TMS320LC2404PGE [TI]

DSP CONTROLLERS; DSP控制器
TMS320LC2404PGE
型号: TMS320LC2404PGE
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DSP CONTROLLERS
DSP控制器

控制器
文件: 总106页 (文件大小:1341K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
D
D
High-Performance Static CMOS Technology  
– 33-ns Instruction Cycle Time (30 MHz)  
– 30 MIPS Performance  
D
External Memory Interface (’LF2407)  
– 192K Words x 16 Bits of Total Memory,  
64K Program, 64K Data, 64K I/O  
– Low-Power 3.3-V Design  
D
D
Watchdog (WD) Timer Module  
Based on T320C2xx DSP CPU Core  
– Code-Compatible With ’F243/’F241/’C242  
– Instruction Set and Module Compatible  
With ’F240/’C240  
– Source-Code-Compatible With  
TMS320C1x/2x  
10-Bit Analog-to-Digital Converter (ADC)  
– 8 or 16 Multiplexed Input Channels  
– 500 ns Minimum Conversion Time  
– Selectable Twin 8-Input Sequencers  
Triggered by Two Event Managers  
D
D
D
D
D
Controller Area Network (CAN) 2.0B Module  
Serial Communications Interface (SCI)  
D
D
Flash (LF) and ROM (LC) Device Options  
– ’LF240x : ’LF2407, ’LF2406, ’LF2402  
16-Bit Serial Peripheral Interface (SPI)  
Module (Except ’x2402)  
– ’LC240x : ’LC2406, ’LC2404, ’LC2402  
On-Chip Memory  
Phase-Locked-Loop (PLL)-Based Clock  
Generation  
– Up to 32K Words x 16 Bits of Flash  
EEPROM (4 Sectors) or ROM  
– Up to 2.5K Words x 16 Bits of  
Data/Program RAM  
Up to 40 Individually Programmable,  
Multiplexed General-Purpose Input/Output  
(GPIO) Pins  
– 544 Words of Dual-Access (DARAM)  
– 2K Words of Single-Access (SARAM)  
D
D
Five External Interrupts (Power Drive  
Protection, Reset, and Two Maskable  
Interrupts)  
D
D
Boot ROM (’LF240x Devices)  
– SCI/SPI Flash Bootloader  
Two Event-Manager (EV) Modules (A and B)  
EVA and EVB Each Include:  
– Two 16-Bit General-Purpose Timers  
– Eight 16-Bit Pulse-Width Modulation  
(PWM) Channels Which Enable:  
– Three-Phase Inverter Control  
– Centered or Edge Alignment of PWM  
Channels  
– Emergency PWM Channel Shutdown  
With External PDPINT Pin  
– Programmable Deadband Prevents  
Shoot-Through Faults  
– Three Capture Units For Time-Stamping  
of External Events  
– On-Chip Position Encoder Interface  
Circuitry  
– Synchronized Analog-to-Digital  
Conversion  
– Suitable for AC Induction, BLDC,  
Switched Reluctance, and Stepper Motor  
Control  
Power Management:  
– Three Power-Down Modes  
– Ability to Power-Down Each Peripheral  
Independently  
D
D
Real-Time JTAG-Compliant Scan-Based  
Emulation, IEEE Standard 1149.1 (JTAG)  
Development Tools Include:  
– Texas Instruments (TI ) ANSI  
C Compiler, Assembler/Linker, and  
Code Composer Debugger  
– Evaluation Modules  
– Scan-Based Self-Emulation (XDS510 )  
– Numerous Third-Party Digital Motor  
Control Support  
D
D
Package Options  
– 144-Pin Thin Quad Flatpack (TQFP) PGE  
(’LF2407)  
– 100-Pin TQFP PZ (’LC2404, ’LC2406,  
’LF2406)  
– 64-Pin PQFP PG (’LC2402 and ’LF2402)  
– Applicable for Multiple Motor and/or  
Converter Control  
Extended Temperature Options (A and S)  
– A: – 40°C to 85°C  
– S: – 40°C to 125°C  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
TI, Code Composer, and XDS510 are trademarks of Texas Instruments Incorporated.  
Throughout this data sheet, ’240x is used as a generic name for the ’LF240x/’LC240x family of devices.  
IEEE Standard 1149.1–1990, IEEE Standard Test-Access Port  
Copyright 1999, Texas Instruments Incorporated  
ADVANCE INFORMATION concerns new products in the sampling or  
preproduction phase of development. Characteristic data and other  
specifications are subject to change without notice.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
Table of Contents  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
TMS320x240x Device Summary . . . . . . . . . . . . . . . . . . . 3  
Functional Block Diagram of the ’2407 DSP Controller 4  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Memory Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Peripheral Memory Map of the ’LF240x/’LC240x . . . . 21  
Device Reset and Interrupts . . . . . . . . . . . . . . . . . . . . . 22  
TMS320x240x Instruction Set . . . . . . . . . . . . . . . . . . . . 26  
Controller Area Network (CAN) Module . . . . . . . . . . 41  
Serial Communications Interface (SCI) Module . . . . 44  
Serial Peripheral Interface (SPI) Module . . . . . . . . . . 46  
PLL-Based Clock Module . . . . . . . . . . . . . . . . . . . . . . 48  
Digital I/O and Shared Pin Functions . . . . . . . . . . . . . 51  
External Memory Interface (’LF2407) . . . . . . . . . . . . 54  
Watchdog (WD) Timer Module . . . . . . . . . . . . . . . . . . 55  
Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Documentation Support . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . 62  
Recommended Operating Conditions . . . . . . . . . . . . . 62  
Peripheral Register Description . . . . . . . . . . . . . . . . . . . 90  
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Functional Block Diagram of the ’240x DSP CPU . . . 27  
Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Event Manager Modules (EVA, EVB) . . . . . . . . . . . . 36  
Enhanced Analog-to-Digital Converter  
(ADC) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
description  
The TMS320LF240x and TMS320LC240x devices, new members of the ’24x family of digital signal processor  
(DSP) controllers, are part of the C2000 platform of fixed-point DSPs. The ’240x devices offer the enhanced  
TMS320 architectural design of the ’C2xx core CPU for low-cost, low-power, high-performance processing  
capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have  
been integrated to provide a true single chip DSP controller. While code-compatible with the existing ’24x DSP  
controllerdevices, the240xoffersincreasedprocessingperformance(30MIPS)andahigherlevelofperipheral  
integration. See the TMS320x240x device summary section for device-specific features.  
The ’240x family offers an array of memory sizes and different peripherals tailored to meet the specific  
price/performance points required by various applications. Flash-based devices of up to 32K words offer a  
reprogrammable solution useful for:  
Applications requiring field programmability upgrades  
Development and initial prototyping of applications that migrate to ROM-based devices  
Flash devices and corresponding ROM devices are fully pin-to-pin compatible. Note that flash-based devices  
contain a 256-word boot ROM to facilitate in-circuit programming.  
All ’240x devices offer at least one event manager module which has been optimized for digital motor control  
and power conversion applications. Capabilities of this module include centered- and/or edge-aligned PWM  
generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital  
conversion. Devices with dual event managers enable multiple motor and/or converter control with a single  
’240x DSP controller.  
The high performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 500 ns and  
offers up to 16 channels of analog input. The auto sequencing capability of the ADC allows a maximum of  
16 conversions to take place in a single conversion session without any CPU overhead.  
A serial communications interface (SCI) is integrated on all devices to provide asynchronous communication  
to other devices in the system. For systems requiring additional communication interfaces; the ’2407, ’2406,  
and2404offera16-bitsynchronousserialperipheralinterface(SPI). The2407and2406offeracontrollerarea  
network (CAN) communications module that meets 2.0B specifications. To maximize device flexibility,  
functional pins are also configurable as general purpose inputs/outputs (GPIO).  
To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices.  
This provides non-intrusive real-time capabilities required to debug digital control systems. A complete suite  
of code generation tools from C compilers to the industry-standard Code Composer debugger supports this  
family. Numerous third party developers not only offer device-level development tools, but also system-level  
design and development support.  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
TMS320x240x device summary  
Note that throughout this data sheet, ’240x is used as a generic name for the ’LF240x/’LC240x family of devices.  
Table 1. Hardware Features of ’240x Devices  
FEATURE  
’LF2407  
’LF2406  
Yes  
’LF2402  
Yes  
’LC2406  
Yes  
’LC2404  
Yes  
’LC2402  
Yes  
’C2xx DSP Core  
Instruction Cycle  
MIPS (30 MHz)  
Yes  
33 ns  
33 ns  
30 MIPS  
544  
33 ns  
30 MIPS  
544  
33 ns  
30 MIPS  
544  
33 ns  
30 MIPS  
544  
33 ns  
30 MIPS  
544  
30 MIPS  
544  
DARAM  
SARAM  
RAM (16-bit word)  
2K  
2K  
2K  
1K  
On-chip Flash (16-bit word)  
(4 sectors: 4K, 12K, 12K, 4K)  
32K  
32K  
8K  
On-chip ROM (16-bit word)  
Boot ROM (16-bit word)  
External Memory Interface  
256  
256  
32K  
16K  
4K  
256  
Yes  
Event Managers A and B  
(EVA and EVB)  
EVA, EVB  
EVA, EVB  
EVA  
EVA, EVB  
EVA, EVB  
EVA  
S
S
S
General-Purpose (GP) Timers  
4
10/16  
6/4  
4
10/16  
6/4  
2
5/8  
4
10/16  
6/4  
4
10/16  
6/4  
2
5/8  
Compare (CMP)/PWM  
Capture (CAP)/QEP  
3/2  
3/2  
Watchdog Timer  
10-Bit ADC  
Yes  
Yes  
Yes  
Yes  
8
Yes  
Yes  
Yes  
Yes  
8
Yes  
Yes  
Yes  
Yes  
S
S
Channels  
Conversion Time (minimum)  
16  
16  
16  
16  
500 ns  
Yes  
500 ns  
Yes  
500 ns  
500 ns  
Yes  
500 ns  
Yes  
500 ns  
SPI  
SCI  
CAN  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Digital I/O Pins (Shared)  
External Interrupts  
Supply Voltage  
41  
41  
21  
41  
41  
21  
5
5
3
5
5
3
3.3 V  
144 TQFP  
3.3 V  
100 TQFP  
3.3 V  
64 PQFP  
3.3 V  
100 TQFP  
3.3 V  
100 TQFP  
3.3 V  
64 PQFP  
Packaging  
’LF2407, the full-featured device of the ’LF240x family of DSP controllers, is useful for emulation and code development.  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
functional block diagram of the ’2407 DSP controller  
PLLF  
PLLV  
XINT1/IOPA2  
CCA  
DARAM (B0)  
256 Words  
PLLF2  
XINT2/ADCSOC/IOPD0  
PLL Clock  
RS  
XTAL1/CLKIN  
CLKOUT/IOPE0  
XTAL2  
TMS2  
’C2xx  
ADCIN00–ADCIN07  
ADCIN08–ADCIN15  
BIO/IOPC1  
DARAM (B1)  
256 Words  
DSP  
Core  
V
CCA  
MP/MC  
10-Bit ADC  
(With Twin  
Autosequencer)  
V
V
SSA  
BOOT_EN/XF  
REFHI  
V
REFLO  
DARAM (B2)  
32 Words  
XINT2/ADCSOC/IOPD0  
SCITXD/IOPA0  
SCI  
SPI  
SCIRXD/IOPA1  
V
(3.3 V)  
DD  
SPISIMO/IOPC2  
SPISOMI/IOPC3  
SPICLK/IOPC4  
SPISTE/IOPC5  
SARAM (2K Words)  
V
SS  
TP1  
CANTX/IOPC6  
CANRX/IOPC7  
Flash/ROM  
(32K Words:  
4K/12K/12K/4K)  
TP2  
(5V)  
CAN  
WD  
V
CCP  
V
(5V)  
CCP  
Port A(0–7) IOPA[0:7]  
Port B(0–7) IOPB[0:7]  
A0–A15  
D0–D15  
Port C(0–7) IOPC[0:7]  
Port D(0) IOPD[0]  
Digital I/O  
(Shared With Other Pins)  
PS, DS, IS  
R/W  
Port E(0–7) IOPE[0:7]  
Port F(0–6) IOPF[0:6]  
TRST  
RD  
READY  
STRB  
External Memory Interface  
TDO  
WE  
TDI  
ENA_144  
TMS  
JTAG Port  
TCK  
VIS_OE  
EMU0  
EMU1  
W/R / IOPC0  
PDPINTA  
PDPINTB  
CAP1/QEP1/IOPA3  
CAP2/QEP2/IOPA4  
CAP3/IOPA5  
CAP4/QEP3/IOPE7  
CAP5/QEP4/IOPF0  
CAP6/IOPF1  
PWM1/IOPA6  
PWM2/IOPA7  
PWM7/IOPE1  
Event Manager A  
Event Manager B  
PWM8/IOPE2  
PWM3/IOPB0  
PWM4/IOPB1  
PWM9/IOPE3  
D 3 × Capture Input  
D 6 × Compare/PWM  
Output  
D 2 × GP Timers/PWM  
D 3 × Capture Input  
D 6 × Compare/PWM  
Output  
D 2 × GP Timers/PWM  
PWM10/IOPE4  
PWM11/IOPE5  
PWM12/IOPE6  
T3PWM/T3CMP/IOPF2  
PWM5/IOPB2  
PWM6/IOPB3  
T1PWM/T1CMP/IOPB4  
T2PWM/T2CMP/IOPB5  
T4PWM/T4CMP/IOPF3  
TDIRB/IOPF4  
TDIRA/IOPB6  
TCLKINA/IOPB7  
TCLKINB/IOPF5  
Indicates optional modules  
The memory size and peripheral selection of these modules change for different ’240x devices. See  
Table 1 for device-specific details.  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
PGE PACKAGE  
(TOP VIEW)  
OIFP5  
IBO/  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
TRST  
ADCIN11  
ADCIN02  
ADCIN12  
ADCIN03  
ADCIN13  
ADCIN04  
ADCIN05  
ADCIN14  
ADCIN06  
ADCIN07  
ADCIN15  
VIS_OE  
2
TDIRB/IOPF4  
3
V
SSO  
4
V
DDO  
5
D7  
T4PWM/T4CMP/IOPF3  
PDPINTA  
6
7
8
T3PWM/T3CMP/IOPF2  
D8  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
PLLF2  
PLLF  
98  
97  
PLLV  
CCA  
D9  
96  
STRB  
95  
TDIRA/IOPB6  
V
V
DDO  
SSO  
94  
D10  
T1PWM/T1CMP/IOPB4  
D11  
93  
RD  
92  
R/W  
TMS320LF2407  
91  
T2PWM/T2CMP/IOPB5  
W/R/IOPC0  
EMU1/OFF  
90  
EMU0  
89  
D12  
WE  
88  
XINT2/ADCSOC/IOPD0  
D13  
CAP4/QEP3/IOPE7  
DS  
87  
V
86  
XINT1/IOPA2  
D14  
DD  
85  
V
SS  
84  
SCITXD/IOPA0  
SCIRXD/IOPA1  
D15  
PS  
83  
CAP1/QEP1/IOPA3  
82  
IS  
81  
V
CAP5/QEP4/IOPF0  
SS  
DD  
80  
V
A0  
79  
SPISIMO/IOPC2  
A15  
CAP2/QEP2/IOPA4  
78  
A1  
77  
SPISOMI/IOPC3  
SPISTE/IOPC5  
A14  
V
V
DDO  
76  
SSO  
75  
CAP3/IOPA5  
A2  
74  
SPICLK/IOPC4  
TMS2  
73  
CLKOUT/IOPE0  
7
A
6
A
OIFP1  
OIEP1  
E
B
IOPE3  
B
B
B
E
B
P
E
P
E
C
IOPC6  
Bold, italicized pin names indicate pin function after reset.  
BOOT_EN is available only on flash devices.  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
PZ PACKAGE  
(TOP VIEW)  
3
A
4
A
E
P
F
IOP  
5
A
OIP  
LCOKUT  
75 74 73 72 717069 68 67 66 65 64 63 62 616059 58 57 56 55 54 53 52 51  
ADCIN10  
ADCIN01  
ADCIN09  
ADCIN00  
ADCIN08  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
CANTX/IOPC6  
CANRX/IOPC7  
CAP6/IOPF1  
V
V
DDO  
SSO  
V
PWM7/IOPE1  
TP2  
PWM8/IOPE2  
TP1  
PWM9/IOPE3  
V
CCP  
REFLO  
V
REFHI  
V
CCA  
V
SSA  
BIO/IOPC1  
§
BOOT_EN/XF  
TMS320LC2404  
TMS320LC2406  
TMS320LF2406  
XTAL1/CLKIN  
XTAL2  
TCLKINB/IOPF5  
PWM1/IOPA6  
PWM10/IOPE4  
PWM2/IOPA7  
PWM3/IOPB0  
V
SS  
DD  
V
V
V
DD  
IOPF6  
RS  
TCK  
PDPINTB  
TDI  
SS  
PWM4/IOPB1  
PWM11/IOPE5  
PWM5/IOPB2  
V
V
DDO  
V
SSO  
SSO  
V
PWM6/IOPB3  
PWM12/IOPE6  
TCLKINA/IOPB7  
DDO  
TDO  
TMS  
100  
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 2122 23 24 25  
1
A
2
A
0
A
OIP  
F
F
F
C
IOPC3  
P
IOP  
B
B
B
D
C
IOPC4  
§
Bold, italicized pin names indicate pin function after reset.  
CANTX and CANRX are not available on ’LC2404 devices.  
BOOT_EN is available only on flash devices.  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
PG PACKAGE  
(TOP VIEW)  
D
B
IOPB4  
1A  
0A  
OIBP7  
OIP  
OIP  
OIBP3  
C
C
IOPC2  
51 50 49 48 47 46 45 44 4342 41 40 3938 37 36 35 34 33  
TMS  
TDO  
TDI  
32  
52  
53  
54  
V
DDO  
PWM5  
PWM4  
31  
30  
55  
56  
V
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
TCK  
RS  
SS  
V
DD  
PWM3  
PWM2  
PWM1  
57  
58  
V
DD  
V
SS  
TMS320LC2402  
TMS320LF2402  
59  
60  
61  
62  
63  
64  
XTAL2  
V
XTAL1/CLKIN  
BOOT_EN/XF  
CCP  
TP1  
TP2  
IOPC7  
IOPC6  
V
V
V
SSA  
CCA  
REFHI  
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1718 19  
5
4
A3  
P
P
IOP  
LCOKUT  
Bold, italicized pin names indicate pin function after reset.  
BOOT_EN is available only on flash devices.  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
pin functions  
The TMS320LF2407 device is the superset of all the ’240x devices. All signals are available on the ’2407 device.  
Table 2 lists the key signals available in the ’240x family of devices.  
†‡  
Table 2. ’LF240x and ’LC240x Pin List and Package Options  
PIN NAME  
’LF2407  
’2406  
’LC2404  
’2402  
DESCRIPTION  
EVENT MANAGER A (EVA)  
Capture input #1/quadrature encoder pulse input #1 (EVA) or  
GPIO ()  
CAP1/QEP1/IOPA3  
CAP2/QEP2/IOPA4  
83  
79  
57  
55  
57  
55  
4
3
Capture input #2/quadrature encoder pulse input #2 (EVA) or  
GPIO ()  
CAP3/IOPA5  
75  
56  
54  
52  
47  
44  
40  
16  
18  
52  
39  
37  
36  
33  
31  
28  
12  
13  
52  
39  
37  
36  
33  
31  
28  
12  
13  
2
59  
58  
57  
54  
53  
Capture input #3 (EVA) or GPIO ()  
§
§
§
§
§
PWM1/IOPA6  
Compare/PWM output pin #1 (EVA) or GPIO ()  
Compare/PWM output pin #2 (EVA) or GPIO ()  
Compare/PWM output pin #3 (EVA) or GPIO ()  
Compare/PWM output pin #4 (EVA) or GPIO ()  
Compare/PWM output pin #5 (EVA) or GPIO ()  
Compare/PWM output pin #6 (EVA) or GPIO ()  
Timer 1 compare output (EVA) or GPIO ()  
Timer 2 compare output (EVA) or GPIO ()  
PWM2/IOPA7  
PWM3/IOPB0  
PWM4/IOPB1  
PWM5/IOPB2  
PWM6/IOPB3  
50  
40  
41  
T1PWM/T1CMP/IOPB4  
T2PWM/T2CMP/IOPB5  
Counting direction for general-purpose (GP) timer (EVA) or  
GPIO. If TDIRA=1, upward counting is selected. If TDIRA=0,  
downward counting is selected. ()  
TDIRA/IOPB6  
14  
37  
11  
26  
11  
External clock input for GP timer (EVA) or GPIO. Note that timer  
can also use the internal device clock. ()  
TCLKINA/IOPB7  
26  
49  
EVENT MANAGER B (EVB)  
Capture input #4/quadrature encoder pulse input #3 (EVB) or  
CAP4/QEP3/IOPE7  
CAP5/QEP4/IOPF0  
88  
81  
60  
56  
60  
GPIO ()  
Capture input #5/quadrature encoder pulse input #4 (EVB) or  
GPIO ()  
56  
CAP6/IOPF1  
69  
65  
62  
59  
55  
46  
38  
8
48  
45  
43  
41  
38  
32  
27  
7
48  
45  
43  
41  
38  
32  
27  
7
Capture input #6 (EVB) or GPIO ()  
PWM7/IOPE1  
Compare/PWM output pin #7 (EVB) or GPIO ()  
Compare/PWM output pin #8 (EVB) or GPIO ()  
Compare/PWM output pin #9 (EVB) or GPIO ()  
Compare/PWM output pin #10 (EVB) or GPIO ()  
Compare/PWM output pin #11 (EVB) or GPIO ()  
Compare/PWM output pin #12 (EVB) or GPIO ()  
Timer 3 compare output (EVB) or GPIO ()  
Timer 4 compare output (EVB) or GPIO ()  
PWM8/IOPE2  
PWM9/IOPE3  
PWM10/IOPE4  
PWM11/IOPE5  
PWM12/IOPE6  
T3PWM/T3CMP/IOPF2  
T4PWM/T4CMP/IOPF3  
6
5
5
Counting direction for general-purpose (GP) timer (EVB) or  
GPIO. If TDIRB=1, upward counting is selected. If TDIRB=0,  
downward counting is selected. ()  
TDIRB/IOPF4  
2
2
2
External clock input for GP timer (EVB) or GPIO. Note that timer  
can also use the internal device clock. ()  
TCLKINB/IOPF5  
126  
89  
89  
§
Bold, italicized pin names indicate pin function after reset.  
GPIO – General-purpose input/output pin. All GPIOs come up as input after reset.  
Pin changes with respect to SPRS094B data sheet.  
LEGEND: – Internal pullup  
– Internal pulldown  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
pin functions (continued)  
†‡  
Table 2. ’LF240x and ’LC240x Pin List and Package Options (Continued)  
PIN NAME  
’LF2407  
’2406  
’LC2404  
’2402  
DESCRIPTION  
ANALOG-TO-DIGITAL CONVERTER (ADC)  
ADCIN00  
ADCIN01  
ADCIN02  
ADCIN03  
ADCIN04  
ADCIN05  
ADCIN06  
ADCIN07  
ADCIN08  
ADCIN09  
ADCIN10  
ADCIN11  
ADCIN12  
ADCIN13  
ADCIN14  
ADCIN15  
112  
110  
107  
105  
103  
102  
100  
99  
79  
77  
74  
72  
70  
69  
67  
66  
80  
78  
76  
75  
73  
71  
68  
65  
82  
81  
79  
77  
74  
72  
70  
69  
67  
66  
80  
78  
76  
75  
73  
71  
68  
65  
82  
81  
18  
17  
16  
15  
14  
13  
12  
11  
Analog input #0 to the ADC  
Analog input #1 to the ADC  
Analog input #2 to the ADC  
Analog input #3 to the ADC  
Analog input #4 to the ADC  
Analog input #5 to the ADC  
Analog input #6 to the ADC  
Analog input #7 to the ADC  
Analog input #8 to the ADC  
Analog input #9 to the ADC  
Analog input #10 to the ADC  
Analog input #11 to the ADC  
Analog input #12 to the ADC  
Analog input #13 to the ADC  
Analog input #14 to the ADC  
Analog input #15 to the ADC  
ADC analog high-voltage reference input  
ADC analog low-voltage reference input  
113  
111  
109  
108  
106  
104  
101  
98  
V
115  
114  
20  
19  
REFHI  
V
REFLO  
Analog supply voltage for ADC (3.3 V). V  
be isolated from digital supply voltage.  
must  
CCA  
V
CCA  
116  
83  
83  
21  
V
SSA  
117  
84  
84  
22  
Analog ground reference for ADC  
CONTROLLER AREA NETWORK (CAN), SERIAL COMMUNICATIONS INTERFACE (SCI), SERIAL PERIPHERAL INTERFACE (SPI)  
CANRX  
IOPC7  
CANTX  
IOPC6  
70  
70  
72  
72  
49  
49  
50  
50  
49  
63  
CANRX/IOPC7  
CAN receive data or GPIO ()  
CAN transmit data or GPIO ()  
CANTX/IOPC6  
SCITXD/IOPA0  
SCIRXD/IOPA1  
50  
64  
SCI asynchronous serial port transmit data or  
GPIO ()  
25  
26  
17  
18  
17  
18  
43  
44  
SCI asynchronous serial port receive data or or  
GPIO ()  
SPICLK  
IOPC4  
35  
35  
30  
30  
32  
32  
33  
33  
24  
24  
21  
21  
22  
22  
23  
23  
24  
24  
21  
21  
22  
22  
23  
23  
47  
SPICLK/IOPC4  
SPISIMO/IOPC2  
SPISOMI/IOPC3  
SPISTE/IOPC5  
SPI clock or GPIO ()  
SPISIMO  
IOPC2  
SPI slave in, master out or GPIO ()  
SPI slave out, master in or GPIO ()  
SPI slave transmit enable (optional) or GPIO ()  
45  
SPISOMI  
IOPC3  
46  
SPISTE  
IOPC5  
Bold, italicized pin names indicate pin function after reset.  
GPIO – General-purpose input/output pin. All GPIOs come up as input after reset.  
LEGEND: – Internal pullup – Internal pulldown  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
pin functions (continued)  
†‡  
Table 2. ’LF240x and ’LC240x Pin List and Package Options (Continued)  
PIN NAME  
’LF2407  
’2406  
’LC2404  
’2402  
DESCRIPTION  
EXTERNAL INTERRUPTS, CLOCK  
Device reset. RS causes the ’240x to terminate  
execution and sets PC = 0. When RS is brought to a  
high level, execution begins at location zero of  
program memory. RS affects (or sets to zero) various  
registers and status bits. When the watchdog timer  
overflows, it initiates a system reset pulse that is  
reflected on the RS pin. ()  
RS  
133  
93  
93  
28  
36  
Power drive protection interrupt input. This interrupt,  
when activated, puts the PWM output pins (EVA) in the  
high-impedance state should motor drive/power  
converter abnormalities, such as overvoltage or  
overcurrent, etc., arise. PDPINTA is a  
PDPINTA  
7
6
6
falling-edge-sensitive interrupt. ()  
External user interrupt 1 or GPIO. Both XINT1 and  
XINT2 are edge-sensitive. The edge polarity is  
programmable. ()  
XINT1/IOPA2  
23  
21  
16  
15  
16  
15  
External user interrupt 2 and ADC start of conversion  
or GPIO. External “start-of-conversion” input for  
ADC/GPIO. Both XINT1 and XINT2 are  
edge-sensitive. The edge polarity is  
XINT2/ADCSOC/IOPD0  
CLKOUT/IOPE0  
42  
programmable. ()  
Clock output or GPIO. This pin outputs either the CPU  
clock (CLKOUT) or the watchdog clock (WDCLK). The  
selection is made by the CLKSRC bit (bit 14) of the  
System Control and Status Register (SCSR). This pin  
can be used as a GPIO if not used as a clock output  
pin. ()  
73  
51  
95  
51  
95  
1
Power drive protection interrupt input. This interrupt,  
when activated, puts the PWM output pins (EVB) in  
the high-impedance state should motor drive/power  
converter abnormalities, such as overvoltage or  
overcurrent, etc., arise. PDPINT is a  
PDPINTB  
137  
falling-edge-sensitive interrupt. ()  
OSCILLATOR, PLL, FLASH, BOOT, AND MISCELLANEOUS  
PLL oscillator input pin. Crystal input to PLL/clock  
XTAL1/CLKIN  
123  
87  
87  
24  
source input to PLL. XTAL1/CLKIN is tied to one side  
of a reference crystal.  
Crystal output. PLL oscillator output pin. XTAL2 is tied  
to one side of a reference crystal. This pin goes in the  
high-impedance state when EMU1/OFF is active low.  
XTAL2  
PLLF  
124  
88  
88  
25  
11  
12  
10  
9
10  
8
9
10  
8
38  
39  
37  
Filter input 1  
PLLV  
CCA  
PLL supply (3.3 V)  
Filter input 2  
PLLF2  
Boot ROM enable, GPO, XF. This pin will be sampled  
as input (BOOT_EN) to update SCSR2.3 (BOOT_EN  
bit) during reset and then driven as an output signal for  
XF. ROM devices do not have boot ROM, hence, no  
BOOT_EN modes. ()  
BOOT_EN  
XF  
121  
121  
86  
86  
23  
23  
BOOT_EN / XF  
86  
Bold, italicized pin names indicate pin function after reset.  
GPIO – General-purpose input/output pin. All GPIOs come up as input after reset.  
LEGEND: – Internal pullup – Internal pulldown  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
pin functions (continued)  
†‡  
Table 2. ’LF240x and ’LC240x Pin List and Package Options (Continued)  
PIN NAME  
’LF2407  
OSCILLATOR, PLL, FLASH, BOOT, AND MISCELLANEOUS (CONTINUED)  
Flash programming voltage pin. This is the 5-V supply used for  
’2406  
’LC2404  
’2402  
DESCRIPTION  
flash programming. Flash cannot be programmed if this pin is  
held at 0 V. Connect to 5-V supply for programming or tie it to  
GND during functional mode.  
§
60  
V
CCP  
(5V)  
58  
40  
40  
§
§
TP1 (Flash)  
TP2 (Flash)  
IOPF6  
60  
63  
42  
44  
92  
42  
44  
92  
61  
Flash array test pin. Do not connect.  
Flash array test pin. Do not connect.  
General-purpose I/O ()  
62  
131  
Branch control input. BIO is polled by the BCND pma,BIO  
instruction. If BIO is low, a branch is executed. If BIO is not  
used, it should be pulled high. This pin is configured as a branch  
control input by all device resets. It can be used as a GPIO, if  
not used as a branch control input. ()  
BIO/IOPC1  
119  
90  
85  
61  
85  
61  
EMULATION AND TEST  
Emulator I/O #0 with internal pullup. When TRST is driven high,  
EMU0  
7
this pin is used as an interrupt to or from the emulator system  
and is defined as input/output through the JTAG scan. ()  
Emulator pin 1. Emulator pin 1 disables all outputs. When TRST  
is driven high, EMU1/OFF is used as an interrupt to or from the  
emulator system and is defined as an input/output through the  
JTAG scan. When TRST is driven low, this pin is configured as  
OFF. EMU1/OFF, when active low, puts all output drivers in the  
high-impedance state. Note that OFF is used exclusively for  
testing and emulation purposes (not for multiprocessing  
applications). Therefore, for the OFF condition, the following  
apply:  
EMU1/OFF  
91  
62  
62  
8
TRST = 0  
EMU0 = 1  
EMU1/OFF = 0  
TCK  
TDI  
135  
139  
94  
96  
94  
96  
29  
30  
JTAG test clock with internal pullup ()  
JTAG test data input (TDI) with internal pullup. TDI is clocked  
into the selected register (instruction or data) on a rising edge of  
TCK. ()  
JTAG scan out, test data output (TDO). The contents of the  
selected register (instruction or data) is shifted out of TDO on  
the falling edge of TCK. ()  
TDO  
TMS  
TMS2  
142  
144  
36  
99  
100  
25  
99  
100  
25  
31  
32  
48  
JTAG test-mode select (TMS) with internal pullup. This serial  
control input is clocked into the TAP controller on the rising edge  
of TCK. ()  
JTAG test-mode select 2 (TMS) with internal pullup. This serial  
control input is clocked into the TAP controller on the rising edge  
of TCK. Used for test and emulation only. ()  
JTAG test reset with internal pulldown. TRST, when driven high,  
gives the scan system control of the operations of the device. If  
this signal is not connected or driven low, the device operates in  
its functional mode, and the test reset signals are ignored. ()  
TRST  
1
1
1
33  
§
Bold, italicized pin names indicate pin function after reset.  
GPIO – General-purpose input/output pin. All GPIOs come up as input after reset.  
Pin changes with respect to SPRS094B data sheet.  
LEGEND: – Internal pullup  
– Internal pulldown  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
pin functions (continued)  
†‡  
Table 2. ’LF240x and ’LC240x Pin List and Package Options (Continued)  
PIN NAME  
’LF2407  
’2406  
’LC2404  
’2402  
DESCRIPTION  
ADDRESS, DATA, AND MEMORY CONTROL SIGNALS  
Data space strobe. IS, DS, and PS are always high  
unless low-level asserted for access to the relevant  
external memory space or I/O. They are placed in the  
high-impedance state during reset, power down, and  
when EMU1/OFF is active low.  
DS  
IS  
87  
82  
84  
I/O space strobe. IS, DS, and PS are always high  
unless low-level asserted for access to the relevant  
external memory space or I/O. They are placed in the  
high-impedance state during reset, power down, and  
when EMU1/OFF is active low.  
Program space strobe. IS, DS, and PS are always  
high unless low-level asserted for access to the  
relevant external memory space or I/O. They are  
placed in the high-impedance state during reset,  
power down, and when EMU1/OFF is active low.  
PS  
Read/write qualifier signal. R/W indicates transfer  
direction during communication to an external device.  
It is normally in read mode (high), unless low level is  
asserted for performing a write operation. It is placed  
in the high-impedance state when EMU1/OFF is  
active low and during power down.  
R/W  
92  
Write/Read qualifier or GPIO. This is an inverted R/W  
signal useful for zero-wait-state memory interface. It  
is normally low, unless a memory write operation is  
performed. See Table 13, Port C section, for reset  
note regarding ’LF2406 and ’LF2402. ()  
W/R  
19  
19  
W/R / IOPC0  
IOPC0  
14  
14  
Read enable strobe. Read-select indicates an active,  
external read cycle. RD is active on all external  
program, data, and I/O reads. RD goes into the  
high-impedance state when EMU1/OFF is active low.  
RD  
93  
89  
Write enable strobe. The falling edge of WE indicates  
that the device is driving the external data bus  
(D15D0). WE is active on all external program,  
data, and I/O writes. WE goes in the high-impedance  
state when EMU1/OFF is active low.  
WE  
External memory access strobe. STRB is always high  
unless asserted low to indicate an external bus cycle.  
STRB is active for all off-chip accesses. It is placed in  
the high-impedance state during power down, and  
when EMU1/OFF is active low.  
STRB  
96  
READY is pulled low to add wait states for external  
accesses. READY indicates that an external device is  
prepared for a bus transaction to be completed. If the  
device is not ready, it pulls the READY pin low. The  
processor waits one cycle and checks READY again.  
Note that the processor performs READY-detection if  
at least one software wait state is programmed. To  
meet the external READY timings, the wait-state  
generator control register (WSGR) should be  
READY  
120  
programmed for at least one wait state. ()  
Bold, italicized pin names indicate pin function after reset.  
GPIO – General-purpose input/output pin. All GPIOs come up as input after reset.  
LEGEND: – Internal pullup – Internal pulldown  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
pin functions (continued)  
†‡  
Table 2. ’LF240x and ’LC240x Pin List and Package Options (Continued)  
PIN NAME  
’LF2407  
ADDRESS, DATA, AND MEMORY CONTROL SIGNALS (CONTINUED)  
Microprocessor/Microcomputer mode select. If this pin is low  
’2406  
’LC2404  
’2402  
DESCRIPTION  
during reset, the device is put in microcomputer mode and  
program execution begins at 0000h of internal program memory  
(flash EEPROM). A high value during reset puts the device in  
microprocessor mode and program execution begins at 0000h of  
external program memory. This line sets the MP/MC bit (bit 2 in  
the SCSR2 register). ()  
MP/MC  
118  
Active high to enable external interface signals. If pulled low, the  
’2407 behaves like the ’2406/’2404—i.e., it has no external  
memory and generates an illegal address if any of the three  
external spaces are accessed (IS and DS asserted). This pin  
has an internal pulldown. ()  
ENA_144  
VIS_OE  
122  
97  
Visibility output enable (active when data bus is output). This pin  
is active (low) whenever the external databus is driving as an  
output during visibility mode. Can be used by external decode  
logic to prevent data bus contention while running in visibility  
mode.  
A0  
80  
78  
Bit 0 of the 16-bit address bus  
Bit 1 of the 16-bit address bus  
Bit 2 of the 16-bit address bus  
Bit 3 of the 16-bit address bus  
Bit 4 of the 16-bit address bus  
Bit 5 of the 16-bit address bus  
Bit 6 of the 16-bit address bus  
Bit 7 of the 16-bit address bus  
Bit 8 of the 16-bit address bus  
Bit 9 of the 16-bit address bus  
Bit 10 of the 16-bit address bus  
Bit 11 of the 16-bit address bus  
Bit 12 of the 16-bit address bus  
Bit 13 of the 16-bit address bus  
Bit 14 of the 16-bit address bus  
Bit 15 of the 16-bit address bus  
Bit 0 of 16-bit data bus ()  
Bit 1 of 16-bit data bus ()  
Bit 2 of 16-bit data bus ()  
Bit 3 of 16-bit data bus ()  
Bit 4 of 16-bit data bus ()  
Bit 5 of 16-bit data bus ()  
Bit 6 of 16-bit data bus ()  
Bit 7 of 16-bit data bus ()  
Bit 8 of 16-bit data bus ()  
A1  
A2  
74  
A3  
71  
A4  
68  
A5  
64  
A6  
61  
A7  
57  
A8  
53  
A9  
51  
A10  
A11  
A12  
A13  
A14  
A15  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
48  
45  
43  
39  
34  
31  
127  
130  
132  
134  
136  
138  
143  
5
9
Bold, italicized pin names indicate pin function after reset.  
GPIO – General-purpose input/output pin. All GPIOs come up as input after reset.  
LEGEND: – Internal pullup – Internal pulldown  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
pin functions (continued)  
†‡  
Table 2. ’LF240x and ’LC240x Pin List and Package Options (Continued)  
PIN NAME  
’LF2407  
’2406  
’LC2404  
’2402  
DESCRIPTION  
ADDRESS, DATA, AND MEMORY CONTROL SIGNALS (CONTINUED)  
D9  
13  
Bit 9 of 16-bit data bus ()  
Bit 10 of 16-bit data bus ()  
Bit 11 of 16-bit data bus ()  
Bit 12 of 16-bit data bus ()  
Bit 13 of 16-bit data bus ()  
Bit 14 of 16-bit data bus ()  
Bit 15 of 16-bit data bus ()  
D10  
D11  
D12  
D13  
D14  
D15  
15  
17  
20  
22  
24  
27  
POWER SUPPLY  
29  
50  
86  
129  
4
20  
35  
59  
91  
4
20  
35  
59  
91  
4
6
27  
V
V
V
Core supply +3.3 V. Digital logic supply voltage.  
I/O buffer supply +3.3 V. Digital logic and buffer supply voltage.  
Core ground. Digital logic ground reference.  
DD  
§
56  
10  
35  
42  
67  
77  
95  
141  
28  
49  
85  
128  
3
30  
47  
54  
64  
98  
19  
34  
58  
90  
3
30  
47  
54  
64  
98  
19  
34  
58  
90  
3
§
52  
DDO  
5
26  
SS  
§
55  
9
41  
66  
76  
94  
125  
140  
29  
46  
53  
63  
97  
29  
46  
53  
63  
97  
34  
§
51  
V
SSO  
I/O buffer ground. Digital logic and buffer ground reference.  
§
Bold, italicized pin names indicate pin function after reset.  
GPIO – General-purpose input/output pin. All GPIOs come up as input after reset.  
Pin changes with respect to SPRS094B data sheet.  
LEGEND: – Internal pullup  
– Internal pulldown  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
memory maps – ’LF2407  
Hex  
0000  
Data  
Hex  
0000  
I/O  
Hex  
Program  
0000  
Memory-Mapped  
Registers/Reserved Addresses  
Interrupt Vectors  
003F  
0040  
0FFF  
005F  
0060  
FLASH SECTOR 0 (4K)  
On-Chip DARAM B2  
Reserved  
1000  
007F  
0080  
01FF  
0200  
FLASH SECTOR 1 (12K)  
On-Chip DARAM (B0) (CNF = 0)  
Reserved (CNF = 1)  
02FF  
0300  
§
On-Chip DARAM (B1)  
03FF  
0400  
3FFF  
4000  
Reserved  
07FF  
0800  
External  
SARAM (2K) (DON = 1)  
Internal  
FLASH SECTOR 2 (12K)  
FLASH SECTOR 3 (4K)  
External (DON=0)  
0FFF  
1000  
Reserved  
6FFF  
7000  
6FFF  
7000  
Peripheral Memory-Mapped  
Registers (System, WD, ADC,  
SCI, SPI, CAN, I/O, Interrupts)  
7FFF  
8000  
7FFF  
8000  
SARAM (2K) (PON = 1)  
Internal  
External (PON=0)  
87FF  
8800  
FEFF  
FF00  
Reserved  
External  
FF0E  
FF0F  
External  
Flash Control Mode Register  
(Only for Flash Devices)  
FDFF  
FE00  
FF10  
FFFE  
Reserved (CNF = 1)  
Reserved  
External (CNF = 0)  
FEFF  
FF00  
Wait-State Generator Control  
Register (On-Chip)  
On-Chip DARAM (B0) (CNF = 1)  
External (CNF = 0)  
FFFF  
FFFF  
FFFF  
On-Chip Flash Memory (Sectored) – if MP/MC = 0  
External Program Memory – if MP/MC = 1  
SARAM (See Table 1 for details.)  
NOTE A: Boot ROM: If the boot ROM is enabled, then address 0000–00FF in the program space will be occupied by boot ROM.  
When CNF = 1, addresses FE00h–FEFFh and FF00h–FFFFh are mapped to the same physical block (B0) in program-memory space. For  
example, a write to FE00h has the same effect as a write to FF00h. For simplicity, addresses FE00h–FEFFh are referred to as reserved when  
CNF = 1.  
§
When CNF = 0, addresses 0100h–01FFh and 0200h–02FFh are mapped to the same physical block (B0) in data-memory space. For example,  
a write to 0100h has the same effect as a write to 0200h. For simplicity, addresses 0100h–01FFh are referred to as reserved.  
Addresses 0300h–03FFh and 0400h–04FFh are mapped to the same physical block (B1) in data-memory space. For example, a write to 0400h  
has the same effect as a write to 0300h. For simplicity, addresses 0400h–04FFh are referred to as reserved.  
Figure 1. TMS320LF2407 Memory Map  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
memory maps (continued) – ’LF2406  
Hex  
0000  
Data  
Hex  
0000  
I/O  
Hex  
Program  
0000  
Memory-Mapped  
Registers/Reserved Addresses  
Interrupt Vectors  
FLASH SECTOR 0 (4K)  
003F  
0040  
005F  
0060  
0FFF  
1000  
On-Chip DARAM B2  
Reserved  
007F  
0080  
01FF  
0200  
FLASH SECTOR 1 (12K)  
On-Chip DARAM (B0) (CNF = 0)  
Reserved (CNF = 1)  
02FF  
0300  
§
On-Chip DARAM (B1)  
03FF  
0400  
3FFF  
4000  
Reserved  
07FF  
0800  
Reserved  
SARAM (2K) (DON = 1)  
Internal  
FLASH SECTOR 2 (12K)  
FLASH SECTOR 3 (4K)  
Reserved (DON = 0)  
0FFF  
1000  
Reserved  
6FFF  
7000  
6FFF  
7000  
Peripheral Memory-Mapped  
Registers (System, WD, ADC,  
SCI, SPI, CAN, I/O, Interrupts)  
7FFF  
8000  
7FFF  
8000  
SARAM (2K) (PON = 1)  
Internal  
External (PON=0)  
87FF  
8800  
FEFF  
FF00  
Reserved  
Reserved  
Reserved  
FF0E  
FF0F  
Flash Control Mode Register  
(Only for Flash devices)  
FDFF  
FE00  
FF10  
FFFE  
Reserved (CNF = 1)  
Reserved  
Reserved  
External (CNF = 0)  
FEFF  
FF00  
On-Chip DARAM (B0) (CNF = 1)  
External (CNF = 0)  
FFFF  
FFFF  
FFFF  
SARAM (See Table 1 for details.)  
On-Chip Flash Memory (Sectored)  
NOTE A: Boot ROM: If the boot ROM is enabled, then address 0000–00FF in the program space will be occupied by boot ROM.  
When CNF = 1, addresses FE00h–FEFFh and FF00h–FFFFh are mapped to the same physical block (B0) in program-memory space. For  
example, a write to FE00h has the same effect as a write to FF00h. For simplicity, addresses FE00h–FEFFh are referred to as reserved when  
CNF = 1.  
§
When CNF = 0, addresses 0100h–01FFh and 0200h–02FFh are mapped to the same physical block (B0) in data-memory space. For example,  
a write to 0100h has the same effect as a write to 0200h. For simplicity, addresses 0100h–01FFh are referred to as reserved.  
Addresses 0300h–03FFh and 0400h–04FFh are mapped to the same physical block (B1) in data-memory space. For example, a write to 0400h  
has the same effect as a write to 0300h. For simplicity, addresses 0400h–04FFh are referred to as reserved.  
Figure 2. TMS320LF2406 Memory Map  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
memory maps (continued) – ’LF2402  
Hex  
Data  
Hex  
I/O  
Hex  
Program  
0000  
0000  
0000  
Memory-Mapped  
Registers/Reserved Addresses  
Interrupt Vectors  
FLASH SECTOR 0 (4K)  
003F  
0040  
0FFF  
005F  
0060  
1000  
On-Chip DARAM B2  
Reserved  
007F  
0080  
FLASH SECTOR 1 (4K)  
1FFF  
2000  
01FF  
0200  
On-Chip DARAM (B0) (CNF = 0)  
Reserved (CNF = 1)  
02FF  
0300  
§
On-Chip DARAM (B1)  
Reserved  
03FF  
0400  
Reserved  
07FF  
0800  
Reserved  
Reserved  
0FFF  
1000  
7FFF  
8000  
Reserved  
6FFF  
7000  
Peripheral Memory-Mapped  
Registers (System, WD, ADC,  
SCI, I/O, Interrupts)  
Reserved  
87FF  
8800  
7FFF  
8000  
Reserved  
FEFF  
FF00  
Reserved  
Reserved  
FF0E  
FF0F  
Flash Control Mode Register  
(Only for Flash devices)  
FDFF  
FE00  
FF10  
FFFE  
Reserved (CNF = 1)  
Reserved  
Reserved  
External (CNF = 0)  
FEFF  
FF00  
On-Chip DARAM (B0) (CNF = 1)  
External (CNF = 0)  
FFFF  
FFFF  
FFFF  
On-Chip Flash Memory (Sectored)  
NOTE A: Boot ROM: If the boot ROM is enabled, then address 0000–00FF in the program space will be occupied by boot ROM.  
When CNF = 1, addresses FE00h–FEFFh and FF00h–FFFFh are mapped to the same physical block (B0) in program-memory space. For  
example, a write to FE00h has the same effect as a write to FF00h. For simplicity, addresses FE00h–FEFFh are referred to as reserved when  
CNF = 1.  
§
When CNF = 0, addresses 0100h–01FFh and 0200h–02FFh are mapped to the same physical block (B0) in data-memory space. For example,  
a write to 0100h has the same effect as a write to 0200h. For simplicity, addresses 0100h–01FFh are referred to as reserved.  
Addresses 0300h–03FFh and 0400h–04FFh are mapped to the same physical block (B1) in data-memory space. For example, a write to 0400h  
has the same effect as a write to 0300h. For simplicity, addresses 0400h–04FFh are referred to as reserved.  
Figure 3. TMS320LF2402 Memory Map  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
memory maps (continued) – ’LC2406  
Hex  
Data  
Hex  
I/O  
Hex  
Program  
0000  
0000  
0000  
Memory-Mapped  
Registers/Reserved Addresses  
Interrupt Vectors  
003F  
0040  
005F  
0060  
On-Chip DARAM B2  
Reserved  
007F  
0080  
01FF  
0200  
On-Chip DARAM (B0) (CNF = 0)  
Reserved (CNF = 1)  
02FF  
0300  
§
On-Chip DARAM (B1)  
On-Chip ROM  
32K  
03FF  
0400  
Reserved  
07FF  
0800  
Reserved  
SARAM (2K) (DON = 1)  
Internal  
Reserved (DON = 0)  
0FFF  
1000  
Reserved  
7FFF  
8000  
6FFF  
7000  
SARAM (2K) (PON = 1)  
Internal  
Reserved (PON = 0)  
Peripheral Memory-Mapped  
Registers (System, WD, ADC,  
SCI, SPI, CAN, I/O, Interrupts)  
87FF  
8800  
7FFF  
8000  
FEFF  
FF00  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
FF0E  
FF0F  
FDFF  
FE00  
FF10  
FFFE  
Reserved (CNF = 1)  
External (CNF = 0)  
FEFF  
FF00  
On-Chip DARAM (B0) (CNF = 1)  
Reserved  
Reserved (CNF = 0)  
FFFF  
FFFF  
FFFF  
On-Chip ROM memory  
SARAM (See Table 1 for details.)  
Reserved in the ’LC240x devices  
When CNF = 1, addresses FE00h–FEFFh and FF00h–FFFFh are mapped to the same physical block (B0) in program-memory space. For  
example, a write to FE00h has the same effect as a write to FF00h. For simplicity, addresses FE00h–FEFFh are referred to as reserved when  
CNF = 1.  
§
When CNF = 0, addresses 0100h–01FFh and 0200h–02FFh are mapped to the same physical block (B0) in data-memory space. For example,  
a write to 0100h has the same effect as a write to 0200h. For simplicity, addresses 0100h–01FFh are referred to as reserved.  
Addresses 0300h–03FFh and 0400h–04FFh are mapped to the same physical block (B1) in data-memory space. For example, a write to 0400h  
has the same effect as a write to 0300h. For simplicity, addresses 0400h–04FFh are referred to as reserved.  
Figure 4. TMS320LC2406 Memory Map  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
memory maps (continued) – ’LC2404  
Hex  
Data  
Hex  
I/O  
Hex  
Program  
0000  
0000  
0000  
Memory-Mapped  
Registers/Reserved Addresses  
Interrupt Vectors  
003F  
0040  
005F  
0060  
On-Chip DARAM B2  
Reserved  
007F  
0080  
On-Chip ROM  
16K  
01FF  
0200  
On-Chip DARAM (B0) (CNF = 0)  
3FFF  
4000  
Reserved (CNF = 1)  
02FF  
0300  
§
On-Chip DARAM (B1)  
03FF  
0400  
Reserved  
Reserved  
7FFF  
8000  
07FF  
0800  
Reserved  
SARAM (1K) (DON = 1)  
Internal  
SARAM (1K) (PON = 1)  
Internal  
Reserved (DON = 0)  
Reserved (PON = 0)  
0BFF  
0C00  
83FF  
8400  
Reserved  
6FFF  
7000  
Peripheral Memory-Mapped  
Registers (System, WD, ADC,  
SCI, SPI, I/O, Interrupts)  
7FFF  
8000  
Reserved  
FEFF  
FF00  
Reserved  
Reserved  
Reserved  
Reserved  
FF0E  
FF0F  
FDFF  
FE00  
FF10  
FFFE  
Reserved (CNF = 1)  
External (CNF = 0)  
FEFF  
FF00  
On-Chip DARAM (B0) (CNF = 1)  
Reserved  
Reserved (CNF = 0)  
FFFF  
FFFF  
FFFF  
On-Chip ROM memory  
SARAM (See Table 1 for details.)  
Reserved in the ’LC240x devices  
When CNF = 1, addresses FE00h–FEFFh and FF00h–FFFFh are mapped to the same physical block (B0) in program-memory space. For  
example, a write to FE00h has the same effect as a write to FF00h. For simplicity, addresses FE00h–FEFFh are referred to as reserved when  
CNF = 1.  
§
When CNF = 0, addresses 0100h–01FFh and 0200h–02FFh are mapped to the same physical block (B0) in data-memory space. For example,  
a write to 0100h has the same effect as a write to 0200h. For simplicity, addresses 0100h–01FFh are referred to as reserved.  
Addresses 0300h–03FFh and 0400h–04FFh are mapped to the same physical block (B1) in data-memory space. For example, a write to 0400h  
has the same effect as a write to 0300h. For simplicity, addresses 0400h–04FFh are referred to as reserved.  
Figure 5. TMS320LC2404 Memory Map  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
memory maps (continued) – ’LC2402  
Hex  
0000  
Data  
Hex  
0000  
I/O  
Hex  
Program  
0000  
Memory-Mapped  
Registers/Reserved Addresses  
Interrupt Vectors  
003F  
0040  
0FFF  
005F  
0060  
On-Chip ROM (4K)  
Reserved  
On-Chip DARAM B2  
Reserved  
007F  
0080  
01FF  
0200  
On-Chip DARAM (B0) (CNF = 0)  
7FFF  
8000  
Reserved (CNF = 1)  
02FF  
0300  
Reserved  
§
87FF  
8800  
On-Chip DARAM (B1)  
03FF  
0400  
Reserved  
07FF  
0800  
Reserved  
Reserved  
Reserved  
0FFF  
1000  
6FFF  
7000  
Peripheral Memory-Mapped  
Registers (System, WD, ADC,  
SCI, I/O, Interrupts)  
7FFF  
8000  
Reserved  
FEFF  
FF00  
Reserved  
Reserved  
Reserved  
Reserved  
FF0E  
FF0F  
FDFF  
FE00  
FF10  
FFFE  
Reserved (CNF = 1)  
External (CNF = 0)  
FEFF  
FF00  
On-Chip DARAM (B0) (CNF = 1)  
Reserved  
Reserved (CNF = 0)  
FFFF  
FFFF  
FFFF  
On-Chip ROM memory  
Reserved in the ’LC240x devices  
When CNF = 1, addresses FE00h–FEFFh and FF00h–FFFFh are mapped to the same physical block (B0) in program-memory space. For  
example, a write to FE00h has the same effect as a write to FF00h. For simplicity, addresses FE00h–FEFFh are referred to as reserved when  
CNF = 1.  
§
When CNF = 0, addresses 0100h–01FFh and 0200h–02FFh are mapped to the same physical block (B0) in data-memory space. For example,  
a write to 0100h has the same effect as a write to 0200h. For simplicity, addresses 0100h–01FFh are referred to as reserved.  
Addresses 0300h–03FFh and 0400h–04FFh are mapped to the same physical block (B1) in data-memory space. For example, a write to 0400h  
has the same effect as a write to 0300h. For simplicity, addresses 0400h–04FFh are referred to as reserved.  
Figure 6. TMS320LC2402 Memory Map  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
peripheral memory map of the ’LF240x/’LC240x  
Hex  
0000  
0003  
Reserved  
Interrupt-Mask Register  
0004  
0005  
Global-Memory Allocation  
Register (Reserved)  
Interrupt Flag Register  
0006  
0007  
Emulation Registers  
and Reserved  
005F  
Hex  
0000  
Illegal  
7000–700F  
7010–701F  
Memory-Mapped Registers  
System Configuration and  
Control Registers  
and Reserved  
005F  
0060  
On-Chip DARAM B2  
Watchdog Timer Registers  
7020–702F  
007F  
0080  
Illegal  
7030–703F  
7040–704F  
7050–705F  
7060–706F  
7070–707F  
7080–708F  
7090–709F  
70A0–70BF  
70C0–70FF  
7100–722F  
7230–73FF  
Reserved  
SPI  
SCI  
Illegal  
01FF  
0200  
On-Chip DARAM B0  
External-Interrupt Registers  
Illegal  
02FF  
0300  
On-Chip DARAM B1  
03FF  
0400  
Digital I/O Control Registers  
ADC Control Registers  
Illegal  
Reserved  
07FF  
0800  
CAN Control Registers  
Illegal  
Illegal  
6FFF  
7000  
Peripheral Frame 1 (PF1)  
73FF  
7400  
Event Manager – EVA  
Peripheral Frame 2 (PF2)  
General-Purpose  
Timer Registers  
Compare, PWM, and  
Deadband Registers  
7400–7408  
743F  
7440  
Illegal  
7411–7419  
7420–7429  
74FF  
7500  
Peripheral Frame 3 (PF3)  
Capture and QEP Registers  
753F  
7540  
Interrupt Mask, Vector and  
Flag Registers  
Illegal  
742C–7431  
7432–743F  
7FFF  
8000  
Reserved  
External  
Event Manager – EVB  
General-Purpose  
Timer Registers  
Compare, PWM, and  
Deadband Registers  
7500–7508  
FFFF  
7511–7519  
7520–7529  
“Illegal” indicates that access to  
these addresses causes a  
Capture and QEP Registers  
Illegal  
nonmaskable interrupt (NMI).  
Interrupt Mask, Vector, and  
Flag Registers  
752C–7531  
7532–753F  
“Reserved” indicates addresses that  
are reserved for test and future expansion.  
Reserved  
Reserved  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
device reset and interrupts  
The TMS320x240x software-programmable interrupt structure supports flexible on-chip and external interrupt  
configurations to meet real-time interrupt-driven application requirements. The ’LF240x recognizes three types  
of interrupt sources.  
D
Reset (hardware- or software-initiated) is unarbitrated by the CPU and takes immediate priority over any  
other executing functions. All maskable interrupts are disabled until the reset service routine enables them.  
The ’LF240x devices have two sources of reset: an external reset pin and a watchdog timer timeout (reset).  
D
Hardware-generated interrupts are requested by external pins or by on-chip peripherals. There are two  
types:  
External interrupts are generated by one of four external pins corresponding to the interrupts XINT1,  
XINT2, PDPINTA, and PDPINTB. These four can be masked both by dedicated enable bits and by the  
CPU’s interrupt mask register (IMR), which can mask each maskable interrupt line at the DSP core.  
Peripheral interrupts are initiated internally by these on-chip peripheral modules: event manager A,  
event manager B, SPI, SCI, WD, CAN, and ADC. They can be masked both by enable bits for each  
event in each peripheral and by the CPU’s IMR, which can mask each maskable interrupt line at the DSP  
core.  
D
Software-generated interrupts for the ’LF240x devices include:  
The INTR instruction. This instruction allows initialization of any ’LF240x interrupt with software. Its  
operand indicates the interrupt vector location to which the CPU branches. This instruction globally  
disables maskable interrupts (sets the INTM bit to 1).  
The NMI instruction. This instruction forces a branch to interrupt vector location 24h. This instruction  
globally disables maskable interrupts. ’240x devices do not have the NMI hardware signal, only  
software activation is provided.  
The TRAP instruction. This instruction forces the CPU to branch to interrupt vector location 22h. The  
TRAP instruction does not disable maskable interrupts (INTM is not set to 1); therefore, when the CPU  
branches to the interrupt service routine, that routine can be interrupted by the maskable hardware  
interrupts.  
An emulator trap. This interrupt can be generated with either an INTR instruction or a TRAP instruction.  
Six core interrupts (INT1–INT6) are expanded using a peripheral interrupt expansion (PIE) module identical to  
the ’F24x devices. The PIE manages all the peripheral interrupts from the ’240x peripherals and are grouped to  
share the six-core level interrupts. Figure 7 shows the PIE block diagram for hardware-generated interrupts.  
The PIE diagram (Figure 7) and the interrupt table (Table 3) explain the grouping and interrupt vector maps.  
’LF240x devices have interrupts identical to the ’F24x devices and should be completely code-compatible.  
’240x devices also have peripheral interrupts identical to the ’F24x – plus additional interrupts for new  
peripherals such as event manager B. Though the new interrupts share the ’24x interrupt grouping, they all have  
a unique vector to differentiate among the interrupts. See Table 3 for details.  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
PDPINTA  
PIE  
IMR  
IFR  
PDPINTB  
XINT2  
ADCINT  
XINT1  
Level 1  
IRQ GEN  
SPIINT  
RXINT  
TXINT  
CANMBINT  
CANERINT  
INT1  
INT2  
CMP1INT  
CMP2INT  
CMP3INT  
CMP4INT  
CMP5INT  
CMP6INT  
T1PINT  
Level 2  
IRQ GEN  
T1CINT  
T1UFINT  
T1OFINT  
T3PINT  
CPU  
T3CINT  
T3UFINT  
T3OFINT  
T2PINT  
T2CINT  
INT3  
T2UFINT  
T2OFINT  
T4PINT  
Level 3  
IRQ GEN  
T4CINT  
T4UFINT  
T4OFINT  
CAP1INT  
CAP2INT  
INT4  
Level 4  
IRQ GEN  
CAP3INT  
CAP4INT  
CAP5INT  
CAP6INT  
SPIINT  
RXINT  
TXINT  
INT5  
Level 5  
IRQ GEN  
CANMBINT  
CANERINT  
INT6  
ADCINT  
XINT1  
Level 6  
IRQ GEN  
XINT2  
IACK  
PIVR & Logic  
PIRQR#  
PIACK#  
Data Addr  
Bus Bus  
Indicates change with respect to the TMS320F243/F241/C242 data sheets.  
Interrupts from external interrupt pins. The remaining interrupts are internal to the peripherals.  
Figure 7. Peripheral Interrupt Expansion (PIE) Module Block Diagram for Hardware-Generated Interrupts  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
interrupt request structure  
Table 3. ’LF240x/’LC240x Interrupt Source Priority and Vectors  
CPU  
INTERRUPT  
AND  
VECTOR  
ADDRESS  
BIT  
PERIPHERAL  
INTERRUPT  
VECTOR  
SOURCE  
PERIPHERAL  
MODULE  
INTERRUPT OVERALL  
MASK-  
ABLE?  
POSITION IN  
PIRQRx AND  
PIACKRx  
DESCRIPTION  
NAME  
PRIORITY  
(PIV)  
RSN  
0000h  
RS pin,  
Watchdog  
Reset from pin, watchdog  
timeout  
Reset  
1
2
3
N/A  
N/A  
N/A  
N
N
N
Reserved  
NMI  
CPU  
Emulator trap  
0026h  
NMI  
0024h  
Nonmaskable Nonmaskable interrupt,  
Interrupt  
software interrupt only  
PDPINTA  
PDPINTB  
4
5
0.0  
2.0  
0020h  
0019h  
Y
Y
EVA  
Power device protection  
interrupt pins  
EVB  
ADC interrupt in  
high-priority mode  
ADCINT  
XINT1  
6
7
0.1  
0.2  
0004h  
0001h  
Y
Y
ADC  
External  
External interrupt pins in high  
Interrupt Logic priority  
External  
Interrupt Logic priority  
External interrupt pins in high  
XINT2  
SPIINT  
RXINT  
8
9
0.3  
0.4  
0.5  
0011h  
0005h  
0006h  
Y
Y
Y
INT1  
0002h  
SPI  
SCI  
SPI interrupt pins in high priority  
SCI receiver interrupt in  
high-priority mode  
10  
SCI transmitter interrupt in  
high-priority mode  
TXINT  
11  
12  
13  
0.6  
0.7  
0.8  
0007h  
0040  
0041  
Y
Y
Y
SCI  
CAN  
CAN  
CAN mailbox in high-priority  
mode  
CANMBINT  
CANERINT  
CAN error interrupt in  
high-priority mode  
CMP1INT  
CMP2INT  
CMP3INT  
T1PINT  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
0.9  
0.10  
0.11  
0.12  
0.13  
0.14  
0.15  
2.1  
0021h  
0022h  
0023h  
0027h  
0028h  
0029h  
002Ah  
0024h  
0025h  
0026h  
002Fh  
0030h  
0031h  
0032h  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
EVA  
EVA  
EVA  
EVA  
EVA  
EVA  
EVA  
EVB  
EVB  
EVB  
EVB  
EVB  
EVB  
EVB  
Compare 1 interrupt  
Compare 2 interrupt  
Compare 3 interrupt  
Timer 1 period interrupt  
Timer 1 compare interrupt  
Timer 1 underflow interrupt  
Timer 1 overflow interrupt  
Compare 4 interrupt  
INT2  
0004h  
T1CINT  
T1UFINT  
T1OFINT  
CMP4INT  
CMP5INT  
CMP6INT  
T3PINT  
2.2  
Compare 4 interrupt  
2.3  
Compare 4 interrupt  
2.4  
Timer 3 period interrupt  
Timer 3 compare interrupt  
Timer 3 underflow interrupt  
Timer 3 overflow interrupt  
T3CINT  
2.5  
T3UFINT  
T3OFINT  
2.6  
2.7  
Refer to the TMS320C240 DSP Controllers CPU, System, and Instruction Set Reference Guide (literature number SPRU160) and the  
TMS320F243/’F241/’C242 DSP Controllers System and Peripherals User’s Guide (literature number SPRU276) for more information.  
New peripheral interrupts and vectors with respect to the ’F243/’F241 devices.  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
interrupt request structure (continued)  
Table 3.’LF240x/’LC240x Interrupt Source Priority and Vectors (Continued)  
CPU  
INTERRUPT  
AND  
VECTOR  
ADDRESS  
BIT  
PERIPHERAL  
SOURCE  
INTERRUPT OVERALL  
MASK-  
ABLE?  
POSITION IN  
PIRQRx AND  
PIACKRx  
INTERRUPT  
VECTOR  
(PIV)  
PERIPHERAL  
MODULE  
DESCRIPTION  
NAME  
PRIORITY  
T2PINT  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
1.0  
1.1  
002Bh  
002Ch  
002Dh  
002Eh  
0039h  
003Ah  
003Bh  
003Ch  
0033h  
0034h  
0035h  
0036h  
0037h  
0038h  
0005h  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
EVA  
EVA  
EVA  
EVA  
EVB  
EVB  
EVB  
EVB  
EVA  
EVA  
EVA  
EVB  
EVB  
EVB  
SPI  
Timer 2 period interrupt  
Timer 2 compare interrupt  
Timer 2 underflow interrupt  
Timer 2 overflow interrupt  
Timer 4 period interrupt  
Timer 4 compare interrupt  
Timer 4 underflow interrupt  
Timer 4 overflow interrupt  
Capture 1 interrupt  
T2CINT  
T2UFINT  
T2OFINT  
T4PINT  
1.2  
1.3  
INT3  
0006h  
2.8  
T4CINT  
2.9  
T4UFINT  
T4OFINT  
CAP1INT  
CAP2INT  
CAP3INT  
CAP4INT  
CAP5INT  
CAP6INT  
SPIINT  
2.10  
2.11  
1.4  
1.5  
Capture 2 interrupt  
1.6  
Capture 3 interrupt  
INT4  
0008h  
2.12  
2.13  
2.14  
1.7  
Capture 4 interrupt  
Capture 5 interrupt  
Capture 6 interrupt  
SPI interrupt (low priority)  
SCI receiver interrupt  
(low-priority mode)  
RXINT  
43  
44  
45  
46  
47  
48  
49  
1.8  
1.9  
0006h  
0007h  
0040h  
0041h  
0004h  
0001h  
0011h  
Y
Y
Y
Y
Y
Y
Y
SCI  
SCI  
SCI transmitter interrupt  
(low-priority mode)  
TXINT  
INT5  
000Ah  
CAN mailbox interrupt  
(low-priority mode)  
CANMBINT  
CANERINT  
ADCINT  
XINT1  
1.10  
1.11  
1.12  
1.13  
1.14  
CAN  
CAN  
CAN error interrupt  
(low-priority mode)  
ADC interrupt  
(low priority)  
ADC  
External  
External interrupt pins  
INT6  
000Ch  
Interrupt Logic (low-priority mode)  
External External interrupt pins  
Interrupt Logic (low-priority mode)  
XINT2  
Reserved  
TRAP  
000Eh  
0022h  
N/A  
N/A  
Y
CPU  
CPU  
Analysis interrupt  
TRAP instruction  
N/A  
N/A  
N/A  
Phantom  
Interrupt  
Vector  
N/A  
0000h  
N/A  
CPU  
Phantom interrupt vector  
INT8–INT16  
N/A  
N/A  
0010h–0020h  
N/A  
N/A  
N/A  
N/A  
CPU  
CPU  
Software interrupt vectors  
INT20–INT31  
00028h–0603Fh  
Refer to the TMS320C240 DSP Controllers CPU, System, and Instruction Set Reference Guide (literature number SPRU160) and the  
TMS320F243/’F241/’C242 DSP Controllers System and Peripherals User’s Guide (literature number SPRU276) for more information.  
New peripheral interrupts and vectors with respect to the ’F243/’F241 devices.  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
DSP CPU Core  
The TMS320x240x devices use an advanced Harvard-type architecture that maximizes processing power by  
maintaining two separate memory bus structures — program and data — for full-speed execution. This multiple  
bus structure allows data and instructions to be read simultaneously. Instructions support data transfers  
between program memory and data memory. This architecture permits coefficients that are stored in program  
memory to be read in RAM, thereby eliminating the need for a separate coefficient ROM. This, coupled with a  
four-deep pipeline, allows the ’LF240x/’LC240x devices to execute most instructions in a single cycle. See the  
architectural block diagram of the ’24x DSP Core for more information.  
TMS320x240x instruction set  
The ’x240x microprocessor implements a comprehensive instruction set that supports both numeric-intensive  
signal-processing operations and general-purpose applications, such as multiprocessing and high-speed  
control. Source code for the ’C1x and ’C2x DSPs is upwardly compatible with the ’x243/’x241 and ’240x devices.  
For maximum throughput, the next instruction is prefetched while the current one is being executed. Because  
the same data lines are used to communicate to external data, program, or I/O space, the number of cycles an  
instruction requires to execute varies, depending upon whether the next data operand fetch is from internal or  
external memory. Highest throughput is achieved by maintaining data memory on chip and using either internal  
or fast external program memory.  
addressing modes  
The TMS320x240x instruction set provides four basic memory-addressing modes: direct, indirect, immediate,  
and register.  
In direct addressing, the instruction word contains the lower seven bits of the data memory address. This field  
is concatenated with the nine bits of the data memory page pointer (DP) to form the 16-bit data memory address.  
Therefore, in the direct-addressing mode, data memory is paged effectively with a total of 512 pages, with each  
page containing 128 words.  
Indirectaddressingaccessesdatamemorythroughtheauxiliaryregisters. Inthisaddressingmode, theaddress  
of the instruction operand is contained in the currently selected auxiliary register. Eight auxiliary registers  
(AR0AR7) provide flexible and powerful indirect addressing. To select a specific auxiliary register, the auxiliary  
register pointer (ARP) is loaded with a value from 0 to 7 for AR0 through AR7, respectively.  
scan-based emulation  
TMS320x2xx devices incorporate scan-based emulation logic for code-development and hardware-  
development support. Scan-based emulation allows the emulator to control the processor in the system without  
the use of intrusive cables to the full pinout of the device. The scan-based emulator communicates with the ’x2xx  
by way of the IEEE 1149.1-compatible (JTAG) interface. The ’x240x DSPs, like the TMS320F243/241,  
TMS320F206, TMS320C203, and TMS320LC203, do not include boundary scan. The scan chain of these  
devices is useful for emulation function only.  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
functional block diagram of the ’240x DSP CPU  
Program Bus  
IS  
DS  
PS  
MUX  
R/W  
STRB  
READY  
XF  
XTAL1  
CLKOUT  
XTAL2  
NPAR  
16  
PC  
PAR  
MSTACK  
MUX  
RD  
RS  
WE  
Stack 8 × 16  
MP/MC  
XINT[1–2]  
2
FLASH EEPROM/  
ROM  
Program Control  
(PCTRL)  
16  
16  
A15–A0  
16  
16  
16  
16  
D15–D0  
16  
16  
Data Bus  
16  
16  
16  
16  
16  
3
9
7
16  
16  
LSB  
from  
IR  
AR0(16)  
AR1(16)  
AR2(16)  
AR3(16)  
AR4(16)  
AR5(16)  
AR6(16)  
AR7(16)  
DP(9)  
16  
MUX  
MUX  
16  
ARP(3)  
3
3
9
TREG0(16)  
ARB(3)  
Multiplier  
3
ISCALE (0–16)  
PREG(32)  
32  
16  
PSCALE (–6,ā0,ā1,ā4)  
32  
32  
16  
MUX  
ARAU(16)  
MUX  
32  
CALU(32)  
32  
32  
16  
Memory Map  
Register  
MUX  
MUX  
IMR (16)  
IFR (16)  
Data/Prog  
DARAM  
Data  
C
ACCH(16)  
ACCL(16)  
32  
GREG (16)  
DARAM  
B0 (256 × 16)  
B2 (32 × 16)  
B1 (256 × 16)  
OSCALE (0–7)  
16  
MUX  
16  
16  
16  
NOTES: A. See Table 4 for symbol descriptions.  
B. For clarity, the data and program buses are shown as single buses although they include address and data bits.  
C. Refer to the TMS320F243, TMS320F241 DSP Controllers data sheet (literature number SPRS064), the TMS320C240,  
TMS320F240DSP Controllers data sheet (literature number SPRS042), and the TMS320C240 DSP Controllers CPU, System, and  
Instruction Set Reference Guide (literature number SPRU160) for CPU instruction set information.  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
’240x legend for the internal hardware  
Table 4. Legend for the ’240x DSP CPU Internal Hardware  
SYMBOL  
NAME  
DESCRIPTION  
32-bit register that stores the results and provides input for subsequent CALU operations. Also includes shift  
and rotate capabilities  
ACC  
Accumulator  
Auxiliary Register  
Arithmetic Unit  
An unsigned, 16-bit arithmetic unit used to calculate indirect addresses using the auxiliary registers as inputs  
and outputs  
ARAU  
These 16-bit registers are used as pointers to anywhere within the data space address range. They are  
operated upon by the ARAU and are selected by the auxiliary register pointer (ARP). AR0 can also be used  
as an index value for AR updates of more than one and as a compare value to AR.  
AUX  
REGS  
Auxiliary Registers  
0–7  
Register carry output from CALU. C is fed back into the CALU for extended arithmetic operation. The C bit  
resides in status register 1 (ST1), and can be tested in conditional instructions. C is also used in accumulator  
shifts and rotates.  
C
Carry  
32-bit-wide main arithmetic logic unit for the TMS320C2xx core. The CALU executes 32-bit operations in a  
single machine cycle. CALU operates on data coming from ISCALE or PSCALE with data from ACC, and  
provides status results to PCTRL.  
Central Arithmetic  
Logic Unit  
CALU  
If the on-chip RAM configuration control bit (CNF) is set to 0, the reconfigurable data dual-access RAM  
(DARAM) block B0 is mapped to data space; otherwise, B0 is mapped to program space. Blocks B1 and B2  
are mapped to data memory space only, at addresses 0300–03FF and 0060–007F, respectively. Blocks 0  
and 1 contain 256 words, while block 2 contains 32 words.  
DARAM  
Dual-Access RAM  
Data Memory  
Page Pointer  
The 9-bit DP register is concatenated with the seven least significant bits (LSBs) of an instruction word to  
form a direct memory address of 16 bits. DP can be modified by the LST and LDP instructions.  
DP  
Global Memory  
Allocation  
Register  
GREG specifies the size of the global data memory space. Since the global memory space is not used in  
the ’240x devices, this register is reserved.  
GREG  
IMR  
Interrupt Mask  
Register  
IMR individually masks or enables the seven interrupts.  
Interrupt Flag  
Register  
The 7-bit IFR indicates that the TMS320C2xx has latched an interrupt from one of the seven maskable  
interrupts.  
IFR  
INT#  
Interrupt Traps  
A total of 32 interrupts by way of hardware and/or software are available.  
Input Data-Scaling 16- to 32-bit barrel left-shifter. ISCALE shifts incoming 16-bit data 0 to16 positions left, relative to the 32-bit  
ISCALE  
Shifter  
output within the fetch cycle; therefore, no cycle overhead is required for input scaling operations.  
16 × 16-bit multiplier to a 32-bit product. MPY executes multiplication in a single cycle. MPY operates either  
signed or unsigned 2s-complement arithmetic multiply.  
MPY  
Multiplier  
MSTACK provides temporary storage for the address of the next instruction to be fetched when program  
address-generation logic is used to generate sequential addresses in data space.  
MSTACK  
MUX  
Micro Stack  
Multiplexer  
Multiplexes buses to a common input  
Next Program  
Address Register  
NPAR  
NPAR holds the program address to be driven out on the PAB in the next cycle.  
Output  
Data-Scaling  
Shifter  
16- to 32-bit barrel left-shifter. OSCALE shifts the 32-bit accumulator output 0 to 7 bits left for quantization  
management and outputs either the 16-bit high- or low-half of the shifted 32-bit data to the data-write data  
bus (DWEB).  
OSCALE  
Program Address  
Register  
PAR holds the address currently being driven on PAB for as many cycles as it takes to complete all memory  
operations scheduled for the current bus cycle.  
PAR  
PC increments the value from NPAR to provide sequential addresses for instruction-fetching and sequential  
data-transfer operations.  
PC  
Program Counter  
Program  
Controller  
PCTRL  
PCTRL decodes instruction, manages the pipeline, stores status, and decodes conditional operations.  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
’240x legend for the internal hardware (continued)  
Table 4. Legend for the ’240x DSP CPU Internal Hardware (Continued)  
SYMBOL  
NAME  
DESCRIPTION  
32-bit register holds results of 16 × 16 multiply  
PREG  
Product Register  
0-, 1-, or 4-bit left shift, or 6-bit right shift of multiplier product. The left-shift options are used to manage the  
additional sign bits resulting from the 2s-complement multiply. The right-shift option is used to scale down  
the number to manage overflow of product accumulation in the CALU. PSCALE resides in the path from the  
32-bit product shifter and from either the CALU or the data-write data bus (DWEB), and requires no cycle  
overhead.  
Product-Scaling  
Shifter  
PSCALE  
STACK is a block of memory used for storing return addresses for subroutines and interrupt-service  
routines, or for storing data. The ’C2xx stack is 16-bit wide and eight-level deep.  
STACK  
TREG  
Stack  
Temporary  
Register  
16-bit register holds one of the operands for the multiply operations. TREG holds the dynamic shift count  
for the LACT, ADDT, and SUBT instructions. TREG holds the dynamic bit position for the BITT instruction.  
status and control registers  
Two status registers, ST0 and ST1, contain the status of various conditions and modes. These registers can  
be stored into data memory and loaded from data memory, thus allowing the status of the machine to be saved  
and restored for subroutines.  
The load status register (LST) instruction is used to write to ST0 and ST1. The store status register (SST)  
instruction is used to read from ST0 and ST1 — except for the INTM bit, which is not affected by the LST  
instruction. The individual bits of these registers can be set or cleared when using the SETC and CLRC  
instructions. Figure8showstheorganizationofstatusregistersST0andST1, indicatingallstatusbitscontained  
in each. Several bits in the status registers are reserved and are read as logic 1s. Table 5 lists status register  
field definitions.  
15  
13  
12  
11  
10  
1
9
8
0
ST0  
ST1  
ARP  
ARB  
OV  
OVM  
INTM  
DP  
15  
13  
12  
11  
10  
9
8
1
7
1
6
1
5
1
4
3
1
2
1
1
0
CNF  
TC  
SXM  
C
XF  
PM  
Figure 8. Organization of Status Registers ST0 and ST1  
Table 5. Status Register Field Definitions  
FIELD  
FUNCTION  
Auxiliary register pointer buffer. When the ARP is loaded into ST0, the old ARP value is copied to the ARB except during an LST  
instruction. When the ARB is loaded by way of an LST #1 instruction, the same value is also copied to the ARP.  
ARB  
Auxiliary register (AR) pointer. ARP selects the AR to be used in indirect addressing. When the ARP is loaded, the old ARP value  
is copied to the ARB register. ARP can be modified by memory-reference instructions when using indirect addressing, and by the  
LARP, MAR, and LST instructions. The ARP is also loaded with the same value as ARB when an LST #1 instruction is executed.  
ARP  
Carry bit. C is set to 1 if the result of an addition generates a carry, or reset to 0 if the result of a subtraction generates a borrow.  
Otherwise, C is reset after an addition or set after a subtraction, except if the instruction is ADD or SUB with a 16-bit shift. In these  
cases, ADD can only set and SUB can only reset the carry bit, but cannot affect it otherwise. The single-bit shift and rotate  
instructions also affect C, as well as the SETC, CLRC, and LST #1 instructions. Branch instructions have been provided to branch  
on the status of C. C is set to 1 on a reset.  
C
On-chip RAM configuration control bit. If CNF is set to 0, the reconfigurable data dual-access RAM blocks are mapped to data  
space; otherwise, they are mapped to program space. The CNF can be modified by the SETC CNF, CLRC CNF, and LST #1  
instructions. RS sets the CNF to 0.  
CNF  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
status and control registers (continued)  
Table 5. Status Register Field Definitions (Continued)  
FIELD  
DP  
FUNCTION  
Data memory page pointer. The 9-bit DP register is concatenated with the seven LSBs of an instruction word to form a direct  
memory address of 16 bits. DP can be modified by the LST and LDP instructions.  
Interruptmode bit. When INTM is set to 0, all unmasked interrupts are enabled. When set to 1, all maskable interrupts are disabled.  
INTM is set and reset by the SETC INTM and CLRC INTM instructions. RS also sets INTM. INTM has no effect on the unmaskable  
RS and NMI interrupts. Note that INTM is unaffected by the LST instruction. This bit is set to 1 by reset. It is also set to 1 when  
a maskable interrupt trap is taken.  
INTM  
Overflow flag bit. As a latched overflow signal, OV is set to 1 when overflow occurs in the arithmetic logic unit (ALU). Once an  
overflow occurs, the OV remains set until a reset, BCND/D on OV/NOV, or LST instruction clears OV.  
OV  
Overflow mode bit. When OVM is set to 0, overflowed results overflow normally in the accumulator. When set to 1, the accumulator  
is set to either its most positive or negative value upon encountering an overflow. The SETC and CLRC instructions set and reset  
this bit, respectively. LST can also be used to modify the OVM.  
OVM  
Product shift mode. If these two bits are 00, the multiplier’s 32-bit product is loaded into the ALU with no shift. If PM = 01, the PREG  
output is left-shifted one place and loaded into the ALU, with the LSB zero-filled. If PM = 10, the PREG output is left-shifted by four  
bits and loaded into the ALU, with the LSBs zero-filled. PM = 11 produces a right shift of six bits, sign-extended. Note that the PREG  
contents remain unchanged. The shift takes place when transferring the contents of the PREG to the ALU. PM is loaded by the  
SPM and LST #1 instructions. PM is cleared by RS.  
PM  
Sign-extensionmode bit. SXM = 1 produces sign extension on data as it is passed into the accumulator through the scaling shifter.  
SXM = 0 suppresses sign extension. SXM does not affect the definitions of certain instructions; for example, the ADDS instruction  
suppresses sign extension regardless of SXM. SXM is set by the SETC SXM instruction and reset by the CLRC SXM instruction  
and can be loaded by the LST #1 instruction. SXM is set to 1 by reset.  
SXM  
Test/control flag bit. TC is affected by the BIT, BITT, CMPR, LST #1, and NORM instructions. TC is set to a 1 if a bit tested by BIT  
or BITT is a 1, if a compare condition tested by CMPR exists between AR (ARP) and AR0, if the exclusive-OR function of the two  
most significant bits (MSBs) of the accumulator is true when tested by a NORM instruction. The conditional branch, call, and return  
instructions can execute based on the condition of TC.  
TC  
XF  
XF pin status bit. XF indicates the state of the XF pin, a general-purpose output pin. XF is set by the SETC XF instruction and reset  
by the CLRC XF instruction. XF is set to 1 by reset.  
central processing unit  
The TMS320x240x central processing unit (CPU) contains a 16-bit scaling shifter, a 16 x 16-bit parallel  
multiplier, a 32-bit central arithmetic logic unit (CALU), a 32-bit accumulator, and additional shifters at the  
outputs of both the accumulator and the multiplier. This section describes the CPU components and their  
functions. The functional block diagram shows the components of the CPU.  
input scaling shifter  
The TMS320x240x provides a scaling shifter with a 16-bit input connected to the data bus and a 32-bit output  
connected to the CALU. This shifter operates as part of the path of data coming from program or data space  
to the CALU and requires no cycle overhead. It is used to align the 16-bit data coming from memory to the 32-bit  
CALU. This is necessary for scaling arithmetic as well as aligning masks for logical operations.  
The scaling shifter produces a left shift of 0 to 16 on the input data. The LSBs of the output are filled with zeros;  
the MSBs can either be filled with zeros or sign-extended, depending upon the value of the SXM bit  
(sign-extension mode) of status register ST1. The shift count is specified by a constant embedded in the  
instruction word or by a value in TREG. The shift count in the instruction allows for specific scaling or alignment  
operations specific to that point in the code. The TREG base shift allows the scaling factor to be adaptable to  
the system’s performance.  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
multiplier  
The TMS320x240x devices use a 16 x 16-bit hardware multiplier that is capable of computing a signed or an  
unsigned32-bitproductinasinglemachinecycle. Allmultiplyinstructions, excepttheMPYU(multiplyunsigned)  
instruction, perform a signed multiply operation. That is, two numbers being multiplied are treated as  
2s-complement numbers, and the result is a 32-bit 2s-complement number. There are two registers associated  
with the multiplier, as follow:  
D
D
16-bit temporary register (TREG) that holds one of the operands for the multiplier  
32-bit product register (PREG) that holds the product  
Four product-shift modes (PM) are available at the PREG output (PSCALE). These shift modes are useful for  
performing multiply/accumulate operations, performing fractional arithmetic, or justifying fractional products.  
The PM field of status register ST1 specifies the PM shift mode, as shown in Table 6.  
Table 6. PSCALE Product-Shift Modes  
PM  
00  
SHIFT  
No shift  
Left 1  
DESCRIPTION  
Product feed to CALU or data bus with no shift  
01  
Removes the extra sign bit generated in a 2s-complement multiply to produce a Q31 product  
Removesthe extra 4signbitsgeneratedina16x132s-complementmultiplytoaproduceaQ31productwhen  
using the multiply-by-a-13-bit constant  
10  
11  
Left 4  
Right 6  
Scales the product to allow up to 128 product accumulation without the possibility of accumulator overflow  
The product can be shifted one bit to compensate for the extra sign bit gained in multiplying two 16-bit  
2s-complement numbers (MPY instruction). A four-bit shift is used in conjunction with the MPY instruction with  
a short immediate value (13 bits or less) to eliminate the four extra sign bits gained in multiplying a 16-bit number  
by a 13-bit number. Finally, the output of PREG can be right-shifted 6 bits to enable the execution of up to  
128 consecutive multiply/accumulates without the possibility of overflow.  
The LT (load TREG) instruction normally loads TREG to provide one operand (from the data bus), and the MPY  
(multiply) instruction provides the second operand (also from the data bus). A multiplication also can be  
performed with a 13-bit immediate operand when using the MPY instruction. Then, a product is obtained every  
two cycles. When the code is executing multiple multiplies and product sums, the CPU supports the pipelining  
of the TREG load operations with CALU operations using the previous product. The pipeline operations that  
run in parallel with loading the TREG include: load ACC with PREG (LTP); add PREG to ACC (LTA); add PREG  
to ACC and shift TREG input data (DMOV) to next address in data memory (LTD); and subtract PREG from ACC  
(LTS).  
Two multiply/accumulate instructions (MAC and MACD) fully utilize the computational bandwidth of the  
multiplier, allowing both operands to be processed simultaneously. The data for these operations can be  
transferred to the multiplier each cycle by way of the program and data buses. This facilitates single-cycle  
multiply/accumulates when used with the repeat (RPT) instruction. In these instructions, the coefficient  
addresses are generated by program address generation (PAGEN) logic, while the data addresses are  
generated by data address generation (DAGEN) logic. This allows the repeated instruction to access the values  
from the coefficient table sequentially and step through the data in any of the indirect addressing modes.  
The MACD instruction, when repeated, supports filter constructs (weighted running averages) so that as the  
sum-of-products is executed, the sample data is shifted in memory to make room for the next sample and to  
throw away the oldest sample.  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
multiplier (continued)  
The MPYU instruction performs an unsigned multiplication, which greatly facilitates extended-precision  
arithmeticoperations. TheunsignedcontentsofTREGaremultipliedbytheunsignedcontentsoftheaddressed  
data memory location, with the result placed in PREG. This process allows the operands of greater than 16 bits  
to be broken down into 16-bit words and processed separately to generate products of greater than 32 bits. The  
SQRA (square/add) and SQRS (square/subtract) instructions pass the same value to both inputs of the  
multiplier for squaring a data memory value.  
After the multiplication of two 16-bit numbers, the 32-bit product is loaded into the 32-bit product register  
(PREG). The product from PREG can be transferred to the CALU or to data memory by way of the SPH (store  
product high) and SPL (store product low) instructions. Note: the transfer of PREG to either the CALU or data  
bus passes through the PSCALE shifter, and therefore is affected by the product shift mode defined by PM. This  
is important when saving PREG in an interrupt-service-routine context save as the PSCALE shift effects cannot  
be modeled in the restore operation. PREG can be cleared by executing the MPY #0 instruction. The product  
register can be restored by loading the saved low half into TREG and executing a MPY #1 instruction. The high  
half, then, is loaded using the LPH instruction.  
central arithmetic logic unit  
The TMS320x240x central arithmetic logic unit (CALU) implements a wide range of arithmetic and logical  
functions, the majority of which execute in a single clock cycle. This ALU is referred to as central to differentiate  
it from a second ALU used for indirect-address generation called the auxiliary register arithmetic unit (ARAU).  
Once an operation is performed in the CALU, the result is transferred to the accumulator (ACC) where additional  
operations, such as shifting, can occur. Data that is input to the CALU can be scaled by ISCALE when coming  
from one of the data buses (DRDB or PRDB) or scaled by PSCALE when coming from the multiplier.  
The CALU is a general-purpose ALU that operates on 16-bit words taken from data memory or derived from  
immediate instructions. In addition to the usual arithmetic instructions, the CALU can perform Boolean  
operations, facilitating the bit-manipulation ability required for a high-speed controller. One input to the CALU  
is always provided from the accumulator, and the other input can be provided from the product register (PREG)  
of the multiplier or the output of the scaling shifter (that has been read from data memory or from the ACC). After  
the CALU has performed the arithmetic or logical operation, the result is stored in the accumulator.  
The TMS320x240x devices support floating-point operations for applications requiring a large dynamic range.  
The NORM (normalization) instruction is used to normalize fixed-point numbers contained in the accumulator  
by performing left shifts. The four bits of the TREG define a variable shift through the scaling shifter for the  
LACT/ADDT/SUBT (load/add to /subtract from accumulator with shift specified by TREG) instructions. These  
instructions are useful in floating-point arithmetic where a number needs to be denormalized — that is,  
floating-point to fixed-point conversion. They are also useful in the execution of an automatic gain control (AGC)  
going into a filter. The BITT (bit test) instruction provides testing of a single bit of a word in data memory based  
on the value contained in the four LSBs of TREG.  
The CALU overflow saturation mode can be enabled/disabled by setting/resetting the OVM bit of ST0. When  
the CALU is in the overflow saturation mode and an overflow occurs, the overflow flag is set and the accumulator  
is loaded with either the most positive or the most negative value representable in the accumulator, depending  
on the direction of the overflow. The value of the accumulator at saturation is 07FFFFFFFh (positive) or  
080000000h (negative). If the OVM (overflow mode) status register bit is reset and an overflow occurs, the  
overflowed results are loaded into the accumulator with modification. (Note that logical operations cannot result  
in overflow.)  
The CALU can execute a variety of branch instructions that depend on the status of the CALU and the  
accumulator. These instructions can be executed conditionally based on any meaningful combination of these  
status bits. For overflow management, these conditions include OV (branch on overflow) and EQ (branch on  
accumulator equal to zero). In addition, the BACC (branch to address in accumulator) instruction provides the  
ability to branch to an address specified by the accumulator (computed goto). Bit test instructions (BIT and  
BITT), which do not affect the accumulator, allow the testing of a specified bit of a word in data memory.  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
central arithmetic logic unit (continued)  
TheCALUalsohasanassociatedcarrybitthatissetorresetdependingonvariousoperationswithinthedevice.  
The carry bit allows more efficient computation of extended-precision products and additions or subtractions.  
It is also useful in overflow management. The carry bit is affected by most arithmetic instructions as well as the  
single-bit shift and rotate instructions. It is not affected by loading the accumulator, logical operations, or other  
such non-arithmetic or control instructions.  
The ADDC (add to accumulator with carry) and SUBB (subtract from accumulator with borrow) instructions use  
the previous value of carry in their addition/subtraction operation.  
The one exception to the operation of the carry bit is in the use of ADD with a shift count of 16 (add to high  
accumulator) and SUB with a shift count of 16 (subtract from high accumulator) instructions. This case of the  
ADD instruction can set the carry bit only if a carry is generated, and this case of the SUB instruction can reset  
the carry bit only if a borrow is generated; otherwise, neither instruction affects it.  
Two conditional operands, C and NC, are provided for branching, calling, returning, and conditionallyexecuting,  
based upon the status of the carry bit. The SETC, CLRC, and LST #1 instructions also can be used to load the  
carry bit. The carry bit is set to one on a hardware reset.  
accumulator  
The 32-bit accumulator is the registered output of the CALU. It can be split into two 16-bit segments for storage  
in data memory. Shifters at the output of the accumulator provide a left shift of 0 to 7 places. This shift is  
performed while the data is being transferred to the data bus for storage. The contents of the accumulator  
remain unchanged. When the postscaling shifter is used on the high word of the accumulator (bits 16–31), the  
MSBs are lost and the LSBs are filled with bits shifted in from the low word (bits 0–15). When the postscaling  
shifter is used on the low word, the LSBs are zero-filled.  
The SFL and SFR (in-place one-bit shift to the left/right) instructions and the ROL and ROR (rotate to the  
left/right) instructions implement shifting or rotating of the contents of the accumulator through the carry bit. The  
SXM bit affects the definition of the SFR (shift accumulator right) instruction. When SXM = 1, SFR performs an  
arithmetic right shift, maintaining the sign of the accumulator data. When SXM = 0, SFR performs a logical shift,  
shiftingouttheLSBsandshiftinginazerofortheMSB. TheSFL(shiftaccumulatorleft)instructionisnotaffected  
by the SXM bit and behaves the same in both cases, shifting out the MSB and shifting in a zero. Repeat (RPT)  
instructions can be used with the shift and rotate instructions for multiple-bit shifts.  
auxiliary registers and auxiliary-register arithmetic unit (ARAU)  
The ’240x provides a register file containing eight auxiliary registers (AR0AR7). The auxiliary registers are  
used for indirect addressing of the data memory or for temporary data storage. Indirect auxiliary-register  
addressing allows placement of the data memory address of an instruction operand into one of the auxiliary  
registers. These registers are referenced with a 3-bit auxiliary register pointer (ARP) that is loaded with a value  
from0through7, designatingAR0throughAR7, respectively. TheauxiliaryregistersandtheARPcanbeloaded  
from data memory, the ACC, the product register, or by an immediate operand defined in the instruction. The  
contents of these registers also can be stored in data memory or used as inputs to the CALU.  
The auxiliary register file (AR0AR7) is connected to the ARAU. The ARAU can autoindex the current auxiliary  
register while the data memory location is being addressed. Indexing either by ±1 or by the contents of the AR0  
register can be performed. As a result, accessing tables of information does not require the CALU for address  
manipulation; therefore, the CALU is free for other operations in parallel.  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
internal memory  
The TMS320x240x devices are configured with the following memory modules:  
D
D
D
D
D
Dual-access random-access memory (DARAM)  
Single-access random-access memory (SARAM)  
Flash  
ROM  
Boot ROM  
dual-access RAM (DARAM)  
There are 544 words × 16 bits of DARAM on the ’240x devices. The ’240x DARAM allows writes to and reads  
from the RAM in the same cycle. The DARAM is configured in three blocks: block 0 (B0), block 1 (B1), and  
block 2 (B2). Block 1 contains 256 words and Block 2 contains 32 words, and both blocks are located only in  
data memory space. Block 0 contains 256 words, and can be configured to reside in either data or program  
memory space. The SETC CNF (configure B0 as data memory) and CLRC CNF (configure B0 as program  
memory) instructions allow dynamic configuration of the memory maps through software.  
When using on-chip RAM or high-speed external memory, the ’240x runs at full speed with no wait states. The  
ability of the DARAM to allow two accesses to be performed in one cycle, coupled with the parallel nature of  
the ’240x architecture, enables the device to perform three concurrent memory accesses in any given machine  
cycle. Externally, the READY line or on-chip software wait-state generator can be used to interface the ’240x  
to slower, less expensive external memory. Downloading programs from slow off-chip memory to on-chip RAM  
can speed processing while cutting system costs.  
single-access RAM (SARAM)  
There are 2K words × 16 bits of SARAM on some of the ’240x devices. The ’240x SARAM allows writes to and  
reads from the RAM in the same cycle. The PON and DON bits select SARAM (2K) mapping in program space,  
data space, or both. See Table 18 for details on the SCSR2 register and the PON and DON bits. At reset, these  
bits are 11, and the on-chip SARAM is mapped in both the program and data spaces. The SARAM addresses  
(8000h in program memory and 0800h in data memory) are accessible in external memory space, if the on-chip  
SARAM is not enabled.  
flash EEPROM  
Flash EEPROM provides an attractive alternative to masked program ROM. Like ROM, flash is nonvolatile.  
However, it has the advantage of “in-target” reprogrammability. The ’LF240x incorporates one 32K 16-bit  
flash EEPROM module in program space. This type of memory expands the capabilities of the ’LF240x in the  
areas of prototyping, early field-testing, and single-chip applications. The flash module has multiple sectors that  
can be individually protected while erasing or programming. The sector size is non-uniform and partitioned as  
4K/12K/12K/4K sectors.  
Unlike most discrete flash memory, the ’LF240x flash does not require a dedicated state machine, because the  
algorithms for programming and erasing the flash are executed by the DSP core. This enables several  
advantages, including: reduced chip size and sophisticated, adaptive algorithms. For production programming,  
the IEEE Standard 1149.1 (JTAG) scan port provides easy access to the on-chip RAM for downloading the  
algorithms and flash code. This flash requires 5 V for programming (at V  
at zero wait state while the device is powered at 3.3 V.  
pin only) the array. The flash runs  
CCP  
See Table 1 for device-specific features.  
IEEE Standard 1149.1–1990, IEEE Standard Test Access Port.  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
ROM  
The ’LC240x devices contain mask-programmable ROM located in program memory space. Customers can  
arrange to have this ROM programmed with contents unique to any particular application. See Table 1 for the  
ROM memory capacity of each ’LC240x device.  
boot ROM  
Boot ROM is a 256-word ROM memory mapped in program space 0000–00FF. This ROM will be enabled if the  
BOOTEN pin is low during reset. The BOOT_EN bit (bit 3 of the SCSR2 register) will be set to 1 if the BOOTEN  
pin is low at reset. Boot ROM can also be enabled by writing 1 to the SCSR2.3 bit and disabled by writing 0  
to this bit.  
The boot ROM has a generic bootloader to transfer code through SCI or SPI ports. The incoming code should  
disable the BOOT_ROM bit by writing 0 to bit 3 of the SCSR2 register, or else, the whole flash array will not be  
enabled.  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
PERIPHERALS  
The integrated peripherals of the TMS320x240x are described in the following subsections:  
D
D
D
D
D
D
D
D
D
Two event-manager modules (EVA, EVB)  
Enhanced analog-to-digital converter (ADC) module  
Controller area network (CAN) module  
Serial communications interface (SCI) module  
Serial peripheral interface (SPI) module  
PLL-based clock module  
Digital I/O and shared pin functions  
External memory interfaces (’LF2407 only)  
Watchdog (WD) timer module  
event manager modules (EVA, EVB)  
The event-manager modules include general-purpose (GP) timers, full-compare/PWM units, capture units, and  
quadrature-encoder pulse (QEP) circuits. EVA’s and EVB’s timers, compare units, and capture units function  
identically. However, timer/unit names differ for EVA and EVB. Table 7 shows the module and signal names  
used. Table 7 shows the features and functionality available for the event-manager modules and highlights EVA  
nomenclature.  
Event managers A and B have identical peripheral register sets with EVA starting at 7400h and EVB starting  
at 7500h. The paragraphs in this section describe the function of GP timers, compare units, capture units, and  
QEPs using EVA nomenclature. These paragraphs are applicable to EVB with regard to function—however,  
module/signal names would differ.  
Table 7. Module and Signal Names for EVA and EVB  
EVENT MANAGER MODULES  
EVA MODULE  
SIGNAL  
EVB MODULE  
SIGNAL  
Timer 1  
Timer 2  
T1PWM/T1CMP  
T2PWM/T2CMP  
Timer 3  
Timer 4  
T3PWM/T3CMP  
T4PWM/T4CMP  
GP Timers  
Compare 1  
Compare 2  
Compare 3  
PWM1/2  
PWM3/4  
PWM5/6  
Compare 4  
Compare 5  
Compare 6  
PWM7/8  
PWM9/10  
PWM11/12  
Compare Units  
Capture Units  
Capture 1  
Capture 2  
Capture 3  
CAP1  
CAP2  
CAP3  
Capture 4  
Capture 5  
Capture 6  
CAP4  
CAP5  
CAP6  
QEP1  
QEP2  
QEP1  
QEP2  
QEP3  
QEP4  
QEP3  
QEP4  
QEP  
Direction  
External Clock  
TDIRA  
TCLKINA  
Direction  
External Clock  
TDIRB  
TCLKINB  
External Inputs  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
event-manager modules (EVA, EVB) (continued)  
’240x DSP Core  
Data Bus  
16  
ADDR Bus Reset  
Clock  
INT2,3,4  
3
16  
16  
EV Control Registers  
and Control Logic  
ADC Start of  
Conversion  
Output  
Logic  
16  
16  
GP Timer 1  
Compare  
T1CMP/  
T1PWM  
TDIR  
TCLKIN  
GP Timer 1  
CLKOUT  
(Internal)  
Prescaler  
16  
16  
T1CON[4,5]  
T1CON[8,9,10]  
PWM1  
PWM6  
SVPWM  
State  
3
3
3
Full-Compare  
Units  
Deadband  
Units  
Output  
Logic  
Machine  
16  
16  
T2CMP/  
T2PWM  
Output  
Logic  
GP Timer 2  
Compare  
TCLKIN  
CLKOUT  
(Internal)  
GP Timer 2  
Prescaler  
T2CON[8,9,10]  
T2CON[4,5]  
16  
TDIR  
DIR  
16  
Clock  
QEP  
Circuit  
CAPCON[14,13]  
MUX  
2
2
CAP1/QEP1  
CAP2/QEP2  
2
16  
Capture Units  
CAP3  
16  
’2402 devices do not support external direction control. TDIR is not available.  
Figure 9. Event-Manager Block Diagram  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
general-purpose (GP) timers  
There are two GP timers: The GP timer x (x = 1 or 2 for EVA; x = 3 or 4 for EVB) includes:  
D
D
D
D
D
D
D
A 16-bit timer, up-/down-counter, TxCNT, for reads or writes  
A 16-bit timer-compare register, TxCMPR (double-buffered with shadow register), for reads or writes  
A 16-bit timer-period register, TxPR (double-buffered with shadow register), for reads or writes  
A 16-bit timer-control register,TxCON, for reads or writes  
Selectable internal or external input clocks  
A programmable prescaler for internal or external clock inputs  
Control and interrupt logic, for four maskable interrupts: underflow, overflow, timer compare, and period  
interrupts  
D
A selectable direction input pin (TDIR) (to count up or down when directional up-/down-count mode is  
selected)  
The GP timers can be operated independently or synchronized with each other. The compare register  
associated with each GP timer can be used for compare function and PWM-waveform generation. There are  
three continuous modes of operations for each GP timer in up- or up/down-counting operations. Internal or  
external input clocks with programmable prescaler are used for each GP timer. GP timers also provide the time  
base for the other event-manager submodules: GP timer 1 for all the compares and PWM circuits, GP timer 2/1  
for the capture units and the quadrature-pulse counting operations. Double-buffering of the period and compare  
registers allows programmable change of the timer (PWM) period and the compare/PWM pulse width as  
needed.  
full-compare units  
There are three full-compare units on each event manager. These compare units use GP timer1 as the time  
base and generate six outputs for compare and PWM-waveform generation using programmable deadband  
circuit. The state of each of the six outputs is configured independently. The compare registers of the compare  
units are double-buffered, allowing programmable change of the compare/PWM pulse widths as needed.  
programmable deadband generator  
The deadband generator circuit includes three 8-bit counters and an 8-bit compare register. Desired deadband  
values (from 0 to 24 µs) can be programmed into the compare register for the outputs of the three compare units.  
The deadband generation can be enabled/disabled for each compare unit output individually. The  
deadband-generator circuit produces two outputs (with or without deadband zone) for each compare unit output  
signal. The output states of the deadband generator are configurable and changeable as needed by way of the  
double-buffered ACTR register.  
PWM waveform generation  
Up to eight PWM waveforms (outputs) can be generated simultaneously by each event manager: three  
independent pairs (six outputs) by the three full-compare units with programmable deadbands, and two  
independent PWMs by the GP-timer compares.  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
PWM characteristics  
Characteristics of the PWMs are as follows:  
D
D
D
D
D
D
D
16-bit registers  
Programmable deadband for the PWM output pairs, from 0 to 24 µs  
Minimum deadband width of 50 ns  
Change of the PWM carrier frequency for PWM frequency wobbling as needed  
Change of the PWM pulse widths within and after each PWM period as needed  
External-maskable power and drive-protection interrupts  
Pulse-pattern-generator circuit, for programmable generation of asymmetric, symmetric, and four-space  
vector PWM waveforms  
D
Minimized CPU overhead using auto-reload of the compare and period registers  
capture unit  
The capture unit provides a logging function for different events or transitions. The values of the GP timer 2  
counter are captured and stored in the two-level-deep FIFO stacks when selected transitions are detected on  
capture input pins, CAPx (x = 1, 2, or 3 for EVA; and x = 4, 5, or 6 for EVB). The capture unit consists of three  
capture circuits.  
D
Capture units include the following features:  
One 16-bit capture control register, CAPCON (R/W)  
One 16-bit capture FIFO status register, CAPFIFO (eight MSBs are read-only, eight LSBs are  
write-only)  
Selection of GP timer 2 as the time base  
Three 16-bit 2-level-deep FIFO stacks, one for each capture unit  
Three Schmitt-triggered capture input pins (CAP1, CAP2, and CAP3)—one input pin per capture unit.  
[All inputs are synchronized with the device (CPU) clock. In order for a transition to be captured, the  
input must hold at its current level to meet two rising edges of the device clock. The input pins CAP1 and  
CAP2 can also be used as QEP inputs to the QEP circuit.]  
User-specified transition (rising edge, falling edge, or both edges) detection  
Three maskable interrupt flags, one for each capture unit  
quadrature-encoder pulse (QEP) circuit  
Two capture inputs (CAP1 and CAP2 for EVA; CAP4 and CAP5 for EVB) can be used to interface the on-chip  
QEP circuit with a quadrature encoder pulse. Full synchronization of these inputs is performed on-chip.  
Direction or leading-quadrature pulse sequence is detected, and GP timer 2 is incremented or decremented  
by the rising and falling edges of the two input signals (four times the frequency of either input pulse).  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
enhanced analog-to-digital converter (ADC) module  
A simplified functional block diagram of the ADC module is shown in Figure 10. The ADC module consists of  
a 10-bit ADC with a built-in sample-and-hold (S/H) circuit. Functions of the ADC module include:  
D
D
D
D
10-bit ADC core with built-in S/H  
Fast conversion time (S/H + Conversion) of 500 ns  
16-channel, muxed inputs  
Autosequencing capability provides up to 16 “autoconversions” in a single session. Each conversion can  
be programmed to select any 1 of 16 input channels  
D
Sequencer can be operated as two independent 8-state sequencers or as one large 16-state sequencer  
(i.e., two cascaded 8-state sequencers)  
D
D
Sixteen result registers (individually addressable) to store conversion values  
Multiple triggers as sources for the start-of-conversion (SOC) sequence  
S/W – software immediate start  
EVA – Event manager A (multiple event sources within EVA)  
EVB – Event manager B (multiple event sources within EVB)  
Ext – External pin (ADCSOC)  
D
D
Flexible interrupt control allows interrupt request on every end of sequence (EOS) or every other EOS  
Sequencer can operate in “start/stop” mode, allowing multiple “time-sequenced triggers” to synchronize  
conversions  
D
D
D
D
EVA and EVB triggers can operate independently in dual-sequencer mode  
Sample-and-hold (S/H) acquisition time window has separate prescale control  
Built-in calibration mode  
Built-in self-test mode  
The ADC module in the ’240x has been enhanced to provide flexible interface to event managers A and B. The  
ADC interface is built around a fast, 10-bit ADC module with total conversion time of 500 ns (S/H + conversion).  
The ADC module has 16 channels, configurable as two independent 8-channel modules to service event  
managers A and B. The two independent 8-channel modules can be cascaded to form a 16-channel module.  
Figure 10 shows the block diagram of the ’240x ADC module.  
The two 8-channel modules have the capability to autosequence a series of conversions, each module has the  
choice of selecting any one of the respective eight channels available through an analog mux. In the cascaded  
mode, the autosequencer functions as a single 16-channel sequencer. On each sequencer, once the  
conversion is complete, the selected channel value is stored in its respective RESULT register. Autosequencing  
allows the system to convert the same channel multiple times, allowing the user to perform oversampling  
algorithms. This gives increased resolution over traditional single-sampled conversion results.  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
enhanced analog-to-digital converter (ADC) module (continued)  
Result Registers  
Analog MUX  
70A8h  
Result Reg 0  
Result Reg 1  
ADCIN 0  
10-Bit  
ADC  
Module  
(500 ns)  
ADCIN 7  
ADCIN 8  
Result Reg 7  
Result Reg 8  
70AFh  
70B0h  
ADCIN 15  
Result Reg 15  
70B7h  
ADC Control Registers  
S/W  
EVA  
S/W  
EVB  
SOC  
SOC  
Sequencer 1  
Sequencer 2  
ADCSOC Pin  
Figure 10. Block Diagram of the ’240x ADC Module  
controller area network (CAN) module  
The CAN module is a full-CAN controller designed as a 16-bit peripheral module and supports the following  
features:  
D
CAN specification 2.0B (active)  
Standard data and remote frames  
Extended data and remote frames  
D
Six mailboxes for objects of 0- to 8-byte data length  
Two receive mailboxes, two transmit mailboxes  
Two configurable transmit/receive mailboxes  
D
D
Local acceptance mask registers for mailboxes 0 and 1 and mailboxes 2 and 3  
Configurable standard or extended message identifier  
Programmable global mask registers for objects 1 and 2 and one for object 3 and 4  
Configurable standard or extended message identifier  
D
D
D
D
Programmable bit rate  
Programmable interrupt scheme  
Readable error counters  
Self-test mode  
In this mode, the CAN module operates in a loop-back fashion, receiving its own transmitted message.  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
controller area network (CAN) module (continued)  
The CAN module is a 16-bit peripheral. The accesses are split into the control/status-registers accesses and  
the mailbox-RAM accesses.  
CAN peripheral registers: The CPU can access the CAN peripheral registers only using 16-bit write accesses.  
The CAN peripheral always presents full 16-bit data to the CPU bus during read cycles.  
CAN controller architecture  
Figure 11 shows the basic architecture of the CAN controller through this block diagram of the CAN Peripherals.  
CAN Module  
Transmit Buffer  
Control/Status Registers  
Interrupt Logic  
TxD  
RxD  
Control Bus  
CAN  
CAN  
Core  
CPU Interface/  
Memory Management Unit  
CPU  
Transceiver  
Temporary Receive Buffer  
mailbox 0  
mailbox 1  
mailbox 2  
mailbox 3  
mailbox 4  
mailbox 5  
R
Data  
ID  
R
T/R  
T/R  
T
T
Matchid  
Acceptance Filter  
Control Logic  
RAM 48x16  
Figure 11. CAN Module Block Diagram  
The mailboxes are situated in one 48-word x 16-bit RAM. It can be written to or read by the CPU or the CAN.  
The CAN write or read access, as well as the CPU read access, needs one clock cycle. The CPU write access  
needs two clock cycles. In these two clock cycles, the CAN performs a read-modify-write cycle and, therefore,  
inserts one wait state for the CPU.  
Address bit 0 of the address bus used when accessing the RAM decides if the lower (0) or the higher (1)  
16-bit word of the 32-bit word is taken. The RAM location is determined by the upper bits 5 to 1 of the address  
bus.  
Table 9 shows the mailbox locations in RAM. One half-word has 16 bits.  
CAN interrupt logic  
There are two interrupt requests from the CAN module to the peripheral interrupt expansion (PIE) controller:  
the mailbox interrupt and the error interrupt. Both interrupts can assert either a high-priority request or a  
low-priority request to the CPU. Since CAN mailboxes can generate multiple interrupts, the software should  
read the CAN_IFR register for every interrupt and prioritize the interrupt service, or else, these multiple  
interrupts will not be recognized by the CPU and PIE hardware logic. Each interrupt routine should service all  
the interrupt bits that are set and clear them after service.  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
CAN memory map  
Table 8 and Table 9 show the register and mailbox locations in the CAN module.  
Table 8. Register Addresses  
ADDRESS  
OFFSET  
NAME  
DESCRIPTION  
00h  
MDER  
TCR  
Mailbox Direction/Enable Register (bits 7 to 0)  
Transmission Control Register (bits 15 to 0)  
Receive Control Register (bits 15 to 0)  
Master Control Register (bits 13 to 6, 1, 0)  
Bit Configuration Register 2 (bits 7 to 0)  
Bit Configuration Register 1 (bits 10 to 0)  
Error Status Register (bits 8 to 0)  
01h  
02h  
RCR  
03h  
MCR  
04h  
BCR2  
05h  
BCR1  
06h  
ESR  
07h  
GSR  
Global Status Register (bits 5 to 0)  
08h  
CEC  
Transmit and Receive Error Counters (bits 15 to 0)  
09h  
CAN_IFR  
CAN_IMR  
LAM0_H  
LAM0_L  
LAM1_H  
LAM1_L  
Reserved  
Interrupt Flag Register (bits 13 to 8, 6 to 0)  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
Interrupt Mask Register (bits 15, 13 to 0)  
Local Acceptance Mask Mailbox 0 and 1 (bits 31, 28 to 16)  
Local Acceptance Mask Mailbox 0 and 1 (bits 15 to 0)  
Local Acceptance Mask Mailbox 2 and 3 (bits 31, 28 to 16)  
Local Acceptance Mask Mailbox 2 and 3 (bits 15 to 0)  
Accesses assert the CAADDRx signal from the CAN peripheral (which asserts an Illegal Address error)  
Allunimplementedregisterbitsarereadaszero, writeshavenoeffect. Registerbitsareinitializedtozero, unlessotherwisestatedinthedefinition.  
Table 9. Mailbox Addresses  
ADDRESS  
OFFSET [5:0]  
DESCRIPTION  
UPPER HALF-WORD ADDRESS BIT 0 = 1  
DESCRIPTION  
LOWER HALF-WORD ADDRESS BIT 0 = 0  
NAME  
00h  
02h  
MSGID0  
Message ID for mailbox 0  
Unused  
Message ID for mailbox 0  
MSGCTRL0  
RTR and DLC (bits 4 to 0)  
Databyte 0, Databyte 1 (DBO = 1)  
Databyte 3, Databyte 2 (DBO = 0)  
Databyte 4, Databyte 5 (DBO = 1)  
Databyte 7, Databyte 6 (DBO = 0)  
Message ID for mailbox 1  
Unused  
Databyte 2, Databyte 3 (DBO = 1)  
Databyte 1, Databyte 0 (DBO = 0)  
Databyte 6, Databyte 7 (DBO = 1)  
Databyte 5, Databyte 4 (DBO = 0)  
Message ID for mailbox 1  
04h  
06h  
Datalow0  
Datahigh0  
08h  
0Ah  
MSGID1  
MSGCTRL1  
RTR and DLC (bits 4 to 0)  
Databyte 0, Databyte 1 (DBO = 1)  
Databyte 3, Databyte 2 (DBO = 0)  
Databyte 4, Databyte 5 (DBO = 1)  
...  
Databyte 2, Databyte 3 (DBO = 1)  
Databyte 1, Databyte 0 (DBO = 0)  
Databyte 6, Databyte 7 (DBO = 1)  
...  
0Ch  
Datalow1  
0Eh  
...  
Datahigh1  
...  
28h  
2Ah  
MSGID5  
MSGCTRL5  
Message ID for mailbox 5  
Unused  
Message ID for mailbox 5  
RTR and DLC (bits 4 to 0)  
Databyte 0, Databyte 1 (DBO = 1)  
Databyte 3, Databyte 2 (DBO = 0)  
Databyte 4, Databyte 5 (DBO = 1)  
Databyte 7, Databyte 6 (DBO = 0)  
Databyte 2, Databyte 3 (DBO = 1)  
Databyte 3, Databyte 2 (DBO = 0)  
Databyte 6, Databyte 7 (DBO = 1)  
Databyte 5, Databyte 4 (DBO = 0)  
2Ch  
2Eh  
Datalow5  
Datahigh5  
The DBO (data byte order) bit is located in the MCR register and is used to define the order in which the data bytes are stored in the mailbox  
when received and the order in which the data bytes are transmitted. Byte 0 is the first byte in the message and Byte 7 is the last one shown  
in the CAN message.  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
serial communications interface (SCI) module  
The ’240x devices include a serial communications interface (SCI) module. The SCI module supports digital  
communications between the CPU and other asynchronous peripherals that use the standard  
non-return-to-zero (NRZ) format. The SCI receiver and transmitter are double-buffered, and each has its own  
separate enable and interrupt bits. Both can be operated independently or simultaneously in the full-duplex  
mode. To ensure data integrity, the SCI checks received data for break detection, parity, overrun, and framing  
errors. The bit rate is programmable to over 65000 different speeds through a 16-bit baud-select register.  
Features of the SCI module include:  
D
Two external pins:  
SCITXD: SCI transmit-output pin  
SCIRXD: SCI receive-input pin  
NOTE: Both pins can be used as GPIO if not used for SCI.  
D
D
Baud rate programmable to 64K different rates  
Up to 1875 Kbps at 30-MHz CPUCLK  
Data-word format  
One start bit  
Data-word length programmable from one to eight bits  
Optional even/odd/no parity bit  
One or two stop bits  
D
D
D
D
D
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: idle-line and address bit  
Half- or full-duplex operation  
Double-buffered receive and transmit functions  
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with  
status flags.  
Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and  
TX EMPTY flag (transmitter-shift register is empty)  
Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag  
(break condition occurred), and RX ERROR flag (monitoring four interrupt conditions)  
D
D
D
Separate enable bits for transmitter and receiver interrupts (except BRKDT)  
NRZ (non-return-to-zero) format  
Ten SCI module control registers located in the control register frame beginning at address 7050h  
NOTE: All registers in this module are 8-bit registers that are connected to the 16-bit peripheral bus. When a register is accessed, the  
register data is in the lower byte (70), and the upper byte (158) is read as zeros. Writing to the upper byte has no effect.  
Figure 12 shows the SCI module block diagram.  
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
serial communications interface (SCI) module (continued)  
SCI TX Interrupt  
SCITXBUF.7–0  
TXWAKE  
SCICTL1.3  
1
TXRDY  
TX INT ENA  
TXINT  
Transmitter-Data  
Buffer Register  
Frame Format and Mode  
External  
SCICTL2.7  
Connections  
SCICTL2.0  
Parity  
TX EMPTY  
SCICTL2.6  
8
Even/Odd Enable  
SCICCR.6 SCICCR.5  
WUT  
TXENA  
TXSHF  
Register  
SCITXD  
SCITXD  
SCICTL1.1  
SCIHBAUD. 15–8  
SCI Priority Level  
1
Baud Rate  
MSbyte  
Register  
Level 5 Int.  
0
Level 1 Int.  
Internal  
Clock  
SCI TX  
Priority  
SCILBAUD. 7–0  
SCIPRI.6  
Baud Rate  
LSbyte  
Register  
1
Level 5 Int.  
0
Level 1 Int.  
SCI RX  
Priority  
SCIPRI.5  
SCIRXD  
RXSHF  
Register  
SCIRXD  
RXWAKE  
SCIRXST.1  
RXENA  
RX ERR INT ENA  
SCICTL1.0  
SCICTL1.6  
SCI RX Interrupt  
8
RXRDY  
RX/BK INT ENA  
Receiver-Data  
Buffer  
SCIRXST.6  
RX Error  
Register  
SCICTL2.1  
BRKDT  
SCIRXST.5  
SCIRXBUF.7–0  
SCIRXST.7  
RX Error  
SCIRXST.4–2  
FE OE PE  
Figure 12. Serial Communications Interface (SCI) Module Block Diagram  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
serial peripheral interface (SPI) module  
Some ’240x devices include the four-pin serial peripheral interface (SPI) module. The SPI is a high-speed,  
synchronousserialI/Oportthatallowsaserialbitstreamofprogrammedlength(onetosixteenbits)tobeshifted  
into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used for communications  
between the DSP controller and external peripherals or another processor. Typical applications include external  
I/O or peripheral expansion through devices such as shift registers, display drivers, and ADCs. Multidevice  
communications are supported by the master/slave operation of the SPI.  
The SPI module features include:  
D
Four external pins:  
SPISOMI: SPI slave-output/master-input pin  
SPISIMO: SPI slave-input/master-output pin  
SPISTE: SPI slave transmit-enable pin  
SPICLK: SPI serial-clock pin  
NOTE: All four pins can be used as GPIO, if the SPI module is not used.  
D
D
D
D
Two operational modes: master and slave  
Baud rate: 125 different programmable rates/7.5 Mbps at 30-MHz CPUCLK  
Data word length: one to sixteen data bits  
Four clocking schemes (controlled by clock polarity and clock phase bits) include:  
Falling edge without phase delay: SPICLK active high. SPI transmits data on the falling edge of the  
SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Falling edge with phase delay: SPICLK active high. SPI transmits data one half-cycle ahead of the  
falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.  
Rising edge without phase delay: SPICLK inactive low. SPI transmits data on the rising edge of the  
SPICLK signal and receives data on the falling edge of the SPICLK signal.  
Rising edge with phase delay: SPICLK inactive low. SPI transmits data one half-cycle ahead of the  
falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.  
D
D
D
Simultaneous receive and transmit operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithms.  
Nine SPI module control registers: Located in control register frame beginning at address 7040h.  
NOTE: All registers in this module are 16-bit registers that are connected to the 16-bit peripheral bus. When a register is accessed, the  
register data is in the lower byte (70), and the upper byte (158) is read as zeros. Writing to the upper byte has no effect.  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
serial peripheral interface (SPI) module (continued)  
Figure 13 is a block diagram of the SPI in slave mode.  
SPIRXBUF.15–0  
Overrun  
INT ENA  
Receiver  
Overrun Flag  
SPIRXBUF  
SPI Priority  
SPIPRI.6  
Buffer Register  
SPISTS.7  
0
1
Level 1  
INT  
Level 5  
INT  
To CPU  
SPICTL.4  
SPITXBUF.15–0  
16  
SPITXBUF  
SPI INT  
ENA  
Buffer Register  
External  
Connections  
SPI INT FLAG  
SPISTS.6  
16  
SPICTL.0  
SW1  
M
M
SPIDAT  
S
M
S
Data Register  
S
SPISIMO  
SPISOMI  
M
SPIDAT.15–0  
SW2  
S
Talk  
SPICTL.1  
SPISTE  
State Control  
Master/Slave  
SPICTL.2  
SPICCR.3–0  
SPI Char  
S
3
2
1
0
SW3  
Clock  
Polarity  
Clock  
Phase  
M
S
SPI Bit Rate  
SPIBRR.6–0  
Internal  
Clock  
SPICCR.6  
SPICTL.3  
SPICLK  
M
6
5
4
3
2
1
0
NOTE A: The diagram is shown in the slave mode.  
The SPISTE pin is shown as being disabled, meaning that data cannot be transmitted in this mode. Note that SW1, SW2, and SW3 are closed  
in this configuration.  
Figure 13. Four-Pin Serial Peripheral Interface Module Block Diagram  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
PLL-based clock module  
The ’240x has an on-chip, PLL-based clock module. This module provides all the necessary clocking signals  
for the device, as well as control for low-power mode entry. The PLL has a 3-bit ratio control to select different  
CPU clock rates. See Figure 14 for the PLL Clock Module Block Diagram, Table 11 for the loop filter component  
values, and Table 10 for clock rates.  
The PLL-based clock module provides two modes of operation:  
D
D
Crystal-operation  
This mode allows the use of an external crystal/resonator to provide the time base to the device.  
External clock source operation  
This mode allows the internal oscillator to be bypassed. The device clocks are generated from an external  
clock source input on the XTAL1/CLKIN pin. In this case, an external oscillator clock is connected to the  
XTAL1/CLKIN pin.  
XTAL1/CLKIN  
C
C
b1  
b2  
RESONATOR/  
CRYSTAL  
XTAL2  
PLLF  
F
in  
PLL  
CLKOUT  
R
1
XTAL  
OSC  
C
2
C
1
3-bit  
PLLF2  
PLL Select  
(SCSR1.[11:9])  
Figure 14. PLL Clock Module Block Diagram  
Table 10. PLL Clock Selection Through BIts (119) in SCSR1 Register  
CLK PS2  
CLK PS1  
CLK PS0  
CLKOUT  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
4 × F  
2 × F  
in  
in  
1.33 × F  
in  
1 × F  
in  
0.8 × F  
in  
0.66 × F  
0.57 × F  
in  
in  
0.5 × F  
in  
Default multiplication factor after reset is (1,1,1), i.e., 0.5 × F .  
in  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
external reference crystal clock option  
The internal oscillator is enabled by connecting a crystal across XTAL1/CLKIN and XTAL2 pins as shown in  
Figure 15a. The crystal should be in fundamental operation and parallel resonant, with an effective series  
resistance of 30 –150 and a power dissipation of 1 mW; it should be specified at a load capacitance of 20 pF.  
external reference oscillator clock option  
TheinternaloscillatorisdisabledbyconnectingaTTL-levelclocksignaltoXTAL1/CLKINandleavingtheXTAL2  
input pin unconnected as shown in Figure 15b.  
XTAL1/CLKIN  
b1  
XTAL2  
XTAL1/CLKIN  
XTAL2  
External Clock Signal  
(Toggling 03.3 V)  
C
C
b2  
(see Note A)  
(see Note A)  
Crystal  
(a)  
NC  
(b)  
NOTE A: TI recommends that customers have the resonator/crystal vendor characterize the operation of their device with the DSP chip. The  
resonator/crystal vendor has the equipment and expertise to tune the tank circuit. The vendor can also advise the customer regarding  
the proper tank component values that will ensure start-up and stability over the entire operating range.  
Figure 15. Recommended Crystal/Clock Connection  
loop filter  
The PLL module uses an external loop filter circuit for jitter minimization. The components for the loop filter  
circuitareR1, C1, andC2. Thecapacitors(C1andC2)mustbenon-polarized. Thisloopfiltercircuitisconnected  
between the PLLF and PLLF2 pins (see Figure 14). For examples of component values of R1, C1, and C2 at  
a specified oscillator frequency (XTAL1), see Table 11.  
Table 11. Loop Filter Component Values With Damping Factor = 2.0  
XTAL1/CLKIN FREQUENCY  
R1 ()  
C1 (µF)  
C2 (µF)  
(MHz)  
4
4.7  
5.6  
6.8  
8.2  
9.1  
10  
11  
3.9  
2.7  
0.082  
0.056  
0.039  
0.033  
0.022  
0.015  
0.015  
0.012  
0.01  
5
6
1.8  
7
1.5  
8
1
9
0.82  
0.68  
0.56  
0.47  
0.39  
0.33  
0.33  
0.27  
0.22  
0.22  
0.18  
0.15  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
12  
13  
15  
15  
16  
18  
18  
20  
22  
24  
0.0082  
0.0068  
0.0068  
0.0056  
0.0047  
0.0047  
0.0039  
0.0033  
49  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
low-power modes  
The ’240x has an IDLE instruction. When executed, the IDLE instruction stops the clocks to all circuits in the  
CPU, but the clock output from the CPU continues to run. With this instruction, the CPU clocks can be shut down  
to save power while the peripherals (clocked with CLKOUT) continue to run. The CPU exits the IDLE state if  
it is reset, or, if it receives an interrupt request.  
clock domains  
All ’240x-based devices have two clock domains:  
1. CPU clock domain – consists of the clock for most of the CPU logic  
2. System clock domain – consists of the peripheral clock (which is derived from CLKOUT of the CPU) and  
the clock for the interrupt logic in the CPU.  
WhentheCPUgoesintoIDLEmode, theCPUclockdomainisstoppedwhilethesystemclockdomaincontinues  
to run. This mode is also known as IDLE1 mode. The ’240x CPU also contains support for a second IDLE mode,  
IDLE2. By asserting IDLE2 to the ’240x CPU, both the CPU clock domain and the system clock domain are  
stopped, allowing further power savings. A third low-power mode, HALT mode, the deepest, is possible if the  
oscillator and WDCLK are also shut down when in IDLE2 mode.  
Two control bits, LPM1 and LPM0, specify which of the three possible low-power modes is entered when the  
IDLE instruction is executed (see Table 12). These bits are located in the System Control and Status  
Register 1 (SCSR1), and they are described in the TMS320F243/’F241/’C242 DSP Controllers System and  
Peripherals User’s Guide (literature number SPRU276).  
Table 12. Low-Power Modes Summary  
LPMx BITS  
SCSR1  
[13:12]  
CPU  
CLOCK  
DOMAIN  
SYSTEM  
CLOCK  
DOMAIN  
WDCLK  
STATUS  
PLL  
STATUS  
OSC  
STATUS  
FLASH  
POWER  
EXIT  
CONDITION  
LOW-POWER MODE  
CPU running normally  
XX  
On  
Off  
On  
On  
On  
On  
On  
On  
On  
On  
Peripheral  
Interrupt,  
External Interrupt,  
Reset,  
IDLE1 – (LPM0)  
IDLE2 – (LPM1)  
00  
On  
On  
PDPINTA/B  
Wakeup  
Interrupts,  
External Interrupt,  
Reset,  
01  
1X  
Off  
Off  
Off  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
PDPINTA/B  
HALT – (LPM2)  
[PLL/OSC power down]  
Reset,  
PDPINTA/B  
other power-down options  
’240x devices have clock enable bits to the following on-chip peripherals: ADC, SCI, SPI, CAN, EVB, and EVA.  
Clock to these peripherals are disabled after reset; thus, start-up power can be low for the device.  
Depending on the application, these peripherals can be turned on/off to achieve low power.  
Refer to the SCSR2 register for details on the peripheral clock enable bits.  
50  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
digital I/O and shared pin functions  
The ’240x has up to 41 general-purpose, bidirectional, digital I/O (GPIO) pins—most of which are shared  
between primary functions and I/O. Most I/O pins of the ’240x are shared with other functions. The digital I/O  
ports module provides a flexible method for controlling both dedicated I/O and shared pin functions. All I/O and  
shared pin functions are controlled using eight 16-bit registers. These registers are divided into two types:  
D
D
Output Control Registers — used to control the multiplexer selection that chooses between the primary  
function of a pin or the general-purpose I/O function.  
Data and Control Registers — used to control the data and data direction of bidirectional I/O pins.  
description of shared I/O pins  
The control structure for shared I/O pins is shown in Figure 16, where each pin has three bits that define its  
operation:  
D
D
Mux control bit — this bit selects between the primary function (1) and I/O function (0) of the pin.  
I/O direction bit — if the I/O function is selected for the pin (mux control bit is set to 0), this bit determines  
whether the pin is an input (0) or an output (1).  
D
I/O data bit — if the I/O function is selected for the pin (mux control bit is set to 0) and the direction selected  
is an input, data is read from this bit; if the direction selected is an output, data is written to this bit.  
The mux control bit, I/O direction bit, and I/O data bit are in the I/O control registers.  
IOP Data Bit  
(Read/Write)  
Primary  
Function  
In  
Out  
IOP DIR Bit  
0 = Input  
1 = Output  
MUX Control Bit  
0 = I/O Function  
0
1
1 = Primary Function  
Primary  
Function  
or I/O Pin  
Pin  
Figure 16. Shared Pin Configuration  
A summary of shared pin configurations and associated bits is shown in Table 13.  
51  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
description of shared I/O pins (continued)  
Table 13. Shared Pin Configurations  
MUX  
PIN FUNCTION SELECTED  
I/O PORT DATA AND DIRECTION  
MUX  
CONTROL  
VALUE AT  
RESET  
CONTROL  
REGISTER  
(name.bit #)  
(MCRx.n = 1)  
(MCRx.n = 0)  
Primary  
DATA  
BIT NO.  
DIR BIT  
REGISTER  
§
I/O  
NO.  
Function  
(MCRx.n)  
PORT A  
SCITXD  
SCIRXD  
XINT1  
IOPA0  
IOPA1  
IOPA2  
IOPA3  
IOPA4  
IOPA5  
IOPA6  
IOPA7  
MCRA.0  
MCRA.1  
MCRA.2  
MCRA.3  
MCRA.4  
MCRA.5  
MCRA.6  
MCRA.7  
0
0
0
0
0
0
0
0
PADATDIR  
PADATDIR  
PADATDIR  
PADATDIR  
PADATDIR  
PADATDIR  
PADATDIR  
PADATDIR  
PORT B  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CAP1/QEP1  
CAP2/QEP2  
CAP3  
PWM1  
PWM2  
PWM3  
PWM4  
IOPB0  
IOPB1  
IOPB2  
IOPB3  
IOPB4  
IOPB5  
IOPB6  
IOPB7  
MCRA.8  
MCRA.9  
0
0
0
0
0
0
0
0
PBDATDIR  
PBDATDIR  
PBDATDIR  
PBDATDIR  
PBDATDIR  
PBDATDIR  
PBDATDIR  
PBDATDIR  
PORT C  
0
1
2
3
4
5
6
7
8
9
PWM5  
MCRA.10  
MCRA.11  
MCRA.12  
MCRA.13  
MCRA.14  
MCRA.15  
10  
11  
12  
13  
14  
15  
PWM6  
T1PWM/T1CMP  
T2PWM/T2CMP  
TDIRA  
TCLKINA  
#
W/R  
IOPC0  
IOPC1  
IOPC2  
IOPC3  
IOPC4  
IOPC5  
IOPC6  
IOPC7  
MCRB.0  
MCRB.1  
MCRB.2  
MCRB.3  
MCRB.4  
MCRB.5  
MCRB.6  
MCRB.7  
1
1
0
0
0
0
0
0
PCDATDIR  
PCDATDIR  
PCDATDIR  
PCDATDIR  
PCDATDIR  
PCDATDIR  
PCDATDIR  
PCDATDIR  
PORT D  
0
1
2
3
4
5
6
7
8
BIO  
9
SPISIMO  
SPISOMI  
SPICLK  
SPISTE  
CANTX  
CANRX  
10  
11  
12  
13  
14  
15  
XINT2/ADCSOC  
EMU0  
EMU1  
TCK  
IOPD0  
MCRB.8  
MCRB.9  
0
1
1
1
1
1
1
1
PDDATDIR  
PDDATDIR  
PDDATDIR  
PDDATDIR  
PDDATDIR  
PDDATDIR  
PDDATDIR  
PDDATDIR  
0
1
2
3
4
5
6
7
8
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
9
MCRB.10  
MCRB.11  
MCRB.12  
MCRB.13  
MCRB.14  
MCRB.15  
10  
11  
12  
13  
14  
15  
TDI  
TDO  
TMS  
TMS2  
§
#
Bold, italicized pin names indicate pin functions at reset.  
Valid only if the I/O function is selected on the pin  
If the GPIO pin is configured as an output, these bits can be written to. If the pin is configured as an input, these bits are read from.  
If the DIR bit is 0, the GPIO pin functions as an input. For a value of 1, the pin is configured as an output.  
At reset, ’LF2406 and ’LF2402 come up in W/R mode. Application software should select this pin to be IOPC0.  
52  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
description of shared I/O pins (continued)  
Table 13. Shared Pin Configurations (Continued)  
I/O PORT DATA AND DIRECTION  
MUX  
PIN FUNCTION SELECTED  
MUX  
CONTROL  
VALUE AT  
RESET  
CONTROL  
REGISTER  
(name.bit #)  
(MCRx.n = 1)  
(MCRx.n = 0)  
Primary  
DATA  
DIR BIT  
REGISTER  
§
I/O  
BIT NO.  
NO.  
Function  
(MCRx.n)  
PORT E  
CLKOUT  
PWM7  
IOPE0  
IOPE1  
IOPE2  
IOPE3  
IOPE4  
IOPE5  
IOPE6  
IOPE7  
MCRC.0  
MCRC.1  
MCRC.2  
MCRC.3  
MCRC.4  
MCRC.5  
MCRC.6  
MCRC.7  
1
0
0
0
0
0
0
0
PEDATDIR  
PEDATDIR  
PEDATDIR  
PEDATDIR  
PEDATDIR  
PEDATDIR  
PEDATDIR  
PEDATDIR  
PORT F  
0
1
2
3
4
5
6
7
8
9
PWM8  
10  
11  
12  
13  
14  
15  
PWM9  
PWM10  
PWM11  
PWM12  
CAP4/QEP3  
CAP5/QEP4  
CAP6  
IOPF0  
IOPF1  
IOPF2  
IOPF3  
IOPF4  
IOPF5  
IOPF6  
MCRC.8  
MCRC.9  
0
0
0
0
0
0
0
PFDATDIR  
PFDATDIR  
PFDATDIR  
PFDATDIR  
PFDATDIR  
PFDATDIR  
PFDATDIR  
0
1
2
3
4
5
6
8
9
T3PWM/T3CMP  
T4PWM/T4CMP  
TDIRB  
MCRC.10  
MCRC.11  
MCRC.12  
MCRC.13  
MCRC.14  
10  
11  
12  
13  
14  
TCLKINB  
IOPF6  
§
Bold, italicized pin names indicate pin functions at reset.  
Valid only if the I/O function is selected on the pin  
If the GPIO pin is configured as an output, these bits can be written to. If the pin is configured as an input, these bits are read from.  
If the DIR bit is 0, the GPIO pin functions as an input. For a value of 1, the pin is configured as an output.  
digital I/O control registers  
Table 14 lists the registers available in the digital I/O module. As with other ’240x peripherals, these registers  
are memory-mapped to the data space.  
Table 14. Addresses of Digital I/O Control Registers  
ADDRESS  
7090h  
7092h  
7094h  
7095h  
7096h  
7098h  
709Ah  
709Ch  
709Eh  
REGISTER  
MCRA  
NAME  
I/O mux control register A  
MCRB  
I/O mux control register B  
MCRC  
I/O mux control register C  
PEDATDIR  
PFDATDIR  
PADATDIR  
PBDATDIR  
PCDATDIR  
PDDATDIR  
I/O port E data and direction register  
I/O port F data and direction register  
I/O port A data and direction register  
I/O port B data and direction register  
I/O port C data and direction register  
I/O port D data and direction register  
53  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
external memory interface (’LF2407)  
The TMS320LF2407 can address up to 64K × 16 words of memory (or registers) in each of the program, data,  
and I/O spaces. On-chip memory, when enabled, occupies some of this off-chip range.  
The CPU of the TMS320LF2407 schedules a program fetch, data read, and data write on the same machine  
cycle. This is because from on-chip memory, the CPU can execute all three of these operations in the same  
cycle. However, the external interface multiplexes the internal buses to one address bus and one data bus. The  
external interface sequences these operations to complete first the data write, then the data read, and finally  
the program read.  
The ’LF2407 supports a wide range of system interfacing requirements. Program, data, and I/O address spaces  
provide interface to memory and I/O, thereby maximizing system throughput. The full 16-bit address and data  
buses, along with the PS, DS, and IS space-select signals, allow addressing of 64K 16-bit words in program,  
data, and I/O space. Since on-chip peripheral registers occupy positions of data-memory space (7000–7FFF),  
the externally addressable data-memory space is 32K 16-bit words (8000–FFFF). Note that the global memory  
space of the ’C2xx core is not used for ’240x DSP devices. Therefore, the global memory allocation register  
(GREG) is reserved for all these devices.  
Input/output (I/O) design is simplified by having I/O space treated the same way as memory. I/O devices are  
accessed in the I/O address space using the processor’s external address and data buses in the same manner  
as memory-mapped devices.  
TheLF2407externalparallelinterfaceprovidesvariouscontrolsignalstofacilitateinterfacingtothedevice. The  
R/W output signal is provided to indicate whether the current cycle is a read or a write. The STRB output signal  
provides a timing reference for all external cycles. For convenience, the device also provides the RD and the  
WE output signals, which indicate a read cycle and a write cycle, respectively, along with timing information for  
those cycles. The availability of these signals minimizes external gating necessary for interfacing external  
devices to the ’LF2407.  
The ’2407 provides RD and W/R signals to help the zero-wait-state external memory interface. At higher  
CLKOUT speeds, RD may not meet the slow memory device’s timing. In such instances, the W/R signal could  
be used as an alternative signal with some tradeoffs. See the timings for details.  
The TMS320LF2407 supports zero-wait-state reads on the external interface. However, to avoid bus conflicts,  
writestaketwocycles. ThisallowstheTMS320LF2407tobufferthetransitionofthedatabusfrominputtooutput  
(or from output to input) by a half cycle. In most systems, the TMS320LF2407 ratio of reads to writes is  
significantly large to minimize the overhead of the extra cycle on writes.  
wait-state generation (’LF2407 only)  
Wait-state generation is incorporated in the ’LF2407 without any external hardware for interfacing the ’LF2407  
with slower off-chip memory and I/O devices. Adding wait states lengthens the time the CPU waits for external  
memory or an external I/O port to respond when the CPU reads from or writes to that external memory or I/O  
port. Specifically, the CPU waits one extra cycle (one CLKOUT cycle) for every wait state. The wait states  
operate on CLKOUT cycle boundaries.  
To avoid bus conflicts, writes from the ’LF2407 always take at least two CLKOUT cycles. The ’LF2407 offers  
two options for generating wait states:  
D
D
READYSignal. WiththeREADYsignal, youcanexternallygenerateanynumberofwaitstates. TheREADY  
pin has no effect on accesses to internal memory.  
On-Chip Wait-State Generator. With this generator, you can generate zero to seven wait states.  
54  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
generating wait states with the READY signal  
When the READY signal is low, the ’LF2407 waits one CLKOUT cycle and then checks READY again. The  
’LF2407 does not continue executing until the READY signal is driven high; therefore, if the READY signal is  
not used, it should be pulled high.  
The READY pin can be used to generate any number of wait states. However, when the ’LF2407 operates at  
full speed, it may not respond fast enough to provide a READY-based wait state for the first cycle. For extended  
wait states using external READY logic, the on-chip wait-state generator should be programmed to generate  
at least one wait state.  
generating wait states with the ’LF2407 on-chip software wait-state generator  
The software wait-state generator can be programmed to generate zero to seven wait states for a given off-chip  
memory space (program, data, or I/O), regardless of the state of the READY signal. These zero to seven wait  
states are controlled by the wait-state generator register (WSGR) (I/O FFFFh). For more detailed information  
on the WSGR and associated bit functions, refer to the TMS320F243/’F241/’C242 DSP Controllers System and  
Peripherals User’s Guide (literature number SPRU276).  
watchdog (WD) timer module  
The ’x240x devices include a watchdog (WD) timer module. The WD function of this module monitors software  
and hardware operation by generating a system reset if it is not periodically serviced by software by having the  
correct key written. The WD timer operates independently of the CPU. It does not need any CPU initialization  
to function. When a system reset occurs, the WD timer defaults to the fastest WD timer rate available (WDCLK  
signal=CLKOUT/512). Assoonasresetisreleasedinternally, theCPUstartsexecutingcode, andtheWDtimer  
begins incrementing. This means that, to avoid a premature reset, WD setup should occur early in the power-up  
sequence. See Figure 17 for a block diagram of the WD module. The WD module features include the following:  
D
WD Timer  
Seven different WD overflow rates  
A WD-reset key (WDKEY) register that clears the WD counter when a correct value is written, and  
generates a system reset if an incorrect value is written to the register  
WD check bits that initiate a system reset if an incorrect value is written to the WD control register  
(WDCR)  
D
Automatic activation of the WD timer, once system reset is released  
Three WD control registers located in control register frame beginning at address 7020h.  
NOTE: All registers in this module are 8-bit registers. When a register is accessed, the register data is in the lower byte, the upper byte  
is read as zeros. Writing to the upper byte has no effect.  
Figure 17 shows the WD block diagram. Table 15 shows the different WD overflow (timeout) selections.  
The watchdog can be disabled in software by writing ’1’ to bit 6 of the WDCR register (WDCR.6) while bit 5 of  
the SCSR2 register (SCSR2.5) is 1. If SCSR2.5 is 0, the watchdog will not be disabled. SCSR2.5 is equivalent  
to the WDDIS pin of the TMS320F243/241 devices.  
55  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
watchdog (WD) timer module (continued)  
CLKOUT  
CLKIN  
3-bit  
Prescaler  
÷ 512  
PLL  
6-Bit  
Free-  
Running  
Counter  
/64  
On-Chip  
/32  
Oscillator or  
External  
Clock  
/16  
/8  
WDCLK  
/4  
/2  
System  
Reset  
CLR  
000  
001  
010  
011  
100  
101  
WDPS  
WDCR.2–0  
2
1 0  
110  
111  
WDCR.6  
WDDIS  
WDCNTR.7–0  
WDFLAG  
8-Bit Watchdog  
Counter  
WDCR.7  
Reset Flag  
One-Cycle  
Delay  
PS/257  
CLR  
WDKEY.7–0  
System  
Reset  
Request  
Bad Key  
Watchdog  
Reset Key  
Register  
55 + AA  
Detector  
Good Key  
WDCHK2–0  
WDCR.5–3  
Bad WDCR Key  
3
3
System Reset  
1
0 1  
(Constant  
Value)  
Writing to bits WDCR.5–3 with anything but the correct pattern (101) generates a system reset.  
Figure 17. Block Diagram of the WD Module  
56  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
watchdog (WD) timer module (continued)  
Table 15. WD Overflow (Timeout) Selections  
WATCHDOG  
CLOCK RATE  
WD PRESCALE SELECT BITS  
WDCLK DIVIDER  
WDPS2  
WDPS1  
WDPS0  
FREQUENCY (Hz)  
WDCLK/1  
X
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
2
0
WDCLK/2  
1
0
1
0
1
4
WDCLK/4  
8
WDCLK/8  
16  
32  
64  
WDCLK/16  
WDCLK/32  
WDCLK/64  
WDCLK = CLKOUT/512  
X = Don’t care  
57  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
development support  
TexasInstruments(TI)offersanextensivelineofdevelopmenttoolsforthex240xgenerationofDSPs, including  
tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and  
fully integrate and debug software and hardware modules.  
The following products support development of ’x240x-based applications:  
Software Development Tools:  
Assembler/linker  
Simulator  
Optimizing ANSI C compiler  
Application algorithms  
C/Assembly debugger and code profiler  
Hardware Development Tools:  
Emulator XDS510 (supports ’x24x multiprocessor system debug)  
The TMS320 DSP Development Support Reference Guide (literature number SPRU011) contains information  
about development support products for all TMS320 family member devices, including documentation. Refer  
to this document for further information about TMS320 documentation or any other TMS320 support products  
from Texas Instruments. There is also an additional document, the TMS320 Third-Party Support Reference  
Guide (literature number SPRU052), which contains information about TMS320-related products from other  
companies in the industry. To receive copies of TMS320 literature, contact the Literature Response Center at  
800/477-8924.  
See Table 16 and Table 17 for complete listings of development support tools for the ’x240x. For information  
on pricing and availability, contact the nearest TI field sales office or authorized distributor.  
Table 16. Development Support Tools  
DEVELOPMENT TOOL  
PLATFORM  
Software  
PART NUMBER  
Compiler/Assembler/Linker  
SPARC  
TMDS3242555-08  
TMDS3242855-02  
TMDS3242850-02  
TMDX324x851-02  
TMDX324x551-09  
DFDP  
Compiler/Assembler/Linker  
Assembler/Linker  
PC-DOS  
PC-DOS, OS/2  
PC-DOS, WIN  
SPARC  
’C2xx Simulator  
’C2xx Simulator  
Digital Filter Design Package  
’C2xx Debugger/Emulation Software  
’C2xx Debugger/Emulation Software  
PC-DOS  
PC-DOS, OS/2, WIN  
SPARC  
TMDX324012xx  
TMDX324062xx  
Hardware  
XDS510XL Emulator  
XDS510WS Emulator  
PC-DOS, OS/2  
SPARC  
TMDS00510  
TMDS00510WS  
SPARC is a trademark of SPARC International, Inc.  
PC-DOS and OS/2 are trademarks of International Business Machines Corp.  
WIN is a trademark of Microsoft Corp.  
XDS510XL and XDS510WS are trademarks of Texas Instruments Incorporated.  
58  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
development support (continued)  
Table 17. TMS320x24x-Specific Development Tools  
DEVELOPMENT TOOL  
PLATFORM  
Hardware  
PC  
PART NUMBER  
TMS320F240 EVM  
TMS320F243 EVM  
TMDX326P124x  
TMDS3P604030  
PC  
The ’F240 and ’F243 Evaluation Modules (EVM) provide designers of motor and motion control applications  
with a complete and cost-effective way to take their designs from concept to production. These tools offer both  
a hardware and software development environment and include:  
D
D
D
D
D
D
D
D
D
D
D
Flash-based ’24x evaluation board  
Code Generation Tools  
Assembler/Linker  
C Compiler (’F243 EVM)  
Source code debugger  
’C24x Debugger (’F240 EVM)  
Code Composer IDE (’F243 EVM)  
XDS510PP JTAG-based emulator  
Sample applications code  
Universal 5VDC power supply  
Documentation and cables  
device and development support tool nomenclature  
To designate the stages in the product development cycle, Texas Instruments assigns prefixes to the part  
numbers of all TMS320 devices and support tools. Each TMS320 member has one of three prefixes: TMX, TMP,  
or TMS. Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX  
and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes  
(TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS). This development flow is defined  
below.  
Support tool development evolutionary flow:  
TMDX  
TMDS  
Development support product that has not completed TI’s internal qualification testing  
Fully qualified development support product  
TMX and TMP devices and TMDX development support tools are shipped against the following disclaimer:  
“Developmental product is intended for internal evaluation purposes.”  
TMS devices and TMDS development support tools have been fully characterized, and the quality and reliability  
of the device have been fully demonstrated. TI’s standard warranty applies.  
59  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
device and development support tool nomenclature (continued)  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, PG, PGE, and PZ) and temperature range (for example, A). Figure 18 provides a legend for  
reading the complete device name for any TMS320x2xx family member. Refer to the timing section for specific  
options that are available on ’240x devices.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production  
devices. TexasInstrumentsrecommendsthatthesedevicesnotbeusedinanyproductionsystembecausetheir  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TMS 320 LF 2407 PGE (A)  
PREFIX  
TEMPERATURE RANGE (DEFAULT: 0°C TO 70°C)  
TMX = experimental device  
TMP = prototype device  
TMS = qualified device  
L
A
S
=
=
=
0°C to 70°C  
40°C to 85°C  
40°C to 125°C  
Q = 40°C to 125°C, Q 100 Fault Grading  
PACKAGE TYPE  
PG 64-pin PQFP  
=
DEVICE FAMILY  
320 = TMS320 Family  
PGE= 144-pin plastic TQFP  
PZ  
=
100-pin plastic TQFP  
DEVICE  
’20x DSP  
TECHNOLOGY  
203  
206  
209  
C = CMOS  
E
F
=
=
CMOS EPROM  
Flash EEPROM  
LC = Low-voltage CMOS (3.3 V)  
LF = Flash EEPROM (3.3 V)  
VC= Low-voltage CMOS (3 V)  
’24x DSP  
240  
241  
242  
243  
’240x DSP  
2407  
2406  
2404  
2402  
PQFP = Plastic Quad Flatpack  
TQFP = Thin Quad Flatpack  
Figure 18. TMS320 Device Nomenclature  
60  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
documentation support  
ExtensivedocumentationsupportsalloftheTMS320familygenerationsofdevicesfromproductannouncement  
through applications development. The types of documentation available include: data sheets, such as this  
document, with design specifications; complete user’s guides for all devices and development support tools;  
and hardware and software applications. Useful reference documentation includes:  
D
Data sheets  
TMS320C242 DSP Controller (literature number SPRS063)  
TMS320F243, TMS320F241 DSP Controllers (literature number SPRS064)  
D
User Guides  
TMS320C240 DSP Controllers CPU, System, and Instruction Set Reference Guide  
(literature number SPRU160)  
TMS320C240 DSP Controllers Peripheral Library and Specific Devices  
(literature number SPRU161)  
’F243/’F241/’C242 DSP Controllers System and Peripherals User’s Guide  
(literature number SPRU276)  
D
Application Reports  
3.3V DSP for Digital Motor Control (literature number SPRA550)  
A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support digital signal  
processing research and education. The TMS320 newsletter, Details on Signal Processing, is published  
quarterly and distributed to update TMS320 customers on product information.  
UpdatedinformationontheTMS320DSPcontrollerscanbefoundontheworldwidewebat:http://www.ti.com.  
To send comments regarding the ’240x data sheet (SPRS094), use the comments@books.sc.ti.com email  
address, which is a repository for feedback. For questions and support, contact the Product Information Center  
listed at the http://www.ti.com/sc/docs/pic/home.htm site.  
61  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V , PLLV  
, V  
, and V  
(see Note 1) . . . . . . . . . . . . . . . . . . – 0.3 V to 4.6 V  
DD  
CCA DDO  
CCA  
V
range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 5.5 V  
CCP  
Input voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 4.6 V  
Output voltage range, V ’LF240x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 4.6 V  
Output voltage range,V ’LC240x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 4.6 V  
Input clamp current, I (V < 0 or V > V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA  
I
O
O
IK  
OK  
I
I
CC  
Output clamp current, I  
(V < 0 or V > V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA  
O O CC  
Operating free-air temperature range, T : A version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C  
A
(TMS320LF2407PGE)  
(TMS320LF2406PZ, TMS320LC2404PZ, TMS320LC2406PZ)  
(TMS320LF2402PG, TMS320LC2402PG)  
S version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C  
(TMS320LF2407PGE)  
(TMS320LF2406PZ, TMS320LC2404PZ, TMS320LC2406PZ)  
(TMS320LF2402PG, TMS320LC2402PG)  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C  
stg  
Clamp current stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress  
ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
.
SS  
recommended operating conditions  
MIN  
3.0  
0
NOM  
3.3  
0
MAX  
3.6  
0
UNIT  
V
V
V
Supply voltage (±10% of 3.3 V)  
Supply ground  
3.3-V operation  
DD  
V
SS  
PLLV  
CCA  
PLL supply voltage  
3.3-V operation  
3.3-V operation  
3.0  
3.0  
4.75  
3.3  
3.3  
5.0  
3.6  
3.6  
5.25  
30  
V
V
CCA  
ADC supply voltage  
V
V
CCP  
Flash programming supply voltage (±5%)  
Device clock frequency  
V
f
– 40°C to 125°C  
MHz  
CLKOUT  
V
High-level input voltage  
All inputs  
2.0  
V
IH  
IL  
V
Low-level input voltage  
All inputs  
0.8  
– 2.0  
– 4.0  
– 8.0  
2.0  
V
§
§
§
§
§
§
Output pins Group 1  
Output pins Group 2  
Output pins Group 3  
Output pins Group 1  
Output pins Group 2  
Output pins Group 3  
A version  
mA  
mA  
mA  
mA  
mA  
mA  
I
I
High-level output source current, V  
= 2.4 V  
OH  
OH  
4.0  
Low-level output sink current, V  
= V  
MAX  
OL  
OL  
OL  
8.0  
– 40  
– 40  
– 65  
– 40  
– 40  
25  
25  
85  
Operating free-air temperature  
(excluding flash programming)  
T
A
°C  
S version  
125  
150  
85  
T
stg  
Storage temperature  
°C  
°C  
T
Flash programming temperature  
Junction temperature  
25  
25  
FP  
j
T
150  
°C  
Nf  
Flash endurance for the array (Write/erase cycles)  
At room temperature  
10K  
cycles  
§
Refer to the mechanical data package page for thermal resistance values, Θ (junction-to-ambient) and Θ (junction-to-case).  
JA JC  
Primary signals and their GPIOs:  
Group 1: PWM1–PWM6, CAP1–CAP6, TCLKINA, RS, IOPF6, IOPC1, TCK, TDI, TMS, XF  
Group 2: PS/DS/IS, RD, W/R, STRB, R/W, VIS_OE, A0–A15, D0–D15, T1PWM–T4PWM, PWM7–PWM12, CANTX, CANRX, SPICLK,  
SPISOMI, SPISIMO, SPISTE, EMU0, EMU1, TDO, TMS2  
Group 3: TDIRA, TDIRB, SCIRXD, SCITXD, XINT1, XINT2, CLKOUT  
62  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.4  
2.7  
TYP  
MAX  
UNIT  
V
= 3.0V, I = 2 mA, 4 mA, 8 mA  
DD  
OH  
All outputs at 50 µA  
= 2 mA, 4 mA, 8 mA  
V
V
High-level output voltage  
V
OH  
Low-level output voltage  
Input current (low level)  
Input current (high level)  
I
0.4  
±20  
±20  
V
OL  
OL  
V = 0 V  
I
I
µA  
µA  
IL  
I
V = V  
I
IH  
DD  
= V  
Output current, high-impedance  
state (off-state)  
I
V
O
or 0 V  
±5  
µA  
OZ  
DD  
’LF2407  
’LF2406  
’LF2402  
’LF2407  
’LF2406  
’LF2402  
’LF2407  
’LF2406  
’LF2402  
’LF2407  
’LF2406  
’LF2402  
180  
150  
115  
80  
70  
55  
45  
45  
45  
80  
80  
80  
2
3.3-V operation,CPUCLK = 30 MHz,  
all peripherals running  
Supply current, operating mode  
mA  
Supply current, Idle 1 low-power  
mode  
LPM0  
LPM1  
LPM2  
3.3-V operation, t  
= 30 MHz  
= 30 MHz  
mA  
mA  
µA  
c(CO)  
c(CO)  
I
DD  
Supply current, Idle 2 low-power  
mode  
3.3-V operation, t  
Supply current,  
PLL/OSC power-down mode  
3.3-V operation, at room  
temperature  
C
C
Input capacitance  
Output capacitance  
pF  
pF  
i
3
o
Test condition: These current measurements are estimates when the CPU is running a dummy code in B0 RAM.  
63  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
PARAMETER MEASUREMENT INFORMATION  
I
OL  
Tester Pin  
Electronics  
Output  
Under  
Test  
50 Ω  
V
LOAD  
C
T
I
OH  
Where:  
I
I
V
=
=
=
=
2 mA (all outputs)  
300 µA (all outputs)  
1.5 V  
OL  
OH  
LOAD  
T
C
50-pF typical load-circuit capacitance  
Figure 19. Test Load Circuit  
signal transition levels  
The data in this section is shown for the 3.3-V version. Note that some of the signals use different reference  
voltages, see the recommended operating conditions table. Output levels are driven to a minimum logic-high  
level of 2.4 V and to a maximum logic-low level of 0.8 V.  
Figure 20 shows output levels.  
2.4 V (V  
80%  
)
OH  
20%  
0.4 V (V  
)
OL  
Figure 20. Output Levels  
Output transition times are specified as follows:  
D
For a high-to-low transition, the level at which the output is said to be no longer high is below 80% of the  
total voltage range and lower and the level at which the output is said to be low is 20% of the total voltage  
range and lower.  
D
For a low-to-high transition, the level at which the output is said to be no longer low is 20% of the total voltage  
range and higher and the level at which the output is said to be high is 80% of the total voltage range and  
higher.  
Figure 21 shows the input levels.  
2.0 V (V  
90%  
)
IH  
10%  
0.8 V (V  
)
IL  
Figure 21. Input Levels  
Input transition times are specified as follows:  
D
For a high-to-low transition on an input signal, the level at which the input is said to be no longer high is 90%  
ofthetotalvoltagerangeandlowerandthelevelatwhichtheinputissaidtobelowis10%ofthetotalvoltage  
range and lower.  
D
For a low-to-high transition on an input signal, the level at which the input is said to be no longer low is 10%  
of the total voltage range and higher and the level at which the input is said to be high is 90% of the total  
voltage range and higher.  
64  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
PARAMETER MEASUREMENT INFORMATION  
timing parameter symbology  
Timing parameter symbols used are created in accordance with JEDEC Standard 100-A. To shorten the  
symbols, some of the pin names and other related terminology have been abbreviated as follows:  
A
A[15:0]  
MS  
R
Memory strobe pins IS, DS, or PS  
READY  
Cl  
XTAL1/CLKIN  
CLKOUT  
CO  
D
RD  
RS  
W
Read cycle or RD  
RESET pin RS  
D[15:0]  
INT  
NMI, XINT1, XINT2  
Write cycle or WE  
Lowercase subscripts and their meanings:  
Letters and symbols and their meanings:  
a
c
d
f
access time  
cycle time (period)  
delay time  
H
L
High  
Low  
V
X
Z
Valid  
fall time  
Unknown, changing, or don’t care level  
High impedance  
h
r
hold time  
rise time  
su  
t
setup time  
transition time  
valid time  
v
w
pulse duration (width)  
general notes on timing parameters  
All output signals from the ’F243/’F241 devices (including CLKOUT) are derived from an internal clock such that  
all output transitions for a given half-cycle occur with a minimum of skewing relative to each other.  
The signal combinations shown in the following timing diagrams may not necessarily represent actual cycles.  
For actual cycle examples, refer to the appropriate cycle description section of this data sheet.  
65  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
external reference crystal/clock with PLL circuit enabled  
timings with the PLL circuit enabled  
PARAMETER  
MIN  
TYP  
MAX  
13  
UNIT  
Resonator  
4
Crystal  
CLKIN  
4
4
20  
f
x
Input clock frequency  
MHz  
20  
Input frequency should be adjusted (CLK PS bits in SCSR1 register) such that CLKOUT = 30 MHz maximum.  
switching characteristics over recommended operating conditions [H = 0.5 t  
] (see Figure 22)  
c(CO)  
PARAMETER  
Cycle time, CLKOUT  
PLL MODE  
MIN  
TYP  
MAX  
UNIT  
ns  
t
t
t
t
t
×4 mode  
33  
c(CO)  
Fall time, CLKOUT  
4
4
ns  
f(CO)  
Rise time, CLKOUT  
ns  
r(CO)  
Pulse duration, CLKOUT low  
Pulse duration, CLKOUT high  
H3  
H –3  
H
H
H+3  
H+3  
ns  
w(COL)  
w(COH)  
ns  
t
p
4096t  
ns  
Transition time, PLL synchronized after RS pin high  
c(Cl)  
Input frequency should be adjusted (CLK PS bits in SCSR1 register) such that CLKOUT = 30 MHz maximum.  
timing requirements (see Figure 22)  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
t
133  
Cycle time, XTAL1/CLKIN  
c(Cl)  
Fall time, XTAL1/CLKIN  
5
5
ns  
f(Cl)  
Rise time, XTAL1/CLKIN  
ns  
r(Cl)  
Pulse duration, XTAL1/CLKIN low as a percentage of t  
40  
40  
60  
60  
%
w(CIL)  
w(CIH)  
c(Cl)  
Pulse duration, XTAL1/CLKIN high as a percentage of t  
c(Cl)  
%
t
c(CI)  
t
w(CIH)  
t
t
r(Cl)  
f(Cl)  
t
w(CIL)  
XTAL1/CLKIN  
CLKOUT  
t
w(COH)  
t
f(CO)  
t
t
t
c(CO)  
w(COL)  
r(CO)  
Figure 22. CLKIN-to-CLKOUT Timing with PLL and External Clock in ×4 Mode  
66  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
RS timings  
switching characteristics over recommended operating conditions for a reset [H = 0.5t  
]
c(CO)  
(see Figure 23)  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
t
t
t
128t  
Pulse duration, RS low  
w(RSL1)  
c(CI)  
36H  
ns  
Delay time, reset vector executed after PLL lock time  
PLL lock time (input cycles)  
d(EX)  
4096 cycles  
p
The parameter t  
refers to the time RS is an output.  
w(RSL1)  
XTAL1/  
CLKIN  
t
d(EX)  
t
p
t
w(RSL1)  
RS  
CLKOUT  
A0–A15  
Figure 23. Watchdog Reset Pulse  
timing requirements for a reset [H = 0.5t  
] (see Figure 24)  
c(CO)  
MIN  
MAX  
UNIT  
t
t
t
1
ms  
Pulse duration, RS low  
w(RSL)  
8t  
ns  
ns  
Pulse duration, RS low  
w(RSL2)  
c(CI)  
36H  
Delay time, reset vector executed after PLL lock time  
d(EX)  
The parameter t  
refers to the time RS is an input  
w(RSL)  
XTAL1/  
CLKIN  
V
op  
t
d(EX)  
t
p
t
w(RSL)  
RS  
CLKOUT  
A0–A15  
Case A. Power-on reset  
XTAL1/  
CLKIN  
t
d(EX)  
t
p
t
w(RSL2)  
RS  
CLKOUT  
A0–A15  
Case B. External reset after power-on  
V
op  
is the V  
voltage below which the device is non-operational, typically around 1.1 V.  
CC  
Figure 24. Reset Timing  
67  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
XF, BIO, and MP/MC timings  
switching characteristics over recommended operating conditions (see Figure 25)  
PARAMETER  
Delay time, CLKOUT high to XF high/low  
MIN  
MAX  
UNIT  
t
–3  
7
ns  
d(XF)  
timing requirements (see Figure 25)  
MIN  
0
MAX  
UNIT  
ns  
t
t
Setup time, BIO or MP/MC low before CLKOUT low  
Hold time, BIO or MP/MC low after CLKOUT low  
su(BIO)CO  
19  
ns  
h(BIO)CO  
CLKOUT  
t
d(XF)  
XF  
t
t
h(BIO)CO  
su(BIO)CO  
BIO,  
MP/MC  
Figure 25. XF and BIO Timing  
68  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
TIMING EVENT MANAGER INTERFACE  
PWM timings  
PWM refers to PWM outputs on PWM1, PWM2, PWM3, PWM4, PWM5, PWM6, T1PWM, and T2PWM.  
switching characteristics over recommended operating conditions for PWM timing  
[H = 0.5t  
] (see Figure 26)  
c(CO)  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
t
t
2H+5  
Pulse duration, PWM output high/low  
w(PWM)  
d(PWM)CO  
15  
ns  
Delay time, CLKOUT low to PWM output switching  
PWM outputs may be 100%, 0%, or increments of t  
with respect to the PWM period.  
c(CO)  
timing requirements [H = 0.5t  
] (see Figure 27)  
c(CO)  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
4H+5  
40  
Pulse duration, TMRDIR low/high  
w(TMRDIR)  
w(TMRCLK)  
wh(TMRCLK)  
c(TMRCLK)  
60  
60  
%
Pulse duration, TMRCLK low as a percentage of TMRCLK cycle time  
Pulse duration, TMRCLK high as a percentage of TMRCLK cycle time  
Cycle time, TMRCLK  
40  
%
4 t  
ns  
c(CO)  
Parameter TMRDIR is equal to the pin TDIR, and parameter TMRCLK is equal to the pin TCLKIN.  
CLKOUT  
t
d(PWM)CO  
t
w(PWM)  
PWMx  
Figure 26. PWM Output Timing  
CLKOUT  
t
w(TMRDIR)  
TMRDIR  
Figure 27. Capture/TMRDIR Timing  
69  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
capture and QEP timings  
CAP refers to CAP1/QEP0/IOPA3, CAP2/QEP1/IOPA4, and CAP3/IOPA5.  
timing requirements [H = 0.5t  
] (see Figure 28)  
c(CO)  
MIN  
MAX  
UNIT  
t
4H +15  
ns  
Pulse duration, CAP input low/high  
w(CAP)  
CLKOUT  
t
w(CAP)  
CAPx  
Figure 28. Capture Input and QEP Timing  
70  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
interrupt timings  
INT refers to NMI, XINT1, and XINT2/IO. PDP refers to PDPINT.  
switching characteristics over recommended operating conditions (see Figure 29)  
PARAMETER  
MIN  
MAX  
UNIT  
t
t
12  
ns  
Delay time, PDPINT low to PWM to high-impedance state  
Delay time, INT low/high to interrupt-vector fetch  
hz(PWM)PDP  
10t  
ns  
d(INT)  
c(CO)  
timing requirements [H = 0.5t  
] (see Figure 29)  
c(CO)  
MIN  
MAX  
UNIT  
ns  
t
t
2H+15  
4H+5  
Pulse duration, INT input low/high  
Pulse duration, PDPINT input low  
w(INT)  
ns  
w(PDP)  
CLKOUT  
t
w(PDP)  
PDPINT  
PWM  
t
hz(PWM)PDP  
t
w(INT)  
XINT1/XINT2/NMI  
ADDRESS  
t
d(INT)  
Interrupt Vector  
Figure 29. Power Drive Protection Interrupt Timing  
71  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
general-purpose input/output timings  
switching characteristics over recommended operating conditions (see Figure 30)  
PARAMETER  
MIN  
MAX  
UNIT  
t
t
t
Delay time, CLKOUT low to GPIO low/high  
Rise time, GPIO switching low to high  
Fall time, GPIO switching high to low  
All GPIOs  
All GPIOs  
All GPIOs  
9
8
6
ns  
ns  
ns  
d(GPO)CO  
r(GPO)  
f(GPO)  
timing requirements [H = 0.5t  
] (see Figure 31)  
c(CO)  
MIN  
MAX  
UNIT  
t
2H+15  
ns  
Pulse duration, GPI high/low  
w(GPI)  
CLKOUT  
t
d(GPO)CO  
GPIO  
t
r(GPO)  
t
f(GPO)  
Figure 30. General-Purpose Output Timing  
CLKOUT  
GPIO  
t
w(GPI)  
Figure 31. General-Purpose Input Timing  
72  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SPI MASTER MODE TIMING PARAMETERS  
SPI master mode timing information is listed in the following tables.  
†‡  
SPI master mode external timing parameters (clock phase = 0) (see Figure 32)  
SPI WHEN (SPIBRR + 1) IS EVEN  
SPI WHEN (SPIBRR + 1)  
IS ODD AND SPIBRR > 3  
OR SPIBRR = 0 OR 2  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
1
t
t
Cycle time, SPICLK  
4t  
128t  
5t  
c(CO)  
127t  
ns  
c(SPC)M  
c(CO)  
c(CO)  
c(CO)  
Pulse duration, SPICLK high  
(clock polarity = 0)  
0.5t  
0.5t  
0.5t  
0.5t  
–10  
10  
10  
10  
0.5t  
0.5t  
0.5t  
0.5t  
0.5t  
0.5t  
0.5t  
0.5t  
0.5t  
0.5t  
+0.5t  
+0.5t  
10  
10  
0.5t  
0.5t  
0.5t  
0.5t  
w(SPCH)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(CO)  
c(CO)  
c(CO)  
c(CO)  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(CO)  
c(CO)  
c(CO)  
§
ns  
ns  
ns  
ns  
ns  
ns  
2
3
4
5
8
9
Pulse duration, SPICLK low  
(clock polarity = 1)  
t
t
t
t
t
t
t
t
t
t
t
w(SPCL)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
Pulse duration, SPICLK low  
(clock polarity = 0)  
–10 0.5t  
10 0.5t  
+ 0.5t  
+ 0.5t  
w(SPCL)M  
§
§
§
§
§
Pulse duration, SPICLK high  
(clock polarity = 1)  
w(SPCH)M  
c(SPC)M  
10  
c(CO)  
10  
Delay time, SPICLK high to  
SPISIMO valid (clock polarity = 0)  
– 10  
– 10  
– 10  
– 10  
d(SPCH-SIMO)M  
d(SPCL-SIMO)M  
v(SPCL-SIMO)M  
v(SPCH-SIMO)M  
su(SOMI-SPCL)M  
su(SOMI-SPCH)M  
v(SPCL-SOMI)M  
v(SPCH-SOMI)M  
Delay time, SPICLK low to  
SPISIMO valid (clock polarity = 1)  
10  
10  
Valid time, SPISIMO data valid after  
SPICLK low (clock polarity =0)  
0.5t  
0.5t  
–10  
–10  
0
0.5t  
0.5t  
+0.5t  
+0.5t  
–10  
–10  
0
c(SPC)M  
c(SPC)M  
c(CO)  
Valid time, SPISIMO data valid after  
SPICLK high (clock polarity =1)  
c(SPC)M  
c(SPC)M  
c(CO)  
Setup time, SPISOMI before  
SPICLK low (clock polarity = 0)  
Setup time, SPISOMI before  
SPICLK high (clock polarity = 1)  
0
0
Valid time, SPISOMI data valid after  
SPICLK low (clock polarity = 0)  
0.25t  
0.25t  
–10  
10  
0.5t  
0.5t  
0.5t  
0.5t  
10  
c(SPC)M  
c(SPC)M  
c(CO)  
Valid time, SPISOMI data valid after  
SPICLK high (clock polarity = 1)  
10  
c(CO)  
c(SPC)M  
c(SPC)M  
§
The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is cleared.  
t = system clock cycle time = 1/CLKOUT = t  
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
c
c(CO)  
ADVANCE INFORMATION  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
PARAMETER MEASUREMENT INFORMATION  
1
SPICLK  
(clock polarity = 0)  
2
4
3
SPICLK  
(clock polarity = 1)  
5
SPISIMO  
SPISOMI  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
SPISTE  
The SPISTE signal must be active before the SPI communication stream starts; the SPISTE signal must remain active  
until the SPI communication stream is complete.  
Figure 32. SPI Master Mode External Timing (Clock Phase = 0)  
74  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
†‡  
SPI master mode external timing parameters (clock phase = 1) (see Figure 33)  
SPI WHEN (SPIBRR + 1) IS EVEN  
SPI WHEN (SPIBRR + 1)  
IS ODD AND SPIBRR > 3  
OR SPIBRR = 0 OR 2  
MIN MAX  
4t 128t  
NO.  
UNIT  
MIN  
MAX  
127t  
c(CO)  
1
t
t
Cycle time, SPICLK  
5t  
c(CO)  
ns  
c(SPC)M  
c(CO) c(CO)  
Pulse duration, SPICLK high  
(clock polarity = 0)  
0.5t  
0.5t  
0.5t  
0.5t  
–10  
–10  
–10  
–10  
0.5t  
0.5t  
0.5t  
0.5t  
0.5t  
0.5t  
0.5t  
0.5t  
0.5t  
–10  
–10  
10  
–10  
0.5t  
0.5t  
0.5t  
w(SPCH)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(CO)  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(CO)  
c(CO)  
c(CO)  
c(CO)  
§
2
ns  
ns  
Pulse duration, SPICLK low  
(clock polarity = 1)  
t
t
t
0.5t  
+0.5t  
+0.5t  
0.5t  
w(SPCL)M  
w(SPCL)M  
w(SPCH)M  
c(CO)  
c(CO)  
c(CO)  
Pulse duration, SPICLK low  
(clock polarity = 0)  
0.5t  
0.5t  
+ 0.5t  
+ 0.5t  
§
3
Pulse duration, SPICLK high  
(clock polarity = 1)  
Setup time, SPISIMO data  
valid before SPICLK high  
(clock polarity = 0)  
t
t
t
t
t
t
t
t
0.5t  
0.5t  
0.5t  
0.5t  
–10  
–10  
–10  
–10  
0.5t  
10  
10  
10  
–10  
su(SIMO-SPCH)M  
su(SIMO-SPCL)M  
v(SPCH-SIMO)M  
v(SPCL-SIMO)M  
su(SOMI-SPCH)M  
su(SOMI-SPCL)M  
v(SPCH-SOMI)M  
v(SPCL-SOMI)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
c(SPC)M  
§
ns  
ns  
ns  
ns  
6
7
Setup time, SPISIMO data  
valid before SPICLK low  
(clock polarity = 1)  
0.5t  
Valid time, SPISIMO data  
valid after SPICLK high  
(clock polarity =0)  
0.5t  
§
Valid time, SPISIMO data  
valid after SPICLK low  
(clock polarity =1)  
0.5t  
c(SPC)M  
c(SPC)M  
0
Setup time, SPISOMI before  
SPICLK high  
(clock polarity = 0)  
0
§
10  
Setup time, SPISOMI before  
SPICLK low  
(clock polarity = 1)  
0
0
Valid time, SPISOMI data  
valid after SPICLK high  
(clock polarity = 0)  
0.25t  
0.25t  
–10  
–10  
0.5t  
0.5t  
–10  
–10  
c(SPC)M  
c(SPC)M  
§
11  
Valid time, SPISOMI data  
valid after SPICLK low  
(clock polarity = 1)  
c(SPC)M  
c(SPC)M  
§
The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is set.  
t = system clock cycle time = 1/CLKOUT = t  
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
c
c(CO)  
ADVANCE INFORMATION  
TMS320LF2407,TMS320LF2406,TMS320LF2402  
TMS320LC2406,TMS320LC2404,TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
PARAMETER MEASUREMENT INFORMATION  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
6
7
SPISIMO  
SPISOMI  
Master Out Data Is Valid  
10  
Data Valid  
11  
Master In Data  
Must Be Valid  
SPISTE  
TheSPISTEsignalmustbeactivebeforetheSPIcommunicationstreamstarts;theSPISTEsignalmustremainactiveuntil  
theSPI communication stream is complete.  
Figure 33. SPI Master Mode External Timing (Clock Phase = 1)  
76  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407,TMS320LF2406, TMS320LF2402  
TMS320LC2406,TMS320LC2404,TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
SPI SLAVE MODE TIMING PARAMETERS  
Slave mode timing information is listed in the following tables.  
†‡  
SPI slave mode external timing parameters (clock phase = 0) (see Figure 34)  
NO.  
MIN  
MAX  
UNIT  
12  
t
t
t
t
t
Cycle time, SPICLK  
4t  
c(CO)  
ns  
c(SPC)S  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
0.5t  
0.5t  
0.5t  
0.5t  
10 0.5t  
10 0.5t  
10 0.5t  
10 0.5t  
w(SPCH)S  
w(SPCL)S  
w(SPCL)S  
w(SPCH)S  
c(SPC)S  
c(SPC)S  
c(SPC)S  
c(SPC)S  
c(SPC)S  
c(SPC)S  
c(SPC)S  
c(SPC)S  
§
13  
ns  
ns  
§
14  
Delay time, SPICLK high to SPISOMI valid  
(clock polarity = 0)  
t
t
t
0.375t  
10  
10  
d(SPCH-SOMI)S  
d(SPCL-SOMI)S  
v(SPCL-SOMI)S  
c(SPC)S  
c(SPC)S  
§
ns  
15  
Delay time, SPICLK low to SPISOMI valid (clock polarity = 1)  
0.375t  
Valid time, SPISOMI data valid after SPICLK low  
(clock polarity =0)  
0.75t  
c(SPC)S  
§
16  
ns  
ns  
ns  
Valid time, SPISOMI data valid after SPICLK high  
(clock polarity =1)  
t
0.75t  
v(SPCH-SOMI)S  
c(SPC)S  
t
t
Setup time, SPISIMO before SPICLK low (clock polarity = 0)  
Setup time, SPISIMO before SPICLK high (clock polarity = 1)  
0
0
su(SIMO-SPCL)S  
§
19  
su(SIMO-SPCH)S  
Valid time, SPISIMO data valid after SPICLK low  
(clock polarity = 0)  
t
0.5t  
0.5t  
v(SPCL-SIMO)S  
v(SPCH-SIMO)S  
c(SPC)S  
§
20  
Valid time, SPISIMO data valid after SPICLK high  
(clock polarity = 1)  
t
c(SPC)S  
§
The MASTER/SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
t = system clock cycle time = 1/CLKOUT = t  
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
c
c(CO)  
77  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407,TMS320LF2406, TMS320LF2402  
TMS320LC2406,TMS320LC2404,TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
PARAMETER MEASUREMENT INFORMATION  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clockpolarity = 1)  
15  
16  
SPISOMI  
SPISIMO  
SPISOMI Data Is Valid  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISTE  
TheSPISTEsignalmustbeactivebeforetheSPIcommunicationstreamstarts;theSPISTEsignalmustremainactiveuntil  
theSPI communication stream is complete.  
Figure 34. SPI Slave Mode External Timing (Clock Phase = 0)  
78  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407,TMS320LF2406, TMS320LF2402  
TMS320LC2406,TMS320LC2404,TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
†‡  
SPI slave mode external timing parameters (clock phase = 1) (see Figure 35)  
NO.  
MIN  
MAX  
UNIT  
12  
t
t
t
t
t
t
t
Cycle time, SPICLK  
8t  
ns  
c(SPC)S  
c(CO)  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
Setup time, SPISOMI before SPICLK high (clock polarity = 0)  
Setup time, SPISOMI before SPICLK low (clock polarity = 1)  
0.5t  
0.5t  
0.5t  
0.5t  
10 0.5t  
10 0.5t  
10 0.5t  
10 0.5t  
w(SPCH)S  
c(SPC)S  
c(SPC)S  
c(SPC)S  
c(SPC)S  
c(SPC)S  
c(SPC)S  
c(SPC)S  
c(SPC)S  
§
13  
ns  
ns  
ns  
w(SPCL)S  
w(SPCL)S  
§
14  
w(SPCH)S  
0.125t  
c(SPC)S  
su(SOMI-SPCH)S  
su(SOMI-SPCL)S  
§
17  
0.125t  
c(SPC)S  
Valid time, SPISOMI data valid after SPICLK high  
(clock polarity =0)  
t
t
0.75t  
v(SPCH-SOMI)S  
v(SPCL-SOMI)S  
c(SPC)S  
§
ns  
ns  
ns  
18  
Valid time, SPISOMI data valid after SPICLK low  
(clock polarity =1)  
0.75t  
c(SPC)S  
t
t
Setup time, SPISIMO before SPICLK high (clock polarity = 0)  
Setup time, SPISIMO before SPICLK low (clock polarity = 1)  
0
0
su(SIMO-SPCH)S  
§
21  
su(SIMO-SPCL)S  
Valid time, SPISIMO data valid after SPICLK high  
(clock polarity = 0)  
t
0.5t  
0.5t  
v(SPCH-SIMO)S  
v(SPCL-SIMO)S  
c(SPC)S  
§
22  
Valid time, SPISIMO data valid after SPICLK low  
(clock polarity = 1)  
t
c(SPC)S  
§
The MASTER/SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is set.  
t = system clock cycle time = 1/CLKOUT = t  
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
c
c(CO)  
79  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407,TMS320LF2406, TMS320LF2402  
TMS320LC2406,TMS320LC2404,TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
PARAMETER MEASUREMENT INFORMATION  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
17  
18  
SPISOMI  
SPISIMO  
SPISOMI Data Is Valid  
21  
Data Valid  
22  
SPISIMO Data  
Must Be Valid  
SPISTE  
TheSPISTEsignalmustbeactivebeforetheSPIcommunicationstreamstarts;theSPISTEsignalmustremainactiveuntil  
theSPI communication stream is complete.  
Figure 35. SPI Slave Mode External Timing (Clock Phase = 1)  
80  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407,TMS320LF2406, TMS320LF2402  
TMS320LC2406,TMS320LC2404,TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
external memory interface read timings  
switching characteristics over recommended operating conditions for an external memory  
interface read (see Figure 36)  
PARAMETER  
Delay time, CLKOUT low to control valid  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
3
3
5
4
d(COL–CNTL)  
d(COL–CNTH)  
d(COL–A)RD  
d(COH–RDL)  
ns  
Delay time, CLKOUT low to control inactive  
Delay time, CLKOUT low to address valid  
Delay time, CLKOUT high to RD strobe active  
ns  
ns  
t
t
t
–4  
0
3
3
ns  
ns  
ns  
Delay time, CLKOUT low to RD strobe inactive high  
Delay time, CLKOUT low to STRB strobe active low  
Delay time, CLKOUT low to STRB strobe inactive high  
d(COL–RDH)  
d(COL–SL)  
d(COL–SH)  
t
t
t
–4  
22  
–1  
ns  
ns  
ns  
Hold time, address valid after CLKOUT low  
h(A)COL  
su(A)RD  
h(A)RD  
Setup time, address valid before RD strobe active low  
Hold time, address valid after RD strobe inactive high  
timing requirements [H = 0.5t  
] (see Figure 36)  
c(CO)  
MIN  
MAX  
UNIT  
t
t
t
t
2H–13  
ns  
Access time, read data from address valid  
Setup time, read data before RD strobe inactive high  
Hold time, read data after RD strobe inactive high  
Hold time, read data after address invalid  
a(A)  
12  
ns  
ns  
ns  
su(D)RD  
h(D)RD  
h(AIV-D)  
0
–3  
81  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407,TMS320LF2406, TMS320LF2402  
TMS320LC2406,TMS320LC2404,TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
external memory interface read timings (continued)  
CLKOUT  
t
d(COL–CNTL)  
t
d(COL–CNTH)  
PS, DS, IS, BR  
t
d(COL–A)RD  
t
d(COL–A)RD  
t
h(A)COL  
t
h(A)COL  
A[0:15]  
t
d(COH–RDL)  
t
d(COL–RDH)  
t
t
a(A)  
d(COH–RDL)  
t
d(COL–RDH)  
t
h(A)RD  
RD  
t
h(AIV–D)  
t
su(A)RD  
t
a(A)  
t
su(D)RD  
t
h(D)RD  
t
su(D)RD  
t
h(D)RD  
D[0:15]  
t
d(COL–SL)  
t
d(COL–SH)  
STRB  
Figure 36. Memory Interface Read/Read Timings  
82  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407,TMS320LF2406, TMS320LF2402  
TMS320LC2406,TMS320LC2404,TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
external memory interface write timings  
switching characteristics over recommended operating conditions for an external memory  
interface write [H = 0.5t  
] (see Figure 37)  
c(CO)  
PARAMETER  
MIN MAX  
UNIT  
ns  
t
t
t
t
9
Delay time, CLKOUT high to control valid  
Delay time, CLKOUT high to control inactive  
Delay time, CLKOUT high to address valid  
Delay time, CLKOUT high to R/W low  
d(COH–CNTL)  
d(COH–CNTH)  
d(COH–A)W  
9
11  
6
ns  
ns  
ns  
d(COH–RWL)  
t
t
t
t
t
t
6
0
0
ns  
ns  
ns  
ns  
ns  
ns  
Delay time, CLKOUT high to R/W high  
d(COH–RWH)  
d(COL–WL)  
d(COL–WH)  
en(D)COL  
–4  
–4  
7
Delay time, CLKOUT low to WE strobe active low  
Delay time, CLKOUT low to WE strobe inactive high  
Enable time, data bus driven from CLKOUT low  
Delay time, CLKOUT low to STRB active low  
Delay time, CLKOUT low to STRB inactive high  
3
3
d(COL–SL)  
d(COL–SH)  
t
t
t
t
H–1  
H–9  
2H–1  
3
ns  
ns  
ns  
ns  
Hold time, address valid after CLKOUT high  
h(A)COHW  
su(A)W  
su(D)W  
h(D)W  
Setup time, address valid before WE strobe active low  
Setup time, write data before WE strobe inactive high  
Hold time, write data after WE strobe inactive high  
t
4
ns  
Disable time, data bus high impedance from WE high  
dis(W-D)  
83  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407,TMS320LF2406, TMS320LF2402  
TMS320LC2406,TMS320LC2404,TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
external memory interface write timings (continued)  
CLKOUT  
t
d(COH–CNTL)  
d(COH–A)W  
t
d(COH–CNTH)  
t
d(COH–CNTL)  
PS, DS, IS, BR  
t
t
h(A)COHW  
A[0:15]  
t
d(COH–RWL)  
t
d(COH–RWH)  
t
su(A)W  
R/W  
t
d(COL–WL)  
t
d(COL–WH)  
t
d(COL–WH)  
t
d(COL–WL)  
WE  
t
dis(W-D)  
t
en(D)COL  
t
en(D)COL  
t
su(D)W  
t
su(D)W  
t
h(D)W  
t
h(D)W  
D[0:15]  
t
d(COL–SL)  
t
d(COL–SL)  
t
d(COL–SH)  
t
d(COL–SH)  
STRB  
ENA_144  
CLKOUT  
2H  
2H  
VIS_OE  
NOTE A: ENA_144whenactivelowalongwithBVISbits(10,9setto01or11)inregisterWSGR-IO@FFFFh,CLKOUTandVIS_OEwillbevisible  
atpinsxx(’LF240x)andxx(’LF240x),respectively. CLKOUTandVIS_OEindicateinternalmemorywritecycles(program/data). During  
VIS_OE cycles, the external bus will be driven. CLKOUT is to be used along with VIS_OE for trace capabilities.  
Figure 37. Address Visibility Mode  
84  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407,TMS320LF2406, TMS320LF2402  
TMS320LC2406,TMS320LC2404,TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
external memory interface ready-on-read timings  
switching characteristics over recommended operating conditions for an external memory  
interface ready-on-read (see Figure 38)  
PARAMETER  
Delay time, CLKOUT low to address valid  
MIN MAX  
UNIT  
t
5
MAX  
4
ns  
d(COL–A)RD  
timing requirements for an external memory interface ready-on-read (see Figure 38)  
MIN  
UNIT  
t
–5  
12  
ns  
Hold time, READY after CLKOUT high  
h(RDY)COH  
t
t
t
ns  
ns  
ns  
Setup time, read data before RD strobe inactive high  
Valid time, READY after address valid on read  
Setup time, READY before CLKOUT high  
su(D)RD  
v(RDY)ARD  
su(RDY)COH  
17  
CLKOUT  
Wait Cycle  
PS, DS, IS, BR  
t
d(COL–A)RD  
A[0:15]  
RD  
t
su(D)RD  
D[0:15]  
STRB  
t
v(RDY)ARD  
t
h(RDY)COH  
READY  
t
su(RDY)COH  
Figure 38. Ready-on-Read Timings  
85  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407,TMS320LF2406, TMS320LF2402  
TMS320LC2406,TMS320LC2404,TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
external memory interface ready-on-write timings  
switching characteristics over recommended operating conditions for an external memory  
interface ready-on-write (see Figure 39)  
PARAMETER  
Delay time, CLKOUT high to address valid  
MIN  
MAX  
UNIT  
t
11  
ns  
d(COH–A)W  
timing requirements for an external memory interface ready-on-write [H = 0.5t  
(see Figure 39)  
]
c(CO)  
MIN  
MAX  
UNIT  
t
t
t
t
–5  
ns  
Hold time, READY after CLKOUT high  
h(RDY)COH  
2H–1  
2H  
4
ns  
ns  
ns  
Setup time, write data before WE strobe inactive high  
Valid time, READY after address valid on write  
Setup time, READY before CLKOUT high  
su(D)W  
v(RDY)AW  
su(RDY)COH  
17  
CLKOUT  
Wait Cycle  
PS, DS, IS, BR  
t
d(COH–A)W  
A[0:15]  
WE  
t
su(D)W  
D[0:15]  
STRB  
t
v(RDY)AW  
t
su(RDY)COH  
t
h(RDY)COH  
READY  
Figure 39. Ready-on-Write Timings  
86  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407,TMS320LF2406, TMS320LF2402  
TMS320LC2406,TMS320LC2404,TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
10-bit analog-to-digital converter (ADC)  
The 10-bit ADC has a separate power bus for its analog circuitry. These pins are referred to as V  
and V  
.
CCA  
SSA  
The power bus isolation is to enhance ADC performance by preventing digital switching noise of the logic  
circuitry that can be present on V and V from coupling into the ADC analog stage. All ADC specifications  
SS  
CC  
are given with respect to V  
unless otherwise noted.  
SSA  
Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-bit (1024 values)  
Monotonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Assured  
Output conversion mode . . . . . . . . . . . . . . . . . . . . . . . 000h to 3FFh (000h for V V  
; 3FFh for V V  
)
I
SSA  
I
CCA  
Conversion time (including sample time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 ns  
recommended operating conditions  
MIN  
NOM  
3.3  
0
MAX  
UNIT  
V
V
V
V
Analogsupply voltage  
Analogground  
3.0  
3.6  
V
V
V
V
V
CCA  
SSA  
Analog supply reference source  
V
V
CCA  
REFHI  
REFLO  
REFLO  
Analog ground reference source  
V
V
REFHI  
SSA  
SSA  
V
AI  
Analoginputvoltage,ADCIN00–ADCIN07  
V
V
CCA  
V
and V  
must be stable, within ±1/2 LSB of the required resolution, during the entire conversion time.  
REFLO  
REFHI  
ADC operating frequency  
MIN  
MAX  
UNIT  
ADCoperating frequency  
30  
MHz  
87  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407,TMS320LF2406, TMS320LF2402  
TMS320LC2406,TMS320LC2404,TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
operating characteristics over recommended operating condition ranges  
PARAMETER  
DESCRIPTION  
Converting  
MIN  
MAX  
10  
UNIT  
V
V
= 3.3 V  
mA  
CCA  
Non-converting  
2
I
Analog supply current  
CCA  
PLL or OSC power  
down  
= V  
= 3.3 V  
1
mA  
CCA  
REFHI  
Non-sampling  
Sampling  
10  
30  
Typical capacitive load on  
analog input pin  
C
ai  
Analoginputcapacitance  
pF  
Difference between the actual step width and the ideal  
value  
E
DNL  
Differentialnonlinearityerror  
"2  
LSB  
Maximum deviation from the best straight line through  
the ADC transfer characteristics, excluding the  
quantizationerror  
E
INL  
Integralnonlinearityerror  
"2  
LSB  
t
Delay time, power-up to ADC valid  
Analog input source impedance  
Time to stabilize analog stage after power-up  
10  
10  
ms  
d(PU)  
Analog input source impedance for conversions to  
Z
AI  
remain within specifications at min t  
w(SH)  
Absolute resolution=4.89mV. AtV  
REFHI  
=3.3VandV  
REFLO  
=0V,thisisoneLSB.AsV  
decreases,V  
increases,orboth,theLSB  
REFLO  
REFHI  
size decreases. Therefore, the absolute accuracy and differential/integral linearity errors in terms of LSBs increase.  
88  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407,TMS320LF2406, TMS320LF2402  
TMS320LC2406,TMS320LC2404,TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
internal ADC module timings (see Figure 40)  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
t
t
Cycle time, ADC prescaled clock  
33.3  
c(AD)  
Pulse duration, total sample/hold and conversion time  
Pulse duration, sample and hold time  
Pulse duration, total conversion time  
500  
ns  
w(SHC)  
w(SH)  
2t  
32t  
ns  
c(AD)  
c(AD)  
10t  
ns  
w(C)  
c(AD)  
c(CO)  
c(CO)  
Delay time, start of conversion to beginning of sample and hold  
Delay time, end of conversion to data loaded into result register  
3t  
2t  
ns  
d(SOC-SH)  
d(EOC-FIFO)  
ns  
t
Delay time, ADC flag to ADC interrupt  
2t  
c(CO)  
ns  
d(ADCINT)  
The total sample/hold and conversion time is determined by the summation of t  
Can be varied by ACQ Prescalar bits in the ADCCTRL1 register  
, t  
), t  
, and t  
.
d(EOC-FIFO)  
d(SOC-SH) w(SH w(C)  
t
c(AD)  
Bit Converted  
ADC Clock  
9
8
7
6
5
4
3
1
0
2
Analog Input  
EOC/Convert  
t
w(C)  
t
w(SH)  
InternalStart/  
SampleHold  
t
d(SOC–SH)  
Start of Convert  
XFR to FIFO  
t
d(EOC–FIFO)  
t
w(SHC)  
t
d(ADCINT)  
Figure 40. Analog-to-Digital Internal Module Timing  
89  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
peripheral register description  
Table 18 is a collection of all the programmable registers of the ’LF240x/’LC240x and is provided as a quick  
reference.  
Table 18. ’LF240x/’LC240x DSP Peripheral Register Description  
BIT 15  
BIT 7  
BIT 14  
BIT 6  
BIT 13  
BIT 5  
BIT 12  
BIT 4  
BIT 11  
BIT 3  
BIT 10  
BIT 2  
BIT 9  
BIT 1  
BIT 8  
BIT 0  
ADDR  
REG  
DATA MEMORY SPACE  
CPU STATUS REGISTERS  
ARP  
DP(6)  
ARB  
1
OV  
DP(4)  
CNF  
XF  
OVM  
DP(3)  
TC  
1
DP(2)  
SXM  
1
INTM  
DP(1)  
C
DP(8)  
DP(0)  
1
ST0  
ST1  
DP(7)  
1
DP(5)  
1
1
PM  
GLOBAL MEMORY AND CPU INTERRUPT REGISTERS  
00004h  
00005h  
00006h  
IMR  
INT6 MASK  
INT5 MASK  
INT4 MASK  
INT3 MASK  
INT2 MASK  
INT1 MASK  
Reserved  
GREG  
IFR  
INT6 FLAG  
INT5 FLAG  
INT4 FLAG  
INT3 FLAG  
INT2 FLAG  
INT1 FLAG  
SYSTEM REGISTERS  
IRQ0.15  
IRQ0.7  
IRQ1.15  
IRQ1.7  
IRQ0.14  
IRQ0.6  
IRQ1.14  
IRQ1.6  
IRQ0.13  
IRQ0.5  
IRQ1.13  
IRQ1.5  
IRQ0.12  
IRQ0.11  
IRQ0.3  
IRQ1.11  
IRQ1.3  
IRQ0.10  
IRQ0.2  
IRQ1.10  
IRQ1.2  
IRQ0.9  
IRQ0.1  
IRQ1.9  
IRQ1.1  
IRQ0.8  
IRQ0.0  
IRQ1.8  
IRQ1.0  
07010h  
07011h  
PIRQR0  
IRQ0.4  
IRQ1.12  
IRQ1.4  
PIRQR1  
PIRQR2  
07012h  
07013h  
Reserved  
Reserved  
IAK0.11  
IAK0.15  
IAK0.7  
IAK1.15  
IAK1.7  
IAK0.14  
IAK0.6  
IAK1.14  
IAK1.6  
IAK0.13  
IAK0.5  
IAK1.13  
IAK1.5  
IAK0.12  
IAK0.4  
IAK1.12  
IAK1.4  
IAK0.10  
IAK0.2  
IAK1.10  
IAK1.2  
IAK0.9  
IAK0.1  
IAK1.9  
IAK1.1  
IAK0.8  
IAK0.0  
IAK1.8  
IAK1.0  
07014h  
07015h  
PIACKR0  
IAK0.3  
IAK1.11  
IAK1.3  
PIACKR1  
PIACKR2  
07016h  
07017h  
Reserved  
Reserved  
OSC FAIL  
FLAG  
OSC FAIL  
RESET  
CLKSRC  
LPM1  
LPM0  
CLK PS2  
CLK PS1  
CLK PS0  
07018h  
SCSR1  
SCSR2  
NMI EN  
(test only)  
ADC CLKEN  
SCI CLKEN  
SPI CLKEN  
CAN CLKEN  
EVB CLKEN  
EVA CLKEN  
ILLADR  
07019h  
WD  
OVERRIDE  
XMIF HI Z  
BOOT_EN  
MP/MC  
DON  
PON  
0701Ah  
to  
Reserved  
0701Bh  
DIN15  
DIN7  
DIN14  
DIN6  
DIN13  
DIN5  
DIN12  
DIN4  
DIN11  
DIN3  
DIN10  
DIN2  
DIN9  
DIN1  
DIN8  
DIN0  
0701Ch  
0701Dh  
0701Eh  
0701Fh  
DINR  
PIVR  
Reserved  
V15  
V7  
V14  
V6  
V13  
V5  
V12  
V4  
V11  
V3  
V10  
V2  
V9  
V1  
V8  
V0  
Reserved  
Indicates change with respect to the ’F243/’F241, ’C242 device register maps.  
90  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
peripheral register description (continued)  
Table 18. ’LF240x/’LC240x DSP Peripheral Register Description (Continued)  
BIT 15  
BIT 7  
BIT 14  
BIT 6  
BIT 13  
BIT 5  
BIT 12  
BIT 4  
BIT 11  
BIT 3  
BIT 10  
BIT 2  
BIT 9  
BIT 1  
BIT 8  
BIT 0  
ADDR  
REG  
WD CONTROL REGISTERS  
07020h  
to  
Reserved  
07022h  
07023h  
07024h  
07025h  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
WDCNTR  
WDKEY  
Reserved  
Reserved  
07026h  
to  
07028h  
07029h  
WD FLAG  
WDDIS  
WDCHK2  
WDCHK1  
WDCHK0  
Reserved  
WDPS2  
WDPS1  
WDPS0  
WDCR  
0702Ah  
to  
07031h  
07032h  
to  
07038h  
Reserved  
Reserved  
07039h  
to  
0703Fh  
SERIAL PERIPHERAL INTERFACE (SPI) CONFIGURATION CONTROL REGISTERS  
SPI SW  
RESET  
CLOCK  
POLARITY  
SPI  
CHAR3  
SPI  
CHAR2  
SPI  
CHAR1  
SPI  
CHAR0  
07040h  
07041h  
SPICCR  
SPICTL  
OVERRUN  
INT ENA  
CLOCK  
PHASE  
MASTER/  
SLAVE  
SPI INT  
ENA  
TALK  
RECEIVER  
OVERRUN  
FLAG  
SPI INT  
FLAG  
TX BUF  
FULL FLAG  
07042h  
SPISTS  
SPIBRR  
07043h  
07044h  
07045h  
Reserved  
SPI BIT  
RATE 6  
SPI BIT  
RATE 5  
SPI BIT  
RATE 4  
SPI BIT  
RATE 3  
SPI BIT  
RATE 2  
SPI BIT  
RATE 1  
SPI BIT  
RATE 0  
Reserved  
ERXB15  
ERXB7  
RXB15  
RXB7  
ERXB14  
ERXB6  
RXB14  
RXB6  
ERXB13  
ERXB5  
RXB13  
RXB5  
ERXB12  
ERXB4  
RXB12  
RXB4  
ERXB11  
ERXB3  
RXB11  
RXB3  
ERXB10  
ERXB2  
RXB10  
RXB2  
ERXB9  
ERXB1  
RXB9  
ERXB8  
ERXB0  
RXB8  
07046h  
07047h  
07048h  
07049h  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
RXB1  
RXB0  
TXB15  
TXB7  
TXB14  
TXB6  
TXB13  
TXB5  
TXB12  
TXB4  
TXB11  
TXB3  
TXB10  
TXB2  
TXB9  
TXB8  
TXB1  
TXB0  
SDAT15  
SDAT7  
SDAT14  
SDAT6  
SDAT13  
SDAT5  
SDAT12  
SDAT4  
SDAT11  
SDAT3  
SDAT10  
SDAT2  
SDAT9  
SDAT1  
SDAT8  
SDAT0  
0704Ah  
to  
Reserved  
0704Eh  
SPI  
PRIORITY  
SPI  
SUSP SOFT  
SPI  
SUSP FREE  
0704Fh  
SPIPRI  
Indicates change with respect to the ’F243/’F241, ’C242 device register maps.  
91  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
peripheral register description (continued)  
Table 18. ’LF240x/’LC240x DSP Peripheral Register Description (Continued)  
BIT 15  
BIT 7  
BIT 14  
BIT 6  
BIT 13  
BIT 5  
BIT 12  
BIT 4  
BIT 11  
BIT 3  
BIT 10  
BIT 2  
BIT 9  
BIT 1  
BIT 8  
BIT 0  
ADDR  
REG  
SERIAL COMMUNICATIONS INTERFACE (SCI) CONFIGURATION CONTROL REGISTERS  
STOP  
BITS  
EVEN/ODD  
PARITY  
PARITY  
ENABLE  
LOOP BACK  
ENA  
ADDR/IDLE  
MODE  
SCI  
CHAR2  
SCI  
CHAR1  
SCI  
CHAR0  
07050h  
07051h  
07052h  
07053h  
07054h  
SCICCR  
RX ERR  
INT ENA  
SW RESET  
BAUD13  
BAUD5  
BAUD12  
BAUD4  
TXWAKE  
BAUD11  
BAUD3  
SLEEP  
BAUD10  
BAUD2  
TXENA  
BAUD9  
BAUD1  
RXENA  
BAUD8  
SCICTL1  
SCIHBAUD  
SCILBAUD  
SCICTL2  
BAUD15  
(MSB)  
BAUD14  
BAUD6  
BAUD0  
(LSB)  
BAUD7  
TXRDY  
RX/BK  
INT ENA  
TX  
INT ENA  
TX EMPTY  
07055h  
07056h  
07057h  
07058h  
07059h  
RX ERROR  
ERXDT7  
RXDT7  
RXRDY  
ERXDT6  
RXDT6  
BRKDT  
ERXDT5  
RXDT5  
FE  
OE  
PE  
RXWAKE  
ERXDT1  
RXDT1  
SCIRXST  
ERXDT4  
RXDT4  
ERXDT3  
RXDT3  
ERXDT2  
RXDT2  
ERXDT0  
RXDT0  
SCIRXEMU  
SCIRXBUF  
Reserved  
TXDT7  
TXDT6  
TXDT5  
TXDT4  
TXDT3  
TXDT2  
TXDT1  
TXDT0  
SCITXBUF  
0705Ah  
to  
Reserved  
0705Eh  
SCITX  
PRIORITY  
SCIRX  
PRIORITY  
SCI  
SOFT  
SCI  
FREE  
0705Fh  
SCIPRI  
07060h  
to  
0706Fh  
Reserved  
EXTERNAL INTERRUPT CONTROL REGISTERS  
XINT1  
FLAG  
07070h  
07071h  
XINT1CR  
XINT2CR  
XINT1  
POLARITY  
XINT1  
PRIORITY  
XINT1  
ENA  
XINT2  
FLAG  
XINT2  
POLARITY  
XINT2  
PRIORITY  
XINT2  
ENA  
07072h  
to  
0708Fh  
Reserved  
DIGITAL I/O CONTROL REGISTERS  
MCRA.15  
MCRA.7  
MCRA.14  
MCRA.6  
MCRA.13  
MCRA.5  
MCRA.12  
MCRA.4  
MCRA.11  
MCRA.3  
MCRA.10  
MCRA.2  
MCRA.9  
MCRA.1  
MCRA.8  
MCRA.0  
07090h  
07091h  
07092h  
07093h  
07094h  
MCRA  
MCRB  
Reserved  
MCRB.15  
MCRB.7  
MCRB.14  
MCRB.6  
MCRB.13  
MCRB.5  
MCRB.12  
MCRB.4  
MCRB.11  
MCRB.3  
MCRB.10  
MCRB.2  
MCRB.9  
MCRB.1  
MCRB.8  
MCRB.0  
Reserved  
MCRC.15  
MCRC.7  
E7DIR  
MCRC.14  
MCRC.6  
E6DIR  
MCRC.13  
MCRC.5  
E5DIR  
MCRC.12  
MCRC.4  
E4DIR  
MCRC.11  
MCRC.3  
E3DIR  
MCRC.10  
MCRC.2  
E2DIR  
MCRC.9  
MCRC.1  
E1DIR  
MCRC.8  
MCRC.0  
E0DIR  
MCRC  
07095h  
PEDATDIR  
IOPE7  
IOPE6  
IOPE5  
IOPE4  
IOPE3  
IOPE2  
IOPE1  
IOPE0  
Indicates change with respect to the ’F243/’F241, ’C242 device register maps.  
92  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
peripheral register description (continued)  
Table 18. ’LF240x/’LC240x DSP Peripheral Register Description (Continued)  
BIT 15  
BIT 7  
BIT 14  
BIT 6  
BIT 13  
BIT 5  
DIGITAL I/O CONTROL REGISTERS (CONTINUED)  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 1  
BIT 8  
BIT 0  
ADDR  
REG  
BIT 4  
BIT 3  
BIT 2  
F7DIR  
IOPF7  
A7DIR  
IOPA7  
F6DIR  
IOPF6  
A6DIR  
IOPA6  
F5DIR  
IOPF5  
A5DIR  
IOPA5  
F4DIR  
IOPF4  
A4DIR  
IOPA4  
F3DIR  
IOPF3  
A3DIR  
IOPA3  
F2DIR  
IOPF2  
A2DIR  
IOPA2  
F1DIR  
IOPF1  
A1DIR  
IOPA1  
F0DIR  
IOPF0  
A0DIR  
IOPA0  
07096h  
PFDATDIR  
PADATDIR  
07098h  
07099h  
0709Ah  
0709Bh  
0709Ch  
0709Dh  
0709Eh  
0709Fh  
Reserved  
B7DIR  
IOPB7  
B6DIR  
IOPB6  
B5DIR  
IOPB5  
B4DIR  
IOPB4  
B3DIR  
IOPB3  
B2DIR  
IOPB2  
B1DIR  
IOPB1  
B0DIR  
IOPB0  
PBDATDIR  
PCDATDIR  
PDDATDIR  
Reserved  
C7DIR  
IOPC7  
C6DIR  
IOPC6  
C5DIR  
IOPC5  
C4DIR  
IOPC4  
C3DIR  
IOPC3  
C2DIR  
IOPC2  
C1DIR  
IOPC1  
C0DIR  
IOPC0  
Reserved  
D7DIR  
IOPD7  
D6DIR  
IOPD6  
D5DIR  
IOPD5  
D4DIR  
IOPD4  
D3DIR  
IOPD3  
D2DIR  
IOPD2  
D1DIR  
IOPD1  
D0DIR  
IOPD0  
Reserved  
ANALOG-TO-DIGITAL CONVERTER (ADC) REGISTERS  
ADC  
S/W RESET  
ACQ  
ACQ  
ACQ  
ACQ  
PRESCALE0  
SOFT  
FREE  
PRESCALE3 PRESCALE2 PRESCALE1  
070A0h  
ADCCTRL1  
CONV PRE-  
SCALE (CPS) UOUS RUN  
CONTIN-  
INT  
PRIORITY  
SEQ1/2  
CASCADE  
CALIB EN  
INT ENA  
SEQ1 Mode1 SEQ1 Mode0  
INT ENA INT ENA  
SEQ2 Mode1 SEQ2 Mode0  
BRIDGE EN  
INT ENA  
HI / LO  
FSTEST EN  
EVB SOC  
EN SEQ1  
Reset SEQ1  
Start CALIB  
INT FLAG  
SEQ1  
EVA SOC  
EN SEQ1  
SOC SEQ1  
SEQ1 BUSY  
070A1h  
070A2h  
ADCCTRL2  
MAXCONV  
EXT SOC  
EN SEQ1  
INT FLAG  
SEQ2  
EVB SOC  
EN SEQ2  
Reset SEQ2  
SOC SEQ2  
SEQ2 BUSY  
MAXCONV2  
2
MAXCONV2  
1
MAXCONV2  
0
MAXCONV1  
3
MAXCONV1  
2
MAXCONV1  
1
MAXCONV1  
0
CONV 3  
CONV 1  
CONV 7  
CONV 5  
CONV 11  
CONV 9  
CONV 15  
CONV 13  
CONV 3  
CONV 1  
CONV 7  
CONV 5  
CONV 11  
CONV 9  
CONV 15  
CONV 13  
CONV 3  
CONV 1  
CONV 7  
CONV 5  
CONV 11  
CONV 9  
CONV 15  
CONV 13  
CONV 3  
CONV 1  
CONV 7  
CONV 5  
CONV 11  
CONV 9  
CONV 15  
CONV 13  
CONV 2  
CONV 0  
CONV 2  
CONV 0  
CONV 2  
CONV 0  
CONV 2  
CONV 0  
070A3h  
070A4h  
070A5h  
070A6h  
CHSELSEQ1  
CHSELSEQ2  
CHSELSEQ3  
CHSELSEQ4  
CONV 6  
CONV 6  
CONV 6  
CONV 6  
CONV 4  
CONV 4  
CONV 4  
CONV 4  
CONV 10  
CONV 8  
CONV 10  
CONV 8  
CONV 10  
CONV 8  
CONV 10  
CONV 8  
CONV 14  
CONV 12  
SEQ CNTR3  
CONV 14  
CONV 12  
SEQ CNTR2  
CONV 14  
CONV 12  
SEQ CNTR1  
CONV 14  
CONV 12  
SEQ CNTR0  
SEQ2  
STATE  
2
SEQ2  
STATE  
1
SEQ2  
STATE  
0
SEQ1  
STATE  
1
070A7h  
AUTO_SEQ_SR  
SEQ2-STATE  
3
SEQ1-STATE SEQ1-STATE  
SEQ1-STATE  
0
3
2
D9  
D1  
D9  
D1  
D9  
D1  
D8  
D0  
D8  
D0  
D8  
D0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
070A8h  
070A9h  
070AAh  
RESULT0  
RESULT1  
RESULT2  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
Indicates change with respect to the ’F243/’F241, ’C242 device register maps.  
93  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
peripheral register description (continued)  
Table 18. ’LF240x/’LC240x DSP Peripheral Register Description (Continued)  
BIT 15  
BIT 7  
BIT 14  
BIT 6  
BIT 13  
BIT 5  
BIT 12  
BIT 4  
BIT 11  
BIT 3  
BIT 10  
BIT 2  
BIT 9  
BIT 1  
BIT 8  
BIT 0  
ADDR  
REG  
ANALOG-TO-DIGITAL CONVERTER (ADC) REGISTERS (CONTINUED)  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D1  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
070ABh  
070ACh  
070ADh  
070AEh  
070AFh  
070B0h  
070B1h  
070B2h  
070B3h  
070B4h  
070B5h  
070B6h  
070B7h  
070B8h  
RESULT3  
RESULT4  
RESULT5  
RESULT6  
RESULT7  
RESULT8  
RESULT9  
RESULT10  
RESULT11  
RESULT12  
RESULT13  
RESULT14  
RESULT15  
CALIBRATION  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
00  
D3  
0
D2  
0
D7  
0
D6  
0
D5  
0
D4  
0
D2  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
070B9h  
to  
Reserved  
070FFh  
CONTROLLER AREA NETWORK (CAN) CONFIGURATION CONTROL REGISTERS  
MD3  
TA5  
MD2  
TA4  
ME4  
TA2  
ME1  
ME0  
07100h  
07101h  
07102h  
07103h  
07104h  
MDER  
TCR  
ME5  
TA3  
ME3  
AA5  
TRR5  
RML3  
OPC3  
PDR  
ME2  
AA4  
TRR4  
RML2  
OPC2  
DBO  
AA3  
AA2  
TRS5  
RFP3  
RMP3  
TRS4  
RFP2  
RMP2  
TRS3  
RFP1  
RMP1  
SUSP  
TRS2  
RFP0  
RMP0  
CCR  
TRR3  
RML1  
OPC1  
WUBA  
MBNR1  
TRR2  
RML0  
OPC0  
CDR  
MBNR0  
RCR  
MCR  
BCR2  
ABO  
STM  
BRP7  
BRP6  
BRP5  
BRP4  
BRP3  
BRP2  
BRP1  
BRP0  
Indicates change with respect to the ’F243/’F241, ’C242 device register maps.  
94  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
peripheral register description (continued)  
Table 18. ’LF240x/’LC240x DSP Peripheral Register Description (Continued)  
BIT 15  
BIT 7  
BIT 14  
BIT 6  
CONTROLLER AREA NETWORK (CAN) CONFIGURATION CONTROL REGISTERS (CONTINUED)  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
BIT 0  
ADDR  
REG  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
SAM  
TSEG1–3  
TSEG1–2  
SBG  
TSEG2–2  
SJW1  
TSEG2–1  
SJW0  
TSEG2–0  
FER  
07105h  
07106h  
07107h  
07108h  
07109h  
0710Ah  
0710Bh  
0710Ch  
0710Dh  
0710Eh  
BCR1  
TSEG1–1  
TSEG1–0  
ESR  
BEF  
SA1  
CRCE  
SER  
ACKE  
BO  
EP  
EW  
GSR  
SMA  
CCE  
PDA  
RM  
TM  
TEC7  
REC7  
TEC6  
REC6  
TEC5  
REC5  
MIF5  
TEC4  
TEC3  
TEC2  
TEC1  
TEC0  
CEC  
REC4  
REC3  
REC2  
REC1  
REC0  
MIF4  
MIF3  
MIF2  
MIF1  
MIF0  
CAN_IFR  
CAN_IMR  
LAM0_H  
LAM0_L  
LAM1_H  
LAM1_L  
RMLIF  
AAIF  
WDIF  
WUIF  
BOIF  
EPIF  
WLIF  
MIL  
MIM5  
MIM4  
MIM3  
MIM2  
MIM1  
MIM0  
EIL  
RMLIM  
AAIM  
WDIM  
WUIM  
BOIM  
EPIM  
WLIM  
LAMI  
LAM0–23  
LAM0–15  
LAM0–7  
LAMI  
LAM1–23  
LAM1–15  
LAM1–7  
LAM0–28  
LAM0–20  
LAM0–12  
LAM0–4  
LAM1–28  
LAM1–20  
LAM1–12  
LAM1–4  
LAM0–27  
LAM0–19  
LAM0–11  
LAM0–3  
LAM1–27  
LAM1–19  
LAM1–11  
LAM1–3  
LAM0–26  
LAM0–18  
LAM0–10  
LAM0–2  
LAM1–26  
LAM1–18  
LAM1–10  
LAM1–2  
LAM0–25  
LAM0–17  
LAM0–9  
LAM0–1  
LAM1–25  
LAM1–17  
LAM1–9  
LAM1–1  
LAM0–24  
LAM0–16  
LAM0–8  
LAM0–0  
LAM1–24  
LAM1–16  
LAM1–8  
LAM1–0  
LAM0–22  
LAM0–14  
LAM0–6  
LAM0–21  
LAM0–13  
LAM0–5  
LAM1–22  
LAM1–14  
LAM1–6  
LAM1–21  
LAM1–13  
LAM1–5  
0710Fh  
to  
Reserved  
071FFh  
Message Object #0  
IDL–15  
IDL–7  
IDE  
IDL–14  
IDL–6  
AME  
IDH–22  
IDL–13  
IDL–5  
AAM  
IDH–21  
IDL–12  
IDL–11  
IDL–3  
IDH–27  
IDH–19  
IDL–10  
IDL–2  
IDH–26  
IDH–18  
IDL–9  
IDL–1  
IDH–25  
IDH–17  
IDL–8  
IDL–0  
IDH–24  
IDH–16  
07200h  
07201h  
MSGID0L  
MSGID0H  
MSGCTRL0  
IDL–4  
IDH–28  
IDH–20  
IDH–23  
07202h  
07203h  
07204h  
RTR  
DLC3  
DLC2  
DLC1  
DLC0  
Reserved  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D1  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D0  
MBX0A  
MBX0B  
MBX0C  
MBX0D  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
07205h  
07206h  
07207h  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
Indicates change with respect to the ’F243/’F241, ’C242 device register maps.  
95  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
peripheral register description (continued)  
Table 18. ’LF240x/’LC240x DSP Peripheral Register Description (Continued)  
BIT 15  
BIT 7  
BIT 14  
BIT 6  
BIT 13  
BIT 5  
BIT 12  
BIT 4  
BIT 11  
BIT 3  
BIT 10  
BIT 2  
BIT 9  
BIT 1  
BIT 8  
BIT 0  
ADDR  
REG  
CONTROLLER AREA NETWORK (CAN) CONFIGURATION CONTROL REGISTERS (CONTINUED)  
Message Object #1  
IDL–15  
IDL–7  
IDE  
IDL–14  
IDL–6  
AME  
IDH–22  
IDL–13  
IDL–5  
AAM  
IDH–21  
IDL–12  
IDL–4  
IDH–28  
IDH–20  
IDL–11  
IDL–3  
IDH–27  
IDH–19  
IDL–10  
IDL–2  
IDH–26  
IDH–18  
IDL–9  
IDL–1  
IDH–25  
IDH–17  
IDL–8  
IDL–0  
IDH–24  
IDH–16  
07208h  
07209h  
MSGID1L  
MSGID1H  
MSGCTRL1  
IDH–23  
0720Ah  
0720Bh  
0720Ch  
RTR  
DLC3  
DLC2  
DLC1  
DLC0  
Reserved  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D1  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D0  
MBX1A  
MBX1B  
MBX1C  
MBX1D  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
0720Dh  
0720Eh  
0720Fh  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
Message Object #2  
IDL–15  
IDL–7  
IDE  
IDL–14  
IDL–6  
AME  
IDH–22  
IDL–13  
IDL–5  
AAM  
IDH–21  
IDL–12  
IDL–11  
IDL–3  
IDH–27  
IDH–19  
IDL–10  
IDL–2  
IDH–26  
IDH–18  
IDL–9  
IDL–1  
IDH–25  
IDH–17  
IDL–8  
IDL–0  
IDH–24  
IDH–16  
07210h  
07211h  
MSGID2L  
MSGID2H  
MSGCTRL2  
IDL–4  
IDH–28  
IDH–20  
IDH–23  
07212h  
07213h  
07214h  
RTR  
DLC3  
DLC2  
DLC1  
DLC0  
Reserved  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D1  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D0  
MBX2A  
MBX2B  
MBX2C  
MBX2D  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
07215h  
07216h  
07217h  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
Message Object #3  
IDL–15  
IDL–7  
IDE  
IDL–14  
IDL–6  
AME  
IDH–22  
IDL–13  
IDL–5  
AAM  
IDH–21  
IDL–12  
IDL–11  
IDL–3  
IDH–27  
IDH–19  
IDL–10  
IDL–2  
IDH–26  
IDH–18  
IDL–9  
IDL–1  
IDH–25  
IDH–17  
IDL–8  
IDL–0  
IDH–24  
IDH–16  
07218h  
07219h  
MSGID3L  
MSGID3H  
MSGCTRL3  
IDL–4  
IDH–28  
IDH–20  
IDH–23  
0721Ah  
0721Bh  
0721Ch  
RTR  
DLC3  
DLC2  
DLC1  
DLC0  
Reserved  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D8  
D0  
MBX3A  
Indicates change with respect to the ’F243/’F241, ’C242 device register maps.  
96  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
peripheral register description (continued)  
Table 18. ’LF240x/’LC240x DSP Peripheral Register Description (Continued)  
BIT 15  
BIT 7  
BIT 14  
BIT 6  
CONTROLLER AREA NETWORK (CAN) CONFIGURATION CONTROL REGISTERS (CONTINUED)  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
BIT 0  
ADDR  
REG  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D9  
D1  
D9  
D1  
D8  
D0  
D8  
D0  
D8  
D0  
0721Dh  
0721Eh  
0721Fh  
MBX3B  
MBX3C  
MBX3D  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
Message Object #4  
IDL–15  
IDL–7  
IDE  
IDL–14  
IDL–6  
AME  
IDH–22  
IDL–13  
IDL–5  
AAM  
IDH–21  
IDL–12  
IDL–11  
IDL–3  
IDH–27  
IDH–19  
IDL–10  
IDL–2  
IDH–26  
IDH–18  
IDL–9  
IDL–1  
IDH–25  
IDH–17  
IDL–8  
IDL–0  
IDH–24  
IDH–16  
07220h  
07221h  
MSGID4L  
MSGID4H  
MSGCTRL4  
IDL–4  
IDH–28  
IDH–20  
IDH–23  
07222h  
07223h  
07224h  
RTR  
DLC3  
DLC2  
DLC1  
DLC0  
Reserved  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D1  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D0  
MBX4A  
MBX4B  
MBX4C  
MBX4D  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
07225h  
07226h  
07227h  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
Message Object #5  
IDL–15  
IDL–7  
IDE  
IDL–14  
IDL–6  
AME  
IDH–22  
IDL–13  
IDL–5  
AAM  
IDH–21  
IDL–12  
IDL–11  
IDL–3  
IDH–27  
IDH–19  
IDL–10  
IDL–2  
IDH–26  
IDH–18  
IDL–9  
IDL–1  
IDH–25  
IDH–17  
IDL–8  
IDL–0  
IDH–24  
IDH–16  
07228h  
07229h  
MSGID5L  
MSGID5H  
MSGCTRL5  
IDL–4  
IDH–28  
IDH–20  
IDH–23  
0722Ah  
0722Bh  
0722Ch  
RTR  
DLC3  
DLC2  
DLC1  
DLC0  
Reserved  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D9  
D1  
D9  
D1  
D9  
D1  
D8  
D0  
D8  
D0  
D8  
D0  
D8  
D0  
MBX5A  
MBX5B  
MBX5C  
MBX5D  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
0722Dh  
0722Eh  
0722Fh  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
07230h  
to  
Reserved  
073FFh  
Indicates change with respect to the ’F243/’F241, ’C242 device register maps.  
97  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
peripheral register description (continued)  
Table 18. ’LF240x/’LC240x DSP Peripheral Register Description (Continued)  
BIT 15  
BIT 7  
BIT 14  
BIT 6  
BIT 13  
BIT 5  
BIT 12  
BIT 4  
BIT 11  
BIT 3  
BIT 10  
BIT 2  
BIT 9  
BIT 1  
BIT 8  
BIT 0  
ADDR  
REG  
GENERAL-PURPOSE (GP) TIMER CONFIGURATION CONTROL REGISTERS – EVA  
T1TOADC(0)  
D15  
T2STAT  
TCOMPOE  
D14  
T1STAT  
T2TOADC  
T1TOADC(1)  
07400h  
07401h  
07402h  
07403h  
07404h  
07405h  
07406h  
07407h  
07408h  
GPTCONA  
T1CNT  
T1CMPR  
T1PR  
T2PIN  
T1PIN  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D8  
D0  
D7  
D6  
D15  
D14  
D13  
D5  
D12  
D11  
D10  
D2  
D9  
D8  
D7  
D6  
D4  
D3  
D1  
D0  
D15  
D14  
D13  
D5  
D12  
D11  
D10  
D2  
D9  
D8  
D7  
D6  
D4  
D3  
D1  
D0  
FREE  
TSWT1  
D15  
SOFT  
TENABLE  
D14  
TMODE1  
TCLKS0  
D12  
TMODE0  
TCLD1  
D11  
TPS2  
TPS1  
TECMPR  
D9  
TPS0  
SELT1PR  
D8  
T1CON  
T2CNT  
T2CMPR  
T2PR  
TCLKS1  
D13  
D5  
TCLD0  
D10  
D7  
D6  
D4  
D3  
D2  
D1  
D0  
D15  
D14  
D13  
D5  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D4  
D3  
D2  
D1  
D0  
D15  
D14  
D13  
D5  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D4  
D3  
D2  
D1  
D0  
FREE  
TSWT1  
SOFT  
TENABLE  
TMODE1  
TCLKS0  
TMODE0  
TCLD1  
TPS2  
TCLD0  
TPS1  
TECMPR  
TPS0  
SELT1PR  
T2CON  
TCLKS1  
07409h  
to  
Reserved  
07410h  
FULL AND SIMPLE COMPARE UNIT REGISTERS – EVA  
CENABLE  
CLD1  
CLD0  
SVENABLE  
ACTRLD1  
ACTRLD0  
FCOMPOE  
07411h  
07412h  
07413h  
07414h  
07415h  
07416h  
07417h  
COMCONA  
ACTRA  
Reserved  
SVRDIR  
D2  
D1  
D0  
CMP6ACT1  
CMP2ACT1  
CMP6ACT0  
CMP2ACT0  
CMP5ACT1  
CMP1ACT1  
CMP5ACT0  
CMP1ACT0  
CMP4ACT1  
CMP4ACT0  
CMP3ACT1  
CMP3ACT0  
Reserved  
DBT3  
DBT2  
DBT1  
DBT0  
DBTCONA  
EDBT3  
EDBT2  
EDBT1  
DBTPS2  
DBTPS1  
DBTPS0  
Reserved  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D9  
D1  
D9  
D1  
D8  
D0  
D8  
D0  
D8  
D0  
CMPR1  
CMPR2  
CMPR3  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
07418h  
07419h  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
0741Ah  
to  
Reserved  
0741Fh  
Indicates change with respect to the ’F243/’F241, ’C242 device register maps.  
98  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
peripheral register description (continued)  
Table 18. ’LF240x/’LC240x DSP Peripheral Register Description (Continued)  
BIT 15  
BIT 7  
BIT 14  
BIT 6  
BIT 13  
BIT 5  
BIT 12  
BIT 4  
CAPTURE UNIT REGISTERS – EVA  
BIT 11  
BIT 10  
BIT 2  
BIT 9  
BIT 1  
BIT 8  
BIT 0  
ADDR  
REG  
BIT 3  
CAPRES  
CAPQEPN  
CAP3EN  
CAP2EDGE  
CAP3TSEL  
CAP3EDGE  
CAP12TSEL  
CAP3TOADC  
07420h  
07421h  
07422h  
CAPCONA  
CAP1EDGE  
Reserved  
CAP3FIFO  
CAP2FIFO  
CAP1FIFO  
CAPFIFOA  
CAP1FIFO  
CAP2FIFO  
CAP3FIFO  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D10  
D2  
D11  
D3  
D9  
D1  
D9  
D1  
D9  
D1  
D8  
D0  
D8  
D0  
D8  
D0  
07423h  
07424h  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
07425h  
07426h  
07427h  
Reserved  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D9  
D1  
D9  
D1  
D8  
D0  
D8  
D0  
D8  
D0  
CAP1FBOT  
CAP2FBOT  
CAP3FBOT  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
07428h  
07429h  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
0742Ah  
to  
Reserved  
0742Bh  
EVENT MANAGER (EVA) INTERRUPT CONTROL REGISTERS  
T1OFINT  
ENA  
T1UFINT  
ENA  
T1CINT  
ENA  
0742Ch  
EVAIMRA  
T1PINT  
ENA  
CMP3INT  
ENA  
CMP2INT  
ENA  
CMP1INT  
ENA  
PDPINT  
ENA  
0742Dh  
0742Eh  
EVAIMRB  
EVAIMRC  
T2OFINT  
ENA  
T2UFINT  
ENA  
T2CINT  
ENA  
T2PINT  
ENA  
CAP3INT  
ENA  
CAP2INT  
ENA  
CAP1INT  
ENA  
T1OFINT  
FLAG  
T1UFINT  
FLAG  
T1CINT  
FLAG  
0742Fh  
EVAIFRA  
T1PINT  
FLAG  
CMP3INT  
FLAG  
CMP2INT  
FLAG  
CMP1INT  
FLAG  
PDPINT  
FLAG  
07430h  
07431h  
EVAIFRB  
EVAIFRC  
T2OFINT  
FLAG  
T2UFINT  
FLAG  
T2CINT  
FLAG  
T2PINT  
FLAG  
CAP3INT  
FLAG  
CAP2INT  
FLAG  
CAP1INT  
FLAG  
07432h  
to  
Reserved  
074FFh  
Indicates change with respect to the ’F243/’F241, ’C242 device register maps.  
99  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
peripheral register description (continued)  
Table 18. ’LF240x/’LC240x DSP Peripheral Register Description (Continued)  
BIT 15  
BIT 7  
BIT 14  
BIT 6  
BIT 13  
BIT 5  
BIT 12  
BIT 4  
BIT 11  
BIT 3  
BIT 10  
BIT 2  
BIT 9  
BIT 1  
BIT 8  
BIT 0  
ADDR  
REG  
GENERAL-PURPOSE (GP) TIMER CONFIGURATION CONTROL REGISTERS – EVB  
T3TOADC(0)  
D15  
T4STAT  
TCOMPOEB  
D14  
T3STAT  
T4TOADC  
T3TOADC(1)  
07500h  
07501h  
07502h  
07503h  
07504h  
07505h  
07506h  
07507h  
07508h  
GPTCONB  
T3CNT  
T3CMPR  
T3PR  
T4PIN  
T3PIN  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D8  
D0  
D7  
D6  
D15  
D14  
D13  
D5  
D12  
D11  
D10  
D2  
D9  
D8  
D7  
D6  
D4  
D3  
D1  
D0  
D15  
D14  
D13  
D5  
D12  
D11  
D10  
D2  
D9  
D8  
D7  
D6  
D4  
D3  
D1  
D0  
FREE  
TSWT3  
D15  
SOFT  
TENABLE  
D14  
TMODE1  
TCLKS0  
D12  
TMODE0  
TCLD1  
D11  
TPS2  
TPS1  
TECMPR  
D9  
TPS0  
SELT1PR  
D8  
T3CON  
T4CNT  
T4CMPR  
T4PR  
TCLKS3  
D13  
D5  
TCLD0  
D10  
D7  
D6  
D4  
D3  
D2  
D1  
D0  
D15  
D14  
D13  
D5  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D4  
D3  
D2  
D1  
D0  
D15  
D14  
D13  
D5  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D4  
D3  
D2  
D1  
D0  
FREE  
TSWT1  
SOFT  
TENABLE  
TMODE1  
TCLKS0  
TMODE0  
TCLD1  
TPS2  
TCLD0  
TPS1  
TECMPR  
TPS0  
SELT3PR  
T4CON  
TCLKS1  
07509h  
to  
Reserved  
07510h  
FULL AND SIMPLE COMPARE UNIT REGISTERS– EVB  
CENABLE  
CLD1  
CLD0  
SVENABLE  
ACTRLD1  
ACTRLD0  
FCOMPOEB  
07511h  
07512h  
07513h  
07514h  
07515h  
07516h  
07517h  
COMCONB  
ACTRB  
Reserved  
SVRDIR  
D2  
D1  
D0  
CMP12ACT1  
CMP8ACT1  
CMP12ACT0  
CMP8ACT0  
CMP11ACT1  
CMP7ACT1  
CMP11ACT0  
CMP7ACT0  
CMP10ACT1 CMP10ACT0  
CMP9ACT1  
CMP9ACT0  
Reserved  
DBT3  
DBT2  
DBT1  
DBT0  
DBTCONB  
EDBT3  
EDBT2  
EDBT1  
DBTPS2  
DBTPS1  
DBTPS0  
Reserved  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D9  
D1  
D9  
D1  
D8  
D0  
D8  
D0  
D8  
D0  
CMPR4  
CMPR5  
CMPR6  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
07518h  
07519h  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
0751Ah  
to  
Reserved  
0751Fh  
Indicates change with respect to the ’F243/’F241, ’C242 device register maps.  
100  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
peripheral register description (continued)  
Table 18. ’LF240x/’LC240x DSP Peripheral Register Description (Continued)  
BIT 15  
BIT 7  
BIT 14  
BIT 6  
BIT 13  
BIT 5  
BIT 12  
BIT 4  
CAPTURE UNIT REGISTERS– EVB  
BIT 11  
BIT 10  
BIT 2  
BIT 9  
BIT 1  
BIT 8  
BIT 0  
ADDR  
REG  
BIT 3  
CAPRES  
CAPQEPN  
CAP6EN  
CAP5EDGE  
CAP6TSEL  
CAP6EDGE  
CAP45SEL  
CAP6TOADC  
07520h  
07521h  
07522h  
CAPCONB  
CAP4EDGE  
Reserved  
CAP6FIFO  
CAP5FIFO  
CAP4FIFO  
CAPFIFOB  
CAP4FIFO  
CAP5FIFO  
CAP6FIFO  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D10  
D2  
D11  
D3  
D9  
D1  
D9  
D1  
D9  
D1  
D8  
D0  
D8  
D0  
D8  
D0  
07523h  
07524h  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
07525h  
07526h  
07527h  
Reserved  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D9  
D1  
D9  
D1  
D8  
D0  
D8  
D0  
D8  
D0  
CAP4FBOT  
CAP5FBOT  
CAP6FBOT  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
07528h  
07529h  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
0752Ah  
to  
Reserved  
0752Bh  
EVENT MANAGER (EVB) INTERRUPT CONTROL REGISTERS  
T3OFINT  
ENA  
T3UFINT  
ENA  
T3CINT  
ENA  
0752Ch  
EVBIMRA  
T3PINT  
ENA  
CMP3INT  
ENA  
CMP2INT  
ENA  
CMP1INT  
ENA  
PDPINTB  
ENA  
0752Dh  
0752Eh  
EVBIMRB  
EVBIMRC  
T4OFINT  
ENA  
T4UFINT  
ENA  
T4CINT  
ENA  
T4PINT  
ENA  
CAP6INT  
ENA  
CAP5INT  
ENA  
CAP4INT  
ENA  
T3OFINT  
FLAG  
T3UFINT  
FLAG  
T3CINT  
FLAG  
0752Fh  
EVBIFRA  
T3PINT  
FLAG  
CMP6INT  
FLAG  
CMP5INT  
FLAG  
CMP4INT  
FLAG  
PDPINTB  
FLAG  
07530h  
07531h  
EVBIFRB  
EVBIFRC  
T4OFINT  
FLAG  
T4UFINT  
FLAG  
T4CINT  
FLAG  
T4PINT  
FLAG  
CAP6INT  
FLAG  
CAP5INT  
FLAG  
CAP4INT  
FLAG  
07532h  
to  
Reserved  
0753Fh  
Indicates change with respect to the ’F243/’F241, ’C242 device register maps.  
101  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
peripheral register description (continued)  
Table 18. ’LF240x/’LC240x DSP Peripheral Register Description (Continued)  
BIT 15  
BIT 7  
BIT 14  
BIT 6  
BIT 13  
BIT 5  
BIT 12  
BIT 4  
BIT 11  
BIT 3  
BIT 10  
BIT 2  
BIT 9  
BIT 1  
BIT 8  
BIT 0  
ADDR  
REG  
PROGRAM MEMORY SPACE – FLASH REGISTERS  
0xx00h  
0xx01h  
PMPC  
PWR DWN  
KEY1  
KEY0  
EXEC  
PRECND  
Mode1  
WSVER EN  
FCM1  
CTRL  
PRECND  
Mode0  
ENG/R  
Mode2  
ENG/R  
Mode1  
ENG/R  
Mode0  
FCM3  
FCM2  
FCM0  
0xx02h  
0xx03h  
0xx04h  
0xx05h  
WADDR  
WDATA  
TCR  
ENAB  
0xx06h  
SECT  
SECT 4  
ENABLE  
SECT 3  
ENABLE  
SECT 2  
ENABLE  
SECT 1  
ENABLE  
I/O MEMORY SPACE  
0FF0Fh  
0FFFFh  
FCMR  
WSGR  
WAIT-STATE GENERATOR CONTROL REGISTER  
BVIS.1  
BVIS.0  
ISWS.2  
ISWS.1  
ISWS.0  
DSWS.2  
DSWS.1  
DSWS.0  
PSWS.2  
PSWS.1  
PSWS.0  
Indicates change with respect to the ’F243/’F241, ’C242 device register maps.  
Register shown with bits set in register mode.  
102  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
MECHANICAL DATA  
PGE (S-PQFP-G144)  
PLASTIC QUAD FLATPACK  
108  
73  
109  
72  
0,27  
0,17  
M
0,08  
0,50  
0,13 NOM  
144  
37  
1
36  
Gage Plane  
17,50 TYP  
20,20  
SQ  
19,80  
0,25  
0,05 MIN  
22,20  
SQ  
0°ā7°  
21,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040147/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
Typical Thermal Resistance Characteristics  
PARAMETER  
DESCRIPTION  
°C/W  
Θ
Junction-to-ambient  
32  
8
JA  
JC  
Θ
Junction-to-case  
103  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
MECHANICAL DATA  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°ā7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
Typical Thermal Resistance Characteristics  
PARAMETER  
DESCRIPTION  
°C/W  
Θ
Junction-to-ambient  
42  
8
JA  
JC  
Θ
Junction-to-case  
104  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS320LF2407, TMS320LF2406, TMS320LF2402  
TMS320LC2406, TMS320LC2404, TMS320LC2402  
DSP CONTROLLERS  
SPRS094C – APRIL 1999 – REVISED OCTOBER 1999  
MECHANICAL DATA  
PG (R-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,45  
0,25  
M
0,20  
1,00  
51  
33  
52  
32  
14,20 18,00  
13,80 17,20  
12,00 TYP  
64  
20  
1
19  
0,15 NOM  
18,00 TYP  
20,20  
19,80  
24,00  
23,20  
Gage Plane  
0,25  
0,10 MIN  
2,70 TYP  
0°ā10°  
1,10  
0,70  
Seating Plane  
3,10 MAX  
0,10  
4040101/B 03/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Contact field sales office to determine if a tighter coplanarity requirement is available for this package.  
Typical Thermal Resistance Characteristics  
PARAMETER  
DESCRIPTION  
°C/W  
Θ
Junction-to-ambient  
35  
JA  
JC  
Θ
Junction-to-case  
11  
105  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

TMS320LC2404PZ

DSP CONTROLLERS
TI

TMS320LC2404PZ(S)

16-BIT, 30MHz, OTHER DSP, PQFP100, PLASTIC, TQFP-100
TI

TMS320LC2404PZS

16-BIT, 30MHz, OTHER DSP, PQFP100, PLASTIC, TQFP-100
TI

TMS320LC2406

DSP CONTROLLERS
TI

TMS320LC2406A

DSP CONTROLLERS
TI

TMS320LC2406APAGA

DSP CONTROLLERS
TI

TMS320LC2406APAGS

DSP CONTROLLERS
TI

TMS320LC2406APGA

DSP CONTROLLERS
TI

TMS320LC2406APGEA

DSP CONTROLLERS
TI

TMS320LC2406APGES

DSP CONTROLLERS
TI

TMS320LC2406APGS

DSP CONTROLLERS
TI

TMS320LC2406APZ4

40MHz, OTHER DSP, PQFP100, PLASTIC, LQFP-100
TI