TMS45160-10DZ [TI]

256KX16 FAST PAGE DRAM, 100ns, PDSO40;
TMS45160-10DZ
型号: TMS45160-10DZ
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

256KX16 FAST PAGE DRAM, 100ns, PDSO40

动态存储器 光电二极管 内存集成电路
文件: 总23页 (文件大小:351K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
DZ PACKAGE  
(TOP VIEW)  
DGE PACKAGE  
(TOP VIEW)  
This data sheet is applicable to all TMS45160/Ps  
symbolized with Revision “D” and subsequent  
revisions as described on page 21.  
1
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
1
2
3
4
5
6
7
8
9
10  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
V
V
V
V
SS  
CC  
SS  
CC  
2
3
4
5
6
7
8
9
DQ0  
DQ1  
DQ2  
DQ3  
DQ15  
DQ14  
DQ13  
DQ12  
DQ0  
DQ1  
DQ2  
DQ3  
DQ15  
DQ14  
DQ13  
DQ12  
D Organization . . . 262144 × 16  
D 5-V Supply ( 10% Tolerance)  
D Performance Ranges:  
V
V
V
V
ACCESS ACCESS ACCESS READ OR  
CC  
SS  
CC  
SS  
TIME  
TIME  
TIME  
WRITE  
CYCLE  
MIN  
DQ4  
DQ5  
DQ6  
DQ7  
NC  
NC  
W
RAS  
NC  
A0  
DQ11  
DQ10  
DQ9  
DQ8  
NC  
LCAS  
UCAS  
OE  
A8  
A7  
A6  
A5  
DQ4  
DQ5  
DQ6  
DQ7  
DQ11  
DQ10  
DQ9  
t
t
t
RAC  
CAC  
AA  
MAX  
MAX  
MAX  
’45160/P-60  
’45160/P-70  
’45160/P-80  
60 ns  
70 ns  
80 ns  
15 ns  
20 ns  
20 ns  
30 ns  
35 ns  
40 ns  
110 ns  
130 ns  
150 ns  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
DQ8  
D Enhanced-Page-Mode Operation With  
13  
32  
NC  
NC  
NC 14  
31 LCAS  
xCAS-Before-RAS (xCBR) Refresh  
15  
16  
17  
18  
19  
20  
21  
22  
30  
29  
28  
27  
26  
25  
24  
23  
W
RAS  
NC  
A0  
UCAS  
OE  
A8  
A7  
A6  
D Long Refresh Period  
512-Cycle Refresh in 8 ms (Max)  
64 ms Max for Low Power With  
Self-Refresh Version (TMS45160P)  
A1  
A2  
A3  
A1  
A2  
A3  
A4  
V
A5  
A4  
V
D 3-State Unlatched Output  
CC  
SS  
D Low Power Dissipation  
V
V
CC  
SS  
D Texas Instruments EPICCMOS Process  
D All Inputs, Outputs, and Clocks Are TTL  
Compatible  
PIN NOMENCLATURE  
D High-Reliability, 40-Lead, 400-Mil-Wide  
Plastic Surface-Mount (SOJ) Package and  
40/44-Lead Thin Small-Outline Package  
(TSOP)  
A0A8  
Address Inputs  
Data In/Data Out  
DQ0DQ15  
LCAS  
NC  
OE  
RAS  
Lower Column-Address Strobe  
No Internal Connection  
Output Enable  
Row-Address Strobe  
Upper Column-Address Strobe  
5-V Supply  
D Operating Free-Air Temperature Range  
0°C to 70°C  
UCAS  
D Low Power With Self-Refresh Version  
V
CC  
V
SS  
D Upper and Lower Byte Control During Read  
Ground  
Write Enable  
W
and Write Operations  
description  
The TMS45160 series are high-speed, 4194304-bit dynamic random-access memories organized as 262144  
words of 16 bits each. The TMS45160P series are high-speed, low-power, self-refresh 4194304-bit dynamic  
random-access memories organized as 262144 words of 16 bits each. They employ state-of-the-art EPIC  
(Enhanced Performance Implanted CMOS) technology for high performance, reliability, and low power at low  
cost.  
These devices feature maximum RAS access times of 60 ns, 70 ns, and 80 ns. Maximum power dissipation  
is as low as 770 mW operating and 11 mW standby on 80-ns devices. All inputs and outputs, including clocks,  
are compatible with Series 74 TTL. All addresses and data-in lines are latched on chip to simplify system design.  
Data out is unlatched to allow greater system flexibility.  
The TMS45160 and TMS45160P are each offered in a 40-lead plastic surface-mount SOJ package (DZ suffix)  
and a 40/44-lead plastic surface-mount small-outline (TSOP) package (DGE suffix). These packages are  
characterized for operation from 0°C to 70°C.  
EPIC is a trademark of Texas Instruments Incorporated.  
ꢀꢦ  
Copyright 1995, Texas Instruments Incorporated  
ꢢ ꢦ ꢣ ꢢꢛ ꢜꢰ ꢞꢝ ꢡ ꢩꢩ ꢧꢡ ꢟ ꢡ ꢠ ꢦ ꢢ ꢦ ꢟ ꢣ ꢫ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢉ  
ꢊꢆ ꢊꢋꢅꢃ ꢃ ꢌꢍꢎꢏ ꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕ ꢔꢌꢂ ꢉꢖ ꢖ ꢐ  
ꢐ ꢒꢗ ꢘ ꢁꢓ ꢙ ꢏ ꢘꢗ ꢐ ꢎ ꢁꢌꢘꢙ ꢙꢖ ꢂꢂ ꢁꢖ ꢁꢎ ꢏꢓ ꢖꢂ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
operation  
dual CAS  
Two CAS pins (LCAS−UCAS) are provided to give independent control of the 16 data I/O pins (DQ0−DQ15)  
with LCAS corresponding to DQ0DQ7 and UCAS corresponding to DQ8DQ15. For read or write cycles, the  
column address is latched on the first xCAS falling edge. Each xCAS going low enables its corresponding DQx  
pins with data associated with the column address latched on the first falling xCAS edge. All address setup and  
hold parameters are referenced to the first falling xCAS edge.The delay time from xCAS low to valid data out  
(see parameter t  
) is measured from each individual xCAS to its corresponding DQx pins.  
CAC  
In order to latch in a new column address, both xCAS pins must be brought high. The column precharge time  
(see parameter t ) is measured from the last xCAS rising edge to the first falling xCAS edge of the new cycle.  
CP  
Keeping a column address valid while toggling xCAS requires a minimum setup time, t  
least one xCAS must be brought low before the other xCAS is taken high.  
. During t  
, at  
CLCH  
CLCH  
For early-write cycles, the data is latched on the first falling edge of xCAS. Only the DQs that have the  
corresponding xCAS low are written into. Each xCAS must meet t minimum in order to ensure writing into  
CAS  
the storage cell. In order to latch a new address and new data, both xCAS pins must go high and meet t  
.
CP  
enhanced page mode  
Page-mode operation allows faster memory access by keeping the same row address while selecting random  
column addresses. The time for row-address setup and hold and address multiplex is eliminated. The maximum  
number of columns that can be accessed is determined by the maximum RAS low time and the xCAS  
page-mode cycle time used. With minimum xCAS page cycle time, all 512 columns specified by column  
addresses A0 through A8 can be accessed without intervening RAS cycles.  
Unlike conventional page-mode DRAMs, the column-address buffers in this device are activated on the falling  
edge of RAS. The buffers act as transparent or flow-through latches while xCAS is high. The first falling edge  
of xCAS latches the column addresses. This feature allows the devices to operate at a higher data bandwidth  
than conventional page-mode parts because data retrieval begins as soon as column address is valid rather  
than when xCAS transitions low. This performance improvement is referred to as enhanced page mode. A valid  
column address can be presented immediately after t  
well in advance of the falling edge of xCAS. In this case, data is obtained after t  
(row-address hold time) has been satisfied, usually  
RAH  
max (access time from xCAS  
CAC  
low) if t max (access time from column address) has been satisfied. In the event that column addresses for  
AA  
the next page cycle are valid at the time xCAS goes high, minimum access time for the next cycle is determined  
by t  
(access time from rising edge of the last xCAS).  
CPA  
address (A0−A8)  
Eighteen address bits are required to decode 1 of 262144 storage cell locations. Nine row-address bits are set  
up on A0 through A8 and latched onto the chip by RAS. Then, nine column-address bits are set up on A0 through  
A8 and latched onto the chip by the first xCAS. All addresses must be stable on or before the falling edge of  
RAS and xCAS. RAS is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder.  
xCAS is used as a chip select, activating its corresponding output buffer and latching the address bits into the  
column-address buffers.  
write enable (W)  
The read or write mode is selected through W. A logic high on W selects the read mode and a logic low selects  
the write mode. W can be driven from the standard TTL circuits without a pullup resistor. The data input lines  
are disabled when the read mode is selected. When W goes low prior to xCAS (early write), data out remains  
in the high-impedance state for the entire cycle, permitting a write operation with OE grounded.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢊ ꢆ ꢊ ꢋ ꢅꢃ ꢃ ꢌꢍ ꢎ ꢏꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕꢔ ꢌꢂ ꢉ ꢖ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
data in (DQ0−DQ15)  
Data is written during a write or read-modify-write cycle. Depending on the mode of operation, the falling edge  
of xCAS or W strobes data into the on-chip data latch. In an early-write cycle, W is brought low prior to xCAS  
and the data is strobed in by the first occurring xCAS with setup and hold times referenced to data in. In a  
delayed-write or read-modify-write cycle, xCAS is already low and the data is strobed in by W with setup and  
hold times referenced to data in. In a delayed-write or read-modify-write cycle, OE must be high to bring the  
output buffers to the high-impedance state prior to impressing data on the I/O lines.  
data out (DQ0−DQ15)  
The 3-state output buffer provides direct TTL compatibility (no pullup resistor required) with a fanout of two  
Series 74 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating)  
state until xCAS and OE are brought low. In a read cycle, the output becomes valid after the access-time interval  
t
(which begins with the negative transition of xCAS) as long as t  
and t are satisfied.  
CAC  
RAC AA  
output enable (OE)  
OE controls the impedance of the output buffers. When OE is high, the buffers remain in the high-impedance  
state. Bringing OE low during a normal cycle activates the output buffers, putting them in the low-impedance  
state. It is necessary for both RAS and xCAS to be brought low for the output buffers to go into the  
low-impedance state. They remain in the low-impedance state until either OE or xCAS is brought high.  
RAS-only refresh  
A refresh operation must be performed at least once every 8 ms (64 ms for TMS45160P) to retain data. This  
can be achieved by strobing each of the 512 rows (A0−A8). A normal read or write cycle refreshes all bits in  
each row that is selected. A RAS-only operation can be used by holding all xCAS at the high (inactive) level,  
conserving power as the output buffers remain in the high-impedance state. Externally generated addresses  
must be used for a RAS-only refresh.  
hidden refresh  
Hidden refresh can be performed while maintaining valid data at the output pin. This is accomplished by holding  
xCAS at V after a read operation and cycling RAS after a specified precharge period, similar to a RAS-only  
IL  
refresh cycle. The external address is ignored and the refresh address is generated internally.  
xCAS-before-RAS (xCBR) refresh  
xCBR refresh is utilized by bringing at least one xCAS low earlier than RAS (see parameter t  
) and holding  
CSR  
it low after RAS falls (see parameter t  
). For successive xCBR refresh cycles, xCAS can remain low while  
CHR  
cycling RAS. The external address is ignored and the refresh address is generated internally.  
A low-power battery-backup refresh mode that requires less than 500-µA refresh current is available on the  
TMS45160P. Data integrity is maintained using xCBR refresh with a period of 125 µs holding  
RAS low for less than 1 µs. To minimize current consumption, all input levels must be at CMOS levels  
(V 0.2 V, V V − 0.2 V).  
IL  
IH  
CC  
self refresh (TMS45160P)  
The self-refresh mode is entered by dropping xCAS low prior to RAS going low. Then xCAS and RAS are both  
held low for a minimum of 100 µs. The chip is refreshed internally by an on-board oscillator. No external address  
is required since the CBR counter is used to keep track of the address. To exit the self-refresh mode, both RAS  
and xCAS are brought high to satisfy t  
. Upon exiting the self-refresh mode, a burst refresh (refresh a full set  
CHS  
of row addresses) must be executed before continuing with normal operation. This ensures that the DRAM is  
fully refreshed.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢉ  
ꢊꢆ ꢊꢋꢅꢃ ꢃ ꢌꢍꢎꢏ ꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕ ꢔꢌꢂ ꢉꢖ ꢖ ꢐ  
ꢐ ꢒꢗ ꢘ ꢁꢓ ꢙ ꢏ ꢘꢗ ꢐ ꢎ ꢁꢌꢘꢙ ꢙꢖ ꢂꢂ ꢁꢖ ꢁꢎ ꢏꢓ ꢖꢂ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
power up  
To achieve proper device operation, an initial pause of 200 µs followed by a minimum of eight RAS cycles is  
required after power up to the full V  
(RAS-only or xCBR) cycle.  
level.These eight initialization cycles must include at least one refresh  
CC  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢊ ꢆ ꢊ ꢋ ꢅꢃ ꢃ ꢌꢍ ꢎ ꢏꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕꢔ ꢌꢂ ꢉ ꢖ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
logic symbol  
RAM 256K × 16  
20D9/21D0  
16  
17  
18  
19  
22  
23  
24  
25  
26  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
0
A
262 143  
20D17/21D8  
C20[ROW]  
G23/[REFRESH ROW]  
14  
29  
RAS  
24[PWR DWN]  
C21  
G24  
LCAS  
&
23C22  
31  
C21  
G34  
28  
UCAS  
&
23C32  
31  
Z31  
24,25EN27  
34,25EN37  
13  
27  
W
23,21D  
G25  
OE  
2
A,22D  
DQ0  
A, Z26  
26,27  
3
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ8  
4
5
7
8
9
10  
31  
A,32D  
A, Z36  
36,37  
32  
33  
34  
36  
37  
38  
39  
DQ9  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.  
The pin numbers shown are for the DZ package.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢉ  
ꢊꢆ ꢊꢋꢅꢃ ꢃ ꢌꢍꢎꢏ ꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕ ꢔꢌꢂ ꢉꢖ ꢖ ꢐ  
ꢐ ꢒꢗ ꢘ ꢁꢓ ꢙ ꢏ ꢘꢗ ꢐ ꢎ ꢁꢌꢘꢙ ꢙꢖ ꢂꢂ ꢁꢖ ꢁꢎ ꢏꢓ ꢖꢂ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
functional block diagram  
RAS UCAS LCAS  
W
OE  
Timing and Control  
A0  
A1  
9
Column Decode  
Sense Amplifiers  
16  
Column-  
Address  
Buffers  
128K Array  
128K Array  
128K Array  
R
o
Data-  
In  
Reg.  
16  
128K Array  
A8  
16  
w
16 I/O  
D
e
c
o
d
e
16  
Buffers  
Data-  
In  
Reg.  
16  
16  
Row-  
Address  
Buffers  
9
DQ0DQ15  
128K Array  
9
128K Array  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 1 V to 7 V  
CC  
Voltage range on any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 1 V to 7 V  
Short-circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 55°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
.
SS  
recommended operating conditions  
MIN NOM  
MAX  
UNIT  
V
V
V
V
T
Supply voltage  
4.5  
5
0
5.5  
V
V
V
V
CC  
SS  
IH  
Supply voltage  
High-level input voltage  
Low-level input voltage (see Note 2)  
Operating free-air temperature  
2.4  
− 1  
0
6.5  
0.8  
70  
IL  
°C  
A
NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used for logic-voltage levels only.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢊ ꢆ ꢊ ꢋ ꢅꢃ ꢃ ꢌꢍ ꢎ ꢏꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕꢔ ꢌꢂ ꢉ ꢖ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
’45160-60  
’45160-70  
’45160-80  
’45160P-60  
’45160P-70  
’45160P-80  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN MAX  
MIN  
MAX  
MIN MAX  
High-level output  
voltage  
V
V
I
I
= − 5 mA  
2.4  
2.4  
2.4  
V
V
OH  
OH  
Low-level output  
voltage  
= 4.2 mA  
0.4  
10  
0.4  
10  
0.4  
10  
OL  
OL  
Input current  
(leakage)  
V
= 5.5 V,  
V = 0 V to 6.5 V,  
I
CC  
All others = 0 V to V  
I
I
I
µA  
µA  
mA  
I
CC  
= 0 V to V  
CC  
V
= 5.5 V,  
V
O
,
Output current  
(leakage)  
CC  
CAS high  
10  
10  
10  
O
Read- or write-cycle  
current  
†§  
V
V
= 5.5 V,  
Minimum cycle  
180  
160  
140  
CC1  
CC  
= 2.4 V (TTL),  
IH  
After 1 memory cycle,  
RAS and xCAS high  
2
2
2
mA  
I
Standby current  
CC2  
V
= V − 0.2 V (CMOS),  
CC  
’45160  
1
1
1
mA  
IH  
After 1 memory cycle,  
RAS and xCAS high  
’45160P  
350  
350  
350  
µA  
V
= 5.5 V,  
Minimum cycle,  
RAS cycling,  
CC  
(RAS only),  
Average refresh  
current (RAS-only  
refresh or CBR)  
I
I
180  
160  
160  
140  
140  
120  
mA  
mA  
CC3  
xCAS high (CBR only),  
RAS low after xCAS low  
V
= 5.5 V,  
t
= MIN,  
CC  
RAS low,  
PC  
xCAS cycling  
†§  
Average page current  
CC4  
Battery-backup  
operating current  
(equivalent refresh  
time is 64 ms);  
CBR only  
t
V
= 125 µs,  
CC  
t
1 µs,  
RC  
RAS  
− 0.2 V V 6.5 V,  
IH  
I
I
500  
400  
500  
400  
500  
400  
µA  
µA  
CC5  
0 V V 0.2 V, W and OE = V  
Address and data stable  
,
IL  
IH  
xCAS < 0.2 V,  
RAS < 0.2 V,  
> 1000 ms  
CAS  
†¶  
Self-refresh current  
CC6  
t
and t  
RAS  
Measured with outputs open  
§
Measured with a maximum of one address change while RAS = V  
Measured with a maximum of one address change while xCAS = V  
For TMS45160P only  
IL  
IH  
capacitance over recommended ranges of supply voltage and operating free-air temperature,  
#
f = 1 MHz (see Note 3)  
PARAMETER  
MIN  
MAX  
UNIT  
pF  
C
C
C
C
C
Input capacitance, A0A8  
Input capacitance, OE  
5
7
7
7
7
i(A)  
pF  
i(OE)  
i(RC)  
i(W)  
o
Input capacitance, xCAS and RAS  
Input capacitance, W  
pF  
pF  
Output capacitance  
pF  
#
Capacitance measurements are made on a sample basis only.  
NOTE 3: = 5 V 0.5 V, and the bias on pins under test is 0 V.  
V
CC  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢉ  
ꢊꢆ ꢊꢋꢅꢃ ꢃ ꢌꢍꢎꢏ ꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕ ꢔꢌꢂ ꢉꢖ ꢖ ꢐ  
ꢐ ꢒꢗ ꢘ ꢁꢓ ꢙ ꢏ ꢘꢗ ꢐ ꢎ ꢁꢌꢘꢙ ꢙꢖ ꢂꢂ ꢁꢖ ꢁꢎ ꢏꢓ ꢖꢂ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
switching characteristics over recommended ranges of supply voltage and operating free-air  
temperature  
’45160-60  
’45160-70  
’45160-80  
’45160P-60  
’45160P-70  
’45160P-80  
PARAMETER  
UNIT  
MIN  
MAX  
15  
MIN  
MAX  
20  
MIN  
MAX  
20  
t
t
t
t
t
t
t
t
Access time from xCAS low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CAC  
Access time from column address  
30  
35  
40  
AA  
Access time from RAS low  
60  
70  
80  
RAC  
OEA  
CPA  
CLZ  
OFF  
OEZ  
Access time from OE low  
15  
20  
20  
Access time from column precharge  
Delay time, xCAS low to output in low impedance  
Output disable time after xCAS high (see Note 4)  
Output disable time after OE high (see Note 4)  
35  
40  
45  
0
0
0
0
0
0
0
0
0
15  
15  
20  
20  
20  
20  
NOTE 4:  
t
and t are specified when the output is no longer driven.  
OEZ  
OFF  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature (see Note 5)  
’45160-60  
’45160-70  
’45160-80  
’45160P-60  
’45160P-70  
’45160P-80  
UNIT  
MIN  
110  
110  
155  
40  
MAX  
MIN  
130  
130  
185  
45  
MAX  
MIN  
150  
150  
205  
50  
MAX  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Cycle time, read (see Note 6)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RC  
Cycle time, write  
WC  
Cycle time, read-write/read-modify-write  
Cycle time, page-mode read or write (see Note 7)  
Cycle time, page-mode read-modify-write  
Pulse duration, RAS low, page mode (see Note 8)  
Pulse duration, RAS low, nonpage mode (see Note 8)  
Pulse duration, xCAS low (see Note 9)  
Pulse duration, xCAS high  
RWC  
PC  
85  
90  
105  
PRWC  
RASP  
RAS  
CAS  
CP  
60 100 000  
70 100 000  
80 100 000  
60  
15  
10  
40  
15  
0
10 000  
10 000  
70  
20  
10  
50  
15  
0
10 000  
10 000  
80  
20  
10  
60  
15  
0
10 000  
10 000  
Pulse duration, RAS high (precharge)  
Pulse duration, write  
RP  
WP  
Setup time, column address before xCAS low  
Setup time, row address before RAS low  
Setup time, data before W low (see Note 10)  
Setup time, read before xCAS low  
ASC  
ASR  
DS  
0
0
0
0
0
0
0
0
0
RCS  
CWL  
Setup time, W low before xCAS high  
Setup time, W low before RAS high  
Setup time, W low before xCAS low (see Note 11)  
15  
15  
0
20  
20  
0
20  
20  
0
t
RWL  
WCS  
t
NOTES: 5. Timing measurements are referenced to V max and V min.  
IL  
IH  
6. All cycle times assume t = 5 ns.  
T
7. To assure t  
min, t  
should be t  
CP  
.
PC  
ASC  
8. In a read-modify-write cycle, t  
9. In a read-modify-write cycle, t  
and t  
and t  
must be observed.  
must be observed.  
RWD  
CWD  
RWL  
CWL  
10. Referenced to the later of xCAS or W in write operations  
11. Early-write operation only  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢊ ꢆ ꢊ ꢋ ꢅꢃ ꢃ ꢌꢍ ꢎ ꢏꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕꢔ ꢌꢂ ꢉ ꢖ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature (continued) (see Note 5)  
’45160-60  
’45160-70  
’45160-80  
’45160P-60  
’45160P-70  
’45160P-80  
UNIT  
MIN  
10  
30  
10  
30  
10  
0
MAX  
MIN  
15  
35  
15  
35  
10  
0
MAX  
MIN  
15  
35  
15  
35  
10  
0
MAX  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Hold time, column address after xCAS low (see Note 10)  
Hold time, data after RAS low (see Note 12)  
Hold time, data after xCAS low (see Note 10)  
Hold time, column address after RAS low (see Note 12)  
Hold time, row address after RAS low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
CAH  
DHR  
DH  
AR  
RAH  
RCH  
RRH  
WCH  
WCR  
CLCH  
AWD  
CHR  
CRP  
CSH  
CSR  
CWD  
OEH  
OED  
ROH  
RAD  
RAL  
CAL  
RCD  
RPC  
Hold time, read after xCAS high (see Note 13)  
Hold time, read after RAS high (see Note 13)  
Hold time, write after xCAS low (see Note 13)  
Hold time, write after RAS low (see Note 14)  
Hold time, xCAS low to xCAS high  
0
0
0
10  
30  
5
15  
35  
5
15  
35  
5
Delay time, column address to W low (see Note 15)  
Delay time, RAS low to xCAS high (see Note 11)  
Delay time, xCAS high to RAS low  
55  
15  
0
65  
15  
0
70  
20  
0
Delay time, RAS low to xCAS high  
60  
10  
40  
15  
15  
10  
15  
30  
30  
20  
0
70  
10  
50  
20  
20  
10  
15  
35  
35  
20  
0
80  
10  
50  
20  
20  
10  
15  
40  
40  
20  
0
Delay time, xCAS low to RAS low (see Note 11)  
Delay time, xCAS low to W low (see Note 15)  
Hold time, OE command  
Delay time, OE high before data at DQ  
Delay time, OE low to RAS high  
Delay time, RAS low to column address (see Note 16)  
Delay time, column address to RAS high  
Delay time, column address to xCAS high  
Delay time, RAS low to xCAS low (see Note 16)  
Delay time, RAS high to xCAS low (see Note 11)  
Delay time, xCAS low to RAS high  
30  
45  
35  
50  
40  
60  
t
t
t
t
t
t
15  
85  
0
20  
100  
0
20  
110  
0
RSH  
RWD  
CPR  
RPS  
RASS  
CHS  
Delay time, RAS low to W low (see Note 15)  
Pulse duration, xCAS precharge before self refresh  
Pulse duration, RAS precharge after self refresh  
Pulse duration, self refresh entry from RAS low  
Hold time, xCAS low after RAS high (for self refresh)  
110  
100  
− 50  
130  
100  
− 50  
150  
100  
− 50  
’45160  
8
64  
50  
8
64  
50  
8
64  
50  
t
Refresh time interval  
Transition time  
ms  
ns  
REF  
T
’45160P  
t
2
2
2
NOTES: 5. Timing measurements are referenced to V max and V min.  
IL  
IH  
10. Referenced in the later of xCAS or W in write operations.  
11. Early-write operation only  
12. The minimum value is measured when t  
is set to t min as a reference.  
RCD  
RCD  
13. Either t  
RRH  
or t must be satisfied for a read cycle.  
RCH  
14. xCBR refresh only  
15. Read-modify-write operation only  
16. Maximum value specified only to assure access time  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢉ  
ꢊꢆ ꢊꢋꢅꢃ ꢃ ꢌꢍꢎꢏ ꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕ ꢔꢌꢂ ꢉꢖ ꢖ ꢐ  
ꢐ ꢒꢗ ꢘ ꢁꢓ ꢙ ꢏ ꢘꢗ ꢐ ꢎ ꢁꢌꢘꢙ ꢙꢖ ꢂꢂ ꢁꢖ ꢁꢎ ꢏꢓ ꢖꢂ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
1.31 V  
V
CC  
= 5 V  
R
= 218 Ω  
R1 = 828 Ω  
L
Output Under Test  
Output Under Test  
R2 = 295 Ω  
C
= 100 pF  
L
C
= 100 pF  
L
(see Note A)  
(see Note A)  
(a) LOAD CIRCUIT  
NOTE A: C includes probe and fixture capacitance.  
(b) ALTERNATE LOAD CIRCUIT  
L
Figure 1. Load Circuits for Timing Parameters  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢊ ꢆ ꢊ ꢋ ꢅꢃ ꢃ ꢌꢍ ꢎ ꢏꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕꢔ ꢌꢂ ꢉ ꢖ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
RC  
t
RAS  
RAS  
t
T
t
t
RP  
CP  
t
RCD  
t
CAS  
UCAS  
t
CLCH  
(see Note A)  
t
CRP  
LCAS  
t
CSH  
t
RSH  
t
RAD  
t
RAH  
t
ASC  
t
CAL  
t
ASR  
t
RAL  
Row  
Column  
Don’t Care  
A0A8  
t
AR  
t
RRH  
t
CAH  
t
RCS  
t
RCH  
Don’t Care  
Don’t Care  
W
t
CAC  
t
t
AA  
OFF  
See Note B  
t
CLZ  
Valid Data Out  
DQ0DQ15  
t
RAC  
t
OEZ  
t
OEA  
t
ROH  
OE  
NOTES: A. In order to hold the address latched by the first xCAS going low, the parameter t  
must be met.  
CLCH  
B. Output can go from the high-impedance state to an invalid-data state prior to the specified access time.  
C.  
t
is measured from xCAS to its corresponding DQx.  
CAC  
D. xCAS order is arbitrary.  
Figure 2. Read-Cycle Timing  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢉ  
ꢊꢆ ꢊꢋꢅꢃ ꢃ ꢌꢍꢎꢏ ꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕ ꢔꢌꢂ ꢉꢖ ꢖ ꢐ  
ꢐ ꢒꢗ ꢘ ꢁꢓ ꢙ ꢏ ꢘꢗ ꢐ ꢎ ꢁꢌꢘꢙ ꢙꢖ ꢂꢂ ꢁꢖ ꢁꢎ ꢏꢓ ꢖꢂ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
WC  
t
RAS  
RAS  
t
T
t
RP  
t
RCD  
t
UCAS  
CAS  
t
CLCH  
(see Note A)  
t
CP  
LCAS  
t
ASR  
t
CRP  
t
CSH  
t
RSH  
t
RAH  
t
ASC  
t
CAL  
t
RAL  
A0A8  
Row  
Column  
Don’t Care  
t
AR  
t
CAH  
t
CWL  
t
RAD  
t
RWL  
Don’t Care  
Don’t Care  
W
t
WCR  
t
WP  
t
(see Note B)  
DH  
t
DHR  
DQ0DQ15  
Valid Data In  
t
DS  
t
OED  
t
OEH  
OE  
NOTES: A. In order to hold the address latched by the first xCAS going low, the parameter t  
B. Later of xCAS or W in write operations  
must be met.  
CLCH  
C. xCAS order is arbitrary.  
Figure 3. Write-Cycle Timing  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢊ ꢆ ꢊ ꢋ ꢅꢃ ꢃ ꢌꢍ ꢎ ꢏꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕꢔ ꢌꢂ ꢉ ꢖ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
WC  
t
RAS  
RAS  
t
T
t
RP  
t
RCD  
t
CSH  
t
CRP  
t
CAS  
UCAS  
t
RSH  
t
CLCH  
(see Note A)  
LCAS  
t
RAD  
t
CP  
t
ASR  
t
RAH  
t
ASC  
t
CAL  
t
RAL  
Column  
Address  
A0A8  
Row Address  
Don’t Care  
Don’t Care  
Don’t Care  
t
CAH  
t
AR  
t
WCS  
t
WCH  
W
Don’t Care  
t
CWL  
t
RWL  
t
WCR  
t
WP  
Don’t Care  
DQ0DQ15  
Valid Data In  
t
DH  
t
DHR  
t
DS  
OE  
Don’t Care  
NOTES: A. In order to hold the address latched by the first xCAS going low, the parameter t  
B. xCAS order is arbitrary.  
must be met.  
CLCH  
Figure 4. Early-Write-Cycle Timing  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢉ  
ꢊꢆ ꢊꢋꢅꢃ ꢃ ꢌꢍꢎꢏ ꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕ ꢔꢌꢂ ꢉꢖ ꢖ ꢐ  
ꢐ ꢒꢗ ꢘ ꢁꢓ ꢙ ꢏ ꢘꢗ ꢐ ꢎ ꢁꢌꢘꢙ ꢙꢖ ꢂꢂ ꢁꢖ ꢁꢎ ꢏꢓ ꢖꢂ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
RWC  
t
RAS  
RAS  
t
RP  
t
T
t
RCD  
t
CAS  
UCAS  
t
CSH  
t
CRP  
t
t
CLCH  
(see Note A)  
AR  
t
CP  
t
RSH  
t
LCAS  
RAD  
t
RAH  
t
ASC  
t
ASR  
Column  
A0A8  
Row  
Don’t Care  
t
t
CAH  
CWL  
t
AWD  
t
RWL  
t
CWD  
t
t
WP  
RCS  
W
Don’t Care  
Don’t Care  
t
RWD  
See Note B  
DQ8DQ15  
Don’t Care  
Valid Out  
Don’t Care  
t
AA  
t
DH  
t
CAC  
t
DS  
t
RAC  
t
OEZ  
t
t
OEA  
OE  
OED  
See Note B  
DQ0DQ7  
Don’t Care  
Valid Out  
Valid In  
Don’t Care  
NOTES: A. In order to hold the address latched by the first xCAS going low, the parameter t  
CLCH  
must be met.  
B. Output can go from the high-impedance state to an invalid-data state prior to the specified access time.  
C. xCAS order is arbitrary.  
Figure 5. Read-Modify-Write-Cycle Timing  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢊ ꢆ ꢊ ꢋ ꢅꢃ ꢃ ꢌꢍ ꢎ ꢏꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕꢔ ꢌꢂ ꢉ ꢖ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
RP  
t
RAS  
RASP  
t
RCD  
t
CRP  
UCAS  
t
RSH  
t
PC  
t
t
CSH  
CP  
t
t
LCAS  
CAS  
ASR  
t
AR  
t
RAH  
t
CAL  
t
ASC  
t
t
CAH  
Don’t Care  
RAL  
A0A8  
W
Row  
RAD  
Column  
Column  
Don’t Care  
t
RRH  
t
t
RCH  
Don’t  
Care  
Don’t  
Care  
t
CAC  
(see Note A)  
t
AA  
t
RCS  
t
RAC  
t
CLZ  
t
OFF  
Valid  
Out  
DQ8DQ15  
DQ0DQ7  
See Note B  
CPA  
t
OEZ  
t
t
AA  
Valid  
Out  
Valid  
Out  
t
OEA  
OE  
NOTES: A.  
t
is measured from xCAS to its corresponding DQx.  
CAC  
B. Access time is t  
or t dependent.  
AA  
CPA  
C. A write cycle or read-modify-write cycle can be mixed with the read cycles as long as the write and read-modify-write timing  
specifications are not violated.  
D. xCAS order is arbitrary.  
E. Output can go from the high-impedance state to an invalid-data state prior to the specified access time.  
Figure 6. Enhanced-Page-Mode Read-Cycle Timing  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢉ  
ꢊꢆ ꢊꢋꢅꢃ ꢃ ꢌꢍꢎꢏ ꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕ ꢔꢌꢂ ꢉꢖ ꢖ ꢐ  
ꢐ ꢒꢗ ꢘ ꢁꢓ ꢙ ꢏ ꢘꢗ ꢐ ꢎ ꢁꢌꢘꢙ ꢙꢖ ꢂꢂ ꢁꢖ ꢁꢎ ꢏꢓ ꢖꢂ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
RP  
t
RAS  
RASP  
t
RSH  
UCAS  
t
CRP  
t
CLCH  
(see Note A)  
t
PC  
t
RCD  
t
CP  
t
CSH  
t
LCAS  
CAS  
t
ASR  
t
CAH  
t
AR  
t
CAL  
t
t
ASC  
RAL  
t
RAH  
A0A8  
Row  
RAD  
Column  
Don’t Care  
Column  
Don’t Care  
t
t
CWL  
t
t
CWL  
t
t
WP  
RWL  
WCR  
t
DS  
(see Note B)  
t
WCH  
Don’t Care  
W
Don’t Care  
Don’t Care  
t
DHR  
DQ8DQ15  
Valid In  
Valid In  
Valid In  
t
DH  
Valid In  
OED  
See Note B  
DQ0DQ7  
OE  
t
NOTES: A. In order to hold the address latched by the first xCAS going low, the parameter t  
B. Referenced to xCAS or W, whichever occurs last  
C. xCAS order is arbitrary.  
must be met.  
CLCH  
D. A read cycle or read-modify-write cycle can be mixed with the write cycles as long as the read and read-modify-write timing  
specifications are not violated.  
Figure 7. Enhanced-Page-Mode Write-Cycle Timing  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢊ ꢆ ꢊ ꢋ ꢅꢃ ꢃ ꢌꢍ ꢎ ꢏꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕꢔ ꢌꢂ ꢉ ꢖ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
RP  
t
RASP  
RAS  
UCAS  
LCAS  
t
CSH  
t
RSH  
t
RCD  
t
CRP  
t
PRWC  
t
CAS  
t
CP  
t
CLCH  
(see Note A)  
t
ASR  
ASC  
t
t
t
CAH  
RAD  
A0A8  
Row  
Column  
Column  
t
t
CWD  
t
RAH  
CWL  
t
WP  
t
AWD  
t
RWL  
t
RWD  
W
t
CAC  
(see Note B)  
t
RCS  
t
t
OEH  
CPA  
t
DS  
t
AA  
t
RAC  
CLZ  
Valid Out  
Valid In  
See Note C  
t
Valid In  
DQ0DQ15  
Valid Out  
OEA  
t
OEH  
t
t
OEZ  
t
OED  
OE  
NOTES: A. In order to hold the address latched by the first xCAS going low, the parameter t  
CLCH  
must be met.  
B.  
t
is measured from xCAS to its corresponding DQx.  
CAC  
C. Output can go from the high-impedance state to an invalid data state prior to the specified access time.  
D. xCAS order is arbitrary.  
E. A read or write cycle can be intermixed with read-modify-write cycles as long as the read and write cycle timing specifications are  
not violated.  
Figure 8. Enhanced-Page-Mode Read-Modify-Write-Cycle Timing  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢉ  
ꢊꢆ ꢊꢋꢅꢃ ꢃ ꢌꢍꢎꢏ ꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕ ꢔꢌꢂ ꢉꢖ ꢖ ꢐ  
ꢐ ꢒꢗ ꢘ ꢁꢓ ꢙ ꢏ ꢘꢗ ꢐ ꢎ ꢁꢌꢘꢙ ꢙꢖ ꢂꢂ ꢁꢖ ꢁꢎ ꢏꢓ ꢖꢂ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
RC  
t
RAS  
RAS  
xCAS  
t
CRP  
t
RP  
t
t
T
RPC  
See Note A  
Don’t Care  
Don’t Care  
t
ASR  
t
RAH  
Row  
Don’t Care  
Row  
A0A8  
Don’t Care  
W
Hi-Z  
DQ0DQ15  
Don’t Care  
OE  
NOTE A: All xCAS must be high.  
Figure 9. RAS-Only Refresh Timing  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢊ ꢆ ꢊ ꢋ ꢅꢃ ꢃ ꢌꢍ ꢎ ꢏꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕꢔ ꢌꢂ ꢉ ꢖ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
Refresh Cycle  
Memory Cycle  
Refresh Cycle  
t
t
RP  
RAS  
t
RAS  
RAS  
t
t
RP  
CHR  
t
CAS  
xCAS  
t
ASR  
RAH  
t
t
ASC  
t
CAH  
A0A8  
W
Row Col  
Don’t Care  
t
RRH  
t
RCS  
Don’t Care  
t
CAC  
t
t
AA  
OFF  
t
RAC  
DQ0DQ15  
OE  
Valid Data  
t
t
OEZ  
OEA  
Figure 10. Hidden-Refresh-Cycle Timing  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢉ  
ꢊꢆ ꢊꢋꢅꢃ ꢃ ꢌꢍꢎꢏ ꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕ ꢔꢌꢂ ꢉꢖ ꢖ ꢐ  
ꢐ ꢒꢗ ꢘ ꢁꢓ ꢙ ꢏ ꢘꢗ ꢐ ꢎ ꢁꢌꢘꢙ ꢙꢖ ꢂꢂ ꢁꢖ ꢁꢎ ꢏꢓ ꢖꢂ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
RC  
t
RP  
t
RAS  
RAS  
t
CSR  
t
t
CHR  
RPC  
t
T
xCAS  
Don’t Care  
Don’t Care  
Don’t Care  
W
A0A8  
OE  
DQ0DQ15  
Hi-Z  
NOTE A: Any xCAS can be used.  
Figure 11. Automatic-CBR- Refresh-Cycle Timing  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢊ ꢆ ꢊ ꢋ ꢅꢃ ꢃ ꢌꢍ ꢎ ꢏꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕꢔ ꢌꢂ ꢉ ꢖ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
RASS  
RAS  
t
t
RPS  
CSR  
t
RPC  
t
CHS  
xCAS  
t
CPR  
Don’t Care  
Don’t Care  
Don’t Care  
A0A8  
W
OE  
Hi-Z  
DQ0DQ15  
NOTE A: Any xCAS can be used.  
Figure 12. Self-Refresh-Cycle Timing  
device symbolization (TMS45160 illustrated)  
TI  
-SS  
Speed ( -60, - 70, -80)  
Low-Power/Self-Refresh Designator (Blank or P)  
Package Code  
TMS45160 DZ  
W
B
Y
M LLL  
P
Asembly Site Code  
Lot Traceability Code  
Month Code  
Year Code  
Die Revision Code  
Wafer Fab Code  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ ꢇꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢉ  
ꢊꢆ ꢊꢋꢅꢃ ꢃ ꢌꢍꢎꢏ ꢐ ꢑꢒ ꢅ ꢆ ꢌꢑꢓ ꢀ ꢔꢓ ꢕ ꢔꢌꢂ ꢉꢖ ꢖ ꢐ  
ꢐ ꢒꢗ ꢘ ꢁꢓ ꢙ ꢏ ꢘꢗ ꢐ ꢎ ꢁꢌꢘꢙ ꢙꢖ ꢂꢂ ꢁꢖ ꢁꢎ ꢏꢓ ꢖꢂ  
SMHS160D − AUGUST 1992 − REVISED JUNE 1995  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

TMS45160-60DGE

256KX16 FAST PAGE DRAM, 60ns, PDSO40, TSOP-44/40
TI

TMS45160-60DZ

256KX16 FAST PAGE DRAM, 60ns, PDSO40, 0.400 INCH, PLASTIC, SOJ-40
TI

TMS45160-70DZ

256KX16 FAST PAGE DRAM, 70ns, PDSO40, 0.400 INCH, PLASTIC, SOJ-40
TI

TMS45160-80DZ

256KX16 FAST PAGE DRAM, 80ns, PDSO40, 0.400 INCH, PLASTIC, SOJ-40
TI

TMS45160DZ-70

256KX16 FAST PAGE DRAM, 70ns, PDSO40, 0.400 INCH, PLASTIC, SOJ-40
TI

TMS45160DZ-80

IC 256K X 16 FAST PAGE DRAM, 80 ns, PDSO40, 0.400 INCH, PLASTIC, SOJ-40, Dynamic RAM
TI

TMS45160L-10DGE

256KX16 FAST PAGE DRAM, 100ns, PDSO40, PLASTIC, TSOP-44/40
TI

TMS45160L-10DZ

256KX16 FAST PAGE DRAM, 100ns, PDSO40
TI

TMS45160L-70DGE

256KX16 FAST PAGE DRAM, 70ns, PDSO40, PLASTIC, TSOP-44/40
TI

TMS45160L-70DZ

IC 256K X 16 FAST PAGE DRAM, 70 ns, PDSO40, Dynamic RAM
TI

TMS45160L-80DGE

256KX16 FAST PAGE DRAM, 80ns, PDSO40, PLASTIC, TSOP-44/40
TI

TMS45160L-80DZ

256KX16 FAST PAGE DRAM, 80ns, PDSO40
TI