or data) on  
a rising edge of TCK.  
W13  
JTAG scan out, test data output (TDO). The contents of  
the selected register (instruction or data) are shifted out  
of TDO on the falling edge of TCK.(3)  
TDO  
TMS  
W15  
W14  
78  
80  
O/Z  
I
JTAG test-mode select (TMS) with internal pullup. This  
serial control input is clocked into the TAP controller on  
the rising edge of TCK.  
JTAG test reset with internal pulldown. TRST, when  
driven high, gives the scan system control of the  
operations of the device. If this signal is driven low, the  
device operates in its functional mode, and the test reset  
signals are ignored. NOTE: TRST must be maintained  
low at all times during normal device operation. An  
external pulldown resistor is required on this pin. The  
value of this resistor should be based on drive strength  
of the debugger pods applicable to the design. A 2.2-kΩ  
or smaller resistor generally offers adequate protection.  
The value of the resistor is application-specific. TI  
recommends that each target board be validated for  
proper operation of the debugger and the application.  
This pin has an internal 50-ns (nominal) glitch filter.  
TRST  
V14  
79  
I
INTERNAL VOLTAGE REGULATOR CONTROL  
Internal voltage regulator enable with internal pulldown.  
The internal VREG is not supported and must be  
disabled. Connect VREGENZ to VDDIO  
VREGENZ  
J18  
119  
I
.
Copyright © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
31  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
ANALOG, DIGITAL, AND I/O POWER  
E9  
E11  
F9  
16  
21  
61  
F11  
G14  
G15  
J14  
J15  
K5  
76  
117  
126  
137  
153  
158  
169  
1.2-V digital logic power pins. TI recommends placing a  
decoupling capacitor near each VDD pin with a minimum  
total capacitance of approximately 20 uF. The exact  
value of the decoupling capacitance should be  
VDD  
determined by your system voltage regulation solution.  
K6  
P10  
P13  
R10  
R13  
R11  
R12  
P6  
72  
3.3-V Flash power pin. Place a minimum 0.1-µF  
decoupling capacitor on each pin.  
VDD3VFL  
36  
3.3-V analog power pins. Place a minimum 2.2-µF  
decoupling capacitor to VSSA on each pin.  
VDDA  
R6  
54  
32  
Terminal Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
A9  
A18  
B1  
3
11  
15  
E7  
20  
E10  
E13  
E16  
F4  
26  
62  
68  
75  
F7  
82  
F10  
F13  
F16  
G4  
88  
91  
99  
106  
114  
116  
127  
138  
147  
152  
159  
168  
3.3-V digital I/O power pins. Place a minimum 0.1-µF  
decoupling capacitor on each pin. The exact value of the  
decoupling capacitance should be determined by your  
system voltage regulation solution.  
G5  
VDDIO  
G6  
H5  
H6  
L14  
L15  
M1  
M5  
M6  
N14  
N15  
P9  
R9  
V19  
W8  
H16  
120  
Power pins for the 3.3-V on-chip crystal oscillator (X1  
and X2) and the two zero-pin internal oscillators  
(INTOSC). Place a 0.1-μF (minimum) decoupling  
capacitor on each pin.  
VDDOSC  
H17  
125  
Copyright © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
33  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
A1  
A10  
A19  
E5  
E6  
E8  
E12  
E14  
E15  
F5  
F6  
F8  
F12  
F14  
F15  
G16  
G17  
H8  
H9  
H10  
H11  
H12  
H14  
H15  
J5  
Device ground. For Quad Flatpacks (QFPs), the  
PowerPAD on the bottom of the package must be  
soldered to the ground plane of the PCB.  
PWR  
PAD  
VSS  
J6  
J8  
J9  
J10  
J11  
J12  
K8  
K9  
K10  
K11  
K12  
K14  
K15  
L5  
L6  
L8  
L9  
34  
Terminal Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
L10  
L11  
L12  
L18  
M8  
M9  
M10  
M11  
M12  
M14  
M15  
N1  
Device ground. For Quad Flatpacks (QFPs), the  
PowerPAD on the bottom of the package must be  
soldered to the ground plane of the PCB.  
N5  
PWR  
PAD  
VSS  
N6  
P7  
P8  
P11  
P12  
P14  
P15  
R7  
R8  
R14  
R15  
W7  
W19  
H18  
122  
Crystal oscillator (X1 and X2) ground pin. When using an  
external crystal, do not connect this pin to the board  
ground. Instead, connect it to the ground reference of the  
external crystal oscillator circuit.  
If an external crystal is not used, this pin may be  
connected to the board ground.  
VSSOSC  
H19  
P1  
P5  
R5  
V7  
W1  
34  
52  
Analog ground.  
On the PZP package, pin 17 is double-bonded to VSSA  
and VREFLOA. This pin must be connect to VSSA  
VSSA  
.
Copyright © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
35  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Table 3-1. Signal Descriptions (continued)  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
MUX  
POSITION  
NAME  
SPECIAL FUNCTIONS  
ERRORSTS  
U19  
92  
O
Error status output. This pin has an internal pulldown.  
TEST PINS  
Flash test pin 1. Reserved for TI. Must be left  
unconnected.  
FLT1  
FLT2  
W12  
V13  
73  
74  
I/O  
I/O  
Flash test pin 2. Reserved for TI. Must be left  
unconnected.  
(1) I = Input, O = Output, OD = Open Drain, Z = High Impedance  
(2) High-Speed SPI-enabled GPIO mux option. This pin mux option is required when using the SPI in High-Speed Mode (HS_MODE = 1 in  
SPICCR). This mux option is still available when not using the SPI in High-Speed Mode (HS_MODE = 0 in SPICCR).  
(3) This pin has output impedance that can be as low as 22 Ω. This output could have fast edges and ringing depending on the system  
PCB characteristics. If this is a concern, the user should take precautions such as adding a 39 Ω (10% tolerance) series termination  
resistor or implement some other termination scheme. It is also recommended that a system-level signal integrity analysis be performed  
with the provided IBIS models. The termination is not required if this pin is used for input function.  
3.3 Pins With Internal Pullup and Pulldown  
Some pins on the device have internal pullups or pulldowns. Table 3-2 lists the pull direction and when it  
is active. The pullups on GPIO pins are disabled by default and can be enabled through software. In order  
to avoid any floating unbonded inputs, the Boot ROM will enable internal pullups on GPIO pins that are  
not bonded out in a particular package. Other pins noted in Table 3-2 with pullups and pulldowns are  
always on and cannot be disabled.  
Table 3-2. Pins With Internal Pullup and Pulldown  
RESET  
(XRS = 0)  
PIN  
DEVICE BOOT  
APPLICATION SOFTWARE  
Pullup enable is application-  
defined  
GPIOx  
Pullup disabled  
Pullup disabled(1)  
TRST  
Pulldown active  
Pullup active  
TCK  
TMS  
Pullup active  
TDI  
Pullup active  
XRS  
Pullup active  
VREGENZ  
ERRORSTS  
Other pins  
Pulldown active  
Pulldown active  
No pullup or pulldown present  
(1) Pins not bonded out in a given package will have the internal pullups enabled by the Boot ROM.  
36  
Terminal Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
3.4 Pin Multiplexing  
3.4.1 GPIO Muxed Pins  
Table 3-3 shows the GPIO muxed pins. The default for each pin is the GPIO function, secondary functions  
can be selected by setting both the GPyGMUXn.GPIOz and GPyMUXn.GPIOz register bits. The  
GPyGMUXn register should be configured prior to the GPyMUXn to avoid transient pulses on GPIO's from  
alternate mux selections. Columns not shown and blank cells are reserved GPIO Mux settings.  
Table 3-3. GPIO Muxed Pins(1)(2)  
GPIO Mux Selection  
GPIO Index  
0, 4, 8, 12  
1
2
3
5
6
7
15  
GPyGMUXn.  
GPIOz =  
00b, 01b,  
10b, 11b  
00b  
01b  
11b  
GPyMUXn.  
GPIOz =  
00b  
01b  
10b  
11b  
01b  
10b  
11b  
11b  
GPIO0  
EPWM1A (O)  
EPWM1B (O)  
EPWM2A (O)  
EPWM2B (O)  
EPWM3A (O)  
EPWM3B (O)  
EPWM4A (O)  
EPWM4B (O)  
EPWM5A (O)  
EPWM5B (O)  
EPWM6A (O)  
EPWM6B (O)  
EPWM7A (O)  
EPWM7B (O)  
EPWM8A (O)  
EPWM8B (O)  
SPISIMOA (I/O)  
SPISOMIA (I/O)  
SPICLKA (I/O)  
SPISTEA (I/O)  
EQEP1A (I)  
SDAA (I/OD)  
SCLA (I/OD)  
GPIO1  
MFSRB (I/O)  
MCLKRB (I/O)  
GPIO2  
OUTPUTXBAR1 (O)  
OUTPUTXBAR2 (O)  
OUTPUTXBAR3 (O)  
SDAB (I/OD)  
SCLB (I/OD)  
GPIO3  
OUTPUTXBAR2 (O)  
MFSRA (I/O)  
GPIO4  
CANTXA (O)  
CANRXA (I)  
GPIO5  
OUTPUTXBAR3 (O)  
GPIO6  
OUTPUTXBAR4 (O) EXTSYNCOUT (O)  
EQEP3A (I)  
EQEP3B (I)  
EQEP3S (I/O)  
EQEP3I (I/O)  
EQEP1A (I)  
EQEP1B (I)  
EQEP1S (I/O)  
EQEP1I (I/O)  
CANTXB (O)  
CANRXB (I)  
GPIO7  
MCLKRA (I/O)  
CANTXB (O)  
SCITXDB (O)  
CANRXB (I)  
SCIRXDB (I)  
CANTXB (O)  
CANRXB (I)  
SCITXDB (O)  
SCIRXDB (I)  
CANTXB (O)  
CANRXB (I)  
SCITXDB (O)  
SCIRXDB (I)  
MDXA (O)  
OUTPUTXBAR5 (O)  
ADCSOCAO (O)  
OUTPUTXBAR6 (O)  
ADCSOCBO (O)  
OUTPUTXBAR7 (O)  
MDXB (O)  
GPIO8  
SCITXDA (O)  
SCIRXDA (I)  
GPIO9  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
GPIO16  
GPIO17  
GPIO18  
GPIO19  
GPIO20  
GPIO21  
GPIO22  
GPIO23  
GPIO24  
GPIO25  
GPIO26  
GPIO27  
GPIO28  
GPIO29  
GPIO30  
GPIO31  
GPIO32  
GPIO33  
GPIO34  
GPIO35  
GPIO36  
GPIO37  
GPIO38  
GPIO39  
SCITXDB (O)  
SCIRXDB (I)  
UPP-WAIT (I/O)  
UPP-START (I/O)  
UPP-ENA (I/O)  
UPP-D7 (I/O)  
UPP-D6 (I/O)  
UPP-D5 (I/O)  
UPP-D4 (I/O)  
UPP-D3 (I/O)  
UPP-D2 (I/O)  
UPP-D1 (I/O)  
UPP-D0 (I/O)  
UPP-CLK (I/O)  
SCITXDC (O)  
SCIRXDC (I)  
OUTPUTXBAR3 (O)  
OUTPUTXBAR4 (O)  
MDRB (I)  
MCLKXB (I/O)  
MFSXB (I/O)  
OUTPUTXBAR7 (O)  
OUTPUTXBAR8 (O)  
CANRXA (I)  
EPWM9A (O)  
EPWM9B (O)  
EPWM10A (O)  
EPWM10B (O)  
EPWM11A (O)  
EPWM11B (O)  
EPWM12A (O)  
EPWM12B (O)  
SD1_D1 (I)  
SD1_C1 (I)  
SD1_D2 (I)  
SD1_C2 (I)  
SD1_D3 (I)  
SD1_C3 (I)  
SD1_D4 (I)  
SD1_C4 (I)  
SD2_D1 (I)  
SD2_C1 (I)  
SD2_D2 (I)  
SD2_C2 (I)  
SD2_D3 (I)  
SD2_C3 (I)  
SD2_D4 (I)  
SD2_C4 (I)  
CANTXA (O)  
CANTXB (O)  
EQEP1B (I)  
MDRA (I)  
CANRXB (I)  
EQEP1S (I/O)  
EQEP1I (I/O)  
MCLKXA (I/O)  
MFSXA (I/O)  
EQEP2A (I)  
EQEP2B (I)  
EQEP2I (I/O)  
EQEP2S (I/O)  
EM1CS4 (O)  
EM1SDCKE (O)  
EM1CLK (O)  
EM1WE (O)  
EM1CS0 (O)  
EM1RNW (O)  
EM1CS2 (O)  
EM1CS3 (O)  
EM1WAIT (I)  
EM1OE (O)  
EM1A0 (O)  
SCITXDB (O)  
SCIRXDB (I)  
SPICLKB (I/O)  
SPISTEB (I/O)  
SPISIMOB (I/O)  
SPISOMIB (I/O)  
SPICLKB (I/O)  
SPISTEB (I/O)  
EQEP3A (I)  
OUTPUTXBAR1 (O)  
OUTPUTXBAR2 (O)  
OUTPUTXBAR3 (O)  
OUTPUTXBAR4 (O)  
SCIRXDA (I)  
MDXB (O)  
MDRB (I)  
MCLKXB (I/O)  
MFSXB (I/O)  
OUTPUTXBAR3 (O)  
OUTPUTXBAR4 (O)  
OUTPUTXBAR5 (O)  
OUTPUTXBAR6 (O)  
OUTPUTXBAR7 (O)  
OUTPUTXBAR8 (O)  
SCITXDA (O)  
CANRXA (I)  
EQEP3B (I)  
EQEP3S (I/O)  
EQEP3I (I/O)  
CANTXA (O)  
SDAA (I/OD)  
SCLA (I/OD)  
OUTPUTXBAR1 (O)  
SCIRXDA (I)  
SDAB (I/OD)  
SCLB (I/OD)  
CANRXA (I)  
CANTXA (O)  
CANTXB (O)  
CANRXB (I)  
SCITXDA (O)  
OUTPUTXBAR2 (O)  
SCITXDC (O)  
SCIRXDC (I)  
EM1A1 (O)  
(1) I = Input, O = Output, OD = Open Drain  
(2) GPIO Index settings of 9, 10, 11, 13, and 14 are reserved.  
Copyright © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
37  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Table 3-3. GPIO Muxed Pins(1)(2) (continued)  
GPIO Mux Selection  
GPIO Index  
0, 4, 8, 12  
1
2
3
5
6
7
15  
GPyGMUXn.  
GPIOz =  
00b, 01b,  
10b, 11b  
00b  
01b  
11b  
GPyMUXn.  
GPIOz =  
00b  
01b  
10b  
11b  
01b  
10b  
11b  
11b  
GPIO40  
EM1A2 (O)  
EM1A3 (O)  
SDAB (I/OD)  
SCLB (I/OD)  
SDAA (I/OD)  
SCLA (I/OD)  
GPIO41  
GPIO42  
GPIO43  
GPIO44  
GPIO45  
GPIO46  
GPIO47  
GPIO48  
GPIO49  
GPIO50  
GPIO51  
GPIO52  
GPIO53  
GPIO54  
GPIO55  
GPIO56  
GPIO57  
GPIO58  
GPIO59  
GPIO60  
GPIO61  
GPIO62  
GPIO63  
GPIO64  
GPIO65  
GPIO66  
GPIO67  
GPIO68  
GPIO69  
GPIO70  
GPIO71  
GPIO72  
GPIO73  
GPIO74  
GPIO75  
GPIO76  
GPIO77  
GPIO78  
GPIO79  
GPIO80  
GPIO81  
GPIO82  
GPIO83  
GPIO84  
GPIO85  
GPIO86  
GPIO87  
GPIO88  
GPIO89  
SCITXDA (O)  
SCIRXDA (I)  
EM1A4 (O)  
EM1A5 (O)  
EM1A6 (O)  
SCIRXDD (I)  
SCITXDD (O)  
SCITXDA (O)  
SCIRXDA (I)  
EM1A7 (O)  
OUTPUTXBAR3 (O)  
OUTPUTXBAR4 (O)  
EQEP1A (I)  
EM1A8 (O)  
SD1_D1 (I)  
SD1_C1 (I)  
SD1_D2 (I)  
SD1_C2 (I)  
SD1_D3 (I)  
SD1_C3 (I)  
SD1_D4 (I)  
SD1_C4 (I)  
SD2_D1 (I)  
SD2_C1 (I)  
SD2_D2 (I)  
SD2_C2 (I)  
SD2_D3 (I)  
SD2_C3 (I)  
SD2_D4 (I)  
SD2_C4 (I)  
EM1A9 (O)  
EM1A10 (O)  
EM1A11 (O)  
EM1A12 (O)  
EM1D31 (I/O)  
EM1D30 (I/O)  
EM1D29 (I/O)  
EM1D28 (I/O)  
EM1D27 (I/O)  
EM1D26 (I/O)  
EM1D25 (I/O)  
EM1D24 (I/O)  
EM1D23 (I/O)  
EM1D22 (I/O)  
EM1D21 (I/O)  
EM1D20 (I/O)  
EM1D19 (I/O)  
EM1D18 (I/O)  
EM1D17 (I/O)  
EM1D16 (I/O)  
EM1D15 (I/O)  
EM1D14 (I/O)  
EM1D13 (I/O)  
EM1D12 (I/O)  
EM1D11 (I/O)  
EM1D10 (I/O)  
EM1D9 (I/O)  
EM1D8 (I/O)  
EM1D7 (I/O)  
EM1D6 (I/O)  
EM1D5 (I/O)  
EM1D4 (I/O)  
EM1D3 (I/O)  
EM1D2 (I/O)  
EM1D1 (I/O)  
SPISIMOC (I/O)  
SPISOMIC (I/O)  
SPICLKC (I/O)  
SPISTEC (I/O)  
SCITXDB (O)  
SCIRXDB (I)  
EQEP1B (I)  
EQEP1S (I/O)  
EQEP1I (I/O)  
EM2D15 (I/O)  
EM2D14 (I/O)  
EM2D13 (I/O)  
EM2D12 (I/O)  
EM2D11 (I/O)  
EM2D10 (I/O)  
EM2D9 (I/O)  
EM2D8 (I/O)  
EM2D7 (I/O)  
EM2D6 (I/O)  
EM2D5 (I/O)  
EM2D4 (I/O)  
EM2D3 (I/O)  
EM2D2 (I/O)  
EM2D1 (I/O)  
EM2D0 (I/O)  
SPISIMOA (I/O)  
SPISOMIA (I/O)  
SPICLKA (I/O)  
SPISTEA (I/O)  
MCLKRA (I/O)  
MFSRA (I/O)  
EQEP2A (I)  
EQEP2B (I)  
EQEP2S (I/O)  
SCITXDC (O)  
SCIRXDC (I)  
SPICLKB (I/O)  
SPISTEB (I/O)  
SPISIMOB (I/O)  
SPISOMIB (I/O)  
CANRXA (I)  
EQEP2I (I/O)  
OUTPUTXBAR1 (O)  
OUTPUTXBAR2 (O)  
OUTPUTXBAR3 (O)  
OUTPUTXBAR4 (O)  
EQEP3A (I)  
SPISIMOA(3) (I/O)  
SPISOMIA(3) (I/O)  
SPICLKA(3) (I/O)  
SPISTEA(3) (I/O)  
MCLKRB (I/O)  
MFSRB (I/O)  
SCIRXDC (I)  
SCITXDC (O)  
EQEP3B (I)  
CANTXA (O)  
SCIRXDA (I)  
SPISIMOB(3) (I/O)  
SPISOMIB(3) (I/O)  
SPICLKB(3) (I/O)  
SPISTEB(3) (I/O)  
EQEP3S (I/O)  
EQEP3I (I/O)  
SCITXDA (O)  
SDAB (I/OD)  
SCLB (I/OD)  
SCITXDB (O)  
SCIRXDB (I)  
SCITXDC (O)  
SCIRXDC (I)  
SPISIMOC(3) (I/O)  
SPISOMIC(3) (I/O)  
SPICLKC(3) (I/O)  
SPISTEC(3) (I/O)  
CANRXA (I)  
CANTXA (O)  
CANTXB (O)  
CANRXB (I)  
XCLKOUT (O)  
SCITXDD (O)  
SCIRXDD (I)  
EQEP2A (I)  
EQEP2B (I)  
EQEP2S (I/O)  
EQEP2I (I/O)  
SCITXDA (O)  
SCIRXDA (I)  
SCITXDB (O)  
SCIRXDB (I)  
MDXB (O)  
MDRB (I)  
MDXA (O)  
MDRA (I)  
EM1D0 (I/O)  
EM1A13 (O)  
EM1A14 (O)  
EM1A15 (O)  
EM1A16 (O)  
EM1CAS (O)  
EM1RAS (O)  
EM1DQM0 (O)  
EM1DQM1 (O)  
MCLKXB (I/O)  
MFSXB (I/O)  
MCLKXA (I/O)  
MFSXA (I/O)  
SCITXDC (O)  
(3) High-Speed SPI-enabled GPIO mux option. This pin mux option is required when using the SPI in High-Speed Mode (HS_MODE = 1 in  
SPICCR). This mux option is still available when not using the SPI in High-Speed Mode (HS_MODE = 0 in SPICCR).  
38  
Terminal Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
Table 3-3. GPIO Muxed Pins(1)(2) (continued)  
GPIO Mux Selection  
GPIO Index  
0, 4, 8, 12  
1
2
3
5
6
7
15  
GPyGMUXn.  
GPIOz =  
00b, 01b,  
10b, 11b  
00b  
01b  
11b  
GPyMUXn.  
GPIOz =  
00b  
01b  
10b  
11b  
01b  
10b  
11b  
11b  
GPIO90  
EM1A17 (O)  
EM1A18 (O)  
EM1A19 (O)  
EM1DQM2 (O)  
EM1DQM3 (O)  
EM1BA1 (O)  
EM1BA0 (O)  
SCIRXDC (I)  
SDAA (I/OD)  
SCLA (I/OD)  
SCITXDD (O)  
SCIRXDD (I)  
GPIO91  
GPIO92  
GPIO93  
GPIO94  
GPIO95  
GPIO96  
EM2DQM1 (O)  
EM2DQM0 (O)  
EM2A0 (O)  
EQEP1A (I)  
EQEP1B (I)  
EQEP1S (I/O)  
EQEP1I (I/O)  
EQEP2A (I)  
EQEP2B (I)  
EQEP2S (I/O)  
EQEP2I (I/O)  
EQEP3A (I)  
EQEP3B (I)  
EQEP3S (I/O)  
EQEP3I (I/O)  
GPIO97  
GPIO98  
GPIO99  
EM2A1 (O)  
GPIO100  
GPIO101  
GPIO102  
GPIO103  
GPIO104  
GPIO105  
GPIO106  
GPIO107  
GPIO108  
GPIO109  
GPIO110  
GPIO111  
GPIO112  
GPIO113  
GPIO114  
GPIO115  
GPIO116  
GPIO117  
GPIO118  
GPIO119  
GPIO120  
GPIO121  
GPIO122  
GPIO123  
GPIO124  
GPIO125  
GPIO126  
GPIO127  
GPIO128  
GPIO129  
GPIO130  
GPIO131  
GPIO132  
EM2A2 (O)  
SPISIMOC (I/O)  
SPISOMIC (I/O)  
SPICLKC (I/O)  
SPISTEC (I/O)  
SCITXDD (O)  
SCIRXDD (I)  
EM2A3 (O)  
EM2A4 (O)  
EM2A5 (O)  
SDAA (I/OD)  
SCLA (I/OD)  
EM2A6 (O)  
EM2A7 (O)  
EM2A8 (O)  
SCITXDC (O)  
SCIRXDC (I)  
EM2A9 (O)  
EM2A10 (O)  
EM2A11 (O)  
EM2WAIT (I)  
EM2BA0 (O)  
EM2BA1 (O)  
EM2CAS (O)  
EM2RAS (O)  
EM2CS0 (O)  
EM2CS2 (O)  
EM2SDCKE (O)  
EM2CLK (O)  
EM2RNW (O)  
EM2WE (O)  
EM2OE (O)  
USB0PFLT  
USB0EPEN  
SPISIMOC (I/O)  
SPISOMIC (I/O)  
SPICLKC (I/O)  
SPISTEC (I/O)  
SD1_D1 (I)  
SD1_C1 (I)  
SD1_D2 (I)  
SD1_C2 (I)  
SD1_D3 (I)  
SD1_C3 (I)  
SD1_D4 (I)  
SD1_C4 (I)  
SD2_D1 (I)  
SD2_C1 (I)  
SD2_D2 (I)  
GPIO133/  
AUXCLKIN  
SD2_C2 (I)  
GPIO134  
GPIO135  
GPIO136  
GPIO137  
GPIO138  
GPIO139  
GPIO140  
SD2_D3 (I)  
SD2_C3 (I)  
SD2_D4 (I)  
SD2_C4 (I)  
SCITXDA (O)  
SCIRXDA (I)  
SCITXDB (O)  
SCIRXDB (I)  
SCIRXDC (I)  
SCITXDC (O)  
Copyright © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
39  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Table 3-3. GPIO Muxed Pins(1)(2) (continued)  
GPIO Mux Selection  
GPIO Index  
0, 4, 8, 12  
1
2
3
5
6
7
15  
GPyGMUXn.  
GPIOz =  
00b, 01b,  
10b, 11b  
00b  
01b  
11b  
GPyMUXn.  
GPIOz =  
00b  
01b  
10b  
11b  
01b  
10b  
11b  
11b  
GPIO141  
GPIO142  
GPIO143  
GPIO144  
GPIO145  
GPIO146  
GPIO147  
GPIO148  
GPIO149  
GPIO150  
GPIO151  
GPIO152  
GPIO153  
GPIO154  
GPIO155  
GPIO156  
GPIO157  
GPIO158  
GPIO159  
GPIO160  
GPIO161  
GPIO162  
GPIO163  
GPIO164  
GPIO165  
GPIO166  
GPIO167  
GPIO168  
SCIRXDD (I)  
SCITXDD (O)  
EPWM1A (O)  
EPWM1B (O)  
EPWM2A (O)  
EPWM2B (O)  
EPWM3A (O)  
EPWM3B (O)  
EPWM4A (O)  
EPWM4B (O)  
EPWM5A (O)  
EPWM5B (O)  
EPWM6A (O)  
EPWM6B (O)  
EPWM7A (O)  
EPWM7B (O)  
EPWM8A (O)  
EPWM8B (O)  
EPWM9A (O)  
EPWM9B (O)  
EPWM10A (O)  
EPWM10B (O)  
EPWM11A (O)  
EPWM11B (O)  
EPWM12A (O)  
EPWM12B (O)  
40  
Terminal Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
3.4.2 Input X-BAR  
The Input X-BAR is used to route any GPIO input to the ADC, eCAP, and ePWM peripherals as well as to  
external interrupts (XINT) (see Figure 3-6). Table 3-4 shows the input X-BAR destinations. For details on  
configuring the Input X-BAR, see the Crossbar (X-BAR) chapter of the TMS320F2837xD Dual-Core  
Delfino Microcontrollers Technical Reference Manual.  
INPUT7  
INPUT8  
INPUT9  
INPUT10  
eCAP1  
eCAP2  
eCAP3  
eCAP4  
eCAP5  
eCAP6  
GPIO0  
GPIOx  
Asynchronous  
Synchronous  
Sync. + Qual.  
Input X-BAR  
INPUT11  
INPUT12  
TZ1,TRIP1  
TZ2,TRIP2  
TZ3,TRIP3  
XINT5  
XINT4  
XINT3  
XINT2  
XINT1  
CPU PIE  
CLA  
TRIP4  
TRIP5  
ePWM  
Modules  
TRIP7  
TRIP8  
TRIP9  
TRIP10  
TRIP11  
TRIP12  
ePWM  
X-BAR  
TRIP6  
ADCEXTSOC  
ADC  
EXTSYNCIN1  
EXTSYNCIN2  
ePWM and eCAP  
Sync Chain  
Output X-BAR  
Figure 3-6. Input X-BAR  
Table 3-4. Input X-BAR Destinations  
INPUT  
INPUT1  
INPUT2  
INPUT3  
INPUT4  
INPUT5  
INPUT6  
INPUT7  
INPUT8  
INPUT9  
INPUT10  
INPUT11  
INPUT12  
INPUT13  
INPUT14  
DESTINATIONS  
EPWM[TZ1,TRIP1], EPWM X-BAR, Output X-BAR  
EPWM[TZ2,TRIP2], EPWM X-BAR, Output X-BAR  
EPWM[TZ3,TRIP3], EPWM X-BAR, Output X-BAR  
XINT1, EPWM X-BAR, Output X-BAR  
XINT2, ADCEXTSOC, EXTSYNCIN1, EPWM X-BAR, Output X-BAR  
XINT3, EPWM[TRIP6], EXTSYNCIN2, EPWM X-BAR, Output X-BAR  
ECAP1  
ECAP2  
ECAP3  
ECAP4  
ECAP5  
ECAP6  
XINT4  
XINT5  
Copyright © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
41  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
3.4.3 Output X-BAR and ePWM X-BAR  
The Output X-BAR has eight outputs which can be selected on the GPIO mux as OUTPUTXBARx. The  
ePWM X-BAR has eight outputs which are connected to the TRIPx inputs of the ePWM. The sources for  
both the Output X-BAR and ePWM X-BAR are shown in Figure 3-7. For details on the Output X-BAR and  
ePWM X-BAR, see the Crossbar (X-BAR) chapter of the TMS320F2837xD Dual-Core Delfino  
Microcontrollers Technical Reference Manual.  
CTRIPOUTH  
CTRIPOUTL  
(Output X-BAR only)  
CMPSSx  
CTRIPH  
CTRIPL  
(ePWM X-BAR only)  
ePWM and eCAP  
Sync Chain  
EXTSYNCOUT  
OUTPUT1  
OUTPUT2  
ADCSOCAO  
OUTPUT3  
ADCSOCAO  
OUTPUT4  
Select Ckt  
GPIO  
Mux  
Output  
X-BAR  
OUTPUT5  
OUTPUT6  
OUTPUT7  
OUTPUT8  
ADCSOCBO  
Select Ckt  
ADCSOCBO  
ECAPxOUT  
eCAPx  
ADCx  
EVT1  
EVT2  
EVT3  
EVT4  
TRIP4  
TRIP5  
TRIP7  
TRIP8  
TRIP9  
TRIP10  
TRIP11  
TRIP12  
All  
ePWM  
Modules  
ePWM  
X-BAR  
INPUT1  
INPUT2  
INPUT3  
INPUT4  
INPUT5  
INPUT6  
Input X-Bar  
OTHER DESTINATIONS  
(see Input X-BAR)  
X-BAR Flags  
(shared)  
FLT1.COMPH  
FLT1.COMPL  
SDFMx  
FLT4.COMPH  
FLT4.COMPL  
Figure 3-7. Output X-BAR and ePWM X-BAR  
42  
Terminal Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
3.4.4 USB Pin Muxing  
Table 3-5 shows assignment of the alternate USB function mapping. These can be configured with the  
GPBAMSEL register.  
Table 3-5. Alternate USB Function  
GPIO  
GPBAMSEL SETTING  
GPBAMSEL[10] = 1b  
GPBAMSEL[11] = 1b  
USB FUNCTION  
USB0DM  
GPIO42  
GPIO43  
USB0DP  
3.4.5 High-Speed SPI Pin Muxing  
The SPI module on this device has a high-speed mode. To achieve the highest possible speed, a special  
GPIO configuration is used on a single GPIO mux option for each SPI. These GPIOs may also be used by  
the SPI when not in high-speed mode (HS_MODE = 0).  
To select the mux options that enable the SPI high-speed mode, configure the GPyGMUX and GPyMUX  
registers as shown in Table 3-6.  
Table 3-6. GPIO Configuration for High-Speed SPI  
GPIO  
SPI SIGNAL  
MUX CONFIGURATION  
SPIA  
SPIB  
SPIC  
GPIO58  
GPIO59  
GPIO60  
GPIO61  
SPISIMOA  
SPISOMIA  
SPICLKA  
SPISTEA  
GPBGMUX2[21:20]=11b  
GPBMUX2[21:20]=11b  
GPBMUX2[23:22]=11b  
GPBMUX2[25:24]=11b  
GPBMUX2[27:26]=11b  
GPBGMUX2[23:22]=11b  
GPBGMUX2[25:24]=11b  
GPBGMUX2[27:26]=11b  
GPIO63  
GPIO64  
GPIO65  
GPIO66  
SPISIMOB  
SPISOMIB  
SPICLKB  
SPISTEB  
GPBGMUX2[31:30]=11b  
GPCGMUX1[1:0]=11b  
GPCGMUX1[3:2]=11b  
GPCGMUX1[5:4]=11b  
GPBMUX2[31:30]=11b  
GPCMUX1[1:0]=11b  
GPCMUX1[3:2]=11b  
GPCMUX1[5:4]=11b  
GPIO69  
GPIO70  
GPIO71  
GPIO72  
SPISIMOC  
SPISOMIC  
SPICLKC  
SPISTEC  
GPCGMUX1[11:10]=11b  
GPCGMUX1[13:12]=11b  
GPCGMUX1[15:14]=11b  
GPCGMUX1[17:16]=11b  
GPCMUX1[11:10]=11b  
GPCMUX1[13:12]=11b  
GPCMUX1[15:14]=11b  
GPCMUX1[17:16]=11b  
Copyright © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
43  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
3.5 Connections for Unused Pins  
For applications that do not need to use all functions of the device, Table 3-7 lists acceptable conditioning  
for any unused pins. When multiple options are listed in Table 3-7, any are acceptable. Pins not listed in  
Table 3-7 must be connected according to Table 3-1.  
Table 3-7. Connections for Unused Pins  
SIGNAL NAME  
ACCEPTABLE PRACTICE  
Analog  
VREFHIx  
VREFLOx  
Tie to VDDA  
Tie to VSSA  
No Connect  
Tie to VSSA  
ADCINx  
Digital  
Input mode with internal pullup enabled  
GPIOx  
Input mode with external pullup or pulldown resistor  
Output mode with internal pullup disabled  
X1  
X2  
Tie to VSS  
No Connect  
No Connect  
TCK  
TDI  
Pullup resistor  
No Connect  
Pullup resistor  
TDO  
No Connect  
TMS  
No Connect  
TRST  
Pulldown resistor (2.2 kΩ or smaller)  
Tie to VDDIO. VREG is not supported.  
No Connect  
VREGENZ  
ERRORSTS  
FLT1  
No Connect  
FLT2  
No Connect  
Power and Ground  
VDD  
All VDD pins must be connected per Table 3-1.  
If a separate analog supply is not used, tie to VDDIO  
All VDDIO pins must be connected per Table 3-1.  
Must be tied to VDDIO  
VDDA  
.
VDDIO  
VDD3VFL  
VDDOSC  
VSS  
Must be tied to VDDIO  
All VSS pins must be connected to board ground.  
VSSA  
If a separate analog ground is not used, tie to VSS  
.
VSSOSC  
If an external crystal is not used, this pin may be connected to the board ground.  
44  
Terminal Configuration and Functions  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4 Specifications  
4.1 Absolute Maximum Ratings(1)(2)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–20  
MAX  
4.6  
4.6  
4.6  
1.5  
4.6  
4.6  
4.6  
20  
UNIT  
VDDIO with respect to VSS  
VDD3VFL with respect to VSS  
Supply voltage  
V
VDDOSC with respect to VSS  
VDD with respect to VSS  
Analog voltage  
Input voltage  
Output voltage  
VDDA with respect to VSSA  
V
V
V
VIN (3.3 V)  
VO  
Digital input (per pin), IIK (VIN < VSS or VIN > VDDIO  
)
Analog input (per pin), IIKANALOG  
–20  
–20  
20  
20  
Input clamp current  
(VIN < VSSA or VIN > VDDA  
)
mA  
Total for all inputs, IIKTOTAL  
(VIN < VSS/VSSA or VIN > VDDIO/VDDA  
)
Output current  
Digital output (per pin), IOUT  
–20  
–55  
–65  
20  
150  
150  
mA  
°C  
Operating junction temperature  
Storage temperature(3)  
TJ  
Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device life.  
For additional information, see Semiconductor and IC Package Thermal Metrics.  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
45  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.2 ESD Ratings  
VALUE  
UNIT  
TMS320F28377D in 337-ball ZWT package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±500  
V(ESD)  
TMS320F28377D in 176-pin PTP package  
V(ESD) Electrostatic discharge (ESD)  
Electrostatic discharge (ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±500  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
46  
Specifications  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.3 Recommended Operating Conditions  
MIN  
3.14  
1.14  
NOM  
3.3  
1.2  
0
MAX  
3.47  
1.26  
UNIT  
V
(1)  
Device supply voltage, I/O, VDDIO  
Device supply voltage, VDD  
Supply ground, VSS  
V
V
Analog supply voltage, VDDA  
Analog ground, VSSA  
3.14  
–55  
3.3  
0
3.47  
125  
V
V
(2)  
Junction temperature, TJ  
°C  
(1) VDDIO, VDD3VFL, and VDDOSC should be maintained within 0.3 V of each other.  
(2) Operation above TJ = 105°C for extended duration will reduce the lifetime of the device. See Calculating Useful Lifetimes of Embedded  
Processors for more information.  
1000000  
100000  
10000  
1000  
90  
100  
110  
120  
130  
140  
150  
Temperature (èC)  
D001  
(1) Silicon operating life design goal is 100000 power-on hours (POH) at 105°C junction temperature (does not include package  
interconnect life).  
(2) The predicted operating lifetime versus junction temperature is based on reliability modeling using electromigration as the dominant  
failure mechanism affecting device wearout for the specific device process and design characteristics.  
Figure 4-1. TMS320F28377D-EP Operating Life Derating Chart  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
47  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.4 Power Consumption Summary  
Current values listed in this section are representative for the test conditions given and not the absolute  
maximum possible. The actual device currents in an application will vary with application code and pin  
configurations. Table 4-1 shows the device current consumption at 200-MHz SYSCLK.  
Table 4-1. Device Current Consumption at 200-MHz SYSCLK  
(1)  
IDD  
TYP(2)  
IDDIO  
TYP(2)  
IDDA  
TYP(2)  
IDD3VFL  
TYP(2)  
MODE  
TEST CONDITIONS  
MAX(3)  
MAX(3)  
MAX(3)  
MAX(3)  
Code is running out of RAM.(4)  
All I/O pins are left unconnected.  
Operational  
(RAM)  
Peripherals not active have their  
clocks disabled.  
325 mA  
440 mA  
30 mA  
13 mA  
20 mA  
33 mA  
40 mA  
FLASH is read and in active state.  
XCLKOUT is enabled at SYSCLK/4.  
Both CPU1 and CPU2 are in IDLE  
mode.  
IDLE  
105 mA  
30 mA  
210 mA  
135 mA  
3 mA  
3 mA  
10 mA  
10 mA  
10 µA  
5 µA  
150 µA  
150 µA  
10 µA  
10 µA  
150 µA  
150 µA  
Flash is powered down.  
XCLKOUT is turned off.  
Both CPU1 and CPU2 are in  
STANDBY mode.  
STANDBY  
Flash is powered down.  
XCLKOUT is turned off.  
CPU1 watchdog is running.  
Flash is powered down.  
XCLKOUT is turned off.  
HALT(5)  
1.5 mA  
300 µA  
110 mA  
4 mA  
750 µA  
750 µA  
2 mA  
2 mA  
5 µA  
5 µA  
150 µA  
75 µA  
10 µA  
1 µA  
150 µA  
50 µA  
CPU1.M0 and CPU1.M1 RAMs are in  
low-power data retention mode.  
HIBERNATE(6)  
CPU2.M0 and CPU2.M1 RAMs are in  
low-power data retention mode.  
CPU1 is running from RAM.  
CPU2 is running from Flash.  
All I/O pins are left unconnected.  
Peripheral clocks are disabled.  
Flash  
Erase/Program  
242 mA  
360 mA  
3 mA  
10 mA  
10 µA  
150 µA  
53 mA  
65 mA  
CPU1 is performing Flash Erase and  
Programming.  
CPU2 is accessing Flash locations to  
keep bank active.  
XCLKOUT is turned off.  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) TYP: Vnom, 30°C  
(3) MAX: Vmax, 125°C  
(4) The following is executed in a loop on CPU1:  
All of the communication peripherals are exercised in loop-back mode: CAN-A to CAN-B; SPI-A to SPI-C; SCI-A to SCI-D; I2C-A to  
I2C-B; McBSP-A to McBSP-B; USB  
SDFM1 to SDFM4 active  
ePWM1 to ePWM12 generate 400-kHz PWM output on 24 pins  
CPU TIMERs active  
DMA does 32-bit burst transfers  
CLA1 does multiply-accumulate tasks  
All ADCs perform continuous conversion  
All DACs ramp voltage up/down at 150 kHz  
CMPSS1 to CMPSS8 active  
The following is executed in a loop on CPU2:  
CPU TIMERs active  
CLA1 does multiply-accumulate tasks  
VCU does complex multiply/accumulate with parallel load  
TMU calculates a cosine  
FPU does multiply/accumulate with parallel load  
(5) CPU2 must go into IDLE mode before CPU1 enters HALT mode.  
(6) CPU2 must go into reset/IDLE/STANDBY mode before CPU1 enters HIBERNATE mode.  
48  
Specifications  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.4.1 Current Consumption Graphs  
Figure 4-2 and Figure 4-3 are a typical representation of the relationship between frequency and current  
consumption/power on the device. The operational test from Table 4-1 was run across frequency at Vmax  
and high temperature. Actual results will vary based on the system implementation and conditions.  
0.5  
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
0.05  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110 120 130 140 150 160 170 180 190 200  
SYSCLK (MHz)  
VDD  
VDDIO  
VDDA  
VDD3VFL  
Figure 4-2. Operational Current Versus Frequency  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110 120 130 140 150 160 170 180 190 200  
SYSCLK (MHz)  
Power  
Figure 4-3. Power Versus Frequency  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
49  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Leakage current will increase with operating temperature in a nonlinear manner. The difference in VDD  
current between TYP and MAX conditions can be seen in Figure 4-4. The current consumption in HALT  
mode is primarily leakage current as there is no active switching if the internal oscillator has been powered  
down.  
Figure 4-4 shows the typical leakage current across temperature. The device was placed into HALT mode  
under nominal voltage conditions.  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
-60  
-50  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100 110 120 130  
Temperature (èC)  
D002  
Figure 4-4. IDD Leakage Current Versus Temperature  
50  
Specifications  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.4.2 Reducing Current Consumption  
The F28377D provides some methods to reduce the device current consumption:  
Any one of the four low-power modes—IDLE, STANDBY, HALT, and HIBERNATE—could be entered  
during idle periods in the application.  
The flash module may be powered down if the code is run from RAM.  
Disable the pullups on pins that assume an output function.  
Each peripheral has an individual clock-enable bit (PCLKCRx). Reduced current consumption may be  
achieved by turning off the clock to any peripheral that is not used in a given application. Table 4-2  
indicates the typical current reduction that may be achieved by disabling the clocks using the  
PCLKCRx register.  
Table 4-2. Current on VDD Supply by Various  
Peripherals (at 200 MHz)(1)  
PERIPHERAL  
MODULE(2)  
IDD CURRENT  
REDUCTION (mA)  
ADC(3)  
3.3  
3.3  
1.4  
1.4  
0.3  
0.6  
2.9  
0.6  
2.9  
2.6  
4.5  
1.7  
1.7  
1.3  
1.6  
0.9  
2
CAN  
CLA  
CMPSS(3)  
CPUTIMER  
DAC(3)  
DMA  
eCAP  
EMIF1  
EMIF2  
ePWM1 to ePWM4(4)  
ePWM5 to ePWM12(4)  
HRPWM(4)  
I2C  
McBSP  
SCI  
SDFM  
SPI  
uPP  
0.5  
7.3  
23.8  
USB and AUXPLL at 60 MHz  
(1) At Vmax and 125°C.  
(2) All peripherals are disabled upon reset. Use the PCLKCRx register  
to individually enable peripherals. For peripherals with multiple  
instances, the current quoted is for a single module.  
(3) This number represents the current drawn by the digital portion of  
the ADC, CMPSS, and DAC modules.  
(4) The ePWM is at /2 of SYSCLK.  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
51  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.5 Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
TEST  
PARAMETER  
MIN  
TYP  
MAX UNIT  
CONDITIONS  
IOH = IOH MIN  
IOH = –100 μA  
IOL = IOL MAX  
IOL = 100 µA  
VDDIO * 0.8  
VDDIO – 0.2  
VOH  
High-level output voltage  
Low-level output voltage  
V
0.4  
V
VOL  
IOH  
IOL  
0.2  
High-level output source current for all output  
pins  
–4  
mA  
Low-level output sink current for all output pins  
GPIO0–GPIO7,  
4
mA  
GPIO42–GPIO43,  
GPIO46–GPIO47  
VDDIO * 0.7  
VDDIO + 0.3  
High-level input voltage  
(3.3 V)  
VIH  
V
All other pins  
2.0  
VDDIO + 0.3  
0.8  
VIL  
Low-level input voltage (3.3 V)  
VSS – 0.3  
V
Digital inputs with  
VDDIO = 3.3 V  
VIN = VDDIO  
Ipulldown  
Input current  
Input current  
120  
150  
µA  
pulldown(1)  
Digital inputs with  
pullup enabled(1)  
VDDIO = 3.3 V  
VIN = 0 V  
Ipullup  
µA  
Pullups disabled  
0 V VIN VDDIO  
Digital  
2
Analog (except  
ADCINB0 or  
DACOUTx)  
2
ILEAK  
Pin leakage  
µA  
pF  
0 V VIN VDDA  
ADCINB0  
DACOUTx  
2
66  
2
11(2)  
CI  
Input capacitance  
(1) See Table 3-2 for a list of pins with a pullup or pulldown.  
(2) The MAX input leakage shown on ADCINB0 is at high temperature.  
52  
Specifications  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.6 Thermal Resistance Characteristics  
4.6.1 GWT Package  
°C/W(1)  
8.8  
AIR FLOW (lfm)(2)  
RΘJC  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
Junction-to-free air thermal resistance  
N/A  
N/A  
0
RΘJB  
11.6  
23.2  
19.0  
17.8  
16.5  
0.2  
RΘJA (High k PCB)  
150  
250  
500  
0
RΘJMA  
Junction-to-moving air thermal resistance  
0.3  
150  
250  
500  
0
PsiJT  
Junction-to-package top  
0.4  
0.5  
11.4  
11.3  
11.2  
11.0  
150  
250  
500  
PsiJB  
Junction-to-board  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
4.6.2 PTP Package  
°C/W(1)  
10.2  
7.9  
AIR FLOW (lfm)(2)  
RΘJC  
Junction-to-case thermal resistance  
N/A  
N/A  
0
RΘJB  
Junction-to-board thermal resistance  
Junction-to-free air thermal resistance  
RΘJA (High k PCB)  
19.4  
12.8  
11.4  
10.1  
0.11  
0.24  
0.33  
0.42  
6.1  
150  
250  
500  
0
RΘJMA  
Junction-to-moving air thermal resistance  
150  
250  
500  
0
PsiJT  
Junction-to-package top  
5.5  
150  
250  
500  
PsiJB  
Junction-to-board  
5.4  
5.3  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
53  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.7 System  
4.7.1 Power Sequencing  
An external power supply must be used to supply 3.3 V to VDDIO, VDD3VFL, VDDOSC, and VDDA and to  
provide 1.2 V to VDD. The internal VREG is not supported; therefore, the VREGENZ pin must be tied high  
to 3.3 V. The supplies should ramp to full rail within 10 ms. Table 4-3 shows the supply ramp rate.  
Table 4-3. Supply Ramp Rate  
MIN  
MAX  
UNIT  
Supply ramp rate  
VDDIO, VDD, VDDA, VDD3VFL, VDDOSC with respect to VSS  
330  
105  
V/s  
The voltage on VDDIO should be greater than VDD or no less than 0.3 V below VDD at all times. VDDIO  
,
VDD3VFL, VDDOSC, and VDDA should be powered up together and be kept within 0.3 V of each other during  
operation. Before powering the device, no voltage larger than 0.3 V above VDDIO should be applied to any  
digital pin, and no voltage larger than 0.3 V above VDDA should be applied to any analog pin. The VREFHI  
voltage should not exceed VDDA at any time.  
An internal power-on-reset (POR) circuit holds the device in reset and keeps the I/Os in a high-impedance  
state during power up. External supply voltage supervisors (SVS) can be used to monitor the voltage on  
the 3.3-V and 1.2-V rails and drive XRS low should supplies fall outside operational specifications.  
4.7.2 Reset Timing  
XRS is the device reset pin. It functions as an input and open-drain output. The device has a built-in  
power-on reset (POR). During power up, the POR circuit drives the XRS pin low. A watchdog or NMI  
watchdog reset also drives the pin low. An external circuit may drive the pin to assert a device reset.  
A resistor with a value from 2.2 kΩ to 10 kΩ should be placed between XRS and VDDIO. A capacitor should  
be placed between XRS and VSS for noise filtering; the capacitance should be 100 nF or smaller. These  
values will allow the watchdog to properly drive the XRS pin to VOL within 512 OSCCLK cycles when the  
watchdog reset is asserted. Figure 4-5 shows the recommended reset circuit.  
VDDIO  
2.2 kW – 10 kW  
XRS  
£100 nF  
Figure 4-5. Reset Circuit  
54  
Specifications  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.7.2.1 Reset Sources  
The following reset sources exist on this device: XRS, WDRS, NMIWDRS, SYSRS, SCCRESET, and  
HIBRESET. See the Reset Signals table in the System Control chapter of the TMS320F2837xD Dual-Core  
Delfino Microcontrollers Technical Reference Manual.  
The parameter th(boot-mode) must account for a reset initiated from any of these sources.  
CAUTION  
Some reset sources are internally driven by the device. Some of these sources  
will drive XRS low. Use this to disable any other devices driving the boot pins.  
The SCCRESET and debugger reset sources do not drive XRS; therefore, the  
pins used for boot mode should not be actively driven by other devices in the  
system. The boot configuration has a provision for changing the boot pins in  
OTP; for more details, see the TMS320F2837xD Dual-Core Delfino  
Microcontrollers Technical Reference Manual.  
4.7.2.2 Reset Electrical Data and Timing  
Table 4-4 shows the reset (XRS) timing requirements. Table 4-5 shows the reset (XRS) switching  
characteristics. Figure 4-6 shows the power-on reset. Figure 4-7 shows the warm reset.  
Table 4-4. Reset (XRS) Timing Requirements  
MIN  
1.5  
MAX  
UNIT  
ms  
th(boot-mode)  
tw(RSL2)  
Hold time for boot-mode pins  
Pulse duration, XRS low on warm reset  
3.2  
µs  
Table 4-5. Reset (XRS) Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
100  
MAX  
UNIT  
Pulse duration, XRS driven low by device after supplies are  
tw(RSL1)  
tw(WDRS)  
µs  
stable  
Pulse duration, reset pulse generated by watchdog  
512tc(OSCCLK)  
cycles  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
55  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
VDDIO, VDDA  
(3.3 V)  
VDD (1.2 V)  
t
w(RSL1)  
XRS(A)  
Boot ROM  
CPU  
Execution  
Phase  
User-code  
(B)  
h(boot-mode)  
t
User-code dependent  
Boot-Mode  
Pins  
GPIO pins as input  
Boot-ROM execution starts  
Peripheral/GPIO function  
Based on boot code  
GPIO pins as input (pullups are disabled)  
I/O Pins  
User-code dependent  
A. The XRS pin can be driven externally by a supervisor or an external pullup resistor, see Table 3-1. On-chip POR logic  
will hold this pin low until the supplies are in a valid range.  
B. After reset from any source (see Section 4.7.2.1), the boot ROM code samples Boot Mode pins. Based on the status  
of the Boot Mode pin, the boot code branches to destination memory or boot code function. If boot ROM code  
executes after power-on conditions (in debugger environment), the boot code execution time is based on the current  
SYSCLK speed. The SYSCLK will be based on user environment and could be with or without PLL enabled.  
Figure 4-6. Power-on Reset  
t
w(RSL2)  
XRS  
User Code  
CPU  
Execution  
Phase  
User Code  
Boot ROM  
Boot-ROM execution starts  
(initiated by any reset source)  
(A)  
t
h(boot-mode)  
Boot-Mode  
Pins  
Peripheral/GPIO Function  
User-Code Dependent  
GPIO Pins as Input  
Peripheral/GPIO Function  
User-Code Execution Starts  
I/O Pins  
GPIO Pins as Input (Pullups are Disabled)  
User-Code Dependent  
A. After reset from any source (see Section 4.7.2.1), the Boot ROM code samples BOOT Mode pins. Based on the  
status of the Boot Mode pin, the boot code branches to destination memory or boot code function. If Boot ROM code  
executes after power-on conditions (in debugger environment), the Boot code execution time is based on the current  
SYSCLK speed. The SYSCLK will be based on user environment and could be with or without PLL enabled.  
Figure 4-7. Warm Reset  
56  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.7.3 Clock Specifications  
4.7.3.1 Clock Sources  
4-6 lists four possible clock sources. 4-8 provides an overview of the device's clocking system.  
4-6. Possible Reference Clock Sources  
CLOCK SOURCE  
MODULES CLOCKED  
COMMENTS  
INTOSC1  
Can be used to provide clock for:  
Internal oscillator 1.  
Zero-pin overhead 10-MHz internal oscillator.  
Watchdog block  
Main PLL  
CPU-Timer 2  
INTOSC2(1)  
Can be used to provide clock for:  
Internal oscillator 2.  
Zero-pin overhead 10-MHz internal oscillator.  
Main PLL  
Auxiliary PLL  
CPU-Timer 2  
XTAL  
Can be used to provide clock for:  
External crystal or resonator connected between the X1 and X2 pins  
or single-ended clock connected to the X1 pin.  
Main PLL  
Auxiliary PLL  
CPU-Timer 2  
AUXCLKIN  
Can be used to provide clock for:  
Single-ended 3.3-V level clock source. GPIO133/AUXCLKIN pin  
should be used to provide the input clock.  
Auxiliary PLL  
CPU-Timer 2  
(1) On reset, internal oscillator 2 (INTOSC2) is the default clock source for both system PLL (OSCCLK) and auxiliary PLL (AUXOSCCLK).  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
57  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
INTOSC1  
WDCLK  
To watchdog timers  
CLKSRCCTL1  
SYSPLLCTL1  
SYSCLKDIVSEL  
INTOSC2  
X1 (XTAL)  
SYSCLK  
Divider  
To GS RAMs, GPIOs,  
NMIWDs, and IPC  
OSCCLK  
PLLSYSCLK  
CPU1.CPUCLK  
CPU2.CPUCLK  
System PLL  
PLLRAWCLK  
CPU1.SYSCLK  
CPU2.SYSCLK  
CPU1  
CPU2  
To local memories  
To local memories  
CPU1.SYSCLK  
CPU2.SYSCLK  
To ePIEs, LS RAMs,  
CLA message RAMs,  
and DCSMs  
One per SYSCLK peripheral  
CPUSELx  
CPU1.PCLKCRx  
To peripherals  
PERx.SYSCLK  
CPU2.PCLKCRx  
One per LSPCLK peripheral  
LOSPCP  
CPUSELx  
CPU1.PCLKCRx  
CPU2.PCLKCRx  
LSP  
Divider  
To SCIs, SPIs, and  
McBSPs  
PERx.LSPCLK  
One per ePWM  
EPWMCLKDIV  
CPU1.PCLKCRx  
CPUSELx  
/1  
/2  
PLLSYSCLK  
To ePWMs  
EPWMCLK  
CPU2.PCLKCRx  
HRPWM  
CPU1.PCLKCRx  
To HRPWM Registers  
HRPWMCLK  
One per CAN module  
CPUSELx  
CLKSRCCTL2  
CAN Bit Clock  
To CANs  
AUXCLKIN  
CLKSRCCTL2  
AUXPLLCTL1  
AUXCLKDIVSEL  
AUXCLK  
Divider  
AUXOSCCLK  
AUXPLLCLK  
To USB bit clock  
Auxiliary PLL  
AUXPLLRAWCLK  
4-8. Clocking System  
58  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.7.3.2 Clock Frequencies, Requirements, and Characteristics  
This section provides the frequencies and timing requirements of the input clocks, PLL lock times,  
frequencies of the internal clocks, and the frequency and switching characteristics of the output clock.  
4.7.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times  
4-7 shows the frequency requirements for the input clocks. 4-16 shows the crystal equivalent series  
resistance requirements. 4-8 shows the X1 input level characteristics when using an external clock  
source. 4-9 and 4-10 show the timing requirements for the input clocks. 4-11 shows the PLL lock  
times for the Main PLL and the USB PLL.  
4-7. Input Clock Frequency  
MIN  
10  
2
MAX UNIT  
f(XTAL)  
f(X1)  
Frequency, X1/X2, from external crystal or resonator  
Frequency, X1, from external oscillator (PLL enabled)  
Frequency, X1, from external oscillator (PLL disabled)  
Frequency, AUXCLKIN, from external oscillator  
20  
25  
MHz  
MHz  
MHz  
MHz  
2
100  
60  
f(AUXI)  
2
4-8. X1 Input Level Characteristics When Using an External Clock Source (Not a Crystal)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
–0.3  
MAX  
0.3 * VDDIO  
VDDIO + 0.3  
UNIT  
X1 VIL  
X1 VIH  
Valid low-level input voltage  
Valid high-level input voltage  
V
V
0.7 * VDDIO  
4-9. X1 Timing Requirements  
MIN  
MAX UNIT  
tf(X1)  
Fall time, X1  
Rise time, X1  
6
6
ns  
ns  
tr(X1)  
tw(X1L)  
tw(X1H)  
Pulse duration, X1 low as a percentage of tc(X1)  
Pulse duration, X1 high as a percentage of tc(X1)  
45%  
45%  
55%  
55%  
4-10. AUXCLKIN Timing Requirements  
MIN  
MAX UNIT  
tf(AUXI)  
Fall time, AUXCLKIN  
6
6
ns  
ns  
tr(AUXI)  
tw(AUXL)  
tw(AUXH)  
Rise time, AUXCLKIN  
Pulse duration, AUXCLKIN low as a percentage of tc(XCI)  
Pulse duration, AUXCLKIN high as a percentage of tc(XCI)  
45%  
45%  
55%  
55%  
4-11. PLL Lock Times  
MIN  
NOM  
MAX UNIT  
(1)  
t(PLL)  
t(USB)  
Lock time, Main PLL (X1, from external oscillator)  
50 µs + 2500 * tc(OSCCLK)  
50 µs + 2500 * tc(OSCCLK)  
µs  
µs  
(1)  
Lock time, USB PLL (AUXCLKIN, from external oscillator)  
(1) The PLL lock time here includes the two required PLL lock sequences. Cycle count includes code execution of the PLL initialization  
routine, which could vary depending on compiler optimizations and flash wait states.  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
59  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
 
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.7.3.2.2 Internal Clock Frequencies  
4-12 provides the clock frequencies for the internal clocks.  
4-12. Internal Clock Frequencies  
MIN  
NOM  
MAX  
200(1)  
UNIT  
MHz  
ns  
f(SYSCLK)  
Frequency, device (system) clock  
Period, device (system) clock  
2
5(1)  
tc(SYSCLK)  
500  
Frequency, system PLL output (before SYSCLK  
divider)  
f(PLLRAWCLK)  
120  
120  
400  
400  
MHz  
MHz  
Frequency, auxiliary PLL output (before AUXCLK  
divider)  
f(AUXPLLRAWCLK)  
f(AUXPLL)  
f(PLL)  
Frequency, AUXPLLCLK  
Frequency, PLLSYSCLK  
Frequency, LSPCLK(2)  
Period, LSPCLK  
2
2
60  
60  
200(1)  
200(1)  
500  
MHz  
MHz  
MHz  
ns  
f(LSP)  
2
5(1)  
tc(LSPCLK)  
Frequency, OSCCLK (INTOSC1 or INTOSC2 or  
XTAL or X1)  
f(OSCCLK)  
See respective clock  
MHz  
f(EPWM)  
Frequency, EPWMCLK(3)  
100  
100  
MHz  
MHz  
f(HRPWM)  
Frequency, HRPWMCLK  
60  
(1) Using an external clock source. If INTOSC1 or INTOSC2 is used as the clock source, then the maximum frequency is 194 MHz and the  
minimum period is 5.15 ns.  
(2) Lower LSPCLK will reduce device power consumption. The default at reset is SYSCLK/4.  
(3) For SYSCLK above 100 MHz, the EPWMCLK must be half of SYSCLK.  
4.7.3.2.3 Output Clock Frequency and Switching Characteristics  
4-13 provides the frequency of the output clock. 4-14 shows the switching characteristics of the  
output clock, XCLKOUT.  
4-13. Output Clock Frequency  
MIN  
MAX UNIT  
50 MHz  
f(XCO)  
Frequency, XCLKOUT  
4-14. XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)(1)(2)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
5
UNIT  
tf(XCO)  
Fall time, XCLKOUT  
ns  
ns  
ns  
ns  
tr(XCO)  
Rise time, XCLKOUT  
5
tw(XCOL)  
tw(XCOH)  
Pulse duration, XCLKOUT low  
Pulse duration, XCLKOUT high  
H – 2  
H – 2  
H + 2  
H + 2  
(1) A load of 40 pF is assumed for these parameters.  
(2) H = 0.5tc(XCO)  
60  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.7.3.3 Input Clocks and PLLs  
In addition to the internal 0-pin oscillators, multiple external clock source options are available. 4-9  
shows the recommended methods of connecting crystals, resonators, and oscillators to pins X1/X2 (also  
referred to as XTAL) and AUXCLKIN.  
X1  
X2  
X1  
X2  
v
v
ssosc  
ssosc  
RESONATOR  
CRYSTAL  
R
C
C
L1  
D
L2  
X1  
X2  
GPIO133/AUXCLKIN  
v
ssosc  
NC  
3.3V  
VDD  
CLK  
3.3V  
VDD  
CLK  
OUT  
GND  
OUT  
GND  
3.3V OSCILLATOR  
3.3V OSCILLATOR  
4-9. Connecting Input Clocks to a 2837xD Device  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
61  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.7.3.4 Crystal Oscillator  
When using a quartz crystal, it may be necessary to include a damping resistor (RD) in the crystal circuit to  
prevent over-driving the crystal (drive level can be found in the crystal data sheet). In higher-frequency  
applications (10 MHz or greater), RD is generally not required. If a damping resistor is required, RD should  
be as small as possible because the size of the resistance affects start-up time (smaller RD = faster start-  
up time). TI recommends that the crystal manufacturer characterize the crystal with the application board.  
4-15 shows the crystal oscillator parameters. 4-16 shows the crystal equivalent series resistance  
(ESR) requirements. 4-17 shows the crystal oscillator electrical characteristics.  
4-15. Crystal Oscillator Parameters  
MIN  
MAX UNIT  
CL1, CL2  
C0  
Load capacitance  
12  
24  
7
pF  
pF  
Crystal shunt capacitance  
4-16. Crystal Equivalent Series Resistance (ESR) Requirements(1)(2)  
MAXIMUM ESR (Ω)  
(CL1 = CL2 = 12 pF)  
MAXIMUM ESR (Ω)  
(CL1 = CL2 = 24 pF)  
CRYSTAL FREQUENCY (MHz)  
10  
12  
14  
16  
18  
20  
55  
50  
50  
45  
45  
45  
110  
95  
90  
75  
65  
50  
(1) Crystal shunt capacitance (C0) should be less than or equal to 7 pF.  
(2) ESR = Negative Resistance/3  
4-17. Crystal Oscillator Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ms  
f = 20 MHz  
ESR MAX = 50 Ω  
CL1 = CL2 = 24 pF  
C0 = 7 pF  
Start-up time(1)  
2
Crystal drive level (DL)  
1
mW  
(1) Start-up time is dependent on the crystal and tank circuit components. TI recommends that the crystal vendor characterize the  
application with the chosen crystal.  
62  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.7.3.5 Internal Oscillators  
To reduce production board costs and application development time, the F28377D contains two  
independent internal oscillators, referred to as INTOSC1 and INTOSC2. By default, both oscillators are  
enabled at power up. INTOSC2 is set as the source for the system reference clock (OSCCLK) and  
INTOSC1 is set as the backup clock source. INTOSC1 can also be manually configured as the system  
reference clock (OSCCLK). 4-18 provides the electrical characteristics of the internal oscillators to  
determine if this module meets the clocking requirements of the application.  
4-18 provides the electrical characteristics of the two internal oscillators.  
This oscillator cannot be used as the PLL source if the PLLSYSCLK is configured to  
frequencies above 194 MHz.  
4-18. Internal Oscillator Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
10.0  
MAX  
UNIT  
f(INTOSC)  
Frequency, INTOSC1 and INTOSC2  
Frequency stability at room temperature  
Frequency stability over VDD  
Frequency stability  
9.7  
10.3  
MHz  
30ºC, Nominal VDD  
30ºC  
±0.1%  
±0.2%  
f(INTOSC-STABILITY)  
–3.0%  
3.0%  
20  
f(INTOSC-ST)  
Start-up and settling time  
µs  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
63  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.7.4 Flash Parameters  
The on-chip flash memory is tightly integrated to the CPU, allowing code execution directly from flash  
through 128-bit-wide prefetch reads and a pipeline buffer. Flash performance for sequential code is equal  
to execution from RAM. Factoring in discontinuities, most applications will run with an efficiency of  
approximately 80% relative to code executing from RAM. This flash efficiency lets designers realize a 2×  
improvement in performance when migrating from the previous generation Delfino MCUs.  
This device also has an OTP (One-Time-Programmable) sector used for the dual code security module  
(DCSM), which cannot be erased after it is programmed.  
4-19 shows the minimum required flash wait states at different frequencies. 4-20 shows the flash  
parameters.  
4-19. Flash Wait States  
CPUCLK (MHz)  
(1)  
MINIMUM WAIT STATES  
EXTERNAL OSCILLATOR OR CRYSTAL  
150 < CPUCLK 200  
INTOSC1 OR INTOSC2  
145 < CPUCLK 194  
97 < CPUCLK 145  
48 < CPUCLK 97  
CPUCLK 48  
3
2
1
0
100 < CPUCLK 150  
50 < CPUCLK 100  
CPUCLK 50  
(1) Minimum required FRDCNTL[RWAIT].  
4-20. Flash Parameters  
PARAMETER  
MIN  
TYP  
MAX  
300  
UNIT  
µs  
128 data bits + 16 ECC bits  
40  
90  
Program Time(1)  
8KW sector  
32KW sector  
8KW sector  
32KW sector  
8KW sector  
32KW sector  
180  
ms  
360  
25  
720  
ms  
50  
Erase Time(2) at < 25 cycles  
Erase Time(2) at 50k cycles  
ms  
ms  
30  
55  
105  
110  
4000  
4000  
20000  
Nwec  
Write/erase cycles  
cycles  
years  
tretention  
Data retention duration at TJ = 85°C  
20  
(1) Program time is at the maximum device frequency. Program time includes overhead of the flash state machine but does not include the  
time to transfer the following into RAM:  
Code that uses flash API to program the flash  
Flash API itself  
Flash data to be programmed  
In other words, the time indicated in this table is applicable after all the required code/data is available in the device RAM, ready for  
programming. The transfer time will significantly vary depending on the speed of the emulator used.  
Program time calculation is based on programming 144 bits at a time at the specified operating frequency. Program time includes  
Program verify by the CPU. The program time does not degrade with write/erase (W/E) cycling, but the erase time does.  
Erase time includes Erase verify by the CPU and does not involve any data transfer.  
(2) Erase time includes Erase verify by the CPU.  
The Main Array flash programming must be aligned to 64-bit address boundaries and each  
64-bit word may only be programmed once per write/erase cycle. For more details, see the  
"Flash: Minimum Programming Word Size" advisory in the TMS320F2837xD Dual-Core  
Delfino™ MCUs Silicon Errata.  
64  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.7.5 Emulation/JTAG  
The JTAG port has five dedicated pins: TRST, TMS, TDI, TDO, and TCK. The TRST signal should always  
be pulled down through a 2.2-kΩ pulldown resistor on the board. This MCU does not support the EMU0  
and EMU1 signals that are present on 14-pin and 20-pin emulation headers. These signals should always  
be pulled up at the emulation header through a pair of board pullup resistors ranging from 2.2 kΩ to  
4.7 kΩ (depending on the drive strength of the debugger ports). Typically, a 2.2-kΩ value is used.  
See 4-10 to see how the 14-pin JTAG header connects to the MCU’s JTAG port signals. 4-11 shows  
how to connect to the 20-pin header. The 20-pin JTAG header terminals EMU2, EMU3, and EMU4 are not  
used and should be grounded.  
The PD (Power Detect) terminal of the emulator header should be connected to the board 3.3-V supply.  
Header GND terminals should be connected to board ground. TDIS (Cable Disconnect Sense) should also  
be connected to board ground. The JTAG clock should be looped from the header TCK output terminal  
back to the RTCK input terminal of the header (to sense clock continuity by the emulator). Header terminal  
RESET is an open-drain output from the emulator header that enables board components to be reset  
through emulator commands (available only through the 20-pin header).  
Typically, no buffers are needed on the JTAG signals when the distance between the MCU target and the  
JTAG header is smaller than 6 in (15.24 cm), and no other devices are present on the JTAG chain.  
Otherwise, each signal should be buffered. Additionally, for most emulator operations at 10 MHz, no  
series resistors are needed on the JTAG signals. However, if high emulation speeds are expected (35  
MHz or so), 22-Ω resistors should be placed in series on each JTAG signal.  
For more information about hardware breakpoints and watchpoints, see Hardware Breakpoints and  
Watchpoints for C28x in CCS.  
For more information about JTAG emulation, see the XDS Target Connection Guide.  
Distance between the header and the target  
should be less than 6 inches (15.24 cm).  
2.2 kW  
TRST  
TMS  
TDI  
GND  
2
1
3
TMS  
TDI  
TRST  
TDIS  
KEY  
4
GND  
100 W  
MCU  
5
6
3.3 V  
PD  
7
8
TDO  
TCK  
TDO  
RTCK  
TCK  
GND  
GND  
GND  
EMU1  
9
10  
12  
14  
11  
13  
4.7 kW  
4.7 kW  
3.3 V  
EMU0  
3.3 V  
4-10. Connecting to the 14-Pin JTAG Header  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
65  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Distance between the header and the target  
should be less than 6 inches (15.24 cm).  
2.2 kW  
TRST  
TMS  
TDI  
GND  
GND  
2
1
3
TMS  
TDI  
TRST  
TDIS  
4
100 W  
MCU  
5
6
3.3V  
PD  
KEY  
7
8
TDO  
TCK  
TDO  
GND  
GND  
GND  
EMU1  
GND  
EMU3  
GND  
9
10  
12  
14  
16  
18  
20  
RTCK  
TCK  
11  
13  
15  
17  
19  
4.7 kW  
4.7 kW  
3.3 V  
EMU0  
RESET  
EMU2  
EMU4  
3.3 V  
open  
drain  
A low pulse from the emulator  
can be tied with other reset  
sources to reset the board.  
GND  
GND  
4-11. Connecting to the 20-Pin JTAG Header  
66  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.7.5.1 JTAG Electrical Data and Timing  
4-21 lists the JTAG timing requirements. 4-22 lists the JTAG switching characteristics. 4-12  
shows the JTAG timing.  
4-21. JTAG Timing Requirements  
NO.  
1
MIN  
66.66  
26.66  
26.66  
13  
MAX  
UNIT  
ns  
tc(TCK)  
Cycle time, TCK  
1a  
1b  
tw(TCKH)  
Pulse duration, TCK high (40% of tc)  
Pulse duration, TCK low (40% of tc)  
Input setup time, TDI valid to TCK high  
Input setup time, TMS valid to TCK high  
Input hold time, TDI valid from TCK high  
Input hold time, TMS valid from TCK high  
ns  
tw(TCKL)  
ns  
tsu(TDI-TCKH)  
tsu(TMS-TCKH)  
th(TCKH-TDI)  
th(TCKH-TMS)  
ns  
3
4
13  
ns  
7
ns  
7
ns  
4-22. JTAG Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
2
td(TCKL-TDO)  
Delay time, TCK low to TDO valid  
6
25  
ns  
1
1a  
1b  
TCK  
2
TDO  
3
4
TDI/TMS  
4-12. JTAG Timing  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
67  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.7.6 GPIO Electrical Data and Timing  
The peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. On reset, GPIO  
pins are configured as inputs. For specific inputs, the user can also select the number of input qualification  
cycles to filter unwanted noise glitches.  
The GPIO module contains an Output X-BAR which allows an assortment of internal signals to be routed  
to a GPIO in the GPIO mux positions denoted as OUTPUTXBARx. The GPIO module also contains an  
Input X-BAR which is used to route signals from any GPIO input to different IP blocks such as the ADC(s),  
eCAP(s), ePWM(s), and external interrupts. For more details, see the X-BAR chapter in the  
TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual.  
4.7.6.1 GPIO - Output Timing  
Table 4-23 shows the general-purpose output switching characteristics. Figure 4-13 shows the general-  
purpose output timing.  
Table 4-23. General-Purpose Output Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
Rise time, GPIO switching low to high  
MIN  
MAX  
8(1)  
8(1)  
25  
UNIT  
ns  
tr(GPO)  
tf(GPO)  
tfGPO  
All GPIOs  
All GPIOs  
Fall time, GPIO switching high to low  
Toggling frequency, GPO pins  
ns  
MHz  
(1) Rise time and fall time vary with load. These values assume a 40-pF load.  
GPIO  
tr(GPO)  
tf(GPO)  
Figure 4-13. General-Purpose Output Timing  
68  
Specifications  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.7.6.2 GPIO - Input Timing  
Table 4-24 shows the general-purpose input timing requirements. Figure 4-14 shows the sampling mode.  
Table 4-24. General-Purpose Input Timing Requirements  
MIN  
1tc(SYSCLK)  
MAX  
UNIT  
cycles  
cycles  
cycles  
cycles  
cycles  
QUALPRD = 0  
tw(SP)  
Sampling period  
QUALPRD 0  
2tc(SYSCLK) * QUALPRD  
tw(SP) * (n(1) – 1)  
tw(IQSW)  
Input qualifier sampling window  
Pulse duration, GPIO low/high  
Synchronous mode  
With input qualifier  
2tc(SYSCLK)  
(2)  
tw(GPI)  
tw(IQSW) + tw(SP) + 1tc(SYSCLK)  
(1) "n" represents the number of qualification samples as defined by GPxQSELn register.  
(2) For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal.  
(A)  
GPIO Signal  
GPxQSELn = 1,0 (6 samples)  
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
tw(SP)  
Sampling Period determined  
by GPxCTRL[QUALPRD](B)  
tw(IQSW)  
(SYSCLK cycle * 2 * QUALPRD) * 5(C)  
Sampling Window  
SYSCLK  
QUALPRD = 1  
(SYSCLK/2)  
(D)  
Output From  
Qualifier  
A. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It  
can vary from 00 to 0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLK cycle. For any other value "n",  
the qualification sampling period in 2n SYSCLK cycles (that is, at every 2n SYSCLK cycles, the GPIO pin will be  
sampled).  
B. The qualification period selected through the GPxCTRL register applies to groups of 8 GPIO pins.  
C. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is  
used.  
D. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLK cycles or  
greater. In other words, the inputs should be stable for (5 x QUALPRD x 2) SYSCLK cycles. This would ensure  
5 sampling periods for detection to occur. Because external signals are driven asynchronously, an 13-SYSCLK-wide  
pulse ensures reliable recognition.  
Figure 4-14. Sampling Mode  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
69  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.7.6.3 Sampling Window Width for Input Signals  
The following section summarizes the sampling window width for input signals for various input qualifier  
configurations.  
Sampling frequency denotes how often a signal is sampled with respect to SYSCLK.  
Sampling frequency = SYSCLK/(2 ´ QUALPRD), if QUALPRD ¹ 0  
(1)  
Sampling frequency = SYSCLK, if QUALPRD = 0  
(2)  
Sampling period = SYSCLK cycle ´ 2 ´ QUALPRD, if QUALPRD ¹ 0  
(3)  
In Equation 1, Equation 2, and Equation 3, SYSCLK cycle indicates the time period of SYSCLK.  
Sampling period = SYSCLK cycle, if QUALPRD = 0  
In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of  
the signal. This is determined by the value written to GPxQSELn register.  
Case 1:  
Qualification using 3 samples  
Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 2, if QUALPRD 0  
Sampling window width = (SYSCLK cycle) × 2, if QUALPRD = 0  
Case 2:  
Qualification using 6 samples  
Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 5, if QUALPRD 0  
Sampling window width = (SYSCLK cycle) × 5, if QUALPRD = 0  
Figure 4-15 shows the general-purpose input timing.  
SYSCLK  
GPIOxn  
tw(GPI)  
Figure 4-15. General-Purpose Input Timing  
70  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.7.7 Interrupts  
4-16 provides a high-level view of the interrupt architecture.  
As shown in 4-16, the devices support five external interrupts (XINT1 to XINT5) that can be mapped  
onto any of the GPIO pins.  
In this device, 16 ePIE block interrupts are grouped into 1 CPU interrupt. In total, there are 12 CPU  
interrupt groups, with 16 interrupts per group.  
CPU1.TINT0  
CPU1.TIMER0  
CPU1.LPMINT  
LPM Logic  
CPU1.WAKEINT  
NMI  
CPU1.NMIWD  
CPU1.WD  
CPU1.WDINT  
CPU1  
INPUTXBAR4  
CPU1.XINT1 Control  
CPU1.XINT2 Control  
CPU1.XINT3 Control  
CPU1.XINT4 Control  
CPU1.XINT5 Control  
GPIO0  
GPIO1  
...  
...  
GPIOx  
INT1  
to  
INT12  
CPU1.  
ePIE  
INPUTXBAR5  
INPUTXBAR6  
INPUTXBAR13  
INPUTXBAR14  
Input  
X-BAR  
CPU1.TINT1  
CPU1.TINT2  
CPU1.TIMER1  
CPU1.TIMER2  
INT13  
INT14  
IPC  
4 Interrupts  
Peripherals  
NMI  
CPU1.NMIWD  
CPU2  
CPU2.XINT1 Control  
CPU2.XINT2 Control  
CPU2.XINT3 Control  
CPU2.XINT4 Control  
CPU2.XINT5 Control  
INT1  
to  
INT12  
CPU2  
ePIE  
CPU2.TINT1  
CPU2.TINT2  
INT13  
INT14  
CPU2.TIMER1  
CPU2.TIMER2  
CPU2.LPMINT  
LPM Logic  
CPU2.WD  
CPU2.WAKEINT  
CPU2.TINT0  
CPU2.WDINT  
CPU2.TIMER0  
4-16. External and ePIE Interrupt Sources  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
71  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.7.7.1 External Interrupt (XINT) Electrical Data and Timing  
Table 4-25 lists the external interrupt timing requirements. Table 4-26 lists the external interrupt switching  
characteristics. Figure 4-17 shows the external interrupt timing.  
Table 4-25. External Interrupt Timing Requirements(1)  
MIN  
2tc(SYSCLK)  
MAX  
UNIT  
cycles  
cycles  
Synchronous  
With qualifier  
tw(INT)  
Pulse duration, INT input low/high  
tw(IQSW) + tw(SP) + 1tc(SYSCLK)  
(1) For an explanation of the input qualifier parameters, see Table 4-24.  
Table 4-26. External Interrupt Switching Characteristics(1)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
td(INT) Delay time, INT low/high to interrupt-vector fetch(2)  
tw(IQSW) + 14tc(SYSCLK)  
tw(IQSW) + tw(SP) + 14tc(SYSCLK)  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 4-24.  
(2) This assumes that the ISR is in a single-cycle memory.  
tw(INT)  
XINT1, XINT2, XINT3,  
XINT4, XINT5  
td(INT)  
Address bus  
(internal)  
Interrupt Vector  
Figure 4-17. External Interrupt Timing  
72  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.7.8 Low-Power Modes  
This device has three clock-gating low-power modes and a special power-gating mode.  
Further details, as well as the entry and exit procedure, for all of the low-power modes can be found in the  
Low Power Modes section of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical  
Reference Manual.  
4.7.8.1 Clock-Gating Low-Power Modes  
IDLE, STANDBY, and HALT modes on this device are similar to those on other C28x devices. 4-27  
describes the effect on the system when any of the clock-gating low-power modes are entered.  
4-27. Effect of Clock-Gating Low-Power Modes on the Device  
MODULES/  
CLOCK DOMAIN  
CPU1 IDLE  
CPU1 STANDBY  
CPU2 IDLE  
CPU2 STANDBY  
HALT  
CPU1.CLKIN  
Active  
Active  
Gated  
N/A  
Gated  
Gated  
Gated  
N/A  
N/A  
N/A  
N/A  
N/A  
Gated  
Gated  
Gated  
Gated  
Gated  
Gated  
Gated  
CPU1.SYSCLK  
CPU1.CPUCLK  
CPU2.CLKIN  
N/A  
N/A  
Active  
Active  
Gated  
Active  
Gated  
Gated  
Gated  
CPU2.SYSCLK  
CPU2.CPUCLK  
N/A  
N/A  
N/A  
N/A  
Clock to modules  
Connected to  
PERx.SYSCLK  
Active  
Gated if  
CPUSEL.PERx =  
CPU1  
Gated if  
CPUSEL.PERx =  
CPU2  
CPU1.WDCLK  
Active  
Active  
N/A  
N/A  
Gated if  
CLKSRCCTL1.WDHALTI = 0  
CPU2.WDCLK  
AUXPLLCLK  
PLL  
N/A  
N/A  
Active  
Active  
Active  
Active  
Gated  
Gated  
Active  
Active  
Powered  
Powered  
Powered  
Powered  
Software must power down PLL  
before entering HALT  
INTOSC1  
INTOSC2  
Flash  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered down if  
CLKSRCCTL1.WDHALTI = 0  
Powered down if  
CLKSRCCTL1.WDHALTI = 0  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Software-Controlled  
Powered-Down  
X1/X2 Crystal  
Oscillator  
4.7.8.2 Power-Gating Low-Power Modes  
HIBERNATE mode is the lowest power mode on this device. It is a global low-power mode that gates the  
supply voltages to most of the system. HIBERNATE is essentially a controlled power-down with remote  
wakeup capability, and can be used to save power during long periods of inactivity. 4-28 describes the  
effects on the system when the HIBERNATE mode is entered.  
4-28. Effect of Power-Gating Low-Power Mode on the Device  
MODULES/POWER DOMAINS  
HIBERNATE  
M0 and M1 memories  
Remain on with memory retention if LPMCR.M0M1MODE = 0x00  
Are off when LPMCR.M0M1MODE = 0x01  
CPU1, CPU2 digital peripherals  
Dx, LSx, GSx memories  
I/Os  
Powered down  
Power down, memory contents are lost  
On with output state preserved  
Enters Low-Power Mode  
Oscillators, PLL, analog  
peripherals, Flash  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
73  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.7.8.3 Low-Power Mode Wakeup Timing  
4-29 shows the IDLE mode timing requirements, 4-30 shows the switching characteristics, and 4-  
18 shows the timing diagram for IDLE mode.  
4-29. IDLE Mode Timing Requirements(1)  
MIN  
2tc(SYSCLK)  
MAX  
UNIT  
Without input qualifier  
With input qualifier  
tw(WAKE)  
Pulse duration, external wake-up signal  
cycles  
2tc(SYSCLK) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 4-24.  
4-30. IDLE Mode Switching Characteristics(1)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
(2)  
Delay time, external wake signal to program execution resume  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
40tc(SYSCLK)  
Wakeup from Flash  
Flash module in active state  
40tc(SYSCLK) + tw(WAKE)  
(3)  
td(WAKE-IDLE)  
6700tc(SYSCLK)  
cycles  
Wakeup from Flash  
Flash module in sleep state  
6700tc(SYSCLK)(3) + tw(WAKE)  
25tc(SYSCLK)  
Wakeup from RAM  
25tc(SYSCLK) + tw(WAKE)  
(1) For an explanation of the input qualifier parameters, see Table 4-24.  
(2) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up signal) involves additional latency.  
(3) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and  
FPAC1[PSLEEP]. For more information, see the Flash and OTP Power-Down Modes and Wakeup section of the TMS320F2837xD  
Dual-Core Delfino Microcontrollers Technical Reference Manual. This value can be realized when SYSCLK is 200 MHz, RWAIT is 3,  
and FPAC1[PSLEEP] is 0x860.  
td(WAKE-IDLE)  
Address/Data  
(internal)  
XCLKOUT  
tw(WAKE)  
WAKE(A)  
A. WAKE can be any enabled interrupt, WDINT or XRS. After the IDLE instruction is executed, a delay of five OSCCLK  
cycles (minimum) is needed before the wake-up signal could be asserted.  
4-18. IDLE Entry and Exit Timing Diagram  
74  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4-31 shows the STANDBY mode timing requirements, 4-32 shows the switching characteristics, and  
4-19 shows the timing diagram for STANDBY mode.  
4-31. STANDBY Mode Timing Requirements  
MIN  
MAX  
UNIT  
QUALSTDBY = 0 | 2tc(OSCCLK)  
QUALSTDBY > 0 |  
(2 + QUALSTDBY)tc(OSCCLK)  
3tc(OSCCLK)  
Pulse duration, external  
wake-up signal  
tw(WAKE-INT)  
cycles  
(2 + QUALSTDBY) * tc(OSCCLK)  
(1)  
(1) QUALSTDBY is a 6-bit field in the LPMCR register.  
4-32. STANDBY Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Delay time, IDLE instruction executed to  
XCLKOUT stop  
td(IDLE-XCOS)  
16tc(INTOSC1)  
cycles  
Delay time, external wake signal to  
program execution resume(1)  
Wakeup from flash  
Flash module in active state  
175tc(SYSCLK) + tw(WAKE-INT)  
td(WAKE-STBY)  
cycles  
Wakeup from flash  
Flash module in sleep state  
6700tc(SYSCLK)(2) + tw(WAKE-INT)  
3tc(OSC) + 15tc(SYSCLK)  
+
Wakeup from RAM  
tw(WAKE-INT)  
(1) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up signal) involves additional latency.  
(2) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and  
FPAC1[PSLEEP]. For more information, see the Flash and OTP Power-Down Modes and Wakeup section of the TMS320F2837xD  
Dual-Core Delfino Microcontrollers Technical Reference Manual. This value can be realized when SYSCLK is 200 MHz, RWAIT is 3,  
and FPAC1[PSLEEP] is 0x860.  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
75  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
(C)  
(F)  
(A)  
(B)  
(D)(E)  
(G)  
Normal Execution  
Device  
Status  
STANDBY  
STANDBY  
Flushing Pipeline  
Wake-up  
Signal  
tw(WAKE-INT)  
td(WAKE-STBY)  
OSCCLK  
XCLKOUT  
td(IDLE-XCOS)  
A. IDLE instruction is executed to put the device into STANDBY mode.  
B. The LPM block responds to the STANDBY signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before  
being turned off. This delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in  
STANDBY mode. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before  
the wake-up signal could be asserted.  
D. The external wake-up signal is driven active.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement.  
Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wakeup behavior of the  
device will not be deterministic and the device may not exit low-power mode for subsequent wakeup pulses.  
F. After a latency period, the STANDBY mode is exited.  
G. Normal execution resumes. The device will respond to the interrupt (if enabled).  
4-19. STANDBY Entry and Exit Timing Diagram  
76  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4-33 shows the HALT mode timing requirements, 4-34 shows the switching characteristics, and 图  
4-20 shows the timing diagram for HALT mode.  
4-33. HALT Mode Timing Requirements  
MIN  
toscst + 2tc(OSCCLK)  
toscst + 8tc(OSCCLK)  
MAX  
UNIT  
cycles  
cycles  
tw(WAKE-GPIO)  
tw(WAKE-XRS)  
Pulse duration, GPIO wake-up signal(1)  
Pulse duration, XRS wake-up signal(1)  
(1) For applications using X1/X2 for OSCCLK, the user must characterize their specific oscillator start-up time as it is dependent on  
circuit/layout external to the device. See 4-17 for more information. For applications using INTOSC1 or INTOSC2 for OSCCLK, see  
4.7.3.5 for toscst. Oscillator start-up time does not apply to applications using a single-ended crystal on the X1 pin, as it is powered  
externally to the device.  
4-34. HALT Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
td(IDLE-XCOS)  
Delay time, IDLE instruction executed to XCLKOUT stop  
16tc(INTOSC1)  
cycles  
Delay time, external wake signal end to CPU1 program  
execution resume  
Wakeup from flash  
Flash module in active state  
75tc(OSCCLK)  
td(WAKE-HALT)  
cycles  
Wakeup from flash  
Flash module in sleep state  
(1)  
17500tc(OSCCLK)  
75tc(OSCCLK)  
Wakeup from RAM  
(1) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and  
FPAC1[PSLEEP]. For more information, see the Flash and OTP Power-Down Modes and Wakeup section of the TMS320F2837xD  
Dual-Core Delfino Microcontrollers Technical Reference Manual. This value can be realized when SYSCLK is 200 MHz, RWAIT is 3,  
and FPAC1[PSLEEP] is 0x860.  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
77  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
(C)  
(F)  
(A)  
(B)  
(D)(E)  
HALT  
(G)  
Device  
Status  
HALT  
Flushing Pipeline  
Normal  
Execution  
GPIOn  
td(WAKE-HALT)  
tw(WAKE-GPIO)  
OSCCLK  
Oscillator Start-up Time  
XCLKOUT  
td(IDLE-XCOS)  
A. IDLE instruction is executed to put the device into HALT mode.  
B. The LPM block responds to the HALT signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being  
turned off. This delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as  
the clock source, the internal oscillator is shut down as well. The device is now in HALT mode and consumes very  
little power. It is possible to keep the zero-pin internal oscillators (INTOSC1 and INTOSC2) and the watchdog alive in  
HALT MODE. This is done by writing a 1 to CLKSRCCTL1.WDHALTI. After the IDLE instruction is executed, a delay  
of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.  
D. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator  
wakeup sequence is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This enables  
the provision of a clean clock signal during the PLL lock sequence. Because the falling edge of the GPIO pin  
asynchronously begins the wakeup procedure, care should be taken to maintain a low noise environment prior to  
entering and during HALT mode.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement.  
Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wakeup behavior of the  
device will not be deterministic and the device may not exit low-power mode for subsequent wakeup pulses.  
F. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after some latency. The  
HALT mode is now exited.  
G. Normal operation resumes.  
H. The user must relock the PLL upon HALT wakeup to ensure a stable PLL lock.  
4-20. HALT Entry and Exit Timing Diagram  
CPU2 should enter IDLE mode before CPU1 puts the device into HALT mode. CPU1 should  
verify that CPU2 has entered IDLE mode using the LPMSTAT register before calling the  
IDLE instruction to enter HALT.  
78  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4-35 shows the HIBERNATE mode timing requirements, 4-36 shows the switching characteristics,  
and 4-21 shows the timing diagram for HIBERNATE mode.  
4-35. HIBERNATE Mode Timing Requirements  
MIN  
40  
MAX  
UNIT  
µs  
tw(HIBWAKE)  
tw(WAKEXRS)  
Pulse duration, HIBWAKE signal  
Pulse duration, XRS wake-up signal  
40  
µs  
4-36. HIBERNATE Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
cycles  
ms  
td(IDLE-XCOS)  
td(WAKE-HIB)  
Delay time, IDLE instruction executed to XCLKOUT stop  
Delay time, external wake signal to lORestore function start  
30tc(SYSCLK)  
1.5  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
79  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
(C)  
(D)  
(A)  
(B)  
(F)  
(G)(H)  
(I)(J)  
(E)  
CPU1 IDLE  
Instruction  
CPU1 HIB  
config  
Device Status Device Active  
IoRestore() or Application Specific Operation  
CPU1 Boot ROM  
HIBERNATE  
Td(WAKE-HIB)  
GPIOHIBWAKEn,  
XRSn  
tw(HIBWAKEn),  
tw(XRSn)  
I/O Isolation  
Bypassed &  
Powered-Down  
Application SpecificOperation  
PLLs  
Enabled  
INTOSC1,INTOSC2,  
X1/X2  
Powering up  
On  
Powered Down  
On  
XCLKCOUT  
Inactive  
Application Specific Operation  
td(IDLE-XCOS)  
A. CPU1 does necessary application-specific context save to M0/M1 memories if required. This includes GPIO state if  
using I/O Isolation. Configures the LPMCR register of CPU1 for HIBERNATE mode. Powers down Flash Pump/Bank,  
USB-PHY, CMPSS, DAC, and ADC using their register configurations. The application should also power down the  
PLL and peripheral clocks before entering HIBERNATE. In dual-core applications, CPU1 should confirm that CPU2  
has entered IDLE/STANDBY using the LPMSTAT register.  
B. IDLE instruction is executed to put the device into HIBERNATE mode.  
C. The device is now in HIBERNATE mode. If configured, I/O isolation is turned on, M0 and M1 memories are retained.  
CPU1 and CPU2 are powered down. Digital peripherals are powered down. The oscillators, PLLs, analog peripherals,  
and Flash are in their software-controlled Low-Power modes. Dx, LSx, and GSx memories are also powered down,  
and their memory contents lost.  
D. A falling edge on the GPIOHIBWAKEn pin will drive the wakeup of the devices clock sources INTOSC1, INTOSC2,  
and X1/X2 OSC. The wakeup source must keep the GPIOHIBWAKEn pin low long enough to ensure full power-up of  
these clock sources.  
E. After the clock sources are powered up, the GPIOHIBWAKEn must be driven high to trigger the wakeup sequence of  
the remainder of the device.  
F. The BootROM will then begin to execute. The BootROM can distinguish a HIBERNATE wakeup by reading the  
CPU1.REC.HIBRESETn bit. After the TI OTP trims are loaded, the BootROM code will branch to the user-defined  
IoRestore function if it has been configured.  
G. At this point, the device is out of HIBERNATE mode, and the application may continue.  
H. The IoRestore function is a user-defined function where the application may reconfigure GPIO states, disable I/O  
isolation, reconfigure the PLL, restore peripheral configurations, or branch to application code. This is up to the  
application requirements.  
I.  
If the application has not branched to application code, the BootROM will continue after completing IoRestore. It will  
disable I/O isolation automatically if it was not taken care of inside of IoRestore. CPU2 will be brought out of reset at  
this point as well.  
J. BootROM will then boot as determined by the HIBBOOTMODE register. Refer to the ROM Code and Peripheral  
Booting chapter of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual for more  
information.  
4-21. HIBERNATE Entry and Exit Timing Diagram  
1. If the IORESTOREADDR is configured as the default value, the BootROM will continue  
its execution to boot as determined by the HIBBOOTMODE register. Refer to the ROM  
Code and Peripheral Booting chapter of the TMS320F2837xD Dual-Core Delfino  
Microcontrollers Technical Reference Manual for more information.  
2. The user may choose to disable I/O Isolation at any point in the IoRestore function.  
Regardless if the user has disabled Isolation in the IoRestore function or if IoRestore is  
not defined, the BootROM will automatically disable isolation before booting as  
determined by the HIBBOOTMODE register.  
80  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
For applications using both CPU1 and CPU2, TI recommends that the application puts CPU2  
in either IDLE or STANDBY before entering HIBERNATE mode. If any GPIOs are used and  
the state is to be preserved, data can be stored in M0/M1 memory of CPU1 to be  
reconfigured upon wakeup. This should be done before step A of 4-21.  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
81  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.7.9 External Memory Interface (EMIF)  
The EMIF provides a means of connecting the CPU to various external storage devices like asynchronous  
memories (SRAM, NOR flash) or synchronous memory (SDRAM).  
4.7.9.1 Asynchronous Memory Support  
The EMIF supports asynchronous memories:  
SRAMs  
NOR Flash memories  
There is an external wait input that allows slower asynchronous memories to extend the memory access.  
The EMIF module supports up to three chip selects (EMIF_CS[4:2]). Each chip select has the following  
individually programmable attributes:  
Data bus width  
Read cycle timings: setup, hold, strobe  
Write cycle timings: setup, hold, strobe  
Bus turnaround time  
Extended wait option with programmable time-out  
Select strobe option  
4.7.9.2 Synchronous DRAM Support  
The EMIF memory controller is compliant with the JESD21-C SDR SDRAMs that use a 32-bit or 16-bit  
data bus. The EMIF has a single SDRAM chip select (EMIF_CS[0]).  
The address space of the EMIF, for the synchronous memory (SDRAM), lies beyond the 22-bit range of  
the program address bus and can only be accessed through the data bus, which places a restriction on  
the C compiler being able to work effectively on data in this space. Therefore, when using SDRAM, the  
user is advised to copy data (using the DMA) from external memory to RAM before working on it. See the  
examples in controlSUITE™ (CONTROLSUITE) and the TMS320F2837xD Dual-Core Delfino  
Microcontrollers Technical Reference Manual.  
SDRAM configurations supported are:  
One-bank, two-bank, and four-bank SDRAM devices  
Devices with 8-, 9-, 10-, and 11-column addresses  
CAS latency of two or three clock cycles  
16-bit/32-bit data bus width  
3.3-V LVCMOS interface  
Additionally, the EMIF supports placing the SDRAM in self-refresh and power-down modes. Self-refresh  
mode allows the SDRAM to be put in a low-power state while still retaining memory contents because the  
SDRAM will continue to refresh itself even without clocks from the microcontroller. Power-down mode  
achieves even lower power, except the microcontroller must periodically wake up and issue refreshes if  
data retention is required. The EMIF module does not support mobile SDRAM devices.  
On this device, the EMIF does not support burst access for SDRAM configurations. This means every  
access to an external SDRAM device will have CAS latency.  
82  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.7.9.3 EMIF Electrical Data and Timing  
4.7.9.3.1 Asynchronous RAM  
Table 4-37 shows the EMIF asynchronous memory timing requirements. Table 4-38 shows the EMIF  
asynchronous memory switching characteristics. Figure 4-22 through Figure 4-25 show the EMIF  
asynchronous memory timing diagrams.  
Table 4-37. EMIF Asynchronous Memory Timing Requirements(1)  
NO.  
MIN  
MAX  
UNIT  
Reads and Writes  
E
EMIF clock period  
tc(SYSCLK)  
2E  
ns  
ns  
Pulse duration, EMxWAIT assertion and  
deassertion  
2
tw(EM_WAIT)  
Reads  
12  
13  
tsu(EMDV-EMOEH)  
th(EMOEH-EMDIV)  
Setup time, EMxD[y:0] valid before EMxOE high  
Hold time, EMxD[y:0] valid after EMxOE high  
15  
0
ns  
ns  
Setup Time, EMxWAIT asserted before end of  
Strobe Phase(2)  
14  
tsu(EMOEL-EMWAIT)  
4E+20  
ns  
Writes  
Setup Time, EMxWAIT asserted before end of  
Strobe Phase(2)  
28  
tsu(EMWEL-EMWAIT)  
4E+20  
ns  
(1) E = EMxCLK period in ns.  
(2) Setup before end of STROBE phase (if no extended wait states are inserted) by which EMxWAIT must be asserted to add extended  
wait states. Figure 4-23 and Figure 4-25 describe EMIF transactions that include extended wait states inserted during the STROBE  
phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where  
the HOLD phase would begin if there were no extended wait cycles.  
Table 4-38. EMIF Asynchronous Memory Switching Characteristics(1)(2)(3)  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Reads and Writes  
1
td(TURNAROUND)  
Turn around time  
(TA)*E–3  
(TA)*E+2  
ns  
Reads  
EMIF read cycle time (EW = 0)  
EMIF read cycle time (EW = 1)  
(RS+RST+RH+2)*E–3  
(RS+RST+RH+2)*E+2  
ns  
ns  
3
4
tc(EMRCYCLE)  
(RS+RST+RH+2+  
(EWC*16))*E–3  
(RS+RST+RH+2+  
(EWC*16))*E+2  
Output setup time, EMxCS[y:2] low  
to EMxOE low (SS = 0)  
(RS)*E–3  
–3  
(RS)*E+2  
2
ns  
ns  
ns  
ns  
ns  
ns  
tsu(EMCEL-EMOEL)  
Output setup time, EMxCS[y:2] low  
to EMxOE low (SS = 1)  
Output hold time, EMxOE high to  
EMxCS[y:2] high (SS = 0)  
(RH)*E–3  
–3  
(RH)*E  
0
5
th(EMOEH-EMCEH)  
Output hold time, EMxOE high to  
EMxCS[y:2] high (SS = 1)  
Output setup time, EMxBA[y:0]  
valid to EMxOE low  
6
7
tsu(EMBAV-EMOEL)  
th(EMOEH-EMBAIV)  
(RS)*E–3  
(RH)*E–3  
(RS)*E+2  
(RH)*E  
Output hold time, EMxOE high to  
EMxBA[y:0] invalid  
(1) TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold,  
MEWC = Maximum external wait cycles. These parameters are programmed through the Asynchronous Bank and Asynchronous Wait  
Cycle Configuration Registers. These support the following ranges of values: TA[4–1], RS[16–1], RST[64–4], RH[8–1], WS[16–1],  
WST[64–1], WH[8–1], and MEWC[1–256]. See the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual  
for more information.  
(2) E = EMxCLK period in ns.  
(3) EWC = external wait cycles determined by EMxWAIT input signal. EWC supports the following range of values. EWC[256–1]. The  
maximum wait time before time-out is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. See the  
TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual for more information.  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
83  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
MAX UNIT  
Table 4-38. EMIF Asynchronous Memory Switching Characteristics(1)(2)(3) (continued)  
NO.  
PARAMETER  
MIN  
Output setup time, EMxA[y:0] valid  
to EMxOE low  
8
tsu(EMAV-EMOEL)  
th(EMOEH-EMAIV)  
(RS)*E–3  
(RS)*E+2  
ns  
ns  
Output hold time, EMxOE high to  
EMxA[y:0] invalid  
9
(RH)*E–3  
(RH)*E  
EMxOE active low width (EW = 0)  
EMxOE active low width (EW = 1)  
(RST)*E–1  
(RST)*E+1  
ns  
ns  
10  
tw(EMOEL)  
(RST+(EWC*16))*E–1  
(RST+(EWC*16))*E+1  
Delay time from EMxWAIT  
deasserted to EMxOE high  
11  
29  
30  
td(EMWAITH-EMOEH)  
tsu(EMDQMV-EMOEL)  
th(EMOEH-EMDQMIV)  
4E+10  
(RS)*E–3  
(RH)*E–3  
5E+15  
(RS)*E+2  
(RH)*E  
ns  
ns  
ns  
Output setup time, EMxDQM[y:0]  
valid to EMxOE low  
Output hold time, EMxOE high to  
EMxDQM[y:0] invalid  
Writes  
EMIF write cycle time (EW = 0)  
(WS+WST+WH+2)*E–3  
(WS+WST+WH+2)*E+1  
ns  
ns  
15  
16  
tc(EMWCYCLE)  
(WS+WST+WH+2+  
(EWC*16))*E–3  
(WS+WST+WH+2+  
(EWC*16))*E+1  
EMIF write cycle time (EW = 1)  
Output setup time, EMxCS[y:2] low  
to EMxWE low (SS = 0)  
(WS)*E–3  
–3  
(WS)*E+1  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tsu(EMCEL-EMWEL)  
Output setup time, EMxCS[y:2] low  
to EMxWE low (SS = 1)  
Output hold time, EMxWE high to  
EMxCS[y:2] high (SS = 0)  
(WH)*E–3  
–3  
(WH)*E  
17  
th(EMWEH-EMCEH)  
Output hold time, EMxWE high to  
EMxCS[y:2] high (SS = 1)  
0
Output setup time, EMxDQM[y:0]  
valid to EMxWE low  
18  
19  
20  
21  
22  
23  
tsu(EMDQMV-EMWEL)  
th(EMWEH-EMDQMIV)  
tsu(EMBAV-EMWEL)  
th(EMWEH-EMBAIV)  
tsu(EMAV-EMWEL)  
th(EMWEH-EMAIV)  
(WS)*E–3  
(WH)*E–3  
(WS)*E–3  
(WH)*E–3  
(WS)*E–3  
(WH)*E–3  
(WST)*E–1  
(WST+(EWC*16))*E–1  
4E+10  
(WS)*E+1  
(WH)*E  
Output hold time, EMxWE high to  
EMxDQM[y:0] invalid  
Output setup time, EMxBA[y:0]  
valid to EMxWE low  
(WS)*E+1  
(WH)*E  
Output hold time, EMxWE high to  
EMxBA[y:0] invalid  
Output setup time, EMxA[y:0] valid  
to EMxWE low  
(WS)*E+1  
(WH)*E  
Output hold time, EMxWE high to  
EMxA[y:0] invalid  
EMxWE active low width  
(EW = 0)  
(WST)*E+1  
(WST+(EWC*16))*E+1  
5E+15  
24  
tw(EMWEL)  
EMxWE active low width  
(EW = 1)  
Delay time from EMxWAIT  
deasserted to EMxWE high  
25  
26  
27  
td(EMWAITH-EMWEH)  
tsu(EMDV-EMWEL)  
th(EMWEH-EMDIV)  
Output setup time, EMxD[y:0] valid  
to EMxWE low  
(WS)*E–3  
(WH)*E–3  
(WS)*E+1  
(WH)*E  
Output hold time, EMxWE high to  
EMxD[y:0] invalid  
84  
Specifications  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
3
1
EMxCS[y:2]  
EMxBA[y:0]  
EMxA[y:0]  
EMxDQM[y:0]  
4
8
5
9
6
7
29  
30  
10  
EMxOE  
13  
12  
EMxD[y:0]  
EMxWE  
Figure 4-22. Asynchronous Memory Read Timing  
Extended Due to EMxWAIT  
SETUP  
STROBE  
STROBE HOLD  
EMxCS[y:2]  
EMxBA[y:0]  
EMxA[y:0]  
EMxD[y:0]  
14  
11  
EMxOE  
2
2
EMxWAIT  
Asserted  
Deasserted  
Figure 4-23. EMxWAIT Read Timing Requirements  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
85  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
15  
1
EMxCS[y:2]  
EMxBA[y:0]  
EMxA[y:0]  
EMxDQM[y:0]  
16  
18  
20  
22  
17  
19  
21  
23  
24  
EMxWE  
EMxD[y:0]  
EMxOE  
27  
26  
Figure 4-24. Asynchronous Memory Write Timing  
Extended Due to EMxWAIT  
SETUP  
STROBE  
STROBE HOLD  
EMxCS[y:2]  
EMxBA[y:0]  
EMxA[y:0]  
EMxD[y:0]  
28  
25  
EMxWE  
2
2
EMxWAIT  
Asserted  
Deasserted  
Figure 4-25. EMxWAIT Write Timing Requirements  
86  
Specifications  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.7.9.3.2 Synchronous RAM  
Table 4-39 shows the EMIF synchronous memory timing requirements. Table 4-40 shows the EMIF  
synchronous memory switching characteristics. Figure 4-26 and Figure 4-27 show the synchronous  
memory timing diagrams.  
Table 4-39. EMIF Synchronous Memory Timing Requirements  
NO.  
19  
MIN  
2
MAX UNIT  
tsu(EMIFDV-EM_CLKH)  
th(CLKH-DIV)  
Input setup time, read data valid on EMxD[y:0] before EMxCLK rising  
Input hold time, read data valid on EMxD[y:0] after EMxCLK rising  
ns  
ns  
20  
1.5  
Table 4-40. EMIF Synchronous Memory Switching Characteristics  
NO.  
1
PARAMETER  
MIN  
10  
3
MAX UNIT  
tc(CLK)  
Cycle time, EMIF clock EMxCLK  
ns  
ns  
2
tw(CLK)  
Pulse width, EMIF clock EMxCLK high or low  
Delay time, EMxCLK rising to EMxCS[y:2] valid  
Output hold time, EMxCLK rising to EMxCS[y:2] invalid  
Delay time, EMxCLK rising to EMxDQM[y:0] valid  
Output hold time, EMxCLK rising to EMxDQM[y:0] invalid  
Delay time, EMxCLK rising to EMxA[y:0] and EMxBA[y:0] valid  
Output hold time, EMxCLK rising to EMxA[y:0] and EMxBA[y:0] invalid  
Delay time, EMxCLK rising to EMxD[y:0] valid  
Output hold time, EMxCLK rising to EMxD[y:0] invalid  
Delay time, EMxCLK rising to EMxRAS valid  
3
td(CLKH-CSV)  
toh(CLKH-CSIV)  
td(CLKH-DQMV)  
toh(CLKH-DQMIV)  
td(CLKH-AV)  
8
8
8
8
8
8
8
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
1
1
1
1
1
1
1
1
5
6
7
8
toh(CLKH-AIV)  
td(CLKH-DV)  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
toh(CLKH-DIV)  
td(CLKH-RASV)  
toh(CLKH-RASIV)  
td(CLKH-CASV)  
toh(CLKH-CASIV)  
td(CLKH-WEV)  
toh(CLKH-WEIV)  
td(CLKH-DHZ)  
toh(CLKH-DLZ)  
Output hold time, EMxCLK rising to EMxRAS invalid  
Delay time, EMxCLK rising to EMxCAS valid  
Output hold time, EMxCLK rising to EMxCAS invalid  
Delay time, EMxCLK rising to EMxWE valid  
Output hold time, EMxCLK rising to EMxWE invalid  
Delay time, EMxCLK rising to EMxD[y:0] tri-stated  
Output hold time, EMxCLK rising to EMxD[y:0] driving  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
87  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
BASIC SDRAM  
1
READ OPERATION  
2
2
EMxCLK  
EMxCS[y:2]  
EMxDQM[y:0]  
EMxBA[y:0]  
EMxA[y:0]  
4
3
5
7
7
6
8
8
19  
20  
2 EM_CLK Delay  
18  
17  
EMxD[y:0]  
EMxRAS  
11  
12  
13  
14  
EMxCAS  
EMxWE  
Figure 4-26. Basic SDRAM Read Operation  
88  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
1
BASIC SDRAM  
WRITE OPERATION  
2
2
EMxCLK  
EMxCS[y:2]  
EMxDQM[y:0]  
EMxBA[y:0]  
EMxA[y:0]  
3
5
7
7
9
4
6
8
8
10  
EMxD[y:0]  
EMxRAS  
EMxCAS  
EMxWE  
11  
12  
13  
15  
16  
Figure 4-27. Basic SDRAM Write Operation  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
89  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.8 Analog Peripherals  
This analog subsystem module is described in this section.  
The analog modules on this device include the ADC, temperature sensor, buffered DAC, and CMPSS.  
The analog subsystem has the following features:  
Flexible voltage references  
VREFHIA and VREFLOA, VREFHIB and VREFLOB, VREFHIC and VREFLOC, and VREFHID and VREFLOD externally  
supplied reference voltage pins  
Selectable by ADCs and buffered DACs  
VDAC externally supplied reference voltage pin  
Selectable by buffered DACs and comparator subsystem DACs  
Low reference is VSSA  
Flexible pin usage  
Buffered DAC and comparator subsystem functions multiplexed with ADC inputs  
Internal connection to VREFLO on all ADCs for offset self-calibration  
4-28 shows the Analog Subsystem Block Diagram for the 337-ball ZWT package. 4-29 shows the  
Analog Subsystem Block Diagram for the 176-pin PTP package. 4-30 shows the Analog Subsystem  
Block Diagram for the 100-pin PZP package.  
90  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
VREFHIA  
VREFHIA  
VDAC  
Comparator Subsystem 1  
DACOUTA/ADCINA0  
DACOUTB/ADCINA1  
CMPIN1P/ADCINA2  
CMPIN1N/ADCINA3  
CMPIN2P/ADCINA4  
CMPIN2N/ADCINA5  
0
1
2
3
4
5
6
7
8
REFHI  
CMPIN1P  
CTRIP1H  
Digital  
Filter  
DACREFSEL  
VDDA or VDAC  
CTRIPOUT1H  
12-bit  
Buffered  
DAC  
DAC12  
DAC12  
ADC-A  
16-bits  
or  
12-bits  
(selectable)  
CTRIP1L  
Digital  
Filter  
CMPIN1N  
CMPIN2P  
CTRIPOUT1L  
VREFLOA  
VREFLOA  
VSSA  
9
10  
11  
12  
13  
14  
15  
Comparator Subsystem 2  
Digital  
VREFHIA  
VDAC  
CTRIP2H  
VDDA or VDAC  
Filter  
CTRIPOUT2H  
TEMP SENSOR  
CMPIN4P/ADCIN14  
CMPIN4N/ADCIN15  
DACREFSEL  
DAC12  
DAC12  
REFLO  
REFHI  
12-bit  
Buffered  
DAC  
CTRIP2L  
Digital  
Filter  
VREFLOA  
VREFHIB  
CMPIN2N  
CMPIN3P  
CTRIPOUT2L  
VSSA  
Comparator Subsystem 3  
Digital  
VDAC/ADCINB0  
DACOUTC/ADCINB1  
CMPIN3P/ADCINB2  
CMPIN3N/ADCINB3  
ADCINB4  
0
1
2
3
4
5
6
7
8
CTRIP3H  
VREFHIB VDAC  
DACREFSEL  
VDDA or VDAC  
Filter  
CTRIPOUT3H  
DAC12  
DAC12  
ADCINB5  
ADC-B  
16-bits  
or  
12-bits  
(selectable)  
CTRIP3L  
Digital  
Filter  
12-bit  
Buffered  
DAC  
CMPIN3N  
CMPIN4P  
CTRIPOUT3L  
VREFLOB  
VREFLOB  
9
10  
11  
12  
13  
14  
15  
Comparator Subsystem 4  
Digital  
VSSA  
CTRIP4H  
VDDA or VDAC  
Filter  
CTRIPOUT4H  
DAC12  
DAC12  
REFLO  
REFHI  
Digital  
Filter  
CTRIP4L  
VREFLOB  
VREFHIC  
CMPIN4N  
CMPIN5P  
CTRIPOUT4L  
Comparator Subsystem 5  
Digital  
0
1
CTRIP5H  
CMPIN6P/ADCINC2  
CMPIN6N/ADCINC3  
CMPIN5P/ADCINC4  
CMPIN5N/ADCINC5  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
VDDA or VDAC  
Filter  
CTRIPOUT5H  
DAC12  
DAC12  
ADC-C  
16-bits  
or  
12-bits  
(selectable)  
CTRIP5L  
Digital  
Filter  
CTRIPOUT5L  
CMPIN5N  
CMPIN6P  
VREFLOC  
VREFLOC  
Comparator Subsystem 6  
Digital  
CTRIP6H  
VDDA or VDAC  
Filter  
CTRIPOUT6H  
DAC12  
DAC12  
REFLO  
REFHI  
Digital  
Filter  
CTRIP6L  
VREFLOC  
VREFHID  
CTRIPOUT6L  
CMPIN6N  
CMPIN7P  
Comparator Subsystem 7  
Digital  
CMPIN7P/ADCIND0  
CMPIN7N/ADCIND1  
CMPIN8P/ADCIND2  
CMPIN8N/ADCIND3  
ADCIND4  
0
1
2
3
4
5
6
7
8
CTRIP7H  
VDDA or VDAC  
Filter  
CTRIPOUT7H  
DAC12  
DAC12  
ADCIND5  
ADC-D  
16-bits  
or  
12-bits  
(selectable)  
CTRIP7L  
Digital  
Filter  
CTRIPOUT7L  
CMPIN7N  
CMPIN8P  
VREFLOD  
VREFLOD  
9
10  
11  
12  
13  
14  
15  
Comparator Subsystem 8  
Digital  
CTRIP8H  
VDDA or VDAC  
Filter  
CTRIPOUT8H  
DAC12  
DAC12  
REFLO  
Digital  
Filter  
CTRIP8L  
VREFLOD  
CTRIPOUT8L  
CMPIN8N  
4-28. Analog Subsystem Block Diagram (337-Ball ZWT)  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
91  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
VREFHIA  
VREFHIA VDAC  
DACREFSEL  
Comparator Subsystem 1  
DACOUTA/ADCINA0  
DACOUTB/ADCINA1  
CMPIN1P/ADCINA2  
CMPIN1N/ADCINA3  
CMPIN2P/ADCINA4  
CMPIN2N/ADCINA5  
0
1
2
3
4
5
6
7
8
REFHI  
CMPIN1P  
CTRIP1H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT1H  
12-bit  
Buffered  
DAC  
DAC12  
DAC12  
ADC-A  
16-bits  
or  
12-bits  
(selectable)  
CTRIP1L  
Digital  
Filter  
CMPIN1N  
CMPIN2P  
CTRIPOUT1L  
VREFLOA  
VREFLOA  
VSSA  
VSSA  
VSSA  
9
10  
11  
12  
13  
14  
15  
Comparator Subsystem 2  
Digital  
VREFHIA VDAC  
DACREFSEL  
CTRIP2H  
VDDA or VDAC  
Filter  
CTRIPOUT2H  
TEMP SENSOR  
CMPIN4P/ADCIN14  
CMPIN4N/ADCIN15  
DAC12  
DAC12  
REFLO  
REFHI  
12-bit  
Buffered  
DAC  
CTRIP2L  
Digital  
Filter  
VREFLOA  
VREFHIB  
CMPIN2N  
CMPIN3P  
CTRIPOUT2L  
Comparator Subsystem 3  
Digital  
VDAC/ADCINB0  
DACOUTC/ADCINB1  
CMPIN3P/ADCINB2  
CMPIN3N/ADCINB3  
0
1
2
3
4
5
6
7
8
CTRIP3H  
VREFHIB VDAC  
DACREFSEL  
VDDA or VDAC  
Filter  
CTRIPOUT3H  
DAC12  
DAC12  
ADC-B  
16-bits  
or  
12-bits  
(selectable)  
12-bit  
Buffered  
DAC  
CTRIP3L  
Digital  
Filter  
CMPIN3N  
CMPIN4P  
CTRIPOUT3L  
VREFLOB  
VREFLOB  
9
10  
11  
12  
13  
14  
15  
Comparator Subsystem 4  
Digital  
CTRIP4H  
VDDA or VDAC  
Filter  
CTRIPOUT4H  
DAC12  
DAC12  
REFLO  
REFHI  
Digital  
Filter  
CTRIP4L  
VREFLOB  
VREFHIC  
CMPIN4N  
CMPIN5P  
CTRIPOUT4L  
Comparator Subsystem 5  
Digital  
0
1
CTRIP5H  
CMPIN6P/ADCINC2  
CMPIN6N/ADCINC3  
CMPIN5P/ADCINC4  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
VDDA or VDAC  
Filter  
CTRIPOUT5H  
DAC12  
DAC12  
ADC-C  
16-bits  
or  
12-bits  
(selectable)  
CTRIP5L  
Digital  
Filter  
CTRIPOUT5L  
VREFLOC  
VREFLOC  
Comparator Subsystem 6  
Digital  
CMPIN6P  
CTRIP6H  
VDDA or VDAC  
Filter  
CTRIPOUT6H  
DAC12  
DAC12  
REFLO  
REFHI  
Digital  
Filter  
CTRIP6L  
VREFLOC  
VREFHID  
CTRIPOUT6L  
CMPIN6N  
CMPIN7P  
Comparator Subsystem 7  
Digital  
CMPIN7P/ADCIND0  
CMPIN7N/ADCIND1  
CMPIN8P/ADCIND2  
CMPIN8N/ADCIND3  
ADCIND4  
0
1
2
3
4
5
6
7
8
CTRIP7H  
VDDA or VDAC  
Filter  
CTRIPOUT7H  
DAC12  
DAC12  
ADC-D  
16-bits  
or  
12-bits  
(selectable)  
CTRIP7L  
Digital  
Filter  
CTRIPOUT7L  
CMPIN7N  
CMPIN8P  
VREFLOD  
VREFLOD  
9
10  
11  
12  
13  
14  
15  
Comparator Subsystem 8  
Digital  
CTRIP8H  
VDDA or VDAC  
Filter  
CTRIPOUT8H  
DAC12  
DAC12  
REFLO  
Digital  
Filter  
CTRIP8L  
VREFLOD  
CTRIPOUT8L  
CMPIN8N  
4-29. Analog Subsystem Block Diagram (176-Pin PTP)  
92  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
VREFHIA  
VREFHIA VDAC  
DACREFSEL  
Comparator Subsystem 1  
DACOUTA/ADCINA0  
DACOUTB/ADCINA1  
CMPIN1P/ADCINA2  
CMPIN1N/ADCINA3  
CMPIN2P/ADCINA4  
CMPIN2N/ADCINA5  
0
1
2
3
4
5
6
7
8
REFHI  
CMPIN1P  
CTRIP1H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT1H  
12-bit  
Buffered  
DAC  
DAC12  
DAC12  
ADC-A  
16-bits  
or  
12-bits  
(selectable)  
CTRIP1L  
Digital  
Filter  
CMPIN1N  
CMPIN2P  
CTRIPOUT1L  
VREFLOA  
VREFLOA  
VSSA  
9
10  
11  
12  
13  
14  
15  
Comparator Subsystem 2  
Digital  
VREFHIA VDAC  
DACREFSEL  
CTRIP2H  
VDDA or VDAC  
Filter  
CTRIPOUT2H  
TEMP SENSOR  
CMPIN4P/ADCIN14  
CMPIN4N/ADCIN15  
DAC12  
DAC12  
12-bit  
Buffered  
DAC  
REFLO  
REFHI  
CTRIP2L  
Digital  
Filter  
VREFLOA  
VREFHIB  
CMPIN2N  
CMPIN3P  
CTRIPOUT2L  
VSSA  
Comparator Subsystem 3  
Digital  
VDAC/ADCINB0  
DACOUTC/ADCINB1  
CMPIN3P/ADCINB2  
CMPIN3N/ADCINB3  
ADCINB4  
0
1
2
3
4
5
6
7
8
VREFHIB VDAC  
DACREFSEL  
CTRIP3H  
VDDA or VDAC  
Filter  
CTRIPOUT3H  
DAC12  
DAC12  
ADCINB5  
ADC-B  
16-bits  
or  
12-bits  
(selectable)  
12-bit  
Buffered  
DAC  
CTRIP3L  
Digital  
Filter  
CMPIN3N  
CMPIN4P  
CTRIPOUT3L  
VREFLOB  
VREFLOB  
9
VSSA  
10  
11  
12  
13  
14  
15  
Comparator Subsystem 4  
Digital  
CTRIP4H  
VDDA or VDAC  
Filter  
CTRIPOUT4H  
DAC12  
DAC12  
REFLO  
Digital  
Filter  
CTRIP4L  
VREFLOB  
CMPIN4N  
CTRIPOUT4L  
4-30. Analog Subsystem Block Diagram (100-Pin PZP)  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
93  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.8.1 Analog-to-Digital Converter (ADC)  
The ADCs on this device are successive approximation (SAR) style ADCs with selectable resolution of  
either 16 bits or 12 bits. There are multiple ADC modules which allow simultaneous sampling. The ADC  
wrapper is start-of-conversion (SOC) based [see the SOC Principle of Operation section of the  
TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual.  
Each ADC has the following features:  
Selectable resolution of 16 bits or 12 bits  
Ratiometric external reference set by VREFHI and VREFLO  
Differential signal conversions (16-bit mode only)  
Single-ended signal conversions (12-bit mode only)  
Input multiplexer with up to 16 channels (single-ended) or 8 channels (differential)  
16 configurable SOCs  
16 individually addressable result registers  
Multiple trigger sources  
Software immediate start  
All ePWMs  
GPIO XINT2  
CPU timers  
ADCINT1 or 2  
Four flexible PIE interrupts  
Burst mode  
Four post-processing blocks, each with:  
Saturating offset calibration  
Error from setpoint calculation  
High, low, and zero-crossing compare, with interrupt and ePWM trip capability  
Trigger-to-sample delay capture  
94  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4-31 shows the ADC module block diagram.  
Analog to Digital Core  
Analog to Digital Wrapper Logic  
SIGNALMODE  
SIGNALMODE  
RESOLUTION  
ADCSOC  
RESOLUTION  
Input Circuit  
SOCx (0-15)  
CHSEL  
[15:0]  
[15:0]  
[15:0]  
SOC  
Arbitration  
& Control  
ACQPS  
CHSEL  
0
1
ADCIN0  
ADCIN1  
ADCIN2  
ADCIN3  
ADCIN4  
ADCIN5  
ADCIN6  
ADCIN7  
ADCIN8  
ADCIN9  
ADCIN10  
ADCIN11  
ADCIN12  
ADCIN13  
ADCIN14  
ADCIN15  
2
3
4
5
ADCCOUNTER  
6
TRIGGER[15:0]  
VIN+  
7
DOUT  
8
VIN-  
9
10  
11  
12  
13  
14  
15  
SOC Delay  
Timestamp  
Trigger  
Timestamp  
S/H Circuit  
Converter  
RESULT  
-
+
ADCPPBxOFFCAL  
S
saturate  
+
ADCPPBxOFFREF  
ADCPPBxRESULT  
-
S
ADCEVT  
VREFHI  
Event  
Logic  
CONFIG  
ADCEVTINT  
VREFLO  
Reference Voltage Levels  
Post Processing Block (1-4)  
Interrupt Block (1-4)  
ADCINT1-4  
4-31. ADC Module Block Diagram  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
95  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.8.1.1 ADC Electrical Data and Timing  
Table 4-41 shows the ADC operating conditions for 16-bit differential mode. Table 4-42 shows the ADC  
characteristics for 16-bit differential mode. Table 4-43 shows the ADC operating conditions for 12-bit  
single-ended mode. Table 4-44 shows the ADC characteristics for 12-bit single-ended mode. Table 4-45  
shows the ADCEXTSOC timing requirements.  
Table 4-41. ADC Operating Conditions (16-Bit Differential Mode)  
over recommended operating conditions (unless otherwise noted)  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
ADCCLK (derived from PERx.SYSCLK)  
Sample window duration (set by ACQPS and PERx.SYSCLK)(1)  
5
320  
50  
VREFHI  
2.4  
2.5 or 3.0  
0
VDDA  
VSSA  
V
VREFLO  
VSSA  
V
VREFHI – VREFLO  
2.4  
VDDA  
V
ADC input conversion range  
ADC input signal common mode voltage(2)(3)  
VREFLO  
VREFCM – 50  
VREFHI  
V
VREFCM  
VREFCM + 50  
mV  
(1) The sample window must also be at least as long as 1 ADCCLK cycle for correct ADC operation.  
(2) VREFCM = (VREFHI + VREFLO)/2  
(3) The VREFCM requirements will not be met if the negative ADC input pin is connected to VSSA or VREFLO  
.
NOTE  
The ADC inputs should be kept below VDDA + 0.3 V during operation. If an ADC input  
exceeds this level, the VREF internal to the device may be disturbed, which can impact results  
for other ADC or DAC inputs using the same VREF  
.
96  
Specifications  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
Table 4-42. ADC Characteristics (16-Bit Differential Mode)  
over recommended operating conditions (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ADC conversion cycles(2)  
29.6  
31 ADCCLKs  
Power-up time (after setting  
ADCPWDNZ to first conversion)  
500  
µs  
Gain error  
Offset error(3)  
–64  
–16  
±9  
±9  
64  
16  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
dB  
Channel-to-channel gain error  
Channel-to-channel offset error  
ADC-to-ADC gain error  
ADC-to-ADC offset error  
DNL(4)  
±6  
±3  
Identical VREFHI and VREFLO for all ADCs  
Identical VREFHI and VREFLO for all ADCs  
±6  
±3  
> –1  
–3  
±0.5  
±1.5  
87.6  
–93.5  
95.4  
86.6  
1
3
INL  
SNR(5)(6)  
THD(5)(6)  
SFDR(5)(6)  
VREFHI = 2.5 V, fin = 10 kHz  
VREFHI = 2.5 V, fin = 10 kHz  
VREFHI = 2.5 V, fin = 10 kHz  
VREFHI = 2.5 V, fin = 10 kHz  
dB  
dB  
SINAD(5)(6)  
dB  
VREFHI = 2.5 V, fin = 10 kHz,  
single ADC(7)  
14.1  
14.1  
VREFHI = 2.5 V, fin = 10 kHz,  
synchronous ADCs(8)  
ENOB(5)(6)  
bits  
VREFHI = 2.5 V, fin = 10 kHz,  
asynchronous ADCs(9)  
Not  
supported  
VDDA = 3.3-V DC + 200 mV  
DC up to Sine at 1 kHz  
PSRR  
PSRR  
77  
74  
dB  
dB  
VDDA = 3.3-V DC + 200 mV  
Sine at 800 kHz  
CMRR  
DC to 1 MHz  
60  
dB  
µA  
VREFHI input current  
190  
VREFHI = 2.5 V, synchronous ADCs(8)  
VREFHI = 2.5 V, asynchronous ADCs(9)  
–2  
2
ADC-to-ADC isolation(6)(10)(11)  
LSBs  
Not  
supported  
(1) Typical values are measured with VREFHI = 2.5 V and VREFLO = 0 V. Minimum and Maximum values are tested or characterized with  
VREFHI = 2.5 V and VREFLO = 0 V.  
(2) See 4.8.1.1.2.  
(3) Difference from conversion result 32768 when ADCINp = ADCINn = VREFCM  
(4) No missing codes.  
.
(5) AC parameters will be impacted by clock source accuracy and jitter, this should be taken into account when selecting the clock source  
for the system. The clock source used for these parameters was a high-accuracy external clock fed through the PLL. The on-chip  
Internal Oscillator has higher jitter than an external crystal and these parameters will degrade if it is used as a clock source.  
(6) I/O activity is minimized on pins adjacent to ADC input and VREFHI pins as part of best practices to reduce capacitive coupling and  
crosstalk.  
(7) One ADC operating while all other ADCs are idle.  
(8) All ADCs operating with identical ADCCLK, S+H durations, triggers, and resolution.  
(9) Any ADCs operating with heterogeneous ADCCLK, S+H durations, triggers, or resolution.  
(10) Maximum DC code deviation due to operation of multiple ADCs simultaneously.  
(11) Value based on characterization.  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
97  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Table 4-43. ADC Operating Conditions (12-Bit Single-Ended Mode)  
over recommended operating conditions (unless otherwise noted)  
MIN  
5
TYP  
MAX  
UNIT  
MHz  
ns  
V
ADCCLK (derived from PERx.SYSCLK)  
Sample window duration (set by ACQPS and PERx.SYSCLK)(1)  
50  
75  
VREFHI  
2.4  
2.5 or 3.0  
0
VDDA  
VSSA  
VREFLO  
VSSA  
2.4  
V
VREFHI – VREFLO  
ADC input conversion range  
VDDA  
V
VREFLO  
VREFHI  
V
(1) The sample window must also be at least as long as 1 ADCCLK cycle for correct ADC operation.  
NOTE  
The ADC inputs should be kept below VDDA + 0.3 V during operation. If an ADC input  
exceeds this level, the VREF internal to the device may be disturbed, which can impact results  
for other ADC or DAC inputs using the same VREF  
.
98  
Specifications  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
Table 4-44. ADC Characteristics (12-Bit Single-Ended Mode)  
over recommended operating conditions (unless otherwise noted)(1)  
PARAMETER  
ADC conversion cycles(2)  
Power-up time  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
10.1  
11 ADCCLKs  
500  
µs  
Gain error  
–5  
–4  
±3  
±2  
5
4
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
dB  
Offset error  
Channel-to-channel gain error  
Channel-to-channel offset error  
ADC-to-ADC gain error  
ADC-to-ADC offset error  
DNL(3)  
±4  
±2  
Identical VREFHI and VREFLO for all ADCs  
Identical VREFHI and VREFLO for all ADCs  
±4  
±2  
> –1  
–2  
±0.5  
±1.0  
68.8  
–78.4  
79.2  
68.4  
1
2
INL  
SNR(4)(5)  
THD(4)(5)  
SFDR(4)(5)  
VREFHI = 2.5 V, fin = 100 kHz  
VREFHI = 2.5 V, fin = 100 kHz  
VREFHI = 2.5 V, fin = 100 kHz  
VREFHI = 2.5 V, fin = 100 kHz  
dB  
dB  
SINAD(4)(5)  
dB  
VREFHI = 2.5 V, fin = 100 kHz,  
single ADC(6), all packages  
11.1  
11.1  
VREFHI = 2.5 V, fin = 100 kHz,  
synchronous ADCs(7), all packages  
VREFHI = 2.5 V, fin = 100 kHz,  
Not  
supported  
asynchronous ADCs(8)  
100-pin PZP package  
,
ENOB(4)(5)  
bits  
VREFHI = 2.5 V, fin = 100 kHz,  
asynchronous ADCs(8)  
176-pin PTP package  
,
9.7  
VREFHI = 2.5 V, fin = 100 kHz,  
asynchronous ADCs(8)  
337-ball ZWT package  
,
10.9  
VDDA = 3.3-V DC + 200 mV  
DC up to Sine at 1 kHz  
PSRR  
PSRR  
60  
57  
dB  
dB  
VDDA = 3.3-V DC + 200 mV  
Sine at 800 kHz  
VREFHI = 2.5 V, synchronous ADCs(7)  
all packages  
,
–1  
1
VREFHI = 2.5 V, asynchronous ADCs(8)  
100-pin PZP package  
VREFHI = 2.5 V, asynchronous ADCs(8)  
176-pin PTP package  
VREFHI = 2.5 V, asynchronous ADCs(8)  
337-ball ZWT package  
,
,
,
Not  
supported  
ADC-to-ADC isolation(5)(9)(10)  
LSBs  
µA  
–9  
–2  
9
2
VREFHI input current  
130  
(1) Typical values are measured with VREFHI = 2.5 V and VREFLO = 0 V. Minimum and Maximum values are tested or characterized with  
VREFHI = 2.5 V and VREFLO = 0 V.  
(2) See 4.8.1.1.2.  
(3) No missing codes.  
(4) AC parameters will be impacted by clock source accuracy and jitter, this should be taken into account when selecting the clock source  
for the system. The clock source used for these parameters was a high-accuracy external clock fed through the PLL. The on-chip  
Internal Oscillator has higher jitter than an external crystal and these parameters will degrade if it is used as a clock source.  
(5) I/O activity is minimized on pins adjacent to ADC input and VREFHI pins as part of best practices to reduce capacitive coupling and  
crosstalk.  
(6) One ADC operating while all other ADCs are idle.  
(7) All ADCs operating with identical ADCCLK, S+H durations, triggers, and resolution.  
(8) Any ADCs operating with heterogeneous ADCCLK, S+H durations, triggers, or resolution.  
(9) Maximum DC code deviation due to operation of multiple ADCs simultaneously.  
(10) Value based on characterization.  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
99  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Table 4-45. ADCEXTSOC Timing Requirements(1)  
MIN  
MAX  
UNIT  
cycles  
cycles  
Synchronous  
2tc(SYSCLK)  
tw(INT)  
Pulse duration, INT input low/high  
With qualifier  
tw(IQSW) + tw(SP) + 1tc(SYSCLK)  
(1) For an explanation of the input qualifier parameters, see Table 4-24.  
4.8.1.1.1 ADC Input Models  
ADC channels ADCINA0, ADCINA1, and ADCINB1 have a 50-kΩ pulldown resistor to VSSA  
.
For single-ended operation, the ADC input characteristics are given by 4-46 and 4-32.  
4-46. Single-Ended Input Model Parameters  
DESCRIPTION  
Parasitic input capacitance  
VALUE (12-BIT MODE)  
Cp  
Ron  
Ch  
Rs  
See 4-48  
425 Ω  
Sampling switch resistance  
Sampling capacitor  
14.5 pF  
50 Ω  
Nominal source impedance  
ADC  
ADCINx  
Rs  
Switch  
Ron  
AC  
Cp  
Ch  
VREFLO  
4-32. Single-Ended Input Model  
For differential operation, the ADC input characteristics are given by 4-47 and 4-33.  
4-47. Differential Input Model Parameters  
DESCRIPTION  
Parasitic input capacitance  
VALUE (16-BIT MODE)  
See 4-48  
700 Ω  
Cp  
Ron  
Ch  
Rs  
Sampling switch resistance  
Sampling capacitor  
16.5 pF  
Nominal source impedance  
50 Ω  
ADC  
ADCINxP  
Rs  
Cp  
Cp  
Ron  
Switch  
Switch  
AC  
Ch  
VSSA  
Ron  
ADCINxN  
Rs  
4-33. Differential Input Model  
100  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4-48 shows the parasitic capacitance on each channel. Also, enabling a comparator adds  
approximately 1.4 pF of capacitance on positive comparator inputs and 2.5 pF of capacitance on negative  
comparator inputs.  
4-48. Per-Channel Parasitic Capacitance  
Cp (pF)  
ADC CHANNEL  
COMPARATOR DISABLED  
COMPARATOR ENABLED  
ADCINA0  
ADCINA1  
ADCINA2  
ADCINA3  
ADCINA4  
ADCINA5  
ADCINB0(1)  
ADCINB1  
ADCINB2  
ADCINB3  
ADCINB4  
ADCINB5  
ADCINC2  
ADCINC3  
ADCINC4  
ADCINC5  
ADCIND0  
ADCIND1  
ADCIND2  
ADCIND3  
ADCIND4  
ADCIND5  
ADCIN14  
ADCIN15  
12.9  
10.3  
5.9  
6.3  
5.9  
6.3  
117.0  
10.6  
5.9  
6.2  
5.2  
5.1  
5.5  
5.8  
5.0  
5.3  
5.3  
5.7  
5.3  
5.6  
4.3  
4.3  
8.6  
9.0  
N/A  
N/A  
7.3  
8.8  
7.3  
8.8  
N/A  
N/A  
7.3  
8.7  
N/A  
N/A  
6.9  
8.3  
6.4  
7.8  
6.7  
8.2  
6.7  
8.1  
N/A  
N/A  
10.0  
11.5  
(1) The increased capacitance is due to VDAC functionality.  
These input models should be used along with actual signal source impedance to determine the  
acquisition window duration. See the Choosing an Acquisition Window Duration section of the  
TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual for more information.  
The user should analyze the ADC input setting assuming worst-case initial conditions on Ch. This will  
require assuming that Ch could start the S+H window completely charged to VREFHI or completely  
discharged to VREFLO. When the ADC transitions from an odd-numbered channel to an even-numbered  
channel, or vice-versa, the actual initial voltage on Ch will be close to being completely discharged to  
VREFLO. For even-to-even or odd-to-odd channel transitions, the initial voltage on Ch will be close to the  
voltage of the previously converted channel.  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
101  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.8.1.1.2 ADC Timing Diagrams  
4-49 shows the ADC timings in 12-bit mode (SYSCLK cycles). 4-50 shows the ADC timings in 16-bit  
mode. 4-34 and 4-35 show the ADC conversion timings for two SOCs given the following  
assumptions:  
SOC0 and SOC1 are configured to use the same trigger.  
No other SOCs are converting or pending when the trigger occurs.  
The round robin pointer is in a state that causes SOC0 to convert first.  
ADCINTSEL is configured to set an ADCINT flag upon end of conversion for SOC0 (whether this flag  
propagates through to the CPU to cause an interrupt is determined by the configurations in the PIE  
module).  
The following parameters are identified in the timing diagrams:  
The parameter tSH is the duration of the S+H window. At the end of this window, the value on the S+H  
capacitor becomes the voltage to be converted into a digital value. The duration is given by (ACQPS +  
1) SYSCLK cycles. ACQPS can be configured individually for each SOC, so tSH will not necessarily be  
the same for different SOCs.  
The parameter tLAT is the time from the end of the S+H window until the ADC conversion results latch  
in the ADCRESULTx register. If the ADCRESULTx register is read before this time, the previous  
conversion results will be returned.  
The parameter tEOC is the time from the end of the S+H window until the next ADC conversion S+H  
window can begin. In 16-bit mode, this will coincide with the latching of the conversion results, while in  
12-bit mode, the subsequent sample can start before the conversion results are latched.  
The parameter tINT is the time from the end of the S+H window until an ADCINT flag is set (if  
configured). If the INTPULSEPOS bit in the ADCCTL1 register is set, this will coincide with the  
conversion results being latched into the result register. If the bit is cleared, this will coincide with the  
end of the S+H window.  
102  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4-49. ADC Timings in 12-Bit Mode (SYSCLK Cycles)  
ADCCLK  
CYCLES  
ADCCLK PRESCALE  
SYSCLK CYCLES  
tLAT tINT(EARLY)  
13  
ADCCTL2  
RATIO  
tEOC  
tINT(LATE)  
tEOC  
[PRESCALE]  
ADCCLK:SYSCLK  
0
1
1
1.5  
2
11  
1
11  
11.0  
Invalid  
2
21  
26  
31  
36  
41  
46  
51  
56  
61  
66  
71  
76  
81  
86  
23  
28  
34  
39  
44  
49  
55  
60  
65  
70  
76  
81  
86  
91  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
21  
26  
31  
36  
41  
46  
51  
56  
61  
66  
71  
76  
81  
86  
10.5  
10.4  
10.3  
10.3  
10.3  
10.2  
10.2  
10.2  
10.2  
10.2  
10.1  
10.1  
10.1  
10.1  
3
2.5  
3
4
5
3.5  
4
6
7
4.5  
5
8
9
5.5  
6
10  
11  
12  
13  
14  
15  
6.5  
7
7.5  
8
8.5  
Sample n  
Input on SOC0.CHSEL  
Input on SOC1.CHSEL  
ADC S+H  
Sample n+1  
SOC0  
SOC1  
SYSCLK  
ADCCLK  
ADCTRIG  
ADCSOCFLG.SOC0  
ADCSOCFLG.SOC1  
ADCRESULT0  
Sample n  
(old data)  
(old data)  
Sample n+1  
ADCRESULT1  
ADCINTFLG.ADCINTx  
tSH  
tLAT  
tEOC  
tINT  
4-34. ADC Timings for 12-Bit Mode  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
103  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4-50. ADC Timings in 16-Bit Mode  
ADCCLK  
CYCLES  
ADCCLK PRESCALE  
SYSCLK CYCLES  
ADCCTL2  
[PRESCALE]  
RATIO  
ADCCLK:SYSCLK  
tEOC  
tLAT  
tINT(EARLY)  
tINT(LATE)  
tEOC  
0
1
1
1.5  
2
31  
32  
1
31  
31.0  
Invalid  
2
60  
61  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
60  
30.0  
30.0  
30.0  
29.7  
29.8  
29.8  
29.8  
29.6  
29.7  
29.7  
29.7  
29.6  
29.6  
29.6  
3
2.5  
3
75  
75  
75  
4
90  
91  
90  
5
3.5  
4
104  
119  
134  
149  
163  
178  
193  
208  
222  
237  
252  
106  
120  
134  
150  
165  
179  
193  
209  
224  
238  
252  
104  
119  
134  
149  
163  
178  
193  
208  
222  
237  
252  
6
7
4.5  
5
8
9
5.5  
6
10  
11  
12  
13  
14  
15  
6.5  
7
7.5  
8
8.5  
104  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
Sample n  
Input on SOC0.CHSEL  
Input on SOC1.CHSEL  
ADC S+H  
Sample n+1  
SOC0  
SOC1  
SYSCLK  
ADCCLK  
ADCTRIG  
ADCSOCFLG.SOC0  
ADCSOCFLG.SOC1  
ADCRESULT0  
ADCRESULT1  
ADCINTFLG.ADCINTx  
Sample n  
(old data)  
(old data)  
Sample n+1  
tSH  
tLAT  
tEOC  
tINT  
4-35. ADC Timings for 16-Bit Mode  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
105  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.8.1.2 Temperature Sensor Electrical Data and Timing  
The temperature sensor can be used to measure the device junction temperature. The temperature  
sensor is sampled through an internal connection to the ADC and translated into a temperature through  
TI-provided software. When sampling the temperature sensor, the ADC must meet the acquisition time in  
Table 4-51.  
Table 4-51. Temperature Sensor Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
±15  
500  
MAX  
UNIT  
°C  
Temperature accuracy  
Start-up time (TSNSCTL[ENABLE] to sampling temperature sensor)  
ADC acquisition time  
µs  
700  
ns  
106  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.8.2 Comparator Subsystem (CMPSS)  
Each CMPSS module includes two comparators, two internal voltage reference DACs (CMPSS DACs),  
two digital glitch filters, and one ramp generator. There are two inputs, CMPINxP and CMPINxN. Each of  
these inputs will be internally connected to an ADCIN pin. The CMPINxP pin is always connected to the  
positive input of the CMPSS comparators. CMPINxN can be used instead of the DAC output to drive the  
negative comparator inputs. There are two comparators, and therefore two outputs from the CMPSS  
module, which are connected to the input of a digital filter module before being passed on to the  
Comparator TRIP crossbar and either PWM modules or directly to a GPIO pin. 4-36 shows the CMPSS  
connectivity on the 337-ball ZWT and 176-pin PTP packages. 4-37 shows CMPSS connectivity on the  
100-pin PZP package.  
Comparator Subsystem 1  
CMPIN1P Pin  
CTRIP1H  
Digital  
Filter  
CTRIPOUT1H  
VDDA or VDAC  
CTRIP1H  
CTRIP1L  
CTRIP2H  
CTRIP2L  
DAC12  
DAC12  
CTRIP1L  
Digital  
Filter  
CTRIPOUT1L  
ePWMs  
ePWM X-BAR  
CMPIN1N Pin  
CMPIN2P Pin  
CTRIP8H  
CTRIP8L  
Comparator Subsystem 2  
Digital  
CTRIP2H  
CTRIPOUT2H  
VDDA or VDAC  
Filter  
DAC12  
DAC12  
CTRIP2L  
Digital  
Filter  
CTRIPOUT2L  
CMPIN2N Pin  
CTRIPOUT1H  
CTRIPOUT1L  
CTRIPOUT2H  
CTRIPOUT2L  
Comparator Subsystem 8  
Digital  
CMPIN8P Pin  
CTRIP8H  
Output X-BAR  
GPIO Mux  
CTRIPOUT8H  
VDDA or VDAC  
Filter  
CTRIPOUT8H  
CTRIPOUT8L  
DAC12  
DAC12  
CTRIP8L  
Digital  
Filter  
CTRIPOUT8L  
CMPIN8N Pin  
4-36. CMPSS Connectivity (337-Ball ZWT and 176-Pin PTP)  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
107  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Comparator Subsystem 1  
Digital  
CMPIN1P Pin  
CTRIP1H  
CTRIPOUT1H  
VDDA or VDAC  
Filter  
CTRIP1H  
CTRIP1L  
CTRIP2H  
CTRIP2L  
CTRIP3H  
CTRIP3L  
CTRIP4H  
CTRIP4L  
DAC12  
DAC12  
CTRIP1L  
Digital  
Filter  
CTRIPOUT1L  
ePWM X-BAR  
ePWMs  
CMPIN1N Pin  
CMPIN2P Pin  
Comparator Subsystem 2  
Digital  
CTRIP2H  
CTRIPOUT2H  
VDDA or VDAC  
Filter  
DAC12  
DAC12  
CTRIP2L  
Digital  
Filter  
CTRIPOUT2L  
CMPIN2N Pin  
CMPIN3P Pin  
Comparator Subsystem 3  
Digital  
CTRIP3H  
CTRIPOUT1H  
CTRIPOUT1L  
CTRIPOUT2H  
CTRIPOUT2L  
CTRIPOUT3H  
CTRIPOUT3L  
CTRIPOUT4H  
CTRIPOUT4L  
CTRIPOUT3H  
VDDA or VDAC  
Filter  
DAC12  
DAC12  
Output X-BAR  
GPIO Mux  
CTRIP3L  
Digital  
Filter  
CTRIPOUT3L  
CMPIN3N Pin  
CMPIN4P Pin  
Comparator Subsystem 4  
Digital  
CTRIP4H  
CTRIPOUT4H  
VDDA or VDAC  
Filter  
DAC12  
DAC12  
CTRIP4L  
Digital  
Filter  
CTRIPOUT4L  
CMPIN4N Pin  
4-37. CMPSS Connectivity (100-Pin PZP)  
108  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.8.2.1 CMPSS Electrical Data and Timing  
Table 4-52 shows the comparator electrical characteristics. Figure 4-38 shows the CMPSS comparator  
input referred offset. Figure 4-39 shows the CMPSS comparator hysteresis.  
Table 4-52. Comparator Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power-up time (from COMPCTL[COMPDACE] to  
comparator ready)  
10  
µs  
Comparator input (CMPINxx) range  
Input referred offset error  
0
VDDA  
20  
V
–20  
mV  
1x  
2x  
3x  
4x  
12  
24  
36  
48  
21  
26  
30  
CMPSS  
DAC LSB  
Hysteresis(1)  
Step response  
60  
Response time (delay from CMPINx input change  
to output on ePWM X-BAR or Output X-BAR)  
Ramp response (1.65 V/µs)  
Ramp response (8.25 mV/µs)  
ns  
(1) The CMPSS DAC is used as the reference to determine how much hysteresis to apply. Therefore, hysteresis will scale with the CMPSS  
DAC reference voltage. Hysteresis is available for all comparator input source configurations.  
NOTE  
The CMPSS inputs must be kept below VDDA + 0.3 V to ensure proper functional operation. If  
a CMPSS input exceeds this level, an internal blocking circuit will isolate the internal  
comparator from the external pin until the external pin voltage returns below VDDA + 0.3 V.  
During this time, the internal comparator input will be floating and can decay below VDDA  
within approximately 0.5 µs. After this time, the comparator could begin to output an incorrect  
result depending on the value of the other comparator input.  
Input Referred Offset  
CTRIPx  
Logic Level  
CTRIPx = 1  
CTRIPx = 0  
COMPINxP  
Voltage  
0
CMPINxN or  
DACxVAL  
Figure 4-38. CMPSS Comparator Input Referred Offset  
Hysteresis  
CTRIPx  
Logic Level  
CTRIPx = 1  
CTRIPx = 0  
COMPINxP  
Voltage  
0
CMPINxN or  
DACxVAL  
Figure 4-39. CMPSS Comparator Hysteresis  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
109  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Table 4-53 shows the CMPSS DAC static electrical characteristics. Figure 4-40 shows the CMPSS DAC  
static offset. Figure 4-41 shows the CMPSS DAC static gain. Figure 4-42 shows the CMPSS DAC static  
linearity.  
Table 4-53. CMPSS DAC Static Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Internal reference  
MIN  
0
TYP  
MAX  
VDDA  
VDAC  
25  
UNIT  
CMPSS DAC output range  
V
External reference  
0
Static offset error(1)  
Static gain error(1)  
Static DNL  
–25  
–2  
mV  
% of FSR  
LSB  
2
Endpoint corrected  
Endpoint corrected  
>–1  
–16  
4
Static INL  
16  
LSB  
Settling to 1 LSB after full-scale output  
change  
Settling time  
Resolution  
1
µs  
12  
bits  
Error induced by comparator trip or  
CMPSS DAC code change within the  
same CMPSS module  
CMPSS DAC output disturbance(2)  
–100  
2.4  
100  
LSB  
CMPSS DAC disturbance time(2)  
VDAC reference voltage  
VDAC load(3)  
200  
2.5 or 3.0  
6
ns  
V
When VDAC is reference  
When VDAC is reference  
VDDA  
kΩ  
(1) Includes comparator input referred errors.  
(2) Disturbance error may be present on the CMPSS DAC output for a certain amount of time after a comparator trip.  
(3) Per active CMPSS module.  
Offset Error  
Figure 4-40. CMPSS DAC Static Offset  
110  
Specifications  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
Ideal Gain  
Actual Gain  
Figure 4-41. CMPSS DAC Static Gain  
Linearity Error  
Figure 4-42. CMPSS DAC Static Linearity  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
111  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.8.3 Buffered Digital-to-Analog Converter (DAC)  
The buffered DAC module consists of an internal reference DAC and an analog output buffer that is  
capable of driving an external load. An integrated pulldown resistor on the DAC output helps to provide a  
known pin voltage when the output buffer is disabled. This pulldown resistor cannot be disabled and  
remains as a passive component on the pin, even for other shared pin mux functions. Software writes to  
the DAC value register can take effect immediately or can be synchronized with PWMSYNC events.  
Each buffered DAC has the following features:  
12-bit programmable internal DAC  
Selectable reference voltage  
Pulldown resistor on output  
Ability to synchronize with PWMSYNC  
The block diagram for the buffered DAC is shown in 4-43.  
DACCTL[DACREFSEL]  
VDAC  
0
1
VREFHI  
VDDA  
DACCTL[LOADMODE]  
0
SYSCLK  
>
DACVALS  
D Q  
D Q  
12-bit  
DAC  
DACVALA  
Buffer  
1
RPD  
PWMSYNC1  
0
>
VSSA  
PWMSYNC2  
PWMSYNC3  
1
VSSA  
2
...  
PWMSYNCn  
n-1  
DACCTL[SYNCSEL]  
4-43. DAC Module Block Diagram  
112  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.8.3.1 Buffered DAC Electrical Data and Timing  
Table 4-54 shows the buffered DAC electrical characteristics. Figure 4-44 shows the buffered DAC offset.  
Figure 4-45 shows the buffered DAC gain. Figure 4-46 shows the buffered DAC linearity.  
Table 4-54. Buffered DAC Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
10  
UNIT  
µs  
Power-up time (DACOUTEN to DAC  
output valid)  
Trimmed offset error  
Gain error(2)  
DNL(3)  
Midpoint  
–10  
–2.5  
> –1  
–5  
10  
mV  
2.5 % of FSR  
Endpoint corrected  
Endpoint corrected  
1
5
LSB  
LSB  
INL  
Settling to 2 LSBs after 0.3V-to-3V  
transition  
DACOUTx settling time  
2
µs  
Resolution  
12  
bits  
Voltage output range(4)  
Capacitive load  
Resistive load  
RPD  
Reference voltage(5)  
Reference load(6)  
0.3  
5
VDDA – 0.3  
100  
V
pF  
Output drive capability  
Output drive capability  
kΩ  
50  
2.5 or 3.0  
170  
kΩ  
VDAC or VREFHI  
2.4  
VDDA  
V
VDAC or VREFHI  
kΩ  
Integrated noise from 100 Hz to 100 kHz  
Noise density at 10 kHz  
500  
µVrms  
nVrms/Hz  
V-ns  
Output noise  
Glitch energy  
PSRR(7)  
711  
1.5  
DC up to 1 kHz  
70  
dB  
100 kHz  
30  
SNR  
THD  
1020 Hz  
67  
dB  
dB  
1020 Hz  
–63  
1020 Hz, including harmonics and spurs  
1020 Hz, including only spurs  
66  
SFDR  
dBc  
104  
(1) Typical values are measured with VREFHI = 3.3 V and VREFLO = 0 V unless otherwise noted. Minimum and Maximum values are tested  
or characterized with VREFHI = 2.5 V and VREFLO = 0 V.  
(2) Gain error is calculated for linear output range.  
(3) The DAC output is monotonic.  
(4) This is the linear output range of the DAC. The DAC can generate voltages outside this range, but the output voltage will not be linear  
due to the buffer.  
(5) For best PSRR performance, VDAC or VREFHI should be less than VDDA  
.
(6) Per active Buffered DAC module.  
(7) VREFHI = 3.2 V, VDDA = 3.3 V DC + 100 mV Sine.  
NOTE  
The VDAC pin must be kept below VDDA + 0.3 V to ensure proper functional operation. If the  
VDAC pin exceeds this level, a blocking circuit may activate, and the internal value of VDAC  
may float to 0 V internally, giving improper DAC output.  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
113  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Offset Error  
Code 2048  
Figure 4-44. Buffered DAC Offset  
Actual Gain  
Ideal Gain  
Code 3722  
Code 373  
Linear Range  
(3.3-V Reference)  
Figure 4-45. Buffered DAC Gain  
114  
Specifications  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
Linearity Error  
Code 3722  
Code 373  
Linear Range  
(3.3-V Reference)  
Figure 4-46. Buffered DAC Linearity  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
115  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.9 Control Peripherals  
4.9.1 Enhanced Capture (eCAP)  
The eCAP module can be used in systems where accurate timing of external events is important.  
Applications for eCAP include:  
Speed measurements of rotating machinery (for example, toothed sprockets sensed through Hall  
sensors)  
Elapsed time measurements between position sensor pulses  
Period and duty cycle measurements of pulse train signals  
Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors  
The eCAP module includes the following features:  
4-event time-stamp registers (each 32 bits)  
Edge-polarity selection for up to four sequenced time-stamp capture events  
Interrupt on either of the four events  
Single shot capture of up to four event timestamps  
Continuous mode capture of timestamps in a four-deep circular buffer  
Absolute time-stamp capture  
Difference (Delta) mode time-stamp capture  
All of the above resources dedicated to a single input pin  
When not used in capture mode, the eCAP module can be configured as a single-channel PWM output  
(APWM).  
The eCAP inputs connect to any GPIO input through the Input X-BAR. The APWM outputs connect to  
GPIO pins through the Output X-BAR to OUTPUTx positions in the GPIO mux. See Section 3.4.2 and  
Section 3.4.3.  
4-47 shows the block diagram of an eCAP module.  
116  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
CTRPHS  
(phase register−32 bit)  
APWM mode  
SYNCIn  
CTR_OVF  
OVF  
CTR [0−31]  
PRD [0−31]  
CMP [0−31]  
TSCTR  
(counter−32 bit)  
SYNCOut  
PWM  
compare  
logic  
Delta−mode  
RST  
32  
CTR=PRD  
CTR=CMP  
CTR [0−31]  
PRD [0−31]  
32  
eCAPx  
32  
LD1  
CAP1  
(APRD active)  
Polarity  
select  
LD  
APRD  
shadow  
32  
CMP [0−31]  
32  
32  
LD2  
CAP2  
(ACMP active)  
Polarity  
select  
LD  
Event  
qualifier  
Event  
Prescale  
32  
ACMP  
shadow  
Polarity  
select  
32  
32  
LD3  
LD4  
CAP3  
(APRD shadow)  
LD  
CAP4  
(ACMP shadow)  
Polarity  
select  
LD  
4
Capture events  
CEVT[1:4]  
4
Interrupt  
Trigger  
and  
Flag  
control  
Continuous /  
Oneshot  
Capture Control  
to PIE  
CTR_OVF  
CTR=PRD  
CTR=CMP  
Copyright © 2017, Texas Instruments Incorporated  
4-47. eCAP Block Diagram  
The eCAP module is clocked by PERx.SYSCLK.  
The clock enable bits (ECAP1–ECAP6) in the PCLKCR3 register turn off the eCAP module individually  
(for low-power operation). Upon reset, ECAP1ENCLK is set to low, indicating that the peripheral clock is  
off.  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
117  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.9.1.1 eCAP Electrical Data and Timing  
Table 4-55 shows the eCAP timing requirement and Table 4-56 shows the eCAP switching characteristics.  
Table 4-55. eCAP Timing Requirement(1)  
MIN  
2tc(SYSCLK)  
MAX UNIT  
cycles  
Asynchronous  
Synchronous  
tw(CAP)  
Capture input pulse width  
2tc(SYSCLK)  
cycles  
With input qualifier  
1tc(SYSCLK) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 4-24.  
Table 4-56. eCAP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
tw(APWM)  
Pulse duration, APWMx output high/low  
20  
ns  
118  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.9.2 Enhanced Pulse Width Modulator (ePWM)  
The ePWM peripheral is a key element in controlling many of the power electronic systems found in both  
commercial and industrial equipment. The ePWM type-4 module is able to generate complex pulse width  
waveforms with minimal CPU overhead by building the peripheral up from smaller modules with separate  
resources that can operate together to form a system. Some of the highlights of the ePWM type-4 module  
include complex waveform generation, dead-band generation, a flexible synchronization scheme,  
advanced trip-zone functionality, and global register reload capabilities.  
4-48 shows the signal interconnections with the ePWM. 4-49 shows the ePWM trip input  
connectivity.  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
119  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
TBCTL2[SYNCOSELX]  
Time-Base (TB)  
Disable  
00  
01  
10  
11  
CTR=CMPC  
TBPRD Shadow (24)  
CTR=CMPD  
Rsvd  
CTR=ZERO  
CTR=CMPB  
TBPRDHR (8)  
Sync  
Out  
Select  
EPWMxSYNCO  
TBPRD Active (24)  
TBCTL[SWFSYNC]  
EPWMxSYNCI  
8
CTR=PRD  
TBCTL[PHSEN]  
TBCTL[SYNCOSEL]  
DCAEVT1.sync(A)  
DCBEVT1.sync(A)  
Counter  
Up/Down  
(16 Bit)  
CTR=ZERO  
CTR_Dir  
TBCTR  
Active (16)  
CTR=PRD  
CTR=ZERO  
EPWMxINT  
TBPHSHR (8)  
16  
8
CTR=PRD or ZERO  
CTR=CMPA  
EPWMxSOCA  
EPWMxSOCB  
Phase  
Control  
On-chip  
ADC  
TBPHS Active (24)  
Event  
Trigger  
and  
CTR=CMPB  
CTR=CMPC  
Interrupt  
(ET)  
ADCSOCOUTSEL  
CTR=CMPD  
Counter Compare (CC)  
CTR_Dir  
Action  
Qualifier  
(AQ)  
DCAEVT1.soc(A)  
DCBEVT1.soc(A)  
Select and pulse stretch  
for external ADC  
CTR=CMPA  
CMPAHR (8)  
ADCSOCAO  
ADCSOCBO  
16  
HiRes PWM (HRPWM)  
CMPAHR (8)  
EPWMA  
CMPA Active (24)  
CMPA Shadow (24)  
ePWMxA  
PWM  
Chopper  
(PC)  
Trip  
Zone  
(TZ)  
Dead  
Band  
(DB)  
CTR=CMPB  
CMPBHR (8)  
16  
EPWMB  
ePWMxB  
CMPB Active (24)  
CMPB Shadow (24)  
CMPBHR (8)  
CTR=CMPC  
EPWMxTZINT  
TZ1 to TZ3  
TBCNT(16)  
EMUSTOP  
CTR=ZERO  
DCAEVT1.inter  
DCBEVT1.inter  
DCAEVT2.inter  
CLOCKFAIL  
CMPC[15-0] 16  
EQEPxERR  
CMPC Active (16)  
CMPC Shadow (16)  
DCAEVT1.force(A)  
DCAEVT2.force(A)  
DCBEVT1.force(A)  
DCBEVT2.force(A)  
DCBEVT2.inter  
TBCNT(16)  
CTR=CMPD  
CMPD[15-0] 16  
CMPD Active (16)  
CMPD Shadow (16)  
Copyright © 2017, Texas Instruments Incorporated  
A. These events are generated by the ePWM digital compare (DC) submodule based on the levels of the TRIPIN inputs.  
4-48. ePWM Submodules and Critical Internal Signal Interconnects  
120  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
GPIO0  
GPIOx  
Async/  
Sync/  
Sync+Filter  
XINT5  
XINT4  
PIE(s),  
CLA(s)  
INPUT14  
INPUT13  
Input X-Bar  
eCAP6  
eCAP5  
eCAP4  
eCAP3  
eCAP2  
eCAP1  
XINT1  
XINT2  
XINT3  
PIE(s),  
CLA(s)  
EXTSYNCIN1  
ADC  
Wrapper(s)  
ePWM and eCAP  
Sync Chain  
EXTSYNCIN2  
TZ1  
TZ2  
TZ3  
PIE(s),  
CLA(s)  
EPWMINT  
TZINT  
TRIP1  
TRIP2  
TRIP3  
TRIP6  
EPWMx.EPWMCLK  
EPWMENCLK  
TBCLKSYNC  
TRIP4  
TRIP5  
TRIP7  
TRIP8  
TRIP9  
TRIP10  
TRIP11  
TRIP12  
ADCSOCAO Select Ckt  
ADCSOCBO Select Ckt  
ePWM  
X-Bar  
All  
ePWM  
Modules  
SOCA  
SOCB  
ADC  
Wrapper(s)  
TRIP14  
TRIP15  
TZ4  
TZ5  
TZ6  
ECCERR  
CPU1.PIEVECTERROR  
CPU2.PIEVECTERROR  
SD1  
Filter-Reset  
Filter-Reset  
EQEPERR  
CLKFAIL  
FLT1  
FLT1  
FLT1  
FLT1  
PWM11.CMPC  
PWM11.CMPD  
CPU1.EMUSTOP  
CPU2.EMUSTOP  
EPWMn.EMUSTOP  
Filter-Reset  
Filter-Reset  
FLT1  
FLT1  
FLT1  
PWM12.CMPC  
PWM12.CMPD  
FLT1  
CPUSEL0.EPWMx  
SD2  
Copyright © 2017, Texas Instruments Incorporated  
4-49. ePWM Trip Input Connectivity  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
121  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.9.2.1 Control Peripherals Synchronization  
The ePWM and eCAP synchronization chain on the device provides flexibility in partitioning the ePWM  
and eCAP modules between CPU1 and CPU2 and allows localized synchronization within the modules  
belonging to the same CPU. Like the other peripherals, the partitioning of the ePWM and eCAP modules  
needs to be done using the CPUSELx registers. 4-50 shows the synchronization chain architecture.  
EXTSYNCIN1  
EXTSYNCIN2  
EPWM1  
EPWM1SYNCOUT  
EPWM2  
EPWM3  
EPWM4  
EXTSYNCOUT  
Pulse-Stretched  
EPWM4SYNCOUT  
(8 PLLSYSCLK  
Cycles)  
EPWM5  
EPWM6  
SYNCSEL.EPWM4SYNCIN  
EPWM7  
EPWM8  
EPWM9  
EPWM7SYNCOUT  
SYNCSEL.EPWM7SYNCIN  
EPWM10  
EPWM11  
EPWM12  
EPWM10SYNCOUT  
SYNCSEL.EPWM10SYNCIN  
ECAP1  
ECAP2  
ECAP1SYNCOUT  
SYNCSEL.SYNCOUT  
SYNCSEL.ECAP1SYNCIN  
ECAP3  
ECAP4  
ECAP5  
ECAP6  
SYNCSEL.ECAP4SYNCIN  
4-50. Synchronization Chain Architecture  
122  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.9.2.2 ePWM Electrical Data and Timing  
Table 4-57 shows the PWM timing requirements and Table 4-58 shows the PWM switching  
characteristics.  
Table 4-57. ePWM Timing Requirements(1)  
MIN  
2tc(EPWMCLK)  
MAX  
UNIT  
cycles  
cycles  
cycles  
Asynchronous  
Synchronous  
tw(SYNCIN)  
Sync input pulse width  
2tc(EPWMCLK)  
With input qualifier  
1tc(EPWMCLK) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 4-24.  
Table 4-58. ePWM Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
20  
MAX  
UNIT  
ns  
tw(PWM)  
Pulse duration, PWMx output high/low  
Sync output pulse width  
tw(SYNCOUT)  
8tc(SYSCLK)  
cycles  
Delay time, trip input active to PWM forced high  
Delay time, trip input active to PWM forced low  
Delay time, trip input active to PWM Hi-Z  
td(TZ-PWM)  
25  
ns  
4.9.2.2.1 Trip-Zone Input Timing  
Table 4-59 shows the trip-zone input timing requirements. Figure 4-51 shows the PWM Hi-Z  
characteristics.  
Table 4-59. Trip-Zone Input Timing Requirements(1)  
MIN  
1tc(EPWMCLK)  
MAX UNIT  
cycles  
Asynchronous  
Synchronous  
tw(TZ)  
Pulse duration, TZx input low  
2tc(EPWMCLK)  
cycles  
With input qualifier  
1tc(EPWMCLK) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 4-24.  
EPWMCLK  
tw(TZ)  
TZ(A)  
td(TZ-PWM)  
PWM(B)  
A. TZ: TZ1, TZ2, TZ3, TRIP1–TRIP12  
B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM  
recovery software.  
Figure 4-51. PWM Hi-Z Characteristics  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
123  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.9.2.3 External ADC Start-of-Conversion Electrical Data and Timing  
4-60 shows the external ADC start-of-conversion switching characteristics. 4-52 shows the  
ADCSOCAO or ADCSOCBO timing.  
4-60. External ADC Start-of-Conversion Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
tw(ADCSOCL)  
Pulse duration, ADCSOCxO low  
32tc(SYSCLK)  
cycles  
tw(ADCSOCL)  
ADCSOCAO  
or  
ADCSOCBO  
4-52. ADCSOCAO or ADCSOCBO Timing  
124  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.9.3 Enhanced Quadrature Encoder Pulse (eQEP)  
The eQEP module interfaces directly with linear or rotary incremental encoders to obtain position,  
direction, and speed information from rotating machines used in high-performance motion and position-  
control systems.  
Each eQEP peripheral comprises five major functional blocks:  
Quadrature Capture Unit (QCAP)  
Position Counter/Control Unit (PCCU)  
Quadrature Decoder Unit (QDU)  
Unit Time Base for speed and frequency measurement (UTIME)  
Watchdog timer for detecting stalls (QWDOG)  
The eQEP peripherals are clocked by PERx.SYSCLK. 4-53 shows the eQEP block diagram.  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
125  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
System Control  
Registers  
To CPU  
EQEPxENCLK  
SYSCLK  
QCPRD  
QCTMR  
QCAPCTL  
16  
16  
16  
Quadrature  
Capture  
Unit  
QCTMRLAT  
QCPRDLAT  
(QCAP)  
QUTMR  
QUPRD  
QWDTMR  
QWDPRD  
Registers  
Used by  
Multiple Units  
32  
16  
QEPCTL  
QEPSTS  
QFLG  
UTOUT  
QWDOG  
UTIME  
QDECCTL  
16  
WDTOUT  
EQEPxAIN  
EQEPxBIN  
EQEPxIIN  
EQEPxA/XCLK  
EQEPxB/XDIR  
EQEPxI  
QCLK  
QDIR  
QI  
EQEPxINT  
PIE  
16  
Position Counter/  
Control Unit  
(PCCU)  
EQEPxIOUT  
EQEPxIOE  
EQEPxSIN  
EQEPxSOUT  
EQEPxSOE  
Quadrature  
Decoder  
(QDU)  
QS  
GPIO  
MUX  
QPOSLAT  
QPOSSLAT  
QPOSILAT  
PHE  
PCSOUT  
EQEPxS  
32  
32  
16  
QPOSCNT  
QPOSINIT  
QPOSMAX  
QEINT  
QFRC  
QPOSCMP  
QCLR  
QPOSCTL  
eQEP Peripheral  
Copyright © 2017, Texas Instruments Incorporated  
4-53. eQEP Block Diagram  
126  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.9.3.1 eQEP Electrical Data and Timing  
Table 4-61 lists the eQEP timing requirement and Table 4-62 lists the eQEP switching characteristics.  
Table 4-61. eQEP Timing Requirements(1)  
MIN  
MAX  
UNIT  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
Asynchronous(2)/Synchronous  
With input qualifier  
2tc(SYSCLK)  
tw(QEPP)  
QEP input period  
2[1tc(SYSCLK) + tw(IQSW)  
]
Asynchronous(2)/Synchronous  
2tc(SYSCLK)  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
tw(INDEXH)  
tw(INDEXL)  
tw(STROBH)  
tw(STROBL)  
QEP Index Input High time  
QEP Index Input Low time  
QEP Strobe High time  
QEP Strobe Input Low time  
With input qualifier  
Asynchronous(2)/Synchronous  
With input qualifier  
Asynchronous(2)/Synchronous  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
With input qualifier  
Asynchronous(2)/Synchronous  
With input qualifier  
2tc(SYSCLK) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 4-24.  
(2) See the TMS320F2837xD Dual-Core Delfino™ MCUs Silicon Errata for limitations in the asynchronous mode.  
Table 4-62. eQEP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
4tc(SYSCLK)  
6tc(SYSCLK)  
UNIT  
cycles  
cycles  
td(CNTR)xin  
Delay time, external clock to counter increment  
Delay time, QEP input edge to position compare sync output  
td(PCS-OUT)QEP  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
127  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.9.4 High-Resolution Pulse Width Modulator (HRPWM)  
The HRPWM combines multiple delay lines in a single module and a simplified calibration system by using  
a dedicated calibration delay line. For each ePWM module, there are two HR outputs:  
HR Duty and Deadband control on Channel A  
HR Duty and Deadband control on Channel B  
The HRPWM module offers PWM resolution (time granularity) that is significantly better than what can be  
achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are:  
Significantly extends the time resolution capabilities of conventionally derived digital PWM  
This capability can be used in both single edge (duty cycle and phase-shift control) as well as dual  
edge control for frequency/period modulation.  
Finer time granularity control or edge positioning is controlled through extensions to the Compare A, B,  
phase, period and deadband registers of the ePWM module.  
The minimum HRPWMCLK frequency allowed for HRPWM is 60 MHz.  
4.9.4.1 HRPWM Electrical Data and Timing  
Table 4-63 lists the high-resolution PWM switching characteristics.  
Table 4-63. High-Resolution PWM Characteristics  
PARAMETER  
MIN  
TYP  
MAX UNIT  
310 ps  
Micro Edge Positioning (MEP) step size(1)  
150  
(1) The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher  
temperature and lower voltage and decrease with lower temperature and higher voltage.  
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI  
software libraries for details of using SFO functions in end applications. SFO functions help to estimate the number of MEP steps per  
SYSCLK period dynamically while the HRPWM is in operation.  
128  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.9.5 Sigma-Delta Filter Module (SDFM)  
The SDFM is a four-channel digital filter designed specifically for current measurement and resolver  
position decoding in motor control applications. Each channel can receive an independent sigma-delta  
(ΣΔ) modulated bit stream. The bit streams are processed by four individually programmable digital  
decimation filters. The filter set includes a fast comparator for immediate digital threshold comparisons for  
overcurrent and undercurrent monitoring. 4-54 shows a block diagram of the SDFMs.  
SDFM features include:  
Eight external pins per SDFM module:  
Four sigma-delta data input pins per SDFM module (SDx_Dy, where x = 1 to 2 and y = 1 to 4)  
Four sigma-delta clock input pins per SDFM module (SDx_Cy, where x = 1 to 2 and y = 1 to 4)  
Four different configurable modulator clock modes:  
Modulator clock rate equals modulator data rate  
Modulator clock rate running at half the modulator data rate  
Modulator data is Manchester encoded. Modulator clock not required.  
Modulator clock rate is double that of modulator data rate  
Four independent configurable comparator units:  
Four different filter type selection (Sinc1/Sinc2/Sincfast/Sinc3) options available  
Ability to detect over-value and under-value conditions  
Comparator Over-Sampling Ratio (COSR) value for comparator programmable from 1 to 32  
Four independent configurable data filter units:  
Four different filter type selection (Sinc1/Sinc2/Sincfast/Sinc3) options available  
Data filter Over-Sampling Ratio (DOSR) value for data filter unit programmable from 1 to 256  
Ability to enable or disable individual filter module  
Ability to synchronize all four independent filters of a SDFM module using the Master Filter Enable  
(MFE) bit or the PWM signals.  
Filter data can be 16-bit or 32-bit representation  
PWMs can be used to generate modulator clock for sigma-delta modulators  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
129  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
{5Cꢀ- {igma 5elta Cilter ꢀodule  
G4  
{treams  
Cilter /hannel 1  
{51LꢂÇ  
{52LꢂÇ  
L9[  
L9I  
Comparator filter  
Lnterrupt  
Ünit  
{51_51  
{51_/1  
Input  
Ctrl  
ꢁL9  
Data filter  
FILRES  
ꢁíꢀ11ꢃ/ꢀꢁ/  
Cilter /hannel 2  
Cilter /hannel 3  
Cilter /hannel 4  
{51_52  
{51_/2  
CL[w9{  
5ata bus  
wegister  
ꢀap  
{51_53  
{51_/3  
CL[w9{  
CL[w9{  
ꢁíꢀ11ꢃ/ꢀꢁ5  
{51_54  
{51_/4  
{51C[Ç1ꢃL9I  
{51C[Ç1ꢃL9[  
{51C[Ç2ꢃL9I  
{51C[Ç2ꢃL9[  
{51C[Ç3ꢃL9I  
{51C[Ç3ꢃL9[  
{51C[Ç4ꢃL9I  
{51C[Ç4ꢃL9[  
DꢁLh  
ꢀÜó  
{5Cꢀ- {igma 5elta Cilter ꢀodule  
hutput  
ó.ar  
G4  
{treams  
Cilter /hannel 1  
{52C[Ç1ꢃL9I  
{52C[Ç1ꢃL9[  
{52C[Ç2ꢃL9I  
{52C[Ç2ꢃL9[  
L9[  
L9I  
Comparator filter  
Lnterrupt  
Ünit  
{52_51  
{52_/1  
Input  
Ctrl  
Data filter  
FILRES  
{52C[Ç3ꢃL9I  
{52C[Ç3ꢃL9[  
{52C[Ç4ꢃL9I  
{52C[Ç4ꢃL9[  
ꢁíꢀ12ꢃ/ꢀꢁ/  
{52_52  
{52_/2  
Cilter /hannel 2  
Cilter /hannel 3  
Cilter /hannel 4  
CL[w9{  
5ata bus  
wegister  
ꢀap  
{52_53  
{52_/3  
CL[w9{  
CL[w9{  
ꢁíꢀ12ꢃ/ꢀꢁ5  
{52_54  
{52_/4  
4-54. SDFM Block Diagram  
130  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.9.5.1 SDFM Electrical Data and Timing  
Table 4-64 shows the SDFM timing requirements. Figure 4-55 through Figure 4-58 show the SDFM timing  
diagrams.  
Table 4-64. SDFM Timing Requirements  
MIN  
MAX UNIT  
Mode 0  
tc(SDC)M0  
Cycle time, SDx_Cy  
40  
10  
256 * SYSCLK period  
ns  
ns  
tw(SDCH)M0  
Pulse duration, SDx_Cy high  
tc(SDC)M0 – 10  
Setup time, SDx_Dy valid before SDx_Cy goes  
high  
tsu(SDDV-SDCH)M0  
th(SDCH-SDD)M0  
5
5
ns  
ns  
Hold time, SDx_Dy wait after SDx_Cy goes high  
Mode 1  
tc(SDC)M1  
Cycle time, SDx_Cy  
80  
10  
5
256 * SYSCLK period  
tc(SDC)M1 – 10  
ns  
ns  
ns  
tw(SDCH)M1  
Pulse duration, SDx_Cy high  
Setup time, SDx_Dy valid before SDx_Cy goes low  
tsu(SDDV-SDCL)M1  
Setup time, SDx_Dy valid before SDx_Cy goes  
high  
tsu(SDDV-SDCH)M1  
5
ns  
th(SDCL-SDD)M1  
th(SDCH-SDD)M1  
Hold time, SDx_Dy wait after SDx_Cy goes low  
Hold time, SDx_Dy wait after SDx_Cy goes high  
Mode 2  
5
5
ns  
ns  
tc(SDD)M2  
Cycle time, SDx_Dy  
8 * tc(SYSCLK)  
10  
20 * tc(SYSCLK)  
ns  
ns  
tw(SDDH)M2  
Pulse duration, SDx_Dy high  
Mode 3  
tc(SDC)M3  
Cycle time, SDx_Cy  
40  
10  
256 * SYSCLK period  
tc(SDC)M3 – 5  
ns  
ns  
tw(SDCH)M3  
Pulse duration, SDx_Cy high  
Setup time, SDx_Dy valid before SDx_Cy goes  
high  
tsu(SDDV-SDCH)M3  
th(SDCH-SDD)M3  
5
5
ns  
ns  
Hold time, SDx_Dy wait after SDx_Cy goes high  
Mode 0  
SDx_Cy  
tw(SDCH)M0  
tc(SDC)M0  
tsu(SDDV-SDCH)M0  
th(SDCH-SDD)M0  
SDx_Dy  
Figure 4-55. SDFM Timing Diagram – Mode 0  
Mode 1  
SDx_Cy  
tw(SDCH)M1  
tc(SDC)M1  
tsu(SDDV-SDCL)M1  
tsu(SDDV-SDCH)M1  
SDx_Dy  
th(SDCL-SDD)M1  
th(SDCH-SDD)M1  
Figure 4-56. SDFM Timing Diagram – Mode 1  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
131  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Mode 2  
(Manchester-encoded bit stream)  
tc(SDD)M2  
Modulator  
internal clock  
tw(SDDH)M2  
Modulator  
internal data  
0
0
0
1
1
1
1
1
1
SDx-Dy  
Figure 4-57. SDFM Timing Diagram – Mode 2  
(CLKx is driven externally)  
tc(SDC)M3  
Mode 3  
SDx_Cy  
tw(SDCH)M3  
tsu(SDDV-SDCH)M3  
th(SDCH-SDD)M3  
SDx_Dy  
Figure 4-58. SDFM Timing Diagram – Mode 3  
132  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.10 Communications Peripherals  
4.10.1 Controller Area Network (CAN)  
The CAN module uses the IP known as D_CAN. This document uses the names CAN and  
D_CAN interchangeably to reference this peripheral.  
The CAN module implements the following features:  
Complies with ISO 11898-1 ( Bosch® CAN protocol specification 2.0 A and B)  
Bit rates up to 1 Mbps  
Multiple clock sources  
32 message objects, each with the following properties:  
Configurable as receive or transmit  
Configurable with standard or extended identifier  
Programmable receive and identifier masks for each object  
Supports data and remote frames  
Holds 0 to 8 bytes of data  
Parity-checked configuration and data RAM  
Individual identifier mask for each message object  
Programmable FIFO mode for receive message objects  
Programmable loop-back modes for self-test operation  
Suspend mode for debug support  
Software module reset  
Automatic bus on after Bus-Off state by a programmable 32-bit timer  
Message RAM parity check mechanism  
Two interrupt lines  
Global power down and wakeup support  
For a CANx Bit-CLK of 200 MHz, the smallest bit rate possible is 7.8125 kbps.  
The accuracy of the on-chip zero-pin oscillator is in 4-18, Internal Oscillator Electrical  
Characteristics. Depending on parameters such as the CAN bit timing settings, bit rate, bus  
length, and propagation delay, the accuracy of this oscillator may not meet the requirements  
of the CAN protocol. In this situation, an external clock source must be used.  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
133  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.10.2 Inter-Integrated Circuit (I2C)  
The I2C module has the following features:  
Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):  
Support for 1-bit to 8-bit format transfers  
7-bit and 10-bit addressing modes  
General call  
START byte mode  
Support for multiple master-transmitters and slave-receivers  
Support for multiple slave-transmitters and master-receivers  
Combined master transmit/receive and receive/transmit mode  
Data transfer rate of from 10 kbps up to 400 kbps (I2C Fast-mode rate)  
One 16-byte receive FIFO and one 16-byte transmit FIFO  
One interrupt that can be used by the CPU. This interrupt can be generated as a result of one of the  
following conditions:  
Transmit-data ready  
Receive-data ready  
Register-access ready  
No-acknowledgment received  
Arbitration lost  
Stop condition detected  
Addressed as slave  
An additional interrupt that can be used by the CPU when in FIFO mode  
Module enable/disable capability  
Free data format mode  
134  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4-59 shows how the I2C peripheral module interfaces within the device.  
I2C Module  
I2CXSR  
I2CDXR  
TX FIFO  
RX FIFO  
FIFO Interrupt to  
CPU/PIE  
SDA  
Peripheral Bus  
I2CRSR  
I2CDRR  
Control/Status  
Registers  
CPU  
Clock  
Synchronizer  
SCL  
Prescaler  
Noise Filters  
Arbitrator  
Interrupt to  
CPU/PIE  
I2C INT  
4-59. I2C Peripheral Module Interfaces  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
135  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.10.2.1 I2C Electrical Data and Timing  
Table 4-65 shows the I2C timing requirements. Table 4-66 shows the I2C switching characteristics.  
Table 4-65. I2C Timing Requirements  
MIN  
MAX  
UNIT  
Hold time, START condition, SCL fall delay  
after SDA fall  
th(SDA-SCL)START  
tsu(SCL-SDA)START  
0.6  
µs  
Setup time, Repeated START, SCL rise before  
SDA fall delay  
0.6  
µs  
th(SCL-DAT)  
tsu(DAT-SCL)  
tr(SDA)  
Hold time, data after SCL fall  
Setup time, data before SCL rise  
Rise time, SDA  
0
100  
20  
µs  
ns  
ns  
ns  
ns  
ns  
Input tolerance  
Input tolerance  
Input tolerance  
Input tolerance  
300  
300  
300  
300  
tr(SCL)  
Rise time, SCL  
20  
tf(SDA)  
Fall time, SDA  
11.4  
11.4  
tf(SCL)  
Fall time, SCL  
Setup time, STOP condition, SCL rise before  
SDA rise delay  
tsu(SCL-SDA)STOP  
0.6  
µs  
Table 4-66. I2C Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
fSCL  
SCL clock frequency  
0
1.3  
0.6  
400  
kHz  
µs  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL clock low  
Pulse duration, SCL clock high  
µs  
Pulse duration of spikes that will be  
suppressed by the input filter  
tw(SP)  
tBUF  
0
50  
ns  
µs  
Bus free time between STOP and START  
conditions  
1.3  
tv(SCL-DAT)  
Valid time, data after SCL fall  
Valid time, Acknowledge after SCL fall  
Valid low-level input voltage  
Valid high-level input voltage  
Low-level output voltage  
0.9  
0.9  
µs  
µs  
V
tv(SCL-ACK)  
VIL  
VIH  
VOL  
II  
–0.3  
0.7 * VDDIO  
0
0.3 * VDDIO  
VDDIO + 0.3  
0.4  
V
Sinking 3 mA  
V
Input current on pins  
0.1 Vbus < Vi < 0.9 Vbus  
–10  
10  
µA  
NOTE  
To meet all of the I2C protocol timing specifications, the I2C module clock must be  
configured between 7 MHz to 12 MHz.  
136  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.10.3 Multichannel Buffered Serial Port (McBSP)  
The McBSP module has the following features:  
Compatible with McBSP in TMS320C28x and TMS320F28x DSP devices  
Full-duplex communication  
Double-buffered data registers that allow a continuous data stream  
Independent framing and clocking for receive and transmit  
External shift clock generation or an internal programmable frequency shift clock  
8-bit data transfer mode can be configured to transmit with LSB or MSB first  
Programmable polarity for both frame synchronization and data clocks  
Highly programmable internal clock and frame generation  
Direct interface to industry-standard CODECs, Analog Interface Chips (AICs), and other serially  
connected A/D and D/A devices  
Supports AC97, I2S, and SPI protocols  
McBSP clock rate,  
CLKSRG  
CLKG =  
1+ CLKGDV  
(
)
where CLKSRG source could be LSPCLK, CLKX, or CLKR.  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
137  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4-60 shows the block diagram of the McBSP module.  
TX  
Interrupt  
MXINT  
CPU  
Peripheral Write Bus  
TX Interrupt Logic  
To CPU  
16  
16  
McBSP Transmit  
Interrupt Select Logic  
DXR2 Transmit Buffer  
DXR1 Transmit Buffer  
16  
PERx.LSPCLK  
MFSXx  
16  
MCLKXx  
Compand Logic  
XSR2  
XSR1  
MDXx  
MDRx  
RSR1  
16  
RSR2  
16  
CPU  
DMA Bus  
MCLKRx  
Expand Logic  
MFSRx  
RBR2 Register  
16  
RBR1 Register  
16  
DRR2 Receive Buffer  
DRR1 Receive Buffer  
McBSP Receive  
Interrupt Select Logic  
16  
16  
RX  
Interrupt  
RX Interrupt Logic  
MRINT  
CPU  
Peripheral Read Bus  
To CPU  
4-60. McBSP Block Diagram  
138  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.10.3.1 McBSP Electrical Data and Timing  
4.10.3.1.1 McBSP Transmit and Receive Timing  
Table 4-67 shows the McBSP timing requirements. Table 4-68 shows the McBSP switching  
characteristics. Figure 4-61 and Figure 4-62 show the McBSP timing diagrams.  
Table 4-67. McBSP Timing Requirements(1) (2)  
NO.  
MIN  
MAX UNIT  
1
kHz  
McBSP module clock (CLKG, CLKX, CLKR) range  
McBSP module cycle time (CLKG, CLKX, CLKR) range  
25  
1
MHz  
ns  
40  
ms  
ns  
M11  
M12  
M13  
M14  
tc(CKRX)  
tw(CKRX)  
tr(CKRX)  
tf(CKRX)  
Cycle time, CLKR/X  
CLKR/X ext  
2P  
Pulse duration, CLKR/X high or CLKR/X low  
Rise time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
CLKR/X ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
P – 7  
ns  
7
7
ns  
Fall time, CLKR/X  
ns  
18  
2
M15  
M16  
M17  
M18  
M19  
M20  
tsu(FRH-CKRL)  
th(CKRL-FRH)  
tsu(DRV-CKRL)  
th(CKRL-DRV)  
tsu(FXH-CKXL)  
th(CKXL-FXH)  
Setup time, external FSR high before CLKR low  
Hold time, external FSR high after CLKR low  
Setup time, DR valid before CLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
0
6
18  
5
0
Hold time, DR valid after CLKR low  
3
18  
2
Setup time, external FSX high before CLKX low  
Hold time, external FSX high after CLKX low  
0
6
(1) Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that  
signal are also inverted.  
(2) 2P = 1/CLKG in ns. CLKG is the output of sample rate generator mux. CLKG = CLKSRG / (1 + CLKGDV). CLKSRG can be LSPCLK,  
CLKX, CLKR as source. CLKSRG (SYSCLK/2).  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
139  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Table 4-68. McBSP Switching Characteristics(1) (2)  
over recommended operating conditions (unless otherwise noted)  
NO.  
M1  
M2  
M3  
PARAMETER  
Cycle time, CLKR/X  
MIN  
MAX UNIT  
tc(CKRX)  
CLKR/X int  
CLKR/X int  
CLKR/X int  
CLKR int  
CLKR ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
2P  
ns  
(3)  
(3)  
tw(CKRXH)  
tw(CKRXL)  
Pulse duration, CLKR/X high  
Pulse duration, CLKR/X low  
D – 5  
D + 5  
ns  
ns  
(3)  
(3)  
C – 5  
C + 5  
0
3
0
3
4
27  
4
M4  
M5  
M6  
td(CKRH-FRV)  
td(CKXH-FXV)  
tdis(CKXH-DXHZ)  
Delay time, CLKR high to internal FSR valid  
Delay time, CLKX high to internal FSX valid  
ns  
ns  
ns  
27  
8
Disable time, CLKX high to DX high impedance  
following last data bit  
14  
9
Delay time, CLKX high to DX valid.  
This applies to all bits except the first bit  
transmitted.  
CLKX ext  
28  
CLKX int  
CLKX ext  
CLKX int  
8
Delay time, CLKX high to DX  
DXENA = 0  
valid  
M7  
td(CKXH-DXV)  
ns  
14  
Only applies to first bit  
P + 8  
transmitted when in Data  
Delay 1 or 2 (XDATDLY=01b  
DXENA = 1  
CLKX ext  
P + 14  
or 10b) modes  
CLKX int  
CLKX ext  
CLKX int  
0
6
Enable time, CLKX high to  
DXENA = 0  
DX driven  
Only applies to first bit  
P
M8  
M9  
ten(CKXH-DX)  
ns  
ns  
ns  
transmitted when in Data  
Delay 1 or 2 (XDATDLY=01b  
DXENA = 1  
CLKX ext  
P + 6  
or 10b) modes  
FSX int  
FSX ext  
FSX int  
8
14  
Delay time, FSX high to DX  
DXENA = 0  
valid  
Only applies to first bit  
P + 8  
td(FXH-DXV)  
transmitted when in Data  
Delay 0 (XDATDLY=00b)  
DXENA = 1  
FSX ext  
P + 14  
mode.  
FSX int  
FSX ext  
FSX int  
0
6
Enable time, FSX high to DX  
DXENA = 0  
driven  
Only applies to first bit  
P
M10 ten(FXH-DX)  
transmitted when in Data  
Delay 0 (XDATDLY=00b)  
DXENA = 1  
FSX ext  
P + 6  
mode  
(1) Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that  
signal are also inverted.  
(2) 2P = 1/CLKG in ns.  
(3) C = CLKRX low pulse width = P  
D = CLKRX high pulse width = P  
140  
Specifications  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
M1, M11  
M2, M12  
M3, M12  
M13  
CLKR  
M4  
M4  
M14  
FSR (int)  
FSR (ext)  
M15  
M17  
M16  
M18  
DR  
(RDATDLY=00b)  
Bit (n−1)  
M17  
(n−2)  
(n−3)  
(n−2)  
(n−4)  
M18  
DR  
(RDATDLY=01b)  
Bit (n−1)  
(n−3)  
M18  
M17  
DR  
(RDATDLY=10b)  
Bit (n−1)  
(n−2)  
Figure 4-61. McBSP Receive Timing  
M1, M11  
M2, M12  
M13  
M3, M12  
CLKX  
FSX (int)  
FSX (ext)  
DX  
M5  
M5  
M19  
M20  
M9  
M7  
M7  
M10  
Bit 0  
Bit (n−1)  
(n−2)  
(n−3)  
(n−2)  
(XDATDLY=00b)  
M8  
DX  
(XDATDLY=01b)  
Bit (n−1)  
M8  
Bit 0  
M6  
M7  
DX  
(XDATDLY=10b)  
Bit 0  
Bit (n−1)  
Figure 4-62. McBSP Transmit Timing  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
141  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.10.3.1.2 McBSP as SPI Master or Slave Timing  
For CLKSTP = 10b and CLKXP = 0, Table 4-69 shows the timing requirements, Table 4-70 shows the  
switching characteristics, and Figure 4-63 shows the timing diagram.  
Table 4-69. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0)(1)  
MASTER  
SLAVE  
MIN MAX  
NO.  
UNIT  
MIN  
30  
1
MAX  
M30 tsu(DRV-CKXL)  
M31 th(CKXL-DRV)  
M32 tsu(BFXL-CKXH)  
M33 tc(CKX)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
Setup time, FSX low before CLKX high  
Cycle time, CLKX  
8P – 10  
ns  
ns  
ns  
ns  
8P – 10  
8P + 10  
16P  
2P(2)  
(1) For all SPI slave modes, CLKX has to be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM =  
CLKGDV = 1.  
(2) 2P = 1/CLKG  
Table 4-70. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0)  
MASTER  
SLAVE  
MIN  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MAX  
M24  
M25  
th(CKXL-FXL)  
td(FXL-CKXH)  
Hold time, FSX low after CLKX low  
Delay time, FSX low to CLKX high  
2P(1)  
P
ns  
ns  
Disable time, DX high impedance following  
last data bit from FSX high  
M28  
M29  
tdis(FXH-DXHZ)  
td(FXL-DXV)  
6
6
6P + 6  
4P + 6  
ns  
ns  
Delay time, FSX low to DX valid  
(1) 2P = 1/CLKG  
M33  
M32  
MSB  
LSB  
CLKX  
M25  
M24  
FSX  
M28  
M29  
DX  
DR  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
M30  
M31  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
Figure 4-63. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
142  
Specifications  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
For CLKSTP = 11b and CLKXP = 0, Table 4-71 shows the timing requirements, Table 4-72 shows the  
switching characteristics, and Figure 4-64 shows the timing diagram.  
Table 4-71. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0)(1)  
MASTER  
SLAVE  
MIN MAX  
NO.  
UNIT  
MIN  
30  
1
MAX  
M39 tsu(DRV-CKXH)  
M40 th(CKXH-DRV)  
M41 tsu(FXL-CKXH)  
M42 tc(CKX)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
Setup time, FSX low before CLKX high  
Cycle time, CLKX  
8P – 10  
ns  
ns  
ns  
ns  
8P – 10  
16P + 10  
16P  
2P(2)  
(1) For all SPI slave modes, CLKX has to be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM =  
CLKGDV = 1.  
(2) 2P = 1/CLKG  
Table 4-72. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0)  
MASTER  
SLAVE  
MIN MAX  
NO.  
PARAMETER  
UNIT  
MIN  
P
2P(1)  
MAX  
M34  
M35  
th(CKXL-FXL)  
td(FXL-CKXH)  
Hold time, FSX low after CLKX low  
Delay time, FSX low to CLKX high  
ns  
ns  
Disable time, DX high impedance following last data bit  
from CLKX low  
M37  
M38  
tdis(CKXL-DXHZ)  
td(FXL-DXV)  
P + 6  
6
7P + 6  
4P + 6  
ns  
ns  
Delay time, FSX low to DX valid  
(1) 2P = 1/CLKG  
M42  
MSB  
LSB  
M41  
CLKX  
FSX  
M35  
M34  
M37  
M38  
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
M39  
M40  
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 4-64. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
143  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
For CLKSTP = 10b and CLKXP = 1, Table 4-73 shows the timing requirements, Table 4-74 shows the  
switching characteristics, and Figure 4-65 shows the timing diagram.  
Table 4-73. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1)(1)  
MASTER  
SLAVE  
MIN MAX  
NO.  
UNIT  
MIN  
30  
1
MAX  
M49  
M50  
M51  
M52  
tsu(DRV-CKXH)  
th(CKXH-DRV)  
tsu(FXL-CKXL)  
tc(CKX)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
Setup time, FSX low before CLKX low  
Cycle time, CLKX  
8P – 10  
ns  
ns  
ns  
ns  
8P – 10  
8P + 10  
16P  
2P(2)  
(1) For all SPI slave modes, CLKX has to be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM =  
CLKGDV = 1.  
(2) 2P = 1/CLKG  
Table 4-74. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1)  
MASTER  
SLAVE  
MIN MAX  
NO.  
PARAMETER  
UNIT  
MIN  
2P(1)  
P
MAX  
M43 th(CKXH-FXL)  
M44 td(FXL-CKXL)  
Hold time, FSX low after CLKX high  
Delay time, FSX low to CLKX low  
ns  
ns  
Disable time, DX high impedance following last data bit from  
FSX high  
M47 tdis(FXH-DXHZ)  
6
6
6P + 6  
ns  
ns  
M48 td(FXL-DXV)  
(1) 2P = 1/CLKG  
Delay time, FSX low to DX valid  
4P + 6  
M52  
M51  
MSB  
LSB  
CLKX  
M43  
M44  
FSX  
M48  
M47  
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
M49  
M50  
(n-2)  
Bit 0  
(n-3)  
(n-4)  
Figure 4-65. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
144  
Specifications  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
For CLKSTP = 11b and CLKXP = 1, Table 4-75 shows the timing requirements, Table 4-76 shows the  
switching characteristics, and Figure 4-66 shows the timing diagram.  
Table 4-75. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1)(1)  
MASTER  
SLAVE  
MIN MAX  
NO.  
UNIT  
MIN  
30  
1
MAX  
M58 tsu(DRV-CKXL)  
M59 th(CKXL-DRV)  
M60 tsu(FXL-CKXL)  
M61 tc(CKX)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
Setup time, FSX low before CLKX low  
Cycle time, CLKX  
8P – 10  
ns  
ns  
ns  
ns  
8P – 10  
16P + 10  
16P  
2P(2)  
(1) For all SPI slave modes, CLKX has to be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM =  
CLKGDV = 1.  
(2) 2P = 1/CLKG  
Table 4-76. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1)(1)  
MASTER(2)  
SLAVE  
MIN  
NO.  
PARAMETER  
UNIT  
MIN  
P
2P(1)  
MAX  
MAX  
M53  
M54  
M55  
th(CKXH-FXL)  
td(FXL-CKXL)  
td(CLKXH-DXV)  
Hold time, FSX low after CLKX high  
Delay time, FSX low to CLKX low  
Delay time, CLKX high to DX valid  
ns  
ns  
ns  
–2  
0
3P + 6  
7P + 6  
4P + 6  
5P + 20  
Disable time, DX high impedance following last  
data bit from CLKX high  
M56  
M57  
tdis(CKXH-DXHZ)  
td(FXL-DXV)  
P + 6  
6
ns  
ns  
Delay time, FSX low to DX valid  
(1) 2P = 1/CLKG  
(2) C = CLKX low pulse width = P  
D = CLKX high pulse width = P  
M61  
M60  
MSB  
M54  
LSB  
CLKX  
M53  
FSX  
M56  
M55  
M57  
DX  
DR  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
(n-4)  
M58  
M59  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
Figure 4-66. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
145  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.10.4 Serial Communications Interface (SCI)  
The SCI is a 2-wire asynchronous serial port, commonly known as a UART. The SCI module supports  
digital communications between the CPU and other asynchronous peripherals that use the standard non-  
return-to-zero (NRZ) format  
The SCI receiver and transmitter each have a 16-level-deep FIFO for reducing servicing overhead, and  
each has its own separate enable and interrupt bits. Both can be operated independently for half-duplex  
communication, or simultaneously for full-duplex communication. To specify data integrity, the SCI checks  
received data for break detection, parity, overrun, and framing errors. The bit rate is programmable to  
different speeds through a 16-bit baud-select register. 4-67 shows the SCI block diagram.  
Features of the SCI module include:  
Two external pins:  
SCITXD: SCI transmit-output pin  
SCIRXD: SCI receive-input pin  
NOTE: Both pins can be used as GPIO if not used for SCI.  
Baud rate programmable to 64K different rates  
Data-word format  
One start bit  
Data-word length programmable from 1 to 8 bits  
Optional even/odd/no parity bit  
1 or 2 stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wakeup multiprocessor modes: idle-line and address bit  
Half- or full-duplex operation  
Double-buffered receive and transmit functions  
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms  
with status flags.  
Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX  
EMPTY flag (transmitter-shift register is empty)  
Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag  
(break condition occurred), and RX ERROR flag (monitoring four interrupt conditions)  
Separate enable bits for transmitter and receiver interrupts (except BRKDT)  
NRZ format  
Auto baud-detect hardware logic  
16-level transmit and receive FIFO  
All registers in this module are 8-bit registers. When a register is accessed, the register data  
is in the lower byte (bits 7–0), and the upper byte (bits 15–8) is read as zeros. Writing to the  
upper byte has no effect.  
146  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
SCICTL1.1  
Frame Format and Mode  
Parity  
SCITXD  
SCITXD  
TXSHF  
Register  
TXENA  
TX EMPTY  
SCICTL2.6  
Even/Odd  
Enable  
8
SCICCR.6 SCICCR.5  
TXRDY  
TX INT ENA  
SCICTL2.0  
Transmitter-Data  
Buffer Register  
SCICTL2.7  
TXWAKE  
8
SCICTL1.3  
1
TX FIFO _0  
TX FIFO _1  
−−−−−  
TXINT  
To CPU  
TX Interrupt  
Logic  
TX FIFO Interrupt  
TX FIFO _15  
SCI TX Interrupt select logic  
Auto baud detect logic  
WUT  
SCITXBUF.7−0  
TX FIFO registers  
SCIFFENA  
SCIFFTX.14  
SCIHBAUD. 15 − 8  
SCIRXD  
RXSHF  
Register  
Baud Rate  
MSbyte  
SCIRXD  
Register  
RXWAKE  
LSPCLK  
SCIRXST.1  
SCILBAUD. 7 − 0  
RXENA  
SCICTL1.0  
Baud Rate  
LSbyte  
8
SCICTL2.1  
Register  
RXRDY  
RX/BK INT ENA  
Receive Data  
Buffer register  
SCIRXST.6  
SCIRXBUF.7−0  
8
BRKDT  
SCIRXST.5  
RX FIFO _15  
−−−−−  
RX FIFO_1  
RX Interrupt  
Logic  
RXINT  
RX FIFO _0  
RX FIFO Interrupt  
To CPU  
SCIRXBUF.7−0  
RX FIFO registers  
RXFFOVF  
SCIRXST.7  
RX Error  
SCIRXST.4 – 2  
FE OE PE  
SCIFFRX.15  
RX Error  
RX ERR INT ENA  
SCICTL1.6  
SCI RX Interrupt select logic  
4-67. SCI Block Diagram  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
147  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
The major elements used in full-duplex operation include:  
A transmitter (TX) and its major registers:  
SCITXBUF register – Transmitter Data Buffer register. Contains data (loaded by the CPU) to be  
transmitted  
TXSHF register – Transmitter Shift register. Accepts data from the SCITXBUF register and shifts  
data onto the SCITXD pin, 1 bit at a time  
A receiver (RX) and its major registers:  
RXSHF register – Receiver Shift register. Shifts data in from the SCIRXD pin, 1 bit at a time  
SCIRXBUF register – Receiver Data Buffer register. Contains data to be read by the CPU. Data  
from a remote processor is loaded into the RXSHF register and then into the SCIRXBUF and  
SCIRXEMU registers  
A programmable baud generator  
Data-memory-mapped control and status registers enable the CPU to access the I2C module registers  
and FIFOs.  
The SCI receiver and transmitter operate independently.  
148  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.10.5 Serial Peripheral Interface (SPI)  
The SPI is a high-speed synchronous serial input/output (I/O) port that allows a serial bit stream of  
programmed length (1 to 16 bits) to be shifted into and out of the device at a programmed bit-transfer rate.  
The SPI is normally used for communications between the microcontroller and external peripherals or  
another controller. Typical applications include external I/O or peripheral expansion through devices such  
as shift registers, display drivers, and ADCs. Multidevice communications are supported by the  
master/slave operation of the SPI. The port supports 16-level receive and transmit FIFOs for reducing  
CPU servicing overhead.  
The SPI module features include:  
SPISOMI: SPI slave-output/master-input pin  
SPISIMO: SPI slave-input/master-output pin  
SPISTE: SPI slave transmit-enable pin  
SPICLK: SPI serial-clock pin  
Two operational modes: master and slave  
Baud rate: 125 different programmable rates  
Data word length: 1 to 16 data bits  
Four clocking schemes (controlled by clock polarity and clock phase bits) include:  
Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the  
SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the  
falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.  
Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the  
SPICLK signal and receives data on the falling edge of the SPICLK signal.  
Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the  
rising edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Simultaneous receive-and-transmit operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled  
algorithms.  
16-level transmit and receive FIFO  
Delayed transmit control  
3-wire SPI mode  
SPISTE inversion for digital audio interface receive mode on devices with two SPI modules  
DMA support  
High-speed mode for up to 50-MHz full-duplex communication  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
149  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
The SPI operates in master or slave mode. The master initiates data transfer by sending the SPICLK  
signal. For both the slave and the master, data is shifted out of the shift registers on one edge of the  
SPICLK and latched into the shift register on the opposite SPICLK clock edge. If the CLOCK PHASE bit  
(SPICTL.3) is high, data is transmitted and received a half-cycle before the SPICLK transition. As a result,  
both controllers send and receive data simultaneously. The application software determines whether the  
data is meaningful or dummy data. There are three possible methods for data transmission:  
Master sends data; slave sends dummy data  
Master sends data; slave sends data  
Master sends dummy data; slave sends data  
The master can initiate a data transfer at any time because it controls the SPICLK signal. The software,  
however, determines how the master detects when the slave is ready to broadcast data.  
4-68 shows the SPI CPU Interface.  
PCLKCR8  
Low-Speed  
LSPCLK  
SYSCLK  
CPU  
Prescaler  
Bit  
Clock  
SYSRS  
SPISIMO  
SPISOMI  
SPICLK  
GPIO  
MUX  
SPI  
SPIINT  
SPITXINT  
PIE  
SPISTE  
SPIRXDMA  
SPITXDMA  
DMA  
4-68. SPI CPU Interface  
150  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.10.5.1 SPI Electrical Data and Timing  
The following sections contain the SPI External Timings in Non-High-Speed Mode:  
4.10.5.1.1  
4.10.5.1.2  
Non-High-Speed Master Mode Timings  
Non-High-Speed Slave Mode Timings  
The following sections contain the SPI External Timings in High-Speed Mode:  
4.10.5.1.3  
4.10.5.1.4  
High-Speed Master Mode Timings  
High-Speed Slave Mode Timings  
All timing parameters for SPI High-Speed Mode assume a load capacitance of 5 pF on  
SPICLK, SPISIMO, and SPISOMI.  
For more information about the SPI in High-Speed mode, see the Serial Peripheral Interface (SPI) chapter  
of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual.  
To use the SPI in High-Speed mode, the application must use the high-speed enabled GPIOs (see  
Section 3.4.5).  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
151  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.10.5.1.1 Non-High-Speed Master Mode Timings  
Table 4-77 lists the SPI master mode switching characteristics where the clock phase = 0. 4-69 shows  
the SPI master mode external timing where the clock phase = 0.  
Table 4-78 lists the SPI master mode switching characteristics where the clock phase = 1. 4-70 shows  
the SPI master mode external timing where the clock phase = 1.  
Table 4-79 lists the SPI master mode timing requirements.  
Table 4-77. SPI Master Mode Switching Characteristics (Clock Phase = 0)  
over recommended operating conditions (unless otherwise noted)  
(BRR + 1)  
NO.  
PARAMETER  
MIN  
MAX UNIT  
CONDITION(1)  
Even  
4tc(LSPCLK)  
5tc(LSPCLK)  
128tc(LSPCLK)  
1
tc(SPC)M  
Cycle time, SPICLK  
ns  
ns  
Odd  
127tc(LSPCLK)  
Even  
0.5tc(SPC)M – 3  
0.5tc(SPC)M + 3  
2
tw(SPC1)M  
Pulse duration, SPICLK, first pulse  
0.5tc(SPC)M  
+
0.5tc(SPC)M +  
Odd  
Even  
Odd  
0.5tc(LSPCLK) – 3  
0.5tc(LSPCLK) + 3  
0.5tc(SPC)M – 3  
0.5tc(SPC)M + 3  
Pulse duration, SPICLK, second  
pulse  
3
4
5
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
ns  
ns  
ns  
0.5tc(SPC)M  
0.5tc(SPC)M  
0.5tc(LSPCLK) + 3  
0.5tc(LSPCLK) – 3  
Delay time, SPICLK to SPISIMO  
valid  
Even, Odd  
Even  
Odd  
3
0.5tc(SPC)M – 3  
0.5tc(SPC)M  
Valid time, SPISIMO valid after  
SPICLK  
0.5tc(LSPCLK) – 3  
Even  
Odd  
tc(SPC)M – 3  
Delay time, SPISTE active to  
SPICLK  
23 td(SPC)M  
ns  
ns  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 3  
Even  
Odd  
0.5tc(SPC)M – 3  
Delay time, SPICLK to SPISTE  
inactive  
24 td(STE)M  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 3  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
152  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
Table 4-78. SPI Master Mode Switching Characteristics (Clock Phase = 1)  
over recommended operating conditions (unless otherwise noted)  
(BRR + 1)  
NO.  
PARAMETER  
MIN  
MAX UNIT  
CONDITION(1)  
Even  
4tc(LSPCLK)  
5tc(LSPCLK)  
128tc(LSPCLK)  
ns  
1
tc(SPC)M  
Cycle time, SPICLK  
Odd  
127tc(LSPCLK)  
Even  
0.5tc(SPC)M – 3  
0.5tc(SPC)M + 3  
2
3
4
5
tw(SPC1)M  
Pulse duration, SPICLK, first pulse  
ns  
ns  
ns  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 3  
0.5tc(SPC)M –  
0.5tc(LSPCLK) + 3  
Odd  
Even  
Odd  
Even  
Odd  
Even  
Odd  
0.5tc(SPC)M – 3  
0.5tc(SPC)M + 3  
Pulse duration, SPICLK, second  
pulse  
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 3  
+
0.5tc(SPC)M  
+
0.5tc(LSPCLK) + 3  
0.5tc(SPC)M – 3  
Delay time, SPISIMO valid to  
SPICLK  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 3  
+
0.5tc(SPC)M – 3  
Valid time, SPISIMO valid after  
SPICLK  
ns  
ns  
ns  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 3  
Delay time, SPISTE active to  
SPICLK  
23 td(SPC)M  
Even, Odd  
Even  
tc(SPC)M – 3  
0.5tc(SPC)M – 3  
Delay time, SPICLK to  
SPISTE inactive  
24 td(STE)M  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 3  
Odd  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
Table 4-79. SPI Master Mode Timing Requirements  
(BRR + 1)  
NO.  
8
MIN  
20  
0
MAX UNIT  
CONDITION(1)  
Setup time, SPISOMI valid before  
SPICLK  
tsu(SOMI)M  
th(SOMI)M  
Even, Odd  
ns  
ns  
Hold time, SPISOMI valid after  
SPICLK  
9
Even, Odd  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
153  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
SPISTE(A)  
24  
23  
A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and  
non-FIFO modes.  
4-69. SPI Master Mode External Timing (Clock Phase = 0)  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data Must  
Be Valid  
SPISOMI  
SPISTE(A)  
24  
23  
A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and  
non-FIFO modes.  
4-70. SPI Master Mode External Timing (Clock Phase = 1)  
154  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.10.5.1.2 Non-High-Speed Slave Mode Timings  
Table 4-80 lists the SPI slave mode switching characteristics. Table 4-81 lists the SPI slave mode timing  
requirements.  
4-71 shows the SPI slave mode external timing where the clock phase = 0. 4-72 shows the SPI  
slave mode external timing where the clock phase = 1.  
Table 4-80. SPI Slave Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
15  
PARAMETER  
MIN  
MAX UNIT  
td(SOMI)S  
tv(SOMI)S  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI valid after SPICLK  
20  
ns  
ns  
16  
0
Table 4-81. SPI Slave Mode Timing Requirements  
NO.  
12  
13  
14  
19  
20  
25  
26  
MIN  
MAX UNIT  
tc(SPC)S  
Cycle time, SPICLK  
4tc(SYSCLK)  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tw(SPC1)S  
tw(SPC2)S  
tsu(SIMO)S  
th(SIMO)S  
tsu(STE)S  
th(STE)S  
Pulse duration, SPICLK, first pulse  
Pulse duration, SPICLK, second pulse  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO valid after SPICLK  
Setup time, SPISTE active before SPICLK  
Hold time, SPISTE inactive after SPICLK  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
16  
SPISOMI  
SPISOMI Data Is Valid  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
25  
26  
4-71. SPI Slave Mode External Timing (Clock Phase = 0)  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
155  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
SPISOMI  
SPISOMI Data Is Valid  
Data Valid  
Data Valid  
16  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
26  
25  
4-72. SPI Slave Mode External Timing (Clock Phase = 1)  
156  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.10.5.1.3 High-Speed Master Mode Timings  
Table 4-82 lists the SPI high-speed master mode switching characteristics where the clock phase = 0. 图  
4-73 shows the high-speed SPI master mode external timing where the clock phase = 0.  
Table 4-83 lists the SPI high-speed master mode switching characteristics where the clock phase = 1. 图  
4-74 shows the high-speed SPI master mode external timing where the clock phase = 1.  
Table 4-84 lists the SPI high-speed master mode timing requirements.  
Table 4-82. SPI High-Speed Master Mode Switching Characteristics (Clock Phase = 0)  
over recommended operating conditions (unless otherwise noted)  
(BRR + 1)  
NO.  
PARAMETER  
MIN  
MAX UNIT  
CONDITION(1)  
Even  
4tc(LSPCLK)  
5tc(LSPCLK)  
128tc(LSPCLK)  
1
tc(SPC)M  
Cycle time, SPICLK  
ns  
ns  
Odd  
127tc(LSPCLK)  
Even  
0.5tc(SPC)M – 1  
0.5tc(SPC)M + 1  
2
tw(SPC1)M  
Pulse duration, SPICLK, first pulse  
0.5tc(SPC)M  
+
0.5tc(SPC)M +  
Odd  
Even  
Odd  
0.5tc(LSPCLK) – 1  
0.5tc(LSPCLK) + 1  
0.5tc(SPC)M – 1  
0.5tc(SPC)M + 1  
Pulse duration, SPICLK, second  
pulse  
3
4
5
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
ns  
ns  
ns  
0.5tc(SPC)M  
0.5tc(SPC)M  
0.5tc(LSPCLK) + 1  
0.5tc(LSPCLK) – 1  
Delay time, SPICLK to SPISIMO  
valid  
Even, Odd  
Even  
Odd  
1
0.5tc(SPC)M – 1  
0.5tc(SPC)M  
Valid time, SPISIMO valid after  
SPICLK  
0.5tc(LSPCLK) – 1  
Even  
Odd  
tc(SPC)M – 1  
Delay time, SPISTE active to  
SPICLK  
23 td(SPC)M  
ns  
ns  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 1  
Even  
Odd  
0.5tc(SPC)M – 1  
Delay time, SPICLK to SPISTE  
inactive  
24 td(STE)M  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 1  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
157  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
Table 4-83. SPI High-Speed Master Mode Switching Characteristics (Clock Phase = 1)  
over recommended operating conditions (unless otherwise noted)  
(BRR + 1)  
NO.  
PARAMETER  
MIN  
MAX UNIT  
CONDITION(1)  
Even  
4tc(LSPCLK)  
5tc(LSPCLK)  
128tc(LSPCLK)  
1
tc(SPC)M  
Cycle time, SPICLK  
ns  
ns  
Odd  
127tc(LSPCLK)  
Even  
0.5tc(SPC)M – 1  
0.5tc(SPC)M + 1  
2
3
4
5
tw(SPC1)M  
Pulse duration, SPICLK, first pulse  
0.5tc(SPC)M  
0.5tc(SPC)M –  
Odd  
Even  
Odd  
Even  
Odd  
Even  
Odd  
0.5tc(LSPCLK) – 1  
0.5tc(LSPCLK) + 1  
0.5tc(SPC)M – 1  
0.5tc(SPC)M + 1  
Pulse duration, SPICLK, second  
pulse  
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
ns  
ns  
0.5tc(SPC)M  
+
0.5tc(SPC)M  
0.5tc(LSPCLK) + 1  
+
0.5tc(LSPCLK) – 1  
0.5tc(SPC)M – 1  
Delay time, SPISIMO valid to  
SPICLK  
0.5tc(SPC)M  
+
0.5tc(LSPCLK) – 1  
0.5tc(SPC)M – 1  
Valid time, SPISIMO valid after  
SPICLK  
ns  
ns  
ns  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 1  
Delay time, SPISTE active to  
SPICLK  
23 td(SPC)M  
Even, Odd  
tc(SPC)M – 1  
Even  
Odd  
0.5tc(SPC)M – 1  
Delay time, SPICLK to SPISTE  
inactive  
24 td(STE)M  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 1  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
Table 4-84. SPI High-Speed Master Mode Timing Requirements  
(BRR + 1)  
NO.  
8
MIN  
1
MAX UNIT  
CONDITION(1)  
Setup time, SPISOMI valid before  
SPICLK  
tsu(SOMI)M  
th(SOMI)M  
Even, Odd  
ns  
ns  
Hold time, SPISOMI valid after  
SPICLK  
9
Even, Odd  
5
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
158  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
SPISTE(A)  
24  
23  
A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and  
non-FIFO modes.  
4-73. High-Speed SPI Master Mode External Timing (Clock Phase = 0)  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data Must  
Be Valid  
SPISOMI  
SPISTE(A)  
24  
23  
A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and  
non-FIFO modes.  
4-74. High-Speed SPI Master Mode External Timing (Clock Phase = 1)  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
159  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.10.5.1.4 High-Speed Slave Mode Timings  
Table 4-85 lists the SPI high-speed slave mode switching characteristics. Table 4-86 lists the SPI high-  
speed slave mode timing requirements.  
4-75 shows the high-speed SPI slave mode external timing where the clock phase = 0. 4-76 shows  
the high-speed SPI slave mode external timing where the clock phase = 1.  
Table 4-85. SPI High-Speed Slave Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
15  
PARAMETER  
MIN  
MAX UNIT  
td(SOMI)S  
tv(SOMI)S  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI valid after SPICLK  
9
ns  
ns  
16  
0
Table 4-86. SPI High-Speed Slave Mode Timing Requirements  
NO.  
12  
13  
14  
19  
20  
25  
26  
MIN  
MAX UNIT  
tc(SPC)S  
Cycle time, SPICLK  
4tc(SYSCLK)  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tw(SPC1)S  
tw(SPC2)S  
tsu(SIMO)S  
th(SIMO)S  
tsu(STE)S  
th(STE)S  
Pulse duration, SPICLK, first pulse  
Pulse duration, SPICLK, second pulse  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO valid after SPICLK  
Setup time, SPISTE active before SPICLK  
Hold time, SPISTE inactive after SPICLK  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
16  
SPISOMI  
SPISOMI Data Is Valid  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
25  
26  
4-75. High-Speed SPI Slave Mode External Timing (Clock Phase = 0)  
160  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
SPISOMI  
SPISOMI Data Is Valid  
Data Valid  
Data Valid  
16  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
26  
25  
4-76. High-Speed SPI Slave Mode External Timing (Clock Phase = 1)  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
161  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.10.6 Universal Serial Bus (USB) Controller  
The USB controller operates as a full-speed or low-speed function controller during point-to-point  
communications with USB host or device functions.  
The USB module has the following features:  
USB 2.0 full-speed (12 Mbps) and low-speed (1.5 Mbps) operation  
Integrated PHY  
Three transfer types: control, interrupt, and bulk  
32 endpoints  
One dedicated control IN endpoint and one dedicated control OUT endpoint  
15 configurable IN endpoints and 15 configurable OUT endpoints  
4KB of dedicated endpoint memory  
4-77 shows the USB block diagram.  
Endpoint Control  
Transmit  
Receive  
EP0 –31  
Control  
CPU Interface  
Interrupt  
Control  
Interrupts  
CPU Bus  
Host  
Transaction  
Scheduler  
Combine  
Endpoints  
EP Reg.  
Decoder  
Common  
Regs  
UTM  
Synchronization  
Packet  
Encode/Decode  
FIFO RAM  
Controller  
USB PHY  
Rx  
Buff  
Rx  
Buff  
Data Sync  
Packet Encode  
Packet Decode  
CRC Gen/Check  
Cycle  
Control  
Tx  
Buff  
Tx  
Buff  
HNP/SRP  
USB FS/LS  
PHY  
FIFO  
Decoder  
Timers  
Cycle Control  
USB DataLines  
D+ andD-  
4-77. USB Block Diagram  
The accuracy of the on-chip zero-pin oscillator (4-18, Internal Oscillator Electrical  
Characteristics) will not meet the accuracy requirements of the USB protocol. An external  
clock source must be used for applications using USB. For applications using the USB boot  
mode, see 5.10 (Boot ROM and Peripheral Booting) for clock frequency requirements.  
162  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
4.10.6.1 USB Electrical Data and Timing  
Table 4-87 shows the USB input ports DP and DM timing requirements. Table 4-88 shows the USB output  
ports DP and DM switching characteristics.  
Table 4-87. USB Input Ports DP and DM Timing Requirements  
MIN  
0.8  
MAX  
UNIT  
V
V(CM)  
Z(IN)  
VCRS  
VIL  
Differential input common mode range  
Input impedance  
2.5  
300  
1.3  
kΩ  
V
Crossover voltage  
2.0  
Static SE input logic-low level  
Static SE input logic-high level  
Differential input voltage  
0.8  
V
VIH  
2.0  
0.2  
V
VDI  
V
Table 4-88. USB Output Ports DP and DM Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
D+, D– single-ended  
D+, D– single-ended  
D+, D– impedance  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
V
VOH  
USB 2.0 load conditions  
USB 2.0 load conditions  
2.8  
0
3.6  
0.3  
44  
VOL  
V
Z(DRV)  
28  
Ω
Full speed, differential, CL = 50 pF, 10%/90%,  
Rpu on D+  
tr  
tf  
Rise time  
Fall time  
4
4
20  
20  
ns  
ns  
Full speed, differential, CL = 50 pF, 10%/90%,  
Rpu on D+  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
163  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.10.7 Universal Parallel Port (uPP) Interface  
The uPP interface is a high-speed parallel interface with dedicated data lines and minimal control signals.  
The uPP interface is designed to interface cleanly with high-speed ADCs or DACs with 8-bit data width. It  
can also be interconnected with field-programmable gate arrays (FPGAs) or other uPP devices to achieve  
high-speed digital data transfer. It can operate in receive mode or transmit mode (simplex mode).  
The uPP interface includes an internal DMA controller to maximize throughput and minimize CPU  
overhead during high-speed data transmission. All uPP transactions use internal DMA to feed data to or  
retrieve data from the I/O channels. Even though there is only one I/O channel, the DMA controller  
includes two DMA channels to support data interleave mode, in which all DMA resources service a single  
I/O channel.  
On this device, the uPP interface is the dedicated resource for the CPU1 subsystem. CPU1, CPU1.CLA1,  
and CPU1.DMA have access to this module. Two dedicated 512-byte data RAMs (also known as MSG  
RAMs) are tightly coupled with the uPP module (one for each, TX and RX). These data RAMs are used to  
store the bulk of data to avoid frequent interruptions to the CPU. Only CPU1 and CPU1.CLA1 have  
access to these data RAMs. 4-78 shows the integration of the uPP on this device.  
CPU1  
RX-DATARAM  
READ  
Arbi  
Arbiter Y  
512 Byte  
(Dual Port  
t
Memory)  
CPU1.CLA1  
uPP DMA WRITE  
CPU1  
I/O Interface  
Arbi  
Arbiter X  
uPP  
(Universal  
CPU1.CLA1  
t
0
1
Parallel Port)  
CPU1.DMA  
uPP DMA READ  
SECMSEL.PF2SEL  
CPU1  
TX-DATARAM  
512 Byte  
WRITE  
Arbi  
Arbiter Y  
(Dual Port  
Memory)  
t
CPU1.CLA1  
4-78. uPP Integration  
On some TI devices, the uPP module is also called the Radio Peripheral Interface (RPI)  
module.  
164  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
The uPP interface supports the following:  
Mainstream high-speed data converters with parallel conversion interface.  
Mainstream high-speed streaming interface with frame START indication.  
Mainstream high-speed streaming interface with data ENABLE indication.  
Mainstream high-speed streaming interface with synchronization WAIT signal.  
SDR (single-data-rate) or DDR (double-data-rate, interleaved) interface.  
Multiplexing of interleaved data in SDR transmit case.  
Demultiplexing and multiplexing of interleaved data in DDR case.  
I/O interface clock frequency up to 50 MHz for SDR, and 25 MHz for DDR.  
Single-channel 8-bit input receive or output transmit mode.  
Max throughput is 50MB/s for pure read or pure write.  
Available as a DSP to FPGA general-purpose streaming interface.  
4-79 shows the uPP functional block diagram.  
uPP  
Configuration  
ENABLE OUT  
G
P
I
ENABLE/GPIOx  
MMR  
I/F  
Transmit Timing  
and Control  
START OUT  
WAIT IN  
O
CLK OUT  
START/GPIOx  
WAIT/GPIOx  
CPU1.SYSCLK  
CLKDIVIDER  
M
U
X
CLK IN  
ENABLE IN  
Receive Timing  
and Control  
Control Mux  
START IN  
WAIT OUT  
Interrupt/Trigger  
and  
I/O  
CLK/GPIOx  
Arbi  
I-FIFO  
t
C
O
N
T
64 Bit  
MEM WR I/F  
DATA OUT  
DATA IN  
DATA[7:0]/GPIOx  
Internal  
Data Interleaving  
(TX/RX)  
DMA  
Arbit  
R
O
L
64 Bit  
MEM RD I/F  
Arbi  
Q-FIFO  
4-79. uPP Functional Block Diagram  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
165  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
4.10.7.1 uPP Electrical Data and Timing  
Table 4-89 shows the uPP timing requirements. Table 4-90 shows the uPP switching characteristics.  
Figure 4-80 through Figure 4-83 show the uPP timing diagrams.  
Table 4-89. uPP Timing Requirements  
NO.  
MIN MAX UNIT  
SDR mode  
DDR mode  
SDR mode  
DDR mode  
SDR mode  
DDR mode  
20  
40  
8
1
tc(CLK)  
Cycle time, CLK  
ns  
ns  
ns  
2
3
tw(CLKH)  
Pulse width, CLK high  
Pulse width, CLK low  
18  
8
tw(CLKL)  
18  
4
4
5
tsu(STV-CLKH)  
th(CLKH-STV)  
tsu(ENV-CLKH)  
th(CLKH-ENV)  
tsu(DV-CLKH)  
th(CLKH-DV)  
Setup time, START valid before CLK high  
Hold time, START valid after CLK high  
Setup time, ENABLE valid before CLK high  
Hold time, ENABLE valid after CLK high  
Setup time, DATA valid before CLK high  
Hold time, DATA valid after CLK high  
Setup time, DATA valid before CLK low  
Hold time, DATA valid after CLK low  
Setup time, WAIT valid before CLK high  
Hold time, WAIT valid after CLK high  
Setup time, WAIT valid before CLK low  
Hold time, WAIT valid after CLK low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.8  
4
6
7
0.8  
4
8
9
0.8  
4
10  
11  
19  
20  
21  
22  
tsu(DV-CLKL)  
th(CLKL-DV)  
0.8  
20  
0
tsu(WTV-CLKH)  
th(CLKH-WTV)  
tsu(WTV-CLKL)  
th(CLKL-WTV)  
SDR mode  
SDR mode  
DDR mode  
DDR mode  
20  
0
Table 4-90. uPP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
MIN MAX UNIT  
SDR mode  
DDR mode  
SDR mode  
DDR mode  
SDR mode  
DDR mode  
20  
ns  
40  
12  
tc(CLK)  
Cycle time, CLK  
8
ns  
18  
13  
14  
tw(CLKH)  
Pulse width, CLK high  
Pulse width, CLK low  
8
ns  
18  
tw(CLKL)  
15  
16  
17  
18  
td(CLKH-STV)  
td(CLKH-ENV)  
td(CLKH-DV)  
td(CLKL-DV)  
Delay time, START valid after CLK high  
Delay time, ENABLE valid after CLK high  
Delay time, DATA valid after CLK high  
Delay time, DATA valid after CLK low  
3
3
3
3
12  
12  
12  
12  
ns  
ns  
ns  
ns  
166  
Specifications  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
1
2
3
CLK  
START  
ENABLE  
WAIT  
4
5
6
7
8
9
DATA[n:0]  
Data1  
Data2  
Data3  
Data4  
Data5  
Data6  
Data7  
Data8  
Data9  
Figure 4-80. uPP Single Data Rate (SDR) Receive Timing  
1
2
3
CLK  
4
5
START  
6
7
ENABLE  
WAIT  
10  
8
11  
9
DATA[n:0]  
I1 Q1 I2 Q2 I3 Q3  
I4 Q4  
I5 Q5 I6 Q6 I7 Q7 I8 Q8 I9 Q9  
Figure 4-81. uPP Double Data Rate (DDR) Receive Timing  
Copyright © 2017, Texas Instruments Incorporated  
Specifications  
167  
Submit Documentation Feedback  
Product Folder Links: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
12  
13  
14  
CLK  
START  
15  
16  
ENABLE  
WAIT  
19  
20  
17  
DATA[n:0]  
Data1  
Data2  
Data3  
Data4  
Data5  
Data6  
Data7  
Data8  
Data9  
Figure 4-82. uPP Single Data Rate (SDR) Transmit Timing  
12  
13  
14  
CLK  
START  
ENABLE  
WAIT  
15  
16  
21  
22  
17  
18  
I5 Q5 I6 Q6 I7 Q7 I8 Q8 I9 Q9  
DATA[n:0]  
I1 Q1 I2 Q2 I3 Q3  
Q4  
I4  
Figure 4-83. uPP Double Data Rate (DDR) Transmit Timing  
168  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
5 Detailed Description  
5.1 Overview  
The Delfino TMS320F28377D-EP is a powerful 32-bit floating-point microcontroller unit (MCU) designed  
for advanced closed-loop control applications such as industrial drives and servo motor control; solar  
inverters and converters; digital power; transportation; and power line communications. Complete  
development packages for digital power and industrial drives are available as part of the powerSUITE and  
DesignDRIVE initiatives. While the Delfino product line is not new to the TMS320C2000 portfolio, the  
F28377D supports a new dual-core C28x architecture that significantly boosts system performance. The  
integrated analog and control peripherals also let designers consolidate control architectures and eliminate  
multiprocessor use in high-end systems.  
The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide  
200 MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new  
TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in  
transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex  
math operations common in encoded applications.  
The F28377D microcontroller features two CLA real-time control coprocessors. The CLA is an  
independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA  
responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel  
processing capability can effectively double the computational performance of a real-time control system.  
By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such  
as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning  
between various system tasks. For example, one C28x+CLA core can be used to track speed and  
position, while the other C28x+CLA core can be used to control torque and current loops.  
The TMS320F28377D-EP supports 1MB (512KW) of onboard flash memory with error correction code  
(ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for  
code protection.  
Performance analog and control peripherals are also integrated on the F28377D MCU to further enable  
system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple  
analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM)  
works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The  
Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when  
current limit conditions are exceeded or not met. Other analog and control peripherals include DACs,  
PWMs, eCAPs, eQEPs, and other peripherals.  
Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface  
extend the connectivity of the F28377D. The uPP interface is a new feature of the C2000 MCUs and  
supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly,  
a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their  
application.  
5.2 Functional Block Diagram  
5-1 shows the CPU system and associated peripherals.  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
169  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
User User  
Configurable Configurable  
PSWD  
DCSM  
OTP  
1K x 16  
DCSM  
OTP  
1K x 16  
PSWD  
Dual  
Code  
Security  
Module  
+
Emulation  
Code  
Security  
Logic  
(ECSL)  
Dual  
Code  
Security  
Module  
+
Emulation  
Code  
Security  
Logic  
(ECSL)  
FLASH  
256K x 16  
Secure  
FLASH  
256K x 16  
Secure  
Secure Memories  
shown in Red  
CPU2.CLA1  
PUMP  
OTP/Flash  
Wrapper  
OTP/Flash  
Wrapper  
MEMCPU1  
MEMCPU2  
Low-Power  
Mode Control  
CPU1.M0 RAM 1Kx16  
CPU1.M1 RAM 1Kx16  
GPIO MUX  
INTOSC1  
CPU2 to CPU2.CLA1  
128x16 MSG RAM  
CPU1.CLA1 to CPU1  
128x16 MSG RAM  
C28 CPU-1  
FPU  
VCU-II  
C28 CPU-2  
FPU  
VCU-II  
CPU1.CLA1  
CPU1 to CPU1.CLA1  
128x16 MSG RAM  
CPU2.CLA1 to CPU2  
128x16 MSG RAM  
CPU2.M0 RAM 1Kx16  
CPU2.M1 RAM 1Kx16  
TMU  
TMU  
Watchdog 1/2  
CPU1 Local Shared  
6x 2Kx16  
LS0-LS5 RAMs  
CPU2 Local Shared  
6x 2Kx16  
LS0-LS5 RAMs  
Interprocessor  
Communication  
(IPC)  
CPU1.D0 RAM 2Kx16  
CPU1.D1 RAM 2Kx16  
CPU2.D0 RAM 2Kx16  
CPU2.D1 RAM 2Kx16  
Main PLL  
INTOSC2  
Module  
WD Timer  
NMI-WDT  
WD Timer  
NMI-WDT  
CPU1.CLA1 Data ROM  
(4Kx16)  
CPU2.CLA1 Data ROM  
(4Kx16)  
Global Shared  
16x 4Kx16  
GS0-GS15 RAMs  
External Crystal or  
Oscillator  
CPU Timer 0  
CPU Timer 1  
CPU Timer 2  
CPU Timer 0  
CPU Timer 1  
CPU Timer 2  
Secure-ROM 32Kx16  
Secure  
Secure-ROM 32Kx16  
Secure  
A5:0  
B5:0  
16-/12-bit ADC  
x4  
Aux PLL  
A
AUXCLKIN  
CPU1 to CPU2  
1Kx16 MSG RAM  
B
Boot-ROM 32Kx16  
Nonsecure  
Boot-ROM 32Kx16  
Nonsecure  
ePIE  
(up to 192  
ePIE  
(up to 192  
C
ADC  
Result  
Regs  
TRST  
Analog  
MUX  
interrupts)  
interrupts)  
CPU2 to CPU1  
1Kx16 MSG RAM  
C5:2  
D5:0  
D
TCK  
TDI  
Config  
JTAG  
TMS  
TDO  
ADCIN14  
ADCIN15  
Data Bus  
Bridge  
CPU1.DMA  
CPU2.DMA  
Comparator  
Subsystem  
(CMPSS)  
DAC  
x3  
CPU1 Buses  
CPU2 Buses  
Data Bus  
Bridge  
Data Bus  
Bridge  
Data Bus  
Bridge  
Data Bus  
Bridge  
Data Bus  
Bridge  
Peripheral Frame 1  
Data Bus Bridge  
Peripheral Frame 2  
SCI-  
A/B/C/D  
(16L FIFO)  
USB  
Ctrl /  
PHY  
SPI-  
A/B/C  
(16L FIFO)  
ePWM-1/../12  
CAN-  
A/B  
(32-MBOX)  
RAM  
I2C-A/B  
(16L FIFO)  
McBSP-  
A/B  
eCAP-  
1/../6  
eQEP-1/2/3  
SDFM-1/2  
GPIO  
EMIF1  
EMIF2  
uPP  
HRPWM-1/../8  
(CPU1 only)  
GPIO MUX, Input X-BAR, Output X-BAR  
Copyright © 2017, Texas Instruments Incorporated  
5-1. Functional Block Diagram  
170  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
5.3 Memory  
5.3.1 C28x Memory Map  
Both C28x CPUs on the device have the same memory map except where noted in 5-1. The  
GSx_RAM (Global Shared RAM) should be assigned to either CPU by the GSxMSEL register. Memories  
accessible by the CLA or DMA (direct memory access) are noted as well.  
5-1. C28x Memory Map  
MEMORY  
SIZE  
1K × 16  
1K × 16  
512 × 16  
128 × 16  
128 × 16  
512 × 16  
512 × 16  
2K × 16  
2K × 16  
2K × 16  
2K × 16  
2K × 16  
2K × 16  
2K × 16  
2K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
1K × 16  
1K × 16  
2K × 16  
2K × 16  
256K × 16  
32K × 16  
32K × 16  
64 × 16  
START ADDRESS  
0x0000 0000  
0x0000 0400  
0x0000 0D00  
0x0000 1480  
0x0000 1500  
0x0000 6C00  
0x0000 6E00  
0x0000 8000  
0x0000 8800  
0x0000 9000  
0x0000 9800  
0x0000 A000  
0x0000 A800  
0x0000 B000  
0x0000 B800  
0x0000 C000  
0x0000 D000  
0x0000 E000  
0x0000 F000  
0x0001 0000  
0x0001 1000  
0x0001 2000  
0x0001 3000  
0x0001 4000  
0x0001 5000  
0x0001 6000  
0x0001 7000  
0x0001 8000  
0x0001 9000  
0x0001 A000  
0x0001 B000  
0x0003 F800  
0x0003 FC00  
0x0004 9000  
0x0004 B000  
0x0008 0000  
0x003F 0000  
0x003F 8000  
0x003F FFC0  
END ADDRESS  
0x0000 03FF  
0x0000 07FF  
0x0000 0EFF  
0x0000 14FF  
0x0000 157F  
0x0000 6DFF  
0x0000 6FFF  
0x0000 87FF  
0x0000 8FFF  
0x0000 97FF  
0x0000 9FFF  
0x0000 A7FF  
0x0000 AFFF  
0x0000 B7FF  
0x0000 BFFF  
0x0000 CFFF  
0x0000 DFFF  
0x0000 EFFF  
0x0000 FFFF  
0x0001 0FFF  
0x0001 1FFF  
0x0001 2FFF  
0x0001 3FFF  
0x0001 4FFF  
0x0001 5FFF  
0x0001 6FFF  
0x0001 7FFF  
0x0001 8FFF  
0x0001 9FFF  
0x0001 AFFF  
0x0001 BFFF  
0x0003 FBFF  
0x0003 FFFF  
0x0004 97FF  
0x0004 B7FF  
0x000B FFFF  
0x003F 7FFF  
0x003F FFBF  
0x003F FFFF  
CLA ACCESS  
DMA ACCESS  
M0 RAM  
M1 RAM  
PieVectTable  
CPUx.CLA1 to CPUx MSGRAM  
CPUx to CPUx.CLA1 MSGRAM  
UPP TX MSG RAM  
UPP RX MSG RAM  
LS0 RAM  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
LS1 RAM  
LS2 RAM  
LS3 RAM  
LS4 RAM  
LS5 RAM  
D0 RAM  
D1 RAM  
GS0 RAM(1)  
GS1 RAM(1)  
GS2 RAM(1)  
GS3 RAM(1)  
GS4 RAM(1)  
GS5 RAM(1)  
GS6 RAM(1)  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
GS7 RAM(1)  
GS8 RAM(1)  
GS9 RAM(1)  
GS10 RAM(1)  
GS11 RAM(1)  
GS12 RAM(1)(2)  
GS13 RAM(1)(2)  
GS14 RAM(1)(2)  
GS15 RAM(1)(2)  
CPU2 to CPU1 MSGRAM(1)  
CPU1 to CPU2 MSGRAM(1)  
CAN A Message RAM(1)  
CAN B Message RAM(1)  
Flash  
Secure ROM  
Boot ROM  
Vectors  
(1) Shared between CPU subsystems.  
(2) Available only on F28379D, F28378D, F28377D, and F28375D.  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
171  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
5.3.2 Flash Memory Map  
On the F28377D device, each CPU has its own flash bank [512KB (256KW)], the total flash for each  
device is 1MB (512KW). Only one bank can be programmed or erased at a time and the code to program  
the flash should be executed out of RAM. 5-2 shows the addresses of flash sectors on CPU1 and  
CPU2 for F28377D.  
5-2. Addresses of Flash Sectors on CPU1 and CPU2 for F28377D  
SECTOR  
SIZE  
START ADDRESS  
END ADDRESS  
OTP Sectors  
Sectors  
TI OTP  
1K × 16  
1K × 16  
0x0007 0000  
0x0007 8000  
0x0007 03FF  
0x0007 83FF  
User configurable DCSM OTP  
Sector A  
Sector B  
Sector C  
Sector D  
Sector E  
Sector F  
Sector G  
Sector H  
Sector I  
8K × 16  
8K × 16  
8K × 16  
8K × 16  
32K × 16  
32K × 16  
32K × 16  
32K × 16  
32K × 16  
32K × 16  
8K × 16  
8K × 16  
8K × 16  
8K ×16  
0x0008 0000  
0x0008 2000  
0x0008 4000  
0x0008 6000  
0x0008 8000  
0x0009 0000  
0x0009 8000  
0x000A 0000  
0x000A 8000  
0x000B 0000  
0x000B 8000  
0x000B A000  
0x000B C000  
0x000B E000  
0x0008 1FFF  
0x0008 3FFF  
0x0008 5FFF  
0x0008 7FFF  
0x0008 FFFF  
0x0009 7FFF  
0x0009 FFFF  
0x000A 7FFF  
0x000A FFFF  
0x000B 7FFF  
0x000B 9FFF  
0x000B BFFF  
0x000B DFFF  
0x000B FFFF  
Sector J  
Sector K  
Sector L  
Sector M  
Sector N  
Flash ECC Locations  
TI OTP ECC  
128 × 16  
128 × 16  
32K × 16  
0x0107 0000  
0x0107 1000  
0x0108 0000  
0x0107 007F  
0x0107 107F  
0x0108 7FFF  
User-configurable DCSM OTP  
ECC  
Flash ECC  
172  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
5.3.3 EMIF Chip Select Memory Map  
The EMIF1 memory map is the same for both CPU subsystems. EMIF2 is available only on the CPU1  
subsystem. The EMIF memory map is shown in 5-3.  
5-3. EMIF Chip Select Memory Map  
EMIF CHIP SELECT  
EMIF1_CS0n - Data  
EMIF1_CS2n - Program + Data(2)  
EMIF1_CS3n - Program + Data  
EMIF1_CS4n - Program + Data  
EMIF2_CS0n - Data(3)  
SIZE(1)  
256M × 16  
2M × 16  
START ADDRESS  
0x8000 0000  
0x0010 0000  
0x0030 0000  
0x0038 0000  
0x9000 0000  
0x0000 2000  
END ADDRESS  
0x8FFF FFFF  
0x002F FFFF  
0x0037 FFFF  
0x003D FFFF  
0x91FF FFFF  
0x0000 2FFF  
CLA ACCESS DMA ACCESS  
Yes  
Yes  
Yes  
Yes  
512K × 16  
393K × 16  
3M × 16  
EMIF2_CS2n - Program + Data(3)  
4K × 16  
Yes (Data only)  
(1) Available memory size listed in this table is the maximum possible size assuming 32-bit memory. This may not apply to other memory  
sizes because of pin mux setting. See Section 3.4.1 to find the available address lines for your use case.  
(2) The 2M × 16 size is for a 32-bit interface with the assumption that 16-bit accesses are not performed; hence, byte enables are not used  
(tied to active value on board). If byte enables are used, then the maximum size is smaller because byte enables are muxed with  
address pins (see Section 3.4.1). If 16-bit memory is used, then the maximum size is 1M × 16.  
(3) Available only on the CPU1 subsystem.  
5.3.4 Peripheral Registers Memory Map  
The peripheral registers memory map can be found in 5-4. The peripheral registers can be assigned to  
either the CPU1 or CPU2 subsystems except where noted in 5-4. Registers in the peripheral frames  
share a secondary master (CLA or DMA) selection with all other registers within the same peripheral  
frame. See the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual for  
details on the CPU subsystem and secondary master selection.  
5-4. Peripheral Registers Memory Map  
START  
ADDRESS  
END  
ADDRESS  
CLA  
DMA  
PROTECTED(1)  
REGISTERS  
STRUCTURE NAME  
ACCESS ACCESS  
AdcaResultRegs  
AdcbResultRegs  
AdccResultRegs  
AdcdResultRegs  
CpuTimer0Regs(2)  
CpuTimer1Regs(2)  
CpuTimer2Regs(2)  
PieCtrlRegs(2)  
ADC_RESULT_REGS  
ADC_RESULT_REGS  
ADC_RESULT_REGS  
ADC_RESULT_REGS  
CPUTIMER_REGS  
CPUTIMER_REGS  
CPUTIMER_REGS  
PIE_CTRL_REGS  
0x0000 0B00  
0x0000 0B20  
0x0000 0B40  
0x0000 0B60  
0x0000 0C00  
0x0000 0C08  
0x0000 0C10  
0x0000 0CE0  
0x0000 0B1F  
0x0000 0B3F  
0x0000 0B5F  
0x0000 0B7F  
0x0000 0C07  
0x0000 0C0F  
0x0000 0C17  
0x0000 0CFF  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes –  
CLA only,  
no CPU  
access  
Cla1SoftIntRegs  
CLA_SOFTINT_REGS  
0x0000 0CE0  
0x0000 0CFF  
DmaRegs(2)  
Cla1Regs(2)  
DMA_REGS  
CLA_REGS  
0x0000 1000  
0x0000 1400  
0x0000 11FF  
0x0000 147F  
Peripheral Frame 1  
EPwm1Regs  
EPwm2Regs  
EPwm3Regs  
EPwm4Regs  
EPwm5Regs  
EPwm6Regs  
EPwm7Regs  
EPwm8Regs  
EPwm9Regs  
EPwm10Regs  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
0x0000 4000  
0x0000 4100  
0x0000 4200  
0x0000 4300  
0x0000 4400  
0x0000 4500  
0x0000 4600  
0x0000 4700  
0x0000 4800  
0x0000 4900  
0x0000 40FF  
0x0000 41FF  
0x0000 42FF  
0x0000 43FF  
0x0000 44FF  
0x0000 45FF  
0x0000 46FF  
0x0000 47FF  
0x0000 48FF  
0x0000 49FF  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
173  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
5-4. Peripheral Registers Memory Map (continued)  
START  
ADDRESS  
END  
ADDRESS  
CLA  
DMA  
PROTECTED(1)  
REGISTERS  
STRUCTURE NAME  
ACCESS ACCESS  
EPwm11Regs  
EPwm12Regs  
ECap1Regs  
ECap2Regs  
ECap3Regs  
ECap4Regs  
ECap5Regs  
ECap6Regs  
EQep1Regs  
EQep2Regs  
EQep3Regs  
DacaRegs  
EPWM_REGS  
EPWM_REGS  
ECAP_REGS  
ECAP_REGS  
ECAP_REGS  
ECAP_REGS  
ECAP_REGS  
ECAP_REGS  
EQEP_REGS  
EQEP_REGS  
EQEP_REGS  
DAC_REGS  
0x0000 4A00  
0x0000 4B00  
0x0000 5000  
0x0000 5020  
0x0000 5040  
0x0000 5060  
0x0000 5080  
0x0000 50A0  
0x0000 5100  
0x0000 5140  
0x0000 5180  
0x0000 5C00  
0x0000 5C10  
0x0000 5C20  
0x0000 5C80  
0x0000 5CA0  
0x0000 5CC0  
0x0000 5CE0  
0x0000 5D00  
0x0000 5D20  
0x0000 5D40  
0x0000 5D60  
0x0000 5E00  
0x0000 5E80  
0x0000 4AFF  
0x0000 4BFF  
0x0000 501F  
0x0000 503F  
0x0000 505F  
0x0000 507F  
0x0000 509F  
0x0000 50BF  
0x0000 513F  
0x0000 517F  
0x0000 51BF  
0x0000 5C0F  
0x0000 5C1F  
0x0000 5C2F  
0x0000 5C9F  
0x0000 5CBF  
0x0000 5CDF  
0x0000 5CFF  
0x0000 5D1F  
0x0000 5D3F  
0x0000 5D5F  
0x0000 5D7F  
0x0000 5E7F  
0x0000 5EFF  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
DacbRegs  
DAC_REGS  
DaccRegs  
DAC_REGS  
Cmpss1Regs  
Cmpss2Regs  
Cmpss3Regs  
Cmpss4Regs  
Cmpss5Regs  
Cmpss6Regs  
Cmpss7Regs  
Cmpss8Regs  
Sdfm1Regs  
Sdfm2Regs  
CMPSS_REGS  
CMPSS_REGS  
CMPSS_REGS  
CMPSS_REGS  
CMPSS_REGS  
CMPSS_REGS  
CMPSS_REGS  
CMPSS_REGS  
SDFM_REGS  
SDFM_REGS  
Peripheral Frame 2  
McbspaRegs  
McbspbRegs  
SpiaRegs  
MCBSP_REGS  
MCBSP_REGS  
SPI_REGS  
0x0000 6000  
0x0000 6040  
0x0000 6100  
0x0000 6110  
0x0000 6120  
0x0000 6200  
0x0000 603F  
0x0000 607F  
0x0000 610F  
0x0000 611F  
0x0000 612F  
0x0000 62FF  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
SpibRegs  
SPI_REGS  
SpicRegs  
SPI_REGS  
UppRegs(3)  
UPP_REGS  
WdRegs(2)  
NmiIntruptRegs(2)  
XintRegs(2)  
WD_REGS  
NMI_INTRUPT_REGS  
XINT_REGS  
0x0000 7000  
0x0000 7060  
0x0000 7070  
0x0000 7200  
0x0000 7210  
0x0000 7220  
0x0000 7230  
0x0000 7300  
0x0000 7340  
0x0000 7400  
0x0000 7480  
0x0000 7500  
0x0000 7580  
0x0000 7900  
0x0000 7920  
0x0000 7940  
0x0000 7980  
0x0000 7A00  
0x0000 703F  
0x0000 706F  
0x0000 707F  
0x0000 720F  
0x0000 721F  
0x0000 722F  
0x0000 723F  
0x0000 733F  
0x0000 737F  
0x0000 747F  
0x0000 74FF  
0x0000 757F  
0x0000 75FF  
0x0000 791F  
0x0000 793F  
0x0000 794F  
0x0000 798F  
0x0000 7A3F  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
SciaRegs  
SCI_REGS  
ScibRegs  
SCI_REGS  
ScicRegs  
SCI_REGS  
ScidRegs  
SCI_REGS  
I2caRegs  
I2C_REGS  
I2cbRegs  
I2C_REGS  
AdcaRegs  
ADC_REGS  
Yes  
Yes  
Yes  
Yes  
AdcbRegs  
ADC_REGS  
AdccRegs  
ADC_REGS  
AdcdRegs  
ADC_REGS  
InputXbarRegs(3)  
XbarRegs(3)  
TrigRegs(3)  
INPUT_XBAR_REGS  
XBAR_REGS  
TRIG_REGS  
DmaClaSrcSelRegs(2)  
EPwmXbarRegs(3)  
DMA_CLA_SRC_SEL_REGS  
EPWM_XBAR_REGS  
174  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
5-4. Peripheral Registers Memory Map (continued)  
START  
ADDRESS  
END  
ADDRESS  
CLA  
DMA  
PROTECTED(1)  
REGISTERS  
STRUCTURE NAME  
ACCESS ACCESS  
OutputXbarRegs(3)  
GpioCtrlRegs(3)  
GpioDataRegs(2)  
UsbaRegs(3)  
Emif1Regs  
OUTPUT_XBAR_REGS  
GPIO_CTRL_REGS  
GPIO_DATA_REGS  
USB_REGS  
0x0000 7A80  
0x0000 7C00  
0x0000 7F00  
0x0004 0000  
0x0004 7000  
0x0004 7800  
0x0004 8000  
0x0004 A000  
0x0000 7ABF  
0x0000 7D7F  
0x0000 7F2F  
0x0004 0FFF  
0x0004 77FF  
0x0004 7FFF  
0x0004 87FF  
0x0004 A7FF  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
EMIF_REGS  
Emif2Regs(3)  
CanaRegs  
EMIF_REGS  
CAN_REGS  
CanbRegs  
CAN_REGS  
IPC_REGS_CPU1  
IPC_REGS_CPU2  
IpcRegs(2)  
0x0005 0000  
0x0005 0023  
Yes  
FlashPumpSemaphoreRegs(2)  
DevCfgRegs(3)  
FLASH_PUMP_SEMAPHORE_REGS  
DEV_CFG_REGS  
0x0005 0024  
0x0005 D000  
0x0005 D180  
0x0005 D200  
0x0005 D300  
0x0005 E608  
0x0005 F000  
0x0005 F040  
0x0005 F070  
0x0005 F400  
0x0005 F480  
0x0005 F4A0  
0x0005 F4C0  
0x0005 F500  
0x0005 F540  
0x0005 F800  
0x0005 FB00  
0x0005 0025  
0x0005 D17F  
0x0005 D1FF  
0x0005 D2FF  
0x0005 D3FF  
0x0005 E60B  
0x0005 F02F  
0x0005 F05F  
0x0005 F07F  
0x0005 F47F  
0x0005 F49F  
0x0005 F4BF  
0x0005 F4FF  
0x0005 F53F  
0x0005 F541  
0x0005 FAFF  
0x0005 FB3F  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
AnalogSubsysRegs(3)  
ClkCfgRegs(4)  
ANALOG_SUBSYS_REGS  
CLK_CFG_REGS  
CpuSysRegs(2)  
CPU_SYS_REGS  
RomPrefetchRegs(3)  
DcsmZ1Regs(2)  
ROM_PREFETCH_REGS  
DCSM_Z1_REGS  
DcsmZ2Regs(2)  
DCSM_Z2_REGS  
DcsmCommonRegs(2)  
MemCfgRegs(2)  
DCSM_COMMON_REGS  
MEM_CFG_REGS  
Emif1ConfigRegs(2)  
Emif2ConfigRegs(3)  
AccessProtectionRegs(2)  
MemoryErrorRegs(2)  
RomWaitStateRegs(3)  
Flash0CtrlRegs(2)  
Flash0EccRegs(2)  
EMIF1_CONFIG_REGS  
EMIF2_CONFIG_REGS  
ACCESS_PROTECTION_REGS  
MEMORY_ERROR_REGS  
ROM_WAIT_STATE_REGS  
FLASH_CTRL_REGS  
FLASH_ECC_REGS  
(1) The CPU (not applicable for CLA or DMA) contains a write followed by read protection mode to ensure that any read operation that  
follows a write operation within a protected address range is executed as written by delaying the read operation until the write is  
initiated.  
(2) A unique copy of these registers exist on each CPU subsystem.  
(3) These registers are available only on the CPU1 subsystem.  
(4) These registers are mapped to either CPU1 or CPU2 based on a semaphore.  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
175  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
 
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
5.3.5 Memory Types  
5-5 provides more information about each memory type.  
5-5. Memory Types  
HIBERNATE  
RETENTION  
ACCESS  
PROTECTION  
MEMORY TYPE  
ECC-CAPABLE  
PARITY  
SECURITY  
M0, M1  
D0, D1  
LSx  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
GSx  
CPU/CLA MSGRAM  
Boot ROM  
Yes  
N/A  
N/A  
N/A  
N/A  
Secure ROM  
Yes  
Yes  
Yes  
Flash  
Yes  
Yes  
N/A  
N/A  
User-configurable DCSM OTP  
5.3.5.1 Dedicated RAM (Mx and Dx RAM)  
The CPU subsystem has four dedicated ECC-capable RAM blocks: M0, M1, D0, and D1. M0/M1  
memories are small nonsecure blocks that are tightly coupled with the CPU (that is, only the CPU has  
access to them). D0/D1 memories are secure blocks and also have the access-protection feature (CPU  
write/CPU fetch protection).  
5.3.5.2 Local Shared RAM (LSx RAM)  
RAM blocks which are dedicated to each subsystem and are accessible to its CPU and CLA only, are  
called local shared RAMs (LSx RAMs).  
All LSx RAM blocks have parity. These memories are secure and have the access protection (CPU  
write/CPU fetch) feature.  
By default, these memories are dedicated to the CPU only, and the user could choose to share these  
memories with the CLA by configuring the MSEL_LSx bit field in the LSxMSEL registers appropriately.  
5-6 shows the master access for the LSx RAM.  
5-6. Master Access for LSx RAM  
(With Assumption That all Other Access Protections are Disabled)  
CPU ALLOWED  
ACCESS  
CLA ALLOWED  
ACCESS  
MSEL_LSx  
CLAPGM_LSx  
COMMENT  
LSx memory is configured  
as CPU dedicated RAM.  
00  
01  
01  
X
0
1
All  
All  
Data Read  
Data Write  
LSx memory is shared  
between CPU and CLA1.  
Emulation Read  
Emulation Write  
LSx memory is CLA1  
program memory.  
Fetch Only  
176  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
5.3.5.3 Global Shared RAM (GSx RAM)  
RAM blocks which are accessible from both the CPU and DMA are called global shared RAMs (GSx  
RAMs). Each shared RAM block can be owned by either CPU subsystem based on the configuration of  
respective bits in the GSxMSEL register. Both the CPU and DMA have full read and write access to these  
memories.  
All GSx RAM blocks have parity.  
When a GSx RAM block is owned by a CPU subsystem, the CPUx and CPUx.DMA will have full access to  
that RAM block whereas the other CPUy and CPUy.DMA will only have read access (no fetch/write  
access).  
5-7 shows the master access for the GSx RAM.  
5-7. Master Access for GSx RAM  
(With Assumption That all Other Access Protections are Disabled)  
INSTRUCTION  
FETCH  
CPUx.DMA  
READ  
CPUx.DMA  
WRITE  
GSxMSEL  
CPU  
READ  
WRITE  
CPU1  
CPU2  
CPU1  
CPU2  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
0
1
Yes  
Yes  
Yes  
The GSx RAMs have access protection (CPU write/CPU fetch/DMA write).  
5.3.5.4 CPU Message RAM (CPU MSGRAM)  
These RAM blocks can be used to share data between CPU1 and CPU2. Since these RAMs are used for  
interprocessor communication, they are also called IPC RAMs. The CPU MSGRAMs have CPU/DMA  
read/write access from its own CPU subsystem, and CPU/DMA read only access from the other  
subsystem.  
This RAM has parity.  
5.3.5.5 CLA Message RAM (CLA MSGRAM)  
These RAM blocks can be used to share data between the CPU and CLA. The CLA has read and write  
access to the "CLA to CPU MSGRAM." The CPU has read and write access to the "CPU to CLA  
MSGRAM." The CPU and CLA both have read access to both MSGRAMs.  
This RAM has parity.  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
177  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
5.4 Identification  
5-8 shows the Device Identification Registers.  
5-8. Device Identification Registers  
NAME  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
Device part identification number  
PARTIDH (CPU1)  
0x0005 D00A  
0x0007 0202  
2
TMS320F28377D  
0x00FF 0300  
PARTIDH (CPU2)  
REVID  
Silicon revision number  
Revision 0  
0x0000 0000  
0x0000 0000  
0x0000 0002  
0x0000 0003  
0x0005 D00C  
0x0007 03C0  
2
2
Revision A  
Revision B  
Revision C  
Unique identification number. This number is different on each  
individual device with the same PARTIDH. This can be used as  
a serial number in the application. This number is present only  
on TMS Revision C devices.  
UID_UNIQUE  
CPU identification number  
CPU ID  
0x0007 026D  
N/A  
1
CPU1  
0xXX01  
CPU2  
0xXX02  
JTAG ID  
N/A  
JTAG Device ID  
0x0B99 C02F  
178  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
5.5 Bus Architecture – Peripheral Connectivity  
5-9 shows a broad view of the peripheral and configuration register accessibility from each bus master.  
Peripherals can be individually assigned to the CPU1 or CPU2 subsystem (for example, ePWM can be  
assigned to CPU1 and eQEP assigned to CPU2). Peripherals within peripheral frames 1 or 2 will all be  
mapped to the respective secondary master as a group (if SPI is assigned to CPUx.DMA, then McBSP is  
also assigned to CPUx.DMA).  
5-9. Bus Master Peripheral Access  
PERIPHERALS  
CPU1.DMA  
CPU1.CLA1  
CPU1  
CPU2  
CPU2.CLA1  
CPU2.DMA  
(BY BUS ACCESS TYPE)  
Peripherals that can be assigned to CPU1 or CPU2 and have common selectable Secondary Masters  
Peripheral Frame 1:  
ePWM  
SDFM  
eCAP(1)  
eQEP(1)  
CMPSS(1)  
DAC(1)  
Y
Y
Y
Y
Y
Y
Peripheral Frame 1:  
HRPWM  
Peripheral Frame 2:  
Y
Y
Y
Y
Y
Y
Y
Y
Y
SPI  
Y
Y
Y
McBSP  
Peripheral Frame 2:  
uPP Configuration(1)  
Peripherals that can be assigned to CPU1 or CPU2 subsystems  
SCI  
I2C  
Y
Y
Y
Y
Y
Y
Y
Y
CAN  
ADC Configuration  
EMIF1  
Y
Y
Y
Y
Y
Y
Peripherals and Device Configuration Registers only on CPU1 subsystem  
EMIF2  
USB  
Y
Y
Y
Device Capability, Peripheral Reset, Peripheral CPU  
Select  
Y
GPIO Pin Mapping and Configuration  
Analog System Control  
uPP Message RAMs  
Y
Y
Y
Y
Y
Reset Configuration  
Accessible by only one CPU at a time with Semaphore  
Clock and PLL Configuration  
Y
Y
Peripherals and Registers with Unique Copies of Registers for each CPU and CLA Master(2)  
System Configuration  
(WD, NMIWD, LPM, Peripheral Clock Gating)  
Y
Y
Flash Configuration(3)  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
CPU Timers  
DMA and CLA Trigger Source Select  
GPIO Data(4)  
Y
Y
Y
Y
ADC Results  
Y
Y
(1) These modules are on a Peripheral Frame with DMA access; however, they cannot trigger a DMA transfer.  
(2) Each CPUx and CPUx.CLA1 can only access its own copy of these registers.  
(3) At any given time, only one CPU can perform program or erase operations on the Flash.  
(4) The GPIO Data Registers are unique for each CPUx and CPUx.CLAx. When the GPIO Pin Mapping Register is configured to assign a  
GPIO to a particular master, the respective GPIO Data Register will control the GPIO. See the General-Purpose Input/Output (GPIO)  
chapter of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual for more details.  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
179  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
5.6 C28x Processor  
The CPU is a 32-bit fixed-point processor. This device draws from the best features of digital signal  
processing; reduced instruction set computing (RISC); and microcontroller architectures, firmware, and  
tool sets.  
The CPU features include a modified Harvard architecture and circular addressing. The RISC features are  
single-cycle instruction execution, register-to-register operations, and modified Harvard architecture. The  
microcontroller features include ease of use through an intuitive instruction set, byte packing and  
unpacking, and bit manipulation. The modified Harvard architecture of the CPU enables instruction and  
data fetches to be performed in parallel. The CPU can read instructions and data while it writes data  
simultaneously to maintain the single-cycle instruction operation across the pipeline. The CPU does this  
over six separate address/data buses.  
For more information on CPU architecture and instruction set, see the TMS320C28x CPU and Instruction  
Set Reference Guide.  
5.6.1 Floating-Point Unit  
The C28x plus floating-point (C28x+FPU) processor extends the capabilities of the C28x fixed-point CPU  
by adding registers and instructions to support IEEE single-precision floating point operations.  
Devices with the C28x+FPU include the standard C28x register set plus an additional set of floating-point  
unit registers. The additional floating-point unit registers are the following:  
Eight floating-point result registers, RnH (where n = 0–7)  
Floating-point Status Register (STF)  
Repeat Block Register (RB)  
All of the floating-point registers, except the repeat block register, are shadowed. This shadowing can be  
used in high-priority interrupts for fast context save and restore of the floating-point registers.  
For more information, see the TMS320C28x Extended Instruction Sets Technical Reference Manual.  
5.6.2 Trigonometric Math Unit  
The TMU extends the capabilities of a C28x+FPU by adding instructions and leveraging existing FPU  
instructions to speed up the execution of common trigonometric and arithmetic operations listed in 5-  
10.  
5-10. TMU Supported Instructions  
INSTRUCTIONS  
MPY2PIF32 RaH,RbH  
C EQUIVALENT OPERATION  
PIPELINE CYCLES  
a = b * 2pi  
a = b / 2pi  
a = b / c  
2/3  
2/3  
5
DIV2PIF32 RaH,RbH  
DIVF32 RaH,RbH,RcH  
SQRTF32 RaH,RbH  
a = sqrt(b)  
5
SINPUF32 RaH,RbH  
COSPUF32 RaH,RbH  
ATANPUF32 RaH,RbH  
QUADF32 RaH,RbH,RcH,RdH  
a = sin(b * 2pi)  
4
a = cos(b * 2pi)  
4
a = atan(b) / 2pi  
4
Operation to assist in calculating ATANPU2  
5
No changes have been made to existing instructions, pipeline or memory bus architecture. All TMU  
instructions use the existing FPU register set (R0H to R7H) to carry out their operations. A detailed  
explanation of the workings of the FPU can be found in the TMS320C28x Extended Instruction Sets  
Technical Reference Manual.  
180  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
5.6.3 Viterbi, Complex Math, and CRC Unit II (VCU-II)  
The VCU-II is the second-generation Viterbi, Complex Math, and CRC extension to the C28x CPU. The  
VCU-II extends the capabilities of the C28x CPU by adding registers and instructions to accelerate the  
performance of FFTs and communications-based algorithms. The C28x+VCU-II supports the following  
algorithm types:  
Viterbi Decoding  
Viterbi decoding is commonly used in baseband communications applications. The Viterbi decode  
algorithm consists of three main parts: branch metric calculations, compare-select (Viterbi butterfly),  
and a traceback operation. 5-11 shows a summary of the VCU performance for each of these  
operations.  
5-11. Viterbi Decode Performance  
VITERBI OPERATION  
Branch Metric Calculation (code rate = 1/2)  
Branch Metric Calculation (code rate = 1/3)  
Viterbi Butterfly (add-compare-select)  
Traceback per Stage  
VCU CYCLES  
1
2p  
2(1)  
3(2)  
(1) C28x CPU takes 15 cycles per butterfly.  
(2) C28x CPU takes 22 cycles per stage.  
Cyclic Redundancy Check  
Cyclic redundancy check (CRC) algorithms provide a straightforward method for verifying data integrity  
over large data blocks, communication packets, or code sections. The C28x+VCU can perform 8-bit,  
16-bit, 24-bit, and 32-bit CRCs. For example, the VCU can compute the CRC for a block length of 10  
bytes in 10 cycles. A CRC result register contains the current CRC, which is updated whenever a CRC  
instruction is executed.  
Complex Math  
Complex math is used in many applications, a few of which are:  
Fast Fourier Transform (FFT)  
The complex FFT is used in spread spectrum communications, as well as in many signal  
processing algorithms.  
Complex filters  
Complex filters improve data reliability, transmission distance, and power efficiency. The  
C28x+VCU can perform a complex I and Q multiply with coefficients (four multiplies) in a single  
cycle. In addition, the C28x+VCU can read/write the real and imaginary parts of 16-bit complex data  
to memory in a single cycle.  
5-12 shows a summary of the VCU operations enabled by the VCU.  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
181  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
5-12. Complex Math Performance  
COMPLEX MATH OPERATION  
Add or Subtract  
VCU CYCLES  
NOTES  
1
1
32 +/- 32 = 32-bit (Useful for filters)  
16 +/- 32 = 15-bit (Useful for FFT)  
16 x 16 = 32-bit  
Add or Subtract  
Multiply  
2p  
Multiply and Accumulate (MAC)  
RPT MAC  
2p  
32 + 32 = 32-bit, 16 x 16 = 32-bit  
2p+N  
Repeat MAC. Single cycle after the first operation.  
For more information, see the TMS320C28x Extended Instruction Sets Technical Reference Manual.  
182  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
5.7 Control Law Accelerator  
The CLA is an independent single-precision (32-bit) FPU processor with its own bus structure, fetch  
mechanism, and pipeline. Eight individual CLA tasks can be specified. Each task is started by software or  
a peripheral such as the ADC, ePWM, eCAP, eQEP, or CPU Timer 0. The CLA executes one task at a  
time to completion. When a task completes, the main CPU is notified by an interrupt to the PIE and the  
CLA automatically begins the next highest-priority pending task. The CLA can directly access the ADC  
Result registers, ePWM, eCAP, eQEP, Comparator and DAC registers. Dedicated message RAMs provide  
a method to pass additional data between the main CPU and the CLA.  
5-2 shows the CLA block diagram.  
CLA Control  
Register Set  
CLA_INT1  
MIFR(16)  
From  
Shared  
Peripherals  
MPERINT1  
to  
MPERINT8  
to  
CLA_INT8  
MIOVF(16)  
MICLR(16)  
MICLROVF(16)  
MIFRC(16)  
MIER(16)  
C28x  
CPU  
INT11  
INT12  
PIE  
MIRUN(16)  
LVF  
LUF  
MVECT1(16)  
MVECT2(16)  
MVECT3(16)  
MVECT4(16)  
MVECT5(16)  
MVECT6(16)  
MVECT7(16)  
MVECT8(16)  
SYSCLK  
CLA Clock Enable  
SYSRSn  
CPU Read/Write Data Bus  
CLA Program  
Memory (LSx)  
CLA Program Bus  
MCTL(16)  
LSxMSEL[MSEL_LSx]  
LSxCLAPGM[CLAPGM_LSx]  
CLA Data  
Memory (LSx)  
CLA Execution  
Register Set  
MPC(16)  
CLA Message  
RAMs  
MSTF(32)  
MR0(32)  
MR1(32)  
MR2(32)  
MR3(32)  
Shared  
Peripherals  
MEALLOW  
MAR0(16)  
MAR1(16)  
CPU Read Data Bus  
5-2. CLA Block Diagram  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
183  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
5.8 Direct Memory Access  
Each CPU has its own 6-channel DMA module. The DMA module provides a hardware method of  
transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing  
up bandwidth for other system functions. Additionally, the DMA has the capability to orthogonally  
rearrange the data as it is transferred as well as “ping-pong” data between buffers. These features are  
useful for structuring data into blocks for optimal CPU processing.  
The DMA module is an event-based machine, meaning it requires a peripheral or software trigger to start  
a DMA transfer. Although it can be made into a periodic time-driven machine by configuring a timer as the  
interrupt trigger source, there is no mechanism within the module itself to start memory transfers  
periodically. The interrupt trigger source for each of the six DMA channels can be configured separately  
and each channel contains its own independent PIE interrupt to let the CPU know when a DMA transfer  
has either started or completed. Five of the six channels are exactly the same, while Channel 1 has the  
ability to be configured at a higher priority than the others.  
DMA features include:  
Six channels with independent PIE interrupts  
Peripheral interrupt trigger sources  
ADC interrupts and EVT signals  
Multichannel buffered serial port transmit and receive  
External interrupts  
CPU timers  
EPWMxSOC signals  
SPIx transmit and receive  
SDFM  
Software trigger  
Data sources and destinations:  
GSx RAM  
CPU message RAM (IPC RAM)  
ADC result registers  
ePWMx  
SPI  
McBSP  
EMIF  
Word Size: 16-bit or 32-bit (SPI and McBSP limited to 16-bit)  
Throughput: four cycles/word (without arbitration)  
184  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
5-3 shows a device-level block diagram of the DMA.  
CPU1  
XINT  
(5)  
CPU1  
TIMER  
(3)  
ADC  
WRAPPER  
(4)  
ADC  
RESULTS  
(4)  
Global Shared  
16x 4Kx16  
GS0-15 RAMs  
MSG RAM  
1Kx16  
CPU2 to CPU1  
MSG RAM  
1Kx16  
CPU1 to CPU2  
C28x CPU1 Bus  
CPU1.DMA Bus  
DMA Trigger  
Source Selection  
TINT (0-2)  
XINT (1-5)  
ADC INT (A-D) (1-4), EVT (A-D)  
SDxFLTy (x = 1 to 2, y = 1 to 4)  
SOCA (1-12), SOCB (1-12)  
MXEVT (A-B), MREVT (A-B)  
SPITX (A-C), SPIRX (A-C)  
DMA  
CPU1  
C28x  
CPU1  
DMACHSRCSEL1.CHx  
DMACHSRCSEL2.CHx  
CHx.MODE.PERINTSEL  
(x = 1 to 6)  
PIE  
DMA Trigger  
Source Selection  
DMA  
CPU2  
C28x  
CPU2  
DMACHSRCSEL1.CHx  
DMACHSRCSEL2.CHx  
CHx.MODE.PERINTSEL  
(x = 1 to 6)  
XINT (1-5)  
TINT (0-2)  
PIE  
CPU2.DMA Bus  
C28x CPU2 Bus  
DMA Trigger Source  
CPU and DMA Data Path  
CPU2  
XINT  
(5)  
CPU2  
TIMER  
(3)  
SDFM  
(8)  
EPWM  
(12)  
McBSP  
(2)  
SPI  
(3)  
EMIF1  
5-3. DMA Block Diagram  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
185  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
5.9 Interprocessor Communication Module  
The IPC module supports several methods of interprocessor communication:  
Thirty-two IPC flags per CPU, which can be used to signal events or indicate status through software  
polling. Four flags per CPU can generate interrupts.  
Shared data registers, which can be used to send commands or other small pieces of information  
between CPUs. Although the register names were chosen to support a command/response system,  
they can be used for any purpose as defined in software.  
Boot mode and status registers, which allow CPU1 to control the CPU2 boot process.  
A general-purpose free-running 64-bit counter.  
Two shared message RAMs, which can be used to transfer bulk data. Each RAM can be read by both  
CPUs. CPU1 can write to one RAM and CPU2 can write to the other.  
5-4 shows the IPC architecture.  
SET31  
CLR31  
ACK31  
FLG31  
R=0/W=1  
R=0/W=1  
IPCSET[31:0]  
IPCCLR[31:0]  
SET0  
CLR0  
ACK0  
IPCACK[31:0]  
R=0/W=1  
FLG0  
Gen Int Pulse  
(on FLG 0->1)  
CPU2.  
ePIE  
C1TOC2IPCINT1/2/3/4  
IPCSTS[31:0]  
IPCFLG[31:0]  
R
R
IPCSENDCOM[31:0]  
IPCSENDADDR[31:0]  
IPCSENDDATA[31:0]  
IPCREMOTEREPLY[31:0]  
IPCRECVCOM[31:0]  
IPCRECVADDR[31:0]  
IPCRECVDATA[31:0]  
IPCLOCALREPLY[31:0]  
R/W  
R/W  
R/W  
R
C1TOC2IPCCOM[31:0]  
C1TOC2IPCADDR[31:0]  
C1TOC2IPCDATAW[31:0]  
C1TOC2IPCDATAR[31:0]  
R
R
R
R/W  
R/W  
R
IPCBOOTMODE[31:0]  
IPCBOOTSTS[31:0]  
R
R/W  
CPU2.EmulationHalt  
CPU1.EmulationHalt  
R
64-bit Free Run Counter  
PLLSYSCLK  
R
CPU2  
CPU1  
IPCCOUNTERH/L[31:0]  
SET31  
ACK31  
CLR31  
FLG31  
IPCSET[31:0]  
IPCCLR[31:0]  
R=0/W=1  
R=0/W=1  
SET0  
CLR0  
R=0/W=1  
IPCACK[31:0]  
ACK0  
FLG0  
Gen Int Pulse  
(on FLG 0->1)  
CPU1.  
ePIE  
C2TOC1IPCINT1/2/3/4  
IPCSTS[31:0]  
R
IPCFLG[31:0]  
R
IPCRECVCOM[31:0]  
IPCRECVADDR[31:0]  
IPCRECVDATA[31:0]  
IPCLOCALREPLY[31:0]  
C2TOC1IPCCOM[31:0]  
C2TOC1IPCADDR[31:0]  
C2TOC1IPCDATAW[31:0]  
C2TOC1IPCDATAR[31:0]  
IPCSENDCOM[31:0]  
IPCSENDADDR[31:0]  
IPCSENDDATA[31:0]  
IPCREMOTEREPLY[31:0]  
R
R
R/W  
R/W  
R/W  
R
R
R/W  
5-4. IPC Architecture  
186  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
5.10 Boot ROM and Peripheral Booting  
The device boot ROM (on both the CPUs) contains bootloading software. The CPU1 boot ROM does the  
system initialization before bringing CPU2 out of reset. The device boot ROM is executed each time the  
device comes out of reset. Users can configure the device to boot to flash (using GET mode) or choose to  
boot the device through one of the bootable peripherals by configuring the boot mode GPIO pins.  
The CPU1 boot ROM, being master, owns the boot mode GPIO and boot configurations. The CPU2 boot  
ROM either boots to flash (if configured to do so through user configurable DCSM OTP) or enters a WAIT  
BOOT mode if no OTP is programmed. In WAIT BOOT mode, the CPU1 application instructs the CPU2  
boot ROM on how to boot further using boot mode IPC commands supported by CPU2 boot ROM.  
5-13 shows the possible boot modes supported on the device. The default boot mode pins are GPIO72  
(boot mode pin 1) and GPIO 84 (boot mode pin 0). Users may choose to have weak pullups for boot  
mode pins if they use a peripheral on these pins as well, so the pullups can be overdriven. On this device,  
customers can change the factory default boot mode pins by programming user configurable DCSM OTP  
locations. This is recommended only for cases in which the factory default boot mode pins do not fit into  
the customer design. More details on the locations to be programmed is available in the TMS320F2837xD  
Dual-Core Delfino Microcontrollers Technical Reference Manual.  
5-13. Device Boot Mode  
GPIO72  
(BOOT  
MODE  
PIN 1)  
GPIO84  
(BOOT  
MODE  
PIN 0)  
MODE  
NO.  
CPU1 BOOT MODE  
CPU2 BOOT MODE  
TRST  
0
1
Parallel I/O  
SCI Mode  
Boot from Master  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
Boot from Master  
Boot from master  
Boot from Master  
Boot from Master  
2
Wait Boot Mode  
3
Get Mode  
4-7  
EMU Boot Mode (Emulator Connected)  
The default behavior of Get mode is boot-to-flash. On unprogrammed devices, using Get  
mode will result in repeated watchdog resets, which may prevent proper JTAG connection  
and device initialization. Use Wait mode or another boot mode for unprogrammed devices.  
CAUTION  
Some reset sources are internally driven by the device. The user must ensure  
the pins used for boot mode are not actively driven by other devices in the  
system for these cases. The boot configuration has a provision for changing the  
boot pins in OTP. For more details, see the TMS320F2837xD Dual-Core  
Delfino Microcontrollers Technical Reference Manual.  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
187  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
5.10.1 EMU Boot or Emulation Boot  
The CPU enters this boot when it detects that TRST is HIGH (in other words, when an emulator/debugger  
is connected). In this mode, the user can program the EMUBOOTCTRL register (at location 0xD00) to  
instruct the device on how to boot. If the contents of the EMUBOOTCTRL locations are invalid, then the  
device would default into WAIT Boot mode. The emulation boot allows users to verify the device boot  
before programming the boot mode into OTP.  
5.10.2 WAIT Boot Mode  
The device in this boot mode loops in the boot ROM. This mode is useful if users want to connect a  
debugger on a secure device or if users do not want the device to execute an application in flash yet.  
5.10.3 Get Mode  
The default behavior of Get mode is boot-to-flash. This behavior can be changed by programming the Zx-  
OTPBOOTCTRL locations in user configurable DCSM OTP. The user configurable DCSM OTP on this  
device is divided in to two secure zones: Z1 and Z2. The Get mode function in boot ROM first checks if a  
valid OTPBOOTCTRL value is programmed in Z1. If the answer is yes, then the device boots as per the  
Z1-OTPBOOTCTRL location. The Z2-OTPBOOTCTRL location is read and decodes only if Z1-  
OTPBOOTCTRL is invalid or not programmed. If either Zx-OTPBOOTCTRL location is not programmed,  
then the device defaults to factory default operation, which is to use factory default boot mode pins to boot  
to flash if the boot mode pins are set to GET MODE. Users can choose the device through which to  
boot—SPI, I2C, CAN, and USB—by programming proper values into the user configurable DCSM OTP.  
More details on this can be found in the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical  
Reference Manual.  
188  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
5.10.4 Peripheral Pins Used by Bootloaders  
5-14 shows the GPIO pins used by each peripheral bootloader. This device supports two sets of GPIOs  
for each mode, as shown in 5-14.  
5-14. GPIO Pins Used by Each Peripheral Bootloader  
BOOTLOADER  
GPIO PINS  
SCITXDA: GPIO84  
SCIRXDA: GPIO85  
NOTES  
SCIA Boot I/O option 1 (default SCI option  
when chosen through Boot Mode GPIOs)  
SCI-Boot0  
SCI-Boot1  
SCITXDA: GPIO28  
SCIRXDA: GPIO29  
SCIA Boot option 2 – with alternate I/Os.  
D0 – GPIO65  
D1 – GPIO64  
D2 – GPIO58  
D3 – GPIO59  
D4 – GPIO60  
D5 – GPIO61  
Parallel Boot  
D6 – GPIO62  
D7 – GPIO63  
HOST_CTRL – GPIO70  
DSP_CTRL – GPIO69  
CANRXA: GPIO70  
CANTXA: GPIO71  
CAN-Boot0  
CAN-Boot1  
I2C-Boot0  
I2C-Boot1  
CAN-A Boot – I/O option 1  
CAN-A Boot – I/O option 2  
I2CA Boot – I/O option 1  
I2CA Boot – I/O option 2  
CANRXA: GPIO62  
CANTXA: GPIO63  
SDAA: GPIO91  
SCLA: GPIO92  
SDAA: GPIO32  
SCLA: GPIO33  
SPISIMOA - GPIO58  
SPISOMIA - GPIO59  
SPICLKA - GPIO60  
SPISTEA - GPIO61  
SPI-Boot0  
SPI-Boot1  
SPIA Boot – I/O option 1  
SPIA Boot – I/O option 2  
SPISIMOA – GPIO16  
SPISOMIA – GPIO17  
SPICLKA – GPIO18  
SPISTEA – GPIO19  
The USB Bootloader will switch the clock  
source to the external crystal oscillator (X1  
and X2 pins). A 20-MHz crystal should be  
present on the board if this boot mode is  
selected.  
USB0DM - GPIO42  
USB0DP - GPIO43  
USB Boot  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
189  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
5.11 Dual Code Security Module  
The dual code security module (DCSM) prevents access to on-chip secure memories. The term “secure”  
means access to secure memories and resources is blocked. The term “unsecure” means access is  
allowed; for example, through a debugging tool such as Code Composer Studio™ (CSS).  
The code security mechanism offers protection for two zones, Zone 1 (Z1) and Zone 2 (Z2). The security  
implementation for both the zones is identical. Each zone has its own dedicated secure resource (OTP  
memory and secure ROM) and allocated secure resource (CLA, LSx RAM, and flash sectors).  
The security of each zone is ensured by its own 128-bit password (CSM password). The password for  
each zone is stored in an OTP memory location based on a zone-specific link pointer. The link pointer  
value can be changed to program a different set of security settings (including passwords) in OTP.  
5.12 Timers  
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock  
prescaling. The timers have a 32-bit count-down register that generates an interrupt when the counter  
reaches zero. The counter is decremented at the CPU clock speed divided by the prescale value setting.  
When the counter reaches zero, it is automatically reloaded with a 32-bit period value.  
CPU-Timer 0 is for general use and is connected to the PIE block. CPU-Timer 1 is also for general use  
and is connected to INT13 of the CPU. CPU-Timer 2 is reserved for TI-RTOS. It is connected to INT14 of  
the CPU. If TI-RTOS is not being used, CPU-Timer 2 is available for general use.  
CPU-Timer 2 can be clocked by any one of the following:  
SYSCLK (default)  
Internal zero-pin oscillator 1 (INTOSC1)  
Internal zero-pin oscillator 2 (INTOSC2)  
X1 (XTAL)  
AUXPLLCLK  
5.13 Nonmaskable Interrupt With Watchdog Timer (NMIWD)  
The NMIWD module is used to handle system-level errors. There is an NMIWD module for each CPU.  
The conditions monitored are:  
Missing system clock due to oscillator failure  
Uncorrectable ECC error on CPU access to flash memory  
Uncorrectable ECC error on CPU, CLA, or DMA access to RAM  
Vector fetch error on the other CPU  
CPU1 only: Watchdog or NMI watchdog reset on CPU2  
If the CPU does not respond to the latched error condition, then the NMI watchdog will trigger a reset after  
a programmable time interval. The default time is 65536 SYSCLK cycles.  
190  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
5.14 Watchdog  
The watchdog module is the same as the one on previous TMS320C2000 devices, but with an optional  
lower limit on the time between software resets of the counter. This windowed countdown is disabled by  
default, so the watchdog is fully backwards-compatible.  
The watchdog generates either a reset or an interrupt. It is clocked from the internal oscillator with a  
selectable frequency divider.  
5-5 shows the various functional blocks within the watchdog module.  
WDCR(WDPS(2:0))  
WDCR(WDDIS)  
WDCNTR(7:0)  
1 WDCLK  
delay  
Watchdog  
Prescaler  
8-bit  
Watchdog  
Counter  
OSCCLK  
/512  
WDCLK  
Overflow  
SYSRSn  
Clear  
Count  
WDWCR(MIN(7:0))  
WDKEY(7:0)  
Watchdog  
Window  
Detector  
In Window  
Watchdog  
Key Detector  
55 + AA  
Good Key  
Bad Key  
Out of Window  
Generate  
512-OSCCLK  
Output Pulse  
WDRSn  
WDINTn  
Watchdog Time-out  
SCSR(WDENINT)  
5-5. Windowed Watchdog  
5.15 Configurable Logic Block (CLB)  
TI uses the CLB to offer additional interfacing and control features for select C2000 devices. Functions  
that would otherwise be accomplished using external logic devices are now provided by on-chip TI  
solutions. For example, absolute encoder master protocol interfaces such as EnDat and BiSS are now  
provided as Position Manager solutions. Configuration files, application programmer’s interface (API), and  
use examples for such solutions are provided with the C2000 controlSUITE software package. In some  
solutions, the TI-configured CLB is used with other on-chip resources, such as the SPI port or the C28x  
CPU, to perform more complex functionality. In some cases, external communications transceivers may  
need to be added.  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
191  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
6 Applications, Implementation, and Layout  
Information in the following sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes. Customers should validate and test  
their design implementation to confirm system functionality.  
6.1 TI Design or Reference Design  
TI Designs Reference Design Library is a robust reference design library spanning analog, embedded  
processor, and connectivity. Created by TI experts to help you jump start your system design, all TI  
Designs include schematic or block diagrams, BOMs, and design files to speed your time to market.  
Search and download designs at TIDesigns.  
Industrial Servo Drive and AC Inverter Drive Reference Design  
The DesignDRIVE Development Kit is a reference design for a complete industrial drive directly  
connecting to a three-phase ACI or PMSM motor. Many drive topologies can be created from the  
combined control, power, and communications technologies included on this single platform. This platform  
includes multiple position sensor interfaces, diverse current sensing techniques, hot-side partitioning  
options, and expansion for safety and industrial Ethernet.  
Isolated Current Shunt and Voltage Measurement Reference Design for Motor Drives  
This evaluation kit and reference design implement the AMC130x reinforced isolated delta-sigma  
modulators along with integrated Sinc filters in the C2000 TMS320F28377D Delfino microcontroller. The  
design provides an ability to evaluate the performance of these measurements: three motor currents, three  
inverter voltages, and the DC Link voltage. Provided in the kit is firmware to configure the Sinc filters, set  
the PLL frequency, and receive data from Sinc filters. A versatile run-time GUI is also provided to help the  
user validate the AMC130x performance and supports configuration changes to Sinc filter parameters in  
the Delfino controller.  
Isolated, Shunt-Based Current Sensing Reference Design  
This Verified TI Design implements an isolated current sensing data acqusition solution based on the  
AMC1304M25 isolated delta-sigma (ΔΣ) modulator and a TMS320F28377D microcontroller. This circuit  
was designed for shunt-based current measurement applications, which require excellent galvanic  
isolation and accuracy, such as industrial motor drives, photovoltaic inverters, and energy metering. It is  
capable of measuring load currents from –10 A to +10 A with better than 0.3% uncalibrated accuracy, and  
it also provides dual functionality of a high-resolution channel and an additional overcurrent or short-circuit  
detection channel. The design’s functionality and performance were verified against the circuit design  
goals by fabricating three PCBs and measuring results for dc and ac input signals.  
Differential Signal Conditioning Circuit for Current and Voltage Measurement Using Fluxgate Sensors  
This design provides a 4-channel signal conditioning solution for differential ADCs integrated into a  
microcontroller measuring motor current using fluxgate sensors. Also provided is an alternative  
measurement circuit with external differential SAR ADCs as well as circuits for high-speed overcurrent and  
earth fault detection. Proper differential signal conditioning improves noise immunity on critical current  
measurements in motor drives. This reference design can help increase the effective resolution of the  
analog-to-digital conversion, improving motor drive efficiency.  
192  
Applications, Implementation, and Layout  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
7 器件和文档支持  
TI 提供大量的开发工具。下面列出了用于评估器件性能、生成代码和开发解决方案的工具和软件。  
7.1 器件和开发支持工具命名规则  
为了标明产品开发周期的阶段,TI 为所有 TMS320™MCU 器件和支持工具的部件号指定前缀。每个  
TMS320 MCU 商用系列成员都具有以下三个前缀中的一个:TMXTMP TMS(例如  
TMS320F28379D)。德州仪器 (TI) 建议为其支持的工具使用三个可用前缀指示符中的两个:TMDX  
TMDS。这些前缀代表了产品从工程原型机(其中 TMX 针对器件,而 TMDX 针对工具)直到完全合格的生  
产器件和工具(其中 TMS 针对器件,而 TMDS 针对工具)的产品开发进化阶段。  
器件开发进化流程:  
TMX  
TMP  
TMS  
试验器件不一定代表最终器件的电气规范标准。  
最终的芯片模型符合器件的电气规范标准,但是未经完整的质量和可靠性验证。  
完全合格的生产器件  
支持工具开发发展流程:  
TMDX 还未经完整的德州仪器 (TI) 内部质量测试的开发支持工具  
TMDS 完全合格的开发支持产品  
TMX TMP 器件和 TMDX 开发支持工具出货时带有如下的免责声明:  
开发产品用于内部评估用途。”  
TMS 器件和 TMDS 开发支持工具已进行完全特性描述,并且器件的质量和可靠性已经完全论证。TI 的标准  
保修证书适用。  
预测显示原型器件(TMX 或者 TMP)的故障率大于标准生产器件。由于它们的预计的最终使用故障率仍未  
定义,德州仪器建议不要将这些器件用于任何生产系统。只有合格的产品器件将被使用。  
TI 器件的命名规则也包括一个带有器件系列名称的后缀。这个后缀包括封装类型(例如 PTP)和温度范围  
(如 T)。7-1 提供了解读任一系列产品成员完整器件名称的图例。  
要获取器件部件号以及更多订购信息,请访问 TI 网站 (www.ti.com) 或者联系您的 TI 销售代表。  
有关裸片器件命名规则标记 的 详细说明,请参阅TMS320F2837xD 双核 Delfino™ MCUs 器件勘误  
表》。  
TMS 320  
F
28377D PTP  
EP  
PREFIX  
TEMPERATURE RANGE  
EP  
experimental device  
prototype device  
qualified device  
TMX =  
TMP =  
TMS =  
−55°C to 125°C (TJ)  
=
DEVICE FAMILY  
320 = TMS320 MCU Family  
PACKAGE TYPE  
337-Ball ZWT New Fine Pitch Ball Grid Array (nFBGA)  
176-Pin PTP PowerPAD Thermally Enhanced Low-Profile Quad Flatpack (HLQFP)  
TECHNOLOGY  
F = Flash  
DEVICE  
28377D  
7-1. 器件命名规则  
7.2 工具和软件  
版权 © 2017, Texas Instruments Incorporated  
器件和文档支持  
193  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
TI 提供大量的开发工具。下面列出了部分用于评估器件性能、生成代码和开发解决方案的工具和软件。要查  
C2000™ 实时控制 MCU 的所有可用工具和软件,请访问 C2000™ MCU 工具和软件页面。  
开发工具  
用于 C2000 实时控制开发套件的 F28379D controlCARD  
德州仪器 (TI) 提供的 Delfino F28379D controlCARD 支持位置管理器,是用于初期软件开发以及短期内构  
建系统原型、试验台和许多其他需要轻松获得高性能控制器的项目的理想产品。所有 C2000 controlCARD  
均是使用 HSEC180 DIMM100 外形尺寸来提供薄型单板控制器解决方案的完整板级模块。主机系统只需  
controlCARD 提供单个 5V 电源轨,即可使其运行全部功能。  
F28379D Delfino 实验套件  
C2000™ MCU 实验套件提供了一个使用德州仪器 (TI) C2000 32 位微控制器系列进行实时、闭环控制开发  
的强大硬件原型设计平台。此平台作为一种非常出色的工具,可定制和验证众多常见电力电子 应用的解决方  
案,这些应用包括电机控制、数字电源、光伏逆变器、数字 LED 照明、精密传感等等。  
软件工具  
用于 C2000 MCU C2000Ware  
用于 C2000 微控制器的 C2000Ware 是一系列联系密切的开发软件和文档,旨在最大限度地缩短软件开发  
时间。从特定于器件的驱动程序和库到器件外设示例,C2000Ware 能够为开始进行开发和评估提供坚实的  
基础。相较于 controlSUITE™,目前推荐使用 C2000Ware 作为内容交付工具。  
controlSUITE™ 软件套件  
用于 C2000 微控制器的 controlSUITE™ 是一系列联系密切的软件基础设施和软件工具,旨在最大限度地缩  
短软件开发时间。  
194  
器件和文档支持  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
用于 C2000 微控制器的 Code Composer Studio™ (CCS) 集成开发环境 (IDE)  
Code Composer Studio 是支持 TI 的微控制器和嵌入式处理器产品系列的集成开发环境 (IDE)Code  
Composer Studio 包含一整套用于开发和调试嵌入式应用 的工具。它包含了优化的 C/C++ 编译器、源代码  
编辑器、项目构建环境、调试器、描述器以及其他多种 功能。直观的 IDE 提供了单一用户界面,可帮助用  
户完成应用开发流程的每个步骤。熟悉的工具和界面使用户能够比以前更快地入手。Code  
Composer  
Studio Eclipse 软件框架的优点和 TI 先进的嵌入式调试功能相结合,为嵌入式开发人员提供了一种功能  
丰富的优异开发环境。  
引脚多路复用工具  
引脚多路复用实用程序是一款软件工具,可提供图形用户界面,用于配置引脚多路复用设置、解决冲突并指  
TI MPU I/O 电池特性。  
F021 闪存应用编程接口 (API)  
F021 闪存应用编程接口 (API) 提供的软件函数库可用于对 F021 片上闪存执行编程、擦除和验证操作。  
培训  
为了帮助设计工程师充分利用 C2000 微控制器 特性 和性能,TI 开发了各种培训资源。通过利用在线培训资  
料和可下载的实际操作技术讲座,可方便地获得 C2000 微控制器系列的全方位实际知识。这些培训资源旨  
在简化学习过程,同时缩短开发时间并加快产品上市速度。有关各种培训资源的更多信息,请访问 C2000™  
实时控制 MCU 的支持和培训站点。  
可从以下站点找到具体的 F2837xD/F2837xS/F2807x 实际操作培训资源:  
C2000 多日技术讲座  
C2000 一日技术讲座  
7.3 器件命名规则  
为了指出产品开发周期所处的阶段,TI 为所有微处理器 (MPU) 和支持工具的产品型号分配了前缀。每个器  
件都具有以下三个前缀中的一个:XP 或无(无前缀)(例如,您的器件)。德州仪器 (TI) 建议为其支持  
的工具使用三个可用前缀指示符中的两个:TMDX TMDS。这些前缀代表了产品开发的发展阶段,即从工  
程原型 (TMDX) 直到完全合格的生产器件和工具 (TMDS)。  
器件开发进化流程:  
X
试验器件不一定代表最终器件的电气规范标准并且不可使用生产组装流程。  
原型器件不一定是最终芯片模型并且不一定符合最终电气标准规范。  
完全合格的芯片模型的生产版本。  
P
支持工具开发进化流程:  
TMDX  
TMDS  
还未经德州仪器 (TI) 完整内部质量测试的开发支持产品.  
完全合格的开发支持产品。  
X P 器件和 TMDX 开发支持工具在供货时附带如下免责条款:  
为了指出产品开发周期的阶段,TI 为所有数字信号处理 (DSP) 器件和支持工具的部件号指定了前缀。每一  
DSP 商用系列成员产品具有以下三个前缀中的一个:TMXTMP、或者 TMS(例如,您的器件)。德州  
仪器 (TI) 建议为其支持的工具使用三个可用前缀指示符中的两个:TMDX TMDS。这些前缀代表了产品  
开发的发展阶段,即从工程原型(TMX TMDX)直到完全合格的生产器件和工具(TMS TMDS)。  
器件开发进化流程:  
TMX  
TMP  
TMS  
试验器件不一定代表最终器件的电气规范标准并且不可使用生产组装流程。  
原型器件不一定是最终芯片模型并且不一定符合最终电气标准规范。  
完全合格的芯片模型的生产版本。  
支持工具开发进化流程:  
TMDX  
TMDS  
还未经德州仪器 (TI) 完整内部质量测试的开发支持产品.  
完全合格的开发支持产品。  
版权 © 2017, Texas Instruments Incorporated  
器件和文档支持  
195  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
TMX TMP 器件和 TMDX 开发支持工具在供货时附带如下免责条款:  
开发的产品用于内部评估用途。”  
生产器件和 TMDS 开发支持工具已进行完全特性描述,并且器件的质量和可靠性已经完全论证。TI 的标准  
保修证书适用。  
预测显示原型器件(X 或者 P)的故障率大于标准生产器件。由于它们的预计的最终使用故障率仍未定义,  
德州仪器 (TI) 建议不要将这些器件用于任何生产系统。只有合格的产品器件将被使用。  
TI 器件的命名规则也包括一个带有器件系列名称的后缀。这个后缀表示封装类型(例如,您的封装),温度  
范围(例如,空白是默认的商业级温度范围)以及以 MHz 为单位的器件速度范围(例如,您的器件的速度  
范围)。7-2 提供了解读任一您的器件器件完整器件名称的图例。  
有关采用您的封装  
封装类型的您的器件  
器件的可订购部件号,请参阅本文档的封装选项附录、访问  
ti.com.cn 或联系您的 TI 销售代表。  
有关裸片器件命名规则标记 的 其他说明,请参阅《器件勘误表》。  
7-2. 器件命名规则  
196  
器件和文档支持  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
 
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
7.4 文档支持  
如需接收文档更新通知,请访问 ti.com.cn 上的器件产品文件夹。In the upper right corner, click on Alert me  
to register and receive a weekly digest of any product information that has changed. For change details,  
review the revision history included in any revised document.  
下面列出了介绍处理器、相关外设以及其他配套技术资料的最新文档。  
勘误表  
TMS320F2837xD 双核 Delfino™ MCU 芯片勘误表》 介绍了器件的已知问题并提供了权变措施。  
技术参考手册  
TMS320F2837xD 双核 Delfino 微控制器技术参考手册》 介绍了 2837xD 微控制器的每个外设和子系统的  
集成、环境、功能 说明和编程模型。  
CPU 用户指南  
TMS320C28x CPU 和指令集参考指南》 介绍了 TMS320C28x 定点数字信号处理器 (DSP) 的中央处理器  
(CPU) 和汇编语言指令。此参考指南还介绍了上述 DSP 所 提供 的仿真特性。  
TMS320C28x 扩展指令集技术参考手册》 介绍了 TMUVCU-II FPU 加速器的架构、流水线和指令  
集。  
外设指南  
C2000 实时控制外设参考指南》 介绍了 28x DSP 的外设参考指南。  
工具指南  
TMS320C28x 汇编语言工具 v17.6.0.STS 用户指南》 介绍了用于 TMS320C28x 器件的汇编语言工具  
(用于开发汇编语言代码的汇编器和其他工具)、汇编器指令、宏、通用目标文件格式和符号调试指令。  
TMS320C28x 优化 C/C++ 编译器 v17.6.0.STS 用户指南》 介绍了 TMS320C28x C/C++ 编译器。此编译  
器接受 ANSI 标准 C/C++ 源代码,并为 TMS320C28x 器件生成 TMS320 DSP 汇编语言源代码。  
TMS320C28x 指令集仿真器技术概述》 介绍了用于 TMS320C2000 IDE Code Composer Studio 内提  
供的仿真器,该仿真器可以对 C28x 内核的指令集进行仿真。  
应用报告  
《半导体封装方法》 介绍了准备向最终用户运输半导体器件时所用的封装方法。  
《计算嵌入式处理器的有效使用寿命》 介绍了如何计算 TI 嵌入式处理器 (EP) 在电子系统中运行时的有效使  
用寿命。本文档的目标读者为希望确定 TI EP 的可靠性是否符合终端系统可靠性要求的总工程师。  
TMS320C28x 数字信号控制器使用入门》 介绍了如何开始使用 TMS320C28x DSP 软件和硬件开发来辅  
助实现初始设计和调试目的。  
7.5 Community Resources  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术  
规范,并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社为了促进工程师之间的合作,我们创建了 TI 工程师对工程师 (E2E) 社区。在 e2e.ti.com  
中,您可以提问、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
TI Embedded Processors Wiki Established to help developers get started with Embedded Processors  
from Texas Instruments and to foster innovation and growth of general knowledge about the  
hardware and software surrounding these devices.  
7.6 商标  
PowerPAD, Delfino, TMS320C2000, C2000, controlSUITE, Code Composer Studio, TMS320, 用于 C2000  
微控制器的 Code Composer Studio, E2E are trademarks of Texas Instruments.  
Bosch is a registered trademark of Robert Bosch GmbH Corporation.  
All other trademarks are the property of their respective owners.  
版权 © 2017, Texas Instruments Incorporated  
器件和文档支持  
197  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
ZHCSHE0 DECEMBER 2017  
www.ti.com.cn  
7.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
7.8 出口管制提示  
接收方同意:如果美国或其他适用法律限制或禁止将通过非披露义务的披露方获得的任何产品或技术数据  
(其中包括软件)(见美国、欧盟和其他出口管理条例之定义)、或者其他适用国家条例限制的任何受管制  
产品或此项技术的任何直接产品出口或再出口至任何目的地,那么在没有事先获得美国商务部和其他相关政  
府机构授权的情况下,接收方不得在知情的情况下,以直接或间接的方式将其出口。  
7.9 术语表  
TI 术语表  
这份术语表列出并解释术语、缩写和定义。  
198  
器件和文档支持  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
TMS320F28377D-EP  
www.ti.com.cn  
ZHCSHE0 DECEMBER 2017  
8 机械封装和可订购信息  
8.1 Via Channel  
您的封装已经采用过孔通道技术进行了特殊设计。这使得 PCB 设计中能够采用 0.65mm 间距封装,实现  
比正常尺寸更大的 PCB 过孔和布线,从而减小 PCB 信号层数,并大幅降低 PCB 成本。由于 Via Channel  
BGA 技术提升了分层效率,因此该器件允许仅在两个信号层(共四层)中进行 PCB 布线。  
利用 [所用封装] 封装中实施的 Via Channel 技术可构建基于 [所用器件] 的产品,该产品采用 4 PCB 设  
计,但这可能达不到系统性能目标要求。因此,产品设计期间必须对采用 4 PCB 设计的系统的性能进行  
评估。  
8.2 封装信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通  
知和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
对于具有散热焊盘的封装,机械数据图显示了通用散热焊盘(无尺寸)。有关适用于该器件的实际散热焊  
盘尺寸,请参阅散热焊盘机械数据图。  
版权 © 2017, Texas Instruments Incorporated  
机械封装和可订购信息  
199  
提交文档反馈意见  
产品主页链接: TMS320F28377D-EP  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
GWT  
PTP  
Qty  
90  
40  
90  
40  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS320F28377DGWTEP  
TMS320F28377DPTPEP  
V62/18601-01XF  
ACTIVE  
NFBGA  
HLQFP  
NFBGA  
HLQFP  
337  
176  
337  
176  
Non-RoHS  
& Green  
SNPB  
Level-3-220C-168 HR  
Level-3-260C-168 HR  
Level-3-220C-168 HR  
Level-3-260C-168 HR  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
TMS320  
F28377DGWTEP  
Samples  
Samples  
Samples  
Samples  
ACTIVE  
ACTIVE  
ACTIVE  
RoHS & Green  
NIPDAU  
SNPB  
TMS320  
F28377DPTPEP  
GWT  
PTP  
Non-RoHS  
& Green  
TMS320  
F28377DGWTEP  
V62/18601-01YE  
RoHS & Green  
NIPDAU  
TMS320  
F28377DPTPEP  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Apr-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TMS320F28377D-EP :  
Catalog : TMS320F28377D  
Automotive : TMS320F28377D-Q1  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
TMS320F28377DGWTE  
P
GWT  
NFBGA  
337  
90  
6 X 15  
150  
315 135.9 7620  
20  
17.5 15.45  
TMS320F28377DPTPEP  
V62/18601-01XF  
PTP  
GWT  
PTP  
HLQFP  
NFBGA  
HLQFP  
176  
337  
176  
40  
90  
40  
4x10  
6 X 15  
4x10  
150  
150  
150  
315 135.9 7620 20.7  
315 135.9 7620 20  
315 135.9 7620 20.7  
30.4  
17.5 15.45  
30.4 20.7  
20.7  
V62/18601-01YE  
Pack Materials-Page 1  
GENERIC PACKAGE VIEW  
PTP 176  
24 x 24, 0.5 mm pitch  
HLQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226435/A  
www.ti.com  
PACKAGE OUTLINE  
PTP0176F  
PowerPADTM HLQFP - 1.6 mm max height  
SCALE 0.550  
PLASTIC QUAD FLATPACK  
24.2  
23.8  
NOTE 3  
B
PIN 1 ID  
133  
176  
1
132  
24.2  
23.8  
26.2  
TYP  
25.8  
NOTE 3  
44  
89  
45  
88  
0.27  
0.17  
176X  
C
A
172X 0.5  
0.08  
C A B  
4X 21.5  
SEATING PLANE  
1.6 MAX  
SEE DETAIL A  
(0.13)  
TYP  
45  
88  
89  
44  
0.25  
GAGE PLANE  
(1.4)  
4X 0.78 MAX  
NOTE 4  
4X  
0.54 MAX  
NOTE 4  
0.15  
0.05  
0.08 C  
7.33  
6.78  
0 -7  
177  
0.75  
0.45  
DETAIL A  
TYPICAL  
4X  
0.2 MAX  
NOTE 4  
EXPOSED  
THERMAL PAD  
1
132  
133  
176  
8.07  
7.53  
4223382/A 03/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs.  
4. Strap features my not present.  
5. Reference JEDEC registration MS-026.  
www.ti.com  
DETAIL  
SCALE: 12  
A
EXAMPLE BOARD LAYOUT  
PTP0176F  
PowerPADTM HLQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
(8.07)  
SYMM  
SOLDER MASK  
DEFINED PAD  
176  
133  
176X (1.45)  
1
132  
176X (0.3)  
172X (0.5)  
177  
SYMM  
(7.33)  
(1.5 TYP)  
(
(25.5)  
22)  
NOTE 10  
(R0.05) TYP  
(
0.2) TYP  
VIA  
89  
44  
SEE DETAILS  
45  
88  
METAL COVERED  
BY SOLDER MASK  
(1.5 TYP)  
(25.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:4X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223382/A 03/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package,  
Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
10. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PTP0176F  
PowerPADTM HLQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
(8.07)  
BASED ON  
0.125 THICK STENCIL  
SYMM  
176  
133  
176X (1.45)  
1
132  
176X (0.3)  
172X (0.5)  
(25.5)  
(7.33)  
BASED ON  
SYMM  
177  
0.125 THICK  
STENCIL  
(R0.05) TYP  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
44  
89  
METAL COVERED  
BY SOLDER MASK  
45  
88  
(25.5)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:4X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
9.02 X 8.2  
8.07 X 7.33 (SHOWN)  
7.37 X 6.69  
0.125  
0.150  
0.175  
6.82 X 6.2  
4223382/A 03/2017  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
GWT0337A  
NFBGA - 1.4 mm max height  
S
C
A
L
E
1
.
0
0
0
PLASTIC BALL GRID ARRAY  
16.1  
15.9  
A
B
BALL A1  
CORNER  
16.1  
15.9  
0.95  
0.84  
0.23  
0.15  
C
SEATING PLANE  
0.12 C  
1.40  
1.19  
14.4 TYP  
SYMM  
0.45  
0.35  
(0.8)  
W
V
U
T
(0.8)  
R
P
N
M
L
SYMM  
K
14.4 TYP  
J
H
G
F
E
D
C
0.55  
337X  
0.45  
0.15  
0.05  
C A B  
C
B
A
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
0.8 TYP  
0.8 TYP  
4229175/A 11/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
GWT0337A  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
(0.8) TYP  
337X ( 0.4)  
(0.8) TYP  
9
10  
11  
12 13  
14  
15  
16  
17  
18  
19  
7
8
1
2
3
4
5
6
A
B
C
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
U
V
W
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 7X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
EXPOSED METAL  
(
0.4)  
(
0.4)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL EDGE  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4229175/A 11/2022  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
GWT0337A  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
(0.8) TYP  
337X ( 0.4)  
(0.8) TYP  
9
10  
11  
12 13  
14  
15  
16  
17  
18  
19  
7
8
1
2
3
4
5
6
A
B
C
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
U
V
W
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.150 mm THICK STENCIL  
SCALE: 7X  
4229175/A 11/2022  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMS320F28377DPTPQ

具有 800MIPS、2xCPU、2xCLA、FPU、TMU、1024KB 闪存、EMIF、16 位 ADC 的汽车类 C2000™ 32 位 MCU | PTP | 176 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28377DPTPS

具有 800MIPS、2xCPU、2xCLA、FPU、TMU、1024KB 闪存、EMIF、16 位 ADC 的 C2000™ 32 位 MCU | PTP | 176 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28377DPTPT

具有 800MIPS、2xCPU、2xCLA、FPU、TMU、1024KB 闪存、EMIF、16 位 ADC 的 C2000™ 32 位 MCU | PTP | 176 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28377DZWT

TMS320F2837xD Dual-Core Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28377DZWTQ

具有 800MIPS、2xCPU、2xCLA、FPU、TMU、1024KB 闪存、EMIF、16 位 ADC 的汽车类 C2000™ 32 位 MCU | ZWT | 337 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28377DZWTQR

具有 800MIPS、2xCPU、2xCLA、FPU、TMU、1024KB 闪存、EMIF、16 位 ADC 的汽车类 C2000™ 32 位 MCU | ZWT | 337 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28377DZWTS

具有 800MIPS、2xCPU、2xCLA、FPU、TMU、1024KB 闪存、EMIF、16 位 ADC 的 C2000™ 32 位 MCU | ZWT | 337 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28377DZWTT

具有 800MIPS、2xCPU、2xCLA、FPU、TMU、1024KB 闪存、EMIF、16 位 ADC 的 C2000™ 32 位 MCU | ZWT | 337 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28377S

具有 400MIPS、1xCPU、1xCLA、FPU、TMU、1024KB 闪存、EMIF、16 位 ADC 的 C2000™ 32 位 MCU

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28377S-Q1

TMS320F2837xS Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28377SPTPQ

具有 400MIPS、1xCPU、1xCLA、FPU、TMU、1024KB 闪存、EMIF、16 位 ADC 的汽车类 C2000™ 32 位 MCU | PTP | 176 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28377SPTPS

具有 400MIPS、1xCPU、1xCLA、FPU、TMU、1024KB 闪存、EMIF、16 位 ADC 的 C2000™ 32 位 MCU | PTP | 176 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI