TMS370C742A [TI]

8-BIT MICROCONTROLLER; 8位微控制器
TMS370C742A
型号: TMS370C742A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8-BIT MICROCONTROLLER
8位微控制器

微控制器
文件: 总66页 (文件大小:962K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
FN AND FZ PACKAGES  
(TOP VIEW)  
CMOS/EEPROM/EPROM Technologies on a  
Single Device  
– Mask-ROM Devices for High Volume  
Production  
– One-Time-Programmable (OTP) Devices  
for Low-Volume Production  
– Reprogrammable EPROM Devices for  
Prototyping Purposes  
6
5
4
3
2
1 44 43 42 41 40  
39  
MC  
INT1  
INT2  
INT3  
7
8
9
XTAL2/CLKIN  
XTAL1  
T1IC/CR  
T1PWM  
T1EVT  
AN7  
AN6  
AN5  
AN4  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
V
10  
11  
12  
13  
14  
15  
16  
17  
CC  
Flexible Operating Features  
V
CC3  
A7  
– Low-Power Modes: STANDBY and HALT  
– Commercial, Industrial, and Automotive  
Temperature Ranges  
A6  
V
SS  
A5  
A4  
A3  
– Clock Options:  
V
SS3  
18 19 20 21 22 23 24 25 26 27 28  
– Divide-by-1 (2 MHz–5 MHz SYSCLK)  
Phase-Locked Loop (PLL)  
– Divide-by-4 (0.5 MHz–5 MHz SYSCLK)  
JC, JD, N, AND NJ PACKAGES  
(TOP VIEW)  
– Voltage (V ) 5 V ± 10%  
CC  
Internal System Memory Configurations  
– On-Chip Program Memory Versions  
– ROM: 4K Bytes or 8K Bytes  
– EPROM: 8K Bytes  
– Data EEPROM: 256 Bytes  
– Static RAM: 256 Bytes Usable as  
Registers  
B2  
T2AEVT  
T2AIC2/PWM  
T2AIC1/CR  
RESET  
INT1  
1
2
3
4
5
6
7
8
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
B1  
B0  
SCITXD  
SCIRXD  
SCICLK  
D5  
INT2  
INT3  
MC  
XTAL2/CLKIN  
XTAL1  
T1IC/CR  
T1PWM  
T1EVT  
AN7  
V
9
CC  
A7  
A6  
Two 16-Bit General-Purpose Timers  
– Software Configurable as  
Two 16-Bit Event Counters, or  
Two 16-Bit Pulse Accumulators, or  
Three 16-Bit Input Capture Functions, or  
Four Compare Registers, or  
Two Self-Contained  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
V
SS  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D4  
AN6  
V
V
CC3  
SS3  
AN3  
AN2  
D6  
D3  
Pulse-Width-Modulation (PWM)  
Functions  
Serial Communications Interface 1 (SCI1)  
– Asynchronous and Isosynchronous  
Eight-Bit ADC1  
– Four Channels in 40-Pin Packages  
– Eight Channels in 44-Pin Packages  
Modes  
– Full Duplex, Double Buffered RX and TX  
– Two Multiprocessor Communications  
Formats  
Flexible Interrupt Handling  
TMS370 Series Compatibility  
CMOS/Package/TTL Compatible I/O Pins  
– All Peripheral Function Pins Software  
Configurable for Digital I/O  
– 40-Pin Plastic and Ceramic Dual-In-Line  
Packages/27 Bidirectional, 5 Input Pins  
– 44-Pin Plastic and Ceramic Leaded Chip  
Carrier Packages/27 Bidirectional, 9  
Input Pins  
Workstation/PC-Based Development  
System  
– C Compiler Support  
– Real-Time In-Circuit Emulation  
– C Source Debug  
– Extensive Breakpoint/Trace Capability  
– Software Performance Analysis  
– Multi-Window User Interface  
– EEPROM/EPROM Programming  
On-Chip 24-Bit Watchdog Timer  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Isosynchronous = Isochronous  
Copyright 1997, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
Pin Descriptions  
PIN  
NO.  
DESCRIPTION  
TYPE  
DIP (40) LCC (44)  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
18  
17  
16  
15  
14  
13  
11  
10  
20  
19  
18  
17  
16  
15  
13  
12  
I/O  
Port A pins are general-purpose bidirectional I/O ports.  
Port B pins are general-purpose bidirectional I/O ports.  
B0  
B1  
B2  
39  
40  
1
44  
1
2
I/O  
I/O  
D3  
D4  
D5  
D6  
D7  
21  
20  
35  
22  
19  
23  
22  
40  
24  
21  
Port D pins are general-purpose bidirectional I/O ports.  
D3 is also configurable as SYSCLK.  
AN0/E0  
AN1/E1  
AN2/E2  
AN3/E3  
AN4/E4  
AN5/E5  
AN6/E6  
AN7/E7  
23  
24  
27  
28  
25  
26  
27  
28  
30  
31  
32  
33  
Analog-to-digital converter 1 (ADC1) analog input channels or positive reference pins; any  
ADC1 channel can be programmed as general-purpose input pin (E port) if not used as an  
analog input or reference channel.  
I
V
CC3  
V
SS3  
26  
25  
11  
29  
ADC1 converter positive supply voltage and optional positive reference input pin  
ADC1 converter ground supply and low reference input pin  
INT1  
INT2  
INT3  
6
7
8
7
8
9
I
External (non-maskable or maskable) interrupt/general-purpose input pin  
External maskable interrupt input/general-purpose bidirectional pin  
External maskable interrupt input/general-purpose bidirectional pin  
I/O  
I/O  
T1IC/CR  
T1PWM  
T1EVT  
31  
30  
29  
36  
35  
34  
Timer 1 input capture/counter reset input pin/general-purpose bidirectional pin  
Timer 1 pulse-width-modulation output pin/general-purpose bidirectional pin  
Timer 1 external event input pin/general-purpose bidirectional pin  
I/O  
I/O  
I/O  
T2AIC1/CR  
T2AIC2/PWM  
T2AEVT  
4
3
2
5
4
3
Timer 2A input capture/counter reset input pin/general-purpose bidirectional pin  
Timer 2A input capture 2/PWM output pin/general-purpose bidirectional pin  
Timer 2A external event input pin/general-purpose bidirectional pin  
SCITXD  
SCIRXD  
SCICLK  
38  
37  
36  
43  
42  
41  
SCI transmit data output pin/general-purpose bidirectional pin  
SCI receive data input pin/general-purpose bidirectional pin  
SCI bidirectional serial clock pin/general-purpose bidirectional pin  
System reset bidirectional pin. As input, RESET initializes microcontroller; as open-drain  
RESET  
MC  
5
6
I/O  
I
output, RESET indicates detection of an internal fault by the watchdog or oscillator fault cir-  
cuit.  
Mode control input pin; enables the EEPROM write-protection-override (WPO) mode, also  
34  
39  
EPROM V  
.
PP  
XTAL1  
XTAL2/CLKIN  
32  
33  
37  
38  
I
O
Internal-oscillator output for crystal  
Internal-oscillator crystal input/external clock source input  
V
CC  
V
SS  
9
12  
10  
14  
Positive supply voltage  
Ground reference  
I = input, O = output  
The three-pin configuration SCI is referred to as SCI1.  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
functional block diagram  
XTAL2/  
INT1 INT2 INT3 XTAL1 CLKIN MC  
RESET  
AN0–AN7  
40-PIN DIP: AN2, AN3,  
AN6, AN7  
44-PIN PLCC:AN0–AN7  
Clock Options  
Divide-by-4 or  
Divide-by-1(PLL)  
V
V
CC3  
System  
Control  
A-to-D  
Converter 1  
Interrupts  
SS3  
(40-Pin: 4 CH)  
(44-Pin: 8 CH)  
RAM  
256 Bytes  
(Usable as Registers)  
CPU  
Serial  
Communications  
Interface 1  
SCIRXD  
SCITXD  
SCICLK  
Program Memory  
ROM: 4K or 8K Bytes  
EPROM:8K Bytes  
Data EEPROM  
0 or 256 Bytes  
T2AIC1/CR  
T2AEVT  
T2AIC2/PWM  
Timer 2A  
Timer 1  
T1IC/CR  
T1EVT  
T1PWM  
Watchdog  
V
CC  
V
SS  
Port A  
8
Port B  
3
Port D  
5
description  
The TMS370C040A, TMS370C042A, TMS370C340A, TMS370C342A, TMS370C742A, and SE370C742A  
devices are members of the TMS370 family of single-chip 8-bit microcontrollers. Unless otherwise noted, the  
term TMS370Cx4x refers to these devices. TMS370 family provides cost-effective real-time system control  
through integration of advanced peripheral function modules and various on-chip memory configurations.  
The TMS370Cx4x family is implemented using high-performance silicon-gate CMOS EPROM and EEPROM  
technology. The low-operating power, wide-operating temperature range, and noise immunity of CMOS  
technology coupled with the high performance and extensive on-chip peripheral functions make the  
TMS370Cx4x devices attractive in system designs for automotive electronics, industrial motor, computer  
peripheral control, telecommunications, and consumer applications.  
The TMS370Cx4x devices contain the following on-chip peripheral modules:  
Eight-channel (for 44 pin device) or four-channel (for 40-pin device) 8-bit analog-to-digital converter 1  
(ADC1)  
Serial communications interface 1 (SCI1)  
Two 16-bit general-purpose timers (one with an 8-bit prescaler)  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
description (continued)  
One 24-bit general-purpose watchdog timer  
Table 1 provides an overview of the various memory configurations of the TMS370Cx4x devices.  
Table 1. Memory Configurations  
PACKAGES  
PROGRAM MEMORY (BYTES)  
DATA MEMORY (BYTES)  
DEVICE  
44 PIN/PLCC/CLCC OR  
40 PIN PDIP/CDIP/PSDIP/CSDIP  
ROM  
EPROM  
RAM  
EEPROM  
FN-PLCC  
N-PDIP  
NJ-PSDIP  
TMS370C040A  
TMS370C042A  
TMS370C340A  
TMS370C342A  
TMS370C742A  
4K  
256  
256  
FN-PLCC  
N-PDIP  
8K  
4K  
8K  
256  
256  
256  
256  
256  
256  
NJ-PSDIP  
FN-PLCC  
N-PDIP  
NJ-PSDIP  
FN-PLCC  
N-PDIP  
NJ-PSDIP  
FN-PLCC  
N-PDIP  
8K  
8K  
256  
256  
NJ-PSDIP  
FZ-CLCC  
JD-CDIP  
JC-CSDIP  
SE370C742A  
The NJ designator for the 40-pin plastic shrink DIP package was known formerly as the N2. The mechanical drawing of the NJ is identical to the  
N2 package and did not need to be requalified.  
System evaluators and development tools are for use only in a prototype environment, and their reliability has not been characterized.  
The suffix letter (A) appended to the device name (shown in the first column of Table 1) indicates the  
configuration of the device. ROM and EPROM devices have different configurations as indicated in Table 2.  
ROM devices with the suffix letter A are configured through a programmable contact during manufacture.  
Table 2. Suffix Letter Configuration  
DEVICE  
WATCHDOG TIMER  
Standard  
CLOCK  
LOW-POWER MODE  
EPROM A  
Divide-by-4 (standard oscillator)  
Enabled  
Standard  
Divide-by-4 (standard oscillator)  
or Divide-by-1 (PLL)  
ROM A  
Hard  
Enabled or disabled  
Simple  
The 4K bytes and 8K bytes of mask-programmable ROM in the TMS370C040A, TMS370C042A,  
TMS370C340A and TMS370C342A are replaced in the TMS370C742 with 8K bytes of EPROM while all other  
available memory and on-chip peripherals are identical, with the exception of no data EEPROM on the  
TMS370C340A and TMS370C342A devices. The OTP (TMS370C742A) device and the reprogrammable  
device (SE370C742A) are available.  
TMS370C742A (OTP) devices are available in plastic packages. This microcontroller is effective to use for  
immediate production updates for other members of the TMS370Cx4x family or for low-volume production runs  
when the mask charge or cycle time for the low-cost mask ROM devices is not practical.  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
description (continued)  
The SE370C742A has a windowed ceramic package to allow reprogramming of the program EPROM memory  
during the development/prototyping phase of design. The SE370C742A device allows quick updates to  
breadboards and prototype systems while iterating initial designs.  
The TMS370Cx4x family provides two low-power modes (STANDBY and HALT) for applications where  
low-power consumption is critical. Both modes stop all central processing unit (CPU) activity (that is, no  
instructions are executed). In the STANDBY mode, the internal oscillator and the general-purpose timer remain  
active. In the HALT mode, all device activity is stopped. The device retains all RAM data and peripheral  
configuration bits throughout both low-power modes.  
The TMS370Cx4x features advanced register-to-register architecture that allows arithmetic and logical  
operationswithoutrequiringanaccumulator(e.g., ADDR24, R47;addthecontentsofregister24tothecontents  
of register 47 and store the result in register 47). The TMS370Cx4x family is fully instruction-set-compatible,  
allowing easy transition between members of the TMS370 8-bit microcontroller family.  
The TMS370Cx4x family offers an 8-channel ADC1 with 8-bit accuracy for the 44-pin PLCC packages and also  
offers a 4-channel ADC1 for the 40-pin DIP packages. The 33-µs conversion time at 5-MHz SYSCLK and the  
variable sample period, combined with selectable positive reference voltage sources, turn analog signals into  
digital data.  
The serial communications interface 1 (SCI1) module is a built-in serial interface that can be programmed to  
be asynchronous or isosynchronous to give two methods of serial communications. The SCI allows standard  
RS-232-C communications with other common data transmission equipment. The CPU takes no part in serial  
communications except to write data to be transmitted to a register and to read data received from a register.  
The TMS370Cx4x family provides the system designer with very economical, efficient solutions to real-time  
control applications. The TMS370 family extended development system (XDS ) and compact development  
tool (CDT ) solve the challenge of efficiently developing the software and hardware required to design the  
TMS370Cx4x into an ever-increasing number of complex applications. The application source code can be  
written in assembly and C languages, and the output code can be generated by the linker. The TMS370 family  
XDS communicates through a standard RS-232-C interface with a personal computer, allowing use of the  
personal computer editors and software utilities already familiar to the designer. The TMS370 family XDS  
emphasizes ease-of-use through extensive use of menus and screen windowing so that a system designer with  
minimal training can begin developing software. Precise real-time in-circuit emulation and extensive symbolic  
debug and analysis tools ensure efficient software and hardware implementation, as well as reduced  
time-to-market cycle.  
The TMS370Cx4x family together with the TMS370 family XDS, CDT370, starter kit, software tools, the  
SE370C742A reprogrammable devices, comprehensive product documentation, and customer support  
provide a complete solution for the needs of the system designer.  
XDS and CDT are trademarks of Texas Instruments Incorporated.  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
central processing unit (CPU)  
The CPU used on the TMS370Cx4x device is the high-performance 8-bit TMS370 CPU module. The ’x4x  
implements an efficient register-to-register architecture that eliminates the conventional accumulator  
bottleneck. The complete ’x4x instruction map is shown in Table 17 in the TMS370Cx4x instruction set overview  
section.  
The ’370Cx4x CPU architecture provides the following components:  
CPU registers:  
A stack pointer (SP) that points to the last entry in the memory stack  
A status register (ST) that monitors the operation of the instructions and contains the  
global-interrupt-enable bits  
A program counter (PC) that points to the memory location of the next instruction to be executed  
Figure 1 illustrates the CPU registers and memory blocks.  
Program Counter  
0
15  
7
0
Legend:  
Stack Pointer (SP)  
C=Carry  
N=Negative  
Status Register (ST)  
Z=Zero  
C
7
N
6
Z
5
V
4
IE2 IE1  
V=Overflow  
IE2=Level 2 interrupts Enable  
IE1=Level 1 interrupts Enable  
3
2
1
0
RAM (Includes up to 256-Byte Registers File)  
0000h  
0000h  
R0(A)  
R1(B)  
256-Byte RAM (0000h–00FFh)  
0001h  
0002h  
0003h  
00FFh  
0100h  
0FFFh  
1000h  
10FFh  
1100h  
1EFFh  
1F00h  
1FFFh  
2000h  
Reserved  
R2  
R3  
Peripheral File  
Reserved  
256-Byte Data EEPROM  
Not Available  
5FFFh  
6000h  
R127  
007Fh  
8K-Byte ROM/EPROM (6000h6FFFh)  
4K-Byte ROM (7000h7FFFh)  
6FFFh  
7000h  
7FBFh  
7FC0h  
Interrupts and Reset Vectors;  
Trap Vectors  
R255  
7FFFh  
00FFh  
Reserved means the address space is reserved for future expansion.  
Not available means the address space is not accessible.  
Figure 1. Programmer’s Model  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
central processing unit (CPU) (continued)  
A memory map that includes:  
256-byte general-purpose RAM that can be used for data memory storage, program instructions,  
general-purpose registers, or the stack  
A peripheral file that provides access to all internal peripheral modules, system-wide control functions  
and EEPROM/EPROM programming control  
256-byte EEPROM module that provides in-circuit programmability and data retention in power-off  
conditions  
4K- or 8K-byte ROM or 8K-byte EPROM program memory  
stack pointer (SP)  
The SP is an 8-bit CPU register. The stack operates as a last-in, first-out, read/write memory. The stack is used  
typically to store the return address on subroutine calls as well as the status-register contents during interrupt  
sequences.  
The SP points to the last entry or top of the stack. The SP is incremented automatically before data is pushed  
onto the stack and decremented after data is popped from the stack. The stack can be placed anywhere in the  
on-chip RAM memory.  
status register (ST)  
The ST monitors the operation of the instructions and contains the global interrupt-enable bits. The ST includes  
four status bits (condition flags) and two interrupt-enable bits:  
The four status bits indicate the outcome of the previous instruction; conditional instructions (for example,  
the conditional jump instructions) use the status bits to determine program flow.  
The two interrupt-enable bits control the two interrupt levels.  
The ST register, status-bit notation, and status-bit definitions are shown in Table 3.  
Table 3. Status Registers  
7
C
6
N
5
Z
4
V
3
2
1
0
IE2  
IE1  
Reserved  
Reserved  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
R = read, W = write, 0 = value after reset  
program counter (PC)  
The contents of the PC point to the memory location of the next instruction to be executed. The PC consists  
of two 8-bit registers in the CPU: the program counter high (PCH) and program counter low (PCL). These  
registers contain the most significant byte (MSbyte) and least significant byte (LSbyte) of a 16-bit address.  
The contents of the reset vector (7FFEh, 7FFFh) are loaded into the program counter during reset. The PCH  
(MSbyte of the PC) is loaded with the contents of memory location 7FFEh, and the PCL (LSbyte of the PC) is  
loaded with the contents of memory location 7FFFh. Figure 2 shows this operation using an example value of  
6000h as the contents of memory locations 7FFEh and 7FFFh (reset vector).  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
program counter (PC) (continued)  
Program Counter (PC)  
Memory  
0000h  
PCH  
60  
PCL  
00  
60  
00  
7FFEh  
7FFFh  
Figure 2. Program Counter After Reset  
memory map  
The TMS370Cx4x family architecture is based on the Von Neumann architecture, where the program memory  
and data memory share a common address space. All peripheral input/output is memory mapped in this same  
common address space. As shown in Figure 3, the TMS370Cx4x family provides memory-mapped RAM, ROM,  
data EEPROM, EPROM, input/output pins, peripheral functions, and system interrupt vectors.  
The peripheral file contains all input/output port control, peripheral status and control, EPROM and EEPROM  
memory programming, and system-wide control functions. The peripheral file is located between 1010h and  
107Fh and is logically divided into seven peripheral file frames of 16 bytes each. Each on-chip peripheral is  
assigned to a separate frame through which peripheral control and data information is passed.  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
memory map (continued)  
Reserved  
1000h – 100Fh  
1010h – 101Fh  
1020h – 102Fh  
1030h – 103Fh  
1040h – 104Fh  
1050h – 105Fh  
1060h – 106Fh  
1070h – 107Fh  
0000h  
System Control  
256-Byte RAM (Register File/Stack)  
Digital Port Control  
Reserved  
00FFh  
0100h  
Reserved  
Timer 1 Peripheral Control  
SCI1 Peripheral Control  
Timer 2A Peripheral Control  
ADC1 Peripheral Control  
0FFFh  
1000h  
Peripheral File  
10FFh  
1100h  
Reserved  
1EFFh  
1F00h  
Reserved  
1080h – 10FFh  
256-Byte Data EEPROM  
1FFFh  
2000h  
Vectors  
Not Available  
Trap 15-0  
7FC0h – 7FDFh  
7FE0h – 7FEBh  
7FECh – 7FEDh  
7FEEh – 7FEFh  
7FF0h – 7FF1h  
7FF2h – 7FF3h  
7FF4h – 7FF5h  
7FF6h – 7FF7h  
7FF8h – 7FF9h  
7FFAh – 7FFBh  
7FFCh – 7FFDh  
7FFEh – 7FFFh  
5FFFh  
6000h  
Reserved  
A-D Converter 1  
Timer 2A  
8K-Byte ROM or EPROM  
(0000h7FFFh)  
6FFFh  
7000h  
4K-Byte ROM  
(7000h7FFFh)  
Serial Comm I/F TX  
Serial Comm I/F RX  
Timer 1  
7FBFh  
7FC0h  
Interrupts and Reset  
Vectors; Trap Vectors  
7FFFh  
8000h  
Reserved  
Not Available  
Interrupt 3  
FFFFh  
Interrupt 2  
Interrupt 1  
Reset  
Figure 3. TMS370Cx4x Memory Map  
RAM/register file (RF)  
Locations within the RAM address space can serve as the RF, general-purpose read/write memory, program  
memory, or the stack instructions. The TMS370Cx4x devices contain 256 bytes of internal RAM memory  
mapped beginning at location 0000h (R0) and continuing through location 00FFh (R255).  
The first two registers, R0 and R1, are also called register A and B, respectively. Some instructions implicitly  
use register A or B; for example, the instruction LDSP (load SP) assumes that the value to be loaded into the  
stack pointer is contained in register B. Registers A and B are the only registers cleared on reset.  
peripheral file (PF)  
The TMS370Cx4x control registers contain all the registers necessary to operate the system and peripheral  
modules on the device. The instruction set includes some instructions that access the PF directly. These  
instructions designate the register by the number of the PF relative to 1000h, preceded by P0 for a hexadecimal  
designator or P for a decimal designator. For example, the system control register 0 (SCCR0) is located at  
address 1010h; its peripheral file hexadecimal designator is P010, and its decimal designator is P16. Table 4  
shows the TMS370Cx4x PF address map.  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
peripheral file (PF) (continued)  
Table 4. TMS370Cx4x Peripheral File Address Map  
PERIPHERAL FILE  
DESIGNATOR  
ADDRESS RANGE  
DESCRIPTION  
1000h100Fh  
1010h101Fh  
1020h102Fh  
1030h103Fh  
1040h104Fh  
1050h105Fh  
1060h106Fh  
1070h107Fh  
1080h10FFh  
P000P00F  
P010P01F  
P020P02F  
P030P03F  
P040P04F  
P050P05F  
P060P06F  
P070P07F  
P080P0FF  
Reserved for factory test  
System and EPROM/EEPROM control registers  
Digital I/O port control registers  
Reserved  
Timer 1 registers  
Serial communications interface 1 registers  
Timer 2A registers  
Analog-to-digital converter 1 registers  
Reserved  
data EEPROM  
TheTMS370Cx4xdevices, containing256bytesofdataEEPROM, havememorymappedbeginningatlocation  
1F00h and continuing through location 1FFFh. Writing to the data EEPROM module is controlled by the data  
EEPROM control register (DEECTL) and the write-protection register (WPR). Programming algorithm  
examples are available in the TMS370 Family User’s Guide (literature number SPNU127) or the TMS370  
Family Data Manual (literature number SPNS014B). The data EEPROM features include the following:  
Programming:  
Bit-, byte-, and block-write/erase modes  
Internal charge pump circuitry. No external EEPROM programming voltage supply is needed.  
Control register: Data EEPROM programming is controlled by the DEECTL located in the PF frame  
beginning at location P01A (see Table 5).  
In-circuit programming capability. There is no need to remove the device to program it.  
Write protection. Writes to the data EEPROM are disabled during the following conditions.  
Reset. All programming of the data EEPROM module is halted.  
Write protection active. There is one write-protect bit per 32-byte EEPROM block.  
Low-power mode operation  
Write protection can be overridden by applying 12 V to MC.  
Table 5. Data EEPROM and PROGRAM EPROM Control Register Memory Map  
ADDRESS  
P01A  
SYMBOL  
DEECTL  
NAME  
DATA EEPROM Control Register  
Reserved  
P01B  
P01C  
EPCTL  
Program EPROM Control Register  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
program EPROM  
The TMS370C742A device contains 8K bytes of EPROM mapped, beginning at location 6000h and continuing  
through location 7FFFh. Memory addresses 7FE0h through 7FEBh are reserved for Texas Instruments (TI ),  
and memory addresses 7FECh through 7FFFh are reserved for interrupt and reset vectors. Trap vectors, used  
with TRAP0 through TRAP15 instructions, are located between addresses 7FC0h and 7FDFh. Reading the  
program EPROM modules is identical to reading other internal memory. During programming, the EPROM is  
controlled by the EPROM control register (EPCTL). The program EPROM module features include:  
Programming  
In-circuit programming capability if V is applied to MC  
PP  
Control register: EPROM programming is controlled by the EPROM control register (EPCTL) located in  
the peripheral file (PF) frame at location P01C as shown in Table 5.  
Write protection: writes to the program EPROM are disabled under the following conditions:  
Reset: All programming to the EPROM module is halted.  
Low-power modes  
13 V not applied to MC  
program ROM  
The program ROM consists of 4K or 8K bytes of mask-programmable read-only memory. The program ROM  
is used for permanent storage of data or instructions. Memory addresses 7FE0h through 7FEBh are reserved  
for TI, and memory addresses 7FECh through 7FFFh are reserved for interrupt and reset vectors. Trap vectors,  
used with TRAP0 through TRAP15 instructions, are located between addresses 7FC0h and 7FDFh.  
Programming of the mask ROM is performed at the time of device fabrication.  
system reset  
The system-reset operation ensures an orderly start-up sequence for the TMS370Cx4x CPU-based device.  
There are up to three different actions that can cause a system reset to the device. Two of these actions are  
generated internally, while one (RESET pin) is controlled externally. These actions are as follows:  
Watchdog (WD) timer. A watchdog-generated reset occurs if an improper value is written to the WD key  
register, or if the re-initialization does not occur before the watchdog timer timeout . See the TMS370 Family  
User’s Guide (literature number SPNU127) for more information.  
Oscillator reset. Reset occurs when the oscillator operates outside of the recommended operating range.  
See the TMS370 Family User’s Guide (literature number SPNU127) for more information.  
External RESET pin. A low level signal can trigger an external reset. To ensure a reset, the external signal  
should be held low for one SYSCLK cycle. Signals of less than one SYSCLK can generate a reset. See the  
TMS370 Family User’s Guide (literature number SPNU127) for more information.  
Once a reset source is activated, the external RESET pin is driven (active) low for a minimum of eight SYSCLK  
cycles. This allows the ’x4x device to reset external system components. Additionally, if a cold start (V  
is off  
CC  
for several hundred milliseconds) condition or oscillator failure occurs or the RESET pin is held low, then the  
reset logic holds the device in a reset state for as long as these actions are active.  
After a reset, the program can check the oscillator-fault flag (OSC FLT FLAG, SCCR0.4), the cold-start flag  
(COLD START, SCCR0.7) and the watchdog reset (WD OVRFL INT FLAG, T1CTL2.5) to determine the source  
of the reset. A reset does not clear these flags. Table 6 lists the reset sources.  
TI is a trademark of Texas Instruments Incorporated.  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
system reset (continued)  
Table 6. Reset Sources  
REGISTER  
SCCR0  
ADDRESS  
1010h  
PF  
BIT NO.  
CONTROL BIT  
SOURCE OF RESET  
Cold (power-up)  
P010  
P010  
P04A  
7
4
5
COLD START  
OSC FLT FLAG  
SCCR0  
1010h  
Oscillator out of range  
Watchdog timer timeout  
T1CTL2  
104Ah  
WD OVRFL INT FLAG  
Once a reset is activated, the following sequence of events occurs:  
1. The CPU registers are initialized: ST = 00h, SP = 01h (reset state).  
2. Registers A and B are initialized to 00h (no other RAM is changed).  
3. The contents of the LSbyte of the reset vector (07FFh) are read and stored in the PCL.  
4. The contents of the MSbyte of the reset vector (07FEh) are read and stored in the PCH.  
5. Program execution begins with an opcode fetch from the address pointed to the PC.  
The reset sequence takes 20 SYSCLK cycles from the time the reset pulse is released until the first opcode  
fetch. During a reset, RAM contents (except for registers A and B) remain unchanged, and the module control  
register bits are initialized to their reset state.  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
interrupts  
The TMS370 family software-programmable interrupt structure supports flexible on-chip and external interrupt  
configurations to meet real-time interrupt-driven application requirements. The hardware interrupt structure  
incorporates two priority levels as shown in Figure 4. Interrupt level 1 has a higher priority than interrupt  
level 2. The two priority levels can be independently enabled by the global-interrupt enable bits (IE1 and IE2)  
of the status register.  
EXT INT 3  
INT 3  
EXT INT 2  
INT 2  
TIMER 2A  
TIMER 1  
Overflow  
INT3 PRI  
Overflow  
Compare1  
Ext Edge  
Compare2  
Compare1  
Ext Edge  
INT2 PRI  
EXT INT1  
CPU  
Compare2  
Input Capture 1  
Watchdog  
INT1  
Input Capture 1  
Input Capture 2  
NMI  
T2A PRI  
T1 PRI  
Priority  
Logic  
INT1 PRI  
STATUS REG  
IE1  
Level 1 INT  
Level 2 INT  
IE2  
Enable  
AD INT  
AD PRI  
SCI INT  
TX  
RX  
TXPRI  
RXPRI  
BRKDT  
TXRDY  
RXRDY  
A/D  
Figure 4. Interrupt Control  
Each system interrupt is configured independently on either the high- or low-priority chain by the application  
program during system initialization. Within each interrupt chain, the interrupt priority is fixed by the position of  
the system interrupt. However, since each system interrupt is configured selectively on either the high- or  
low-priority interrupt chain, the application program can elevate any system interrupt to the highest priority.  
Arbitration between the two priority levels is performed within the CPU. Arbitration within each of the priority  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
interrupts (continued)  
chains is performed within the peripheral modules to support interrupt expansion to future modules. Pending  
interrupts are serviced upon completion of current instruction execution, depending on their interrupt mask and  
priority conditions.  
The TMS370Cx4x has eight hardware system interrupts (plus RESET) as shown in Table 7. Each system  
interrupt has a dedicated interrupt vector located in program memory through which control is passed to the  
interrupt service routines. A system interrupt can have multiple interrupt sources (e.g., SCI RXNT has two  
interrupt sources). All of the interrupt sources are individually maskable by local interrupt-enable control bits in  
the associated peripheral file. Each interrupt source FLAG bit is individually readable for software polling or for  
determining which interrupt source generated the associated system interrupt.  
Five of the system interrupts are generated by on-chip peripheral functions, and three external interrupts are  
supported. Software configuration of the external interrupts is performed through the INT1, INT2, and INT3  
control registers in peripheral file frame 1. Each external interrupt is individually software-configurable for input  
polarity (rising or falling) for ease of system interface. External interrupt INT1 is software-configurable as either  
a maskable or non-maskable interrupt. When INT1 is configured as non-maskable, it cannot be masked by the  
individual- or global-enable mask bits. The INT1 NMI bit is protected during non-privileged operation and,  
therefore, should be configured during the initialization sequence following reset. To maximize pin flexibility,  
external interrupts INT2 and INT3 can be software-configured as general-purpose input/output pins if the  
interrupt function is not required (INT1 can be configured similarly as an input pin).  
Table 7. Hardware System Interrupts  
SYSTEM  
INTERRUPT  
VECTOR  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
External RESET  
Watchdog Overflow  
Oscillator Fault Detect  
COLD START  
WD OVRFL INT FLAG  
OSC FLT FLAG  
RESET  
7FFEh, 7FFFh  
1
External INT1  
External INT2  
External INT3  
INT1 FLAG  
INT2 FLAG  
INT3 FLAG  
INT1  
INT2  
INT3  
7FFCh, 7FFDh  
7FFAh, 7FFBh  
7FF8h, 7FF9h  
2
3
4
Timer 1 Overflow  
T1 OVRFL INT FLAG  
T1C1 INT FLAG  
T1C2 INT FLAG  
T1EDGE INT FLAG  
T1IC INT FLAG  
WD OVRFL INT FLAG  
Timer 1 Compare 1  
Timer 1 Compare 2  
Timer 1 External Edge  
Timer 1 Input Capture  
Watchdog Overflow  
§
T1INT  
7FF4h, 7FF5h  
5
SCI RX Data Register Full  
SCI RX Break Detect  
RXRDY FLAG  
BRKDT FLAG  
RXINT  
7FF2h, 7FF3h  
7FF0h, 7FF1h  
6
7
SCI TX Data Register Empty  
TXRDY FLAG  
TXINT  
T2AINT  
ADINT  
Timer 2A Overflow  
T2A OVRFL INT FLAG  
T2AC1 INT FLAG  
T2AC2 INT FLAG  
T2AEDGE INT FLAG  
T2AIC1 INT FLAG  
T2AIC2 INT FLAG  
Timer 2A Compare 1  
Timer 2A Compare 2  
Timer 2A External Edge  
Timer 2A Input Capture 1  
Timer 2A Input Capture 2  
7FEEh, 7FEFh  
7FECh, 7FEDh  
8
9
A-D Conversion Complete  
AD INT FLAG  
§
Relative priority within an interrupt level.  
Releases microcontroller from STANDBY and HALT low-power modes.  
Releases microcontroller from STANDBY low-power mode.  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
privileged operation and EEPROM write-protection override  
The TMS370Cx4x family has significant flexibility to enable the designer to software-configure the system and  
peripherals to meet the requirements of a broad variety of applications. The nonprivileged mode of operation  
ensures the integrity of the system configuration, once defined for an end application. Following a hardware  
reset, the TMS370Cx4x operates in the privileged mode, where all peripheral file registers have unrestricted  
read/write access and the application program configures the system during the initialization sequence  
following reset. As the last step of system initialization, the PRIVILEGE DISABLE bit (SCCR2.0) is set to 1,  
entering the nonprivileged mode and disabling write operations to specific configuration control bits within the  
peripheral file. The system-configuration bits listed in Table 8 are write-protected during the nonprivileged mode  
and must be configured by software prior to exiting the privileged mode.  
Table 8. Privilege Bits  
REGISTER  
CONTROL BIT  
NAME  
LOCATION  
P010.5  
P010.6  
PF AUTO WAIT  
OSC POWER  
SCCR0  
P011.2  
P011.4  
MEMORY DISABLE  
AUTOWAIT DISABLE  
SCCR1  
SCCR2  
P012.0  
P012.1  
P012.3  
P012.4  
P012.6  
P012.7  
PRIVILEGE DISABLE  
INT1 NMI  
CPU STEST  
BUS STEST  
PWRDWN/IDLE  
HALT/STANDBY  
P05F.4  
P05F.5  
P05F.6  
P05F.7  
SCI ESPEN  
SCI RX PRIORITY  
SCI TX PRIORITY  
SCI STEST  
SCIPRI  
P04F.6  
P04F.7  
T1 PRIORITY  
T1 STEST  
T1PRI  
P06F.6  
P06F.7  
T2A PRIORITY  
T2A STEST  
T2APRI  
P07F.5  
P07F.6  
P07F.7  
AD ESPEN  
AD PRIORITY  
AD STEST  
ADPRI  
The privileged bits are shown in a bold typeface in the peripheral file frames of the  
following sections.  
The WPO mode provides an external hardware method for overriding the write protection registers (WPR) of  
data EEPROM on the TMS370Cx4x. Applying a 12-V input to the MC pin after the RESET pin input goes high  
causes the device to enter WPO mode. The high voltage on the MC pin during the WPO mode is not the  
programming voltage for the data EEPROM or program EPROM. All EEPROM programming voltages are  
generated on-chip. The WPO mode provides hardware system level capability to modify the content of data  
EEPROM while the device remains in the application but only while requiring a 12-V external input on the MC  
pin (normally not available in the end application except in a service or diagnostic environment).  
low-power and IDLE modes  
The TMS370Cx4x devices have two low-power modes (STANDBY and HALT) and an IDLE mode. For  
mask-ROM devices, low-power modes can be disabled permanently through a programmable contact at the  
time the mask is manufactured.  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
low-power and IDLE modes (continued)  
The STANDBY and HALT low-power modes significantly reduce power consumption by reducing or stopping  
the activity of the various on-chip peripherals when processing is not required. Each of the low-power modes  
is entered by executing the IDLE instruction when the PWRDWN/IDLE bit in SCCR2 has been set to 1. The  
HALT/STANDBY bit in SCCR2 controls which low-power mode is entered.  
In the STANDBY mode (HALT/STANDBY = 0 ), all CPU activity and most peripheral module activity is stopped;  
however, the oscillator, internal clocks, Timer 1, and the receive start-bit-detection circuit of the SCI1 remain  
active. System processing is suspended until a qualified interrupt (hardware RESET, external interrupt on INT1,  
INT2, INT3, Timer 1 interrupt, or a low level on the receive pin of the serial communications interface 1) is  
detected.  
In the HALT mode (HALT/STANDBY=1 ), the TMS370Cx4x is placed in its lowest power-consumption mode.  
The oscillator and internal clocks are stopped, causing all internal activity to be halted. System activity is  
suspended until a qualified interrupt (hardware RESET external interrupt on INT1, INT2, INT3, or low level on  
the receive pin of the SCI1) is detected. The power-down mode selection bits are sumarized in Table 9.  
Table 9. Low-Power/Idle Control Bits  
POWER-DOWN CONTROL BITS  
MODE SELECTED  
PWRDWN/IDLE  
(SCCR2.6)  
HALT/STANDBY  
(SCCR2.7)  
1
0
1
STANDBY  
HALT  
1
0
X
IDLE  
X = don’t care  
When low-power modes are disabled through a programmable contact in the mask-ROM devices, writing to the  
SCCR2.6–7 bits is ignored. In addition, if an idle instruction is executed when low-power modes are disabled  
through a programmable contact, the device always enters the IDLE mode.  
To provide a method of always exiting low-power modes for mask-ROM devices, INT1 is automatically enabled  
as a nonmaskable interrupt (NMI) during low-power modes when the hard watchdog mode is selected. This  
means that the NMI is always generated, regardless of the interrupt enable flags.  
The following information is preserved throughout both the STANDBY and HALT modes: RAM (register file),  
CPU registers (stack pointer, program counter, and status register), I/O pin direction and output data, and status  
registers of all on-chip peripheral functions. Since all CPU-instruction processing is stopped during the  
STANDBY and HALT modes, the clocking of the WD timer is inhibited.  
clock modules  
The ’x4x family provides two clock options that are referred to as divide-by-1 (phase-locked loop) and  
divide-by-4 (standard oscillator). Both the divide-by-1 and divide-by-4 options are configurable during the  
manufacturing process of a TMS370 microcontroller. The ’x4x ROM-masked devices offer both options to meet  
system engineering requirements. Only one of the two clock options is allowed on each ROM device. The ’742A  
EPROM has only the divide-by-4.  
The divide-by-1 clock module option provides the capability for reduced electromagnetic interference (EMI) with  
no added cost.  
The divide-by-1 clock module option provides a one-to-one match of the external resonator frequency (CLKIN)  
to the internal system clock (SYSCLK) frequency. The divide-by-4 option produces a SYSCLK which is  
one-fourth of the frequency of the external resonator. Inside of the divide-by-1 module, the frequency of the  
external resonator is multiplied by four, and the clock module then divides the resulting signal by four to provide  
the four-phased internal system clock signals. The resulting SYSCLK is equal to the resonator frequency.  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
clock modules (continued)  
These are formulated as follows:  
external resonator frequency  
4
CLKIN  
4
Divide-by-4 : SYSCLK  
Divide-by-1 : SYSCLK  
external resonator frequency  
4
4
CLKIN  
The main advantage of choosing a divide-by-1 oscillator is the reduction of EMI. The harmonics of low-speed  
resonators extend through less of the emissions spectrum than the harmonics of faster resonators. The  
divide-by-1 option provides the capability of reducing the resonator speed by four times, resulting in a steeper  
decay of emissions produced by the oscillator.  
system configuration registers  
Table 10 contains system configuration and control functions and registers for controlling EEPROM  
programming. The privileged bits are shown in a bold typeface.  
Table 10. Peripheral File Frame 1: System Configuration Registers  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
COLD  
START  
OSC  
POWER  
PF AUTO  
WAIT  
OSC FLT  
FLAG  
MC PIN  
WPO  
MC PIN  
DATA  
µP/µC  
MODE  
P010  
SCCR0  
AUTOWAIT  
DISABLE  
MEMORY  
DISABLE  
P011  
P012  
SCCR1  
SCCR2  
HALT/  
STANDBY  
PWRDWN/  
IDLE  
BUS  
STEST  
CPU  
STEST  
INT1  
NMI  
PRIVILEGE  
DISABLE  
P013  
to  
Reserved  
P016  
INT1  
FLAG  
INT1  
PIN DATA  
INT1  
POLARITY  
INT1  
PRIORITY  
INT1  
ENABLE  
P017  
P018  
P019  
INT1  
INT2  
INT2  
FLAG  
INT2  
PIN DATA  
INT2  
DATA DIR  
INT2  
DATA OUT  
INT2  
POLARITY  
INT2  
PRIORITY  
INT2  
ENABLE  
INT3  
FLAG  
INT3  
PIN DATA  
INT3  
DATA DIR  
INT3  
DATA OUT  
INT3  
POLARITY  
INT3  
PRIORITY  
INT3  
ENABLE  
INT3  
P01A  
P01B  
P01C  
BUSY  
BUSY  
AP  
W1W0  
W0  
EXE  
EXE  
DEECTL  
Reserved  
VPPS  
EPCTL  
P01D  
P01E  
P01F  
Reserved  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
digital port control registers  
Peripheral file frame 2 contains the digital I/O pin configuration and control registers. Table 11 and Table 12  
detail the specific addresses, registers, and control bits within the peripheral file frame.  
Table 11. Peripheral File Frame 2: Digital Port Control Registers  
PF  
P020  
P021  
P022  
P023  
P024  
P025  
P026  
P027  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
Reserved  
BIT 2  
BIT 1  
BIT 0  
REG  
APORT1  
APORT2  
ADATA  
ADIR  
Port A Control Register 2 (must be 0)  
Port A Data  
Port A Direction  
Reserved  
BPORT1  
BPORT2  
BDATA  
BDIR  
Port B Control Register 2 (must be 0)  
Port B Data  
Port B Direction  
P028  
to  
P02B  
Reserved  
P02C  
P02D  
P02E  
P02F  
Port D Control Register 1 (must be 0)  
Port D Control Register 2 (must be 0)  
Port D Data  
DPORT1  
DPORT2  
DDATA  
DDIR  
Port D Direction  
To configure pin D3 as SYSCLK, set port D control register 2 = 08h.  
Table 12. Port Configuration Register Setup  
abcd  
00q1  
abcd  
00y0  
PORT  
PIN  
A
B
D
0 – 7  
0 – 2  
3 – 7  
Data Out q  
Data Out q  
Data Out q  
Data In y  
Data In y  
Data In y  
a = Port × Control Register 1  
b = Port × Control Register 2  
c = Data  
d = Direction  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
timer 1 module  
The programmable Timer 1 (T1) module of the TMS370Cx4x provides the designer with the enhanced timer  
resources required to perform real-time system control. The T1 module contains the general-purpose timer and  
the watchdog (WD) timer. The two independent 16-bit timers, T1 and WD, allow program selection of input clock  
sources (real-time, external event, or pulse accumulate) with multiple 16-bit registers (input capture and  
compare) for special timer function control. The T1 module includes three external device pins that can be used  
for multiple counter functions (operation-mode dependent), or used as general-purpose I/O pins. The T1  
module block diagram is shown in Figure 5.  
Edge  
Select  
16-Bit  
Capt/Comp  
T1IC/CR  
Register  
16-Bit  
Counter  
PWM  
Toggle  
MUX  
T1PWM  
16  
16-Bit  
Compare  
Register  
Interrupt  
Logic  
8-Bit  
Prescaler  
T1EVT  
Interrupt  
Logic  
16-Bit  
MUX  
Watchdog Counter  
(Aux. Timer)  
Figure 5. Timer 1 Block Diagram  
Three T1 I/O pins  
T1IC/CR: T1 input capture / counter-reset input pin, or general-purpose bidirectional I/O pin  
T1PWM: T1 pulse-width-modulation (PWM) output pin, or general-purpose bidirectional I/O pin  
T1EVT: T1 event input pin, or general-purpose bidirectional I/O pin  
Two operational modes:  
Dual-compare mode: Provides PWM signal  
Capture/compare mode: Provides input capture pin  
One 16-bit general-purpose resettable counter  
One 16-bit compare register with associated compare logic  
One 16-bit capture/compare register, which, depending on the mode of operation, operates as either a  
capture or compare register.  
One 16-bit WD counter can be used as an event counter, a pulse accumulator, or an interval timer if WD  
feature is not needed.  
Prescaler/clock sources that determine one of eight clock sources for general-purpose timer  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
timer 1 module (continued)  
Selectable edge-detection circuitry that, depending on the mode of operation, senses active transitions on  
the input capture pins (T1IC/CR)  
Interrupts that can be generated on the occurrence of:  
A capture  
A compare equal  
A counter overflow  
An external edge detection  
Sixteen T1 module control registers located in the PF frame, beginning at address P040  
The T1 module control registers are illustrated in Table 13.  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
timer 1 module (continued)  
Table 13. Timer 1 Module Registers Memory Map  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
Modes: Dual-Compare and Capture/Compare  
P040 Bit 15  
P041 Bit 7  
P042 Bit 15  
P043 Bit 7  
P044 Bit 15  
P045 Bit 7  
P046 Bit 15  
P047 Bit 7  
T1 Counter MSB  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 0  
T1CNTR  
T1C  
T1 Counter LSB  
Compare Register MSB  
Compare Register LSB  
Capture/Compare Register MSB  
Capture/Compare Register LSB  
Watchdog Counter MSB  
Watchdog Counter LSB  
Watchdog Reset Key  
T1CC  
WDCNTR  
P048  
P049  
Bit 7  
WDRST  
T1CTL1  
WD OVRFL  
TAP SEL  
WD INPUT  
SELECT2  
WD INPUT  
SELECT1  
WD INPUT  
T1INPUT  
SELECT2  
T1INPUT  
SELECT1  
T1INPUT  
SELECT0  
SELECT0  
WD OVRFL  
RST ENA  
WD OVRFL  
INT ENA  
WD OVRFL  
INT FLAG  
T1 OVRFL  
INT ENA  
T1 OVRFL  
INT FLAG  
T1 SW  
RESET  
P04A  
T1CTL2  
Mode: Dual-Compare  
T1EDGE  
INT FLAG  
T1C2  
INT FLAG  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C2  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
T1  
T1C1  
OUT ENA  
T1C2  
OUT ENA  
T1C1  
RST ENA  
T1CR  
OUT ENA  
T1EDGE  
POLARITY  
T1CR  
RST ENA  
T1EDGE  
DET ENA  
MODE = 0  
Mode: Capture/Compare  
T1EDGE  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
INT FLAG  
T1  
T1C1  
T1C1  
RST ENA  
T1EDGE  
POLARITY  
T1EDGE  
DET ENA  
MODE = 1  
OUT ENA  
Modes: Dual-Compare and Capture/Compare  
T1EVT  
DATA IN  
T1EVT  
DATA OUT  
T1EVT  
FUNCTION  
T1EVT  
DATA DIR  
P04D  
P04E  
P04F  
T1PC1  
T1PC2  
T1PRI  
T1PWM  
DATA IN  
T1PWM  
DATA OUT  
T1PWM  
FUNCTION  
T1PWM  
DATA DIR  
T1IC/CR  
DATA IN  
T1IC/CR  
DATA OUT  
T1IC/CR  
FUNCTION  
T1IC/CR  
DATA DIR  
T1  
STEST  
T1  
PRIORITY  
Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until a reset; this applies only to the standard  
watchdog and to simple counter. In the hard watchdog, these bits can be modified at any time; the WD INPUT SELECT2  
bits are ignored.  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
timer 1 module (continued)  
Figure 6 shows the T1 dual-compare mode block diagram. The annotations on the diagram identify the register  
and the bits in the peripheral frame. For example, the actual address of T1CTL2.0 is 104Ah, bit 0, in the T1CTL2  
register.  
T1CC.15-0  
16-Bit  
Capt/Comp  
Register  
T1C2 INT FLAG  
T1CTL3.6  
LSB  
Prescaler  
Clock  
Source  
MSB  
Output  
Enable  
T1CTL3.1  
T1C2 INT ENA  
T1CTL4.5  
Compare=  
T1CNTR.15-0  
T1PC2.7-4  
T1PWM  
T1C2 OUT ENA  
T1CTL4.6  
LSB  
MSB  
16-Bit  
Counter  
16  
T1C1 INT FLAG  
T1CTL3.5  
Reset  
Compare=  
T1C1 OUT ENA  
T1CTL4.3  
T1CTL3.0  
T1C1 INT ENA  
T1C1  
RST ENA  
T1C.15-0  
T1 SW  
RESET  
16-Bit  
Compare  
Register  
LSB  
T1CTL4.4  
T1CR OUT ENA  
T1CTL2.0  
MSB  
T1 OVRFL INT FLAG  
T1CTL2.3  
T1CTL2.4  
T1 OVRFL INT ENA  
T1CTL4.1  
T1CR  
RST ENA  
T1PC2.3-0  
T1IC/CR  
Edge  
Select  
T1 PRIORITY  
T1PRI.6  
T1CTL4.0  
0
1
Level 1 Int  
Level 2 Int  
T1EDGE INT FLAG  
T1CTL3.7  
T1EDGE DET ENA  
T1CTL4.2  
T1CTL3.2  
T1EDGE INT ENA  
T1EDGE POLARITY  
Figure 6. Timer 1: Dual-Compare Mode  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
timer 1 module (continued)  
Figure 7 shows the T1 capture/compare mode block diagram. The annotations on the diagram identify the  
register and the bits in the peripheral frame. For example, the actual address of T1CTL2.0 is 104Ah, bit 0, in  
the T1CTL2 register.  
T1CC.15-0  
16-Bit  
LSB  
T1C1  
OUT ENA  
Capt/Comp  
Register  
Prescale  
Clock  
Source  
MSB  
T1PC2.7-4  
T1PWM  
T1CTL4.6  
T1CNTR.15-0  
LSB  
MSB  
16-Bit  
Counter  
16  
T1 PRIORITY  
0
1
T1C1 INT FLAG  
T1CTL3.5  
T1PRI.6  
Level 1 Int  
Level 2 Int  
Compare=  
Reset  
T1CTL3.0  
T1C.15-0  
T1 SW  
RESET  
T1C1 INT ENA  
16-Bit  
LSB  
T1C1  
RST ENA  
Compare  
Register  
T1CTL2.0  
MSB  
T1 OVRFL INT FLAG  
T1CTL2.3  
T1CTL4.4  
T1CTL2.4  
T1 OVRFL INT ENA  
T1PC2.3-0  
T1IC/CR  
T1EDGE DET ENA  
T1EDGE INT FLAG  
T1CTL3.7  
Edge  
Select  
T1CTL4.0  
T1CTL3.2  
T1EDGE INT ENA  
T1CTL4.2  
T1EDGE POLARITY  
Figure 7. Timer 1: Capture/Compare Mode  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
timer 1 module (continued)  
The TMS370Cx4x device includes a 24-bit WD timer, contained in the T1 module, which can be programmed  
as an event counter, pulse accumulator, or interval timer if the WD function is not used. The WD function is to  
monitor software and hardware operation and to implement a system reset when the WD counter is not properly  
serviced (WD counter overflow or WD counter is re-initialized by an incorrect value). The WD can be configured  
as one of three mask options as follows:  
Standard WD configuration (see Figure 8) for ’C742A EPROM and mask-ROM devices:  
Watchdog mode  
Ten different WD overflow rates ranging from 6.55 ms to 3.35 s at 5-MHz SYSCLK  
AWDresetkey(WDRST)registerisusedtoclearthewatchdogcounter(WDCNTR)whenacorrect  
value is written  
Generates a system reset if an incorrect value is written to the WD reset key or if the counter  
overflows  
A WD overflow flag (WD OVRFL INT FLAG) bit that indicates whether the WD timer initiated a  
system reset  
Non-watchdog mode  
Watchdog timer can be configured as an event counter, pulse accumulator, or an interval timer  
WDCNTR.15-0  
WD OVRFL  
INT FLAG  
T1CTL2.6  
16-Bit  
Watchdog Counter  
T1CTL2.5  
Interrupt  
WD OVRFL  
INT ENA  
Reset  
Clock  
Prescaler  
T1CTL1.7  
T1CTL2.7  
WD OVRFL  
TAP SEL  
System Reset  
WD OVRFL  
RST ENA  
Watchdog Reset Key  
WDRST.7-0  
Figure 8. Standard Watchdog  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
timer 1 module (continued)  
Hard watchdog configuration (see Figure 9) for mask-ROM devices only:  
Eight different WD overflow rates ranging from 26.2 ms to 3.35 s at 5-MHz SYSCLK  
A WD reset key (WDRST) register is used to clear the watchdog counter (WDCNTR) when a correct  
value is written.  
Generates a system reset if an incorrect value is written to the WDRST or if the counter overflows  
A WD overflow flag (WD OVRFL INT FLAG) bit that indicates whether the WD timer initiated a system  
reset  
Automatic activation of the WD timer upon power-up reset  
INT1 is enabled as a nonmaskable interrupt during low power modes.  
WDCNTR.15-0  
WD OVRFL  
INT FLAG  
16-Bit  
Watchdog Counter  
T1CTL2.5  
Reset  
Clock  
Prescaler  
T1CTL1.7  
System Reset  
WD OVRFL  
TAP SEL  
Watchdog Reset Key  
WDRST.7-0  
Figure 9. Hard Watchdog  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
timer 1 module (continued)  
Simple counter configuration (see Figure 10) for mask-ROM devices only  
Simple counter can be configured as an event counter, pulse accumulator, or an internal timer.  
WDCNTR.15-0  
WD OVFL  
16-Bit  
Watchdog Counter  
T1CTL2.6  
INT FLAG  
Interrupt  
T1CTL2.5  
WD OVRFL  
INT ENA  
Reset  
Clock  
Prescaler  
T1CTL1.7  
WD OVRFL  
TAP SEL  
Watchdog Reset Key  
WDRST.7-0  
Figure 10. Simple Counter  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
timer 2A module  
The 16-bit general-purpose timer 2A (T2A) module is composed of a 16-bit resettable counter, 16-bit compare  
register with associated compare logic, 16-bit capture register, and a 16-bit register that functions as a capture  
register in one mode and as a compare register in the other mode. The T2A module adds an additional timer  
that provides an event count, input capture, and compare function. The T2A module includes three external  
device pins that can be dedicated as timer functions or used as general-purpose I/O pins. The T2A module is  
shown in Figure 11.  
Edge  
T2AIC1/CR  
Detect  
16–Bit  
Edge  
Detect  
Capt/Comp  
Register  
T2AIC2/PWM  
(Dual-Capture Mode)  
PWM  
Toggle  
T2AIC2/PWM  
16–Bit  
Capture  
Register  
INT  
Logic  
(Dual-Compare Mode)  
16  
16–Bit  
Compare  
Register  
Clock  
Select  
16–Bit  
Counter  
T2AEVT  
Figure 11. Timer 2A Module Block Diagram  
The T2A module features include the following:  
Three T2A I/O pins:  
T2AIC1/CR: T2A input-capture 1/counter-reset input pin, or general-purpose bidirectional I/O pin  
T2AIC2/PWM: T2A input-capture 2/pulse-width-modulation (PWM) output pin, or general-purpose  
bidirectional I/O pin  
T2AEVT: Timer 2A event-input pin, or general-purpose bidirectional I/O pin  
Two operational modes:  
Dual-compare mode: Provides PWM signal  
Dual-capture mode: Provides input-capture pin  
One 16-bit general-purpose resettable counter  
One 16-bit compare register with associated compare logic  
One 16-bit capture register with associated capture logic  
One 16-bit capture/compare register, which, depending on the mode of operation, operates as either a  
capture or compare register  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
timer 2A module (continued)  
T2A clock sources can be any of the following:  
System clock  
No clock (the counter is stopped)  
External clock synchronized to the system clock (event counter)  
System clock while external input is high (pulse accumulation)  
Selectable edge-detection circuitry that, depending on the mode of operation, senses active transitions on  
the input capture pins (T2AIC1/CR)  
Interrupts that can be generated on the occurrence of:  
A compare equal to dedicated-compare register  
A compare equal to capture-compare register  
A counter overflow  
An external edge 1 detection  
An external edge 2 detection  
Fourteen T2A module-control registers: Located in the PF frame beginning at address P060  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
timer 2A module (continued)  
The T2A module-control registers are shown in Table 14.  
Table 14. T2A Module Register Memory Map  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
Modes: Dual-Compare and Dual-Capture  
P060 Bit 15  
P061 Bit 7  
P062 Bit 15  
P063 Bit 7  
P064 Bit 15  
P065 Bit 7  
P066 Bit 15  
P067 Bit 7  
T2A Counter MSB  
T2A Counter LSB  
Bit 8  
T2ACNTR  
T2AC  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Compare Register MSB  
Compare Register LSB  
Capture/Compare Register MSB  
Capture/Compare Register LSB  
Capture Register 2 MSB  
Capture Register 2 LSB  
T2ACC  
T2AIC  
P068  
P069  
Reserved  
T2A OVRFL  
INT ENA  
T2A OVRFL T2A INPUT T2A INPUT  
T2A  
SW RESET  
P06A  
T2ACTL1  
INT FLAG  
SELECT1  
SELECT0  
Mode: Dual-Compare  
T2AEDGE1  
INT FLAG  
T2AC2  
INT FLAG  
T2AC1  
INT FLAG  
T2AEDGE1  
INT ENA  
T2AC2  
INT ENA  
T2AC1  
INT ENA  
P06B  
P06C  
T2ACTL2  
T2ACTL3  
T2A  
MODE = 0  
T2AC1  
OUT ENA  
T2AC1  
OUT ENA  
T2AC1  
RST ENA  
T2AEDGE1 T2AEDGE1 T2AEDGE1 T2AEDGE1  
OUT ENA  
POLARITY  
RST ENA  
DET ENA  
Mode: Dual-Capture  
T2AEDGE1  
INT FLAG  
T2AEDGE2  
INT FLAG  
T2AC1  
INT FLAG  
T2AEDGE1 T2AEDGE2  
INT ENA INT ENA  
T2AC1  
INT ENA  
P06B  
P06C  
T2ACTL2  
T2ACTL3  
T2A  
MODE = 1  
T2AC1  
RST ENA  
T2AEDGE2 T2AEDGE1 T2AEDGE2 T2AEDGE1  
POLARITY  
POLARITY  
DET ENA  
DET ENA  
Modes: Dual-Compare and Dual-Capture  
T2AEVT  
DATA IN  
T2AEVT  
DATA OUT FUNCTION  
T2AEVT  
T2AEVT  
DATA DIR  
P06D  
P06E  
P06F  
T2APC1  
T2APC2  
T2APRI  
T2AIC2/PWM T2AIC2/PWM T2AIC2/PWM T2AIC2/PWM  
DATA IN  
T2AIC1/CR T2AIC1/CR T2AIC1/CR T2AIC1/CR  
DATA IN  
DATA OUT  
FUNCTION  
DATA DIR  
DATA OUT FUNCTION  
DATA DIR  
T2A  
STEST  
T2A  
PRIORITY  
Privileged bits are shown in bold typeface.  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
timer 2A module (continued)  
The T2A dual-compare mode block diagram is illustrated in Figure 12. The annotations on the diagram identify  
the register and the bit(s) in the peripheral frame. For example, the actual address of T2ACTL2.0 is 106Bh,  
bit 0, in the T2ACTL2 register.  
T2ACC.15-0  
16-Bit  
LSB  
Capt/Comp  
Register  
MSB  
Output  
Enable  
Clock  
Source  
T2AC2 INT FLAG  
T2ACTL2.6  
T2ACTL2.1  
T2AC2 INT ENA  
T2ACTL3.5  
Compare=  
16  
T2ACNTR.15-0  
T2APC2.7-4  
T2AC2 OUT ENA  
T2ACTL3.6  
LSB  
MSB  
16-Bit  
Counter  
T2AIC2/PWM  
T2AC1 INT FLAG  
T2ACTL2.5  
T2ACTL2.0  
T2AC1 INT ENA  
Reset  
Compare=  
T2AC.15-0  
T2AC1 OUT ENA  
T2ACTL3.3  
T2A SW  
RESET  
T2AC1  
RST ENA  
T2ACTL3.4  
16-Bit  
Compare  
Register  
LSB  
T2ACTL1.0  
T2AEDGE1  
OUT ENA  
MSB  
T2A OVRFL INT FLAG  
T2ACTL1.3  
T2ACTL3.1  
T2AEDGE1  
RST ENA  
T2ACTL1.4  
T2APC2.3-0  
T2AIC1/CR  
T2A OVRFL INT ENA  
Edge 1  
Select  
T2A PRIORITY  
T2APRI.6  
T2ACTL3.0  
T2AEDGE1 DET ENA  
0
1
T2AEDGE1 INT FLAG  
T2ACTL2.7  
Level 1 Int  
Level 2 Int  
T2ACTL3.2  
T2ACTL2.2  
T2AEDGE1 POLARITY  
T2AEDGE1 INT ENA  
Figure 12. Timer 2A: Dual-Compare Mode  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
timer 2A module (continued)  
The T2A dual-capture mode block diagram is illustrated in Figure 13. The annotations on the diagram identify  
the register and the bit(s) in the peripheral frame. For example, the actual address of T2ACTL2.0 is 106Bh,  
bit 0, in the T2ACTL2 register.  
T2AIC.15–0  
T2ACC.15–0  
16-Bit  
Capture  
Register 2  
16-Bit  
Capt/Comp  
Register 1  
LSB  
LSB  
MSB  
MSB  
Clock  
Source  
T2ACNTR.15–0  
LSB  
16-Bit  
Counter  
16  
MSB  
T2A PRIORITY  
T2APRI.6  
0
1
T2AC1 INT FLAG  
T2ACTL2.5  
Level 1 Int  
Level 2 Int  
Compare =  
Reset  
T2ACTL2.0  
T2AC.15–0  
T2AC1 INT ENA  
T2A SW  
RESET  
T2A OVRFL INT FLAG  
T2ACTL1.3  
16-Bit  
Compare  
Register  
LSB  
T2AC1  
RST ENA  
MSB  
T2ACTL1.0  
T2ACTL1.4  
T2A OVRFL INT ENA  
T2ACTL3.4  
T2ACTL3.0  
T2AEDGE1 INT FLAG  
T2AEDGE1 DET ENA  
T2ACTL2.7  
T2APC2.3–0  
Edge1  
Select  
T2ACTL2.2  
T2AIC1/CR  
T2ACTL3.2  
T2AEDGE1 INT ENA  
T2AEDGE1 POLARITY  
T2ACTL3.1  
T2AEDGE2 INT FLAG  
T2ACTL2.6  
T2APC2.7–4  
T2AIC2/PWM  
Edge 2  
Select  
T2AEDGE2 DET ENA  
T2ACTL3.3  
T2ACTL2.1  
T2AEDGE2 POLARITY  
T2AEDGE2 INT ENA  
Figure 13. Timer 2A: Dual-Capture Mode  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
serial communications interface 1 (SCI1)  
The TMS370Cx4x devices include a serial communications interface 1 (SCI1) module. The SCI1 module  
supports digital communications between the TMS370 devices and other asynchronous peripherals and uses  
the standard non return-to-zero format (NRZ) format. The SCI1’s receiver and transmitter are double buffered,  
and each has its own separate enable and interrupt bits. Both can be operated independently or simultaneously  
in the full duplex mode. To ensure data integrity, the SCI1 checks received data for break detection, parity,  
overrun, and framing errors. The bit rate (baud) is programmable to over 65,000 different rates through a 16-bit  
baud-select register.  
Features of the SCI1 module include:  
Three external pins:  
SCITXD: SCI transmit-output pin or general purpose bidirectional I/O pin.  
SCIRXD: SCI receive-input pin or general purpose bidirectional I/O pin.  
SCICLK: SCI bidirectional serial-clock pin, or general-purpose bidirectional I/O pin.  
Two communications modes: asynchronous and isosynchronous  
Baud rate: 64K different programmable rates  
Asynchronous mode: 3 bps to 156K bps at 5 MHz SYSCLK  
SYSCLK  
(BAUD REG 1) 32  
Asynchronous Baud  
Isosynchronous mode: 39 bps to 2.5 Mbps at 5 MHz SYSCLK  
SYSCLK  
(BAUD REG 1)  
Isosynchronous Baud  
2
Data word format:  
One start bit  
Data word length programmable from one to eight bits  
Optional even/odd/no parity bit  
One or two stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: Idle-line and address bit  
Half or full-duplex operation  
Double-buffered receiver and transmitter operations  
Transmitter and receiver operations can be accomplished through either interrupt-driven or  
polled-algorithms with status flags:  
Transmitter: TXRDY flag (transmitter buffer register is ready to receive another character) and TX  
EMPTY flag (Transmitter shift register is empty)  
Receiver: RXRDY flag (receive buffer register ready to receive another character), BRKDT flag (break  
condition occurred), and RX ERROR monitoring four interrupt conditions  
Separate enable bits for transmitter and receiver interrupts  
NRZ (non return-to-zero) format  
Eleven SCI1 module control registers, located in control register frame beginning at address P050h  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
serial communications interface 1 (SCI1) (continued)  
Table 15 lists the SCI1 module control registers.  
Table 15. SCI1 Module Control Register Memory Map  
PF  
P050 STOP BITS  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
EVEN/ODD  
PARITY  
PARITY  
ENABLE  
ASYNC/  
ISOSYNC  
ADDRESS/  
IDLE WUP  
SCI CHAR2 SCI CHAR1 SCI CHAR0 SCICCR  
SCI SW  
RESET  
P051  
P052  
P053  
P054  
P055  
CLOCK  
BAUDC  
BAUD4  
TXWAKE  
BAUDB  
BAUD3  
SLEEP  
BAUDA  
BAUD2  
TXENA  
BAUD9  
BAUD1  
RXENA  
BAUD8  
SCICTL  
BAUDF  
(MSB)  
BAUDE  
BAUD6  
TX EMPTY  
RXRDY  
BAUDD  
BAUD5  
BAUD MSB  
BAUD LSB  
TXCTL  
BAUD0  
(LSB)  
BAUD7  
TXRDY  
SCI TX  
INT ENA  
RX  
ERROR  
SCI RX  
INT ENA  
BRKDT  
FE  
OE  
PE  
RXWAKE  
RXCTL  
P056  
P057  
P058  
Reserved  
RXDT7  
TXDT7  
RXDT6  
TXDT6  
RXDT5  
TXDT5  
RXDT4  
RXDT3  
RXDT2  
TXDT2  
RXDT1  
TXDT1  
RXDT0  
TXDT0  
RXBUF  
TXBUF  
RESERVED  
P059  
P05A  
P05B  
P05C  
TXDT4  
TXDT3  
Reserved  
SCICLK  
DATA IN  
SCICLK  
SCICLK  
SCICLK  
DATA DIR  
P05D  
P05E  
SCIPC1  
SCIPC2  
SCIPRI  
DATA OUT FUNCTION  
SCIRXD SCIRXD  
DATA OUT FUNCTION  
SCITXD  
DATA IN  
SCITXD  
DATA OUT FUNCTION  
SCITXD  
SCITXD  
DATA DIR  
SCIRXD  
DATA IN  
SCIRXD  
DATA DIR  
SCITX  
PRIORITY  
SCIRX  
PRIORITY  
SCI  
ESPEN  
P05F SCI STEST  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
serial communications interface 1 (SCI1) (continued)  
Figure 14 shows the SCI1 module block diagram.  
TXBUF.7–0  
TXWAKE  
SCICTL.3  
Frame Format and Mode  
SCI TX Interrupt  
SCITX PRIORITY  
Transmit Data  
Buffer Reg.  
PARITY  
EVEN/ODD ENABLE  
1
0
1
SCIPRI.6  
SCI TX INT ENA  
TXRDY  
TXCTL.7  
Level 1 INT  
Level 2 INT  
SCICCR.6 SCICCR.5  
WUT  
TXCTL.0  
8
TX EMPTY  
TXCTL.6  
SCIPC2.7–4  
SCITXD  
TXENA  
SCITXD  
TXSHF Reg.  
BAUD MSB. 7–0  
SCICTL.1  
Baud Rate  
MSbyte Reg.  
CLOCK  
SCIPC1.3–0  
SCICLK  
SYSCLK  
SCICTL.4  
BAUD LSB. 7–0  
Baud Rate  
LSbyte Reg.  
SCIPC2.3–0  
SCIRXD  
SCIRXD  
RXSHF Reg.  
RXWAKE  
RXCTL.1  
SCIRX PRIORITY  
SCI RX Interrupt  
RXENA  
0
1
SCIPRI.5  
SCI RX INT ENA  
RXCTL.0  
RXRDY  
RXCTL.6  
Level 1 INT  
Level 2 INT  
RX ERROR  
SCICTL.0  
8
RXCTL.4–2  
FE OE PE  
RXCTL.7  
ERR  
BRKDT  
Receive Data  
Buffer Reg.  
RXCTL.5  
RXBUF.7–0  
Figure 14. SCI1 Block Diagram  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
analog-to-digital converter 1 (ADC1) module  
The analog-to-digital converter 1 (ADC1) module is an 8-bit, successive approximation converter with internal  
sample-and-hold circuitry. The module has eight multiplexed analog input channels for the 44-pin device and  
four multiplexed analog input channels for the 40-pin device that allow the processor to convert the voltage  
levels from up to eight different sources. The ADC1 module features include the following:  
Minimum conversion time: 32.8 µs at 5-MHz SYSCLK  
Up to ten external pins:  
Four (AN2, AN3, AN6, AN7) or eight (AN0-AN7) analog input channels, any of which can be software  
configured as digital inputs (E2, E3, E6, E7) or (E0E7), respectively, if not needed as analog channels  
AN1AN7 can also be configured as positive-input voltage reference.  
V
V
: ADC1 module high-voltage reference input  
CC3  
: ADC1 module low-voltage reference input  
SS3  
The ADDATA register, which contains the digital result of the last A/D conversion  
A/D operations can be accomplished through either interrupt driven or polled algorithms.  
Six ADC1 module control registers are located in the control-register frame beginning at address 1070h.  
The ADC1 module control registers are illustrated in Table 16.  
Table 16. ADC1 Module Control Register Memory Map  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
CONVERT  
START  
SAMPLE  
START  
REF VOLT  
SELECT2  
REF VOLT  
SELECT1  
REF VOLT  
SELECT0  
AD INPUT  
SELECT2  
AD INPUT  
SELECT1  
AD INPUT  
SELECT0  
P070  
ADCTL  
AD INT  
FLAG  
AD INT  
ENA  
P071  
P072  
AD READY  
ADSTAT  
ADDATA  
A-to-D Conversion Data Register  
Reserved  
P073  
to  
P07C  
P07D  
P07E  
Port E Data Input Register  
Port E Input Enable Register  
ADIN  
ADENA  
AD  
PRIORITY  
P07F AD STEST  
AD ESPEN  
ADPRI  
Privileged bits are shown in bold typeface.  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
analog-to-digital converter 1 (ADC1) module (continued)  
The ADC1 module block diagram is illustrated in Figure 15.  
Port E Input  
Port E Data  
ENA 0  
AN 0  
ADENA.0  
SAMPLE  
START  
CONVERT  
START  
ADIN.0  
2
1
0
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
ADCTL.2–0  
ADCTL.6  
ADCTL.7  
Port E Input  
ENA 1  
Port E Data  
AN 1  
AD INPUT SELECT  
ADENA.1  
ADIN.1  
Port E Input  
ENA 2  
Port E Data  
AN 2  
ADENA.2  
ADIN.2  
Port E Input  
ENA 3  
Port E Data  
AN 3  
ADENA.3  
ADIN.3  
A/D  
Port E Input  
ENA 4  
Port E Data  
AN 4  
ADENA.4  
ADIN.4  
ADDATA.7–0  
Port E Input  
ENA 5  
Port E Data  
AN 5  
A-to-D  
Conversion  
ADENA.5  
ADIN.5  
Data Register  
Port E Input  
ENA 6  
AD READY  
ADSTAT.2  
Port E Data  
AN 6  
ADENA.6  
ADIN.6  
5
4
3
AD PRIORITY  
ADCTL.5–3  
Port E Input  
ENA 7  
Port E Data  
AN 7  
0
1
Level 1 INT  
Level 2 INT  
ADPRI.6  
REF VOLTS SELECT  
ADENA.7  
ADIN.7  
V
AD INT FLAG  
ADSTAT.1  
CC3  
V
SS3  
ADSTAT.0  
AD INT ENA  
Figure 15. ADC1 Converter Block Diagram  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
instruction set overview  
Table 17 provides an opcode-to-instruction cross-reference of all 73 instructions and 274 opcodes of the  
‘370Cx4x instruction set. The numbers at the top of this table represent the most significant nibble (MSN) of the  
opcode while the numbers at the left side of the table represent the least significant nibble (LSN). The  
instructions for these two opcode nibbles contain the mnemonic, operands, and byte/cycle particular to that  
opcode.  
For example, the opcode B5h points to the CLR A instruction. This instruction contains one byte and executes  
in eight SYSCLK cycles.  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
Table 17. TMS370 Family Opcode/Instruction Map  
MSN  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
JMP  
#ra  
2/7  
INCW  
#ra,Rd  
3/11  
MOV  
Ps,A  
2/8  
CLRC  
TST A  
1/9  
/
MOV  
A,B  
1/9  
MOV  
A,Rd  
2/7  
TRAP  
15  
1/14  
LDST  
n
2/6  
0
1
2
3
4
5
JN  
ra  
2/5  
MOV  
A,Pd  
2/8  
MOV  
B,Pd  
2/8  
MOV  
Rs,Pd  
3/10  
MOV  
Ps,B  
2/7  
MOV  
B,Rd  
2/7  
TRAP  
14  
1/14  
MOV  
#ra[SP],A  
2/7  
JZ  
ra  
2/5  
MOV  
Rs,A  
2/7  
MOV  
#n,A  
2/6  
MOV  
Rs,B  
2/7  
MOV  
Rs,Rd  
3/9  
MOV  
#n,B  
2/6  
MOV  
B,A  
1/8  
MOV  
#n,Rd  
3/8  
MOV  
Ps,Rd  
3/10  
DEC  
A
1/8  
DEC  
B
1/8  
DEC  
Rd  
2/6  
TRAP  
13  
1/14  
MOV  
A,*ra[SP]  
2/7  
JC  
ra  
2/5  
AND  
Rs,A  
2/7  
AND  
#n,A  
2/6  
AND  
Rs,B  
2/7  
AND  
Rs,Rd  
3/9  
AND  
#n,B  
2/6  
AND  
B,A  
1/8  
AND  
#n,Rd  
3/8  
AND  
A,Pd  
2/9  
AND  
B,Pd  
2/9  
AND  
#n,Pd  
3/10  
INC  
A
1/8  
INC  
B
1/8  
INC  
Rd  
2/6  
TRAP  
12  
1/14  
CMP  
*n[SP],A  
2/8  
JP  
ra  
2/5  
OR  
Rs,A  
2/7  
OR  
#n,A  
2/6  
OR  
Rs,B  
2/7  
OR  
Rs,Rd  
3/9  
OR  
#n,B  
2/6  
OR  
B,A  
1/8  
OR  
#n,Rd  
3/8  
OR  
A,Pd  
2/9  
OR  
B,Pd  
2/9  
OR  
#n,Pd  
3/10  
INV  
A
1/8  
INV  
B
1/8  
INV  
Rd  
2/6  
TRAP  
11  
1/14  
extend  
inst,2  
opcodes  
JPZ  
ra  
2/5  
XOR  
Rs,A  
2/7  
XOR  
#n,A  
2/6  
XOR  
Rs,B  
2/7  
XOR  
Rs,Rd  
3/9  
XOR  
#n,B  
2/6  
XOR  
B,A  
1/8  
XOR  
#n,Rd  
3/8  
XOR  
A,Pd  
2/9  
XOR  
B,Pd  
2/9  
XOR  
#n,Pd  
3/10  
CLR  
A
1/8  
CLR  
B
1/8  
CLR  
Rn  
2/6  
TRAP  
10  
1/14  
L
S
N
JNZ  
ra  
2/5  
BTJO  
Rs,A,ra  
3/9  
BTJO  
#n,A,ra  
3/8  
BTJO  
Rs,B,ra  
3/9  
BTJO  
Rs,Rd,ra  
4/11  
BTJO  
#n,B,ra  
3/8  
BTJO  
B,A,ra  
2/10  
BTJO  
#n,Rd,ra  
4/10  
BTJO  
A,Pd,ra  
3/11  
BTJO  
B,Pd,ra  
3/10  
BTJO  
#n,Pd,ra  
4/11  
XCHB  
A
1/10  
XCHB A /  
TST B  
1/10  
XCHB  
Rn  
2/8  
TRAP  
9
1/14  
IDLE  
1/6  
6
JNC  
ra  
2/5  
BTJZ  
Rs.,A,ra  
3/9  
BTJZ  
#n,A,ra  
3/8  
BTJZ  
Rs,B,ra  
3/9  
BTJZ  
Rs,Rd,ra  
4/11  
BTJZ  
#n,B,ra  
3/8  
BTJZ  
B,A,ra  
2/10  
BTJZ  
#n,Rd,ra  
4/10  
BTJZ  
A,Pd,ra  
3/10  
BTJZ  
B,Pd,ra  
3/10  
BTJZ  
#n,Pd,ra  
4/11  
SWAP  
A
1/11  
SWAP  
B
1/11  
SWAP  
Rn  
2/9  
TRAP  
8
1/14  
MOV  
#n,Pd  
3/10  
7
8
JV  
ra  
2/5  
ADD  
Rs,A  
2/7  
ADD  
#n,A  
2/6  
ADD  
Rs,B  
2/7  
ADD  
Rs,Rd  
3/9  
ADD  
#n,B  
2/6  
ADD  
B,A  
1/8  
ADD  
#n,Rd  
3/8  
MOVW  
#16,Rd  
4/13  
MOVW  
Rs,Rd  
3/12  
MOVW  
#16[B],Rpd  
4/15  
PUSH  
A
1/9  
PUSH  
B
1/9  
PUSH  
Rd  
2/7  
TRAP  
7
1/14  
SETC  
1/7  
JL  
ra  
2/5  
ADC  
Rs,A  
2/7  
ADC  
#n,A  
2/6  
ADC  
Rs,B  
2/7  
ADC  
Rs,Rd  
3/9  
ADC  
#n,B  
2/6  
ADC  
B,A  
1/8  
ADC  
#n,Rd  
3/8  
JMPL  
lab  
3/9  
JMPL  
*Rp  
2/8  
JMPL  
*lab[B]  
3/11  
POP  
A
1/9  
POP  
B
1/9  
POP  
Rd  
2/7  
TRAP  
6
1/14  
RTS  
9
A
B
1/9  
JLE  
ra  
2/5  
SUB  
Rs,A  
2/7  
SUB  
#n,A  
2/6  
SUB  
Rs,B  
2/7  
SUB  
Rs,Rd  
3/9  
SUB  
#n,B  
2/6  
SUB  
B,A  
1/8  
SUB  
#n,Rd  
3/8  
MOV  
& lab,A  
3/10  
MOV  
*Rp,A  
2/9  
MOV  
*lab[B],A  
3/12  
DJNZ  
A,#ra  
2/10  
DJNZ  
B,#ra  
2/10  
DJNZ  
Rd,#ra  
3/8  
TRAP  
5
1/14  
RTI  
1/12  
JHS  
ra  
2/5  
SBB  
Rs,A  
2/7  
SBB  
#n,A  
2/6  
SBB  
Rs,B  
2/7  
SBB  
Rs,Rd  
3/9  
SBB  
#n,B  
2/6  
SBB  
B,A  
1/8  
SBB  
#n,Rd  
3/8  
MOV  
A, & lab  
3/10  
MOV  
A, *Rp  
2/9  
MOV  
A,*lab[B]  
3/12  
COMPL  
A
1/8  
COMPL  
B
1/8  
COMPL  
Rd  
2/6  
TRAP  
4
1/14  
PUSH  
ST  
1/8  
All conditional jumps (opcodes 010F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ  
instructions have a relative address as the last operand.  
Table 17. TMS370 Family Opcode/Instruction Map (Continued)  
MSN  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
JNV  
ra  
2/5  
MPY  
Rs,A  
2/46  
MPY  
#n,A  
2/45  
MPY  
Rs,B  
2/46  
MPY  
Rs,Rd  
3/48  
MPY  
#n,B  
2/45  
MPY  
B,A  
1/47  
MPY  
#n,Rs  
3/47  
BR  
lab  
3/9  
BR  
*Rp  
2/8  
BR  
*lab[B]  
3/11  
RR  
A
1/8  
RR  
B
1/8  
RR  
Rd  
2/6  
TRAP  
3
1/14  
POP  
ST  
1/8  
C
D
E
F
JGE  
ra  
2/5  
CMP  
Rs,A  
2/7  
CMP  
#n,A  
2/6  
CMP  
Rs,B  
2/7  
CMP  
Rs,Rd  
3/9  
CMP  
#n,B  
2/6  
CMP  
B,A  
1/8  
CMP  
#n,Rd  
3/8  
CMP  
& lab,A  
3/11  
CMP  
*Rp,A  
2/10  
CMP  
*lab[B],A  
3/13  
RRC  
A
1/8  
RRC  
B
1/8  
RRC  
Rd  
2/6  
TRAP  
2
1/14  
LDSP  
L
S
N
1/7  
JG  
ra  
2/5  
DAC  
Rs,A  
2/9  
DAC  
#n,A  
2/8  
DAC  
Rs,B  
2/9  
DAC  
Rs,Rd  
3/11  
DAC  
#n,B  
2/8  
DAC  
B,A  
1/10  
DAC  
#n,Rd  
3/10  
CALL  
lab  
3/13  
CALL  
*Rp  
2/12  
CALL  
*lab[B]  
3/15  
RL  
A
1/8  
RL  
B
1/8  
RL  
Rd  
2/6  
TRAP  
1
1/14  
STSP  
1/8  
JLO  
ra  
2/5  
DSB  
Rs,A  
2/9  
DSB  
#n,A  
2/8  
DSB  
Rs,B  
2/9  
DSB  
Rs,Rd  
3/11  
DSB  
#n,B  
2/8  
DSB  
B,A  
1/10  
DSB  
#n,Rd  
3/10  
CALLR  
lab  
3/15  
CALLR  
*Rp  
2/14  
CALLR  
*lab[B]  
3/17  
RLC  
A
1/8  
RLC  
B
1/8  
RLC  
Rd  
2/6  
TRAP  
0
1/14  
NOP  
1/7  
MOVW  
*n[Rn]  
4/15  
DIV  
Rn.A  
3/14-63  
Second byte of two-byte instructions (F4xx):  
F4  
F4  
F4  
F4  
F4  
F4  
F4  
F4  
8
9
JMPL  
*n[Rn]  
4/16  
Legend:  
MOV  
*n[Rn],A  
4/17  
A
B
C
D
E
F
*
&
#
=
=
=
Indirect addressing operand prefix  
Direct addressing operand prefix  
immediate operand  
MOV  
A,*n[Rn]  
4/16  
#16 = immediate 16-bit number  
lab  
n
Pd  
Pn  
Ps  
ra  
Rd  
Rn  
Rp  
=
=
=
=
=
=
=
=
=
16-label  
immediate 8-bit number  
Peripheral register containing destination type  
Peripheral register  
Peripheral register containing source byte  
Relative address  
Register containing destination type  
Register file  
Register pair  
BR  
*n[Rn]  
4/16  
CMP  
*n[Rn],A  
4/18  
CALL  
*n[Rn]  
4/20  
Rpd= Destination register pair  
Rps = Source Register pair  
Rs  
= Register containing source byte  
CALLR  
*n[Rn]  
4/22  
All conditional jumps (opcodes 010F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ  
instructions have a relative address as the last operand.  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
development system support  
The TMS370 family development support tools include an assembler, a C compiler, a linker, an in-circuit  
emulator (XDS/22), compact development tool (CDT) and an EEPROM/UVEPROM programmer.  
Assembler/linker (Part No. TMDS3740850-02 for PC)  
— Includes extensive macro capability  
— Provides high-speed operation  
— Offers format conversion utilities available for popular formats  
ANSI C compiler (Part No. TMDS3740855-02 for PC, Part No. TMDS3740555-09 for HP700 , Sun-3  
or Sun-4 )  
— Generates assembly code of the TMS370 that can be inspected easily  
— Improves code execution speed and reduces code size with optional optimizer pass  
— Enables the user to directly reference the TMS370’s port registers by using a naming convention  
— Provides flexibility in specifying the storage for data objects  
— Interfaces C functions and assembly functions easily  
— Includes assembler and linker  
CDT370 (compact development tool) real-time in-circuit emulation  
Base (Part Number EDSCDT370 – for PC, requires cable)  
Cable for 44-pin PLCC (Part No. EDSTRG44PLCC)  
Cable for 40-pin DIP (Part No. EDSTRG40DIL)  
Cable for 40-pin SDIP (Part No. EDSTRG40SDIL)  
Provides EEPROM and EPROM programming support  
Allows inspection and modification of memory locations  
Allows uploading anddownloading of program and data memory  
Provides capability to execute programs and software routines  
Includes 1024-sample trace buffer  
Includes single-step executable instructions  
Allows uses of software breakpoints to halt program execution at selected address  
XDS/22 (extended development support) in-circuit emulator  
— Base (Part No. TMDS3762210 For PC, requires cable)  
– Cable for 44-pin PLCC, 40-pin DIP, or shrink DIP (Part No. TMDS3788844)  
— Contains all the features of the CDT370 described above but does not have the capability to program  
the data EEPROM and program EPROM  
— Contains sophisticated breakpoint trace and timing hardware that provides up to 2047 qualified trace  
samples with symbolic disassembly  
— Allows breakpoints to be qualified by address and/or data on any type of memory acquisition. Up to four  
levels of events can be combined to cause a breakpoint.  
HP700 is a trademark of Hewlett-Packard Company.  
Sun-3 and Sun-4 are trademarks of Sun Microsystems, Inc.  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
development system support (continued)  
— Provides timers for analyzing total and average time in routines  
— Contains an eight-line logic probe for adding external signal visibility to the breakpoint qualifier and  
to the trace display  
Microcontroller programmer  
— Base (Part No. TMDS3760500A – For PC, requires programming head)  
– Single unit head for 44-pin PLCC (Part No. TMDS3780510A)  
– Single unit head for 40-pin DIP or shrink DIP (Part No. TMDS3780511A)  
— PC-based, window/function-key oriented user interface for ease of use and a rapid learning  
environment  
Starter kit (Part No. TMDS37000 – For PC)  
Includes TMS370 Assembler diskette and documentation  
Includes TMS370 Simulator  
Includes programming adapter board and programming software  
Does not include – (to be supplied by the user):  
– + 5 V power supply  
ZIF sockets  
9-pin RS-232 cable  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
device numbering conventions  
Figure 16 illustrates the numbering and symbol nomenclature for the TMS370Cx4x family.  
TMS 370 C  
3
4
0
A FN L  
Prefix: TMS = Standard prefix for fully qualified devices  
SE = System evaluator (window EPROM) that is used for  
prototyping purpose.  
Family: 370 = TMS370 8-Bit Microcontroller Family  
Technology:  
C = CMOS  
Program Memory Types:  
0 = Mask ROM  
3 = Mask ROM, No Data EEPROM  
7 = EPROM  
Device Type:  
4 = x4x devices containing the following modules:  
– Timer 1  
– Timer 2A  
– Serial Communications Interface 1  
– Analog-to-Digital Converter 1  
Memory Size:  
0 = 4K bytes  
2 = 8K bytes  
Temperature Ranges:  
A = 40°C to  
L = 0°C to  
85°C  
70°C  
T = 40°C to 105°C  
Packages:  
FN = Plastic Leaded Chip Carrier  
FZ = Ceramic Leaded Chip Carrier  
JC = Ceramic Shrink Dual-In-Line  
JD = Ceramic Dual-In-Line  
N = Plastic Dual-In-Line  
NJ = Plastic Shrink Dual-In-Line  
ROM and EPROM Option:  
A = For ROM device, the watchdog timer can be configured  
as one of the three different mask options:  
– A standard watchdog  
– A hard watchdog  
– A simple watchdog  
The clock can be either:  
– Divide-by-4 clock  
– Divide-by-1 (PLL) clock  
The low-power modes can be either:  
– Enabled  
– Disabled  
A = For EPROM device, a standard watchdog, a divide-by-4  
clock, and low-power modes are enabled  
Figure 16. TMS370Cx4x Family Nomenclature  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
device part numbers  
Table 18 lists all the ‘x4x devices available at present. The device part-number nomenclature is designed to  
assist ordering. Upon ordering, the customer must specify not only the device part number, but also the clock  
and watchdog timer options desired. Each device can have only one of the possible three watchdog timer  
options and one of the two clock options. The options to be specified pertain solely to orders involving ROM  
devices.  
Table 18. Device Part Numbers  
DEVICE PART NUMBERS  
FOR 44 PINS (LCC)  
DEVICE PART NUMBERS  
FOR 40 PINS (DIP)  
DEVICE PART NUMBERS  
FOR 40 PINS (SDIP)  
TMS370C040ANJA  
TMS370C040AFNA  
TMS370C040AFNL  
TMS370C040AFNT  
TMS370C040ANA  
TMS370C040ANL  
TMS370C040ANT  
TMS370C040ANJL  
TMS370C040ANJT  
TMS370C042AFNA  
TMS370C042AFNL  
TMS370C042AFNT  
TMS370C042ANA  
TMS370C042ANL  
TMS370C042ANT  
TMS370C042ANJA  
TMS370C042ANJL  
TMS370C042ANJT  
TMS370C340AFNA  
TMS370C340AFNL  
TMS370C340AFNT  
TMS370C340ANA  
TMS370C340ANL  
TMS370C340ANT  
TMS370C340ANJA  
TMS370C340ANJL  
TMS370C340ANJT  
TMS370C342AFNA  
TMS370C342AFNL  
TMS370C342AFNT  
TMS370C342ANA  
TMS370C342ANL  
TMS370C342ANT  
TMS370C342ANJA  
TMS370C342ANJL  
TMS370C342ANJT  
TMS370C742AFNT  
TMS370C742ANT  
TMS370C742ANJT  
SE370C742AJCT  
SE370C742AFZT  
SE370C742AJDT  
The NJ designator for the 40-pin plastic shrink DIP package was known formerly as the N2. The mechanical drawing of the NJ is identical to the  
N2 package and did not need to be requalified.  
System evaluators and development tools are for use only in a prototype environment, and their reliability has not been characterized.  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
new code release form  
Figure 17 shows a sample of the new code release form.  
NEW CODE RELEASE FORM  
TEXAS INSTRUMENTS  
DATE:  
TMS370 MICROCONTROLLER PRODUCTS  
To release a new customer algorithm to TI incorporated into a TMS370 family microcontroller, complete this form and submit with the following information:  
1. A ROM description in object form on Floppy Disk, Modem XFR, or EPROM (Verification file will be returned via same media)  
2. An attached specification if not using TI standard specification as incorporated in TI’s applicable device data book.  
Company Name:  
Street Address:  
Street Address:  
City:  
Contact Mr./Ms.:  
Phone: (  
)
Ext.:  
State  
Zip  
Customer Purchase Order Number:  
Customer Print Number *Yes:  
No:  
*If Yes: Customermust provide ”print” to TI w/NCRF for approvalbefore ROM  
code processing starts.  
#
Customer Part Number:  
Customer Application:  
(Std. spec to be followed)  
TMS370 Device:  
TI Customer ROM Number:  
(provided by Texas Instruments)  
CONTACT OPTIONS FOR THE ’A’ VERSION TMS370 MICROCONTROLLERS  
OSCILLATOR FREQUENCY  
Low Power Modes  
[] Enabled  
[] Disabled  
Watchdog counter  
[] Standard  
[] Hard Enabled  
[] Simple Counter  
Clock Type  
[] Standard (/4)  
[] PLL (/1)  
MIN  
TYP  
MAX  
[] External Drive (CLKIN)  
[] Crystal  
[] Ceramic Resonator  
NOTE:  
Non ’A’ version ROM devices of the TMS370 microcontrollers will have the  
“Low-powermodesEnabled”, “Divide-by-4Clock, andStandardWatchdog  
options. See the TMS370 Family User’s Guide (literature number SPNU127)  
or the TMS370 Family Data Manual (literature number SPNS014B).  
[] Supply Voltage MIN:  
(std range: 4.5V to 5.5V)  
MAX:  
TEMPERATURE RANGE  
PACKAGE TYPE  
[] ’L’:  
[] ’A’:  
[] ’T’:  
0° to 70°C (standard)  
–40° to 85°C  
–40° to 105°C  
[] ’N’ 28-pin PDIP  
[] “FN” 28-pin PLCC  
[] “N” 40-pin PDIP  
[] “FN” 44-pin PLCC  
[] “FN” 68-pin PLCC  
[] “NM” 64-pin PSDIP  
[] “NJ” 40-pin PSDIP (formerly known as N2)  
SYMBOLIZATION  
BUS EXPANSION  
[] TI standard symbolization  
[] YES  
[] NO  
[] TI standard w/customer part number  
[] Customer symbolization  
(per attached spec, subject to approval)  
NON-STANDARD SPECIFICATIONS:  
ALL NON-STANDARDS SPECIFICATIONS MUST BE APPROVED BY THE TI ENGINEERING STAFF: If the customer requires expedited production material  
(i.e., product which must be started in process prior to prototype approval and full production release) and non-standard spec issues are not resolved to the  
satisfaction of both the customer and TI in time for a scheduled shipment, the specification parameters in question will be processed/tested to the standard  
TI spec. Any such devices which are shipped without conformance to a mutually approved spec, will be identified by a ’P’ in the symbolization preceding the  
TI part number.  
RELEASE AUTHORIZATION:  
This document, including any referenced attachments, is and will be the controlling document for all orders placed for this TI custom device. Any changes must  
be in writing and mutually agreed to by both the customer and TI. The prototype cycletime commences when this document is signed off and the verification  
code is approved by the customer.  
1. Customer:  
Date:  
2. TI: Field Sales:  
Marketing:  
Prod. Eng.:  
Proto. Release:  
Figure 17. Sample New Code Release Form  
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
Table 19 is a collection of all the peripheral file frames using the ’Cx4x (provided for a quick reference).  
Table 19. Peripheral File Frame Compilation  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
SYSTEM CONFIGURATION REGISTERS  
COLD  
START  
OSC  
POWER  
PF AUTO  
WAIT  
OSC FLT  
FLAG  
MC PIN  
WPO  
MC PIN  
DATA  
µP/µC  
MODE  
P010  
P011  
P012  
SCCR0  
SCCR1  
SCCR2  
AUTOWAIT  
DISABLE  
MEMORY  
DISABLE  
HALT/  
STANDBY  
PWRDWN/  
IDLE  
BUS  
STEST  
CPU  
STEST  
INT1  
NMI  
PRIVILEGE  
DISABLE  
P013  
to  
Reserved  
P016  
INT1  
FLAG  
INT1  
PIN DATA  
INT1  
POLARITY  
INT1  
PRIORITY  
INT1  
ENABLE  
P017  
P018  
P019  
INT1  
INT2  
INT2  
FLAG  
INT2  
PIN DATA  
INT2  
DATA DIR  
INT2  
DATA OUT  
INT2  
POLARITY  
INT2  
PRIORITY  
INT2  
ENABLE  
INT3  
FLAG  
INT3  
PIN DATA  
INT3  
DATA DIR  
INT3  
DATA OUT  
INT3  
POLARITY  
INT3  
PRIORITY  
INT3  
ENABLE  
INT3  
P01A  
P01B  
P01C  
BUSY  
BUSY  
AP  
W1W0  
W0  
EXE  
EXE  
DEECTL  
Reserved  
VPPS  
EPCTL  
P01D  
to  
Reserved  
P01F  
DIGITAL PORT CONTROL REGISTERS  
Reserved  
P020  
P021  
P022  
P023  
P024  
P025  
P026  
P027  
APORT1  
APORT2  
ADATA  
ADIR  
Port A Control Register 2 (must be 0)  
Port A Data  
Port A Direction  
Reserved  
BPORT1  
BPORT2  
BDATA  
BDIR  
Port B Control Register 2 (must be 0)  
Port B Data  
Port B Direction  
P028  
to  
Reserved  
P02B  
P02C  
P02D  
P02E  
P02F  
Port D Control Register 1 (must be 0)  
Port D Control Register 2 (must be 0)  
Port D Data  
DPORT1  
DPORT2  
DDATA  
DDIR  
Port D Direction  
TIMER 1 MODULE REGISTER  
Modes: Dual-Compare and Capture/Compare  
P040 Bit 15  
P041 Bit 7  
P042 Bit 15  
P043 Bit 7  
T1 Counter MSbyte  
T1 Counter LSbyte  
Bit 8 T1CNTR  
Bit 0  
Compare-Register MSbyte  
Compare-Register LSbyte  
Bit 8 T1C  
Bit 0  
To configure pin D3 as CLKOUT, set port D control register 2 = 08h.  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
Table 19. Peripheral File Frame Compilation (Continued)  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
TIMER 1 MODULE REGISTER (CONTINUED)  
Capture/Compare-Register MSbyte  
Capture/Compare-Register LSbyte  
Watchdog-Counter MSbyte  
P044 Bit 15  
P045 Bit 7  
P046 Bit 15  
P047 Bit 7  
P048 Bit 7  
Bit 8 T1CC  
Bit 0  
Bit 8 WDCNTR  
Bit 0  
Watchdog-Counter LSbyte  
Watchdog-Reset Key  
Bit 0 WDRST  
WD  
INPUT  
SELECT2  
WD  
INPUT  
SELECT1  
WD  
INPUT  
SELECT0  
T1  
INPUT  
SELECT2  
T1  
INPUT  
SELECT1  
WD OVRFL  
TAP SEL  
T1 INPUT  
SELECT0  
P049  
P04A  
T1CTL1  
T1CTL2  
WD OVRFL  
WD OVRFL  
INT ENA  
WD OVRFL  
INT FLAG  
T1 OVRFL  
INT ENA  
T1 OVRFL  
INT FLAG  
T1 SW  
RESET  
RST ENA  
Mode: Dual-Compare  
T1EDGE  
INT FLAG  
T1C2  
INT FLAG  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C2  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
T1  
T1C1  
OUT ENA  
T1C2  
OUT ENA  
T1C1  
RST ENA  
T1CR  
OUT ENA  
T1EDGE  
POLARITY  
T1CR  
RST ENA  
T1EDGE  
DET ENA  
MODE = 0  
Mode: Capture/Compare  
T1EDGE  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
INT FLAG  
T1  
T1C1  
T1C1  
RST ENA  
T1EDGE  
POLARITY  
T1EDGE  
DET ENA  
MODE = 1  
OUT ENA  
Modes: Dual-Compare and Capture/Compare  
T1EVT  
DATA IN  
T1EVT  
DATA OUT  
T1EVT  
FUNCTION  
T1EVT DATA  
DIR  
P04D  
P04E  
P04F  
T1PC1  
T1PC2  
T1PRI  
T1PWM  
DATA IN  
T1PWM  
DATA OUT  
T1PWM  
FUNCTION  
T1PWM  
DATA DIR  
T1IC/CR  
DATA IN  
T1IC/CR  
DATA OUT  
T1IC/CR  
FUNCTION  
T1IC/CR DATA  
DIR  
T1  
T1 STEST  
PRIORITY  
SCI1 MODULE CONTROL REGISTER  
EVEN/ODD  
PARITY  
PARITY  
ENABLE  
ASYNC/  
ISOSYNC  
ADDRESS/  
IDLE WUP  
P050 STOP BITS  
SCI CHAR2  
SLEEP  
BAUDA  
BAUD2  
SCI CHAR1  
TXENA  
BAUD9  
BAUD1  
SCI CHAR0  
RXENA  
SCICCR  
SCICTL  
SCI SW RE-  
SET  
P051  
P052  
P053  
P054  
P055  
CLOCK  
BAUDC  
BAUD4  
TXWAKE  
BAUDB  
BAUD3  
BAUDF  
(MSB)  
BAUD  
MSB  
BAUDE  
BAUD6  
TX EMPTY  
RXRDY  
BAUDD  
BAUD5  
BAUD8  
BAUD0  
(LSB)  
BAUD  
LSB  
BAUD7  
TXRDY  
SCI TX  
INT ENA  
TXCTL  
RXCTL  
RX  
ERROR  
SCI RX  
INT ENA  
BRKDT  
FE  
OE  
PE  
RXWAKE  
P056  
P057  
P058  
P059  
Reserved  
RXDT7  
TXDT7  
RXDT6  
TXDT6  
RXDT5  
TXDT5  
RXDT4  
TXDT4  
RXDT3  
RXDT2  
TXDT2  
RXDT1  
TXDT1  
RXDT0  
TXDT0  
RXBUF  
TXBUF  
Reserved  
TXDT3  
Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until after a full power-down cycle has been completed.  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
Table 19. Peripheral File Frame Compilation (Continued)  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
SCI1 MODULE CONTROL REGISTER (CONTINUED)  
P05A  
P05B  
P05C  
Reserved  
SCICLK  
DATA IN  
SCICLK  
DATA OUT  
SCICLK  
FUNCTION  
SCICLK  
DATA DIR  
P05D  
P05E  
P05F  
SCIPC1  
SCIPC2  
SCIPRI  
SCITXD  
DATA IN  
SCITXD  
DATA OUT  
SCITXD  
FUNCTION  
SCITXD  
DATA DIR  
SCIRXD  
DATA IN  
SCIRXD  
DATA OUT  
SCIRXD  
FUNCTION  
SCIRXD  
DATA DIR  
SCITX  
PRIORITY  
SCIRX  
PRIORITY  
SCI  
ESPEN  
SCI STEST  
T2A MODULE REGISTER  
Modes: Dual-Capture and Dual-Compare  
P060 Bit 15  
P061 Bit 7  
P062 Bit 15  
P063 Bit 7  
P064 Bit 15  
P065 Bit 7  
P066 Bit 15  
P067 Bit 7  
T2A Counter MSbyte  
T2A Counter LSbyte  
Bit 8  
T2ACNTR  
T2AC  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Compare Register MSbyte  
Compare Register LSbyte  
Capture/Compare Register MSbyte  
Capture/Compare Register LSbyte  
Capture Register 2 MSbyte  
Capture Register 2 LSbyte  
T2ACC  
T2AIC  
P068  
P069  
Reserved  
T2A  
INPUT  
SELECT1  
T2A OVRFL-  
INT ENA  
T2A OVRFL  
INT FLAG  
T2A INPUT  
SELECT0  
T2A SW  
RESET  
P06A  
T2ACTL1  
Mode: Dual-Compare  
T2AEDGE1  
INT FLAG  
T2AC2  
INT FLAG  
T2AC1  
INT FLAG  
T2AEDGE1  
INT ENA  
T2AC2  
INT ENA  
T2AC1  
INT ENA  
P06B  
P06C  
T2ACTL2  
T2ACTL3  
T2A  
MODE = 0  
T2AC1  
OUT ENA  
T2AC2  
OUT ENA  
T2AC1  
RST ENA  
T2AEDGE1  
OUT ENA  
T2AEDGE1  
POLARITY  
T2AEDGE1  
RST ENA  
T2AEDGE1  
DET ENA  
Mode: Dual-Capture  
T2AEDGE1  
INT FLAG  
T2AEDGE2  
INT FLAG  
T2AC1  
INT FLAG  
T2AEDGE1  
INT ENA  
T2AEDGE2  
INT ENA  
T2AC1  
INT ENA  
P06B  
P06C  
T2ACTL2  
T2ACTL3  
T2A  
MODE = 1  
T2AC1  
RST ENA  
T2AEDGE2  
POLARITY  
T2AEDGE1  
POLARITY  
T2AEDGE2  
DET ENA  
T2AEDGE1  
DET ENA  
Modes: Dual-Capture and Dual-Compare  
T2AEVT  
DATA IN  
T2AEVT  
DATA OUT  
T2AEVT  
FUNCTION  
T2AEVT  
DATA DIR  
P06D  
P06E  
P06F  
T2APC1  
T2APC2  
T2APRI  
T2AIC2/PWM T2AIC2/PWM T2AIC2/PWM T2AIC2/PWM T2AIC1/CR  
T2AIC1/CR  
DATA OUT  
T2AIC1/CR  
FUNCTION  
T2AIC1/CR  
DATA DIR  
DATA IN  
DATA OUT  
FUNCTION  
DATA DIR  
DATA IN  
T2A  
PRIORITY  
T2A STEST  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
Table 19. Peripheral File Frame Compilation (Continued)  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
ADC1 MODULE CONTROL REGISTER  
CONVERT  
START  
SAMPLE  
START  
REF VOLT  
SELECT2  
REF VOLT  
SELECT1  
REF VOLT  
SELECT0  
AD INPUT  
SELECT2  
AD INPUT  
SELECT1  
AD INPUT  
SELECT0  
P070  
ADCTL  
AD INT  
FLAG  
P071  
P072  
AD READY  
AD INT ENA ADSTAT  
ADDATA  
A-to-D Conversion Data Register  
Reserved  
P073  
to  
P07C  
P07D  
P07E  
Port E Data Input Register  
Port E Input Enable Register  
ADIN  
ADENA  
AD  
PRIORITY  
P07F  
AD STEST  
AD ESPEN  
ADPRI  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
V
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 7 V  
CC, CC3  
Input voltage range, All pins except MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 7 V  
MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 14 V  
Input clamp current, I (V < 0 or V > V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
IK  
OK  
I
I
CC  
O
Output clamp current, I  
(V < 0 or V > V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
O
CC)  
Continuous output current per buffer, I (V = 0 to V )  
current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 mA  
Maximum I current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 170 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA  
O
O
CC  
Maximum I  
CC  
SS  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W  
Operating free-air temperature, T : L version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
A version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
T version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 105°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
Electrical characteristics are specified with all output buffers loaded with the specified I current. Exceeding the specified I current in any buffer  
O
O
can affect the levels on other buffers.  
NOTE 1: Unless otherwise noted, all voltage values are with respect to V  
.
SS  
recommended operating conditions (see Note 1)  
MIN  
4.5  
NOM  
MAX  
5.5  
5.5  
5.5  
0.3  
0.8  
0.3  
UNIT  
V
V
V
V
Supply voltage (see Note 1)  
5
V
V
V
V
CC  
RAM data retention supply voltage (see Note 2)  
Analog supply voltage (see Note 1)  
Analog supply ground  
3
CC  
4.5  
5
0
CC3  
SS3  
– 0.3  
All pins except MC  
MC, normal operation  
V
V
SS  
V
IL  
Low-level input voltage  
V
SS  
2
All pins except MC, XTAL2/CLKIN, and RESET  
XTAL2/CLKIN  
V
V
V
CC  
V
IH  
High-level input voltage  
0.8 V  
0.7 V  
V
CC  
CC  
CC  
RESET  
CC  
13  
EEPROM write protect override  
Microcomputer  
11.7  
12  
V
MC  
MC (mode control) voltage  
V
SS  
13  
0.3  
V
EPROM programming voltage (V  
)
13.2  
13.5  
70  
PP  
L version  
A version  
T version  
0
T
A
Operating free-air temperature  
– 40  
– 40  
85  
°C  
105  
NOTES: 1. Unless otherwise noted, all voltage values are with respect to V  
.
SS  
2. RESET must be externally activated when V  
CC  
or SYSCLK is out of the recommended operating range.  
49  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
Low-level digital output voltage  
I
= 1.4 mA  
= 50 µA  
= 2 mA  
0.4  
V
OL  
OL  
I
0.9 V  
CC  
OH  
High-level output voltage  
Input current  
V
OH  
I
2.4  
OH  
0 V < V 0.3 V  
10  
I
µA  
0.3 V < V 13  
650  
I
I
I
MC  
12 V V 13 V  
(see Note 3)  
I
50  
mA  
I
I
Input current  
I/O pins  
0 V V V  
CC  
±10  
µA  
mA  
µA  
I
I
Low-level output current  
V
OL  
= 0.4 V  
1.4  
– 50  
– 2  
OL  
V
= 0.9 V  
OH  
CC  
= 2.4 V  
I
High-level output current  
OH  
V
mA  
OH  
SYSCLK = 5 MHz  
(see Notes 4 and 5)  
30  
20  
7
45  
30  
11  
Supply current (Operating mode)  
OSC POWER bit = 0 (see Note 6)  
SYSCLK = 3 MHz  
(see Notes 4 and 5)  
mA  
mA  
SYSCLK = 0.5 MHz  
(see Notes 4 and 5)  
SYSCLK = 5 MHz  
(see Notes 4 and 5)  
10  
8
17  
11  
Supply current (STANDBY mode)  
OSC POWER bit = 0 (see Note 7)  
SYSCLK = 3 MHz  
(see Notes 4 and 5)  
I
CC  
SYSCLK = 0.5 MHz  
(see Notes 4 and 5)  
2
3.5  
8.6  
3.0  
30  
SYSCLK = 3 MHz  
(see Notes 4 and 5)  
6
Supply current (STANDBY mode)  
OSC POWER bit = 1 (see Note 8)  
mA  
SYSCLK = 0.5 MHz  
(see Notes 4 and 5)  
2
XTALK2/CLKIN < 0.2 V  
(see Note 4)  
Supply current (HALT mode)  
2
µA  
NOTES: 3. Microcontroller-single chip mode, ports configured as inputs, or outputs with no load. All inputs 0.2 V or V  
CC  
0.2 V.  
4. XTAL2/CLKIN is driven with an external square wave signal with 50% duty cycle and rise and fall times less than 10 ns. Current  
can be higher with a crystal oscillator. At 5-MHz SYSCLK this extra current = 0.01 mA × (total load capacitance + crystal capacitance  
in pF).  
5. Maximum operating current = 7.6 (SYSCLK) + 7 mA.  
6. Maximum standby current =3 (SYSCLK) + 2 mA. (Osc power bit = 0.)  
7. Maximum standby current = 2.24 (SYSCLK) + 1.9 mA. (Osc power bit = 1 and valid up to 3-MHz SYSCLK.)  
8. Input current I  
is a maximum of 50 mA only when EPROM is being programmed.  
PP  
50  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
RECOMMENDED CRYSTAL/CLOCK CONNECTIONS  
XTAL2/CLKIN  
XTAL1  
XTAL2/CLKIN  
XTAL1  
C3  
C1  
C2  
Crystal/Ceramic  
Resonator  
External  
Clock Signal  
The values of C1 and C2 are typically 15 pF and C3 value is typically 50 pF. See the manufacturer’s recommendations for ceramic resonators.  
The crystal/ceramic resonator frequency is four times the reciprocal of the system clock period.  
§
TYPICAL OUTPUT LOAD CIRCUIT  
Load Voltage  
1.2 kΩ  
V
O
20 pF  
Case 1: V = V  
= 2.4 V; Load Voltage = 0 V  
= 0.4 V; Load Voltage = 2.1  
O
OH  
OL  
Case 2: V = V  
O
§
All measurements are made with the pin loading as shown unless otherwise noted. All measurements are made with XTAL2/CLKIN driven by  
an external square wave signal with a 50% duty cycle and rise and fall times less than 10 ns unless otherwise stated.  
TYPICAL INPUT BUFFERS  
V
CC  
V
CC  
Pin Data  
300 Ω  
6 kΩ  
30 Ω  
20 Ω  
Output  
Enable  
I/O  
INT 1  
20 Ω  
GND  
GND  
51  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
PARAMETER MEASUREMENT INFORMATION  
timing parameter symbology  
Timing parameter symbols have been created in accordance with JEDEC Standard 100. In order to shorten the  
symbols, some of the pin names and other related terminology have been abbreviated as follows:  
A
AR  
B
CI  
D
Address  
Array  
Byte  
XTAL2/CLKIN  
Data  
Program  
R
RXD  
SC  
SCC  
TXD  
W
Read  
SCIRXD  
SYSCLK  
SCICLK  
SCITXD  
Write  
PGM  
Lowercase subscripts and their meanings are:  
c
d
f
cycle time (period)  
delay time  
fall time  
r
su  
v
rise time  
setup time  
valid time  
h
hold time  
w
pulse duration (width)  
The following additional letters are used with these meanings:  
H
L
High  
Low  
V
Z
Valid  
High Impedance  
All timings are measured between high and low measurement points as indicated in the figures below.  
0.8 V  
V (High)  
2 V (High)  
CC  
0.8 V (Low)  
0.8 V (Low)  
XTAL2/CLKIN Measurement Points  
General Measurement Points  
52  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
external clocking requirements for clock divided by 4  
NO.  
1
PARAMETER  
Pulse duration, XTAL2/CLKIN (see Note 9)  
Rise time, XTAL2/CLKIN  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
20  
w(Cl)  
2
30  
30  
100  
20  
5
ns  
r(Cl)  
3
Fall time, XTAL2/CLKIN  
ns  
f(CI)  
4
Delay time, XTAL2/CLKIN rise to SYSCLK fall  
Crystal operating frequency  
ns  
d(CIH-SCL)  
CLKIN  
2
MHz  
MHz  
SYSCLK  
System clock  
0.5  
For V and V , refer to recommended operating conditions.  
IL IH  
SYSCLK = CLKIN/4  
NOTE 9: This pulse can be either a high pulse, which extends from the earliest valid high to the final valid high in an XTAL2/CLKIN cycle or a  
low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.  
1
XTAL2/CLKIN  
2
3
4
SYSCLK  
Figure 18. External Clock Timing for Divide-by-4  
§
external clocking requirements for clock divided by 1 (PLL)  
NO.  
1
PARAMETER  
Pulse duration, XTAL2/CLKIN (see Note 9)  
Rise time, XTAL2/CLKIN  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
20  
w(Cl)  
2
30  
30  
100  
5
ns  
r(Cl)  
3
Fall time, XTAL2/CLKIN  
ns  
f(CI)  
4
Delay time, XTAL2/CLKIN rise to SYSCLK rise  
Crystal operating frequency  
ns  
d(CIH-SCH)  
CLKIN  
2
2
MHz  
MHz  
§
SYSCLK  
System clock  
5
§
For V and V , refer to recommended operating conditions.  
IL IH  
SYSCLK = CLKIN/1  
NOTE 9: This pulse can be either a high pulse, which extends from the earliest valid high to the final valid high in an XTAL2/CLKIN cycle or a  
low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.  
1
XTAL2/CLKIN  
4
2
3
SYSCLK  
Figure 19. External Clock Timing for Divide-by-1  
53  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
switching characteristics and timing requirements (see Note 10 and Figure 20)  
NO.  
PARAMETER  
MIN  
200  
200  
MAX  
2000  
500  
0.5 t  
UNIT  
ns  
Divide-by-4  
Divide-by-1  
5
t
Cycle time, SYSCLK (system clock)  
c
ns  
6
7
t
t
Pulse duration, SYSCLK low  
Pulse duration, SYSCLK high  
0.5 t –20  
ns  
w(SCL)  
c
c
0.5 t  
0.5 t + 20  
ns  
w(SCH)  
c
c
NOTE 10: t = system-clock cycle time = 1/SYSCLK.  
c
5
7
6
SYSCLK  
Figure 20. SYSCLK Timing  
general-purpose output signal-switching time requirements  
MIN  
TYP  
30  
MAX  
UNIT  
t
t
Rise time  
Fall time  
ns  
ns  
r
30  
f
t
r
t
f
recommended EEPROM timing requirements for programming  
MIN  
MAX  
UNIT  
ms  
t
t
Pulse duration, programming signal to be certain valid data is stored (byte mode)  
Pulse duration, programming signal to be certain valid data is stored (array mode)  
10  
20  
w(PGM)B  
ms  
w(PGM)AR  
recommended EPROM operating conditions for programming  
MIN  
TYP  
5.5  
MAX  
6
UNIT  
V
V
V
Supply voltage  
4.75  
13  
CC  
Supply voltage at MC pin  
13.2  
30  
13.5  
50  
5
V
PP  
I
Supply current at MC pin during programming (V  
= 13 V)  
mA  
PP  
PP  
Divide-by-4  
Divide-by-1  
0.5  
2
SYSCLK  
System clock  
MHz  
5
recommended EPROM timing requirements for programming  
MIN  
TYP  
MAX  
UNIT  
t
Pulse duration, programming signal (see Note 11)  
0.40  
0.50  
3
ms  
w(EPGM)  
NOTE 11: Programming pulse is active when both EXE (EPCTL.0) and V  
(EPCTL.6) are set.  
PPS  
54  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
SERIAL COMMUNICATIONS INTERFACE 1 (SCI1) INTERNAL CLOCK  
ISOSYNCHRONOUS MODE I/O TIMING  
SCI1 isosynchronous mode timing characteristics and requirements for internal clock  
(see Note 10 and Figure 21)  
NO.  
24  
25  
26  
27  
28  
29  
30  
PARAMETER  
Cycle time, SCICLK  
MIN  
2t  
MAX  
UNIT  
ns  
t
t
t
t
t
t
t
131,072t  
c
c(SCC)  
c
Pulse duration, SCICLK low  
t
t
– 45  
– 45  
– 50  
0.5t  
0.5t  
+45  
+45  
ns  
w(SCCL)  
c
c(SCC)  
Pulse duration, SCICLK high  
ns  
w(SCCH)  
c
c(SCC)  
60  
Delay time, SCITXD valid after SCICLK low  
Valid time, SCITXD data after SCICLK high  
Setup time, SCIRXD to SCICLK high  
Valid time, SCIRXD data after SCICLK high  
ns  
d(SCCL-TXDV)  
v(SCCH-TXD)  
su(RXD-SCCH)  
v(SCCH-RXD)  
t
– 50  
ns  
w(SCCH)  
0.25t + 145  
c
ns  
0
ns  
NOTE 10: t = system-clock cycle time = 1/SYSCLK.  
c
24  
26  
25  
SCICLK  
SCITXD  
27  
28  
Data Valid  
29  
30  
Data Valid  
SCIRXD  
Figure 21. SCI1 Isosynchronous Mode Timing Diagram for Internal Clock  
55  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
SERIAL COMMUNICATIONS INTERFACE 1 (SCI1) EXTERNAL CLOCK  
ISOSYNCHRONOUS MODE I/O TIMING  
SCI1 isosynchronous mode timing characteristics and requirements for external clock  
(see Note 10 and Figure 22)  
NO.  
31  
PARAMETER  
Cycle time, SCICLK  
MIN  
10t  
MAX  
UNIT  
ns  
t
t
c(SCC)  
c
32  
Pulse duration, SCICLK low  
4.25t + 120  
ns  
w(SCCL)  
c
33  
34  
35  
36  
37  
t
t
t
t
t
Pulse duration, SCICLK high  
t + 120  
ns  
ns  
ns  
ns  
ns  
w(SCCH)  
c
Delay time, SCITXD valid after SCICLK low  
Valid time, SCITXD data after SCICLK high  
Setup time, SCIRXD to SCICLK high  
Valid time, SCIRXD data after SCICLK high  
4.25t + 145  
c
d(SCCL-TXDV)  
v(SCCH-TXD)  
su(RXD-SCCH)  
v(SCCH-RXD)  
t
w(SCCH)  
40  
2t  
c
NOTE 10: t = system-clock cycle time = 1/SYSCLK.  
c
31  
33  
32  
34  
SCICLK  
SCITXD  
35  
Data Valid  
36  
37  
Data Valid  
SCIRXD  
Figure 22. SCI1 Isosynchronous Mode Timing Diagram for External Clock  
56  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
ADC1  
The ADC1 has a separate power bus for its analog circuitry. These pins are referred to as V  
and V  
. Their  
CC3  
SS3  
purpose is to enhance ADC1 performance by preventing digital switching noise on the logic circuitry that could  
be present on V and V from coupling into the ADC1 analog stage. All ADC1 specifications are given with  
SS  
SS3  
CC  
respect to V  
unless otherwise noted.  
Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 bits (256 values)  
Monotonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yes  
Output conversion code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00h to FFh (00h for V V  
Conversion time (excluding sample time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164t  
; FFh for V V  
)
I
SS3  
I
ref  
c
recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
4.5  
5
5.5  
V
V
Analog supply voltage  
Analog ground  
V
CC3  
V
– 0.3  
V
+ 0.3  
CC  
CC  
V
– 0.3  
V
+ 0.3  
+ 0.1  
V
V
V
SS3  
SS  
SS  
V
ref  
Non-V  
CC3  
reference  
2.5  
V
V
CC3  
CC3  
Analog input for conversion  
V
V
ref  
SS3  
V
ref  
must be stable, within ± 1/2 LSB of the required resolution, during the entire conversion time.  
operating characteristics over ranges of recommended operating conditions  
PARAMETER  
Absolute accuracy (see Note 12)  
TEST CONDITIONS  
MIN  
MAX  
+1.5  
±0.9  
2
UNIT  
LSB  
LSB  
mA  
µA  
V
V
= 5.5 V, V = 5.1 V  
ref  
CC3  
Differential/integral linearity error (see Notes 12 and 13)  
= 5.5 V, V = 5.1 V  
ref  
CC3  
Converting  
I
I
Analog supply current  
CC3  
Nonconverting  
5
Input current, AN0-AN7  
0 V V 5.5 V  
2
µA  
I
I
V
input charge current  
1
mA  
kΩ  
ref  
SYSCLK 3 MHz  
24  
10  
Z
ref  
Source impedance V  
ref  
3 MHz < SYSCLK 5 MHz  
kΩ  
NOTES: 12. Absolute resolution = 20 mV. At V = 5 V, this is 1 LSB. As V decreases, LSB size decreases and thus absolute accuracy and  
ref ref  
differential / integral linearity errors in terms of LSBs increases.  
13. Excluding quantization error of 1/2 LSB.  
57  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
ADC1 (continued)  
The ADC1 module allows complete freedom in design of the sources for the analog inputs. The period of the  
sample time is user-defined such that high-impedance sources can be accommodated without penalty to  
low-impedance sources. The sample period begins when the SAMPLE START bit of the ADC1 control register  
(ADCTL) is set to 1. The end of the signal sample period occurs when the conversion bit (CONVERT START)  
of the ADCTL is set to 1. After a hold time, the converter resets the SAMPLE START and CONVERT START  
bits, signaling that a conversion has started and the analog signal can be removed.  
analog timing requirements  
MIN  
MAX  
UNIT  
ns  
t
t
t
Setup time, analog input to sample command  
0
su(S)  
h(AN)  
w(S)  
Hold time, analog input from start of conversion  
18t  
ns  
c
Pulse duration, sample time per kilohm of source impedance (see Note 14)  
1
µs/kΩ  
NOTE 14: The value given is valid for a signal with a source impedance > 1 k. If the source impedance is < 1 k, use a minimum sampling time  
of 1 µs.  
Analog Stable  
Analog  
In  
t
su(S)  
Sample  
Start  
t
h(AN)  
t
w(S)  
Convert  
Start  
Figure 23. Analog Timing  
58  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
Table 20 is designed to aid the user in referencing a device part number to a mechanical drawing. The table  
shows a cross-reference of the device part number to the TMS370 generic package name and the associated  
mechanical drawing by drawing number and name.  
Table 20. TMS370Cx4x Family Package Type and Mechanical Cross-Reference  
PKG TYPE  
(mil pin spacing)  
PKG TYPE NO. AND  
MECHANICAL NAME  
TMS370 GENERIC NAME  
DEVICE PART NUMBERS  
TMS370C040AFNA  
TMS370C040AFNL  
TMS370C040AFNT  
TMS370C042AFNA  
TMS370C042AFNL  
TMS370C042AFNT  
TMS370C340AFNA  
TMS370C340AFNL  
TMS370C340AFNT  
TMS370C342AFNA  
TMS370C342AFNL  
TMS370C342AFNT  
TMS370C742AFNT  
FN – 44 pin  
(50-mil pin spacing)  
PLASTIC LEADED CHIP CARRIER  
(PLCC)  
FN(S-PQCC-J**) PLASTIC J-LEADED  
CHIP CARRIER  
FZ – 44 pin  
(50-mil pin spacing)  
CERAMIC LEADED CHIP CARRIER  
(CLCC)  
FZ(S-CQCC-J**) J-LEADED CERAMIC  
CHIP CARRIER  
SE370C742AFZT  
SE370C742AJDT  
JD – 40 pin  
(100-mil pin spacing) (CDIP)  
CERAMIC DUAL-IN-LINE PACKAGE  
JD(R-CDIP-T**) CERAMIC SIDE-BRAZE  
DUAL-IN-LINE PACKAGE  
TMS370C040ANA  
TMS370C040ANL  
TMS370C040ANT  
TMS370C042ANA  
TMS370C042ANL  
TMS370C042ANT  
TMS370C340ANA  
TMS370C340ANL  
TMS370C340ANT  
TMS370C342ANA  
TMS370C342ANL  
TMS370C342ANT  
TMS370C742ANT  
N – 40 pin  
(100-mil pin spacing) (PDIP)  
PLASTIC DUAL-IN-LINE PACKAGE  
N(R-PDIP-T**) PLASTIC DUAL-IN-LINE  
PACKAGE  
JC – 40 pin  
(70-mil pin spacing)  
CERAMIC SHRINK DUAL-IN-LINE  
PACKAGE (CSDIP)  
JC(R-CDIP-T40) CERAMIC SIDE-BRAZE  
DUAL-IN-LINE PACKAGE  
SE370C742AJCT  
TMS370C040ANJA  
TMS370C040ANJL  
TMS370C040ANJT  
TMS370C042ANJA  
TMS370C042ANJL  
TMS370C042ANJT  
TMS370C340ANJA  
TMS370C340ANJL  
TMS370C340ANJT  
TMS370C342ANJA  
TMS370C342ANJL  
TMS370C342ANJT  
TMS370C742ANJT  
NJ – 40 pin  
(70-mil pin spacing)  
PLASTIC SHRINK DUAL–IN–LINE  
PACKAGE (PSDIP)  
NJ(R–PDIP–T**) PLASTIC SHRINK  
DUAL-IN-LINE PACKAGE  
NJ formerly known as N2; the mechanical drawing of the NJ is identical to the N2 package and did not need to be requalified.  
59  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
FN (S-PQCC-J**)  
PLASTIC J-LEADED CHIP CARRIER  
20 PIN SHOWN  
Seating Plane  
0.004 (0,10)  
0.180 (4,57) MAX  
0.120 (3,05)  
D
0.090 (2,29)  
D1  
0.020 (0,51) MIN  
3
1
19  
0.032 (0,81)  
0.026 (0,66)  
4
18  
D2/E2  
D2/E2  
E
E1  
8
14  
0.021 (0,53)  
0.013 (0,33)  
0.050 (1,27)  
9
13  
0.007 (0,18)  
M
0.008 (0,20) NOM  
D/E  
D1/E1  
D2/E2  
NO. OF  
PINS  
**  
MIN  
0.385 (9,78)  
MAX  
MIN  
MAX  
MIN  
MAX  
0.395 (10,03)  
0.350 (8,89)  
0.356 (9,04)  
0.141 (3,58)  
0.191 (4,85)  
0.291 (7,39)  
0.341 (8,66)  
0.169 (4,29)  
0.219 (5,56)  
0.319 (8,10)  
0.369 (9,37)  
20  
28  
44  
52  
68  
84  
0.485 (12,32) 0.495 (12,57) 0.450 (11,43) 0.456 (11,58)  
0.685 (17,40) 0.695 (17,65) 0.650 (16,51) 0.656 (16,66)  
0.785 (19,94) 0.795 (20,19) 0.750 (19,05) 0.756 (19,20)  
0.985 (25,02) 0.995 (25,27) 0.950 (24,13) 0.958 (24,33) 0.441 (11,20) 0.469 (11,91)  
1.185 (30,10) 1.195 (30,35) 1.150 (29,21) 1.158 (29,41) 0.541 (13,74) 0.569 (14,45)  
4040005/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-018  
60  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
J-LEADED CERAMIC CHIP CARRIER  
Seating Plane  
MECHANICAL DATA  
FZ (S-CQCC-J**)  
28 LEAD SHOWN  
0.040 (1,02)  
45°  
0.180 (4,57)  
0.155 (3,94)  
0.140 (3,55)  
0.120 (3,05)  
A
B
1
4
26  
25  
5
0.050 (1,27)  
C
(at Seating  
Plane)  
A
B
0.032 (0,81)  
0.026 (0,66)  
0.020 (0,51)  
0.014 (0,36)  
19  
11  
18  
12  
0.025 (0,64) R TYP  
0.040 (1,02) MIN  
0.120 (3,05)  
0.090 (2,29)  
A
B
C
JEDEC  
NO. OF  
PINS**  
OUTLINE  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
0.485  
0.495  
0.430  
0.455  
0.410  
0.430  
MO-087AA  
MO-087AB  
MO-087AC  
MO-087AD  
28  
44  
52  
68  
(12,32)  
(12,57)  
(10,92)  
(11,56)  
(10,41)  
(10,92)  
0.685  
0.695  
0.630  
0.655  
0.610  
0.630  
(17,40)  
(17,65)  
(16,00)  
(16,64)  
(15,49)  
(16,00)  
0.785  
0.795  
0.730  
0.765  
0.680  
0.740  
(19,94)  
(20,19)  
(18,54)  
(19,43)  
(17,28)  
(18,79)  
0.985  
0.995  
0.930  
0.955  
0.910  
0.930  
(25,02)  
(25,27)  
(23,62)  
(24,26)  
(23,11)  
(23,62)  
4040219/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
61  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
JC (R-CDIP-T40)  
CERAMIC SIDE-BRAZE DUAL-IN-LINE PACKAGE  
1.414 (35,92)  
1.386 (35,20)  
40  
21  
0.600 (15,24)  
0.580 (14,73)  
1
20  
0.032 (0,81) TYP  
0.610 (15,49)  
0.590 (14,99)  
0.093 (2,38)  
0.077 (1,96)  
0.060 (1,52)  
0.040 (1,02)  
Seating Plane  
0.175 (4,46) TYP  
0.020 (0,51)  
0.016 (0,41)  
0.012 (0,31)  
0.009 (0,23)  
0.070 (1,78)  
1.335 (33,91)  
1.325 (33,66)  
4040223-2/B 04/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
62  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
JD (R-CDIP-T**)  
CERAMIC SIDE-BRAZE DUAL-IN-LINE PACKAGE  
24 PIN SHOWN  
A
PINS **  
24  
28  
40  
48  
52  
DIM  
24  
13  
1.250  
1.450  
2.050  
2.435  
2.650  
A MAX  
(31,75) (36,83) (52,07) (61,85) (67,31)  
0.590 (15,00)  
TYP  
1
12  
0.065 (1,65)  
0.045 (1,14)  
0.175 (4,45)  
0.140 (3,56)  
0.620 (15,75)  
0.590 (14,99)  
0.075 (1,91) MAX  
4 Places  
Seating Plane  
0.020 (0,51) MIN  
0.125 (3,18) MIN  
0°15°  
0.100 (2,54)  
0.021 (0,53)  
0.015 (0,38)  
0.012 (0,30)  
0.008 (0,20)  
4040087/B 04/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
63  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
N (R-PDIP-T**)  
PLASTIC DUAL-IN-LINE PACKAGE  
24 PIN SHOWN  
A
24  
13  
0.560 (14,22)  
0.520 (13,21)  
1
12  
0.060 (1,52) TYP  
0.200 (5,08) MAX  
0.020 (0,51) MIN  
0.610 (15,49)  
0.590 (14,99)  
Seating Plane  
0.100 (2,54)  
0.125 (3,18) MIN  
0.010 (0,25) NOM  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
PINS **  
M
24  
1.270  
28  
32  
40  
48  
52  
DIM  
1.450  
1.650  
2.090  
2.450  
2.650  
A MAX  
A MIN  
(32,26) (36,83) (41,91) (53,09) (62,23) (67,31)  
1.230  
1.410  
1.610  
2.040  
2.390  
2.590  
(31,24) (35,81) (40,89) (51,82) (60,71) (65,79)  
4040053/B 04/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-011  
D. Falls within JEDEC MS-015 (32 pin only)  
64  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx4x  
8-BIT MICROCONTROLLER  
SPNS016C – NOVEMBER 1992 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
NJ (R-PDIP-T**)  
PLASTIC SHRINK DUAL-IN-LINE PACKAGE  
40 PIN SHOWN  
A
PINS **  
40  
54  
DIM  
40  
21  
1.425  
(36,20)  
2.031  
(51,60)  
A MAX  
0.560 (14,22) MAX  
1
20  
0.048 (1,216)  
0.032 (0,816)  
0.200 (5,08) MAX  
0.020 (0,51) MIN  
0.600 (15,24)  
Seating Plane  
0.070 (1,78)  
0.010 (0,25)  
0°15°  
0.125 (3,18) MIN  
0.022 (0,56)  
0.014 (0,36)  
M
0.010 (0,25) NOM  
4040034/B 04/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
65  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TMS370C742AFNA

8-Bit Microcontroller
ETC

TMS370C742AFNL

8-Bit Microcontroller
ETC

TMS370C742AFNT

CMOS EEPROM/EPROM Technologies on a Single Device
TI

TMS370C742AFNTG4

8-Bit Microcontroller 44-PLCC -40 to 105
TI

TMS370C742AN2A

8-Bit Microcontroller
ETC

TMS370C742AN2L

8-Bit Microcontroller
ETC

TMS370C742ANA

8-Bit Microcontroller
ETC

TMS370C742ANJA

8-BIT, OTPROM, MICROCONTROLLER, PDIP40
TI

TMS370C742ANJL

8-BIT, OTPROM, MICROCONTROLLER, PDIP40
TI

TMS370C742ANJT

CMOS EEPROM/EPROM Technologies on a Single Device
TI

TMS370C742ANL

8-Bit Microcontroller
ETC

TMS370C742ANT

CMOS EEPROM/EPROM Technologies on a Single Device
TI