TMS470R1VF338EPZA [TI]

16/32-BIT RISC FLASH MICROCONTROLLERS; 16位/ 32位RISC闪存微控制器
TMS470R1VF338EPZA
型号: TMS470R1VF338EPZA
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16/32-BIT RISC FLASH MICROCONTROLLERS
16位/ 32位RISC闪存微控制器

闪存 微控制器和处理器 外围集成电路 时钟
文件: 总56页 (文件大小:913K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
z
z
High-Performance Static CMOS Technology  
– Class II Serial Interface (C2SIb)  
– Two Selectable Data Rates  
– Normal Mode 10.4 Kbps and 4X Mode  
41.6 Kbps  
TMS470R1x 16/32-Bit RISC Core (ARM7TDMI)  
– 24-MHz System Clock (48-MHz Pipeline  
Mode)  
– Independent 16/32-Bit Instruction Set  
– Open Architecture With Third-Party Support  
– Built-In Debug Module  
z
High-End Timer (HET)  
– 27 Programmable I/O Channels (VF338x):  
– 23 High-Resolution Pins  
– Utilizes Big-Endian Format  
– 4 Standard-Resolution Pins  
– 16 Programmable I/O Channels (VF348x):  
– 14 High-Resolution Pins  
– 2 Standard-Resolution Pins  
– High-Resolution Share Feature (XOR)  
– High-End Timer RAM  
z
Integrated Memory  
– 256K-Byte Program Flash  
– One Bank With 14 Contiguous Sectors  
– Internal State Machine for Programming  
and Erase  
– 64-Instruction Capacity  
– 10K-Byte Static RAM (SRAM) (VF3x8)  
– 12K-Byte Static RAM (SRAM) (VF3x82)  
z
10-Bit Multi-Buffered ADC (MibADC)  
12-Channel (VF338x)  
16-Channel (VF348x)  
z
Operating Features  
– Core Supply Voltage (V ): 1.81 V - 2.06 V  
CC  
– 64-Word FIFO Buffer  
– Core Supply Voltage (V ): 1.70 V - 2.06 V for  
CC  
– Single- or Continuous-Conversion Modes  
– 1.55 μs Minimum Sample and Conversion  
Time  
VF3x8xE when used from - 40C to 85C  
– I/O Supply Voltage (V  
): 3.0 V - 3.6 V  
CCIO  
– Low-Power Modes: STANDBY and HALT  
– Industrial and Automotive Temperature  
Ranges  
– Calibration Mode and Self-Test Features  
z
z
z
Eight External Interrupts  
Flexible Interrupt Handling  
z
470+ System Module  
5 Dedicated General-Purpose I/O (GIO) Pins,  
1 Input-Only GIO Pin, and 48 Additional  
Peripheral I/Os (VF338x)  
– 32-Bit Address Space Decoding  
– Bus Supervision for Mem and Peripherals  
– Analog Watchdog (AWD) Timer  
– Real-Time Interrupt (RTI)  
z
z
11 Dedicated GIO Pins,1 Input-Only GIO Pin,  
and 38 Additional Peripheral I/Os (VF348x)  
– System Integrity and Failure Detection  
z
z
Zero-Pin Phase-Locked Loop (ZPLL)-Based  
Clock Module With Prescaler  
– Multiply-by-4 or -8 Internal ZPLL Option  
– ZPLL Bypass Mode  
External Clock Prescale (ECP) Module  
– Programmable Low-Frequency External  
Clock (CLK)  
z
z
Compatible ROM Device  
Six Communication Interfaces:  
– Two Serial Peripheral Interfaces (SPIs)  
– 255 Programmable Baud Rates  
– Two Serial Communications Interfaces  
(SCIs)  
On-Chip Scan-Base Emulation Logic,  
IEEE Standard 1149.1 (JTAG)Test-Access Port  
z
z
100-Pin Plastic Low-Profile Quad Flatpack  
(PZ Suffix)  
24  
Development System Support Tools Available  
– Code Composer StudioIntegrated Devel-  
opment Environment (IDE)  
– HET Assembler and Simulator  
– Real-Time In-Circuit Emulation  
– Flash Programming  
– 2 Selectable Baud Rates  
– Asynchronous/Isosynchronous Modes  
– Standard CAN Controller (SCC)  
– 16-Mailbox Capacity  
– Fully Compliant With CAN Protocol,  
Version 2.0B  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are property of their respective owners.  
Code Composer Studio is a trademark of Texas Instruments.  
ARM7TDMI is a trademark of Advanced RISC Machines Limited (ARM).  
† The test-access port is compatible with the IEEE Standard 1149.1-1990, IEEE Standard Test-Access Port and Boundary Scan Architecture  
specification. Boundary scan is not supported on this device.  
Copyright © 2006, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication  
date. Products conform to specifications per the Texas  
Instruments standard warranty. Production processing does  
not necessarily include testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
TMS470R1VF338x 100-PIN PZ PACKAGE (TOP VIEW)  
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
AWD  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
ADIN[11]  
ADIN[10]  
ADIN[9]  
ADIN[8]  
HET[18]  
HET[19]  
HET[20]  
HET[21]  
HET[22]  
AD  
REFHI  
AD  
REFLO  
V
SPI2ENA  
SPI2SOMI  
SPI2SIMO  
CCAD  
V
SSAD  
TMS  
TMS2  
SPI2CLK  
V
V
SS  
CC  
V
V
CC  
SS  
HET[0]  
HET[1]  
C2SIbRX  
C2SIbTX  
V
C2SIbLPN  
HET[24]  
SS  
V
CC  
FLTP2  
FLTP1  
HET[31]  
HET[30]  
V
HET[29]  
CCP  
HET[2]  
HET[3]  
HET[4]  
HET[5]  
HET[6]  
HET[7]  
SCI2TX  
SCI2RX  
GIOA[1]/INT[1]/ECLK  
GIOA[0]/INT0  
TEST  
TRST  
99  
100  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
† GIOA[0]/INT0 (pin 28) is an input-only GIO pin.  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
TMS470R1VF348x 100-PIN PZ PACKAGE (TOP VIEW)  
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
AWD  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
ADIN[11]  
ADIN[14]  
ADIN[10]  
ADIN[13]  
HET[18]  
HET[19]  
HET[20]  
HET[21]  
SPI2SCS  
ADIN[9]  
ADIN[12]  
ADIN[8]  
SPI2ENA  
SPI2SOMI  
SPI2SIMO  
AD  
REFHI  
AD  
REFLO  
V
SPI2CLK  
CCAD  
V
V
SSAD  
CC  
TMS  
V
SS  
TMS2  
C2SIbRX  
C2SIbTX  
V
SS  
V
C2SIbLPN  
HET[24]  
CC  
HET[0]  
V
HET[31]  
SS  
V
SCI2TX  
CC  
FLTP2  
FLTP1  
SCI2RX  
GIOA[3]/INT3  
GIOA[2]/INT2  
GIOA[1]/INT1/ECLK  
V
CCP  
HET[2]  
HET[4]  
HET[6]  
HET[7]  
GIOA[0]/INT0  
TEST  
TRST  
99  
100  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
† GIOA[0]/INT0 (pin 28) is an input-only GIO pin.  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
description  
The TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, and TMS470R1VF3482 devices are mem-  
bers of the Texas Instruments TMS470R1x family of general-purpose16/32-bit reduced instruction set computer  
(RISC) microcontrollers. The VF3x8x microcontroller offers high performance utilizing the high-speed  
ARM7TDMI 16/32-bit RISC central processing unit (CPU), resulting in a high instruction throughput while  
maintaining greater code efficiency. The ARM7TDMI 16/32-bit RISC CPU views memory as a linear collection  
of bytes numbered upwards from zero. The TMS470R1VF3x8x utilizes the big-endian format where the most  
significant byte of a word is stored at the lowest numbered byte and the least significant byte at the highest  
numbered byte.  
High-end embedded control applications demand more performance from their controllers while maintaining  
low costs. The VF3x8x RISC core architecture offers solutions to these performance and cost demands while  
maintaining low power consumption.  
The VF338/VF348/VF3382/VF3482 device contains the following:  
z
z
z
z
z
z
z
z
z
z
z
z
z
ARM7TDMI 16/32-Bit RISC CPU  
TMS470R1x system module (SYS) with 470+ enhancements  
256K-byte flash  
10K-byte SRAM (VF3x8)  
12K-byte SRAM (VF3x82)  
Zero-pin phase-locked loop (ZPLL) clock module  
Analog watchdog (AWD) timer  
Real-time interrupt (RTI) module  
Two serial peripheral interface (SPI) modules  
Two serial communications interface (SCI) modules  
Standard CAN controller (SCC)  
Class II serial interface (C2SIb)  
10-bit multi-buffered analog-to-digital converter (MibADC), 12-input channels (VF338x), 16-input channels  
(VF348x)  
z
z
z
High-end timer (HET) controlling 27 I/Os (VF338x), controlling 16 I/Os (VF348x)  
External Clock Prescale (ECP)  
Up to 53 I/O pins and 1 input-only pin (VF338x), up to 49 I/O pins and 1 input-only pin (VF348x)  
The functions performed by the 470+ system module (SYS) include: address decoding; memory protection;  
memory and peripherals bus supervision; reset and abort exception management; prioritization for all internal  
interrupt sources; device clock control; and parallel signature analysis (PSA). This data sheet includes device-  
specific information such as memory and peripheral select assignment, interrupt priority, and a device memory  
map. For a more detailed functional description of the SYS module, see the TMS470R1x System Module  
Reference Guide (literature number SPNU189).  
The VF3x8x memory includes general-purpose SRAM supporting single-cycle read/write accesses in byte,  
half-word, and word modes.  
The flash memory on this device is a nonvolatile, electrically erasable and programmable memory implemented  
with a 32-bit-wide data bus interface.The flash operates with a system clock frequency of up to 24 MHz. In  
pipeline mode, the flash operates with a system clock frequency of up to 48 MHz. For more detailed information  
on the flash, see the flash section of this data sheet and the TMS470R1x F05 Flash Reference Guide (literature  
number SPNU213).  
† Throughout the remainder of this document, the TMS470R1VF338, TMSVF348, TMS470R1VF3382 and TMS470R1VF3482 device names,  
where generic, shall be referred to as TMS470R1VF3x8x or VF3x8x; where applicable to only the 10K SRAM devices, VF3x8; where applicable  
to only the 12K SRAM devices, VF3x82; where applicable to only VF338 and VF3382 as VF338x; where applicable to only VF348 and VF3482  
as VF348x;and, where unique, shall be referred to as either their full device name or VF338 or VF348 or VF3382 or VF3482.  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
description (continued)  
The VF3x8x device has six communication interfaces: two SPIs, two SCIs, an SCC, and a C2SIb. The SPI  
provides a convenient method of serial interaction for high-speed communications between similar shift-register  
type devices. The SCI is a full-duplex, serial I/O interface intended for asynchronous communication between  
the CPU and other peripherals using the standard Non-Return-to-Zero (NRZ) format. The SCC uses a serial,  
multimaster communication protocol that efficiently supports distributed real-time control with robust  
communication rates of up to 1 megabit per second (Mbps). The SCC is ideal for applications operating in noisy  
and harsh environments (e.g., automotive and industrial fields) that require reliable serial communication or  
multiplexed wiring. The C2SIb allows the VF3x8x to transmit and receive messages on a class II network  
following an SAE J1850 standard. For more detailed functional information on the SPI, SCI, and SCC periph-  
erals, see the specific reference guides (literature numbers SPNU195, SPNU196, and SPNU197, respectively).  
For more detailed functional information on the C2SIb peripheral, see the TMS470R1x Class II Serial Interface  
B (C2SIb) Reference Guide (literature number SPNU214).  
The HET is an advanced intelligent timer that provides sophisticated timing functions for real-time applications.  
The timer is software-controlled, using a reduced instruction set, with a specialized timer micromachine and  
an attached I/O port. The HET can be used for compare, capture, or general-purpose I/O. It is especially well  
suited for applications requiring multiple sensor information and drive actuators with complex and accurate  
time pulses. For more detailed functional information on the HET, see the TMS470R1x High-End Timer (HET)  
Reference Guide (literature number SPNU199).  
The VF3x8x device has a 10-bit-resolution sample-and-hold MibADC. The MibADC channels can be converted  
individually or can be grouped by software for sequential conversion sequences. There are three separate  
groupings, two of which are triggerable by an external event. Each sequence can be converted once when  
triggered or configured for continuous conversion mode. For more detailed functional information on the Mi-  
bADC, see the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature  
number SPNU206).  
The zero-pin phase-locked loop (ZPLL) clock module contains a phase-locked loop, a clock-monitor circuit, a  
clock-enable circuit, and a prescaler (with prescale values of 1–8). The function of the ZPLL is to multiply the  
external frequency reference to a higher frequency for internal use. The ZPLL provides ACLK to the system  
(SYS) module. The SYS module subsequently provides system clock (SYSCLK), real-time interrupt clock  
(RTICLK), CPU clock (MCLK), and peripheral interface clock (ICLK) to all other VF3x8x device modules. For  
more detailed functional information on the ZPLL, see the TMS470R1x Zero-Pin Phase Locked Loop (ZPLL)  
Clock Module Reference Guide (literature number SPNU212).  
The VF3x8x device also has an external clock prescaler (ECP) module that when enabled, outputs a continuous  
external clock (ECLK) on a specified GIO pin. The ECLK frequency is a user-programmable ratio of the pe-  
ripheral interface clock (ICLK) frequency. For more detailed functional information on the ECP, see the  
TMS470R1x External Clock Prescaler (ECP) Reference Guide (literature number SPNU202).  
device characteristics  
The TMS470R1VF3x8x device is a derivative of the F05 system emulation device SE470R1VB8AD. Table 1  
identifies all the characteristics of the TMS470R1VF3x8x device except the SYSTEM and CPU, which are  
generic. The COMMENTS column aids the user in software-programming and references device-specific in-  
formation.  
† SAE Standard J1850 Class B Data Communication Network Interface  
‡ ACLK should not be confused with the MibADC internal clock, ADCLK. ACLK is the continuous system clock from an external resonator/crystal  
reference.  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
device characteristics (continued)  
Table 1. Device Characteristics  
DEVICE DESCRIPTION  
TMS470R1VF338X  
DEVICE DESCRIPTION  
TMS470R1VF348X  
CHARACTERISTICS  
COMMENTS FOR VF3X8X  
MEMORY  
For the number of memory selects on this device, see the Memory Selection Assignment table (Table 2).  
Flash is pipeline-capable  
256K-Byte Flash  
256K-Byte Flash  
The VF3x8 RAM is implemented in one 10K array  
selected by two memory-select signals. The VF3x82  
RAM is implemented in one 12K array selected by two  
memory-select signals. (See the Memory Selection  
Assignment table, Table 2).  
INTERNAL  
MEMORY  
10K-Byte SRAM (VF338)  
12K-Byte SRAM (VF3382) 12K-Byte SRAM (VF3482)  
10K-Byte SRAM (VF348)  
PERIPHERALS  
For the device-specific interrupt priority configurations, see the Interrupt Priority table (Table 4). And for the 1K peripheral address ranges and  
their peripheral selects, see the VF338/VF348x Peripherals, System Module, and Flash Base Addresses table (Table 3).  
CLOCK  
ZPLL  
ZPLL  
Zero-pin PLL has no external loop filter pins.  
Port A has six (6) external pins  
(VF338x – GIOA[2]/INT2 and GIOA[3]/INT3 are not  
available.)  
Port A has eight (8) external pins and Port B has four (4)  
external pins (VF348x)  
GENERAL-PURPOSE  
I/Os  
5 I/O  
1 Input only  
11 I/O  
1 Input only  
ECP  
YES  
1
YES  
1
C2SIb  
1 (3-pin)  
1 (2-pin)  
1 (3-pin)  
1 (2-pin)  
SCI2hasnoexternalclockpin, onlytransmit/receivepins  
(SCI2TX and SCI2RX)  
SCI  
CAN  
1 SCC  
1 SCC  
Standard CAN controller  
(HECC and/or SCC)  
SPI  
1 (5-pin)  
1 (4-pin)  
VF338x SPI1 (5-pin), SPI2 (4-pin)  
SPI2 has no chip select pin  
2 (5-pin)  
(5-pin, 4-pin or 3-pin)  
TheVF338xand VF348x deviceshave both the logic and  
registers for a full 32-I/O HET implemented, even though  
not all 32 pins are available externally.  
Thehigh-resolution(HR)SHAREfeatureallowsevenHR  
pins to share the next higher odd HR pin structures. This  
HR sharing is independent of whether or not the odd pin  
is available externally. If an odd pin is available externally  
and shared, then the odd pin can only be used as a  
general-purpose I/O. For more information on HR  
SHARE, see the TMS470R1x High-End Timer (HET)  
Reference Guide (literature number SPNU199).  
HET with  
XOR Share  
27 I/O  
16 I/O  
HET RAM  
MibADC  
64-Instruction Capacity  
64-Instruction Capacity  
12-channel MibADC (VF338x), 16-channel MibADC  
(VF348x). Both the logic and registers for a full  
16-channel MibADC are present. Capable of being event  
triggered from a user-selectable event source.  
10-bit, 12-channel  
64-word FIFO  
10-bit, 16-channel  
64-word FIFO  
When used from -40C to 85C, the core voltage range for  
VF3x8xE devices is 1.70 - 2.06 V  
CORE VOLTAGE  
1.81 - 2.06 V (see note)  
1.81 - 2.06 V (see note)  
I/O VOLTAGE  
PINS  
3.0 - 3.6 V  
100  
3.0 - 3.6 V  
100  
PACKAGE  
PZ  
PZ  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
functional block diagram  
External Pins  
External Pins  
VCCP  
OSCIN  
RAM  
FLASH  
(256K Bytes)  
14 Sectors  
OSCOUT  
PLLDIS  
(10K Bytes) (VF3x8)  
(12K Bytes) (VF3x82)  
ZPLL  
FLTP1  
FLTP2  
ADIN[11:0]†  
ADEVT  
CPU Address/Data Bus  
MibADC  
with  
64-Word  
FIFO  
ADREFHI  
ADREFLO  
VCCAD  
TRST  
TCK  
TDI  
TMS470R1x  
CPU  
VSSAD  
TDO  
TMS  
HET with  
XOR Share  
(64-Word)  
HET [31:29, 24]‡  
HET[22:0]‡  
TMS470R1x 470+ SYSTEM MODULE  
TMS2  
RST  
CANSTX  
CANSRX  
SCC  
SCI1  
AWD  
SCI1CLK  
SCI1TX  
SCI1RX  
TEST  
PORRST  
CLKOUT  
SCI2TX  
SCI2RX  
SCI2  
C2SIbTX  
C2SIbRX  
C2SIbLPN  
C2SIb  
GIOA[1]/INT[1]/  
ECLK  
SPI2  
GIO  
SPI1  
ECP  
† ADIN[11:0] for VF338x and ADIN[15:0] for VF348.  
‡ HET[31:29, 24] and HET[22:0] for VF338, HET[31, 24] and HET[21:18, 13:10, 8, 7, 6, 4, 2, 0] for VF348.  
§ The SPI2 chip select pin (SPI2SCS) is only applicable to the VF348x device.  
¶ GIOA[0]/INT[0] is an input-only GIO pin.  
# GIOA[2]/INT[2], GIOA[3]/INT[3], and GIOB[3:0] pins are not applicable to the VF338x device.  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
Terminal Functions  
TERMINAL  
VF338  
INTERNAL  
PULLUP/  
PULLDOWN§  
TYPE†‡  
DESCRIPTION  
NAME  
VF348  
HIGH-END TIMER (HET)  
HET[0]  
88  
89  
95  
96  
97  
98  
99  
100  
55  
56  
20  
19  
18  
17  
16  
15  
14  
13  
49  
48  
47  
46  
45  
35  
91  
HET[1]  
HET[2]  
97  
HET[3]  
The VF338x and VF348x devices have both the logic and registers for a  
full 32-I/O HET implemented, even though not all 32 pins are available  
externally  
HET[4]  
98  
HET[5]  
HET[6]  
99  
100  
55  
HET[7]  
Timer input capture or output compare. The HET[31:0] applicable pins  
can be programmed as general-purpose input/output (GIO) pins.  
HET[22:0] are high-resolution pins and HET[31:29, 24] are standard-  
resolution pins for VF338x.  
HET[21:18, 13:10, 8, 7, 6, 4, 2, 0] are high-resolution pins and HET[31,  
24] are standard-resolution pins for VF348x.  
HET[8]  
HET[9]  
HET[10]  
HET[11]  
HET[12]  
HET[13]  
HET[14]  
HET[15]  
HET[16]  
HET[17]  
HET[18]  
HET[19]  
HET[20]  
HET[21]  
HET[22]  
HET[24]  
HET[28]  
HET[29]  
HET[30]  
HET[31]  
20  
19  
18  
17  
The high-resolution (HR) SHARE feature allows even HR pins to share  
the next higher odd HR pin structures. This HR sharing is independent of  
whether or not the odd pin is available externally. If an odd pin is available  
externally and shared, then the odd pin can only be used as a general-  
purpose I/O. For more information on HR SHARE, see the TMS470R1x  
High-End Timer (HET) Reference Guide (literature number SPNU199).  
3.3-V I/O  
IPD  
49  
48  
47  
46  
The HET[19] or HET[18] pins can also be used as a user-selectable event  
source to event trigger the MibADC event group or group1 providing the  
associated register source bits are properly configured and defined. For  
the internal device connections, see the MibADC section of this data  
sheet. And for more detailed functional information on the MibADC, see  
the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC)  
Reference Guide (literature number SPNU206).  
35  
32  
33  
34  
34  
STANDARD CAN CONTROLLER (SCC)  
CANSRX  
CANSTX  
60  
61  
59  
60  
3.3-V I/O  
3.3-V I/O  
SCC receive pin or GIO pin  
SCC transmit pin or GIO pin  
IPU  
CLASS II SERIAL INTERFACE (C2SIb)  
C2SIbLPN  
C2SIbRX  
C2SIbTX  
36  
38  
37  
36  
38  
37  
3.3-V I/O  
IPD  
IPD  
C2SIb module loopback enable pin or GIO pin  
3.3-V I/O  
3.3-V I/O  
C2SIb module receive data input pin or GIO pin  
C2SIb module transmit data output pin or GIO pin  
† I = input, O = output, PWR = power, GND = ground, REF = reference voltage, NC = no connect  
‡ All I/O pins, except RST, are configured as inputs while PORRST is low and immediately after PORRST goes high.  
§ IPD = internal pulldown, IPU = internal pullup (all internal pullups and pulldowns are active on input pins, independent of the PORRST state.)  
¶ N/A on the VF348x device. For the VF338x device only, the HET[28] signal is only connected to the pad not to a package pin.  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
Terminal Functions (Continued)  
TERMINAL  
VF338  
INTERNAL  
TYPE†‡  
PULLUP/  
DESCRIPTION  
NAME  
VF348  
PULLDOWN§  
GENERAL-PURPOSE I/O (GIO)  
GIOA[0]/INT0  
28  
29  
28  
29  
3.3-V I  
GIOA[1]/INT1/  
ECLK  
General-purpose input/output pins. GIOA[0]/INT[0] is an input-only pin.  
GIOA[7:0]/INT[7:0] are interrupt-capable pins.  
GIOA[2]/INT2  
GIOA[3]/INT3  
GIOA[4]/INT4  
GIOA[5]/INT5  
GIOA[6]/INT6  
GIOA[7]/INT7  
GIOB[0]  
30  
31  
25  
24  
23  
22  
16  
15  
14  
13  
GIOA[1]/INT[1]/ECLK pin is multiplexed with the external clock-out  
function of the external clock prescale (ECP) module.  
IPD  
IPD  
3.3-V I/O  
3.3-V I/O  
25  
24  
23  
22  
GIOA[2]/INT[2] and GIOA[3]/INT[3] pins are not applicable on the VF338x  
device.  
GIOB[1]  
General-purpose input/output pins (VF348x only).  
GIOB[2]  
GIOB[3]  
MULTI-BUFFERED ANALOG-TO-DIGITAL CONVERTER (MibADC)  
MibADC event input. ADEVT can be programmed as a GIO pin.The  
ADEVT pin can also be used as a user-selectable event source to event  
trigger the MibADC event group or group1 providing the associated  
register source bits are properly configured and defined. For the internal  
device connections, see the MibADC section of this data sheet.  
ADEVT  
67  
66  
3.3-V I/O  
IPD  
ADIN[0]  
ADIN[1]  
ADIN[2]  
ADIN[3]  
ADIN[4]  
ADIN[5]  
ADIN[6]  
ADIN[7]  
ADIN[8]  
ADIN[9]  
ADIN[10]  
ADIN[11]  
ADIN[12]  
ADIN[13]  
ADIN[14]  
ADIN[15]  
75  
74  
73  
72  
71  
70  
69  
68  
79  
78  
77  
76  
75  
74  
73  
72  
71  
69  
68  
67  
82  
80  
78  
76  
81  
79  
77  
70  
MibADC analog input pins  
The VF338x device has only 12 input channels but all S/W registers are  
capable. ADIN[15:12] pins are not applicable to the VF338x device.  
3.3-V I  
The VF348x device has all 16 input channels.  
3.3-V  
REF I  
ADREFHI  
ADREFLO  
VCCAD  
VSSAD  
80  
81  
83  
84  
MibADC module high-voltage reference input  
MibADC module low-voltage reference input  
GND  
REF I  
3.3-V  
PWR  
82  
83  
85  
86  
MibADC analog supply voltage  
MibADC analog ground reference  
GND  
† I = input, O = output, PWR = power, GND = ground, REF = reference voltage, NC = no connect  
‡ All I/O pins, except RST, are configured as inputs while PORRST is low and immediately after PORRST goes high.  
§ IPD = internal pulldown, IPU = internal pullup (all internal pullups and pulldowns are active on input pins, independent of the PORRST state.)  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
Terminal Functions (Continued)  
TERMINAL  
VF338  
INTERNAL  
PULLUP/  
PULLDOWN§  
TYPE†‡  
DESCRIPTION  
NAME  
VF348  
SERIAL PERIPHERAL INTERFACE 1 (SPI1)  
SPI1CLK  
5
1
2
5
1
2
SPI1 clock. SPI1CLK can be programmed as a GIO pin.  
SPI1ENA  
SPI1SCS  
SPI1 chip enable. SPI1ENA can be programmed as a GIO pin.  
SPI1 slave chip select. SPI1SCS can be programmed as a GIO pin.  
3.3-V I/O  
IPD  
SPI1 data stream. Slave in/master out. SPI1SIMO can be programmed as  
a GIO pin.  
SPI1SIMO  
SPI1SOMI  
3
4
3
4
SPI1 data stream. Slave out/master in. SPI1SOMI can be programmed as  
a GIO pin.  
SERIAL PERIPHERAL INTERFACE 2 (SPI2)  
SPI2 clock. SPI2CLK can be programmed as a GIO pin.  
SPI2CLK  
SPI2ENA  
41  
44  
41  
44  
SPI2 chip enable. SPI2ENA can be programmed as a GIO pin.  
SPI2 slave chip select. SPI2SCS can be programmed as a GIO pin.  
(This pin is not applicable to the VF338x device.)  
SPI2SCS  
SPI2SIMO  
SPI2SOMI  
45  
42  
43  
3.3-V I/O  
IPD  
SPI2 data stream. Slave in/master out. SPI2SIMO can be programmed as  
a GIO pin.  
42  
43  
SPI2 data stream. Slave out/master in. SPI2SOMI can be programmed as  
a GIO pin.  
ZERO-PIN PHASE-LOCKED LOOP (ZPLL)  
Crystal connection pin or external clock input  
OSCIN  
8
7
8
7
1.8-V I  
OSCOUT  
1.8-V O  
External crystal connection pin  
Enable/disable the ZPLL. The ZPLL can be bypassed and the oscillator  
becomes the system clock. If not in bypass mode, TI recommends that this  
pinbe connected togroundor pulled downto ground by anexternalresistor.  
PLLDIS  
51  
51  
3.3-V I  
IPD  
SERIAL COMMUNICATIONS INTERFACE 1 (SCI1)  
SCI1CLK  
SCI1RX  
SCI1TX  
62  
64  
63  
61  
63  
62  
3.3-V I/O  
IPD  
IPU  
IPU  
SCI1 clock. SCI1CLK can be programmed as a GIO pin.  
3.3-V I/O  
3.3-V I/O  
SCI1 data receive. SCI1RX can be programmed as a GIO pin.  
SCI1 data transmit. SCI1TX can be programmed as a GIO pin.  
SERIAL COMMUNICATIONS INTERFACE 2 (SCI2)  
SCI2RX  
SCI2TX  
30  
31  
32  
33  
3.3-V I/O  
IPU  
IPU  
SCI2 data receive. SCI2RX can be programmed as a GIO pin.  
SCI2 data transmit. SCI2TX can be programmed as a GIO pin.  
3.3-V I/O  
SYSTEM MODULE (SYS)  
Bidirectional pin. CLKOUT can be programmed as a GIO pin or the output  
of SYSCLK, ICLK, or MCLK.  
CLKOUT  
PORRST  
59  
21  
58  
21  
3.3-V I/O  
3.3-V I  
IPD  
IPD  
Input master chip power-up reset. External VCC monitor circuitry must  
assert a power-on reset.  
Bidirectional reset. The internal circuitry can assert a reset, and an external  
system reset can assert a device reset. On this pin, the output buffer is  
implemented as an open drain (drives low only).  
RST  
10  
10  
3.3-V I/O  
IPU  
To ensure an external reset is not arbitrarily generated, TI recommends  
that an external pullup resistor be connected to this pin.  
† I = input, O = output, PWR = power, GND = ground, REF = reference voltage, NC = no connect  
‡ All I/O pins, except RST, are configured as inputs while PORRST is low and immediately after PORRST goes high.  
§ IPD = internal pulldown, IPU = internal pullup (all internal pullups and pulldowns are active on input pins, independent of the PORRST state.)  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
Terminal Functions (Continued)  
TERMINAL  
VF338  
INTERNAL  
PULLUP/  
PULLDOWN§  
TYPE†‡  
DESCRIPTION  
NAME  
VF348  
WATCHDOG/REAL-TIME INTERRUPT (WD/RTI)  
Analog watchdog reset. The AWD pin provides a system reset if the WD  
KEY is not written in time by the system, providing an external RC network  
circuit is connected. If the user is not using AWD, TI recommends that this  
pin be connected to ground or pulled down to ground by an external  
resistor.  
AWD  
50  
50  
3.3-V I/O  
IPD  
For more details on the external RC network circuit, see the TMS470R1x  
System Module Reference Guide (literature number SPNU189) and the  
application note Analog Watchdog Resistor, Capacitor and Discharge  
Interval Selection Constraints (literature number SPNA005).  
TEST/DEBUG (T/D)  
TCK  
TDI  
54  
52  
54  
52  
3.3-V I  
3.3-V I  
IPD  
Test clock. TCK controls the test hardware (JTAG)  
Test data in. TDI inputs serial data to the test instruction register, test data  
register, and programmable test address (JTAG).  
IPU  
Test data out. TDO outputs serial data from the test instruction register,  
test data register, identification register, and programmable test address  
(JTAG).  
TDO  
53  
53  
3.3-V O  
IPD  
Test enable. Reserved for internal use only. TI recommends that this pin  
be connected to ground or pulled down to ground by an external resistor.  
TEST  
TMS  
27  
84  
85  
27  
87  
88  
3.3-V I  
3.3-V I  
3.3-V I  
IPD  
IPU  
IPU  
Serial input for controlling the state of the CPU test access port (TAP)  
controller (JTAG)  
Serial input for controlling the second TAP. TI recommends that this pin  
be connected to VCCIO or pulled up to VCCIO by an external resistor.  
TMS2  
Test hardware reset to TAP1 and TAP2. IEEE Standard 1149-1 (JTAG)  
Boundary-Scan Logic. TI recommends that this pin be pulled down to  
ground by an external resistor.  
TRST  
26  
26  
3.3-V I  
IPD  
FLASH  
FLTP1  
FLTP2  
93  
92  
95  
94  
Flash test pads 1 and 2. For proper operation, these pins must not be  
connected [no connect (NC)].  
NC  
3.3-V  
PWR  
VCCP  
94  
96  
Flash external pump voltage (3.3 V)  
SUPPLY VOLTAGE CORE (1.8 V)  
9
9
40  
66  
87  
91  
40  
65  
90  
93  
1.8-V  
PWR  
VCC  
Core logic supply voltage  
SUPPLY VOLTAGE DIGITAL I/O (3.3 V)  
Digital I/O supply voltage  
12  
58  
12  
57  
3.3-V  
PWR  
VCCIO  
SUPPLY GROUND CORE  
6
6
39  
65  
86  
90  
39  
64  
89  
92  
VSS  
GND  
Core supply ground reference  
SUPPLY GROUND DIGITAL I/O  
11  
57  
11  
56  
VSSIO  
GND  
Digital I/O supply ground reference  
† I = input, O = output, PWR = power, GND = ground, REF = reference voltage, NC = no connect  
‡ All I/O pins, except RST, are configured as inputs while PORRST is low and immediately after PORRST goes high.  
§ IPD = internal pulldown, IPU = internal pullup (all internal pullups and pulldowns are active on input pins, independent of the PORRST state.)  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
VF338X/VF348X DEVICE-SPECIFIC INFORMATION  
memory  
Figure 1 shows the memory map of the VF3x8x device.  
0xFFFF_FFFF  
Memory (4G Bytes)  
SYSTEM  
Reserved  
0xFFFF_FFFF  
0xFFFF_FD00  
0xFFF8_0000  
System Module Control Registers  
(512K Bytes)  
0xFFF8_0000  
0xFFF7_FFFF  
HET  
SPI1  
SCI2  
0xFFF7_FC00  
0xFFF7_F800  
0xFFF7_F500  
Peripheral Control Registers  
(512K Bytes)  
0xFFF0_0000  
0xFFEF_FFFF  
Reserved  
Flash Control Registers  
Reserved  
0xFFE8_C000  
0xFFE8_BFFF  
0xFFE8_8000  
0xFFE8_7FFF  
SCI1  
0xFFF7_F400  
0xFFF7_F000  
0xFFF7_EC00  
0xFFF7_E400  
MibADC  
GIO/ECP  
Reserved  
0xFFE8_4024  
0xFFE8_4023  
MPU Control Registers  
Reserved  
0xFFE8_4000  
0xFFE8_3FFF  
SCC  
0xFFF7_E000  
0xFFF7_DC00  
0xFFF7_D800  
SCC RAM  
Reserved  
0xFFE0_0000  
RAM  
(10K Bytes)  
(VF3x8)  
SPI2  
Reserved  
C2SIb  
0xFFF7_D400  
0xFFF7_CC00  
0xFFF7_C800  
Reserved  
RAM  
(12K Bytes)  
(VF3x82)  
Program  
and  
0xFFF0_0000  
Data Area  
0x0000_001F  
0x0000_001C  
FIQ  
IRQ  
FLASH  
(256K Bytes)  
14 Sectors  
0x0000_0018  
0x0000_0014  
0x0000_0010  
0x0000_000C  
0x0000_0008  
0x0000_0004  
0x0000_0000  
Reserved  
Data Abort  
Prefetch Abort  
Software Interrupt  
Undefined Instruction  
Reset  
0x0000_0020  
0x0000_001F  
Exception, Interrupt, and  
Reset Vectors  
0x0000_0000  
NOTES: A. Memory addresses are configurable by the system (SYS) module within the range of 0x0000_0000 to 0xFFE0_0000.  
B. The CPU registers are not a part of the memory map.  
Figure 1. Memory Map  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
memory selects  
Memory selects allow the user to address memory arrays (i.e., flash, RAM, and HET RAM) at user-defined  
addresses. Each memory select has its own set (low and high) of memory base address registers (MFBAHRx  
and MFBALRx) that, together, define the array’s starting (base) address, block size, and protection.  
The base address of each memory select is configurable to any memory address boundary that is a multiple  
of the decoded block size. For more information on how to control and configure these memory select registers,  
see the bus structure and memory sections of the TMS470R1x System Module Reference Guide (literature  
number SPNU189).  
For the memory selection assignments and the memory selected, see Table 2.  
Table 2. Memory Selection Assignment  
MEMORY  
SELECT  
MEMORY SELECTED  
(ALL INTERNAL)  
MEMORY  
SIZE  
STATIC MEM  
CTL REGISTER  
MPU  
MEMORY BASE ADDRESS REGISTER  
0 (fine)  
1 (fine)  
2 (fine)  
3 (fine)  
4 (fine)  
FLASH  
FLASH  
RAM  
NO  
NO  
MFBAHR0 and MFBALR0  
MFBAHR1 and MFBALR1  
MFBAHR2 and MFBALR2  
MFBAHR3 and MFBALR3  
MFBAHR4 and MFBALR4  
256K  
10K (VF3x8)†  
12K (VF3x82)†  
1K  
YES  
YES  
RAM  
HET RAM  
SMCR1  
† The starting addresses for both RAM memory-select signals cannot be offset from each other by a multiple of the user-defined block size in the  
memory-base address register.  
RAM  
The VF3x8 device contains 10K of internal static RAM configurable by the SYS module to be addressed within  
the range of 0x0000_0000 to 0xFFE0_0000. This VF3x8 RAM is implemented in one 10K array selected by  
two memory-select signals. The VF3x82 device contains 12K of internal static RAM configurable by the SYS  
module to be addressed within the range of 0x0000_0000 to 0xFFE0_0000. This VF3x82 RAM is implemented  
in one 12K array selected by two memory-select signals. This VF3x8x configuration imposes an additional  
constraint on the memory map for RAM; the starting addresses for both RAM memory selects cannot be offset  
from each other by the multiples of the size of the physical RAM (i.e., 12K for the VF3x82 device). The VF3x8x  
RAM is addressed through memory selects 2 and 3.  
The RAM can be protected by the memory protection unit (MPU) portion of the SYS module, allowing the user  
finer blocks of memory protection than is allowed by the memory selects. The MPU is ideal for protecting an  
operating system while allowing access to the current task. For more detailed information on the MPU portion  
of the SYS module and memory protection, see the memory section of the TMS470R1x System Module  
Reference Guide (literature number SPNU189).  
F05 flash  
The F05 flash memory is a nonvolatile electrically erasable and programmable memory implemented with a  
32-bit-wide data bus interface. The F05 flash has an external state machine for programming and erase  
functions. See the flash read and flash program and erase sections of this document.  
flash protection keys  
The VF3x8x device provides flash protection keys. These four 32-bit protection keys prevent program/erase/  
compaction operations from occurring until after the fourprotection keys have been matched by the CPU loading  
the correct user keys into the FMPKEY control register. The protection keys on both VF338x and VF348x are  
located in the last 4 words of the first 8K sector. For more detailed information on the flash protection keys and  
the FMPKEY control register, see the Optional Quadruple Protection Keys and Programming the Protection  
Keys portions of the TMS470R1x F05 Flash Reference Guide (literature number SPNU213).  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
FLASH read  
The VF3x8x flash memory is configurable by the SYS module to be addressed within the range of 0x0000_0000  
to 0xFFE0_0000. The flash is addressed through memory selects 0 and 1.  
Note: The flash external pump voltage (V  
) is required for all operations (program, erase, and read).  
CCP  
flash pipeline mode  
When in pipeline mode, the flash operates with a system clock frequency of up to 48 MHz (versus a system  
clock in normal mode of up to 24 MHz). Flash in pipeline mode is capable of accessing 64-bit words and provides  
two 32-bit pipelined words to the CPU. Also in pipeline mode, the flash can be read with no wait states when  
memory addresses are contiguous (after the initial 1-or 2-wait-state reads).  
Note: After a system reset, pipeline mode is disabled (ENPIPE bit [FMREGOPT.0] is a 0). In other words, the  
VF3x8x device powers up and comes out of reset in non-pipeline mode. Furthermore, setting the flash config-  
uration mode bit (GLBCTRL.4) will override pipeline mode.  
flash program and erase  
The VF3x8x device flash has one 256K-byte bank that consists of fourteen sectors. These fourteen sectors  
are sized as follows:  
SECTOR  
NO.  
SEGMENT  
LOW ADDRESS  
HIGH ADDRESS  
0
8K Bytes  
8K Bytes  
8K Bytes  
8K Bytes  
32K Bytes  
32K Bytes  
32K Bytes  
32K Bytes  
32K Bytes  
32K Bytes  
8K Bytes  
8K Bytes  
8K Bytes  
8K Bytes  
0x00000000  
0x00002000  
0x00004000  
0x00006000  
0x00008000  
0x00010000  
0x00018000  
0x00020000  
0x00028000  
0x00030000  
0x00038000  
0x0003A000  
0x0003C000  
0x0003E000  
0x00001FFF  
0x00003FFF  
0x00005FFF  
0x00007FFF  
0x0000FFFF  
0x00017FFF  
0x0001FFFF  
0x00027FFF  
0x0002FFFF  
0x00037FFF  
0x00039FFF  
0x0003BFFF  
0x0003DFFF  
0x0003FFFF  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
The minimum size for an erase operation is one sector. The maximum size for a program operation is one  
16-bit word.  
Note: The flash external pump voltage (V  
) is required for all operations (program, erase, and read).  
CCP  
Formoredetailedinformationonflashprogramanderaseoperations, seetheTMS470R1xF05FlashReference  
Guide (literature number SPNU213).  
HET RAM  
The VF3x8x device contains HET RAM. The HET RAM has a 64-instruction capability. The HET RAM is  
configurable by the SYS module to be addressed within the range of 0x0000_0000 to 0xFFE0_0000. The HET  
RAM is addressed through memory select 4.  
XOR share  
The VF3x8x HET peripheral contains the XOR-share feature. This feature allows two adjacent HET high-  
resolution channels to be XORed together, making it possible to output smaller pulses than a standard HET.  
For more detailed information on the HET XOR-share feature, see the TMS470R1x High-End Timer (HET)  
Reference Guide (literature number SPNU199).  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
peripheral selects and base addresses  
The VF3x8x device uses ten of the sixteen peripheral selects to decode the base addresses of the peripherals.  
These peripheral selects are fixed and transparent to the user since they are part of the decoding scheme used  
by the SYS module.  
Control registers for the peripherals, SYS module, and flash begin at the base addresses shown in Table 3.  
Table 3. Peripherals, System Module, and Flash Base Addresses  
ADDRESS RANGE  
CONNECTING MODULE  
PERIPHERAL SELECTS  
BASE ADDRESS  
0XFFFF_FD00  
0XFFF8_0000  
0XFFF7_FC00  
0XFFF7_F800  
0XFFF7_F500  
0XFFF7_F400  
0XFFF7_F000  
0XFFF7_EC00  
0XFFF7_E400  
0XFFF7_E000  
0XFFF7_DC00  
0XFFF7_D800  
0XFFF7_D400  
0XFFF7_CC00  
0XFFF7_C800  
0XFFF7_C000  
0XFFF0_0000  
0XFFE8_8000  
0XFFE8_4000  
ENDING ADDRESS  
0XFFFF_FFFF  
0XFFFF_FCFF  
0XFFF7_FFFF  
0XFFF7_FBFF  
0XFFF7_F7FF  
0XFFF7_F4FF  
0XFFF7_F3FF  
0XFFF7_EFFF  
0XFFF7_EBFF  
0XFFF7_E3FF  
0XFFF7_DFFF  
0XFFF7_DBFF  
0XFFF7_D7FF  
0XFFF7_D3FF  
0XFFF7_CBFF  
0XFFF7_C7FF  
0XFFF7_BFFF  
0XFFE8_BFFF  
0XFFE8_4023  
SYSTEM  
N/A  
N/A  
RESERVED  
HET  
PS[0]  
PS[1]  
SPI1  
SCI2  
PS[2]  
SCI1  
ADC  
PS[3]  
PS[4]  
GIO/ECP  
RESERVED  
SCC  
PS[5] - PS[6]  
PS[7]  
SCC RAM  
PS[8]  
RESERVED  
SPI2  
PS[9]  
PS[10]  
RESERVED  
C2SIb  
PS[11] - PS[12]  
PS[13]  
RESERVED  
RESERVED  
FLASH CONTROL REGISTERS  
MPU CONTROL REGISTERS  
PS[14] - PS[15]  
N/A  
N/A  
N/A  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
interrupt priority  
The central interrupt manager (CIM) portion of the SYS module manages the interrupt requests from the device  
modules (i.e., SPI1 or SPI2, SCI1 or SCI2, and RTI, etc.).  
Although the CIM can accept up to 32 interrupt request signals, the VF3x8x device only uses 21 of those  
interrupt request signals. The request channels are maskable so that individual channels can be selectively  
disabled. All interrupt requests can be programmed in the CIM to be of either type:  
z
z
Fast interrupt request (FIQ)  
Normal interrupt request (IRQ)  
The precedences of request channels decrease with ascending channel order in the CIM (0 [highest] and  
31 [lowest] priority). For these channel priorities and the associated modules, see Table 4.  
Table 4. Interrupt Priority  
MODULES  
SPI1  
INTERRUPT SOURCES  
SPI1 end-transfer/overrun  
INTERRUPT LEVEL/CHANNEL  
0
RTI  
COMP2 interrupt  
COMP1 interrupt  
TAP interrupt  
1
RTI  
2
RTI  
3
SPI2  
SPI2 end-transfer/overrun  
Interrupt A  
4
GIO  
5
RESERVED  
HET  
6
Interrupt 1  
7
RESERVED  
SCI1/SCI2  
SCI1  
8
SCI1/SCI2 error interrupt  
SCI1 receive interrupt  
C2SIb interrupt  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
C2SIb  
RESERVED  
RESERVED  
SCC  
Interrupt A  
RESERVED  
MibADC  
SCI2  
End event conversion  
SCI2 receive interrupt  
RESERVED  
RESERVED  
SCI1  
SCI1 transmit interrupt  
SW interrupt (SSI)  
System  
RESERVED  
HET  
Interrupt 2  
RESERVED  
SCC  
Interrupt B  
SCI2  
SCI2 transmit interrupt  
End Group 1 conversion  
MibADC  
RESERVED  
GIO  
Interrupt B  
MibADC  
RESERVED  
End Group 2 conversion  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
MibADC  
The multi-buffered analog-to-digital converter (MibADC) accepts an analog signal and converts the signal to a  
10-bit digital value.  
The VF3x8x MibADC module can function in two modes: compatibility mode, where it’s programmer’s model  
is compatible with the TMS470R1x ADC module and its digital results are stored in digital result registers; or  
in buffered mode, where the digital result registers are replaced with three FIFO buffers, one for each conversion  
group [event, group1 (G1), and group2 (G2)]. In buffered mode, the MibADC buffers can be serviced by  
interrupts.  
MibADC event trigger enhancements  
The MibADC includes two major enhancements over the event-triggering capability of the TMS470R1x ADC.  
z
z
Both group1 and the event group can be configured for event-triggered operation, providing up to two event-  
triggered groups.  
The trigger source and polarity can be selected individually for both group 1 and the event group from the  
three options identified in Table 5.  
Table 5. MibADC Event Hookup Configuration  
SOURCE SELECT BITS FOR G1 OR EVENT  
EVENT #  
SIGNAL PIN NAME  
(G1SRC[1:0] or EVSRC[1:0])  
EVENT1  
EVENT2  
EVENT3  
EVENT4  
00  
01  
10  
11  
ADEVT  
HET18  
HET19  
RESERVED  
For group 1, these event-triggered selections are configured via the group 1 source select bits (G1SRC[1:0])  
in the AD event source register (ADEVTSRC.[5:4]). For the event group, these event-triggered selections are  
configured via the event group source select bits (EVSRC[1:0]) in the AD event source register  
(ADEVTSRC.[1:0]).  
For more detailed functional information on the MibADC, see the TMS470R1x Multi-Buffered Analog-to-Digital  
Converter (MibADC) Reference Guide (literature number SPNU206).  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
development system support  
Texas Instruments provides extensive hardware and software development support tools for the TMS470R1x  
family. These support tools include:  
z
z
Code Composer StudioIDE  
Fully integrated suite of software development tools  
Includes Compiler/Assembler/Linker, Debugger, and Simulator  
Supports Real-Time analysis, data visualization, and open API  
Optimizing C compiler  
Supports high-level language programming  
Full implementation of the standard ANSI C language  
Powerful optimizer that improves code-execution speed and reduces code size  
Extensive run-time support library included  
TMS470R1x control registers easily accessible from the C program  
Interfaces C functions and assembly functions easily  
Establishes comprehensive, easy-to-use tool set for the development of high-performance  
microcontroller applications in C/C++  
z
Assembly language tools (assembler and linker)  
Provides extensive macro capability  
Allows high-speed operation  
Allows extensive control of the assembly process using assembler directives  
Automatically resolves memory references as C and assembly modules are combined  
z
z
TMS470R1x CPU Simulator  
Provides capability to simulate CPU operation without emulation hardware  
Allows inspection and modifications of memory locations  
Allows debugging programs in C or assembly language  
XDS emulation communication kits  
Allow high-speed JTAG communication to the TMS470R1x emulator or target board  
For information on pricing and availability, contact the nearest TI field sales office or authorized distributor.  
Code Composer Studio is a trademark of Texas Instruments.  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
documentation support  
Extensive documentation supports all of the TMS470 microcontroller family generation of devices. The types  
of documentation available include: data sheets with design specifications; complete user’s guides for all  
devices and development support tools; and hardware and software applications. Useful reference documen-  
tation includes:  
z
User’s Guides  
TMS470R1x 32-Bit RISC Microcontroller Family User’s Guide (literature number SPNU134)  
TMS470R1x C/C++ Compiler User’s Guide (literature number SPNU151)  
TMS470R1x Code Generation Tools Getting Started Guide (literature number SPNU117)  
TMS470R1x C Source Debugger User’s Guide (literature number SPNU124)  
TMS470R1x Assembly Language Tools User’s Guide (literature number SPNU118)  
TMS470R1x System Module Reference Guide (literature number SPNU189)  
TMS470R1x Serial Peripheral Interface (SPI) Reference Guide (literature number SPNU195)  
TMS470R1x Serial Communication Interface (SCI) Reference Guide (literature number SPNU196)  
TMS470R1x Controller Area Network (CAN) Reference Guide (literature number SPNU197)  
TMS470R1x High-End Timer (HET) Reference Guide (literature number SPNU199)  
TMS470R1x External Clock Prescale (ECP) Reference Guide (literature number SPNU202)  
TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide  
(literature number SPNU206)  
TMS470R1x Zero-Pin Phase-Locked Loop (ZPLL) Clock Module Reference Guide  
(literature number SPNU212)  
TMS470R1x F05 Flash Reference Guide (literature number SPNU213)  
TMS470R1x Class II Serial Interface B (C2SIb) Reference Guide  
(literature number SPNU214)  
z
Application Reports:  
Analog Watchdog Resistor, Capacitor and Discharge Interval Selection Constraints  
(literature number SPNA005)  
F05/C05 Power Up Reset and Power Sequencing Requirements (literature number SPNA009)  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
device numbering conventions  
Figure 2 illustrates the numbering and symbol nomenclature for the TMS470R1x family.  
TMS 470 R1 V F 33 8 2 PZ  
Q
Prefix: TMS = Standard Prefix for Fully Qualified Devices  
Family: 470 = TMS470 RISC-Embedded Microcontroller Family  
V = 1.8-V Core Voltage  
Program Memory Types:  
C = Masked ROM  
F = Flash  
L = ROM-less  
B = System Emulator for Development Tools  
R = RAM  
CPU Type:  
R1 = ARM7TDMI CPU  
Device Type:  
33 = ’33 Devices Containing the Following Modules:  
– ZPLL Clock  
– 1K-Byte HET RAM (64 Instructions)  
– Analog Watchdog (AWD)  
– Real-Time Interrupt (RTI)  
– 10-Bit, 12-Input Multi-buffered Analog-to-Digital  
Converter (MibADC)†  
– Two Serial Peripheral Interface (SPI) Modules  
– Two Serial Communications Interface (SCI) Modules  
– Class II Serial Interface (C2SIb)  
– Standard Controller Area Network (CAN) [SCC]  
– High-End Timer (HET)  
– External Clock Prescaler (ECP)  
Program Memory Size  
Device Sub-type  
8 =  
0
– No on-chip program memory  
1–5 – 1 to < 128K Bytes  
6–B – 128K Bytes to < 1M Bytes  
C–F – > 1M Bytes  
2 = Blank – 10 KB SRAM  
– 12 KB SRAM  
=
2
Operating Free-Air  
A = –40°C to 85°C  
T = –40°C to105°C  
Q = –40°C to 125°C  
Temperature Ranges:  
Package:  
PZ = 100-Pin Plastic Low-Profile Quad Flatpack (LQFP)  
† The VF348x device contains a 10-bit, 16-input MibADC.  
Figure 2. TMS470R1x Family Nomenclature  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
device identification code register  
The device identification code register identifies the silicon version, the technology family (TF), a ROM or flash  
device, and an assigned device-specific part number (see Table 6). The VF3x8x device identification code  
register value is 0x0857.  
Table 6. TMS470 Device ID Bit Allocation Register  
BIT 31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17 BIT 16  
Reserved  
FFFF_FFF0  
BIT 15  
14  
13  
12  
11  
TF  
10  
9
8
7
6
5
4
3
2
1
1
1
BIT 0  
1
VERSION  
R-K  
R/F  
R-K  
PART NUMBER  
R-K  
R-K  
R-1  
R-1  
R-1  
LEGEND:  
For bits 3–15: R = Read only, -K = Value constant after RESET  
For bits 0–2: R = Read only, -1 = Value after RESET  
Bits 31:16  
Reserved. Reads are undefined and writes have no effect.  
VERSION. Silicon version (revision) bits  
Bits 15:12  
These bits identify what version of silicon the device is. Initial device version numbers  
start at "0000".  
Bit 11  
TF. Technology Family (TF) bit  
This bit distinguishes the technology family core power supply:  
0 = 3.3 V for F10/C10 devices  
1 = 1.8 V for F05/C05 devices  
Bit 10  
R/F. ROM/flash bit  
This bit distinguishes between ROM and flash devices:  
0 = Flash device  
1 = ROM device  
Bits 9:3  
Bits 2:0  
PART NUMBER. Device-specific part number bits  
These bits identify the assigned device-specific part number.  
The assigned device-specific part number for the VF3x8x device is: 0001010.  
"1" Mandatory High. Bits 2,1, and 0 are tied high by default.  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
device part numbers  
Table 7 lists all the available TMS470R1VF3x8x devices.  
Table 7. Device Part Number  
PROGRAM MEMORY  
PACKAGE  
TEMPERATURE RANGES  
DEVICE PART  
NUMBER  
FLASH  
ROM  
100-PIN  
LQFP  
40°C TO 85°C  
40°C TO 105°C  
40°C TO 125°C  
EEPROM  
TMS470R1VF338PZQ  
TMS470R1VF338PZ-T  
TMS470R1VF338PZA  
TMS470R1VF348PZQ  
TMS470R1VF348PZ-T  
TMS470R1VF348PZA  
TMS470R1VF338APZQ  
TMS470R1VF338APZ-T  
TMS470R1VF338APZA  
TMS470R1VF348APZQ  
TMS470R1VF348APZ-T  
TMS470R1VF348APZA  
TMS470R1VF338EPZQ  
TMS470R1VF338EPZ-T  
TMS470R1VF338EPZA  
TMS470R1VF348EPZQ  
TMS470R1VF348EPZ-T  
TMS470R1VF348EPZA  
TMS470R1VF3382APZQ  
TMS470R1VF3382APZ-T  
TMS470R1VF3382APZA  
TMS470R1VF3482APZQ  
TMS470R1VF3482APZ-T  
TMS470R1VF3482APZA  
TMS470R1VF3382EPZQ  
TMS470R1VF3382EPZ-T  
TMS470R1VF3382EPZA  
TMS470R1VF3482EPZQ  
TMS470R1VF3482EPZ-T  
TMS470R1VF3482EPZA  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
† The various part numbers listed in this table differ due to differences in either electrical specifications or functional errata. Electrical differences  
will be noted in this datasheet. For functional errata, see the errata document for the specific part number you are using.  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
DEVICE ELECTRICAL SPECIFICATIONS AND TIMING PARAMETERS  
absolute maximum ratings over operating free-air temperature range, Q version  
(unless otherwise noted)†  
Supply voltage ranges: V , V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 2.5 V  
CCF  
CC  
Supply voltage ranges: V  
, V  
, V  
(flash pump) (see Note 1) . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1V  
CCP  
CCIO  
CCAD  
Input voltage range: All input pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V  
Input clamp current: I (V < 0 or V > V  
)
CCIO  
IK  
I
I
All pins except ADIN[0:11] , PORRST, TRST, TEST and TCK . . . . . . . . . . . . . . ±20 mA  
(V < 0 or V > V  
I
)
CCAD  
IK  
I
I
ADIN[0:11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10mA  
Operating free-air temperature ranges, T : A version (VF348x). . . . . . . . . . . . . . . . . . . . . . . . . . .40°C to 85°C  
A
T version (VF348x) . . . . . . . . . . . . . . . . . . . . . . . . . .−40°C to 105°C  
Q version (VF338x). . . . . . . . . . . . . . . . . . . . . . . . . .−40°C to 125°C  
Operating junction temperature range, T A version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40°C to 115°C  
J
T version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 130°C  
Q version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .−40°C to 150°C  
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .−65°C to 150°C  
stg  
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is  
not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
‡ ADIN[0:11] for VF338x only and ADIN[0:15] for VF348x only.  
NOTE 1: All voltage values are with respect to their associated grounds.  
device recommended operating conditions§  
MIN  
1.81  
1.70  
3
NOM  
MAX  
2.06  
2.06  
3.6  
UNIT  
40C to 125C  
V
V
V
VCC  
Digital logic supply voltage (Core)  
40C to 85C (VF3x8xE only)  
VCCIO  
VCCAD  
VCCP  
VSS  
3.3  
3.3  
3.3  
0
Digital logic supply voltage (I/O)  
ADC supply voltage  
3
3.6  
V
V
3
3.6  
Flash pump supply voltage  
Digital logic supply ground  
ADC supply ground  
V
VSSAD  
0.1  
40  
40  
40  
40  
40  
40  
0.1  
85  
V
A version (VF348x)  
T version (VF348x)  
Q version (VF338x)  
A version  
°C  
°C  
°C  
°C  
°C  
°C  
TA  
105  
125  
115  
130  
150  
Operating free-air temperature  
Operating junction temperature  
TJ  
T version  
Q version  
§ All voltages are with respect to VSS, except VCCAD, which is with respect to VSSAD  
.
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
electrical characteristics over recommended operating free-air temperature range, Q version  
(unless otherwise noted)†  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Vhys  
VIL  
Input hysteresis  
0.15  
V
All inputsexcept OSCIN  
OSCIN only  
0.3  
0.3  
0.8  
V
V
Low-level input voltage  
High-level input voltage  
0.35 VCC  
VCCIO + 0.3  
VCC + 0.3  
All inputs except OSCIN  
OSCIN only  
2
VIH  
0.65 VCC  
Vth  
AWD only  
AWD only§  
Input threshold voltage  
1.35  
1.8  
45  
V
RDSON  
VOL = 0.35V @ IOL = 8mA  
IOL = IOL MAX  
IOL = 50 μA  
Drain to source on resistance  
Ω
0.2 VCCIO  
Low-level output voltage¶  
VOL  
V
0.2  
IOH = IOH MIN  
0.8 VCCIO  
High-level output voltage¶  
VOH  
V
IOH = 50 μA  
VCCIO 0.2  
VI < VSSIO 0.3 or  
VI > VCCIO + 0.3  
Input clamp current (I/O pins)#  
IIC  
2  
2
mA  
I
I
IL Pulldown  
IH Pulldown  
VI = VSS  
1  
5
1
40  
5  
1
VI = VCCIO  
VI = VSS  
II  
Input current (I/O pins)  
IIL Pullup  
IH Pullup  
μA  
40  
1  
1  
I
VI = VCCIO  
All other pins  
No pullup or pulldown  
VOL = VOL MAX  
1
CLKOUT, AWD, TDO  
8
RST, SPI1CLK,  
SPI1SIMO, SPI1SOMI,  
SPI2CLK, SPI2SIMO,  
SPI2SOMI  
Low-level output  
current  
V
OL = VOL MAX  
IOL  
4
2
mA  
mA  
All other output pins||  
CLKOUT, TDO  
VOL = VOL MAX  
VOH = VOH MIN  
8  
4  
2  
SPI1CLK, SPI1SIMO,  
SPI1SOMI, SPI2CLK,  
SPI2SIMO, SPI2SOMI  
High-level output  
current  
V
OH = VOH MIN  
IOH  
All other output pins||  
VOH = VOH MIN  
† Source currents (out of the device) are negative while sink currents (into the device) are positive.  
‡ This does not apply to the PORRST pin. For PORRST exceptions, see the RST and PORRST timings section on page 31.  
§ These values help to determine the external RC network circuit. For more details, see the TMS470R1x System Module Reference Guide  
(literature number SPNU189).  
¶ VOL and VOH are linear with respect to the amount of load current (IOL/IOH) applied.  
# Parameter does not apply to input-only or output-only pins.  
||  
The 2 mA buffers on this device are called zero-dominant buffers. If two of these buffers are shorted together and one is outputting a low level  
and the other is outputting a high level, the resulting value will always be low.  
,For flash pumps/banks in sleep mode.  
†I/O pins configured as inputs or outputs with no load. All pulldown inputs 0.2 V. All pullup inputs VCCIO 0.2 V.  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
electrical characteristics over recommended operating free-air temperature range, Q version  
(unless otherwise noted) (continued)†  
PARAMETER  
TEST CONDITIONS  
SYSCLK = 48 MHz,  
ICLK = 24 MHz, VCC = 2.06 V  
MIN  
TYP  
MAX  
UNIT  
70  
mA  
VCC digital supply current (operating mode)  
SYSCLK = 24 MHz,  
ICLK = 12 MHz, VCC = 2.06 V  
50  
mA  
ICC  
VCC digital supply current (standby mode)K  
VCC digital supply current (halt mode)K  
VCCIO digital supply current (operating mode)  
OSCIN = 6 MHz, VCC = 2.06 V  
All frequencies, VCC = 2.06 V  
No DC load, VCCIO = 3.6 Vo  
No DC load, VCCIO = 3.6 Vo  
3.0  
1.0  
10  
mA  
mA  
mA  
μA  
ICCIO  
VCCIO digital supply current (standby mode)  
300  
No DC load, VCCIO = 3.6 Vo  
All frequencies, VCCAD = 3.6 V  
All frequencies, VCCAD = 3.6 V  
All frequencies, VCCAD = 3.6 V  
VCCIO digital supply current (halt mode)  
VCCAD supply current (operating mode)  
300  
15  
20  
20  
45  
70  
μA  
mA  
μA  
ICCAD  
V
V
CCAD supply current (standby mode)  
CCAD supply current (halt mode)  
μA  
V
CCP = 3.6 V read operation  
mA  
mA  
VCCP = 3.6 V program and erase  
VCCP = 3.6 V standby mode  
operationK  
ICCP  
VCCP pump supply current  
20  
20  
μA  
μA  
VCCP = 3.6 V halt mode  
operationK  
CI  
Input capacitance  
Output capacitance  
2
3
pF  
pF  
CO  
† Source currents (out of the device) are negative while sink currents (into the device) are positive.  
‡ This does not apply to the PORRST pin. For PORRST exceptions, see the RST and PORRST timings section on page 31.  
§ These values help to determine the external RC network circuit. For more details, see the TMS470R1x System Module Reference Guide  
(literature number SPNU189).  
¶ VOL and VOH are linear with respect to the amount of load current (IOL/IOH) applied.  
¶ Parameter does not apply to input-only or output-only pins.  
||  
The 2 mA buffers on this device are called zero-dominant buffers. If two of these buffers are shorted together and one is outputting a low level  
and the other is outputting a high level, the resulting value will always be low.  
,For flash pumps/banks in sleep mode.  
†I/O pins configured as inputs or outputs with no load. All pulldown inputs 0.2 V. All pullup inputs VCCIO 0.2 V.  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
PARAMETER MEASUREMENT INFORMATION  
IOL  
Tester Pin  
Electronics  
Output  
Under  
Test  
50 Ω  
VLOAD  
CL  
IOH  
Where: IOL  
IOH  
=
=
=
=
IOL MAX for the respective pin (see Note A)  
IOH MIN for the respective pin (see Note A)  
1.5 V  
VLOAD  
CL  
150-pF typical load-circuit capacitance (see Note B)  
NOTES: A. For these values, see the electrical characteristics over recommended operating free-air temperature range table.  
B. All timing parameters measured using an external load capacitance of 150 pF unless otherwise noted.  
Figure 3. Test Load Circuit  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
timing parameter symbology  
Timing parameter symbols have been created in accordance with JEDEC Standard 100. In order to shorten  
the symbols, some of the pin names and other related terminology have been abbreviated as follows:  
CM  
CO  
ER  
ICLK  
M
Compaction, CMPCT  
CLKOUT  
RD  
Read  
RST  
RX  
Reset, RST  
SCInRX  
Erase  
Interface clock  
Master mode  
S
Slave mode  
SCInCLK  
SPInSIMO  
SPInSOMI  
SPInCLK  
System clock  
SCInTX  
SCC  
SIMO  
SOMI  
SPC  
SYS  
TX  
OSC, OSCI OSCIN  
OSCO  
P
OSCOUT  
Program, PROG  
R
Ready  
R0  
R1  
Read margin 0, RDMRGN0  
Read margin 1, RDMRGN1  
Lowercase subscripts and their meanings are:  
a
c
d
f
access time  
cycle time (period)  
delay time  
r
rise time  
su  
t
setup time  
transition time  
valid time  
fall time  
v
h
hold time  
w
pulse duration (width)  
The following additional letters are used with these meanings:  
H
High  
X
Z
Unknown, changing, or don’t care  
level  
L
Low  
High impedance  
V
Valid  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
external reference resonator/crystal oscillator clock option  
The oscillator is enabled by connecting the appropriate fundamental 4–20 MHz resonator/crystal and load  
capacitors across the external OSCIN and OSCOUT pins as shown in Figure 4a. The oscillator is a single-  
stage inverter held in bias by an integrated bias resistor. This resistor is disabled during leakage test measure-  
ment and HALT mode. TI strongly encourages each customer to submit samples of the device to the  
resonator/crystal vendors for validation. The vendors are equipped to determine what load capacitors will  
best tune their resonator/crystal to the microcontroller device for optimum start-up and operation over temper-  
ature/voltage extremes.  
An external oscillator source can be used by connecting a 1.8V clock signal to the OSCIN pin and leaving the  
OSCOUT pin unconnected (open) as shown in Figure 4b.  
OSCIN  
OSCOUT  
OSCIN  
OSCOUT  
External  
Clock Signal  
(toggling 01.8 V)  
C1  
(see Note A)  
Crystal  
(a)  
C2  
(see Note A)  
(b)  
NOTE A: The values of C1 and C2 should be provided by the resonator/crystal vendor.  
Figure 4. Crystal/Clock Connection  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
ZPLL and clock specifications  
timing requirements for ZPLL circuits enabled or disabled  
MIN  
4
MAX  
UNIT  
MHz  
ns  
f(OSC)  
20  
Input clock frequency  
tc(OSC)  
50  
15  
15  
Cycle time, OSCIN  
tw(OSCIL)  
tw(OSCIH)  
f(OSCRST)  
Pulse duration, OSCIN low  
Pulse duration, OSCIN high  
ns  
ns  
OSC FAIL frequency†  
53  
kHz  
† Causes a device reset (specifically a clock reset) by setting the RST OSC FAIL (GLBCTRL.15) and the OSC FAIL flag (GLBSTAT.1) bits equal  
to 1. For more detailed information on these bits and device resets, see the TMS470R1x System Module Reference Guide (literature number  
SPNU189).  
switching characteristics over recommended operating conditions for clocks‡§  
TEST CONDITIONS¶  
Pipeline mode enabled  
Pipeline mode disabled  
MIN  
MAX  
48  
PARAMETER  
System clock frequency#  
UNIT  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
f(SYS)  
24  
f(CONFIG)  
f(ICLK)  
24  
System clock frequency - flash config mode  
Interface clock frequency  
25  
Pipeline mode enabled  
Pipeline mode disabled  
Pipeline mode enabled  
Pipeline mode disabled  
Pipeline mode enabled  
Pipeline mode disabled  
24  
25  
f(ECLK)  
External clock output frequency for ECP Module  
24  
20.8  
41.6  
41.6  
40  
tc(SYS)  
Cycle time, system clock  
ns  
tc(CONFIG)  
tc(ICLK)  
Cycle time, system clock - flash config mode  
Cycle time, interface clock  
ns  
Pipeline mode enabled  
Pipeline mode disabled  
Pipeline mode enabled  
Pipeline mode disabled  
ns  
41.6  
40  
ns  
ns  
tc(ECLK)  
Cycle time, ECP module external clock output  
41.6  
ns  
‡ f(SYS) = M × f(OSC) / R, where M = {4 or 8}, R = {1,2,3,4,5,6,7,8} when PLLDIS = 0. R is the system-clock divider determined by the CLKDIVPRE  
[2:0] bits in the global control register (GLBCTRL.[2:0]) and M is the PLL multiplier determined by the MULT4 bit also in the GLBCTRL register  
(GLBCTRL.3).  
f
(SYS) = f(OSC) / R, where R = {1,2,3,4,5,6,7,8} when PLLDIS = 1.  
f(ICLK) = f(SYS) / X, where X = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. X is the interface clock divider ratio determined by the PCR0.[4:1] bits  
in the SYS module.  
§ f(ECLK) = f(ICLK) / N, where N = {1 to 256}. N is the ECP prescale value defined by the ECPCTRL.[7:0] register bits in the ECP module  
¶ Pipeline mode enabled or disabled is determined by the ENPIPE bit (FMREGOPT.0).  
# Flash Vread must be set to 5V to achieve maximum System Clock Frequency.  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
ZPLL and clock specifications (continued)  
switching characteristics over recommended operating conditions for external clocks  
(see Figure 5 and Figure 6)†‡  
§
NO.  
PARAMETER  
TEST CONDITIONS  
SYSCLK or MCLK¶  
MIN  
MAX  
UNIT  
0.5tc(SYS) – tf  
ICLK, X is even or 1#  
ICLK, X is odd and not 1#  
SYSCLK or MCLK¶  
tw(COL)  
0.5tc(ICLK) – tf  
0.5tc(ICLK)+ 0.5tc(SYS) – tf  
0.5tc(SYS) – tr  
1
Pulse duration, CLKOUT low  
ns  
ICLK, X is even or 1#  
tw(COH)  
tw(EOL)  
tw(EOH)  
0.5tc(ICLK) – tr  
2
3
4
Pulse duration, CLKOUT high  
Pulse duration, ECLK low  
Pulse duration, ECLK high  
ns  
ns  
ns  
ICLK, X is odd and not 1#  
N is even and X is even or odd  
N is odd and X is even  
0.5tc(ICLK)– 0.5tc(SYS) – tr  
0.5tc(ECLK) – tf  
0.5tc(ECLK) – tf  
0.5tc(ECLK)+ 0.5tc(SYS) – tf  
0.5tc(ECLK) – tr  
N is odd and X is odd and not 1  
N is even and X is even or odd  
N is odd and X is even  
0.5tc(ECLK) – tr  
0.5tc(ECLK)– 0.5tc(SYS) – tr  
N is odd and X is odd and not 1  
† X = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. X is the interface clock divider ratio determined by the PCR0.[4:1] bits in the SYS module.  
‡ N = {1 to 256}. N is the ECP prescale value defined by the ECPCTRL.[7:0] register bits in the ECP module.  
§ CLKOUT/ECLK pulse durations (low/high) are a function of the OSCIN pulse durations when PLLDIS is active.  
¶ Clock source bits selected as either SYSCLK (CLKCNTL.[6:5] = 11 binary) or MCLK (CLKCNTL.[6:5] = 10 binary).  
# Clock source bits selected as ICLK (CLKCNTL.[6:5] = 01 binary).  
2
CLKOUT  
1
Figure 5. CLKOUT Timing Diagram  
4
ECLK  
3
Figure 6. ECLK Timing Diagram  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
RST and PORRST timings  
timing requirements for PORRST (see Figure 7)  
MIN  
MAX  
NO.  
UNIT  
VCCPORL  
VCC low supply level when PORRST must be active during power up  
0.6  
V
VCC highsupplylevelwhenPORRSTmustremainactiveduringpowerupandbecome  
active during power down  
VCCPORH  
VCCIOPORL  
VCCIOPORH  
1.5  
V
V
V
VCCIO low supply level when PORRST must be active during power up  
1.1  
VCCIO high supply level when PORRST must remain active during power up and  
become active during power down  
2.75  
0.2 VCCIO  
0.5  
VIL  
Low-level input voltage after VCCIO > VCCIOPORH  
V
VIL(PORRST)  
tsu(PORRST)r  
tsu(VCCIO)r  
th(PORRST)r  
tsu(PORRST)f  
th(PORRST)rio  
th(PORRST)d  
tsu(PORRST)fio  
tsu(VCCIO)f  
Low-level input voltage of PORRST before VCCIO > VCCIOPORL  
Setup time, PORRST active before VCCIO > VCCIOPORL during power up  
Setup time, VCCIO > VCCIOPORL before VCC > VCCPORL  
Hold time, PORRST active after VCC > VCCPORH  
V
0
0
1
8
1
0
0
0
3
5
ms  
ms  
ms  
μs  
ms  
ms  
ns  
ns  
6
Setup time, PORRST active before VCC VCCPORH during power down  
Hold time, PORRST active after VCC > VCCIOPORH  
7
8
Hold time, PORRST active after VCC < VCCPORL  
9
Setup time, PORRST active before VCC VCCIOPORH during power down  
Setup time, VCC < VCCPORL before VCCIO < VCCIOPORL  
10  
11  
VCCP/VCCIO  
VCCIOPORH  
VCCIOPORH  
VCCIO  
8
11  
VCC  
VCC  
VCCPORH  
VCCPORH  
7
6
6
10  
7
VCCIOPORL  
VCC  
VCCIOPORL  
VCCPORL  
VCCPORL  
5
3
VCCP/VCCIO  
9
VIL(PORRST)  
VIL  
VIL  
VIL  
VIL VIL(PORRST)  
PORRST  
Figure 7. PORRST Timing Diagram  
switching characteristics over recommended operating conditions for RST†  
PARAMETER  
MIN  
MAX  
UNIT  
4112tc(OSC)  
8tc(SYS)  
Valid time, RST active after PORRST inactive  
tv(RST)  
ns  
Valid time, RST active (all others)  
Flash start up time, from RST inactive to fetch of first instruction from flash  
(flash pump stabilization time)  
tfsu  
456tc(OSC)  
ns  
† Specified values do NOT include rise/fall times. For rise and fall timings, see the switching characteristics for output timings versus load  
capacitance table.  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
JTAG scan interface timing (JTAG clock specification 10-MHz and 50-pF load on TDO output)  
MIN  
50  
MAX  
NO.  
1
UNIT  
ns  
tc(JTAG)  
Cycle time, JTAG low and high period  
Setup time, TDI, TMS before TCK rise (TCKr)  
Hold time, TDI, TMS after TCKr  
tsu(TDI/TMS - TCKr)  
th(TCKr -TDI/TMS)  
th(TCKf -TDO)  
td(TCKf -TDO)  
15  
2
ns  
15  
3
ns  
10  
4
Hold time, TDO after TCKf  
ns  
45  
5
Delay time, TDO valid after TCK fall (TCKf)  
ns  
TCK  
1
1
TMS  
TDI  
2
3
TDO  
4
5
Figure 8. JTAG Scan Timing  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
output timings  
switching characteristics for output timings versus load capacitance (CL) (see Figure 9)  
MIN  
0.5  
1.5  
3
MAX  
2.50  
5
PARAMETER  
UNIT  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL= 50 pF  
tr  
tf  
tr  
tf  
tr  
Rise time, CLKOUT, AWD, TDO  
Fall time, CLKOUT, AWD, TDO  
ns  
9
4.5  
0.5  
1.5  
3
12.5  
2.5  
5
ns  
ns  
ns  
ns  
ns  
9
4.5  
2.5  
5
12.5  
8
14  
23  
32  
8
Rise time, SPInCLK, SPInSOMI, SPInSIMO†  
9
13  
2.5  
5
14  
23  
32  
10  
25  
45  
65  
10  
25  
45  
65  
Fall time, RST, SPInCLK, SPInSOMI, SPInSIMO†  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
9
13  
2.5  
6.0  
12  
18  
3
Rise time, all other output pins  
Fall time, all other output pins  
8.5  
16  
23  
tf  
† n = 1 and 2  
tr  
tf  
VCC  
80%  
80%  
Output  
20%  
20%  
0
Figure 9. CMOS-Level Outputs  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
input timings  
timing requirements for input timings(see Figure 10)  
MIN  
MAX  
UNIT  
tpw  
tc(ICLK) + 10  
Input minimum pulse width  
ns  
† tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
tpw  
VCC  
Input  
80%  
80%  
20%  
20%  
0
Figure 10. CMOS-Level Inputs  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
flash timings  
timing requirements for program flash†  
MIN  
TYP  
16  
2
MAX  
200  
8
UNIT  
tprog(16-bit)  
4
Half word (16-bit) programming time  
μs  
256K-byte programming time‡  
tprog(Total)  
s
s
terase(sector)  
2
15  
Sector erase time  
twec  
Write/erase cycles at TA = 125°C  
100  
cycles  
ns  
91tc(SYS)  
91tc(SYS)  
46tc(SYS)  
tfp(RST)  
tfp(SLEEP)  
tfp(STDBY)  
Flash pump settling time from RST to SLEEP  
Initial flash pump settling time from SLEEP to STANDBY  
Initial flash pump settling time from STANDBY to ACTIVE  
ns  
ns  
† For more detailed information on the flash core sectors, see the flash program and erase section of this data sheet.  
‡ The 256K-byte programming times include overhead of state machine.  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
SPIn master mode timing parameters  
SPIn master mode external timing parameters (CLOCK PHASE = 0, SPInCLK = output, SPInSIMO =  
output, and SPInSOMI = input)†‡§ (see Figure 11)  
MAX  
NO.  
MIN  
UNIT  
Cycle time, SPInCLK ¶  
tc(SPC)M  
256tc(ICLK)  
1
100  
ns  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
0.5tc(SPC)M – tr  
0.5tc(SPC)M – tf  
0.5tc(SPC)M – tf  
0.5tc(SPC)M – tr  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
Pulse duration, SPInCLK high (clock polarity = 0)  
Pulse duration, SPInCLK low (clock polarity = 1)  
Pulse duration, SPInCLK low (clock polarity = 0)  
Pulse duration, SPInCLK high (clock polarity = 1)  
2#  
3#  
ns  
ns  
Delay time, SPInCLK high to SPInSIMO valid  
(clock polarity = 0)  
td(SPCH-SIMO)M  
10  
10  
4#  
5#  
6#  
ns  
ns  
ns  
Delay time, SPInCLK low to SPInSIMO valid  
(clock polarity = 1)  
td(SPCL-SIMO)M  
tv(SPCL-SIMO)M  
tsu(SOMI-SPCL)M  
tc(SPC)M – 5 – tr/f  
6
Valid time, SPInSIMO data valid  
Setup time, SPInSOMI before SPInCLK low  
(clock polarity = 0)  
Setup time, SPInSOMI before SPInCLK high  
(clock polarity = 1)  
tsu(SOMI-SPCH)M  
tv(SPCL-SOMI)M  
tv(SPCH-SOMI)M  
6
4
4
Valid time, SPInSOMI data valid after SPInCLK low  
(clock polarity = 0)  
7#  
ns  
Validtime, SPInSOMIdatavalidafterSPInCLKhigh  
(clock polarity = 1)  
† The MASTER bit (SPInCTRL2.3) is set and the CLOCK PHASE bit (SPInCTRL2.0) is cleared.  
‡ tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
§ For rise and fall timings, see the “switching characteristics for output timings versus load capacitance” table.  
¶ When the SPI is in Master mode, the following must be true:  
For PS values from 1 to 255:  
tc(SPC)M (PS +1)tc(ICLK) 100 ns, where PS is the prescale value set in the SPInCTL1.[12:5] register bits.  
tc(SPC)M = 2tc(ICLK) 100 ns.  
For PS values of 0:  
# The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
SPIn master mode timing parameters (continued)  
1
SPInCLK  
(clock polarity = 0)  
2
3
SPInCLK  
(clock polarity = 1)  
4
5
SPInSIMO  
Master Out Data Is Valid  
6
7
Master In Data  
Must Be Valid  
SPInSOMI  
Figure 11. SPIn Master Mode External Timing (CLOCK PHASE = 0)  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
SPIn master mode timing parameters (continued)  
SPIn master mode external timing parameters (CLOCK PHASE = 1, SPInCLK = output, SPInSIMO =  
output, and SPInSOMI = input)†‡§ (see Figure 12)  
MIN  
NO.  
MAX  
UNIT  
Cycle time, SPInCLK ¶  
tc(SPC)M  
256tc(ICLK)  
100  
1
ns  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
0.5tc(SPC)M – tr  
0.5tc(SPC)M – tf  
0.5tc(SPC)M – tf  
0.5tc(SPC)M – tr  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
Pulse duration, SPInCLK high (clock polarity = 0)  
Pulse duration, SPInCLK low (clock polarity = 1)  
Pulse duration, SPInCLK low (clock polarity = 0)  
Pulse duration, SPInCLK high (clock polarity = 1)  
2#  
3#  
ns  
ns  
Valid time, SPInCLK high after SPInSIMO data valid  
(clock polarity = 0)  
tv(SIMO-SPCH)M  
tv(SIMO-SPCL)M  
tv(SPCH-SIMO)M  
tv(SPCL-SIMO)M  
tsu(SOMI-SPCH)M  
tsu(SOMI-SPCL)M  
tv(SPCH-SOMI)M  
tv(SPCL-SOMI)M  
0.5tc(SPC)M – 10  
4#  
5#  
6#  
7#  
ns  
ns  
ns  
ns  
Valid time, SPInCLK low after SPInSIMO data valid  
(clock polarity = 1)  
0.5tc(SPC)M – 10  
Valid time, SPInSIMO data valid after SPInCLK high  
(clock polarity = 0)  
0.5tc(SPC)M – 5 – tr  
Valid time, SPInSIMO data valid after SPInCLK low  
(clock polarity = 1)  
0.5tc(SPC)M – 5 – tf  
Setup time, SPInSOMI before SPInCLK high  
(clock polarity = 0)  
6
6
4
4
Setup time, SPInSOMI before SPInCLK low  
(clock polarity = 1)  
Valid time, SPInSOMI data valid after SPInCLK high  
(clock polarity = 0)  
Valid time, SPInSOMI data valid after SPInCLK low  
(clock polarity = 1)  
† The MASTER bit (SPInCTRL2.3) is set and the CLOCK PHASE bit (SPInCTRL2.0) is set.  
‡ tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
§ For rise and fall timings, see the switching characteristics for output timings versus load capacitance table.  
¶ When the SPI is in Master mode, the following must be true:  
For PS values from 1 to 255:  
tc(SPC)M (PS +1)tc(ICLK) 100 ns, where PS is the prescale value set in the SPInCTL1.[12:5] register bits.  
tc(SPC)M = 2tc(ICLK) 100 ns.  
For PS values of 0:  
# The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
SPIn master mode timing parameters (continued)  
1
SPInCLK  
(clock polarity = 0)  
2
3
SPInCLK  
(clock polarity = 1)  
4
5
SPInSIMO  
Master Out Data Is Valid  
6
Data Valid  
7
Master In Data  
Must Be Valid  
SPInSOMI  
Figure 12. SPIn Master Mode External Timing (CLOCK PHASE = 1)  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
SPIn slave mode timing parameters  
SPIn slave mode external timing parameters (CLOCK PHASE = 0, SPInCLK = input, SPInSIMO =  
input, and SPInSOMI = output)†‡§¶ (see Figure 13)  
NO.  
MIN  
MAX  
UNIT  
Cycle time, SPInCLK#  
tc(SPC)S  
256tc(ICLK)  
1
100  
ns  
Pulse duration, SPInCLK high  
(clock polarity = 0)  
tw(SPCH)S  
0.5tc(SPC)S – 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK)  
0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S + 0.25tc(ICLK)  
6 + tr  
2||  
3||  
4||  
5||  
6||  
7||  
ns  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SPInCLK low  
(clock polarity = 1)  
tw(SPCL)S  
Pulse duration, SPInCLK low  
(clock polarity = 0)  
tw(SPCL)S  
Pulse duration, SPInCLK high  
(clock polarity = 1)  
tw(SPCH)S  
Delay time, SPInCLK high to SPInSOMI valid  
(clock polarity = 0)  
td(SPCH-SOMI)S  
td(SPCL-SOMI)S  
tv(SPCH-SOMI)S  
tv(SPCL-SOMI)S  
tsu(SIMO-SPCL)S  
tsu(SIMO-SPCH)S  
tv(SPCL-SIMO)S  
tv(SPCH-SIMO)S  
Delay time, SPInCLK low to SPInSOMI valid  
(clock polarity = 1)  
6 + tf  
Valid time, SPInSOMI data valid after  
SPInCLK high (clock polarity = 0)  
t
c(SPC)S – 6 – tr  
Valid time, SPInSOMI data valid after  
SPInCLK low (clock polarity = 1)  
t
c(SPC)S – 6 – tf  
Setup time, SPInSIMO before SPInCLK low  
(clock polarity = 0)  
6
6
6
6
Setup time, SPInSIMO before SPInCLK high  
(clock polarity = 1)  
Valid time, SPInSIMO data valid after  
SPInCLK low (clock polarity = 0)  
Valid time, SPInSIMO data valid after  
SPInCLK high (clock polarity = 1)  
† The MASTER bit (SPInCTRL2.3) is cleared and the CLOCK PHASE bit (SPInCTRL2.0) is cleared.  
‡ If the SPI is in slave mode, the following must be true: tc(SPC)S (PS + 1) tc(ICLK), where PS = prescale value set in SPInCTL1.[12:5].  
§ For rise and fall timings, see the switching characteristics for output timings versus load capacitance table.  
¶ tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
# When the SPIn is in Slave mode, the following must be true:  
For PS values from 1 to 255:  
tc(SPC)S (PS +1)tc(ICLK) 100 ns, where PS is the prescale value set in the SPInCTL1.[12:5] register bits.  
c(SPC)S = 2tc(ICLK) 100 ns.  
For PS values of 0:  
t
||  
The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
SPIn slave mode timing parameters (continued)  
1
SPInCLK  
(clock polarity = 0)  
2
3
SPInCLK  
(clock polarity = 1)  
4
5
SPISOMI Data Is Valid  
SPInSOMI  
6
7
SPISIMO Data  
Must Be Valid  
SPInSIMO  
Figure 13. SPIn Slave Mode External Timing (CLOCK PHASE = 0)  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
SPIn slave mode timing parameters (continued)  
SPIn slave mode external timing parameters (CLOCK PHASE = 1, SPInCLK = input, SPInSIMO =  
input, and SPInSOMI = output)†‡§¶ (see Figure 14)  
NO.  
MIN  
MAX  
UNIT  
Cycle time, SPInCLK#  
tc(SPC)S  
256tc(ICLK)  
1
100  
ns  
Pulse duration, SPInCLK high  
(clock polarity = 0)  
tw(SPCH)S  
0.5tc(SPC)S–0.25tc(ICLK)  
0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S + 0.25tc(ICLK)  
2||  
3||  
4||  
5||  
6||  
7||  
ns  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SPInCLK low  
(clock polarity = 1)  
tw(SPCL)S  
0.5tc(SPC)S–0.25tc(ICLK)  
Pulse duration, SPInCLK low  
(clock polarity = 0)  
tw(SPCL)S  
0.5tc(SPC)S–0.25tc(ICLK)  
Pulse duration, SPInCLK high  
(clock polarity = 1)  
tw(SPCH)S  
0.5tc(SPC)S–0.25tc(ICLK)  
Valid time, SPInCLK high after SPInSOMI  
data valid (clock polarity = 0)  
tv(SOMI-SPCH)S  
tv(SOMI-SPCL)S  
tv(SPCH-SOMI)S  
tv(SPCL-SOMI)S  
tsu(SIMO-SPCH)S  
tsu(SIMO-SPCL)S  
tv(SPCH-SIMO)S  
tv(SPCL-SIMO)S  
0.5tc(SPC)S – 6 – tr  
Valid time, SPInCLK low after SPInSOMI  
data valid (clock polarity = 1)  
0.5tc(SPC)S – 6 – tf  
Valid time, SPInSOMI data valid after  
SPInCLK high (clock polarity = 0)  
0.5tc(SPC)S – 6 – tr  
Valid time, SPInSOMI data valid after  
SPInCLK low (clock polarity = 1)  
0.5tc(SPC)S – 6 – tf  
Setup time, SPInSIMO before SPInCLK  
high (clock polarity = 0)  
6
6
6
6
Setup time, SPInSIMO before SPInCLK  
low (clock polarity = 1)  
Valid time, SPInSIMO data valid after  
SPInCLK high (clock polarity = 0)  
Valid time, SPInSIMO data valid after  
SPInCLK low (clock polarity = 1)  
† The MASTER bit (SPInCTRL2.3) is cleared and the CLOCK PHASE bit (SPInCTRL2.0) is set.  
‡ If the SPI is in slave mode, the following must be true: tc(SPC)S (PS + 1) tc(ICLK), where PS = prescale value set in SPInCTL1.[12:5].  
§ For rise and fall timings, see the switching characteristics for output timings versus load capacitance table.  
¶ tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
# When the SPIn is in Slave mode, the following must be true:  
For PS values from 1 to 255:  
tc(SPC)S (PS +1)tc(ICLK) 100 ns, where PS is the prescale value set in the SPInCTL1.[12:5] register bits.  
tc(SPC)S = 2tc(ICLK) 100 ns.  
For PS values of 0:  
||  
The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
SPIn slave mode timing parameters (continued)  
1
SPInCLK  
(clock polarity = 0)  
2
3
SPInCLK  
(clock polarity = 1)  
4
5
SPInSOMI  
SPISOMI Data Is Valid  
6
Data Valid  
7
SPISIMO Data Must  
Be Valid  
SPInSIMO  
Figure 14. SPIn Slave Mode External Timing (CLOCK PHASE = 1)  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
SCIn isosynchronous mode timings — internal clock  
timing requirements for internal clock SCIn isosynchronous mode†‡§ (see Figure 15)  
(BAUD + 1)  
(BAUD + 1)  
IS EVEN OR BAUD = 0  
IS ODD AND BAUD 0  
NO.  
UNIT  
MIN  
MAX  
MIN  
3tc(ICLK)  
MAX  
224tc(ICLK)  
(224 –1) tc(ICLK)  
tc(SCC)  
2tc(ICLK)  
1
2
Cycle time, SCInCLK  
ns  
ns  
Pulse duration,  
SCInCLK low  
tw(SCCL)  
0.5tc(SCC) – tf  
0.5tc(SCC) – tr  
0.5tc(SCC) + 5 0.5tc(SCC)+0.5tc(ICLK) – tf 0.5tc(SCC) +0.5tc(ICLK)  
0.5tc(SCC) + 5 0.5tc(SCC)–0.5tc(ICLK) – tr 0.5tc(SCC) –0.5tc(ICLK)  
Pulse duration,  
SCInCLK high  
tw(SCCH)  
3
4
5
6
7
ns  
ns  
ns  
ns  
ns  
Delay time, SCInCLK  
high to SCInTX valid  
td(SCCH-TXV)  
tv(TX)  
tsu(RX-SCCL)  
tv(SCCL-RX)  
10  
10  
Validtime, SCInTXdata  
after SCInCLK low  
tc(SCC) – 10  
tc(SCC) – 10  
tc(ICLK) + tf + 20  
- tc(ICLK) + tf + 20  
Setup time, SCInRX  
before SCInCLK low  
t
c(ICLK) + tf + 20  
Validtime,SCInRXdata  
after SCInCLK low  
- tc(ICLK) + tf + 20  
† BAUD = 24-bit concatenated value formed by the SCI[H,M,L]BAUD registers.  
‡ tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
§ For rise and fall timings, see the switching characteristics for output timings versus load capacitance table.  
1
3
2
SCICLK  
5
4
Data Valid  
SCITX  
6
7
Data Valid  
SCIRX  
NOTE A: Data transmission/reception characteristics for isosynchronous mode with internal clocking are similar to the asynchronous mode.  
Data transmission occurs on the SCICLK rising edge, and data reception on the SCICLK falling edge.  
Figure 15. SCIn Isosynchronous Mode Timing Diagram For Internal Clock  
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
SCIn isosynchronous mode timings — external clock  
timing requirements for external clock SCIn isosynchronous mode†‡ (see Figure 16)  
NO.  
MIN  
MAX  
UNIT  
Cycle time, SCInCLK§  
tc(SCC)  
8tc(ICLK)  
1
ns  
tw(SCCH)  
tw(SCCL)  
td(SCCH-TXV)  
tv(TX)  
tsu(RX-SCCL)  
tv(SCCL-RX)  
0.5tc(SCC) – 0.25tc(ICLK)  
0.5tc(SCC) – 0.25tc(ICLK)  
0.5tc(SCC) + 0.25tc(ICLK)  
0.5tc(SCC) + 0.25tc(ICLK)  
2tc(ICLK) + 12 + tr  
2
3
4
5
6
7
Pulse duration, SCInCLK high  
ns  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SCInCLK low  
Delay time, SCInCLK high to SCInTX valid  
Valid time, SCInTX data after SCInCLK low  
Setup time, SCInRX before SCInCLK low  
Valid time, SCInRX data after SCInCLK low  
2tc(SCC)–10  
0
2tc(ICLK) + 10  
† tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
‡ For rise and fall timings, see the switching characteristics for output timings versus load capacitance table.  
§ When driving an external SCInCLK, the following must be true: tc(SCC) 8tc(ICLK)  
1
2
3
SCICLK  
5
4
Data Valid  
SCITX  
6
7
Data Valid  
SCIRX  
NOTE A: Data transmission/reception characteristics for isosynchronous mode with external clocking are similar to the asynchronous  
mode. Data transmission occurs on the SCICLK rising edge, and data reception on the SCICLK falling edge.  
Figure 16. SCIn Isosynchronous Mode Timing Diagram for External Clock  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
high-end timer (HET) timings  
minimum PWM output pulse width:  
This is equal to one High Resolution Clock Period (HRP). The HRP is defined by the 6-bit High Resolution  
Prescale Factor (hr) which is user defined, giving prescale factors of 1 to 64, with a linear increment of codes.  
Therefore, the minimum PWM output pulse width = HRP(min) = hr(min)/SYSCLK = 1/SYSCLK  
For example, for a SYSCLK of 30 MHz, the minimum PWM output pulse width = 1/30 = 33.33ns  
minimum input pulses we can capture:  
The input pulse width must be greater or equal to the Low Resolution Clock Period (LRP), i.e., the HET loop  
(the HET program must fit within the LRP). The LRP is defined by the 3-bit Loop-Resolution Prescale Factor  
(lr), which is user defined, with a power of 2 increment of codes. That is, the value of lr can be 1, 2, 4, 8, 16, or 32.  
Therefore, the minimum input pulse width = LRP(min) = hr(min) * lr(min)/SYSCLK = 1 * 1/SYSCLK  
For example, with a SYSCLK of 30 MHz, the minimum input pulse width = 1 * 1/30 = 33.33 ns  
Note: Once the input pulse width is greater than LRP, the resolution of the measurement is still HRP. (That is,  
the captured value gives the number of HRP clocks inside the pulse.)  
Abbreviations:  
High resolution clock period = HRP = hr/SYSCLK  
Loop resolution clock period = LRP = hr*lr/SYSCLK  
hr = HET high resolution divide rate = 1, 2, 3,...63, 64  
lr = HET low resolution divide rate = 1, 2, 4, 8, 16, 32  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
standard CAN controller (SCC) mode timings  
dynamic characteristics for the CANSTX and CANSRX pins  
MIN  
MAX  
15  
PARAMETER  
TEST CONDITIONS  
UNIT  
ns  
Delay time, transmit shift register to CANSTX pin†  
Delay time, CANSRX pin to receive shift register  
td(CANSTX)  
td(CANSRX)  
5
ns  
† These values do not include rise/fall times of the output buffer.  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
multi-buffered A-to-D converter (MibADC)  
The multi-buffered A-to-D converter (MibADC) has a separate power bus for its analog circuitry that enhances  
the A-to-D performance by preventing digital switching noise on the logic circuitry which could be present on  
V
and V  
from coupling into the A-to-D analog stage. All A-to-D specifications are given with respect to  
SS  
CC  
AD  
unless otherwise noted.  
REFLO  
Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 bits (1024 values)  
Monotonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Assured  
Output conversion code. . . . . . . . . . . . . . . . . . . . . . . .00h to 3FFh [00 for V ADREFLO; 3FF for V ADREFHI  
]
AI  
AI  
MibADC recommended operating conditions†  
MIN  
MAX  
UNIT  
V
ADREFHI  
ADREFLO  
VAI  
VSSAD  
VCCAD  
A-to-D high -voltage reference source  
A-to-D low-voltage reference source  
Analog input voltage  
VSSAD  
VCCAD  
V
VSSAD 0.3  
VCCAD + 0.3  
V
Analog input clamp current‡  
(VAI < VSSAD – 0.3 or VAI > VCCAD + 0.3)  
IAIC  
2  
2
mA  
† For VCCAD and VSSAD recommended operating conditions, see the device recommended operating conditions table.  
‡ Input currents into any ADC input channel outside the specified limits could affect conversion results of other channels.  
operating characteristics over full ranges of recommended operating conditions§¶  
MIN  
TYP  
MAX  
500  
10  
30  
1
PARAMETER  
DESCRIPTION/CONDITIONS  
See Figure 17  
UNIT  
Ω
Ri  
250  
Analog input resistance  
Conversion  
Sampling  
pF  
Ci  
Analog input capacitance  
See Figure 17  
pF  
IAIL  
–1  
3
Analog input leakage current  
See Figure 17  
μA  
mA  
IADREFHI ADREFHI input current  
ADREFHI = 3.6 V, ADREFLO = VSSAD  
5
Conversion range over which specified  
accuracy is maintained  
ADREFHI ADREFLO  
3.6  
CR  
V
Difference between the actual step width and the  
ideal value after offset correction. (See Figure 18)  
EDNL  
±2  
Differential nonlinearity error  
LSB  
Maximumdeviationfromthebeststraightlinethrough  
the MibADC. MibADC transfer characteristics,  
excluding the quantization error after offset  
correction.  
EINL  
±2  
±2  
Integral nonlinearity error  
LSB  
LSB  
(See Figure 19)  
Maximum value of the difference between an analog  
value and the ideal midstep value.  
(See Figure 20)  
ETOT  
Total error/Absolute accuracy  
§ VCCIO = VCCAD = ADREFHI  
¶ 1 LSB = (ADREFHI – ADREFLO)/210 for the MibADC  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
multi-buffered A-to-D converter (MibADC) (continued)  
External  
MibADC  
Rs  
Ri  
Sample Switch  
Input Pin  
Sample  
Capacitor  
Parasitic  
Capacitance  
Rleak  
Vsrc  
Ci  
Figure 17. MibADC Input Equivalent Circuit  
Multi-Buffer ADC timing requirements  
MIN  
0.05  
1
NOM  
MAX  
UNIT  
μs  
tc(ADCLK)  
Cycle time, MibADC clock  
td(SH)  
Delay time, sample and hold time  
μs  
td(C)  
0.55  
Delay time, conversion time  
μs  
1.55  
Delay time, total sample/hold and conversion time  
μs  
td(SHC)  
† This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors for more detail,  
see the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature number SPNU206).  
49  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
multi-buffered A-to-D converter (MibADC) (continued)  
The differential nonlinearity error shown in Figure 18 (sometimes referred to as differential linearity) is the  
difference between an actual step width and the ideal value of 1 LSB.  
0 ... 110  
0 ... 101  
0.... 100  
0.... 011  
Differential  
Linearity Error (1/2 LSB)  
1 LSB  
0.... 010  
Differential Linearity  
Error (1/2 LSB)  
0.... 001  
0.... 000  
1 LSB  
2
0
1
3
4
5
Analog Input Value (LSB)  
NOTE A: 1 LSB = (ADREFHI – ADREFLO)/210  
Figure 18. Differential Nonlinearity (DNL)  
The integral nonlinearity error shown in Figure 19 (sometimes referred to as linearity error) is the deviation of  
the values on the actual transfer function from a straight line.  
0 ... 111  
Ideal  
0 ... 110  
0 ... 101  
Transition  
Actual  
Transition  
0 ... 100  
0 ... 011  
At Transition  
011/100  
(1/2 LSB)  
0 ... 010  
0 ... 001  
End-Point Lin. Error  
At Transition  
001/010 (1/4 LSB)  
0 ... 000  
0
1
2
3
4
5
6
7
Analog Input Value (LSB)  
NOTE A: 1 LSB = (ADREFHI – ADREFLO)/210  
Figure 19. Integral Nonlinearity (INL) Error  
50  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
multi-buffer A-to-D converter (MibADC) (continued)  
The absolute accuracy or total error of an MibADC as shown in Figure 20 is the maximum value of the difference  
between an analog value and the ideal midstep value.  
0 ... 111  
0 ... 110  
0 ... 101  
0 ... 100  
Total Error  
At Step 0 ... 101  
0 ... 011  
(1 1/4 LSB)  
0 ... 010  
Total Error  
At Step  
0 ... 001  
0 ... 001 (1/2 LSB)  
0 ... 000  
0
1
2
3
4
5
6
7
Analog Input Value (LSB)  
NOTE A: 1 LSB = (ADREFHI – ADREFLO)/210  
Figure 20. Absolute Accuracy (Total) Error  
51  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
MECHANICAL DATA  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
0,05 MIN  
SQ  
0°-7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
Thermal Resistance Characteristics  
PARAMETER  
°C/W  
RΘJA  
RΘJC  
51  
5
52  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
List of Figures  
TMS470R1VF338x 100-Pin PZ Package (TOP VIEW)  
TMS470R1VF348x 100-Pin PZ Package (TOP VIEW)  
Functional Block Diagram  
Figure 1. Memory Map  
Figure 2. TMS470R1x Family Nomenclature  
Figure 3. Test Load Circuit  
Figure 4. Crystal/Clock Connection  
Figure 5. CLKOUT Timing Diagram  
Figure 6. ECLK Timing Diagram  
Figure 7. PORRST Timing Diagram  
Figure 8. JTAG Scan Timing  
Figure 9. CMOS-Level Outputs  
Figure 10. CMOS-Level Inputs  
Figure 11. SPIn Master Mode External Timing (CLOCK PHASE = 0)  
Figure 12. SPIn Master Mode External Timing (CLOCK PHASE = 1)  
Figure 13. SPIn Slave Mode External Timing (CLOCK PHASE = 0)  
Figure 14. SPIn Slave Mode External Timing (CLOCK PHASE = 1)  
Figure 15. SCIn Isosynchronous Mode Timing Diagram For Internal Clock  
Figure 16. SCIn Isosynchronous Mode Timing Diagram for External Clock  
Figure 17. MibADC Input Equivalent Circuit  
Figure 18. Differential Nonlinearity (DNL)  
Figure 19. Integral Nonlinearity (INL) Error  
Figure 20. Absolute Accuracy (Total) Error  
Mechanical Data  
53  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006  
List of Tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Device Characteristics  
Memory Selection Assignment  
Peripherals, System Module, and Flash Base Addresses  
Interrupt Priority  
MibADC Event Hookup Configuration  
TMS470 Device ID Bit Allocation Register  
Device Part Number  
54  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482  
16/32-BIT RISC FLASH MICROCONTROLLERS  
REVISION HISTORY  
REVISION HISTORY  
REV  
J
DATE  
8/06  
NOTES  
Updates:  
Page 23, operating junction temperature range broken out into A, T, and Q versions  
Page 36, timing #5 updated  
55  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251-1443  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without  
notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is  
current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order  
acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
application s using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is  
an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.  
Resale of TI products or services with statements different form or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Amplifiers  
Data Converters  
DSP  
Interface  
Logic  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
interface.ti.com  
logic.ti.com  
Audio  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Power Mgmt  
Microcontrollers  
Low Power Wireless  
power.ti.com  
microcontroller.ti.com  
www..ti.com/lpw  
Optical Networking  
Security  
Telephony  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
Video & Imaging  
Imaging Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2006, Texas Instruments Incorporated  

相关型号:

TMS470R1VF338EPZQ

16/32-BIT RISC FLASH MICROCONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS470R1VF338PZ-T

16/32-BIT RISC FLASH MICROCONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS470R1VF338PZA

16/32-BIT RISC FLASH MICROCONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS470R1VF338PZQ

16/32-BIT RISC FLASH MICROCONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS470R1VF346A

16/32-BIT RISC FLASH MICROCONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS470R1VF346APZ-T

IC 32-BIT, FLASH, 48 MHz, RISC MICROCONTROLLER, PQFP100, PLASTIC, LQFP-100, Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS470R1VF346APZA

暂无描述

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS470R1VF346APZQ

IC 32-BIT, FLASH, 48 MHz, RISC MICROCONTROLLER, PQFP100, PLASTIC, LQFP-100, Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS470R1VF346BPZA

32-BIT, FLASH, 48MHz, RISC MICROCONTROLLER, PQFP100, PLASTIC, LQFP-100

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS470R1VF348

16/32-BIT RISC FLASH MICROCONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS470R1VF3482

16/32-BIT RISC FLASH MICROCONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS470R1VF3482APZ-T

16/32-BIT RISC FLASH MICROCONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI