TMS320F28377SPZPQ [TI]

具有 400MIPS、1xCPU、1xCLA、FPU、TMU、1024KB 闪存、EMIF、16 位 ADC 的汽车类 C2000™ 32 位 MCU | PZP | 100 | -40 to 125;
TMS320F28377SPZPQ
型号: TMS320F28377SPZPQ
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 400MIPS、1xCPU、1xCLA、FPU、TMU、1024KB 闪存、EMIF、16 位 ADC 的汽车类 C2000™ 32 位 MCU | PZP | 100 | -40 to 125

闪存
文件: 总225页 (文件大小:5419K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
TMS320F2837xS Microcontrollers  
– Two Multichannel Buffered Serial Ports  
(McBSPs)  
– Four Serial Communications Interfaces (SCI/  
UART) (pin-bootable)  
1 Features  
TMS320C28x 32-bit CPU  
– 200 MHz  
– IEEE 754 single-precision Floating-Point Unit  
(FPU)  
– Two I2C interfaces (pin-bootable)  
Analog subsystem  
– Trigonometric Math Unit (TMU)  
– Viterbi/Complex Math Unit (VCU-II)  
Programmable Control Law Accelerator (CLA)  
– 200 MHz  
– IEEE 754 single-precision floating-point  
instructions  
– Executes code independently of main CPU  
On-chip memory  
– 512KB (256KW) or 1MB (512KW) of flash  
(ECC-protected)  
– Up to four Analog-to-Digital Converters (ADCs)  
16-bit mode  
– 1.1 MSPS each (up to 4.4-MSPS system  
throughput)  
– Differential inputs  
– Up to 12 external channels  
12-bit mode  
– 3.5 MSPS each (up to 14-MSPS system  
throughput)  
– Single-ended inputs  
– 132KB (66KW) or 164KB (82KW) of RAM  
(ECC-protected or parity-protected)  
– Dual-zone security supporting third-party  
development  
– Unique identification number  
Clock and system control  
– Up to 24 external channels  
Single Sample-and-Hold (S/H) on each ADC  
Hardware-integrated post-processing of  
ADC conversions  
– Saturating offset calibration  
– Error from setpoint calculation  
– High, low, and zero-crossing compare,  
with interrupt capability  
– Two internal zero-pin 10-MHz oscillators  
– On-chip crystal oscillator  
– Windowed watchdog timer module  
– Missing clock detection circuitry  
1.2-V core, 3.3-V I/O design  
System peripherals  
– Two External Memory Interfaces (EMIFs) with  
ASRAM and SDRAM support  
– Trigger-to-sample delay capture  
– Eight windowed comparators with 12-bit Digital-  
to-Analog Converter (DAC) references  
– Three 12-bit buffered DAC outputs  
Enhanced control peripherals  
– 24 PWM channels with enhanced features  
– 16 High-Resolution Pulse Width Modulator  
(HRPWM) channels  
– 6-channel Direct Memory Access (DMA)  
controller  
– Up to 169 individually programmable,  
multiplexed General-Purpose Input/Output  
(GPIO) pins with input filtering  
– Expanded Peripheral Interrupt controller (ePIE)  
– Multiple Low-Power Mode (LPM) support with  
external wakeup  
Communications peripherals  
– USB 2.0 (MAC + PHY)  
– Support for 12-pin 3.3 V-compatible Universal  
Parallel Port (uPP) interface  
– Two Controller Area Network (CAN) modules  
(pin-bootable)  
High resolution on both A and B channels of  
8 PWM modules  
Dead-band support (on both standard and  
high resolution)  
– Six Enhanced Capture (eCAP) modules  
– Three Enhanced Quadrature Encoder Pulse  
(eQEP) modules  
– Eight Sigma-Delta Filter Module (SDFM) input  
channels, 2 parallel filters per channel  
Standard SDFM data filtering  
Comparator filter for fast action for out of  
range  
– Three high-speed (up to 50-MHz) SPI ports  
(pin-bootable)  
Configurable Logic Block (CLB)  
– Augments existing peripheral capability  
– Supports position manager solutions  
Functional Safety-Compliant  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
– Developed for functional safety applications  
2 Applications  
– Documentation available to aid ISO 26262  
system design up to ASIL D; IEC 61508 up to  
SIL 3; IEC 60730 up to Class C; and UL 1998  
up to Class 2  
Hardware integrity up to ASIL B, SIL 2  
Safety-related certification  
ISO 26262 certified up to ASIL B and IEC  
61508 certified up to SIL 2 by TUV SUD  
Package options:  
– Lead-free, green packaging  
– 337-ball New Fine Pitch Ball Grid Array  
(nFBGA) [ZWT suffix]  
– 176-pin PowerPADThermally Enhanced Low-  
Profile Quad Flatpack (HLQFP)  
[PTP suffix]  
– 100-pin PowerPAD Thermally Enhanced Thin  
Quad Flatpack (HTQFP) [PZP suffix]  
Temperature options:  
T: 40°C to 105°C junction  
– S: –40°C to 125°C junction  
– Q: –40°C to 125°C free-air  
Medium/short range radar  
Traction inverter motor control  
HVAC large commercial motor control  
Automated sorting equipment  
CNC control  
AC charging (pile) station  
DC charging (pile) station  
EV charging station power module  
Energy storage power conversion system (PCS)  
Central inverter  
Solar power optimizer  
String inverter  
Inverter & motor control  
On-board (OBC) & wireless charger  
Linear motor segment controller  
Servo drive control module  
AC-input BLDC motor drive  
DC-input BLDC motor drive  
Industrial AC-DC  
Three phase UPS  
(AEC Q100 qualification for automotive  
applications)  
3 Description  
C2000™ 32-bit microcontrollers are optimized for processing, sensing, and actuation to improve closed-loop  
performance in real-time control applications such as industrial motor drives; solar inverters and digital power;  
electrical vehicles and transportation; motor control; and sensing and signal processing. The C2000 line includes  
the Premium performance MCUs and the Entry performance MCUs.  
The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced  
closed-loop control applications such as industrial motor drives; solar inverters and digital power; electrical  
vehicles and transportation; and sensing and signal processing. To accelerate application development, the  
DigitalPower software development kit (SDK) for C2000 MCUs and the MotorControl software development kit  
(SDK) for C2000™ MCUs are available.  
The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200 MHz of  
signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables  
fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations;  
and the VCU accelerator, which reduces the time for complex math operations common in encoded applications.  
The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent  
32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral  
triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can  
effectively double the computational performance of a real-time control system. By using the CLA to service  
time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and  
diagnostics.  
The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC)  
and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection.  
Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system  
consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog  
signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in  
conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit  
conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs,  
eQEPs, and other peripherals.  
Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend  
the connectivity of the F2837xS. The uPP interface is a new feature of the C2000MCUs and supports high-  
speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with  
MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application.  
To learn more about the C2000 MCUs, visit the C2000 Overview at www.ti.com/c2000.  
Device Information  
PART NUMBER(1)  
TMS320F28379SZWT  
TMS320F28377SZWT  
TMS320F28376SZWT  
TMS320F28375SZWT  
TMS320F28374SZWT  
TMS320F28379SPTP  
TMS320F28378SPTP  
TMS320F28377SPTP  
TMS320F28376SPTP  
TMS320F28375SPTP  
TMS320F28374SPTP  
TMS320F28379SPZP  
TMS320F28378SPZP  
TMS320F28377SPZP  
TMS320F28376SPZP  
TMS320F28375SPZP  
TMS320F28374SPZP  
PACKAGE  
nFBGA (337)  
nFBGA (337)  
nFBGA (337)  
nFBGA (337)  
nFBGA (337)  
HLQFP (176)  
HLQFP (176)  
HLQFP (176)  
HLQFP (176)  
HLQFP (176)  
HLQFP (176)  
HTQFP (100)  
HTQFP (100)  
HTQFP (100)  
HTQFP (100)  
HTQFP (100)  
HTQFP (100)  
BODY SIZE  
16.0 mm × 16.0 mm  
16.0 mm × 16.0 mm  
16.0 mm × 16.0 mm  
16.0 mm × 16.0 mm  
16.0 mm × 16.0 mm  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
14.0 mm × 14.0 mm  
14.0 mm × 14.0 mm  
14.0 mm × 14.0 mm  
14.0 mm × 14.0 mm  
14.0 mm × 14.0 mm  
14.0 mm × 14.0 mm  
(1) For more information on these devices, see Mechanical, Packaging, and Orderable Information.  
Functional Block Diagram  
Figure 4-1 shows the CPU system and associated peripherals.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
MEMCPU1  
Low-Power  
Mode Control  
CPU1.CLA1 to CPU1  
C28 CPU-1  
GPIO MUX  
INTOSC1  
CPU1.CLA1  
User-Configurable  
128x16 MSG RAM  
DCSM  
OTP  
1K x 16  
CPU1 to CPU1.CLA1  
128x16 MSG RAM  
PSWD  
FPU  
VCU-II  
TMU  
Dual  
Code  
Security  
Module  
+
Emulation  
Code  
Security  
Logic  
(ECSL)  
Watchdog  
Main PLL  
Aux PLL  
Flash Bank 0  
256K x 16  
Secure  
Flash Bank 1  
256K x 16  
Secure  
CPU1 Local Shared  
6x 2Kx16  
LS0-LS5 RAMs  
Secure Memories  
shown in Red  
PUMP  
CPU1.D0 RAM 2Kx16  
CPU1.D1 RAM 2Kx16  
Flash Wrapper for  
Bank 0  
Flash Wrapper for  
Bank 1  
INTOSC2  
WD Timer  
NMI-WDT  
External Crystal or  
Oscillator  
CPU Timer 0  
CPU Timer 1  
CPU Timer 2  
CPU1.M0 RAM 1Kx16  
CPU1.M1 RAM 1Kx16  
A5:0  
B5:0  
C5:2  
D5:0  
16-/12-bit ADC  
x4  
A
B
C
D
Global Shared  
16x 4Kx16  
GS0-GS15 RAMs  
ePIE  
(up to 192  
AUXCLKIN  
ADC  
Result  
Regs  
Secure-ROM 32Kx16  
Secure  
Analog  
MUX  
interrupts)  
TRST  
TCK  
TDI  
Config  
Boot-ROM 32Kx16  
Nonsecure  
JTAG  
ADCIN14  
ADCIN15  
Data Bus  
Bridge  
TMS  
TDO  
CPU1.CLA1 Data ROM  
(4Kx16)  
CPU1.DMA  
Comparator  
Subsystem  
(CMPSS)  
DAC  
x3  
CPU1 Buses  
Data Bus  
Bridge  
Data Bus  
Bridge  
Data Bus  
Bridge  
Data Bus  
Bridge  
Data Bus  
Bridge  
Peripheral Frame 1  
Data Bus Bridge  
Peripheral Frame 2  
McBSP-A/B  
SCI-  
USB  
Ctrl /  
PHY  
SPI-  
A/B/C  
(16L FIFO)  
ePWM-1/../12  
HRPWM-1/../8  
CAN-  
A/B  
(32-MBOX)  
RAM  
I2C-A/B  
A/B/C/D  
(16L FIFO)  
(16L FIFO)  
eCAP-  
1/../6  
eQEP-1/2/3  
SDFM-1/2  
uPP  
EMIF1  
EMIF2  
GPIO  
GPIO MUX, Input X-BAR, Output X-BAR  
Figure 4-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................2  
3 Description.......................................................................2  
4 Revision History.............................................................. 5  
5 Device Comparison.........................................................6  
5.1 Related Products........................................................ 8  
6 Terminal Configuration and Functions..........................9  
6.1 Pin Diagrams.............................................................. 9  
6.2 Signal Descriptions................................................... 16  
6.3 Pins With Internal Pullup and Pulldown.................... 39  
6.4 Pin Multiplexing.........................................................40  
6.5 Connections for Unused Pins................................... 47  
7 Specifications................................................................ 48  
7.1 Absolute Maximum Ratings...................................... 48  
7.2 ESD Ratings – Commercial...................................... 49  
7.3 ESD Ratings – Automotive....................................... 49  
7.4 Recommended Operating Conditions.......................50  
7.5 Power Consumption Summary................................. 51  
7.6 Electrical Characteristics...........................................55  
7.7 Thermal Resistance Characteristics......................... 56  
7.8 Thermal Design Considerations................................57  
7.9 System......................................................................58  
7.10 Analog Peripherals..................................................93  
7.11 Control Peripherals............................................... 123  
7.12 Communications Peripherals................................142  
8 Detailed Description....................................................175  
8.1 Overview.................................................................175  
8.2 Functional Block Diagram.......................................175  
8.3 Memory...................................................................177  
8.4 Identification............................................................186  
8.5 Bus Architecture – Peripheral Connectivity.............187  
8.6 C28x Processor...................................................... 187  
8.7 Control Law Accelerator..........................................191  
8.8 Direct Memory Access............................................192  
8.9 Boot ROM and Peripheral Booting..........................194  
8.10 Dual Code Security Module.................................. 197  
8.11 Timers................................................................... 198  
8.12 Nonmaskable Interrupt With Watchdog Timer  
(NMIWD)................................................................... 198  
8.13 Watchdog..............................................................199  
8.14 Configurable Logic Block (CLB)............................200  
8.15 Functional Safety.................................................. 202  
9 Applications, Implementation, and Layout............... 204  
9.1 TI Reference Design...............................................204  
10 Device and Documentation Support........................205  
10.1 Device and Development Support Tool  
Nomenclature............................................................205  
10.2 Markings............................................................... 206  
10.3 Tools and Software............................................... 207  
10.4 Documentation Support........................................ 209  
10.5 Support Resources............................................... 209  
10.6 Trademarks...........................................................210  
10.7 Electrostatic Discharge Caution............................210  
10.8 Glossary................................................................210  
11 Mechanical, Packaging, and Orderable  
Information.................................................................. 211  
11.1 Packaging Information...........................................211  
4 Revision History  
Changes from June 25, 2020 to January 31, 2021 (from Revision I (June 2020) to Revision J  
(January 2021))  
Page  
Device Comparison: Updated part numbers.......................................................................................................6  
ESD Ratings – Commercial: Updated part numbers........................................................................................ 49  
ESD Ratings – Automotive: Updated part numbers......................................................................................... 49  
Device and Development Support Tool Nomenclature: Updated Device Nomenclature image to show -Q1 part  
number............................................................................................................................................................205  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
5 Device Comparison  
Table 5-1 lists the features of each 2837xS device.  
Table 5-1. Device Comparison  
28377S  
28375S  
28375S-Q1  
FEATURE(1)  
Package Type  
(ZWT is an nFBGA package.  
PTP is an HLQFP package.  
PZP is an HTQFP package.)  
28379S  
28378S  
28376S  
28374S  
28377S-Q1  
337-  
Ball  
ZWT  
176-  
Pin  
PTP  
100-  
Pin  
PZP  
176-  
Pin  
PTP  
100-  
Pin  
PZP  
337-  
Ball  
ZWT  
176-  
Pin  
PTP  
100-  
Pin  
PZP  
337-  
Ball  
ZWT  
176-  
Pin  
PTP  
100-  
Pin  
PZP  
337-  
Ball  
ZWT  
176-  
Pin  
PTP  
100-  
Pin  
PZP  
337-  
Ball  
ZWT  
176-  
Pin  
PTP  
100-  
Pin  
PZP  
Processor and Accelerators  
Number  
1
Frequency (MHz)  
200  
Floating-Point Unit  
(FPU)  
C28x  
Yes  
VCU-II  
Yes  
Yes  
1
TMU – Type 0  
Number  
CLA – Type 1  
Frequency (MHz)  
200  
1
6-Channel DMA – Type 0  
Memory  
Flash (16-bit words)  
1MB (512KW)  
1MB (512KW)  
128KB (64KW)  
1MB (512KW)  
512KB (256KW)  
36KB (18KW)  
1MB (512KW)  
512KB (256KW)  
Dedicated and Local  
Shared RAM  
RAM  
Global Shared RAM  
(16-bit words)  
128KB (64KW)  
128KB (64KW)  
96KB (48KW)  
128KB (64KW)  
96KB (48KW)  
164KB  
(82KW)  
Total RAM  
164KB (82KW)  
164KB (82KW)  
132KB (66KW)  
164KB (82KW)  
132KB (66KW)  
Code security for on-chip flash, RAM,  
and OTP blocks  
Yes  
Boot ROM  
Yes  
System  
Configurable Logic Block (CLB)  
32-bit CPU timers  
4 tiles  
No  
3
1
Watchdog timers  
Nonmaskable Interrupt Watchdog  
(NMIWD) timers  
1
Crystal oscillator/External clock input  
0-pin internal oscillator  
1
2
I/O pins  
GPIO  
169  
97  
41  
97  
41  
169  
97  
41  
169  
5
97  
41  
169  
97  
41  
169  
97  
41  
(shared)  
External interrupts  
EMIF1 (16-bit or 32-bit)  
1
1
1
1
1
1
EMIF  
EMIF2 (16-bit)  
1
1
1
1
1
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Table 5-1. Device Comparison (continued)  
28377S  
28375S  
28375S-Q1  
FEATURE(1)  
28379S  
28378S  
28376S  
28374S  
28377S-Q1  
Package Type  
337-  
Ball  
ZWT  
176-  
Pin  
PTP  
100-  
Pin  
PZP  
176-  
Pin  
PTP  
100-  
Pin  
PZP  
337-  
Ball  
ZWT  
176-  
Pin  
PTP  
100-  
Pin  
PZP  
337-  
Ball  
ZWT  
176-  
Pin  
PTP  
100-  
Pin  
PZP  
337-  
Ball  
ZWT  
176-  
Pin  
PTP  
100-  
Pin  
PZP  
337-  
Ball  
ZWT  
176-  
Pin  
PTP  
100-  
Pin  
PZP  
(ZWT is an nFBGA package.  
PTP is an HLQFP package.  
PZP is an HTQFP package.)  
Analog Peripherals  
MSPS  
1.1  
915  
20  
9
1.1  
Conversion Time (ns)(2)  
915  
ADC 16-bit  
mode  
Input pins  
24  
12  
14  
7
24  
12  
20  
9
14  
7
24  
12  
20  
9
14  
7
Channels (differential)  
MSPS  
3.5  
280  
24  
Conversion Time (ns)(2)  
Input pins  
ADC 12-bit  
mode  
24  
24  
20  
20  
14  
14  
2
20  
20  
14  
14  
24  
24  
20  
20  
14  
14  
2
20  
20  
14  
14  
2
24  
24  
20  
20  
14  
14  
24  
24  
20  
20  
14  
14  
Channels  
(single-ended)  
24  
Number of 16-bit or 12-bit ADCs  
Number of 12-bit only ADCs  
Temperature sensor  
4
4
8
4
4
8
2
4
4
8
2
4
4
2
4
1
CMPSS (each CMPSS has two  
comparators and two internal DACs)  
8
4
4
8
4
8
Buffered DAC  
3
6
Control Peripherals (3)  
eCAP inputs – Type 0  
Enhanced Pulse Width Modulator  
(ePWM) channels – Type 4  
24  
3
15  
2
24  
3
15  
24  
3
15  
24  
3
15  
2
24  
3
15  
2
24  
3
15  
2
eQEP modules – Type 0  
2
9
6
2
9
6
High-resolution ePWM channels –  
Type 4  
16  
8
9
16  
8
16  
8
16  
8
9
16  
8
9
16  
8
9
SDFM channels – Type 0  
6
6
6
6
Communication Peripherals (3)  
Controller Area Network (CAN) –  
Type 0(4)  
2
2
2
Inter-Integrated Circuit (I2C) – Type 0  
Multichannel Buffered Serial Port  
(McBSP) – Type 1  
Serial Communications Interface (SCI) –  
Type 0  
4
3
4
3
4
3
4
3
4
3
4
3
Serial Peripheral Interface (SPI) –  
Type 2  
3
Universal Serial Bus (USB) – Type 0  
uPP – Type 0  
1
1
Temperature and Qualification  
T: 40°C to 105°C  
Junction  
Yes  
No  
Yes  
Temperature ( S: –40°C to 125°C  
Yes  
TJ)  
Q: –40°C to 150°C(5)  
No  
No  
No  
No  
Yes  
Yes  
No  
No  
No  
No  
Yes  
Yes  
No  
No  
Free-Air  
Temperature ( Q: –40°C to 125°C(5)  
TA)  
(1) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor  
differences between devices that do not affect the basic functionality of the module. For more information, see the C2000 Real-Time  
Control Peripherals Reference Guide.  
(2) Time between start of sample-and-hold window to start of sample-and-hold window of the next conversion.  
(3) For devices that are available in more than one package, the peripheral count listed in the smaller package is reduced because the  
smaller package has less device pins available. The number of peripherals internally present on the device is not reduced compared to  
the largest package offered within a part number. See Section 6 to identify which peripheral instances are accessible on pins in the  
smaller package.  
(4) The CAN module uses the IP known as D_CAN. This document uses the names CAN and D_CAN interchangeably to reference this  
peripheral.  
(5) The letter Q refers to AEC Q100 qualification for automotive applications.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
5.1 Related Products  
For information about similar products, see the following links:  
TMS320F2837xD Microcontrollers  
The F2837xD series sets a new standard for performance with dual subsystems. Each subsystem consists of a  
C28x CPU and a parallel control law accelerator (CLA), each running at 200 MHz. Enhancing performance are  
TMU and VCU accelerators. New capabilities include multiple 16-bit/12-bit mode ADCs, DAC, Sigma-Delta  
filters, USB, configurable logic block (CLB), on-chip oscillators, and enhanced versions of all peripherals. The  
F2837xD is available with up to 1MB of Flash. It is available in a 176-pin QFP or 337-pin BGA package.  
TMS320F2837xS Microcontrollers  
The F2837xS series is a pin-to-pin compatible version of F2837xD but with only one C28x-CPU-and-CLA  
subsystem enabled. It is also available in a 100-pin QFP to enable compatibility with the TMS320F2807x series.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
6 Terminal Configuration and Functions  
6.1 Pin Diagrams  
Figure 6-1 to Figure 6-4 show the terminal assignments on the 337-ball ZWT New Fine Pitch Ball Grid Array.  
Each figure shows a quadrant of the terminal assignments. Figure 6-5 shows the pin assignments on the 176-pin  
PTP PowerPAD Thermally Enhanced Low-Profile Quad Flatpack. Figure 6-6 shows the pin assignments on the  
100-pin PZP PowerPAD Thermally Enhanced Thin Quad Flatpack.  
1
2
3
4
5
6
7
8
9
10  
GPIO116  
VSSA  
VREFHIB  
VREFLOD  
VSS  
VDDIO  
W
ADCINB1  
ADCINB3  
ADCINB5  
GPIO128  
W
V
U
T
VREFHIA  
ADCINA0  
ADCINA1  
VREFHIC  
VSSA  
VREFHID  
ADCIND1  
ADCIND0  
VSSA  
VREFLOB  
ADCIND3  
ADCIND2  
VDDA  
VSSA  
ADCIND5  
ADCIND4  
VSS  
V
ADCINB0  
ADCINA2  
ADCINA3  
VREFLOA  
VREFLOC  
GPIO109  
GPIO110  
GPIO106  
ADCINB2  
ADCINA4  
ADCINA5  
ADCINC2  
ADCINC3  
GPIO114  
GPIO112  
GPIO107  
ADCINB4  
ADCIN15  
ADCIN14  
ADCINC4  
ADCINC5  
GPIO113  
GPIO111  
GPIO108  
GPIO124  
GPIO123  
GPIO122  
VSS  
GPIO127  
GPIO126  
GPIO125  
VDDIO  
GPIO131  
GPIO130  
GPIO129  
VDD  
U
T
R
P
N
M
L
R
P
VSSA  
VDDA  
VSS  
VSS  
VDDIO  
VDD  
7
8
9
10  
VSS  
VSS  
VSS  
N
VDDIO  
VDDIO  
VDDIO  
VSS  
VSS  
VSS  
M
M
VSS  
VSS  
VSS  
VSS  
VSS  
GPIO27  
L
L
VDD  
VDD  
VSS  
VSS  
VSS  
K
GPIO26  
GPIO25  
GPIO24  
GPIO23  
K
K
1
2
3
4
5
6
8
9
10  
A. Only the GPIO function is shown on GPIO terminals. See Section 6.2.1 for the complete, muxed signal name.  
Figure 6-1. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View) – [Quadrant A]  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
11  
12  
13  
14  
15  
16  
17  
18  
19  
VSS  
W
V
U
T
GPIO29  
FLT1  
TDI  
TMS  
TDO  
GPIO121  
GPIO39  
GPIO132  
W
VDDIO  
GPIO28  
GPIO31  
GPIO30  
VDD3VFL  
GPIO115  
GPIO117  
GPIO118  
VDD3VFL  
FLT2  
GPIO32  
GPIO33  
VDD  
TCK  
GPIO120  
GPIO119  
VSS  
GPIO36  
GPIO37  
GPIO38  
GPIO48  
GPIO52  
GPIO56  
GPIO59  
GPIO61  
GPIO40  
GPIO41  
GPIO136  
GPIO49  
GPIO53  
GPIO58  
GPIO60  
GPIO64  
GPIO134  
GPIO135  
GPIO137  
GPIO50  
GPIO54  
GPIO57  
GPIO141  
VSS  
V
TRST  
GPIO34  
GPIO35  
VSS  
ERRORSTS  
GPIO138  
GPIO51  
U
T
R
R
P
N
M
L
VSS  
VSS  
VDD  
VSS  
VSS  
P
GPIO55  
11  
12  
13  
N
VDDIO  
VDDIO  
GPIO139  
GPIO140  
GPIO142  
VSS  
VSS  
VSS  
VSS  
M
M
VSS  
VSS  
VDDIO  
VDDIO  
L
L
VSS  
VSS  
VSS  
VSS  
K
K
GPIO65  
GPIO66  
GPIO44  
GPIO45  
K
11  
12  
14  
15  
16  
17  
18  
19  
A. Only the GPIO function is shown on GPIO terminals. See Section 6.2.1 for the complete, muxed signal name.  
Figure 6-2. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View) – [Quadrant B]  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
11  
12  
14  
15  
16  
17  
18  
19  
X2  
VSS  
VSS  
VDD  
VDD  
J
J
H
G
GPIO63  
GPIO62  
VREGENZ  
J
VSS  
VSS  
VSS  
VSS  
VDDOSC  
VDDOSC  
VSSOSC  
GPIO133  
GPIO143  
GPIO47  
GPIO146  
GPIO68  
GPIO69  
VSSOSC  
H
H
G
F
VDD  
VDD  
VSS  
VSS  
X1  
11  
12  
13  
VDD  
VSS  
VDDIO  
VSS  
VSS  
VDDIO  
F
E
D
C
B
A
GPIO144  
GPIO145  
GPIO147  
GPIO74  
GPIO71  
XRS  
VDD  
VSS  
VDDIO  
VSS  
VSS  
VDDIO  
GPIO46  
GPIO42  
GPIO43  
GPIO67  
E
D
C
B
A
GPIO87  
GPIO86  
GPIO85  
GPIO156  
GPIO155  
GPIO154  
GPIO152  
GPIO151  
GPIO150  
GPIO148  
GPIO83  
GPIO82  
GPIO80  
GPIO79  
GPIO78  
GPIO75  
GPIO76  
GPIO72  
VDDIO  
VSS  
GPIO84  
GPIO153  
GPIO149  
GPIO81  
GPIO77  
GPIO73  
GPIO70  
11  
12  
13  
14  
15  
16  
17  
18  
19  
A. Only the GPIO function is shown on GPIO terminals. See Section 6.2.1 for the complete, muxed signal name.  
Figure 6-3. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View) – [Quadrant C]  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
1
2
3
4
5
6
8
9
10  
VSS  
VSS  
VSS  
VSS  
VSS  
J
H
G
F
GPIO103  
GPIO104  
GPIO105  
GPIO22  
J
J
VDDIO  
VDDIO  
VDDIO  
VSS  
VSS  
VSS  
VSS  
GPIO100  
GPIO99  
GPIO98  
GPIO16  
GPIO13  
GPIO11  
VDDIO  
GPIO101  
GPIO102  
NC  
H
G
H
VDDIO  
VDDIO  
GPIO8  
GPIO9  
7
8
9
10  
VDDIO  
VSS  
VDDIO  
VSS  
VDD  
VDDIO  
GPIO20  
GPIO17  
GPIO14  
GPIO12  
GPIO10  
GPIO21  
GPIO18  
GPIO15  
GPIO96  
GPIO95  
F
VSS  
VSS  
VDDIO  
VSS  
VDD  
VDDIO  
E
D
C
B
A
GPIO19  
GPIO168  
GPIO167  
GPIO93  
E
D
C
B
A
GPIO166  
GPIO165  
GPIO91  
GPIO89  
GPIO88  
GPIO7  
GPIO5  
GPIO4  
GPIO3  
GPIO1  
GPIO0  
GPIO164  
GPIO162  
GPIO161  
GPIO160  
GPIO159  
GPIO158  
GPIO157  
VSS  
VDDIO  
VSS  
GPIO97  
GPIO94  
GPIO92  
GPIO90  
GPIO6  
GPIO2  
GPIO163  
1
2
3
4
5
6
7
8
9
10  
A. Only the GPIO function is shown on GPIO terminals. See Section 6.2.1 for the complete, muxed signal name.  
Figure 6-4. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View) – [Quadrant D]  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
V
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
GPIO68  
GPIO69  
GPIO70  
GPIO71  
DDIO  
GPIO40  
GPIO39  
GPIO38  
GPIO37  
GPIO36  
V
DD  
V
DDIO  
V
GPIO72  
GPIO73  
GPIO74  
GPIO75  
GPIO76  
GPIO77  
GPIO78  
GPIO79  
DDIO  
TCK  
TMS  
TRST  
TDO  
TDI  
V
DD  
V
DDIO  
V
DDIO  
FLT2  
FLT1  
V
GPIO80  
GPIO81  
GPIO82  
GPIO83  
DD3VFL  
GPIO35  
GPIO34  
GPIO33  
V
DDIO  
V
V
DDIO  
DD  
GPIO32  
GPIO31  
GPIO29  
GPIO28  
GPIO30  
GPIO84  
GPIO85  
GPIO86  
GPIO87  
V
DD  
V
V
DDIO  
DDIO  
V
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
DD  
ADCIND4  
ADCIND3  
ADCIND2  
ADCIND1  
ADCIND0  
V
REFHID  
V
DDA  
V
V
REFHIB  
DDIO  
V
V
SSA  
DD  
V
GPIO88  
GPIO89  
GPIO90  
GPIO91  
GPIO92  
GPIO93  
GPIO94  
REFLOD  
V
REFLOB  
ADCINB3  
ADCINB2  
ADCINB1  
ADCINB0  
ADCIN15  
A. Only the GPIO function is shown on GPIO pins. See Section 6.2.1 for the complete, muxed signal name.  
Figure 6-5. 176-Pin PTP PowerPAD Thermally Enhanced Low-Profile Quad Flatpack (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
GPIO70  
GPIO71  
VDD  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
TCK  
TMS  
TRST  
TDO  
TDI  
VDDIO  
GPIO72  
GPIO73  
VDD  
VDDIO  
GPIO78  
VDDIO  
FLT2  
VDD  
GPIO84  
GPIO85  
GPIO86  
FLT1  
VDD3VFL  
VDDIO  
VDD  
VDDA  
GPIO87  
VDD  
VREFHIB  
VSSA  
VDDIO  
VSSA  
GPIO2  
GPIO3  
VREFLOB  
GPIO4  
VDDIO  
ADCINB5  
ADCINB4  
ADCINB3  
ADCINB2  
ADCINB1  
ADCINB0  
ADCIN15  
ADCIN14  
VDD  
GPIO89  
GPIO90  
GPIO91  
GPIO92  
GPIO10  
A. Only the GPIO function is shown on GPIO pins. See Section 6.2.1 for the complete, muxed signal name.  
Figure 6-6. 100-Pin PZP PowerPAD HTQFP (Top View)  
Note  
The exposed lead frame die pad of the PowerPADpackage serves two functions: to remove heat  
from the die and to provide ground path for the digital ground (analog ground is provided through  
dedicated pins). Thus, the PowerPAD should be soldered to the ground (GND) plane of the PCB  
because this will provide both the digital ground path and good thermal conduction path. To make  
optimum use of the thermal efficiencies designed into the PowerPAD package, the PCB must be  
designed with this technology in mind. A thermal land is required on the surface of the PCB directly  
underneath the body of the PowerPAD. The thermal land should be soldered to the exposed lead  
frame die pad of the PowerPAD package; the thermal land should be as large as needed to dissipate  
the required heat. An array of thermal vias should be used to connect the thermal pad to the internal  
GND plane of the board. See PowerPAD™ Thermally Enhanced Package for more details on using  
the PowerPAD package.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Note  
PCB footprints and schematic symbols are available for download in a vendor-neutral format, which  
can be exported to the leading EDA CAD/CAE design tools. See the CAD/CAE Symbols section in the  
product folder for each device, under the Packaging section. These footprints and symbols can also  
be searched for at http://webench.ti.com/cad/.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
6.2 Signal Descriptions  
Section 6.2.1 describes the signals. The GPIO function is the default at reset, unless otherwise mentioned. The  
peripheral signals that are listed under them are alternate functions. Some peripheral functions may not be  
available in all devices. See Table 5-1 for details. All GPIO pins are I/O/Z and have an internal pullup, which can  
be selectively enabled or disabled on a per-pin basis. This feature only applies to the GPIO pins. The pullups are  
not enabled at reset.  
6.2.1 Signal Descriptions  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
ADC, DAC, AND COMPARATOR SIGNALS  
ADC-A high reference. This voltage must be driven into  
the pin from external circuitry. Place at least a 1-µF  
capacitor on this pin for the 12-bit mode, or at least a 22-  
µF capacitor for the 16-bit mode. This capacitor should be  
placed as close to the device as possible between the  
VREFHIA and VREFLOA pins.  
VREFHIA  
VREFHIB  
VREFHIC  
V1  
W5  
R1  
37  
53  
35  
19  
37  
I
I
I
NOTE: Do not load this pin externally.  
ADC-B high reference. This voltage must be driven into  
the pin from external circuitry. Place at least a 1-µF  
capacitor on this pin for the 12-bit mode, or at least a 22-  
µF capacitor for the 16-bit mode. This capacitor should be  
placed as close to the device as possible between the  
VREFHIB and VREFLOB pins.  
NOTE: Do not load this pin externally.  
ADC-C high reference. This voltage must be driven into  
the pin from external circuitry. Place at least a 1-µF  
capacitor on this pin for the 12-bit mode, or at least a 22-  
µF capacitor for the 16-bit mode. This capacitor should be  
placed as close to the device as possible between the  
VREFHIC and VREFLOC pins.  
NOTE: Do not load this pin externally.  
ADC-D high reference. This voltage must be driven into  
the pin from external circuitry. Place at least a 1-µF  
capacitor on this pin for the 12-bit mode, or at least a 22-  
µF capacitor for the 16-bit mode. This capacitor should be  
placed as close to the device as possible between the  
VREFHID and VREFLOD pins.  
VREFHID  
V5  
R2  
55  
33  
I
I
NOTE: Do not load this pin externally.  
ADC-A low reference.  
On the PZP package, pin 17 is double-bonded to VSSA  
and VREFLOA. On the PZP package, pin 17 must be  
connected to VSSA on the system board.  
VREFLOA  
17  
VREFLOB  
VREFLOC  
VREFLOD  
ADCIN14  
V6  
P2  
50  
32  
51  
34  
I
I
I
I
ADC-B low reference  
ADC-C low reference  
ADC-D low reference  
W6  
Input 14 to all ADCs. This pin can be used as a general-  
purpose ADCIN pin or it can be used to calibrate all ADCs  
together (either single-ended or differential) from an  
external reference.  
T4  
U4  
44  
45  
26  
27  
CMPIN4P  
ADCIN15  
I
I
Comparator 4 positive input  
Input 15 to all ADCs. This pin can be used as a general-  
purpose ADCIN pin or it can be used to calibrate all ADCs  
together (either single-ended or differential) from an  
external reference.  
CMPIN4N  
I
Comparator 4 negative input  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
ADCINA0  
I
ADC-A input 0. There is a 50-kΩ internal pulldown on this  
pin in both an ADC input or DAC output mode which  
cannot be disabled.  
U1  
T1  
43  
42  
25  
24  
DACOUTA  
ADCINA1  
O
I
DAC-A output  
ADC-A input 1. There is a 50-kΩ internal pulldown on this  
pin in both an ADC input or DAC output mode which  
cannot be disabled.  
DACOUTB  
ADCINA2  
CMPIN1P  
ADCINA3  
CMPIN1N  
ADCINA4  
CMPIN2P  
ADCINA5  
CMPIN2N  
ADCINB0  
O
I
DAC-B output  
ADC-A input 2  
U2  
T2  
U3  
T3  
41  
40  
39  
38  
23  
22  
21  
20  
I
Comparator 1 positive input  
ADC-A input 3  
I
I
Comparator 1 negative input  
ADC-A input 4  
I
I
Comparator 2 positive input  
ADC-A input 5  
I
I
Comparator 2 negative input  
I
ADC-B input 0. There is a 100-pF capacitor to VSSA on  
this pin in both ADC input or DAC reference mode which  
cannot be disabled. If this pin is being used as a  
reference for the on-chip DACs, place at least a 1-µF  
capacitor on this pin.  
V2  
46  
28  
VDAC  
I
I
Optional external reference voltage for on-chip DACs.  
There is a 100-pF capacitor to VSSA on this pin in both  
ADC input or DAC reference mode which cannot be  
disabled. If this pin is being used as a reference for the  
on-chip DACs, place at least a 1-µF capacitor on this pin.  
ADCINB1  
ADC-B input 1. There is a 50-kΩ internal pulldown on this  
pin in both an ADC input or DAC output mode which  
cannot be disabled.  
W2  
47  
29  
DACOUTC  
ADCINB2  
CMPIN3P  
ADCINB3  
CMPIN3N  
ADCINB4  
ADCINB5  
ADCINC2  
CMPIN6P  
ADCINC3  
CMPIN6N  
ADCINC4  
CMPIN5P  
ADCINC5  
CMPIN5N  
ADCIND0  
CMPIN7P  
ADCIND1  
CMPIN7N  
O
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DAC-C output  
ADC-B input 2  
V3  
48  
49  
30  
31  
Comparator 3 positive input  
ADC-B input 3  
W3  
Comparator 3 negative input  
ADC-B input 4  
V4  
32  
33  
W4  
ADC-B input 5  
ADC-C input 2  
R3  
P3  
R4  
P4  
T5  
U5  
31  
30  
29  
Comparator 6 positive input  
ADC-C input 3  
Comparator 6 negative input  
ADC-C input 4  
Comparator 5 positive input  
ADC-C input 5  
Comparator 5 negative input  
ADC-D input 0  
56  
57  
Comparator 7 positive input  
ADC-D input 1  
Comparator 7 negative input  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
ADCIND2  
CMPIN8P  
ADCIND3  
CMPIN8N  
ADCIND4  
ADCIND5  
I
I
I
I
I
I
ADC-D input 2  
T6  
U6  
58  
59  
Comparator 8 positive input  
ADC-D input 3  
Comparator 8 negative input  
ADC-D input 4  
T7  
U7  
60  
ADC-D input 5  
GPIO AND PERIPHERAL SIGNALS  
GPIO0  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 0  
EPWM1A  
SDAA  
1
C8  
D8  
160  
161  
Enhanced PWM1 output A (HRPWM-capable)  
I2C-A data open-drain bidirectional port  
General-purpose input/output 1  
Enhanced PWM1 output B (HRPWM-capable)  
McBSP-B receive frame synch  
I2C-A clock open-drain bidirectional port  
General-purpose input/output 2  
Enhanced PWM2 output A (HRPWM-capable)  
Output 1 of the output XBAR  
6
I/OD  
I/O  
O
GPIO1  
0, 4, 8, 12  
EPWM1B  
MFSRB  
SCLA  
1
3
I/O  
I/OD  
I/O  
O
6
GPIO2  
0, 4, 8, 12  
EPWM2A  
1
A7  
B7  
162  
163  
91  
92  
OUTPUTXBAR1  
SDAB  
5
O
6
I/OD  
I/O  
O
I2C-B data open-drain bidirectional port  
General-purpose input/output 3  
Enhanced PWM2 output B (HRPWM-capable)  
Output 2 of the output XBAR  
GPIO3  
0, 4, 8, 12  
EPWM2B  
OUTPUTXBAR2  
MCLKRB  
1
2
O
3
I/O  
O
McBSP-B receive clock  
OUTPUTXBAR2  
SCLB  
5
Output 2 of the output XBAR  
6
I/OD  
I/O  
O
I2C-B clock open-drain bidirectional port  
General-purpose input/output 4  
Enhanced PWM3 output A (HRPWM-capable)  
Output 3 of the output XBAR  
GPIO4  
0, 4, 8, 12  
EPWM3A  
OUTPUTXBAR3  
CANTXA  
1
C7  
D7  
164  
165  
93  
5
O
6
O
CAN-A transmit  
GPIO5  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 5  
Enhanced PWM3 output B (HRPWM-capable)  
McBSP-A receive frame synch  
Output 3 of the output XBAR  
EPWM3B  
MFSRA  
1
2
I/O  
O
OUTPUTXBAR3  
CANRXA  
3
6
I
CAN-A receive  
GPIO6  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 6  
Enhanced PWM4 output A (HRPWM-capable)  
Output 4 of the output XBAR  
EPWM4A  
OUTPUTXBAR4  
EXTSYNCOUT  
EQEP3A  
1
2
O
A6  
166  
3
O
External ePWM synch pulse output  
Enhanced QEP3 input A  
5
I
CANTXB  
6
O
CAN-B transmit  
GPIO7  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 7  
Enhanced PWM4 output B (HRPWM-capable)  
McBSP-A receive clock  
EPWM4B  
MCLKRA  
1
2
3
5
6
I/O  
O
B6  
167  
OUTPUTXBAR5  
EQEP3B  
Output 5 of the output XBAR  
I
Enhanced QEP3 input B  
CANRXB  
I
CAN-B receive  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO8  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 8  
EPWM5A  
CANTXB  
ADCSOCAO  
EQEP3S  
1
Enhanced PWM5 output A (HRPWM-capable)  
CAN-B transmit  
2
O
G2  
18  
3
O
ADC start-of-conversion A output for external ADC  
Enhanced QEP3 strobe  
5
I/O  
O
SCITXDA  
GPIO9  
6
SCI-A transmit data  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 9  
Enhanced PWM5 output B (HRPWM-capable)  
SCI-B transmit data  
EPWM5B  
SCITXDB  
OUTPUTXBAR6  
EQEP3I  
1
2
O
G3  
19  
3
O
Output 6 of the output XBAR  
Enhanced QEP3 index  
5
I/O  
I
SCIRXDA  
GPIO10  
6
SCI-A receive data  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 10  
Enhanced PWM6 output A (HRPWM-capable)  
CAN-B receive  
EPWM6A  
CANRXB  
ADCSOCBO  
EQEP1A  
1
2
I
3
O
ADC start-of-conversion B output for external ADC  
Enhanced QEP1 input A  
B2  
C1  
C2  
1
2
4
100  
5
I
SCITXDB  
UPP-WAIT  
6
O
SCI-B transmit data  
15  
I/O  
Universal parallel port wait. Receiver asserts to request a  
pause in transfer.  
GPIO11  
0, 4, 8, 12  
I/O  
O
I
General-purpose input/output 11  
Enhanced PWM6 output B (HRPWM-capable)  
SCI-B receive data  
EPWM6B  
1
2, 6  
3
SCIRXDB  
OUTPUTXBAR7  
EQEP1B  
1
O
I
Output 7 of the output XBAR  
Enhanced QEP1 input B  
5
UPP-START  
15  
I/O  
Universal parallel port start. Transmitter asserts at start of  
DMA line.  
GPIO12  
EPWM7A  
CANTXB  
MDXB  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 12  
Enhanced PWM7 output A (HRPWM-capable)  
CAN-B transmit  
1
2
O
3
O
McBSP-B transmit serial data  
Enhanced QEP1 strobe  
3
EQEP1S  
SCITXDC  
UPP-ENA  
5
I/O  
O
6
SCI-C transmit data  
15  
I/O  
Universal parallel port enable. Transmitter asserts while  
data bus is active.  
GPIO13  
EPWM7B  
CANRXB  
MDRB  
0, 4, 8, 12  
I/O  
O
I
General-purpose input/output 13  
Enhanced PWM7 output B (HRPWM-capable)  
CAN-B receive  
1
2
3
D1  
5
4
I
McBSP-B receive serial data  
Enhanced QEP1 index  
EQEP1I  
SCIRXDC  
UPP-D7  
5
I/O  
I
6
SCI-C receive data  
15  
I/O  
Universal parallel port data line 7  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO14  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 14  
EPWM8A  
SCITXDB  
MCLKXB  
1
Enhanced PWM8 output A (HRPWM-capable)  
SCI-B transmit data  
2
O
D2  
6
5
3
I/O  
O
McBSP-B transmit clock  
OUTPUTXBAR3  
UPP-D6  
6
Output 3 of the output XBAR  
Universal parallel port data line 6  
General-purpose input/output 15  
Enhanced PWM8 output B (HRPWM-capable)  
SCI-B receive data  
15  
I/O  
I/O  
O
GPIO15  
0, 4, 8, 12  
EPWM8B  
SCIRXDB  
MFSXB  
1
2
I
D3  
7
6
3
I/O  
O
McBSP-B transmit frame synch  
Output 4 of the output XBAR  
Universal parallel port data line 5  
General-purpose input/output 16  
SPI-A slave in, master out  
CAN-B transmit  
OUTPUTXBAR4  
UPP-D5  
6
15  
I/O  
I/O  
I/O  
O
GPIO16  
0, 4, 8, 12  
SPISIMOA  
CANTXB  
OUTPUTXBAR7  
EPWM9A  
SD1_D1  
1
2
3
E1  
E2  
E3  
E4  
8
7
O
Output 7 of the output XBAR  
Enhanced PWM9 output A  
Sigma-Delta 1 channel 1 data input  
Universal parallel port data line 4  
General-purpose input/output 17  
SPI-A slave out, master in  
CAN-B receive  
5
O
7
I
UPP-D4  
15  
I/O  
I/O  
I/O  
I
GPIO17  
0, 4, 8, 12  
SPISOMIA  
CANRXB  
OUTPUTXBAR8  
EPWM9B  
SD1_C1  
1
2
3
9
8
O
Output 8 of the output XBAR  
Enhanced PWM9 output B  
Sigma-Delta 1 channel 1 clock input  
Universal parallel port data line 3  
General-purpose input/output 18  
SPI-A clock  
5
O
7
I
UPP-D3  
15  
I/O  
I/O  
I/O  
O
GPIO18  
0, 4, 8, 12  
SPICLKA  
SCITXDB  
CANRXA  
EPWM10A  
SD1_D2  
1
2
SCI-B transmit data  
3
10  
9
I
CAN-A receive  
5
O
Enhanced PWM10 output A  
Sigma-Delta 1 channel 2 data input  
Universal parallel port data line 2  
General-purpose input/output 19  
SPI-A slave transmit enable  
SCI-B receive data  
7
I
UPP-D2  
15  
I/O  
I/O  
I/O  
I
GPIO19  
0, 4, 8, 12  
SPISTEA  
SCIRXDB  
CANTXA  
EPWM10B  
SD1_C2  
1
2
3
12  
11  
O
CAN-A transmit  
5
O
Enhanced PWM10 output B  
Sigma-Delta 1 channel 2 clock input  
Universal parallel port data line 1  
7
I
UPP-D1  
15  
I/O  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO20  
0, 4, 8, 12  
I/O  
I
General-purpose input/output 20  
EQEP1A  
MDXA  
1
Enhanced QEP1 input A  
2
O
O
O
I
McBSP-A transmit serial data  
CAN-B transmit  
CANTXB  
EPWM11A  
SD1_D3  
UPP-D0  
3
F2  
F3  
J4  
K4  
13  
14  
22  
23  
12  
13  
5
Enhanced PWM11 output A  
Sigma-Delta 1 channel 3 data input  
Universal parallel port data line 0  
General-purpose input/output 21  
Enhanced QEP1 input B  
7
15  
I/O  
I/O  
I
GPIO21  
0, 4, 8, 12  
EQEP1B  
MDRA  
1
2
I
McBSP-A receive serial data  
CAN-B receive  
CANRXB  
EPWM11B  
SD1_C3  
UPP-CLK  
GPIO22  
3
I
5
O
I
Enhanced PWM11 output B  
Sigma-Delta 1 channel 3 clock input  
Universal parallel port transmit clock  
General-purpose input/output 22  
Enhanced QEP1 strobe  
7
15  
I/O  
I/O  
I/O  
I/O  
O
O
I/O  
I
0, 4, 8, 12  
EQEP1S  
MCLKXA  
SCITXDB  
EPWM12A  
SPICLKB  
SD1_D4  
GPIO23  
1
2
McBSP-A transmit clock  
3
SCI-B transmit data  
5
Enhanced PWM12 output A  
SPI-B clock  
6
7
Sigma-Delta 1 channel 4 data input  
General-purpose input/output 23  
Enhanced QEP1 index  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I
EQEP1I  
1
MFSXA  
2
McBSP-A transmit frame synch  
SCI-B receive data  
SCIRXDB  
EPWM12B  
SPISTEB  
SD1_C4  
GPIO24  
3
5
O
I/O  
I
Enhanced PWM12 output B  
SPI-B slave transmit enable  
Sigma-Delta 1 channel 4 clock input  
General-purpose input/output 24  
Output 1 of the output XBAR  
Enhanced QEP2 input A  
6
7
0, 4, 8, 12  
I/O  
O
I
OUTPUTXBAR1  
EQEP2A  
MDXB  
1
2
K3  
24  
3
O
I/O  
I
McBSP-B transmit serial data  
SPI-B slave in, master out  
Sigma-Delta 2 channel 1 data input  
General-purpose input/output 25  
Output 2 of the output XBAR  
Enhanced QEP2 input B  
SPISIMOB  
SD2_D1  
GPIO25  
6
7
0, 4, 8, 12  
I/O  
O
I
OUTPUTXBAR2  
EQEP2B  
MDRB  
1
2
3
6
7
K2  
25  
I
McBSP-B receive serial data  
SPI-B slave out, master in  
Sigma-Delta 2 channel 1 clock input  
SPISOMIB  
SD2_C1  
I/O  
I
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO26  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 26  
OUTPUTXBAR3  
EQEP2I  
1
Output 3 of the output XBAR  
Enhanced QEP2 index  
2
I/O  
I/O  
O
MCLKXB  
OUTPUTXBAR3  
SPICLKB  
SD2_D2  
3
K1  
27  
McBSP-B transmit clock  
5
Output 3 of the output XBAR  
SPI-B clock  
6
I/O  
I
7
Sigma-Delta 2 channel 2 data input  
General-purpose input/output 27  
Output 4 of the output XBAR  
Enhanced QEP2 strobe  
GPIO27  
0, 4, 8, 12  
I/O  
O
OUTPUTXBAR4  
EQEP2S  
1
2
I/O  
I/O  
O
MFSXB  
3
L1  
28  
McBSP-B transmit frame synch  
Output 4 of the output XBAR  
SPI-B slave transmit enable  
Sigma-Delta 2 channel 2 clock input  
General-purpose input/output 28  
SCI-A receive data  
OUTPUTXBAR4  
SPISTEB  
SD2_C2  
5
6
I/O  
I
7
GPIO28  
0, 4, 8, 12  
I/O  
I
SCIRXDA  
EM1CS4  
1
2
O
External memory interface 1 chip select 4  
Output 5 of the output XBAR  
Enhanced QEP3 input A  
V11  
W11  
T11  
U11  
64  
65  
63  
66  
OUTPUTXBAR5  
EQEP3A  
5
O
6
I
SD2_D3  
7
I
Sigma-Delta 2 channel 3 data input  
General-purpose input/output 29  
SCI-A transmit data  
GPIO29  
0, 4, 8, 12  
I/O  
O
SCITXDA  
EM1SDCKE  
OUTPUTXBAR6  
EQEP3B  
1
2
O
External memory interface 1 SDRAM clock enable  
Output 6 of the output XBAR  
5
O
6
I
Enhanced QEP3 input B  
SD2_C3  
7
I
Sigma-Delta 2 channel 3 clock input  
General-purpose input/output 30  
CAN-A receive  
GPIO30  
0, 4, 8, 12  
I/O  
I
CANRXA  
EM1CLK  
1
2
O
External memory interface 1 clock  
Output 7 of the output XBAR  
OUTPUTXBAR7  
EQEP3S  
5
O
6
I/O  
I
Enhanced QEP3 strobe  
SD2_D4  
7
Sigma-Delta 2 channel 4 data input  
General-purpose input/output 31  
CAN-A transmit  
GPIO31  
0, 4, 8, 12  
I/O  
O
CANTXA  
1
EM1WE  
2
O
External memory interface 1 write enable  
Output 8 of the output XBAR  
OUTPUTXBAR8  
EQEP3I  
5
O
6
I/O  
I
Enhanced QEP3 index  
SD2_C4  
7
Sigma-Delta 2 channel 4 clock input  
General-purpose input/output 32  
I2C-A data open-drain bidirectional port  
External memory interface 1 chip select 0  
General-purpose input/output 33  
I2C-A clock open-drain bidirectional port  
External memory interface 1 read not write  
GPIO32  
0, 4, 8, 12  
I/O  
I/OD  
O
SDAA  
1
U13  
T13  
67  
69  
EM1CS0  
2
GPIO33  
0, 4, 8, 12  
I/O  
I/OD  
O
SCLA  
1
2
EM1RNW  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO34  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 34  
OUTPUTXBAR1  
EM1CS2  
SDAB  
1
Output 1 of the output XBAR  
U14  
T14  
V16  
U16  
T16  
70  
71  
83  
84  
85  
2
O
External memory interface 1 chip select 2  
I2C-B data open-drain bidirectional port  
General-purpose input/output 35  
SCI-A receive data  
6
I/OD  
I/O  
I
GPIO35  
0, 4, 8, 12  
SCIRXDA  
EM1CS3  
SCLB  
1
2
O
External memory interface 1 chip select 3  
I2C-B clock open-drain bidirectional port  
General-purpose input/output 36  
SCI-A transmit data  
6
I/OD  
I/O  
O
GPIO36  
0, 4, 8, 12  
SCITXDA  
EM1WAIT  
CANRXA  
GPIO37  
1
2
I
External memory interface 1 Asynchronous SRAM WAIT  
CAN-A receive  
6
I
0, 4, 8, 12  
I/O  
O
General-purpose input/output 37  
Output 2 of the output XBAR  
OUTPUTXBAR2  
EM1OE  
1
2
O
External memory interface 1 output enable  
CAN-A transmit  
CANTXA  
GPIO38  
6
O
0, 4, 8, 12  
I/O  
O
General-purpose input/output 38  
External memory interface 1 address line 0  
SCI-C transmit data  
EM1A0  
2
SCITXDC  
CANTXB  
GPIO39  
5
O
6
O
CAN-B transmit  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 39  
External memory interface 1 address line 1  
SCI-C receive data  
EM1A1  
2
W17  
V17  
86  
87  
SCIRXDC  
CANRXB  
GPIO40  
5
I
6
I
CAN-B receive  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 40  
External memory interface 1 address line 2  
I2C-B data open-drain bidirectional port  
EM1A2  
2
6
SDAB  
I/OD  
I/O  
GPIO41  
0, 4, 8, 12  
General-purpose input/output 41. For applications using  
the Hibernate low-power mode, this pin serves as the  
GPIOHIBWAKE signal. For details, see the Low Power  
Modes section of the System Control chapter in the  
TMS320F2837xS Microcontrollers Technical Reference  
Manual .  
U17  
D19  
89  
51  
73  
EM1A3  
SCLB  
2
O
I/OD  
I/O  
I/OD  
O
External memory interface 1 address line 3  
I2C-B clock open-drain bidirectional port  
General-purpose input/output 42  
I2C-A data open-drain bidirectional port  
SCI-A transmit data  
6
GPIO42  
SDAA  
0, 4, 8, 12  
6
15  
130  
SCITXDA  
USB0DM  
GPIO43  
SCLA  
Analog  
0, 4, 8, 12  
6
I/O  
I/O  
I/OD  
I
USB PHY differential data  
General-purpose input/output 43  
I2C-A clock open-drain bidirectional port  
SCI-A receive data  
C19  
K18  
131  
113  
74  
SCIRXDA  
USB0DP  
GPIO44  
EM1A4  
15  
Analog  
0, 4, 8, 12  
2
I/O  
I/O  
O
USB PHY differential data  
General-purpose input/output 44  
External memory interface 1 address line 4  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO45  
EM1A5  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 45  
K19  
115  
2
External memory interface 1 address line 5  
General-purpose input/output 46  
External memory interface 1 address line 6  
SCI-D receive data  
GPIO46  
EM1A6  
0, 4, 8, 12  
I/O  
O
2
E19  
128  
SCIRXDD  
GPIO47  
EM1A7  
6
I
0, 4, 8, 12  
I/O  
O
General-purpose input/output 47  
External memory interface 1 address line 7  
SCI-D transmit data  
2
E18  
R16  
129  
90  
SCITXDD  
GPIO48  
6
O
0, 4, 8, 12  
I/O  
O
General-purpose input/output 48  
Output 3 of the output XBAR  
OUTPUTXBAR3  
EM1A8  
1
2
O
External memory interface 1 address line 8  
SCI-A transmit data  
SCITXDA  
SD1_D1  
GPIO49  
6
O
7
I
Sigma-Delta 1 channel 1 data input  
General-purpose input/output 49  
Output 4 of the output XBAR  
0, 4, 8, 12  
I/O  
O
OUTPUTXBAR4  
EM1A9  
1
2
R17  
R18  
R19  
P16  
93  
94  
95  
96  
O
External memory interface 1 address line 9  
SCI-A receive data  
SCIRXDA  
SD1_C1  
GPIO50  
6
I
7
I
Sigma-Delta 1 channel 1 clock input  
General-purpose input/output 50  
Enhanced QEP1 input A  
0, 4, 8, 12  
I/O  
I
EQEP1A  
EM1A10  
SPISIMOC  
SD1_D2  
GPIO51  
1
2
O
External memory interface 1 address line 10  
SPI-C slave in, master out  
6
I/O  
I
7
Sigma-Delta 1 channel 2 data input  
General-purpose input/output 51  
Enhanced QEP1 input B  
0, 4, 8, 12  
I/O  
I
EQEP1B  
EM1A11  
SPISOMIC  
SD1_C2  
GPIO52  
1
2
O
External memory interface 1 address line 11  
SPI-C slave out, master in  
6
I/O  
I
7
Sigma-Delta 1 channel 2 clock input  
General-purpose input/output 52  
Enhanced QEP1 strobe  
0, 4, 8, 12  
I/O  
I/O  
O
EQEP1S  
EM1A12  
SPICLKC  
SD1_D3  
GPIO53  
1
2
External memory interface 1 address line 12  
SPI-C clock  
6
I/O  
I
7
Sigma-Delta 1 channel 3 data input  
General-purpose input/output 53  
Enhanced QEP1 index  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/O  
I/O  
I
EQEP1I  
1
2
3
6
7
EM1D31  
EM2D15  
SPISTEC  
SD1_C3  
External memory interface 1 data line 31  
External memory interface 2 data line 15  
SPI-C slave transmit enable  
P17  
97  
Sigma-Delta 1 channel 3 clock input  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO54  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/O  
I
General-purpose input/output 54  
SPISIMOA  
EM1D30  
EM2D14  
EQEP2A  
SCITXDB  
SD1_D4  
GPIO55  
1
SPI-A slave in, master out  
2
External memory interface 1 data line 30  
External memory interface 2 data line 14  
Enhanced QEP2 input A  
3
P18  
P19  
N16  
N18  
98  
5
6
O
SCI-B transmit data  
7
I
Sigma-Delta 1 channel 4 data input  
General-purpose input/output 55  
SPI-A slave out, master in  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/O  
I
SPISOMIA  
EM1D29  
EM2D13  
EQEP2B  
SCIRXDB  
SD1_C4  
GPIO56  
1
2
External memory interface 1 data line 29  
External memory interface 2 data line 13  
Enhanced QEP2 input B  
3
100  
101  
102  
5
6
I
SCI-B receive data  
7
I
Sigma-Delta 1 channel 4 clock input  
General-purpose input/output 56  
SPI-A clock  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/O  
I/O  
O
SPICLKA  
EM1D28  
EM2D12  
EQEP2S  
SCITXDC  
SD2_D1  
GPIO57  
1
2
External memory interface 1 data line 28  
External memory interface 2 data line 12  
Enhanced QEP2 strobe  
3
5
6
SCI-C transmit data  
7
I
Sigma-Delta 2 channel 1 data input  
General-purpose input/output 57  
SPI-A slave transmit enable  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/O  
I/O  
I
SPISTEA  
EM1D27  
EM2D11  
EQEP2I  
1
2
External memory interface 1 data line 27  
External memory interface 2 data line 11  
Enhanced QEP2 index  
3
5
SCIRXDC  
SD2_C1  
GPIO58  
6
SCI-C receive data  
7
I
Sigma-Delta 2 channel 1 clock input  
General-purpose input/output 58  
McBSP-A receive clock  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/O  
O
MCLKRA  
EM1D26  
EM2D10  
OUTPUTXBAR1  
SPICLKB  
SD2_D2  
SPISIMOA  
GPIO59  
1
2
External memory interface 1 data line 26  
External memory interface 2 data line 10  
Output 1 of the output XBAR  
SPI-B clock  
3
N17  
103  
52  
5
6
I/O  
I
7
Sigma-Delta 2 channel 2 data input  
SPI-A slave in, master out(2)  
15  
I/O  
I/O  
I/O  
I/O  
I/O  
O
0, 4, 8, 12  
General-purpose input/output 59(3)  
McBSP-A receive frame synch  
External memory interface 1 data line 25  
External memory interface 2 data line 9  
Output 2 of the output XBAR  
SPI-B slave transmit enable  
MFSRA  
1
2
EM1D25  
EM2D9  
3
M16  
104  
53  
OUTPUTXBAR2  
SPISTEB  
SD2_C2  
SPISOMIA  
5
6
I/O  
I
7
Sigma-Delta 2 channel 2 clock input  
SPI-A slave out, master in(2)  
15  
I/O  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO60  
MCLKRB  
EM1D24  
EM2D8  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/O  
O
General-purpose input/output 60  
1
McBSP-B receive clock  
2
External memory interface 1 data line 24  
External memory interface 2 data line 8  
Output 3 of the output XBAR  
SPI-B slave in, master out  
3
M17  
105  
54  
OUTPUTXBAR3  
SPISIMOB  
SD2_D3  
SPICLKA  
GPIO61  
5
6
I/O  
I
7
Sigma-Delta 2 channel 3 data input  
SPI-A clock(2)  
15  
I/O  
I/O  
I/O  
I/O  
I/O  
O
0, 4, 8, 12  
General-purpose input/output 61(3)  
McBSP-B receive frame synch  
External memory interface 1 data line 23  
External memory interface 2 data line 7  
Output 4 of the output XBAR  
SPI-B slave out, master in  
MFSRB  
1
EM1D23  
EM2D7  
2
3
L16  
J17  
J16  
107  
108  
109  
56  
57  
58  
OUTPUTXBAR4  
SPISOMIB  
SD2_C3  
SPISTEA  
GPIO62  
5
6
I/O  
I
7
Sigma-Delta 2 channel 3 clock input  
SPI-A slave transmit enable(2)  
General-purpose input/output 62  
SCI-C receive data  
15  
I/O  
I/O  
I
0, 4, 8, 12  
SCIRXDC  
EM1D22  
EM2D6  
1
2
I/O  
I/O  
I
External memory interface 1 data line 22  
External memory interface 2 data line 6  
Enhanced QEP3 input A  
3
EQEP3A  
CANRXA  
SD2_D4  
GPIO63  
5
6
I
CAN-A receive  
7
I
Sigma-Delta 2 channel 4 data input  
General-purpose input/output 63  
SCI-C transmit data  
0, 4, 8, 12  
I/O  
O
SCITXDC  
EM1D21  
EM2D5  
1
2
I/O  
I/O  
I
External memory interface 1 data line 21  
External memory interface 2 data line 5  
Enhanced QEP3 input B  
3
EQEP3B  
CANTXA  
SD2_C4  
SPISIMOB  
GPIO64  
5
6
O
CAN-A transmit  
7
I
Sigma-Delta 2 channel 4 clock input  
SPI-B slave in, master out(2)  
General-purpose input/output 64(3)  
External memory interface 1 data line 20  
External memory interface 2 data line 4  
Enhanced QEP3 strobe  
15  
I/O  
I/O  
I/O  
I/O  
I/O  
I
0, 4, 8, 12  
EM1D20  
EM2D4  
2
3
L17  
110  
111  
59  
EQEP3S  
SCIRXDA  
SPISOMIB  
GPIO65  
5
6
SCI-A receive data  
15  
I/O  
I/O  
I/O  
I/O  
I/O  
O
SPI-B slave out, master in(2)  
General-purpose input/output 65  
External memory interface 1 data line 19  
External memory interface 2 data line 3  
Enhanced QEP3 index  
0, 4, 8, 12  
EM1D19  
EM2D3  
2
3
K16  
60  
EQEP3I  
5
SCITXDA  
SPICLKB  
6
SCI-A transmit data  
SPI-B clock(2)  
15  
I/O  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO66  
EM1D18  
EM2D2  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/OD  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/OD  
I/O  
I/O  
I/O  
I
General-purpose input/output 66(3)  
External memory interface 1 data line 18  
External memory interface 2 data line 2  
I2C-B data open-drain bidirectional port  
SPI-B slave transmit enable(2)  
General-purpose input/output 67  
External memory interface 1 data line 17  
External memory interface 2 data line 1  
General-purpose input/output 68  
External memory interface 1 data line 16  
External memory interface 2 data line 0  
General-purpose input/output 69  
External memory interface 1 data line 15  
I2C-B clock open-drain bidirectional port  
SPI-C slave in, master out(2)  
2
3
K17  
112  
61  
SDAB  
6
SPISTEB  
GPIO67  
EM1D17  
EM2D1  
15  
0, 4, 8, 12  
2
B19  
C18  
132  
133  
3
GPIO68  
EM1D16  
EM2D0  
0, 4, 8, 12  
2
3
GPIO69  
EM1D15  
SCLB  
0, 4, 8, 12  
2
B18  
A17  
134  
135  
75  
76  
6
SPISIMOC  
GPIO70  
EM1D14  
CANRXA  
SCITXDB  
SPISOMIC  
GPIO71  
EM1D13  
CANTXA  
SCIRXDB  
SPICLKC  
GPIO72  
15  
0, 4, 8, 12  
General-purpose input/output 70(3)  
External memory interface 1 data line 14  
CAN-A receive  
2
5
6
O
SCI-B transmit data  
SPI-C slave out, master in(2)  
15  
I/O  
I/O  
I/O  
O
0, 4, 8, 12  
General-purpose input/output 71  
External memory interface 1 data line 13  
CAN-A transmit  
2
5
B17  
B16  
136  
139  
77  
80  
6
I
SCI-B receive data  
SPI-C clock(2)  
General-purpose input/output 72.(3) This is the factory  
default boot mode select pin 1.  
15  
I/O  
0, 4, 8, 12  
I/O  
EM1D12  
CANTXB  
SCITXDC  
SPISTEC  
GPIO73  
2
I/O  
O
External memory interface 1 data line 12  
CAN-B transmit  
5
6
O
SCI-C transmit data  
15  
I/O  
I/O  
I/O  
O/Z  
SPI-C slave transmit enable(2)  
General-purpose input/output 73  
External memory interface 1 data line 11  
0, 4, 8, 12  
EM1D11  
XCLKOUT  
2
3
External clock output. This pin outputs a divided-down  
version of a chosen clock signal from within the device.  
The clock signal is chosen using the  
CLKSRCCTL3.XCLKOUTSEL bit field while the divide  
ratio is chosen using the  
A16  
140  
81  
XCLKOUTDIVSEL.XCLKOUTDIV bit field.  
CANRXB  
SCIRXDC  
GPIO74  
EM1D10  
GPIO75  
EM1D9  
5
I
CAN-B receive  
6
I
SCI-C receive  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/O  
General-purpose input/output 74  
External memory interface 1 data line 10  
General-purpose input/output 75  
External memory interface 1 data line 9  
C17  
D16  
141  
142  
2
0, 4, 8, 12  
2
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO76  
EM1D8  
SCITXDD  
GPIO77  
EM1D7  
SCIRXDD  
GPIO78  
EM1D6  
EQEP2A  
GPIO79  
EM1D5  
EQEP2B  
GPIO80  
EM1D4  
EQEP2S  
GPIO81  
EM1D3  
EQEP2I  
GPIO82  
EM1D2  
GPIO83  
EM1D1  
0, 4, 8, 12  
I/O  
I/O  
O
General-purpose input/output 76  
2
C16  
A15  
B15  
C15  
D15  
A14  
143  
144  
145  
146  
148  
149  
External memory interface 1 data line 8  
SCI-D transmit data  
6
0, 4, 8, 12  
I/O  
I/O  
I
General-purpose input/output 77  
External memory interface 1 data line 7  
SCI-D receive data  
2
6
0, 4, 8, 12  
I/O  
I/O  
I
General-purpose input/output 78  
External memory interface 1 data line 6  
Enhanced QEP2 input A  
2
82  
6
0, 4, 8, 12  
I/O  
I/O  
I
General-purpose input/output 79  
External memory interface 1 data line 5  
Enhanced QEP2 input B  
2
6
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose input/output 80  
External memory interface 1 data line 4  
Enhanced QEP2 strobe  
2
6
0, 4, 8, 12  
General-purpose input/output 81  
External memory interface 1 data line 3  
Enhanced QEP2 index  
2
6
0, 4, 8, 12  
General-purpose input/output 82  
External memory interface 1 data line 2  
General-purpose input/output 83  
External memory interface 1 data line 1  
B14  
C14  
150  
151  
2
0, 4, 8, 12  
2
General-purpose input/output 84. This is the factory  
default boot mode select pin 0.  
GPIO84  
0, 4, 8, 12  
I/O  
SCITXDA  
MDXB  
5
O
O
SCI-A transmit data  
A11  
B11  
154  
155  
85  
86  
6
McBSP-B transmit serial data  
McBSP-A transmit serial data  
General-purpose input/output 85  
External memory interface 1 data line 0  
SCI-A receive data  
MDXA  
15  
O
GPIO85  
EM1D0  
0, 4, 8, 12  
I/O  
I/O  
I
2
SCIRXDA  
MDRB  
5
6
I
McBSP-B receive serial data  
McBSP-A receive serial data  
General-purpose input/output 86  
External memory interface 1 address line 13  
External memory interface 1 column address strobe  
SCI-B transmit data  
MDRA  
15  
I
GPIO86  
EM1A13  
EM1CAS  
SCITXDB  
MCLKXB  
MCLKXA  
GPIO87  
EM1A14  
EM1RAS  
SCIRXDB  
MFSXB  
MFSXA  
0, 4, 8, 12  
I/O  
O
2
3
O
C11  
D11  
156  
87  
5
O
6
I/O  
I/O  
I/O  
O
McBSP-B transmit clock  
15  
McBSP-A transmit clock  
0, 4, 8, 12  
General-purpose input/output 87  
External memory interface 1 address line 14  
External memory interface 1 row address strobe  
SCI-B receive data  
2
3
O
157  
88  
5
I
6
I/O  
I/O  
McBSP-B transmit frame synch  
McBSP-A transmit frame synch  
15  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO88  
EM1A15  
EM1DQM0  
GPIO89  
EM1A16  
EM1DQM1  
SCITXDC  
GPIO90  
EM1A17  
EM1DQM2  
SCIRXDC  
GPIO91  
EM1A18  
EM1DQM3  
SDAA  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 88  
2
C6  
170  
External memory interface 1 address line 15  
External memory interface 1 Input/output mask for byte 0  
General-purpose input/output 89  
3
O
0, 4, 8, 12  
I/O  
O
2
External memory interface 1 address line 16  
External memory interface 1 Input/output mask for byte 1  
SCI-C transmit data  
D6  
171  
96  
3
O
6
O
0, 4, 8, 12  
I/O  
O
General-purpose input/output 90  
2
External memory interface 1 address line 17  
External memory interface 1 Input/output mask for byte 2  
SCI-C receive data  
A5  
B5  
172  
173  
97  
98  
3
O
6
I
0, 4, 8, 12  
I/O  
O
General-purpose input/output 91  
2
External memory interface 1 address line 18  
External memory interface 1 Input/output mask for byte 3  
I2C-A data open-drain bidirectional port  
General-purpose input/output 92  
3
O
6
I/OD  
I/O  
O
GPIO92  
EM1A19  
EM1BA1  
SCLA  
0, 4, 8, 12  
2
External memory interface 1 address line 19  
External memory interface 1 bank address 1  
I2C-A clock open-drain bidirectional port  
General-purpose input/output 93  
A4  
B4  
174  
175  
99  
3
O
6
I/OD  
I/O  
O
GPIO93  
EM1BA0  
SCITXDD  
GPIO94  
SCIRXDD  
GPIO95  
GPIO96  
EM2DQM1  
EQEP1A  
GPIO97  
EM2DQM0  
EQEP1B  
GPIO98  
EM2A0  
0, 4, 8, 12  
3
External memory interface 1 bank address 0  
SCI-D transmit data  
6
O
0, 4, 8, 12  
I/O  
I
General-purpose input/output 94  
A3  
B3  
176  
6
SCI-D receive data  
0, 4, 8, 12  
I/O  
I/O  
O
General-purpose input/output 95  
0, 4, 8, 12  
General-purpose input/output 96  
3
C3  
A2  
F1  
G1  
External memory interface 2 Input/output mask for byte 1  
Enhanced QEP1 input A  
5
I
0, 4, 8, 12  
I/O  
O
General-purpose input/output 97  
3
External memory interface 2 Input/output mask for byte 0  
Enhanced QEP1 input B  
5
I
0, 4, 8, 12  
I/O  
O
General-purpose input/output 98  
3
External memory interface 2 address line 0  
Enhanced QEP1 strobe  
EQEP1S  
GPIO99  
EM2A1  
5
I/O  
I/O  
O
0, 4, 8, 12  
General-purpose input/output 99  
3
17  
14  
External memory interface 2 address line 1  
Enhanced QEP1 index  
EQEP1I  
GPIO100  
EM2A2  
5
I/O  
I/O  
O
0, 4, 8, 12  
General-purpose input/output 100  
External memory interface 2 address line 2  
Enhanced QEP2 input A  
3
H1  
H2  
EQEP2A  
SPISIMOC  
GPIO101  
EM2A3  
5
I
6
I/O  
I/O  
O
SPI-C slave in, master out  
0, 4, 8, 12  
General-purpose input/output 101  
External memory interface 2 address line 3  
Enhanced QEP2 input B  
3
5
6
EQEP2B  
SPISOMIC  
I
I/O  
SPI-C slave out, master in  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO102  
EM2A4  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 102  
External memory interface 2 address line 4  
Enhanced QEP2 strobe  
3
H3  
J1  
EQEP2S  
SPICLKC  
GPIO103  
EM2A5  
5
I/O  
I/O  
I/O  
O
6
SPI-C clock  
0, 4, 8, 12  
General-purpose input/output 103  
External memory interface 2 address line 5  
Enhanced QEP2 index  
3
EQEP2I  
SPISTEC  
GPIO104  
SDAA  
5
I/O  
I/O  
I/O  
I/OD  
O
6
SPI-C slave transmit enable  
0, 4, 8, 12  
General-purpose input/output 104  
I2C-A data open-drain bidirectional port  
External memory interface 2 address line 6  
Enhanced QEP3 input A  
1
EM2A6  
3
J2  
J3  
EQEP3A  
SCITXDD  
GPIO105  
SCLA  
5
I
6
O
SCI-D transmit data  
0, 4, 8, 12  
I/O  
I/OD  
O
General-purpose input/output 105  
I2C-A clock open-drain bidirectional port  
External memory interface 2 address line 7  
Enhanced QEP3 input B  
1
EM2A7  
3
EQEP3B  
SCIRXDD  
GPIO106  
EM2A8  
5
I
6
I
SCI-D receive data  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 106  
External memory interface 2 address line 8  
Enhanced QEP3 strobe  
3
L2  
L3  
EQEP3S  
SCITXDC  
GPIO107  
EM2A9  
5
I/O  
O
6
SCI-C transmit data  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 107  
External memory interface 2 address line 9  
Enhanced QEP3 index  
3
EQEP3I  
SCIRXDC  
GPIO108  
EM2A10  
GPIO109  
EM2A11  
GPIO110  
EM2WAIT  
GPIO111  
EM2BA0  
GPIO112  
EM2BA1  
GPIO113  
EM2CAS  
GPIO114  
EM2RAS  
GPIO115  
EM2CS0  
GPIO116  
EM2CS2  
5
I/O  
I
6
SCI-C receive data  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 108  
External memory interface 2 address line 10  
General-purpose input/output 109  
External memory interface 2 address line 11  
General-purpose input/output 110  
L4  
N2  
3
0, 4, 8, 12  
I/O  
O
3
0, 4, 8, 12  
I/O  
I
M2  
M4  
M3  
N4  
3
External memory interface 2 Asynchronous SRAM WAIT  
General-purpose input/output 111  
0, 4, 8, 12  
I/O  
O
3
External memory interface 2 bank address 0  
General-purpose input/output 112  
0, 4, 8, 12  
I/O  
O
3
External memory interface 2 bank address 1  
General-purpose input/output 113  
0, 4, 8, 12  
I/O  
O
3
External memory interface 2 column address strobe  
General-purpose input/output 114  
0, 4, 8, 12  
I/O  
O
N3  
3
External memory interface 2 row address strobe  
General-purpose input/output 115  
0, 4, 8, 12  
I/O  
O
V12  
W10  
3
0, 4, 8, 12  
3
External memory interface 2 chip select 0  
General-purpose input/output 116  
I/O  
O
External memory interface 2 chip select 2  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO117  
EM2SDCKE  
GPIO118  
EM2CLK  
GPIO119  
EM2RNW  
GPIO120  
EM2WE  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 117  
External memory interface 2 SDRAM clock enable  
General-purpose input/output 118  
External memory interface 2 clock  
General-purpose input/output 119  
External memory interface 2 read not write  
General-purpose input/output 120  
External memory interface 2 write enable  
USB external regulator power fault indicator  
General-purpose input/output 121  
External memory interface 2 output enable  
USB external regulator enable  
U12  
T12  
T15  
3
0, 4, 8, 12  
I/O  
O
3
0, 4, 8, 12  
I/O  
O
3
0, 4, 8, 12  
I/O  
O
3
U15  
W16  
T8  
USB0PFLT  
GPIO121  
EM2OE  
15  
I/O  
I/O  
O
0, 4, 8, 12  
3
USB0EPEN  
GPIO122  
SPISIMOC  
SD1_D1  
15  
I/O  
I/O  
I/O  
I
0, 4, 8, 12  
General-purpose input/output 122  
SPI-C slave in, master out  
6
7
Sigma-Delta 1 channel 1 data input  
General-purpose input/output 123  
SPI-C slave out, master in  
GPIO123  
SPISOMIC  
SD1_C1  
0, 4, 8, 12  
I/O  
I/O  
I
6
U8  
7
Sigma-Delta 1 channel 1 clock input  
General-purpose input/output 124  
SPI-C clock  
GPIO124  
SPICLKC  
SD1_D2  
0, 4, 8, 12  
I/O  
I/O  
I
6
V8  
7
Sigma-Delta 1 channel 2 data input  
General-purpose input/output 125  
SPI-C slave transmit enable  
GPIO125  
SPISTEC  
SD1_C2  
0, 4, 8, 12  
I/O  
I/O  
I
6
T9  
7
Sigma-Delta 1 channel 2 clock input  
General-purpose input/output 126  
Sigma-Delta 1 channel 3 data input  
General-purpose input/output 127  
Sigma-Delta 1 channel 3 clock input  
General-purpose input/output 128  
Sigma-Delta 1 channel 4 data input  
General-purpose input/output 129  
Sigma-Delta 1 channel 4 clock input  
General-purpose input/output 130  
Sigma-Delta 2 channel 1 data input  
General-purpose input/output 131  
Sigma-Delta 2 channel 1 clock input  
General-purpose input/output 132  
Sigma-Delta 2 channel 2 data input  
GPIO126  
SD1_D3  
0, 4, 8, 12  
I/O  
I
U9  
V9  
7
GPIO127  
SD1_C3  
0, 4, 8, 12  
I/O  
I
7
GPIO128  
SD1_D4  
0, 4, 8, 12  
I/O  
I
W9  
7
GPIO129  
SD1_C4  
0, 4, 8, 12  
I/O  
I
T10  
U10  
V10  
W18  
7
GPIO130  
SD2_D1  
0, 4, 8, 12  
I/O  
I
7
GPIO131  
SD2_C1  
0, 4, 8, 12  
7
I/O  
I
GPIO132  
SD2_D2  
0, 4, 8, 12  
7
I/O  
I
GPIO133/AUXCLKIN  
0, 4, 8, 12  
I/O  
General-purpose input/output 133. The AUXCLKIN  
function of this GPIO pin could be used to provide a  
single-ended 3.3-V level clock signal to the Auxiliary  
Phase-Locked Loop (AUXPLL), whose output is used for  
the USB module. The AUXCLKIN clock may also be used  
for the CAN module.  
G18  
118  
SD2_C2  
7
I
Sigma-Delta 2 channel 2 clock input  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO134  
SD2_D3  
0, 4, 8, 12  
I/O  
I
General-purpose input/output 134  
Sigma-Delta 2 channel 3 data input  
General-purpose input/output 135  
SCI-A transmit data  
V18  
7
GPIO135  
SCITXDA  
SD2_C3  
0, 4, 8, 12  
I/O  
O
6
U18  
7
I
Sigma-Delta 2 channel 3 clock input  
General-purpose input/output 136  
SCI-A receive data  
GPIO136  
SCIRXDA  
SD2_D4  
0, 4, 8, 12  
I/O  
I
6
T17  
T18  
7
I
Sigma-Delta 2 channel 4 data input  
General-purpose input/output 137  
SCI-B transmit data  
GPIO137  
SCITXDB  
SD2_C4  
0, 4, 8, 12  
I/O  
O
6
7
I
Sigma-Delta 2 channel 4 clock input  
General-purpose input/output 138  
SCI-B receive data  
GPIO138  
SCIRXDB  
GPIO139  
SCIRXDC  
GPIO140  
SCITXDC  
GPIO141  
SCIRXDD  
GPIO142  
SCITXDD  
GPIO143  
GPIO144  
GPIO145  
EPWM1A  
GPIO146  
EPWM1B  
GPIO147  
EPWM2A  
GPIO148  
EPWM2B  
GPIO149  
EPWM3A  
GPIO150  
EPWM3B  
GPIO151  
EPWM4A  
GPIO152  
EPWM4B  
GPIO153  
EPWM5A  
GPIO154  
EPWM5B  
0, 4, 8, 12  
I/O  
I
T19  
N19  
M19  
M18  
L19  
6
0, 4, 8, 12  
I/O  
I
General-purpose input/output 139  
SCI-C receive data  
6
0, 4, 8, 12  
I/O  
O
General-purpose input/output 140  
SCI-C transmit data  
6
0, 4, 8, 12  
I/O  
I
General-purpose input/output 141  
SCI-D receive data  
6
0, 4, 8, 12  
I/O  
O
General-purpose input/output 142  
SCI-D transmit data  
6
0, 4, 8, 12  
F18  
F17  
I/O  
I/O  
I/O  
O
General-purpose input/output 143  
General-purpose input/output 144  
General-purpose input/output 145  
Enhanced PWM1 output A (HRPWM-capable)  
General-purpose input/output 146  
Enhanced PWM1 output B (HRPWM-capable)  
General-purpose input/output 147  
Enhanced PWM2 output A (HRPWM-capable)  
General-purpose input/output 148  
Enhanced PWM2 output B (HRPWM-capable)  
General-purpose input/output 149  
Enhanced PWM3 output A (HRPWM-capable)  
General-purpose input/output 150  
Enhanced PWM3 output B (HRPWM-capable)  
General-purpose input/output 151  
Enhanced PWM4 output A (HRPWM-capable)  
General-purpose input/output 152  
Enhanced PWM4 output B (HRPWM-capable)  
General-purpose input/output 153  
Enhanced PWM5 output A (HRPWM-capable)  
General-purpose input/output 154  
Enhanced PWM5 output B (HRPWM-capable)  
0, 4, 8, 12  
0, 4, 8, 12  
E17  
D18  
D17  
D14  
A13  
B13  
C13  
D13  
A12  
B12  
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
1
I/O  
O
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
GPIO155  
EPWM6A  
GPIO156  
EPWM6B  
GPIO157  
EPWM7A  
GPIO158  
EPWM7B  
GPIO159  
EPWM8A  
GPIO160  
EPWM8B  
GPIO161  
EPWM9A  
GPIO162  
EPWM9B  
GPIO163  
EPWM10A  
GPIO164  
EPWM10B  
GPIO165  
EPWM11A  
GPIO166  
EPWM11B  
GPIO167  
EPWM12A  
GPIO168  
EPWM12B  
0, 4, 8, 12  
I/O  
O
General-purpose input/output 155  
Enhanced PWM6 output A (HRPWM-capable)  
General-purpose input/output 156  
Enhanced PWM6 output B (HRPWM-capable)  
General-purpose input/output 157  
Enhanced PWM7 output A (HRPWM-capable)  
General-purpose input/output 158  
Enhanced PWM7 output B (HRPWM-capable)  
General-purpose input/output 159  
Enhanced PWM8 output A (HRPWM-capable)  
General-purpose input/output 160  
Enhanced PWM8 output B (HRPWM-capable)  
General-purpose input/output 161  
Enhanced PWM9 output A  
C12  
D12  
B10  
C10  
D10  
B9  
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
1
0, 4, 8, 12  
I/O  
O
C9  
1
0, 4, 8, 12  
I/O  
O
General-purpose input/output 162  
Enhanced PWM9 output B  
D9  
1
0, 4, 8, 12  
I/O  
O
General-purpose input/output 163  
Enhanced PWM10 output A  
A8  
1
0, 4, 8, 12  
I/O  
O
General-purpose input/output 164  
Enhanced PWM10 output B  
B8  
1
0, 4, 8, 12  
I/O  
O
General-purpose input/output 165  
Enhanced PWM11 output A  
C5  
1
0, 4, 8, 12  
I/O  
O
General-purpose input/output 166  
Enhanced PWM11 output B  
D5  
1
0, 4, 8, 12  
I/O  
O
General-purpose input/output 167  
Enhanced PWM12 output A  
C4  
1
0, 4, 8, 12  
1
I/O  
O
General-purpose input/output 168  
Enhanced PWM12 output B  
D4  
RESET  
Device Reset (in) and Watchdog Reset (out). The devices  
have a built-in power-on reset (POR) circuit. During a  
power-on condition, this pin is driven low by the device.  
An external circuit may also drive this pin to assert a  
device reset. This pin is also driven low by the MCU when  
a watchdog reset or NMI watchdog reset occurs. During  
watchdog reset, the XRS pin is driven low for the  
watchdog reset duration of 512 OSCCLK cycles. A  
resistor with a value from 2.2 kΩ to 10 kΩ should be  
placed between XRS and VDDIO. If a capacitor is placed  
between XRS and VSS for noise filtering, it should be  
100 nF or smaller. These values will allow the watchdog  
to properly drive the XRS pin to VOL within 512 OSCCLK  
cycles when the watchdog reset is asserted. The output  
buffer of this pin is an open drain with an internal pullup. If  
this pin is driven by an external device, it should be done  
using an open-drain device.  
XRS  
F19  
124  
69  
I/OD  
CLOCKS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
On-chip crystal-oscillator input. To use this oscillator, a  
quartz crystal must be connected across X1 and X2. If  
this pin is not used, it must be tied to GND.  
This pin can also be used to feed a single-ended 3.3-V  
level clock. In this case, X2 is a No Connect (NC).  
X1  
X2  
NC  
G19  
J19  
H4  
123  
121  
68  
66  
I
On-chip crystal-oscillator output. A quartz crystal may be  
connected across X1 and X2. If X2 is not used, it must be  
left unconnected.  
O
NO CONNECT  
No connect. BGA ball is electrically open and not  
connected to the die.  
JTAG  
TCK  
TDI  
V15  
81  
77  
50  
46  
I
I
JTAG test clock with internal pullup (see Section 7.6)  
JTAG test data input (TDI) with internal pullup. TDI is  
clocked into the selected register (instruction or data) on a  
rising edge of TCK.  
W13  
JTAG scan out, test data output (TDO). The contents of  
the selected register (instruction or data) are shifted out of  
TDO on the falling edge of TCK.(3)  
TDO  
TMS  
W15  
W14  
78  
80  
47  
49  
O/Z  
I
JTAG test-mode select (TMS) with internal pullup. This  
serial control input is clocked into the TAP controller on  
the rising edge of TCK.  
JTAG test reset with internal pulldown. TRST, when  
driven high, gives the scan system control of the  
operations of the device. If this signal is driven low, the  
device operates in its functional mode, and the test reset  
signals are ignored. NOTE: TRST must be maintained low  
at all times during normal device operation. An external  
pulldown resistor is required on this pin. The value of this  
resistor should be based on drive strength of the  
debugger pods applicable to the design. A 2.2-kΩ or  
smaller resistor generally offers adequate protection. The  
value of the resistor is application-specific. TI  
TRST  
V14  
79  
48  
I
recommends that each target board be validated for  
proper operation of the debugger and the application. This  
pin has an internal 50-ns (nominal) glitch filter.  
INTERNAL VOLTAGE REGULATOR CONTROL  
Internal voltage regulator enable with internal pulldown.  
The internal VREG is not supported and must be  
VREGENZ  
J18  
119  
64  
I
disabled. Connect VREGENZ to VDDIO  
.
ANALOG, DIGITAL, AND I/O POWER  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
E9  
E11  
F9  
16  
21  
61  
76  
117  
126  
137  
153  
158  
169  
16  
39  
45  
63  
71  
78  
84  
89  
95  
F11  
G14  
G15  
J14  
J15  
K5  
1.2-V digital logic power pins. TI recommends placing a  
decoupling capacitor near each VDD pin with a minimum  
total capacitance of approximately 20 uF. The exact value  
of the decoupling capacitance should be determined by  
your system voltage regulation solution.  
VDD  
K6  
P10  
P13  
R10  
R13  
R11  
R12  
P6  
72  
41  
3.3-V Flash power pin. Place a minimum 0.1-µF  
decoupling capacitor on each pin.  
VDD3VFL  
36  
54  
18  
38  
3.3-V analog power pins. Place a minimum 2.2-µF  
decoupling capacitor to VSSA on each pin.  
VDDA  
R6  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
A9  
A18  
B1  
3
11  
2
10  
15  
40  
44  
55  
62  
72  
79  
83  
90  
94  
15  
20  
26  
62  
68  
75  
82  
88  
91  
99  
106  
114  
116  
127  
138  
147  
152  
159  
168  
E7  
E10  
E13  
E16  
F4  
F7  
F10  
F13  
F16  
G4  
3.3-V digital I/O power pins. Place a minimum 0.1-µF  
decoupling capacitor on each pin. The exact value of the  
decoupling capacitance should be determined by your  
system voltage regulation solution.  
G5  
VDDIO  
G6  
H5  
H6  
L14  
L15  
M1  
M5  
M6  
N14  
N15  
P9  
R9  
V19  
W8  
H16  
120  
65  
Power pins for the 3.3-V on-chip crystal oscillator (X1 and  
X2) and the two zero-pin internal oscillators (INTOSC).  
Place a 0.1-μF (minimum) decoupling capacitor on each  
pin.  
VDDOSC  
H17  
125  
70  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
A1  
A10  
A19  
E5  
E6  
E8  
E12  
E14  
E15  
F5  
F6  
F8  
F12  
F14  
F15  
G16  
G17  
H8  
H9  
H10  
H11  
H12  
H14  
H15  
J5  
Device ground. For Quad Flatpacks (QFPs), the  
PowerPAD on the bottom of the package must be  
soldered to the ground plane of the PCB.  
PWR  
PAD  
PWR  
PAD  
VSS  
J6  
J8  
J9  
J10  
J11  
J12  
K8  
K9  
K10  
K11  
K12  
K14  
K15  
L5  
L6  
L8  
L9  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
TERMINAL  
I/O/Z(1)  
DESCRIPTION  
ZWT  
BALL  
NO.  
PTP  
PIN  
NO.  
PZP  
PIN  
NO.  
MUX  
POSITION  
NAME  
L10  
L11  
L12  
L18  
M8  
M9  
M10  
M11  
M12  
M14  
M15  
N1  
Device ground. For Quad Flatpacks (QFPs), the  
PowerPAD on the bottom of the package must be  
soldered to the ground plane of the PCB.  
N5  
PWR  
PAD  
PWR  
PAD  
VSS  
N6  
P7  
P8  
P11  
P12  
P14  
P15  
R7  
R8  
R14  
R15  
W7  
W19  
H18  
122  
67  
Crystal oscillator (X1 and X2) ground pin. When using an  
external crystal, do not connect this pin to the board  
ground. Instead, connect it to the ground reference of the  
external crystal oscillator circuit.  
If an external crystal is not used, this pin may be  
connected to the board ground.  
VSSOSC  
H19  
P1  
P5  
R5  
V7  
W1  
34  
52  
17  
35  
36  
Analog ground.  
On the PZP package, pin 17 is double-bonded to VSSA  
and VREFLOA. This pin must be connect to VSSA  
VSSA  
.
SPECIAL FUNCTIONS  
ERRORSTS  
U19  
92  
O
Error status output. This pin has an internal pulldown.  
TEST PINS  
Flash test pin 1. Reserved for TI. Must be left  
unconnected.  
FLT1  
FLT2  
W12  
V13  
73  
74  
42  
43  
I/O  
I/O  
Flash test pin 2. Reserved for TI. Must be left  
unconnected.  
(1) I = Input, O = Output, OD = Open Drain, Z = High Impedance  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
(2) High-Speed SPI-enabled GPIO mux option. This pin mux option is required when using the SPI in High-Speed Mode (HS_MODE = 1  
in SPICCR). This mux option is still available when not using the SPI in High-Speed Mode (HS_MODE = 0 in SPICCR).  
(3) This pin has output impedance that can be as low as 22 Ω. This output could have fast edges and ringing depending on the system  
PCB characteristics. If this is a concern, the user should take precautions such as adding a 39Ω (10% tolerance) series termination  
resistor or implement some other termination scheme. It is also recommended that a system-level signal integrity analysis be  
performed with the provided IBIS models. The termination is not required if this pin is used for input function.  
6.3 Pins With Internal Pullup and Pulldown  
Some pins on the device have internal pullups or pulldowns. Table 6-1 lists the pull direction and when it is  
active. The pullups on GPIO pins are disabled by default and can be enabled through software. In order to avoid  
any floating unbonded inputs, the Boot ROM will enable internal pullups on GPIO pins that are not bonded out in  
a particular package. Other pins noted in Table 6-1 with pullups and pulldowns are always on and cannot be  
disabled.  
Table 6-1. Pins With Internal Pullup and Pulldown  
RESET  
( XRS = 0)  
PIN  
DEVICE BOOT  
APPLICATION SOFTWARE  
Pullup enable is application-  
defined  
GPIOx  
Pullup disabled  
Pullup disabled(1)  
TRST  
Pulldown active  
Pullup active  
TCK  
TMS  
Pullup active  
TDI  
Pullup active  
XRS  
Pullup active  
VREGENZ  
ERRORSTS  
Other pins  
Pulldown active  
Pulldown active  
No pullup or pulldown present  
(1) Pins not bonded out in a given package will have the internal pullups enabled by the Boot ROM.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
6.4 Pin Multiplexing  
6.4.1 GPIO Muxed Pins  
Table 6-2 shows the GPIO muxed pins. The default for each pin is the GPIO function, secondary functions can  
be selected by setting both the GPyGMUXn.GPIOz and GPyMUXn.GPIOz register bits. The GPyGMUXn  
register should be configured prior to the GPyMUXn to avoid transient pulses on GPIO's from alternate mux  
selections. Columns not shown and blank cells are reserved GPIO Mux settings.  
Table 6-2. GPIO Muxed Pins  
GPIO Mux Selection(1) (2)  
GPIO Index  
0, 4, 8, 12  
1
2
3
5
6
7
15  
GPyGMUXn.  
GPIOz =  
00b, 01b,  
10b, 11b  
00b  
01b  
11b  
GPyMUXn.  
GPIOz =  
00b  
01b  
10b  
11b  
01b  
10b  
11b  
11b  
GPIO0  
EPWM1A (O)  
EPWM1B (O)  
EPWM2A (O)  
EPWM2B (O)  
EPWM3A (O)  
EPWM3B (O)  
EPWM4A (O)  
EPWM4B (O)  
EPWM5A (O)  
EPWM5B (O)  
EPWM6A (O)  
EPWM6B (O)  
EPWM7A (O)  
EPWM7B (O)  
EPWM8A (O)  
EPWM8B (O)  
SPISIMOA (I/O)  
SPISOMIA (I/O)  
SPICLKA (I/O)  
SPISTEA (I/O)  
EQEP1A (I)  
SDAA (I/OD)  
SCLA (I/OD)  
SDAB (I/OD)  
SCLB (I/OD)  
CANTXA (O)  
CANRXA (I)  
CANTXB (O)  
CANRXB (I)  
SCITXDA (O)  
SCIRXDA (I)  
SCITXDB (O)  
SCIRXDB (I)  
SCITXDC (O)  
SCIRXDC (I)  
GPIO1  
MFSRB (I/O)  
MCLKRB (I/O)  
GPIO2  
OUTPUTXBAR1 (O)  
OUTPUTXBAR2 (O)  
OUTPUTXBAR3 (O)  
GPIO3  
OUTPUTXBAR2 (O)  
MFSRA (I/O)  
GPIO4  
GPIO5  
OUTPUTXBAR3 (O)  
GPIO6  
OUTPUTXBAR4 (O) EXTSYNCOUT (O)  
EQEP3A (I)  
EQEP3B (I)  
EQEP3S (I/O)  
EQEP3I (I/O)  
EQEP1A (I)  
EQEP1B (I)  
EQEP1S (I/O)  
EQEP1I (I/O)  
GPIO7  
MCLKRA (I/O)  
CANTXB (O)  
SCITXDB (O)  
CANRXB (I)  
SCIRXDB (I)  
CANTXB (O)  
CANRXB (I)  
SCITXDB (O)  
SCIRXDB (I)  
CANTXB (O)  
CANRXB (I)  
SCITXDB (O)  
SCIRXDB (I)  
MDXA (O)  
OUTPUTXBAR5 (O)  
ADCSOCAO (O)  
OUTPUTXBAR6 (O)  
ADCSOCBO (O)  
OUTPUTXBAR7 (O)  
MDXB (O)  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
GPIO16  
GPIO17  
GPIO18  
GPIO19  
GPIO20  
GPIO21  
GPIO22  
GPIO23  
GPIO24  
GPIO25  
GPIO26  
GPIO27  
GPIO28  
GPIO29  
GPIO30  
GPIO31  
GPIO32  
GPIO33  
GPIO34  
GPIO35  
GPIO36  
GPIO37  
GPIO38  
GPIO39  
GPIO40  
GPIO41  
GPIO42  
UPP-WAIT (I/O)  
UPP-START (I/O)  
UPP-ENA (I/O)  
UPP-D7 (I/O)  
UPP-D6 (I/O)  
UPP-D5 (I/O)  
UPP-D4 (I/O)  
UPP-D3 (I/O)  
UPP-D2 (I/O)  
UPP-D1 (I/O)  
UPP-D0 (I/O)  
UPP-CLK (I/O)  
MDRB (I)  
MCLKXB (I/O)  
MFSXB (I/O)  
OUTPUTXBAR3 (O)  
OUTPUTXBAR4 (O)  
OUTPUTXBAR7 (O)  
OUTPUTXBAR8 (O)  
CANRXA (I)  
EPWM9A (O)  
EPWM9B (O)  
EPWM10A (O)  
EPWM10B (O)  
EPWM11A (O)  
EPWM11B (O)  
EPWM12A (O)  
EPWM12B (O)  
SD1_D1 (I)  
SD1_C1 (I)  
SD1_D2 (I)  
SD1_C2 (I)  
SD1_D3 (I)  
SD1_C3 (I)  
SD1_D4 (I)  
SD1_C4 (I)  
SD2_D1 (I)  
SD2_C1 (I)  
SD2_D2 (I)  
SD2_C2 (I)  
SD2_D3 (I)  
SD2_C3 (I)  
SD2_D4 (I)  
SD2_C4 (I)  
CANTXA (O)  
CANTXB (O)  
EQEP1B (I)  
MDRA (I)  
CANRXB (I)  
EQEP1S (I/O)  
EQEP1I (I/O)  
MCLKXA (I/O)  
MFSXA (I/O)  
EQEP2A (I)  
EQEP2B (I)  
EQEP2I (I/O)  
EQEP2S (I/O)  
EM1CS4 (O)  
EM1SDCKE (O)  
EM1CLK (O)  
EM1WE (O)  
EM1CS0 (O)  
EM1RNW (O)  
EM1CS2 (O)  
EM1CS3 (O)  
EM1WAIT (I)  
EM1OE (O)  
EM1A0 (O)  
SCITXDB (O)  
SCIRXDB (I)  
SPICLKB (I/O)  
SPISTEB (I/O)  
SPISIMOB (I/O)  
SPISOMIB (I/O)  
SPICLKB (I/O)  
SPISTEB (I/O)  
EQEP3A (I)  
OUTPUTXBAR1 (O)  
OUTPUTXBAR2 (O)  
OUTPUTXBAR3 (O)  
OUTPUTXBAR4 (O)  
SCIRXDA (I)  
MDXB (O)  
MDRB (I)  
MCLKXB (I/O)  
MFSXB (I/O)  
OUTPUTXBAR3 (O)  
OUTPUTXBAR4 (O)  
OUTPUTXBAR5 (O)  
OUTPUTXBAR6 (O)  
OUTPUTXBAR7 (O)  
OUTPUTXBAR8 (O)  
SCITXDA (O)  
CANRXA (I)  
EQEP3B (I)  
EQEP3S (I/O)  
EQEP3I (I/O)  
CANTXA (O)  
SDAA (I/OD)  
SCLA (I/OD)  
OUTPUTXBAR1 (O)  
SCIRXDA (I)  
SDAB (I/OD)  
SCLB (I/OD)  
CANRXA (I)  
CANTXA (O)  
CANTXB (O)  
CANRXB (I)  
SDAB (I/OD)  
SCLB (I/OD)  
SDAA (I/OD)  
SCITXDA (O)  
OUTPUTXBAR2 (O)  
SCITXDC (O)  
SCIRXDC (I)  
EM1A1 (O)  
EM1A2 (O)  
EM1A3 (O)  
SCITXDA (O)  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Table 6-2. GPIO Muxed Pins (continued)  
GPIO Mux Selection(1) (2)  
GPIO Index  
0, 4, 8, 12  
1
2
3
5
6
7
15  
GPyGMUXn.  
GPIOz =  
00b, 01b,  
10b, 11b  
00b  
01b  
11b  
GPyMUXn.  
GPIOz =  
00b  
01b  
10b  
11b  
01b  
10b  
11b  
11b  
GPIO43  
GPIO44  
GPIO45  
GPIO46  
GPIO47  
GPIO48  
GPIO49  
GPIO50  
GPIO51  
GPIO52  
GPIO53  
GPIO54  
GPIO55  
GPIO56  
GPIO57  
GPIO58  
GPIO59  
GPIO60  
GPIO61  
GPIO62  
GPIO63  
GPIO64  
GPIO65  
GPIO66  
GPIO67  
GPIO68  
GPIO69  
GPIO70  
GPIO71  
GPIO72  
GPIO73  
GPIO74  
GPIO75  
GPIO76  
GPIO77  
GPIO78  
GPIO79  
GPIO80  
GPIO81  
GPIO82  
GPIO83  
GPIO84  
GPIO85  
GPIO86  
GPIO87  
GPIO88  
GPIO89  
GPIO90  
GPIO91  
GPIO92  
GPIO93  
SCLA (I/OD)  
SCIRXDA (I)  
EM1A4 (O)  
EM1A5 (O)  
EM1A6 (O)  
SCIRXDD (I)  
SCITXDD (O)  
SCITXDA (O)  
SCIRXDA (I)  
EM1A7 (O)  
OUTPUTXBAR3 (O)  
OUTPUTXBAR4 (O)  
EQEP1A (I)  
EM1A8 (O)  
SD1_D1 (I)  
SD1_C1 (I)  
SD1_D2 (I)  
SD1_C2 (I)  
SD1_D3 (I)  
SD1_C3 (I)  
SD1_D4 (I)  
SD1_C4 (I)  
SD2_D1 (I)  
SD2_C1 (I)  
SD2_D2 (I)  
SD2_C2 (I)  
SD2_D3 (I)  
SD2_C3 (I)  
SD2_D4 (I)  
SD2_C4 (I)  
EM1A9 (O)  
EM1A10 (O)  
EM1A11 (O)  
EM1A12 (O)  
EM1D31 (I/O)  
EM1D30 (I/O)  
EM1D29 (I/O)  
EM1D28 (I/O)  
EM1D27 (I/O)  
EM1D26 (I/O)  
EM1D25 (I/O)  
EM1D24 (I/O)  
EM1D23 (I/O)  
EM1D22 (I/O)  
EM1D21 (I/O)  
EM1D20 (I/O)  
EM1D19 (I/O)  
EM1D18 (I/O)  
EM1D17 (I/O)  
EM1D16 (I/O)  
EM1D15 (I/O)  
EM1D14 (I/O)  
EM1D13 (I/O)  
EM1D12 (I/O)  
EM1D11 (I/O)  
EM1D10 (I/O)  
EM1D9 (I/O)  
EM1D8 (I/O)  
EM1D7 (I/O)  
EM1D6 (I/O)  
EM1D5 (I/O)  
EM1D4 (I/O)  
EM1D3 (I/O)  
EM1D2 (I/O)  
EM1D1 (I/O)  
SPISIMOC (I/O)  
SPISOMIC (I/O)  
SPICLKC (I/O)  
SPISTEC (I/O)  
SCITXDB (O)  
SCIRXDB (I)  
EQEP1B (I)  
EQEP1S (I/O)  
EQEP1I (I/O)  
EM2D15 (I/O)  
EM2D14 (I/O)  
EM2D13 (I/O)  
EM2D12 (I/O)  
EM2D11 (I/O)  
EM2D10 (I/O)  
EM2D9 (I/O)  
EM2D8 (I/O)  
EM2D7 (I/O)  
EM2D6 (I/O)  
EM2D5 (I/O)  
EM2D4 (I/O)  
EM2D3 (I/O)  
EM2D2 (I/O)  
EM2D1 (I/O)  
EM2D0 (I/O)  
SPISIMOA (I/O)  
SPISOMIA (I/O)  
SPICLKA (I/O)  
SPISTEA (I/O)  
MCLKRA (I/O)  
MFSRA (I/O)  
EQEP2A (I)  
EQEP2B (I)  
EQEP2S (I/O)  
SCITXDC (O)  
SCIRXDC (I)  
SPICLKB (I/O)  
SPISTEB (I/O)  
SPISIMOB (I/O)  
SPISOMIB (I/O)  
CANRXA (I)  
EQEP2I (I/O)  
OUTPUTXBAR1 (O)  
OUTPUTXBAR2 (O)  
OUTPUTXBAR3 (O)  
OUTPUTXBAR4 (O)  
EQEP3A (I)  
SPISIMOA(3) (I/O)  
SPISOMIA(3) (I/O)  
SPICLKA(3) (I/O)  
SPISTEA (3) (I/O)  
MCLKRB (I/O)  
MFSRB (I/O)  
SCIRXDC (I)  
SCITXDC (O)  
EQEP3B (I)  
CANTXA (O)  
SCIRXDA (I)  
SPISIMOB(3) (I/O)  
SPISOMIB(3) (I/O)  
SPICLKB(3) (I/O)  
SPISTEB (3) (I/O)  
EQEP3S (I/O)  
EQEP3I (I/O)  
SCITXDA (O)  
SDAB (I/OD)  
SCLB (I/OD)  
SCITXDB (O)  
SCIRXDB (I)  
SCITXDC (O)  
SCIRXDC (I)  
SPISIMOC(3) (I/O)  
SPISOMIC(3) (I/O)  
SPICLKC(3) (I/O)  
SPISTEC (3) (I/O)  
CANRXA (I)  
CANTXA (O)  
CANTXB (O)  
CANRXB (I)  
XCLKOUT (O)  
SCITXDD (O)  
SCIRXDD (I)  
EQEP2A (I)  
EQEP2B (I)  
EQEP2S (I/O)  
EQEP2I (I/O)  
SCITXDA (O)  
SCIRXDA (I)  
SCITXDB (O)  
SCIRXDB (I)  
MDXB (O)  
MDRB (I)  
MDXA (O)  
MDRA (I)  
EM1D0 (I/O)  
EM1A13 (O)  
EM1A14 (O)  
EM1A15 (O)  
EM1A16 (O)  
EM1A17 (O)  
EM1A18 (O)  
EM1A19 (O)  
EM1CAS (O)  
EM1RAS (O)  
EM1DQM0 (O)  
EM1DQM1 (O)  
EM1DQM2 (O)  
EM1DQM3 (O)  
EM1BA1 (O)  
MCLKXB (I/O)  
MFSXB (I/O)  
MCLKXA (I/O)  
MFSXA (I/O)  
SCITXDC (O)  
SCIRXDC (I)  
SDAA (I/OD)  
SCLA (I/OD)  
SCITXDD (O)  
EM1BA0 (O)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-2. GPIO Muxed Pins (continued)  
GPIO Mux Selection(1) (2)  
GPIO Index  
0, 4, 8, 12  
1
2
3
5
6
7
15  
GPyGMUXn.  
GPIOz =  
00b, 01b,  
10b, 11b  
00b  
01b  
11b  
GPyMUXn.  
GPIOz =  
00b  
01b  
10b  
11b  
01b  
10b  
11b  
11b  
GPIO94  
SCIRXDD (I)  
GPIO95  
GPIO96  
EM2DQM1 (O)  
EM2DQM0 (O)  
EM2A0 (O)  
EQEP1A (I)  
EQEP1B (I)  
EQEP1S (I/O)  
EQEP1I (I/O)  
EQEP2A (I)  
EQEP2B (I)  
EQEP2S (I/O)  
EQEP2I (I/O)  
EQEP3A (I)  
EQEP3B (I)  
EQEP3S (I/O)  
EQEP3I (I/O)  
GPIO97  
GPIO98  
GPIO99  
EM2A1 (O)  
GPIO100  
GPIO101  
GPIO102  
GPIO103  
GPIO104  
GPIO105  
GPIO106  
GPIO107  
GPIO108  
GPIO109  
GPIO110  
GPIO111  
GPIO112  
GPIO113  
GPIO114  
GPIO115  
GPIO116  
GPIO117  
GPIO118  
GPIO119  
GPIO120  
GPIO121  
GPIO122  
GPIO123  
GPIO124  
GPIO125  
GPIO126  
GPIO127  
GPIO128  
GPIO129  
GPIO130  
GPIO131  
GPIO132  
EM2A2 (O)  
SPISIMOC (I/O)  
SPISOMIC (I/O)  
SPICLKC (I/O)  
SPISTEC (I/O)  
SCITXDD (O)  
SCIRXDD (I)  
EM2A3 (O)  
EM2A4 (O)  
EM2A5 (O)  
SDAA (I/OD)  
SCLA (I/OD)  
EM2A6 (O)  
EM2A7 (O)  
EM2A8 (O)  
SCITXDC (O)  
SCIRXDC (I)  
EM2A9 (O)  
EM2A10 (O)  
EM2A11 (O)  
EM2WAIT (I)  
EM2BA0 (O)  
EM2BA1 (O)  
EM2CAS (O)  
EM2RAS (O)  
EM2CS0 (O)  
EM2CS2 (O)  
EM2SDCKE (O)  
EM2CLK (O)  
EM2RNW (O)  
EM2WE (O)  
EM2OE (O)  
USB0PFLT  
USB0EPEN  
SPISIMOC (I/O)  
SPISOMIC (I/O)  
SPICLKC (I/O)  
SPISTEC (I/O)  
SD1_D1 (I)  
SD1_C1 (I)  
SD1_D2 (I)  
SD1_C2 (I)  
SD1_D3 (I)  
SD1_C3 (I)  
SD1_D4 (I)  
SD1_C4 (I)  
SD2_D1 (I)  
SD2_C1 (I)  
SD2_D2 (I)  
GPIO133/  
AUXCLKIN  
SD2_C2 (I)  
GPIO134  
GPIO135  
GPIO136  
GPIO137  
GPIO138  
GPIO139  
GPIO140  
GPIO141  
GPIO142  
GPIO143  
SD2_D3 (I)  
SD2_C3 (I)  
SD2_D4 (I)  
SD2_C4 (I)  
SCITXDA (O)  
SCIRXDA (I)  
SCITXDB (O)  
SCIRXDB (I)  
SCIRXDC (I)  
SCITXDC (O)  
SCIRXDD (I)  
SCITXDD (O)  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Table 6-2. GPIO Muxed Pins (continued)  
GPIO Mux Selection(1) (2)  
GPIO Index  
0, 4, 8, 12  
1
2
3
5
6
7
15  
GPyGMUXn.  
GPIOz =  
00b, 01b,  
10b, 11b  
00b  
01b  
11b  
GPyMUXn.  
GPIOz =  
00b  
01b  
10b  
11b  
01b  
10b  
11b  
11b  
GPIO144  
GPIO145  
GPIO146  
GPIO147  
GPIO148  
GPIO149  
GPIO150  
GPIO151  
GPIO152  
GPIO153  
GPIO154  
GPIO155  
GPIO156  
GPIO157  
GPIO158  
GPIO159  
GPIO160  
GPIO161  
GPIO162  
GPIO163  
GPIO164  
GPIO165  
GPIO166  
GPIO167  
GPIO168  
EPWM1A (O)  
EPWM1B (O)  
EPWM2A (O)  
EPWM2B (O)  
EPWM3A (O)  
EPWM3B (O)  
EPWM4A (O)  
EPWM4B (O)  
EPWM5A (O)  
EPWM5B (O)  
EPWM6A (O)  
EPWM6B (O)  
EPWM7A (O)  
EPWM7B (O)  
EPWM8A (O)  
EPWM8B (O)  
EPWM9A (O)  
EPWM9B (O)  
EPWM10A (O)  
EPWM10B (O)  
EPWM11A (O)  
EPWM11B (O)  
EPWM12A (O)  
EPWM12B (O)  
(1) I = Input, O = Output, OD = Open Drain  
(2) GPIO Index settings of 9, 10, 11, 13, and 14 are reserved.  
(3) High-Speed SPI-enabled GPIO mux option. This pin mux option is required when using the SPI in High-Speed Mode (HS_MODE = 1  
in SPICCR). This mux option is still available when not using the SPI in High-Speed Mode (HS_MODE = 0 in SPICCR).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
6.4.2 Input X-BAR  
The Input X-BAR is used to route any GPIO input to the ADC, eCAP, and ePWM peripherals as well as to  
external interrupts (XINT) (see Figure 6-7). Table 6-3 shows the input X-BAR destinations. For details on  
configuring the Input X-BAR, see the Crossbar (X-BAR) chapter of the TMS320F2837xS Microcontrollers  
Technical Reference Manual .  
INPUT7  
INPUT8  
INPUT9  
INPUT10  
eCAP1  
eCAP2  
eCAP3  
eCAP4  
eCAP5  
eCAP6  
GPIO0  
GPIOx  
Asynchronous  
Synchronous  
Sync. + Qual.  
Input X-BAR  
INPUT11  
INPUT12  
TZ1,TRIP1  
TZ2,TRIP2  
TZ3,TRIP3  
XINT5  
XINT4  
XINT3  
XINT2  
XINT1  
CPU PIE  
CLA  
TRIP4  
TRIP5  
ePWM  
Modules  
TRIP7  
TRIP8  
TRIP9  
TRIP10  
TRIP11  
TRIP12  
ePWM  
X-BAR  
TRIP6  
ADCEXTSOC  
ADC  
EXTSYNCIN1  
EXTSYNCIN2  
ePWM and eCAP  
Sync Chain  
Output X-BAR  
Figure 6-7. Input X-BAR  
Table 6-3. Input X-BAR Destinations  
INPUT  
INPUT1  
INPUT2  
INPUT3  
INPUT4  
INPUT5  
INPUT6  
INPUT7  
INPUT8  
INPUT9  
INPUT10  
INPUT11  
INPUT12  
INPUT13  
INPUT14  
DESTINATIONS  
EPWM[TZ1,TRIP1], EPWM X-BAR, Output X-BAR  
EPWM[TZ2,TRIP2], EPWM X-BAR, Output X-BAR  
EPWM[TZ3,TRIP3], EPWM X-BAR, Output X-BAR  
XINT1, EPWM X-BAR, Output X-BAR  
XINT2, ADCEXTSOC, EXTSYNCIN1, EPWM X-BAR, Output X-BAR  
XINT3, EPWM[TRIP6], EXTSYNCIN2, EPWM X-BAR, Output X-BAR  
ECAP1  
ECAP2  
ECAP3  
ECAP4  
ECAP5  
ECAP6  
XINT4  
XINT5  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
6.4.3 Output X-BAR and ePWM X-BAR  
The Output X-BAR has eight outputs which can be selected on the GPIO mux as OUTPUTXBARx. The ePWM  
X-BAR has eight outputs which are connected to the TRIPx inputs of the ePWM. The sources for both the  
Output X-BAR and ePWM X-BAR are shown in Figure 6-8. For details on the Output X-BAR and ePWM X-BAR,  
see the Crossbar (X-BAR) chapter of the TMS320F2837xS Microcontrollers Technical Reference Manual .  
CTRIPOUTH  
CTRIPOUTL  
(Output X-BAR only)  
CMPSSx  
CTRIPH  
CTRIPL  
(ePWM X-BAR only)  
ePWM and eCAP  
Sync  
EXTSYNCOUT  
OUTPUT1  
OUTPUT2  
ADCSOCAO  
Select Ckt  
OUTPUT3  
OUTPUT4  
ADCSOCAO  
GPIO  
Mux  
Output  
X-BAR  
OUTPUT5  
OUTPUT6  
OUTPUT7  
OUTPUT8  
ADCSOCBO  
Select Ckt  
ADCSOCBO  
ECAPxOUT  
eCAPx  
ADCx  
EVT1  
EVT2  
EVT3  
EVT4  
TRIP4  
TRIP5  
TRIP7  
TRIP8  
TRIP9  
TRIP10  
TRIP11  
TRIP12  
All  
ePWM  
Modules  
ePWM  
X-BAR  
INPUT1  
INPUT2  
INPUT3  
INPUT4  
INPUT5  
INPUT6  
Input X-Bar  
OTHER DESTINATIONS  
(see Input X-BAR)  
X-BAR Flags  
(shared)  
FLT1.COMPH  
FLT1.COMPL  
SDFMx  
FLT4.COMPH  
FLT4.COMPL  
Figure 6-8. Output X-BAR and ePWM X-BAR  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
6.4.4 USB Pin Muxing  
Table 6-4 shows assignment of the alternate USB function mapping. These can be configured with the  
GPBAMSEL register.  
Table 6-4. Alternate USB Function  
GPIO  
GPBAMSEL SETTING  
GPBAMSEL[10] = 1b  
GPBAMSEL[11] = 1b  
USB FUNCTION  
USB0DM  
GPIO42  
GPIO43  
USB0DP  
6.4.5 High-Speed SPI Pin Muxing  
The SPI module on this device has a high-speed mode. To achieve the highest possible speed, a special GPIO  
configuration is used on a single GPIO mux option for each SPI. These GPIOs may also be used by the SPI  
when not in high-speed mode (HS_MODE = 0).  
To select the mux options that enable the SPI high-speed mode, configure the GPyGMUX and GPyMUX  
registers as shown in Table 6-5.  
Table 6-5. GPIO Configuration for High-Speed SPI  
GPIO  
SPI SIGNAL  
MUX CONFIGURATION  
SPIA  
SPIB  
SPIC  
GPIO58  
GPIO59  
GPIO60  
GPIO61  
SPISIMOA  
SPISOMIA  
SPICLKA  
SPISTEA  
GPBGMUX2[21:20]=11b  
GPBMUX2[21:20]=11b  
GPBMUX2[23:22]=11b  
GPBMUX2[25:24]=11b  
GPBMUX2[27:26]=11b  
GPBGMUX2[23:22]=11b  
GPBGMUX2[25:24]=11b  
GPBGMUX2[27:26]=11b  
GPIO63  
GPIO64  
GPIO65  
GPIO66  
SPISIMOB  
SPISOMIB  
SPICLKB  
SPISTEB  
GPBGMUX2[31:30]=11b  
GPCGMUX1[1:0]=11b  
GPCGMUX1[3:2]=11b  
GPCGMUX1[5:4]=11b  
GPBMUX2[31:30]=11b  
GPCMUX1[1:0]=11b  
GPCMUX1[3:2]=11b  
GPCMUX1[5:4]=11b  
GPIO69  
GPIO70  
GPIO71  
GPIO72  
SPISIMOC  
SPISOMIC  
SPICLKC  
SPISTEC  
GPCGMUX1[11:10]=11b  
GPCGMUX1[13:12]=11b  
GPCGMUX1[15:14]=11b  
GPCGMUX1[17:16]=11b  
GPCMUX1[11:10]=11b  
GPCMUX1[13:12]=11b  
GPCMUX1[15:14]=11b  
GPCMUX1[17:16]=11b  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
6.5 Connections for Unused Pins  
For applications that do not need to use all functions of the device, Table 6-6 lists acceptable conditioning for any  
unused pins. When multiple options are listed in Table 6-6, any are acceptable. Pins not listed in Table 6-6 must  
be connected according to Section 6.2.1.  
Table 6-6. Connections for Unused Pins  
SIGNAL NAME  
ACCEPTABLE PRACTICE  
Analog  
VREFHIx  
Tie to VDDA  
Tie to VSSA  
VREFLOx  
No Connect  
Tie to VSSA  
ADCINx  
Digital  
No connection (input mode with internal pullup enabled)  
No connection (output mode with internal pullup disabled)  
GPIOx  
Pullup or pulldown resistor (any value resistor, input mode, and with internal pullup disabled)  
X1  
X2  
Tie to VSS  
No Connect  
No Connect  
TCK  
TDI  
Pullup resistor  
No Connect  
Pullup resistor  
TDO  
No Connect  
TMS  
No Connect  
TRST  
Pulldown resistor (2.2 kΩ or smaller)  
Tie to VDDIO. VREG is not supported.  
No Connect  
VREGENZ  
ERRORSTS  
FLT1  
No Connect  
FLT2  
No Connect  
Power and Ground  
VDD  
All VDD pins must be connected per Section 6.2.1.  
If a dedicated analog supply is not used, tie to VDDIO  
All VDDIO pins must be connected per Section 6.2.1.  
Must be tied to VDDIO  
VDDA  
.
VDDIO  
VDD3VFL  
VDDOSC  
VSS  
Must be tied to VDDIO  
All VSS pins must be connected to board ground.  
VSSA  
If a dedicated analog ground is not used, tie to VSS  
.
VSSOSC  
If an external crystal is not used, this pin may be connected to the board ground.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX(1) (2)  
4.6  
UNIT  
VDDIO with respect to VSS  
VDD3VFL with respect to VSS  
Supply voltage  
4.6  
V
VDDOSC with respect to VSS  
4.6  
VDD with respect to VSS  
1.5  
Analog voltage  
Input voltage  
Output voltage  
VDDA with respect to VSSA  
4.6  
V
V
V
VIN (3.3 V)  
VO  
4.6  
4.6  
Digital/analog input (per pin), IIK  
(VIN < VSS/VSSA or VIN > VDDIO/VDDA  
–20  
–20  
20  
20  
(3)  
)
Input clamp current  
mA  
Total for all inputs, IIKTOTAL  
(VIN < VSS/VSSA or VIN > VDDIO/VDDA  
)
Output current  
Digital output (per pin), IOUT  
–20  
–40  
–40  
–65  
20  
125  
150  
150  
mA  
°C  
°C  
°C  
Free-Air temperature  
Operating junction temperature  
Storage temperature(4)  
TA  
TJ  
Tstg  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Section 7.4 is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) Continuous clamp current per pin is ±2 mA. Do not operate in this condition continuously as VDDIO/VDDA voltage may internally rise and  
impact other electrical specifications.  
(4) Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device  
life. For additional information, see Semiconductor and IC Package Thermal Metrics.  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.2 ESD Ratings – Commercial  
VALUE  
TMS320F28379S, TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, and TMS320F23874S in 337-ball ZWT package  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge (ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101 or ANSI/ESDA/JEDEC JS-002(2)  
TMS320F28379S, TMS320F28378S, TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, and  
TMS320F23874S in 176-pin PTP package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge (ESD)  
V
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101 or ANSI/ESDA/JEDEC JS-002(2)  
TMS320F28379S, TMS320F28378S, TMS320F28376S, and TMS320F23874S in 100-pin PZP package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge (ESD)  
Charged-device model (CDM), per JEDEC specification JESD22-  
C101 or ANSI/ESDA/JEDEC JS-002(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 ESD Ratings – Automotive  
VALUE  
UNIT  
TMS320F28377S and TMS320F28377S-Q1 in 337-ball ZWT package  
Human body model (HBM), per  
AEC Q100-002(1)  
All pins  
All pins  
±2000  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM),  
per AEC Q100-011  
±500  
±750  
V
Corner balls on 337-ball ZWT:  
A1, A19, W1, W19  
TMS320F28377S and TMS320F28377S-Q1 in 176-pin PTP package  
Human body model (HBM), per  
AEC Q100-002(1)  
All pins  
All pins  
±2000  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM),  
per AEC Q100-011  
±500  
±750  
V
V
Corner pins on 176-pin PTP:  
1, 44, 45, 88, 89, 132, 133, 176  
TMS320F28377S and TMS320F28377S-Q1 and TMS320F28375S in 100-pin PZP package  
Human body model (HBM), per  
AEC Q100-002(1)  
All pins  
±2000  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM),  
per AEC Q100-011  
All pins  
±500  
±750  
Corner pins on 100-pin PZP:  
1, 25, 26, 50, 51, 75, 76, 100  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.4 Recommended Operating Conditions  
MIN  
3.14  
1.14  
NOM  
3.3  
1.2  
0
MAX  
3.47  
1.26  
UNIT  
(1)  
Device supply voltage, I/O, VDDIO  
V
V
V
V
V
Device supply voltage, VDD  
Supply ground, VSS  
Analog supply voltage, VDDA  
Analog ground, VSSA  
T version  
3.14  
3.3  
0
3.47  
–40  
–40  
–40  
–40  
105  
125  
150  
125  
Junction temperature, TJ  
S version(2)  
°C  
°C  
Q version (AEC Q100 qualification)(2)  
Free-Air temperature, TA  
Q version (AEC Q100 qualification)  
(1) VDDIO, VDD3VFL, and VDDOSC should be maintained within 0.3 V of each other.  
(2) Operation above TJ = 105°C for extended duration will reduce the lifetime of the device. See Calculating Useful Lifetimes of Embedded  
Processors for more information.  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.5 Power Consumption Summary  
Current values listed in this section are representative for the test conditions given and not the absolute  
maximum possible. The actual device currents in an application will vary with application code and pin  
configurations. Section 7.5.1 shows the device current consumption at 200-MHz SYSCLK.  
7.5.1 Device Current Consumption at 200-MHz SYSCLK  
(1)  
IDD  
TYP(3)  
IDDIO  
TYP(3)  
IDDA  
TYP(3)  
IDD3VFL  
TYP(3)  
MODE  
TEST CONDITIONS  
MAX(2)  
MAX(2)  
MAX(2)  
MAX(2)  
Code is running out of RAM.(4)  
All I/O pins are left unconnected.  
Peripherals not active have their  
clocks disabled.  
Operational  
245 mA  
400 mA  
30 mA  
13 mA  
20 mA  
33 mA  
40 mA  
FLASH is read and in active state.  
XCLKOUT is enabled at SYSCLK/4.  
CPU1 is in IDLE mode.  
Flash is powered down.  
XCLKOUT is turned off.  
IDLE  
80 mA  
30 mA  
215 mA  
170 mA  
3 mA  
3 mA  
10 mA  
10 mA  
10 µA  
5 µA  
150 µA  
150 µA  
10 µA  
10 µA  
150 µA  
150 µA  
CPU1 is in STANDBY mode.  
Flash is powered down.  
XCLKOUT is turned off.  
STANDBY  
CPU1 watchdog is running.  
Flash is powered down.  
XCLKOUT is turned off.  
HALT  
1.5 mA  
300 µA  
120 mA  
5 mA  
750 µA  
750 µA  
2 mA  
2 mA  
5 µA  
5 µA  
150 µA  
75 µA  
10 µA  
1 µA  
150 µA  
50 µA  
CPU1.M0 and CPU1.M1 RAMs are  
in low-power data retention mode.  
HIBERNATE  
CPU1 is running from RAM.  
All I/O pins are left unconnected.  
Peripheral clocks are disabled.  
Flash  
154 mA  
230 mA  
3 mA  
10 mA  
10 µA  
150 µA  
45 mA  
55 mA  
Erase/Program(5)  
CPU1 is performing Flash Erase and  
Programming.  
XCLKOUT is turned off.  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) MAX: Vmax, 125°C  
(3) TYP: Vnom, 30°C  
(4) The following is executed in a loop on CPU1:  
All of the communication peripherals are exercised in loop-back mode: CAN-A to CAN-B; SPI-A to SPI-C; SCI-A to SCI-D; I2C-A to  
I2C-B; McBSP-A to McBSP-B; USB  
SDFM1 to SDFM4 active  
ePWM1 to ePWM12 generate 400-kHz PWM output on 24 pins  
CPU TIMERs active  
DMA does 32-bit burst transfers  
CLA1 does multiply-accumulate tasks  
All ADCs perform continuous conversion  
All DACs ramp voltage up/down at 150 kHz  
CMPSS1 to CMPSS8 active  
VCU does complex multiply/accumulate with parallel load  
TMU calculates a cosine  
FPU does multiply/accumulate with parallel load  
(5) Brownout events during flash programming can corrupt flash data. Programming environments using alternate power sources (such as  
a USB programmer) must be capable of supplying the rated current for the device and other system components with sufficient margin  
to avoid supply brownout conditions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.5.2 Current Consumption Graphs  
Figure 7-1 and Figure 7-2 are a typical representation of the relationship between frequency and current  
consumption/power on the device. The operational test from Section 7.5.1 was run across frequency at Vmax and  
high temperature. Actual results will vary based on the system implementation and conditions.  
0.5  
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
0.05  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200  
SYSCLK (MHz)  
VDD  
VDDIO  
VDDA  
VDD3VFL  
Figure 7-1. Operational Current Versus Frequency  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200  
SYSCLK (MHz)  
Power  
Figure 7-2. Power Versus Frequency  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Leakage current will increase with operating temperature in a nonlinear manner. The difference in VDD current  
between TYP and MAX conditions can be seen in Figure 7-3. The current consumption in HALT mode is  
primarily leakage current as there is no active switching if the internal oscillator has been powered down.  
Figure 7-3 shows the typical leakage current across temperature. The device was placed into HALT mode under  
nominal voltage conditions.  
Figure 7-3. IDD Leakage Current Versus Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.5.3 Reducing Current Consumption  
The F2837xS devices provide some methods to reduce the device current consumption:  
Any one of the four low-power modes—IDLE, STANDBY, HALT, and HIBERNATE—could be entered during  
idle periods in the application.  
The flash module may be powered down if the code is run from RAM.  
Disable the pullups on pins that assume an output function.  
Each peripheral has an individual clock-enable bit (PCLKCRx). Reduced current consumption may be  
achieved by turning off the clock to any peripheral that is not used in a given application. Table 7-1 indicates  
the typical current reduction that may be achieved by disabling the clocks using the PCLKCRx register.  
To realize the lowest VDDA current consumption in a low-power mode, see the respective analog chapter of  
the TMS320F2837xS Microcontrollers Technical Reference Manual to ensure each module is powered down  
as well.  
Table 7-1. Current on VDD Supply by Various  
Peripherals (at 200 MHz)  
PERIPHERAL  
MODULE(1) (2)  
IDD CURRENT  
REDUCTION (mA)  
ADC(3)  
3.3  
3.3  
1.4  
1.4  
0.3  
0.6  
2.9  
0.6  
2.9  
2.6  
4.5  
1.7  
1.7  
1.3  
1.6  
0.9  
2
CAN  
CLA  
CMPSS(3)  
CPUTIMER  
DAC(3)  
DMA  
eCAP  
EMIF1  
EMIF2  
ePWM1 to ePWM4(4)  
ePWM5 to ePWM12(4)  
HRPWM(4)  
I2C  
McBSP  
SCI  
SDFM  
SPI  
uPP  
0.5  
7.3  
23.8  
USB and AUXPLL at 60 MHz  
(1) At Vmax and 125°C.  
(2) All peripherals are disabled upon reset. Use the PCLKCRx  
register to individually enable peripherals. For peripherals with  
multiple instances, the current quoted is for a single module.  
(3) This number represents the current drawn by the digital portion  
of the ADC, CMPSS, and DAC modules.  
(4) The ePWM is at /2 of SYSCLK.  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.6 Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
TEST  
PARAMETER  
MIN  
TYP  
MAX UNIT  
CONDITIONS  
IOH = IOH MIN  
IOH = –100 μA  
IOL = IOL MAX  
IOL = 100 µA  
VDDIO * 0.8  
VDDIO – 0.2  
VOH  
High-level output voltage  
Low-level output voltage  
V
0.4  
V
0.2  
VOL  
IOH  
IOL  
High-level output source current for all output pins  
Low-level output sink current for all output pins  
GPIO0–GPIO7,  
–4  
mA  
4
mA  
GPIO42–GPIO43,  
GPIO46–GPIO47  
VDDIO * 0.7  
VDDIO + 0.3  
High-level input voltage  
(3.3 V)  
VIH  
V
All other pins  
2.0  
VDDIO + 0.3  
0.8  
VIL  
Low-level input voltage (3.3 V)  
Input hysteresis  
VSS – 0.3  
V
VHYSTERESIS  
150  
120  
mV  
Digital inputs with  
pulldown(1)  
VDDIO = 3.3 V  
VIN = VDDIO  
Ipulldown  
Ipullup  
Input current  
Input current  
µA  
µA  
Digital inputs with pullup VDDIO = 3.3 V  
150  
enabled(1)  
VIN = 0 V  
Pullups disabled  
0 V ≤ VIN ≤ VDDIO  
Digital  
2
Analog (except  
ADCINB0 or DACOUTx)  
2
ILEAK  
Pin leakage  
µA  
0 V ≤ VIN ≤ VDDA  
ADCINB0  
DACOUTx  
2
66  
2
11(2)  
CI  
Input capacitance  
pF  
V
VDDIO-POR  
VDDIO power-on reset voltage  
2.3  
(1) See Table 6-1 for a list of pins with a pullup or pulldown.  
(2) The MAX input leakage shown on ADCINB0 is at high temperature.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.7 Thermal Resistance Characteristics  
7.7.1 ZWT Package  
°C/W(1)  
8.3  
AIR FLOW (lfm)(2)  
JC  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
Junction-to-free air thermal resistance  
N/A  
N/A  
0
JB  
11.6  
21.5  
19.0  
17.8  
16.5  
0.2  
JA (High k PCB)  
150  
250  
500  
0
JMA  
Junction-to-moving air thermal resistance  
0.3  
150  
250  
500  
0
PsiJT  
Junction-to-package top  
0.4  
0.5  
11.4  
11.3  
11.2  
11.0  
150  
250  
500  
PsiJB  
Junction-to-board  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
7.7.2 PTP Package  
°C/W(1)  
6.97  
6.05  
17.8  
12.8  
11.4  
10.1  
0.11  
0.24  
0.33  
0.42  
6.1  
AIR FLOW (lfm)(2)  
JC  
Junction-to-case thermal resistance  
N/A  
N/A  
0
JB  
Junction-to-board thermal resistance  
Junction-to-free air thermal resistance  
JA (High k PCB)  
150  
250  
500  
0
JMA  
Junction-to-moving air thermal resistance  
150  
250  
500  
0
PsiJT  
Junction-to-package top  
5.5  
150  
250  
500  
PsiJB  
Junction-to-board  
5.4  
5.3  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
(2) lfm = linear feet per minute  
7.7.3 PZP Package  
°C/W(1)  
4.3  
AIR FLOW (lfm)(2)  
JC  
Junction-to-case thermal resistance  
N/A  
N/A  
0
JB  
Junction-to-board thermal resistance  
Junction-to-free air thermal resistance  
5.9  
JA (High k PCB)  
19.1  
14.3  
12.8  
11.4  
0.03  
0.09  
0.12  
0.20  
6.0  
150  
250  
500  
0
JMA  
Junction-to-moving air thermal resistance  
150  
250  
500  
0
PsiJT  
Junction-to-package top  
5.5  
150  
250  
500  
PsiJB  
Junction-to-board  
5.5  
5.3  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
7.8 Thermal Design Considerations  
Based on the end application design and operational profile, the IDD and IDDIO currents could vary. Systems that  
exceed the recommended maximum power dissipation in the end product may require additional thermal  
enhancements. Ambient temperature (TA) varies with the end application and product design. The critical factor  
that affects reliability and functionality is TJ, the junction temperature, not the ambient temperature. Hence, care  
should be taken to keep TJ within the specified limits. Tcase should be measured to estimate the operating  
junction temperature TJ. Tcase is normally measured at the center of the package top-side surface. The thermal  
application report Semiconductor and IC Package Thermal Metrics helps to understand the thermal metrics and  
definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.9 System  
7.9.1 Power Sequencing  
7.9.1.1 Signal Pin Requirements  
Before powering the device, no voltage larger than 0.3 V above VDDIO can be applied to any digital pin, and no  
voltage larger than 0.3 V above VDDA can be applied to any analog pin (including VREFHI).  
7.9.1.2 VDDIO, VDDA, VDD3VFL, and VDDOSC Requirements  
The 3.3-V supplies should be powered up together and kept within 0.3 V of each other during functional  
operation.  
7.9.1.3 VDD Requirements  
The internal VREG is not supported. The VREGENZ pin must be tied to VDDIO and an external source used to  
supply 1.2 V to VDD. During the ramp, VDD should be kept no more than 0.3 V above VDDIO  
.
VDDOSC and VDD must be powered on and off at the same time. VDDOSC should not be powered on when VDD is  
off. For applications not powering VDDOSC and VDD at the same time, see the "INTOSC: VDDOSC Powered  
Without VDD Can Cause INTOSC Frequency Drift" advisory in the TMS320F2837xS MCUs Silicon Errata .  
There is an internal 12.8-mA current source from VDD3VFL to VDD when the flash banks are active. When the  
flash banks are active and the device is in a low-activity state (for example, a low-power mode), this internal  
current source can cause VDD to rise to approximately 1.3 V. There will be zero current load to the external  
system VDD regulator while in this condition. This is not an issue for most regulators; however, if the system  
voltage regulator requires a minimum load for proper operation, then an external 82Ω resistor can be added to  
the board to ensure a minimal current load on VDD. See the "Low-Power Modes: Power Down Flash or Maintain  
Minimum Device Activity" advisory in the TMS320F2837xS MCUs Silicon Errata .  
7.9.1.4 Supply Ramp Rate  
The supplies should ramp to full rail within 10 ms. Section 7.9.1.4.1 shows the supply ramp rate.  
7.9.1.4.1 Supply Ramp Rate  
MIN  
MAX  
UNIT  
Supply ramp rate  
VDDIO, VDD, VDDA, VDD3VFL, VDDOSC with respect to VSS  
330  
105  
V/s  
7.9.1.5 Supply Supervision  
An internal power-on-reset (POR) circuit keeps the I/Os in a high-impedance state during power up. External  
supply voltage supervisors (SVS) can be used to monitor the voltage on the 3.3-V and 1.2-V rails and drive XRS  
low when supplies are outside operational specifications.  
Note  
If the supply voltage is held near the POR threshold, then the device may drive periodic resets onto  
the XRS pin.  
7.9.2 Reset Timing  
XRS is the device reset pin. It functions as an input and open-drain output. The device has a built-in power-on  
reset (POR). During power up, the POR circuit drives the XRS pin low. A watchdog or NMI watchdog reset also  
drives the pin low. An external circuit may drive the pin to assert a device reset.  
A resistor with a value from 2.2 kΩ to 10 kΩ should be placed between XRS and VDDIO. A capacitor should be  
placed between XRS and VSS for noise filtering; the capacitance should be 100 nF or smaller. These values will  
allow the watchdog to properly drive the XRS pin to VOL within 512 OSCCLK cycles when the watchdog reset is  
asserted. Figure 7-4 shows the recommended reset circuit.  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
VDDIO  
2.2 kW – 10 kW  
XRS  
£100 nF  
Figure 7-4. Reset Circuit  
7.9.2.1 Reset Sources  
The following reset sources exist on this device: XRS, WDRS, NMIWDRS, SYSRS, SCCRESET, and  
HIBRESET. See the Reset Signals table in the System Control chapter of the TMS320F2837xS Microcontrollers  
Technical Reference Manual .  
The parameter th(boot-mode) must account for a reset initiated from any of these sources.  
CAUTION  
Some reset sources are internally driven by the device. Some of these sources will drive XRS low.  
Use this to disable any other devices driving the boot pins. The SCCRESET and debugger reset  
sources do not drive XRS; therefore, the pins used for boot mode should not be actively driven by  
other devices in the system. The boot configuration has a provision for changing the boot pins in  
OTP; for more details, see the TMS320F2837xS Microcontrollers Technical Reference Manual .  
7.9.2.2 Reset Electrical Data and Timing  
Section 7.9.2.2.1 shows the reset ( XRS) timing requirements. Section 7.9.2.2.2 shows the reset ( XRS)  
switching characteristics. Figure 7-5 shows the power-on reset. Figure 7-6 shows the warm reset.  
7.9.2.2.1 Reset ( XRS) Timing Requirements  
MIN  
1.5  
MAX  
UNIT  
th(boot-mode)  
Hold time for boot-mode pins  
ms  
All cases  
3.2  
Pulse duration, XRS low on  
warm reset  
tw(RSL2)  
µs  
Low-power modes used in  
application and SYSCLKDIV > 16  
3.2 * (SYSCLKDIV/16)  
7.9.2.2.2 Reset ( XRS) Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
100  
MAX  
UNIT  
Pulse duration, XRS driven low by device after supplies are  
tw(RSL1)  
tw(WDRS)  
µs  
stable  
Pulse duration, reset pulse generated by watchdog  
512tc(OSCCLK)  
cycles  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
VDDIO, VDDA  
(3.3 V)  
VDD (1.2 V)  
t
w(RSL1)  
XRS(A)  
Boot ROM  
CPU  
Execution  
Phase  
User-code  
(B)  
h(boot-mode)  
t
User-code dependent  
Boot-Mode  
Pins  
GPIO pins as input  
Boot-ROM execution starts  
Peripheral/GPIO function  
Based on boot code  
GPIO pins as input (pullups are disabled)  
I/O Pins  
User-code dependent  
A. The XRS pin can be driven externally by a supervisor or an external pullup resistor, see Section 6.2.1.  
B. After reset from any source (see Section 7.9.2.1), the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode  
pin, the boot code branches to destination memory or boot code function. If boot ROM code executes after power-on conditions (in  
debugger environment), the boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based on user  
environment and could be with or without PLL enabled.  
Figure 7-5. Power-on Reset  
t
w(RSL2)  
XRS  
User Code  
CPU  
Execution  
Phase  
User Code  
Boot ROM  
Boot-ROM execution starts  
(initiated by any reset source)  
(A)  
t
h(boot-mode)  
Boot-Mode  
Pins  
Peripheral/GPIO Function  
User-Code Dependent  
GPIO Pins as Input  
Peripheral/GPIO Function  
User-Code Execution Starts  
I/O Pins  
GPIO Pins as Input (Pullups are Disabled)  
User-Code Dependent  
A. After reset from any source (see Section 7.9.2.1), the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode  
pin, the boot code branches to destination memory or boot code function. If Boot ROM code executes after power-on conditions (in  
debugger environment), the Boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based on user  
environment and could be with or without PLL enabled.  
Figure 7-6. Warm Reset  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.9.3 Clock Specifications  
7.9.3.1 Clock Sources  
Table 7-2 lists four possible clock sources. Figure 7-7 provides an overview of the device's clocking system.  
Table 7-2. Possible Reference Clock Sources  
CLOCK SOURCE  
MODULES CLOCKED  
COMMENTS  
INTOSC1  
Can be used to provide clock for:  
Internal oscillator 1.  
Zero-pin overhead 10-MHz internal oscillator.  
Watchdog block  
Main PLL  
CPU-Timer 2  
INTOSC2(1)  
Can be used to provide clock for:  
Internal oscillator 2.  
Zero-pin overhead 10-MHz internal oscillator.  
Main PLL  
Auxiliary PLL  
CPU-Timer 2  
XTAL  
Can be used to provide clock for:  
External crystal or resonator connected between the X1 and X2 pins  
or single-ended clock connected to the X1 pin.  
Main PLL  
Auxiliary PLL  
CPU-Timer 2  
AUXCLKIN  
Can be used to provide clock for:  
Single-ended 3.3-V level clock source. GPIO133/AUXCLKIN pin  
should be used to provide the input clock.  
Auxiliary PLL  
CPU-Timer 2  
(1) On reset, internal oscillator 2 (INTOSC2) is the default clock source for both system PLL (OSCCLK) and auxiliary PLL (AUXOSCCLK).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
INTOSC1  
WDCLK  
To watchdog timer  
CLKSRCCTL1  
SYSPLLCTL1  
SYSCLKDIVSEL  
INTOSC2  
X1(XTAL)  
SYSCLK  
Divider  
To GS RAMs, GPIOs,  
and NMIWDs  
OSCCLK  
PLLSYSCLK  
System PLL  
PLLRAWCLK  
SYSCLK  
CPU  
CPU1.CPUCLK  
CPU1.SYSCLK  
To local memories  
To ePIEs, LS RAMs,  
CLA message RAMs,  
and DCSMs  
One per SYSCLK peripheral  
PCLKCRx  
PERx.SYSCLK  
To peripherals  
One per LSPCLK peripheral  
PCLKCRx  
LOSPCP  
To SCIs, SPIs, and  
McBSPs  
PERx.LSPCLK  
LSP  
Divider  
LSPCLK  
One per ePWM  
PCLKCRx  
EPWMCLKDIV  
/1  
To ePWMs  
EPWMCLK  
PLLSYSCLK  
/2  
HRPWM  
PCLKCRx  
To HRPWMs  
HRPWMCLK  
One per CAN module  
CLKSRCCTL2  
CAN Bit Clock  
To CANs  
AUXCLKIN  
CLKSRCCTL2  
AUXPLLCTL1  
AUXCLKDIVSEL  
AUXCLK  
Divider  
AUXOSCCLK  
AUXPLLCLK  
To USB bit clock  
Auxiliary PLL  
AUXPLLRAWCLK  
Figure 7-7. Clocking System  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.9.3.2 Clock Frequencies, Requirements, and Characteristics  
This section provides the frequencies and timing requirements of the input clocks, PLL lock times, frequencies of  
the internal clocks, and the frequency and switching characteristics of the output clock.  
7.9.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times  
Section 7.9.3.2.1.1 shows the frequency requirements for the input clocks. Table 7-3 shows the crystal  
equivalent series resistance requirements. Section 7.9.3.2.1.2 shows the X1 input level characteristics when  
using an external clock source. Section 7.9.3.2.1.3 and Section 7.9.3.2.1.4 show the timing requirements for the  
input clocks. Section 7.9.3.2.1.5 shows the PLL lock times for the Main PLL and the USB PLL.  
7.9.3.2.1.1 Input Clock Frequency  
MIN  
10  
2
MAX UNIT  
20 MHz  
25 MHz  
60 MHz  
f(XTAL)  
f(X1)  
Frequency, X1/X2, from external crystal or resonator  
Frequency, X1, from external oscillator  
f(AUXI)  
Frequency, AUXCLKIN, from external oscillator  
2
7.9.3.2.1.2 X1 Input Level Characteristics When Using an External Clock Source (Not a Crystal)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
Valid low-level input voltage  
Valid high-level input voltage  
MIN  
–0.3  
MAX  
UNIT  
V
X1 VIL  
X1 VIH  
0.3 * VDDIO  
VDDIO + 0.3  
0.7 * VDDIO  
V
7.9.3.2.1.3 X1 Timing Requirements  
MIN  
MAX UNIT  
tf(X1)  
Fall time, X1  
6
6
ns  
ns  
tr(X1)  
Rise time, X1  
tw(X1L)  
tw(X1H)  
Pulse duration, X1 low as a percentage of tc(X1)  
Pulse duration, X1 high as a percentage of tc(X1)  
45%  
45%  
55%  
55%  
7.9.3.2.1.4 AUXCLKIN Timing Requirements  
MIN  
MAX UNIT  
tf(AUXI)  
Fall time, AUXCLKIN  
6
6
ns  
ns  
tr(AUXI)  
tw(AUXL)  
tw(AUXH)  
Rise time, AUXCLKIN  
Pulse duration, AUXCLKIN low as a percentage of tc(XCI)  
Pulse duration, AUXCLKIN high as a percentage of tc(XCI)  
45%  
45%  
55%  
55%  
7.9.3.2.1.5 PLL Lock Times  
MIN  
NOM  
MAX UNIT  
(1)  
t(PLL)  
t(USB)  
Lock time, Main PLL (X1, from external oscillator)  
Lock time, USB PLL (AUXCLKIN, from external oscillator)  
50 µs + 2500 * tc(OSCCLK)  
50 µs + 2500 * tc(OSCCLK)  
µs  
µs  
(1)  
(1) The PLL lock time here defines the typical time of execution for the PLL workaround as defined in the TMS320F2837xS MCUs Silicon  
Errata . Cycle count includes code execution of the PLL initialization routine, which could vary depending on compiler optimizations  
and flash wait states. TI recommends using the latest example software from C2000Ware for initializing the PLLs. For the system PLL,  
see InitSysPll() or SysCtl_setClock(). For the auxillary PLL, see InitAuxPll() or SysCtl_setAuxClock().  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.3.2.2 Internal Clock Frequencies  
Section 7.9.3.2.2.1 provides the clock frequencies for the internal clocks.  
7.9.3.2.2.1 Internal Clock Frequencies  
MIN  
NOM  
MAX  
200(2)  
500  
UNIT  
MHz  
ns  
f(SYSCLK)  
Frequency, device (system) clock  
Period, device (system) clock  
2
tc(SYSCLK)  
5(2)  
Frequency, system PLL output (before SYSCLK  
divider)  
f(PLLRAWCLK)  
120  
120  
400  
400  
MHz  
MHz  
Frequency, auxiliary PLL output (before AUXCLK  
divider)  
f(AUXPLLRAWCLK)  
f(AUXPLL)  
f(PLL)  
Frequency, AUXPLLCLK  
Frequency, PLLSYSCLK  
Frequency, LSPCLK  
Period, LSPCLK  
2
2
60  
60  
200(2)  
200(2)  
500  
MHz  
MHz  
MHz  
ns  
f(LSP)  
2
tc(LSPCLK)  
5(2)  
Frequency, OSCCLK (INTOSC1 or INTOSC2 or  
XTAL or X1)  
f(OSCCLK)  
See respective clock  
MHz  
f(EPWM)  
Frequency, EPWMCLK(1)  
100  
100  
MHz  
MHz  
f(HRPWM)  
Frequency, HRPWMCLK  
60  
(1) For SYSCLK above 100 MHz, the EPWMCLK must be half of SYSCLK.  
(2) Using an external clock source. If INTOSC1 or INTOSC2 is used as the clock source, then the maximum frequency is 194 MHz and  
the minimum period is 5.15 ns.  
7.9.3.2.3 Output Clock Frequency and Switching Characteristics  
Section 7.9.3.2.3.1 provides the frequency of the output clock. Section 7.9.3.2.3.2 shows the switching  
characteristics of the output clock, XCLKOUT.  
7.9.3.2.3.1 Output Clock Frequency  
MIN  
MAX UNIT  
f(XCO)  
Frequency, XCLKOUT  
50 MHz  
7.9.3.2.3.2 XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER(1) (2)  
MIN  
MAX  
UNIT  
ns  
tf(XCO)  
Fall time, XCLKOUT  
5
5
tr(XCO)  
Rise time, XCLKOUT  
ns  
tw(XCOL)  
tw(XCOH)  
Pulse duration, XCLKOUT low  
Pulse duration, XCLKOUT high  
H – 2  
H – 2  
H + 2  
H + 2  
ns  
ns  
(1) A load of 40 pF is assumed for these parameters.  
(2) H = 0.5tc(XCO)  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.9.3.3 Input Clocks and PLLs  
In addition to the internal 0-pin oscillators, multiple external clock source options are available. Figure 7-8 shows  
the recommended methods of connecting crystals, resonators, and oscillators to pins X1/X2 (also referred to as  
XTAL) and AUXCLKIN.  
X1  
X2  
X1  
X2  
v
v
ssosc  
ssosc  
RESONATOR  
CRYSTAL  
R
C
C
L1  
D
L2  
X1  
X2  
GPIO133/AUXCLKIN  
v
ssosc  
NC  
3.3V  
VDD  
CLK  
3.3V  
VDD  
CLK  
OUT  
GND  
OUT  
GND  
3.3V OSCILLATOR  
3.3V OSCILLATOR  
Figure 7-8. Connecting Input Clocks to a 2837xS Device  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.3.4 Crystal Oscillator  
When using a quartz crystal, it may be necessary to include a damping resistor (RD) in the crystal circuit to  
prevent over-driving the crystal (drive level can be found in the crystal data sheet). In higher-frequency  
applications (10 MHz or greater), RD is generally not required. If a damping resistor is required, RD should be as  
small as possible because the size of the resistance affects start-up time (smaller RD = faster start-up time). TI  
recommends that the crystal manufacturer characterize the crystal with the application board. Section 7.9.3.4.1  
shows the crystal oscillator parameters. Table 7-3 shows the crystal equivalent series resistance (ESR)  
requirements. Section 7.9.3.4.2 shows the crystal oscillator electrical characteristics.  
7.9.3.4.1 Crystal Oscillator Parameters  
MIN  
MAX UNIT  
CL1, CL2  
C0  
Load capacitance  
12  
24  
7
pF  
pF  
Crystal shunt capacitance  
Table 7-3. Crystal Equivalent Series Resistance (ESR) Requirements  
CRYSTAL FREQUENCY (MHz)  
MAXIMUM ESR (Ω)  
(CL1 = CL2 = 12 pF)  
MAXIMUM ESR (Ω)  
(CL1 = CL2 = 24 pF)  
(1) (2)  
10  
12  
14  
16  
18  
20  
55  
50  
50  
45  
45  
45  
110  
95  
90  
75  
65  
50  
(1) Crystal shunt capacitance (C0) should be less than or equal to 7 pF.  
(2) ESR = Negative Resistance/3  
7.9.3.4.2 Crystal Oscillator Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ms  
f = 20 MHz  
ESR MAX = 50 Ω  
CL1 = CL2 = 24 pF  
C0 = 7 pF  
Start-up time(1)  
2
Crystal drive level (DL)  
1
mW  
(1) Start-up time is dependent on the crystal and tank circuit components. TI recommends that the crystal vendor characterize the  
application with the chosen crystal.  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.9.3.5 Internal Oscillators  
To reduce production board costs and application development time, all F2837xS devices contain two  
independent internal oscillators, referred to as INTOSC1 and INTOSC2. By default, both oscillators are enabled  
at power up. INTOSC2 is set as the source for the system reference clock (OSCCLK) and INTOSC1 is set as the  
backup clock source. INTOSC1 can also be manually configured as the system reference clock (OSCCLK).  
Section 7.9.3.5.1 provides the electrical characteristics of the internal oscillators to determine if this module  
meets the clocking requirements of the application.  
Section 7.9.3.5.1 provides the electrical characteristics of the two internal oscillators.  
Note  
This oscillator cannot be used as the PLL source if the PLLSYSCLK is configured to frequencies  
above 194 MHz.  
7.9.3.5.1 Internal Oscillator Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
10.0  
MAX UNIT  
f(INTOSC)  
Frequency, INTOSC1 and INTOSC2  
Frequency stability at room temperature  
Frequency stability over VDD  
Frequency stability  
9.7  
10.3  
MHz  
µs  
30°C, Nominal VDD  
30°C  
±0.1%  
±0.2%  
f(INTOSC-STABILITY)  
–3.0%  
3.0%  
20  
f(INTOSC-ST)  
Start-up and settling time  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.4 Flash Parameters  
The on-chip flash memory is tightly integrated to the CPU, allowing code execution directly from flash through  
128-bit-wide prefetch reads and a pipeline buffer. Flash performance for sequential code is equal to execution  
from RAM. Factoring in discontinuities, most applications will run with an efficiency of approximately 80% relative  
to code executing from RAM. This flash efficiency lets designers realize a 2× improvement in performance when  
migrating from the previous generation of MCUs. Note that an extra wait state is automatically added when code  
is fetched or data is read from Bank 1 (compared to that of Bank 0), even for prefetched data.  
This device also has an OTP (One-Time-Programmable) sector used for the dual code security module (DCSM),  
which cannot be erased after it is programmed.  
Table 7-4 shows the minimum required flash wait states at different frequencies. Section 7.9.4.1 shows the flash  
parameters.  
Table 7-4. Flash Wait States  
CPUCLK (MHz)  
MINIMUM WAIT STATES (1)  
EXTERNAL OSCILLATOR OR CRYSTAL  
150 < CPUCLK ≤ 200  
INTOSC1 OR INTOSC2  
145 < CPUCLK ≤ 194  
97 < CPUCLK ≤ 145  
48 < CPUCLK ≤ 97  
CPUCLK ≤ 48  
3
2
1
0
100 < CPUCLK ≤ 150  
50 < CPUCLK ≤ 100  
CPUCLK ≤ 50  
(1) Minimum required FRDCNTL[RWAIT].  
7.9.4.1 Flash Parameters  
PARAMETER  
MIN  
TYP  
MAX  
300  
UNIT  
µs  
128 data bits + 16 ECC bits  
40  
90  
Program Time(1)  
8KW sector  
32KW sector  
8KW sector  
32KW sector  
8KW sector  
32KW sector  
180  
ms  
360  
25  
720  
ms  
50  
Erase Time(2) at < 25 cycles  
Erase Time(2) at 20k cycles  
ms  
ms  
30  
55  
105  
110  
4000  
4000  
20000  
Nwec  
Write/erase cycles  
cycles  
years  
tretention  
Data retention duration at TJ = 85°C  
20  
(1) Program time is at the maximum device frequency. Program time includes overhead of the flash state machine but does not include  
the time to transfer the following into RAM:  
Code that uses flash API to program the flash  
Flash API itself  
Flash data to be programmed  
In other words, the time indicated in this table is applicable after all the required code/data is available in the device RAM, ready for  
programming. The transfer time will significantly vary depending on the speed of the JTAG debug probe used.  
Program time calculation is based on programming 144 bits at a time at the specified operating frequency. Program time includes  
Program verify by the CPU. The program time does not degrade with write/erase (W/E) cycling, but the erase time does.  
Erase time includes Erase verify by the CPU and does not involve any data transfer.  
(2) Erase time includes Erase verify by the CPU.  
Note  
The Main Array flash programming must be aligned to 64-bit address boundaries and each 64-bit  
word may only be programmed once per write/erase cycle. For more details, see the "Flash: Minimum  
Programming Word Size" advisory in the TMS320F2837xS MCUs Silicon Errata .  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.9.5 Emulation/JTAG  
The JTAG port has five dedicated pins: TRST, TMS, TDI, TDO, and TCK. The TRST signal should always be  
pulled down through a 2.2-kΩ pulldown resistor on the board. This MCU does not support the EMU0 and EMU1  
signals that are present on 14-pin and 20-pin emulation headers. These signals should always be pulled up at  
the emulation header through a pair of board pullup resistors ranging from 2.2 kΩ to 4.7 kΩ (depending on the  
drive strength of the debugger ports). Typically, a 2.2-kΩ value is used.  
See Figure 7-9 to see how the 14-pin JTAG header connects to the MCU’s JTAG port signals. Figure 7-10 shows  
how to connect to the 20-pin header. The 20-pin JTAG header terminals EMU2, EMU3, and EMU4 are not used  
and should be grounded.  
The PD (Power Detect) terminal of the JTAG debug probe header should be connected to the board 3.3-V  
supply. Header GND terminals should be connected to board ground. TDIS (Cable Disconnect Sense) should  
also be connected to board ground. The JTAG clock should be looped from the header TCK output terminal back  
to the RTCK input terminal of the header (to sense clock continuity by the JTAG debug probe). Header terminal  
RESET is an open-drain output from the JTAG debug probe header that enables board components to be reset  
through JTAG debug probe commands (available only through the 20-pin header).  
Typically, no buffers are needed on the JTAG signals when the distance between the MCU target and the JTAG  
header is smaller than 6 inches (15.24 cm), and no other devices are present on the JTAG chain. Otherwise,  
each signal should be buffered. Additionally, for most JTAG debug probe operations at 10 MHz, no series  
resistors are needed on the JTAG signals. However, if high emulation speeds are expected (35 MHz or so), 22-Ω  
resistors should be placed in series on each JTAG signal.  
For more information about hardware breakpoints and watchpoints, see Hardware Breakpoints and Watchpoints  
for C28x in CCS.  
For more information about JTAG emulation, see the XDS Target Connection Guide.  
Distance between the header and the target  
should be less than 6 inches (15.24 cm).  
2.2 kW  
TRST  
TMS  
TDI  
GND  
2
1
3
TMS  
TDI  
TRST  
TDIS  
KEY  
4
GND  
100 W  
MCU  
5
6
3.3 V  
PD  
7
8
TDO  
TCK  
TDO  
RTCK  
TCK  
GND  
GND  
GND  
EMU1  
9
10  
12  
14  
11  
13  
4.7 kW  
4.7 kW  
3.3 V  
EMU0  
3.3 V  
Figure 7-9. Connecting to the 14-Pin JTAG Header  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
Distance between the header and the target  
should be less than 6 inches (15.24 cm).  
2.2 kW  
TRST  
GND  
GND  
2
1
TMS  
TMS  
TDI  
TRST  
TDIS  
3
4
TDI  
100 W  
MCU  
5
7
6
3.3V  
PD  
KEY  
8
TDO  
TCK  
TDO  
GND  
GND  
GND  
EMU1  
GND  
EMU3  
GND  
9
10  
12  
14  
16  
18  
20  
RTCK  
TCK  
11  
13  
15  
17  
19  
4.7 kW  
4.7 kW  
3.3 V  
EMU0  
RESET  
EMU2  
EMU4  
3.3 V  
open  
drain  
A low pulse from the JTAG debug probe  
can be tied with other reset sources  
to reset the board.  
GND  
GND  
Figure 7-10. Connecting to the 20-Pin JTAG Header  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.9.5.1 JTAG Electrical Data and Timing  
Section 7.9.5.1.1 lists the JTAG timing requirements. Section 7.9.5.1.2 lists the JTAG switching characteristics.  
Figure 7-11 shows the JTAG timing.  
7.9.5.1.1 JTAG Timing Requirements  
NO.  
1
MIN  
66.66  
26.66  
26.66  
13  
MAX  
UNIT  
ns  
tc(TCK)  
Cycle time, TCK  
1a  
1b  
tw(TCKH)  
Pulse duration, TCK high (40% of tc)  
Pulse duration, TCK low (40% of tc)  
Input setup time, TDI valid to TCK high  
Input setup time, TMS valid to TCK high  
Input hold time, TDI valid from TCK high  
Input hold time, TMS valid from TCK high  
ns  
tw(TCKL)  
ns  
tsu(TDI-TCKH)  
tsu(TMS-TCKH)  
th(TCKH-TDI)  
th(TCKH-TMS)  
ns  
3
4
13  
ns  
7
ns  
7
ns  
7.9.5.1.2 JTAG Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
2
td(TCKL-TDO)  
Delay time, TCK low to TDO valid  
6
25  
ns  
1
1a  
1b  
TCK  
2
TDO  
3
4
TDI/TMS  
Figure 7-11. JTAG Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.6 GPIO Electrical Data and Timing  
The peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. On reset, GPIO pins  
are configured as inputs. For specific inputs, the user can also select the number of input qualification cycles to  
filter unwanted noise glitches.  
The GPIO module contains an Output X-BAR which allows an assortment of internal signals to be routed to a  
GPIO in the GPIO mux positions denoted as OUTPUTXBARx. The GPIO module also contains an Input X-BAR  
which is used to route signals from any GPIO input to different IP blocks such as the ADC(s), eCAP(s),  
ePWM(s), and external interrupts. For more details, see the X-BAR chapter in the TMS320F2837xS  
Microcontrollers Technical Reference Manual .  
7.9.6.1 GPIO - Output Timing  
Section 7.9.6.1.1 shows the general-purpose output switching characteristics. Figure 7-12 shows the general-  
purpose output timing.  
7.9.6.1.1 General-Purpose Output Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
8(1)  
8(1)  
25  
UNIT  
ns  
tr(GPO)  
tf(GPO)  
tfGPO  
Rise time, GPIO switching low to high  
All GPIOs  
All GPIOs  
Fall time, GPIO switching high to low  
Toggling frequency, GPO pins  
ns  
MHz  
(1) Rise time and fall time vary with load. These values assume a 40-pF load.  
GPIO  
tr(GPO)  
tf(GPO)  
Figure 7-12. General-Purpose Output Timing  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.9.6.2 GPIO - Input Timing  
Section 7.9.6.2.1 shows the general-purpose input timing requirements. Figure 7-13 shows the sampling mode.  
7.9.6.2.1 General-Purpose Input Timing Requirements  
MIN  
1tc(SYSCLK)  
MAX  
UNIT  
cycles  
cycles  
cycles  
cycles  
cycles  
QUALPRD = 0  
QUALPRD ≠ 0  
tw(SP)  
Sampling period  
2tc(SYSCLK) * QUALPRD  
tw(SP) * (n(1) – 1)  
tw(IQSW)  
Input qualifier sampling window  
Pulse duration, GPIO low/high  
Synchronous mode  
With input qualifier  
2tc(SYSCLK)  
(2)  
tw(GPI)  
tw(IQSW) + tw(SP) + 1tc(SYSCLK)  
(1) "n" represents the number of qualification samples as defined by GPxQSELn register.  
(2) For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal.  
(A)  
GPIO Signal  
GPxQSELn = 1,0 (6 samples)  
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
tw(SP)  
Sampling Period determined  
by GPxCTRL[QUALPRD](B)  
tw(IQSW)  
(SYSCLK cycle * 2 * QUALPRD) * 5(C)  
Sampling Window  
SYSCLK  
QUALPRD = 1  
(SYSCLK/2)  
(D)  
Output From  
Qualifier  
A. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It can vary from 00 to  
0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLK cycle. For any other value "n", the qualification sampling period in 2n  
SYSCLK cycles (that is, at every 2n SYSCLK cycles, the GPIO pin will be sampled).  
B. The qualification period selected through the GPxCTRL register applies to groups of 8 GPIO pins.  
C. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is used.  
D. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLK cycles or greater. In other words,  
the inputs should be stable for (5 x QUALPRD x 2) SYSCLK cycles. This would ensure 5 sampling periods for detection to occur.  
Because external signals are driven asynchronously, an 13-SYSCLK-wide pulse ensures reliable recognition.  
Figure 7-13. Sampling Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.6.3 Sampling Window Width for Input Signals  
The following section summarizes the sampling window width for input signals for various input qualifier  
configurations.  
Sampling frequency denotes how often a signal is sampled with respect to SYSCLK.  
Sampling frequency = SYSCLK/(2 ´ QUALPRD), if QUALPRD ¹ 0  
(1)  
Sampling frequency = SYSCLK, if QUALPRD = 0  
(2)  
Sampling period = SYSCLK cycle ´ 2 ´ QUALPRD, if QUALPRD ¹ 0  
(3)  
In Equation 1, Equation 2, and Equation 3, SYSCLK cycle indicates the time period of SYSCLK.  
Sampling period = SYSCLK cycle, if QUALPRD = 0  
In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of the  
signal. This is determined by the value written to GPxQSELn register.  
Case 1:  
Qualification using 3 samples  
Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 2, if QUALPRD ≠ 0  
Sampling window width = (SYSCLK cycle) × 2, if QUALPRD = 0  
Case 2:  
Qualification using 6 samples  
Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 5, if QUALPRD ≠ 0  
Sampling window width = (SYSCLK cycle) × 5, if QUALPRD = 0  
Figure 7-14 shows the general-purpose input timing.  
SYSCLK  
GPIOxn  
tw(GPI)  
Figure 7-14. General-Purpose Input Timing  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.9.7 Interrupts  
Figure 7-15 provides a high-level view of the interrupt architecture.  
As shown in Figure 7-15, the devices support five external interrupts (XINT1 to XINT5) that can be mapped onto  
any of the GPIO pins.  
In this device, 16 ePIE block interrupts are grouped into 1 CPU interrupt. In total, there are 12 CPU interrupt  
groups, with 16 interrupts per group.  
CPU1.TINT0  
CPU1.TIMER0  
CPU1.LPMINT  
LPM Logic  
CPU1.WAKEINT  
CPU1.WD  
NMI  
CPU1.NMIWD  
CPU1.WDINT  
CPU1  
INPUTXBAR4  
CPU1.XINT1 Control  
CPU1.XINT2 Control  
CPU1.XINT3 Control  
CPU1.XINT4 Control  
CPU1.XINT5 Control  
GPIO0  
GPIO1  
...  
...  
GPIOx  
INPUTXBAR5  
INPUTXBAR6  
INPUTXBAR13  
INPUTXBAR14  
INT1  
to  
INT12  
Input  
X-BAR  
CPU1.  
ePIE  
CPU1.TINT1  
CPU1.TINT2  
CPU1.TIMER1  
CPU1.TIMER2  
INT13  
INT14  
Peripherals  
Figure 7-15. External and ePIE Interrupt Sources  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.7.1 External Interrupt (XINT) Electrical Data and Timing  
Section 7.9.7.1.1 lists the external interrupt timing requirements. Section 7.9.7.1.2 lists the external interrupt  
switching characteristics. Figure 7-16 shows the external interrupt timing.  
7.9.7.1.1 External Interrupt Timing Requirements  
MIN  
2tc(SYSCLK)  
MAX UNIT(1)  
cycles  
Synchronous  
With qualifier  
tw(INT)  
Pulse duration, INT input low/high  
tw(IQSW) + tw(SP) + 1tc(SYSCLK)  
cycles  
(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.  
7.9.7.1.2 External Interrupt Switching Characteristics  
over recommended operating conditions (unless otherwise noted)(1)  
PARAMETER  
MIN  
MAX  
UNIT  
td(INT) Delay time, INT low/high to interrupt-vector fetch(2)  
tw(IQSW) + 14tc(SYSCLK)  
tw(IQSW) + tw(SP) + 14tc(SYSCLK) cycles  
(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.  
(2) This assumes that the ISR is in a single-cycle memory.  
tw(INT)  
XINT1, XINT2, XINT3,  
XINT4, XINT5  
td(INT)  
Address bus  
(internal)  
Interrupt Vector  
Figure 7-16. External Interrupt Timing  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.9.8 Low-Power Modes  
This device has three clock-gating low-power modes and a special power-gating mode.  
Further details, as well as the entry and exit procedure, for all of the low-power modes can be found in the Low  
Power Modes section of the TMS320F2837xS Microcontrollers Technical Reference Manual .  
7.9.8.1 Clock-Gating Low-Power Modes  
IDLE, STANDBY, and HALT modes on this device are similar to those on other C28x devices. Table 7-5  
describes the effect on the system when any of the clock-gating low-power modes are entered.  
Table 7-5. Effect of Clock-Gating Low-Power Modes on the Device  
MODULES/  
CLOCK DOMAIN  
CPU1 IDLE  
CPU1 STANDBY  
HALT  
CPU1.CLKIN  
Active  
Active  
Gated  
Active  
Gated  
Gated  
Gated  
Gated  
Gated  
Gated  
Gated  
Gated  
CPU1.SYSCLK  
CPU1.CPUCLK  
Clock to modules Connected to  
PERx.SYSCLK  
CPU1.WDCLK  
AUXPLLCLK  
PLL  
Active  
Active  
Active  
Active  
Gated if CLKSRCCTL1.WDHALTI = 0  
Gated  
Powered  
Powered  
Software must power down PLL before entering  
HALT  
INTOSC1  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered down if CLKSRCCTL1.WDHALTI = 0  
Powered down if CLKSRCCTL1.WDHALTI = 0  
Software-Controlled  
INTOSC2  
Flash  
X1/X2 Crystal Oscillator  
Powered-Down  
7.9.8.2 Power-Gating Low-Power Modes  
HIBERNATE mode is the lowest power mode on this device. It is a global low-power mode that gates the supply  
voltages to most of the system. HIBERNATE is essentially a controlled power-down with remote wakeup  
capability, and can be used to save power during long periods of inactivity. Table 7-6 describes the effects on the  
system when the HIBERNATE mode is entered.  
Table 7-6. Effect of Power-Gating Low-Power Mode on the Device  
MODULES/POWER DOMAINS  
HIBERNATE  
M0 and M1 memories  
Remain on with memory retention if LPMCR.M0M1MODE = 0x00  
Are off when LPMCR.M0M1MODE = 0x01  
CPU1 digital peripherals  
Dx, LSx, GSx memories  
I/Os  
Powered down  
Power down, memory contents are lost  
On with output state preserved  
Enters Low-Power Mode  
Oscillators, PLL, analog  
peripherals, Flash  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.8.3 Low-Power Mode Wakeup Timing  
Section 7.9.8.3.1 shows the IDLE mode timing requirements, Section 7.9.8.3.2 shows the switching  
characteristics, and Figure 7-17 shows the timing diagram for IDLE mode.  
7.9.8.3.1 IDLE Mode Timing Requirements  
MIN  
2tc(SYSCLK)  
MAX  
UNIT(1)  
Without input qualifier  
With input qualifier  
tw(WAKE)  
Pulse duration, external wake-up signal  
cycles  
2tc(SYSCLK) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.  
7.9.8.3.2 IDLE Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Delay time, external wake signal to program execution resume (2)  
Wakeup from Flash  
Flash module in active state  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
40tc(SYSCLK)  
40tc(SYSCLK) + tw(WAKE)  
(3)  
td(WAKE-IDLE)  
Wakeup from Flash  
Flash module in sleep state  
6700tc(SYSCLK)  
cycles  
6700tc(SYSCLK) (3) + tw(WAKE)  
25tc(SYSCLK)  
Wakeup from RAM  
25tc(SYSCLK) + tw(WAKE)  
(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.  
(2) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up signal) involves additional latency.  
(3) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and  
FPAC1[PSLEEP]. For more information, see the Flash and OTP Power-Down Modes and Wakeup section of the TMS320F2837xS  
Microcontrollers Technical Reference Manual . This value can be realized when SYSCLK is 200 MHz, RWAIT is 3, and  
FPAC1[PSLEEP] is 0x860.  
td(WAKE-IDLE)  
Address/Data  
(internal)  
XCLKOUT  
tw(WAKE)  
WAKE(A)  
A. WAKE can be any enabled interrupt, WDINT or XRS. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is  
needed before the wake-up signal could be asserted.  
Figure 7-17. IDLE Entry and Exit Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Section 7.9.8.3.3 shows the STANDBY mode timing requirements, Section 7.9.8.3.4 shows the switching  
characteristics, and Figure 7-18 shows the timing diagram for STANDBY mode.  
7.9.8.3.3 STANDBY Mode Timing Requirements  
MIN  
MAX  
UNIT  
QUALSTDBY = 0 | 2tc(OSCCLK)  
QUALSTDBY > 0 |  
3tc(OSCCLK)  
Pulse duration, external  
wake-up signal  
tw(WAKE-INT)  
cycles  
(2 + QUALSTDBY) * tc(OSCCLK)  
(1)  
(2 + QUALSTDBY)tc(OSCCLK)  
(1) QUALSTDBY is a 6-bit field in the LPMCR register.  
7.9.8.3.4 STANDBY Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Delay time, IDLE instruction executed to  
XCLKOUT stop  
td(IDLE-XCOS)  
16tc(INTOSC1)  
cycles  
Delay time, external wake signal to  
program execution resume(1)  
Wakeup from flash  
Flash module in active state  
175tc(SYSCLK) + tw(WAKE-INT)  
td(WAKE-STBY)  
cycles  
Wakeup from flash  
Flash module in sleep state  
6700tc(SYSCLK) (2) + tw(WAKE-  
INT)  
3tc(OSC) + 15tc(SYSCLK)  
+
Wakeup from RAM  
tw(WAKE-INT)  
(1) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up signal) involves additional latency.  
(2) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and  
FPAC1[PSLEEP]. For more information, see the Flash and OTP Power-Down Modes and Wakeup section of the TMS320F2837xS  
Microcontrollers Technical Reference Manual . This value can be realized when SYSCLK is 200 MHz, RWAIT is 3, and  
FPAC1[PSLEEP] is 0x860.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
(C)  
(F)  
(A)  
(B)  
(D)(E)  
(G)  
Normal Execution  
Device  
Status  
STANDBY  
STANDBY  
Flushing Pipeline  
Wake-up  
Signal  
tw(WAKE-INT)  
td(WAKE-STBY)  
OSCCLK  
XCLKOUT  
td(IDLE-XCOS)  
A. IDLE instruction is executed to put the device into STANDBY mode.  
B. The LPM block responds to the STANDBY signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being turned off.  
This delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in STANDBY mode. After  
the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.  
D. The external wake-up signal is driven active.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal  
must be free of glitches. If a noisy signal is fed to a GPIO pin, the wakeup behavior of the device will not be deterministic and the device  
may not exit low-power mode for subsequent wakeup pulses.  
F. After a latency period, the STANDBY mode is exited.  
G. Normal execution resumes. The device will respond to the interrupt (if enabled).  
Figure 7-18. STANDBY Entry and Exit Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Section 7.9.8.3.5 shows the HALT mode timing requirements, Section 7.9.8.3.6 shows the switching  
characteristics, and Figure 7-19 shows the timing diagram for HALT mode.  
7.9.8.3.5 HALT Mode Timing Requirements  
MIN  
toscst + 2tc(OSCCLK)  
toscst + 8tc(OSCCLK)  
MAX  
UNIT  
cycles  
cycles  
tw(WAKE-GPIO)  
tw(WAKE-XRS)  
Pulse duration, GPIO wake-up signal(1)  
Pulse duration, XRS wake-up signal(1)  
(1) For applications using X1/X2 for OSCCLK, the user must characterize their specific oscillator start-up time as it is dependent on circuit/  
layout external to the device. See Section 7.9.3.4.2 for more information. For applications using INTOSC1 or INTOSC2 for OSCCLK,  
see Section 7.9.3.5 for toscst. Oscillator start-up time does not apply to applications using a single-ended crystal on the X1 pin, as it is  
powered externally to the device.  
7.9.8.3.6 HALT Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
td(IDLE-XCOS)  
Delay time, IDLE instruction executed to XCLKOUT stop  
16tc(INTOSC1)  
cycles  
Delay time, external wake signal end to CPU1 program  
execution resume  
Wakeup from flash  
Flash module in active state  
75tc(OSCCLK)  
td(WAKE-HALT)  
cycles  
Wakeup from flash  
Flash module in sleep state  
(1)  
17500tc(OSCCLK)  
Wakeup from RAM  
75tc(OSCCLK)  
(1) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and  
FPAC1[PSLEEP]. For more information, see the Flash and OTP Power-Down Modes and Wakeup section of the TMS320F2837xS  
Microcontrollers Technical Reference Manual . This value can be realized when SYSCLK is 200 MHz, RWAIT is 3, and  
FPAC1[PSLEEP] is 0x860.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
(C)  
(F)  
(A)  
(B)  
(D)(E)  
HALT  
(G)  
Device  
Status  
HALT  
Flushing Pipeline  
Normal  
Execution  
GPIOn  
td(WAKE-HALT)  
tw(WAKE-GPIO)  
OSCCLK  
Oscillator Start-up Time  
XCLKOUT  
td(IDLE-XCOS)  
A. IDLE instruction is executed to put the device into HALT mode.  
B. The LPM block responds to the HALT signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being turned off. This  
delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as the clock source,  
the internal oscillator is shut down as well. The device is now in HALT mode and consumes very little power. It is possible to keep the  
zero-pin internal oscillators (INTOSC1 and INTOSC2) and the watchdog alive in HALT MODE. This is done by writing a 1 to  
CLKSRCCTL1.WDHALTI. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-  
up signal could be asserted.  
D. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator wakeup sequence  
is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This enables the provision of a clean clock signal  
during the PLL lock sequence. Because the falling edge of the GPIO pin asynchronously begins the wakeup procedure, care should be  
taken to maintain a low noise environment prior to entering and during HALT mode.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal  
must be free of glitches. If a noisy signal is fed to a GPIO pin, the wakeup behavior of the device will not be deterministic and the device  
may not exit low-power mode for subsequent wakeup pulses.  
F. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after some latency. The HALT mode is now  
exited.  
G. Normal operation resumes.  
H. The user must relock the PLL upon HALT wakeup to ensure a stable PLL lock.  
Figure 7-19. HALT Entry and Exit Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Section 7.9.8.3.7 shows the HIBERNATE mode timing requirements, Section 7.9.8.3.8 shows the switching  
characteristics, and Figure 7-20 shows the timing diagram for HIBERNATE mode.  
7.9.8.3.7 HIBERNATE Mode Timing Requirements  
MIN  
40  
MAX  
UNIT  
µs  
tw(HIBWAKE)  
tw(WAKEXRS)  
Pulse duration, HIBWAKE signal  
Pulse duration, XRS wake-up signal  
40  
µs  
7.9.8.3.8 HIBERNATE Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
30tc(SYSCLK)  
1.5  
UNIT  
cycles  
ms  
td(IDLE-XCOS)  
td(WAKE-HIB)  
Delay time, IDLE instruction executed to XCLKOUT stop  
Delay time, external wake signal to lORestore function start  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
(C)  
(D)  
(A)  
(B)  
(F)  
(G)(H)  
(I)(J)  
(E)  
CPU1 IDLE  
Instruction  
CPU1 HIB  
config  
Device Status Device Active  
IoRestore() or Application Specific Operation  
CPU1 Boot ROM  
HIBERNATE  
Td(WAKE-HIB)  
GPIOHIBWAKEn,  
XRSn  
tw(HIBWAKEn),  
tw(XRSn)  
I/O Isolation  
Bypassed &  
Powered-Down  
Application SpecificOperation  
PLLs  
Enabled  
INTOSC1,INTOSC2,  
X1/X2  
Powering up  
On  
Powered Down  
On  
XCLKCOUT  
Inactive  
Application Specific Operation  
td(IDLE-XCOS)  
A. CPU1 does necessary application-specific context save to M0/M1 memories if required. This includes GPIO state if using I/O Isolation.  
Configures the LPMCR register of CPU1 for HIBERNATE mode. Powers down Flash Pump/Bank, USB-PHY, CMPSS, DAC, and ADC  
using their register configurations. The application should also power down the PLL and peripheral clocks before entering HIBERNATE.  
B. IDLE instruction is executed to put the device into HIBERNATE mode.  
C. The device is now in HIBERNATE mode. If configured, I/O isolation is turned on, M0 and M1 memories are retained. CPU1 is powered  
down. Digital peripherals are powered down. The oscillators, PLLs, analog peripherals, and Flash are in their software-controlled Low-  
Power modes. Dx, LSx, and GSx memories are also powered down, and their memory contents lost.  
D. A falling edge on the GPIOHIBWAKEn pin will drive the wakeup of the devices clock sources INTOSC1, INTOSC2, and X1/X2 OSC. The  
wakeup source must keep the GPIOHIBWAKEn pin low long enough to ensure full power-up of these clock sources.  
E. After the clock sources are powered up, the GPIOHIBWAKEn must be driven high to trigger the wakeup sequence of the remainder of  
the device.  
F. The BootROM will then begin to execute. The BootROM can distinguish a HIBERNATE wakeup by reading the CPU1.REC.HIBRESETn  
bit. After the TI OTP trims are loaded, the BootROM code will branch to the user-defined IoRestore function if it has been configured.  
G. At this point, the device is out of HIBERNATE mode, and the application may continue.  
H. The IoRestore function is a user-defined function where the application may reconfigure GPIO states, disable I/O isolation, reconfigure  
the PLL, restore peripheral configurations, or branch to application code. This is up to the application requirements.  
I. If the application has not branched to application code, the BootROM will continue after completing IoRestore. It will disable I/O isolation  
automatically if it was not taken care of inside of IoRestore.  
J. BootROM will then boot as determined by the HIBBOOTMODE register. Refer to the ROM Code and Peripheral Booting chapter of the  
TMS320F2837xS Microcontrollers Technical Reference Manual for more information.  
Figure 7-20. HIBERNATE Entry and Exit Timing Diagram  
Note  
1. If the IORESTOREADDR is configured as the default value, the BootROM will continue its  
execution to boot as determined by the HIBBOOTMODE register. Refer to the ROM Code and  
Peripheral Booting chapter of the TMS320F2837xS Microcontrollers Technical Reference Manual  
for more information.  
2. The user may choose to disable I/O Isolation at any point in the IoRestore function. Regardless if  
the user has disabled Isolation in the IoRestore function or if IoRestore is not defined, the  
BootROM will automatically disable isolation before booting as determined by the HIBBOOTMODE  
register.  
7.9.9 External Memory Interface (EMIF)  
The EMIF provides a means of connecting the CPU to various external storage devices like asynchronous  
memories (SRAM, NOR flash) or synchronous memory (SDRAM).  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.9.9.1 Asynchronous Memory Support  
The EMIF supports asynchronous memories:  
SRAMs  
NOR Flash memories  
There is an external wait input that allows slower asynchronous memories to extend the memory access. The  
EMIF module supports up to three chip selects ( EMIF_CS[4:2]). Each chip select has the following individually  
programmable attributes:  
Data bus width  
Read cycle timings: setup, hold, strobe  
Write cycle timings: setup, hold, strobe  
Bus turnaround time  
Extended wait option with programmable time-out  
Select strobe option  
7.9.9.2 Synchronous DRAM Support  
The EMIF memory controller is compliant with the JESD21-C SDR SDRAMs that use a 32-bit or 16-bit data bus.  
The EMIF has a single SDRAM chip select ( EMIF_CS[0]).  
The address space of the EMIF, for the synchronous memory (SDRAM), lies beyond the 22-bit range of the  
program address bus and can only be accessed through the data bus, which places a restriction on the C  
compiler being able to work effectively on data in this space. Therefore, when using SDRAM, the user is advised  
to copy data (using the DMA) from external memory to RAM before working on it. See the examples in  
C2000Ware (C2000Ware for C2000 MCUs ) and the TMS320F2837xS Microcontrollers Technical Reference  
Manual .  
SDRAM configurations supported are:  
One-bank, two-bank, and four-bank SDRAM devices  
Devices with 8-, 9-, 10-, and 11-column addresses  
CAS latency of two or three clock cycles  
16-bit/32-bit data bus width  
3.3-V LVCMOS interface  
Additionally, the EMIF supports placing the SDRAM in self-refresh and power-down modes. Self-refresh mode  
allows the SDRAM to be put in a low-power state while still retaining memory contents because the SDRAM will  
continue to refresh itself even without clocks from the microcontroller. Power-down mode achieves even lower  
power, except the microcontroller must periodically wake up and issue refreshes if data retention is required. The  
EMIF module does not support mobile SDRAM devices.  
On this device, the EMIF does not support burst access for SDRAM configurations. This means every access to  
an external SDRAM device will have CAS latency.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.9.3 EMIF Electrical Data and Timing  
7.9.9.3.1 Asynchronous RAM  
Section 7.9.9.3.1.1 shows the EMIF asynchronous memory timing requirements. Section 7.9.9.3.1.2 shows the  
EMIF asynchronous memory switching characteristics. Figure 7-21 through Figure 7-24 show the EMIF  
asynchronous memory timing diagrams.  
7.9.9.3.1.1 EMIF Asynchronous Memory Timing Requirements  
NO.(1)  
MIN  
MAX  
UNIT  
Reads and Writes  
E
EMIF clock period  
tc(SYSCLK)  
2E  
ns  
ns  
Pulse duration, EMxWAIT assertion and  
deassertion  
2
tw(EM_WAIT)  
Reads  
12  
13  
tsu(EMDV-EMOEH)  
th(EMOEH-EMDIV)  
Setup time, EMxD[y:0] valid before EMxOE high  
Hold time, EMxD[y:0] valid after EMxOE high  
15  
0
ns  
ns  
Setup Time, EMxWAIT asserted before end of  
Strobe Phase(2)  
14  
tsu(EMOEL-EMWAIT)  
4E+20  
ns  
Writes  
Setup Time, EMxWAIT asserted before end of  
Strobe Phase(2)  
28  
tsu(EMWEL-EMWAIT)  
4E+20  
ns  
(1) E = EMxCLK period in ns.  
(2) Setup before end of STROBE phase (if no extended wait states are inserted) by which EMxWAIT must be asserted to add extended  
wait states. Figure 7-22 and Figure 7-24 describe EMIF transactions that include extended wait states inserted during the STROBE  
phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where  
the HOLD phase would begin if there were no extended wait cycles.  
7.9.9.3.1.2 EMIF Asynchronous Memory Switching Characteristics  
NO.(1)  
PARAMETER  
MIN  
MAX UNIT  
(2) (3)  
Reads and Writes  
Reads  
1
td(TURNAROUND)  
Turn around time  
(TA)*E–3  
(TA)*E+2  
ns  
EMIF read cycle time (EW = 0)  
EMIF read cycle time (EW = 1)  
(RS+RST+RH)*E–3  
(RS+RST+RH)*E+2  
ns  
ns  
3
4
tc(EMRCYCLE)  
(RS+RST+RH+  
(EWC*16))*E–3  
(RS+RST+RH+  
(EWC*16))*E+2  
Output setup time, EMxCS[y:2] low  
to EMxOE low (SS = 0)  
(RS)*E–3  
–3  
(RS)*E+2  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tsu(EMCEL-EMOEL)  
Output setup time, EMxCS[y:2] low  
to EMxOE low (SS = 1)  
Output hold time, EMxOE high to  
EMxCS[y:2] high (SS = 0)  
(RH)*E–3  
–3  
(RH)*E  
0
5
th(EMOEH-EMCEH)  
Output hold time, EMxOE high to  
EMxCS[y:2] high (SS = 1)  
Output setup time, EMxBA[y:0]  
valid to EMxOE low  
6
7
8
9
tsu(EMBAV-EMOEL)  
th(EMOEH-EMBAIV)  
tsu(EMAV-EMOEL)  
th(EMOEH-EMAIV)  
(RS)*E–3  
(RH)*E–3  
(RS)*E–3  
(RH)*E–3  
(RS)*E+2  
(RH)*E  
(RS)*E+2  
(RH)*E  
Output hold time, EMxOE high to  
EMxBA[y:0] invalid  
Output setup time, EMxA[y:0] valid  
to EMxOE low  
Output hold time, EMxOE high to  
EMxA[y:0] invalid  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
NO.(1)  
PARAMETER  
MIN  
MAX UNIT  
(2) (3)  
EMxOE active low width (EW = 0)  
EMxOE active low width (EW = 1)  
(RST)*E–1  
(RST)*E+1  
ns  
ns  
10  
tw(EMOEL)  
(RST+(EWC*16))*E–1  
(RST+(EWC*16))*E+1  
5E+15  
Delay time from EMxWAIT  
deasserted to EMxOE high  
11  
29  
30  
td(EMWAITH-EMOEH)  
tsu(EMDQMV-EMOEL)  
th(EMOEH-EMDQMIV)  
4E+10  
(RS)*E–3  
(RH)*E–3  
ns  
ns  
ns  
Output setup time, EMxDQM[y:0]  
valid to EMxOE low  
(RS)*E+2  
(RH)*E  
Output hold time, EMxOE high to  
EMxDQM[y:0] invalid  
Writes  
EMIF write cycle time (EW = 0)  
EMIF write cycle time (EW = 1)  
(WS+WST+WH)*E–3  
(WS+WST+WH)*E+1  
ns  
ns  
15  
16  
tc(EMWCYCLE)  
(WS+WST+WH+  
(EWC*16))*E–3  
(WS+WST+WH+  
(EWC*16))*E+1  
Output setup time, EMxCS[y:2] low  
to EMxWE low (SS = 0)  
(WS)*E–3  
–3  
(WS)*E+1  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tsu(EMCEL-EMWEL)  
Output setup time, EMxCS[y:2] low  
to EMxWE low (SS = 1)  
Output hold time, EMxWE high to  
EMxCS[y:2] high (SS = 0)  
(WH)*E–3  
–3  
(WH)*E  
17  
th(EMWEH-EMCEH)  
Output hold time, EMxWE high to  
EMxCS[y:2] high (SS = 1)  
0
Output setup time, EMxDQM[y:0]  
valid to EMxWE low  
18  
19  
20  
21  
22  
23  
tsu(EMDQMV-EMWEL)  
th(EMWEH-EMDQMIV)  
tsu(EMBAV-EMWEL)  
th(EMWEH-EMBAIV)  
tsu(EMAV-EMWEL)  
th(EMWEH-EMAIV)  
(WS)*E–3  
(WH)*E–3  
(WS)*E–3  
(WH)*E–3  
(WS)*E–3  
(WH)*E–3  
(WST)*E–1  
(WST+(EWC*16))*E–1  
4E+10  
(WS)*E+1  
(WH)*E  
Output hold time, EMxWE high to  
EMxDQM[y:0] invalid  
Output setup time, EMxBA[y:0]  
valid to EMxWE low  
(WS)*E+1  
(WH)*E  
Output hold time, EMxWE high to  
EMxBA[y:0] invalid  
Output setup time, EMxA[y:0] valid  
to EMxWE low  
(WS)*E+1  
(WH)*E  
Output hold time, EMxWE high to  
EMxA[y:0] invalid  
EMxWE active low width  
(EW = 0)  
(WST)*E+1  
(WST+(EWC*16))*E+1  
5E+15  
24  
tw(EMWEL)  
EMxWE active low width  
(EW = 1)  
Delay time from EMxWAIT  
deasserted to EMxWE high  
25  
26  
27  
td(EMWAITH-EMWEH)  
tsu(EMDV-EMWEL)  
th(EMWEH-EMDIV)  
Output setup time, EMxD[y:0] valid  
to EMxWE low  
(WS)*E–3  
(WH)*E–3  
(WS)*E+1  
(WH)*E  
Output hold time, EMxWE high to  
EMxD[y:0] invalid  
(1) TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold,  
MEWC = Maximum external wait cycles. These parameters are programmed through the Asynchronous Bank and Asynchronous Wait  
Cycle Configuration Registers. These support the following ranges of values: TA[4–1], RS[16–1], RST[64–4], RH[8–1], WS[16–1],  
WST[64–1], WH[8–1], and MEWC[1–256]. See the TMS320F2837xS Microcontrollers Technical Reference Manual for more  
information.  
(2) E = EMxCLK period in ns.  
(3) EWC = external wait cycles determined by EMxWAIT input signal. EWC supports the following range of values. EWC[256–1]. The  
maximum wait time before time-out is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. See the  
TMS320F2837xS Microcontrollers Technical Reference Manual for more information.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
3
1
EMxCS[y:2]  
EMxBA[y:0]  
EMxA[y:0]  
EMxDQM[y:0]  
4
8
5
9
6
7
29  
30  
10  
EMxOE  
13  
12  
EMxD[y:0]  
EMxWE  
Figure 7-21. Asynchronous Memory Read Timing  
Extended Due to EMxWAIT  
SETUP  
STROBE  
STROBE HOLD  
EMxCS[y:2]  
EMxBA[y:0]  
EMxA[y:0]  
EMxD[y:0]  
14  
11  
EMxOE  
2
2
EMxWAIT  
Asserted  
Deasserted  
Figure 7-22. EMxWAIT Read Timing Requirements  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
15  
1
EMxCS[y:2]  
EMxBA[y:0]  
EMxA[y:0]  
EMxDQM[y:0]  
16  
18  
20  
22  
17  
19  
21  
24  
23  
EMxWE  
EMxD[y:0]  
EMxOE  
27  
26  
Figure 7-23. Asynchronous Memory Write Timing  
Extended Due to EMxWAIT  
SETUP  
STROBE  
STROBE HOLD  
EMxCS[y:2]  
EMxBA[y:0]  
EMxA[y:0]  
EMxD[y:0]  
28  
25  
EMxWE  
2
2
EMxWAIT  
Asserted  
Deasserted  
Figure 7-24. EMxWAIT Write Timing Requirements  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.9.3.2 Synchronous RAM  
Section 7.9.9.3.2.1 shows the EMIF synchronous memory timing requirements. Section 7.9.9.3.2.2 shows the  
EMIF synchronous memory switching characteristics. Figure 7-25 and Figure 7-26 show the synchronous  
memory timing diagrams.  
7.9.9.3.2.1 EMIF Synchronous Memory Timing Requirements  
NO.  
19  
MIN  
2
MAX UNIT  
tsu(EMIFDV-EM_CLKH)  
th(CLKH-DIV)  
Input setup time, read data valid on EMxD[y:0] before EMxCLK rising  
Input hold time, read data valid on EMxD[y:0] after EMxCLK rising  
ns  
ns  
20  
1.5  
7.9.9.3.2.2 EMIF Synchronous Memory Switching Characteristics  
NO.  
1
PARAMETER  
MIN  
10  
3
MAX UNIT  
tc(CLK)  
Cycle time, EMIF clock EMxCLK  
ns  
ns  
2
tw(CLK)  
Pulse width, EMIF clock EMxCLK high or low  
Delay time, EMxCLK rising to EMxCS[y:2] valid  
Output hold time, EMxCLK rising to EMxCS[y:2] invalid  
Delay time, EMxCLK rising to EMxDQM[y:0] valid  
Output hold time, EMxCLK rising to EMxDQM[y:0] invalid  
Delay time, EMxCLK rising to EMxA[y:0] and EMxBA[y:0] valid  
Output hold time, EMxCLK rising to EMxA[y:0] and EMxBA[y:0] invalid  
Delay time, EMxCLK rising to EMxD[y:0] valid  
Output hold time, EMxCLK rising to EMxD[y:0] invalid  
Delay time, EMxCLK rising to EMxRAS valid  
3
td(CLKH-CSV)  
toh(CLKH-CSIV)  
td(CLKH-DQMV)  
toh(CLKH-DQMIV)  
td(CLKH-AV)  
8
8
8
8
8
8
8
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
1
1
1
1
1
1
1
1
5
6
7
8
toh(CLKH-AIV)  
td(CLKH-DV)  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
toh(CLKH-DIV)  
td(CLKH-RASV)  
toh(CLKH-RASIV)  
td(CLKH-CASV)  
toh(CLKH-CASIV)  
td(CLKH-WEV)  
toh(CLKH-WEIV)  
td(CLKH-DHZ)  
toh(CLKH-DLZ)  
Output hold time, EMxCLK rising to EMxRAS invalid  
Delay time, EMxCLK rising to EMxCAS valid  
Output hold time, EMxCLK rising to EMxCAS invalid  
Delay time, EMxCLK rising to EMxWE valid  
Output hold time, EMxCLK rising to EMxWE invalid  
Delay time, EMxCLK rising to EMxD[y:0] tri-stated  
Output hold time, EMxCLK rising to EMxD[y:0] driving  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
BASIC SDRAM  
1
READ OPERATION  
2
2
EMxCLK  
4
3
5
7
7
EMxCS[y:2]  
EMxDQM[y:0]  
EMxBA[y:0]  
EMxA[y:0]  
6
8
8
19  
20  
2 EM_CLK Delay  
18  
17  
EMxD[y:0]  
EMxRAS  
11  
12  
13  
14  
EMxCAS  
EMxWE  
Figure 7-25. Basic SDRAM Read Operation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
1
BASIC SDRAM  
WRITE OPERATION  
2
2
EMxCLK  
EMxCS[y:2]  
EMxDQM[y:0]  
EMxBA[y:0]  
EMxA[y:0]  
3
5
7
7
4
6
8
8
9
10  
EMxD[y:0]  
EMxRAS  
EMxCAS  
EMxWE  
11  
12  
13  
15  
16  
Figure 7-26. Basic SDRAM Write Operation  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.10 Analog Peripherals  
The analog subsystem module is described in this section.  
The analog modules on this device include the ADC, temperature sensor, buffered DAC, and CMPSS.  
The analog subsystem has the following features:  
Flexible voltage references  
– The ADCs are referenced to VREFHIx and VREFLOx pins.  
VREFHIx pin voltage must be driven in externally.  
The buffered DACs are referenced to VREFHIx and VSSA  
– Alternately, these DACs can be referenced to the VDAC pin and VSSA  
The comparator DACs are referenced to VDDA and VSSA  
– Alternately, these DACs can be referenced to the VDAC pin and VSSA  
Flexible pin usage  
.
.
.
.
– Buffered DAC and comparator subsystem functions multiplexed with ADC inputs  
Internal connection to VREFLO on all ADCs for offset self-calibration  
Figure 7-27 shows the Analog Subsystem Block Diagram for the 337-ball ZWT package. Figure 7-28 shows the  
Analog Subsystem Block Diagram for the 176-pin PTP package. Figure 7-29 shows the Analog Subsystem  
Block Diagram for the 100-pin PZP package.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
VREFHIA  
VREFHIA  
VDAC  
Comparator Subsystem 1  
Digital  
DACOUTA/ADCINA0  
DACOUTB/ADCINA1  
CMPIN1P/ADCINA2  
CMPIN1N/ADCINA3  
CMPIN2P/ADCINA4  
CMPIN2N/ADCINA5  
0
1
2
3
4
5
6
7
8
REFHI  
CMPIN1P  
CTRIP1H  
DACREFSEL  
VDDA or VDAC  
Filter  
CTRIPOUT1H  
12-bit  
Buffered  
DAC  
DAC12  
DAC12  
ADC-A  
16-bits  
or  
12-bits  
(selectable)  
CTRIP1L  
Digital  
Filter  
CMPIN1N  
CMPIN2P  
CTRIPOUT1L  
VREFLOA  
VREFLOA  
VSSA  
9
10  
11  
12  
13  
14  
15  
Comparator Subsystem 2  
Digital  
VREFHIA  
VDAC  
CTRIP2H  
VDDA or VDAC  
Filter  
CTRIPOUT2H  
TEMP SENSOR  
CMPIN4P/ADCIN14  
CMPIN4N/ADCIN15  
DACREFSEL  
DAC12  
DAC12  
REFLO  
REFHI  
12-bit  
Buffered  
DAC  
CTRIP2L  
Digital  
Filter  
VREFLOA  
VREFHIB  
CMPIN2N  
CMPIN3P  
CTRIPOUT2L  
VSSA  
Comparator Subsystem 3  
Digital  
VDAC/ADCINB0  
DACOUTC/ADCINB1  
CMPIN3P/ADCINB2  
CMPIN3N/ADCINB3  
ADCINB4  
0
1
2
3
4
5
6
7
8
CTRIP3H  
VREFHIB VDAC  
DACREFSEL  
VDDA or VDAC  
Filter  
CTRIPOUT3H  
DAC12  
DAC12  
ADCINB5  
ADC-B  
16-bits  
or  
12-bits  
(selectable)  
CTRIP3L  
Digital  
Filter  
12-bit  
Buffered  
DAC  
CMPIN3N  
CMPIN4P  
CTRIPOUT3L  
VREFLOB  
VREFLOB  
9
10  
11  
12  
13  
14  
15  
Comparator Subsystem 4  
Digital  
VSSA  
CTRIP4H  
VDDA or VDAC  
Filter  
CTRIPOUT4H  
DAC12  
DAC12  
REFLO  
REFHI  
Digital  
Filter  
CTRIP4L  
VREFLOB  
VREFHIC  
CMPIN4N  
CMPIN5P  
CTRIPOUT4L  
Comparator Subsystem 5  
Digital  
0
1
CTRIP5H  
CMPIN6P/ADCINC2  
CMPIN6N/ADCINC3  
CMPIN5P/ADCINC4  
CMPIN5N/ADCINC5  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
VDDA or VDAC  
Filter  
CTRIPOUT5H  
DAC12  
DAC12  
ADC-C  
16-bits  
or  
12-bits  
(selectable)  
CTRIP5L  
Digital  
Filter  
CTRIPOUT5L  
CMPIN5N  
CMPIN6P  
VREFLOC  
VREFLOC  
Comparator Subsystem 6  
Digital  
CTRIP6H  
VDDA or VDAC  
Filter  
CTRIPOUT6H  
DAC12  
DAC12  
REFLO  
REFHI  
Digital  
Filter  
CTRIP6L  
VREFLOC  
VREFHID  
CTRIPOUT6L  
CMPIN6N  
CMPIN7P  
Comparator Subsystem 7  
Digital  
CMPIN7P/ADCIND0  
CMPIN7N/ADCIND1  
CMPIN8P/ADCIND2  
CMPIN8N/ADCIND3  
ADCIND4  
0
1
2
3
4
5
6
7
8
CTRIP7H  
VDDA or VDAC  
Filter  
CTRIPOUT7H  
DAC12  
DAC12  
ADCIND5  
ADC-D  
16-bits  
or  
12-bits  
(selectable)  
CTRIP7L  
Digital  
Filter  
CTRIPOUT7L  
CMPIN7N  
CMPIN8P  
VREFLOD  
VREFLOD  
9
10  
11  
12  
13  
14  
15  
Comparator Subsystem 8  
Digital  
CTRIP8H  
VDDA or VDAC  
Filter  
CTRIPOUT8H  
DAC12  
DAC12  
REFLO  
Digital  
Filter  
CTRIP8L  
VREFLOD  
CTRIPOUT8L  
CMPIN8N  
Figure 7-27. Analog Subsystem Block Diagram (337-Ball ZWT)  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
VREFHIA  
VREFHIA VDAC  
Comparator Subsystem 1  
DACOUTA/ADCINA0  
DACOUTB/ADCINA1  
CMPIN1P/ADCINA2  
CMPIN1N/ADCINA3  
CMPIN2P/ADCINA4  
CMPIN2N/ADCINA5  
0
1
2
3
4
5
6
7
8
REFHI  
CMPIN1P  
CTRIP1H  
Digital  
Filter  
DACREFSEL  
VDDA or VDAC  
CTRIPOUT1H  
12-bit  
Buffered  
DAC  
DAC12  
DAC12  
ADC-A  
16-bits  
or  
12-bits  
(selectable)  
CTRIP1L  
Digital  
Filter  
CMPIN1N  
CMPIN2P  
CTRIPOUT1L  
VREFLOA  
VREFLOA  
VSSA  
VSSA  
VSSA  
9
10  
11  
12  
13  
14  
15  
Comparator Subsystem 2  
Digital  
VREFHIA VDAC  
DACREFSEL  
CTRIP2H  
VDDA or VDAC  
Filter  
CTRIPOUT2H  
TEMP SENSOR  
CMPIN4P/ADCIN14  
CMPIN4N/ADCIN15  
DAC12  
DAC12  
REFLO  
REFHI  
12-bit  
Buffered  
DAC  
CTRIP2L  
Digital  
Filter  
VREFLOA  
VREFHIB  
CMPIN2N  
CMPIN3P  
CTRIPOUT2L  
Comparator Subsystem 3  
Digital  
VDAC/ADCINB0  
DACOUTC/ADCINB1  
CMPIN3P/ADCINB2  
CMPIN3N/ADCINB3  
0
1
2
3
4
5
6
7
8
CTRIP3H  
VREFHIB VDAC  
DACREFSEL  
VDDA or VDAC  
Filter  
CTRIPOUT3H  
DAC12  
DAC12  
ADC-B  
16-bits  
or  
12-bits  
(selectable)  
12-bit  
Buffered  
DAC  
CTRIP3L  
Digital  
Filter  
CMPIN3N  
CMPIN4P  
CTRIPOUT3L  
VREFLOB  
VREFLOB  
9
10  
11  
12  
13  
14  
15  
Comparator Subsystem 4  
Digital  
CTRIP4H  
VDDA or VDAC  
Filter  
CTRIPOUT4H  
DAC12  
DAC12  
REFLO  
REFHI  
Digital  
Filter  
CTRIP4L  
VREFLOB  
VREFHIC  
CMPIN4N  
CMPIN5P  
CTRIPOUT4L  
Comparator Subsystem 5  
Digital  
0
1
CTRIP5H  
CMPIN6P/ADCINC2  
CMPIN6N/ADCINC3  
CMPIN5P/ADCINC4  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
VDDA or VDAC  
Filter  
CTRIPOUT5H  
DAC12  
DAC12  
ADC-C  
16-bits  
or  
12-bits  
(selectable)  
CTRIP5L  
Digital  
Filter  
CTRIPOUT5L  
VREFLOC  
VREFLOC  
Comparator Subsystem 6  
Digital  
CMPIN6P  
CTRIP6H  
VDDA or VDAC  
Filter  
CTRIPOUT6H  
DAC12  
DAC12  
REFLO  
REFHI  
Digital  
Filter  
CTRIP6L  
VREFLOC  
VREFHID  
CTRIPOUT6L  
CMPIN6N  
CMPIN7P  
Comparator Subsystem 7  
Digital  
CMPIN7P/ADCIND0  
CMPIN7N/ADCIND1  
CMPIN8P/ADCIND2  
CMPIN8N/ADCIND3  
ADCIND4  
0
1
2
3
4
5
6
7
8
CTRIP7H  
VDDA or VDAC  
Filter  
CTRIPOUT7H  
DAC12  
DAC12  
ADC-D  
16-bits  
or  
12-bits  
(selectable)  
CTRIP7L  
Digital  
Filter  
CTRIPOUT7L  
CMPIN7N  
CMPIN8P  
VREFLOD  
VREFLOD  
9
10  
11  
12  
13  
14  
15  
Comparator Subsystem 8  
Digital  
CTRIP8H  
VDDA or VDAC  
Filter  
CTRIPOUT8H  
DAC12  
DAC12  
REFLO  
Digital  
Filter  
CTRIP8L  
VREFLOD  
CTRIPOUT8L  
CMPIN8N  
Figure 7-28. Analog Subsystem Block Diagram (176-Pin PTP)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
VREFHIA  
VREFHIA VDAC  
Comparator Subsystem 1  
Digital  
REFHI  
DACOUTA/ADCINA0  
DACOUTB/ADCINA1  
CMPIN1P/ADCINA2  
CMPIN1N/ADCINA3  
CMPIN2P/ADCINA4  
CMPIN2N/ADCINA5  
0
1
2
3
4
5
6
7
8
CMPIN1P  
CTRIP1H  
DACREFSEL  
VDDA or VDAC  
Filter  
CTRIPOUT1H  
12-bit  
Buffered  
DAC  
DAC12  
DAC12  
CTRIP1L  
Digital  
Filter  
ADC-A  
CMPIN1N  
CMPIN2P  
CTRIPOUT1L  
VREFLOA  
VREFLOA  
VSSA  
12-bits  
9
10  
11  
12  
13  
14  
15  
Comparator Subsystem 2  
Digital  
VREFHIA VDAC  
DACREFSEL  
CTRIP2H  
VDDA or VDAC  
Filter  
CTRIPOUT2H  
TEMP SENSOR  
CMPIN4P/ADCIN14  
CMPIN4N/ADCIN15  
DAC12  
DAC12  
12-bit  
Buffered  
DAC  
REFLO  
REFHI  
CTRIP2L  
Digital  
Filter  
VREFLOA  
VREFHIB  
CTRIPOUT2L  
CMPIN2N  
CMPIN3P  
VSSA  
Comparator Subsystem 3  
Digital  
VDAC/ADCINB0  
DACOUTC/ADCINB1  
CMPIN3P/ADCINB2  
CMPIN3N/ADCINB3  
ADCINB4  
0
1
2
3
4
5
6
7
8
VREFHIB  
VDAC  
CTRIP3H  
VDDA or VDAC  
Filter  
CTRIPOUT3H  
DACREFSEL  
DAC12  
DAC12  
ADCINB5  
12-bit  
Buffered  
DAC  
CTRIP3L  
Digital  
Filter  
ADC-B  
CMPIN3N  
CMPIN4P  
CTRIPOUT3L  
VREFLOB  
VREFLOB  
12-bits  
9
VSSA  
10  
11  
12  
13  
14  
15  
Comparator Subsystem 4  
Digital  
CTRIP4H  
VDDA or VDAC  
Filter  
CTRIPOUT4H  
DAC12  
DAC12  
REFLO  
Digital  
Filter  
CTRIP4L  
VREFLOB  
CTRIPOUT4L  
CMPIN4N  
Figure 7-29. Analog Subsystem Block Diagram (100-Pin PZP)  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.10.1 Analog-to-Digital Converter (ADC)  
The ADCs on this device are successive approximation (SAR) style ADCs with selectable resolution of either  
16 bits or 12 bits. There are multiple ADC modules which allow simultaneous sampling. The ADC wrapper is  
start-of-conversion (SOC) based [see the SOC Principle of Operation section of the TMS320F2837xS  
Microcontrollers Technical Reference Manual .  
Each ADC has the following features:  
Selectable resolution of 16 bits or 12 bits  
Ratiometric external reference set by VREFHI and VREFLO  
Differential signal conversions (16-bit mode only)  
Single-ended signal conversions (12-bit mode only)  
Input multiplexer with up to 16 channels (single-ended) or 8 channels (differential)  
16 configurable SOCs  
16 individually addressable result registers  
Multiple trigger sources  
– Software immediate start  
– All ePWMs  
– GPIO XINT2  
– CPU timers  
– ADCINT1 or 2  
Four flexible PIE interrupts  
Burst mode  
Four post-processing blocks, each with:  
– Saturating offset calibration  
– Error from setpoint calculation  
– High, low, and zero-crossing compare, with interrupt and ePWM trip capability  
– Trigger-to-sample delay capture  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 7-30 shows the ADC module block diagram.  
Analog to Digital Core  
Analog to Digital Wrapper Logic  
SIGNALMODE  
SIGNALMODE  
RESOLUTION  
RESOLUTION  
ADCSOC  
Input Circuit  
SOCx (0-15)  
CHSEL  
[15:0]  
[15:0]  
[15:0]  
SOC  
Arbitration  
& Control  
ACQPS  
CHSEL  
0
1
ADCIN0  
ADCIN1  
ADCIN2  
ADCIN3  
ADCIN4  
ADCIN5  
ADCIN6  
ADCIN7  
ADCIN8  
ADCIN9  
ADCIN10  
ADCIN11  
ADCIN12  
ADCIN13  
ADCIN14  
ADCIN15  
2
3
4
5
ADCCOUNTER  
6
TRIGGER[15:0]  
VIN+  
7
DOUT  
8
VIN-  
9
10  
11  
12  
13  
14  
15  
SOC Delay  
Timestamp  
Trigger  
Timestamp  
S/H Circuit  
Converter  
RESULT  
-
+
ADCPPBxOFFCAL  
S
saturate  
+
ADCPPBxOFFREF  
ADCPPBxRESULT  
-
S
ADCEVT  
VREFHI  
Event  
Logic  
CONFIG  
ADCEVTINT  
VREFLO  
Reference Voltage Levels  
Post Processing Block (1-4)  
Interrupt Block (1-4)  
ADCINT1-4  
Figure 7-30. ADC Module Block Diagram  
7.10.1.1 ADC Configurability  
Some ADC configurations are individually controlled by the SOCs, while others are controlled by each ADC  
module. Table 7-7 summarizes the basic ADC options and their level of configurability.  
Table 7-7. ADC Options and Configuration Levels  
OPTIONS  
CONFIGURABILITY  
By the module(1)  
Clock  
Resolution  
Signal mode  
By the module(1)  
By the module  
Reference voltage source  
Trigger source  
Not configurable (external reference only)  
By the SOC(1)  
Converted channel  
Acquisition window duration  
EOC location  
By the SOC  
By the SOC(1)  
By the module  
Burst mode  
By the module(1)  
(1) Writing these values differently to different ADC modules could cause the ADCs to operate  
asynchronously. For guidance on when the ADCs are operating synchronously or asynchronously,  
see the Ensuring Synchronous Operation section of the Analog-to-Digital Converter (ADC) chapter  
in the TMS320F2837xS Microcontrollers Technical Reference Manual .  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.10.1.1.1 Signal Mode  
The ADC supports two signal modes: single-ended and differential. In single-ended mode, the input voltage to  
the converter is sampled through a single pin (ADCINx), referenced to VREFLO. In differential signaling mode,  
the input voltage to the converter is sampled through a pair of input pins, one of which is the positive input  
(ADCINxP) and the other is the negative input (ADCINxN). The actual input voltage is the difference between the  
two (ADCINxP – ADCINxN). Figure 7-31 shows the differential signaling mode. Figure 7-32 shows the single-  
ended signaling mode.  
Pin Voltages  
VREFHI  
VREFHI  
ADCINxP  
VREFHI/2  
ADCINxN  
ADCINxP  
ADCINxN  
ADC  
VREFLO  
VREFLO  
(VSSA)  
Input Common Mode  
Effective Input Voltage  
Digital Output  
VREFHI  
Vin Common Mode  
VREFHI/2 50mV  
VREFLO  
(VSSA)  
+VREFHI  
ADC Vin  
0
-VREFHI  
2n - 1  
ADC Vin  
0
Figure 7-31. Differential Signaling Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
Pin Voltage  
VREFHI  
VREFHI  
ADCINx  
ADCINx  
ADC  
VREFHI/2  
VREFLO  
VREFLO  
(VSSA)  
Digital Output  
2n - 1  
ADC Vin  
0
Figure 7-32. Single-ended Signaling Mode  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.10.1.2 ADC Electrical Data and Timing  
Section 7.10.1.2.1 shows the ADC operating conditions for 16-bit differential mode. Section 7.10.1.2.2 shows the  
ADC characteristics for 16-bit differential mode. Section 7.10.1.2.3 shows the ADC operating conditions for 12-  
bit single-ended mode. Section 7.10.1.2.4 shows the ADC characteristics for 12-bit single-ended mode. Section  
7.10.1.2.5 shows the ADCEXTSOC timing requirements.  
7.10.1.2.1 ADC Operating Conditions (16-Bit Differential Mode)  
over recommended operating conditions (unless otherwise noted)  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
ADCCLK (derived from PERx.SYSCLK)  
5
320  
50  
Sample window duration (set by ACQPS and PERx.SYSCLK)(1)  
VREFHI  
2.4  
2.5 or 3.0  
0
VDDA  
VSSA  
V
VREFLO  
VSSA  
V
VREFHI – VREFLO  
2.4  
VDDA  
V
ADC input conversion range  
ADC input signal common mode voltage(2) (3)  
VREFLO  
VREFCM – 50  
VREFHI  
V
VREFCM  
VREFCM + 50  
mV  
(1) The sample window must also be at least as long as 1 ADCCLK cycle for correct ADC operation.  
(2) VREFCM = (VREFHI + VREFLO)/2  
(3) The VREFCM requirements will not be met if the negative ADC input pin is connected to VSSA or VREFLO  
.
Note  
The ADC inputs should be kept below VDDA + 0.3 V during operation. If an ADC input exceeds this  
level, the VREF internal to the device may be disturbed, which can impact results for other ADC or  
DAC inputs using the same VREF  
.
Note  
The VREFHI pin must be kept below VDDA + 0.3 V to ensure proper functional operation. If the VREFHI  
pin exceeds this level, a blocking circuit may activate, and the internal value of VREFHI may float to 0 V  
internally, giving improper ADC conversion or DAC output.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
UNIT  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.10.1.2.2 ADC Characteristics (16-Bit Differential Mode)  
over recommended operating conditions (unless otherwise noted)(6)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
ADC conversion cycles(1)  
29.6  
31 ADCCLKs  
Power-up time (after setting  
ADCPWDNZ to first conversion)  
500  
µs  
Gain error  
–64  
–16  
±9  
±9  
64  
16  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
dB  
Offset error(2)  
Channel-to-channel gain error  
Channel-to-channel offset error  
ADC-to-ADC gain error  
ADC-to-ADC offset error  
DNL(3)  
±6  
±3  
Identical VREFHI and VREFLO for all ADCs  
Identical VREFHI and VREFLO for all ADCs  
±6  
±3  
> –1  
–3  
±0.5  
±1.5  
87.6  
–93.5  
95.4  
86.6  
1
3
INL  
SNR(4) (11)  
VREFHI = 2.5 V, fin = 10 kHz  
VREFHI = 2.5 V, fin = 10 kHz  
VREFHI = 2.5 V, fin = 10 kHz  
VREFHI = 2.5 V, fin = 10 kHz  
THD(4) (11)  
dB  
SFDR(4) (11)  
dB  
SINAD(4) (11)  
dB  
VREFHI = 2.5 V, fin = 10 kHz,  
single ADC(7)  
14.1  
14.1  
VREFHI = 2.5 V, fin = 10 kHz,  
synchronous ADCs(8)  
ENOB(4) (11)  
bits  
VREFHI = 2.5 V, fin = 10 kHz,  
asynchronous ADCs(9)  
Not  
supported  
VDDA = 3.3-V DC + 200 mV  
DC up to Sine at 1 kHz  
PSRR  
PSRR  
77  
74  
dB  
dB  
VDDA = 3.3-V DC + 200 mV  
Sine at 800 kHz  
CMRR  
DC to 1 MHz  
60  
dB  
µA  
VREFHI input current  
190  
VREFHI = 2.5 V, synchronous ADCs(8)  
VREFHI = 2.5 V, asynchronous ADCs(9)  
–2  
2
ADC-to-ADC isolation(11) (5) (10)  
LSBs  
Not  
supported  
(1) See Section 7.10.1.2.7.  
(2) Difference from conversion result 32768 when ADCINp = ADCINn = VREFCM  
.
(3) No missing codes.  
(4) AC parameters will be impacted by clock source accuracy and jitter, this should be taken into account when selecting the clock source  
for the system. The clock source used for these parameters was a high-accuracy external clock fed through the PLL. The on-chip  
Internal Oscillator has higher jitter than an external crystal and these parameters will degrade if it is used as a clock source.  
(5) Maximum DC code deviation due to operation of multiple ADCs simultaneously.  
(6) Typical values are measured with VREFHI = 2.5 V and VREFLO = 0 V. Minimum and Maximum values are tested or characterized with  
VREFHI = 2.5 V and VREFLO = 0 V.  
(7) One ADC operating while all other ADCs are idle.  
(8) All ADCs operating with identical ADCCLK, S+H durations, triggers, and resolution.  
(9) Any ADCs operating with heterogeneous ADCCLK, S+H durations, triggers, or resolution.  
(10) Value based on characterization.  
(11) I/O activity is minimized on pins adjacent to ADC input and VREFHI pins as part of best practices to reduce capacitive coupling and  
crosstalk.  
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
 
 
 
 
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.10.1.2.3 ADC Operating Conditions (12-Bit Single-Ended Mode)  
over recommended operating conditions (unless otherwise noted)  
MIN  
5
TYP  
MAX  
UNIT  
MHz  
ns  
V
ADCCLK (derived from PERx.SYSCLK)  
50  
Sample window duration (set by ACQPS and PERx.SYSCLK)(1)  
75  
VREFHI  
2.4  
2.5 or 3.0  
0
VDDA  
VSSA  
VREFLO  
VSSA  
2.4  
V
VREFHI – VREFLO  
ADC input conversion range  
VDDA  
V
VREFLO  
VREFHI  
V
(1) The sample window must also be at least as long as 1 ADCCLK cycle for correct ADC operation.  
Note  
The ADC inputs should be kept below VDDA + 0.3 V during operation. If an ADC input exceeds this  
level, the VREF internal to the device may be disturbed, which can impact results for other ADC or  
DAC inputs using the same VREF  
.
Note  
The VREFHI pin must be kept below VDDA + 0.3 V to ensure proper functional operation. If the VREFHI  
pin exceeds this level, a blocking circuit may activate, and the internal value of VREFHI may float to 0 V  
internally, giving improper ADC conversion or DAC output.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
UNIT  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.10.1.2.4 ADC Characteristics (12-Bit Single-Ended Mode)  
over recommended operating conditions (unless otherwise noted)(5)  
PARAMETER  
ADC conversion cycles(1)  
Power-up time  
TEST CONDITIONS  
MIN  
TYP  
MAX  
10.1  
11 ADCCLKs  
500  
µs  
Gain error  
–5  
–4  
±3  
±2  
5
4
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
dB  
Offset error  
Channel-to-channel gain error  
Channel-to-channel offset error  
ADC-to-ADC gain error  
ADC-to-ADC offset error  
DNL(2)  
±4  
±2  
Identical VREFHI and VREFLO for all ADCs  
Identical VREFHI and VREFLO for all ADCs  
±4  
±2  
> –1  
–2  
±0.5  
±1.0  
68.8  
–78.4  
79.2  
68.4  
1
2
INL  
SNR(3) (10)  
VREFHI = 2.5 V, fin = 100 kHz  
VREFHI = 2.5 V, fin = 100 kHz  
VREFHI = 2.5 V, fin = 100 kHz  
VREFHI = 2.5 V, fin = 100 kHz  
THD(3) (10)  
dB  
SFDR(3) (10)  
dB  
SINAD(3) (10)  
dB  
VREFHI = 2.5 V, fin = 100 kHz,  
single ADC(6), all packages  
11.1  
11.1  
VREFHI = 2.5 V, fin = 100 kHz,  
synchronous ADCs(7), all packages  
VREFHI = 2.5 V, fin = 100 kHz,  
Not  
supported  
asynchronous ADCs(8)  
100-pin PZP package  
,
ENOB(3) (10)  
bits  
VREFHI = 2.5 V, fin = 100 kHz,  
asynchronous ADCs(8)  
176-pin PTP package  
,
9.7  
VREFHI = 2.5 V, fin = 100 kHz,  
asynchronous ADCs(8)  
,
10.9  
337-ball ZWT package  
VDDA = 3.3-V DC + 200 mV  
DC up to Sine at 1 kHz  
PSRR  
PSRR  
60  
57  
dB  
dB  
VDDA = 3.3-V DC + 200 mV  
Sine at 800 kHz  
VREFHI = 2.5 V, synchronous ADCs(7), all  
packages  
–1  
1
VREFHI = 2.5 V, asynchronous ADCs(8)  
100-pin PZP package  
,
,
,
Not  
supported  
ADC-to-ADC isolation(10) (4) (9)  
LSBs  
µA  
VREFHI = 2.5 V, asynchronous ADCs(8)  
176-pin PTP package  
–9  
–2  
9
2
VREFHI = 2.5 V, asynchronous ADCs(8)  
337-ball ZWT package  
VREFHI input current  
130  
(1) See Section 7.10.1.2.7.  
(2) No missing codes.  
(3) AC parameters will be impacted by clock source accuracy and jitter, this should be taken into account when selecting the clock source  
for the system. The clock source used for these parameters was a high-accuracy external clock fed through the PLL. The on-chip  
Internal Oscillator has higher jitter than an external crystal and these parameters will degrade if it is used as a clock source.  
(4) Maximum DC code deviation due to operation of multiple ADCs simultaneously.  
(5) Typical values are measured with VREFHI = 2.5 V and VREFLO = 0 V. Minimum and Maximum values are tested or characterized with  
VREFHI = 2.5 V and VREFLO = 0 V.  
(6) One ADC operating while all other ADCs are idle.  
(7) All ADCs operating with identical ADCCLK, S+H durations, triggers, and resolution.  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
(8) Any ADCs operating with heterogeneous ADCCLK, S+H durations, triggers, or resolution.  
(9) Value based on characterization.  
(10) I/O activity is minimized on pins adjacent to ADC input and VREFHI pins as part of best practices to reduce capacitive coupling and  
crosstalk.  
7.10.1.2.5 ADCEXTSOC Timing Requirements  
MIN(1)  
2tc(SYSCLK)  
MAX  
UNIT  
cycles  
cycles  
Synchronous  
With qualifier  
tw(INT)  
Pulse duration, INT input low/high  
tw(IQSW) + tw(SP) + 1tc(SYSCLK)  
(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.  
7.10.1.2.6 ADC Input Models  
Note  
ADC channels ADCINA0, ADCINA1, and ADCINB1 have a 50-kΩ pulldown resistor to VSSA  
.
For differential operation, the ADC input characteristics are given by Section 7.10.1.2.6.1 and Figure 7-33.  
7.10.1.2.6.1 Differential Input Model Parameters  
DESCRIPTION  
Parasitic input capacitance  
VALUE (16-BIT MODE)  
See Table 7-8  
700 Ω  
Cp  
Ron  
Ch  
Rs  
Sampling switch resistance  
Sampling capacitor  
16.5 pF  
Nominal source impedance  
50 Ω  
ADC  
ADCINxP  
Rs  
Cp  
Cp  
Ron  
Switch  
Switch  
AC  
Ch  
VSSA  
Ron  
ADCINxN  
Rs  
Figure 7-33. Differential Input Model  
For single-ended operation, the ADC input characteristics are given by Section 7.10.1.2.6.2 Figure 7-34and .  
7.10.1.2.6.2 Single-Ended Input Model Parameters  
DESCRIPTION  
Parasitic input capacitance  
VALUE (12-BIT MODE)  
See Table 7-8  
425 Ω  
Cp  
Ron  
Ch  
Rs  
Sampling switch resistance  
Sampling capacitor  
14.5 pF  
Nominal source impedance  
50 Ω  
ADC  
ADCINx  
Rs  
Switch  
Ron  
AC  
Cp  
Ch  
VREFLO  
Figure 7-34. Single-Ended Input Model  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
 
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
Table 7-8shows the parasitic capacitance on each channel. Also, enabling a comparator adds approximately  
1.4 pF of capacitance on positive comparator inputs and 2.5 pF of capacitance on negative comparator inputs.  
Table 7-8. Per-Channel Parasitic Capacitance  
Cp (pF)  
ADC CHANNEL  
COMPARATOR DISABLED  
COMPARATOR ENABLED  
ADCINA0  
ADCINA1  
ADCINA2  
ADCINA3  
ADCINA4  
ADCINA5  
ADCINB01  
ADCINB1  
ADCINB2  
ADCINB3  
ADCINB4  
ADCINB5  
ADCINC2  
ADCINC3  
ADCINC4  
ADCINC5  
ADCIND0  
ADCIND1  
ADCIND2  
ADCIND3  
ADCIND4  
ADCIND5  
ADCIN14  
ADCIN15  
12.9  
10.3  
5.9  
6.3  
5.9  
6.3  
117.0  
10.6  
5.9  
6.2  
5.2  
5.1  
5.5  
5.8  
5.0  
5.3  
5.3  
5.7  
5.3  
5.6  
4.3  
4.3  
8.6  
9.0  
N/A  
N/A  
7.3  
8.8  
7.3  
8.8  
N/A  
N/A  
7.3  
8.7  
N/A  
N/A  
6.9  
8.3  
6.4  
7.8  
6.7  
8.2  
6.7  
8.1  
N/A  
N/A  
10.0  
11.5  
1. The increased capacitance is due to VDAC functionality.  
These input models should be used along with actual signal source impedance to determine the acquisition  
window duration. See the Choosing an Acquisition Window Duration section of the TMS320F2837xS  
Microcontrollers Technical Reference Manual for more information.  
The user should analyze the ADC input setting assuming worst-case initial conditions on Ch. This will require  
assuming that Ch could start the S+H window completely charged to VREFHI or completely discharged to VREFLO  
.
When the ADC transitions from an odd-numbered channel to an even-numbered channel, or vice-versa, the  
actual initial voltage on Ch will be close to being completely discharged to VREFLO. For even-to-even or odd-to-  
odd channel transitions, the initial voltage on Ch will be close to the voltage of the previously converted channel.  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.10.1.2.7 ADC Timing Diagrams  
Section 7.10.1.2.7.1 lists the ADC timings in 12-bit mode (SYSCLK cycles). Section 7.10.1.2.7.2 lists the ADC  
timings in 16-bit mode. Figure 7-35 and Figure 7-36 show the ADC conversion timings for two SOCs given the  
following assumptions:  
SOC0 and SOC1 are configured to use the same trigger.  
No other SOCs are converting or pending when the trigger occurs.  
The round robin pointer is in a state that causes SOC0 to convert first.  
ADCINTSEL is configured to set an ADCINT flag upon end of conversion for SOC0 (whether this flag  
propagates through to the CPU to cause an interrupt is determined by the configurations in the PIE module).  
Table 7-9 lists the descriptions of the ADC timing parameters that are in Figure 7-35 and Figure 7-36 .  
Table 7-9. ADC Timing Parameters  
PARAMETER  
DESCRIPTION  
The duration of the S+H window.  
At the end of this window, the value on the S+H capacitor becomes the voltage to be converted into a digital  
value. The duration is given by (ACQPS + 1) SYSCLK cycles. ACQPS can be configured individually for each  
SOC, so tSH will not necessarily be the same for different SOCs.  
tSH  
Note: The value on the S+H capacitor will be captured approximately 5 ns before the end of the S+H window  
regardless of device clock settings.  
The time from the end of the S+H window until the ADC conversion results latch in the ADCRESULTx register.  
tLAT  
If the ADCRESULTx register is read before this time, the previous conversion results will be returned.  
The time from the end of the S+H window until the next ADC conversion S+H window can begin. The  
subsequent sample can start before the conversion results are latched.  
tEOC  
The time from the end of the S+H window until an ADCINT flag is set (if configured).  
If the INTPULSEPOS bit in the ADCCTL1 register is set, tINT will coincide with the conversion results being  
latched into the result register.  
tINT  
If the INTPULSEPOS bit is 0, tINT will coincide with the end of the S+H window. If tINT triggers a read of the  
ADC result register (directly through DMA or indirectly by triggering an ISR that reads the result), care must be  
taken to ensure the read occurs after the results latch (otherwise, the previous results will be read).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.1.2.7.1 ADC Timings in 12-Bit Mode (SYSCLK Cycles)  
ADCCLK  
CYCLES  
ADCCLK PRESCALE  
ADCCTL2  
SYSCLK CYCLES  
RATIO  
(1)  
tEOC  
tLAT  
tINT(EARLY)  
tINT(LATE)  
tEOC  
[PRESCALE]  
ADCCLK:SYSCLK  
0
1
1
1.5  
2
11  
13  
1
11  
11.0  
Invalid  
2
21  
26  
31  
36  
41  
46  
51  
56  
61  
66  
71  
76  
81  
86  
23  
28  
34  
39  
44  
49  
55  
60  
65  
70  
76  
81  
86  
91  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
21  
26  
31  
36  
41  
46  
51  
56  
61  
66  
71  
76  
81  
86  
10.5  
10.4  
10.3  
10.3  
10.3  
10.2  
10.2  
10.2  
10.2  
10.2  
10.1  
10.1  
10.1  
10.1  
3
2.5  
3
4
5
3.5  
4
6
7
4.5  
5
8
9
5.5  
6
10  
11  
12  
13  
14  
15  
6.5  
7
7.5  
8
8.5  
(1) Refer to the "ADC: DMA Read of Stale Result" advisory in the TMS320F2837xS MCUs Silicon Errata .  
Copyright © 2021 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Sample n  
Input on SOC0.CHSEL  
Input on SOC1.CHSEL  
ADC S+H  
Sample n+1  
SOC0  
SOC1  
SYSCLK  
ADCCLK  
ADCTRIG  
ADCSOCFLG.SOC0  
ADCSOCFLG.SOC1  
ADCRESULT0  
ADCRESULT1  
ADCINTFLG.ADCINTx  
Sample n  
(old data)  
(old data)  
Sample n+1  
tSH  
tLAT  
tEOC  
tINT  
Figure 7-35. ADC Timings for 12-Bit Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.1.2.7.2 ADC Timings in 16-Bit Mode  
ADCCLK  
CYCLES  
ADCCLK PRESCALE  
ADCCTL2  
SYSCLK CYCLES  
RATIO  
(1)  
tEOC  
tLAT  
tINT(EARLY)  
tINT(LATE)  
tEOC  
[PRESCALE]  
ADCCLK:SYSCLK  
0
1
1
1.5  
2
31  
32  
1
31  
31.0  
Invalid  
2
60  
61  
75  
91  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
60  
30.0  
30.0  
30.0  
29.7  
29.8  
29.8  
29.8  
29.6  
29.7  
29.7  
29.7  
29.6  
29.6  
29.6  
3
2.5  
3
75  
75  
4
90  
90  
5
3.5  
4
104  
119  
134  
149  
163  
178  
193  
208  
222  
237  
252  
106  
120  
134  
150  
165  
179  
193  
209  
224  
238  
252  
104  
119  
134  
149  
163  
178  
193  
208  
222  
237  
252  
6
7
4.5  
5
8
9
5.5  
6
10  
11  
12  
13  
14  
15  
6.5  
7
7.5  
8
8.5  
(1) Refer to the "ADC: DMA Read of Stale Result" advisory in the TMS320F2837xS MCUs Silicon Errata .  
Copyright © 2021 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Sample n  
Input on SOC0.CHSEL  
Input on SOC1.CHSEL  
ADC S+H  
Sample n+1  
SOC0  
SOC1  
SYSCLK  
ADCCLK  
ADCTRIG  
ADCSOCFLG.SOC0  
ADCSOCFLG.SOC1  
ADCRESULT0  
ADCRESULT1  
ADCINTFLG.ADCINTx  
Sample n  
(old data)  
(old data)  
Sample n+1  
tSH  
tLAT  
tEOC  
tINT  
Figure 7-36. ADC Timings for 16-Bit Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.1.3 Temperature Sensor Electrical Data and Timing  
The temperature sensor can be used to measure the device junction temperature. The temperature sensor is  
sampled through an internal connection to the ADC and translated into a temperature through TI-provided  
software. When sampling the temperature sensor, the ADC must meet the acquisition time in Section 7.10.1.3.1.  
7.10.1.3.1 Temperature Sensor Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
±15  
500  
MAX  
UNIT  
°C  
Temperature accuracy  
Start-up time (TSNSCTL[ENABLE] to sampling temperature sensor)  
ADC acquisition time  
µs  
700  
ns  
Copyright © 2021 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.10.2 Comparator Subsystem (CMPSS)  
Each CMPSS module includes two comparators, two internal voltage reference DACs (CMPSS DACs), two  
digital glitch filters, and one ramp generator. There are two inputs, CMPINxP and CMPINxN. Each of these  
inputs will be internally connected to an ADCIN pin. The CMPINxP pin is always connected to the positive input  
of the CMPSS comparators. CMPINxN can be used instead of the DAC output to drive the negative comparator  
inputs. There are two comparators, and therefore two outputs from the CMPSS module, which are connected to  
the input of a digital filter module before being passed on to the Comparator TRIP crossbar and either PWM  
modules or directly to a GPIO pin. Figure 7-37 shows the CMPSS connectivity on the 337-ball ZWT and 176-pin  
PTP packages. Figure 7-38 shows CMPSS connectivity on the 100-pin PZP package.  
Comparator Subsystem 1  
CMPIN1P Pin  
CTRIP1H  
Digital  
Filter  
CTRIPOUT1H  
VDDA or VDAC  
CTRIP1H  
CTRIP1L  
CTRIP2H  
CTRIP2L  
DAC12  
DAC12  
CTRIP1L  
Digital  
Filter  
CTRIPOUT1L  
ePWMs  
ePWM X-BAR  
CMPIN1N Pin  
CMPIN2P Pin  
CTRIP8H  
CTRIP8L  
Comparator Subsystem 2  
Digital  
CTRIP2H  
CTRIPOUT2H  
VDDA or VDAC  
Filter  
DAC12  
DAC12  
CTRIP2L  
Digital  
Filter  
CTRIPOUT2L  
CMPIN2N Pin  
CTRIPOUT1H  
CTRIPOUT1L  
CTRIPOUT2H  
CTRIPOUT2L  
Comparator Subsystem 8  
Digital  
CMPIN8P Pin  
CTRIP8H  
Output X-BAR  
GPIO Mux  
CTRIPOUT8H  
VDDA or VDAC  
Filter  
CTRIPOUT8H  
CTRIPOUT8L  
DAC12  
DAC12  
CTRIP8L  
Digital  
Filter  
CTRIPOUT8L  
CMPIN8N Pin  
Figure 7-37. CMPSS Connectivity (337-Ball ZWT and 176-Pin PTP)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
Comparator Subsystem 1  
CMPIN1P Pin  
CTRIP1H  
Digital  
Filter  
CTRIPOUT1H  
VDDA or VDAC  
CTRIP1H  
CTRIP1L  
CTRIP2H  
CTRIP2L  
CTRIP3H  
CTRIP3L  
CTRIP4H  
CTRIP4L  
DAC12  
DAC12  
CTRIP1L  
Digital  
Filter  
CTRIPOUT1L  
ePWM X-BAR  
ePWMs  
CMPIN1N Pin  
CMPIN2P Pin  
Comparator Subsystem 2  
Digital  
CTRIP2H  
CTRIPOUT2H  
VDDA or VDAC  
Filter  
DAC12  
DAC12  
CTRIP2L  
Digital  
Filter  
CTRIPOUT2L  
CMPIN2N Pin  
CMPIN3P Pin  
Comparator Subsystem 3  
Digital  
CTRIP3H  
CTRIPOUT1H  
CTRIPOUT1L  
CTRIPOUT2H  
CTRIPOUT2L  
CTRIPOUT3H  
CTRIPOUT3L  
CTRIPOUT4H  
CTRIPOUT4L  
CTRIPOUT3H  
VDDA or VDAC  
Filter  
DAC12  
DAC12  
Output X-BAR  
GPIO Mux  
CTRIP3L  
Digital  
Filter  
CTRIPOUT3L  
CMPIN3N Pin  
CMPIN4P Pin  
Comparator Subsystem 4  
Digital  
CTRIP4H  
CTRIPOUT4H  
VDDA or VDAC  
Filter  
DAC12  
DAC12  
CTRIP4L  
Digital  
Filter  
CTRIPOUT4L  
CMPIN4N Pin  
Figure 7-38. CMPSS Connectivity (100-Pin PZP)  
Copyright © 2021 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.10.2.1 CMPSS Electrical Data and Timing  
Section 7.10.2.1.1 shows the comparator electrical characteristics. Figure 7-39 shows the CMPSS comparator  
input referred offset. Figure 7-40 shows the CMPSS comparator hysteresis.  
7.10.2.1.1 Comparator Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
500(2)  
VDDA  
UNIT  
µs  
Power-up time  
Comparator input (CMPINxx) range  
Input referred offset error  
0
V
Low common mode, inverting input set  
to 50 mV  
–20  
20  
mV  
1x  
12  
24  
36  
48  
21  
26  
30  
2x  
CMPSS  
DAC LSB  
Hysteresis(1)  
3x  
4x  
Step response  
60  
Response time (delay from CMPINx input change  
to output on ePWM X-BAR or Output X-BAR)  
Ramp response (1.65 V/µs)  
Ramp response (8.25 mV/µs)  
ns  
Common Mode Rejection Ratio (CMRR)  
40  
dB  
(1) The CMPSS DAC is used as the reference to determine how much hysteresis to apply. Therefore, hysteresis will scale with the  
CMPSS DAC reference voltage. Hysteresis is available for all comparator input source configurations.  
(2) See the "Analog Bandgap References" advisory of the TMS320F2837xS MCUs Silicon Errata .  
Note  
The CMPSS inputs must be kept below VDDA + 0.3 V to ensure proper functional operation. If a  
CMPSS input exceeds this level, an internal blocking circuit will isolate the internal comparator from  
the external pin until the external pin voltage returns below VDDA + 0.3 V. During this time, the internal  
comparator input will be floating and can decay below VDDA within approximately 0.5 µs. After this  
time, the comparator could begin to output an incorrect result depending on the value of the other  
comparator input.  
Input Referred Offset  
CTRIPx  
Logic Level  
CTRIPx = 1  
CTRIPx = 0  
COMPINxP  
Voltage  
0
CMPINxN or  
DACxVAL  
Figure 7-39. CMPSS Comparator Input Referred Offset  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
Hysteresis  
CTRIPx  
Logic Level  
CTRIPx = 1  
CTRIPx = 0  
COMPINxP  
Voltage  
0
CMPINxN or  
DACxVAL  
Figure 7-40. CMPSS Comparator Hysteresis  
Copyright © 2021 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Section 7.10.2.1.2 shows the CMPSS DAC static electrical characteristics. Figure 7-41 shows the CMPSS DAC  
static offset. Figure 7-42 shows the CMPSS DAC static gain. Figure 7-43 shows the CMPSS DAC static linearity.  
7.10.2.1.2 CMPSS DAC Static Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0
TYP  
MAX  
UNIT  
(1)  
Internal reference  
VDDA  
CMPSS DAC output range  
V
External reference  
0
VDAC  
Static offset error(2)  
Static gain error(2)  
Static DNL  
–25  
–2  
25  
2
mV  
% of FSR  
LSB  
Endpoint corrected  
Endpoint corrected  
>–1  
–16  
4
Static INL  
16  
LSB  
Settling to 1 LSB after full-scale output  
change  
Settling time  
Resolution  
1
µs  
12  
bits  
Error induced by comparator trip or  
CMPSS DAC code change within the  
same CMPSS module  
CMPSS DAC output disturbance(3)  
–100  
2.4  
100  
LSB  
CMPSS DAC disturbance time(3)  
VDAC reference voltage  
VDAC load(4)  
200  
2.5 or 3.0  
6
ns  
V
When VDAC is reference  
When VDAC is reference  
VDDA  
kΩ  
(1) The maximum output voltage is VDDA when VDAC > VDDA  
(2) Includes comparator input referred errors.  
.
(3) Disturbance error may be present on the CMPSS DAC output for a certain amount of time after a comparator trip.  
(4) Per active CMPSS module.  
Offset Error  
Figure 7-41. CMPSS DAC Static Offset  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
Ideal Gain  
Actual Gain  
Figure 7-42. CMPSS DAC Static Gain  
Linearity Error  
Figure 7-43. CMPSS DAC Static Linearity  
Copyright © 2021 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.10.3 Buffered Digital-to-Analog Converter (DAC)  
The buffered DAC module consists of an internal 12-bit DAC and an analog output buffer that is capable of  
driving an external load. An integrated pulldown resistor on the DAC output helps to provide a known pin voltage  
when the output buffer is disabled. This pulldown resistor cannot be disabled and remains as a passive  
component on the pin, even for other shared pin mux functions. Software writes to the DAC value register can  
take effect immediately or can be synchronized with EPWMSYNCPER events.  
Each buffered DAC has the following features:  
12-bit programmable internal DAC  
Selectable reference voltage  
Pulldown resistor on output  
Ability to synchronize with EPWMSYNCPER  
The block diagram for the buffered DAC is shown in Figure 7-44.  
DACCTL[DACREFSEL]  
VDAC  
0
1
DACREF  
VREFHI  
VDDA  
DACCTL[LOADMODE]  
SYSCLK  
>
Q
Q
0
1
DACVALS  
D
12-bit  
DAC  
DACOUT  
DACVALA  
Buffer  
D
RPD  
EPWM1SYNCPER  
EPWM2SYNCPER  
EPWM3SYNCPER  
0
1
2
EN  
VSSA  
VSSA  
...  
EPWMnSYNCPER  
Y
n-1  
DACCTL[SYNCSEL]  
Figure 7-44. DAC Module Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.3.1 Buffered DAC Electrical Data and Timing  
Section 7.10.3.1.1 shows the buffered DAC electrical characteristics. Figure 7-45 shows the buffered DAC offset.  
Figure 7-46 shows the buffered DAC gain. Figure 7-47 shows the buffered DAC linearity.  
7.10.3.1.1 Buffered DAC Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
500(8)  
10  
UNIT  
µs  
Power-up time  
Offset error  
Gain error(2)  
DNL(3)  
Midpoint  
–10  
–2.5  
> –1  
–5  
mV  
2.5 % of FSR  
Endpoint corrected  
Endpoint corrected  
±0.4  
±2  
1
5
LSB  
LSB  
INL  
Settling to 2 LSBs after 0.3V-to-3V  
transition  
DACOUTx settling time  
2
µs  
Resolution  
12  
bits  
Voltage output range(4)  
0.3  
5
VDDA – 0.3  
100  
V
pF  
Capacitive load  
Output drive capability  
Output drive capability  
Resistive load  
kΩ  
RPD pulldown resistor  
Reference voltage(5)  
Reference input resistance(6)  
50  
2.5 or 3.0  
170  
kΩ  
VDAC or VREFHI  
2.4  
VDDA  
V
VDAC or VREFHI  
kΩ  
Integrated noise from 100 Hz to 100 kHz  
Noise density at 10 kHz  
500  
µVrms  
nVrms/√Hz  
V-ns  
Output noise  
Glitch energy  
PSRR(7)  
711  
1.5  
DC up to 1 kHz  
70  
dB  
100 kHz  
30  
SNR  
THD  
1020 Hz  
67  
dB  
dB  
1020 Hz  
–63  
1020 Hz, including harmonics and spurs  
1020 Hz, including only spurs  
66  
SFDR  
dBc  
104  
(1) Typical values are measured with VREFHI = 3.3 V unless otherwise noted. Minimum and Maximum values are tested or characterized  
with VREFHI = 2.5 V.  
(2) Gain error is calculated for linear output range.  
(3) The DAC output is monotonic.  
(4) This is the linear output range of the DAC. The DAC can generate voltages outside this range, but the output voltage will not be linear  
due to the buffer.  
(5) For best PSRR performance, VDAC or VREFHI should be less than VDDA  
(6) Per active Buffered DAC module.  
.
(7) VREFHI = 3.2 V, VDDA = 3.3 V DC + 100 mV Sine.  
(8) See the "Analog Bandgap References" advisory of the TMS320F2837xS MCUs Silicon Errata .  
Note  
The VDAC pin must be kept below VDDA + 0.3 V to ensure proper functional operation. If the VDAC  
pin exceeds this level, a blocking circuit may activate, and the internal value of VDAC may float to 0 V  
internally, giving improper DAC output.  
Copyright © 2021 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
 
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Note  
The VREFHI pin must be kept below VDDA + 0.3 V to ensure proper functional operation. If the VREFHI  
pin exceeds this level, a blocking circuit may activate, and the internal value of VREFHI may float to 0 V  
internally, giving improper ADC conversion or DAC output.  
Offset Error  
Code 2048  
Figure 7-45. Buffered DAC Offset  
Actual Gain  
Ideal Gain  
Code 3722  
Code 373  
Linear Range  
(3.3-V Reference)  
Figure 7-46. Buffered DAC Gain  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
Linearity Error  
Code 3722  
Code 373  
Linear Range  
(3.3-V Reference)  
Figure 7-47. Buffered DAC Linearity  
Copyright © 2021 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.11 Control Peripherals  
Note  
For the actual number of each peripheral on a specific device, see Table 5-1.  
7.11.1 Enhanced Capture (eCAP)  
The eCAP module can be used in systems where accurate timing of external events is important.  
Applications for eCAP include:  
Speed measurements of rotating machinery (for example, toothed sprockets sensed through Hall sensors)  
Elapsed time measurements between position sensor pulses  
Period and duty cycle measurements of pulse train signals  
Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors  
The eCAP module includes the following features:  
4-event time-stamp registers (each 32 bits)  
Edge-polarity selection for up to four sequenced time-stamp capture events  
Interrupt on either of the four events  
Single shot capture of up to four event timestamps  
Continuous mode capture of timestamps in a four-deep circular buffer  
Absolute time-stamp capture  
Difference (Delta) mode time-stamp capture  
All of the above resources dedicated to a single input pin  
When not used in capture mode, the eCAP module can be configured as a single-channel PWM output  
(APWM).  
The eCAP inputs connect to any GPIO input through the Input X-BAR. The APWM outputs connect to GPIO pins  
through the Output X-BAR to OUTPUTx positions in the GPIO mux. See Section 6.4.2 and Section 6.4.3.  
Figure 7-48 shows the block diagram of an eCAP module.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
CTRPHS  
(phase register−32 bit)  
APWM mode  
SYNCIn  
CTR_OVF  
OVF  
CTR [0−31]  
PRD [0−31]  
CMP [0−31]  
TSCTR  
(counter−32 bit)  
SYNCOut  
PWM  
compare  
logic  
Delta−mode  
RST  
32  
CTR=PRD  
CTR [0−31]  
PRD [0−31]  
CTR=CMP  
32  
eCAPx  
32  
LD1  
CAP1  
(APRD active)  
Polarity  
select  
LD  
APRD  
shadow  
32  
CMP [0−31]  
32  
32  
LD2  
CAP2  
(ACMP active)  
Polarity  
select  
LD  
Event  
qualifier  
Event  
Prescale  
32  
ACMP  
shadow  
Polarity  
select  
32  
32  
LD3  
LD4  
CAP3  
(APRD shadow)  
LD  
CAP4  
(ACMP shadow)  
Polarity  
select  
LD  
4
Capture events  
CEVT[1:4]  
4
Interrupt  
Trigger  
and  
Flag  
control  
Continuous /  
Oneshot  
Capture Control  
to PIE  
CTR_OVF  
CTR=PRD  
CTR=CMP  
Figure 7-48. eCAP Block Diagram  
The eCAP module is clocked by PERx.SYSCLK.  
The clock enable bits (ECAP1–ECAP6) in the PCLKCR3 register turn off the eCAP module individually (for low-  
power operation). Upon reset, ECAP1ENCLK is set to low, indicating that the peripheral clock is off.  
Copyright © 2021 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.11.1.1 eCAP Electrical Data and Timing  
Section 7.11.1.1.1 shows the eCAP timing requirement and Section 7.11.1.1.2 shows the eCAP switching  
characteristics.  
7.11.1.1.1 eCAP Timing Requirement  
MIN(1)  
2tc(SYSCLK)  
MAX UNIT  
cycles  
Asynchronous  
Synchronous  
tw(CAP)  
Capture input pulse width  
2tc(SYSCLK)  
cycles  
With input qualifier  
1tc(SYSCLK) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.  
7.11.1.1.2 eCAP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
tw(APWM)  
Pulse duration, APWMx output high/low  
20  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.11.2 Enhanced Pulse Width Modulator (ePWM)  
The ePWM peripheral is a key element in controlling many of the power electronic systems found in both  
commercial and industrial equipment. The ePWM type-4 module is able to generate complex pulse width  
waveforms with minimal CPU overhead by building the peripheral up from smaller modules with separate  
resources that can operate together to form a system. Some of the highlights of the ePWM type-4 module  
include complex waveform generation, dead-band generation, a flexible synchronization scheme, advanced trip-  
zone functionality, and global register reload capabilities.  
Figure 7-49 shows the signal interconnections with the ePWM. Figure 7-50 shows the ePWM trip input  
connectivity.  
Copyright © 2021 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
TBCTL2[SYNCOSELX]  
Time-Base (TB)  
Disable  
00  
01  
10  
11  
CTR=CMPC  
TBPRD Shadow (24)  
TBPRD Active (24)  
CTR=CMPD  
Rsvd  
CTR=ZERO  
CTR=CMPB  
TBPRDHR (8)  
Sync  
Out  
Select  
EPWMxSYNCO  
TBCTL[SWFSYNC]  
EPWMxSYNCI  
8
CTR=PRD  
TBCTL[PHSEN]  
TBCTL[SYNCOSEL]  
DCAEVT1.sync(A)  
DCBEVT1.sync(A)  
Counter  
Up/Down  
(16 Bit)  
CTR=ZERO  
CTR_Dir  
TBCTR  
Active (16)  
CTR=PRD  
CTR=ZERO  
EPWMx_INT  
TBPHSHR (8)  
16  
8
CTR=PRD or ZERO  
CTR=CMPA  
EPWMxSOCA  
EPWMxSOCB  
Phase  
Control  
On-chip  
ADC  
TBPHS Active (24)  
Event  
Trigger  
and  
CTR=CMPB  
CTR=CMPC  
Interrupt  
(ET)  
ADCSOCOUTSELECT  
CTR=CMPD  
Counter Compare (CC)  
CTR_Dir  
Action  
Qualifier  
(AQ)  
DCAEVT1.soc(A)  
DCBEVT1.soc(A)  
Select and pulse stretch  
for external ADC  
CTR=CMPA  
CMPAHR (8)  
ADCSOCAO  
ADCSOCBO  
16  
HiRes PWM (HRPWM)  
CMPAHR (8)  
EPWMA  
CMPA Active (24)  
CMPA Shadow (24)  
ePWMxA  
PWM  
Chopper  
(PC)  
Trip  
Zone  
(TZ)  
Dead  
Band  
(DB)  
CTR=CMPB  
CMPBHR (8)  
16  
EPWMB  
ePWMxB  
CMPB Active (24)  
CMPB Shadow (24)  
CMPBHR (8)  
CTR=CMPC  
EPWMx_TZ_INT  
TZ1 to TZ3  
TBCNT(16)  
EMUSTOP  
CTR=ZERO  
DCAEVT1.inter  
DCBEVT1.inter  
DCAEVT2.inter  
CLOCKFAIL  
CMPC[15-0] 16  
EQEPxERR  
CMPC Active (16)  
CMPC Shadow (16)  
DCAEVT1.force(A)  
DCAEVT2.force(A)  
DCBEVT1.force(A)  
DCBEVT2.force(A)  
DCBEVT2.inter  
TBCNT(16)  
CTR=CMPD  
CMPD[15-0] 16  
CMPD Active (16)  
CMPD Shadow (16)  
Copyright © 2017, Texas Instruments Incorporated  
A. These events are generated by the ePWM digital compare (DC) submodule based on the levels of the TRIPIN inputs.  
Figure 7-49. ePWM Submodules and Critical Internal Signal Interconnects  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
GPIO0  
Async/  
Sync/  
XINT5  
XINT4  
PIE(s),  
CLA(s)  
INPUT14  
INPUT13  
Input X-Bar  
Sync+Filter  
GPIOx  
eCAP6  
eCAP5  
eCAP4  
eCAP3  
eCAP2  
eCAP1  
XINT1  
XINT2  
XINT3  
PIE(s),  
CLA(s)  
EXTSYNCIN1  
ADC  
Wrapper(s)  
ePWM and eCAP  
Sync Chain  
EXTSYNCIN2  
TZ1  
TZ2  
TZ3  
PIE(s),  
CLA(s)  
EPWMINT  
TZINT  
TRIP1  
TRIP2  
TRIP3  
TRIP6  
EPWMx.EPWMCLK  
EPWMENCLK  
TBCLKSYNC  
TRIP4  
TRIP5  
TRIP7  
TRIP8  
TRIP9  
TRIP10  
TRIP11  
TRIP12  
ADCSOCAO Select Ckt  
ADCSOCBO Select Ckt  
ePWM  
X-Bar  
All  
ePWM  
Modules  
SOCA  
SOCB  
ADC  
Wrapper(s)  
Reserved  
ECCERR  
TRIP13  
TRIP14  
TRIP15  
TZ4  
TZ5  
TZ6  
CPU1.PIEVECTERROR  
SD1  
Filter-Reset  
Filter-Reset  
EQEPERR  
CLKFAIL  
FLT1  
FLT1  
FLT1  
FLT1  
PWM11.CMPC  
PWM11.CMPD  
CPU1.EMUSTOP  
EPWMn.EMUSTOP  
Filter-Reset  
Filter-Reset  
FLT1  
FLT1  
FLT1  
PWM12.CMPC  
PWM12.CMPD  
FLT1  
SD2  
EPWMSYNCPER  
CMPSS  
DAC  
Figure 7-50. ePWM Trip Input Connectivity  
Copyright © 2021 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.11.2.1 Control Peripherals Synchronization  
The ePWM and eCAP synchronization chain allows synchronization between multiple modules for the system.  
Figure 7-51 shows the synchronization chain architecture.  
EXTSYNCIN1  
EXTSYNCIN2  
EPWM1  
EPWM1SYNCOUT  
EPWM2  
EPWM3  
EPWM4  
EPWM4SYNCOUT  
EPWM5  
EPWM6  
SYNCSEL.EPWM4SYNCIN  
EXTSYNCOUT  
Pulse-Stretched  
(8 PLLSYSCLK  
Cycles)  
EPWM7  
EPWM8  
EPWM9  
EPWM7SYNCOUT  
SYNCSEL.EPWM7SYNCIN  
EPWM10  
EPWM11  
EPWM12  
EPWM10SYNCOUT  
SYNCSEL.EPWM10SYNCIN  
ECAP1  
ECAP2  
ECAP1SYNCOUT  
SYNCSEL.ECAP1SYNCIN  
ECAP3  
ECAP4  
ECAP5  
ECAP6  
SYNCSEL.ECAP4SYNCIN  
SYNCSEL.SYNCOUT  
Figure 7-51. Synchronization Chain Architecture  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.11.2.2 ePWM Electrical Data and Timing  
Section 7.11.2.2.1 shows the PWM timing requirements and Section 7.11.2.2.2 shows the PWM switching  
characteristics.  
7.11.2.2.1 ePWM Timing Requirements  
MIN(1)  
MAX  
UNIT  
MHz  
f(EPWM)  
Frequency, EPWMCLK(2)  
Sync input pulse width  
100  
Asynchronous  
Synchronous  
2tc(EPWMCLK)  
2tc(EPWMCLK)  
cycles  
cycles  
cycles  
tw(SYNCIN)  
With input qualifier  
1tc(EPWMCLK) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.  
(2) For SYSCLK above 100 MHz, the EPWMCLK must be half of SYSCLK.  
7.11.2.2.2 ePWM Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
20  
MAX  
UNIT  
ns  
tw(PWM)  
Pulse duration, PWMx output high/low  
Sync output pulse width  
tw(SYNCOUT)  
8tc(SYSCLK)  
cycles  
Delay time, trip input active to PWM forced high  
Delay time, trip input active to PWM forced low  
Delay time, trip input active to PWM Hi-Z  
td(TZ-PWM)  
25  
ns  
7.11.2.2.3 Trip-Zone Input Timing  
Section 7.11.2.2.3.1 shows the trip-zone input timing requirements. Figure 7-52 shows the PWM Hi-Z  
characteristics.  
7.11.2.2.3.1 Trip-Zone Input Timing Requirements  
MIN(1)  
1tc(EPWMCLK)  
MAX UNIT  
cycles  
Asynchronous  
Synchronous  
tw(TZ)  
Pulse duration, TZx input low  
2tc(EPWMCLK)  
cycles  
With input qualifier  
1tc(EPWMCLK) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.  
EPWMCLK  
tw(TZ)  
TZ(A)  
td(TZ-PWM)  
PWM(B)  
A. TZ: TZ1, TZ2, TZ3, TRIP1–TRIP12  
B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software.  
Figure 7-52. PWM Hi-Z Characteristics  
Copyright © 2021 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.11.2.3 External ADC Start-of-Conversion Electrical Data and Timing  
Section 7.11.2.3.1 shows the external ADC start-of-conversion switching characteristics. Figure 7-53 shows the  
ADCSOCAO or ADCSOCBO timing.  
7.11.2.3.1 External ADC Start-of-Conversion Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
tw(ADCSOCL)  
Pulse duration, ADCSOCxO low  
32tc(SYSCLK)  
cycles  
tw(ADCSOCL)  
ADCSOCAO  
or  
ADCSOCBO  
Figure 7-53. ADCSOCAO or ADCSOCBO Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.11.3 Enhanced Quadrature Encoder Pulse (eQEP)  
The eQEP module interfaces directly with linear or rotary incremental encoders to obtain position, direction, and  
speed information from rotating machines used in high-performance motion and position-control systems.  
Each eQEP peripheral comprises five major functional blocks:  
Quadrature Capture Unit (QCAP)  
Position Counter/Control Unit (PCCU)  
Quadrature Decoder Unit (QDU)  
Unit Time Base for speed and frequency measurement (UTIME)  
Watchdog timer for detecting stalls (QWDOG)  
The eQEP peripherals are clocked by PERx.SYSCLK. Figure 7-54 shows the eQEP block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
System Control  
Registers  
To CPU  
EQEPxENCLK  
SYSCLK  
QCPRD  
QCTMR  
QCAPCTL  
16  
16  
16  
Quadrature  
Capture  
Unit  
(QCAP)  
QCTMRLAT  
QCPRDLAT  
QUTMR  
QUPRD  
QWDTMR  
QWDPRD  
Registers  
Used by  
Multiple Units  
32  
16  
QEPCTL  
QEPSTS  
QFLG  
UTOUT  
QWDOG  
UTIME  
QDECCTL  
16  
WDTOUT  
EQEPxAIN  
EQEPxBIN  
EQEPxIIN  
EQEPxA/XCLK  
EQEPxB/XDIR  
EQEPxI  
QCLK  
QDIR  
QI  
EQEPxINT  
16  
PIE  
Position Counter/  
Control Unit  
(PCCU)  
EQEPxIOUT  
EQEPxIOE  
EQEPxSIN  
EQEPxSOUT  
EQEPxSOE  
Quadrature  
Decoder  
(QDU)  
QS  
GPIO  
MUX  
QPOSLAT  
QPOSSLAT  
QPOSILAT  
PHE  
PCSOUT  
EQEPxS  
32  
32  
16  
QPOSCNT  
QPOSINIT  
QPOSMAX  
QEINT  
QFRC  
QPOSCMP  
QCLR  
QPOSCTL  
eQEP Peripheral  
Figure 7-54. eQEP Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.11.3.1 eQEP Electrical Data and Timing  
Section 7.11.3.1.1 lists the eQEP timing requirement and Section 7.11.3.1.2 lists the eQEP switching  
characteristics.  
7.11.3.1.1 eQEP Timing Requirements  
MIN(1)  
MAX  
UNIT  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
Asynchronous(2)/Synchronous  
With input qualifier  
2tc(SYSCLK)  
tw(QEPP)  
QEP input period  
2[1tc(SYSCLK) + tw(IQSW)  
]
Asynchronous(2)/Synchronous  
2tc(SYSCLK)  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
tw(INDEXH)  
tw(INDEXL)  
tw(STROBH)  
tw(STROBL)  
QEP Index Input High time  
QEP Index Input Low time  
QEP Strobe High time  
QEP Strobe Input Low time  
With input qualifier  
Asynchronous(2)/Synchronous  
With input qualifier  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
Asynchronous(2)/Synchronous  
With input qualifier  
Asynchronous(2)/Synchronous  
With input qualifier  
2tc(SYSCLK) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.  
(2) See the TMS320F2837xS MCUs Silicon Errata for limitations in the asynchronous mode.  
7.11.3.1.2 eQEP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
4tc(SYSCLK)  
6tc(SYSCLK)  
UNIT  
cycles  
cycles  
td(CNTR)xin  
Delay time, external clock to counter increment  
td(PCS-OUT)QEP  
Delay time, QEP input edge to position compare sync output  
Copyright © 2021 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.11.4 High-Resolution Pulse Width Modulator (HRPWM)  
The HRPWM combines multiple delay lines in a single module and a simplified calibration system by using a  
dedicated calibration delay line. For each ePWM module, there are two HR outputs:  
HR Duty and Deadband control on Channel A  
HR Duty and Deadband control on Channel B  
The HRPWM module offers PWM resolution (time granularity) that is significantly better than what can be  
achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are:  
Significantly extends the time resolution capabilities of conventionally derived digital PWM  
This capability can be used in both single edge (duty cycle and phase-shift control) as well as dual edge  
control for frequency/period modulation.  
Finer time granularity control or edge positioning is controlled through extensions to the Compare A, B,  
phase, period and deadband registers of the ePWM module.  
Note  
The minimum HRPWMCLK frequency allowed for HRPWM is 60 MHz.  
7.11.4.1 HRPWM Electrical Data and Timing  
Section 7.11.4.1.1 lists the high-resolution PWM timing requirements. Section 7.11.4.1.2 lists the high-resolution  
PWM switching characteristics.  
7.11.4.1.1 High-Resolution PWM Timing Requirements  
MIN  
MAX  
100  
UNIT  
MHz  
MHz  
f(EPWM)  
Frequency, EPWMCLK(1)  
Frequency, HRPWMCLK  
f(HRPWM)  
60  
100  
(1) For SYSCLK above 100 MHz, the EPWMCLK must be half of SYSCLK.  
7.11.4.1.2 High-Resolution PWM Characteristics  
PARAMETER  
MIN  
TYP  
150  
MAX UNIT  
Micro Edge Positioning (MEP) step size(1)  
310  
ps  
(1) The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher  
temperature and lower voltage and decrease with lower temperature and higher voltage.  
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI  
software libraries for details of using SFO functions in end applications. SFO functions help to estimate the number of MEP steps per  
SYSCLK period dynamically while the HRPWM is in operation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.11.5 Sigma-Delta Filter Module (SDFM)  
The SDFM is a four-channel digital filter designed specifically for current measurement and resolver position  
decoding in motor control applications. Each channel can receive an independent sigma-delta (ΣΔ) modulated  
bit stream. The bit streams are processed by four individually programmable digital decimation filters. The filter  
set includes a fast comparator for immediate digital threshold comparisons for overcurrent and undercurrent  
monitoring. Figure 7-55 shows a block diagram of the SDFMs.  
SDFM features include:  
Eight external pins per SDFM module:  
– Four sigma-delta data input pins per SDFM module (SDx_Dy, where x = 1 to 2 and y = 1 to 4)  
– Four sigma-delta clock input pins per SDFM module (SDx_Cy, where x = 1 to 2 and y = 1 to 4)  
Four different configurable modulator clock modes:  
– Modulator clock rate equals modulator data rate  
– Modulator clock rate running at half the modulator data rate  
– Modulator data is Manchester encoded. Modulator clock not required.  
– Modulator clock rate is double that of modulator data rate  
Four independent configurable comparator units:  
– Four different filter type selection (Sinc1/Sinc2/Sincfast/Sinc3) options available  
– Ability to detect over-value and under-value conditions  
– Comparator Over-Sampling Ratio (COSR) value for comparator programmable from 1 to 32  
Four independent configurable data filter units:  
– Four different filter type selection (Sinc1/Sinc2/Sincfast/Sinc3) options available  
– Data filter Over-Sampling Ratio (DOSR) value for data filter unit programmable from 1 to 256  
– Ability to enable or disable individual filter module  
– Ability to synchronize all four independent filters of a SDFM module using the Master Filter Enable (MFE)  
bit or the PWM signals.  
Filter data can be 16-bit or 32-bit representation  
PWMs can be used to generate modulator clock for sigma-delta modulators  
Copyright © 2021 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
SDFM- Sigma Delta Filter Module  
Filter Channel 1  
G4  
Streams  
SD1INT  
IEL  
IEH  
Comparator filter  
Interrupt  
Unit  
SD2INT  
SD1_D1  
SD1_C1  
Input  
Ctrl  
PIE  
Data filter  
FILRES  
PWM11.CMPC  
Filter Channel 2  
Filter Channel 3  
Filter Channel 4  
SD1_D2  
SD1_C2  
FILRES  
Data bus  
Register  
Map  
SD1_D3  
SD1_C3  
FILRES  
FILRES  
PWM11.CMPD  
SD1_D4  
SD1_C4  
SD1FLT1.IEH  
SD1FLT1.IEL  
SD1FLT2.IEH  
SD1FLT2.IEL  
SD1FLT3.IEH  
SD1FLT3.IEL  
SD1FLT4.IEH  
SD1FLT4.IEL  
GPIO  
MUX  
SDFM- Sigma Delta Filter Module  
Output  
XBar  
G4  
Streams  
Filter Channel 1  
SD2FLT1.IEH  
SD2FLT1.IEL  
SD2FLT2.IEH  
SD2FLT2.IEL  
IEL  
IEH  
Comparator filter  
Interrupt  
Unit  
SD2_D1  
SD2_C1  
Input  
Ctrl  
Data filter  
FILRES  
SD2FLT3.IEH  
SD2FLT3.IEL  
SD2FLT4.IEH  
SD2FLT4.IEL  
PWM12.CMPC  
SD2_D2  
SD2_C2  
Filter Channel 2  
Filter Channel 3  
Filter Channel 4  
FILRES  
Data bus  
Register  
Map  
SD2_D3  
SD2_C3  
FILRES  
FILRES  
PWM12.CMPD  
SD2_D4  
SD2_C4  
Figure 7-55. SDFM Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.11.5.1 SDFM Electrical Data and Timing (Using ASYNC)  
SDFM operation with asynchronous GPIO is defined by setting GPyQSELn = 0b11. Section 7.11.5.1.1 lists the  
SDFM timing requirements when using the asynchronous GPIO (ASYNC) option. Figure 7-56 through Figure  
7-59 show the SDFM timing diagrams.  
7.11.5.1.1 SDFM Timing Requirements When Using Asynchronous GPIO (ASYNC) Option  
MIN  
MAX UNIT  
Mode 0  
tc(SDC)M0  
Cycle time, SDx_Cy  
40  
10  
256 * SYSCLK period  
ns  
ns  
tw(SDCH)M0  
Pulse duration, SDx_Cy high  
tc(SDC)M0 – 10  
Setup time, SDx_Dy valid before SDx_Cy goes  
high  
tsu(SDDV-SDCH)M0  
th(SDCH-SDD)M0  
5
5
ns  
ns  
Hold time, SDx_Dy wait after SDx_Cy goes high  
Mode 1  
tc(SDC)M1  
Cycle time, SDx_Cy  
80  
10  
256 * SYSCLK period  
tc(SDC)M1 – 10  
ns  
ns  
tw(SDCH)M1  
Pulse duration, SDx_Cy high  
Setup time, SDx_Dy valid before SDx_Cy goes  
low  
tsu(SDDV-SDCL)M1  
tsu(SDDV-SDCH)M1  
5
5
ns  
ns  
Setup time, SDx_Dy valid before SDx_Cy goes  
high  
th(SDCL-SDD)M1  
th(SDCH-SDD)M1  
Hold time, SDx_Dy wait after SDx_Cy goes low  
Hold time, SDx_Dy wait after SDx_Cy goes high  
Mode 2  
5
5
ns  
ns  
tc(SDD)M2  
Cycle time, SDx_Dy  
8 * tc(SYSCLK)  
10  
20 * tc(SYSCLK)  
ns  
ns  
tw(SDDH)M2  
Pulse duration, SDx_Dy high  
SDx_Dy long pulse duration keepout, where the  
long pulse must not fall within the MIN or MAX  
values listed.  
Long pulse is defined as the high or low pulse  
which is the full width of the Manchester bit-clock  
period.  
This requirement must be satisfied for any integer  
between 8 and 20.  
tw(SDD_LONG_KEEPOUT)M2  
(N * tc(SYSCLK)) – 0.5  
(N * tc(SYSCLK)) + 0.5  
ns  
ns  
SDx_Dy Short pulse duration for a high or low  
pulse (SDD_SHORT_H or SDD_SHORT_L).  
Short pulse is defined as the high or low pulse  
which is half the width of the Manchester bit-clock  
period.  
tw(SDD_LONG) / 2 –  
tc(SYSCLK)  
tw(SDD_LONG) / 2 +  
tc(SYSCLK)  
tw(SDD_SHORT)M2  
SDx_Dy Long pulse variation (SDD_LONG_H –  
SDD_LONG_L)  
tw(SDD_LONG_DUTY)M2  
tw(SDD_SHORT_DUTY)M2  
– tc(SYSCLK)  
– tc(SYSCLK)  
tc(SYSCLK)  
tc(SYSCLK)  
ns  
ns  
SDx_Dy Short pulse variation (SDD_SHORT_H –  
SDD_SHORT_L)  
Mode 3  
Cycle time, SDx_Cy  
tc(SDC)M3  
40  
10  
256 * SYSCLK period  
tc(SDC)M3 – 5  
ns  
ns  
tw(SDCH)M3  
Pulse duration, SDx_Cy high  
Setup time, SDx_Dy valid before SDx_Cy goes  
high  
tsu(SDDV-SDCH)M3  
th(SDCH-SDD)M3  
5
5
ns  
ns  
Hold time, SDx_Dy wait after SDx_Cy goes high  
Copyright © 2021 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
WARNING  
The SDFM clock inputs (SDx_Cy pins) directly clock the SDFM module when there is no GPIO input  
synchronization. Any glitches or ringing noise on these inputs can corrupt the SDFM module  
operation. Special precautions should be taken on these signals to ensure a clean and noise-free  
signal that meets SDFM timing requirements. Precautions such as series termination for ringing due  
to any impedance mismatch of the clock driver and spacing of traces from other noisy signals are  
recommended.  
WARNING  
Mode 2 (Manchester Mode) is not recommended for new applications. See the "SDFM: Manchester  
Mode (Mode 2) Does Not Produce Correct Filter Results Under Several Conditions" advisory in the  
TMS320F2837xS MCUs Silicon Errata .  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
Mode 0  
tw(SDCH)M0  
tc(SDC)M0  
SDx_Cy  
SDx_Dy  
tsu(SDDV-SDCH)M0  
th(SDCH-SDD)M0  
Figure 7-56. SDFM Timing Diagram – Mode 0  
Mode 1  
SDx_Cy  
tw(SDCH)M1  
tc(SDC)M1  
tsu(SDDV-SDCL)M1  
tsu(SDDV-SDCH)M1  
SDx_Dy  
th(SDCL-SDD)M1  
th(SDCH-SDD)M1  
Figure 7-57. SDFM Timing Diagram – Mode 1  
Mode 2  
(Manchester-encoded-bit stream)  
tc(SDD)M2  
Modulator  
Internal clock  
tw(SDDH)M2  
Modulator  
Internal data  
1
1
0
1
1
0
0
1
1
tw(SDD_LONG_KEEPOUT)  
SDx-Dy  
tw(SDD_LONG_L)  
tw(SDD_LONG_H)  
tw(SDD_SHORT_L)  
tw(SDD_SHORT_H)  
N x tc(SYSCLK) + 0.5  
N x SYSCLK  
SYSCLK  
N x tc(SYSCLK) œ0.5  
œ
Figure 7-58. SDFM Timing Diagram – Mode 2  
(CLKx is driven externally)  
tc(SDC)M3  
Mode 3  
tw(SDCH)M3  
SDx_Cy  
SDx_Dy  
tsu(SDDV-SDCH)M3  
th(SDCH-SDD)M3  
Figure 7-59. SDFM Timing Diagram – Mode 3  
Copyright © 2021 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.11.5.2 SDFM Electrical Data and Timing (Using 3-Sample GPIO Input Qualification)  
SDFM operation with qualified GPIO (3-sample window) is defined by setting GPyQSELn = 0b01. When using  
this qualified GPIO (3-sample window) mode, the timing requirement for the tw(GPI) pulse duration of 2tc(SYSCLK)  
must be met. It is important for both SD-Cx and SD-Dx pairs to be configured with the same GPIO qualification  
option. Section 7.11.5.2.1 lists the SDFM timing requirements when using the GPIO input qualification (3-sample  
window) option. Figure 7-56 through Figure 7-59 show the SDFM timing diagrams.  
7.11.5.2.1 SDFM Timing Requirements When Using GPIO Input Qualification (3-Sample Window) Option  
MIN(1)  
MAX UNIT  
Mode 0  
tc(SDC)M0  
Cycle time, SDx_Cy  
10 * SYSCLK period  
4 * SYSCLK period  
4 * SYSCLK period  
256 * SYSCLK period  
ns  
ns  
ns  
tw(SDCHL)M0  
tw(SDDHL)M0  
Pulse duration, SDx_Cy high/low  
Pulse duration, SDx_Dy high/low  
6 * SYSCLK period  
Setup time, SDx_Dy valid before SDx_Cy goes  
high  
tsu(SDDV-SDCH)M0  
th(SDCH-SDD)M0  
2 * SYSCLK period  
2 * SYSCLK period  
ns  
ns  
Hold time, SDx_Dy wait after SDx_Cy goes high  
Mode 1  
tc(SDC)M1  
Cycle time, SDx_Cy  
20 * SYSCLK period  
4 * SYSCLK period  
4 * SYSCLK period  
256 * SYSCLK period  
6 * SYSCLK period  
ns  
ns  
ns  
tw(SDCH)M1  
tw(SDDHL)M1  
Pulse duration, SDx_Cy high  
Pulse duration, SDx_Dy high/low  
Setup time, SDx_Dy valid before SDx_Cy goes  
low  
tsu(SDDV-SDCL)M1  
tsu(SDDV-SDCH)M1  
2 * SYSCLK period  
2 * SYSCLK period  
ns  
ns  
Setup time, SDx_Dy valid before SDx_Cy goes  
high  
th(SDCL-SDD)M1  
th(SDCH-SDD)M1  
Hold time, SDx_Dy wait after SDx_Cy goes low  
Hold time, SDx_Dy wait after SDx_Cy goes high  
Mode 2  
2 * SYSCLK period  
2 * SYSCLK period  
ns  
ns  
tc(SDD)M2  
Cycle time, SDx_Dy  
Option unavailable  
tw(SDDH)M2  
Pulse duration, SDx_Dy high  
Mode 3  
tc(SDC)M3  
Cycle time, SDx_Cy  
10 * SYSCLK period  
4 * SYSCLK period  
4 * SYSCLK period  
256 * SYSCLK period  
6 * SYSCLK period  
ns  
ns  
ns  
tw(SDCHL)M3  
tw(SDDHL)M3  
Pulse duration, SDx_Cy high  
Pulse duration, SDx_Dy high/low  
Setup time, SDx_Dy valid before SDx_Cy goes  
high  
tsu(SDDV-SDCH)M3  
th(SDCH-SDD)M3  
2 * SYSCLK period  
2 * SYSCLK period  
ns  
ns  
Hold time, SDx_Dy wait after SDx_Cy goes high  
(1) SDFM timing requirements apply only when the GPIO input qualification type is the 3-sample window (GPyQSELx = 1; QUALPRD = 0)  
option. It is important that both the SD-Cx and SD-Dx pairs be configured with the 3-sample window option.  
Note  
The SDFM Qualified GPIO (3-sample) mode provides protection against SDFM module corruption due  
to occasional random noise glitches on the SDx_Cy pin that may result in a false comparator trip and  
filter output. For more details, refer to the "SDFM: Use Caution While Using SDFM Under Noisy  
Conditions" usage note in the TMS320F2837xS MCUs Silicon Errata .  
The SDFM Qualified GPIO (3-sample) mode does not provide protection against persistent violations  
of the above timing requirements. Timing violations will result in data corruption proportional to the  
number of bits which violate the requirements.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.12 Communications Peripherals  
Note  
For the actual number of each peripheral on a specific device, see Table 5-1.  
7.12.1 Controller Area Network (CAN)  
The CAN module performs CAN protocol communication according to ISO 11898-1 (identical to Bosch® CAN  
protocol specification 2.0 A, B). The bit rate can be programmed to values up to 1 Mbps. A CAN transceiver chip  
is required for the connection to the physical layer (CAN bus).  
For communication on a CAN network, individual message objects can be configured. The message objects and  
identifier masks are stored in the Message RAM.  
All functions concerning the handling of messages are implemented in the message handler. These functions  
are: acceptance filtering; the transfer of messages between the CAN Core and the Message RAM; and the  
handling of transmission requests.  
The register set of the CAN may be accessed directly by the CPU through the module interface. These registers  
are used to control and configure the CAN core and the message handler, and to access the message RAM.  
The CAN module implements the following features:  
Complies with ISO11898-1 (Bosch® CAN protocol specification 2.0 A and B)  
Bit rates up to 1 Mbps  
Multiple clock sources  
32 message objects (“message objects” are also referred to as “mailboxes” in this document; the two terms  
are used interchangeably), each with the following properties:  
– Configurable as receive or transmit  
– Configurable with standard (11-bit) or extended (29-bit) identifier  
– Supports programmable identifier receive mask  
– Supports data and remote frames  
– Holds 0 to 8 bytes of data  
– Parity-checked configuration and data RAM  
Individual identifier mask for each message object  
Programmable FIFO mode for message objects  
Programmable loop-back modes for self-test operation  
Suspend mode for debug support  
Software module reset  
Automatic bus-on, after bus-off state by a programmable 32-bit timer  
Message-RAM parity-check mechanism  
Two interrupt lines  
Note  
For a CAN bit clock of 200 MHz, the smallest bit rate possible is 7.8125 kbps.  
Note  
Depending on the timing settings used, the accuracy of the on-chip zero-pin oscillator (specified in the  
data manual) may not meet the requirements of the CAN protocol. In this situation, an external clock  
source must be used.  
Figure 7-60 shows the CAN block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
CAN_H  
CAN_L  
CAN Bus  
3.3V CAN Transceiver  
External connections  
Device  
CANx RX pin  
CANx TX pin  
CAN  
CAN Core  
Message RAM  
Message Handler  
Message  
RAM  
Interface  
Register and Message  
Object Access (IFx)  
32  
Message  
Objects  
(Mailboxes)  
Test Modes  
Only  
Module Interface  
CANINT0 CANINT1  
(to ePIE)  
CPU Bus  
Figure 7-60. CAN Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.2 Inter-Integrated Circuit (I2C)  
The I2C module has the following features:  
Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):  
– Support for 1-bit to 8-bit format transfers  
– 7-bit and 10-bit addressing modes  
– General call  
– START byte mode  
– Support for multiple master-transmitters and slave-receivers  
– Support for multiple slave-transmitters and master-receivers  
– Combined master transmit/receive and receive/transmit mode  
– Data transfer rate of from 10 kbps up to 400 kbps (I2C Fast-mode rate)  
One 16-byte receive FIFO and one 16-byte transmit FIFO  
One interrupt that can be used by the CPU. This interrupt can be generated as a result of one of the following  
conditions:  
– Transmit-data ready  
– Receive-data ready  
– Register-access ready  
– No-acknowledgment received  
– Arbitration lost  
– Stop condition detected  
– Addressed as slave  
An additional interrupt that can be used by the CPU when in FIFO mode  
Module enable/disable capability  
Free data format mode  
Copyright © 2021 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Figure 7-61 shows how the I2C peripheral module interfaces within the device.  
I2C Module  
I2CXSR  
I2CDXR  
TX FIFO  
RX FIFO  
FIFO Interrupt to  
CPU/PIE  
SDA  
Peripheral Bus  
I2CRSR  
I2CDRR  
Control/Status  
Registers  
CPU  
Clock  
Synchronizer  
SCL  
Prescaler  
Noise Filters  
Arbitrator  
Interrupt to  
CPU/PIE  
I2C INT  
Figure 7-61. I2C Peripheral Module Interfaces  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.2.1 I2C Electrical Data and Timing  
Section 7.12.2.1.1 lists the I2C timing requirements. Section 7.12.2.1.2 lists the I2C switching characteristics.  
Figure 7-62 shows the I2C timing diagram.  
7.12.2.1.1 I2C Timing Requirements  
NO.  
MIN  
MAX  
UNIT  
Standard mode  
T0  
T1  
fmod  
I2C module frequency  
7
12  
MHz  
µs  
Hold time, START condition, SCL fall delay after  
SDA fall  
th(SDA-SCL)START  
4.0  
Setup time, Repeated START, SCL rise before SDA  
fall delay  
T2  
tsu(SCL-SDA)START  
4.7  
µs  
T3  
T4  
T5  
T6  
T7  
T8  
th(SCL-DAT)  
tsu(DAT-SCL)  
tr(SDA)  
Hold time, data after SCL fall  
Setup time, data before SCL rise  
Rise time, SDA  
0
µs  
ns  
ns  
ns  
ns  
ns  
250  
1000  
1000  
300  
tr(SCL)  
Rise time, SCL  
tf(SDA)  
Fall time, SDA  
tf(SCL)  
Fall time, SCL  
300  
Setup time, STOP condition, SCL rise before SDA  
rise delay  
T9  
tsu(SCL-SDA)STOP  
4.0  
0
µs  
Pulse duration of spikes that will be suppressed by  
filter  
T10  
tw(SP)  
Cb  
50  
ns  
T11  
capacitance load on each bus line  
400  
pF  
Fast mode  
T0  
fmod  
I2C module frequency  
7
12  
MHz  
µs  
Hold time, START condition, SCL fall delay after  
SDA fall  
T1  
T2  
th(SDA-SCL)START  
0.6  
Setup time, Repeated START, SCL rise before SDA  
fall delay  
tsu(SCL-SDA)START  
0.6  
µs  
T3  
T4  
T5  
T6  
T7  
T8  
th(SCL-DAT)  
tsu(DAT-SCL)  
tr(SDA)  
Hold time, data after SCL fall  
Setup time, data before SCL rise  
Rise time, SDA  
0
100  
20  
µs  
ns  
ns  
ns  
ns  
ns  
300  
300  
300  
300  
tr(SCL)  
Rise time, SCL  
20  
tf(SDA)  
Fall time, SDA  
11.4  
11.4  
tf(SCL)  
Fall time, SCL  
Setup time, STOP condition, SCL rise before SDA  
rise delay  
T9  
tsu(SCL-SDA)STOP  
0.6  
0
µs  
Pulse duration of spikes that will be suppressed by  
filter  
T10  
T11  
tw(SP)  
Cb  
50  
ns  
capacitance load on each bus line  
400  
pF  
Copyright © 2021 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.12.2.1.2 I2C Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
TEST CONDITIONS  
0.1 Vbus < Vi < 0.9 Vbus  
0.1 Vbus < Vi < 0.9 Vbus  
MIN  
MAX UNIT  
Standard mode  
S1  
S2  
S3  
S4  
fSCL  
SCL clock frequency  
0
10  
100  
kHz  
µs  
TSCL  
SCL clock period  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL clock low  
Pulse duration, SCL clock high  
4.7  
4.0  
µs  
µs  
Bus free time between STOP and START  
conditions  
S5  
tBUF  
4.7  
µs  
S6  
S7  
S8  
tv(SCL-DAT)  
tv(SCL-ACK)  
II  
Valid time, data after SCL fall  
Valid time, Acknowledge after SCL fall  
Input current on pins  
3.45  
3.45  
10  
µs  
µs  
µA  
–10  
Fast mode  
S1  
S2  
S3  
S4  
fSCL  
SCL clock frequency  
0
2.5  
1.3  
0.6  
400  
kHz  
µs  
TSCL  
SCL clock period  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL clock low  
Pulse duration, SCL clock high  
µs  
µs  
Bus free time between STOP and START  
conditions  
S5  
tBUF  
1.3  
µs  
S6  
S7  
S8  
tv(SCL-DAT)  
tv(SCL-ACK)  
II  
Valid time, data after SCL fall  
Valid time, Acknowledge after SCL fall  
Input current on pins  
0.9  
0.9  
10  
µs  
µs  
µA  
–10  
7.12.2.1.3  
Note  
To meet all of the I2C protocol timing specifications, the I2C module clock (Fmod) must be configured  
from 7 MHz to 12 MHz.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
STOP  
START  
SDA  
SCL  
ACK  
Contd...  
Contd...  
S7  
S6  
T10  
T5  
T7  
S3  
S4  
9th  
clock  
T6  
T8  
S2  
Repeated  
START  
STOP  
S5  
SDA  
ACK  
T2  
T9  
T1  
SCL  
9th  
clock  
Figure 7-62. I2C Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.12.3 Multichannel Buffered Serial Port (McBSP)  
The McBSP module has the following features:  
Compatible with McBSP in TMS320C28x and TMS320F28x DSP devices  
Full-duplex communication  
Double-buffered data registers that allow a continuous data stream  
Independent framing and clocking for receive and transmit  
External shift clock generation or an internal programmable frequency shift clock  
8-bit data transfer mode can be configured to transmit with LSB or MSB first  
Programmable polarity for both frame synchronization and data clocks  
Highly programmable internal clock and frame generation  
Direct interface to industry-standard CODECs, Analog Interface Chips (AICs), and other serially connected  
A/D and D/A devices  
Supports AC97, I2S, and SPI protocols  
McBSP clock rate,  
CLKSRG  
CLKG =  
1+ CLKGDV  
(
)
where CLKSRG source could be LSPCLK, CLKX, or CLKR.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 7-63 shows the block diagram of the McBSP module.  
TX  
Interrupt  
MXINT  
CPU  
Peripheral Write Bus  
TX Interrupt Logic  
To CPU  
16  
16  
McBSP Transmit  
Interrupt Select Logic  
DXR2 Transmit Buffer  
DXR1 Transmit Buffer  
16  
PERx.LSPCLK  
MFSXx  
16  
MCLKXx  
MDXx  
Compand Logic  
XSR2  
XSR1  
MDRx  
RSR1  
16  
RSR2  
16  
CPU  
DMA Bus  
MCLKRx  
Expand Logic  
MFSRx  
RBR2 Register  
16  
RBR1 Register  
16  
DRR2 Receive Buffer  
DRR1 Receive Buffer  
McBSP Receive  
Interrupt Select Logic  
16  
16  
RX  
Interrupt  
RX Interrupt Logic  
MRINT  
CPU  
Peripheral Read Bus  
To CPU  
Figure 7-63. McBSP Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.12.3.1 McBSP Electrical Data and Timing  
7.12.3.1.1 McBSP Transmit and Receive Timing  
Section 7.12.3.1.1.1 shows the McBSP timing requirements. Section 7.12.3.1.1.2 shows the McBSP switching  
characteristics. Figure 7-64 and Figure 7-65 show the McBSP timing diagrams.  
7.12.3.1.1.1 McBSP Timing Requirements  
NO.(1)  
MIN  
MAX UNIT  
(2)  
1
kHz  
McBSP module clock (CLKG, CLKX, CLKR) range  
McBSP module cycle time (CLKG, CLKX, CLKR) range  
25  
1
MHz  
ns  
40  
ms  
ns  
M11 tc(CKRX)  
M12 tw(CKRX)  
M13 tr(CKRX)  
M14 tf(CKRX)  
Cycle time, CLKR/X  
CLKR/X ext  
2P  
Pulse duration, CLKR/X high or CLKR/X low  
Rise time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
CLKR/X ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKX int  
P – 7  
ns  
7
7
ns  
Fall time, CLKR/X  
ns  
18  
2
M15 tsu(FRH-CKRL)  
M16 th(CKRL-FRH)  
M17 tsu(DRV-CKRL)  
M18 th(CKRL-DRV)  
M19 tsu(FXH-CKXL)  
M20 th(CKXL-FXH)  
Setup time, external FSR high before CLKR low  
Hold time, external FSR high after CLKR low  
Setup time, DR valid before CLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
0
6
18  
5
0
Hold time, DR valid after CLKR low  
3
18  
2
Setup time, external FSX high before CLKX low  
Hold time, external FSX high after CLKX low  
CLKX ext  
CLKX int  
0
CLKX ext  
6
(1) Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that  
signal are also inverted.  
(2) 2P = 1/CLKG in ns. CLKG is the output of sample rate generator mux. CLKG = CLKSRG / (1 + CLKGDV). CLKSRG can be LSPCLK,  
CLKX, CLKR as source. CLKSRG ≤ (SYSCLK/2).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.3.1.1.2 McBSP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.(1)  
PARAMETER  
MIN  
MAX UNIT  
(2)  
M1  
M2  
M3  
tc(CKRX)  
Cycle time, CLKR/X  
CLKR/X int  
CLKR/X int  
CLKR/X int  
CLKR int  
CLKR ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
2P  
ns  
tw(CKRXH)  
tw(CKRXL)  
Pulse duration, CLKR/X high  
Pulse duration, CLKR/X low  
D – 5 (3)  
D + 5 (3)  
ns  
ns  
C – 5 (3)  
C + 5 (3)  
-7  
3
7.5  
27  
6
M4  
M5  
M6  
td(CKRH-FRV)  
td(CKXH-FXV)  
tdis(CKXH-DXHZ)  
Delay time, CLKR high to internal FSR valid  
Delay time, CLKX high to internal FSX valid  
ns  
ns  
ns  
-5  
3
27  
8
–8  
3
Disable time, CLKX high to DX high impedance  
following last data bit  
15  
9
Delay time, CLKX high to DX valid.  
–3  
This applies to all bits except the first bit  
transmitted.  
CLKX ext  
5
25  
CLKX int  
CLKX ext  
CLKX int  
–3  
5
8
20  
Delay time, CLKX high to DX  
DXENA = 0  
valid  
M7  
td(CKXH-DXV)  
ns  
Only applies to first bit  
P – 3  
P + 8  
transmitted when in Data  
Delay 1 or 2 (XDATDLY=01b  
DXENA = 1  
CLKX ext  
P + 5  
P + 20  
or 10b) modes  
CLKX int  
CLKX ext  
CLKX int  
-6  
4
Enable time, CLKX high to  
DXENA = 0  
DX driven  
Only applies to first bit  
P - 6  
M8  
M9  
ten(CKXH-DX)  
ns  
ns  
ns  
transmitted when in Data  
Delay 1 or 2 (XDATDLY=01b  
DXENA = 1  
CLKX ext  
P + 4  
or 10b) modes  
FSX int  
FSX ext  
FSX int  
8
17  
Delay time, FSX high to DX  
DXENA = 0  
valid  
Only applies to first bit  
P + 8  
td(FXH-DXV)  
transmitted when in Data  
Delay 0 (XDATDLY=00b)  
DXENA = 1  
FSX ext  
P + 17  
mode.  
FSX int  
FSX ext  
FSX int  
-3  
6
Enable time, FSX high to DX  
DXENA = 0  
driven  
Only applies to first bit  
P - 3  
M10 ten(FXH-DX)  
transmitted when in Data  
Delay 0 (XDATDLY=00b)  
DXENA = 1  
FSX ext  
P + 6  
mode  
(1) Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that  
signal are also inverted.  
(2) 2P = 1/CLKG in ns.  
(3) C = CLKRX low pulse width = P  
D = CLKRX high pulse width = P  
Copyright © 2021 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
M1, M11  
M2, M12  
M13  
M3, M12  
CLKR  
M4  
M4  
M14  
FSR (int)  
FSR (ext)  
M15  
M17  
M16  
M18  
DR  
(RDATDLY=00b)  
Bit (n−1)  
M17  
(n−2)  
(n−3)  
(n−2)  
(n−4)  
(n−3)  
(n−2)  
M18  
DR  
(RDATDLY=01b)  
Bit (n−1)  
M17  
M18  
DR  
(RDATDLY=10b)  
Bit (n−1)  
Figure 7-64. McBSP Receive Timing  
M1, M11  
M2, M12  
M13  
M3, M12  
CLKX  
FSX (int)  
FSX (ext)  
DX  
M5  
M5  
M19  
M20  
M9  
M7  
M7  
M10  
Bit 0  
Bit (n−1)  
(n−2)  
(n−3)  
(n−2)  
(XDATDLY=00b)  
M8  
DX  
(XDATDLY=01b)  
Bit (n−1)  
M8  
Bit 0  
M6  
M7  
DX  
(XDATDLY=10b)  
Bit 0  
Bit (n−1)  
Figure 7-65. McBSP Transmit Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.3.1.2 McBSP as SPI Master or Slave Timing  
Section 7.12.3.1.2.1 lists the McBSP as SPI master timing requirements. Section 7.12.3.1.2.2 lists the McBSP as  
SPI master switching characteristics. Section 7.12.3.1.2.3 lists the McBSP as SPI slave timing requirements.  
Section 7.12.3.1.2.4 lists the McBSP as SPI slave switching characteristics.  
Figure 7-66 through Figure 7-69 show the McBSP as SPI master or slave timing diagrams.  
7.12.3.1.2.1 McBSP as SPI Master Timing Requirements  
NO.  
MIN  
MAX  
UNIT  
CLOCK  
tc(CLKG)  
P
Cycle time, CLKG(1)  
2 * tc(LSPCLK)  
tc(LSPCLK)  
ns  
ns  
Cycle time, LSPCLK(1)  
M33,  
M42,  
M52,  
M61  
tc(CKX)  
Cycle time, CLKX  
2P  
ns  
CLKSTP = 10b, CLKXP = 0  
M30  
M31  
tsu(DRV-CKXL)  
th(CKXL-DRV)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
30  
1
ns  
ns  
CLKSTP = 11b, CLKXP = 0  
M39  
M40  
tsu(DRV-CKXH)  
th(CKXH-DRV)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
30  
1
ns  
ns  
CLKSTP = 10b, CLKXP = 1  
M49  
M50  
tsu(DRV-CKXH)  
th(CKXH-DRV)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
30  
1
ns  
ns  
CLKSTP = 11b, CLKXP = 1  
M58  
M59  
tsu(DRV-CKXL)  
th(CKXL-DRV)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
30  
1
ns  
ns  
(1) CLKG should be configured to LSPCLK/2 by setting CLKSM = 1 and CLKGDV = 1  
Copyright © 2021 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.12.3.1.2.2 McBSP as SPI Master Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
NO.  
CLOCK  
M33  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
tc(CLKG)  
Cycle time, CLKG(1) (n * tc(LSPCLK)  
Half CLKG cycle; 0.5 * tc(CLKG)  
LSPCLK to CLKG divider  
)
40  
20  
2
ns  
ns  
ns  
P
n
CLKSTP = 10b, CLKXP = 0  
M24  
M25  
M26  
th(CKXL-FXL)  
td(FXL-CKXH)  
td(CLKXH-DXV)  
Hold time, FSX high after CLKX low  
Delay time, FSX low to CLKX high  
Delay time, CLKX high to DX valid  
2P – 6  
P – 6  
–4  
ns  
ns  
ns  
6
Disable time, DX high impedance following last data bit from  
CLKX low  
M28  
M29  
tdis(FXH-DXHZ)  
td(FXL-DXV)  
P – 8  
P – 3  
ns  
ns  
Delay time, FSX low to DX valid  
P + 6  
CLKSTP = 11b, CLKXP = 0  
M34  
M35  
M36  
th(CKXL-FXH)  
td(FXL-CKXH)  
td(CLKXL-DXV)  
Hold time, FSX high after CLKX low  
Delay time, FSX low to CLKX high  
Delay time, CLKX low to DX valid  
P – 6  
P – 6  
–4  
ns  
ns  
ns  
6
1
Disable time, DX high impedance following last data bit from  
CLKX low  
M37  
M38  
tdis(CKXL-DXHZ)  
td(FXL-DXV)  
P – 6  
–2  
ns  
ns  
Delay time, FSX low to DX valid  
CLKSTP = 10b, CLKXP = 1  
M43  
M44  
M45  
th(CKXH-FXH)  
td(FXL-CKXL)  
td(CLKXL-DXV)  
Hold time, FSX high after CLKX high  
Delay time, FSX low to CLKX low  
Delay time, CLKX low to DX valid  
2P – 6  
P – 6  
–4  
ns  
ns  
ns  
6
1
Disable time, DX high impedance following last data bit from  
CLKX low  
M47  
M48  
tdis(FXH-DXHZ)  
td(FXL-DXV)  
P – 6  
–2  
ns  
ns  
Delay time, FSX low to DX valid  
CLKSTP = 11b, CLKXP = 1  
M53  
M54  
M55  
th(CKXH-FXH)  
td(FXL-CKXL)  
td(CLKXH-DXV)  
Hold time, FSX high after CLKX high  
Delay time, FSX low to CLKX low  
Delay time, CLKX high to DX valid  
P – 6  
2P – 6  
–4  
ns  
ns  
ns  
6
1
Disable time, DX high impedance following last data bit from  
CLKX high  
M56  
M57  
tdis(CKXH-DXHZ)  
td(FXL-DXV)  
P – 8  
–2  
ns  
ns  
Delay time, FSX low to DX valid  
(1) CLKG should be configured to LSPCLK/2 by setting CLKSM = 1 and CLKGDV = 1.  
7.12.3.1.2.3 McBSP as SPI Slave Timing Requirements  
NO.  
MIN  
MAX  
UNIT  
CLOCK  
tc(CLKG)  
P
Cycle time, CLKG(1)  
2 * tc(LSPCLK)  
tc(LSPCLK)  
ns  
ns  
Cycle time, LSPCLK(1)  
M33,  
M42,  
M52,  
M61  
tc(CKX)  
Cycle time, CLKX(2)  
16P  
ns  
CLKSTP = 10b, CLKXP = 0  
M30  
M31  
tsu(DRV-CKXL)  
th(CKXL-DRV)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
8P – 10  
8P – 10  
ns  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
NO.  
MIN  
MAX  
UNIT  
M32  
tsu(BFXL-CKXH)  
Setup time, FSX low before CLKX high  
8P+10  
ns  
CLKSTP = 11b, CLKXP = 0  
M39  
M40  
M41  
tsu(DRV-CKXH)  
th(CKXH-DRV)  
tsu(FXL-CKXH)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
Setup time, FSX low before CLKX high  
8P – 10  
8P – 10  
16P+10  
ns  
ns  
ns  
CLKSTP = 10b, CLKXP = 1  
M49  
M50  
M51  
tsu(DRV-CKXH)  
th(CKXH-DRV)  
tsu(FXL-CKXL)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
Setup time, FSX low before CLKX low  
8P – 10  
8P – 10  
8P+10  
ns  
ns  
ns  
CLKSTP = 11b, CLKXP = 1  
M58  
M59  
M60  
tsu(DRV-CKXL)  
th(CKXL-DRV)  
tsu(FXL-CKXL)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
Setup time, FSX low before CLKX low  
8P – 10  
8P – 10  
16P+10  
ns  
ns  
ns  
(1) CLKG should be configured to LSPCLK/2 by setting CLKSM = 1 and CLKGDV = 1  
(2) For SPI slave modes CLKX must be a minimum of 8 CLKG cycles  
7.12.3.1.2.4 McBSP as SPI Slave Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
CLOCK  
2P  
CLKSTP = 10b, CLKXP = 0  
Cycle time, CLKG  
ns  
M26  
M28  
M29  
td(CLKXH-DXV)  
tdis(FXH-DXHZ)  
td(FXL-DXV)  
Delay time, CLKX high to DX valid  
3P + 6  
6P + 6  
4P + 6  
5P + 20  
ns  
ns  
ns  
Disable time, DX high impedance following last data bit from  
FSX high  
Delay time, FSX low to DX valid  
CLKSTP = 11b, CLKXP = 0  
M36  
M37  
M38  
td(CLKXL-DXV)  
tdis(CKXL-DXHZ)  
td(FXL-DXV)  
Delay time, CLKX low to DX valid  
3P + 6  
7P + 6  
4P + 6  
5P + 20  
5P + 20  
5P + 20  
ns  
ns  
ns  
Disable time, DX high impedance following last data bit from  
CLKX low  
Delay time, FSX low to DX valid  
CLKSTP = 10b, CLKXP = 1  
M45  
M47  
M48  
td(CLKXL-DXV)  
tdis(FXH-DXHZ)  
td(FXL-DXV)  
Delay time, CLKX low to DX valid  
3P + 6  
6P + 6  
4P + 6  
ns  
ns  
ns  
Disable time, DX high impedance following last data bit from  
FSX high  
Delay time, FSX low to DX valid  
CLKSTP = 11b, CLKXP = 1  
M55  
M56  
M57  
td(CLKXH-DXV)  
tdis(CKXH-DXHZ)  
td(FXL-DXV)  
Delay time, CLKX high to DX valid  
3P + 6  
7P + 6  
4P + 6  
ns  
ns  
ns  
Disable time, DX high impedance following last data bit from  
CLKX high  
Delay time, FSX low to DX valid  
Copyright © 2021 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
M33  
M32  
MSB  
LSB  
CLKX  
FSX  
M25  
M24  
M26  
M29  
M28  
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
M31  
(n-2)  
(n-3)  
(n-4)  
M30  
Bit 0  
(n-3)  
(n-4)  
Figure 7-66. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
M42  
MSB  
LSB  
M41  
CLKX  
FSX  
DX  
M35  
M34  
M36  
(n-2)  
M40  
(n-2)  
M37  
M38  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-3)  
(n-4)  
M39  
DR  
Bit 0  
(n-3)  
(n-4)  
Figure 7-67. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
M52  
M51  
MSB  
LSB  
CLKX  
FSX  
M43  
M44  
M48  
M47  
M45  
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
M49  
M50  
(n-2)  
Bit 0  
(n-3)  
(n-4)  
Figure 7-68. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
M61  
M60  
MSB  
M54  
LSB  
CLKX  
FSX  
DX  
M53  
M56  
M55  
M57  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
M58  
M59  
(n-2)  
DR  
Bit 0  
Bit(n-1)  
(n-3)  
(n-4)  
Figure 7-69. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.4 Serial Communications Interface (SCI)  
The SCI is a 2-wire asynchronous serial port, commonly known as a UART. The SCI module supports digital  
communications between the CPU and other asynchronous peripherals that use the standard non-return-to-zero  
(NRZ) format  
The SCI receiver and transmitter each have a 16-level-deep FIFO for reducing servicing overhead, and each has  
its own separate enable and interrupt bits. Both can be operated independently for half-duplex communication,  
or simultaneously for full-duplex communication. To specify data integrity, the SCI checks received data for break  
detection, parity, overrun, and framing errors. The bit rate is programmable to different speeds through a 16-bit  
baud-select register. Figure 7-70 shows the SCI block diagram.  
Features of the SCI module include:  
Two external pins:  
– SCITXD: SCI transmit-output pin  
– SCIRXD: SCI receive-input pin  
Note  
NOTE: Both pins can be used as GPIO if not used for SCI.  
– Baud rate programmable to 64K different rates  
Data-word format  
– One start bit  
– Data-word length programmable from 1 to 8 bits  
– Optional even/odd/no parity bit  
– 1 or 2 stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wakeup multiprocessor modes: idle-line and address bit  
Half- or full-duplex operation  
Double-buffered receive and transmit functions  
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with  
status flags.  
– Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY  
flag (transmitter-shift register is empty)  
– Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break  
condition occurred), and RX ERROR flag (monitoring four interrupt conditions)  
Separate enable bits for transmitter and receiver interrupts (except BRKDT)  
NRZ format  
Auto baud-detect hardware logic  
16-level transmit and receive FIFO  
Note  
All registers in this module are 8-bit registers. When a register is accessed, the register data is in the  
lower byte (bits 7–0), and the upper byte (bits 15–8) is read as zeros. Writing to the upper byte has no  
effect.  
Copyright © 2021 Texas Instruments Incorporated  
158 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
TXENA  
SCICTL1.1  
TXSHF  
SCITXD  
Register  
Frame  
Format and Mode  
8
Parity  
Even/Odd  
TXEMPTY  
1
SCICTL2.6  
0
SCICCR.6  
8
Enable  
TX FIFO_0  
TXINT  
To CPU  
SCICCR.5  
TX FIFO_1  
TX Interrupt  
Logic  
TX FIFO Interrupts  
8
TX FIFO_N  
TXINTENA  
SCICTL2.0  
TXRDY  
8
1
0
TXWAKE  
SCICTL2.7  
SCICTL1.3  
SCI TX Interrupt Select Logic  
8
WUT  
Transmit Data  
Buffer Register  
SCITXBUF.7-0  
Auto Baud Detect Logic  
RXENA  
Baud Rate  
MSB/LSB  
Registers  
SCICTL1.0  
LSPCLK  
RXSHF  
Register  
SCIRXD  
SCIHBAUD.15-8  
SCILBAUD.7-0  
RXWAKE  
8
SCIRXST.1  
0
1
8
SCIFFENA  
SCIFFTX.14  
RX FIFO_0  
RX FIFO_1  
RXINT  
To CPU  
8
RX FIFO Interrupts  
RX Interrupt  
Logic  
RX FIFO_N  
RXFFOVF  
8
1
SCIFFRX.15  
0
RXBKINTENA  
SCICTL2.1  
RXRDY  
SCIRXST.6  
RXENA  
BRKDT  
RXERRINTENA  
SCICTL1.6  
SCICTL1.0  
SCIRXST.5  
SCI RX Interrupt Select Logic  
8
SCIRXST.5-2  
BRKDT FE OE PE  
RXERROR  
Receive Data  
Buffer Register  
SCIRXBUF.7-0  
SCIRXST.7  
Figure 7-70. SCI Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
The major elements used in full-duplex operation include:  
A transmitter (TX) and its major registers:  
– SCITXBUF register – Transmitter Data Buffer register. Contains data (loaded by the CPU) to be  
transmitted  
– TXSHF register – Transmitter Shift register. Accepts data from the SCITXBUF register and shifts data onto  
the SCITXD pin, 1 bit at a time  
A receiver (RX) and its major registers:  
– RXSHF register – Receiver Shift register. Shifts data in from the SCIRXD pin, 1 bit at a time  
– SCIRXBUF register – Receiver Data Buffer register. Contains data to be read by the CPU. Data from a  
remote processor is loaded into the RXSHF register and then into the SCIRXBUF and SCIRXEMU  
registers  
A programmable baud generator  
Data-memory-mapped control and status registers enable the CPU to access the I2C module registers and  
FIFOs.  
The SCI receiver and transmitter operate independently.  
Copyright © 2021 Texas Instruments Incorporated  
160 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.12.5 Serial Peripheral Interface (SPI)  
The SPI is a high-speed synchronous serial input/output (I/O) port that allows a serial bit stream of programmed  
length (1 to 16 bits) to be shifted into and out of the device at a programmed bit-transfer rate. The SPI is  
normally used for communications between the microcontroller and external peripherals or another controller.  
Typical applications include external I/O or peripheral expansion through devices such as shift registers, display  
drivers, and ADCs. Multidevice communications are supported by the master/slave operation of the SPI. The  
port supports 16-level receive and transmit FIFOs for reducing CPU servicing overhead.  
The SPI module features include:  
SPISOMI: SPI slave-output/master-input pin  
SPISIMO: SPI slave-input/master-output pin  
SPISTE: SPI slave transmit-enable pin  
SPICLK: SPI serial-clock pin  
Two operational modes: master and slave  
Baud rate: 125 different programmable rates  
Data word length: 1 to 16 data bits  
Four clocking schemes (controlled by clock polarity and clock phase bits) include:  
– Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the  
SPICLK signal and receives data on the rising edge of the SPICLK signal.  
– Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling  
edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.  
– Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the  
SPICLK signal and receives data on the falling edge of the SPICLK signal.  
– Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the rising  
edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Simultaneous receive-and-transmit operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithms.  
16-level transmit and receive FIFO  
Delayed transmit control  
3-wire SPI mode  
SPISTE inversion for digital audio interface receive mode on devices with two SPI modules  
DMA support  
High-speed mode for up to 50-MHz full-duplex communication  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
The SPI operates in master or slave mode. The master initiates data transfer by sending the SPICLK signal. For  
both the slave and the master, data is shifted out of the shift registers on one edge of the SPICLK and latched  
into the shift register on the opposite SPICLK clock edge. If the CLOCK PHASE bit (SPICTL.3) is high, data is  
transmitted and received a half-cycle before the SPICLK transition. As a result, both controllers send and receive  
data simultaneously. The application software determines whether the data is meaningful or dummy data. There  
are three possible methods for data transmission:  
Master sends data; slave sends dummy data  
Master sends data; slave sends data  
Master sends dummy data; slave sends data  
The master can initiate a data transfer at any time because it controls the SPICLK signal. The software,  
however, determines how the master detects when the slave is ready to broadcast data.  
Figure 7-71 shows the SPI CPU Interface.  
PCLKCR8  
Low-Speed  
LSPCLK  
SYSCLK  
CPU  
Prescaler  
Bit  
Clock  
SYSRS  
SPISIMO  
SPISOMI  
SPICLK  
GPIO  
MUX  
SPI  
SPIINT  
SPITXINT  
PIE  
SPISTE  
SPIRXDMA  
SPITXDMA  
DMA  
Figure 7-71. SPI CPU Interface  
Copyright © 2021 Texas Instruments Incorporated  
162 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.12.5.1 SPI Electrical Data and Timing  
Note  
All timing parameters for SPI High-Speed Mode assume a load capacitance of 5 pF on SPICLK,  
SPISIMO, and SPISOMI.  
For more information about the SPI in High-Speed mode, see the Serial Peripheral Interface (SPI) chapter of the  
TMS320F2837xS Microcontrollers Technical Reference Manual .  
To use the SPI in High-Speed mode, the application must use the high-speed enabled GPIOs (see Section  
6.4.5).  
7.12.5.1.1 SPI Master Mode Timings  
Section 7.12.5.1.1.1 lists the SPI master mode timing requirements. Section 7.12.5.1.1.2 lists the SPI master  
mode switching characteristics (clock phase = 0). Section 7.12.5.1.1.3 lists the SPI master mode switching  
characteristics (clock phase = 1). Figure 7-72 shows the SPI master mode external timing where the clock phase  
= 0. Figure 7-73 shows the SPI master mode external timing where the clock phase = 1.  
7.12.5.1.1.1 SPI Master Mode Timing Requirements  
(BRR + 1)  
NO.  
MIN  
MAX UNIT  
CONDITION(1)  
High Speed Mode  
Setup time, SPISOMI valid before  
SPICLK  
8
9
tsu(SOMI)M  
th(SOMI)M  
Even, Odd  
1
5
ns  
ns  
Hold time, SPISOMI valid after  
SPICLK  
Even, Odd  
Normal Mode  
Even, Odd  
Setup time, SPISOMI valid before  
SPICLK  
8
9
tsu(SOMI)M  
th(SOMI)M  
20  
0
ns  
ns  
Hold time, SPISOMI valid after  
SPICLK  
Even, Odd  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
7.12.5.1.1.2 SPI Master Mode Switching Characteristics (Clock Phase = 0)  
over recommended operating conditions (unless otherwise noted)  
(BRR + 1)  
NO.  
PARAMETER  
MIN  
MAX UNIT  
CONDITION(1)  
General  
Even  
4tc(LSPCLK)  
5tc(LSPCLK)  
128tc(LSPCLK)  
1
2
tc(SPC)M  
Cycle time, SPICLK  
ns  
ns  
Odd  
127tc(LSPCLK)  
Even  
0.5tc(SPC)M – 1  
0.5tc(SPC)M + 1  
tw(SPC1)M  
Pulse duration, SPICLK, first pulse  
0.5tc(SPC)M +0.5tc(LSPCLK)  
– 1  
0.5tc(SPC)M +0.5tc(LSPCLK)  
+ 1  
Odd  
Even  
Odd  
0.5tc(SPC)M – 1  
0.5tc(SPC)M + 1  
Pulse duration, SPICLK, second  
pulse  
3
tw(SPC2)M  
ns  
ns  
ns  
0.5tc(SPC)M –0.5tc(LSPCLK)  
1.5tc(SPC)M - 3tc(SYSCLK)  
1.5tc(SPC)M - 4tc(SYSCLK)  
1
0.5tc(SPC)M –0.5tc(LSPCLK)  
+ 1  
7
1.5tc(SPC)M - 3tc(SYSCLK)  
+
5
Even  
23 td(SPC)M  
Delay time, SPISTE active to SPICLK  
7
1.5tc(SPC)M - 4tc(SYSCLK)  
+
5
Odd  
Even  
Odd  
0.5tc(SPC)M – 7  
0.5tc(SPC)M + 5  
Valid time, SPICLK to SPISTE  
inactive  
24 tv(STE)M  
0.5tc(SPC)M –0.5tc(LSPCLK)  
7
0.5tc(SPC)M –0.5tc(LSPCLK)  
+ 5  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
MAX UNIT  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
over recommended operating conditions (unless otherwise noted)  
(BRR + 1)  
NO.  
PARAMETER  
MIN  
CONDITION(1)  
High Speed Mode  
4
5
td(SIMO)M  
Delay time, SPICLK to SPISIMO valid Even, Odd  
1
ns  
ns  
Even  
0.5tc(SPC)M – 2  
Valid time, SPISIMO valid after  
tv(SIMO)M  
0.5tc(SPC)M –0.5tc(LSPCLK)  
2
SPICLK  
Odd  
Normal Mode  
4
5
td(SIMO)M  
Delay time, SPICLK to SPISIMO valid Even, Odd  
6
ns  
ns  
Even  
0.5tc(SPC)M – 5  
Valid time, SPISIMO valid after  
tv(SIMO)M  
0.5tc(SPC)M –0.5tc(LSPCLK)  
5
SPICLK  
Odd  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
7.12.5.1.1.3 SPI Master Mode Switching Characteristics (Clock Phase = 1)  
over recommended operating conditions (unless otherwise noted)  
(BRR + 1)  
NO.  
PARAMETER  
MIN  
MAX UNIT  
CONDITION(1)  
General  
Even  
Odd  
4tc(LSPCLK)  
5tc(LSPCLK)  
128tc(LSPCLK)  
1
2
tc(SPC)M  
Cycle time, SPICLK  
ns  
ns  
127tc(LSPCLK)  
Even  
0.5tc(SPC)M – 1  
0.5tc(SPC)M + 1  
Pulse duration, SPICLK, first  
pulse  
tw(SPCH)M  
0.5tc(SPC)M  
Odd  
Even  
Odd  
0.5tc(SPC)M – 0.5tc(LSPCLK) – 1  
0.5tc(SPC)M – 1  
0.5tc(LSPCLK) + 1  
0.5tc(SPC)M + 1  
Pulse duration, SPICLK,  
second pulse  
3
tw(SPC2)M  
ns  
0.5tc(SPC)M  
+
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1  
0.5tc(LSPCLK) + 1  
Delay time, SPISTE valid to  
SPICLK  
2tc(SPC)M –  
3tc(SYSCLK) + 5  
23 td(SPC)M  
Even, Odd  
2tc(SPC)M – 3tc(SYSCLK) – 7  
ns  
ns  
Even  
Odd  
– 7  
– 7  
+5  
+5  
Valid time, SPICLK to SPISTE  
invalid  
24 tv(STE)M  
High Speed Mode  
Even  
Odd  
0.5tc(SPC)M – 1  
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1  
0.5tc(SPC)M – 2  
Delay time, SPISIMO valid to  
SPICLK  
4
5
td(SIMO)M  
ns  
ns  
Even  
Odd  
Valid time, SPISIMO valid after  
SPICLK  
tv(SIMO)M  
0.5tc(SPC)M – 0.5tc(LSPCLK) – 2  
Normal Mode  
Even  
Odd  
0.5tc(SPC)M – 5  
0.5tc(SPC)M + 0.5tc(LSPCLK) – 5  
0.5tc(SPC)M – 5  
Delay time, SPISIMO valid to  
SPICLK  
4
5
td(SIMO)M  
ns  
ns  
Even  
Odd  
Valid time, SPISIMO valid after  
SPICLK  
tv(SIMO)M  
0.5tc(SPC)M – 0.5tc(LSPCLK) – 5  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
Copyright © 2021 Texas Instruments Incorporated  
164 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
SPISTE(A)  
24  
23  
A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes.  
Figure 7-72. SPI Master Mode External Timing (Clock Phase = 0)  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data Must  
Be Valid  
SPISOMI  
SPISTE(A)  
24  
23  
A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes.  
Figure 7-73. SPI Master Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.5.1.2 SPI Slave Mode Timings  
Section 7.12.5.1.2.1 lists the SPI slave mode timing requirements. Section 7.12.5.1.2.2 lists the SPI slave mode  
switching characteristics. Figure 7-74 shows the SPI slave mode external timing where the clock phase = 0.  
Figure 7-75 shows the SPI slave mode external timing where the clock phase = 1.  
7.12.5.1.2.1 SPI Slave Mode Timing Requirements  
NO.  
MIN  
4tc(SYSCLK)  
MAX UNIT  
12 tc(SPC)S  
13 tw(SPC1)S  
14 tw(SPC2)S  
19 tsu(SIMO)S  
20 th(SIMO)S  
Cycle time, SPICLK  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SPICLK, first pulse  
Pulse duration, SPICLK, second pulse  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO valid after SPICLK  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
Setup time, SPISTE valid before  
SPICLK (Clock Phase = 0)  
2tc(SYSCLK) + 4  
ns  
25 tsu(STE)S  
Setup time, SPISTE valid before  
SPICLK (Clock Phase = 1)  
2tc(SYSCLK) + 14  
1.5tc(SYSCLK)  
ns  
ns  
26 th(STE)S  
Hold time, SPISTE invalid after SPICLK  
7.12.5.1.2.2 SPI Slave Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
0
MAX UNIT  
High Speed Mode  
15 td(SOMI)S  
16 tv(SOMI)S  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI valid after SPICLK  
9
ns  
ns  
Normal Mode  
15 td(SOMI)S  
16 tv(SOMI)S  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI valid after SPICLK  
20  
ns  
ns  
0
Copyright © 2021 Texas Instruments Incorporated  
166 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
16  
SPISOMI  
SPISOMI Data Is Valid  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
25  
26  
Figure 7-74. SPI Slave Mode External Timing (Clock Phase = 0)  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
SPISOMI  
SPISOMI Data Is Valid  
Data Valid  
Data Valid  
16  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
26  
25  
Figure 7-75. SPI Slave Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 167  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.6 Universal Serial Bus (USB) Controller  
The USB controller operates as a full-speed or low-speed function controller during point-to-point  
communications with USB host or device functions.  
The USB module has the following features:  
USB 2.0 full-speed and low-speed operation  
Integrated PHY  
Three transfer types: control, interrupt, and bulk  
32 endpoints  
– One dedicated control IN endpoint and one dedicated control OUT endpoint  
– 15 configurable IN endpoints and 15 configurable OUT endpoints  
4KB of dedicated endpoint memory  
Figure 7-76 shows the USB block diagram.  
Endpoint Control  
Transmit  
Receive  
EP0 –31  
Control  
CPU Interface  
Interrupt  
Control  
Interrupts  
CPU Bus  
Host  
Transaction  
Scheduler  
Combine  
Endpoints  
EP Reg.  
Decoder  
Common  
Regs  
UTM  
Synchronization  
Packet  
Encode/Decode  
FIFO RAM  
Controller  
Rx  
Buff  
Rx  
Buff  
Data Sync  
Packet Encode  
Packet Decode  
CRC Gen/Check  
Cycle  
Control  
Tx  
Buff  
Tx  
Buff  
HNP/SRP  
USB FS/LS  
PHY  
FIFO  
Decoder  
Timers  
Cycle Control  
USB DataLines  
D+ andD-  
Figure 7-76. USB Block Diagram  
Note  
The accuracy of the on-chip zero-pin oscillator (Section 7.9.3.5.1, Internal Oscillator Electrical  
Characteristics) will not meet the accuracy requirements of the USB protocol. An external clock source  
must be used for applications using USB. For applications using the USB boot mode, see Section 8.9  
(Boot ROM and Peripheral Booting) for clock frequency requirements.  
Copyright © 2021 Texas Instruments Incorporated  
168 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
7.12.6.1 USB Electrical Data and Timing  
Section 7.12.6.1.1 shows the USB input ports DP and DM timing requirements. Section 7.12.6.1.2 shows the  
USB output ports DP and DM switching characteristics.  
7.12.6.1.1 USB Input Ports DP and DM Timing Requirements  
MIN  
0.8  
MAX  
UNIT  
V
V(CM)  
Z(IN)  
VCRS  
VIL  
Differential input common mode range  
Input impedance  
2.5  
300  
1.3  
kΩ  
V
Crossover voltage  
2.0  
Static SE input logic-low level  
Static SE input logic-high level  
Differential input voltage  
0.8  
V
VIH  
2.0  
0.2  
V
VDI  
V
7.12.6.1.2 USB Output Ports DP and DM Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
D+, D– single-ended  
D+, D– single-ended  
D+, D– impedance  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
V
VOH  
USB 2.0 load conditions  
USB 2.0 load conditions  
2.8  
0
3.6  
0.3  
44  
VOL  
V
Z(DRV)  
28  
Ω
Full speed, differential, CL = 50 pF, 10%/90%,  
Rpu on D+  
tr  
tf  
Rise time  
Fall time  
4
4
20  
20  
ns  
ns  
Full speed, differential, CL = 50 pF, 10%/90%,  
Rpu on D+  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 169  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.7 Universal Parallel Port (uPP) Interface  
The uPP interface is a high-speed parallel interface with dedicated data lines and minimal control signals. The  
uPP interface is designed to interface cleanly with high-speed ADCs or DACs with 8-bit data width. It can also be  
interconnected with field-programmable gate arrays (FPGAs) or other uPP devices to achieve high-speed digital  
data transfer. It can operate in receive mode or transmit mode (simplex mode).  
The uPP interface includes an internal DMA controller to maximize throughput and minimize CPU overhead  
during high-speed data transmission. All uPP transactions use internal DMA to feed data to or retrieve data from  
the I/O channels. Even though there is only one I/O channel, the DMA controller includes two DMA channels to  
support data interleave mode, in which all DMA resources service a single I/O channel.  
On this device, the uPP interface is the dedicated resource for the CPU1 subsystem. CPU1, CPU1.CLA1, and  
CPU1.DMA have access to this module. Two dedicated 512-byte data RAMs (also known as MSG RAMs) are  
tightly coupled with the uPP module (one for each, TX and RX). These data RAMs are used to store the bulk of  
data to avoid frequent interruptions to the CPU. Only CPU1 and CPU1.CLA1 have access to these data RAMs.  
Figure 7-77 shows the integration of the uPP on this device.  
CPU1  
RX-DATARAM  
READ  
Arbi  
Arbiter Y  
512 Byte  
(Dual Port  
t
Memory)  
CPU1.CLA1  
uPP DMA WRITE  
CPU1  
I/O Interface  
Arbi  
Arbiter X  
uPP  
(Universal  
CPU1.CLA1  
t
0
1
Parallel Port)  
CPU1.DMA  
uPP DMA READ  
SECMSEL.PF2SEL  
CPU1  
TX-DATARAM  
512 Byte  
WRITE  
Arbi  
Arbiter Y  
(Dual Port  
Memory)  
t
CPU1.CLA1  
Figure 7-77. uPP Integration  
Note  
On some TI devices, the uPP module is also called the Radio Peripheral Interface (RPI) module.  
Copyright © 2021 Texas Instruments Incorporated  
170 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
The uPP interface supports the following:  
Mainstream high-speed data converters with parallel conversion interface.  
Mainstream high-speed streaming interface with frame START indication.  
Mainstream high-speed streaming interface with data ENABLE indication.  
Mainstream high-speed streaming interface with synchronization WAIT signal.  
SDR (single-data-rate) or DDR (double-data-rate, interleaved) interface.  
Multiplexing of interleaved data in SDR transmit case.  
Demultiplexing and multiplexing of interleaved data in DDR case.  
I/O interface clock frequency up to 50 MHz for SDR, and 25 MHz for DDR.  
Single-channel 8-bit input receive or output transmit mode.  
Max throughput is 50MB/s for pure read or pure write.  
Available as a DSP to FPGA general-purpose streaming interface.  
Figure 7-78 shows the uPP functional block diagram.  
uPP  
Configuration  
MMR  
I/F  
ENABLE OUT  
G
P
I
ENABLE/GPIOx  
Transmit Timing  
and Control  
START OUT  
WAIT IN  
O
CLK OUT  
START/GPIOx  
WAIT/GPIOx  
CPU1.SYSCLK  
Interrupt/Trigger  
CLKDIVIDER  
M
U
X
CLK IN  
ENABLE IN  
Receive Timing  
and Control  
Control Mux  
START IN  
WAIT OUT  
and  
I/O  
CLK/GPIOx  
Arbi  
I-FIFO  
t
C
O
N
T
64 Bit  
MEM WR I/F  
DATA OUT  
DATA IN  
DATA[7:0]/GPIOx  
Internal  
Data Interleaving  
(TX/RX)  
DMA  
Arbit  
R
O
L
64 Bit  
MEM RD I/F  
Arbi  
Q-FIFO  
Figure 7-78. uPP Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 171  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.7.1 uPP Electrical Data and Timing  
Section 7.12.7.1.1 shows the uPP timing requirements. Section 7.12.7.1.2 shows the uPP switching  
characteristics. Figure 7-79 through Figure 7-82 show the uPP timing diagrams.  
7.12.7.1.1 uPP Timing Requirements  
NO.  
MIN MAX UNIT  
SDR mode  
DDR mode  
SDR mode  
DDR mode  
SDR mode  
DDR mode  
20  
ns  
40  
1
tc(CLK)  
Cycle time, CLK  
8
ns  
18  
2
3
tw(CLKH)  
Pulse width, CLK high  
Pulse width, CLK low  
8
ns  
18  
tw(CLKL)  
4
5
6
7
8
9
tsu(STV-CLKH)  
th(CLKH-STV)  
tsu(ENV-CLKH)  
th(CLKH-ENV)  
tsu(DV-CLKH)  
th(CLKH-DV)  
Setup time, START valid before CLK high  
Hold time, START valid after CLK high  
Setup time, ENABLE valid before CLK high  
Hold time, ENABLE valid after CLK high  
Setup time, DATA valid before CLK high  
Hold time, DATA valid after CLK high  
Setup time, DATA valid before CLK low  
Hold time, DATA valid after CLK low  
Setup time, WAIT valid before CLK high  
Hold time, WAIT valid after CLK high  
Setup time, WAIT valid before CLK low  
Hold time, WAIT valid after CLK low  
4
0.8  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.8  
4
0.8  
4
10 tsu(DV-CLKL)  
11 th(CLKL-DV)  
0.8  
20  
0
19 tsu(WTV-CLKH)  
20 th(CLKH-WTV)  
21 tsu(WTV-CLKL)  
22 th(CLKL-WTV)  
SDR mode  
SDR mode  
DDR mode  
DDR mode  
20  
0
7.12.7.1.2 uPP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
MIN MAX UNIT  
SDR mode  
DDR mode  
SDR mode  
DDR mode  
SDR mode  
DDR mode  
20  
ns  
40  
12 tc(CLK)  
Cycle time, CLK  
8
ns  
18  
13 tw(CLKH)  
Pulse width, CLK high  
Pulse width, CLK low  
8
ns  
18  
14 tw(CLKL)  
15 td(CLKH-STV)  
16 td(CLKH-ENV)  
17 td(CLKH-DV)  
18 td(CLKL-DV)  
Delay time, START valid after CLK high  
Delay time, ENABLE valid after CLK high  
Delay time, DATA valid after CLK high  
Delay time, DATA valid after CLK low  
3
3
3
3
12  
12  
12  
12  
ns  
ns  
ns  
ns  
Copyright © 2021 Texas Instruments Incorporated  
172 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
CLK  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
1
2
3
4
5
START  
ENABLE  
WAIT  
6
7
8
9
DATA[n:0]  
Data1  
Data2  
Data3  
Data4  
Data5  
Data6  
Data7  
Data8  
Data9  
Figure 7-79. uPP Single Data Rate (SDR) Receive Timing  
1
2
3
CLK  
4
5
START  
6
7
ENABLE  
WAIT  
10  
8
11  
9
DATA[n:0]  
I1 Q1 I2 Q2 I3 Q3  
I4 Q4  
I5 Q5 I6 Q6 I7 Q7 I8 Q8 I9 Q9  
Figure 7-80. uPP Double Data Rate (DDR) Receive Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 173  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
12  
13  
14  
CLK  
START  
15  
16  
ENABLE  
WAIT  
19  
20  
17  
DATA[n:0]  
Data1  
Data2  
Data3  
Data4  
Data5  
Data6  
Data7  
Data8  
Data9  
Figure 7-81. uPP Single Data Rate (SDR) Transmit Timing  
12  
13  
14  
CLK  
START  
15  
16  
ENABLE  
WAIT  
21  
22  
17  
18  
I5 Q5 I6 Q6 I7 Q7 I8 Q8 I9 Q9  
DATA[n:0]  
I1 Q1 I2 Q2 I3 Q3  
Q4  
I4  
Figure 7-82. uPP Double Data Rate (DDR) Transmit Timing  
Copyright © 2021 Texas Instruments Incorporated  
174 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
8 Detailed Description  
8.1 Overview  
The TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced  
closed-loop control applications such as industrial motor drives; solar inverters and digital power; electrical  
vehicles and transportation; and sensing and signal processing. Complete development packages for digital  
power and industrial drives are available as part of the powerSUITE and DesignDRIVE initiatives.  
The real-time control subsystem is based on TI’s 32-bit C28x floating-point CPU, which provides 200 MHz of  
signal processing performance. The C28x CPU is further boosted by the new TMU accelerator, which enables  
fast execution of algorithms with trigonometric operations common in transforms and torque loop calculations;  
and the VCU accelerator, which reduces the time for complex math operations common in encoded applications.  
The F2837xS microcontroller family features a CLA real-time control coprocessor. The CLA is an independent  
32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral  
triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can  
effectively double the computational performance of a real-time control system. By using the CLA to service  
time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and  
diagnostics.  
The TMS320F2837xS supports up to 1MB (512KW) of onboard flash memory with error correction code (ECC)  
and up to 164KB (82KW) of SRAM. Two 128-bit secure zones are also available on the CPU for code protection.  
Performance analog and control peripherals are also integrated on the F2837xS MCU to further enable system  
consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog  
signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM) works in  
conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator  
Subsystem (CMPSS) with windowed comparators allows for protection of power stages when current limit  
conditions are exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs,  
eQEPs, and other peripherals.  
Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), and a new uPP interface extend  
the connectivity of the F2837xS. The uPP interface is a new feature of the C2000 MCUs and supports high-  
speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly, a USB 2.0 port with  
MAC and PHY lets users easily add universal serial bus (USB) connectivity to their application.  
8.2 Functional Block Diagram  
Figure 8-1 shows the CPU system and associated peripherals.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 175  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
MEMCPU1  
Low-Power  
Mode Control  
CPU1.CLA1 to CPU1  
C28 CPU-1  
GPIO MUX  
INTOSC1  
CPU1.CLA1  
User-Configurable  
128x16 MSG RAM  
DCSM  
OTP  
1K x 16  
CPU1 to CPU1.CLA1  
128x16 MSG RAM  
PSWD  
FPU  
VCU-II  
TMU  
Dual  
Code  
Security  
Module  
+
Emulation  
Code  
Security  
Logic  
(ECSL)  
Watchdog  
Main PLL  
Aux PLL  
Flash Bank 0  
256K x 16  
Secure  
Flash Bank 1  
256K x 16  
Secure  
CPU1 Local Shared  
6x 2Kx16  
LS0-LS5 RAMs  
Secure Memories  
shown in Red  
PUMP  
CPU1.D0 RAM 2Kx16  
CPU1.D1 RAM 2Kx16  
Flash Wrapper for  
Bank 0  
Flash Wrapper for  
Bank 1  
INTOSC2  
WD Timer  
NMI-WDT  
External Crystal or  
Oscillator  
CPU Timer 0  
CPU Timer 1  
CPU Timer 2  
CPU1.M0 RAM 1Kx16  
CPU1.M1 RAM 1Kx16  
A5:0  
B5:0  
C5:2  
D5:0  
16-/12-bit ADC  
x4  
A
B
C
D
Global Shared  
16x 4Kx16  
GS0-GS15 RAMs  
ePIE  
(up to 192  
AUXCLKIN  
ADC  
Result  
Regs  
Secure-ROM 32Kx16  
Secure  
Analog  
MUX  
interrupts)  
TRST  
Config  
Boot-ROM 32Kx16  
Nonsecure  
TCK  
TDI  
JTAG  
ADCIN14  
ADCIN15  
Data Bus  
Bridge  
TMS  
TDO  
CPU1.CLA1 Data ROM  
(4Kx16)  
CPU1.DMA  
Comparator  
Subsystem  
(CMPSS)  
DAC  
x3  
CPU1 Buses  
Data Bus  
Bridge  
Data Bus  
Bridge  
Data Bus  
Bridge  
Data Bus  
Bridge  
Data Bus  
Bridge  
Peripheral Frame 1  
Data Bus Bridge  
Peripheral Frame 2  
McBSP-A/B  
SCI-  
USB  
Ctrl /  
PHY  
SPI-  
A/B/C  
(16L FIFO)  
ePWM-1/../12  
HRPWM-1/../8  
CAN-  
A/B  
(32-MBOX)  
RAM  
I2C-A/B  
A/B/C/D  
(16L FIFO)  
(16L FIFO)  
eCAP-  
1/../6  
eQEP-1/2/3  
SDFM-1/2  
uPP  
EMIF1  
EMIF2  
GPIO  
GPIO MUX, Input X-BAR, Output X-BAR  
Figure 8-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
176 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
8.3 Memory  
8.3.1 C28x Memory Map  
The C28x memory map is described in Table 8-1. Memories accessible by the CLA or DMA (direct memory  
access) are noted as well.  
Table 8-1. C28x Memory Map  
MEMORY  
SIZE  
1K × 16  
1K × 16  
512 × 16  
128 × 16  
128 × 16  
512 × 16  
512 × 16  
2K × 16  
2K × 16  
2K × 16  
2K × 16  
2K × 16  
2K × 16  
2K × 16  
2K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
2K × 16  
2K × 16  
256K × 16  
256K × 16  
32K × 16  
32K × 16  
64 × 16  
START ADDRESS  
0x0000 0000  
0x0000 0400  
0x0000 0D00  
0x0000 1480  
0x0000 1500  
0x0000 6C00  
0x0000 6E00  
0x0000 8000  
0x0000 8800  
0x0000 9000  
0x0000 9800  
0x0000 A000  
0x0000 A800  
0x0000 B000  
0x0000 B800  
0x0000 C000  
0x0000 D000  
0x0000 E000  
0x0000 F000  
0x0001 0000  
0x0001 1000  
0x0001 2000  
0x0001 3000  
0x0001 4000  
0x0001 5000  
0x0001 6000  
0x0001 7000  
0x0001 8000  
0x0001 9000  
0x0001 A000  
0x0001 B000  
0x0004 9000  
0x0004 B000  
0x0008 0000  
0x000C 0000  
0x003F 0000  
0x003F 8000  
0x003F FFC0  
END ADDRESS  
0x0000 03FF  
0x0000 07FF  
0x0000 0EFF  
0x0000 14FF  
0x0000 157F  
0x0000 6DFF  
0x0000 6FFF  
0x0000 87FF  
0x0000 8FFF  
0x0000 97FF  
0x0000 9FFF  
0x0000 A7FF  
0x0000 AFFF  
0x0000 B7FF  
0x0000 BFFF  
0x0000 CFFF  
0x0000 DFFF  
0x0000 EFFF  
0x0000 FFFF  
0x0001 0FFF  
0x0001 1FFF  
0x0001 2FFF  
0x0001 3FFF  
0x0001 4FFF  
0x0001 5FFF  
0x0001 6FFF  
0x0001 7FFF  
0x0001 8FFF  
0x0001 9FFF  
0x0001 AFFF  
0x0001 BFFF  
0x0004 97FF  
0x0004 B7FF  
0x000B FFFF  
0x000F FFFF  
0x003F 7FFF  
0x003F FFBF  
0x003F FFFF  
CLA ACCESS  
DMA ACCESS  
M0 RAM  
M1 RAM  
PieVectTable  
CLA to CPU MSGRAM  
CPU to CLA MSGRAM  
UPP TX MSG RAM  
UPP RX MSG RAM  
LS0 RAM  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
LS1 RAM  
LS2 RAM  
LS3 RAM  
LS4 RAM  
LS5 RAM  
D0 RAM  
D1 RAM  
GS0 RAM  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
GS1 RAM  
GS2 RAM  
GS3 RAM  
GS4 RAM  
GS5 RAM  
GS6 RAM  
GS7 RAM  
GS8 RAM  
GS9 RAM  
GS10 RAM  
GS11 RAM  
GS12 RAM(1)  
GS13 RAM(1)  
GS14 RAM(1)  
GS15 RAM(1)  
CAN A Message RAM  
CAN B Message RAM  
Flash Bank 0  
Flash Bank 1  
Secure ROM  
Boot ROM  
Vectors  
(1) Available only on F28379S, F28378S, F28377S, and F28375S.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 177  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
8.3.2 Flash Memory Map  
The F28379S, F28378S, F28377S, and F28375S devices have two flash banks [512KB (256KW) each] for a  
total of 1MB (512KW). Only one bank can be programmed or erased at a time. The Flash API can be executed  
from RAM, or since there are two Flash banks for one CPU, the Flash API code can be executed from one bank  
to erase/program the other bank. Note that an extra wait state is automatically added when code is fetched or  
data is read from Bank 1 (compared to that of Bank 0), even for prefetched data. See Section 7.9.4 for details on  
flash wait states. Table 1-1 shows the addresses of flash sectors on F28379S, F28378S, F28377S, and  
F28375S.  
Table 8-2. Addresses of Flash Sectors on F28379S, F28378S, F28377S, and F28375S  
SECTOR  
SIZE  
START ADDRESS  
END ADDRESS  
OTP Sectors  
TI OTP  
1K x 16  
1K x 16  
0x0007 0000  
0x0007 0800  
0x0007 03FF  
0x0007 0BFF  
Reserved(1)  
User configurable DCSM OTP  
Bank 0  
1K x 16  
1K x 16  
0x0007 8000  
0x0007 8800  
0x0007 83FF  
0x0007 8BFF  
Reserved  
Bank 0 Sectors  
Sector 0  
Sector 1  
Sector 2  
Sector 3  
Sector 4  
Sector 5  
Sector 6  
Sector 7  
Sector 8  
Sector 9  
Sector 10  
Sector 11  
Sector 12  
Sector 13  
8K x 16  
8K x 16  
8K x 16  
8K x 16  
32K x 16  
32K x 16  
32K x 16  
32K x 16  
32K x 16  
32K x 16  
8K x 16  
8K x 16  
8K x 16  
8K x 16  
0x0008 0000  
0x0008 2000  
0x0008 4000  
0x0008 6000  
0x0008 8000  
0x0009 0000  
0x0009 8000  
0x000A 0000  
0x000A 8000  
0x000B 0000  
0x000B 8000  
0x000B A000  
0x000B C000  
0x000B E000  
0x0008 1FFF  
0x0008 3FFF  
0x0008 5FFF  
0x0008 7FFF  
0x0008 FFFF  
0x0009 7FFF  
0x0009 FFFF  
0x000A 7FFF  
0x000A FFFF  
0x000B 7FFF  
0x000B 9FFF  
0x000B BFFF  
0x000B DFFF  
0x000B FFFF  
Bank 1 Sectors  
Sector 14  
Sector 15  
Sector 16  
Sector 17  
Sector 18  
Sector 19  
Sector 20  
Sector 21  
Sector 22  
Sector 23  
Sector 24  
Sector 25  
Sector 26  
Sector 27  
8K x 16  
8K x 16  
8K x 16  
8K x 16  
32K x 16  
32K x 16  
32K x 16  
32K x 16  
32K x 16  
32K x 16  
8K x 16  
8K x 16  
8K x 16  
8K x 16  
0x000C 0000  
0x000C 2000  
0x000C 4000  
0x000C 6000  
0x000C 8000  
0x000D 0000  
0x000D 8000  
0x000E 0000  
0x000E 8000  
0x000F 0000  
0x000F 8000  
0x000F A000  
0x000F C000  
0x000F E000  
0x000C 1FFF  
0x000C 3FFF  
0x000C 5FFF  
0x000C 7FFF  
0x000C FFFF  
0x000D 7FFF  
0x000D FFFF  
0x000E 7FFF  
0x000E FFFF  
0x000F 7FFF  
0x000F 9FFF  
0x000F BFFF  
0x000F DFFF  
0x000F FFFF  
Flash ECC Locations  
0x0107 0000  
TI OTP ECC  
128 x 16  
0x0107 007F  
Copyright © 2021 Texas Instruments Incorporated  
178 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Table 8-2. Addresses of Flash Sectors on F28379S, F28378S, F28377S, and F28375S (continued)  
SECTOR  
SIZE  
START ADDRESS  
END ADDRESS  
Reserved  
128 x 16  
0x0107 0200  
0x0107 027F  
User-configurable DCSM OTP  
ECC Bank 0  
128 x 16  
0x0107 1000  
0x0107 107F  
Reserved  
128 x 16  
1K x 16  
1K x 16  
1K x 16  
1K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
1K x 16  
1K x 16  
1K x 16  
1K x 16  
1K x 16  
1K x 16  
1K x 16  
1K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
1K x 16  
1K x 16  
1K x 16  
1K x 16  
0x0107 1200  
0x0108 0000  
0x0108 0400  
0x0108 0800  
0x0108 0C00  
0x0108 1000  
0x0108 2000  
0x0108 3000  
0x0108 4000  
0x0108 5000  
0x0108 6000  
0x0108 7000  
0x0108 7400  
0x0108 7800  
0x0108 7C00  
0x0108 8000  
0x0108 8400  
0x0108 8800  
0x0108 8C00  
0x0108 9000  
0x0108 A000  
0x0108 B000  
0x0108 C000  
0x0108 D000  
0x0108 E000  
0x0108 F000  
0x0108 F400  
0x0108 F800  
0x0108 FC00  
0x0107 127F  
0x0108 03FF  
0x0108 07FF  
0x0108 0BFF  
0x0108 0FFF  
0x0108 1FFF  
0x0108 2FFF  
0x0108 3FFF  
0x0108 4FFF  
0x0108 5FFF  
0x0108 6FFF  
0x0108 73FF  
0x0108 77FF  
0x0108 7BFF  
0x0108 7FFF  
0x0108 83FF  
0x0108 87FF  
0x0108 8BFF  
0x0108 8FFF  
0x0108 9FFF  
0x0108 AFFF  
0x0108 BFFF  
0x0108 CFFF  
0x0108 DFFF  
0x0108 EFFF  
0x0108 F3FF  
0x0108 F7FF  
0x0108 FBFF  
0x0108 FFFF  
Flash ECC (Sector 0)  
Flash ECC (Sector 1)  
Flash ECC (Sector 2)  
Flash ECC (Sector 3)  
Flash ECC (Sector 4)  
Flash ECC (Sector 5)  
Flash ECC (Sector 6)  
Flash ECC (Sector 7)  
Flash ECC (Sector 8)  
Flash ECC (Sector 9)  
Flash ECC (Sector 10)  
Flash ECC (Sector 11)  
Flash ECC (Sector 12)  
Flash ECC (Sector 13)  
Flash ECC (Sector 14)  
Flash ECC (Sector 15)  
Flash ECC (Sector 16)  
Flash ECC (Sector 17)  
Flash ECC (Sector 18)  
Flash ECC (Sector 19)  
Flash ECC (Sector 20)  
Flash ECC (Sector 21)  
Flash ECC (Sector 22)  
Flash ECC (Sector 23)  
Flash ECC (Sector 24)  
Flash ECC (Sector 25)  
Flash ECC (Sector 26)  
Flash ECC (Sector 27)  
(1) Any kind of access to this region may result in a spurious ECC error event.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 179  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
The F28376S and F28374S devices have one flash bank of 512KB (256KW) and the code to program the flash  
should be executed out of RAM. See Section 7.9.4 for details on flash wait states. Table 1-1 shows the  
addresses of flash sectors on F28376S and F28374S.  
Table 8-3. Addresses of Flash Sectors on F28376S and F28374S  
SECTOR  
SIZE  
START ADDRESS  
END ADDRESS  
OTP Sectors  
Sectors  
TI OTP Bank 0  
1K x 16  
1K x 16  
0x0007 0000  
0x0007 8000  
0x0007 03FF  
0x0007 83FF  
User configurable DCSM OTP  
Bank 0  
Sector 0  
Sector 1  
Sector 2  
Sector 3  
Sector 4  
Sector 5  
Sector 6  
Sector 7  
Sector 8  
Sector 9  
Sector 10  
Sector 11  
Sector 12  
Sector 13  
8K x 16  
8K x 16  
8K x 16  
8K x 16  
32K x 16  
32K x 16  
32K x 16  
32K x 16  
32K x 16  
32K x 16  
8K x 16  
8K x 16  
8K x 16  
8K x 16  
0x0008 0000  
0x0008 2000  
0x0008 4000  
0x0008 6000  
0x0008 8000  
0x0009 0000  
0x0009 8000  
0x000A 0000  
0x000A 8000  
0x000B 0000  
0x000B 8000  
0x000B A000  
0x000B C000  
0x000B E000  
0x0008 1FFF  
0x0008 3FFF  
0x0008 5FFF  
0x0008 7FFF  
0x0008 FFFF  
0x0009 7FFF  
0x0009 FFFF  
0x000A 7FFF  
0x000A FFFF  
0x000B 7FFF  
0x000B 9FFF  
0x000B BFFF  
0x000B DFFF  
0x000B FFFF  
Flash ECC Locations  
TI OTP ECC Bank 0  
128 x 16  
128 x 16  
0x0107 0000  
0x0107 1000  
0x0107 007F  
0x0107 107F  
User-configurable DCSM OTP  
ECC Bank 0  
Flash ECC (Sector 0)  
Flash ECC (Sector 1)  
Flash ECC (Sector 2)  
Flash ECC (Sector 3)  
Flash ECC (Sector 4)  
Flash ECC (Sector 5)  
Flash ECC (Sector 6)  
Flash ECC (Sector 7)  
Flash ECC (Sector 8)  
Flash ECC (Sector 9)  
Flash ECC (Sector 10)  
Flash ECC (Sector 11)  
Flash ECC (Sector 12)  
Flash ECC (Sector 13)  
1K x 16  
1K x 16  
1K x 16  
1K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
1K x 16  
1K x 16  
1K x 16  
1K x 16  
0x0108 0000  
0x0108 0400  
0x0108 0800  
0x0108 0C00  
0x0108 1000  
0x0108 2000  
0x0108 3000  
0x0108 4000  
0x0108 5000  
0x0108 6000  
0x0108 7000  
0x0108 7400  
0x0108 7800  
0x0108 7C00  
0x0108 03FF  
0x0108 07FF  
0x0108 0BFF  
0x0108 0FFF  
0x0108 1FFF  
0x0108 2FFF  
0x0108 3FFF  
0x0108 4FFF  
0x0108 5FFF  
0x0108 6FFF  
0x0108 73FF  
0x0108 77FF  
0x0108 7BFF  
0x0108 7FFF  
Copyright © 2021 Texas Instruments Incorporated  
180 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
8.3.3 EMIF Chip Select Memory Map  
The EMIF memory map is shown in Table 8-4.  
Table 8-4. EMIF Chip Select Memory Map  
EMIF CHIP SELECT  
EMIF1_CS0n - Data  
SIZE(1)  
256M × 16  
2M × 16  
START ADDRESS  
0x8000 0000  
0x0010 0000  
0x0030 0000  
0x0038 0000  
0x9000 0000  
0x0000 2000  
END ADDRESS  
0x8FFF FFFF  
0x002F FFFF  
0x0037 FFFF  
0x003D FFFF  
0x91FF FFFF  
0x0000 2FFF  
CLA ACCESS DMA ACCESS  
Yes  
Yes  
Yes  
Yes  
EMIF1_CS2n - Program + Data(2)  
EMIF1_CS3n - Program + Data  
EMIF1_CS4n - Program + Data  
EMIF2_CS0n - Data  
512K × 16  
393K × 16  
3M × 16  
EMIF2_CS2n - Program + Data  
4K × 16  
Yes (Data only)  
(1) Available memory size listed in this table is the maximum possible size assuming 32-bit memory. This may not apply to other memory  
sizes because of pin mux setting. See Section 6.4.1 to find the available address lines for your use case.  
(2) The 2M × 16 size is for a 32-bit interface with the assumption that 16-bit accesses are not performed; hence, byte enables are not  
used (tied to active value on board). If byte enables are used, then the maximum size is smaller because byte enables are muxed with  
address pins (see Section 6.4.1) . If 16-bit memory is used, then the maximum size is 1M × 16.  
8.3.4 Peripheral Registers Memory Map  
The peripheral registers memory map can be found in Table 8-5. Registers in the peripheral frames share a  
secondary master (CLA or DMA) selection with all other registers within the same peripheral frame. See the  
TMS320F2837xS Microcontrollers Technical Reference Manual for details on the CPU subsystem and  
secondary master selection.  
Table 8-5. Peripheral Registers Memory Map  
START  
ADDRESS  
END  
ADDRESS  
CLA  
DMA  
REGISTERS  
STRUCTURE NAME  
PROTECTED(1)  
ACCESS ACCESS  
AdcaResultRegs  
AdcbResultRegs  
AdccResultRegs  
AdcdResultRegs  
CpuTimer0Regs  
CpuTimer1Regs  
CpuTimer2Regs  
PieCtrlRegs (2)  
ADC_RESULT_REGS  
ADC_RESULT_REGS  
ADC_RESULT_REGS  
ADC_RESULT_REGS  
CPUTIMER_REGS  
CPUTIMER_REGS  
CPUTIMER_REGS  
PIE_CTRL_REGS  
0x0000 0B00  
0x0000 0B20  
0x0000 0B40  
0x0000 0B60  
0x0000 0C00  
0x0000 0C08  
0x0000 0C10  
0x0000 0CE0  
0x0000 0B1F  
0x0000 0B3F  
0x0000 0B5F  
0x0000 0B7F  
0x0000 0C07  
0x0000 0C0F  
0x0000 0C17  
0x0000 0CFF  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes – CLA  
only, no  
CPU  
Cla1SoftIntRegs(2)  
CLA_SOFTINT_REGS  
0x0000 0CE0  
0x0000 0CFF  
access  
DmaRegs  
Cla1Regs  
DMA_REGS  
CLA_REGS  
0x0000 1000  
0x0000 1400  
0x0000 11FF  
0x0000 147F  
Peripheral Frame 1  
EPwm1Regs  
EPwm2Regs  
EPwm3Regs  
EPwm4Regs  
EPwm5Regs  
EPwm6Regs  
EPwm7Regs  
EPwm8Regs  
EPwm9Regs  
EPwm10Regs  
EPwm11Regs  
EPwm12Regs  
ECap1Regs  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
ECAP_REGS  
0x0000 4000  
0x0000 4100  
0x0000 4200  
0x0000 4300  
0x0000 4400  
0x0000 4500  
0x0000 4600  
0x0000 4700  
0x0000 4800  
0x0000 4900  
0x0000 4A00  
0x0000 4B00  
0x0000 5000  
0x0000 40FF  
0x0000 41FF  
0x0000 42FF  
0x0000 43FF  
0x0000 44FF  
0x0000 45FF  
0x0000 46FF  
0x0000 47FF  
0x0000 48FF  
0x0000 49FF  
0x0000 4AFF  
0x0000 4BFF  
0x0000 501F  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 181  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
DMA  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Table 8-5. Peripheral Registers Memory Map (continued)  
START  
ADDRESS  
END  
ADDRESS  
CLA  
REGISTERS  
STRUCTURE NAME  
PROTECTED(1)  
ACCESS ACCESS  
ECap2Regs  
ECap3Regs  
ECap4Regs  
ECap5Regs  
ECap6Regs  
EQep1Regs  
EQep2Regs  
EQep3Regs  
DacaRegs  
ECAP_REGS  
ECAP_REGS  
ECAP_REGS  
ECAP_REGS  
ECAP_REGS  
EQEP_REGS  
EQEP_REGS  
EQEP_REGS  
DAC_REGS  
0x0000 5020  
0x0000 5040  
0x0000 5060  
0x0000 5080  
0x0000 50A0  
0x0000 5100  
0x0000 5140  
0x0000 5180  
0x0000 5C00  
0x0000 5C10  
0x0000 5C20  
0x0000 5C80  
0x0000 5CA0  
0x0000 5CC0  
0x0000 5CE0  
0x0000 5D00  
0x0000 5D20  
0x0000 5D40  
0x0000 5D60  
0x0000 5E00  
0x0000 5E80  
0x0000 503F  
0x0000 505F  
0x0000 507F  
0x0000 509F  
0x0000 50BF  
0x0000 513F  
0x0000 517F  
0x0000 51BF  
0x0000 5C0F  
0x0000 5C1F  
0x0000 5C2F  
0x0000 5C9F  
0x0000 5CBF  
0x0000 5CDF  
0x0000 5CFF  
0x0000 5D1F  
0x0000 5D3F  
0x0000 5D5F  
0x0000 5D7F  
0x0000 5E7F  
0x0000 5EFF  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
DacbRegs  
DAC_REGS  
DaccRegs  
DAC_REGS  
Cmpss1Regs  
Cmpss2Regs  
Cmpss3Regs  
Cmpss4Regs  
Cmpss5Regs  
Cmpss6Regs  
Cmpss7Regs  
Cmpss8Regs  
Sdfm1Regs  
Sdfm2Regs  
CMPSS_REGS  
CMPSS_REGS  
CMPSS_REGS  
CMPSS_REGS  
CMPSS_REGS  
CMPSS_REGS  
CMPSS_REGS  
CMPSS_REGS  
SDFM_REGS  
SDFM_REGS  
Peripheral Frame 2  
McbspaRegs  
McbspbRegs  
SpiaRegs  
MCBSP_REGS  
MCBSP_REGS  
SPI_REGS  
0x0000 6000  
0x0000 6040  
0x0000 6100  
0x0000 6110  
0x0000 6120  
0x0000 6200  
0x0000 603F  
0x0000 607F  
0x0000 610F  
0x0000 611F  
0x0000 612F  
0x0000 62FF  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
SpibRegs  
SPI_REGS  
SpicRegs  
SPI_REGS  
UppRegs  
UPP_REGS  
WdRegs  
NmiIntruptRegs  
XintRegs  
WD_REGS  
NMI_INTRUPT_REGS  
XINT_REGS  
0x0000 7000  
0x0000 7060  
0x0000 7070  
0x0000 7200  
0x0000 7210  
0x0000 7220  
0x0000 7230  
0x0000 7300  
0x0000 7340  
0x0000 7400  
0x0000 7480  
0x0000 7500  
0x0000 7580  
0x0000 7900  
0x0000 7920  
0x0000 7940  
0x0000 7980  
0x0000 7A00  
0x0000 7A80  
0x0000 7C00  
0x0000 703F  
0x0000 706F  
0x0000 707F  
0x0000 720F  
0x0000 721F  
0x0000 722F  
0x0000 723F  
0x0000 733F  
0x0000 737F  
0x0000 747F  
0x0000 74FF  
0x0000 757F  
0x0000 75FF  
0x0000 791F  
0x0000 793F  
0x0000 794F  
0x0000 798F  
0x0000 7A3F  
0x0000 7ABF  
0x0000 7D7F  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
SciaRegs  
SCI_REGS  
ScibRegs  
SCI_REGS  
ScicRegs  
SCI_REGS  
ScidRegs  
SCI_REGS  
I2caRegs  
I2C_REGS  
I2cbRegs  
I2C_REGS  
AdcaRegs  
ADC_REGS  
Yes  
Yes  
Yes  
Yes  
AdcbRegs  
ADC_REGS  
AdccRegs  
ADC_REGS  
AdcdRegs  
ADC_REGS  
InputXbarRegs  
XbarRegs  
INPUT_XBAR_REGS  
XBAR_REGS  
TrigRegs  
TRIG_REGS  
DmaClaSrcSelRegs  
EPwmXbarRegs  
OutputXbarRegs  
GpioCtrlRegs  
DMA_CLA_SRC_SEL_REGS  
EPWM_XBAR_REGS  
OUTPUT_XBAR_REGS  
GPIO_CTRL_REGS  
Copyright © 2021 Texas Instruments Incorporated  
182 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Table 8-5. Peripheral Registers Memory Map (continued)  
START  
END  
CLA  
DMA  
REGISTERS  
STRUCTURE NAME  
PROTECTED(1)  
ADDRESS  
0x0000 7F00  
0x0004 0000  
0x0004 7000  
0x0004 7800  
0x0004 8000  
0x0004 A000  
0x0005 0024  
0x0005 D000  
0x0005 D180  
0x0005 D200  
0x0005 D300  
0x0005 E608  
0x0005 F000  
0x0005 F040  
0x0005 F070  
0x0005 F400  
0x0005 F480  
0x0005 F4A0  
0x0005 F4C0  
0x0005 F500  
0x0005 F540  
0x0005 F800  
0x0005 FB00  
0x0005 FC00  
0x0005 FF00  
ADDRESS  
0x0000 7F2F  
0x0004 0FFF  
0x0004 77FF  
0x0004 7FFF  
0x0004 87FF  
0x0004 A7FF  
0x0005 0025  
0x0005 D17F  
0x0005 D1FF  
0x0005 D2FF  
0x0005 D3FF  
0x0005 E60B  
0x0005 F02F  
0x0005 F05F  
0x0005 F07F  
0x0005 F47F  
0x0005 F49F  
0x0005 F4BF  
0x0005 F4FF  
0x0005 F53F  
0x0005 F541  
0x0005 FAFF  
0x0005 FB3F  
0x0005 FEFF  
0x0005 FF3F  
ACCESS ACCESS  
GpioDataRegs  
UsbaRegs  
GPIO_DATA_REGS  
USB_REGS  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Emif1Regs  
EMIF_REGS  
Emif2Regs  
EMIF_REGS  
CanaRegs  
CAN_REGS  
CanbRegs  
CAN_REGS  
FlashPumpSemaphoreRegs  
DevCfgRegs  
FLASH_PUMP_SEMAPHORE_REGS  
DEV_CFG_REGS  
AnalogSubsysRegs  
ClkCfgRegs  
ANALOG_SUBSYS_REGS  
CLK_CFG_REGS  
CpuSysRegs  
CPU_SYS_REGS  
RomPrefetchRegs  
DcsmZ1Regs  
ROM_PREFETCH_REGS  
DCSM_Z1_REGS  
DcsmZ2Regs  
DCSM_Z2_REGS  
DcsmCommonRegs  
MemCfgRegs  
DCSM_COMMON_REGS  
MEM_CFG_REGS  
Emif1ConfigRegs  
Emif2ConfigRegs  
AccessProtectionRegs  
MemoryErrorRegs  
RomWaitStateRegs  
Flash0CtrlRegs  
Flash0EccRegs  
Flash1CtrlRegs  
Flash1EccRegs  
EMIF1_CONFIG_REGS  
EMIF2_CONFIG_REGS  
ACCESS_PROTECTION_REGS  
MEMORY_ERROR_REGS  
ROM_WAIT_STATE_REGS  
FLASH_CTRL_REGS  
FLASH_ECC_REGS  
FLASH_CTRL_REGS  
FLASH_ECC_REGS  
(1) The CPU (not applicable for CLA or DMA) contains a write followed by read protection mode to ensure that any read operation that  
follows a write operation within a protected address range is executed as written by delaying the read operation until the write is  
initiated.  
(2) The address overlap of PieCtrlRegs and Cla1SoftIntRegs is correct. Each CPU, C28x and CLA, only has access to one of the register  
sets.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 183  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
8.3.5 Memory Types  
Table 8-6 provides more information about each memory type.  
Table 8-6. Memory Types  
HIBERNATE  
RETENTION  
ACCESS  
PROTECTION  
MEMORY TYPE  
ECC-CAPABLE  
PARITY  
SECURITY  
M0, M1  
D0, D1  
LSx  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
GSx  
CPU/CLA MSGRAM  
Boot ROM  
Yes  
N/A  
N/A  
N/A  
N/A  
Secure ROM  
Yes  
Yes  
Yes  
Flash  
Yes  
Yes  
N/A  
N/A  
User-configurable DCSM OTP  
8.3.5.1 Dedicated RAM (Mx and Dx RAM)  
The CPU subsystem has four dedicated ECC-capable RAM blocks: M0, M1, D0, and D1. M0/M1 memories are  
small nonsecure blocks that are tightly coupled with the CPU (that is, only the CPU has access to them). D0/D1  
memories are secure blocks and also have the access-protection feature (CPU write/CPU fetch protection).  
8.3.5.2 Local Shared RAM (LSx RAM)  
RAM blocks which are dedicated to each subsystem and are accessible to its CPU and CLA only, are called  
local shared RAMs (LSx RAMs).  
All LSx RAM blocks have parity. These memories are secure and have the access protection (CPU write/CPU  
fetch) feature.  
By default, these memories are dedicated to the CPU only, and the user could choose to share these memories  
with the CLA by configuring the MSEL_LSx bit field in the LSxMSEL registers appropriately.  
Table 8-7 shows the master access for the LSx RAM.  
Table 8-7. Master Access for LSx RAM  
(With Assumption That all Other Access Protections are Disabled)  
MSEL_LSx  
CLAPGM_LSx  
CPU ALLOWED ACCESS CLA ALLOWED ACCESS  
COMMENT  
LSx memory is configured  
as CPU dedicated RAM.  
00  
X
All  
All  
Data Read  
Data Write  
LSx memory is shared  
between CPU and CLA1.  
01  
01  
0
1
Emulation Read  
Emulation Write  
LSx memory is CLA1  
program memory.  
Fetch Only  
Copyright © 2021 Texas Instruments Incorporated  
184 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
8.3.5.3 Global Shared RAM (GSx RAM)  
RAM blocks which are accessible from both the CPU and DMA are called global shared RAMs (GSx RAMs).  
Both the CPU and DMA have full read and write access to these memories.  
All GSx RAM blocks have parity.  
The GSx RAMs have access protection (CPU write/CPU fetch/DMA write).  
8.3.5.4 CLA Message RAM (CLA MSGRAM)  
These RAM blocks can be used to share data between the CPU and CLA. The CLA has read and write access  
to the "CLA to CPU MSGRAM." The CPU has read and write access to the "CPU to CLA MSGRAM." The CPU  
and CLA both have read access to both MSGRAMs.  
This RAM has parity.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 185  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
8.4 Identification  
Table 8-8 shows the Device Identification Registers.  
Table 8-8. Device Identification Registers  
NAME  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
Device part identification number(1)  
TMS320F28379S  
TMS320F28378S  
TMS320F28377S  
TMS320F28376S  
TMS320F28375S  
TMS320F28374S  
Silicon revision number  
Revision B  
0x**F9 0400  
0x**FA 0400  
0x**FF 0400  
0x**FE 0400  
0x**FD 0400  
0x**FC 0400  
PARTIDH  
REVID  
0x0005 D00A  
2
0x0005 D00C  
2
0x0000 0002  
0x0000 0003  
Revision C  
Unique identification number. This number is different on each  
individual device with the same PARTIDH. This can be used as  
a serial number in the application. This number is present only  
on TMS Revision C devices.  
UID_UNIQUE  
JTAG ID  
0x0007 03CC  
N/A  
2
N/A  
JTAG Device ID  
0x0B99 C02F  
(1) PARTIDH may have one of two values for each part number, with the eight most significant bits identified with '**' above being 0x00 or  
0x02.  
Copyright © 2021 Texas Instruments Incorporated  
186 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
8.5 Bus Architecture – Peripheral Connectivity  
Table 8-9 shows a broad view of the peripheral and configuration register accessibility from each bus master.  
Peripherals within peripheral frames 1 or 2 will all be mapped to the respective secondary master as a group (if  
SPI is assigned to CPU1.DMA, then McBSP is also assigned to CPU1.DMA).  
Table 8-9. Bus Master Peripheral Access  
PERIPHERALS  
(BY BUS ACCESS TYPE)  
CPU1.DMA  
CPU1.CLA1  
CPU1  
Peripheral Frame 1:  
ePWM/HRPWM  
SDFM  
eCAP(1)  
eQEP(1)  
CMPSS(1)  
DAC(1)  
Y
Y
Y
Peripheral Frame 2:  
SPI  
Y
Y
Y
McBSP  
uPP(1)  
SCI  
I2C  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
CAN  
ADC Configuration  
EMIF1  
Y
Y
Y
EMIF2  
USB  
Device Capability, Peripheral Reset, Peripheral CPU Select  
GPIO Pin Mapping and Configuration  
Analog System Control  
uPP Message RAMs  
Y
Reset Configuration  
Clock and PLL Configuration  
System Configuration  
(WD, NMIWD, LPM, Peripheral Clock Gating)  
Y
Flash Configuration  
CPU Timers  
Y
Y
Y
Y
Y
DMA and CLA Trigger Source Select  
GPIO Data(2)  
Y
Y
ADC Results  
Y
(1) These modules are on a Peripheral Frame with DMA access; however, they cannot trigger a DMA transfer.  
(2) The GPIO Data Registers are unique for each CPU1 and CPU1.CLAx. When the GPIO Pin Mapping Register is configured to assign a  
GPIO to a particular master, the respective GPIO Data Register will control the GPIO. See the General-Purpose Input/Output (GPIO)  
chapter of the TMS320F2837xS Microcontrollers Technical Reference Manual for more details.  
8.6 C28x Processor  
The CPU is a 32-bit fixed-point processor. This device draws from the best features of digital signal processing;  
reduced instruction set computing (RISC); and microcontroller architectures, firmware, and tool sets.  
The CPU features include a modified Harvard architecture and circular addressing. The RISC features are  
single-cycle instruction execution, register-to-register operations, and modified Harvard architecture. The  
microcontroller features include ease of use through an intuitive instruction set, byte packing and unpacking, and  
bit manipulation. The modified Harvard architecture of the CPU enables instruction and data fetches to be  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 187  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
performed in parallel. The CPU can read instructions and data while it writes data simultaneously to maintain the  
single-cycle instruction operation across the pipeline. The CPU does this over six separate address/data buses.  
For more information on CPU architecture and instruction set, see the TMS320C28x CPU and Instruction Set  
Reference Guide.  
8.6.1 Floating-Point Unit  
The C28x plus floating-point (C28x+FPU) processor extends the capabilities of the C28x fixed-point CPU by  
adding registers and instructions to support IEEE single-precision floating-point operations.  
Devices with the C28x+FPU include the standard C28x register set plus an additional set of floating-point unit  
registers. The additional floating-point unit registers are the following:  
Eight floating-point result registers, RnH (where n = 0–7)  
Floating-point Status Register (STF)  
Repeat Block Register (RB)  
All of the floating-point registers, except the repeat block register, are shadowed. This shadowing can be used in  
high-priority interrupts for fast context save and restore of the floating-point registers.  
For more information, see the TMS320C28x Extended Instruction Sets Technical Reference Manual.  
8.6.2 Trigonometric Math Unit  
The TMU extends the capabilities of a C28x+FPU by adding instructions and leveraging existing FPU  
instructions to speed up the execution of common trigonometric and arithmetic operations listed in Table 8-10.  
Table 8-10. TMU Supported Instructions  
INSTRUCTIONS  
MPY2PIF32 RaH,RbH  
C EQUIVALENT OPERATION  
PIPELINE CYCLES  
a = b * 2pi  
a = b / 2pi  
a = b/c  
2/3  
2/3  
5
DIV2PIF32 RaH,RbH  
DIVF32 RaH,RbH,RcH  
SQRTF32 RaH,RbH  
a = sqrt(b)  
5
SINPUF32 RaH,RbH  
COSPUF32 RaH,RbH  
ATANPUF32 RaH,RbH  
QUADF32 RaH,RbH,RcH,RdH  
a = sin(b*2pi)  
4
a = cos(b*2pi)  
4
a = atan(b)/2pi  
4
Operation to assist in calculating ATANPU2  
5
No changes have been made to existing instructions, pipeline or memory bus architecture. All TMU instructions  
use the existing FPU register set (R0H to R7H) to carry out their operations. A detailed explanation of the  
workings of the FPU can be found in the TMS320C28x Extended Instruction Sets Technical Reference Manual.  
Copyright © 2021 Texas Instruments Incorporated  
188 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
8.6.3 Viterbi, Complex Math, and CRC Unit II  
The VCU-II is the second-generation Viterbi, Complex Math, and CRC extension to the C28x CPU. The VCU-II  
extends the capabilities of the C28x CPU by adding registers and instructions to accelerate the performance of  
Fast Fourier Transforms (FFTs) and communications-based algorithms. The C28x+VCU-II supports the following  
algorithm types:  
Viterbi Decoding  
Viterbi decoding is commonly used in baseband communications applications. The Viterbi decode algorithm  
consists of three main parts: branch metric calculations, compare-select (Viterbi butterfly), and a traceback  
operation. Table 8-11 shows a summary of the VCU performance for each of these operations.  
Table 8-11. Viterbi Decode Performance  
VITERBI OPERATION  
Branch Metric Calculation (code rate = 1/2)  
Branch Metric Calculation (code rate = 1/3)  
Viterbi Butterfly (add-compare-select)  
Traceback per Stage  
VCU CYCLES  
1
2p  
2(1)  
3(2)  
(1) C28x CPU takes 15 cycles per butterfly.  
(2) C28x CPU takes 22 cycles per stage.  
Cyclic Redundancy Check  
Cyclic redundancy check (CRC) algorithms provide a straightforward method for verifying data integrity over  
large data blocks, communication packets, or code sections. The C28x+VCU can perform 8-bit, 16-bit, 24-bit,  
and 32-bit CRCs. For example, the VCU can compute the CRC for a block length of 10 bytes in 10 cycles. A  
CRC result register contains the current CRC, which is updated whenever a CRC instruction is executed.  
Complex Math  
Complex math is used in many applications, a few of which are:  
– Fast Fourier Transform  
The complex FFT is used in spread spectrum communications, as well as in many signal processing  
algorithms.  
– Complex filters  
Complex filters improve data reliability, transmission distance, and power efficiency. The C28x+VCU can  
perform a complex I and Q multiply with coefficients (four multiplies) in a single cycle. In addition, the C28x  
+VCU can read/write the real and imaginary parts of 16-bit complex data to memory in a single cycle.  
Table 8-12 shows a summary of the VCU operations enabled by the VCU.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 189  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-12. Complex Math Performance  
COMPLEX MATH OPERATION  
Add or Subtract  
VCU CYCLES  
NOTES  
32 +/- 32 = 32-bit (Useful for filters)  
16 +/- 32 = 15-bit (Useful for FFT)  
16 x 16 = 32-bit  
1
1
Add or Subtract  
Multiply  
2p  
Multiply and Accumulate (MAC)  
RPT MAC  
2p  
32 + 32 = 32-bit, 16 x 16 = 32-bit  
2p+N  
Repeat MAC. Single cycle after the first operation.  
For more information, see the TMS320C28x Extended Instruction Sets Technical Reference Manual.  
Copyright © 2021 Texas Instruments Incorporated  
190 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
8.7 Control Law Accelerator  
The CLA is an independent single-precision (32-bit) FPU processor with its own bus structure, fetch mechanism,  
and pipeline. Eight individual CLA tasks can be specified. Each task is started by software or a peripheral such  
as the ADC, ePWM, eCAP, eQEP, or CPU Timer 0. The CLA executes one task at a time to completion. When a  
task completes, the main CPU is notified by an interrupt to the PIE and the CLA automatically begins the next  
highest-priority pending task. The CLA can directly access the ADC Result registers, ePWM, eCAP, eQEP,  
Comparator and DAC registers. Dedicated message RAMs provide a method to pass additional data between  
the main CPU and the CLA.  
Figure 8-2 shows the CLA block diagram.  
CLA Control  
Register Set  
CLA_INT1  
MIFR(16)  
From  
Shared  
Peripherals  
MPERINT1  
to  
MPERINT8  
to  
CLA_INT8  
MIOVF(16)  
MICLR(16)  
MICLROVF(16)  
MIFRC(16)  
MIER(16)  
C28x  
CPU  
INT11  
INT12  
PIE  
MIRUN(16)  
LVF  
LUF  
MVECT1(16)  
MVECT2(16)  
MVECT3(16)  
MVECT4(16)  
MVECT5(16)  
MVECT6(16)  
MVECT7(16)  
MVECT8(16)  
SYSCLK  
CLA Clock Enable  
SYSRSn  
CPU Read/Write Data Bus  
CLA Program  
Memory (LSx)  
CLA Program Bus  
MCTL(16)  
LSxMSEL[MSEL_LSx]  
LSxCLAPGM[CLAPGM_LSx]  
CLA Data  
Memory (LSx)  
CLA Execution  
Register Set  
MPC(16)  
CLA Message  
RAMs  
MSTF(32)  
MR0(32)  
MR1(32)  
MR2(32)  
MR3(32)  
Shared  
Peripherals  
MEALLOW  
MAR0(16)  
MAR1(16)  
CPU Read Data Bus  
Figure 8-2. CLA Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 191  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
8.8 Direct Memory Access  
The CPU has its own 6-channel DMA module. The DMA module provides a hardware method of transferring  
data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for  
other system functions. Additionally, the DMA has the capability to orthogonally rearrange the data as it is  
transferred as well as “ping-pong” data between buffers. These features are useful for structuring data into  
blocks for optimal CPU processing.  
The DMA module is an event-based machine, meaning it requires a peripheral or software trigger to start a DMA  
transfer. Although it can be made into a periodic time-driven machine by configuring a timer as the interrupt  
trigger source, there is no mechanism within the module itself to start memory transfers periodically. The  
interrupt trigger source for each of the six DMA channels can be configured separately and each channel  
contains its own independent PIE interrupt to let the CPU know when a DMA transfer has either started or  
completed. Five of the six channels are exactly the same, while Channel 1 has the ability to be configured at a  
higher priority than the others.  
DMA features include:  
Six channels with independent PIE interrupts  
Peripheral interrupt trigger sources  
– ADC interrupts and EVT signals  
– Multichannel buffered serial port transmit and receive  
– External interrupts  
– CPU timers  
– EPWMxSOC signals  
– SPIx transmit and receive  
– SDFM  
– Software trigger  
Data sources and destinations:  
– GSx RAM  
– ADC result registers  
– ePWMx  
– SPI  
– McBSP  
– EMIF  
Word Size: 16-bit or 32-bit (SPI and McBSP limited to 16-bit)  
Throughput: four cycles/word (without arbitration)  
Copyright © 2021 Texas Instruments Incorporated  
192 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Figure 8-3 shows a device-level block diagram of the DMA.  
ADC  
WRAPPER  
(4)  
ADC  
RESULTS  
(4)  
Global Shared  
16x 4Kx16  
GS0-15 RAMs  
XINT  
(5)  
TIMER  
(3)  
C28x Bus  
DMA Bus  
TINT (0-2)  
XINT (1-5)  
DMA Trigger  
Source Selection  
ADC INT (A-D) (1-4), EVT (A-D)  
SDxFLTy (x = 1 to 2, y = 1 to 4)  
SOCA (1-12), SOCB (1-12)  
MXEVT (A-B), MREVT (A-B)  
SPITX (A-C), SPIRX (A-C)  
DMACHSRCSEL1.CHx  
DMACHSRCSEL2.CHx  
CHx.MODE.PERINTSEL  
(x = 1 to 6)  
DMA  
C28x  
PIE  
DMA Trigger Source  
CPU and DMA Data Path  
SDFM  
(8)  
EPWM McBSP  
(12)  
(2)  
SPI  
EMIF1  
(3)  
Figure 8-3. DMA Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 193  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
8.9 Boot ROM and Peripheral Booting  
The device boot ROM contains bootloading software. The device boot ROM is executed each time the device  
comes out of reset. Users can configure the device to boot to flash (using GET mode) or choose to boot the  
device through one of the bootable peripherals by configuring the boot mode GPIO pins.  
Table 8-13 shows the possible boot modes supported on the device. The default boot mode pins are GPIO72  
(boot mode pin 1) and GPIO 84 (boot mode pin 0). Users may choose to have weak pullups for boot mode pins if  
they use a peripheral on these pins as well, so the pullups can be overdriven. On this device, customers can  
change the factory default boot mode pins by programming user-configurable Dual Code Security Module  
(DCSM) OTP locations. This is recommended only for cases in which the factory default boot mode pins do not  
fit into the customer design. More details on the locations to be programmed is available in the TMS320F2837xS  
Microcontrollers Technical Reference Manual .  
Table 8-13. Device Boot Mode  
GPIO72  
(BOOT  
MODE  
PIN 1)  
GPIO84  
(BOOT  
MODE  
PIN 0)  
MODE NO.  
CPU1 BOOT MODE  
TRST  
0
1
Parallel I/O  
SCI Mode  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
2
Wait Boot Mode  
Get Mode  
3
4-7  
EMU Boot Mode (JTAG debug probe connected)  
Note  
The default behavior of Get mode is boot-to-flash. On unprogrammed devices, using Get mode will  
result in repeated watchdog resets, which may prevent proper JTAG connection and device  
initialization. Use Wait mode or another boot mode for unprogrammed devices.  
CAUTION  
Some reset sources are internally driven by the device. The user must ensure the pins used for boot  
mode are not actively driven by other devices in the system for these cases. The boot configuration  
has a provision for changing the boot pins in OTP. For more details, see the TMS320F2837xS  
Microcontrollers Technical Reference Manual .  
Copyright © 2021 Texas Instruments Incorporated  
194 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
8.9.1 EMU Boot or Emulation Boot  
The CPU enters this boot when it detects that TRST is HIGH (that is, when a JTAG debug probe/debugger is  
connected). In this mode, the user can program the EMU_BOOTCTRL control-word (at location 0xD00) to  
instruct the device on how to boot. If the contents of the EMU_BOOTCTRL location are invalid, then the device  
would default to WAIT Boot mode. The emulation boot allows users to verify the device boot before  
programming the boot mode into OTP. Note that EMU_BOOTCTRL is not actually a register, but refers to a  
location in RAM (PIE RAM). PIE RAM starts at 0xD00, but the first few locations are reserved (when initializing  
the PIE vector table in application code) for these boot ROM variables.  
8.9.2 WAIT Boot Mode  
The device in this boot mode loops in the boot ROM. This mode is useful if users want to connect a debugger on  
a secure device or if users do not want the device to execute an application in flash yet.  
8.9.3 Get Mode  
The default behavior of Get mode is boot-to-flash. This behavior can be changed by programming the Zx-  
OTPBOOTCTRL locations in user configurable DCSM OTP. The user configurable DCSM OTP on this device is  
divided in to two secure zones: Z1 and Z2. The Get mode function in boot ROM first checks if a valid  
OTPBOOTCTRL value is programmed in Z1. If the answer is yes, then the device boots as per the Z1-  
OTPBOOTCTRL location. The Z2-OTPBOOTCTRL location is read and decodes only if Z1-OTPBOOTCTRL is  
invalid or not programmed. If either Zx-OTPBOOTCTRL location is not programmed, then the device defaults to  
factory default operation, which is to use factory default boot mode pins to boot to flash if the boot mode pins are  
set to GET MODE. Users can choose the device through which to boot—SPI, I2C, CAN, and USB—by  
programming proper values into the user configurable DCSM OTP. More details on this can be found in the  
TMS320F2837xS Microcontrollers Technical Reference Manual .  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 195  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.4 Peripheral Pins Used by Bootloaders  
Table 8-14 shows the GPIO pins used by each peripheral bootloader. This device supports two sets of GPIOs for  
each mode, as shown in Table 8-14.  
Table 8-14. GPIO Pins Used by Each Peripheral Bootloader  
BOOTLOADER  
GPIO PINS  
NOTES  
SCITXDA: GPIO84  
SCIRXDA: GPIO85  
SCIA Boot I/O option 1 (default SCI option  
when chosen through Boot Mode GPIOs)  
SCI-Boot0  
SCI-Boot1  
SCIRXDA: GPIO28  
SCITXDA: GPIO29  
SCIA Boot option 2 – with alternate I/Os.  
D0 – GPIO65  
D1 – GPIO64  
D2 – GPIO58  
D3 – GPIO59  
D4 – GPIO60  
D5 – GPIO61  
Parallel Boot  
D6 – GPIO62  
D7 – GPIO63  
HOST_CTRL – GPIO70  
DSP_CTRL – GPIO69  
CANRXA: GPIO70  
CANTXA: GPIO71  
CAN-Boot0  
CAN-Boot1  
I2C-Boot0  
I2C-Boot1  
CAN-A Boot – I/O option 1  
CAN-A Boot – I/O option 2  
I2CA Boot – I/O option 1  
I2CA Boot – I/O option 2  
CANRXA: GPIO62  
CANTXA: GPIO63  
SDAA: GPIO91  
SCLA: GPIO92  
SDAA: GPIO32  
SCLA: GPIO33  
SPISIMOA - GPIO58  
SPISOMIA - GPIO59  
SPICLKA - GPIO60  
SPISTEA - GPIO61  
SPI-Boot0  
SPI-Boot1  
SPIA Boot – I/O option 1  
SPIA Boot – I/O option 2  
SPISIMOA – GPIO16  
SPISOMIA – GPIO17  
SPICLKA – GPIO18  
SPISTEA – GPIO19  
The USB Bootloader will switch the clock  
source to the external crystal oscillator (X1  
and X2 pins). A 20-MHz crystal should be  
present on the board if this boot mode is  
selected.  
USB0DM - GPIO42  
USB0DP - GPIO43  
USB Boot  
Copyright © 2021 Texas Instruments Incorporated  
196 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
8.10 Dual Code Security Module  
The dual code security module (DCSM) prevents access to on-chip secure memories. The term “secure” means  
access to secure memories and resources is blocked. The term “unsecure” means access is allowed; for  
example, through a debugging tool such as Code Composer Studio(CSS).  
The code security mechanism offers protection for two zones, Zone 1 (Z1) and Zone 2 (Z2). The security  
implementation for both the zones is identical. Each zone has its own dedicated secure resource (OTP memory  
and secure ROM) and allocated secure resource (CLA, LSx RAM, and flash sectors).  
The security of each zone is ensured by its own 128-bit password (CSM password). The password for each zone  
is stored in an OTP memory location based on a zone-specific link pointer. The link pointer value can be  
changed to program a different set of security settings (including passwords) in OTP.  
Note  
THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS DESIGNED TO  
PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY AND IS  
WARRANTED BY TEXAS INSTRUMENTS (TI), IN ACCORDANCE WITH ITS STANDARD TERMS  
AND CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS FOR THE WARRANTY  
PERIOD APPLICABLE FOR THIS DEVICE.  
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE  
COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED MEMORY  
CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT AS SET FORTH  
ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS CONCERNING THE CSM OR  
OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY  
OR FITNESS FOR A PARTICULAR PURPOSE.  
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT,  
INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY OUT OF  
YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN ADVISED OF THE  
POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED  
TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR  
OTHER ECONOMIC LOSS.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 197  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
8.11 Timers  
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock prescaling. The  
timers have a 32-bit count-down register that generates an interrupt when the counter reaches zero. The counter  
is decremented at the CPU clock speed divided by the prescale value setting. When the counter reaches zero, it  
is automatically reloaded with a 32-bit period value.  
CPU-Timer 0 is for general use and is connected to the PIE block. CPU-Timer 1 is also for general use and is  
connected to INT13 of the CPU. CPU-Timer 2 is reserved for TI-RTOS. It is connected to INT14 of the CPU. If  
TI-RTOS is not being used, CPU-Timer 2 is available for general use.  
CPU-Timer 2 can be clocked by any one of the following:  
SYSCLK (default)  
Internal zero-pin oscillator 1 (INTOSC1)  
Internal zero-pin oscillator 2 (INTOSC2)  
X1 (XTAL)  
AUXPLLCLK  
8.12 Nonmaskable Interrupt With Watchdog Timer (NMIWD)  
The NMIWD module is used to handle system-level errors. The conditions monitored are:  
Missing system clock due to oscillator failure  
Uncorrectable ECC error on CPU access to flash memory  
Uncorrectable ECC error on CPU, CLA, or DMA access to RAM  
If the CPU does not respond to the latched error condition, then the NMI watchdog will trigger a reset after a  
programmable time interval. The default time is 65536 SYSCLK cycles.  
Copyright © 2021 Texas Instruments Incorporated  
198 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
8.13 Watchdog  
The watchdog module is the same as the one on previous TMS320C2000MCUs, but with an optional lower  
limit on the time between software resets of the counter. This windowed countdown is disabled by default, so the  
watchdog is fully backwards-compatible.  
The watchdog generates either a reset or an interrupt. It is clocked from the internal oscillator with a selectable  
frequency divider.  
Figure 8-4 shows the various functional blocks within the watchdog module.  
WDCR(WDPS(2:0))  
WDCR(WDDIS)  
WDCNTR(7:0)  
Watchdog  
Prescaler  
1-count  
delay  
WDCLK  
(INTOSC1)  
8-bit  
Watchdog  
Counter  
Overflow  
/512  
SYSRSn  
Clear  
Count  
WDWCR(MIN(7:0))  
WDKEY(7:0)  
Watchdog  
Window  
Detector  
Watchdog  
Key Detector  
55 + AA  
Good Key  
Bad Key  
Out of Window  
Generate  
512-WDCLK  
Output Pulse  
WDRSTn  
WDINTn  
Watchdog Time-out  
SCSR(WDENINT)  
Figure 8-4. Windowed Watchdog  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 199  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
8.14 Configurable Logic Block (CLB)  
The C2000 configurable logic block (CLB) is a collection of blocks that can be interconnected using software to  
implement custom digital logic functions or enhance existing on-chip peripherals. The CLB is able to enhance  
existing peripherals through a set of crossbar interconnections, which provide a high level of connectivity to  
existing control peripherals such as enhanced pulse width modulators (ePWM), enhanced capture modules  
(eCAP), and enhanced quadrature encoder pulse modules (eQEP). The crossbars also allow the CLB to be  
connected to external GPIO pins. In this way, the CLB can be configured to interact with device peripherals to  
perform small logical functions such as comparators, or to implement custom serial data exchange protocols.  
Through the CLB, functions that would otherwise be accomplished using external logic devices can now be  
implemented inside the MCU.  
The CLB peripheral is configured through the CLB tool. For more information on the CLB tool, available  
examples, application reports and users guide, please refer to the following location in your C2000Ware package  
(C2000Ware_2_00_00_03 and higher):  
C2000WARE_INSTALL_LOCATION\utilities\clb_tool\clb_syscfg\doc  
CLB Tool User Guide  
How to Design with the C2000™ CLB Application Report  
How to Migrate Custom Logic From an FPGA/CPLD to C2000™ CLB Application Report  
The CLB module and its interconnects are shown in Figure 8-5.  
Copyright © 2021 Texas Instruments Incorporated  
200 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Figure 8-5. CLB Overview  
Absolute encoder protocol interfaces are now provided as Position Manager solutions in the C2000Ware  
MotorControl SDK. Configuration files, application programmer interface (API), and use examples for such  
solutions are provided with C2000Ware MotorControl SDK. In some solutions, the TI-configured CLB is used  
with other on-chip resources, such as the SPI port or the C28x CPU, to perform more complex functionality. See  
Table 5-1 for the devices that support the CLB feature.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 201  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
8.15 Functional Safety  
TMS320C2000MCUs are equipped with a TI release validation-based C28x and CLA Compiler Qualification  
Kit (CQ-Kit), which is available for free and may be requested at the Compiler Qualification Kit web page.  
Additionally, C2000MCUs are supported by the TI C2000 Support from Embedded Coder from MathWorks® to  
generate C2000-optimized code from a Simulink® model. Simulink® enables Model-Based Design to ease the  
systematic compliance process with certified tools, including Embedded Coder®, Simulink® model verification  
tools, Polyspace® code verification tools, and the IEC Certification Kit for ISO 26262 and IEC 61508 compliance.  
For more information, see the How to Use Simulink for ISO 26262 Projects article.  
The Error Detection in SRAM Application Report provides technical information about the nature of the SRAM bit  
cell and bit array, as well as the sources of SRAM failures. It then presents methods for managing memory  
failures in electronic systems. This discussion is intended for electronic system developers or integrators who  
are interested in improving the robustness of the embedded SRAM.  
Functional Safety-Compliant products are developed using an ISO 26262/IEC 61508-compliant hardware  
development process that is independently assessed and certified to meet ASIL D/SIL 3 systematic capability  
(see certificate). The TMS320F2837D, TMS320F2837xS, and TMS320F2807x MCUs have been certified to  
meet a component-level random hardware capability of ASIL B/SIL 2 (see certificate).  
The Functional Safety-Compliant enablers include:  
A Functional Safety Manual  
A detailed, tunable, quantitative Failure Modes, Effects, and Diagnostics Analysis (FMEDA)  
A software diagnostic library that will help shorten the time to implement various software safety mechanisms  
A collection of application reports to help in the development of functionally safe systems.  
A functional safety manual that describes all of the hardware and software functional safety mechanisms is  
available. See the Safety Manual for TMS320F2837xD, TMS320F2837xS, and TMS320F2807x.  
A detailed, tunable, fault-injected, quantitative FMEDA that enables the calculation of random hardware metrics  
—as outlined in the International Organization for Standardization ISO 26262 and the International  
Electrotechnical Commission IEC 61508 for automotive and industrial applications, respectively—is also  
available. This tunable FMEDA must be requested; see the C2000™ Package for Automotive and Industrial  
MCUs User's Guide.  
A white paper outlining the value (or benefit) of a tunable FMEDA is available. See the Functional Safety: A  
tunable FMEDA for C2000™ MCUs publication.  
Parts 1 and 2 of a five-part FMEDA tuning training are available. See the C2000™ Tunable FMEDA Training  
page.  
Parts 3, 4, and 5 are packaged with the tunable FMEDA, and must be requested.  
The C2000 Diagnostic Software Library is a collection of different safety mechanisms designed to detect faults.  
These safety mechanisms target different device components, including the C28x core, the control law  
accelerator (CLA), system control, static random access memory (SRAM), flash, and communications and  
control peripherals. The software safety mechanisms leverage available hardware safety features such as the  
C28x hardware built-in self-test (HWBIST); error detection and correction functionality on memories; parallel  
signature analysis circuitry; missing clock detection logic; watchdog counters; and hardware redundancy.  
Also included are software functional safety manual, user guides, example projects, and source code to help  
users shorten system integration time. The library package includes a compliance support package (CSP), a  
series of documents that TI used to develop and test the diagnostic software library. The CSP provides the  
necessary documentation and reports to assist users with compliance to functional safety standards: software  
safety requirements specifications; a software architecture document; software module design documents;  
software module unit test plans; software module unit test documents; static analysis reports; unit test reports;  
dynamic analysis reports; functional test reports; and traceability documents. Users can use these documents to  
comply with route 1s (as described in IEC 61508-3, section 7.4.2.12) to reuse a preexisting software element to  
implement all or part of a safety function. The contents of the CSP could also help users make important  
decisions for overall system safety compliance.  
Copyright © 2021 Texas Instruments Incorporated  
202 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
Two application reports offer details about how to develop functionally safe systems with C2000 real-time control  
devices:  
C2000™ Hardware Built-In Self-Test discusses the HWBIST safety mechanism, along with its functions and  
features, in the F2807x/F2837xS/F2837xD series of C2000 devices. The report also addresses some  
system-level considerations when using the HWBIST feature and explains how customers can use the  
diagnostic library on their system.  
C2000™ CPU Memory Built-In Self-Test describes embedded memory validation using the C28x central  
processing unit (CPU) during an active control loop. It discusses system challenges to memory validation as  
well as the different solutions provided by C2000 devices and software. Finally, it presents the Diagnostic  
Library implementations for memory testing.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 203  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
9 Applications, Implementation, and Layout  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 TI Reference Design  
The TI Reference Design Library is a robust reference design library spanning analog, embedded processor,  
and connectivity. Created by TI experts to help you jump start your system design, all reference designs include  
schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download  
designs at the Select TI reference designs page.  
Industrial Servo Drive and AC Inverter Drive Reference Design  
The DesignDRIVE Development Kit is a reference design for a complete industrial drive directly connecting to a  
three-phase ACI or PMSM motor. Many drive topologies can be created from the combined control, power, and  
communications technologies included on this single platform. This platform includes multiple position sensor  
interfaces, diverse current sensing techniques, hot-side partitioning options, and expansion for safety and  
industrial Ethernet.  
Differential Signal Conditioning Circuit for Current and Voltage Measurement Using Fluxgate Sensors  
This design provides a 4-channel signal conditioning solution for differential ADCs integrated into a  
microcontroller measuring motor current using fluxgate sensors. Also provided is an alternative measurement  
circuit with external differential SAR ADCs as well as circuits for high-speed overcurrent and earth fault  
detection. Proper differential signal conditioning improves noise immunity on critical current measurements in  
motor drives. This reference design can help increase the effective resolution of the analog-to-digital conversion,  
improving motor drive efficiency.  
Copyright © 2021 Texas Instruments Incorporated  
204 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
10 Device and Documentation Support  
10.1 Device and Development Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
TMS320MCU devices and support tools. Each TMS320 MCU commercial family member has one of three  
prefixes: TMX, TMP, or TMS (for example, TMS320F28379S). Texas Instruments recommends two of three  
possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages  
of product development from engineering prototypes (with TMX for devices and TMDX for tools) through fully  
qualified production devices and tools (with TMS for devices and TMDS for tools).  
Device development evolutionary flow:  
TMX  
TMP  
Experimental device that is not necessarily representative of the final device's electrical specifications  
Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability  
verification  
TMS  
Fully qualified production device  
Support tool development evolutionary flow:  
TMDX  
TMDS  
Development-support product that has not yet completed Texas Instruments internal qualification testing  
Fully qualified development-support product  
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability  
of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, PTP) and temperature range (for example, T). Figure 10-1 provides a legend for reading the  
complete device name for any family member.  
For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your TI  
sales representative.  
For additional description of the device nomenclature markings on the die, see the TMS320F2837xS MCUs  
Silicon Errata .  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 205  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 10-1. Device Nomenclature  
10.2 Markings  
Figure 10-2 provides an example of the 2837xS device markings and defines each of the markings. The device  
revision can be determined by the symbols marked on the top of the package as shown in Figure 10-2. Some  
prototype devices may have markings different from those illustrated.  
=
YMLLLLS  
Lot Trace Code  
=
=
=
=
=
YM  
LLLL  
S
$$  
#
2-Digit Year/Month Code  
Assembly Lot  
Assembly Site Code  
Wafer Fab Code as applicable  
Silicon Revision Code  
TMS320  
F28379SPTPT  
$$#-YMLLLLS  
G4  
=
G4  
Green (Low Halogen and RoHS-compliant)  
Package  
Pin 1  
Figure 10-2. Example of Device Markings  
Table 10-1. Determining Silicon Revision From Lot Trace Code  
REVID(1)  
Address: 0x5D00C  
SILICON REVISION CODE  
SILICON REVISION  
COMMENTS  
B
C
B
C
0x0002  
This silicon revision is available as TMX.  
This silicon revision is available as TMS.  
0x0003  
(1) Silicon Revision ID  
Copyright © 2021 Texas Instruments Incorporated  
206 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
10.3 Tools and Software  
TI offers an extensive line of development tools. Some of the tools and software to evaluate the performance of  
the device, generate code, and develop solutions are listed below. To view all available tools and software for  
C2000™ real-time control MCUs, visit the C2000 real-time control MCUs – Design & development page.  
Development Tools  
F28379D controlCARD for C2000 Real time control development kits  
The F28379D controlCARD from Texas Instruments is Position Manager-ready and an ideal product for initial  
software development and short run builds for system prototypes, test stands, and many other projects that  
require easy access to high-performance controllers. All C2000 controlCARDs are complete board-level modules  
that utilize a HSEC180 or DIMM100 form factor to provide a low-profile single-board controller solution. The host  
system needs to provide only a single 5V power rail to the controlCARD for it to be fully functional.  
F28379D Experimenter Kit  
C2000™ MCU Experimenter Kits provide a robust hardware prototyping platform for real-time, closed loop  
control development with Texas Instruments C2000 32-bit microcontroller family. This platform is a great tool to  
customize and prove-out solutions for many common power electronics applications, including motor control,  
digital power supplies, solar inverters, digital LED lighting, precision sensing, and more.  
Software Tools  
C2000Ware for C2000 MCUs  
C2000Ware for C2000 microcontrollers is a cohesive set of development software and documentation designed  
to minimize software development time. From device-specific drivers and libraries to device peripheral examples,  
C2000Ware provides a solid foundation to begin development and evaluation. C2000Ware is now the  
recommended content delivery tool versus controlSUITE.  
Code Composer Studio(CCS) Integrated Development Environment (IDE) for C2000 Microcontrollers  
Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and  
Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug  
embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment,  
debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking the user  
through each step of the application development flow. Familiar tools and interfaces allow users to get started  
faster than ever before. Code Composer Studio combines the advantages of the Eclipse software framework  
with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development  
environment for embedded developers.  
Pin Mux Tool  
The Pin Mux Utility is a software tool which provides a Graphical User Interface for configuring pin multiplexing  
settings, resolving conflicts and specifying I/O cell characteristics for TI MPUs.  
F021 Flash Application Programming Interface (API)  
The F021 Flash Application Programming Interface (API) provides a software library of functions to program,  
erase, and verify F021 on-chip Flash memory.  
UniFlash Standalone Flash Tool  
UniFlash is a standalone tool used to program on-chip flash memory through a GUI, command line, or scripting  
interface.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 207  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
Models  
Various models are available for download from the product Tools & Software pages. These include I/O Buffer  
Information Specification (IBIS) Models and Boundary-Scan Description Language (BSDL) Models. To view all  
available models, visit the Models section of the Tools & Software page for each device.  
Training  
To help assist design engineers in taking full advantage of the C2000 microcontroller features and performance,  
TI has developed a variety of training resources. Utilizing the online training materials and downloadable hands-  
on workshops provides an easy means for gaining a complete working knowledge of the C2000 microcontroller  
family. These training resources have been designed to decrease the learning curve, while reducing  
development time, and accelerating product time to market. For more information on the various training  
resources, visit the C2000™ real-time control MCUs – Support & training site.  
Specific F2837xD/F2837xS/F2807x hands-on training resources can be found at C2000™ MCU Device  
Workshops.  
Copyright © 2021 Texas Instruments Incorporated  
208 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
10.4 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
The current documentation that describes the processor, related peripherals, and other technical collateral is  
listed below.  
Errata  
TMS320F2837xS MCUs Silicon Errata describes known advisories on silicon and provides workarounds.  
Technical Reference Manual  
TMS320F2837xS Microcontrollers Technical Reference Manual details the integration, the environment, the  
functional description, and the programming models for each peripheral and subsystem in the 2837xS  
microcontrollers.  
CPU User's Guides  
TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and the  
assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). This Reference  
Guide also describes emulation features available on these DSPs.  
TMS320C28x Extended Instruction Sets Technical Reference Manual describes the architecture, pipeline, and  
instruction set of the TMU, VCU-II, and FPU accelerators.  
Peripheral Guides  
C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the 28x  
DSPs.  
Tools Guides  
TMS320C28x Assembly Language Tools v20.2.0.LTS User's Guide describes the assembly language tools  
(assembler and other tools used to develop assembly language code), assembler directives, macros, common  
object file format, and symbolic debugging directives for the TMS320C28x device.  
TMS320C28x Optimizing C/C++ Compiler v20.2.0.LTS User's Guide describes the TMS320C28x C/C++  
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly  
language source code for the TMS320C28x device.  
Application Reports  
Semiconductor Packing Methodology describes the packing methodologies employed to prepare semiconductor  
devices for shipment to end users.  
Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful lifetime  
of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general  
engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement.  
An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS  
including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/  
output structures and future trends.  
Serial Flash Programming of C2000™ Microcontrollers discusses using a flash kernel and ROM loaders for  
serial programming a device.  
10.5 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 209  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
10.6 Trademarks  
PowerPAD, C2000, Code Composer Studio, TMS320C2000, TMS320, controlSUITE, TI E2Eare  
trademarks of Texas Instruments.  
Bosch® is a registered trademark of Robert Bosch GmbH Corporation.  
MathWorks®, Simulink®, Embedded Coder®, Polyspace® are registered trademarks of The MathWorks, Inc.  
All trademarks are the property of their respective owners.  
10.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.8 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
210 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
11 Mechanical, Packaging, and Orderable Information  
11.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
211  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
 
 
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
PACKAGE OUTLINE  
PZP0100N  
PowerPADTM TQFP - 1.2 mm max height  
SCALE 1.000  
PLASTIC QUAD FLATPACK  
14.2  
13.8  
NOTE 3  
B
PIN 1 ID  
100  
76  
1
75  
14.2  
13.8  
NOTE 3  
16.2  
TYP  
15.8  
25  
51  
26  
50  
A
0.27  
0.17  
100X  
96X 0.5  
0.08  
C A B  
4X 12  
C
SEATING PLANE  
1.2 MAX  
SEE DETAIL A  
(0.127)  
TYP  
26  
50  
25  
51  
0.25  
GAGE PLANE  
(1)  
0.15  
0.05  
8.64  
7.45  
101  
0.08 C  
0 -7  
0.75  
0.45  
DETAIL A  
TYPICAL  
4X (0.3)  
NOTE 4  
4X (0.3)  
NOTE 4  
1
75  
100  
76  
4223383/A 04/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs.  
4. Strap features may not be present.  
5. Reference JEDEC registration MS-026.  
DETAIL  
A
S
C
A
L
E
:
1
4
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
212 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
EXAMPLE BOARD LAYOUT  
PZP0100N  
PowerPADTM TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
( 12)  
NOTE 10  
(
8.64)  
SYMM  
SOLDER MASK  
DEFINED PAD  
100  
76  
100X (1.5)  
1
75  
100X (0.3)  
96X (0.5)  
SYMM  
101  
(1) TYP  
(15.4)  
(R0.05) TYP  
51  
25  
(
0.2) TYP  
VIA  
METAL COVERED  
BY SOLDER MASK  
26  
50  
SEE DETAILS  
(1) TYP  
(15.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:5X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223383/A 04/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package,  
Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled,  
plugged or tented.  
10. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 213  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PZP0100N  
PowerPADTM TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(
8.64)  
BASED ON  
0.125 THICK STENCIL  
SYMM  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
100  
76  
100X (1.5)  
1
75  
100X (0.3)  
96X (0.5)  
SYMM  
101  
(15.4)  
(R0.05) TYP  
25  
51  
METAL COVERED  
BY SOLDER MASK  
26  
50  
(15.4)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:6X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
9.66 X 9.66  
8.64 X 8.64 (SHOWN)  
7.89 X 7.89  
0.125  
0.150  
0.175  
7.3 X 7.3  
4223383/A 04/2017  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
214 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
PACKAGE OUTLINE  
TM  
PowerPAD HLQFP - 1.6 mm max height  
PTP0176F  
SCALE 0.550  
PLASTIC QUAD FLATPACK  
24.2  
23.8  
NOTE 3  
B
PIN 1 ID  
133  
176  
1
132  
24.2  
23.8  
NOTE 3  
26.2  
25.8  
TYP  
44  
89  
88  
45  
0.27  
0.17  
176X  
C
A
172X 0.5  
0.08  
C A B  
4X 21.5  
SEATING PLANE  
1.6 MAX  
SEE DETAIL A  
(0.13)  
TYP  
45  
88  
89  
44  
0.25  
GAGE PLANE  
(1.4)  
4X 0.78 MAX  
NOTE 4  
4X  
0.54 MAX  
NOTE 4  
0.15  
0.05  
0.08 C  
7.33  
6.78  
0 -7  
177  
0.75  
0.45  
DETAIL A  
TYPICAL  
4X  
0.2 MAX  
NOTE 4  
EXPOSED  
THERMAL PAD  
1
132  
176  
133  
8.07  
7.53  
4223382/A 03/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs.  
4. Strap features my not present.  
5. Reference JEDEC registration MS-026.  
www.ti.com  
DETAIL  
A
S
C
A
L
E
:
1
2
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 215  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PowerPADTM HLQFP - 1.6 mm max height  
PTP0176F  
PLASTIC QUAD FLATPACK  
(8.07)  
SYMM  
SOLDER MASK  
DEFINED PAD  
176  
133  
176X (1.45)  
1
132  
176X (0.3)  
172X (0.5)  
177  
SYMM  
(7.33)  
(1.5 TYP)  
(25.5)  
( 22)  
NOTE 10  
(R0.05) TYP  
(
0.2) TYP  
VIA  
89  
44  
SEE DETAILS  
45  
88  
METAL COVERED  
BY SOLDER MASK  
(1.5 TYP)  
(25.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:4X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223382/A 03/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package,  
Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
10. Size of metal pad may vary due to creepage requirement.  
Copyright © 2021 Texas Instruments Incorporated  
216 Submit Document Feedback  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
TMS320F28379S, TMS320F28378S, TMS320F28377S, TMS320F28377S-Q1  
TMS320F28376S, TMS320F28375S, TMS320F28375S-Q1, TMS320F28374S  
www.ti.com  
SPRS881J – AUGUST 2014 – REVISED FEBRUARY 2021  
EXAMPLE STENCIL DESIGN  
PowerPADTM HLQFP - 1.6 mm max height  
PTP0176F  
PLASTIC QUAD FLATPACK  
(8.07)  
BASED ON  
0.125 THICK STENCIL  
SYMM  
176  
133  
176X (1.45)  
1
132  
176X (0.3)  
172X (0.5)  
(25.5)  
(7.33)  
BASED ON  
SYMM  
177  
0.125 THICK  
STENCIL  
(R0.05) TYP  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
44  
89  
METAL COVERED  
BY SOLDER MASK  
45  
88  
(25.5)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:4X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
9.02 X 8.2  
8.07 X 7.33 (SHOWN)  
7.37 X 6.69  
0.125  
0.150  
0.175  
6.82 X 6.2  
4223382/A 03/2017  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 217  
Product Folder Links: TMS320F28379S TMS320F28378S TMS320F28377S TMS320F28377S-Q1  
TMS320F28376S TMS320F28375S TMS320F28375S-Q1 TMS320F28374S  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jan-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
PTP  
PTP  
PTP  
PZP  
PZP  
ZWT  
ZWT  
ZWT  
PTP  
PTP  
PZP  
PZP  
PZP  
PZP  
ZWT  
ZWT  
PTP  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS320F28374SPTPS  
TMS320F28374SPTPSR  
TMS320F28374SPTPT  
TMS320F28374SPZPS  
TMS320F28374SPZPT  
TMS320F28374SZWTS  
TMS320F28374SZWTT  
TMS320F28374SZWTTR  
TMS320F28375SPTPS  
TMS320F28375SPTPT  
TMS320F28375SPZPQ  
TMS320F28375SPZPQR  
TMS320F28375SPZPS  
TMS320F28375SPZPT  
TMS320F28375SZWTS  
TMS320F28375SZWTT  
TMS320F28376SPTPS  
ACTIVE  
HLQFP  
HLQFP  
HLQFP  
HTQFP  
HTQFP  
NFBGA  
NFBGA  
NFBGA  
HLQFP  
HLQFP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
NFBGA  
NFBGA  
HLQFP  
176  
176  
176  
100  
100  
337  
337  
337  
176  
176  
100  
100  
100  
100  
337  
337  
176  
40  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
TMS320  
F28374SPTPS  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
200  
40  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
SNAGCU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
NIPDAU  
TMS320  
F28374SPTPS  
TMS320  
F28374SPTPT  
90  
TMS320  
F28374SPZPS  
90  
TMS320  
F28374SPZPT  
90  
TMS320  
F28374SZWTS  
90  
TMS320  
F28374SZWTT  
1000 RoHS & Green  
TMS320  
F28374SZWTT  
40  
40  
90  
RoHS & Green  
RoHS & Green  
RoHS & Green  
TMS320  
F28375SPTPS  
TMS320  
F28375SPTPT  
TMS320  
F28375SPZPQ  
1000 RoHS & Green  
TMS320  
F28375SPZPQ  
90  
90  
90  
90  
40  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
TMS320  
F28375SPZPS  
TMS320  
F28375SPZPT  
TMS320  
F28375SZWTS  
TMS320  
F28375SZWTT  
TMS320  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jan-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
F28376SPTPS  
TMS320F28376SPTPT  
TMS320F28376SPZPS  
TMS320F28376SPZPT  
TMS320F28376SZWTS  
TMS320F28376SZWTT  
TMS320F28377SPTPQ  
TMS320F28377SPTPS  
TMS320F28377SPTPT  
TMS320F28377SPZPQ  
TMS320F28377SPZPS  
TMS320F28377SPZPT  
TMS320F28377SZWTQ  
TMS320F28377SZWTS  
TMS320F28377SZWTT  
TMS320F28378SPTPS  
TMS320F28378SPZPS  
TMS320F28379SPTPS  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HLQFP  
HTQFP  
HTQFP  
NFBGA  
NFBGA  
HLQFP  
HLQFP  
HLQFP  
HTQFP  
HTQFP  
HTQFP  
NFBGA  
NFBGA  
NFBGA  
HLQFP  
HTQFP  
HLQFP  
PTP  
PZP  
PZP  
ZWT  
ZWT  
PTP  
PTP  
PTP  
PZP  
PZP  
PZP  
ZWT  
ZWT  
ZWT  
PTP  
PZP  
PTP  
176  
100  
100  
337  
337  
176  
176  
176  
100  
100  
100  
337  
337  
337  
176  
100  
176  
40  
90  
90  
90  
90  
40  
40  
40  
90  
90  
90  
90  
90  
90  
40  
90  
40  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
SNAGCU  
NIPDAU  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 125  
TMS320  
F28376SPTPT  
TMS320  
F28376SPZPS  
TMS320  
F28376SPZPT  
TMS320  
F28376SZWTS  
TMS320  
F28376SZWTT  
TMS320  
F28377SPTPQ  
TMS320  
F28377SPTPS  
TMS320  
F28377SPTPT  
TMS320  
F28377SPZPQ  
TMS320  
F28377SPZPS  
TMS320  
F28377SPZPT  
TMS320  
F28377SZWTQ  
TMS320  
F28377SZWTS  
TMS320  
F28377SZWTT  
TMS320  
F28378SPTPS  
TMS320  
F28378SPZPS  
TMS320  
F28379SPTPS  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jan-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
40  
90  
90  
90  
90  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS320F28379SPTPT  
TMS320F28379SPZPS  
TMS320F28379SPZPT  
TMS320F28379SZWTS  
TMS320F28379SZWTT  
ACTIVE  
HLQFP  
HTQFP  
HTQFP  
NFBGA  
NFBGA  
PTP  
176  
100  
100  
337  
337  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
TMS320  
F28379SPTPT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PZP  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
TMS320  
F28379SPZPS  
PZP  
TMS320  
F28379SPZPT  
ZWT  
ZWT  
TMS320  
F28379SZWTS  
TMS320  
F28379SZWTT  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jan-2021  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 4  
PACKAGE OUTLINE  
ZWT0337A  
NFBGA - 1.4 mm max height  
SCALE 0.950  
PLASTIC BALL GRID ARRAY  
16.1  
15.9  
A
B
BALL A1 CORNER  
16.1  
15.9  
1.4 MAX  
C
SEATING PLANE  
0.12 C  
0.45  
0.35  
BALL TYP  
TYP  
14.4 TYP  
SYMM  
(0.8) TYP  
(0.8) TYP  
W
V
U
T
R
P
N
M
L
14.4  
TYP  
SYMM  
K
J
H
G
F
0.55  
337X  
0.45  
E
D
C
0.15  
0.05  
C A B  
C
B
A
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19  
0.8 TYP  
0.8 TYP  
BALL A1 CORNER  
4223381/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZWT0337A  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
(0.8) TYP  
337X ( 0.4)  
11  
12  
13 14 15 16 17 18 19  
1
3
4
6
7
8
9
10  
2
5
A
B
C
(0.8) TYP  
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
U
V
W
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:7X  
METAL UNDER  
SOLDER MASK  
0.05 MAX  
0.05 MIN  
(
0.4)  
METAL  
EXPOSED METAL  
(
0.4)  
SOLDER MASK  
OPENING  
EXPOSED METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223381/A 02/2017  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZWT0337A  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
(
0.4) TYP  
(0.8) TYP  
11  
12  
13 14 15 16 17 18 19  
1
3
4
6
7
8
9
10  
2
5
A
B
C
(0.8) TYP  
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
U
V
W
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE:7X  
4223381/A 02/2017  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TMS320F28377SPZPS

具有 400MIPS、1xCPU、1xCLA、FPU、TMU、1024KB 闪存、EMIF、16 位 ADC 的 C2000™ 32 位 MCU | PZP | 100 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28377SPZPT

具有 400MIPS、1xCPU、1xCLA、FPU、TMU、1024KB 闪存、EMIF、16 位 ADC 的 C2000™ 32 位 MCU | PZP | 100 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28377SZWTQ

具有 400MIPS、1xCPU、1xCLA、FPU、TMU、1024KB 闪存、EMIF、16 位 ADC 的汽车类 C2000™ 32 位 MCU | ZWT | 337 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28377SZWTS

具有 400MIPS、1xCPU、1xCLA、FPU、TMU、1024KB 闪存、EMIF、16 位 ADC 的 C2000™ 32 位 MCU | ZWT | 337 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28377SZWTT

具有 400MIPS、1xCPU、1xCLA、FPU、TMU、1024KB 闪存、EMIF、16 位 ADC 的 C2000™ 32 位 MCU | ZWT | 337 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28378D

具有 800MIPS、2xCPU、2xCLA、FPU、TMU、1024KB 闪存、CLB、EMIF、12 位 ADC 的 C2000™ 32 位 MCU

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28378DPTP

TMS320F2837xD Dual-Core Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28378DPTPS

具有 800MIPS、2xCPU、2xCLA、FPU、TMU、1024KB 闪存、CLB、EMIF、12 位 ADC 的 C2000™ 32 位 MCU | PTP | 176 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28378S

具有 400MIPS、1xCPU、1xCLA、FPU、TMU、1024KB 闪存、CLB、EMIF、12 位 ADC 的 C2000™ 32 位 MCU

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28378SPTP

TMS320F2837xS Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28378SPTPS

具有 400MIPS、1xCPU、1xCLA、FPU、TMU、1024KB 闪存、CLB、EMIF、12 位 ADC 的 C2000™ 32 位 MCU | PTP | 176 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28378SPZP

TMS320F2837xS Microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI