TMS370C3C0A [TI]

8-BIT MICROCONTROLLER; 8位微控制器
TMS370C3C0A
型号: TMS370C3C0A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8-BIT MICROCONTROLLER
8位微控制器

微控制器
文件: 总63页 (文件大小:857K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
JD AND N PACKAGES  
(TOP VIEW)  
CMOS/EEPROM/EPROM Technologies on  
a Single Device  
– Mask-ROM Devices for High-Volume  
Production  
V
1
28  
V
SS  
CC  
D3/SYSCLK  
2
27 RESET  
– One-Time-Programmable (OTP) EPROM  
Devices for Low Volume Production  
– Reprogrammable EPROM Devices for  
Prototyping Purposes  
Internal System Memory Configurations  
– On-Chip Program Memory Versions  
– ROM: 4K Bytes  
– EPROM: 8K Bytes  
– Static RAM: 128 Bytes  
Flexible Operating Features  
D6  
3
26 D4  
A7  
4
25 AN3  
XTAL2/CLKIN  
AN2  
5
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
XTAL1  
A6  
AN1  
6
AN0  
7
A5  
SCITXD  
SCIRXD  
MC  
8
A4  
9
A3  
10  
11  
12  
13  
14  
A2  
T1IC/CR  
T1PWM  
T1EVT  
INT1  
D7  
A1  
A0  
– Low-Power Modes: STANDBY and HALT  
– Commercial, Industrial, and Automotive  
Temperature Ranges  
FZ AND FN PACKAGES  
(TOP VIEW)  
– Clock Options  
– Divide-by-4 (0.5 to 5 MHz SYSCLK)  
– Divide-by-1 (2 to 5 MHz SYSCLK) PLL  
– Supply Voltage (V ) 5 V ±10%  
CC  
Four-Channel 8-Bit Analog-to-Digital  
Converter 2 (ADC2)  
4
3
2
1
28 27 26  
25  
5
XTAL2/CLKIN  
AN3  
16-Bit General-Purpose Timer  
– Software Configurable as  
6
XTAL1  
A6  
AN2  
24  
23  
22  
21  
20  
19  
7
AN1  
8
A5  
AN0  
a 16-Bit Event Counter, or  
9
A4  
SCITXD  
SCIRXD  
MC  
a 16-Bit Pulse Accumulator, or  
a 16-Bit Input Capture Function, or  
Two Compare Registers, or  
10  
11  
A3  
A2  
12 13 14 15 16 1718  
a Self-Contained  
Pulse-Width-Modulation (PWM) Function  
On-Chip 24-Bit Watchdog Timer  
– EPROM/OTP Devices: Standard  
Watchdog  
– Mask-ROM Devices: Hard Watchdog,  
Simple Counter, or Standard Watchdog  
Flexible Interrupt Handling  
– Full Duplex, Double-Buffered Receiver  
(RX) and Transmitter (TX)  
TMS370 Series Compatibility  
Workstation/Personal Computer-Based  
Development System  
– Register-to-Register Architecture  
– 256 General-Purpose Registers  
– 14 Powerful Addressing Modes  
– Instructions Upwardly Compatible With  
All TMS370 Devices  
CMOS/TTL Compatible I/O Pins/Packages  
– All Peripheral Function Pins Software  
Configurable for Digital I/O  
– C Compiler and C Source Debugger  
– Real-Time In-Circuit Emulation  
– Extensive Breakpoint/Trace Capability  
– Software Performance Analysis  
– Multi-Window User Interface  
– Microcontroller Programmer  
– 17 Bidirectional Pins, 5 Input Pins  
– 28-Pin Plastic and Ceramic Dual-In-Line,  
or Leaded Chip Carrier Packages  
Serial Communications Interface 2 (SCI2)  
– Asynchronous Mode: 156 Kbps  
Maximum at 5 MHz SYSCLK  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1997, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
Pin Descriptions  
28 PINS  
DIP and LCC  
DESCRIPTION  
I/O  
NAME NO.  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
14  
13  
11  
10  
9
8
7
4
I / O  
Port A is a general-purpose bidirectional I/O port.  
D3/SYSCLK  
2
26  
3
D4  
D6  
D7  
I / O  
Port D is a general-purpose bidirectional I/O port. D3 is also configurable as SYSCLK.  
12  
INT1  
15  
I
I
External interrupt (non-maskable or maskable)/general-purpose input pin.  
ADC2 module analog input (AN0AN3) or positive reference pins (AN1AN3).  
AN0/E0  
AN1/E1  
AN2/E2  
AN3/E3  
22  
23  
24  
25  
Port E can be individually programmed as general-purpose input pins if not used as ADC2 analog input.  
T1IC/CR  
T1PWM  
T1EVT  
18  
17  
16  
Timer1 input capture/counter reset input pin /general-purpose bidirectional pin.  
Timer1 PWM output pin/general-purpose bidirectional pin.  
Timer1 external event input pin/general-purpose bidirectional pin.  
I / O  
I / O  
SCITXD  
SCIRXD  
21  
20  
SCI module transmit data output/general-purpose bidirectional pin. (See Note 1)  
SCI module receive data input pin/general-purpose bidirectional pin.  
System reset bidirectional pin; as input pin, RESET initializes the microcontroller; as open-drain output,  
RESET indicates that an internal failure was detected by watchdog or oscillator fault circuit.  
RESET  
MC  
27  
19  
I / O  
I
Mode control input pin; programming EPROM when V  
PP  
is applied to MC pin.  
XTAL2/CLKIN  
XTAL1  
5
6
I
O
Internal oscillator crystal input/External clock source input.  
Internal oscillator output for crystal.  
V
V
1
Positive supply voltage  
Ground reference  
CC  
28  
SS  
I = input, O = output  
NOTE 1: The two SCI configuration pins are referenced to as SCI2.  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
functional block diagram  
E0E3  
or  
AN0AN3  
XTAL2/  
CLKIN  
INT1  
XTAL1  
MC  
RESET  
Clock Options:  
Divide-By-4 Or  
Divide-By-1 (PLL)  
System  
Control  
A-to-D  
Converter 2  
Interrupts  
Serial  
Communications  
Interface 2  
SCIRXD  
SCITXD  
RAM  
128 Bytes  
CPU  
Program Memory  
ROM: 4K Bytes  
EPROM: 8K Bytes  
T1IC/CR  
T1EVT  
Timer 1  
T1PWM  
Watchdog  
V
CC  
Port A  
8
Port D  
4
V
SS  
description  
The TMS370C3C0, TMS370C6C2, and SE370C6C2 devices are members of the TMS370 family of single-chip  
8-bit microcontrollers. Unless otherwise noted, the term TMS370CxCx refers to these devices. The TMS370  
family provides cost-effective real-time system control through integration of advanced peripheral function  
modules and various on-chip memory configurations.  
The TMS370CxCx family of devices is implemented using high-performance silicon-gate CMOS EPROM  
technologies. Low-operating power, wide-operating temperature range, and noise immunity of CMOS  
technology coupled with the high performance and extensive on-chip peripheral functions make the  
TMS370CxCx devices attractive in system designs for automotive electronics, industrial motors, computer  
peripheral controls, telecommunications, and consumer applications.  
All TMS370CxCx devices contain the following on-chip peripheral modules:  
Four-channel, 8-bit analog to digital converter 2 (ADC2)  
Serial communications interface 2 (SCI2)  
One 24-bit general-purpose watchdog timer  
One 16-bit general-purpose timer with an 8-bit prescaler  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
description (continued)  
Table 1 provides a memory configuration overview of the TMS370CxCx devices.  
Table 1. Memory Configurations  
PROGRAM MEMORY  
(BYTES)  
DATA MEMORY  
(BYTES)  
PACKAGES  
28-PIN LCC OR DIP  
DEVICES  
ROM  
EPROM  
RAM  
EEPROM  
FN – PLCC  
N – PDIP  
TMS370C3C0A  
TMS370C6C2A  
4K  
128  
128  
128  
FN – PLCC  
N – PDIP  
8K  
8K  
FZ – CLCC  
JD – CDIP  
SE370C6C2A  
System evaluators and development are for use only in prototype environment, and their reliability has not been characterized.  
The suffix letter (A) appended to the device name (shown in Table 1) indicates configuration of the device. ROM  
or EPROM devices have different configurations as indicated in Table 2. ROM devices with the suffix letter A  
are configured through a programmable contact during manufacture.  
Table 2. Suffix Letter Configuration  
DEVICE  
WATCHDOG TIMER  
Standard  
CLOCK  
LOW-POWER MODE  
EPROM A  
Divide-by-4 (standard oscillator)  
Enabled  
Standard  
Divide-by-4 or  
Divide-by-1 (PLL)  
ROM A  
Hard  
Enabled or disabled  
Simple  
The 4K bytes of mask-programmable ROM in the associated TMS370C3C0A device are replaced in the  
TMS370C6C2Awith8KbytesofEPROMwhileallotheravailablememoryandon-chipperipheralsareidentical.  
The one-time programmable (OTP) (TMS370C6C2A) and reprogrammable (SE370C6C2A) devices are  
available.  
TMS370C6C2A OTP devices are available in plastic packages. This microcontroller is effective to use for  
immediate production updates for other members of the TMS370C3C0A or for low-volume production runs  
when the mask charge or cycle time for the low-cost mask ROM devices is not practical.  
The SE370C6C2A has a windowed ceramic package to allow reprogramming of the program EPROM memory  
during the development-prototyping phase of design. The SE370C6C2A devices allow quick updates to  
breadboards and prototype systems during initial design iterations.  
The TMS370CxCx family provides two low-power modes (STANDBY and HALT) for applications where  
low-power consumption is critical. Both modes stop all CPU activity, that is, no instructions are executed. In the  
STANDBY mode, the internal oscillator and the general-purpose timer remain active. In the HALT mode, all  
device activity is stopped. The device retains all RAM data and peripheral configuration bits throughout both  
low-power modes.  
The TMS370CxCx features advanced register-to-register architecture that allows direct arithmetic and logical  
operations without requiring an accumulator (for example, ADD R24, R47; add the contents of register 24 to  
the contents of register 47 and store the result in register 47). The TMS370CxCx family is fully instruction-set  
compatible, providing easy transition between members of the TMS370 8-bit microcontroller family.  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
description (continued)  
The TMS370CxCx device has one operational mode of serial communications provided by the SCI2 module.  
The SCI2 allows standard RS-232-C communications with other common data transmission equipment.  
The TMS370CxCx family provides the system designer with economical, efficient solutions to real-time control  
applications. The TMS370 family compact development tool (CDT ) solves the challenge of efficiently  
developing the software and hardware required to design the TMS370CxCx into an ever-increasing number of  
complex applications. The application source code can be written in assembly and C-language, and the output  
code can be generated by the linker. The TMS370 family CDT development tool can communicate through a  
standard RS-232-C interface with an existing personal computer. This allows the use of the personal computer  
editors and software utilities already familiar to the designer. The TMS370 family CDT emphasizes ease-of-use  
through extensive menus and screen windowing so that a system designer can begin developing software with  
minimal training. Precise real-time in-circuit emulation and extensive symbolic debug and analysis tools ensure  
efficient software and hardware implementation as well as reduced time-to-market cycle.  
The TMS370CxCx family together with the TMS370 family CDT370, software tools, the SE370C6C2A  
reprogrammable devices, comprehensive product documentation, and customer support provide a complete  
solution to the needs of the system designer.  
central processing unit (CPU)  
The CPU used on the TMS370CxCx device is the high-performance 8-bit TMS370 CPU module. The ’xCx  
implements an efficient register-to-register architecture that eliminates the conventional accumulator  
bottleneck. The complete ’xCx instruction map is shown in Table 36 in the TMS370CxCx instruction set  
overview section.  
The ’370CxCx CPU architecture provides the following components:  
CPU registers:  
A stack pointer that points to the last entry in the memory stack.  
A status register that monitors the operation of the instructions and contains the global-interrupt enable bits.  
A program counter (PC) that points to the memory location of the next instruction to be executed.  
CDT is a trademark of Texas Instruments Incorporated.  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
central processing unit (CPU) (continued)  
Figure 1 illustrates the CPU registers and memory blocks.  
Program Counter  
15  
0
Legend:  
Stack Pointer (SP)  
7
0
C=Carry  
N=Negative  
Status Register (ST)  
Z=Zero  
C
7
N
6
Z
5
V
4
IE2 IE1  
V=Overflow  
IE2=Level 2 interrupts Enable  
IE1=Level 1 interrupts Enable  
3
2
1
0
RAM (Includes up to 256-Byte Registers File)  
0000h  
0000h  
128-Byte RAM (0000h–007Fh)  
R0(A)  
R1(B)  
007Fh  
0080h  
Reserved  
0001h  
0002h  
0003h  
0FFFh  
1000h  
Peripheral File  
Reserved  
R2  
R3  
107Fh  
1080h  
1FFFh  
2000h  
Not Available  
5FFFh  
6000h  
8K-Byte EPROM (6000h7FFFh)  
4K-Byte ROM (7000h7FFFh)  
6FFFh  
7000h  
7FBFh  
7FC0h  
Interrupts and Reset Vectors;  
Trap Vectors  
R127  
7FFFh  
007Fh  
Reserved means the address space is reserved for future expansion.  
Not available means the address space is not accessible.  
Figure 1. Programmer’s Model  
A memory map that includes:  
128-byte general-purpose RAM that can be used for data memory storage, program instructions,  
general-purpose register, or the stack  
A peripheral file that provides access to all internal peripheral modules, system-wide control functions and  
EPROM programming control  
4K-byte ROM or 8K-byte EPROM program memory  
stack pointer (SP)  
The SP is an 8-bit CPU register that operates as a last-in, first-out, read/write memory. Typically, the stack is  
used to store the return address on subroutine calls as well as the status-register contents during interrupt  
sequences.  
The SP points to the last entry or top of the stack. The SP is incremented automatically before data is pushed  
onto the stack and decremented after data is popped from the stack. The stack can be placed anywhere in the  
on-chip RAM.  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
central processing unit (CPU) (continued)  
status register (ST)  
The ST monitors the operation of the instructions and contains the global interrupt-enable bits. The ST register  
includes four status bits (condition flags) and two interrupt-enable bits:  
The four status bits indicate the outcome of the previous instruction; conditional instructions (for example,  
the conditional jump instructions) use the status bits to determine program flow.  
The two interrupt-enable bits control the two interrupt levels.  
The ST register, status-bit notation, and status-bit definitions are shown in Table 3.  
Table 3. Status Register (ST)  
7
C
6
N
5
Z
4
V
3
2
1
0
IE2  
IE1  
Reserved  
Reserved  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
R = read, W = write, 0 = value after reset  
program counter (PC)  
The contents of the PC point to the memory location of the next instruction to be executed. The PC consists  
of two 8-bit registers in the CPU: the program counter high (PCH) and program counter low (PCL). These  
registers contain the most significant byte (MSbyte) and least significant byte (LSbyte) of a 16-bit address.  
During reset, the contents of the reset vector (7FFEh, 7FFFh) are loaded into the program counter. The PCH  
(MSbyte of the PC) is loaded with the contents of memory location 7FFEh, and the PCL (LSbyte of the PC) is  
loaded with the contents of memory location 7FFFh. Figure 2 shows this operation using an example value of  
7000h as the contents of the reset vector.  
Program Counter (PC)  
Memory  
PCH  
70  
PCL  
00  
0000h  
70  
00  
7FFEh  
7FFFh  
Figure 2. Program Counter After Reset  
memory map  
The TMS370CxCx architecture is based on the Von Neuman architecture, where the program memory and data  
memory share a common address space. All peripheral input/output is memory mapped in this same common  
address space. As shown in Figure 3, the TMS370CxCx provides memory-mapped RAM, ROM, input/output  
pins, peripheral functions, and system interrupt vectors.  
The peripheral file contains all input/output port control, peripheral status and control, EPROM, and  
system-wide control functions. The peripheral file is located from 1000h to 107Fh and is logically divided into  
seven peripheral file frames of 16 bytes each. Each on-chip peripheral is assigned to a separate frame through  
which peripheral control and data information is passed.  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
memory map (continued)  
Peripheral File Control Registers  
Reserved  
1000h100Fh  
1010h101Fh  
1020h102Fh  
1030h103Fh  
1040h104Fh  
1050h105Fh  
1060h106Fh  
1070h107Fh  
0000h  
System Control  
128-Byte RAM  
(Register File/Stack)  
Digital Port Control  
007Fh  
0080h  
Reserved  
Reserved  
Timer 1 Peripheral Control  
SCI2 Peripheral Control  
0FFFh  
1000h  
Peripheral File  
Reserved  
107Fh  
1080h  
ADC2 Peripheral Control  
Reserved  
1FFFh  
2000h  
Not Available  
Vectors  
5FFFh  
6000h  
Trap 15–0  
7FC0h7FDFh  
7FE0h7FEBh  
7FECh7FEDh  
7FEEh7FEFh  
7FF0h7FF1h  
7FF2h7FF3h  
7FF4h7FF5h  
7FF6h7FFBh  
7FFCh7FFDh  
7FFEh7FFFh  
8K-Byte EPROM  
(6000h7FFFh)  
Reserved  
Analog-To-Digital Converter 2  
6FFFh  
7000h  
Reserved  
4K-Byte ROM  
(7000h7FFFh)  
SCI TX  
SCI RX  
7FBFh  
7FC0h  
Interrupts and Reset Vectors;  
Trap Vectors  
Timer 1  
7FFFh  
8000h  
Reserved  
Interrupt 1  
Reset  
Not Available  
FFFFh  
Reserved means the address space is reserved for future expansion.  
Not available means the address space is not accessible.  
Figure 3. TMS370CxCx Memory Map  
RAM/register file (RF)  
Locations within the RAM address space can serve as the RF, general-purpose read/write memory, program  
memory, or the stack instructions. The TMS370CxCx devices contain 128 bytes of internal RAM mapped  
beginning at location 0000h (R0) and continuing through location 007Fh (R127) which is shown in Figure 1.  
The first two registers, R0 and R1, are also called register A and B, respectively. Some instructions implicitly  
use register A or B; for example, the instruction LDSP (load SP) assumes that the value to be loaded into the  
SP is contained in register B. Registers A and B are the only registers cleared on reset.  
peripheral file (PF)  
The TMS370CxCx control registers contain all the registers necessary to operate the system and peripheral  
modules on the device. The instruction set includes some instructions that access the PF directly. These  
instructions designate the register by the number of the PF relative to 1000h, preceded by P0 for a hexadecimal  
designator or P for a decimal designator. For example, the system control register 0 (SCCR0) is located at  
address 1010h; its peripheral file hexadecimal designator is P010, and its decimal designator is P16. Table 4  
shows the TMS370CxCx PF address map.  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
peripheral file (PF) (continued)  
Table 4. TMS370CxCx Peripheral File Address Map  
PERIPHERAL FILE  
ADDRESS RANGE  
DESCRIPTION  
DESIGNATOR  
P000P00F  
P010P01F  
P020P02F  
P030P03F  
P040P04F  
P050P05F  
P060P06F  
P070P07F  
P080P0FF  
1000h100Fh  
1010h101Fh  
1020h102Fh  
1030h103Fh  
1040h104Fh  
1050h105Fh  
1060h106Fh  
1070h107Fh  
1080h1FFFh  
Reserved  
System and EPROM control registers  
Digital I/O port control registers  
Reserved  
Timer 1 registers  
Serial communications interface 2 registers  
Reserved  
Analog-to-digital converter 2 registers  
Reserved  
program EPROM  
The TMS370C6C2 device contains 8K bytes of EPROM mapped at location 6000h and continuing through  
location 7FFFh as shown in Figure 3. Reading the program EPROM modules is identical to reading other  
internal memory. During programming, the EPROM is controlled by the EPROM control register (EPCTL). The  
program EPROM module features include:  
Programming  
In-circuit programming capability if V is applied to MC  
PP  
Control register: EPROM programming is controlled by the EPROM control register (EPCTL) located in  
the peripheral file (PF) frame at location P01Ch as shown in Table 5.  
Write protection: Writes to the program EPROM are disabled under the following conditions:  
Reset halts all programming to the EPROM module.  
Low-power modes  
13 V not applied to MC  
Table 5. Data EEPROM and Program EPROM Control Registers Memory Map  
ADDRESS  
P01A to P01B  
P01C  
SYMBOL  
NAME  
Reserved  
Program EPROM Control Register  
EPCTL  
program ROM  
The program read-only memory (ROM) consists of 4K bytes of mask-programmable ROM. The program ROM  
is used for permanent storage of data or instructions. Programming of the mask ROM is performed at the time  
of device fabrication. Refer to Figure 3 for ROM memory map.  
Memory addresses 7FE0h through 7FEBh are reserved for Texas Instruments, and addresses 7FECh through 7FFFh are reserved for  
interrupt and reset vectors. Trap vectors, used with TRAP0 through TRAP15 instructions, are located between addresses 7FC0h and  
7FDFh.  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
system reset  
The system reset operation ensures an orderly start-up sequence for the TMS370CxCx CPU-based device.  
There are up to three different actions that can cause a system reset to the device. Two of these actions are  
internally generated, while one (RESET pin) is controlled externally. These actions are as follows:  
External RESET pin. A low level signal can trigger an external reset. To ensure a reset, the external signal  
should be held low for one SYSCLK cycle. Signals of less than one SYSCLK can generate a reset. See the  
TMS370 User’s Guide (literature number SPNU127) for more information.  
Watchdog (WD) timer. A watchdog-generated reset occurs if an improper value is written to the WD key  
register, or if the re-initialization does not occur before the watchdog timer timeout . See the TMS370 User’s  
Guide (literature number SPNU127) for more information.  
Oscillator reset. Reset occurs when the oscillator operates outside of the recommended operating range.  
See the TMS370 User’s Guide (literature number SPNU127) for more information.  
Once a reset source is activated, the external RESET pin is driven low (active) for a minimum of eight SYSCLK  
cycles. This allows the ’xCx device to reset external system components. Additionally, if a cold start (V  
is off  
CC  
for several hundred milliseconds) condition or oscillator failure occurs or the RESET pin is held low, then the  
reset logic holds the device in a reset state for as long as these actions are active.  
After a reset, the program can check the oscillator fault flag (OSC FLT FLAG, SCCR0.4), the cold start flag  
(COLD START, SCCR0.7) and the watchdog reset (WD OVRFL INT FLAG, T1CTL2.5) to determine the source  
of the reset. A reset does not clear these flags. Table 6 lists the reset sources.  
Table 6. Reset Sources  
REGISTER  
SCCR0  
ADDRESS  
1010h  
PF  
BIT NO.  
CONTROL BIT  
COLD START  
SOURCE OF RESET  
Cold (power-up)  
P010  
P010  
P04A  
7
4
5
SCCR0  
1010h  
OSC FLT FLAG  
Oscillator out of range  
Watchdog timer timeout  
T1CTL2  
104Ah  
WD OVRFL INT FLAG  
Once a reset is activated, the following sequence of events occurs:  
1. CPU registers are initialized: ST = 00h, SP = 01h (reset state).  
2. Registers A and B are initialized to 00h (no other RAM is changed).  
3. The contents of the LSbyte of the reset vector (07FFh) are read and stored in the PCL.  
4. The contents of the MSbyte of the reset vector (07FEh) are read and stored in the PCH.  
5. Program execution begins with an opcode fetch from the address pointed to the PC.  
The reset sequence takes 20 SYSCLK cycles from the time the reset pulse is released until the first opcode  
fetch. During a reset, RAM contents (except for registers A and B) remain unchanged, and the module control  
register bits are initialized to their reset state.  
interrupts  
The TMS370 family software programmable interrupt structure permits flexible on-chip and external interrupt  
configurations to meet real-time interrupt-driven application requirements. The hardware interrupt structure  
incorporates two priority levels as shown in Figure 4. Interrupt level 1 has a higher priority than interrupt  
level 2. The two priority levels can be masked independently by the global-interrupt mask bits (IE1 and IE2) of  
the status register.  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
interrupts (continued)  
TIMER 1  
Overflow  
Compare 1  
Ext Edge  
ADC2 INT  
A/D  
EXT INT 1  
CPU  
INT1  
Compare 2  
NMI  
Input Capture 1  
Watchdog  
Priority  
A/D PRI  
INT1 PRI  
Logic  
T1 PRI  
STATUS REG  
IE1  
Level 1 INT  
IE2  
Level 2 INT  
Enable  
SCI2 INT  
RX  
TX  
RXPRI  
TXPRI  
BRKDT  
RXRDY  
TXRDY  
Figure 4. Interrupt Control  
Each system interrupt is configured independently to either the high- or low-priority chain by the application  
program during system initialization. Within each interrupt chain, the interrupt priority is fixed by the position of  
the system interrupt. However, since each system interrupt is selectively configured on either the high- or  
low-priority interrupt chain, the application program can elevate any system interrupt to the highest priority.  
Arbitration between the two priority levels is performed within the CPU. Arbitration within each of the priority  
chains is performed within the peripheral modules to support interrupt expansion for future modules.  
Pending-interrupts are serviced upon completion of current instruction execution, depending on their interrupt  
mask and priority conditions.  
The TMS370CxCx has five hardware system interrupts (plus RESET) as shown in Table 7. Each system  
interrupt has a dedicated vector located in program memory through which control is passed to the interrupt  
service routines. A system interrupt may have multiple interrupt sources (for example, SCI RXINT has two  
interrupt sources). All of the interrupt sources are individually maskable by local interrupt-enable control bits in  
the associated peripheral file. Each interrupt source FLAG bit is readable individually for software polling or for  
determining which interrupt source generated the associated system interrupt.  
Four of the system interrupts are generated by on-chip peripheral functions, and one external interrupt is  
supported. Software configuration of the external interrupts is performed through the INT1 control register in  
peripheral file frame 1. Each external interrupt is individually software configurable for input polarity (rising or  
falling edge) for ease of system interface. External interrupt INT1 is software configurable as either a maskable  
or non-maskable interrupt. When INT1 is configured as non-maskable, it cannot be masked by the individual-  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
interrupts (continued)  
or global-enable mask bits. The INT1 NMI bit is protected during non-privileged operation and therefore should  
be configured during the initialization sequence following reset. To maximize pin flexibility, external interrupt  
INT1 can be software-configured as a general-purpose input pin if the interrupt function is not required.  
Table 7. Hardware System Interrupts  
SYSTEM  
INTERRUPT  
VECTOR  
ADDRESS  
INTERRUPT SOURCE  
External RESET  
Watchdog Overflow  
Oscillator Fault Detect  
INTERRUPT FLAG  
COLD START  
WD OVRFL INT FLAG  
OSC FLT FLAG  
PRIORITY  
RESET  
7FFEh, 7FFFh  
7FFCh, 7FFDh  
1
2
INT1  
External INT1  
INT1 FLAG  
Timer 1 Overflow  
T1 OVRFL INT FLAG  
T1C1 INT FLAG  
T1C2 INT FLAG  
T1EDGE INT FLAG  
T1IC1 INT FLAG  
WD OVRFL INT FLAG  
Timer 1 Compare 1  
Timer 1 Compare 2  
Timer 1 External Edge  
Timer 1 Input Capture 1  
Watchdog Overflow  
§
T1INT  
7FF4h, 7FF5h  
3
SCI RX Data Register Full  
SCI RX Break Detect  
RXRDY FLAG  
BRKDT FLAG  
RXINT  
7FF2h, 7FF3h  
4
SCI TX Data Register Empty  
A/D Conversion Complete  
TXRDY FLAG  
AD INT FLAG  
TXINT  
ADINT  
7FF0h, 7FF1h  
7FECh, 7FEDh  
5
6
§
Relative priority within an interrupt level.  
Release microcontroller from STANDBY and HALT low-power modes.  
Release microcontroller from STANDBY low-power mode.  
privileged operation and EEPROM write-protection override  
The TMS370CxCx family has significant flexibility to enable the designer to software configure the system and  
peripherals to meet the requirements of a variety of applications. The non-privileged mode of operation ensures  
the integrity of the system configuration, once it is defined for an application. Following a hardware reset, the  
TMS370CxCx operates in the privileged mode, where all peripheral file registers have unrestricted read/write  
access, and the application program configures the system during the initialization sequence following reset.  
As the last step of system initialization, the PRIVILEGE DISABLE bit (SCCR2.0) is set to 1 to enter the  
non-privileged mode; thus, disabling write operations to specific configuration control bits within the peripheral  
file. Table 8displaysthesystemconfigurationbitswhicharewrite-protectedduringthenon-privilegedmodeand  
must be configured by software prior to exiting the privileged mode.  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
privileged operation and EEPROM write-protection override (continued)  
Table 8. Privilege Bits  
REGISTER  
CONTROL BIT  
PF AUTO WAIT  
NAME  
LOCATION  
P010.5  
P010.6  
SCCR0  
OSC POWER  
P011.2  
P011.4  
MEMORY DISABLE  
AUTOWAIT DISABLE  
SCCR1  
SCCR2  
P012.0  
P012.1  
P012.3  
P012.4  
P012.6  
P012.7  
PRIVILEGE DISABLE  
INT1 NMI  
CPU STEST  
BUS STEST  
PWRDWN/IDLE  
HALT/STANDBY  
P04F.6  
P04F.7  
T1 PRIORITY  
TI STEST  
T1PRI  
P05F.4  
P05F.5  
P05F.6  
P05F.7  
SCI ESPEN  
SCIRX PRIORITY  
SCITX PRIORITY  
SCI STEST  
SCIPRI  
P07F.5  
P07F.6  
P07F.7  
AD ESPEN  
AD PRIORITY  
AD STEST  
ADPRI  
The privilege bits are shown in a bold typeface in the peripheral file  
frame 1 section.  
low-power and IDLE modes  
The TMS370CxCx devices have two low-power modes (STANDBY and HALT) and an IDLE mode. For  
mask-ROM devices, low-power modes can be disabled permanently through a programmable contact at the  
time when the mask is manufactured.  
The STANDBY and HALT low-power modes significantly reduce power consumption by reducing or stopping  
the activity of the various on-chip peripherals when processing is not required. Each of the low-power modes  
is entered by executing the IDLE instruction when the PWRDWN/IDLE bit in SCCR2 has been set to 1. The  
HALT/STANDBY bit in SCCR2 controls the low-power mode selection.  
In the STANDBY mode (HALT/STANDBY = 0), all CPU activity and most peripheral module activity stops;  
however, the oscillator, internal clocks, timer 1, and the receive-start bit detection circuit of the serial  
communicationsinterface2remainactive. Systemprocessingissuspendeduntilaqualifiedinterrupt(hardware  
RESET, external interrupt on INT1, timer 1 interrupt, or low level in the receive pin of the SCI2) is detected.  
In the HALT mode (HALT/STANDBY = 1), the TMS370CxCx is placed in its lowest power-consumption mode.  
The oscillator and internal clocks are stopped, causing all internal activity to be halted. System activity is  
suspendeduntilaqualifiedinterrupt(hardwareRESET, externalinterruptontheINT1, orlowlevelonthereceive  
pin of the serial communications interface 2) is detected. The power-down mode selection bits are summarized  
in Table 9.  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
low-power and IDLE modes (continued)  
Table 9. Low-Power/Idle Control Bits  
POWER-DOWN CONTROL BITS  
MODE SELECTED  
PWRDWN/IDLE  
(SCCR2.6)  
HALT/STANDBY  
(SCCR2.7)  
1
0
1
STANDBY  
HALT  
1
0
X
IDLE  
Don’t care  
When low-power modes are disabled through a programmable contact in the mask-ROM devices, writing to the  
SCCR2.6-7 bits are ignored. In addition, if an idle instruction executes when low-power modes are disabled  
through a programmable contact, the device always enters the IDLE mode.  
To provide a method of always exiting low-power modes for mask-ROM devices, INT1 is enabled automatically  
as a nonmaskable interrupt (NMI) during low-power modes when the hard watchdog mode is selected. This  
means that the NMI always is generated, regardless of the interrupt enable flags.  
The following information is preserved throughout both the STANDBY and HALT modes: RAM (register file),  
CPUregisters(stackpointer, program counter, andstatusregister), I/Opindirectionandoutputdata, andstatus  
registers of all on-chip peripheral functions. Since all CPU instruction processing stops during the STANDBY  
and HALT modes, the clocking of the watchdog timer is inhibited.  
clock modules  
The ’xCx family provides two clock options that are referred to as divide-by-1 (phase-locked loop) and  
divide-by-4 (standard oscillator). Both the divide-by-1 and divide-by-4 options are configurable during the  
manufacturing process of a TMS370 microcontroller. The ’xCx ROM-masked devices offer both options to meet  
system engineering requirements. Only one of the two clock options is allowed on each ROM device. The ’6C2A  
EPROM has only the divide-by-4.  
The divide-by-1 clock module option provides the capability for reduced electromagnetic interference (EMI) with  
no added cost.  
The divide-by-1 clock module option provides a one-to-one match of the external resonator frequency (CLKIN)  
to the internal system clock (SYSCLK) frequency, whereas the divide-by-4 option produces a SYSCLK which  
is one-fourth of the frequency of the external resonator. Inside of the divide-by-1 module, the frequency of the  
external resonator is multiplied by four, and the clock module then divides the resulting signal by four to provide  
the four-phased internal system clock signals. The resulting SYSCLK is equal to the resonator frequency.  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
clock modules (continued)  
These are formulated as follows:  
external resonator frequency  
4
CLKIN  
4
Divide-by-4 : SYSCLK  
Divide-by-1 : SYSCLK  
external resonator frequency  
4
4
CLKIN  
The main advantage of choosing a divide-by-1 oscillator is to reduce EMI. The harmonics of low-speed  
resonators extend through less of the emissions spectrum than the harmonics of faster resonators. The  
divide-by-1 option provides the capability of reducing the resonator speed by four times, resulting in a steeper  
decay of emissions produced by the oscillator.  
system configuration registers  
Table 10 contains system configuration and control functions. The privileged bits are shown in bold typeface  
and shaded areas.  
Table 10. System Configuration Registers  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
COLD  
START  
OSC  
POWER  
PF AUTO  
WAIT  
OSC FLT  
FLAG  
MC PIN  
WPO  
MC PIN  
DATA  
µP/µC  
MODE  
P010  
SCCR0  
AUTO  
WAIT  
DISABLE  
MEMORY  
DISABLE  
P011  
SCCR1  
SCCR2  
HALT/  
STANDBY  
PWRDWN/  
IDLE  
BUS  
STEST  
CPU  
STEST  
INT1  
NMI  
PRIVILEGE  
DISABLE  
P012  
P013  
to  
RESERVED  
P016  
INT1  
FLAG  
INT1  
PIN DATA  
INT1  
POLARITY  
INT1  
PRIORITY  
INT1  
ENABLE  
P017  
INT1  
P018  
to  
P01B  
RESERVED  
P01C  
BUSY  
VPPS  
W0  
EXE  
EPCTL  
P01D  
P01E  
P01F  
RESERVED  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
digital I/O port configuration registers  
Peripheral file frame 2 contains the digital I/O pin configuration and control registers. Table 11showsthespecific  
addresses, registers, and control bits within this peripheral file frame. Table 12 shows the port-configuration  
register setup.  
Table 11. Peripheral File Frame 2: Digital Port-Control Registers  
PF  
P020  
P021  
P022  
P023  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
Reserved  
BIT 2  
BIT 1  
BIT 0  
APORT1  
APORT2  
ADATA  
ADIR  
Port A Control Register 2 (must be 0)  
Port A Data  
Port A Direction  
P024  
to  
Reserved  
P02B  
Port D Control Register 1  
(must be 0)  
Port D Control Register 1  
(must be 0)  
P02C  
P02D  
DPORT1  
DPORT2  
Port D Control Register 2  
Port D Control Register 2  
(must be 0)  
(must be 0)  
P02E  
P02F  
Port D Data  
Port D Data  
DDATA  
DDIR  
Port D Direction  
Port D Direction  
To configure pin D3 as SYSCLK, set port D control register 2 = 08h.  
Table 12. Port Configuration Register Set-up  
abcd  
00q1  
abcd  
00y0  
PORT  
PIN  
A
D
0 – 7  
Data Out q  
Data Out q  
Data In y  
Data In y  
3, 4, 6, 7  
a = Port x Control Register 1  
b = Port x Control Register 2  
c = Data  
d = Direction  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1  
The programmable Timer 1 (T1) module of the TMS370CxCx provides the designer with the enhanced timer  
resources required to perform real-time system control. The T1 module contains the general-purpose timer and  
the watchdog (WD) timer. The two independent 16-bit timers allow program selection of input clock sources  
(real-time, external event, or pulse accumulate) with multiple 16-bit registers (input capture and compare) for  
special timer function control. The T1 module includes three external device pins that can be used for multiple  
counter functions (operation mode dependent) or used as general-purpose I/O pins. The T1 module is shown  
in Figure 5.  
Edge  
Select  
16-Bit  
Capt/Comp  
T1IC/CR  
Register  
16-Bit  
Counter  
PWM  
Toggle  
MUX  
T1PWM  
16  
16-Bit  
Compare  
Register  
Interrupt  
Logic  
8-Bit  
Prescaler  
T1EVT  
Interrupt  
Logic  
16-Bit  
MUX  
Watchdog Counter  
(Aux. Timer)  
Figure 5. Timer 1 Block Diagram  
Three T1 I/O pins  
T1IC/CR: Timer 1 input capture / counter reset input pin, or general-purpose bidirectional I/O pin  
T1PWM: Timer 1 pulse-width-modulation (PWM) output pin, or general-purpose bidirectional I/O pin  
T1EVT: Timer 1 event input pin, or general-purpose bidirectional I/O pin  
Two operation modes:  
Dual-compare mode: Provides PWM signal  
Capture/compare mode: Provides input capture pin  
One 16-bit general-purpose resettable counter  
One 16-bit compare register with associated compare logic  
One 16-bit capture/compare register, which, depending on the mode of operation, operates as either a  
capture or compare register.  
One 16-bit watchdog counter can be used as an event counter, a pulse accumulator, or an interval timer  
if watchdog feature is not needed.  
Prescaler/clock sources that determine one of eight clock sources for general-purpose timer  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Selectable edge-detection circuitry that, depending on the mode of operation, senses active transitions on  
the input capture pins (T1IC/CR)  
Interrupts that can be generated on the occurrence of:  
A capture  
A compare equal  
A counter overflow  
An external edge detection  
Sixteen T1 module control registers located in the PF frame beginning at address P040.  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
The T1 module control registers are listed in Table 13. Privilege bits are shown in bold typeface and shaded.  
Table 13. Timer Module Register Memory Map  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
Mode: Dual-Compare and Capture/Compare  
P040 Bit 15  
P041 Bit 7  
P042 Bit 15  
P043 Bit 7  
P044 Bit 15  
P045 Bit 7  
P046 Bit 15  
P047 Bit 7  
P048 Bit 7  
T1Counter MSbyte  
T1 Counter LSbyte  
Bit 8 T1CNTR  
Bit 0  
Compare Register MSbyte  
Compare Register LSbyte  
Bit 8 T1C  
Bit 0  
Capture/Compare Register MSbyte  
Capture/Compare Register LSbyte  
Watchdog Counter MSbyte  
Watchdog Counter LSbyte  
Watchdog Reset Key  
Bit 8 T1CC  
Bit 0  
Bit 8 WDCNTR  
Bit 0  
Bit 0 WDRST  
WD OVRFL WD INPUT  
WD INPUT  
SELECT1  
WD INPUT  
SELECT0  
T1 INPUT  
SELECT2  
T1 INPUT  
SELECT1  
T1 INPUT  
SELECT0  
P049  
P04A  
T1CTL1  
T1CTL2  
TAP SEL  
SELECT2  
WD OVRFL WD OVRFL WD OVRFL T1 OVRFL  
T1 OVRFL  
INT FLAG  
T1  
RST ENA  
INT ENA  
INT FLAG  
INT ENA  
SW RESET  
Mode: Dual-Compare  
T1EDGE  
T1C2  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C2  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
INT FLAG  
INT FLAG  
T1  
T1C1  
T1C2  
OUT ENA  
T1C1  
RST ENA  
T1CR  
OUT ENA  
T1EDGE  
POLARITY  
T1CR  
RST ENA  
T1EDGE  
DET ENA  
MODE=0  
OUT ENA  
Mode: Capture/Compare  
T1EDGE  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
INT FLAG  
T1  
T1C1  
T1C1  
RST ENA  
T1EDGE  
POLARITY  
T1EDGE  
DET ENA  
MODE = 1  
OUT ENA  
Mode: Dual-Compare and Capture/Compare  
T1EVT  
DATA IN  
T1EVT  
T1EVT  
T1EVT  
DATA DIR  
P04D  
P04E  
T1PC1  
T1PC2  
T1PRI  
DATA OUT FUNCTION  
T1IC/CR T1IC/CR  
DATA OUT FUNCTION  
T1PWM  
DATA IN  
T1PWM  
DATA OUT FUNCTION  
T1PWM  
T1PWM  
DATA DIR  
T1IC/CR  
DATA IN  
T1IC/CR  
DATA DIR  
T1  
P04F T1 STEST  
PRIORITY  
Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until a reset; this applies only to the standard  
watchdog and to simple counter. In the hard watchdog, these bits can be modified at any time; the WD INPUT SELECT2  
bits are ignored.  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Figure 6 shows the T1 capture/compare mode block diagram. The annotations on the diagram identify the  
register and the bit(s) in the peripheral frame. For example, the actual address of T1CTL2.0 is 104Ah, bit 0, in  
the T1CTL2 register.  
T1CC.15-0  
16-Bit  
LSB  
T1C1  
OUT ENA  
Capt/Comp  
Register  
Prescale  
Clock  
Source  
MSB  
T1PC2.7-4  
T1PWM  
T1CTL4.6  
T1CNTR.15-0  
LSB  
MSB  
16-Bit  
Counter  
16  
T1 PRIORITY  
0
1
T1C1 INT FLAG  
T1CTL3.5  
T1PRI.6  
Level 1 Int  
Level 2 Int  
Compare=  
Reset  
T1CTL3.0  
T1C.15-0  
T1 SW  
RESET  
T1C1 INT ENA  
16-Bit  
LSB  
T1C1  
RST ENA  
Compare  
Register  
T1CTL2.0  
MSB  
T1 OVRFL INT FLAG  
T1CTL2.3  
T1CTL4.4  
T1CTL2.4  
T1 OVRFL INT ENA  
T1PC2.3-0  
T1IC/CR  
T1EDGE DET ENA  
T1EDGE INT FLAG  
T1CTL3.7  
Edge  
Select  
T1CTL4.0  
T1CTL3.2  
T1EDGE INT ENA  
T1CTL4.2  
T1EDGE POLARITY  
Figure 6. Capture/Compare Mode  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Figure 7 shows the T1 dual-compare mode block diagram. The annotations on the diagram identify the register  
and the bit(s) in the peripheral frame. For example, the actual address of T1CTL2.0 is 104Ah, bit 0, in the  
T1CTL2 register.  
T1CC.15-0  
16-Bit  
Capt/Comp  
Register  
T1C2 INT FLAG  
T1CTL3.6  
LSB  
Prescaler  
Clock  
Source  
MSB  
Output  
Enable  
T1CTL3.1  
T1C2 INT ENA  
T1CTL4.5  
Compare=  
T1CNTR.15-0  
T1PC2.7-4  
T1PWM  
T1C2 OUT ENA  
T1CTL4.6  
LSB  
MSB  
16-Bit  
Counter  
16  
T1C1 INT FLAG  
T1CTL3.5  
T1CTL3.0  
Reset  
Compare=  
T1C1 OUT ENA  
T1CTL4.3  
T1C1  
RST ENA  
T1C.15-0  
T1 SW  
RESET  
T1C1 INT ENA  
16-Bit  
Compare  
Register  
LSB  
T1CTL4.4  
T1CR OUT ENA  
T1CTL2.0  
MSB  
T1 OVRFL INT FLAG  
T1CTL2.3  
T1CTL2.4  
T1 OVRFL INT ENA  
T1CTL4.1  
T1CR  
RST ENA  
T1PC2.3-0  
T1IC/CR  
Edge  
Select  
T1 PRIORITY  
T1PRI.6  
0
1
T1CTL4.0  
Level 1 Int  
Level 2 Int  
T1EDGE INT FLAG  
T1CTL3.7  
T1EDGE DET ENA  
T1CTL4.2  
T1CTL3.2  
T1EDGE INT ENA  
T1EDGE POLARITY  
Figure 7. Dual-Compare Mode  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
The TMS370CxCx device includes a 24-bit WD timer, contained in the T1 module, which can be programmed  
as an event counter, pulse accumulator, or interval timer if the watchdog function is not used. The WD function  
is to monitor software and hardware operation and to implement a system reset when the WD counter is not  
properly serviced (WD counter overflow or WD counter is re-initialized by an incorrect value). The WD can be  
configured as one of the three mask options as follows:  
Standard watchdog configuration (see Figure 8) – for EPROM and mask-ROM devices:  
Watchdog mode  
Ten different WD overflow rates ranging from 6.55 ms to 3.35 s at 5 MHz SYSCLK  
AWDresetkey(WDRST)registerisusedtoclearthewatchdogcounter(WDCNTR)whenacorrect  
value is written.  
Generates a system reset if an incorrect value is written to the watchdog reset key or if the counter  
overflows  
Awatchdog overflow flag (WD OVRFL INT FLAG) bit that indicates whether the WD timer initiated a  
system reset  
Non-watchdog mode  
Watchdog timer can be configured as an event counter, pulse accumulator, or an interval timer.  
WDCNTR.15-0  
WD OVRFL  
INT FLAG  
T1CTL2.6  
16-Bit  
WatchdogCounter  
T1CTL2.5  
Interrupt  
WD OVRFL  
INT ENA  
Reset  
Clock  
Prescaler  
T1CTL2.7  
T1CTL1.7  
WD OVRFL  
TAP SEL  
System Reset  
WD OVRFL  
RST ENA  
Watchdog Reset Key  
WDRST.7-0  
Figure 8. Standard Watchdog  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Hard watchdog configuration (see Figure 9) – for mask-ROM devices:  
Eight different WD overflow rates ranging from 26.2 ms to 3.35 s at 5 MHz SYSCLK  
A WD reset key (WDRST) register is used to clear the watchdog counter (WDCNTR) when a correct  
value is written.  
Generates a system reset if an incorrect value is written to the watchdog reset key or if the counter  
overflows.  
Automatic activation of the WD timer upon power-up reset  
INT1 is enabled as a nonmaskable interrupt during low-power modes.  
A watchdog overflow flag (WD OVRFL INT FLAG) bit that indicates whether the WD timer initiated a  
system reset  
WDCNTR.15-0  
WD OVRFL  
INT FLAG  
16-Bit  
Watchdog Counter  
T1CTL2.5  
Reset  
Clock  
T1CTL1.7  
Prescaler  
WD OVRFL  
System Reset  
TAP SEL  
Watchdog Reset Key  
WDRST.7-0  
Figure 9. Hard Watchdog  
Simple counter configuration – for mask-ROM devices only (see Figure 10)  
Simple counter can be configured as an event counter, pulse accumulator, or an internal timer.  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
WDCNTR.15-0  
WD OVFL  
INT FLAG  
T1CTL2.6  
16-Bit  
Watchdog Counter  
T1CTL2.5  
Interrupt  
WD OVRFL  
INT ENA  
Reset  
Clock  
Prescaler  
T1CTL1.7  
WD OVRFL  
TAP SEL  
Watchdog Reset Key  
WDRST.7-0  
Figure 10. Simple Counter  
serial communications interface 2 module  
The TMS370CxCx devices include a serial communications interface 2 (SCI2) module. The SCI2 module  
supports digital communications between the TMS370 devices and other asynchronous peripherals and uses  
the standard non-return-zero (NRZ) format. The SCI2 modules receiver and transmitter are double buffered,  
and each has its own separate enable and interrupt bits. Both can be operated independently or simultaneously  
in the full duplex mode. To ensure data integrity, the SCI2 checks received data for break detection, parity,  
overrun, and framing errors. The speed of bit rate (baud) is programmable to over 65,000 different speeds  
through a 16-bit baud-select register. Features of the SCI2 module include:  
Two external pins:  
SCITXD: SCI2 module transmit-output pin or general-purpose bidirectional I/O pin.  
SCIRXD: SCI2 module receive-input pin or general-purpose bidirectional I/O pin.  
Asynchronous communications mode  
Baud rate: 64K different programmable rates  
Asynchronous mode: 3 bps to 156K bps at 5 MHz SYSCLK  
SYSCLK  
(BAUD REG 1) 32  
Asynchronous Baud  
Data word format:  
One start bit  
Data word length programmable from one to eight bits  
Optional even/odd/no parity bit  
One or two stop bits  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
serial communications interface 2 module (continued)  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: Idle-line and address bit  
Half or full-duplex operation  
Double-buffered receiver and transmitter operations  
Transmitter and receiver operations can be accomplished through either interrupt-driven or  
polled-algorithms with status flags:  
Transmitter: TXRDY flag (transmitter buffer register is ready to receive another character) and TX  
EMPTY flag (Transmitter shift register is empty)  
Receiver: RXRDY flag (receive buffer register ready to receive another character), BRKDT flag (break  
condition occurred), and RX ERROR monitoring four interrupt conditions  
Separate enable bits for transmitter and receiver interrupts  
NRZ format  
Ten SCI2 module control registers located in control register frame beginning at address P050  
The SCI2 module control registers are listed in Table 14. Privilege bits are shown in bold typeface and shaded.  
Table 14. SCI2 Module Control Register Memory Map  
PF  
P050 STOP BITS  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
EVEN/ODD  
PARITY  
PARITY  
ENABLE  
ASYNC  
ENABLE  
ADDRESS/  
IDLE WUP  
SCI CHAR2 SCI CHAR1 SCI CHAR0 SCICCR  
SCI SW  
RESET  
CLOCK  
ENABLE  
P051  
P052  
P053  
P054  
P055  
TXWAKE  
BAUDB  
BAUD3  
SLEEP  
BAUDA  
BAUD2  
TXENA  
BAUD9  
BAUD1  
RXENA  
BAUD8  
SCICTL  
BAUDF  
(MSB)  
BAUDE  
BAUD6  
TX EMPTY  
RXRDY  
BAUDD  
BAUD5  
BAUDC  
BAUD4  
BAUD MSB  
BAUD LSB  
TXCTL  
BAUD0  
(LSB)  
BAUD7  
TXRDY  
SCI TX  
INT ENA  
RX  
ERROR  
SCI RX  
INT ENA  
BRKDT  
FE  
OE  
PE  
RXWAKE  
RXCTL  
P056  
P057  
P058  
RESERVED  
RXDT7  
TXDT7  
RXDT6  
TXDT6  
RXDT5  
TXDT5  
RXDT4  
RXDT3  
RXDT2  
TXDT2  
RXDT1  
TXDT1  
RXDT0  
TXDT0  
RXBUF  
TXBUF  
RESERVED  
P059  
P05A  
to  
TXDT4  
TXDT3  
RESERVED  
P05D  
SCITXD  
DATA IN  
SCITXD  
DATA OUT FUNCTION  
SCITXD  
SCITXD  
DATA DIR  
SCIRXD  
DATA IN  
SCIRXD  
DATA OUT FUNCTION  
SCIRXD  
SCIRXD  
DATA DIR  
P05E  
SCIPC2  
SCIPRI  
SCITX  
PRIORITY  
SCIRX  
PRIORITY  
SCI  
ESPEN  
P05F SCI STEST  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
serial communications interface 2 module (continued)  
The SCI2 module block diagram is illustrated in Figure 11.  
TXBUF.7–0  
TXWAKE  
SCICTL.3  
Frame Format and Mode  
SCI TX Interrupt  
SCITX PRIORITY  
Transmit Data  
Buffer Reg.  
PARITY  
EVEN/ODD ENABLE  
1
0
1
SCIPRI.6  
SCI TX INT ENA  
TXRDY  
TXCTL.7  
Level 1 INT  
Level 2 INT  
SCICCR.6 SCICCR.5  
WUT  
TXCTL.0  
8
TX EMPTY  
TXCTL.6  
SCIPC2.7–4  
SCITXD  
TXENA  
SCITXD  
TXSHF Reg.  
BAUD MSB. 7–0  
SCICTL.1  
CLOCK  
ENABLE  
Baud Rate  
MSbyte Reg.  
SYSCLK  
SCICTL.4  
BAUD LSB. 7–0  
Baud Rate  
LSbyte Reg.  
SCIPC2.3–0  
SCIRXD  
SCIRXD  
RXSHF Reg.  
RXWAKE  
RXCTL.1  
SCIRX PRIORITY  
SCI RX Interrupt  
RXENA  
0
1
SCIPRI.5  
SCI RX INT ENA  
RXCTL.0  
RXRDY  
RXCTL.6  
Level 1 INT  
Level 2 INT  
RX ERROR  
SCICTL.0  
8
RXCTL.4–2  
FE OE PE  
RXCTL.7  
ERR  
BRKDT  
Receive Data  
Buffer Reg.  
RXCTL.5  
RXBUF.7–0  
Figure 11. SCI2 Block Diagram  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
serial communications interface 2 module (continued)  
SCI communication control register (SCICCR)  
The SCICCR register defines the character format, protocol, and communications modes used by the SCI2.  
Table 15. SCI Communication Control Register (SCICCR) [Memory Address – 1050h]  
Bit #  
7
6
5
4
3
2
1
0
STOP  
BITS  
EVEN/ODD  
PARITY  
PARITY  
ENABLE  
ASYNC  
ENABLE  
ADDRESS/  
IDLE WUP  
P050  
SCI CHAR2 SCI CHAR1 SCI CHAR0  
RW–0 RW–0 RW–0  
RW–0  
RW–0  
RW–0  
RW–0  
RW–0  
R = read, W = write, –n = value of the bit after the register is reset  
Bits 0–2  
SCI CHAR0–2 (SCI character length control bits 0–2)  
These bits select the SCI character (data) bit length, from 1 to 8 bits. Characters of less than  
8 bits are right-justified in RXBUF and TXBUF, and are padded with leading 0s in RXBUF. TXBUF  
need not be padded with leading 0s.  
Table 16. Character Bit Length  
SCI CHAR2  
SCI CHAR1  
SCI CHAR0  
Character Length  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
3
4
5
6
7
8
Bit 3  
ADDRESS/IDLE WUP (SCI multiprocessor mode control bit)  
This bit selects the multiprocessor mode.  
0 = Selects idle line mode  
1 = Selects address bit mode  
The idle line mode is usually used for normal communications because the address bit mode adds  
an extra bit to the frame; the idle line mode does not add this extra bit and is compatible with  
RS-232-type communications. Multiprocessor communication is different from the other  
communications modes because it uses TXWAKE and SLEEP functions.  
Bit 4  
ASYNC ENABLE (SCI asynchronous mode enable)  
This bit enables or disables the asynchronous mode function. For SCI operation, this bit must be  
written as a 1 when writing to the SCICCR register.  
0 = Disables asynchronous mode (SCI does not operate).  
1 = Enables asynchronous mode (SCI operates).  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
serial communications interface 2 module (continued)  
Bit 5  
Bit 6  
Bit 7  
PARITY ENABLE (SCI parity enable)  
This bit enables or disables the parity function. When parity is enabled during the address bit  
multiprocessor mode, the address bit is included in the parity calculation.  
0 = Disables parity. No parity bit is generated during transmission or expected during reception.  
1 = Enables parity  
EVEN/ODD PARITY (SCI parity enable)  
If the PARITY ENABLE bit is set, this bit selects odd or even parity (odd or even number of bits  
in both transmitted and received characters).  
0 = Sets odd parity  
1 = Sets even parity  
STOP BITS (SCI number of stop bits)  
This bit determines the number of stop bits transmitted. The receiver checks for one stop bit only.  
0 = One stop bit  
1 = Two stop bits  
SCI control register (SCICTL)  
The SCICTL register controls the RX/TX enable, TXWAKE and SLEEP functions, and the SCI software reset.  
Table 17. SCI Control Register (SCICTL) [Memory Address – 1051h]  
Bit #  
7
6
5
4
3
2
1
0
SCI SW  
RESET  
CLOCK  
ENABLE  
P051  
TXWAKE  
RS–0  
SLEEP  
RW–0  
TXENA  
RW–0  
RXENA  
RW–0  
RW–0  
RW–0  
R = read, W = write, S = set only, –n = value of the bit after the register is reset  
Bit 0  
RXENA (SCI receive enable)  
When this bit is set, received characters are transferred into RXBUF, and the RXRDY flag is set.  
When cleared, this bit prevents received characters from being transferred into the receiver buffer  
(RXBUF), and no receiver interrupts are generated. However, the receiver shift register continues  
to assemble characters. As a result, if RXENA is set during the reception of a character, the  
complete character is transferred into RXBUF.  
0 = Disables SCI receiver  
1 = Enables SCI receiver  
Bit 1  
TXENA (SCI transmit enable)  
Data transmission through the SCITXD pin occurs only when this bit is set. If this bit is reset, the  
transmission is not halted until all the data previously written to TXBUF has been sent.  
0 = Disables SCI transmitter  
1 = Enables SCI transmitter  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
serial communications interface 2 module (continued)  
Bit 2  
SLEEP (SCI sleep)  
This bit controls the receive features of the multiprocessor communication modes. This bit must  
be cleared to bring the SCI out of sleep mode.  
0 = Disables sleep mode  
1 = Enables sleep mode  
Bit 3  
Bit 4  
TXWAKE (SCI transmitter wake-up)  
The TXWAKE bit controls the transmit features of the multiprocessor communication modes. This  
bit is cleared only by system reset. The SCI hardware clears this bit, once it has been transferred  
to wake-up temporary (WUT).  
CLOCK ENABLE (SCI internal clock enable)  
This bit enables or disables the SCI internal clock. For SCI operation, this bit must be written as  
a 1 when writing to the SCICTL register.  
0 = Disables SCI internal clock (stops SCI operation)  
1 = Enables SCI internal clock (SCI operates)  
Bit 5  
SCI SW RESET (SCI software resetactive low)  
Writing a 0 to this bit initializes the SCI state machines and operation flags to the reset condition.  
All affected logic is held in the reset state until a 1 is written to the SCI SW RESET bit. After a  
system reset, you must re-enable the SCI by writing a 1 to this bit. This bit must be cleared after  
a receiver break detect.  
SCI SW RESET affects the operating flags of the SCI. This bit does not affect the configuration  
bits, nor does it put in the reset values. The flags listed in Table 18 are set to the values shown  
when SCI SW RESET is cleared. The operating flags are frozen until the SCI SW RESET bit is  
set again.  
Table 18. Flags Affected by SCI SW RESET  
SCI FLAG  
TXRDY  
TXEMPTY  
RXWAKE  
PE  
DESIGNATION  
TXCTL.7  
TXCTL.6  
RXCTL.1  
RXCTL.2  
RXCTL.3  
RXCTL.4  
RXCTL.5  
RXCTL.6  
RXCTL.7  
VALUE AFTER SCI SW RESET  
1
1
0
0
0
0
0
0
0
OE  
FE  
BRKDT  
RXRDY  
RX ERROR  
Bits 6, 7  
Reserved (read data is indeterminate)  
baud-select registers (BAUD MSB and BAUD LSB)  
The BAUD MSB and BAUD LSB registers store the data required to generate the bit rate. The SCI2 uses the com-  
bined 16-bit value, BAUD REG, of the baud-select registers to set the internal SCI2 clock frequency.  
For asynchronous-mode communication, data is transmitted and received at the rate of one bit for each  
16 internal SCICLK periods.  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
serial communications interface 2 module (continued)  
The asynchronous bit rates are calculated as follows:  
Asynchronous Baud = SYSCLK / [(BAUD REG + 1) 32]  
Table 19. Baud-Select Register (BAUD MSB) [Memory Address – 1052h]  
Bit #  
7
6
5
4
3
2
1
0
BAUDF  
(MSB)  
P052  
BAUDE  
RW–0  
BAUDD  
RW–0  
BAUDC  
RW–0  
BAUDB  
RW–0  
BAUDA  
RW–0  
BAUD9  
RW–0  
BAUD8  
RW–0  
RW–0  
R = read, W = write, –n = value of the bit after the register is reset  
Table 20. Baud-Select Register (BAUD LSB) [Memory Address – 1053h]  
Bit #  
7
6
5
4
3
2
1
0
BAUD0  
(LSB)  
P053  
BAUD7  
RW–0  
BAUD6  
RW–0  
BAUD5  
RW–0  
BAUD4  
RW–0  
BAUD3  
RW–0  
BAUD2  
RW–0  
BAUD1  
RW–0  
RW–0  
R = read, W = write, –n = value of the bit after the register is reset  
SCI transmitter interrupt control and status register (TXCTL)  
The TXCTL register contains the transmitter interrupt-enable bit, the transmitter-ready flag, and the  
transmitter-empty flag. The status flags are updated each time a complete character is transmitted.  
Table 21. SCI Transmitter Interrupt Control and Status Register (TXCTL) [Memory Address – 1054h]  
Bit #  
7
6
5
4
3
2
1
0
SCI TX  
INT ENA  
P054  
TXRDY  
R–1  
TX EMPTY  
R–1  
RW–0  
R = read, W = write, –n = value of the bit after the register is reset  
Bit 0  
SCI TX INT ENA (SCI transmitter ready interrupt enable)  
This bit controls the ability of the TXRDY bit to request an interrupt but does not prevent the  
TXRDY bit from being set. The SCI TX INT ENA bit is set to 0 by a system reset.  
0 = Disables SCI TXRDY interrupt  
1 = Enables SCI TXRDY interrupt  
Bits 1–5  
Reserved (read data is indeterminate)  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
serial communications interface 2 module (continued)  
Bit 6  
TX EMPTY (SCI transmitter empty)  
This bit indicates the status of the transmitter-shift register and the TXBUF register. TX EMPTY  
is set to 1 by an SCI SW RESET or by a system reset.  
0 = The CPU has written data to the TXBUF register; the data has not been completely  
transmitted.  
1 = TXBUF and TXSHF registers are empty.  
TXRDY (SCI transmitter ready)  
Bit 7  
The TXRDY bit is set by the transmitter to indicate that TXBUF is ready to receive another  
character. The bit is automatically cleared when a character is loaded into TXBUF. This flag  
asserts a transmitter interrupt if the interrupt-enable bit SCI TX INT ENA (TXCTL.0) is set. TXRDY  
is a read-only flag. It is set to 1 by an SCI SW RESET or by a system reset.  
0 = TXBUF is full.  
1 = TXBUF is ready to receive a character.  
SCI receiver interrupt control and status register (RXCTL)  
The RXCTL register contains one interrupt-enable bit and seven receiver-status flags (two of which can generate  
interrupt requests). The status flags are updated each time a complete character is transferred to the RXBUF.  
They are cleared each time RXBUF is read.  
Table 22. SCI Receiver Interrupt Control and Status Register (RXCTL) [Memory Address – 1055h]  
Bit #  
7
6
5
4
3
2
1
0
SCI RX  
INT ENA  
P055  
RX ERROR  
R–0  
RXRDY  
R–0  
BRKDT  
R–0  
FE  
OE  
PE  
RXWAKE  
R–0  
R–0  
R–0  
R–0  
RW–0  
R = read, W = write, –n = value of the bit after the register is reset  
Bit 0  
SCI RX INT ENA (SCI receiver interrupt enable)  
The SCI RX INT ENA bit controls the ability of the RXRDY and the BRKDT bits to request an  
interrupt but does not prevent these flags from being set.  
0 = Disables RXRDY/BRKDT interrupt  
1 = Enables RXRDY/BRKDT interrupt  
Bit 1  
Bit 2  
RXWAKE (receiver wake-up detect)  
The SCI sets this bit when a receiver wake-up condition is detected. In the address bit  
multiprocessor mode, RXWAKE reflects the value of the address bit for the character contained  
in RXBUF. In the idle line multiprocessor mode, RXWAKE is set if an idle SCIRXD line is detected.  
RXWAKE is a read-only flag. It is cleared by transfer of the first byte after the address byte to  
RXBUF, by reading the address character in RXBUF, by an SCI SW RESET, or by a system reset.  
PE (SCI parity error flag)  
This flag bit is set when a character is received with a mismatch between the number of 1s and  
its parity bit. The parity checker includes the address bit in the calculation. If parity generation and  
detection are not enabled, the PE flag is disabled and read as 0. The PE bit is reset by an SCI SW  
RESET, by a system reset, or by reading RXBUF.  
0 = No parity error or parity is disabled  
1 = Parity error detected  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
serial communications interface 2 module (continued)  
Bit 3  
OE (SCI overrun error flag)  
The SCI sets this bit when a character is transferred into RXBUF before the previous character  
has been read out. The previous character is overwritten and lost. The OE flag is reset by an SCI  
SW RESET, by a system reset, or by reading RXBUF.  
0 = No overrun error detected  
1 = Overrun error detected  
Bit 4  
FE (SCI framing error flag)  
The SCI sets this bit when it does not find a stop bit that it expects. Only the first stop bit is checked.  
The missing stop bit indicates that synchronization with the start bit has been lost and that the  
character is incorrectly framed. It is reset by an SCI SW RESET, by a system reset, or by reading  
RXBUF.  
0 = No framing error detected  
1 = Framing error detected  
Bit 5  
BRKDT (SCI break detect flag)  
The SCI sets this bit when a break condition occurs. A break condition occurs when the SCIRXD  
line remains continuously low for at least 10 bits, beginning after a missing first stop bit. The  
occurrence of a break causes a receiver interrupt to be generated if the SCI RX INT ENA bit is  
a 1, but it does not cause the receiver buffer to be loaded. A BRKDT interrupt can occur, even if  
the receiver SLEEP bit is set to 1.  
BRKDT is cleared by an SCI SW RESET or by a system reset. It is not cleared by receipt of a  
character after the break is detected. In order to receive more characters, the SCI must be reset  
by toggling the SCI SW RESET bit or by a system reset.  
Bit 6  
Bit 7  
RXRDY (SCI receiver ready)  
The receiver sets this bit to indicate that RXBUF is ready with a new character and clears the bit  
when the character is read. A receiver interrupt is generated if the SCI RX INT ENA bit is a 1.  
RXRDY is reset by an SCI SW RESET or by a system reset.  
RX ERROR (SCI receiver error flag)  
The RX ERROR flag indicates that one of the error flags in the receiver status register is set. It  
is a logical OR of the parity, overrun, framing error, and break detect flags. The bit can be used  
for fast error condition checking during the interrupt service routine because a negative value of  
the status register indicates that an error condition has occurred. This error flag cannot be cleared  
directly but is cleared if no individual error flags are set. This bit is cleared by an SCI SW RESET,  
by a system reset, or by reading RXBUF.  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
serial communications interface 2 module (continued)  
SCI receiver data buffer register (RXBUF)  
The RXBUF register contains current data from the receiver shift register. RXBUF is cleared by a system reset.  
Table 23. SCI Receiver Data Buffer Register (RXBUF) [Memory Address – 1057h]  
Bit #  
7
6
5
4
3
2
1
0
P057  
RXDT7  
R–0  
RXDT6  
R–0  
RXDT5  
R–0  
RXDT4  
R–0  
RXDT3  
R–0  
RXDT2  
R–0  
RXDT1  
R–0  
RXDT0  
R–0  
R = read, W = write, –n = value of the bit after the register is reset  
SCI transmitter data buffer register (TXBUF)  
TheTXBUFregisterisaread/writeregisterthatstoresdatabitstobetransmittedbySCITX. DatawrittentoTXBUF  
must be right-justified because the left-most bits are ignored for characters less than eight bits long.  
Table 24. SCI Transmit Data Buffer Register (TXBUF) [Memory Address – 1059h]  
Bit #  
7
6
5
4
3
2
1
0
P059  
TXDT7  
RW–0  
TXDT6  
RW–0  
TXDT5  
RW–0  
TXDT4  
RW–0  
TXDT3  
RW–0  
TXDT2  
RW–0  
TXDT1  
RW–0  
TXDT0  
RW–0  
R = read, W = write, –n = value of the bit after the register is reset  
SCI port control register 2 (SCIPC2)  
The SCIPC2 register controls the SCIRXD and SCITXD pin functions.  
Table 25. SCI Port Control Register 2 (SCIPC2) [Memory Address – 105Eh]  
Bit #  
7
6
5
4
3
2
1
0
SCITXD  
DATA IN  
SCITXD  
DATA OUT  
SCITXD  
FUNCTION  
SCITXD  
DATA DIR  
SCIRXD  
DATA IN  
SCIRXD  
DATA OUT  
SCIRXD  
FUNCTION  
SCIRXD  
DATA DIR  
P05E  
R–0  
RW–0  
RW–0  
RW–0  
R–0  
RW–0  
RW–0  
RW–0  
R = read, W = write, –n = value of the bit after the register is reset  
Bit 0  
SCIRXD DATA DIR (SCIRXD data direction)  
This bit determines the data direction on the SCIRXD pin if SCIRXD has been defined as a  
general-purpose I/O pin.  
0 = SCIRXD pin is a general-purpose input pin.  
1 = SCIRXD pin is a general-purpose output pin.  
Bit 1  
SCIRXD FUNCTION  
This bit defines the function of the SCIRXD pin.  
0 = SCIRXD pin is a general-purpose digital I/O pin.  
1 = SCIRXD pin is the SCI receiver pin.  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
serial communications interface 2 module (continued)  
Bit 2  
SCIRXD DATA OUT  
This bit contains the data to be output on the SCIRXD pin if the following conditions are met:  
SCIRXD pin has been defined as a general-purpose I/O pin.  
SCIRXD pin data direction has been defined as output.  
SCIRXD DATA IN  
Bit 3  
Bit 4  
This bit contains the current value on the SCIRXD pin.  
SCITXD DATA DIR (SCITXD data direction)  
This bit determines the data direction on the SCITXD pin if SCITXD has been defined as a  
general-purpose I/O pin.  
0 = SCITXD pin is a general-purpose input pin.  
1 = SCITXD pin is a general-purpose output pin.  
Bit 5  
Bit 6  
SCITXD FUNCTION  
This bit defines the function of the SCITXD pin.  
0 = SCITXD pin is a general-purpose digital I/O pin.  
1 = SCITXD pin is the SCI transmit pin.  
SCITXD DATA OUT  
This bit contains the data to be output on the SCITXD pin if the following conditions are met:  
SCITXD pin has been defined as a general-purpose I/O pin.  
SCITXD pin data direction has been defined as output.  
SCITXD DATA IN  
Bit 7  
This bit contains the current value on the SCITXD pin.  
SCI priority control register (SCIPRI)  
The SCIPRI register contains the receiver and transmitter interrupt-priority select bits. This register is read-only  
during normal operation but can be written to in the privileged mode.  
Table 26. SCI Priority Control Register (SCIPRI) [Memory Address – 105Fh]  
Bit #  
7
6
5
4
3
2
1
0
SCITX  
PRIORITY  
SCIRX  
PRIORITY  
SCI  
ESPEN  
P05F  
SCI STEST  
RP–0  
RP–0  
RP–0  
RP–0  
R = read, P = privilege write only, –n = value of the bit after the register is reset  
Bits 0–3  
Reserved (read data is indeterminate)  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
serial communications interface 2 module (continued)  
Bit 4  
SCI ESPEN (SCI emulator suspend enable)  
This bit has no effect except when you are using the XDS emulator to debug a program. Then,  
this bit determines how the SCI operates when the program is suspended by an action such as  
a hardware or software breakpoint.  
0 = When the emulator is suspended, the SCI continues to work until the current transmit or  
receive sequence is complete.  
1 = When the emulator is suspended, the SCI state machine is frozen so that the state of the  
SCI can be examined at the point that the emulator was suspended.  
Bit 5  
Bit 6  
SCI RX PRIORITY (SCI receiver interrupt priority select)  
This bit assigns the interrupt-priority level of the SCI receiver interrupts.  
0 = Receiver interrupts are level 1 (high-priority) requests.  
1 = Receiver interrupts are level 2 (low-priority) requests.  
SCI TX PRIORITY (SCI transmitter interrupt priority select)  
This bit assigns the interrupt-priority level of the SCI transmitter interrupts.  
0 = Transmitter interrupts are level 1 (high-priority) requests.  
1 = Transmitter interrupts are level 2 (low-priority) requests.  
SCI STEST (SCI STEST)  
Bit 7  
analog-to-digital converter 2 module  
The analog-to-digital converter 2 (ADC2) module is an 8-bit, successive approximation converter with internal  
sample-and-hold circuitry. The module has four multiplexed analog input channels that allow the processor to  
convert the voltage levels from up to four different sources. The ADC2 module features include the following:  
Minimum conversion time: 32.8 µs at 5 MHz SYSCLK  
Four external pins:  
Four analog input channels (AN0AN3), any of which can be software configured as digital inputs  
(E0E3) if not needed as analog channels  
AN1AN3 also can be configured as positive-input voltage reference.  
The ADDATA register, which contains the digital result of the last analog-to-digital (A/D) conversion  
A/D operations can be accomplished through either interrupt-driven or polled algorithms.  
Six ADC2 module control registers located in the control register frame beginning at address 1070h  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
analog-to-digital converter 2 module (continued)  
The ADC2 module control registers are listed in Table 27.  
Table 27. ADC2 Module Control Register Memory Map  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
CONVERT  
START  
SAMPLE  
START  
REF VOLT  
SELECT1  
REF VOLT  
SELECT0  
AD INPUT  
SELECT1  
AD INPUT  
SELECT0  
P070  
ADCTL  
AD INT  
FLAG  
AD INT  
ENA  
P071  
P072  
AD READY  
ADSTAT  
ADDATA  
A/D Conversion Data Register  
P073  
to  
RESERVED  
P07C  
P07D  
P07E  
Port E Data Input Register  
Port E Input Enable Register  
ADIN  
ADENA  
AD  
PRIORITY  
P07F AD STEST  
AD ESPEN  
ADPRI  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
analog-to-digital converter 2 module (continued)  
The ADC2 module block diagram is illustrated in Figure 12.  
Port E Input  
Port E Data  
ENA 0  
AN 0  
ADENA.0  
SAMPLE  
START  
CONVERT  
START  
ADIN.0  
1
0
AN0  
AN1  
AN2  
AN3  
ADCTL.1–0  
ADCTL.6  
ADCTL.7  
Port E Input  
ENA 1  
Port E Data  
AN 1  
AD INPUT SELECT  
ADENA.1  
ADIN.1  
Port E Input  
ENA 2  
Port E Data  
AN 2  
ADENA.2  
ADIN.2  
Port E Input  
ENA 3  
Port E Data  
AN 3  
ADENA.3  
ADIN.3  
A/D  
ADDATA.7–0  
4
3
ADCTL.4–3  
A-to-D  
Conversion  
Data Register  
REF VOLTS SELECT  
V
AD READY  
ADSTAT.2  
CC  
V
SS  
AD PRIORITY  
0
1
Level 1 INT  
Level 2 INT  
ADPRI.6  
AD INT FLAG  
ADSTAT.1  
ADSTAT.0  
AD INT ENA  
Figure 12. ADC2 Block Diagram  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
analog-to-digital converter 2 module (continued)  
Table 28. A/D CONTROL REGISTER (ADCTL)  
Bit #  
7
6
5
4
3
2
1
0
CONVERT  
START  
SAMPLE  
START  
REF VOLT  
SELECT1  
REF VOLT  
SELECT0  
AD INPUT  
SELECT1  
AD INPUT  
SELECT0  
P070  
RW0  
RW–0  
RW–0  
RW–0  
RW–0  
RW–0  
RW–0  
R = read, W = write, –n = value of the bit after the register is reset  
Bits 0–1  
AD INPUT SELECT 0–1 (analog input channel select bits 01)  
These bits select the channel used for conversion. Channels should be changed only after the  
ADC2 module has cleared the SAMPLE START and CONVERT START bits. Changing the  
channel while either SAMPLE START or CONVERT START is 1 invalidates the conversion in  
progress.  
Table 29. Analog-Input Channel Selection  
AD INPUT  
SELECT 1  
AD INPUT  
SELECT 0  
AD INPUT  
CHANNEL  
0
0
1
1
0
1
0
1
AN0  
AN1  
AN2  
AN3  
Bit 2  
Reserved (read data is indeterminate)  
Bits 3–4  
REF VOLT SELECT 3–4 (reference voltage (+V  
) select bits 3–4)  
REF  
These bits select the channel the ADC2 module uses for the positive voltage reference. These  
bits must not change during the entire conversion.  
Table 30. Voltage-Channel Selection  
REF VOLT  
SELECT 1  
REF VOLT  
SELECT 0  
+V  
REF  
SOURCE  
0
0
1
1
0
1
0
1
V
CC  
AN1  
AN2  
AN3  
Bit 5  
Bit 6  
Reserved (read data is indeterminate)  
SAMPLE START (sample start)  
Setting this bit stops any ongoing conversion and starts sampling the selected input channel to  
begin a new conversion. This bit is cleared by the ADC2 module. Entering HALT or STANDBY  
mode clears this bit and aborts any sampling in progress.  
Bit 7  
CONVERT START (conversion start)  
Setting this bit starts the conversion. This bit is cleared by the ADC2 module. Entering HALT or  
STANDBY mode clears this bit and aborts any conversion in progress.  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
analog-to-digital converter 2 module (continued)  
Table 31. A/D Control Register (ADSTAT)  
Bit #  
7
6
5
4
3
2
1
0
AD  
READY  
AD INT  
FLAG  
AD INT  
ENA  
P071  
R–0  
RC–0  
RW–0  
R = read, W = write, C = clear only, –n = value of the bit after the register is reset  
Bit 0  
AD INT ENA (A/D interrupt enable)  
This bit controls the ADC2 module’s ability to generate an interrupt.  
0 = Disable A/D interrupt  
1 = Enable A/D interrupt  
Bit 1  
AD INT FLAG (A/D interrupt flag)  
The ADC2 module sets this bit at the end of an ADC2 conversion. If this bit is set while the A/D  
INTENAbitisset, aninterruptrequestisgenerated. ClearingthisflagclearspendingA/Dinterrupt  
requests. ThisbitisclearedbythesystemresetorbyenteringHALTorSTANDBYmode. Software  
cannot set this bit.  
Bit 2  
AD READY (A/D converter ready)  
The ADC2 module sets this bit whenever a conversion is not in progress and the ADC2 is ready  
for a new conversion to start. Writing to this bit has no effect on its state.  
0 = Conversion is in process  
1 = Converter is ready  
Bits 3–7  
Reserved (read data is indeterminate)  
Table 32. A/D Conversion Data Register (DATA)  
Bit #  
P072  
7
6
5
4
3
2
1
0
DATA 7  
R–0  
DATA 6  
R–0  
DATA 5  
R–0  
DATA 4  
R–0  
DATA 3  
R–0  
DATA 2  
R–0  
DATA 1  
R–0  
DATA 0  
R–0  
R = read, –n = value of the bit after the register is reset  
The analog-to-digital conversion data is loaded into this register at the end of a conversion and remains until  
replaced by another conversion.  
Table 33. AN0–AN3 Port E0E3 Data Input Register (ADIN)  
Bit #  
7
6
5
4
3
2
1
0
DATA IN  
AN3  
DATA IN  
AN2  
DATA IN  
AN1  
DATA IN  
AN0  
P07D  
R–0  
R–0  
R–0  
R–0  
R = read, –n = value of the bit after the register is reset  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
analog-to-digital converter 2 module (continued)  
Bits 0–3  
Bits 4–7  
PORT E DATA AN0–AN3 (Analog port E data in)  
TheADINregistershowsthedatapresentatthepinsconfiguredforgeneral-purposeinputinstead  
of ADC2 channels. A bit is configured as general-purpose input if the corresponding bit of the port  
enable register is a 1. Pins configured as ADC2 channels are read as 0s. Writing to this address  
has no effect.  
Reserved (read data is indeterminate)  
Table 34. AN0AN3 Port E0E3 Data Input-Enable Register (ADENA)  
Bit #  
P07E  
7
6
5
4
3
2
1
0
INPUT  
ENA 3  
INPUT  
ENA 2  
INPUT  
ENA 1  
INPUT  
ENA 0  
RW–0  
RW–0  
RW–0  
RW0  
R = read, W = write, n = value of the bit after the register is reset  
Bits 0–3  
INPUT ENA 0–3 (Analog port E input enable)  
The ADENA register individually configures the pins AN0–AN3 as either analog-input channels  
or as general-purpose input pins.  
0 = The pin becomes an analog-input channel for the ADC2. When the bit is 0, the  
corresponding bit in the ADIN register reads 0.  
1 = Enables the pin as a general-purpose input pin and its digital value can be read from the  
corresponding bit in the ADIN register.  
Bits 4–7  
Reserved (read data is indeterminate)  
Table 35. Analog Interrupt Priority/Conversion Rate Register (ADPRI)  
Bit #  
7
6
5
4
3
2
1
0
AD  
STEST  
AD  
PRIORITY  
AD  
ESPEN  
P07F  
RP–0  
RP–0  
RP–0  
RW–0  
RW0  
R = read, W = write, P = privileged write, –n = value of the bit after the register is reset  
Bits 0–4  
Bit 5  
Reserved (read data is indeterminate)  
AD ESPEN (emulator suspend enable)  
Normally this bit has no effect. However, when using the XDS emulator to debug a program, this  
bit determines what happens to the ADC2 when the program is suspended by an action such as  
a hardware or software breakpoint.  
0 = When the emulator is suspended, the ADC2 continues to run until the conversion is  
complete  
1 = When the emulator is suspended, the ADC2 is frozen so that its state can be examined at  
the point that the emulator was suspended. The conversion data is indeterminate upon  
restart.  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
analog-to-digital converter 2 module (continued)  
Bit 6  
AD PRIORITY (A/D interrupt priority select)  
This bit selects the priority level of the A/D interrupt.  
0 = A/D Interrupt is a higher priority (level 1) request.  
1 = A/D Interrupt is a lower priority (level 2) request.  
Bit 7  
AD STEST (this bit must be cleared to ensure proper operation)  
instruction set overview  
Table 36 provides an opcode-to-instruction cross-reference of all 73 instructions and 274 opcodes of the  
‘370CxCxinstruction set. The numbers at the top of this table represent the most significant nibble of the opcode  
while the numbers at the left side of the table represent the least significant nibble. The instructions for these  
two opcode nibbles contain the mnemonic, operands, and byte/cycle specific to that opcode.  
For example, the opcode B5h points to the CLR A instruction. This instruction contains one byte and executes  
in eight SYSCLK cycles.  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
Table 36. TMS370 Family Opcode/Instruction Map  
MSN  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
JMP  
#ra  
2/7  
INCW  
#ra,Rd  
3/11  
MOV  
Ps,A  
2/8  
CLRC /  
TST A  
1/9  
MOV  
A,B  
1/9  
MOV  
A,Rd  
2/7  
TRAP  
15  
1/14  
LDST  
n
2/6  
0
1
2
3
4
5
JN  
ra  
2/5  
MOV  
A,Pd  
2/8  
MOV  
B,Pd  
2/8  
MOV  
Rs,Pd  
3/10  
MOV  
Ps,B  
2/7  
MOV  
B,Rd  
2/7  
TRAP  
14  
1/14  
MOV  
#ra[SP],A  
2/7  
JZ  
ra  
2/5  
MOV  
Rs,A  
2/7  
MOV  
#n,A  
2/6  
MOV  
Rs,B  
2/7  
MOV  
Rs,Rd  
3/9  
MOV  
#n,B  
2/6  
MOV  
B,A  
1/8  
MOV  
#n,Rd  
3/8  
MOV  
Ps,Rd  
3/10  
DEC  
A
1/8  
DEC  
B
1/8  
DEC  
Rd  
2/6  
TRAP  
13  
1/14  
MOV  
A,*ra[SP]  
2/7  
JC  
ra  
2/5  
AND  
Rs,A  
2/7  
AND  
#n,A  
2/6  
AND  
Rs,B  
2/7  
AND  
Rs,Rd  
3/9  
AND  
#n,B  
2/6  
AND  
B,A  
1/8  
AND  
#n,Rd  
3/8  
AND  
A,Pd  
2/9  
AND  
B,Pd  
2/9  
AND  
#n,Pd  
3/10  
INC  
A
1/8  
INC  
B
1/8  
INC  
Rd  
2/6  
TRAP  
12  
1/14  
CMP  
*n[SP],A  
2/8  
JP  
ra  
2/5  
OR  
Rs,A  
2/7  
OR  
#n,A  
2/6  
OR  
Rs,B  
2/7  
OR  
Rs,Rd  
3/9  
OR  
#n,B  
2/6  
OR  
B,A  
1/8  
OR  
#n,Rd  
3/8  
OR  
A,Pd  
2/9  
OR  
B,Pd  
2/9  
OR  
#n,Pd  
3/10  
INV  
A
1/8  
INV  
B
1/8  
INV  
Rd  
2/6  
TRAP  
11  
1/14  
extend  
inst,2  
opcodes  
JPZ  
ra  
2/5  
XOR  
Rs,A  
2/7  
XOR  
#n,A  
2/6  
XOR  
Rs,B  
2/7  
XOR  
Rs,Rd  
3/9  
XOR  
#n,B  
2/6  
XOR  
B,A  
1/8  
XOR  
#n,Rd  
3/8  
XOR  
A,Pd  
2/9  
XOR  
B,Pd  
2/9  
XOR  
#n,Pd  
3/10  
CLR  
A
1/8  
CLR  
B
1/8  
CLR  
Rn  
2/6  
TRAP  
10  
1/14  
L
S
N
JNZ  
ra  
2/5  
BTJO  
Rs,A,ra  
3/9  
BTJO  
#n,A,ra  
3/8  
BTJO  
Rs,B,ra  
3/9  
BTJO  
Rs,Rd,ra  
4/11  
BTJO  
#n,B,ra  
3/8  
BTJO  
B,A,ra  
2/10  
BTJO  
#n,Rd,ra  
4/10  
BTJO  
A,Pd,ra  
3/11  
BTJO  
B,Pd,ra  
3/10  
BTJO  
#n,Pd,ra  
4/11  
XCHB  
A
1/10  
XCHB A /  
TST B  
1/10  
XCHB  
Rn  
2/8  
TRAP  
9
1/14  
IDLE  
1/6  
6
JNC  
ra  
2/5  
BTJZ  
Rs.,A,ra  
3/9  
BTJZ  
#n,A,ra  
3/8  
BTJZ  
Rs,B,ra  
3/9  
BTJZ  
Rs,Rd,ra  
4/11  
BTJZ  
#n,B,ra  
3/8  
BTJZ  
B,A,ra  
2/10  
BTJZ  
#n,Rd,ra  
4/10  
BTJZ  
A,Pd,ra  
3/10  
BTJZ  
B,Pd,ra  
3/10  
BTJZ  
#n,Pd,ra  
4/11  
SWAP  
A
1/11  
SWAP  
B
1/11  
SWAP  
Rn  
2/9  
TRAP  
8
1/14  
MOV  
#n,Pd  
3/10  
7
8
JV  
ra  
2/5  
ADD  
Rs,A  
2/7  
ADD  
#n,A  
2/6  
ADD  
Rs,B  
2/7  
ADD  
Rs,Rd  
3/9  
ADD  
#n,B  
2/6  
ADD  
B,A  
1/8  
ADD  
#n,Rd  
3/8  
MOVW  
#16,Rd  
4/13  
MOVW  
Rs,Rd  
3/12  
MOVW  
#16[B],Rpd  
4/15  
PUSH  
A
1/9  
PUSH  
B
1/9  
PUSH  
Rd  
2/7  
TRAP  
7
1/14  
SETC  
1/7  
JL  
ra  
2/5  
ADC  
Rs,A  
2/7  
ADC  
#n,A  
2/6  
ADC  
Rs,B  
2/7  
ADC  
Rs,Rd  
3/9  
ADC  
#n,B  
2/6  
ADC  
B,A  
1/8  
ADC  
#n,Rd  
3/8  
JMPL  
lab  
3/9  
JMPL  
*Rp  
2/8  
JMPL  
*lab[B]  
3/11  
POP  
A
1/9  
POP  
B
1/9  
POP  
Rd  
2/7  
TRAP  
6
1/14  
RTS  
9
A
B
1/9  
JLE  
ra  
2/5  
SUB  
Rs,A  
2/7  
SUB  
#n,A  
2/6  
SUB  
Rs,B  
2/7  
SUB  
Rs,Rd  
3/9  
SUB  
#n,B  
2/6  
SUB  
B,A  
1/8  
SUB  
#n,Rd  
3/8  
MOV  
& lab,A  
3/10  
MOV  
*Rp,A  
2/9  
MOV  
*lab[B],A  
3/12  
DJNZ  
A,#ra  
2/10  
DJNZ  
B,#ra  
2/10  
DJNZ  
Rd,#ra  
3/8  
TRAP  
5
1/14  
RTI  
1/12  
JHS  
ra  
2/5  
SBB  
Rs,A  
2/7  
SBB  
#n,A  
2/6  
SBB  
Rs,B  
2/7  
SBB  
Rs,Rd  
3/9  
SBB  
#n,B  
2/6  
SBB  
B,A  
1/8  
SBB  
#n,Rd  
3/8  
MOV  
A, & lab  
3/10  
MOV  
A, *Rp  
2/9  
MOV  
A,*lab[B]  
3/12  
COMPL  
A
1/8  
COMPL  
B
1/8  
COMPL  
Rd  
2/6  
TRAP  
4
1/14  
PUSH  
ST  
1/8  
All conditional jumps (opcodes 01-0F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ instructions  
have a relative address as the last operand.  
Table 36. TMS370 Family Opcode/Instruction Map (Continued)  
MSN  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
JNV  
ra  
2/5  
MPY  
Rs,A  
2/46  
MPY  
#n,A  
2/45  
MPY  
Rs,B  
2/46  
MPY  
Rs,Rd  
3/48  
MPY  
#n,B  
2/45  
MPY  
B,A  
1/47  
MPY  
#n,Rs  
3/47  
BR  
lab  
3/9  
BR  
*Rp  
2/8  
BR  
*lab[B]  
3/11  
RR  
A
1/8  
RR  
B
1/8  
RR  
Rd  
2/6  
TRAP  
3
1/14  
POP  
ST  
1/8  
C
D
E
F
JGE  
ra  
2/5  
CMP  
Rs,A  
2/7  
CMP  
#n,A  
2/6  
CMP  
Rs,B  
2/7  
CMP  
Rs,Rd  
3/9  
CMP  
#n,B  
2/6  
CMP  
B,A  
1/8  
CMP  
#n,Rd  
3/8  
CMP  
& lab,A  
3/11  
CMP  
*Rp,A  
2/10  
CMP  
*lab[B],A  
3/13  
RRC  
A
1/8  
RRC  
B
1/8  
RRC  
Rd  
2/6  
TRAP  
2
1/14  
LDSP  
L
S
N
1/7  
JG  
ra  
2/5  
DAC  
Rs,A  
2/9  
DAC  
#n,A  
2/8  
DAC  
Rs,B  
2/9  
DAC  
Rs,Rd  
3/11  
DAC  
#n,B  
2/8  
DAC  
B,A  
1/10  
DAC  
#n,Rd  
3/10  
CALL  
lab  
3/13  
CALL  
*Rp  
2/12  
CALL  
*lab[B]  
3/15  
RL  
A
1/8  
RL  
B
1/8  
RL  
Rd  
2/6  
TRAP  
1
1/14  
STSP  
1/8  
JLO  
ra  
2/5  
DSB  
Rs,A  
2/9  
DSB  
#n,A  
2/8  
DSB  
Rs,B  
2/9  
DSB  
Rs,Rd  
3/11  
DSB  
#n,B  
2/8  
DSB  
B,A  
1/10  
DSB  
#n,Rd  
3/10  
CALLR  
lab  
3/15  
CALLR  
*Rp  
2/14  
CALLR  
*lab[B]  
3/17  
RLC  
A
1/8  
RLC  
B
1/8  
RLC  
Rd  
2/6  
TRAP  
0
1/14  
NOP  
1/7  
Second byte of two-byte instructions (F4xx):  
MOVW  
*n[Rn]  
4/15  
DIV  
Rn.A  
3/14-63  
F4  
F4  
F4  
F4  
F4  
F4  
F4  
F4  
8
9
JMPL  
*n[Rn]  
4/16  
Legend:  
MOV  
*n[Rn],A  
4/17  
A
B
C
D
E
F
*
&
#
=
=
=
Indirect addressing operand prefix  
Direct addressing operand prefix  
immediate operand  
MOV  
A,*n[Rn]  
4/16  
#16 = immediate 16-bit number  
lab  
n
Pd  
Pn  
Ps  
ra  
Rd  
Rn  
Rp  
=
=
=
=
=
=
=
=
=
16-label  
immediate 8-bit number  
Peripheral register containing destination type  
Peripheral register  
Peripheral register containing source byte  
Relative address  
Register containing destination type  
Register file  
Register pair  
BR  
*n[Rn]  
4/16  
CMP  
*n[Rn],A  
4/18  
CALL  
*n[Rn]  
4/20  
Rpd= Destination register pair  
Rps = Source Register pair  
Rs  
= Register containing source byte  
CALLR  
*n[Rn]  
4/22  
All conditional jumps (opcodes 01-0F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ instructions  
have a relative address as the last operand.  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
development system support  
The TMS370 family development support tools include an assembler, a C compiler, a linker, a compact  
development tool, and an EEPROM/UVEPROM programmer.  
Assembler/linker (Part No. TMDS3740850–02 for PC)  
Includes extensive macro capability  
Allows high-speed operation  
Provides format conversion utilities for popular formats.  
ANSI C Compiler (Part No. TMDS3740855–02 for PC, Part No. TMDS3740555–09 for HP700 , Sun-3  
or Sun-4 )  
Generates assembly code for the TMS370 that can be inspected easily  
Improves code execution speed and reduces code size with optional optimizer pass  
Enables direct reference to the TMS370’s port registers by using a naming convention  
Provides flexibility in specifying the storage for data objects  
Interfaces C functions and assembly functions easily  
Includes assembler and linker  
CDT370 (compact development tool) real-time in-circuit emulation  
Base (Part Number EDSCDT370 – for PC, requires cable)  
Cable for 28-pin PLCC (Part No. EDSTRG28PLCCCX)  
Cable for 28-pin DIP (Part No. EDSTRG28DILCX)  
Includes EEPROM and EPROM programming support  
Allows inspection and modification of memory locations  
Allows uploading/downloading program and data memory  
Executes programs and software routines  
Includes 1024 samples trace buffer  
Provides single-step executable instructions  
Uses software breakpoints to halt program execution at selected address  
Microcontroller programmer  
Base (Part No. TMDS3760500A – for PC, requires programmer head)  
Single unit head for 28-pin PLCC/DIP (Part No. TMDS3780514A)  
Personal computer based, window/function-key-oriented user interface for ease of use and rapid  
learning environment  
HP700 is a trademark of Hewlett-Packard Company.  
Sun-3 and Sun-4 are trademarks of Sun Microsystems, Incorporated.  
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
device numbering conventions  
Figure 13 illustrates the numbering and symbol nomenclature for the TMS370CxCx family.  
TMS 370 C  
3
C 0  
A FN L  
Prefix: TMS = Standard prefix for fully qualified devices  
SE = System evaluator that is used for  
prototyping purpose.  
Family: 370 = TMS370 8-Bit Microcontroller Family  
Technology:  
C = CMOS  
Program Memory Types:  
3 = Mask ROM, No Data EEPROM  
6 = EPROM, No Data EEPROM  
Device Type:  
C = ’xCx devices containing the following modules:  
— Timer 1  
— Analog-to-Digital Converter 2 (ADC2)  
— Serial Communications Interface 2 (SCI2)  
Memory Size:  
0 = 4K bytes  
2 = 8K bytes  
Temperature Ranges:  
A = –40°C to  
L = 0°C to  
85°C  
70°C  
T = –40°C to 105°C  
Packages:  
FN = Plastic Leaded Chip Carrier  
FZ = Ceramic Leaded Chip Carrier  
N = Plastic Dual-In-Line  
JD = Ceramic Dual-In-Line  
ROM and EPROM Option:  
A = For ROM device, the watchdog timer can be configured  
as one of the three different mask options:  
– A standard watchdog  
– A hard watchdog  
– A simple watchdog  
The clock mask option can be:  
– Divide-by-4 clock  
– Divide-by-1 (PLL) clock  
The low-power modes can be:  
– Enabled  
– Disabled  
Figure 13. TMS370CxCx Family Nomenclature  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
device part numbers  
Table 37 lists all of the ’xCx devices available. The devices’ part number nomenclature is designed to assist  
ordering. Upon ordering, the customer must specify not only the device part number, but also the clock and  
watchdog timer options desired. Each device can have only one of the three possible watchdog timer options  
and one of the two clock options. The required options information pertains solely to orders involving ROM  
devices.  
Table 37. Device Part Numbers  
DEVICE PART NUMBERS  
FOR 28 PINS (LCC)  
FOR 28 PINS (DIP)  
TMS370C3C0AFNA  
TMS370C3C0AFNL  
TMS370C3C0AFNT  
TMS370C3C0ANA  
TMS370C3C0ANL  
TMS370C3C0ANT  
TMS370C6C2AFNT  
TMS370C6C2ANT  
SE370C6C2AJDT  
SE370C6C2AFZT  
Systemevaluatorsareforuseinprototypeenvironmentandtheir  
reliability has not been characterized.  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
new code release form  
Figure 14 shows a sample of the new code release form.  
NEW CODE RELEASE FORM  
TEXAS INSTRUMENTS  
DATE:  
TMS370 MICROCONTROLLER PRODUCTS  
To release a new customer algorithm to TI incorporated into a TMS370 family microcontroller, complete this form and submit with the following information:  
1. A ROM description in object form on Floppy Disk, Modem XFR, or EPROM (Verification file will be returned via same media)  
2. An attached specification if not using TI standard specification as incorporated in TI’s applicable device data book.  
Company Name:  
Street Address:  
Street Address:  
City:  
Contact Mr./Ms.:  
Phone: (  
)
Ext.:  
State  
Zip  
Customer Purchase Order Number:  
Customer Print Number *Yes:  
No:  
*If Yes: Customer must provide ”print” to TI w/NCRF for approval before ROM  
code processing starts.  
#
Customer Part Number:  
Customer Application:  
(Std. spec to be followed)  
TMS370 Device:  
TI Customer ROM Number:  
(provided by Texas Instruments)  
CONTACT OPTIONS FOR THE ’A’ VERSION TMS370 MICROCONTROLLERS  
OSCILLATOR FREQUENCY  
Low Power Modes  
[] Enabled  
[] Disabled  
Watchdog counter  
[] Standard  
[] Hard Enabled  
[] Simple Counter  
Clock Type  
[] Standard (/4)  
[] PLL (/1)  
MIN  
TYP  
MAX  
[] External Drive (CLKIN)  
[] Crystal  
[] Ceramic Resonator  
NOTE:  
Non ’A’ version ROM devices of the TMS370 microcontrollers will have the  
“Low-powermodesEnabled”, “Divide-by-4Clock, andStandardWatchdog  
options. See the TMS370 Family User’s Guide (literature number SPNU127)  
or the TMS370 Family Data Manual (literature number SPNS014B).  
[] Supply Voltage MIN:  
(std range: 4.5V to 5.5V)  
MAX:  
TEMPERATURE RANGE  
PACKAGE TYPE  
[] ’L’:  
[] ’A’:  
[] ’T’:  
0° to 70°C (standard)  
–40° to 85°C  
–40° to 105°C  
[] ’N’ 28-pin PDIP  
[] “FN” 28-pin PLCC  
[] “N” 40-pin PDIP  
[] “FN” 44-pin PLCC  
[] “FN” 68-pin PLCC  
[] “NM” 64-pin PSDIP  
[] “NJ” 40-pin PSDIP (formerly known as N2)  
SYMBOLIZATION  
BUS EXPANSION  
[] TI standard symbolization  
[] YES  
[] NO  
[] TI standard w/customer part number  
[] Customer symbolization  
(per attached spec, subject to approval)  
NON-STANDARD SPECIFICATIONS:  
ALL NON-STANDARDS SPECIFICATIONS MUST BE APPROVED BY THE TI ENGINEERING STAFF: If the customer requires expedited production material  
(i.e., product which must be started in process prior to prototype approval and full production release) and non-standard spec issues are not resolved to the  
satisfaction of both the customer and TI in time for a scheduled shipment, the specification parameters in question will be processed/tested to the standard  
TI spec. Any such devices which are shipped without conformance to a mutually approved spec, will be identified by a ’P’ in the symbolization preceding the  
TI part number.  
RELEASE AUTHORIZATION:  
This document, including any referenced attachments, is and will be the controlling document for all orders placed for this TI custom device. Any changes must  
be in writing and mutually agreed to by both the customer and TI. The prototype cycletime commences when this document is signed off and the verification  
code is approved by the customer.  
1. Customer:  
Date:  
2. TI: Field Sales:  
Marketing:  
Prod. Eng.:  
Proto. Release:  
Figure 14. Sample New Code Release Form  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
Table 38 is a collection of all the peripheral file frames used in the ’CxCx (provided for a quick reference).  
Table 38. Peripheral File Frame Compilation  
System Configuration Registers  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
COLD  
START  
OSC  
POWER  
PF AUTO  
WAIT  
OSC FLT  
FLAG  
MC PIN  
WPO  
MC PIN  
DATA  
µP/µC  
MODE  
P010  
SCCR0  
AUTO  
WAIT  
DISABLE  
MEMORY  
DISABLE  
P011  
P012  
SCCR1  
SCCR2  
HALT/  
STANDBY  
PWRDWN/  
IDLE  
BUS  
STEST  
CPU  
STEST  
INT1  
NMI  
PRIVILEGE  
DISABLE  
P013  
to  
Reserved  
P016  
INT1  
FLAG  
INT1  
PIN DATA  
INT1  
POLARITY  
INT1  
PRIORITY  
INT1  
ENABLE  
P017  
INT1  
P018  
to  
P01B  
Reserved  
P01C  
BUSY  
VPPS  
W0  
EXE  
EPCTL  
P01D  
P01E  
P01F  
Reserved  
Digital Port-Control Registers  
P020  
P021  
P022  
P023  
Reserved  
APORT1  
APORT2  
ADATA  
ADIR  
Port A Control Register 2 (must be 0)  
Port A Data  
Port A Direction  
P024  
to  
Reserved  
P02B  
Port D Control Register 1  
(must be 0)  
Port D Control Register 1  
(must be 0)  
P02C  
P02D  
DPORT1  
DPORT2  
Port D Control Register 2  
Port D Control Register 2  
(must be 0)  
(must be 0)  
P02E  
P02F  
Port D Data  
Port D Data  
DDATA  
DDIR  
Port D Direction  
Port D Direction  
Timer 1 Module Register Memory Map  
Modes: Dual-Compare and Capture/Compare  
P040 Bit 15  
P041 Bit 7  
P042 Bit 15  
P043 Bit 7  
P044 Bit 15  
P045 Bit 7  
P046 Bit 15  
P047 Bit 7  
P048 Bit 7  
T1Counter MSbyte  
T1 Counter LSbyte  
Bit 8 T1CNTR  
Bit 0  
Compare Register MSbyte  
Compare Register LSbyte  
Capture/Compare Register MSbyte  
Capture/Compare Register LSbyte  
Watchdog Counter MSbyte  
Watchdog Counter LSbyte  
Watchdog Reset Key  
Bit 8 T1C  
Bit 0  
Bit 8 T1CC  
Bit 0  
Bit 8 WDCNTR  
Bit 0  
Bit 0 WDRST  
To configure pin D3 as SYSCLK, set port D control register 2 = 08h.  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
Table 38. Peripheral File Frame Compilation (Continued)  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
Mode: Dual-Compare and Capture/Compare (Continued)  
WD OVRFL  
TAP SEL  
WD INPUT  
SELECT2  
WD INPUT  
SELECT1  
WD INPUT  
SELECT0  
T1 INPUT  
SELECT2  
T1 INPUT  
SELECT1  
T1 INPUT  
SELECT0  
P049  
P04A  
T1CTL1  
T1CTL2  
WD OVRFL  
WD OVRFL  
INT ENA  
WD OVRFL  
INT FLAG  
T1 OVRFL  
INT ENA  
T1 OVRFL  
INT FLAG  
T1  
RST ENA  
SW RESET  
Mode: Dual-Compare  
T1EDGE  
INT FLAG  
T1C2  
INT FLAG  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C2  
INT ENA  
T1C1  
INT ENA  
P04B  
T1CTL3  
T1CTL4  
T1C1  
OUT ENA  
T1C2  
OUT ENA  
T1C1  
RST ENA  
T1CR  
OUT ENA  
T1EDGE  
POLARITY  
T1CR  
RST ENA  
T1EDGE  
DET ENA  
P04C T1 MODE=0  
Mode: Capture/Compare  
T1EDGE  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
INT FLAG  
T1  
T1C1  
T1C1  
RST ENA  
T1EDGE  
POLARITY  
T1EDGE  
DET ENA  
MODE = 1  
OUT ENA  
Modes: Dual-Compare and Capture/Compare  
T1EVT  
DATA IN  
T1EVT  
DATA OUT  
T1EVT  
FUNCTION  
T1EVT  
DATA DIR  
P04D  
P04E  
P04F  
T1PC1  
T1PC2  
T1PRI  
T1PWM  
DATA IN  
T1PWM  
DATA OUT  
T1PWM  
FUNCTION  
T1PWM  
DATA DIR  
T1IC/CR  
DATA IN  
T1IC/CR  
DATA OUT  
T1IC/CR  
FUNCTION  
T1IC/CR DATA  
DIR  
T1  
T1 STEST  
PRIORITY  
SCI2 Module Control Memory Map  
EVEN/ODD  
PARITY  
PARITY  
ENABLE  
ASYNC  
ENABLE  
ADDRESS/  
IDLE WUP  
P050 STOP BITS  
SCI CHAR2  
SLEEP  
SCI CHAR1  
TXENA  
SCI CHAR0  
RXENA  
SCICCR  
SCICTL  
SCI SW  
RESET  
CLOCK  
ENABLE  
P051  
TXWAKE  
BAUDF  
(MSB)  
BAUD  
MSB  
P052  
P053  
P054  
BAUDE  
BAUD6  
BAUDD  
BAUD5  
BAUDC  
BAUD4  
BAUDB  
BAUD3  
BAUDA  
BAUD2  
BAUD9  
BAUD1  
BAUD8  
BAUD7  
TXRDY  
BAUD0 (LSB) BAUD LSB  
SCI TX  
TXCTL  
TX EMPTY  
INT ENA  
RX  
ERROR  
SCI RX  
RXCTL  
P055  
RXRDY  
BRKDT  
FE  
OE  
PE  
RXWAKE  
INT ENA  
P056  
P057  
P058  
P059  
Reserved  
RXDT3  
Reserved  
TXDT3  
RXDT7  
TXDT7  
RXDT6  
TXDT6  
RXDT5  
TXDT5  
RXDT4  
TXDT4  
RXDT2  
TXDT2  
RXDT1  
TXDT1  
RXDT0  
TXDT0  
RXBUF  
TXBUF  
P05A  
to  
Reserved  
P05D  
SCITXD  
DATA IN  
SCITXD  
DATA OUT  
SCITXD  
FUNCTION  
SCITXD  
DATA DIR  
SCIRXD  
DATA IN  
SCIRXD  
DATA OUT  
SCIRXD  
FUNCTION  
SCIRXD DATA  
DIR  
P05E  
SCIPC2  
SCIPRI  
SCITX  
PRIORITY  
SCIRX  
PRIORITY  
SCI  
ESPEN  
P05F SCI STEST  
Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until a reset; this applies only to the standard  
watchdog and to simple counter. In the hard watchdog, these bits can be modified at any time; the WD INPUT SELECT2  
bits are ignored.  
49  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
Table 38. Peripheral File Frame Compilation (Continued)  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
ADC2 Module Control Registers  
CONVERT  
START  
SAMPLE  
START  
REF VOLT  
SELECT1  
REF VOLT  
SELECT0  
AD INPUT  
SELECT1  
AD INPUT  
SELECT0  
P070  
ADCTL  
AD INT  
FLAG  
P071  
AD READY  
AD INT ENA  
ADSTAT  
ADDATA  
P072  
A-to-D Conversion Data Register  
Reserved  
P073  
to  
P07C  
P07D  
P07E  
Port E Data Input Register  
Port E Input Enable Register  
ADIN  
ADENA  
AD  
PRIORITY  
P07F AD STEST  
AD ESPEN  
ADPRI  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range,V  
(see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 7 V  
CC  
Input voltage range, All pins except MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 7 V  
MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 14 V  
Input clamp current, I (V < 0 or V > V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
(V < 0 or V > V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
IK  
I
I
CC)  
Output clamp current, I  
OK  
O
O
CC  
Continuous output current per buffer, I (V = 0 to V ) (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA  
O
O
CC  
Maximum I  
current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 mA  
CC  
SS  
Maximum I current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 170 mA  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 mW  
Operating free-air temperature range, T L version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A:  
A version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C  
T version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 105°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 2. Unless otherwise noted, all voltage values are with respect to V  
.
SS  
3. Electrical characteristics are specified with all output buffers loaded with specified I current. Exceeding the specified I current in  
O
O
any buffer can affect the levels on other buffers.  
50  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
recommended operating conditions  
MIN  
4.5  
3
NOM  
MAX  
5.5  
UNIT  
V
Supply voltage (see Note 2)  
5
V
V
CC  
RAM data-retention supply voltage (see Note 4)  
All pins except MC  
5.5  
V
V
SS  
0.8  
Low-level input voltage  
V
V
IL  
MC, normal operation  
V
SS  
0.3  
All pins except MC, XTAL2/CLKIN, and  
RESET  
2
V
CC  
V
V
High-level input voltage  
IH  
XTAL2/CLKIN  
RESET  
0.8 V  
0.7 V  
V
V
CC  
CC  
CC  
CC  
EPROM programming voltage (V  
Microcomputer  
L version  
)
13  
13.2  
13.5  
0.3  
70  
PP  
MC (mode control) voltage  
V
MC  
V
SS  
0
T
A
Operating free-air temperature  
A version  
– 40  
– 40  
85  
°C  
T version  
105  
NOTES: 2. Unless otherwise noted, all voltage values are with respect to V  
.
SS  
4. RESET must be activated externally when V  
CC  
or SYSCLK is out of the recommended operating range.  
51  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
Low-level output voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
I
I
I
= 1.4 mA  
= 50 µA  
= 2 mA  
0.4  
V
OL  
OL  
OH  
OH  
0.9 V  
CC  
High-level output voltage  
Input current  
V
OH  
2.4  
0 V V 0.3 V  
10  
I
µA  
0.3 V < V 13 V  
650  
I
MC  
I
I
12 V V 13 V  
I
50  
mA  
See Note 5  
I/O pins  
0 V V V  
± 10  
µA  
mA  
µA  
I
CC  
I
I
Low-level output current  
High-level output current  
V
OL  
V
OH  
V
OH  
= 0.4 V  
1.4  
– 50  
– 2  
OL  
= 0.9 V  
= 2.4 V  
CC  
OH  
mA  
See Notes 6 and 7  
SYSCLK = 5 MHz  
20  
13  
5
36  
25  
11  
Supply current (operating mode)  
OSC POWER bit = 0 (see Note 8)  
See Notes 6 and 7  
SYSCLK = 3 MHz  
mA  
mA  
See Notes 6 and 7  
SYSCLK = 0.5 MHz  
See Notes 6 and 7  
SYSCLK = 5 MHz  
10  
6.5  
2
17  
11  
Supply current (STANDBY mode)  
OSC POWER bit = 0 (see Note 9)  
See Notes 6 and 7  
SYSCLK = 3 MHz  
I
CC  
See Notes 6 and 7  
SYSCLK = 0.5 MHz  
3.5  
8.6  
3.0  
30  
See Notes 6 and 7  
SYSCLK = 3 MHz  
4.5  
1.5  
1
Supply current (STANDBY mode)  
OSC POWER bit = 1 (see Note 10)  
mA  
See Notes 6 and 7  
SYSCLK = 0.5 MHz  
See Note 6  
XTAL2/CLKIN < 0.2 V  
Supply current (HALT mode)  
µA  
NOTES: 5. Input current I  
is a maximum of 50 mA only when you are programming EPROM.  
PP  
6. Single chip mode, ports configured as inputs or outputs with no load. All inputs 0.2 V or V  
– 0.2 V.  
CC  
7. XTAL2/CLKIN is driven with an external square wave signal with 50% duty cycle and rise and fall times less than 10 ns. Current  
can be higher with a crystal oscillator. At 5 MHz SYSCLK, this extra current = 0.01 mA x (total load capacitance + crystal capacitance  
in pF).  
8. Maximum operating current = 5.6 (SYSCLK) + 8 mA.  
9. Maximum standby current = 3 (SYSCLK) + 2 mA. (OSC POWER bit = 0).  
10. Maximum standby current = 2.24 (SYSCLK) + 1.9 mA. (OSC POWER bit = 1, only valid up to 3 MHz (SYSCLK).  
52  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
XTAL2/CLKIN  
XTAL1  
XTAL2/CLKIN  
XTAL1  
C3 (see Note B)  
C1  
C2 (see Note B)  
Crystal/Ceramic  
Resonator  
(see Note A)  
External  
Clock Signal  
(see Note B)  
NOTES: A. The crystal/ceramic resonator frequency is four times the reciprocal of the system clock period.  
B. The values of C1 and C2 are typically 15 pF and the value of C3 is typically 50 pF. See the manufacturer’s recommendations for  
ceramic resonators.  
Figure 15. Recommended Crystal/Clock Connections  
Load Voltage  
1.2 kΩ  
V
O
20 pF  
Case 1: V = V  
= 2.4 V; Load Voltage = 0 V  
= 0.4 V; Load Voltage = 2.1 V  
O
OH  
OL  
Case 2: V = V  
O
NOTE A: All measurements are made with the pin loading as shown unless otherwise noted. All measurements are made with XTAL2/CLKIN  
driven by an external square wave signal with a 50% duty cycle and rise and fall times less than 10 ns unless otherwise stated.  
Figure 16. Typical Output Load Circuit (See Note A)  
V
CC  
V
CC  
300 Ω  
30 Ω  
Pin Data  
6 kΩ  
Output  
Enable  
I/O  
INT1  
20 Ω  
20 Ω  
GND  
GND  
Figure 17. Typical Buffer Circuitry  
53  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
PARAMETER MEASUREMENT INFORMATION  
timing parameter symbology  
Timing parameter symbols have been created in accordance with JEDEC Standard 100. In order to shorten the  
symbols, some of the pin names and other related terminology have been abbreviated as follows:  
AR  
B
Array  
RXD SCIRXD  
Byte  
SC  
SYSCLK  
SCITXD  
CI  
XTAL2/CLKIN  
TXD  
Lowercase subscripts and their meanings are:  
c
d
f
cycle time (period)  
delay time  
fall time  
su  
v
setup time  
valid time  
w
pulse duration (width)  
r
rise time  
The following additional letters are used with these meanings:  
H
L
High  
Low  
Valid  
V
All timings are measured between high and low measurement points as indicated in Figure 18 and Figure 19.  
0.8 V  
V (High)  
2 V (High)  
CC  
0.8 V (Low)  
0.8 V (Low)  
Figure 18. XTAL2/CLKIN Measurement Points  
Figure 19. General Measurement Points  
54  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
external clocking requirements for divide-by-4 clock (see Note 11 and Figure 20)  
NO.  
1
PARAMETER  
Pulse duration, XTAL2/CLKIN (see Note 12)  
Rise time, XTAL2/CLKIN  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
20  
w(Cl)  
2
30  
30  
100  
20  
5
ns  
r(Cl)  
3
Fall time, XTAL2/CLKIN  
ns  
f(CI)  
4
Delay time, XTAL2/CLKIN rise to SYSCLK fall  
Crystal operating frequency  
ns  
d(CIH-SCL)  
CLKIN  
2
MHz  
MHz  
SYSCLK  
Internal system clock operating frequency  
0.5  
SYSCLK = CLKIN/4  
NOTES: 11. For V and V , refer to recommended operating conditions.  
IL IH  
12. This pulse can be either a high pulse which extends from the earliest valid high to the final valid high in an XTAL2/CLKIN cycle, or  
a low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.  
1
XTAL2/CLKIN  
2
3
4
SYSCLK  
Figure 20. External Clock Timing for Divide-by-4  
external clocking requirements for divide-by-1 clock (PLL) (see Note 11 and Figure 21)  
NO.  
1
PARAMETER  
Pulse duration, XTAL2/CLKIN (see Note 12)  
Rise time, XTAL2/CLKIN  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
20  
w(Cl)  
2
30  
30  
100  
5
ns  
r(Cl)  
3
Fall time, XTAL2/CLKIN  
ns  
f(CI)  
4
Delay time, XTAL2/CLKIN rise to SYSCLK rise  
Crystal operating frequency  
ns  
d(CIH-SCH)  
CLKIN  
2
2
MHz  
MHz  
SYSCLK  
Internal system clock operating frequency  
5
SYSCLK = CLKIN/1  
NOTES: 11. For V and V , refer to recommended operating conditions.  
IL IH  
12. This pulse can be either a high pulse which extends from the earliest valid high to the final valid high in an XTAL2/CLKIN cycle, or  
a low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.  
1
XTAL2/CLKIN  
4
2
3
SYSCLK  
Figure 21. External Clock Timing for Divide-by-1  
55  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
switching characteristics and timing requirements (see Note 13 and Figure 22)  
NO.  
PARAMETER  
MIN  
200  
200  
MAX  
2000  
500  
UNIT  
Divide-by-4  
Divide-by-1  
5
t
c
Cycle time, SYSCLK (system clock)  
ns  
6
7
t
t
Pulse duration, SYSCLK low  
Pulse duration, SYSCLK high  
0.5 t –20  
0.5 t  
c
ns  
ns  
w(SCL)  
c
0.5 t  
0.5 t + 20  
c
w(SCH)  
c
NOTE 13: t = system clock cycle time = 1/SYSCLK  
c
5
7
6
SYSCLK  
Figure 22. SYSCLK Timing  
general purpose output signal switching time requirements (see Figure 23)  
MIN NOM  
MAX  
UNIT  
t
t
Rise time  
Fall time  
30  
30  
ns  
ns  
r
f
t
r
t
f
Figure 23. Signal Switching Time  
recommended EPROM operating conditions for programming  
MIN NOM  
MAX  
6
UNIT  
V
V
V
Supply voltage  
4.75  
13  
5.5  
CC  
Supply voltage at MC pin  
13.2  
30  
13.5  
50  
5
V
PP  
I
Supply current at MC pin during programming (V  
= 13 V)  
mA  
PP  
PP  
Divide-by-4  
Divide-by-1  
0.5  
2
SYSCLK  
System clock operating frequency  
MHz  
5
recommended EPROM timing requirements for programming  
MIN NOM  
0.40 0.50  
MAX  
UNIT  
t
Pulse duration, programming signal (see Note 14)  
3
ms  
w(EPGM)  
NOTE 14: Programming pulse is active when both EXE (EPCTL.0) and VPPS (EPCTL.6) are set.  
56  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
ADC2  
The ADC2 share the V  
power bus for its analog and digital circuitry. All ADC2 specifications are given with  
CC  
respect to V unless otherwise noted.  
SS  
Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 bits (256 values)  
Monotonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yes  
Output conversion code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00h to FFh (00h for V V ; FFh for V V  
Conversion time (excluding sample time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164t  
)
I
SS  
I
ref  
c
recommended operating conditions  
MIN  
4.5  
NOM  
MAX  
UNIT  
V
Analog supply voltage  
5
5.5  
V
V
V
CC  
V
ref  
Non-V  
CC  
reference  
2.5  
V
CC  
V
+ 0.1  
CC  
Analog input for conversion  
V
SS  
V
ref  
V
ref  
must be stable, within ± 1/2 LSB of the required resolution, during the entire conversion time.  
operating characteristics over full ranges of recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
LSB  
LSB  
mA  
µA  
Absolute accuracy (see Note 15)  
Differential/integral linearity error (see Notes 15 and 16)  
V
V
= 5.5 V, V = 5.1 V  
ref  
+1.5  
±0.9  
2
CC  
= 5.5 V, V = 5.1 V  
ref  
CC  
Converting  
I
Analog supply current  
CC  
Not Converting  
5
I
I
Input current, AN0-AN3  
Input charge current  
0 V V 5.5 V  
2
µA  
I
I
1
mA  
kΩ  
ref  
SYSCLK 3 MHz  
3 MHz < SYSCLK 5 MHz  
24  
10  
Z
Source impedance V  
ref  
ref  
kΩ  
NOTES: 15. Absolute resolution = 20 mV. At V = 5 V, this is 1 LSB. As V decreases, LSB size decreases and thus absolute accuracy and  
ref ref  
differential / integral linearity errors in terms of LSBs increases.  
16. Excluding quantization error of 1/2 LSB.  
57  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
ADC2 (continued)  
The ADC2 module allows complete freedom in design of the sources for the analog inputs. The period of the  
sample time is user-defined such that high-impedance sources can be accommodated without penalty to  
low-impedance sources. The sample period begins when the SAMPLE START bit of the ADC2 control register  
(ADCTL) is set to 1. The end of the signal sample period occurs when the conversion bit (CONVERT START)  
of the ADCTL is set to 1. After a hold time, the converter resets the SAMPLE START and CONVERT START  
bits, signaling that a conversion has started and the analog signal can be removed.  
analog timing requirements  
MIN  
MAX  
UNIT  
ns  
t
t
t
Setup time, analog input to sample command  
0
su(S)  
h(AN)  
w(S)  
Hold time, analog input from start of conversion  
18t  
ns  
c
Pulse duration, sample time per kilohm of source impedance (see Note 17)  
1
µs/kΩ  
NOTE 17: The value given is valid for a signal with a source impedance > 1 k. If the source impedance is < 1 k, use a minimum sampling time  
of 1 µs.  
Analog Stable  
Analog  
In  
t
su(S)  
Sample  
Start  
t
h(AN)  
t
w(S)  
Convert  
Start  
Figure 24. Analog Timing  
Table 39 is designed to aid the user in referencing a device part number to a mechanical drawing. The table  
shows a cross-reference of the device part number to the TMS370 generic package name and the associated  
mechanical drawing by drawing number and name.  
Table 39. TMS370CxCx Family Package Type and Mechanical Cross-Reference  
PKG TYPE  
(mil pin spacing)  
PKG TYPE NO. AND  
MECHANICAL NAME  
TMS370 GENERIC NAME  
DEVICE PART NUMBERS  
TMS370C3C0AFNA  
TMS370C3C0AFNL  
TMS370C3C0AFNT  
TMS370C6C2AFNT  
FN – 28 pin  
(50–mil pin spacing)  
PLASTIC LEADED CHIP CARRIER  
(PLCC)  
FN(S-PQCC-J**) PLASTIC J-LEADED  
CHIP CARRIER  
FZ – 28 pin  
(50-mil pin spacing)  
CERAMIC LEADED CHIP CARRIER  
(CLCC)  
FZ(S-CQCC-J**) J-LEADED CERAMIC  
CHIP CARRIER  
SE370C6C2AFZT  
SE370C6C2AJDT  
JD – 28 pin  
(70-mil pin spacing)  
CERAMIC SHRINK DUAL-IN-LINE  
PACKAGE (CSDIP)  
JD(R–CDIP–T**) CERAMIC SIDE–BRAZE  
DUAL–IN–LINE PACKAGE  
TMS370C3C0ANA  
TMS370C3C0ANL  
TMS370C3C0ANT  
TMS370C6C2ANT  
N – 28 pin  
(100–mil pin spacing) (PDIP)  
PLASTIC DUAL–IN–LINE PACKAGE  
N(R–PDIP–T**) PLASTIC DUAL–IN–LINE  
PACKAGE  
58  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
JD (R-CDIP-T**)  
CERAMIC SIDE-BRAZE DUAL-IN-LINE PACKAGE  
24 PIN SHOWN  
A
PINS **  
24  
28  
40  
48  
52  
DIM  
24  
13  
1.250  
1.450  
2.050  
2.435  
2.650  
A MAX  
(31,75) (36,83) (52,07) (61,85) (67,31)  
0.590 (15,00)  
TYP  
1
12  
0.065 (1,65)  
0.045 (1,14)  
0.175 (4,45)  
0.140 (3,56)  
0.620 (15,75)  
0.590 (14,99)  
0.075 (1,91) MAX  
4 Places  
Seating Plane  
0.020 (0,51) MIN  
0.125 (3,18) MIN  
0°15°  
0.100 (2,54)  
0.021 (0,53)  
0.015 (0,38)  
0.012 (0,30)  
0.008 (0,20)  
4040087/B 04/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
59  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
N (R-PDIP-T**)  
PLASTIC DUAL-IN-LINE PACKAGE  
24 PIN SHOWN  
A
24  
13  
0.560 (14,22)  
0.520 (13,21)  
1
12  
0.060 (1,52) TYP  
0.200 (5,08) MAX  
0.020 (0,51) MIN  
0.610 (15,49)  
0.590 (14,99)  
Seating Plane  
0.100 (2,54)  
0.125 (3,18) MIN  
0.010 (0,25) NOM  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
PINS **  
M
24  
1.270  
28  
32  
40  
48  
52  
DIM  
1.450  
1.650  
2.090  
2.450  
2.650  
A MAX  
A MIN  
(32,26) (36,83) (41,91) (53,09) (62,23) (67,31)  
1.230  
1.410  
1.610  
2.040  
2.390  
2.590  
(31,24) (35,81) (40,89) (51,82) (60,71) (65,79)  
4040053/B 04/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-011  
D. Falls within JEDEC MS-015 (32 pin only)  
60  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
J-LEADED CERAMIC CHIP CARRIER  
Seating Plane  
MECHANICAL DATA  
FZ (S-CQCC-J**)  
28 LEAD SHOWN  
0.040 (1,02)  
45°  
0.180 (4,57)  
0.155 (3,94)  
0.140 (3,55)  
0.120 (3,05)  
A
B
1
4
26  
25  
5
0.050 (1,27)  
C
(at Seating  
Plane)  
A
B
0.032 (0,81)  
0.026 (0,66)  
0.020 (0,51)  
0.014 (0,36)  
19  
11  
18  
12  
0.025 (0,64) R TYP  
0.040 (1,02) MIN  
0.120 (3,05)  
0.090 (2,29)  
A
B
C
JEDEC  
NO. OF  
PINS**  
OUTLINE  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
0.485  
0.495  
0.430  
0.455  
0.410  
0.430  
MO-087AA  
MO-087AB  
MO-087AC  
MO-087AD  
28  
44  
52  
68  
(12,32)  
(12,57)  
(10,92)  
(11,56)  
(10,41)  
(10,92)  
0.685  
0.695  
0.630  
0.655  
0.610  
0.630  
(17,40)  
(17,65)  
(16,00)  
(16,64)  
(15,49)  
(16,00)  
0.785  
0.795  
0.730  
0.765  
0.680  
0.740  
(19,94)  
(20,19)  
(18,54)  
(19,43)  
(17,28)  
(18,79)  
0.985  
0.995  
0.930  
0.955  
0.910  
0.930  
(25,02)  
(25,27)  
(23,62)  
(24,26)  
(23,11)  
(23,62)  
4040219/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
61  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370CxCx  
8-BIT MICROCONTROLLER  
SPNS040B – NOVEMBER 1995 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
FN (S-PQCC-J**)  
PLASTIC J-LEADED CHIP CARRIER  
20 PIN SHOWN  
Seating Plane  
0.004 (0,10)  
0.180 (4,57) MAX  
0.120 (3,05)  
D
0.090 (2,29)  
D1  
0.020 (0,51) MIN  
3
1
19  
0.032 (0,81)  
0.026 (0,66)  
4
18  
D2/E2  
D2/E2  
E
E1  
8
14  
0.021 (0,53)  
0.013 (0,33)  
0.050 (1,27)  
9
13  
0.007 (0,18)  
M
0.008 (0,20) NOM  
D/E  
D1/E1  
D2/E2  
NO. OF  
PINS  
**  
MIN  
0.385 (9,78)  
MAX  
MIN  
MAX  
MIN  
MAX  
0.395 (10,03)  
0.350 (8,89)  
0.356 (9,04)  
0.141 (3,58)  
0.191 (4,85)  
0.291 (7,39)  
0.341 (8,66)  
0.169 (4,29)  
0.219 (5,56)  
0.319 (8,10)  
0.369 (9,37)  
20  
28  
44  
52  
68  
84  
0.485 (12,32) 0.495 (12,57) 0.450 (11,43) 0.456 (11,58)  
0.685 (17,40) 0.695 (17,65) 0.650 (16,51) 0.656 (16,66)  
0.785 (19,94) 0.795 (20,19) 0.750 (19,05) 0.756 (19,20)  
0.985 (25,02) 0.995 (25,27) 0.950 (24,13) 0.958 (24,33) 0.441 (11,20) 0.469 (11,91)  
1.185 (30,10) 1.195 (30,35) 1.150 (29,21) 1.158 (29,41) 0.541 (13,74) 0.569 (14,45)  
4040005/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-018  
62  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TMS370C3C0AFNA

暂无描述
TI

TMS370C3C0AFNL

8-Bit Microcontroller 28-PLCC
TI

TMS370C3C0AFNT

8-Bit Microcontroller 28-PLCC
TI

TMS370C3C0ANL

8-Bit Microcontroller 28-PDIP
TI

TMS370C3C0AYYZ

TMS370 MICROCONTROLLER FAMILY DATA BOOK
TI

TMS370C452A

8-BIT MICROCONTROLLER
TI

TMS370C452AFNA

8-Bit Microcontroller
ETC

TMS370C452AFNL

8-Bit Microcontroller
ETC

TMS370C452AFNT

8-Bit Microcontroller
ETC

TMS370C452ANMA

8-BIT, MROM, 5MHz, MICROCONTROLLER, PDIP64
TI

TMS370C452ANML

8-BIT, MROM, 5MHz, MICROCONTROLLER, PDIP64
TI

TMS370C452ANMT

8-BIT, MROM, 5MHz, MICROCONTROLLER, PDIP64
TI