TMS470R1B768PGE [TI]

32-BIT, FLASH, 60MHz, RISC MICROCONTROLLER, PQFP144, PLASTIC, LQFP-144;
TMS470R1B768PGE
型号: TMS470R1B768PGE
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

32-BIT, FLASH, 60MHz, RISC MICROCONTROLLER, PQFP144, PLASTIC, LQFP-144

时钟 微控制器 外围集成电路
文件: 总49页 (文件大小:524K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
16/32-Bit RISC Flash Microcontroller  
1
FEATURES  
Ten Communication Interfaces:  
23  
High-Performance Static CMOS Technology  
Five Serial Peripheral Interfaces (SPIs)  
255 Programmable Baud Rates  
TMS470R1x 16/32-Bit RISC Core (ARM7TDM™)  
60-MHz (Pipeline Mode)  
Two Serial Communications Interfaces  
(SCIs)  
Independent 16/32-Bit Instruction Set  
Open Architecture With Third-Party Support  
Built-In Debug Module  
224 Selectable Baud Rates  
Asynchronous/Isosynchronous Modes  
Three High-End CAN Controllers (HECCs)  
Utilizes Big-Endian Format  
32-Mailbox Capacity Each  
Integrated Memory  
Fully Compliant With CAN Protocol,  
Version 2.0B  
768K-Byte Program Flash  
3 Banks With 18 Contiguous Sectors  
High-End Timer (HET)  
Internal State Machine for Programming  
and Erase  
32 Programmable I/O Channels:  
24 High-Resolution Pins  
48K-Byte Static RAM (SRAM)  
8 Standard-Resolution Pins  
15 Dedicated GIO Pins, 1 Input-Only GIO Pin,  
and 71 Additional Peripheral I/Os  
High-Resolution Share Feature (XOR)  
High-End Timer RAM  
Operating Features  
Core Supply Voltage (VCC): 1.81–2.05 V  
I/O Supply Voltage (VCCIO): 3.0–3.6 V  
Low-Power Modes: STANDBY and HALT  
Extended Industrial Temperature Range  
– 128-Instruction Capacity  
16-Channel 10-Bit Multi-Buffered ADC  
(MibADC)  
256-Word FIFO Buffer  
Single- or Continuous-Conversion Modes  
470+ System Module  
1.55-µs Minimum Sample and Conversion  
Time  
32-Bit Address Space Decoding  
Bus Supervision for Memory and  
Peripherals  
Calibration Mode and Self-Test Features  
Eight External Interrupts  
Analog Watchdog (AWD) Timer  
Real-Time Interrupt (RTI)  
Flexible Interrupt Handling  
External Clock Prescale (ECP) Module  
System Integrity and Failure Detection  
Interrupt Expansion Module (IEM)  
Programmable Low-Frequency External  
Clock (CLK)  
Direct Memory Access (DMA) Controller  
32 Control Packets and 16 Channels  
On-Chip Scan-Base Emulation Logic, IEEE  
Standard 1149.1(1) (JTAG) Test-Access Port  
Zero-Pin Phase-Locked Loop (ZPLL)-Based  
Clock Module With Prescaler  
144-Pin Plastic Low-Profile Quad Flatpack  
(PGE Suffix)  
Multiply-by-4 or -8 Internal ZPLL Option  
ZPLL Bypass Mode  
(1)  
The test-access port is compatible with the IEEE Standard  
1149.1-1990, IEEE Standard Test-Access Port and Boundary  
Scan Architecture specification. Boundary scan is not  
supported on this device.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
ARM7TDM is a trademark of Advanced RISC Machines Limited (ARM).  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2005–2008, Texas Instruments Incorporated  
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
TMS470R1B768 144-Pin PGE Package (Top View)  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
ADIN[11]  
ADIN[14]  
ADIN[10]  
ADIN[13]  
ADIN[9]  
AWD  
HET[18]  
HET[19]  
HET[20]  
HET[21]  
HET[22]  
SPI2SCS  
SPI2ENA  
SPI2SOMI  
SPI2SIMO  
SPI2CLK  
SPI5ENA  
SPI5CLK  
SPI5SOMI  
SPI5SIMO  
CAN2HRX  
CAN2HTX  
ADIN[12]  
ADIN[8]  
AD  
REFHI  
AD  
REFLO  
V
CCAD  
V
SSAD  
TMS  
TMS2  
GIOC[0]  
HET[23]  
HET[25]  
HET[26]  
HET[27]  
V
V
V
V
CC  
V
V
SS  
SS  
CC  
CCIO  
HET[0]  
HET[1]  
SSIO  
HET[24]  
HET[31]  
HET[30]  
HET[29]  
HET[28]  
SPI5SCS  
SCI2CLK  
SCI2TX  
SCI2RX  
GIOA[3]/INT3  
GIOA[2]/INT2  
GIOA[1]/INT1/ECLK  
GIOA[0]/INT0  
TEST  
V
V
SS  
CC  
FLTP2  
FLTP1  
V
CCP  
V
SS  
HET[2]  
HET[3]  
HET[4]  
HET[5]  
HET[6]  
HET[7]  
GIOC[1]  
GIOC[2]  
(A)  
TRST  
A. GIOA[0]/INT0 (pin 39) is an input-only GIO pin.  
2
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
DESCRIPTION  
The TMS470R1B768(1) device is a member of the Texas Instruments (TI) TMS470R1x family of general-purpose  
16/32-bit reduced instruction set computer (RISC) microcontrollers. The B768 microcontroller offers high  
performance utilizing the high-speed ARM7TDMI 16/32-bit RISC central processing unit (CPU), resulting in a  
high instruction throughput while maintaining greater code efficiency. The ARM7TDMI 16/32-bit RISC CPU views  
memory as a linear collection of bytes numbered upwards from zero. The TMS470R1B768 utilizes the big-endian  
format where the most significant byte of a word is stored at the lowest numbered byte and the least significant  
byte at the highest numbered byte.  
High-end embedded control applications demand more performance from their controllers while maintaining low  
costs. The B768 RISC core architecture offers solutions to these performance and cost demands while  
maintaining low power consumption.  
The B768 device contains the following:  
ARM7TDMI 16/32-Bit RISC CPU  
TMS470R1x system module (SYS) with 470+ enhancements [including an interrupt expansion module (IEM)  
and a 16-channel direct-memory access (DMA) controller]  
768K-byte flash  
48K-byte SRAM  
Zero-pin phase-locked loop (ZPLL) clock module  
Analog watchdog (AWD) timer  
Real-time interrupt (RTI) module  
Five serial peripheral interface (SPI) modules  
Two serial communications interface (SCI) modules  
Three high-end CAN controller (HECC) modules  
10-bit multi-buffered analog-to-digital converter (MibADC) with 16 input channels  
High-end timer (HET) controlling 32 I/Os  
External clock prescale (ECP) module  
Up to 86 I/O pins and 1 input-only pin  
The functions performed by the 470+ system module (SYS) include:  
Address decoding  
Memory protection  
Memory and peripherals bus supervision  
Reset and abort exception management  
Expanded interrupt capability with prioritization for all internal interrupt sources  
Device clock control  
Direct-memory access (DMA) and control  
Parallel signature analysis (PSA)  
This data sheet includes device-specific information such as memory and peripheral select assignment, interrupt  
priority, and a device memory map. For a more detailed functional description of the SYS module, see the  
TMS470R1x System Module Reference Guide (literature number SPNU189). For a more detailed functional  
description of the IEM module, see the TMS470R1x Interrupt Expansion Module (IEM) Reference Guide  
(literature number SPNU211). And for a more detailed functional description of the DMA module, see the  
TMS470R1x Direct-Memory Access (DMA) Controller Reference Guide (literature number SPNU210).  
The B768 memory includes general-purpose SRAM supporting single-cycle read/write accesses in byte,  
half-word, and word modes.  
The flash memory on this device is a nonvolatile, electrically erasable and programmable memory implemented  
with a 32-bit-wide data bus interface. The flash operates with a system clock frequency of up to 24 MHz. When  
in pipeline mode, the flash operates with a system clock frequency of up to 60 MHz. For more detailed  
information on the F05 devices flash, see the F05 flash section of this data sheet.  
(1) Throughout the remainder of this document, TMS470R1B768 shall be referred to as either the full device name or B768.  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
The B768 device has ten communication interfaces: five SPIs, two SCIs, and three HECCs. The SPI provides a  
convenient method of serial interaction for high-speed communications between similar shift-register type  
devices. The SCI is a full-duplex, serial I/O interface intended for asynchronous communication between the  
CPU and other peripherals using the standard non-return-to-zero (NRZ) format. The HECC uses a serial,  
multimaster communication protocol that efficiently supports distributed real-time control with robust  
communication rates of up to 1 megabit per second (Mbps). The HECC is ideal for applications operating in  
noisy and harsh environments (e.g., industrial fields) that require reliable serial communication or multiplexed  
wiring. For more detailed functional information on the SPI, SCI, and HECC, see the specific reference guides for  
these modules (literature numbers SPNU195, SPNU196, and SPNU197, respectively).  
The HET is an advanced intelligent timer that provides sophisticated timing functions for real-time applications.  
The timer is software controlled, using a reduced instruction set, with a specialized timer micromachine and an  
attached I/O port. The HET can be used for compare, capture, or general-purpose I/O. It is especially well suited  
for applications requiring multiple sensor information and drive actuators with complex and accurate time pulses.  
For more detailed functional information on the HET, see the TMS470R1x High-End Timer (HET) Reference  
Guide (literature number SPNU199).  
The B768 HET peripheral contains the XOR-share feature. This feature allows two adjacent HET high-resolution  
channels to be XORed together, making it possible to output smaller pulses than a standard HET. For more  
detailed information on the HET XOR-share feature, see the TMS470R1x High-End Timer (HET) Reference  
Guide (literature number SPNU199).  
The B768 device has a 10-bit-resolution, 16-channel sample-and-hold MibADC. The MibADC channels can be  
converted individually or can be grouped by software for sequential conversion sequences. There are three  
separate groupings, two of which are triggerable by an external event. Each sequence can be converted once  
when triggered or configured for continuous conversion mode. For more detailed functional information on the  
MibADC, see the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature  
number SPNU206).  
The zero-pin phase-locked loop (ZPLL) clock module contains a phase-locked loop, a clock-monitor circuit, a  
clock-enable circuit, and a prescaler (with prescale values of 1–8). The function of the ZPLL is to multiply the  
external frequency reference to a higher frequency for internal use. The ZPLL provides ACLK to the system  
(SYS) module. The SYS module subsequently provides system clock (SYSCLK), real-time interrupt clock  
(RTICLK), CPU clock (MCLK), and peripheral interface clock (ICLK) to all other B768 device modules. For more  
detailed functional information on the ZPLL, see the TMS470R1x Zero-Pin Phase-Locked Loop (ZPLL) Clock  
Module Reference Guide (literature number SPNU212).  
NOTE:  
ACLK should not be confused with the MibADC internal clock, ADCLK. ACLK is the  
continuous system clock from an external resonator/crystal reference.  
The B768 device also has an external clock prescaler (ECP) module that when enabled, outputs a continuous  
external clock (ECLK) on a specified GIO pin. The ECLK frequency is a user-programmable ratio of the  
peripheral interface clock (ICLK) frequency. For more detailed functional information on the ECP, see the  
TMS470R1x External Clock Prescaler (ECP) Reference Guide (literature number SPNU202).  
4
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
Device Characteristics  
Table 1 identifies all the characteristics of the TMS470R1B768 device except the SYSTEM and CPU, which are  
generic.  
Table 1. Device Characteristics  
DEVICE DESCRIPTION  
CHARACTERISTICS  
COMMENTS For B768  
TMS470R1B768  
MEMORY  
For the number of memory selects on this device, see Table 3, Memory Selection Assignment.  
INTERNAL MEMORY  
Pipeline/non-pipeline  
Flash is pipeline-capable.  
The B768 RAM is implemented in one 48K array selected by two  
memory-select signals (see Table 3, Memory Selection Assignment).  
768K-byte flash  
48K-byte SRAM  
PERIPHERALS  
For the device-specific interrupt priority configurations, see Table 7, Interrupt Priority (IEM and CIM). And for the 1K peripheral address  
ranges and their peripheral selects, see Table 5, B768 Peripherals, System Module, and Flash Base Addresses.  
CLOCK  
ZPLL  
Zero-pin PLL has no external loop filter pins.  
GENERAL-PURPOSE I/Os  
15 I/O  
1 input only  
Port A has eight (8) external pins, port B has one (1), port C has  
three (3), and port D has four (4).  
ECP  
YES  
SCI  
2 (3 pin)  
3 HECCs  
5 (5 pin)  
SCI1 and SCI2  
CAN (HECC and/or SCC)  
SPI (5-pin, 4-pin or 3-pin)  
Three HECCs (HECC1, HECC2, and HECC3)  
SPI1, SPI2, SPI3, SPI4, and SPI5  
The B768 device has both the logic and registers for a full 32-I/O  
HET implemented and all 32 pins are available externally.  
The high-resolution (HR) SHARE feature allows even HR pins to  
share the next higher odd HR pin structures. This HR sharing is  
independent of whether or not the odd pin is available externally. If  
an odd pin is available externally and shared, then the odd pin can  
only be used as a general-purpose I/O. For more information on HR  
SHARE, see the TMS470R1x High-End Timer (HET) Reference  
Guide (literature number SPNU199).  
HET with XOR Share  
32 I/O  
HET RAM  
MibADC  
128-instruction capacity  
The B768 device has both the logic and registers for a full  
16-channel MibADC implemented and all 16 pins are available  
externally.  
10-bit, 16-channel, 256-word  
FIFO  
CORE VOLTAGE  
I/O VOLTAGE  
PINS  
1.81V to 2.05 V  
3.0 V to 3.6 V  
144  
PACKAGE  
PGE  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TMS470R1B768  
 
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
Functional Block Diagram  
External  
Pins  
External Pins  
OSCIN  
ZPLL  
OSCOUT  
PLLDIS  
V
CCP  
FLASH  
(768K Bytes)  
18 Sectors  
RAM  
(48K Bytes)  
FLTP1  
FLTP2  
ADIN[15:0]  
ADEVT  
MibADC  
with  
256−Word  
AD  
AD  
REFHI  
CPU Address/Data Bus  
REFLO  
FIFO  
V
CCAD  
V
SSAD  
HET with  
XOR Share  
(128−Word)  
HET [0:23]  
HET[24:31]  
TRST  
TCK  
TMS470R1x  
CPU  
TDI  
TDO  
TMS  
TMS2  
RST  
CAN1HTX  
CAN1HRX  
HECC1  
HECC2  
HECC3  
CAN2HTX  
CAN2HRX  
TMS470R1x System Module  
AWD  
CAN3HTX  
CAN3HRX  
TEST  
PORRST  
CLKOUT  
Interrupt  
DMA Controller  
16 Channels  
Expansion  
SCI1CLK  
SCI1TX  
SCI1TX  
Module (IEM)  
SCI1  
SCI2  
SCI2CLK  
SCI2TX  
SCI2TX  
GIOD[0:3]  
GIOC[0:2]  
GIOB[7]  
GIOA[2:7]/INT[2:7]  
GIOA[0]/INT[0]  
GIO  
(A)  
SPI5  
SPI4  
SPI3  
SPI2  
SPI1  
GIOA[1]/INT[1]/  
ECLK  
ECP  
A. GIOA[0]/INT[0] is an input-only GIO pin.  
6
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
Table 2. Terminal Functions  
TERMINAL  
NAME  
INTERNAL  
PULLUP/  
TYPE(1)(2)  
DESCRIPTION  
PULLDOWN(3)  
NO.  
HIGH-END TIMER (HET)  
HET[0]  
129  
HET[1]  
130  
137  
138  
139  
140  
141  
142  
79  
HET[2]  
HET[3]  
HET[4]  
HET[5]  
HET[6]  
HET[7]  
HET[8]  
HET[9]  
80  
HET[10]  
HET[11]  
HET[12]  
HET[13]  
HET[14]  
HET[15]  
HET[16]  
HET[17]  
HET[18]  
HET[19]  
HET[20]  
HET[21]  
HET[22]  
HET[23]  
HET[24]  
HET[25]  
HET[26]  
HET[27]  
HET[28]  
HET[29]  
HET[30]  
HET[31]  
29  
28  
The B768 device has both the logic and registers for a full 32-I/O HET  
implemented and all 32 pins are available externally.  
27  
26  
Timer input capture or output compare. The HET[31:0] applicable pins can be  
programmed as general-purpose input/output (GIO) pins. HET[23:0] are  
high-resolution pins and HET[31:24] are standard-resolution pins.  
25  
24  
The high-resolution (HR) SHARE feature allows even HR pins to share the  
next higher odd-numbered HR pin structures. This HR sharing is independent  
of whether or not the odd pin is available externally. If an odd pin is available  
externally and shared, then the odd pin can only be used as a  
general-purpose I/O. For more information on HR SHARE, see the  
TMS470R1x High-End Timer (HET) Reference Guide (literature number  
SPNU199).  
3.3-V I/O  
IPD (20 µA)  
23  
22  
71  
70  
69  
68  
67  
123  
51  
124  
125  
126  
47  
48  
49  
50  
HIGH-END CAN CONTROLLER 1 (HECC1)  
CAN1HTX  
CAN1HRX  
88  
87  
3.3-V I/O  
3.3-V I/O  
IPU (20 µA)  
HECC1 transmit pin or GIO pin  
HECC1 receive pin or GIO pin  
HIGH-END CAN CONTROLLER 2 (HECC2)  
CAN2HTX  
CAN2HRX  
56  
57  
3.3-V I/O  
3.3-V I/O  
IPU (20 µA)  
HECC2 transmit pin or GIO pin  
HECC2 receive pin or GIO pin  
HIGH-END CAN CONTROLLER 3 (HECC3)  
CAN3HTX  
CAN3HRX  
78  
77  
3.3 V I/O  
3.3 V I/O  
IPU (20 µA)  
HECC3 transmit pin or GIO pin  
HECC3 receive pin or GIO pin  
(1) I = input, O = output, PWR = power, GND = ground, REF = reference voltage, NC = no connect  
(2) All I/O pins, except RST , are configured as inputs while PORRST is low and immediately after PORRST goes high.  
(3) IPD = internal pulldown, IPU = internal pullup (all internal pullups and pulldowns are active on input pins, independent of the PORRST  
state.)  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
Table 2. Terminal Functions (continued)  
TERMINAL  
NAME  
INTERNAL  
PULLUP/  
TYPE(1)(2)  
DESCRIPTION  
PULLDOWN(3)  
NO.  
GENERAL-PURPOSE I/O (GIO)  
GIOA[0]/INT0  
39  
3.3-V I  
GIOA[1]/INT1  
/ECLK  
40  
GIOA[2]/INT2  
GIOA[3]/INT3  
GIOA[4]/INT4  
GIOA[5]/INT5  
GIOA[6]/INT6  
GIOA[7]/INT7  
GIOB[7]  
41  
42  
36  
35  
General-purpose input/output pins.  
34  
GIOA[0]/INT0 is an input-only pin. GIOA[7:0]/INT[7:0] are interrupt-capable  
pins.  
33  
IPD (20 µA)  
3.3-V I/O  
84  
The GIOA[1]/INT1/ECLK pin is multiplexed with the external clock-out function  
of the external clock prescale (ECP) module.  
GIOC[0]  
122  
143  
144  
21  
GIOC[1]  
GIOC[2]  
GIOD[0]  
GIOD[1]  
20  
GIOD[2]  
19  
GIOD[3]  
18  
MULTI-BUFFERED ANALOG-TO-DIGITAL CONVERTER (MibADC)  
3.3-V I/O IPD (20 µA) MibADC event input. ADEVT can be programmed as a GIO pin.  
ADEVT  
ADIN[0]  
ADIN[1]  
ADIN[2]  
ADIN[3]  
ADIN[4]  
ADIN[5]  
ADIN[6]  
ADIN[7]  
ADIN[8]  
ADIN[9]  
ADIN[10]  
99  
108  
107  
106  
105  
104  
102  
101  
100  
115  
113  
111  
3.3-V I  
MibADC analog input pins  
8
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
Table 2. Terminal Functions (continued)  
TERMINAL  
NAME  
INTERNAL  
PULLUP/  
TYPE(1)(2)  
DESCRIPTION  
PULLDOWN(3)  
NO.  
MULTI-BUFFERED ANALOG-TO-DIGITAL CONVERTER (MibADC) (CONTINUED)  
ADIN[11]  
109  
ADIN[12]  
ADIN[13]  
ADIN[14]  
ADIN[15]  
114  
112  
110  
103  
3.3-V I  
MibADC analog input pins  
3.3-V  
REF I  
ADREFHI  
ADREFLO  
116  
117  
MibADC module high-voltage reference input  
MibADC module low-voltage reference input  
GND  
REF I  
3.3-V  
PWR  
VCCAD  
VSSAD  
118  
119  
MibADC analog supply voltage  
MibADC analog ground reference  
GND  
SERIAL PERIPHERAL INTERFACE 1 (SPI1)  
SPI1CLK  
SPI1ENA  
SPI1SCS  
SPI1SIMO  
SPI1SOMI  
5
1
2
3
4
SPI1 clock. SPI1CLK can be programmed as a GIO pin.  
SPI1 chip enable. SPI1ENA can be programmed as a GIO pin.  
SPI1 slave chip select. SPI1SCS can be programmed as a GIO pin.  
SPI1 data stream. Slave in/master out. Can be programmed as a GIO pin.  
SPI1 data stream. Slave out/master in. Can be programmed as a GIO pin.  
3.3-V I/O  
IPD (20 µA)  
SERIAL PERIPHERAL INTERFACE 2 (SPI2)  
SPI2 clock. SPI2CLK can be programmed as a GIO pin.  
SPI2CLK  
SPI2ENA  
SPI2SCS  
SPI2SIMO  
SPI2SOMI  
62  
65  
66  
63  
64  
SPI2 chip enable. SPI2ENA can be programmed as a GIO pin.  
3.3-V I/O  
3.3-V I/O  
3.3-V I/O  
IPD (20 µA)  
SPI2 slave chip select. SPI2SCS can be programmed as a GIO pin.  
SPI2 data stream. Slave in/master out. Can be programmed as a GIO pin.  
SPI2 data stream. Slave out/master in. Can be programmed as a GIO pin.  
SERIAL PERIPHERAL INTERFACE 3 (SPI3)  
SPI3 clock. SPI3CLK can be programmed as a GIO pin.  
SPI3CLK  
SPI3ENA  
SPI3SCS  
SPI3SIMO  
SPI3SOMI  
94  
98  
97  
96  
95  
SPI3 chip enable. SPI3ENA can be programmed as a GIO pin.  
IPD (20 µA)  
SPI3 slave chip select. SPI3SCS can be programmed as a GIO pin.  
SPI3 data stream. Slave in/master out. Can be programmed as a GIO pin.  
SP3 data stream. Slave out/master in. Can be programmed as a GIO pin.  
SERIAL PERIPHERAL INTERFACE 4 (SPI4)  
SPI4 clock. SPI4CLK can be programmed as a GIO pin.  
SPI4CLK  
SPI4ENA  
SPI4SCS  
SPI4SIMO  
SPI4SOMI  
10  
6
SPI4 chip enable. SPI4ENA can be programmed as a GIO pin.  
7
IPD (20 µA)  
SPI4 slave chip select. SPI4SCS can be programmed as a GIO pin.  
SPI4 data stream. Slave in/master out. Can be programmed as a GIO pin.  
SPI4 data stream. Slave out/master in. Can be programmed as a GIO pin.  
8
9
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
Table 2. Terminal Functions (continued)  
TERMINAL  
NAME  
INTERNAL  
PULLUP/  
TYPE(1)(2)  
DESCRIPTION  
PULLDOWN(3)  
NO.  
SERIAL PERIPHERAL INTERFACE 5 (SPI5)  
SPI5CLK  
60  
SPI5 clock. SPI5CLK can be programmed as a GIO pin.  
SPI5ENA  
SPI5SCS  
SPI5SIMO  
SPI5SOMI  
61  
46  
58  
59  
SPI5 chip enable. SPI5ENA can be programmed as a GIO pin.  
SPI5 slave chip select. SPI5SCS can be programmed as a GIO pin.  
SPI5 data stream. Slave in/master out. Can be programmed as a GIO pin.  
SPI5 data stream. Slave out/master in. Can be programmed as a GIO pin.  
3.3-V I/O  
IPD (20 µA)  
ZERO-PIN PHASE-LOCKED LOOP (ZPLL)  
Crystal connection pin or external clock input  
OSCIN  
13  
12  
1.8-V I  
OSCOUT  
1.8-V O  
External crystal connection pin  
Enable/disable the ZPLL. The ZPLL can be bypassed and the oscillator  
becomes the system clock. If not in bypass mode, TI recommends that this  
pin be connected to ground or pulled down to ground by an external resistor.  
PLLDIS  
73  
3.3-V I  
IPD (20 µA)  
SERIAL COMMUNICATIONS INTERFACE 1 (SCI1)  
SCI1CLK  
SCI1RX  
SCI1TX  
89  
91  
90  
3.3-V I/O  
3.3-V I/O  
3.3-V I/O  
IPD (20 µA)  
IPU (20 µA)  
IPU (20 µA)  
SCI1 clock. SCI1CLK can be programmed as a GIO pin.  
SCI1 data receive. SCI1RX can be programmed as a GIO pin.  
SCI1 data transmit. SCI1TX can be programmed as a GIO pin.  
SERIAL COMMUNICATIONS INTERFACE 2 (SCI2)  
SCI2CLK  
SCI2RX  
SCI2TX  
45  
43  
44  
3.3-V I/O  
3.3-V I/O  
3.3-V I/O  
IPD (20 µA)  
IPU (20 µA)  
IPU (20 µA)  
SCI2 clock. SCI2CLK can be programmed as a GIO pin.  
SCI2 data receive. SCI2RX can be programmed as a GIO pin.  
SCI2 data transmit. SCI2TX can be programmed as a GIO pin.  
SYSTEM MODULE (SYS)  
Bidirectional pin. CLKOUT can be programmed as a GIO pin or the output of  
SYSCLK, ICLK, or MCLK.  
CLKOUT  
PORRST  
83  
32  
3.3-V I/O  
3.3-V I  
IPD (20 µA)  
Input master chip power-up reset. External VCC monitor circuitry must assert a  
power-on reset.  
IPD (20 µA)  
Bidirectional reset. The internal circuitry can assert a reset, and an external  
system reset can assert a device reset.  
RST  
15  
3.3-V I/O  
IPU (20 µA)  
On this pin, the output buffer is implemented as an open drain (drives low  
only). To ensure an external reset is not arbitrarily generated, TI recommends  
that an external pullup resistor be connected to this pin.  
WATCHDOG/REAL-TIME INTERRUPT (WD/RTI)  
Analog watchdog reset. The AWD pin provides a system reset if the WD KEY  
is not written in time by the system, providing an external RC network circuit  
is connected. If the user is not using AWD, TI recommends that this pin be  
connected to ground or pulled down to ground by an external resistor.  
AWD  
72  
3.3-V I/O  
IPD (20 µA)  
For more details on the external RC network circuit, see the TMS470R1x  
System Module Reference Guide (literature number SPNU189) and the  
application note Analog Watchdog Resistor, Capacitor and Discharge Interval  
Selection Constraints (literature number SPNA005).  
TEST/DEBUG (T/D)  
TCK  
TDI  
76  
74  
3.3-V I  
3.3-V I  
IPD (20 µA)  
IPU (20 µA)  
Test clock. TCK controls the test hardware (JTAG).  
Test data in. TDI inputs serial data to the test instruction register, test data  
register, and programmable test address (JTAG).  
Test data out. TDO outputs serial data from the test instruction register, test  
data register, identification register, and programmable test address (JTAG).  
TDO  
75  
3.3-V O  
IPD (20 µA)  
10  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
Table 2. Terminal Functions (continued)  
TERMINAL  
NAME  
INTERNAL  
PULLUP/  
TYPE(1)(2)  
DESCRIPTION  
PULLDOWN(3)  
NO.  
TEST/DEBUG (T/D) (CONTINUED)  
Test enable. Reserved for internal use only. TI recommends that this pin be  
connected to ground or pulled down to ground by an external resistor.  
TEST  
TMS  
38  
3.3-V I  
3.3-V I  
3.3-V I  
IPD (20 µA)  
IPU (20 µA)  
IPU (20 µA)  
Serial input for controlling the state of the CPU test access port (TAP)  
controller (JTAG)  
120  
121  
Serial input for controlling the second TAP. TI recommends that this pin be  
connected to VCCIO or pulled up to VCCIO by an external resistor.  
TMS2  
TRST  
Test hardware reset to TAP1 and TAP2. IEEE Standard 1149-1 (JTAG)  
Boundary-Scan Logic. TI recommends that this pin be pulled down to ground  
by an external resistor.  
37  
3.3-V I  
IPD (20 µA)  
FLASH  
Flash test pad 1. For proper operation, this pin must not be connected  
[no connect (NC)].  
FLTP1  
FLTP2  
VCCP  
134  
133  
135  
NC  
NC  
Flash test pad 2. For proper operation, this pin must not be connected  
[no connect (NC)].  
Flash external pump voltage (3.3 V). This pin is required for both flash read  
and flash program and erase operations.  
3.3-V PWR  
SUPPLY VOLTAGE CORE (1.8 V)  
14  
31  
55  
VCC  
86  
1.8-V PWR  
Core logic supply voltage  
93  
128  
132  
SUPPLY VOLTAGE DIGITAL I/O (3.3 V)  
Digital I/O supply voltage  
17  
53  
82  
VCCIO  
3.3-V PWR  
SUPPLY GROUND CORE  
11  
30  
54  
85  
VSS  
GND  
Core supply ground reference  
92  
127  
131  
136  
SUPPLY GROUND DIGITAL I/O  
16  
52  
81  
VSSIO  
GND  
Digital I/O supply ground reference  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
B768 DEVICE-SPECIFIC INFORMATION  
Memory  
Figure 1 shows the memory map of the B768 device.  
Memory (4G Bytes)  
0xFFFF_FFFF  
0xFFFF_FFFF  
SYSTEM with PSA, CIM,  
System Module  
Control Registers  
(512K Bytes)  
RTI, DEC  
0xFFFF_FD00  
IEM  
0xFFF8_0000  
0xFFF7_FFFF  
0xFFFF_FC00  
0xFFF8_0000  
Reserved  
Peripheral Control Registers  
(512K Bytes)  
0xFFF0_0000  
0xFFEF_FFFF  
HET  
SPI1  
SCI2  
0xFFF7_FC00  
Reserved  
Flash Control Registers  
Reserved  
0xFFE8_C000  
0xFFE8_BFFF  
0xFFE8_8000  
0xFFE8_7FFF  
0xFFF7_F800  
0xFFF7_F500  
0xFFE8_4024  
0xFFE8_4023  
SCI1  
0xFFF7_F400  
0xFFF7_F000  
0xFFF7_EC00  
MPU Control Registers  
0xFFE8_4000  
0xFFE8_3FFF  
MibADC  
GIO/ECP  
Reserved  
0xFFE0_0000  
HECC1/HECC2  
HECC1/2 RAM  
0xFFF7_E800  
0xFFF7_E400  
0xFFF7_D800  
Reserved  
SPI4/SPI5  
SPI2/SPI3  
0xFFF7_D600  
0xFFF7_D400  
RAM  
(48K Bytes)  
HECC3 and HECC3 RAM  
Reserved  
Program  
and  
Data Area  
FLASH  
(768K Bytes)  
18 Sectors  
0xFFF7_D000  
0xFFF7_C000  
Reserved  
HET RAM  
(1.5K Bytes)  
0xFFF0_0000  
0x0000_001F  
FIQ  
IRQ  
0x0000_001C  
0x0000_0018  
Reserved  
0x0000_0014  
Data Abort  
0x0000_0010  
0x0000_000C  
0x0000_0008  
0x0000_0004  
Prefetch Abort  
Software Interrupt  
Undefined Instruction  
Reset  
0x0000_0020  
0x0000_001F  
Exception, Interrupt, and  
Reset Vectors  
0x0000_0000  
0x0000_0000  
A. Memory addresses are configurable by the system (SYS) module within the range of 0x0000_0000 to 0xFFE0_0000.  
B. The CPU registers are not part of the memory map.  
Figure 1. TMS470R1B768 Memory Map  
12  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
 
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
Memory Selects  
Memory selects allow the user to address memory arrays (i.e., flash, RAM, and HET RAM) at user-defined  
addresses. Each memory select has its own set (low and high) of memory base address registers (MFBAHRx  
and MFBALRx) that, together, define the array's starting (base) address, block size, and protection.  
The base address of each memory select is configurable to any memory address boundary that is a multiple of  
the decoded block size. For more information on how to control and configure these memory select registers, see  
the bus structure and memory sections of the TMS470R1x System Module Reference Guide (literature number  
SPNU189).  
For the memory selection assignments and the memory selected, see Table 3.  
Table 3. Memory Selection Assignment  
MEMORY  
SELECT  
MEMORY SELECTED  
(ALL INTERNAL)  
MEMORY  
SIZE  
MEMORY BASE ADDRESS  
REGISTER  
STATIC MEM  
CTL REGISTER  
MPU  
0 (fine)  
1 (fine)  
2 (fine)  
3 (fine)  
4 (fine)  
FLASH  
FLASH  
RAM  
NO  
NO  
MFBAHR0 and MFBALR0  
MFBAHR1 and MFBALR1  
MFBAHR2 and MFBALR2  
MFBAHR3 and MFBALR3  
MFBAHR4 and MFBALR4  
768K  
YES  
YES  
48K(1)  
1.5K  
RAM  
HET RAM  
SMCR1  
(1) The starting addresses for both RAM memory-select signals cannot be offset from each other by a multiple of the user-defined block  
size in the memory-base address register.  
RAM  
The B768 device contains 48K bytes of internal static RAM configurable by the SYS module to be addressed  
within the range of 0x0000_0000 to 0xFFE0_0000. This B768 RAM is implemented in one 48K-byte array  
selected by two memory-select signals. This B768 configuration imposes an additional constraint on the memory  
map for RAM; the starting addresses for both RAM memory selects cannot be offset from each other by the  
multiples of the size of the physical RAM (i.e., 48K bytes for the B768 device). The B768 RAM is addressed  
through memory selects 2 and 3.  
The RAM can be protected by the memory protection unit (MPU) portion of the SYS module, allowing the user  
finer blocks of memory protection than is allowed by the memory selects. The MPU is ideal for protecting an  
operating system while allowing access to the current task. For more detailed information on the MPU portion of  
the SYS module and memory protection, see the memory section of the TMS470R1x System Module Reference  
Guide (literature number SPNU189).  
F05 Flash  
The F05 flash memory is a nonvolatile electrically erasable and programmable memory implemented with a  
32-bit-wide data bus interface. The F05 flash has an external state machine for program and erase functions.  
See the flash read and flash program and erase sections below.  
Flash Protection Keys  
The B768 device provides flash protection keys. These four 32-bit protection keys prevent  
program/erase/compaction operations from occurring until after the four protection keys have been matched by  
the CPU loading the correct user keys into the FMPKEY control register. The protection keys on the B768 are  
located in the last 4 words of the first 16K sector. For more detailed information on flash program and erase  
operations, see the TMS470R1x F05 Flash Reference Guide (literature number SPNU213).  
Flash Read  
The B768 flash memory is configurable by the SYS module to be addressed within the range of 0x0000_0000 to  
0xFFE0_0000. The flash is addressed through memory selects 0 and 1.  
NOTE:  
The flash external pump voltage (VCCP ) is required for all operations (program, erase,  
and read).  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TMS470R1B768  
 
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
Flash Pipeline Mode  
When in pipeline mode, the flash operates with a system clock frequency of up to 60 MHz (versus a system  
clock in normal mode of up to 30 MHz). Flash in pipeline mode is capable of accessing 64-bit words and  
provides two 32-bit pipelined words to the CPU. Also in pipeline mode, the flash can be read with no wait states  
when memory addresses are contiguous (after the initial 1-or 2-wait-state reads).  
NOTE:  
After a system reset, pipeline mode is disabled (ENPIPE bit [FMREGOPT.0] is a 0). In  
other words, the B768 device powers up and comes out of reset in non-pipeline  
mode. Furthermore, setting the flash configuration mode bit (GBLCTRL.4) will override  
pipeline mode.  
Flash Program and Erase  
The B768 device flash contains three 256K-byte memory arrays (or banks) for a total of 768K bytes of flash and  
consists of 18 sectors. These 18 sectors are sized as follows:  
Table 4. B768 Flash Memory Banks and Sectors  
MEMORY ARRAYS  
SECTOR NO.  
SEGMENT  
LOW ADDRESS  
HIGH ADDRESS  
(OR BANKS)  
0
1
2
3
4
5
6
7
8
9
16K Bytes  
16K Bytes  
32K Bytes  
32K Bytes  
32K Bytes  
32K Bytes  
32K Bytes  
32K Bytes  
16K Bytes  
16K Bytes  
0x0000_0000  
0x0000_4000  
0x0000_8000  
0x0001_0000  
0x0001_8000  
0x0002_0000  
0x0002_8000  
0x0003_0000  
0x0003_8000  
0x0003_C000  
0x0000_3FFF  
0x0000_7FFF  
0x0000_FFFF  
0x0001_7FFF  
0x0001_FFFF  
0x0002_7FFF  
0x0002_FFFF  
0x0003_7FFF  
0x0003_BFFF  
0x0003_FFFF  
BANK0  
(256K Bytes)  
0
1
2
3
64K Bytes  
64K Bytes  
64K Bytes  
64K Bytes  
0x0004_0000  
0x0005_0000  
0x0006_0000  
0x0007_0000  
0x0004_FFFF  
0x0005_FFFF  
0x0006_FFFF  
0x0007_FFFF  
BANK1  
(256K Bytes)  
0
1
2
3
64K Bytes  
64K Bytes  
64K Bytes  
64K Bytes  
0x0008_0000  
0x0009_0000  
0x000A_0000  
0x000B_0000  
0x0008_FFFF  
0x0009_FFFF  
0x000A_FFFF  
0x000B_FFFF  
BANK2  
(256K Bytes)  
The minimum size for an erase operation is one sector. The maximum size for a program operation is one 16-bit  
word. For more detailed information on flash program and erase operations, see the TMS470R1x Flash  
Reference Guide (literature number SPNU194).  
NOTE:  
The flash external pump voltage (VCCP ) is required for all operations (program, erase,  
and read).  
HET RAM  
The B768 device contains HET RAM. The HET RAM has a 128-instruction capability. The HET RAM is  
configurable by the SYS module to be addressed within the range of 0x0000_0000 to 0xFFE0_0000. The HET  
RAM is addressed through memory select 4.  
14  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
Peripheral Selects and Base Addresses  
The B768 device uses 8 of the 16 peripheral selects to decode the base addresses of the peripherals. These  
peripheral selects are fixed and transparent to the user since they are part of the decoding scheme used by the  
SYS module.  
Control registers for the peripherals, SYS module, and flash begin at the base addresses shown in Table 5.  
Table 5. B768 Peripherals, System Module, and Flash Base Addresses  
ADDRESS RANGE  
CONNECTING MODULE  
PERIPHERAL SELECTS  
BASE ADDRESS  
0 x FFFF_FFD0  
0 x FFFF_FF60  
0 x FFFF_FF40  
0 x FFFF_FF20  
0 x FFFF_FF00  
0 x FFFF_FE80  
0 x FFFF_FE00  
0 x FFFF_FD00  
0 x FFFF_FC00  
0 x FFF8_0000  
0 x FFF7_FD00  
0 x FFF7_FC00  
0 x FFF7_F900  
0 x FFF7_F800  
0 x FFF7_F600  
0 x FFF7_F500  
0 x FFF7_F400  
0 x FFF7_F100  
0 x FFF7_F000  
0 x FFF7_EF00  
0 x FFF7_ED00  
0 x FFF7_EC00  
0 x FFF7_EA00  
0 x FFF7_E800  
0 x FFF7_E600  
0 x FFF7_E400  
0 x FFF7_E000  
0 x FFF7_DC00  
0 x FFF7_D800  
0 x FFF7_D700  
0 x FFF7_D600  
0 x FFF7_D500  
0 x FFF7_D400  
0 x FFF7_D200  
0 x FFF7_D000  
0 x FFF7_C000  
0 x FFF7_0000  
0 x FFE8_8000  
0 x FFE8_4000  
ENDING ADDRESS  
0 x FFFF_FFFF  
0 x FFFF_FFCB  
0 x FFFF_FF5F  
0 x FFFF_FF3F  
0 x FFFF_FF1F  
0 x FFFF_FEFF  
0 x FFFF_FE7F  
0 x FFFF_FD7F  
0 x FFFF_FCFF  
0 x FFFF_FBFF  
0 x FFF7_FFFF  
0 x FFF7_FCFF  
0 x FFF7_FBFF  
0 x FFF7_F8FF  
0 x FFF7_F7FF  
0 X FFF7_F5FF  
0 x FFF7_F4FF  
0 x FFF7_F3FF  
0 x FFF7_F0FF  
0 x FFF7_EFFF  
0 x FFF7_EEFF  
0 x FFF7_ECFF  
0 x FFF7_EBFF  
0 x FFF7_E9FF  
0 x FFF7_E7FF  
0 x FFF7_E5FF  
0 x FFF7_E3FF  
0 x FFF7_DFFF  
0 x FFF7_DBFF  
0 x FFF7_D7FF  
0 x FFF7_D6FF  
0 x FFF7_D5FF  
0 x FFF7_D4FF  
0 x FFF7_D3FF  
0 x FFF7_D1FF  
0 x FFF7_CFFF  
0 x FFF7_BFFF  
0 x FFE8_BFFF  
0 x FFE8_4023  
SYSTEM  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
RESERVED  
PSA  
CIM  
RTI  
DMA  
DEC  
MMC  
IEM  
RESERVED  
RESERVED  
HET  
PS[0]  
PS[1]  
RESERVED  
SPI1  
RESERVED  
SCI2  
PS[2]  
PS[3]  
PS[4]  
SCI1  
RESERVED  
MibADC  
ECP  
RESERVED  
GIO  
HECC2  
PS[5]  
PS[6]  
HECC1  
HECC2 RAM  
HECC1 RAM  
RESERVED  
RESERVED  
RESERVED  
SPI5  
PS[7]  
PS[8]  
PS[9]  
SPI4  
PS[10]  
PS[11]  
SPI3  
SPI2  
HECC3 RAM  
HECC3  
RESERVED  
RESERVED  
FLASH CONTROL REGISTERS  
MPU CONTROL REGISTERS  
PS[12]–PS[15]  
N/A  
N/A  
N/A  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TMS470R1B768  
 
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
Direct-Memory Access (DMA)  
The direct-memory access (DMA) controller transfers data to and from any specified location in the B768  
memory map (except for restricted memory locations like the system control registers area). The DMA manages  
up to 16 channels, and supports data transfer for both on-chip and off-chip memories and peripherals. The DMA  
controller is connected to both the CPU and Peripheral busses, enabling these data transfers to occur in parallel  
with CPU activity and thus maximizing overall system performance.  
Although the DMA controller has two possible configurations, for the B768 device, the DMA controller  
configuration is 32 control packets and 16 channels.  
For the B768 DMA request hardwired configuration, see Table 6.  
Table 6. DMA Request Lines Connections  
MODULES  
RESERVED  
SPI1  
DMA REQUEST INTERRUPT SOURCES  
DMA CHANNEL  
DMAREQ[0]  
DMAREQ[1]  
DMAREQ[2]  
DMAREQ[3]  
DMAREQ[4]  
DMAREQ[5]  
DMAREQ[6]  
DMAREQ[7]  
DMAREQ[8]  
DMAREQ[9]  
DMAREQ[10]  
DMAREQ[11]  
DMAREQ[12]  
DMAREQ[13]  
DMAREQ[14]  
DMAREQ[15]  
SPI1 end-receive  
SPI1 end-transmit  
MibADC event  
SPI1DMA0  
SPI1  
SPI1DMA1  
MibADC(1)  
MibADC(1)/SCI1  
MibADC(1)/SCI1  
SPI4  
MibADCDMA0  
MibADC G1/SCI1 end-receive  
MibADC G2/SCI1 end-transmit  
SPI4 end-receive  
MibADCDMA1/SCI1DMA0  
MibADCDMA2/SCI1DMA1  
SPI4DMA0  
SPI2  
SPI2 end-receive  
SPI2DMA0  
SPI2  
SPI2 end-transmit  
SPI2DMA1  
RESERVED  
RESERVED  
SPI4  
SPI4 end-transmit  
SPI4DMA1  
SPI5  
SPI5 end-receive  
SPI5DMA0  
SPI5  
SPI5 end-transmit  
SPI5DMA1  
SCI2/SPI3  
SCI2/SPI3  
SCI2 end-receive/SPI3 end-receive  
SCI2 end-transmit/SPI3 end-transmit  
SCI2DMA0/SPI3DMA0  
SCI2DMA1/SPI3DMA1  
(1) The MibADC can be serviced by the DMA when the device is in buffered mode. For more information on buffered mode, see the  
MibADC section of this data sheet and the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature  
number SPNU206).  
Each channel has two control packets attached to it, allowing the DMA to continuously load RAM and generate  
periodic interrupts so that the data can be read by the CPU. The control packets allow for the interrupt enable,  
and the channels determine the priority level of the interrupt.  
DMA transfers occur in one of two modes:  
Non-request mode (used when transferring from memory to memory)  
Request mode (used when transferring from memory to peripheral)  
For more detailed functional information on the DMA controller, see the TMS470R1x Direct Memory Access  
(DMA) Controller Reference Guide (literature number SPNU210).  
16  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
 
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
Interrupt Priority (IEM to CIM)  
Interrupt requests originating from the B768 peripheral modules (i.e., SPI1, SPI2, or SPI3; SCI1 or SCI2; HECC1  
or HECC2; RTI; etc.) are assigned to channels within the 48-channel interrupt expansion module (IEM) where,  
via programmable register mapping, these channels are then mapped to the 32-channel central interrupt  
manager (CIM) portion of the SYS module.  
Programming multiple interrupt sources in the IEM to the same CIM channel effectively shares the CIM channel  
between sources.  
The CIM request channels are maskable so that individual channels can be selectively disabled. All interrupt  
requests can be programmed in the CIM to be of either type:  
Fast interrupt request (FIQ)  
Normal interrupt request (IRQ)  
The CIM prioritizes interrupts. The precedence of request channels decrease with ascending channel order in the  
CIM (0 [highest] and 31 [lowest] priority). For IEM-to-CIM default mapping, channel priorities, and their  
associated modules, see Table 7.  
Table 7. Interrupt Priority (IEM and CIM)  
DEFAULT CIM INTERRUPT  
MODULES  
INTERRUPT SOURCES  
IEM CHANNEL  
LEVEL/CHANNEL  
SPI1  
RTI  
SPI1 end-transfer/overrun  
0
0
COMP2 interrupt  
COMP1 interrupt  
TAP interrupt  
1
1
RTI  
2
2
RTI  
3
3
SPI2  
SPI2 end-transfer/overrun  
GIO interrupt A  
4
4
GIO  
5
5
RESERVED  
HET  
6
6
HET interrupt 1  
7
7
SPI4  
SPI4 end-transfer/overrun  
SCI1 or SCI2 error interrupt  
SCI1 receive interrupt  
8
8
SCI1/SCI2  
SCI1  
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
RESERVED  
SPI5  
SPI5 end-transfer/overrun  
HECC1 interrupt A  
HECC1  
RESERVED  
SPI3  
SPI3 end-transfer/overrun  
MibADC end event conversion  
SCI2 receive interrupt  
DMA interrupt 0  
MibADC  
SCI2  
DMA  
HECC3  
SCI1  
HECC3 interrupt A  
SCI1 transmit interrupt  
SW interrupt (SSI)  
System  
RESERVED  
HET  
HET interrupt 2  
HECC1  
RESERVED  
SCI2  
HECC1 interrupt B  
SCI2 transmit interrupt  
MibADC end Group 1 conversion  
DMA interrupt 1  
MibADC  
DMA  
GIO  
GIO interrupt B  
MibADC  
HECC3  
MibADC end Group 2 conversion  
HECC3 interrupt B  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TMS470R1B768  
 
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
Table 7. Interrupt Priority (IEM and CIM) (continued)  
DEFAULT CIM INTERRUPT  
MODULES  
INTERRUPT SOURCES  
IEM CHANNEL  
LEVEL/CHANNEL  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
HECC2  
31  
31  
31  
31  
31  
31  
31  
31  
31  
31  
31  
31  
31  
31  
31  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
HECC2 interrupt A  
HECC2 interrupt B  
HECC2  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
For more detailed functional information on the IEM, see the TMS470R1x Interrupt Expansion Module (IEM)  
Reference Guide (literature number SPNU211). For more detailed functional information on the CIM, see the  
TMS470R1x System Module Reference Guide (literature number SPNU189).  
18  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
MibADC  
The multi-buffered analog-to-digital converter (MibADC) accepts an analog signal and converts the signal to a  
10-bit digital value.  
The B768 MibADC module can function in two modes: compatibility mode, where its programmer's model is  
compatible with the TMS470R1x ADC module and its digital results are stored in digital result registers; or in  
buffered mode, where the digital result registers are replaced with three FIFO buffers, one for each conversion  
group [event, group1 (G1), and group2 (G2)]. In buffered mode, the MibADC buffers can be serviced by  
interrupts or by the DMA.  
MibADC Event Trigger Enhancements  
The MibADC includes two major enhancements over the event-triggering capability of the TMS470R1x ADC.  
Both group1 and the event group can be configured for event-triggered operation, providing up to two  
event-triggered groups.  
The trigger source and polarity can be selected individually for both group 1 and the event group from the  
three options identified in Table 8.  
Table 8. MibADC Event Hookup Configuration  
SOURCE SELECT BITS FOR G1 OR  
EVENT(G1SRC[1:0] OR EVSRC[1:0])  
EVENT #  
SIGNAL PIN NAME  
EVENT1  
EVENT2  
EVENT3  
EVENT4  
00  
01  
10  
11  
ADEVT  
HET18  
HET19  
N/C  
For group 1, these event-triggered selections are configured via the group 1 source select bits (G1SRC[1:0]) in  
the AD event source register (ADEVTSRC[5:4]). For the event group, these event-triggered selections are  
configured via the event group source select bits (EVSRC[1:0]) in the AD event source register  
(ADEVTSRC[1:0]).  
For more detailed functional information on the MibADC, see the TMS470R1x Multi-Buffered Analog-to-Digital  
Converter (MibADC) Reference Guide (literature number SPNU206).  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): TMS470R1B768  
 
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
Documentation Support  
Extensive documentation supports all of the TMS470 microcontroller family generation of devices. The types of  
documentation available include data sheets with design specifications; complete user guides for all devices and  
development support tools; and hardware and software applications. Useful reference documentation includes:  
Bulletin  
TMS470 Microcontroller Family Product Bulletin (literature number SPNB086)  
User's Guides  
TMS470R1x System Module Reference Guide (literature number SPNU189)  
TMS470R1x General Purpose Input/Output (GIO) Reference Guide (literature number SPNU192)  
TMS470R1x Direct Memory Access (DMA) Controller Reference Guide (literature number SPNU194)  
TMS470R1x Serial Peripheral Interface (SPI) Reference Guide (literature number SPNU195)  
TMS470R1x Serial Communication Interface (SCI) Reference Guide (literature number SPNU196)  
TMS470R1x Controller Area Network (CAN) Reference Guide (literature number SPNU197)  
TMS470R1x High End Timer (HET) Reference Guide (literature number SPNU199)  
TMS470R1x External Clock Prescale (ECP) Reference Guide (literature number SPNU202)  
TMS470R1x MultiBuffered Analog to Digital (MibADC) Reference Guide (literature number SPNU206)  
TMS470R1x Zero-Pin Phase Locked Loop (ZPLL) Clock Module Reference Guide (literature number  
SPNU212)  
TMS470R1x F05 Flash Reference Guide (literature number SPNU213)  
TMS470R1x Class II Serial Interface B (C2SIb) Reference Guide (literature number SPNU214)  
TMS470R1x Class II Serial Interface A (C2SIa) Reference Guide (literature number SPNU218)  
TMS470R1x JTAG Security Module (JSM) Reference Guide (literature number SPNU245)  
TMS470R1x Memory Security Module (MSM) Reference Guide (literature number SPNU246)  
TMS470 Peripherals Overview Reference Guide (literature number SPNU248)  
Errata Sheet  
TMS470R1B768 TMS470 Microcontrollers Silicon Errata (literature number SPNZ140)  
20  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
Device and Development-Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP  
devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS  
(e.g., TMS470R1B768). Texas Instruments recommends two of three possible prefix designators for its support  
tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering  
prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).  
Device development evolutionary flow:  
TMX Experimental device that is not necessarily representative of the final device's electrical specifications  
TMP Final silicon die that conforms to the device's electrical specifications but has not completed quality and  
reliability verification  
TMS Fully qualified production device  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.  
TMDS Fully qualified development-support product  
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability  
of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
Figure 2 illustrates the numbering and symbol nomenclature for the TMS470R1x family.  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
TMS 470 R1  
B
PGE  
T
768  
OPTIONS  
PREFIX  
TMS = Fully Qualified Device  
FAMILY  
470 = TMS470 RISC − Embedded  
Microcontroller Family  
TEMPERATURE RANGE  
T = −40°C to 105°C  
Q = −40°C to 125°C  
PACKAGE TYPE  
ARCHITECTURE  
PGE = 144-pin Low-Profile Quad Flatpack (LQFP)  
R1 = ARM7TDM1 CPU  
REVISION CHANGE  
= Original  
DEVICE TYPE B  
With 768K-Bytes Flash Memory:  
60-MHz Frequency  
Blank  
FLASH MEMORY  
768 = 768K-Bytes Flash Memory  
1.8-V Core, 3.3-V I/O  
Flash Program Memory  
48K-Byte SRAM  
ECP Module  
Up to 68 I/O Pins and 1 Input-Only Pin  
ZPLL Clock  
1.5K-Byte HET RAM (128 Instructions)  
AWD  
RTI  
10-Bit, 12-Input MibADC  
Five SPI Modules  
Two SCI Modules  
Three High-End CAN [HECC] Modules  
HET, 32 Channels  
ECP  
DMA  
Figure 2. TMS470R1x Family Nomenclature  
22  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
Device Identification Code Register  
The device identification code register identifies the silicon version, the technology family (TF), a ROM or flash  
device, and an assigned device-specific part number (see Figure 3). The B768 device identification code register  
value is 0xn87F.  
Figure 3. TMS470 Device ID Bit Allocation Register [offset = 0xFFFF_FFF0h]  
31  
15  
16  
0
Reserved  
12  
11  
10  
9
3
2
1
VERSION  
R-K  
TF  
R/F  
R-K  
PART NUMBER  
R-K  
1
1
1
R-K  
R-1  
R-1  
R-1  
LEGEND:  
For bits 3-15: R = Read only, -K = Value constant after RST  
For bits 0-2: R = Read only, -1 = Value after RST  
Table 9. TMS470 Device ID Bit Allocation Register Field Descriptions  
Bit  
Field  
Value Description  
31–16 Reserved  
15–12 VERSION  
Reads are undefined and writes have no effect.  
Silicon version (revision) bits. These bits identify the silicon version of the device. Initial device  
version numbers start at 0000. The current revision for the B768 device is 0000.  
11  
TF  
Technology family bit. This bit distinguishes the technology family core power supply:  
0
1
3.3 V for F10/C10 devices  
1.8 V for F05/C05 devices  
10  
R/F  
ROM/flash bit. This bit distinguishes between ROM and flash devices:  
0
1
Flash device  
ROM device  
9–3  
2–0  
PART NUMBER  
1
Device-specific part number bits. These bits identify the assigned device-specific part number. The  
assigned device-specific part number for the B768 device is 0001111.  
Mandatory high  
Bits 2, 1, and 0 are tied high by default.  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): TMS470R1B768  
 
 
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
DEVICE ELECTRICAL SPECIFICATIONS AND TIMING PARAMETERS  
Absolute Maximum Ratings  
over operating free-air temperature range, T version unless otherwise noted(1)  
(2)  
Supply voltage range:  
Supply voltage range:  
Input voltage range:  
Input clamp current:  
VCC  
–0.3 V to 2.5 V  
–0.3 V to 4.1 V  
–0.3 V to 4.1 V  
VCCIO , VCCAD , VCCP (flash pump)(2)  
All input pins  
IIK (VI < 0 or VI > VCCIO  
)
All pins except ADIN[0:15], PORRST, TRST,  
TEST, and TCK  
±20 mA  
IIK (VI < 0 or VI > VCCAD  
ADIN[0:15]  
)
±10 mA  
–40°C to 105°C  
–40°C to 125°C  
–40°C to 150°C  
–65°C to 150°C  
Operating free-air temperature range, TA:  
T version  
Q version  
Operating junction temperature range, TJ:  
Storage temperature range, Tstg:  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to their associated grounds.  
Device Recommended Operating Conditions(1)  
MIN  
1.81  
3
NOM  
MAX UNIT  
VCC  
Digital logic supply voltage (core)  
Digital logic supply voltage (I/O)  
MibADC supply voltage  
2.05  
3.6  
3.6  
3.6  
V
V
V
V
V
V
VCCIO  
VCCAD  
VCCP  
VSS  
3.3  
3.3  
3.3  
0
3
Flash pump supply voltage  
Digital logic supply ground  
MibADC supply ground  
3
VSSAD  
TA  
–0.1  
–40  
–40  
–40  
0.1  
Operating free-air temperature  
T version  
Q version  
105 °C  
125 °C  
150 °C  
TJ  
Operating junction temperature  
(1) All voltages are with respect to VSS , except VCCAD, which is with respect to VSSAD  
.
24  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
ELECTRICAL CHARACTERISTICS  
over recommended operating free-air temperature range, T version (unless otherwise noted)(1)  
PARAMETER  
Input hysteresis  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Vhys  
VIL  
0.15  
V
All inputs(2) except  
OSCIN  
–0.3  
–0.3  
2
0.8  
Low-level input voltage  
V
V
OSCIN only  
0.35 VCC  
VCCIO + 0.3  
All inputs except  
OSCIN  
VIH  
High-level input voltage  
Input threshold voltage  
OSCIN only  
AWD only  
0.65 VCC  
1.35  
VCC + 0.3  
1.8  
Vth  
V
Drain-to-source on  
resistance  
RDSON  
AWD only(3)  
VOL = 0.35 V at IOL = 2 mA  
175  
IOL = IOL MAX  
IOL = 50 µA  
0.2 VCCIO  
0.2  
VOL  
Low-level output voltage(4)  
High-level output voltage(4)  
V
IOH = IOH MIN  
IOH = 50 µA  
0.8 VCCIO  
VOH  
IIC  
V
VCCIO – 0.2  
VI < VSSIO – 0.3 or  
VI > VCCIO + 0.3  
Input clamp current (I/O pins)(5)  
IIL Pulldown  
–2  
2
mA  
VI = VSS  
–1  
5
1
40  
–5  
1
IIH Pulldown  
IIL Pullup  
VI = VCCIO  
II  
Input current (I/O pins)  
Low-level output current  
High-level output current  
VI = VSS  
–40  
–1  
–1  
µA  
mA  
mA  
IIH Pullup  
VI = VCCIO  
All other pins  
CLKOUT, TDO  
No pullup or pulldown  
1
8
RST, SPInCLK,  
SPInSOMI,  
4
2
IOL  
VOL = VOL MAX  
SPInSIMO(6)  
All other output  
pins(7)  
CLKOUT, TDO  
–8  
–4  
RST, SPInCLK,  
SPInSOMI,  
IOH  
VOH = VOH MIN  
SPInSIMO(6)  
All other output  
–2  
pins except RST(7)  
SYSCLK = 60 MHz,  
ICLK = 20 MHz, VCC = 2.05 V  
135  
105  
mA  
mA  
VCC Digital supply current (operating mode)  
SYSCLK = 24 MHz,  
ICLK = 12 MHz, VCC = 2.05 V  
ICC  
VCC Digital supply current (standby mode)(8)  
VCC Digital supply current (halt mode)(8)  
VCCIO Digital supply current (operating mode) No DC load, VCCIO = 3.6 V(8)  
OSCIN = 6 MHz, VCC = 2.05 V  
All frequencies, VCC = 2.05 V  
4
mA  
mA  
mA  
µA  
2
10  
300  
300  
ICCIO  
VCCIO Digital supply current (standby mode)  
VCCIO Digital supply current (halt mode)  
No DC load, VCCIO = 3.6 V(8)  
No DC load, VCCIO = 3.6 V(8)  
µA  
(1) Source currents (out of the device) are negative while sink currents (into the device) are positive.  
(2) This does not apply to the PORRST pin. For PORRST exceptions, see the RST and PORRST timings section.  
(3) These values help to determine the external RC network circuit. For more details, see the TMS470R1x System Module Reference Guide  
(literature number SPNU189).  
(4) VOL and VOH are linear with respect to the amount of load current (IOL/IOH) applied.  
(5) Parameter does not apply to input-only or output-only pins.  
(6) n = 1–5.  
(7) The 2-mA buffers on this device are called zero-dominant buffers. If two of these buffers are shorted together and one is outputting a  
low level and the other is outputting a high level, the resulting value is always low.  
(8) I/O pins configured as inputs or outputs with no load. All pulldown inputs 0.2 V. All pullup inputs VCCIO – 0.2 V.  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
over recommended operating free-air temperature range, T version (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
15  
UNIT  
mA  
µA  
VCCAD supply current (operating mode)  
VCCAD supply current (standby mode)  
VCCAD supply current (halt mode)  
All frequencies, VCCAD = 3.6 V  
All frequencies, VCCAD = 3.6 V  
All frequencies, VCCAD = 3.6 V  
VCCP = 3.6 V read operation  
VCCP = 3.6 V program and erase  
ICCAD  
20  
20  
µA  
55  
mA  
mA  
70  
VCCP = 3.6 V standby mode  
operation(9)  
ICCP  
VCCP pump supply current  
20  
20  
µA  
µA  
VCCP = 3.6 V halt mode  
operation(9)  
CI  
Input capacitance  
Output capacitance  
2
3
pF  
pF  
CO  
(9) For flash banks/pumps in sleep mode.  
Parameter Measurement Information  
IOL  
Tester Pin  
Electronics  
Output  
Under  
Test  
50  
VLOAD  
CL  
IOH  
(A)  
Where:  
I
I
= I MAX for the respective pin  
OL  
OL  
(A)  
= I MIN for the respective pin  
OH  
OH  
V
C
= 1.5 V  
LOAD  
(B)  
= 150-pF typical load-circuit capacitance  
L
A. For these values, see the "Electrical Characteristics over Recommended Operating Free-Air Temperature Range"  
table.  
B. All timing parameters measured using an external load capacitance of 150 pF unless otherwise noted.  
Figure 4. Test Load Circuit  
26  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
Timing Parameter Symbology  
Timing parameter symbols have been created in accordance with JEDEC Standard 100. To shorten the symbols,  
some of the pin names and other related terminology have been abbreviated as follows:  
CM  
CO  
ER  
ICLK  
M
Compaction, CMPCT  
CLKOUT  
RD  
Read  
RST  
RX  
Reset, RST  
SCInRX  
Erase  
Interface clock  
Master mode  
S
Slave mode  
SCInCLK  
SPInSIMO  
SPInSOMI  
SPInCLK  
System clock  
SCInTX  
SCC  
SIMO  
SOMI  
SPC  
SYS  
TX  
OSC, OSCI OSCIN  
OSCO  
P
OSCOUT  
Program, PROG  
R
Ready  
R0  
R1  
Read margin 0, RDMRGN0  
Read margin 1, RDMRGN1  
Lowercase subscripts and their meanings are:  
a
c
d
f
access time  
cycle time (period)  
delay time  
r
rise time  
su  
t
setup time  
transition time  
valid time  
fall time  
v
h
hold time  
w
pulse duration (width)  
The following additional letters are used with these meanings:  
H
L
High  
Low  
X
Z
Unknown, changing, or don't care level  
High impedance  
V
Valid  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
External Reference Resonator/Crystal Oscillator Clock Option  
The oscillator is enabled by connecting the appropriate fundamental 4–20 MHz resonator/crystal and load  
capacitors across the external OSCIN and OSCOUT pins as shown in Figure 5a. The oscillator is a single-stage  
inverter held in bias by an integrated bias resistor. This resistor is disabled during leakage test measurement and  
HALT mode. TI strongly encourages each customer to submit samples of the device to the  
resonator/crystal vendors for validation. The vendors are equipped to determine what load capacitors will  
best tune their resonator/crystal to the microcontroller device for optimum start-up and operation over  
temperature/voltage extremes.  
An external oscillator source can be used by connecting a 1.8-V clock signal to the OSCIN pin and leaving the  
OSCOUT pin unconnected (open) as shown in Figure 5b.  
OSCIN  
OSCOUT  
OSCIN  
OSCOUT  
External  
Clock Signal  
(toggling 0-1.8 V)  
(A)  
(A)  
C1  
C2  
Crystal  
(a)  
(b)  
A. The values of C1 and C2 should be provided by the resonator/crystal vendor.  
Figure 5. Crystal/Clock Connection  
28  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
 
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
ZPLL AND CLOCK SPECIFICATIONS  
Timing Requirements for ZPLL Circuits Enabled or Disabled  
MIN  
4
MAX UNIT  
f(OSC)  
Input clock frequency  
20 MHz  
tc(OSC)  
Cycle time, OSCIN  
50  
15  
15  
ns  
ns  
tw(OSCIL)  
tw(OSCIH)  
f(OSCRST)  
Pulse duration, OSCIN low  
Pulse duration, OSCIN high  
OSC FAIL frequency(1)  
ns  
53 kHz  
(1) Causes a device reset (specifically a clock reset) by setting the RST OSC FAIL (GLBCTRL.15) and the OSC FAIL flag (GLBSTAT.1)  
bits equal to 1. For more detailed information on these bits and device resets, see the TMS470R1x System Module Reference Guide  
(literature number SPNU189).  
Switching Characteristics over Recommended Operating Conditions for Clocks(1)(2)  
PARAMETER  
TEST CONDITIONS(3)  
Pipeline mode enabled  
Pipeline mode disabled  
Flash config mode  
MIN  
MAX UNIT  
60 MHz  
24 MHz  
24 MHz  
25 MHz  
24 MHz  
25 MHz  
24 MHz  
ns  
f(SYS)  
System clock frequency(4)  
f(CONFIG)  
f(ICLK)  
System clock frequency  
Interface clock frequency  
Pipeline mode enabled  
Pipeline mode disabled  
Pipeline mode enabled  
Pipeline mode disabled  
Pipeline mode enabled  
Pipeline mode disabled  
Flash config mode  
f(ECLK)  
External clock output frequency for ECP module  
16.7  
41.6  
41.6  
40  
tc(SYS)  
Cycle time, system clock  
Cycle time, system clock  
Cycle time, interface clock  
ns  
tc(CONFIG)  
tc(ICLK)  
ns  
Pipeline mode enabled  
Pipeline mode disabled  
Pipeline mode enabled  
Pipeline mode disabled  
ns  
41.6  
40  
ns  
ns  
tc(ECLK)  
Cycle time, ECP module external clock output  
41.6  
ns  
(1) When PLLDIS = 0, f(SYS) = M 
נ
f(OSC)/R, where M = {4 or 8}, R = {1,2,3,4,5,6,7,8}. R is the system-clock divider determined by the  
CLKDIVPRE [2:0] bits in the global control register (GLBCTRL[2:0]) and M is the PLL multiplier determined by the MULT4 bit  
(GLBCTRL.3).  
When PLLDIS = 1, f(SYS) = f(OSC)/R, where R = {1,2,3,4,5,6,7,8}.  
f(ICLK) = f(SYS)/X, where X = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. X is the interface clock divider ratio determined by the PCR0[4:1]  
bits in the SYS module.  
(2) f(ECLK) = f(ICLK)/N, where N = {1 to 256}. N is the ECP prescale value defined by the ECPCTRL[7:0] register bits in the ECP module.  
(3) Pipeline mode enabled or disabled is determined by the ENPIPE bit (FMREGOPT.0).  
(4) Flash Vread must be set to 5 V to achieve maximum system clock frequency.  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
Switching Characteristics over Recommended Operating Conditions for External Clocks(1)(2)(3)  
(see Figure 6 and Figure 7)  
PARAMETER  
TEST CONDITIONS  
SYSCLK or MCLK(4)  
MIN  
MAX  
UNIT  
0.5tc(SYS) – tf  
tw(COL)  
tw(COH)  
tw(EOL)  
tw(EOH)  
Pulse duration, CLKOUT low  
ICLK: X is even or 1(5)  
ICLK: X is odd and not 1(5)  
SYSCLK or MCLK(4)  
0.5tc(ICLK) – tf  
ns  
0.5tc(ICLK) + 0.5tc(SYS) – tf  
0.5tc(SYS) – tr  
Pulse duration, CLKOUT high  
Pulse duration, ECLK low  
Pulse duration, ECLK high  
ICLK: X is even or 1(5)  
0.5tc(ICLK) – tr  
ns  
ns  
ns  
ICLK: X is odd and not 1(5)  
N is even and X is even or odd  
N is odd and X is even  
0.5tc(ICLK) – 0.5tc(SYS) – tr  
0.5tc(ECLK) – tf  
0.5tc(ECLK) – tf  
N is odd and X is odd and not 1  
N is even and X is even or odd  
N is odd and X is even  
0.5tc(ECLK) + 0.5tc(SYS) – tf  
0.5tc(ECLK) – tr  
0.5tc(ECLK) – tr  
N is odd and X is odd and not 1  
0.5tc(ECLK) – 0.5tc(SYS) – tr  
(1) X = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. X is the interface clock divider ratio determined by the PCR0[4:1] bits in the SYS module.  
(2) N = {1 to 256}. N is the ECP prescale value defined by the ECPCTRL[7:0] register bits in the ECP module.  
(3) CLKOUT/ECLK pulse durations (low/high) are a function of the OSCIN pulse durations when PLLDIS is active.  
(4) Clock source bits are selected as either SYSCLK (CLKCNTL[6:5] = 11 binary) or MCLK (CLKCNTL[6:5] = 10 binary).  
(5) Clock source bits are selected as ICLK (CLKCNTL[6:5] = 01 binary).  
t
w(COH)  
CLKOUT  
t
w(COL)  
Figure 6. CLKOUT Timing Diagram  
t
w(EOH)  
ECLK  
t
w(EOL)  
Figure 7. ECLK Timing Diagram  
30  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
 
 
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
RST AND PORRST TIMINGS  
Timing Requirements for PORRST  
(see Figure 8)  
MIN  
MAX UNIT  
VCCPORL  
VCC low supply level when PORRST must be active during power up  
0.6  
V
V
V
V
VCC high supply level when PORRST must remain active during power up and become  
active during power down  
VCCPORH  
VCCIOPORL  
VCCIOPORH  
1.5  
VCCIO low supply level when PORRST must be active during power up  
1.1  
VCCIO high supply level when PORRST must remain active during power up and become  
active during power down  
2.75  
VIL  
Low-level input voltage after VCCIO > VCCIOPORH  
0.2 VCCIO  
0.5  
V
VIL(PORRST)  
tsu(PORRST)r  
tsu(VCCIO)r  
th(PORRST)r  
tsu(PORRST)f  
th(PORRST)rio  
th(PORRST)d  
Low-level input voltage of PORRST before VCCIO > VCCIOPORL  
Setup time, PORRST active before VCCIO > VCCIOPORL during power up  
Setup time, VCCIO > VCCIOPORL before VCC > VCCPORL  
Hold time, PORRST active after VCC > VCCPORH  
V
0
0
1
8
1
0
0
0
ms  
ms  
ms  
µs  
ms  
ms  
ns  
ns  
Setup time, PORRST active before VCC VCCPORH during power down  
Hold time, PORRST active after VCC VCCIOPORH  
Hold time, PORRST active after VCC < VCCPORL  
tsu(PORRST)fio Setup time, PORRST active before VCC VCCIOPORH during power down  
tsu(VCCIO)f  
Setup time, VCC < VCCPORL before VCCIO < VCCIOPORL  
VCCP /VCCIO  
VCCIOPORH  
VCCIOPORH  
VCCIO  
t
h(PORRST)rio  
t
su(VCCIO)f  
VCC  
VCC  
VCCPORH  
VCCPORH  
t
su(PORRST)f  
t
h(PORRST)r  
t
su(PORRST)fio  
t
VCCIOPORL  
VCCIOPORL  
su(PORRST)f  
VCCPORL  
VCCPORL  
t
h(PORRST)r  
VCC  
t
su(VCCIO)r  
V /V  
CCP CCIO  
t
h(PORRST)d  
t
su(PORRST)r  
VIL(PORRST)  
VIL  
VIL  
VIL  
VIL  
VIL(PORRST)  
PORRST  
NOTE: VCCIO > 1.1 V before VCC > 0.6 V  
Figure 8. PORRST Timing Diagram  
Switching Characteristics over Recommended Operating Conditions for RST(1)  
PARAMETER  
MIN  
MAX UNIT  
Valid time, RST active after PORRST inactive  
Valid time, RST active (all others)  
4112tc(OSC)  
8tc(SYS)  
tv(RST)  
ns  
(1) Specified values do NOT include rise/fall times. For rise and fall timings, see the "Switching Characteristics for Output Timings versus  
Load Capacitance" table.  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): TMS470R1B768  
 
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
JTAG Scan Interface Timing (JTAG clock specification 10-MHz and 50-pF load on TDO output)  
MIN  
50  
MAX UNIT  
tc(JTAG)  
Cycle time, JTAG low and high period  
Setup time, TDI, TMS before TCK rise (TCKr)  
Hold time, TDI, TMS after TCKr  
ns  
ns  
ns  
ns  
tsu(TDI/TMS - TCKr)  
th(TCKr -TDI/TMS)  
th(TCKf -TDO)  
td(TCKf -TDO)  
15  
15  
Hold time, TDO after TCKf  
10  
Delay time, TDO valid after TCK fall (TCKf)  
45  
ns  
T CK  
t
c(J TAG )  
t
c
(
J
T
A
G
)
T MS  
T D I  
t
s
u
(
T
D
I
/
T
M
S
Ć
T
C
K
r
)
t
h
(
T
C
K
r
Ć
T
D
I
/
T
M
S
)
T
D
O
t
h
(
T
C
K
f
Ć
T
D
O
)
t
d
(
T
C
K
f
Ć
T
D
O
)
Figure 9. JTAG Scan Timings  
32  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
OUTPUT TIMINGS  
Switching Characteristics for Output Timings versus Load Capacitance L)  
(see Figure 10)  
PARAMETER  
MIN  
0.5  
1.5  
3
MAX UNIT  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
2.50  
5
tr  
tf  
tr  
tf  
tr  
tf  
Rise time, CLKOUT, AWD, TDO  
ns  
9
4.5  
0.5  
1.5  
3
12.5  
2.5  
5
Fall time, CLKOUT, AWD, TDO  
ns  
9
4.5  
2.5  
5
12.5  
8
14  
ns  
23  
Rise time, SPInCLK, SPInSOMI, SPInSIMO(1)  
Fall time, RST, SPInCLK, SPInSOMI, SPInSIMO(1)  
Rise time, all other output pins  
9
13  
2.5  
5
32  
8
14  
ns  
23  
9
13  
2.5  
6.0  
12  
18  
3
32  
12  
28  
ns  
50  
73  
12  
8.5  
16  
23  
28  
ns  
50  
Fall time, all other output pins  
73  
(1) Where n = 1-5.  
tr  
tf  
VCC  
80%  
80%  
Output  
20%  
20%  
0
Figure 10. CMOS-Level Outputs  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): TMS470R1B768  
 
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
INPUT TIMINGS  
Timing Requirements for Input Timings(1)  
(see Figure 11)  
MIN  
MAX UNIT  
tpw  
Input minimum pulse width  
tc(ICLK) + 10  
ns  
(1) tc(ICLK) = interface clock cycle time = 1 / f(ICLK)  
tpw  
VCC  
Input  
80%  
80%  
20%  
20%  
0
Figure 11. CMOS-Level Inputs  
FLASH TIMINGS  
Timing Requirements for Program Flash(1)  
MIN  
TYP  
16  
MAX  
UNIT  
tprog(16-bit)  
tprog(Total)  
terase(sector)  
twec  
Half word (16-bit) programming time  
768K-byte programming time(2)  
Sector erase time  
4
200  
20  
µs  
6
s
s
1.7  
Write/erase cycles at TA = –40°C to 125°C  
50000  
cycles  
(1) For more detailed information on the flash core sectors, see the flash program and erase section of this data sheet.  
(2) The 768K-byte programming time includes overhead of state machine.  
34  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
 
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
SPIn MASTER MODE TIMING PARAMETERS  
SPIn Master Mode External Timing Parameters  
(CLOCK PHASE = 0, SPInCLK = output, SPInSIMO = output, and SPInSOMI = input)(1)(2)(3) (see Figure 12)  
NO.  
MIN  
MAX  
UNIT  
1
tc(SPC)M  
Cycle time, SPInCLK(4)  
100  
256tc(ICLK)  
ns  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPInCLK high (clock polarity = 0)  
Pulse duration, SPInCLK low (clock polarity = 1)  
Pulse duration, SPInCLK low (clock polarity = 0)  
Pulse duration, SPInCLK high (clock polarity = 1)  
0.5tc(SPC)M – tr 0.5tc(SPC)M + 5  
2(5)  
3(5)  
4(5)  
5(5)  
6(5)  
7(5)  
ns  
ns  
ns  
ns  
ns  
ns  
0.5tc(SPC)M – tf 0.5tc(SPC)M + 5  
0.5tc(SPC)M – tf 0.5tc(SPC)M + 5  
0.5tc(SPC)M – tr 0.5tc(SPC)M + 5  
td(SPCH-SIMO)M Delay time, SPInCLK high to SPInSIMO valid (clock polarity = 0)  
10  
td(SPCL-SIMO)M  
tv(SPCL-SIMO)M  
tv(SPCH-SIMO)M  
Delay time, SPInCLK low to SPInSIMO valid (clock polarity = 1)  
Valid time, SPInSIMO data valid after SPInCLK low (clock polarity = 0)  
Valid time, SPInSIMO data valid after SPInCLK high (clock polarity = 1)  
10  
tc(SPC)M – 5 – tf  
tc(SPC)M – 5 – tr  
tsu(SOMI-SPCL)M Setup time, SPInSOMI before SPInCLK low (clock polarity = 0)  
tsu(SOMI-SPCH)M Setup time, SPInSOMI before SPInCLK high (clock polarity = 1)  
6
6
4
4
tv(SPCL-SOMI)M  
tv(SPCH-SOMI)M  
Valid time, SPInSOMI data valid after SPInCLK low (clock polarity = 0)  
Valid time, SPInSOMI data valid after SPInCLK high (clock polarity = 1)  
(1) The MASTER bit (SPInCTRL2.3) is set and the CLOCK PHASE bit (SPInCTRL2.0) is cleared.  
(2) tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
(3) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table.  
(4) When the SPI is in master mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)M (PS +1)tc(ICLK) 100 ns, where PS is the prescale value set in the SPInCTL1[12:5] register bits.  
For PS values of 0: tc(SPC)M = 2tc(ICLK) 100 ns.  
(5) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).  
1
SPInCLK  
(clock polarity = 0)  
2
3
SPInCLK  
(clock polarity = 1)  
4
5
SPInSIMO  
SPInSOMI  
Master Out Data Is Valid  
6
7
Master In Data  
Must Be Valid  
Figure 12. SPIn Master Mode External Timing (CLOCK PHASE = 0)  
SPIn Master Mode External Timing Parameters  
(CLOCK PHASE = 1, SPInCLK = output, SPInSIMO = output, and SPInSOMI = input)(1)(2)(3) (see Figure 13)  
(1) The MASTER bit (SPInCTRL2.3) is set and the CLOCK PHASE bit (SPInCTRL2.0) is set.  
(2) tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
(3) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table.  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): TMS470R1B768  
 
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
SPIn Master Mode External Timing Parameters (continued)  
(CLOCK PHASE = 1, SPInCLK = output, SPInSIMO = output, and SPInSOMI = input) (see Figure 13)  
NO.  
MIN  
MAX  
UNIT  
1
tc(SPC)M  
Cycle time, SPInCLK(4)  
100  
256tc(ICLK)  
ns  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPInCLK high (clock polarity = 0)  
Pulse duration, SPInCLK low (clock polarity = 1)  
Pulse duration, SPInCLK low (clock polarity = 0)  
Pulse duration, SPInCLK high (clock polarity = 1)  
0.5tc(SPC)M – tr  
0.5tc(SPC)M – tf  
0.5tc(SPC)M – tf  
0.5tc(SPC)M – tr  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
2(5)  
3(5)  
ns  
ns  
Valid time, SPInCLK high after SPInSIMO data valid  
(clock polarity = 0)  
tv(SIMO-SPCH)M  
tv(SIMO-SPCL)M  
tv(SPCH-SIMO)M  
tv(SPCL-SIMO)M  
tsu(SOMI-SPCH)M  
tsu(SOMI-SPCL)M  
tv(SPCH-SOMI)M  
tv(SPCL-SOMI)M  
0.5tc(SPC)M –15  
4(5)  
5(5)  
6(5)  
7(5)  
ns  
ns  
ns  
ns  
Valid time, SPInCLK low after SPInSIMO data valid  
(clock polarity = 1)  
0.5tc(SPC)M – 15  
Valid time, SPInSIMO data valid after SPInCLK high  
(clock polarity = 0)  
0.5tc(SPC)M – 5 – tr  
Valid time, SPInSIMO data valid after SPInCLK low  
(clock polarity = 1)  
0.5tc(SPC)M – 5 – tf  
Setup time, SPInSOMI before SPInCLK high  
(clock polarity = 0)  
6
6
4
4
Setup time, SPInSOMI before SPInCLK low  
(clock polarity = 1)  
Valid time, SPInSOMI data valid after SPInCLK high  
(clock polarity = 0)  
Valid time, SPInSOMI data valid after SPInCLK low  
(clock polarity = 1)  
(4) When the SPI is in master mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)M (PS +1)tc(ICLK) 100 ns, where PS is the prescale value set in the SPInCTL1[12:5] register bits.  
For PS values of 0: tc(SPC)M = 2tc(ICLK) 100 ns.  
(5) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).  
1
SPInCLK  
(clock polarity = 0)  
2
3
SPInCLK  
(clock polarity = 1)  
4
5
SPInSIMO  
Master Out Data Is Valid  
6
Data Valid  
7
Master In Data  
Must Be Valid  
SPInSOMI  
Figure 13. SPIn Master Mode External Timing (CLOCK PHASE = 1)  
36  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
 
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
SPIn SLAVE MODE TIMING PARAMETERS  
SPIn Slave Mode External Timing Parameters  
(CLOCK PHASE = 0, SPInCLK = input, SPInSIMO = input, and SPInSOMI = output)(1)(2)(3)(4) (see Figure 14)  
NO.  
MIN  
MAX  
UNIT  
1
tc(SPC)S  
Cycle time, SPInCLK(5)  
100  
256tc(ICLK)  
ns  
tw(SPCH)S  
tw(SPCL)S  
tw(SPCL)S  
tw(SPCH)S  
Pulse duration, SPInCLK high (clock polarity = 0)  
Pulse duration, SPInCLK low (clock polarity = 1)  
Pulse duration, SPInCLK low (clock polarity = 0)  
Pulse duration, SPInCLK high (clock polarity = 1)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
2(6)  
3(6)  
ns  
ns  
Delay time, SPInCLK high to SPInSOMI valid  
(clock polarity = 0)  
td(SPCH-SOMI)S  
td(SPCL-SOMI)S  
tv(SPCH-SOMI)S  
tv(SPCL-SOMI)S  
tsu(SIMO-SPCL)S  
tsu(SIMO-SPCH)S  
tv(SPCL-SIMO)S  
tv(SPCH-SIMO)S  
6 + tr  
4(6)  
5(6)  
6(6)  
7(6)  
ns  
ns  
ns  
ns  
Delay time, SPInCLK low to SPInSOMI valid  
(clock polarity = 1)  
6 + tf  
Valid time, SPInSOMI data valid after SPInCLK high  
(clock polarity = 0)  
tc(SPC)S – 6 – tr  
Valid time, SPInSOMI data valid after SPInCLK low  
(clock polarity = 1)  
tc(SPC)S – 6 – tf  
Setup time, SPInSIMO before SPInCLK low  
(clock polarity = 0)  
6
6
6
6
Setup time, SPInSIMO before SPInCLK high  
(clock polarity = 1)  
Valid time, SPInSIMO data valid after SPInCLK low  
(clock polarity = 0)  
Valid time, SPInSIMO data valid after SPInCLK high  
(clock polarity = 1)  
(1) The MASTER bit (SPInCTRL2.3) is cleared and the CLOCK PHASE bit (SPInCTRL2.0) is cleared.  
(2) If the SPI is in slave mode, the following must be true: tc(SPC)S (PS + 1) tc(ICLK), where PS = prescale value set in SPInCTL1[12:5].  
(3) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table.  
(4) tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
(5) When the SPIn is in slave mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)S (PS +1)tc(ICLK) 100 ns, where PS is the prescale value set in the SPInCTL1[12:5] register bits.  
For PS values of 0: tc(SPC)S = 2tc(ICLK) 100 ns.  
(6) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).  
1
SPInCLK  
(clock polarity = 0)  
2
3
SPInCLK  
(clock polarity = 1)  
4
5
SPISOMI Data Is Valid  
SPInSOMI  
SPInSIMO  
6
7
SPISIMO Data  
Must Be Valid  
Figure 14. SPIn Slave Mode External Timing (CLOCK PHASE = 0)  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): TMS470R1B768  
 
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
SPIn Slave Mode External Timing Parameters  
(CLOCK PHASE = 1, SPInCLK = input, SPInSIMO = input, and SPInSOMI = output)(1)(2)(3)(4) (see Figure 15)  
NO.  
MIN  
MAX  
UNIT  
1
tc(SPC)S  
Cycle time, SPInCLK(5)  
100  
256tc(ICLK)  
ns  
tw(SPCH)S  
tw(SPCL)S  
tw(SPCL)S  
tw(SPCH)S  
Pulse duration, SPInCLK high (clock polarity = 0)  
Pulse duration, SPInCLK low (clock polarity = 1)  
Pulse duration, SPInCLK low (clock polarity = 0)  
Pulse duration, SPInCLK high (clock polarity = 1)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
2(6)  
3(6)  
ns  
ns  
Valid time, SPInCLK high after SPInSOMI data valid  
(clock polarity = 0)  
tv(SOMI-SPCH)S  
tv(SOMI-SPCL)S  
tv(SPCH-SOMI)S  
tv(SPCL-SOMI)S  
tsu(SIMO-SPCH)S  
tsu(SIMO-SPCL)S  
tv(SPCH-SIMO)S  
tv(SPCL-SIMO)S  
0.5tc(SPC)S – 6 – tr  
4(6)  
5(6)  
6(6)  
7(6)  
ns  
ns  
ns  
ns  
Valid time, SPInCLK low after SPInSOMI data valid  
(clock polarity = 1)  
0.5tc(SPC)S – 6 – tf  
Valid time, SPInSOMI data valid after SPInCLK high  
(clock polarity = 0)  
0.5tc(SPC)S – 6 – tr  
Valid time, SPInSOMI data valid after SPInCLK low  
(clock polarity = 1)  
0.5tc(SPC)S – 6 – tf  
Setup time, SPInSIMO before SPInCLK high  
(clock polarity = 0)  
6
6
6
6
Setup time, SPInSIMO before SPInCLK low  
(clock polarity = 1)  
Valid time, SPInSIMO data valid after SPInCLK high  
(clock polarity = 0)  
Valid time, SPInSIMO data valid after SPInCLK low  
(clock polarity = 1)  
(1) The MASTER bit (SPInCTRL2.3) is cleared and the CLOCK PHASE bit (SPInCTRL2.0) is set.  
(2) If the SPI is in slave mode, the following must be true: tc(SPC)S (PS + 1) tc(ICLK), where PS = prescale value set in SPInCTL1[12:5].  
(3) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table.  
(4) tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
(5) When the SPIn is in slave mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)S (PS +1)tc(ICLK) 100 ns, where PS is the prescale value set in the SPInCTL1[12:5] register bits.  
For PS values of 0: tc(SPC)S = 2tc(ICLK) 100 ns.  
(6) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).  
1
SPInCLK  
(clock polarity = 0)  
2
3
SPInCLK  
(clock polarity = 1)  
4
5
SPInSOMI  
SPISOMI Data Is Valid  
6
Data Valid  
7
SPISIMO Data Must  
Be Valid  
SPInSIMO  
Figure 15. SPIn Slave Mode External Timing (CLOCK PHASE = 1)  
38  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
 
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
SCIn ISOSYNCHRONOUS MODE TIMINGS INTERNAL CLOCK  
Timing Requirements for Internal Clock SCIn Isosynchronous Mode(1)(2)(3)  
(see Figure 16)  
(BAUD + 1)  
(BAUD + 1)  
IS EVEN OR BAUD = 0  
IS ODD AND BAUD 0  
UNIT  
MIN  
MAX  
MIN  
MAX  
Cycle time,  
SCInCLK  
tc(SCC)  
2tc(ICLK)  
224 tc(ICLK)  
3tc(ICLK)  
(224 -1) tc(ICLK)  
ns  
ns  
ns  
Pulse duration,  
SCInCLK low  
tw(SCCL)  
tw(SCCH)  
0.5tc(SCC) – tf  
0.5tc(SCC) – tr  
0.5tc(SCC) + 5  
0.5tc(SCC) + 5  
0.5tc(SCC) + 0.5tc(ICLK) – tf  
0.5tc(SCC) – 0.5tc(ICLK) – tr  
0.5tc(SCC) + 0.5tc(ICLK)  
0.5tc(SCC) – 0.5tc(ICLK)  
Pulse duration,  
SCInCLK high  
Delay time,  
td(SCCH-TXV)  
SCInCLK high to  
SCInTX valid  
10  
10  
ns  
ns  
ns  
ns  
Valid time,  
SCInTX data  
after SCInCLK  
low  
tv(TX)  
tc(SCC) – 10  
tc(ICLK) + tf + 20  
–tc(ICLK) + tf + 20  
tc(SCC) – 10  
tc(ICLK) + tf + 20  
–tc(ICLK) + tf + 20  
Setup time,  
SCInRX before  
SCInCLK low  
tsu(RX-SCCL)  
Valid time,  
SCInRX data  
after SCInCLK  
low  
tv(SCCL-RX)  
(1) BAUD = 24-bit concatenated value formed by the SCI[H,M,L]BAUD registers.  
(2) tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
(3) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table.  
t
c(SCC)  
t
w(SCCH)  
t
w(SCCL)  
SCICLK  
SCITX  
SCIRX  
t
v(TX)  
t
d(SCCHĆTXV)  
Data Valid  
t
su(RXĆSCCL)  
t
v(SCCLĆRX)  
Data Valid  
A. Data transmission/reception characteristics for isosynchronous mode with internal clocking are similar to the  
asynchronous mode. Data transmission occurs on the SCICLK rising edge, and data reception occurs on the SCICLK  
falling edge.  
Figure 16. SCIn Isosynchronous Mode Timing Diagram for Internal Clock  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): TMS470R1B768  
 
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
SCIn ISOSYNCHRONOUS MODE TIMINGS EXTERNAL CLOCK  
Timing Requirements for External Clock SCIn Isosynchronous Mode(1)(2)  
(see Figure 17)  
MIN  
MAX  
UNIT  
ns  
tc(SCC)  
Cycle time, SCInCLK(3)  
8tc(ICLK)  
tw(SCCH)  
tw(SCCL)  
td(SCCH-TXV)  
tv(TX)  
tsu(RX-SCCL)  
tv(SCCL-RX)  
Pulse duration, SCInCLK high  
0.5tc(SCC) – 0.25tc(ICLK)  
0.5tc(SCC) – 0.25tc(ICLK)  
0.5tc(SCC) + 0.25tc(ICLK)  
0.5tc(SCC) + 0.25tc(ICLK)  
2tc(ICLK) + 12 + tr  
ns  
Pulse duration, SCInCLK low  
ns  
Delay time, SCInCLK high to SCInTX valid  
Valid time, SCInTX data after SCInCLK low  
Setup time, SCInRX before SCInCLK low  
Valid time, SCInRX data after SCInCLK low  
ns  
2tc(SCC) – 10  
0
ns  
ns  
2tc(ICLK) + 10  
ns  
(1) tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
(2) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table.  
(3) When driving an external SCInCLK, the following must be true: tc(SCC) 8tc(ICLK)  
.
t
c(SCC)  
t
w(SCCH)  
t
w(SCCL)  
SCICLK  
SCITX  
SCIRX  
t
v(TX)  
t
d(SCCHĆTXV)  
Data Valid  
t
su(RXĆSCCL)  
t
v(SCCLĆRX)  
Data Valid  
A. Data transmission / reception characteristics for isosynchronous mode with external clocking are similar to the  
asynchronous mode. Data transmission occurs on the SCICLK rising edge, and data reception occurs on the SCICLK  
falling edge.  
Figure 17. SCIn Isosynchronous Mode Timing Diagram for External Clock  
40  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
 
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
HIGH-END TIMER (HET) TIMINGS  
Minimum PWM Output Pulse Width:  
This is equal to one high resolution clock period (HRP). The HRP is defined by the 6-bit high resolution prescale  
factor (hr), which is user defined, giving prescale factors of 1 to 64, with a linear increment of codes.  
Therefore, the minimum PWM output pulse width = HRP(min) = hr(min)/SYSCLK = 1/SYSCLK  
For example, for a SYSCLK of 30 MHz, the minimum PWM output pulse width = 1/30 = 33.33ns  
Minimum Input Pulses that Can Be Captured:  
The input pulse width must be greater or equal to the low resolution clock period (LRP), i.e., the HET loop (the  
HET program must fit within the LRP). The LRP is defined by the 3-bit loop-resolution prescale factor (lr), which  
is user defined, with a power of 2 increment of codes. That is, the value of lr can be 1, 2, 4, 8, 16, or 32.  
Therefore, the minimum input pulse width = LRP(min) = hr(min) * lr(min)/SYSCLK = 1 * 1/SYSCLK  
For example, with a SYSCLK of 30 MHz, the minimum input pulse width = 1 * 1/30 = 33.33 ns  
NOTE:  
Once the input pulse width is greater than LRP, the resolution of the measurement is  
still HRP. (That is, the captured value gives the number of HRP clocks inside the  
pulse.)  
Abbreviations:  
hr = HET high resolution divide rate = 1, 2, 3,...63, 64  
lr = HET low resolution divide rate = 1, 2, 4, 8, 16, 32  
High resolution clock period = HRP = hr/SYSCLK  
Loop resolution clock period = LRP = hr*lr/SYSCLK  
HIGH-END CAN CONTROLLER (HECCn) MODE TIMINGS  
Dynamic Characteristics for the CANnHTX and CANnHRX Pins  
PARAMETER  
MIN  
MAX UNIT  
td(CANnHTX)  
td(CANnHRX)  
Delay time, transmit shift register to CANnHTX pin(1)  
15  
5
ns  
ns  
Delay time, CANnHRX pin to receive shift register  
(1) These values do not include rise/fall times of the output buffer.  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
MULTI-BUFFERED A-TO-D CONVERTER (MibADC)  
The multi-buffered A-to-D converter (MibADC) has a separate power bus for its analog circuitry that enhances  
the A-to-D performance by preventing digital switching noise on the logic circuitry, which could be present on VSS  
and VCC, from coupling into the A-to-D analog stage. All A-to-D specifications are given with respect to ADREFLO  
unless otherwise noted.  
Resolution  
10 bits (1024 values)  
Assured  
Monotonic  
Output conversion code  
00h to 3FFh [00 for VAI ADREFLO; 3FFh for VAI ADREFHI  
]
Table 10. MibADC Recommended Operating Conditions(1)  
MIN  
VSSAD  
VSSAD  
MAX  
VCCAD  
UNIT  
ADREFHI  
ADREFLO  
VAI  
A-to-D high-voltage reference source  
V
V
V
A-to-D low-voltage reference source  
Analog input voltage  
VCCAD  
VSSAD – 0.3  
VCCAD + 0.3  
Analog input clamp current(2)  
(VAI < VSSAD – 0.3 or VAI > VCCAD + 0.3)  
IAIC  
–2  
2
mA  
(1) For VCCAD and VSSAD recommended operating conditions, see the "Device Recommended Operating Conditions" table.  
(2) Input currents into any ADC input channel outside the specified limits could affect conversion results of other channels.  
Table 11. Operating Characteristics Over Full Ranges of Recommended Operating Conditions(1)(2)  
PARAMETER  
DESCRIPTION/CONDITIONS  
See Figure 18.  
MIN  
TYP  
MAX UNIT  
500  
RI  
CI  
Analog input resistance  
250  
Conversion  
Sampling  
10 pF  
30 pF  
Analog input capacitance  
See Figure 18.  
IAIL  
Analog input leakage current  
ADREFHI input current  
See Figure 18.  
–1  
3
1
5
µA  
IADREFHI  
ADREFHI = 3.6 V, ADREFLO = VSSAD  
ADREFHI - ADREFLO  
mA  
Conversion range over which specified  
accuracy is maintained  
CR  
3.6  
V
Difference between the actual step width  
and the ideal value. See Figure 19.  
EDNL  
Differential nonlinearity error  
±1.5 LSB  
±2.0 LSB  
Maximum deviation from the best straight  
line through the MibADC. MibADC  
transfer characteristics, excluding the  
quantization error. See Figure 20.  
EINL  
Integral nonlinearity error  
Maximum value of the difference  
between an analog value and the ideal  
midstep value. See Figure 21.  
E TOT  
Total error/absolute accuracy  
±2 LSB  
(1) VCCAD = ADREFHI  
(2) 1 LSB = (ADREFHI – ADREFLO)/210 for the MibADC  
42  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
External  
MibADC  
Rs  
Ri  
Sample Switch  
Input Pin  
Sample  
Capacitor  
Parasitic  
Capacitance  
Rleak  
Vsrc  
Ci  
Figure 18. MibADC Input Equivalent Circuit  
Multi-Buffer ADC Timing Requirements  
MIN  
0.05  
1
NOM  
MAX UNIT  
tc(ADCLK)  
td(SH)  
td)  
Cycle time, MibADC clock  
µs  
µs  
µs  
µs  
Delay time, sample and hold time  
Delay time, conversion time  
0.55  
1.55  
(1)  
td(SHC)  
Delay time, total sample/hold and conversion time  
(1) This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors; for  
more details, see the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature number SPNU206).  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Link(s): TMS470R1B768  
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
The differential nonlinearity error shown in Figure 19 (sometimes referred to as differential linearity) is the  
difference between an actual step width and the ideal value of 1 LSB.  
0 ... 110  
0 ... 101  
0 ... 100  
0 ... 011  
DifferentialLinearity  
Error(1/2 LSB)  
1 LSB  
0 ... 010  
DifferentialLinearity  
Error(- 1/2 LSB)  
0 ... 001  
1 LSB  
0 ... 000  
0
1
2
3
4
5
Analog Input Value (LSB)  
A. 1 LSB = (ADREFHI - ADREFLO)/210  
Figure 19. Differential Nonlinearity (DNL)  
The integral nonlinearity error shown in Figure 20 (sometimes referred to as linearity error) is the deviation of the  
values on the actual transfer function from a straight line.  
0 ... 111  
0 ... 110  
0 ... 101  
Ideal  
Transition  
Actual  
Transition  
0 ... 100  
0 ... 011  
At Transition  
011/100  
(ć 1/2 LSB)  
0 ... 010  
0 ... 001  
End-Point Lin. Error  
At Transition  
001/010 (ć 1/4 LSB)  
0 ... 000  
0
1
2
3
4
5
6
7
Analog Input Value (LSB)  
A. 1 LSB = (ADREFHI - ADREFLO)/210  
Figure 20. Integral Nonlinearity (INL) Error  
44  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
 
 
TMS470R1B768  
www.ti.com ......................................................................................................................................................... SPNS108BAUGUST 2005REVISED MAY 2008  
The absolute accuracy or total error of an MibADC as shown in Figure 21 is the maximum value of the difference  
between an analog value and the ideal midstep value.  
0 ... 111  
0 ... 110  
0 ... 101  
0 ... 100  
Total Error  
At Step 0 ... 101  
(-1 1/4 LSB)  
0 ... 011  
0 ... 010  
Total Error  
At Step 0 ... 001  
(1/2 LSB)  
0 ... 001  
0 ... 000  
0
1
2
3
4
5
6
7
Analog Input Value (LSB)  
A. 1 LSB = (ADREFHI - ADREFLO)/210  
Figure 21. Absolute Accuracy (Total) Error  
Thermal Resistance Characteristics  
PARAMETER  
RθJA  
°C/W  
43  
RθJC  
6.5  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Link(s): TMS470R1B768  
 
TMS470R1B768  
SPNS108BAUGUST 2005REVISED MAY 2008 ......................................................................................................................................................... www.ti.com  
Revision History  
This revision history highlights the changes made to the device-specific data sheet SPNS108.  
Table 12. Revision History  
SPNS108A to SPNS108B  
Corrected the device identification code register value from 0xn83F to 0xn87F in Device Identification Code Register.  
SPNS108 to SPNS108A  
Revised the Family Nomenclature drawing to add Q version of the temperature range.  
Revised "Absolute Maximum Ratings" table to add Q version of the temperature range.  
Revised "Device Recommended Operating Conditions" table to add Q version of the temperature range.  
Added note to PORRST Timing Diagram.  
Changed TA range to –40°C to 125°C on twec in "Timing Requirements for Program Flash" table.  
Added twec MIN value of 50000 and deleted MAX value in "Timing Requirements for Program Flash" table.  
Changed terase(sector) TYP value to 1.7 and removed MAX value in "Timing Requirements for Program Flash" table.  
46  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): TMS470R1B768  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Mar-2009  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TMS470R1B768PGET  
NRND  
LQFP  
PGE  
144  
60 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTQF017A – OCTOBER 1994 – REVISED DECEMBER 1996  
PGE (S-PQFP-G144)  
PLASTIC QUAD FLATPACK  
108  
73  
109  
72  
0,27  
M
0,08  
0,17  
0,50  
0,13 NOM  
144  
37  
1
36  
Gage Plane  
17,50 TYP  
20,20  
SQ  
19,80  
0,25  
0,05 MIN  
22,20  
SQ  
0°7°  
21,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040147/C 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

TMS470R1B768PGEQ

16/32-Bit RISC Flash Microcontroller
TI

TMS470R1B768PGET

16/32-Bit RISC Flash Microcontroller
TI

TMS470R1B768PGETR

32-BIT, FLASH, 60MHz, RISC MICROCONTROLLER, PQFP144, PLASTIC, LQFP-144
TI

TMS470R1B768_07

16/32-Bit RISC Flash Microcontroller
TI

TMS470R1B768_08

16/32-Bit RISC Flash Microcontroller
TI

TMS470R1VC002

16/32-BIT RISC ROM MICROCONTROLLER
TI

TMS470R1VC002PZA

暂无描述
TI

TMS470R1VC002PZQ

32-BIT, FLASH, 20MHz, RISC MICROCONTROLLER, PQFP100, PLASTIC, LQFP-100
TI

TMS470R1VC334A

16/32-BIT RISC ROM MICROCONTROLLER
TI

TMS470R1VC334APNA

16/32-BIT RISC ROM MICROCONTROLLER
TI

TMS470R1VC334APNQ

16/32-BIT RISC ROM MICROCONTROLLER
TI

TMS470R1VC334APNT

16/32-BIT RISC ROM MICROCONTROLLER
TI