TMS320VC549PGE-100 [TI]

IC-SMD-DSP PROCESSOR ; IC- SMD- DSP处理器\n
TMS320VC549PGE-100
型号: TMS320VC549PGE-100
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

IC-SMD-DSP PROCESSOR
IC- SMD- DSP处理器\n

微控制器和处理器 外围集成电路 数字信号处理器 时钟
文件: 总60页 (文件大小:785K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
G
I
T
A
L
S
I
G
N
L
P
R
O
C
E
S
S
O
R
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
D
D
D
Advanced Multibus Architecture With Three  
Separate 16-Bit Data Memory Buses and  
One Program Memory Bus  
D
D
D
D
Arithmetic Instructions With Parallel Store  
and Parallel Load  
Conditional Store Instructions  
Fast Return From Interrupt  
40-Bit Arithmetic Logic Unit (ALU)  
Including a 40-Bit Barrel Shifter and Two  
Independent 40-Bit Accumulators  
On-Chip Peripherals  
– Software-Programmable Wait-State  
Generator and Programmable Bank  
Switching  
– On-Chip Phase-Locked Loop (PLL) Clock  
Generator With Internal Oscillator or  
External Clock Source  
– Time-Division Multiplexed (TDM) Serial  
Port  
– Buffered Serial Port (BSP)  
– 8-Bit Parallel Host Port Interface (HPI)  
– One 16-Bit Timer  
17- × 17-Bit Parallel Multiplier Coupled to a  
40-Bit Dedicated Adder for Non-Pipelined  
Single-Cycle Multiply/Accumulate (MAC)  
Operation  
D
D
D
Compare, Select, and Store Unit (CSSU) for  
the Add/Compare Selection of the Viterbi  
Operator  
Exponent Encoder to Compute an  
Exponent Value of a 40-Bit Accumulator  
Value in a Single Cycle  
– External-Input/Output (XIO) Off Control  
to Disable the External Data Bus,  
Address Bus and Control Signals  
Two Address Generators With Eight  
Auxiliary Registers and Two Auxiliary  
Register Arithmetic Units (ARAUs)  
D
Power Consumption Control With IDLE1,  
IDLE2, and IDLE3 Instructions With  
Power-Down Modes  
D
D
D
Data Bus With a Bus Holder Feature  
Address Bus With a Bus Holder Feature  
Extended Addressing Mode for 8M × 16-Bit  
Maximum Addressable External Program  
Space  
D
D
CLKOUT Off Control to Disable CLKOUT  
On-Chip Scan-Based Emulation Logic,  
IEEE Std 1149.1 (JTAG) Boundary Scan  
D
D
D
D
D
D
D
D
192K × 16-Bit Maximum Addressable  
Memory Space (64K Words Program,  
64K Words Data, and 64K Words I/O)  
Logic  
D
D
D
D
12.5-ns Single-Cycle Fixed-Point  
Instruction Execution Time (80 MIPS) for  
3.3-V Power Supply)  
On-Chip ROM with Some Configurable to  
Program/Data Memory  
10-ns Single-Cycle Fixed-Point Instruction  
Execution Time (100 MIPS) for 3.3-V Power  
Supply (2.5-V Core)  
Dual-Access On-Chip RAM  
Single-Access On-Chip RAM  
Single-Instruction Repeat and  
Block-Repeat Operations for Program Code  
8.3-ns Single-Cycle Fixed-Point Instruction  
Execution Time (120 MIPS) for 3.3-V Power  
Supply (2.5-V Core) (Product Preview Data)  
Block-Memory-Move Instructions for Better  
Program and Data Management  
Available in a 144-Pin Plastic Thin Quad  
Flatpack (TQFP) (PGE Suffix) and a 144-Pin  
Ball Grid Array (BGA) (GGU Suffix)  
Instructions With a 32-Bit Long Word  
Operand  
Instructions With Two- or Three-Operand  
Reads  
NOTE: The data provided in this data sheet for the 8.3-ns, 120 MIPS device is considered to be  
Product Preview data as the devices have not completed reliability performance qualification  
testing according to TI Quality Systems Specifications.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.  
Copyright 2000, Texas Instruments Incorporated  
U
D
N
L
A
c
E
S
S
i
a
O
T
H
a
E
R
n
e
W
I
S
c
E
u
N
O
t
T
E
a
m
D
s
s
t
o
o
h
f
f
i
s
d
o
l
a
c
u
a
m
e
n
n
s
t
c
o
n
.
n
t
a
i
n
P
s
r
PR O D U CT ION  
u
A
T
n
f
o
r
m
ti  
o
r
e
r
e
n
p
T
u
b
i
c
t
i
o
d
a
t
e
o
d
c
t
s
c
o
n
f
w ar r an ty.  
o
r
m
t
o
s
p
e
i
f
i
c
t
i
o
n
s
p
r
t
h
t
e
r
e
x
s
I
n
t
r
u
m
e
t
s
s
t
a
n
d
ar  
d
P
r
o
d
u
c
t
i
o
n
pa r a m e t e r s .  
p
r
o
c
e
s
s
i
n
g
d
o
e
s
n
o
t
n
e
c
e
s
s
a
r
i
l
y
i
n
c
l
u
d
e
t
e
s
t
i
n
g
o
f
al l  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
G
N
A
L
P
R
O
C
E
S
S
O
R
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
Table of Contents  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . 12  
Recommended Operating Conditions . . . . . . . . . . . 12  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 13  
Parameter Measurement Information . . . . . . . . . . . . 14  
Timing Parameter Symbology . . . . . . . . . . . . . . . . . . 14  
Signal Transition Reference Points . . . . . . . . . . . . . . 14  
Internal Oscillator With External Crystal . . . . . . . . . 15  
Divide-By-Two/Divide-By-Four Clock Option . . . . . 16  
Multiply-By-N Clock Option . . . . . . . . . . . . . . . . . . . . 18  
Memory and Parallel I/O Interface Timing . . . . . . . . 20  
Timing Requirements for a Parallel I/O Port Read . 26  
SPICE Simulation Results . . . . . . . . . . . . . . . . . . . . . 28  
Ready Timing for Externally Generated Wait States 31  
HOLD and HOLDA Timing . . . . . . . . . . . . . . . . . . . . . 36  
Reset, BIO, Interrupt, and MP/MC Timings . . . . . . . 38  
Serial Port Receive Timing . . . . . . . . . . . . . . . . . . . . . 42  
Buffered Serial Port Receive Timing . . . . . . . . . . . . . 45  
Serial-Port Receive Timing in TDM Mode . . . . . . . . 49  
Host-Port Interface Timing . . . . . . . . . . . . . . . . . . . . . 53  
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
description  
The TMS320VC549 fixed-point, digital signal processor (DSP) (hereafter referred to as the ’549) is based on  
an advanced modified Harvard architecture that has one program memory bus and three data memory buses.  
The processor also provides an arithmetic logic unit (ALU) that has a high degree of parallelism,  
application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The ’549 also utilizes  
a highly specialized instruction set, which is the basis of its operational flexibility and speed.  
Separate program and data spaces allow simultaneous access to program instructions and data, providing the  
high degree of parallelism. Two reads and one write operation can be performed in a single cycle. Instructions  
with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be  
transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic,  
and bit-manipulation operations that can all be performed in a single machine cycle. In addition, the ’549  
includes the control mechanisms to manage interrupts, repeated operations, and function calls.  
This data sheet contains the pin layouts, signal descriptions, and electrical specifications for the TMS320VC549  
DSP. For additional information, see the TMS320C54x, TMS320LC54x, TMS320VC54x Fixed-Point Digital  
Signal Processors data sheet (literature number SPRS039). The SPRS039 is considered a family functional  
overview and should be used in conjunction with this data sheet.  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
†‡  
PGE PACKAGE  
(TOP VIEW)  
1
108  
V
A18  
A17  
SS  
A22  
2
107  
3
106  
V
DV  
V
A16  
D5  
D4  
D3  
D2  
D1  
D0  
RS  
X2/CLKIN  
X1  
HD3  
CLKOUT  
SS  
DD  
SS  
4
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
5
A10  
HD7  
A11  
A12  
A13  
A14  
A15  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
CV  
HAS  
DD  
V
V
SS  
SS  
DD  
CV  
HCS  
V
SS  
HPIENA  
CV  
HR/W  
DD  
READY 19  
PS 20  
V
TMS  
SS  
DS 21  
IS 22  
TCK  
TRST  
TDI  
TDO  
EMU1/OFF  
EMU0  
TOUT  
HD2  
TEST1  
CLKMD3  
CLKMD2  
CLKMD1  
R/W 23  
MSTRB 24  
IOSTRB 25  
MSC 26  
XF 27  
HOLDA 28  
IAQ 29  
HOLD 30  
BIO 31  
MP/MC 32  
DV  
V
33  
V
DD  
SS  
SS  
DV  
34  
DD  
BDR1 35  
BFSR1 36  
BDX1  
BFSX1  
NC = No connection  
DV  
is the power supply for the I/O pins while CV  
DD  
is the power supply for the core CPU, and V is the ground for both the I/O pins and the  
SS  
DD  
core CPU.  
For the 144-pin TQFP, the letter B in front of CLKRn, FSRn, DRn, CLKXn, FSXn, and DXn pin names denotes  
buffered serial port (BSP), where n = 0 or 1 port. The letter T in front of CLKR, FSR, DR, CLKX, FSX, and DX  
pin names denotes time-division multiplexed (TDM) serial port.  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
GGU PACKAGE  
(BOTTOM VIEW)  
13 12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
The pin assignments table to follow lists each signal quadrant and BGA ball pin number for the 144-pin BGA  
package.  
The ’549 signal descriptions table lists each terminal name, function, and operating mode(s).  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
T
A
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
Pin Assignments for the 144-Pin GGU Package  
SIGNAL  
QUADRANT 1  
SIGNAL  
QUADRANT 2  
SIGNAL  
QUADRANT 3  
SIGNAL  
QUADRANT 4  
BGA BALL #  
BGA BALL #  
BGA BALL #  
BGA BALL #  
V
A1  
B1  
C2  
C1  
D4  
D3  
D2  
D1  
E4  
E3  
E2  
E1  
F4  
F3  
F2  
F1  
G2  
G1  
G3  
G4  
H1  
H2  
H3  
H4  
J1  
BFSX1  
BDX1  
N13  
M13  
L12  
L13  
K10  
K11  
K12  
K13  
J10  
J11  
V
N1  
N2  
M3  
N3  
K4  
A19  
A20  
A13  
A12  
B11  
A11  
D10  
C10  
B10  
A10  
D9  
C9  
B9  
SS  
A22  
SS  
BCLKR1  
HCNTL0  
V
DV  
V
SS  
DV  
DD  
SS  
DV  
V
SS  
V
SS  
DD  
A10  
DD  
D6  
CLKMD1  
CLKMD2  
CLKMD3  
TEST1  
HD2  
BCLKR0  
TCLKR  
BFSR0  
HD7  
A11  
A12  
A13  
A14  
A15  
L4  
D7  
D8  
M4  
N4  
K5  
TFSR/TADD  
BDR0  
D9  
D10  
D11  
D12  
HD4  
D13  
D14  
D15  
HD5  
TOUT  
HCNTL1  
TDR  
L5  
EMU0  
EMU1/OFF  
TDO  
J12  
J13  
H10  
H11  
H12  
H13  
G12  
G13  
G11  
G10  
F13  
F12  
F11  
F10  
E13  
E12  
E11  
E10  
D13  
D12  
D11  
C13  
C12  
C11  
B13  
B12  
M5  
N5  
K6  
CV  
DD  
HAS  
BCLKX0  
TCLKX  
A9  
D8  
C8  
B8  
V
V
TDI  
V
SS  
L6  
SS  
TRST  
HINT  
CVDD  
M6  
N6  
M7  
N7  
L7  
SS  
CV  
DD  
HCS  
TCK  
A8  
TMS  
BFSX0  
CV  
B7  
DD  
HR/W  
READY  
PS  
V
TFSX/TFRM  
HRDY  
V
SS  
HDS1  
A7  
SS  
CV  
C7  
D7  
A6  
DD  
HPIENA  
DV  
K7  
V
DD  
SS  
HDS2  
DV  
DS  
V
SS  
V
SS  
N8  
M8  
L8  
IS  
CLKOUT  
HD3  
X1  
HD0  
BDX0  
TDX  
IACK  
HBIL  
NMI  
B6  
DD  
A0  
R/W  
C6  
D6  
A5  
MSTRB  
IOSTRB  
MSC  
XF  
K8  
A1  
A2  
A3  
HD6  
A4  
A5  
A6  
A7  
A8  
A9  
X2/CLKIN  
RS  
N9  
M9  
L9  
J2  
B5  
J3  
D0  
C5  
D5  
A4  
HOLDA  
IAQ  
J4  
D1  
INT0  
INT1  
INT2  
INT3  
K9  
K1  
K2  
K3  
L1  
D2  
N10  
M10  
L10  
N11  
M11  
L11  
N12  
M12  
HOLD  
BIO  
D3  
B4  
D4  
C4  
A3  
MP/MC  
D5  
CV  
DD  
DV  
L2  
A16  
HD1  
B3  
DD  
V
SS  
L3  
V
SS  
V
SS  
CV  
DD  
A21  
C3  
A2  
BDR1  
M1  
M2  
A17  
A18  
BCLKX1  
BFSR1  
V
V
SS  
B2  
SS  
is the power supply for the core CPU, and V  
DV  
is the power supply for the I/O pins while CV  
DD  
is the ground for both the I/O pins and the  
SS  
DD  
core CPU.  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
’549 Signal Descriptions  
TERMINAL  
DESCRIPTION  
NAME  
TYPE  
DATA SIGNALS  
A22 (MSB)  
A21  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
Parallel port address bus A22 (MSB) through A0 (LSB). The sixteen LSBs (A15–A0) are multiplexed to address  
external data/program memory or I/O. A15–A0 are placed in the high-impedance state in the hold mode. A15–A0  
also go into the high-impedance state when EMU1/OFF is low. The seven MSBs (A22 to A16) are used for  
extended program memory addressing.  
The address bus have a feature called bus holder that eliminates passive components and the power dissipation  
associated with it. The bus holders keep the address bus at the previous logic level when the bus goes into a  
high-impedance state. The bus holders on the address bus are always enabled.  
O/Z  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
(LSB)  
D15 (MSB)  
D14  
D13  
D12  
D11  
D10  
D9  
Parallel port data bus D15 (MSB) through D0 (LSB). D15–D0 are multiplexed to transfer data between the core  
CPU and external data/program memory or I/O devices. D15–D0 are placed in the high-impedance state when  
not output or when RS or HOLD is asserted. D15–D0 also go into the high-impedance state when EMU1/OFF  
is low.  
The data bus has a feature called bus holder that eliminates passive components and the power dissipation  
associated with it. The bus holders keep the data bus at the previous logic level when the bus goes into a  
high-impedance state. These bus holders are enabled or disabled by the BH bit in the bank switching control  
register (BSCR).  
D8  
D7  
I/O/Z  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(LSB)  
INITIALIZATION, INTERRUPT AND RESET OPERATIONS  
Interrupt acknowledge signal. IACK indicates the receipt of an interrupt and that the program counter is fetching  
the interrupt vector location designated by A15–0. IACK also goes into the high-impedance state when  
EMU1/OFF is low.  
IACK  
O/Z  
I
INT0  
INT1  
INT2  
INT3  
External user interrupt inputs. INT0–INT3 are prioritized and are maskable by the interrupt mask register and the  
interrupt mode bit. INT0 –INT3 can be polled and reset by the interrupt flag register.  
I = Input, O = Output, Z = High impedance  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
T
A
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
’549 Signal Descriptions (Continued)  
TERMINAL  
NAME TYPE  
DESCRIPTION  
INITIALIZATION, INTERRUPT AND RESET OPERATIONS (CONTINUED)  
Nonmaskable interrupt. NMI is an external interrupt that cannot be masked by way of the INTM or the IMR. When  
NMI is activated, the processor traps to the appropriate vector location.  
NMI  
RS  
I
I
Reset input. RS causes the DSP to terminate execution and forces the program counter to 0FF80h. When RS  
is brought to a high level, execution begins at location 0FF80h of the program memory. RS affects various  
registers and status bits.  
Microprocessor/microcomputer mode-select pin. If active-low at reset (microcomputer mode), MP/MC causes  
the internal program ROM to be mapped into the upper program memory space. In the microprocessor mode,  
off-chip memory and its corresponding addresses (instead of internal program ROM) are accessed by the DSP.  
MP/MC  
CNT  
I
I
I/O level select. With CMOS-compatible I/O interface levels, CNT is pulled to a high level.  
MULTIPROCESSING SIGNALS  
Branch control input. A branch can be conditionally executed when BIO is active. If low, the processor executes  
the conditional instruction. The BIO condition is sampled during the decode phase of the pipeline for the XC  
instruction, and all other instructions sample BIO during the read phase of the pipeline.  
BIO  
XF  
I
External flag output (latched software-programmable signal). XF is set high by the SSBX XF instruction, set low  
by RSBX XF instruction or by loading the ST1 status register. XF is used for signaling other processors in  
multiprocessor configurations or as a general-purpose output pin. XF goes into the high-impedance state when  
OFF is low, and is set high at reset.  
O/Z  
MEMORY CONTROL SIGNALS  
Data, program, and I/O space select signals. DS, PS, and IS are always high unless driven low for communicating  
to a particular external space. Active period corresponds to valid address information. Placed into a  
high-impedance state in hold mode. DS, PS, and IS also go into the high-impedance state when EMU1/OFF is  
low.  
DS  
PS  
IS  
O/Z  
O/Z  
I
Memory strobe signal. MSTRB is always high unless low-level asserted to indicate an external bus access to data  
or program memory. Placed in high-impedance state in hold mode. MSTRB also goes into the high-impedance  
state when OFF is low.  
MSTRB  
READY  
R/W  
Data-ready input. READY indicates that an external device is prepared for a bus transaction to be completed.  
If the device is not ready (READY is low), the processor waits one cycle and checks READY again. Note that the  
processor performs ready-detection if at least two software wait states are programmed. The READY signal is  
not sampled until the completion of the software wait states.  
Read/write signal. R/W indicates transfer direction during communication to an external device and is normally  
high (in read mode), unless asserted low when the DSP performs a write operation. Placed in the high-impedance  
state in hold mode, R/W also goes into the high-impedance state when EMU1/OFF is low.  
O/Z  
I/O strobe signal. IOSTRB is always high unless low level asserted to indicate an external bus access to an I/O  
device. Placed in high-impedance state in hold mode. IOSTRB also goes into the high-impedance state when  
EMU1/OFF is low.  
IOSTRB  
HOLD  
O/Z  
I
Hold input. HOLD is asserted to request control of the address, data, and control lines. When acknowledged,  
these lines go into high-impedance state.  
Hold acknowledge signal. HOLDA indicates to the external circuitry that the processor is in a hold state and that  
the address, data, and control lines are in a high-impedance state, allowing them to be available to the external  
circuitry. HOLDA also goes into the high-impedance state when EMU1/OFF is low.  
HOLDA  
O/Z  
Microstate complete signal. Goes low on CLKOUT falling at the start of the first software wait state. Remains low  
until one CLKOUT cycle before the last programmed software wait state. If connected to the READY line, MSC  
forces one external wait state after the last internal wait state has been completed. MSC also goes into the  
high-impedance state when EM1/OFF is low.  
MSC  
O/Z  
I = Input, O = Output, Z = High impedance  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
G
N
A
L
P
R
O
C
E
S
S
O
R
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
’549 Signal Descriptions (Continued)  
TERMINAL  
NAME TYPE  
DESCRIPTION  
MEMORY CONTROL SIGNALS (CONTINUED)  
Instruction acquisition signal. IAQ is asserted (active low) when there is an instruction address on the address  
bus and goes into the high-impedance state when EMU1/OFF is low.  
IAQ  
O/Z  
OSCILLATOR/TIMER SIGNALS  
Master clock output signal. CLKOUT cycles at the machine-cycle rate of the CPU. The internal machine cycle  
is bounded by the falling edges of this signal. CLKOUT also goes into the high-impedance state when EMU1/OFF  
is low.  
CLKOUT  
O/Z  
CLKMD1  
CLKMD2  
CLKMD3  
Clock mode external/internal input signals. CLKMD1, CLKMD2, and CLKMD3 allow you to select and configure  
different clock modes, such as crystal, external clock, and various PLL factors. Refer to PLL section for a detailed  
functional description of these pins.  
I
I
Input pin to internal oscillator from the crystal. If the internal (crystal) oscillator is not being used, a clock can  
become input to the device using this pin. The internal machine cycle time is determined by the clock  
operating-mode pins (CLKMD1, CLKMD2 and CLKMD3).  
X2/CLKIN  
Output pin from the internal oscillator for the crystal. If the internal oscillator is not used, X1 should be left  
unconnected. X1 does not go into the high-impedance state when EMU1/OFF is low.  
X1  
O
Timer output. TOUT signals a pulse when the on-chip timer counts down past zero. The pulse is a CLKOUT-cycle  
wide. TOUT also goes into the high-impedance state when EMU1/OFF is low.  
TOUT  
O/Z  
BUFFERED SERIAL PORT 0 AND BUFFERED SERIAL PORT 1 SIGNALS  
Receive clocks. External clock signal for clocking data from the data-receive (DR) pin into the buffered serial port  
receive shift registers (RSRs). Must be present during buffered serial port transfers. If the buffered serial port is  
not being used, BCLKR0 and BCLKR1 can be sampled as an input by way of IN0 bit of the SPC register.  
BCLKR0  
BCLKR1  
I
Transmit clock. Clock signal for clocking data from the serial port transmit shift register (XSR) to the data transmit  
(DX) pin. BCLKX can be an input if MCM in the serial port control register is cleared to 0. It also can be driven  
by the device at 1/(CLKDV + 1) where CLKDV range is 0–31 CLKOUT frequency when MCM is set to 1. If the  
buffered serial port is not used, BCLKX can be sampled as an input by way of IN1 of the SPC register. BCLKX0  
and BCLKX1 go into the high-impedance state when OFF is low.  
BCLKX0  
BCLKX1  
I/O/Z  
BDR0  
BDR1  
I
O/Z  
I
Buffered serial-data-receive input. Serial data is received in the RSR by BDR0/BDR1.  
BDX0  
BDX1  
Buffered serial-port-transmit output. Serial data is transmitted from the XSR by way of BDX. BDX0 and BDX1 are  
placed in the high-impedance state when not transmitting and when EMU1/OFF is low.  
BFSR0  
BFSR1  
Frame synchronization pulse for receive input. The falling edge of the BFSR pulse initiates the data-receive  
process, beginning the clocking of the RSR.  
Frame synchronization pulse for transmit input/output. The falling edge of the BFSX pulse initiates the  
data-transmit process, beginning the clocking of the XSR. Following reset, the default operating condition of  
BFSX is an input. BFSX0 and BFSX1 can be selected by software to be an output when TXM in the serial control  
register is set to 1. This pin goes into the high-impedance state when EMU1/OFF is low.  
BFSX0  
BFSX1  
I/O/Z  
SERIAL PORT 0 AND SERIAL PORT 1 SIGNALS  
Receive clocks. External clock signal for clocking data from the data receive (DR) pin into the serial port receive  
shift register (RSR). Must be present during serial port transfers. If the serial port is not being used, CLKR0 and  
CLKR1 can be sampled as an input via IN0 bit of the SPC register.  
CLKR0  
CLKR1  
I
Transmit clock. Clock signal for clocking data from the serial port transmit shift register (XSR) to the data transmit  
(DX) pin. CLKX can be an input if MCM in the serial port control register is cleared to 0. It also can be driven by  
the device at 1/4 CLKOUT frequency when MCM is set to 1. If the serial port is not used, CLKX can be sampled  
as an input via IN1 of the SPC register. CLKX0 and CLKX1 go into the high-impedance state when EMU1/OFF  
is low.  
CLKX0  
CLKX1  
I/O/Z  
I
DR0  
DR1  
Serial-data-receive input. Serial data is received in the RSR by DR.  
I = Input, O = Output, Z = High impedance  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
’549 Signal Descriptions (Continued)  
TERMINAL  
NAME TYPE  
DESCRIPTION  
SERIAL PORT 0 AND SERIAL PORT 1 SIGNALS (CONTINUED)  
DX0  
DX1  
Serial port transmit output. Serial data is transmitted from the XSR via DX. DX0 and DX1 are placed in the  
high-impedance state when not transmitting and when EMU1/OFF is low.  
O/Z  
I
FSR0  
FSR1  
Frame synchronization pulse for receive input. The falling edge of the FSR pulse initiates the data-receive  
process, beginning the clocking of the RSR.  
Frame synchronization pulse for transmit input/output. The falling edge of the FSX pulse initiates the data transmit  
process, beginning the clocking of the XSR. Following reset, the default operating condition of FSX is an input.  
FSX0 and FSX1 can be selected by software to be an output when TXM in the serial control register is set to 1.  
This pin goes into the high-impedance state when EMU1/OFF is low.  
FSX0  
FSX1  
I/O/Z  
TDM SERIAL PORT SIGNALS  
TDM receive clock input  
TCLKR  
I
TDR  
I
TDM serial data-receive input  
TFSR/TADD  
TCLKX  
I/O  
TDM receive frame synchronization or TDM address  
TDM transmit clock  
I/O/Z  
O/Z  
I/O/Z  
TDX  
TDM serial data-transmit output  
TFSX/TFRM  
TDM transmit frame synchronization  
HOST PORT INTERFACE SIGNALS  
Parallel bidirectional data bus. HD0–HD7 are placed in the high-impedance state when not outputting data. The  
signals go into the high-impedance state when EMU1/OFF is low. These pins each have bus holders similar to  
those on the address/data bus, but which are always enabled.  
HD0–HD7  
I/O/Z  
I
HCNTL0  
HCNTL1  
Control inputs  
HBIL  
HCS  
I
I
Byte-identification input  
Chip-select input  
HDS1  
HDS2  
I
Data strobe inputs  
HAS  
I
I
Address strobe input  
HR/W  
HRDY  
Read/write input  
O/Z  
Ready output. This signal goes into the high-impedance state when EMU1/OFF is low.  
Interrupt output. When the DSP is in reset, this signal is driven high. The signal goes into the high-impedance  
HINT  
O/Z  
I
state when EMU1/OFF is low.  
HPI module select input. This signal must be tied to a logic 1 state to have HPI selected. If this input is left open  
or connected to ground, the HPI module will not be selected, internal pullup for the HPI input pins are enabled,  
and the HPI data bus has keepers set. This input is provided with an internal pull-down resistor which is active  
only when RS is low. HPIENA is sampled when RS goes high and ignored until RS goes low again. Refer to the  
Electrical Characteristics section for the input current requirements for this pin.  
HPIENA  
SUPPLY PINS  
CV  
DV  
Supply  
Supply  
Supply  
+V . CV  
DD  
is the dedicated power supply for the core CPU.  
is the dedicated power supply for I/O pins.  
is the dedicated power ground for the device.  
DD  
DD  
DD  
DD  
SS  
+V . DV  
DD  
V
Ground. V  
SS  
I = Input, O = Output, Z = High impedance  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
’549 Signal Descriptions (Continued)  
TERMINAL  
NAME TYPE  
DESCRIPTION  
IEEE1149.1 TEST PINS  
IEEE standard 1149.1 test clock. Pin with internal pullup device. This is normally a free-running clock signal with  
a 50% duty cycle. The changes on the test-access port (TAP) of input signals TMS and TDI are clocked into the  
TAP controller, instruction register, or selected test data register on the rising edge of TCK. Changes at the TAP  
output signal (TDO) occur on the falling edge of TCK.  
TCK  
I
IEEE standard 1149.1 test data input. Pin with internal pullup device. TDI is clocked into the selected register  
(instruction or data) on a rising edge of TCK.  
TDI  
I
IEEE standard 1149.1 test data output. The contents of the selected register (instruction or data) is shifted out  
of TDO on the falling edge of TCK. TDO is in the high-impedance state except when the scanning of data is in  
progress. TDO also goes into the high-impedance state when EMU1/OFF is low.  
TDO  
TMS  
TRST  
O/Z  
IEEE standard 1149.1 test mode select. Pin with internal pullup device. This serial control input is clocked into  
the TAP controller on the rising edge of TCK.  
I
I
IEEE standard 1149.1 test reset. TRST, when high, gives the IEEE standard 1149.1 scan system control of the  
operations of the device. If TRST is not connected or driven low, the device operates in its functional mode, and  
the IEEE standard 1149.1 signals are ignored. Pin with internal pulldown device.  
Emulator interrupt 0 pin. When TRST is driven low, EMU0 must be high for the activation of the EMU1/OFF  
condition. When TRST is driven high, EMU0 is used as an interrupt to or from the emulator system and is defined  
as input/output by way of IEEE standard 1149.1 scan system.  
EMU0  
I/O/Z  
Emulator interrupt 1 pin/disable all outputs. When TRST is driven high, EMU1/OFF is used as an interrupt to or  
from the emulator system and is defined as input/output by way of IEEE standard 1149.1 scan system. When  
TRST is driven low, EMU1/OFF is configured as OFF. The EMU1/OFF signal, when active low, puts all output  
drivers into the high-impedance state. Note that OFF is used exclusively for testing and emulation purposes (not  
for multiprocessing applications). Therefore, for the OFF condition, the following conditions apply:  
TRST = low,  
EMU1/OFF  
I/O/Z  
EMU0 = high  
EMU1/OFF = low  
DEVICE TEST PIN  
TEST1  
I
Test1 – Reserved for internal use only. This pin must not be connected (NC).  
I = Input, O = Output, Z = High impedance  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
absolute maximum ratings over specified temperature range (unless otherwise noted)  
Supply voltage I/O range, DV ‡ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 4.6 V  
DD  
DD  
Supply voltage core range, CV  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 3.75 V  
Input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 4.6 V  
Output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 4.6 V  
Operating case temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 100°C  
C
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
All voltage values are with respect to V  
.
SS  
recommended operating conditions  
MIN  
3
NOM  
3.3  
MAX  
3.6  
UNIT  
V
Device supply voltage, I/O  
DV  
CV  
DD  
DD  
Device supply voltage, core  
Supply voltage, GND  
2.4  
2.5  
2.75  
V
V
V
V
0
V
SS  
Schmitt trigger inputs, DV  
DD  
=
2.5  
DV  
DV  
+ 0.3  
DD  
DD  
3.3"0.3 V  
High-level input voltage, I/O  
V
IH  
All other inputs  
2
+ 0.3  
Low-level input voltage  
High-level output current  
Low-level output current  
Operating case temperature  
–0.3  
0.8  
V
IL  
I
–300  
1.5  
µA  
mA  
°C  
OH  
OL  
I
T
C
–40  
100  
Texas Instrument DSPs do not require specific power sequencing between the core supply and the I/O supply. However, systems should be  
designed to ensure that neither supply is powered up for extended periods of time if the other supply is below the proper operating voltage.  
Excessive exposure to these conditions can adversely affect the long term reliability of the devices. System-level concerns such as bus contention  
may require supply sequencing to be implemented. In this case, the core supply should be powered up at the same time as, or prior to (and  
powered down after), the I/O buffers. For additional power sequencing information, see the Power Supply Sequencing Solutions For Dual Supply  
Voltage DSPs application report (literature number SLVA073).  
On the ’VC549 devices, the following pins have schmitt trigger inputs: RS, INTn, NMI, X2/CLKIN, CLKMDn, TCK, HAS, HCS, HDSn, BCLKRn,  
TCLKR, BCLKXn, and TCLKX  
Refer to Figure 1 for 3.3-V device test load circuit values.  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
T
A
L
S
I
G
N
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
electrical characteristics over recommended operating case temperature range (unless otherwise  
noted)  
TYP  
PARAMETER  
TEST CONDITIONS  
= 3.3"0.3 V, = MAX  
MIN  
2.4  
MAX  
UNIT  
V
V
V
DD  
I
OH  
V
High-level output voltage  
OH  
Low-level output voltage  
I
= MAX  
0.4  
V
OL  
OL  
A[22:0]  
V
= MAXk  
–150  
–10  
250  
DD  
Input current in high  
impedance  
I
IZ  
µA  
All other pins  
V
DD  
= MAX, V = V to V  
SS DD  
10  
I
TRST  
With internal pulldown  
–10  
–10  
800  
400  
10  
HPIENA  
With internal pulldown, RS = 0  
With internal pullups  
||  
TMS, TCK, TDI, HPI  
D[15:0], HD[7:0]  
X2/CLKIN  
–400  
–150  
–40  
Input current  
I
I
µA  
(V = V  
SS  
to V )  
DD  
Bus holders enabled, V  
= MAXk  
250  
40  
I
DD  
Oscillator enabled  
All other input-only pins  
–10  
10  
§
§
#
2
I
I
Supply current, core CPU  
Supply current, pins  
CV  
DV  
= 2.5 V, f = 40 MHz,  
T
T
= 25°C  
= 25°C  
20  
mA  
DDC  
DD  
DD  
x
C
= 3.3 V, f = 40 MHz,  
12  
mA  
mA  
DDP  
x
C
IDLE2  
PLL × 1 mode, 40 MHz input  
Divide-by-two mode, CLKIN stopped  
(’VC549-80 and ’VC549-100)  
15  
Supply current,  
standby  
I
DD  
IDLE3  
µA  
Divide-by-two mode, CLKIN stopped  
(’VC549-120 only)  
170  
C
C
Input capacitance  
Output capacitance  
10  
10  
pF  
pF  
i
o
§
All values are typical unless otherwise specified.  
All input and output voltage levels except RS, INT0–INT3, NMI, CNT, X2/CLKIN, CLKMD0–CLKMD3 are LVTTL-compatible.  
Clock mode: PLL × 1 with external source  
This value was obtained with 50% usage of MAC and 50% usage of NOP instructions. Actual operating current varies with program being  
executed.  
#
||  
This value was obtained with single-cycle external writes, CLKOFF = 0 and load = 15 pF. For more details on how this calculation is performed,  
refer to the Calculation of TMS320C54x Power Dissipation application report (literature number SPRA164).  
HPI input signals except for HPIENA.  
kV  
V V  
IL(MAX)  
or V  
IH(MIN)  
V V  
IH(MAX)  
IL(MIN)  
I
I
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
G
I
T
A
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
PARAMETER MEASUREMENT INFORMATION  
timing parameter symbology  
Timing parameter symbols used are created in accordance with JEDEC Standard 100-A. To shorten the  
symbols, some of the pin names and other related terminology have been abbreviated as follows:  
Lowercase subscripts and their meanings:  
Letters and symbols and their meanings:  
a
access time  
H
L
High  
c
cycle time (period)  
delay time  
Low  
d
V
Z
Valid  
dis  
en  
f
disable time  
High impedance  
enable time  
fall time  
h
hold time  
r
rise time  
su  
t
setup time  
transition time  
valid time  
v
w
X
pulse duration (width)  
Unknown, changing, or don’t care level  
signal transition reference points  
All timing references are made at a voltage of 1.5 volts, except rise and fall times which are referenced at the  
10% and 90% points of the specified low and high logic levels, respectively.  
I
OL  
50 Ω  
Output  
Under  
Test  
Tester Pin  
Electronics  
V
Load  
C
T
I
OH  
Where: I  
I
= 1.5 mA (all outputs)  
= 300 µA (all outputs)  
= 1.5 V  
OL  
OH  
Load  
T
V
C
= 40 pF typical load circuit capacitance.  
Figure 1. 3.3-V Test Load Circuit  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
internal oscillator with external crystal  
The internal oscillator is enabled by selecting the appropriate clock mode at reset (this is device dependent –  
see PLL section) and connecting a crystal or ceramic resonator across X1 and X2/CLKIN. The CPU clock  
frequency is one-half the crystal’s oscillation frequency following reset. After reset, the clock mode of the devices  
with the software PLL can also be changed to divide-by-four.  
The crystal should be in fundamental mode operation and parallel resonant with an effective series resistance  
of 30ohms and power dissipation of 1 mW. The connection of the required circuit, consisting of the crystal and  
two load capacitors, is shown in Figure 2. The load capacitors, C and C , should be chosen such that the  
1
2
equation below is satisfied. C in the equation is the load specified for the crystal.  
L
C1C2  
CL +  
(C1 ) C2)  
recommended operating conditions (see Figure 2)  
’549-80  
’549-100  
’549-120  
UNIT  
MIN NOM  
MAX  
MIN NOM  
MAX  
MIN NOM  
MAX  
10  
20  
10  
20  
10  
20  
f
x
Input clock frequency  
MHz  
This device utilizes a fully static design and therefore can operate with t  
approaching 0 Hz.  
It is recommended that the PLL clocking option be used for maximum frequency operation.  
approaching . The device is characterized at frequencies  
c(CI)  
X1  
X2/CLKIN  
Crystal  
C1  
C2  
Figure 2. Internal Divide-by-Two Clock Option With External Crystal  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
divide-by-two/divide-by-four clock option – PLL disabled  
The frequency of the reference clock provided at the X2/CLKIN pin can be divided by a factor of two or four to  
generate the internal machine cycle.  
When an external clock source is used, the frequency injected must conform to specifications listed in the timing  
requirements table.  
switching characteristics over recommended operating conditions for divide-by-two/  
divide-by-four clock option – PLL disabled [H = 0.5t  
recommended operating conditions table)  
] (see Figure 2 and Figure 3, and the  
c(CO)  
’549-80  
’549-100  
TYP  
’549-120  
TYP  
PARAMETER  
UNIT  
ns  
MIN  
TYP  
MAX  
MIN  
MAX  
MIN  
MAX  
12.5  
10  
8.33  
t
Cycle time, CLKOUT  
2t  
c(CI)  
2t  
2t  
c(CO)  
c(CI)  
6
c(CI)  
6
Delay time, X2/CLKIN high to  
CLKOUT high/low  
t
3
6
10  
3
10  
3
10  
ns  
d(CIH-CO)  
t
Fall time, CLKOUT  
2
2
2
2
2
2
ns  
ns  
ns  
ns  
f(CO)  
t
t
t
Rise time, CLKOUT  
r(CO)  
Pulse duration, CLKOUT low  
H–3  
H–3  
H–1  
H–1  
H
H
H–2  
H–2  
H–1  
H–1  
H
H
H–2  
H–2  
H–1  
H–1  
H
H
w(COL)  
w(COH)  
Pulse duration, CLKOUT high  
This device utilizes a fully static design and therefore can operate with t  
approaching 0 Hz.  
It is recommended that the PLL clocking option be used for maximum frequency operation.  
approaching . The device is characterized at frequencies  
c(CI)  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
T
A
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
divide-by-two/divide-by-four clock option – PLL disabled (continued)  
timing requirements for divide-by-two/divide-by-four clock option – PLL disabled (see Figure 3)  
’549-80  
MIN MAX  
’549-100  
MIN MAX  
’549-120  
MIN MAX  
UNIT  
t
t
t
t
t
Cycle time, X2/CLKIN  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
c(CI)  
Fall time, X2/CLKIN  
8
8
8
f(CI)  
Rise time, X2/CLKIN  
8
8
8
r(CI)  
Pulse duration, X2/CLKIN low  
Pulse duration, X2/CLKIN high  
5
5
5
5
5
5
w(CIL)  
w(CIH)  
This device utilizes a fully static design and therefore can operate with t  
approaching 0 Hz.  
It is recommended that the PLL clocking option be used for maximum frequency operation.  
approaching . The device is characterized at frequencies  
c(CI)  
t
r(CI)  
t
f(CI)  
t
w(CIH)  
t
c(CI)  
X2/CLKIN  
CLKOUT  
t
w(CIL)  
t
w(COH)  
t
f(CO)  
t
c(CO)  
t
r(CO)  
t
d(CIH-CO)  
t
w(COL)  
Figure 3. External Divide-by-Two Clock Timing  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
multiply-by-N clock option – PLL enabled  
The frequency of the reference clock provided at the X2/CLKIN pin can be multiplied by a factor of N to generate  
the internal machine cycle.  
When an external clock source is used, the frequency injected must conform to specifications listed in the timing  
requirements table.  
switching characteristics over recommended operating conditions for multiply-by-N clock option  
– PLL enabled [H = 0.5t  
conditions table)  
] (see Figure 2 and Figure 4, and the recommended operating  
c(CO)  
’549-80  
TYP  
’549-100  
TYP  
’549-120  
TYP  
PARAMETER  
UNIT  
ns  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
t
Cycle time, CLKOUT  
12.5  
t
10  
t
8.33  
t
c(CO)  
c(CI)/N  
6
c(CI)/N  
6
c(CI)/N  
6
Delay time, X2/CLKIN high/low to  
CLKOUT high/low  
t
3
10  
3
10  
3
10  
ns  
d(CIH-CO)  
t
Fall time, CLKOUT  
2
2
2
2
2
2
ns  
ns  
ns  
ns  
ms  
f(CO)  
r(CO)  
w(COL)  
w(COH)  
p
t
t
t
t
Rise time, CLKOUT  
Pulse duration, CLKOUT low  
Pulse duration, CLKOUT high  
Transitory phase, PLL lock-up time  
H–3  
H–3  
H–1  
H–1  
H
H
H–2  
H–2  
H–1  
H–1  
H
H
H–2  
H–2  
H–1  
H–1  
H
H
29  
35  
45  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
multiply-by-N clock option – PLL enabled (continued)  
timing requirements for multiply-by-N clock option – PLL enabled (see Figure 4)  
’549-100  
’549-120  
’549-80  
UNIT  
MIN  
MAX  
200  
100  
50  
MIN  
MAX  
20  
20  
20  
20  
20  
20  
Integer PLL multiplier N (N = 1–15)  
PLL multiplier N = x.5  
200  
100  
50  
t
Cycle time, X2/CLKIN  
ns  
c(CI)  
PLL multiplier N = x.25, x.75  
t
t
t
t
Fall time, X2/CLKIN  
8
8
8
8
ns  
ns  
ns  
ns  
f(CI)  
Rise time, X2/CLKIN  
r(CI)  
Pulse duration, X2/CLKIN low  
Pulse duration, X2/CLKIN high  
5
5
5
5
w(CIL)  
w(CIH)  
Note that for all values of t  
, the minimum t  
period must not be exceeded.  
c(CI)  
c(CO)  
t
f(CI)  
t
t
w(CIL)  
t
w(CIH)  
r(CI)  
t
c(CI)  
X2/CLKIN  
t
d(CIH-CO)  
t
f(CO)  
t
w(COH)  
t
c(CO)  
t
w(COL)  
t
tp  
r(CO)  
Unstable  
CLKOUT  
Figure 4. External Multiply-by-One Clock Timing  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
memory and parallel I/O interface timing  
switching characteristics over recommended operating conditions for a memory read  
†‡  
(MSTRB = 0) (see Figure 5)  
’549-80  
MIN  
– 1  
’549-100  
MIN MAX  
’549-120  
MIN MAX  
PARAMETER  
UNIT  
MAX  
§
t
t
Delay time, address valid from CLKOUT low  
5
5
5
5
5
5
– 1  
– 1  
– 1  
– 1  
– 1  
–1  
4
4
4
5
4
4
– 1  
– 1  
– 1  
– 1  
– 1  
–1  
4
4
3
3
4
4
ns  
ns  
ns  
ns  
ns  
ns  
d(CLKL-A)  
Delay time, address valid from CLKOUT high (transition)  
Delay time, MSTRB low from CLKOUT low  
– 1  
d(CLKH-A)  
t
– 1  
d(CLKL-MSL)  
t
Delay time, MSTRB high from CLKOUT low  
– 1  
d(CLKL-MSH)  
§
t
Hold time, address valid after CLKOUT low  
– 1  
h(CLKL-A)R  
h(CLKH-A)R  
t
Hold time, address valid after CLKOUT high  
– 1  
Address, PS, and DS timings are all included in timings referenced as address.  
§
See Table 1, Table 2, and Table 3 for address bus timing variation with load capacitance.  
In the case of a memory read preceded by a memory read  
In the case of a memory read preceded by a memory write  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
memory and parallel I/O interface timing (continued)  
†‡  
timing requirements for a memory read (MSTRB = 0) [H = 0.5 t  
]
(see Figure 5)  
c(CO)  
’549-80  
’549-100  
’549-120  
UNIT  
MIN  
MAX  
2H–9  
2H–8  
MIN  
MAX  
2H–8  
2H–7  
MIN  
MAX  
t
t
t
t
t
t
Access time, read data access from address valid  
Access time, read data access from MSTRB low  
Setup time, read data before CLKOUT low  
Hold time, read data after CLKOUT low  
2H–8  
2H–7  
ns  
ns  
ns  
ns  
ns  
ns  
a(A)M  
a(MSTRBL)  
su(D)R  
5
0
0
0
5
0
0
0
5
0
0
0
h(D)R  
Hold time, read data after address invalid  
Hold time, read data after MSTRB high  
h(A-D)R  
h(D)MSTRBH  
Address, PS, and DS timings are all included in timings referenced as address.  
See Table 1, Table 2, and Table 3 for address bus timing variation with load capacitance.  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
memory and parallel I/O interface timing (continued)  
CLKOUT  
t
d(CLKL-A)  
t
h(CLKL-A)R  
A[15:0]  
t
h(A-D)R  
t
su(D)R  
t
a(A)M  
t
h(D)R  
D[15:0]  
t
h(D)MSTRBH  
t
d(CLKL-MSL)  
t
d(CLKL-MSH)  
t
a(MSTRBL)  
MSTRB  
R/W  
PS, DS  
Figure 5. Memory Read (MSTRB = 0)  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
memory and parallel I/O interface timing (continued)  
switching characteristics over recommended operating conditions for a memory write  
†‡  
(MSTRB = 0) [H = 0.5 t  
]
(see Figure 6)  
c(CO)  
’549-80  
MIN MAX  
’549-100  
MIN MAX  
’549-120  
MIN MAX  
UNIT  
UNIT  
ns  
PARAMETER  
Delay time, address valid from CLKOUT high  
§
t
t
– 1  
– 1  
5
5
5
7
5
5
5
– 1  
– 1  
– 1  
0
4
4
4
7
5
4
4
– 1  
– 1  
– 1  
0
4
4
3
5
3
4
4
d(CLKH-A)  
Delay time, address valid from CLKOUT low  
Delay time, MSTRB low from CLKOUT low  
Delay time, data valid from CLKOUT low  
Delay time, MSTRB high from CLKOUT low  
Delay time, R/W low from CLKOUT high  
Delay time, R/W high from CLKOUT high  
Delay time, MSTRB low after R/W low  
ns  
d(CLKL-A)  
t
– 1  
ns  
d(CLKL-MSL)  
t
0
ns  
d(CLKL-D)W  
t
– 1  
– 1  
0
– 1  
– 1  
– 1  
ns  
d(CLKL-MSH)  
t
0
ns  
d(CLKH-RWL)  
t
– 1  
– 1  
ns  
d(CLKH-RWH)  
t
H – 2  
– 1  
H + 3 H – 2  
H + 2 H – 2 H + 2  
ns  
d(RWL-MSTRBL)  
§
t
Hold time, address valid after CLKOUT high  
Hold time, write data valid after MSTRB high  
Pulse duration, MSTRB low  
5
– 1  
4
– 1  
4
ns  
h(A)W  
t
t
t
t
H–4  
2H–5  
2H–5  
2H–7  
H+4  
H–3 H+3  
H–3 H+3  
ns  
ns  
ns  
ns  
h(D)MSH  
w(SL)MS  
su(A)W  
2H–4  
2H–4  
Setup time, address valid before MSTRB low  
2H–4  
2H–4  
2H–4 2H+4  
Setup time, write data valid before MSTRB high  
2H+7  
2H–5 2H+5  
su(D)MSH  
Address, PS, and DS timings are all included in timings referenced as address.  
§
See Table 1, Table 2, and Table 3 for address bus timing variation with load capacitance.  
In the case of a memory write preceded by a memory write.  
In the case of a memory write preceded by an I/O cycle.  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
memory and parallel I/O interface timing (continued)  
CLKOUT  
t
d(CLKH-A)  
t
d(CLKL-A)  
t
h(A)W  
A[15:0]  
D[15:0]  
MSTRB  
R/W  
t
d(CLKL-D)W  
t
h(D)MSH  
t
su(D)MSH  
t
d(CLKL-MSL)  
t
d(CLKL-MSH)  
t
t
su(A)W  
t
d(CLKH-RWL)  
d(CLKH-RWH)  
t
w(SL)MS  
t
d(RWL-MSTRBL)  
PS, DS  
Figure 6. Memory Write (MSTRB = 0)  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
memory and parallel I/O interface timing (continued)  
switching characteristics over recommended operating conditions for a parallel I/O port read  
†‡  
(IOSTRB = 0) (see Figure 7)  
’549-80  
MIN  
– 1  
’549-100  
MIN  
– 1  
’549-120  
MIN  
– 1  
PARAMETER  
UNIT  
MAX  
MAX  
MAX  
t
Delay time, address valid from CLKOUT low  
Delay time, IOSTRB low from CLKOUT high  
Delay time, IOSTRB high from CLKOUT high  
Hold time, address after CLKOUT low  
5
5
5
5
4
4
4
4
4
4
4
4
ns  
ns  
ns  
ns  
d(CLKL-A)  
t
0
0
0
d(CLKH-ISTRBL)  
t
– 1  
– 1  
– 1  
d(CLKH-ISTRBH)  
t
– 1  
– 1  
– 1  
h(A)IOR  
Address and IS timings are included in timings referenced as address.  
See Table 1, Table 2, and Table 3 for address bus timing variation with load capacitance.  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
memory and parallel I/O interface timing (continued)  
timing requirements for a parallel I/O port read (IOSTRB = 0) [H = 0.5 t  
†‡  
]
(see Figure 7)  
c(CO)  
’549-80  
MAX  
’549-100  
’549-120  
UNIT  
MIN  
MIN  
MAX  
3H–8  
2H–8  
MIN  
MAX  
3H–8  
2H–7  
t
t
t
t
t
Access time, read data access from address valid  
Access time, read data access from IOSTRB low  
Setup time, read data before CLKOUT high  
Hold time, read data after CLKOUT high  
3H–9  
2H–9  
ns  
ns  
ns  
ns  
ns  
a(A)IO  
a(ISTRBL)IO  
su(D)IOR  
4
0
0
4
4
0
0
0
0
h(D)IOR  
Hold time, read data after IOSTRB high  
h(ISTRBH-D)R  
Address and IS timings are included in timings referenced as address.  
See Table 1, Table 2, and Table 3 for address bus timing variation with load capacitance.  
CLKOUT  
t
t
h(A)IOR  
d(CLKL-A)  
A[15:0]  
t
h(D)IOR  
t
su(D)IOR  
t
a(A)IO  
D[15:0]  
t
h(ISTRBH-D)R  
d(CLKH-ISTRBH)  
t
a(ISTRBL)IO  
t
t
d(CLKH-ISTRBL)  
IOSTRB  
R/W  
IS  
Figure 7. Parallel I/O Port Read (IOSTRB = 0)  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
memory and parallel I/O interface timing (continued)  
switching characteristics over recommended operating conditions for a parallel I/O port write  
(IOSTRB = 0) [H = 0.5 t  
] (see Figure 8)  
c(CO)  
’549-80  
MIN  
’549-100  
’549-120  
PARAMETER  
UNIT  
MAX  
5
MIN MAX  
MIN MAX  
t
Delay time, address valid from CLKOUT low  
– 1  
0
– 1  
0
4
4
– 1  
0
4
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(CLKL-A)  
t
Delay time, IOSTRB low from CLKOUT high  
5
d(CLKH-ISTRBL)  
t
Delay time, write data valid from CLKOUT high  
Delay time, IOSTRB high from CLKOUT high  
Delay time, R/W low from CLKOUT low  
Delay time, R/W high from CLKOUT low  
H–5  
– 1  
0
H+7  
5
H–5  
– 1  
0
H+7  
4
H–5  
– 1  
0
H+6  
4
d(CLKH-D)IOW  
t
d(CLKH-ISTRBH)  
t
5
4
4
d(CLKL-RWL)  
d(CLKL-RWH)  
h(A)IOW  
t
t
t
t
t
0
5
0
4
0
4
Hold time, address valid from CLKOUT low  
Hold time, write data after IOSTRB high  
Setup time, write data before IOSTRB high  
– 1  
H–4  
H–5  
5
– 1  
H–3  
H–5  
4
– 1  
H–3  
H–5  
4
H+4  
H+1  
H+3  
H+1  
H+3  
H
h(D)IOW  
su(D)IOSTRBH  
Setup time, address valid before IOSTRB low  
H–5  
H+5  
H–3  
H+3  
H–3  
H+3  
ns  
su(A)IOSTRBL  
See Table 1, Table 2, and Table 3 for address bus timing variation with load capacitance.  
Address and IS timings are included in timings referenced as address.  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
memory and parallel I/O interface timing (continued)  
CLKOUT  
t
su(A)IOSTRBL  
t
h(A)IOW  
t
d(CLKL-A)  
A[15:0]  
t
d(CLKH-D)IOW  
t
h(D)IOW  
D[15:0]  
t
d(CLKH-ISTRBL)  
t
d(CLKH-ISTRBH)  
t
su(D)IOSTRBH  
t
IOSTRB  
R/W  
t
d(CLKL-RWL)  
d(CLKL-RWH)  
IS  
Figure 8. Parallel I/O Port Write (IOSTRB = 0)  
I/O timing variation with load capacitance: SPICE simulation results  
Condition: Temperature : 125° C  
Capacitance : 0–100pF  
Voltage  
Model  
: 2.7/3.0/3.3 V  
: Weak/Nominal/Strong  
90%  
10%  
Figure 9. Rise and Fall Time Diagram  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
T
A
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
I/O timing variation with load capacitance: SPICE simulation results (continued)  
Table 1. Timing Variation With Load Capacitance: [2.7 V] 10% – 90%  
WEAK  
NOMINAL  
STRONG  
RISE  
FALL  
RISE  
FALL  
RISE  
FALL  
0 pF  
10 pF  
20 pF  
30 pF  
40 pF  
50 pF  
60 pF  
70 pF  
80 pF  
90 pF  
100 pF  
0.476 ns  
1.511 ns  
2.551 ns  
3.614 ns  
4.664 ns  
5.752 ns  
6.789 ns  
7.817 ns  
8.897 ns  
10.021 ns  
11.072 ns  
0.457 ns  
1.278 ns  
2.133 ns  
3.011 ns  
3.899 ns  
4.786 ns  
5.656 ns  
6.598 ns  
7.531 ns  
8.332 ns  
9.299 ns  
0.429 ns  
1.386 ns  
2.350 ns  
3.327 ns  
4.394 ns  
5.273 ns  
6.273 ns  
7.241 ns  
8.278 ns  
9.152 ns  
10.208 ns  
0.391 ns  
1.148 ns  
1.956 ns  
2.762 ns  
3.566 ns  
4.395 ns  
5.206 ns  
6.000 ns  
6.928 ns  
7.735 ns  
8.537 ns  
0.382 ns  
1.215 ns  
2.074 ns  
2.929 ns  
3.798 ns  
4.655 ns  
5.515 ns  
6.442 ns  
7.262 ns  
8.130 ns  
8.997 ns  
0.323 ns  
1.049 ns  
1.779 ns  
2.512 ns  
3.264 ns  
4.010 ns  
4.750 ns  
5.487 ns  
6.317 ns  
7.066 ns  
7.754 ns  
Table 2. Timing Variation With Load Capacitance: [3 V] 10% – 90%  
WEAK  
NOMINAL  
STRONG  
RISE  
FALL  
RISE  
FALL  
RISE  
FALL  
0 pF  
10 pF  
20 pF  
30 pF  
40 pF  
50 pF  
60 pF  
70 pF  
80 pF  
90 pF  
100 pF  
0.436 ns  
1.349 ns  
2.273 ns  
3.226 ns  
4.168 ns  
5.110 ns  
6.033 ns  
7.077 ns  
8.020 ns  
8.917 ns  
9.885 ns  
0.387 ns  
1.185 ns  
1.966 ns  
2.765 ns  
3.573 ns  
4.377 ns  
5.230 ns  
5.997 ns  
6.899 ns  
7.709 ns  
8.541 ns  
0.398 ns  
1.240 ns  
2.098 ns  
2.974 ns  
3.849 ns  
4.732 ns  
5.660 ns  
6.524 ns  
7.416 ns  
8.218 ns  
9.141 ns  
0.350 ns  
1.064 ns  
1.794 ns  
2.539 ns  
3.292 ns  
4.052 ns  
4.811 ns  
5.601 ns  
6.336 ns  
7.124 ns  
7.830 ns  
0.345 ns  
1.092 ns  
1.861 ns  
2.637 ns  
3.406 ns  
4.194 ns  
5.005 ns  
5.746 ns  
6.559 ns  
7.323 ns  
8.101 ns  
0.290 ns  
0.964 ns  
1.634 ns  
2.324 ns  
3.013 ns  
3.710 ns  
4.401 ns  
5.117 ns  
5.861 ns  
6.498 ns  
7.238 ns  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
I/O timing variation with load capacitance: SPICE simulation results (continued)  
Table 3. Timing Variation With Load Capacitance: [3.3 V] 10% – 90% [3 V] 10% – 90%  
WEAK  
NOMINAL  
STRONG  
RISE  
FALL  
RISE  
FALL  
RISE  
FALL  
0 pF  
10 pF  
20 pF  
30 pF  
40 pF  
50 pF  
60 pF  
70 pF  
80 pF  
90 pF  
100 pF  
0.404 ns  
1.227 ns  
2.070 ns  
2.931 ns  
3.777 ns  
4.646 ns  
5.487 ns  
6.405 ns  
7.284 ns  
8.159 ns  
8.994 ns  
0.361 ns  
1.081 ns  
1.822 ns  
2.567 ns  
3.322 ns  
4.091 ns  
4.859 ns  
5.608 ns  
6.463 ns  
7.097 ns  
7.935 ns  
0.371 ns  
1.133 ns  
1.915 ns  
2.719 ns  
3.515 ns  
4.319 ns  
5.145 ns  
5.980 ns  
6.723 ns  
7.560 ns  
8.300 ns  
0.310 ns  
1.001 ns  
1.675 ns  
2.367 ns  
3.072 ns  
3.779 ns  
4.503 ns  
5.234 ns  
5.873 ns  
6.692 ns  
7.307 ns  
0.321 ns  
1.000 ns  
1.704 ns  
2.414 ns  
3.120 ns  
3.842 ns  
4.571 ns  
5.301 ns  
5.941 ns  
6.740 ns  
7.431 ns  
0.284 ns  
0.892 ns  
1.530 ns  
2.169 ns  
2.823 ns  
3.466 ns  
4.142 ns  
4.767 ns  
5.446 ns  
6.146 ns  
6.822 ns  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
ready timing for externally generated wait states  
timing requirements for externally generated wait states [H = 0.5 t  
Figure 12, and Figure 13)  
] (see Figure 10, Figure 11,  
c(CO)  
’549-80  
’549-100  
MIN MAX  
’549-120  
MIN MAX  
UNIT  
MIN  
6
MAX  
t
t
t
t
t
t
t
t
Setup time, READY before CLKOUT low  
Hold time, READY after CLKOUT low  
5
0
5
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(RDY)  
0
h(RDY)  
Valid time, READY after MSTRB low  
4H–10  
5H–10  
4H–8  
5H–8  
4H–8  
5H–8  
v(RDY)MSTRB  
h(RDY)MSTRB  
v(RDY)IOSTRB  
h(RDY)IOSTRB  
v(MSCL)  
Hold time, READY after MSTRB low  
4H  
4H  
4H  
Valid time, READY after IOSTRB low  
Hold time, READY after IOSTRB low  
5H  
0
5H  
0
5H  
0
Valid time, MSC low after CLKOUT low  
Valid time, MSC high after CLKOUT low  
5
5
4
4
4
4
0
0
0
v(MSCH)  
The hardware wait states can be used only in conjunction with the software wait states to extend the bus cycles. To generate wait states by  
READY, at least two software wait states must be programmed. READY is not sampled until the completion of the internal software wait states.  
These timings are included for reference only. The critical timings for READY are those referenced to CLKOUT.  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
ready timing for externally generated wait states (continued)  
CLKOUT  
A[15:0]  
t
su(RDY)  
t
h(RDY)  
READY  
MSTRB  
MSC  
t
v(RDY)MSTRB  
t
h(RDY)MSTRB  
t
v(MSCH)  
t
v(MSCL)  
Wait State  
Generated  
by READY  
Wait States  
Generated Internally  
Figure 10. Memory Read With Externally Generated Wait States  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
ready timing for externally generated wait states (continued)  
CLKOUT  
A[15:0]  
D[15:0]  
t
h(RDY)  
t
su(RDY)  
READY  
MSTRB  
MSC  
t
v(RDY)MSTRB  
t
h(RDY)MSTRB  
t
v(MSCH)  
t
v(MSCL)  
Wait States  
Generated Internally  
Wait State Generated  
by READY  
Figure 11. Memory Write With Externally Generated Wait States  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
ready timing for externally generated wait states (continued)  
CLKOUT  
A[15:0]  
t
h(RDY)  
t
su(RDY)  
READY  
IOSTRB  
MSC  
t
v(RDY)IOSTRB  
t
h(RDY)IOSTRB  
t
v(MSCH)  
t
v(MSCL)  
Wait State Generated  
by READY  
Wait  
States  
Generated  
Internally  
Figure 12. I/O Read With Externally Generated Wait States  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
ready timing for externally generated wait states (continued)  
CLKOUT  
A[15:0]  
D[15:0]  
t
h(RDY)  
t
su(RDY)  
READY  
t
v(RDY)IOSTRB  
t
h(RDY)IOSTRB  
IOSTRB  
MSC  
t
v(MSCH)  
t
v(MSCL)  
Wait State Generated  
by READY  
Wait States  
Generated  
Internally  
Figure 13. I/O Write With Externally Generated Wait States  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
HOLD and HOLDA timing  
switching characteristics over recommended operating conditions for memory control signals  
and HOLDA [H = 0.5 t  
] (see Figure 14)  
c(CO)  
’549-80  
’549-100  
’549-120  
PARAMETER  
UNIT  
MIN  
MAX  
t
t
Disable time, CLKOUT low to address, PS, DS, IS high impedance  
Disable time, CLKOUT low to R/W high impedance  
5
5
ns  
ns  
dis(CLKL-A)  
dis(CLKL-RW)  
Disable time, CLKOUT low to MSTRB, IOSTRB high  
impedance  
t
5
ns  
dis(CLKL-S)  
t
t
t
Enable time, CLKOUT low to address, PS, DS, IS  
Enable time, CLKOUT low to R/W enabled  
2H+5  
2H+5  
2H+5  
ns  
ns  
ns  
en(CLKL-A)  
en(CLKL-RW)  
en(CLKL-S)  
Enable time, CLKOUT low to MSTRB, IOSTRB enabled  
2
0
5
5
ns  
ns  
ns  
Valid time, HOLDA low after CLKOUT low  
t
t
v(HOLDA)  
0
Valid time, HOLDA high after CLKOUT low  
Pulse duration, HOLDA low duration  
2H–3  
w(HOLDA)  
timing requirements for HOLD [H = 0.5 t  
] (see Figure 14)  
c(CO)  
’549-80  
’549-100  
’549-120  
UNIT  
MIN  
MAX  
t
t
Pulse duration, HOLD low duration  
Setup time, HOLD before CLKOUT low  
4H+10  
10  
ns  
ns  
w(HOLD)  
su(HOLD)  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
Ć
F
I
X
E
D
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
P
R
O
C
E
S
S
O
R
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
HOLD and HOLDA timing (continued)  
CLKOUT  
t
t
su(HOLD)  
su(HOLD)  
t
w(HOLD)  
HOLD  
t
t
v(HOLDA)  
v(HOLDA)  
t
w(HOLDA)  
HOLDA  
t
dis(CLKL-A)  
t
en(CLKL-A)  
A[15:0]  
PS, DS, IS  
D[15:0]  
R/W  
t
t
t
t
dis(CLKL-RW)  
dis(CLKL-S)  
dis(CLKL-S)  
en(CLKL-RW)  
t
en(CLKL-S)  
MSTRB  
IOSTRB  
t
en(CLKL-S)  
Figure 14. HOLD and HOLDA Timing (HM = 1)  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
reset, BIO, interrupt, and MP/MC timings  
timing requirements over recommended operating conditions for reset, interrupt, BIO, and MP/MC  
[H = 0.5 t ] (see Figure 15, Figure 16, and Figure 17) (continued)  
c(CO)  
’549-80  
’549-100  
’549-120  
MIN MAX  
UNIT  
MIN  
0
MAX  
MIN  
0
MAX  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Hold time, RS after CLKOUT low  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
h(RS)  
Hold time, BIO after CLKOUT low  
0
0
h(BIO)  
Hold time, INTn, NMI, after CLKOUT low  
0
0
0
h(INT)  
Hold time, MP/MC after CLKOUT low  
0
0
0
h(MPMC)  
w(RSL)  
‡§¶  
Pulse duration, RS low  
4H+7  
2H+7  
4H  
2H+7  
4H  
2H+7  
4H  
10  
4H+5  
2H+5  
4H  
2H+7  
4H  
2H+7  
4H  
8
4H+5  
2H+5  
4H  
2H+7  
4H  
2H+7  
4H  
8
Pulse duration, BIO low, synchronous  
Pulse duration, BIO low, asynchronous  
w(BIO)S  
w(BIO)A  
w(INTH)S  
w(INTH)A  
w(INTL)S  
w(INTL)A  
w(INTL)WKP  
su(RS)  
Pulse duration, INTn, NMI high (synchronous)  
Pulse duration, INTn, NMI high (asynchronous)  
Pulse duration, INTn, NMI low (synchronous)  
Pulse duration, INTn, NMI low (asynchronous)  
Pulse duration, INTn, NMI low for IDLE2/IDLE3 wakeup  
§
Setup time, RS before X2/CLKIN low  
5
5
5
Setup time, BIO before CLKOUT low  
10  
2H  
2H  
9
2H  
2H  
8
2H  
2H  
su(BIO)  
Setup time, INTn, NMI, RS before CLKOUT low  
Setup time, MP/MC before CLKOUT low  
10  
9
8
su(INT)  
10  
8
8
su(MPMC)  
The external interrupts (INT0–INT3, NMI) are synchronized to the core CPU by way of a two flip-flop synchronizer which samples these inputs  
with consecutive falling edges of CLKOUT. The input to the interrupt pins is required to represent a 1–0–0 sequence at the timing that is  
corresponding to three CLKOUTs sampling sequence.  
If the PLL mode is selected, then at power-on sequence, or at wakeup from IDLE3, RS must be held low for at least 50 µs to assure synchronization  
and lock-in of the PLL.  
§
Divide-by-two mode  
Note that RS may cause a change in clock frequency, therefore changing the value of H (see the PLL section).  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
reset, BIO, interrupt, and MP/MC timings (continued)  
X2/CLKIN  
t
su(RS)  
t
w(RSL)  
RS, INTn, NMI  
t
su(INT)  
t
h(RS)  
CLKOUT  
t
su(BIO)  
t
h(BIO)  
BIO  
t
w(BIO)S  
Figure 15. Reset and BIO Timings  
CLKOUT  
t
t
t
su(INT)  
su(INT)  
h(INT)  
INTn, NMI  
t
w(INTH)A  
t
w(INTL)A  
Figure 16. Interrupt Timing  
CLKOUT  
RS  
t
h(MPMC)  
t
su(MPMC)  
MP/MC  
Figure 17. MP/MC Timing  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
instruction acquisition (IAQ), interrupt acknowledge (IACK), external flag (XF), and TOUT timing  
switching characteristics over recommended operating conditions for IAQ and IACK  
[H = 0.5 t  
] (see Figure 18)  
c(CO)  
’549-80  
’549-100  
’549-120  
PARAMETER  
UNIT  
MIN  
– 1  
MAX  
MIN  
– 1  
MAX  
t
Delay time, IAQ low from CLKOUT low  
Delay time, IAQ high from CLKOUT low  
Delay time, address valid before IAQ low  
Delay time, IACK low from CLKOUT low  
Delay time , IACK high from CLKOUT low  
Delay time, address valid before IACK low  
Hold time, address valid after IAQ high  
Hold time, address valid after IACK high  
Pulse duration, IAQ low  
5
5
4
5
5
3
4
4
4
4
4
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(CLKL-IAQL)  
t
t
– 1  
– 1  
d(CLKL-IAQH)  
d(A)IAQ  
t
0
0
0
0
d(CLKL-IACKL)  
t
d(CLKL-IACKH)  
d(A)IACK  
h(A)IAQ  
t
t
t
t
t
– 3  
– 3  
– 3  
– 3  
h(A)IACK  
w(IAQL)  
2H–3  
2H–3  
2H–3  
2H–3  
Pulse duration, IACK low  
w(IACKL)  
CLKOUT  
A[15:0]  
IAQ  
t
t
t
d(CLKL-IAQH)  
d(CLKL-IAQL)  
t
h(A)IAQ  
t
d(A)IAQ  
t
w(IAQL)  
t
d(CLKL-IACKH)  
d(CLKL-IACKL)  
t
h(A)IACK  
t
d(A)IACK  
t
w(IACKL)  
IACK  
MSTRB  
Figure 18. Instruction Acquisition (IAQ) and Interrupt Acknowledge (IACK) Timing  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
instruction acquisition (IAQ), interrupt acknowledge (IACK), external flag (XF), and TOUT timing  
(continued)  
switching characteristics over recommended operating conditions for external flag (XF) and TOUT  
[H = 0.5 t  
] (see Figure 19 and Figure 20)  
c(CO)  
’549-80  
’549-100  
’549-120  
PARAMETER  
UNIT  
MIN  
0
MAX  
MIN  
0
MAX  
Delay time, XF high after CLKOUT low  
Delay time, XF low after CLKOUT low  
5
5
4
4
t
ns  
d(XF)  
0
0
t
t
t
Delay time, TOUT high after CLKOUT low  
Delay time, TOUT low after CLKOUT low  
Pulse duration, TOUT  
0
–1  
5
5
– 1  
– 1  
4
4
ns  
ns  
ns  
d(TOUTH)  
d(TOUTL)  
w(TOUT)  
2H–3  
2H–3  
CLKOUT  
t
d(XF)  
XF  
Figure 19. External Flag (XF) Timing  
CLKOUT  
TOUT  
t
t
d(TOUTL)  
d(TOUTH)  
t
w(TOUT)  
Figure 20. TOUT Timing  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
serial port receive timing  
timing requirements over recommended operating conditions for serial port receive [H = 0.5 t  
(see Figure 21)  
]
c(CO)  
’549-80  
’549-100  
’549-120  
UNIT  
MIN  
MAX  
t
t
t
t
t
t
t
t
Cycle time, serial port clock  
6H  
6
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
c(SCK)  
f(SCK)  
r(SCK)  
w(SCK)  
su(FSR)  
h(FSR)  
h(DR)  
Fall time, serial port clock  
Rise time, serial port clock  
Pulse duration, serial port clock low/high  
Setup time, FSR before CLKR falling edge  
Hold time, FSR after CLKR falling edge  
Hold time, DR after CLKR falling edge  
Setup time, DR before CLKR falling edge  
3H  
4
4
6
6
su(DR)  
The serial port design is fully static and, therefore, can operate with t  
of 0 Hz but tested at a much higher frequency to minimize test time.  
approaching . It is characterized approaching an input frequency  
c(SCK)  
t
c(SCK)  
t
f(SCK)  
t
w(SCK)  
CLKR  
FSR  
t
h(FSR)  
t
r(SCK)  
t
w(SCK)  
t
su(FSR)  
t
su(DR)  
t
h(DR)  
DR  
BIT  
1
2
7/15  
8/16  
Figure 21. Serial Port Receive Timing  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
G
N
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
serial port transmit timing  
switching characteristics over recommended operating conditions for serial port transmit with  
external clocks and frames [H = 0.5t ] (see Figure 22)  
c(CO)  
’549-80  
’549-100  
’549-120  
PARAMETER  
UNIT  
MIN  
MAX  
t
t
t
Delay time, DX valid after CLKX rising  
25  
ns  
ns  
ns  
d(DX)  
h(DX)  
dis(DX)  
Hold time, DX valid after CLKX rising  
Disable time, DX after CLKX rising  
– 5  
40  
timing requirements over recommended operating conditions for serial port transmit with external  
clocks and frames [H = 0.5t ] (see Figure 22)  
c(CO)  
’549-80  
’549-100  
’549-120  
UNIT  
MIN  
6H  
6
MAX  
t
t
t
t
t
t
t
Cycle time, serial port clock  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
c(SCK)  
h(FSX)  
h(FSX)H  
d(FSX)  
f(SCK)  
r(SCK)  
w(SCK)  
Hold time, FSX after CLKX falling edge (see Note 1)  
Hold time, FSX after CLKX rising edge (see Note 1)  
Delay time, FSX after CLKX rising edge  
Fall time, serial port clock  
2H–3  
2H–3  
6
6
Rise time, serial port clock  
Pulse duration, serial port clock low/high  
3H  
The serial port design is fully static and, therefore, can operate with t  
of 0 Hz but tested at a much higher frequency to minimize test time.  
If the FSX pulse does not meet this specification, the first bit of serial data is driven on DX until the falling edge of FSX. After the falling edge of  
FSX, data is shifted out on DX pin. The transmit buffer-empty interrupt is generated when the t specification is met.  
approaching . It is characterized approaching an input frequency  
c(SCK)  
t
h(FSX) and h(FSX)H  
NOTE 1: Internal clock with external FSX and vice versa are also allowable. However, FSX timings to CLKX always are defined depending on  
the source of FSX, and CLKX timings always are dependent upon the source of CLKX. Specifically, the relationship of FSX to CLKX  
is independent of the source of CLKX.  
t
c(SCK)  
t
t
f(SCK)  
w(SCK)  
CLKX  
t
h(FSX)H  
t
d(FSX)  
t
r(SCK)  
t
w(SCK)  
t
h(FSX)  
FSX  
t
d(DX)  
1
t
dis(DX)  
8/16  
t
h(DX)  
DX BIT  
2
7/15  
Figure 22. Serial Port Transmit Timing With External Clocks and Frames  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
serial port transmit timing (continued)  
switching characteristics over recommended operating conditions for serial port transmit with  
internal clocks and frames [H = 0.5t  
] (see Figure 23)  
c(CO)  
’549-80  
’549-100  
’549-120  
PARAMETER  
UNIT  
MIN  
TYP  
MAX  
t
t
t
t
t
t
t
t
Cycle time, serial port clock  
Delay time, CLKX rising to FSX  
Delay time, CLKX rising to DX  
Disable time, CLKX rising to DX  
8H  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
c(SCK)  
d(FSX)  
d(DX)  
7
7
20  
dis(DX)  
h(DX)  
Hold time, DX valid after CLKX rising edge  
Fall time, serial port clock  
–2  
3
3
f(SCK)  
r(SCK)  
w(SCK)  
Rise time, serial port clock  
Pulse duration, serial port clock low/high  
4H–4  
t
c(SCK)  
t
t
f(SCK)  
w(SCK)  
CLKX  
t
d(FSX)  
t
w(SCK)  
t
r(SCK)  
t
d(FSX)  
t
d(DX)  
FSX  
DX  
t
dis(DX)  
t
h(DX)  
1
2
7/15  
8/16  
Figure 23. Serial Port Transmit Timing With Internal Clocks and Frames  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
buffered serial port receive timing  
timing requirements over recommended operating conditions (see Figure 24)  
’549-80  
’549-100  
’549-120  
UNIT  
MIN  
MAX  
t
t
t
t
t
t
t
t
Cycle time, serial port clock  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
c(SCK)  
Fall time, serial port clock  
4
4
f(SCK)  
Rise time, serial port clock  
r(SCK)  
Pulse duration, serial port clock low/high  
Setup time, BFSR before BCLKR falling edge (see Note 2)  
Hold time, BFSR after BCLKR falling edge (see Note 2)  
Setup time, BDR before BCLKR falling edge  
Hold time, BDR after BCLKR falling edge  
6
2
7
0
7
w(SCK)  
su(BFSR)  
h(BFSR)  
su(BDR)  
h(BDR)  
t
c(SCK)–2  
The serial port design is fully static and therefore can operate with t  
of 0 Hz but tested at a much higher frequency to minimize test time.  
First bit is read when BFSR is sampled low by BCLKR clock.  
approaching infinity. It is characterized approaching an input frequency  
c(SCK)  
NOTE 2: Timings for BCLKR and BFSR are given with polarity bits (BCLKP and BFSP) set to 0.  
t
c(SCK)  
t
w(SCK)  
t
f(SCK)  
BCLKR  
BFSR  
BDR  
t
r(SCK)  
t
t
w(SCK)  
h(BFSR)  
t
su(BFSR)  
t
su(BDR)  
t
h(BDR)  
1
2
8/10/12/16  
Figure 24. Buffered Serial Port Receive Timing  
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
buffered serial port transmit timing of external frames  
switching characteristics over recommended operating conditions (see Figure 25)  
’549-80  
’549-100  
’549-120  
PARAMETER  
UNIT  
MIN  
MAX  
t
t
t
t
t
Delay time, BDX valid after BCLKX rising  
18  
6
ns  
ns  
ns  
ns  
ns  
d(BDX)  
Disable time, BDX after BCLKX rising  
4
dis(BDX)  
Disable time, PCM mode, BDX after BCLKX rising  
Enable time, PCM mode, BDX after BCLKX rising  
Hold time, BDX valid after BCLKX rising  
6
dis(BDX)pcm  
en(BDX)pcm  
h(BDX)  
8
2
timing requirements over recommended operating conditions (see Figure 25)  
’549-80  
’549-100  
’549-120  
UNIT  
MIN  
MAX  
t
t
t
t
t
t
Cycle time, serial port clock  
20  
ns  
ns  
ns  
ns  
ns  
ns  
c(SCK)  
Fall time, serial port clock  
4
4
f(SCK)  
Rise time, serial port clock  
r(SCK)  
Pulse duration, serial port clock low/high  
Hold time, BFSX after CLKX falling edge (see Notes 3 and 4)  
Setup time, FSX before CLKX falling edge (see Notes 3 and 4)  
6
6
6
w(SCK)  
h(BFSX)  
su(BFSX)  
t
c(SCK)–6  
The serial port design is fully static and therefore can operate with t  
c(SCK)  
approaching infinity. It is characterized approaching an input frequency  
of 0 Hz but tested at a much higher frequency to minimize test time.  
If BFSX does not meet this specification, the first bit of the serial data is driven on BDX until BFSX goes low (sampled on falling edge of BCLKX).  
After falling edge of the BFSX, data will be shifted out on the BDX pin.  
NOTES: 3. Internal clock with external BFSX and vice versa are also allowable. However, BFSX timings to BCLKX always are defined  
depending on the source of BFSX, and BCLKX timings always are dependent upon the source of BCLKX.  
4. Timings for BCLKX and BFSX are given with polarity bits (BCLKP and BFSP) set to 0.  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
buffered serial port transmit timing of external frames (continued)  
t
c(SCK)  
t
w(SCK)  
t
f(SCK)  
BCLKX  
BFSX  
BDX  
t
r(SCK)  
t
h(BFSX)  
t
w(SCK)  
t
su(BFSX)  
t
dis(BDX)  
t
h(BDX)  
t
d(BDX)  
1
2
8/10/12/16  
Figure 25. Buffered Serial Port Transmit Timing of External Clocks and External Frames  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
buffered serial port transmit timing of internal frame and internal clock  
switching characteristics over recommended operating conditions [H = 0.5tc(CO)] (see Figure 26)  
’549-80  
’549-100  
’549-120  
PARAMETER  
UNIT  
MIN MAX  
t
t
Cycle time, serial port clock, internal clock  
20  
62H  
7
ns  
ns  
c(SCK)  
Delay time, BFSX after BCLKX rising edge  
(see Notes 3 and 4)  
d(BFSX)  
t
t
t
t
t
t
t
t
Delay time, BDX valid after BCLKX rising edge  
Disable time, BDX after BCLKX rising edge  
Disable time, PCM mode, BDX after BCLKX rising edge  
Enable time, PCM mode, BDX after BCLKX rising edge  
Hold time, BDX valid after BCLKX rising edge  
Fall time, serial port clock  
7
5
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(BDX)  
0
dis(BDX)  
dis(BDX)pcm  
en(BDX)pcm  
h(BDX)  
7
0
3.5  
3.5  
f(SCK)  
Rise time, serial port clock  
r(SCK)  
Pulse duration, serial port clock low/high  
6
w(SCK)  
NOTES: 3. Internal clock with external BFSX and vice versa are also allowable. However, BFSX timings to BCLKX always are defined  
depending on the source of BFSX, and BCLKX timings always are dependent upon the source of BCLKX.  
4. Timings for BCLKX and BFSX are given with polarity bits (BCLKP and BFSP) set to 0.  
t
c(SCK)  
t
w(SCK)  
t
f(SCK)  
BCLKX  
BFSX  
BDX  
t
r(SCK)  
t
d(BFSX)  
t
w(SCK)  
t
d(BFSX)  
t
dis(BDX)  
t
h(BDX)  
t
d(BDX)  
1
2
8/10/12/16  
Figure 26. Buffered Serial Port Transmit Timing of Internal Clocks and Internal Frames  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
G
N
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
serial-port receive timing in TDM mode  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature [H = 0.5t ] (see Figure 27)  
c(CO)  
’549-80  
’549-100  
’549-120  
UNIT  
MIN  
MAX  
t
t
t
t
t
t
t
t
Cycle time, serial-port clock  
16H  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
c(SCK)  
Fall time, serial-port clock  
6
6
f(SCK)  
Rise time, serial-port clock  
r(SCK)  
Pulse duration, serial-port clock low/high  
Setup time, TDAT/TADD before TCLK rising edge  
Hold time, TDAT/TADD after TCLK rising edge  
Setup time, TFRM before TCLK rising edge‡  
Hold time, TFRM after TCLK rising edge‡  
8H  
10  
1
w(SCK)  
su(TD-TCH)  
h(TCH-TD)  
su(TF-TCH)  
h(TCH-TF)  
10  
10  
The serial-port design is fully static and, therefore, can operate with t  
c(SCK)  
approaching infinity. It is characterized approaching an input frequency  
of 0 Hz but tested at a much higher frequency to minimize test time.  
TFRM timing and waveforms shown in Figure 27 are for external TFRM. TFRM can also be configured as internal. The TFRM internal case is  
illustrated in the transmit timing diagram in Figure 28.  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
serial-port receive timing in TDM mode (continued)  
t
w(SCK)  
t
t
f(SCK)  
w(SCK)  
TCLK  
t
t
su(TD-TCL)  
su(TD-TCL)  
t
c(SCK)  
t
r(SCK)  
t
su(TD-TCH)  
t
t
h(TCL-TD)  
h(TCL-TD)  
t
h(TCH-TD)  
TDAT  
B0  
B14  
A1  
B13  
B12  
A3  
B11  
A4  
B2  
B1  
B0  
B15  
A0  
t
su(TF-TCH)  
A7  
A2  
TADD  
TFRM  
t
h(TCH-TF)  
All devices except ’542/’543  
’542/’543 only  
Figure 27. Serial-Port Receive Timing in TDM Mode  
49  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
serial-port transmit timing in TDM mode  
switching characteristics over recommended operating conditions [H = 0.5t  
] (see Figure 28)  
c(CO)  
’549-80  
549-100  
’549-120  
PARAMETER  
UNIT  
MIN  
MAX  
t
t
Hold time, TDAT/TADD valid after TCLK rising edge, TCLK external  
Hold time, TDAT/TADD valid after TCLK rising edge, TCLK internal  
1
1
ns  
ns  
h(TCH-TDV)  
h(TCH-TDV)  
Delay time, TFRM valid after TCLK rising edge, TCLK ext  
H – 3  
H – 3  
3H+22  
3H+12  
25  
t
ns  
ns  
d(TCH-TFV)  
d(TC-TDV)  
Delay time, TFRM valid after TCLK rising edge, TCLK int  
Delay time, TCLK to valid TDAT/TADD, TCLK ext  
Delay time, TCLK to valid TDAT/TADD, TCLK int  
t
18  
TFRM timing and waveforms shown in Figure 28 are for internal TFRM. TFRM can also be configured as external. The TFRM external case is  
illustrated in the receive timing diagram in Figure 27.  
50  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
serial-port transmit timing in TDM mode (continued)  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature [H = 0.5t ] (see Figure 28)  
c(CO)  
’549–80  
’549-100  
’549-120  
UNIT  
MIN  
MAX  
t
t
t
t
Cycle time, serial-port clock  
Fall time, serial-port clock  
16H  
ns  
ns  
ns  
ns  
c(SCK)  
f(SCK)  
r(SCK)  
w(SCK)  
6
6
Rise time, serial-port clock  
8H  
Pulse duration, serial-port clock low/high  
When SCK is generated internally, this value is typical.  
The serial-port design is fully static and, therefore, can operate with t  
approaching 1. It is characterized approaching an input frequency  
c(SCK)  
of 0 Hz but tested as a much higher frequency to minimize test time.  
t
w(SCK)  
t
w(SCK)  
t
f(SCK)  
TCLK  
t
c(SCK)  
t
t
d(TC-TDV)  
r(SCK)  
B1  
B15  
TDAT  
TADD  
B0  
h(TCH-TDV)  
B14  
B13  
A2  
B12  
A3  
B8 B7  
B2  
B0  
t
h(TCH-TDV)  
t
t
d(TC-TDV)  
A1  
A7  
t
d(TCH-TFV)  
A0  
t
d(TCH-TFV)  
TFRM  
Figure 28. Serial-Port Transmit Timing in TDM Mode  
51  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
host port interface timing  
switching characteristics over recommended operating conditions [H = 0.5t  
(see Notes 5 and 6) (see Figure 29 through Figure 32) (continued)  
]
c(CO)  
’549-80  
’549-100  
PARAMETER  
’549-120  
UNIT  
MIN  
MAX  
t
t
Delay time, DS low to HD driven  
5
12  
ns  
d(DSL-HDV)  
d(HEL-HDV1)  
Case 1: Shared-access mode if  
< 7H  
7H+20–t  
w(DSH)  
20  
t
w(DSH)  
Case 2: Shared-access mode if  
> 7H  
t
w(DSH)  
Case 3: Host-only mode if  
< 20 ns  
Delay time, HDS falling to HD valid for first byte  
of a non-subsequent read: max 20 ns  
ns  
†‡  
40–t  
w(DSH)  
20  
t
w(DSH)  
Case 4: Host-only mode if  
> 20 ns  
t
w(DSH)  
t
t
t
t
t
t
t
Delay time, DS low to HD valid, second byte  
Delay time, DS high to HRDY high  
5
20  
10H+10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(DSL-HDV2)  
d(DSH-HYH)  
su(HDV-HYH)  
h(DSH-HDV)R  
d(COH-HYH)  
d(DSH-HYL)  
d(COH-HTX)  
Setup time, HD valid before HRDY rising edge  
Hold time, HD valid after DS rising edge, read  
Delay time, CLKOUT rising edge to HRDY high  
Delay time, HDS or HCS high to HRDY low  
3H–10  
0
12  
10  
12  
15  
Delay time, CLKOUT rising edge to HINT change  
Host-only mode timings apply for read accesses to HPIC or HPIA, write accesses to BOB, and resetting DSPINT or HINT to 0 in shared-access  
mode. HRDY does not go low for these accesses.  
Shared-access mode timings will be met automatically if HRDY is used.  
NOTES: 5. SAM = shared-access mode, HOM = host-only mode  
HAD stands for HCNTRL0, HCNTRL1, and HR/W.  
HDS refers to either HDS1 or HDS2.  
DS refers to the logical OR of HCS and HDS.  
6. On host read accesses to the HPI, the setup time of HD before DS rising edge depends on the host waveforms and cannot be  
specified here.  
52  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
host port interface timing (continued)  
timing requirements over recommended operating conditions [H = 0.5t  
(see Figure 29 through Figure 32)  
] (see Note 7)  
c(CO)  
’549-80  
’549-100  
’549-120  
UNIT  
MIN  
10  
5
MAX  
MIN  
10  
5
MAX  
t
t
t
t
t
Setup time, HAD/HBIL valid before DS or HAS falling edge  
Hold time, HAD/HBIL valid after DS or HAS falling edge  
Setup time, HAS low before DS falling edge  
Pulse duration, DS low  
ns  
ns  
ns  
ns  
ns  
su(HBV-DSL)  
h(DSL-HBV)  
su(HSL-DSL)  
w(DSL)  
12  
30  
10  
12  
30  
10  
Pulse duration, DS high  
w(DSH)  
Case 1: HOM access timings  
(see Access Timing Without HRDY)  
50  
40  
Cycle time, DS rising  
edge to next DS rising  
edge  
t
ns  
Case 2a: SAM accesses and HOM active writes  
to DSPINT or HINT  
(see Access Timings With HRDY)  
c(DSH-DSH)  
10H  
10H  
t
t
t
Setup time, HD valid before DS rising edge  
Delay time, DS high to next HAS low  
12  
10H  
3
12  
10H  
3
ns  
ns  
ns  
su(HDV-DSH)  
d(DSH-HSL)  
Hold time, HD valid after DS rising edge, write  
h(DSH – HDV)W  
A host not using HRDY should meet this timing requirement all the time unless a software handshake is used to change the access rate according  
to the HPI mode.  
Must only be met if HAS is going low when not accessing the HPI (as would be the case where multiple devices are being driven by one host).  
NOTE 7: SAM = shared-access mode, HOM = host-only mode  
HAD stands for HCNTRL0, HCNTRL1, and HR/W.  
HDS refers to either HDS1 or HDS2.  
DS refers to the logical OR of HCS and HDS.  
53  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
host port interface timing (continued)  
FIRST BYTE  
SECOND BYTE  
Valid  
Valid  
Valid  
HAD  
t
h(DSL-HBV)  
t
h(DSL-HBV)  
t
su(HBV-DSL)  
t
su(HBV-DSL)  
HBIL  
t
t
w(DSH)  
w(DSH)  
t
w(DSL)  
t
w(DSL)  
HCS  
HDS  
t
c(DSH-DSH)  
t
d(DSL-HDV2)  
Valid  
t
d(HEL-HDV1)  
t
h(DSH-HDV)  
t
h(DSH-HDV)R  
t
d(DSL-HDV)  
HD  
READ  
Valid  
t
t
t
su(HDV-DSH)  
h(DSH-HDV)  
su(HDV-DSH)  
t
h(DSH-HDV)W  
HD  
WRITE  
Valid  
Valid  
Figure 29. Read/Write Access Timings Without HRDY or HAS  
54  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
host port interface timing (continued)  
FIRST BYTE  
SECOND BYTE  
HAS  
t
su(HBV-DSL)  
t
d(DSH-HSL)  
t
h(DSL-HBV)  
t
su(HSL-DSL)  
Valid  
Valid  
Valid  
HAD  
t
h(DSL-HBV)  
t
su(HBV-DSL)  
HBIL  
t
c(DSH-DSH)  
t
w(DSH)  
t
w(DSL)  
HCS  
HDS  
t
d(HEL-HDV1)  
t
d(DSL-HDV2)  
Valid  
t
h(DSH-HDV)R  
t
h(DSH-HDV)R  
t
d(DSL-HDV)  
HD  
READ  
Valid  
t
t
su(HDV-DSH)  
su(HDV-DSH)  
t
h(DSH-HDV)W  
t
h(DSH-HDV)W  
HD  
WRITE  
Valid  
Valid  
When HAS is tied to V  
DD  
Figure 30. Read/Write Access Timings Using HAS Without HRDY  
55  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
P
R
O
C
E
S
S
O
R
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
host port interface timing (continued)  
FIRST BYTE  
SECOND BYTE  
HAS  
t
su(HSL-DSL)  
t
d(DSH-HSL)  
t
su(HBV-DSL)  
t
h(DSL-HBV)  
HAD  
t
h(DSL-HBV)  
t
su(HBV-DSL)  
HBIL  
t
c(DSH-DSH)  
t
w(DSH)  
t
w(DSL)  
HCS  
HDS  
t
su(HDV-HYH)  
t
d(DSH-HYH)  
HRDY  
t
d(DSH-HYL)  
t
d(DSL-HDV2)  
Valid  
t
d(HEL-HDV1)  
t
h(DSH-HDV)R  
t
h(DSH-HDV)R  
t
d(DSL-HDV)  
HD  
READ  
Valid  
t
su(HDV-DSH)  
t
su(HDV-DSH)  
t
h(DSH-HDV)W  
t
h(DSH-HDV)W  
HD  
WRITE  
Valid  
Valid  
t
d(COH-HYH)  
CLKOUT  
HINT  
t
d(COH-HTX)  
When HAS is tied to V  
DD  
Figure 31. Read/Write Access Timing With HRDY  
56  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
host port interface timing (continued)  
HCS  
t
d(DSH-HYL)  
HRDY  
HDS  
t
d(DSH-HYH)  
Figure 32. HRDY Signal When HCS is Always Low  
57  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 49  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
MECHANICAL DATA  
PGE (S-PQFP-G144)  
PLASTIC QUAD FLATPACK  
108  
73  
109  
72  
0,27  
0,17  
M
0,08  
0,50  
0,13 NOM  
144  
37  
1
36  
Gage Plane  
17,50 TYP  
20,20  
SQ  
19,80  
0,25  
0,05 MIN  
22,20  
SQ  
0°ā7°  
21,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040147/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
Thermal Resistance Characteristics  
PARAMETER  
°C/W  
R
56  
ΘJA  
ΘJC  
R
5
58  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS3 20 VC 54 9  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS078F – SEPTEMBER 1998 – REVISED MAY 2000  
MECHANICAL DATA  
TMS320VC5409 144-Pin Plastic Ball Grid Array Package (BGA)  
GGU (S-PBGA-N144)  
PLASTIC BALL GRID ARRAY PACKAGE  
12,10  
11,90  
SQ  
13 12 11 10 9  
8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
0,80  
K
L
M
N
0,80  
0,95  
0,85  
1,40 MAX  
0,10  
0,12  
0,08  
0,55  
0,45  
0,45  
0,35  
M
0,08  
4073221/A 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
Thermal Resistance Characteristics  
PARAMETER  
°C/W  
R
38  
ΘJA  
ΘJC  
R
5
59  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

TMS320VC549PGE-120

FIXED-POINT DIGITAL SIGNAL PROCESSOR
TI

TMS320VC549PGE-66

16-BIT, 100MHz, OTHER DSP, PQFP144, PLASTIC, QFP-144
TI

TMS320VC549PGE-80

IC-SMD-DSP PROCESSOR
TI

TMS320VC549PGE100W

Digital Signal Processor 144-LQFP -40 to 100
TI

TMS320VC549PGE80G4

IC,DSP,16-BIT,CMOS,QFP,144PIN,PLASTIC
TI

TMS320VC549PGER-80

FIXED-POINT DIGITAL SIGNAL PROCESSOR
TI

TMS320VC549PGER100

FIXED-POINT DIGITAL SIGNAL PROCESSOR
TI

TMS320VC549ZGU-100

FIXED-POINT DIGITAL SIGNAL PROCESSOR
TI

TMS320VC549_06

FIXED-POINT DIGITAL SIGNAL PROCESSOR
TI

TMS320VC549_07

FIXED-POINT DIGITAL SIGNAL PROCESSOR
TI

TMS320VC549_16

FIXED-POINT DIGITAL SIGNAL PROCESSOR
TI

TMS320VC54X

FIXED-POINT DIGITAL SIGNAL PROCESSORS
TI