TMS55166-60DGH [TI]

262144 BY 16-BIT MULTIPORT VIDEO RAM;
TMS55166-60DGH
型号: TMS55166-60DGH
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

262144 BY 16-BIT MULTIPORT VIDEO RAM

动态存储器 光电二极管 内存集成电路
文件: 总70页 (文件大小:1513K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 – DECEMBER 1995  
Organization:  
DRAM: 262144 Words × 16 Bits  
SAM: 256 Words × 16 Bits  
Split-Register-Transfer Function Transfers  
Data from the DRAM to One-Half of the  
Serial Register While the Other Half is  
Outputing Data to the SAM Port  
Single 5.0-V Power Supply (±10%)  
256 Selectable Serial Register Starting  
Points  
Dual-Port Accessibility – Simultaneous and  
Asynchronous Access From the DRAM and  
Serial-Address Memory (SAM) Ports  
Programmable Split-Register Stop Point  
Write-Per-Bit Function for Selective Write to  
Each I/O of the DRAM Port  
Up to 55-MHz Uninterrupted Serial-Data  
Streams  
Byte Write Function for Selective Write to  
Lower Byte (DQ0DQ7) or Upper Byte  
(DQ8DQ15) of the DRAM Port  
3-State Serial Outputs for Easy Multiplexing  
of Video Data Streams  
All Inputs/Outputs and Clocks TTL  
Compatible  
4-Column or 8-Column Block-Write  
Function for Fast Area-Fill Operations  
Compatible With JEDEC Standards  
Enhanced Page Mode for Faster Access  
With Extended-Data-Output (EDO) Option  
for Faster System Cycle Time  
Designed to Work With the Texas  
Instruments (TI ) Graphics Family  
Fabricated Using TI’s Enhanced  
Performance Implanted CMOS (EPIC )  
Process  
CAS-Before-RAS (CBR) and Hidden  
Refresh Functions  
Long Refresh Period – Every 8 ms  
(Maximum)  
Full-Register-Transfer Function Transfers  
Data from the DRAM to the Serial Register  
performance ranges  
ACCESS TIME  
ROW ENABLE  
ACCESS TIME  
SERIAL DATA  
DRAM PAGE  
CYCLE TIME  
DRAM EDO  
CYCLE TIME  
SERIAL  
CYCLE TIME  
OPERATING CURRENT  
SERIAL PORT STANDBY  
t
t
t
t
t
lCC  
RAC  
SCA  
PC  
PC  
SCC  
1
(MAX)  
60 ns  
70 ns  
(MIN)  
15 ns  
20 ns  
(MIN)  
35 ns  
40 ns  
(MIN)  
30 ns  
30 ns  
(MIN)  
18 ns  
22 ns  
(MAX)  
180 mA  
165 mA  
– 60 Speed  
– 70 Speed  
Table 1. Device Option Table  
DEVICE  
POWER SUPPLY VOLTAGE  
5.0 V ± 0.5 V  
BLOCK-WRITE CAPABILITY  
4-column  
PAGE/EDO OPERATION  
55165  
55166  
55175  
55176  
Page  
EDO  
Page  
EDO  
5.0 V ± 0.5 V  
4-column  
5.0 V ± 0.5 V  
8-column  
5.0 V ± 0.5 V  
8-column  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
TI and EPIC are trademarks of Texas Instruments Incorporated.  
Copyright 1995, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
DGH PACKAGE  
(TOP VIEW)  
V
1
2
3
4
5
6
7
8
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
SC  
SE  
V
CC  
TRG  
V
SS  
SS  
SQ0  
DQ0  
SQ1  
DQ1  
SQ15  
DQ15  
SQ14  
DQ14  
V
V
CC  
CC  
SQ2  
SQ13  
DQ13  
SQ12  
DQ12  
9
10  
11  
DQ2  
SQ3  
DQ3  
54  
53  
12  
13  
14  
15  
16  
V
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
V
SS  
SS  
SQ4  
DQ4  
SQ5  
SQ11  
DQ11  
SQ10  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
DQ5  
V
DQ10  
V
CC  
CC  
SQ6  
DQ6  
SQ7  
DQ7  
SQ9  
DQ9  
SQ8  
DQ8  
V
V
SS  
SS  
WEL  
DSF  
NC / GND  
CAS  
QSF  
A0  
WEU  
RAS  
A8  
A7  
A6  
A1  
29  
30  
31  
32  
A5  
A4  
A2  
A3  
V
V
CC  
SS  
PIN NOMENCLATURE  
A0A8  
RAS  
Address Inputs  
Row-Address Strobe  
Column-Address Strobe  
Special Function Select  
CAS  
DSF  
TRG  
Output Enable, Transfer Select  
WEL, WEU  
DQ0 DQ15  
SC  
Write Enable, Byte Select, Write Mask Select  
DRAM Data I/O  
Serial Clock  
SE  
Serial Enable  
SQ0SQ15  
QSF  
Serial Data Output  
Special Function Output  
Power Supply  
V
V
CC  
Ground  
SS  
NC/GND  
No Connect/Ground  
(Important: not connected internally to V  
)
SS  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
description  
The TMS551xx multiport video RAMs are high-speed dual-ported memory devices. Each consists of a dynamic  
random-access memory (DRAM) organized as 262 144 words of 16 bits each interfaced to a serial-data register  
[serial-accessmemory (SAM)] organized as 256 words of 16 bits each. These devices support three basic types  
of operation: random access to and from the DRAM, serial access from the serial register, and transfer of data  
from the DRAM to the SAM. Except during transfer operations, these devices can be accessed simultaneously  
and asynchronously from the DRAM and SAM ports.  
The TMS551xx multiport video RAMs provide several functions designed to provide higher system-level  
bandwidth and to simplify design integration on both the DRAM and SAM ports (see Table 2). On the DRAM  
port, greater pixel draw rates are achieved by the block-write function. The TMS5516x devices4-column  
block-write function allows 16 bits of data (present in an on-chip color-data register) to be written to any  
combination of four adjacent column-address locations, up to a total of 64 bits of data per CAS cycle time.  
Similarly, the TMS5517x devices8-column block-write function allows 16 bits of data to be written to any  
combination of eight adjacent column-address locations, up to a total of 128 bits of data per CAS cycle time.  
Also on the DRAM port, the write-per-bit (or write mask) function allows masking of any combination of the 16  
DQsonanywritecycle. Thepersistentwrite-per-bitfunctionusesamaskregisterthat, onceloaded, canbeused  
on subsequent write cycles without reloading. All TMS551xx devices offer byte control. Byte control can be  
applied in write cycles, block-write cycles, load-write-mask-register cycles, and load-color-register cycles. The  
TMS551xx devices offer enhanced page-mode operation that results in faster access time. The TMS551x6  
devices also offer extended-data-output (EDO) mode. The EDO mode is effective in both the page-mode and  
the standard DRAM cycles.  
The TMS551xx devices offer a split-register-transfer (DRAM to SAM) function. This feature enables real-time  
register load implementation for continuous serial-data streams without critical timing requirements. The serial  
register is divided into a high half and a low half. While one half is being read out of the SAM port, the other half  
can be loaded from the DRAM. For applications not requiring real-time register load (for example, loads done  
during CRT-retrace periods), the full-register-transfer operation is retained to simplify system design.  
The SAM port is designed for maximum performance. Data can be accessed from the SAM at serial rates up  
to 55 MHz. A separate output, QSF, is included to indicate which half of the serial register is active. Refreshing  
the SAM is not required because the data register that comprises the SAM is static.  
All inputs, outputs, and clock signals on the TMS551xx devices are compatible with Series 74 TTL. All address  
lines and data-in lines are latched on-chip to simplify system design. All data-out lines are unlatched to allow  
greater system flexibility.  
All TMS551xx employ TIs state-of-the-art EPIC scaled-CMOS, double-level polysilicon/polycide gate  
technology combining very high performance with improved reliability.  
All TMS551xx are offered in a 64-pin small-outline gull-wing-leaded package (DGH suffix) for direct surface  
mounting.  
The TMS551xx video RAMs and other TI multiport video RAMs are supported by a broad line of graphics  
processors and control devices from Texas Instruments.  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
4-column functional block diagram (TMS5516x)  
Input  
DSF  
Buffer  
1 of 4 Sub-Blocks  
(see next page)  
Refresh  
Counter  
Special-  
Function  
Logic  
Input  
Buffer  
Row  
Buffer  
9
1 of 4 Sub-Blocks  
(see next page)  
16  
DQ0–  
DQ15  
A0A8  
Column  
Buffer  
Output  
Buffer  
1 of 4 Sub-Blocks  
(see next page)  
Serial-  
Address  
Counter  
SC  
Split-  
Register  
Status  
Serial-  
Output  
Buffer  
16  
SQ0SQ15  
QSF  
SE  
1 of 4 Sub-Blocks  
(see next page)  
SE  
RAS  
CAS  
Timing  
Generator  
TRG  
WEx  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
4-column functional block diagram (TMS5516x) (continued)  
Special-  
Function  
Logic  
DSF  
Input  
Buffer  
Color  
Register  
W/B  
Unlatch  
W/B  
Latch  
DRAM  
Input  
Address  
Mask  
MUX  
Buffer  
DQx  
Write-  
Per-Bit  
Control  
DQx+1  
DQx+2  
DQx+3  
Refresh  
Counter  
DRAM  
Output  
Buffer  
Row  
Buffer  
Column Dec.  
Sense AMP  
RAS  
CAS  
TRG  
WEx  
A0A8  
Timing  
Generator  
512 × 512  
Memory  
Array  
Column  
Buffer  
Row  
Decoder  
Serial-Data  
Register  
Serial-Data  
Pointer  
SQx  
SQx+1  
SQx+2  
SQx+3  
Serial-  
Address  
Counter  
Serial-  
Output  
Buffer  
SC  
Split-  
Register  
Status  
1 of 4 Sub-Blocks  
SE  
QSF  
SE  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
8-column functional block diagram (TMS5517x)  
Input  
DSF  
Buffer  
Special-  
Function  
Logic  
Refresh  
Counter  
1 of 2 Sub-Blocks  
(see next page)  
Input  
Buffer  
Row  
9
Buffer  
16  
DQ0–  
DQ15  
A0A8  
Output  
Buffer  
Column  
Buffer  
Serial-  
Address  
Counter  
SC  
Split-  
Register  
Status  
1 of 2 Sub-Blocks  
(see next page)  
16  
SQ0SQ15  
QSF  
Serial-  
Output  
Buffer  
SE  
SE  
RAS  
CAS  
TRG  
WEx  
Timing  
Generator  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
8-column functional block diagram (TMS5x17x) (continued)  
DSF  
Special-  
Function  
Logic  
Input  
Buffer  
Color  
Register  
W/B  
Unlatch  
W/B  
Latch  
Address  
Mask  
MUX  
DRAM  
Input  
Buffer  
Write-  
Per-Bit  
Control  
Refresh  
Counter  
DQx  
DQx + 1  
DQx + 2  
DQx + 3  
DQx + 4  
DQx + 5  
DQx + 6  
DQx + 7  
Row  
Buffer  
DRAM  
Output  
Buffer  
Column DEC  
Sense AMP  
A0A8  
Column  
Buffer  
512 × 512  
Memory  
Array  
Row  
Decoder  
RAS  
CAS  
TRG  
WEx  
Timing  
Generator  
Serial-Data  
Register  
Serial-Data  
Pointer  
Serial-  
Address  
Counter  
SC  
SQx  
SQx + 1  
SQx + 2  
SQx + 3  
SQx + 4  
SQx + 5  
SQ x+ 6  
SQx + 7  
Split-  
Register  
Status  
Serial  
Output  
Buffer  
QSF  
1 of 2 Sub-Blocks  
SE  
SE  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
Table 2. Function Table  
CAS  
FALL  
RAS FALL  
ADDRESS  
DQ0DQ15  
MNE  
CODE  
FUNCTION  
WEL  
WEU  
CAS  
§
CAS TRG WEx  
DSF  
DSF  
RAS  
CAS  
RAS  
Reserved (do not use)  
L
L
L
L
L
L
X
X
X
X
X
X
X
X
X
Stop  
Point  
CBR refresh (no reset) and stop-point set  
X
H
CBRS  
#
||  
CBR refresh (option reset)  
L
L
X
X
H
H
L
X
X
X
X
X
X
X
X
X
CBR  
CBR refresh (no reset)  
Full-register transfer  
H
X
CBRN  
Row  
Addr  
Tap  
Point  
H
H
H
H
H
H
H
H
H
H
L
L
H
H
H
L
L
H
L
X
X
L
X
X
X
X
X
RT  
Row  
Addr  
Tap  
Point  
Split-register transfer  
SRT  
RW  
Row  
Addr  
Col  
Addr  
Valid  
Data  
DRAM write (nonmasked)  
H
H
H
H
H
H
H
H
Row  
Addr  
Col  
Addr  
Write  
Mask  
Valid  
Data  
DRAM write (nonpersistent write-per-bit)  
DRAM write (persistent write-per-bit)  
DRAM block write (nonmasked)  
L
L
RWM  
RWM  
BW  
Row  
Addr  
Col  
Addr  
Valid  
Data  
L
L
L
X
X
Row  
Addr  
Block  
Addr  
Col  
Mask  
H
L
L
H
H
H
L
Row  
Addr  
Block  
Addr  
Write  
Mask  
Col  
Mask  
DRAM block write (nonpersistent write-per-bit)  
DRAM block write (persistent write-per-bit)  
L
BWM  
BWM  
LMR  
LCR  
Row  
Addr  
Block  
Addr  
Col  
Mask  
L
L
X
X
X
Refresh  
Addr  
Write  
Mask  
Load write-mask register  
H
H
H
H
X
X
Refresh  
Addr  
Color  
Data  
Load color register  
Legend:  
H
X
=
=
=
Dont care  
H: Write to address/column enabled  
H: Write to I/O enabled  
Col Mask  
Write Mask  
§
#
||  
DQ0DQ15 are latched on either the falling edge of CAS or the first falling edge of WEx, whichever occurs later.  
Logic L is selected when either or both WEL and WEU are low.  
The column address, the block address, or the tap point is latched on the falling edge of CAS depending upon which function is executed.  
CBRS cycle should be performed immediately after the power-up initialization for stop-point mode.  
A0A3, A8: dont care; A4A7 : stop-point code  
CBR refresh (option reset) mode ends persistent write-per-bit mode and stop-point mode.  
CBR refresh (no reset) mode does not end persistent write-per-bit mode or stop-point mode.  
For 4-column block write (TMS5516x), block address is A2A8; for 8-column block write (TMS5517x), block address is A3A8.  
Load-write-mask-register cycle sets the persistent write-per-bit mode. The persistent write-per-bit mode is reset only by the CBR (option reset)  
cycle.  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
Table 3. Pin Description Versus Operational Mode  
PIN  
A0A8  
RAS  
DRAM  
TRANSFER  
Row address, tap point  
Row-address strobe  
Tap-address strobe  
SAM  
Row, column address  
Row-address strobe  
CAS  
Column-address strobe, DQ output enable  
DSF  
Block-write enable  
Split-register-transferenable  
Load-write-mask-register enable  
Load-color-register enable  
CBR (option reset)  
TRG  
DQ output enable  
Transfer enable  
WEL  
WEU  
Write enable, write-per-bit enable  
DQx  
SC  
DRAM data I/O, write mask  
Serial clock  
SQ output enable,  
QSF output enable  
SE  
SQx  
QSF  
Serial-data output  
Serial-register status  
V
V
Power supply  
Ground  
CC  
SS  
NC/GND  
Make no external connection or tie to system GND  
For proper device operation, all V  
CC  
pins must be connected to a 5.0-V supply and all V pins must be tied to ground.  
SS  
pin definitions  
address (A0A8)  
Eighteen address bits are required to decode one of 262 144 storage cell locations. Nine row-address bits are  
set up on pins A0A8 and latched onto the chip on the falling edge of RAS. Nine column-address bits are set  
uponpinsA0A8andlatchedontothechiponthefallingedgeofCAS. Alladdressesmustbestableonorbefore  
the falling edge of RAS and the falling edge of CAS.  
In4-columnblock-writeoperations(TMS5516x), column-addressbitsA0A1areignored. Column-addressbits  
A2A8 become the block address that selects one of the 128 blocks in the active row. In 8-column block write  
operations (TMS5517x), column-address bits A0A2 are ignored. Column address bits A3A8 become the  
block address that selects one of the 64 blocks in the active row.  
In full-register operations, column-address bit A8 selects which half of the active row in the DRAM is transferred  
to the SAM. Column address bits A0A7 select one of 256 tap points (starting positions) for the serial-data  
output.  
In split-register-transfer operations, column address bit A8 selects the DRAM half row. Column-address bit A7  
is ignored. The internal serial-address counter identifies which half of the SAM is in use. If the high half of the  
SAM is in use, the low half of the SAM is loaded with the low half of the DRAM half row, and vice versa.  
Column-address bits A0A6 select one of 127 tap points (starting locations) for the serial output. Locations 127  
and 255 are not valid tap points in split-register-transfer operations. In stop-point mode, stop-point locations are  
not valid tap points in split-register-transfer operations.  
row-address strobe (RAS)  
The falling edge of RAS latches the states of the row address, CAS, DSF, TRG, WEL, and WEU, and the DQs  
onto the chip to initiate DRAM and transfer functions. RAS also functions as a DRAM output enable.  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
column-address strobe (CAS)  
The falling edge of CAS latches the states of the column address and DSF onto the chip to control DRAM and  
transfer functions. CAS also functions as a DRAM output enable.  
special-function select (DSF)  
DSF is latched on the falling edge of RAS and the falling edge of CAS to determine which functions are invoked  
on a particular cycle (see Table 2).  
output enable, transfer select (TRG)  
TRG selects either DRAM or transfer operation as RAS falls. Holding TRG high on the falling edge of RAS  
selects the DRAM operation. Dropping TRG low on the falling edge of RAS selects the transfer operation. TRG  
also functions as DRAM output enable.  
write enable, write-per-bit select, byte select (WEL, WEU)  
WEL and WEU select either the write mode or the read mode in a CAS cycle. Dropping either or both WEL and  
WEU low selects the write mode. Holding both WEL and WEU high selects the read mode. Holding either or  
both WEL and WEU low on the falling edge of RAS selects the write-per-bit operation. WEL and WEU provide  
byte control in DRAM operations. WEL controls the lower byte (DQ0DQ7), and WEU controls the upper byte  
(DQ8DQ15). Byte control can be applied in write cycles, block-write cycles, load-write-mask-register cycles,  
and load-color-register cycles.  
DRAM data I/O, write mask, column mask (DQ0DQ15)  
DQ0DQ15 function as the DRAM input/output port in DRAM operations. In normal DRAM write cycles, all 16  
bits of write data are latched on either the falling edge of CAS or the first falling edge of WEx, whichever occurs  
later. Similarly, the DQs are latched as write mask in load-mask-register cycles, as color data in  
load-color-register cycles, and as column mask in block-write cycles. In non-persistent write-per-bit cycles, the  
DQs are latched as the write mask on the falling edge of RAS.  
Data out is in the same polarity as data in. The 3-state output buffer provides direct TTL compatibility (no pullup  
resistorrequired)withafan-outofoneSeries74TTLload. Theoutputsareinthehigh-impedance(floating)state  
until RAS, CAS, and TRG have all been brought low in read cycles. For the TMS551x5 devices, the outputs  
remain valid until CAS is brought high, TRG is brought high, or WEx is brought low. For the TMS551x6 devices,  
the outputs remain valid until both RAS and CAS are brought high, TRG is brought high, or WEx is brought low.  
serial clock (SC)  
The rising edge of SC increments the internal serial-address counter and accesses serial data at the next SAM  
location.  
serial enable (SE)  
SE functions as the output enable for SQ0SQ15 and QSF. SE low enables the serial-data output. SE high  
disables the serial-data output. Holding SE high does not disable the serial clock SC. The rising edge of SC  
automatically increments the internal serial-address counter regardless of the state of SE.  
serial data outputs (SQ0SQ15)  
SQ0SQ15 function as the SAM output port. The 3-state output buffer provides direct TTL compatibility (no  
pullup resistors) with a fan-out of one Series 74 TTL load. Serial data is accessed from the SAM on the rising  
edge of SC. SE low enables the outputs. The outputs are in the high-impedance (floating) state when disabled.  
special-function output (QSF)  
QSF is an output pin that indicates which half of the SAM is being accessed. QSF is low when the internal  
serial-address counter points to the lower (least significant) 128 bits of the SAM. QSF is high when the internal  
serial-address counter points to the higher (most significant) 128 bits of SAM. QSF is in the high-impedance  
state when SE is high.  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
functional operation description  
random access operation  
Table 4. DRAM Function Table  
CAS  
FALL  
RAS FALL  
ADDRESS  
DQ0DQ15  
MNE  
CODE  
FUNCTION  
WEL  
WEU  
CAS  
§
CAS TRG WEx  
DSF  
DSF  
RAS  
CAS  
RAS  
Reserved (do not use)  
L
L
L
L
L
L
X
X
X
X
X
X
X
X
X
Stop  
Point  
CBR refresh (no reset) and stop-point set  
X
H
CBRS  
#
||  
CBR refresh (option reset)  
L
L
X
X
H
H
L
X
X
X
X
X
X
X
X
X
CBR  
CBR refresh (no reset)  
H
X
CBRN  
Row  
Addr  
Col  
Addr  
Valid  
Data  
DRAM write (nonmasked)  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
H
H
L
L
X
RW  
RWM  
RWM  
BW  
Row  
Addr  
Col  
Addr  
Write  
Mask  
Valid  
Data  
DRAM write (nonpersistent write-per-bit)  
DRAM write (persistent write-per-bit)  
DRAM block write (nonmasked)  
Row  
Addr  
Col  
Addr  
Valid  
Data  
L
L
X
X
Row  
Addr  
Block  
Addr  
Col  
Mask  
H
L
H
H
H
L
Row  
Addr  
Block  
Addr  
Write  
Mask  
Col  
Mask  
DRAM block write (nonpersistent write-per-bit)  
DRAM block write (persistent write-per-bit)  
BWM  
BWM  
LMR  
LCR  
Row  
Addr  
Block  
Addr  
Col  
Mask  
L
X
X
X
Refresh  
Addr  
Write  
Mask  
Load write-mask register  
H
H
X
X
Refresh  
Addr  
Color  
Data  
Load color register  
Legend:  
H
X
=
=
=
Dont care  
H: Write to address/column enabled  
H: Write to I/O enabled  
Col Mask  
Write Mask  
§
#
||  
DQ0DQ15 are latched on either the falling edge of CAS or the first falling edge of WEx, whichever occurs later.  
Logic L is selected when either or both WEL and WEU are low.  
The column address, the block address, or the tap point is latched on the falling edge of CAS depending upon which function is executed.  
CBRS cycle should be performed immediately after the power-up for stop-point mode.  
A0A3, A8: dont care; A4A7 : stop-point code  
CBR refresh (option reset) mode ends persistent write-per-bit mode and stop-point mode.  
CBR refresh (no reset) mode does not end persistent write-per-bit mode or stop-point mode.  
For 4-column block write (TMS5516x), block address is A2A8; for 8-column block write (TMS5517x), block address is A3A8.  
Load-write-mask-register cycle sets the persistent write-per-bit mode. The persistent write-per-bit mode is reset only by the CBR (option reset)  
cycle.  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
refresh  
CAS-before-RAS (CBR) refresh  
CBR refreshes are accomplished when CAS is brought low earlier than RAS. The external row address is  
ignored, and the refresh row address is generated internally. Three types of CBR refresh cycles are available.  
The CBR refresh (option reset) ends the persistent write-per-bit mode and the stop-point mode. The CBRN (no  
reset) and CBRS (no reset and stop point set) refreshes do not end the persistent write-per-bit mode or the  
stop-point mode. The 512 rows of the DRAM do not necessarily need to be refreshed consecutively as long as  
the entire refresh is completed within the required time period, t  
high-impedance state during the CBR type refresh cycles regardless of the state of TRG.  
. The output buffers remain in the  
rf(MA)  
hidden refresh  
A hidden refresh is accomplished by holding CAS low in the DRAM read cycle and cycling RAS. The output data  
of the DRAM read cycle remains valid while the refresh is carried out. Like the CBR refresh, the refreshed row  
addresses are generated internally during the hidden refresh.  
RAS-only refresh  
A RAS-only refresh is accomplished by cycling RAS at every row address. Unless CAS and TRG are low, the  
output buffers remain in the high-impedance state to conserve power. Externally generated addresses must be  
supplied during RAS-only refresh. Strobing each of the 512 row addresses with RAS causes all bits in each row  
to be refreshed.  
enhanced page mode (TMS551x5)  
Enhanced page mode allows faster memory access by keeping the same row address while selecting random  
column addresses. The maximum RAS low time and minimum CAS page cycle time are used to determine the  
number of columns that can be accessed.  
Unlike conventional page mode, the enhanced page mode allows the TMS551x5 to operate at a higher data  
bandwidth. Data retrieval begins as soon as the column address is valid rather than when CAS transitions low.  
A valid column address can be presented immediately after the row-address hold time has been satisfied,  
usually well in advance of the falling edge of CAS. In this case, data is obtained after t  
max ( access time  
a(C)  
from CAS low) if t  
max (access time from column address) has been satisfied.  
a(CA)  
extended data output (TMS551x6)  
The TMS551x6 features extended data output during DRAM accesses. While RAS and TRG are low, theDRAM  
output remains valid even when CAS returns high. The output remains valid until WEx is low, TRG is high, or  
both CAS and RAS are high (see Figures 1, 2, and 3). The extended data-output mode functions in all read  
cycles including DRAM read, page-mode read, and read-modify-write cycles.  
RAS  
CAS  
t
dis(RH)  
Valid Output  
DQ0 DQ15  
TRG  
See switching characteristics over recommended ranges of supply voltage and operating free-air temperaturetable.  
Figure 1. DRAM Read Cycle With RAS-Controlled Output (TMS551x6)  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
extended data output (continued)  
RAS  
CAS  
DQ0 DQ15  
TRG  
t
dis(CH)  
Valid Output  
See switching characteristics over recommended ranges of supply voltage and operating free-air temperaturetable.  
Figure 2. DRAM Read Cycle With CAS-Controlled Output (TMS551x6)  
RAS  
CAS  
Row  
Column  
Column  
A0A8  
t
t
t
a(CP)  
t
a(C)  
a(C)  
a(CA)  
t
a(CA)  
t
h(CLQ)  
Valid Output  
Valid Output  
DQ0DQ15  
TRG  
See switching characteristics over recommended ranges of supply voltage and operating free-air temperaturetable.  
See timing requirements over recommended ranges of supply voltage and operating free-air temperaturetable.  
Figure 3. DRAM Page-Read Cycle With Extended Data Output (TMS551x6)  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
byte-write  
Byte-write operations can be applied in DRAM-write cycles, block-write cycles, load-write-mask-register cycles,  
and load-color-register cycles. Holding either or both WEL and WEU low selects the write mode. In normal write  
cycles, WEL enables data to be written to the lower byte (DQ0DQ7) and WEU enables data to be written to  
the upper byte (DQ8DQ15). For early-write cycles, one WEx is brought low before CAS falls. The other WEx  
can be brought low before or after CAS falls. The data is latched in with data setup and hold times for  
DQ0DQ15 referenced to CAS (see Figure 4).  
RAS  
CAS  
WEL  
WEU  
t
su(DCL)  
t
h(CLD)  
Valid Input  
DQ0DQ15  
Either WEx can be brought low prior to CAS to initiate an early-write cycle.  
See timing requirements over recommended ranges of supply voltage and operating free-air temperaturetable.  
Figure 4. Example of an Early-Write Cycle  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
byte-write (continued)  
For late-write or read-modify-write cycles, WEL and WEU are both held high before CAS falls. After CAS falls,  
either or both WEL and WEU are brought low to select the corresponding byte or bytes to be written. The data  
is latched in with data setup and hold times for DQ0DQ15 referenced to the first falling edge of WEx  
(see Figure 5).  
RAS  
CAS  
WEL  
WEU  
t
su(DWL)  
t
h(WLD)  
Valid Input  
DQ0DQ15  
See timing requirements over recommended ranges of supply voltage and operating free-air temperaturetable.  
Figure 5. Example of a Late-Write Cycle  
write-per-bit  
The write-per-bit function allows masking any combination of the 16 DQs on any write cycle. The write-per-bit  
operation is invoked when either or both WEL and WEU are held low on the falling edge of RAS. Either WEx  
allows entry of the entire 16-bit mask on DQ0DQ15. Byte control of the mask input is not allowed. If both WEL  
and WEU are held high on the falling edge of RAS, the write operation is performed without any masking. There  
are two write-per-bit modes: the nonpersistent write-per-bit and the persistent write-per-bit.  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
nonpersistent write-per-bit  
WheneitherorbothWELandWEUarelowonthefallingedgeofRAS, thewritemaskisreloaded. A16-bitbinary  
code (the write mask) is input to the device via the DQ pins and latched on the falling edge of RAS. The  
write-per-bit mask selects which of the 16 DQs are to be written and which are not. After RAS has latched the  
on-chip write-per-bit mask, input data is driven onto the DQ pins and is latched on either the falling edge of CAS  
or the first falling edge of WEx, whichever occurs later. WEL enables the lower byte (DQ0 DQ7) to be written  
through the mask and WEU enables the upper byte (DQ8DQ15) to be written through the mask. If a write mask  
low (write mask = 0) is latched into a particular DQ pin on the falling edge of RAS, write data is not written to  
that DQ. If a write mask high (write mask = 1) is latched into a particular DQ pin on the falling edge of RAS, write  
data is written to that DQ (see Figure 6).  
RAS  
CAS  
WEL  
WEU  
t
su(DQR)  
t
h(RDQ)  
t
su(DWL)  
t
h(WLD)  
Write Mask  
Write Data  
DQ0DQ15  
See timing requirements over recommended ranges of supply voltage and operating free-air temperaturetable.  
Figure 6. Example of a Nonpersistent Write-Per-Bit (Late-Write) Operation  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
persistent write-per-bit  
The persistent write-per-bit mode is initiated by performing a load-write-mask-register (LMR) cycle. In the  
persistent write-per-bit mode, the write mask is not overwritten but remains valid over an arbitrary number of  
write cycles until another LMR cycle is performed, a CBR with reset is executed, or power is removed.  
Theload-write-mask-registercycleisperformedusingDRAMwrite-cycletimingwithDSFheldhighonthefalling  
edge of RAS and held low on the falling edge of CAS. A binary code is input to the write-mask register via the  
DQ pins and latched on either the falling edge of CAS or the first falling edge of WEx, whichever occurs later.  
Byte write control can be applied to the write mask during the load-write-mask-register cycle. The persistent  
write-per-bit mode can then be used in exactly the same way as the nonpersistent write-per-bit mode except  
that the input data on the falling edge of RAS is ignored. When the device is set to the persistent write-per-bit  
mode, it remains in this mode and is reset only by a CBR refresh (option reset) cycle (see Figure 7).  
Load Write-Mask Register  
Persistent Write-Per-Bit  
CBR Refresh (option reset)  
RAS  
CAS  
A0A8  
Refresh  
Address  
Row  
Column  
DSF  
WEx  
DQ0–  
DQ15  
Write-Mask  
Write-Data  
Mask Data  
=
=
1 : Write to DQ enabled  
0 : Write to DQ disabled  
Figure 7. Example of a Persistent Write-Per-Bit Operation  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
4-column block write (TMS5516x)  
The 4-column block-write function allows up to 64 bits of data to be written simultaneously to one row of the  
memory array. This function is implemented as 4 columns × 4 DQs and repeated in four quadrants. In this  
manner, each of the four one-megabit quadrants can have up to four consecutive columns written at a time with  
up to four DQs per column (see Figure 8).  
DQ15  
DQ14  
4th Quadrant  
DQ13  
DQ12  
DQ11  
DQ10  
3rd Quadrant  
DQ9  
DQ8  
One Row of 0511  
DQ7  
DQ6  
2nd Quadrant  
DQ5  
DQ4  
DQ3  
DQ2  
1st Quadrant  
DQ1  
DQ0  
Four Consecutive Columns of 0511  
Figure 8. 4-Column Block-Write Operation  
Eachone-megabit quadrant has a 4-bit column mask to mask off any or all of the four columns from being written  
with data. Nonpersistent write-per-bit or persistent write-per-bit functions can be applied to the block-write  
operation to provide write-masking options. Write data (color data) is provided by four bits from the on-chip color  
register. Bits 0 3 from the 16-bit write-mask register, bits 0 3 from the 16-bit column-mask register, and bits  
0 3 from the 16-bit color-data register configure the block write for the first quadrant, while bits 4 7, 8 11,  
and 12 15 of the corresponding registers control the other quadrants in a similar fashion (see Figure 9).  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
4-column block write (continued)  
DQ15  
DQ14  
DQ13  
DQ12  
DQ11  
DQ10  
12  
13  
DQ9  
14  
15  
DQ8  
One Row of 0511  
DQ7  
DQ6  
8
9
DQ5  
10  
11  
DQ4  
DQ3  
DQ2  
4
5
6
7
DQ1  
DQ0  
0
1
2
3
3
7
11  
15  
2
6
10  
14  
1
5
9
13  
0
4
8
12  
0
1
2
3
4
5
6
7
8
9
10 11  
12 13 14 15  
Color Register  
Figure 9. 4-Column Block Write With Masks  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
4-column block write (continued)  
Every four adjacent columns makes a block, which results in 128 blocks along one row. Block 0 comprises  
columns 0 3, block 1 comprises columns 4 7, block 2 comprises columns 8 11, etc., as shown in Figure 10.  
Block 0  
Block 1 . . . . . . . . . . . . . . . . . . . . . . Block 127  
One Row of 0511  
0
1
2
3
4
5
6
7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 511  
Columns  
Figure 10. 4-Column-Block Column-Organization  
During 4-column block-write cycles, only the seven most significant column addresses (A2 A8) are latched on  
the falling edge of CAS to decode one of the 128 blocks. Address bits A0 A1 are ignored. All one-megabit  
quadrants have the same block selected.  
A block-write cycle is entered in a manner similar to a DRAM write cycle except DSF is held high on the falling  
edge of CAS. As in a DRAM write operation, WEL and WEU enable the corresponding lower and upper DRAM  
DQ bytes to be written, respectively. The column-mask data is input via the DQs and is latched on either the  
falling edge of CAS or the first falling edge of WEx, whichever occurs later. The 16-bit color-data register must  
be loaded prior to performing a block write as described below. Refer to the write-per-bit section for details on  
use of the write-mask capability, allowing additional performance options.  
Example of block write:  
block-write column address = 110000000 (A0 A8 from left to right)  
bit 0  
bit 15  
0111  
1011  
1010  
color-data register = 1011  
write-mask register = 1110  
column-mask register = 1111  
1011  
1111  
0000  
1100  
1111  
0111  
1st  
2nd  
3rd  
4th  
Quad  
Quad  
Quad  
Quad  
Column-address bits A0 and A1 are ignored. Block 0 (columns 0 3) is selected for all one-megabit quadrants.  
The first quadrant has DQ0 DQ2 written with bits 0 2 from the color-data register to all four columns of block  
0. DQ3 is not written and retains its previous data due to the write-mask bit 3 being a 0.  
The second quadrant (DQ4DQ7) has all four columns masked off due to the column-mask bits 4 7 being 0,  
so that no data is written.  
The third quadrant (DQ8DQ11) has its four DQs written with bits 8 11 from the color-data register to columns  
13 of its block 0. Column 0 is not written and retains its previous data on all four DQs due to the  
column-mask bit 8 being 0.  
The fourth quadrant (DQ12DQ15) has DQ12, DQ14, and DQ15 written with bits 12, 14, and 15 from the  
color-data register to column 0 and column 2 of its block 0. DQ13 retains its previous data on all columns due  
to the write mask. Columns 1 and 3 retain their previous data on all DQs due to the column mask. If the previous  
data for the quadrant was all 0s, the fourth quadrant would contain the data pattern shown in Figure 11 after  
the 4-column block-write operation shown in the example.  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
4-column block write (continued)  
DQ15  
1
1
0
0
1
0
DQ14  
1
0
0
0
4th Quadrant  
DQ13  
0
0
0
0
DQ12  
0
0
Columns  
0
1
2
3
Figure 11. Example of Fourth Quadrant After 4-Column Block-Write Operation  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
8-column block write (TMS5517x)  
The 8-column block-write function allows up to 128 bits of data to be written simultaneously to one row of the  
memory array. This function is implemented as 8 columns × 8 DQs and repeated in two bytes. In this manner,  
each of the two bytes can have up to eight consecutive columns written at a time with up to eight DQs per column  
(see Figure 12).  
DQ15  
DQ14  
DQ13  
DQ12  
Upper Byte  
DQ11  
DQ10  
DQ9  
DQ8  
One Row of 0511  
DQ7  
DQ6  
DQ5  
DQ4  
Lower Byte  
DQ3  
DQ2  
DQ1  
DQ0  
Eight Consecutive Columns of 0511  
Figure 12. 8-Column Block-Write Operation  
Each byte has an 8-bit column mask to mask off any or all of the eight columns from being written with data.  
Nonpersistent write-per-bit or persistent write-per-bit functions can be applied to the block-write operation to  
provide write-masking options. Write data (color data) is provided by eight bits from the on-chip color register.  
Bits 0 7 from the 16-bit write-mask register, bits 0 7 from the 16-bit column-mask register, and bits 0 7 from  
the 16-bit color-data register configure the block write for the lower byte, while bits 815 control the upper byte  
in a similar fashion (see Figure 13).  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
8-bit block write (continued)  
Lower Byte  
Upper Byte  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ8  
DQ9  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
One Row of 0511  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Color Register  
Figure 13. 8-Column Block Write With Masks  
Every eight adjacent columns makes a block resulting in 64 blocks along one row. Block 0 comprises columns  
0 7, block 1 comprises columns 8 15, block 2 comprises columns 16 23, etc., as shown in Figure 14.  
Block 0  
Block 63  
One Row of 0511  
0
1
2
3
4
5
6
7 . . . . . . . . . . . . . 504 505 506 507 508 509 510 511  
Columns  
Figure 14. 8-Column-Block Column-Organization  
During 8-column block-write cycles, only the six most significant column addresses (A3 A8) are latched on the  
falling edge of CAS to decode one of the 64 blocks. Address bits A0 A2 are ignored. Both bytes have the same  
block selected.  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
8-column block write (continued)  
A block-write cycle is entered in a manner similar to a DRAM write cycle except DSF is held high on the falling  
edge of CAS. As in a DRAM write operation, WEL and WEU enable the corresponding lower and upper DRAM  
DQ bytes to be written, respectively. The column-mask data is input via the DQs and is latched on either the  
falling edge of CAS or the first falling edge of WEx, whichever occurs later. The 16-bit color-data register must  
be loaded prior to performing a block write as described below. Refer to the write-per-bit section for details on  
use of the write-mask capability allowing additional performance options.  
Example of block write:  
block-write column address  
=
110000000 (A0 A8 from left to right)  
bit 0  
bit 15  
11000111  
11111011  
01111010  
color-data register = 10111011  
write-mask register = 11101111  
column-mask register = 11110000  
Lower  
Byte  
Upper  
Byte  
Column-address bits A0A2 are ignored. Block 0 (columns 0 7) is selected for both bytes. The lower byte has  
DQ0 DQ2 andDQ4DQ7writtenwithbits0 2and47 from the color-data register to columns 03. Columns  
4 7 are not written and retain their previous data due to the column-mask bits 47 being 0. DQ3 is not written  
and retains its previous data due to the write-mask bit 3 being 0.  
The upper byte has DQ8DQ12 and DQ14DQ15 written with bits 8 12 and 1415 from the color-data  
register to columns 14 and 6. Columns 0, 5, and 7 are not written and retain their previous data due to the  
column-mask bits 8, 13, and 15 being 0. DQ13 is not written and retains its previous data due to the  
write-mask-register bit 13 being 0. If the previous data was all 0s, the upper byte would contain the data pattern  
in Figure 15 after the 8column block-write operation shown in the example.  
0 1 1 1 1 0 1 0  
DQ15  
0 1 1 1 1 0 1 0  
DQ14  
0 0 0 0 0 0 0 0  
DQ13  
0 0 0 0 0 0 0 0  
DQ12  
0 0 0 0 0 0 0 0  
Upper Byte  
DQ11  
0 0 0 0 0 0 0 0  
DQ10  
0 1 1 1 1 0 1 0  
DQ9  
0 1 1 1 1 0 1 0  
DQ8  
Columns 0 1 2 3 4 5 6 7  
Figure 15. Example of Upper Byte After 8-Column Block-Write Operation  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
load color register  
The load-color-register cycle is performed using normal DRAM write-cycle timing except that DSF is held high  
on the falling edges of RAS and CAS. The color register is loaded from pins DQ0 DQ15, which are latched  
on either the first falling edge of WEx or the falling edge of CAS, whichever occurs later. If only one WEx is low,  
only the corresponding byte of the color register is loaded. When the color register is loaded, it retains data until  
power is lost or until another load-color-register cycle is performed (see Figure 16 and Figure 17).  
Load-Color-Register Cycle  
Block-Write Cycle  
(no write mask)  
Block-Write Cycle  
(nonpersistent write-per-bit)  
RAS  
CAS  
A0A8  
WEx  
1
2
3
2
3
TRG  
DSF  
DQ0DQ15  
4
6
5
6
Legend:  
1. Refresh address: A0A8 are latched on the falling edge of RAS.  
2. Row address: A0A8 are latched on the falling edge of RAS.  
3. Block address A2A8 (TMS5516x) or A3A8 (TMS5517x) are latched on the falling edge of CAS.  
4. Color data: DQ0DQ15 are latched on the falling edge CAS or the first falling edge of WEx, whichever occurs first.  
5. Write-mask data: DQ0DQ15 are latched on the falling edge RAS.  
6. Column-mask data: DQ0DQ15 are latched on the falling edge CAS or the first falling edge of WEx, whichever occurs first.  
= dont care  
Figure 16. Example of Block Writes  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
load color register (continued)  
Load-Mask-Register Cycle  
Load-Color-Register Cycle  
Persistent Write-Per-Bit  
Block-Write Cycle  
RAS  
CAS  
A0A8  
WEx  
1
1
2
3
TRG  
DSF  
DQ0DQ15  
5
4
6
Legend:  
1. Refresh address: A0A8 are latched on the falling edge of RAS.  
2. Row address: A0A8 are latched on the falling edge of RAS.  
3. Block address A2A8 (TMS5516x) or A3A8 (TMS5517x) are latched on the falling edge of CAS.  
4. Color data: DQ0DQ15 are latched on the falling edge CAS or the first falling edge of WEx, whichever occurs first.  
5. Write-mask data: DQ0DQ15 are latched on the falling edge RAS.  
6. Column-mask data: DQ0DQ15 are latched on the falling edge CAS or the first falling edge of WEx, whichever occurs first.  
= dont care  
Figure 17. Example of a Persistent Block Write  
DRAM-to-SAM transfer operation  
During the DRAM-to-SAM transfer operation, one half of a row (256 columns) in the DRAM array is selected  
to be transferred to the 256-bit serial-data register. The transfer operation is invoked by bringing TRG low and  
holding WEx high on the falling edge of RAS. The state of DSF, which is latched on the falling edge of RAS,  
determines whether the full-register-transfer operation or the split-register-transfer operation is performed.  
Table 5. SAM Function Table  
CAS  
FALL  
RAS FALL  
ADDRESS  
DQ0 DQ15  
MNE  
CODE  
FUNCTION  
CAS  
WEx  
CAS  
H
TRG WEx  
DSF  
L
DSF  
RAS  
CAS  
RAS  
Row  
Addr  
Tap  
Point  
Full-register-transfer read  
Split-register-transfer read  
L
L
H
H
X
X
X
X
X
RT  
Row  
Addr  
Tap  
Point  
H
H
X
SRT  
Logic L is selected when either or both WEL and WEU are low.  
dont care  
X
=
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
full-register-transfer read  
A full-register-transfer operation loads data from a selected half of a row in the DRAM into the SAM. TRG is  
brought low and latched at the falling edge of RAS. Nine row-address bits (A0 A8) are also latched at the falling  
edge of RAS to select one of the 512 rows available for the transfer. The nine column-address bits (A0 A8)  
are latched at the falling edge of CAS, where address bit A8 selects which half of the row is transferred. Address  
bits A0 A7 select one of the SAMs 256 available tap points from which the serial data is read out (see  
Figure 18).  
A8 = 0  
A8 = 1  
0
255 256  
511  
512 × 512  
Memory Array  
256-Bit  
Data Register  
0
255  
Figure 18. Full-Register-Transfer Read  
A full-register transfer can be performed in three ways: early load, real-time load (or midline load), or late load.  
Each of these offers the flexibility of controlling the TRG trailing edge in the full-register-transfer cycle  
(see Figure 19).  
Early Load  
Real-Time Load  
Late Load  
RAS  
CAS  
A0A8  
Row  
Tap  
Point  
Row  
Tap  
Point  
Row  
Tap  
Point  
TRG  
WEx  
SC  
Old  
Data  
Tap  
Bit  
Old  
Data  
Old  
Data  
Tap  
Bit  
Old  
Data  
Old  
Data  
Tap  
Bit  
Figure 19. Example of Full-Register-Transfer Read Operations  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
split-register-transfer read  
In split-register-transfer operations, the serial-data register is split into halves. The low half contains bits 0 127,  
and the high half contains bits 128 255 (see Figure 20). While one half is being read out of the SAM port, the  
other half can be loaded from the memory array.  
A8 = 0  
A8 = 1  
0
255 256  
511  
512 × 512  
Memory Array  
256-Bit  
Data Register  
0
255  
Figure 20. Split-Register-Transfer Read  
To invoke a split-register-transfer cycle, DSF is brought high, TRG is brought low, and both are latched at the  
falling edge of RAS (see Figure 21). Nine row-address bits (A0 A8) are also latched at the falling edge of RAS  
to select one of the 512 rows available for the transfer. Eight of the nine column-address bits (A0 A6 and A8)  
are latched at the falling edge of CAS. Column-address bit A8 selects which half of the row is to be transferred.  
Column-addressbit A7isignored, andthesplit-registertransferisinternallycontrolledtoselecttheinactivehalf.  
Column-address bits A0A6 select one of 127 tap points in the specified half of SAM. Locations 127 and 255  
are not valid tap points in split-register-transfer operations. In stop-point mode, stop-point locations are not valid  
tap points in split-register-transfer operations.  
Full XFER  
Split XFER  
A8 = 1  
Split XFER  
A8 = 1  
Split XFER  
RAS  
A8 = 0  
A8 = 0  
0
511  
0
A7 = 0 511  
0
A7 = 1 511  
0
A7 = 0  
A
511  
A
B
A
B
C
A
B
C
D
B
C
D
D
E
DRAM  
SAM  
0
255  
0
255  
B
0
255  
0
255  
A
B
C
C
D
E
SQ  
A7 shown is internally controlled.  
SQ  
SQ  
SQ  
Figure 21. Example of a Split-Register-Transfer Read Operation  
A full-register transfer must precede the first split-register transfer to ensure proper operation. After the  
full-register transfer cycle, the first split-register transfer can follow immediately without any minimum SC clock  
requirement (see Figure 22).  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
split-register-transfer read (continued)  
QSF indicates which half of the register is being accessed during serial-access operation. When QSF is low,  
the serial-address pointer is accessing the lower (least significant) 128 bits of SAM. When QSF is high, the  
pointer is accessing the higher (most significant) 128 bits of SAM (see Figure 23). QSF changes state upon  
completing a full-register-transfer read cycle. The tap point loaded during the current transfer cycle determines  
the state of QSF. QSF also changes state when a boundary between two register halves is reached.  
Full-Register-Transfer Read  
With Tap Point N  
Split-Register-  
Transfer Read  
RAS  
CAS  
TRG  
DSF  
SC  
Tap  
Point N  
t
d(CLQSF)  
t
d(GHQSF)  
QSF  
NOTE A: See timing requirements over recommended ranges of supply voltage and operating free-air  
temperaturetable.  
Figure 22. Example of a Split-Register-Transfer Read After a Full-Register-Transfer Read  
Split-Register-  
Transfer Read  
With Tap Point N  
Split-Register-  
Transfer Read  
RAS  
CAS  
TRG  
DSF  
t
d(MSRL)  
t
d(RHMS)  
SC  
127  
Tap  
or 255  
Point N  
t
d(SCQSF)  
QSF  
NOTE A: See timing requirements over recommended ranges of supply voltage and operating free-air  
temperaturetable.  
Figure 23. Example of Successive Split-Register-Transfer Read Operations  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
serial-read operation  
The serial-read operation can be performed through the SAM port simultaneously and asynchronously with  
DRAM operations except during transfer operations. Serial data is accessed from the SAM at the rising edge  
of serial clock SC. SE low enables the outputs. SE high disables the outputs. Holding SE high does not disable  
SC. The rising edge of SC automatically increments the internal serial-address counter regardless of the state  
of SE. In full-register-transfer operations, the counter proceeds sequentially to the most significant bit (bit 255),  
and then wraps around to the least significant bit (bit 0), as shown in Figure 24.  
0
1
2
Tap  
254  
255  
Figure 24. Serial-Pointer Direction for Serial Read  
In split-register-transfer operations, serial data can be read out from the active half of SAM by clocking SC  
starting at the tap point loaded by the preceding split-register-transfer cycle. The serial pointer then proceeds  
sequentially to the most significant bit of the half, bit 127 or bit 255. If there is a split-register-transfer read to  
the inactive half during this period, the serial pointer points next to the tap point location loaded by that  
split-register-transfer (see Figure 25).  
0
Tap  
126  
127  
128  
Tap  
254  
255  
Figure 25. Serial Pointer for Split-Register Read Case I  
If there is no split-register transfer to the inactive half during this period, the serial pointer points to the next bit,  
bit 128 or bit 0, respectively (see Figure 26).  
0
Tap  
126  
127  
128  
Tap  
254  
255  
Figure 26. Serial Pointer for Split-Register Read Case II  
split-register programmable stop point  
The TMS551xx offers programmable stop-point mode for split-register-transfer read operation. This mode can  
be used to improve 2-D drawing performance in a nonscanline data format.  
In split-register-transfer read operations, the stop point is defined as a register location at which the serial output  
stops coming from one half of the SAM and switches to the opposite half of the SAM. While in stop-point mode,  
the SAM is divided into partitions whose length is programmed via row addresses A4A7 in a CBR set (CBRS)  
cycle. The last serial-address location of each partition is the stop point (see Figure 27).  
127  
128  
255  
0
Partition  
Length  
Stop  
Points  
Figure 27. Example of SAM With Partitions  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
split-register programmable stop point (continued)  
Stop-pointmodeisnotactiveuntiltheCBRScycleisinitiated. TheCBRSoperationisperformedbyholdingCAS  
and WEx low and DSF high on the falling edge of RAS. The falling edge of RAS also latches row addresses  
A4A7, which are used to define the SAMs partition length. The other row-address inputs are dont cares.  
Stop-point mode should be initiated immediately after the power-up initialization (see Table 6).  
Table 6. Programming Code for Stop-Point Mode  
MAXIMUM  
PARTITION  
LENGTH  
ADDRESS AT RAS IN CBRS CYCLE  
NUMBER OF  
PARTITIONS  
STOP-POINT LOCATIONS  
A8  
A7  
A6  
A5  
A4  
A0A3  
15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175,  
191, 207, 223, 239, 255  
16  
X
L
L
L
L
X
16  
32  
64  
X
X
L
L
L
L
L
H
H
X
X
8
4
31, 63, 95, 127, 159, 191, 223, 255  
63, 127, 191, 255  
H
128  
(default)  
X
L
H
H
H
X
2
127, 255  
In stop-point mode, the tap point loaded during the split-register-transfer read cycle determines in which SAM  
partition the serial output begins and at which stop point the serial output stops coming from one half of SAM  
and switches to the opposite half of SAM (see Figure 28).  
Full  
Split  
Split  
Split  
RAS  
SC  
Read XFER  
Read XFER  
Read XFER  
Read XFER  
Tap = H1  
Tap = L1  
Tap = H2  
Tap = L2  
H1  
191 L1  
63 H2  
255 L2  
SAM Low Half  
63  
SAM High Half  
191  
0
L1  
L2  
127  
128  
H1  
H2  
255  
Figure 28. Example of Split-Register Operation With Programmable Stop Points  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
256-/512-bit compatibility of split-register programmable stop point  
The stop-point mode is designed to be compatible with both 256-bit SAM and 512-bit SAM devices. After the  
CBRS cycle is initiated, the stop-point mode becomes active. In the stop-point mode, and only in the stop-point  
mode, the column-address bits AY7 and AY8 are internally swapped to assure compatibility (see Figure 29).  
This address-bit swap applies to the column address, and it is effective for all DRAM and transfer cycles. For  
example, during the split-register-transfer cycle with stop point, column-address bit AY8 is a dont care and AY7  
decodes the DRAM row half for the split-register-transfer. During stop-point mode, a CBR (option reset) cycle  
is not recommended because this ends the stop-point mode and restores address bits AY7 and AY8 to their  
normal functions. Consistent use of CBR cycles ensures that the TMS551xx remains in nomal mode.  
NON STOP-POINT MODE  
AY8 = 0 AY8 = 1  
AY7 = 0 AY7 = 1 AY7 = 0 AY7 = 1  
STOP-POINT MODE  
AY8 = 0  
AY8 = 1  
AY7 = 0 AY7 = 1 AY7 = 0 AY7 = 1  
512 × 512  
Memory Array  
512 × 512  
Memory Array  
256-Bit  
Data Register  
256-Bit  
Data Register  
0
255  
0
255  
Figure 29. DRAM-to-SAM Mapping, Nonstop-Point Versus Stop Point  
IMPORTANT: For proper device operation, a stop-point-mode (CBRS) cycle should be initiated immediately  
after the power-up initialization cycles are performed.  
power up  
To achieve proper device operation, an initial pause of 200 µs is required after power up followed by a minimum  
of eight RAS cycles or eight CBR cycles to initialize the DRAM port. A full-register-transfer read cycle and two  
SC cycles are required to initialize the SAM port.  
After initialization, the internal state of the TMS551xx is as follows:  
STATE AFTER INITIALIZATION  
QSF  
Defined by the transfer cycle during initialization  
Write mode  
Nonpersistent mode  
Write-mask register  
Color register  
Serial-register tap point  
SAM port  
Undefined  
Undefined  
Defined by the transfer cycle during initialization  
Output mode  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
TMS551xx  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 V to 7 V  
CC  
Voltage range on any pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 V to 7 V  
Short-circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 W  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 150°C  
stg  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
.
SS  
recommended operating conditions  
TMS551xx  
UNIT  
MIN NOM  
MAX  
V
V
V
V
Supply voltage  
4.5  
5.0  
0
5.5  
V
V
CC  
SS  
IH  
Supply voltage  
High-level input voltage  
Low-level input voltage (see Note 2)  
Operating free-air temperature  
2.4  
1.0  
0
6.5  
0.8  
70  
V
V
IL  
T
A
°C  
NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used for logic-voltage levels only.  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
551xx-60  
551xx-70  
SAM  
PORT  
TEST  
CONDITIONS  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
V
V
High-level output voltage  
Low-level output voltage  
I
I
= 1 mA  
2.4  
2.4  
V
V
OH  
OH  
= 2 mA  
0.4  
0.4  
OL  
OL  
V
= 5.5 V,  
CC  
V = 0 V to 5.8 V,  
I
All other pins  
I
Input current (leakage)  
±10  
±10  
µA  
µA  
I
at 0 V to V  
CC  
= 5.5 V,  
V
V
CC  
= 0 V to V  
I
O
Output current (leakage)  
±10  
±10  
O
CC  
See Note 3  
I
I
I
I
I
Operating current  
Operating current  
Standby current  
See Note 4  
Standby  
Active  
180  
225  
5
165  
205  
5
mA  
mA  
mA  
mA  
mA  
CC1  
t
= MIN  
CC1A  
CC2  
c(SC)  
All clocks = V  
= MIN  
Standby  
Active  
CC  
Standby current  
t
70  
65  
CC2A  
CC3  
c(SC)  
See Note 4  
= MIN,  
RAS only refresh current  
RAS only refresh current  
Standby  
180  
165  
t
c(SC)  
See Note 4  
I
Active  
225  
205  
mA  
mA  
CC3A  
CC4  
551x5  
135  
140  
175  
185  
180  
115  
140  
155  
185  
165  
t
= MIN,  
c(P)  
See Note 5  
I
Page-mode current  
Standby  
551x6  
551x5  
551x6  
t
= MIN,  
c(SC)  
I
Page-mode current  
CBR current  
Active  
mA  
CC4A  
See Note 5  
I
See Note 4  
Standby  
Active  
mA  
mA  
CC5  
t
= MIN,  
c(SC)  
I
CBR current  
225  
205  
CC5A  
See Note 4  
I
I
Data-transfer current  
Data-transfer current  
See Note 4  
Standby  
Active  
200  
250  
180  
225  
mA  
mA  
CC6  
t
= MIN  
CC6A  
c(SC)  
For conditions shown as MIN/MAX, use the appropriate value specified in the timing requirements.  
Measured with outputs open  
NOTES: 3. SE is disabled for SQ output leakage tests.  
4. Measured with one address change while RAS = V ; t  
5. Measured with one address change while CAS = V  
, t  
, t  
= MIN  
IL c(rd) c(W) c(TRD)  
IH  
capacitance over recommended ranges of supply voltage and operating free-air temperature,  
f = 1 MHz (see Note 6)  
PARAMETER  
MIN  
MAX  
UNIT  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
C
C
C
C
C
C
C
C
C
Input capacitance, address inputs  
6
7
7
7
7
7
7
7
9
i(A)  
Input capacitance, address strobe inputs  
Input capacitance, write enable input  
Input capacitance, serial clock  
i(RC)  
i(W)  
i(SC)  
i(SE)  
i(DSF)  
i(TRG)  
o(O)  
Input capacitance, serial enable  
Input capacitance, special function  
Input capacitance, transfer register input  
Output capacitance, SQ and DQ  
Output capacitance, QSF  
o(QSF)  
NOTE 6:  
V
CC  
= 5 V ± 0.5 V, and the bias on pins under test is 0 V.  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
switching characteristics over recommended ranges of supply voltage and operating free-air  
temperature (see Note 7)  
551xx-60  
MIN MAX  
17  
551xx-70  
MIN MAX  
20  
TEST  
CONDITIONS  
ALT.  
SYMBOL  
PARAMETER  
UNIT  
t
t
t
t
t
t
t
Access time, DQx from CAS low  
Access time, DQx from column address  
Access time, DQx from CAS high  
Access time, DQx from TRG low  
Access time, DQx from RAS low  
Access time, SQx from SE low  
Access time, SQx from SC high  
t
t
t
= MAX  
= MAX  
= MAX  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
a(C)  
d(RLCL)  
d(RLCL)  
d(RLCL)  
CAC  
t
30  
35  
15  
60  
12  
15  
35  
40  
20  
70  
15  
20  
a(CA)  
a(CP)  
a(G)  
AA  
t
CPA  
OEA  
RAC  
t
t
t
= MAX  
a(R)  
d(RLCL)  
C
C
= 30 pF  
t
a(SE)  
a(SQ)  
L
L
SEA  
= 30 pF  
= 50 pF  
t
SCA  
Disable time, random output from CAS high  
(see Note 8)  
t
t
t
C
C
C
t
3
3
3
15  
15  
15  
3
3
3
20  
20  
20  
ns  
ns  
ns  
dis(CH)  
dis(G)  
L
L
L
OFF  
Disable time, random output from TRG high  
(see Note 8)  
= 50 pF  
= 50 pF  
t
OEZ  
Disable time, random output from RAS high  
(see Note 8)  
dis(RH)  
t
t
Disable time, serial output from SE high (see Note 8)  
C
C
= 30 pF  
= 30 pF  
t
SEZ  
3
0
10  
15  
3
0
20  
20  
ns  
ns  
dis(SE)  
L
L
Disable time, random output from WEx low  
(see Note 8)  
t
dis(WL)  
WEZ  
For conditions shown as MIN/MAX, use the appropriate value specified in the timing requirements.  
NOTES: 7. Switching times for RAM-port output are measured with a load equivalent to 1 TTL load and 50 pF. Data out reference level:  
/ V = 2 V/0.8 V. SwitchingtimesforSAM-portoutputaremeasuredwithaloadequivalentto1TTLloadand30pF.Serial-data  
V
OH OL  
out reference level: V  
/ V  
= 2 V/0.8 V.  
and t  
OH OL  
, t  
8.  
t
t
, t  
are specified when the output is no longer driven.  
dis(SE)  
dis(CH), dis(RH) dis(G) dis(WL),  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature  
551xx-60  
551xx-70  
ALT.  
SYMBOL  
UNIT  
MIN  
35  
MAX  
MIN  
40  
MAX  
551x5  
551x6  
t
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PC  
PC  
RC  
t
Cycle time, page-mode read, write  
c(P)  
30  
30  
t
t
t
t
t
t
t
Cycle time, read  
t
110  
150  
80  
130  
175  
90  
c(rd)  
Cycle time, read-modify-write  
Cycle time, page-mode read-modify-write  
Cycle time, serial clock (see Note 9)  
Cycle time, transfer read  
Cycle time, write  
t
RMW  
c(rdW)  
c(RDWP)  
c(SC)  
t
PRMW  
t
18  
22  
SCC  
t
110  
110  
10  
130  
130  
10  
c(TRD)  
c(W)  
RC  
t
WC  
Pulse duration, CAS high  
t
CPN  
w(CH)  
551x5  
551x6  
t
10  
10 000  
10 000  
10  
10 000  
10 000  
CAS  
CAS  
t
Pulse duration, CAS low (see Note 10)  
w(CL)  
t
17  
20  
t
t
t
t
t
t
t
t
t
t
Pulse duration, TRG high  
t
20  
20  
w(GH)  
TP  
RP  
Pulse duration, RAS high  
t
40  
50  
w(RH)  
Pulse duration, RAS low (see Note 11)  
Pulse duration, RAS low (page mode)  
Pulse duration, SC high  
t
60  
10 000  
70  
10 000  
w(RL)  
RAS  
t
60 100 000  
70 100 000  
w(RL)P  
w(SCH)  
w(SCL)  
w(TRG)  
w(WL)  
RASP  
t
5
5
8
8
SC  
Pulse duration, SC low  
t
SCP  
Pulse duration, TRG low  
15  
10  
0
20  
10  
0
Pulse duration, WEx low  
t
WP  
Setup time, column address before CAS low  
Setup time, data valid before CAS low, early write  
t
su(CA)  
su(DCL)  
ASC  
DSC  
t
0
0
Setup time, write mask valid before RAS low,  
non-persistent write-per-bit  
t
t
0
0
ns  
su(DQR)  
MS  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Setup time, data valid before first WEx low, late write  
Setup time, row address before RAS low  
Setup time, both WEx high before CAS low, read  
Setup time, DSF before CAS low  
t
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(DWL)  
DSW  
t
su(RA)  
ASR  
RCS  
t
0
0
su(rd)  
t
t
t
0
0
su(SFC)  
su(SFR)  
su(TRG)  
su(WCH)  
su(WCL)  
su(WMR)  
su(WRH)  
h(CHrd)  
h(CLCA)  
h(CLD)  
FSC  
FSR  
THS  
Setup time, DSF before RAS low  
0
0
Setup time, TRG before RAS low  
0
0
Setup time, WEx low before CAS high, write  
Setup time, first WEx low before CAS low, early write  
Setup time, WEx low before RAS low, write-per-bit  
Setup time, WEx low before RAS high, write  
t
15  
0
15  
0
CWL  
WCS  
WSR  
t
t
0
0
t
15  
0
15  
0
RWL  
Hold time, both WEx high after CAS high, read (see Note 12)  
Hold time, column address after CAS low  
t
RCH  
t
10  
15  
4
10  
15  
5
CAH  
Hold time, data valid after CAS low, early write  
Hold time, DQ output after CAS low (TMS551x6)  
t
DH  
t
h(CLQ)  
DHC  
Timing measurements are referenced to V max and V min.  
IL  
IH  
NOTES: 9. Cycle time assumes t = 3 ns.  
t
10. In a read-modify-write cycle, t  
and t  
must be observed. Depending on the users transition times, this can require  
must be observed. Depending on the users transition times, this can require  
d(CLWL)  
su(WCH)  
su(WRH)  
additional CAS low time [t  
11. In a read-modify-write cycle, t  
].  
w(CL)  
and t  
d(RLWL)  
].  
additional RAS low time [t  
w(RL)  
12. Either t  
or t  
must be satisfied for a read cycle.  
h(CHrd)  
h(RHrd)  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature (continued)  
551xx-60  
551xx-70  
ALT.  
SYMBOL  
UNIT  
MIN MAX  
MIN MAX  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Hold time, first WEx low after CAS low, early write  
Hold time, row address after RAS low  
t
10  
10  
10  
0
15  
10  
10  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
h(CLW)  
WCH  
t
h(RA)  
RAH  
Hold time, write mask valid after RAS low, non-persistent write-per-bit  
Hold time, both WEx high after RAS high, read (see Note 12)  
Hold time, column address valid after RAS low (see Note 13)  
Hold time, data valid after RAS low (see Note 13)  
Hold time, WEx low after RAS low, write  
t
MH  
h(RDQ)  
h(RHrd)  
h(RLCA)  
h(RLD)  
h(RLW)  
h(RSF)  
h(RWM)  
h(SFC)  
h(SFR)  
h(SHSQ)  
h(TRG)  
h(WLD)  
h(WLG)  
d(CACH)  
t
RRH  
t
30  
35  
30  
30  
10  
10  
10  
4
30  
35  
35  
35  
10  
10  
10  
5
AR  
t
DHR  
t
WCR  
Hold time, DSF after RAS low  
t
FHR  
Hold time, WEx low after RAS low, write-per-bit  
Hold time, DSF after CAS low  
t
RWH  
t
CFH  
RFH  
SOH  
Hold time, DSF after RAS low  
t
Hold time, SQ after SC high  
t
Hold time, TRG after RAS low  
t
10  
15  
10  
30  
10  
15  
10  
45  
THH  
Hold time, data valid after first WEx low, late write  
Hold time, TRG high after WEx low (see Note 14)  
Delay time, column address valid to CAS going high  
t
DH  
t
OEH  
t
CAL  
ATH  
RAL  
ASD  
Delay time, column address to TRG high in real-time-load and late-load  
full-register transfer  
t
t
t
t
t
20  
30  
25  
50  
20  
35  
25  
60  
ns  
ns  
ns  
ns  
d(CAGH)  
d(CARH)  
d(CASH)  
d(CAWL)  
Delay time, column address valid to RAS high  
t
Delay time, column address to first SC high after TRG high, early-load  
full-register transfer  
t
Delay time, column address valid to first WEx low, read-modify-write  
t
AWD  
t
Delay time, CAS high to RAS low  
t
0
0
ns  
ns  
d(CHRL)  
d(CLGH)  
CRP  
t
Delay time, CAS low to TRG high, read  
17  
20  
Delay time, CAS low to QSF switching, full-register transfer  
(see Note 15)  
t
t
30  
30  
ns  
d(CLQSF)  
CQD  
t
t
Delay time, CAS low to RAS going high  
t
t
17  
0
20  
0
ns  
ns  
d(CLRH)  
RSH  
Delay time, CAS low to RAS low, CBR refresh  
d(CLRL)  
CSR  
Delay time, CAS low to first SC high after TRG high, early-load  
full-register transfer  
t
t
t
20  
15  
20  
15  
ns  
ns  
d(CLSH)  
CSD  
Delay time, CAS low to TRG high, real-time-load and late-load  
full-register transfer  
t
d(CLTH)  
CTH  
t
t
t
t
Delay time, CAS low to first WEx low, read-modify-write (see Note 16)  
Delay time, CAS low to DQ in the low-impedance state  
Delay time, data to CAS low  
t
37  
3
45  
2
ns  
ns  
ns  
ns  
d(CLWL)  
d(CLZ)  
d(DCL)  
d(DGL)  
CWD  
t
CLZ  
t
0
0
DZC  
Delay time, data to TRG low  
t
0
0
DZO  
t
Delay time, TRG high before data applied at DQ  
t
10  
15  
ns  
d(GHD)  
OED  
Timing measurements are referenced to V max and V min.  
IL IH  
NOTES: 12. Either t  
or t  
must be satisfied for a read cycle.  
h(RHrd)  
13. The minimum value is measured when t  
h(CHrd)  
is set to t  
min as a reference.  
d(RLCL)  
d(RLCL)  
14. Output-enable-controlled write. Output remains in the high-impedance state for the entire cycle.  
15. TRG must disable the output buffers prior to applying data to the DQ pins.  
16. Switching times for QSF output are measured with a load equivalent to 1 TTL load and 30 pF, and output reference level is  
/ V = 2 V/0.8 V.  
V
OH OL  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature (continued)  
551xx-60  
551xx-70  
ALT.  
SYMBOL  
UNIT  
MIN  
MAX  
MIN  
MAX  
Delay time, TRG high to QSF switching, full-register transfer  
(see Note 16)  
t
t
25  
25  
ns  
d(GHQSF)  
TQD  
t
t
Delay time, TRG low to RAS high  
t
10  
3
15  
3
ns  
ns  
d(GLRH)  
ROH  
Delay time, TRG low to DQ in the low-impedance state  
t
OELZ  
d(GLZ)  
Delay time, last SC high at boundary (127 or 255) to RAS low,  
split-register transfer  
t
t
t
t
15  
0
20  
0
ns  
ns  
ns  
d(MSRL)  
d(RHCL)  
d(RHMS)  
d(RLCA)  
Delay time, RAS high to CAS low, CBR refresh  
t
RPC  
Delay time, RAS high to last SC high at boundary (127 or 255),  
split-register-transfer  
15  
20  
Delay time, RAS low to column address valid  
t
t
t
15  
60  
53  
10  
20  
30  
15  
70  
60  
10  
20  
35  
ns  
ns  
ns  
ns  
ns  
RAD  
CSH  
CSH  
CHR  
RCD  
551x5  
t
551x6  
Delay time, RAS low to CAS high  
d(RLCH)  
CBR  
t
t
t
t
Delay time, RAS low to CAS low (see Note 17)  
43  
65  
50  
70  
d(RLCL)  
Delay time, RAS low to QSF switching, full-register transfer  
(see Note 16)  
t
ns  
ns  
d(RLQSF)  
RQD  
Delay time, RAS low to first SC high after TRG high,  
early-load full-register transfer  
t
t
65  
70  
d(RLSH)  
RSD  
t
t
Delay time, RAS low to TRG high (see Note 18)  
t
50  
80  
55  
95  
ns  
ns  
d(RLTH)  
RTH  
Delay time, RAS low to first WEx low, read-modify-write  
t
RWD  
d(RLWL)  
Delay time, last SC high at boundary (127 or 255) to QSF switching,  
split-register transfer (see Note 16)  
t
t
20  
25  
ns  
d(SCQSF)  
SQD  
t
t
t
t
t
t
Delay time, SC high to TRG high, full-register transfer  
Delay time, TRG high to RAS high (see Note 18)  
Delay time, TRG high to RAS low (see Note 18)  
Delay time, TRG high to SC high (see Note 18)  
Refresh time interval, memory  
t
5
10  
40  
5
10  
50  
ns  
ns  
ns  
ns  
ms  
ns  
d(SCTR)  
d(THRH)  
d(THRL)  
d(THSC)  
rf(MA)  
TSL  
t
TRD  
t
t
t
TRP  
TSD  
REF  
20  
25  
8
8
Transition time  
t
T
3
50  
3
50  
t
Timing measurements are referenced to V max and V min.  
IL IH  
NOTES: 16. Switching times for QSF output are measured with a load equivalent to 1 TTL load and 30 pF, and output reference level is  
/ V = 2 V/0.8 V.  
V
OH OL  
17. The maximum value is specified only to assure RAS access time.  
18. Real-time-load and late-load full-register transfer  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(rd)  
t
w(RL)  
t
d(RLCH)  
RAS  
t
w(RH)  
t
t
t
d(CLRH)  
t
t
d(RLCL)  
d(CHRL)  
t
w(CL)  
CAS  
t
w(CH)  
t
d(CACH)  
t
d(RLCA)  
t
d(CARH)  
t
h(RA)  
t
h(RLCA)  
t
su(RA)  
t
h(CLCA)  
t
su(CA)  
A0A8  
Row  
Column  
t
h(SFR)  
t
su(SFR)  
DSF  
t
d(CLGH)  
t
su(TRG)  
t
d(GLRH)  
t
t
w(TRG)  
h(TRG)  
TRG  
t
t
h(RHrd)  
su(rd)  
t
h(CHrd)  
WEx  
t
t
dis(CH)  
t
d(GLZ)  
d(DGL)  
Data In  
t
t
a(G)  
dis(G)  
Data Out  
DQ0DQ15  
t
d(CLZ)  
t
a(C)  
t
a(CA)  
t
a(R)  
For TMS551x5, CAS high disables the output regardless of the state of RAS. For TMS551x6, both RAS and CAS must be high to disable the  
output.  
Figure 30. Read-Cycle Timing With CAS-Controlled Output  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(rd)  
t
w(RL)  
d(RLCH)  
t
RAS  
t
w(RH)  
t
t
t
d(CLRH)  
t
d(RLCL)  
t
t
w(CL)  
d(CHRL)  
CAS  
t
w(CH)  
t
d(RLCA)  
t
d(CARH)  
t
h(RA)  
t
h(RLCA)  
t
d(CACH)  
t
su(RA)  
t
h(CLCA)  
t
su(CA)  
A0A8  
Row  
Column  
t
h(SFR)  
t
su(SFR)  
DSF  
t
d(CLGH)  
t
t
t
d(GLRH)  
su(TRG)  
t
h(TRG)  
w(TRG)  
TRG  
t
h(RHrd)  
t
su(rd)  
t
h(CHrd)  
WEx  
t
t
d(GLZ)  
t
dis(G)  
d(DGL)  
Data In  
t
dis(RH)  
t
a(G)  
Data Out  
DQ0DQ15  
t
d(CLZ)  
t
a(C)  
a(CA)  
t
t
a(R)  
For TMS551x5, RAS high does not disable the output. For TMS551x6, both RAS and CAS must be high to disable the output.  
Figure 31. Read-Cycle Timing With RAS-Controlled Output  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
CAS  
t
d(RLCH)  
t
w(RH)  
t
t
t
d(CLRH)  
t
t
t
d(RLCL)  
t
d(CHRL)  
t
d(CHRL)  
t
w(CL)  
t
w(CH)  
t
h(RLCA)  
t
t
h(RA)  
d(CACH)  
t
su(CA)  
t
d(RLCA)  
su(RA)  
t
h(CLCA)  
t
d(CARH)  
t
Row  
Column  
A0A8  
t
su(SFC)  
t
su(SFR)  
t
h(RSF)  
t
t
h(SFC)  
h(SFR)  
DSF  
t
h(TRG)  
t
su(TRG)  
TRG  
t
t
su(WCH)  
t
su(WMR)  
su(WRH)  
t
h(RLW)  
t
t
h(CLW)  
h(RWM)  
t
su(WCL)  
t
w(WL)  
1
2
WEx  
t
su(DQR)  
t
h(CLD)  
t
su(DCL)  
t
h(RDQ)  
t
h(RLD)  
3
DQ0DQ15  
Figure 32. Early-Write-Cycle Timing  
Table 7. Early-Write-Cycle State Table  
STATE  
2
CYCLE  
1
H
L
3
Write operation (nonmasked)  
Dont care  
Valid data  
Valid data  
Valid data  
Write operation with nonpersistent write-per-bit  
Write operation with persistent write-per-bit  
Write mask  
L
Dont care  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
CAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
d(CLRH)  
t
t
d(CHRL)  
d(CHRL)  
t
d(RLCL)  
t
t
t
w(CL)  
t
d(RLCA)  
t
h(RLCA)  
t
w(CH)  
t
su(CA)  
t
h(CLCA)  
t
h(RA)  
t
d(CACH)  
t
su(RA)  
t
d(CARH)  
Row  
Column  
t
A0A8  
t
h(RSF)  
t
su(SFC)  
su(SFR)  
t
t
h(SFC)  
h(SFR)  
DSF  
TRG  
t
su(rd)  
t
su(WRH)  
su(WCH)  
h(CLW)  
t
su(TRG)  
t
t
t
d(GHD)  
t
h(RLW)  
t
su(WMR)  
t
h(WLG)  
t
h(RWM)  
t
w(WL)  
WEx  
1
t
su(DWL)  
t
su(DQR)  
t
h(WLD)  
t
h(RDQ)  
t
h(RLD)  
2
3
DQ0DQ15  
In late-write operations, DQ0DQ15 are all latched on the first falling edge of WEx. Thus t  
falling edge of WEx.  
and t  
are referenced only to the first  
h(WLD)  
su(DWL)  
Figure 33. Late-Write-Cycle Timing (Output-Enable-Controlled Write)  
Table 8. Late-Write-Cycle State Table  
STATE  
CYCLE  
1
H
L
2
3
Write operation (nonmasked)  
Dont care  
Write mask  
Dont care  
Valid data  
Valid data  
Valid data  
Write operation with nonpersistent write-per-bit  
Write operation with persistent write-per-bit  
L
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(rdW)  
t
w(RL)  
t
d(RLCH)  
RAS  
CAS  
t
t
w(RH)  
d(CHRL)  
t
t
d(CLRH)  
t
d(RLCL)  
d(CHRL)  
t
w(CL)  
t
h(RA)  
t
t
t
su(CA)  
w(CH)  
t
su(RA)  
t
h(CLCA)  
t
h(RLCA)  
t
d(CACH)  
d(RLCA)  
t
d(CARH)  
A0A8  
Row  
t
Column  
t
h(RSF)  
t
h(SFC)  
su(SFR)  
t
t
su(SFC)  
h(SFR)  
DSF  
t
t
su(WCH)  
su(rd)  
t
h(TRG)  
t
su(WRH)  
t
d(CAWL)  
t
w(TRG)  
TRG  
t
h(WLG)  
t
h(RLW)  
t
t
h(CLW)  
su(TRG)  
t
d(CLWL)  
t
t
su(WMR)  
t
d(DCL)  
t
h(RWM)  
t
d(CLGH)  
t
w(WL)  
1
t
a(CA)  
WEx  
t
d(RLWL)  
t
h(WLD)  
t
a(R)  
t
t
d(GHD)  
d(DGL)  
su(DQR)  
t
t
t
a(C)  
h(RDQ)  
su(DWL)  
Valid  
Out  
2
3
DQ0DQ15  
t
t
a(G)  
DQ0DQ15 are all latched on the first falling edge of WEx. Thus t  
dis(G)  
and t  
are referenced only to the first falling edge of WEx.  
su(DWL)  
h(WLD)  
Figure 34. Read-Modify-Write-Cycle Timing  
Table 9. Read-Modify-Write-Cycle State Table  
STATE  
2
CYCLE  
1
H
L
3
Write operation (nonmasked)  
Dont care  
Write mask  
Dont care  
Valid data  
Valid data  
Valid data  
Write operation with nonpersistent write-per-bit  
Write operation with persistent write-per-bit  
L
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
CAS  
t
w(RH)  
t
t
d(RLCH)  
t
t
t
t
d(CLRH)  
t
d(RLCL)  
t
t
d(CHRL)  
t
d(CHRL)  
t
w(CL)  
t
t
w(CH)  
d(RLCA)  
h(CLCA)  
t
h(RLCA)  
t
d(RLCA)  
su(RA)  
t
t
d(CARH)  
d(CACH)  
t
t
h(RA)  
t
su(CA)  
Row  
A0A8  
t
d(RSF)  
Block Address  
t
su(SFR)  
t
su(SFC)  
t
h(SFR)  
t
h(SFC)  
DSF  
TRG  
t
h(TRG)  
t
su(TRG)  
t
su(WCH)  
t
h(RWM)  
t
su(WRH)  
t
su(WMR)  
t
su(WCL)  
t
h(CLW)  
t
h(RLW)  
t
w(WL)  
1
2
WEx  
t
h(RLD)  
t
su(DCL)  
t
su(DQR)  
t
h(CLD)  
t
h(RDQ)  
3
DQ0DQ15  
For 4-column block write (TMS5516x), block address is A2A8; for 8-column block write (TMS5517x), block address is A3A8.  
Figure 35. Block-Write-Cycle Timing (Early Write)  
Table 10. Block-Write-Cycle State Table  
STATE  
CYCLE  
1
H
L
2
3
Block-write operation (nonmasked)  
Dont care  
Write mask  
Dont care  
Column mask  
Column mask  
Column mask  
Block-write operation with nonpersistent write-per-bit  
Block-write operation with persistent write-per-bit  
L
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
CAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
t
t
d(CLRH)  
t
d(RLCL)  
t
d(CHRL)  
t
d(CHRL)  
t
w(CL)  
t
w(CH)  
t
d(RLCA)  
t
t
d(CACH)  
d(CARH)  
t
h(RLCA)  
t
h(RA)  
t
su(CA)  
t
t
su(RA)  
h(CLCA)  
Row  
A0A8  
t
h(RSF)  
Block Address  
t
t
su(SFR)  
t
su(SFC)  
t
h(SFR)  
h(SFC)  
DSF  
TRG  
t
su(TRG)  
t
h(CLW)  
t
su(WCH)  
t
d(GHD)  
t
h(RLW)  
t
su(WRH)  
t
su(WMR)  
t
h(WLG)  
t
h(RWM)  
t
w(WL)  
1
WEx  
t
su(DQR)  
t
t
su(DWL)  
h(RDQ)  
t
h(WLD)  
t
h(RLD)  
3
2
DQ0DQ15  
For 4-column block write (TMS5516x), block address is A2A8; for 8-column block write (TMS5517x), block address is A3A8.  
In late-write operations, DQ0DQ15 are all latched on the first falling edge of WEx. Thus t  
and t  
are referenced only to the first  
su(DWL)  
h(WLD)  
falling edge of WEx.  
Figure 36. Block-Write-Cycle Timing (Late Write)  
Table 11. Block-Write-Cycle State Table  
STATE  
CYCLE  
1
2
3
Block-write operation (nonmasked)  
H
Dont care  
Column mask  
Column mask  
Column mask  
Block-write operation with nonpersistent write-per-bit  
Block-write operation with persistent write-per-bit  
L
L
Write mask  
Dont care  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
t
w(RH)  
t
d(RLCH)  
t
t
t
d(CLRH)  
t
t
d(RLCL)  
t
d(CHRL)  
t
d(CHRL)  
t
w(CL)  
CAS  
t
w(CH)  
t
h(RA)  
Refresh Row  
t
su(RA)  
A0A8  
t
su(SFC)  
t
su(SFR)  
t
h(RSF)  
t
t
h(SFC)  
h(SFR)  
DSF  
t
h(TRG)  
t
su(TRG)  
TRG  
t
t
su(WCH)  
su(WMR)  
t
su(WRH)  
t
h(RLW)  
t
h(CLW)  
t
h(RWM)  
t
su(WCL)  
t
w(WL)  
WEx  
t
su(DCL)  
t
h(CLD)  
t
h(RLD)  
Write Mask  
DQ0DQ15  
Figure 37. Load-Write-Mask-Register-Cycle Timing (Early-Write Load)  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
d(CLRH)  
t
t
d(CHRL)  
d(CHRL)  
t
d(RLCL)  
t
t
t
w(CL)  
CAS  
t
w(CH)  
t
h(RA)  
Refresh Row  
t
su(RA)  
A0A8  
t
h(RSF)  
t
su(SFR)  
t
t
su(SFC)  
t
h(SFR)  
h(SFC)  
DSF  
TRG  
t
su(WRH)  
t
t
su(WCH)  
su(TRG)  
t
h(CLW)  
t
d(GHD)  
t
h(RLW)  
t
su(WMR)  
t
h(WLG)  
t
h(RWM)  
t
w(WL)  
WEx  
t
su(DWL)  
t
h(WLD)  
t
h(RLD)  
Write Mask  
DQ0DQ15  
In late-write operations, DQ0DQ15 are all latched on the first falling edge of WEx. Thus t  
falling edge of WEx.  
and t  
are referenced only to the first  
h(WLD)  
su(DWL)  
Figure 38. Load-Write-Mask-Register-Cycle Timing (Late-Write Load)  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
t
t
d(CLRH)  
t
d(RLCL)  
t
d(CHRL)  
t
d(CHRL)  
t
w(CL)  
CAS  
t
h(RA)  
t
w(CH)  
t
su(RA)  
Refresh Row  
A0A8  
t
h(SFC)  
t
h(RSF)  
t
t
su(SFR)  
su(TRG)  
t
su(SFC)  
t
h(SFR)  
DSF  
TRG  
t
h(TRG)  
t
su(WCH)  
t
su(WMR)  
t
su(WRH)  
t
h(RLW)  
t
t
h(RWM)  
h(CLW)  
t
su(WCL)  
WEx  
t
t
w(WL)  
t
su(DCL)  
h(CLD)  
t
h(RLD)  
DQ0–  
DQ15  
Valid Color Input  
Figure 39. Load-Color-Register-Cycle Timing (Early-Write Load)  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
t
t
d(CLRH)  
t
t
d(RLCL)  
d(CHRL)  
t
d(CHRL)  
t
w(CL)  
CAS  
t
t
h(RSF)  
w(CH)  
t
h(RA)  
su(RA)  
Refresh Row  
t
A0A8  
t
t
h(SFC)  
su(SFR)  
t
su(SFC)  
t
h(SFR)  
DSF  
TRG  
t
su(TRG)  
t
h(CLW)  
t
su(WRH)  
t
su(WCH)  
t
d(GHD)  
t
h(RLW)  
t
su(WMR)  
t
h(WLG)  
t
w(WL)  
WEx  
t
su(DWL)  
t
h(WLD)  
t
h(RLD)  
DQ0–  
DQ15  
Valid Color Input  
In late-write operations, DQ0DQ15 are all latched on the first falling edge of WEx. Thus t  
falling edge of WEx.  
and t  
are referenced only to the first  
h(WLD)  
su(DWL)  
Figure 40. Load-Color-Register-Cycle Timing (Late-Write Load)  
49  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
w(RH)  
t
w(RL)P  
RAS  
CAS  
t
t
d(CLRH)  
d(RLCL)  
t
t
t
d(CHRL)  
w(CH)  
t
t
t
w(CL)  
t
d(RLCA)  
t
d(RLCH)  
t
c(P)  
t
su(RA)  
t
t
su(CA)  
d(CACH)  
t
h(CLCA)  
h(RA)  
t
d(CARH)  
t
h(RLCA)  
h(SFR)  
Row  
Column  
Column  
A0A8  
t
t
d(CLGH)  
t
su(SFR)  
DSF  
t
h(TRG)  
t
su(TRG)  
TRG  
WEx  
t
su(WMR)  
t
t
h(RHrd)  
su(rd)  
t
a(C)  
t
a(CA)  
t
d(DGL)  
Data In  
t
t
a(CA)  
a(G)  
t
t
t
dis(G)  
a(R)  
a(CP)  
DQ0–  
DQ15  
Data Out  
Data Out  
t
t
dis(CH)  
d(DCL)  
NOTE A: A write cycle or a read-modify-write cycle can be mixed with the read cycles as long as the write and read-modify-write timing  
specifications are not violated and the proper state of DSF is latched on the falling edge of RAS and CAS to select the desired write  
mode (normal, block write, etc.).  
Figure 41. Enhanced-Page-Mode Read-Cycle Timing (TMS551x5)  
50  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
w(RH)  
t
w(RL)P  
RAS  
CAS  
t
t
d(CLRH)  
d(RLCL)  
t
t
t
w(CH)  
t
d(CHRL)  
t
t
w(CL)  
t
d(RLCA)  
t
d(RLCH)  
t
c(P)  
t
su(RA)  
t
t
su(CA)  
d(CACH)  
t
h(CLCA)  
h(RA)  
t
d(CARH)  
t
h(RLCA)  
h(SFR)  
Row  
Column  
Column  
A0A8  
t
t
d(CLGH)  
t
su(SFR)  
DSF  
t
h(TRG)  
t
su(TRG)  
TRG  
WEx  
t
su(WMR)  
t
t
h(RHrd)  
t
su(rd)  
t
a(C)  
t
t
dis(WL)  
h(CLQ)  
t
a(CA)  
t
d(DGL)  
Data In  
t
t
a(CA)  
a(G)  
dis(RH)  
t
t
t
a(R)  
dis(G)  
a(CP)  
DQ0–  
DQ15  
Data Out  
Data Out  
t
d(DCL)  
NOTE A: A write cycle or a read-modify-write cycle can be mixed with the read cycles as long as the write- and read-modify-write timing  
specifications are not violated and the proper state of DSF is latched on the falling edge of RAS and CAS to select the desired write  
mode (normal, block write, etc.).  
Figure 42. Extended-Data-Output Read-Cycle Timing (TMS551x6)  
51  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
w(RL)P  
RAS  
t
t
t
d(RLCH)  
c(P)  
w(RH)  
t
d(RLCL)  
t
t
d(CLRH)  
w(CH)  
t
t
t
d(CHRL)  
t
w(CL)  
d(CHRL)  
CAS  
d(RLCA)  
t
su(CA)  
t
su(RA)  
t
d(CACH)  
t
t
h(RA)  
h(CLCA)  
h(RLCA)  
t
t
d(CARH)  
Row  
Column  
Column  
A0–  
A8  
t
su(SFR)  
t
t
d(RSF)  
t
h(SFC)  
t
h(SFC)  
h(SFR)  
t
t
su(SFC)  
su(SFC)  
1
2
2
DSF  
TRG  
t
su(TRG)  
t
h(TRG)  
See Note A  
t
t
su(WMR)  
su(WCH)  
t
su(WCH)  
t
h(RWM)  
t
su(WRH)  
t
w(WL)  
WEx  
3
t
su(DWL)  
t
t
su(DQR)  
t
t
t
h(CLD)  
su(DCL)  
h(WLD)  
h(RDQ)  
t
h(RLD)  
DQ0–  
DQ15  
4
5
5
DQ0DQ15arelatchedoneitherthefallingedgeofCASorthefirstfallingedgeofWEx,whicheveroccurslater.Inearly-writeoperations,t  
su(DWL)  
andt  
arenotapplicable.Inlate-writeoperations,t  
andt  
arenotapplicable;t  
andt  
arereferencedonlytothe  
h(WLD)  
su(DCL)  
h(CLD)  
su(DWL)  
h(WLD)  
first falling edge of WEx.  
NOTE A: A read cycle or a read-modify-write cycle can be mixed with write cycles as long as read- and read-modify-write timing specifications  
are not violated.  
Figure 43. Enhanced-Page-Mode Write-Cycle Timing  
Table 12. Enhanced-Page-Mode Write-Cycle State Table  
STATE  
CYCLE  
1
L
L
L
2
L
L
L
3
H
L
4
5
Write operation (nonmasked)  
Dont care  
Write mask  
Dont care  
Valid data  
Valid data  
Valid data  
Write operation with nonpersistent write-per-bit  
Write operation with persistent write-per-bit  
L
Load-write-mask register on either the first falling edge of  
WEx or the falling edge of CAS, whichever occurs later.  
H
L
H
Dont care  
Write mask  
52  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
w(RL)P  
RAS  
CAS  
t
w(RH)  
t
d(RLCH)  
t
d(CLRH)  
t
t
t
t
d(CHRL)  
c(RDWP)  
t
t
d(RLCL)  
w(CH)  
d(CHRL)  
t
t
w(CL)  
h(RA)  
t
d(RLCA)  
t
t
d(CARH)  
su(CA)  
t
h(CLCA)  
su(RA)  
t
t
d(CACH)  
h(RLCA)  
Row  
Column  
t
Column  
A0A8  
t
h(SFR)  
su(SFR)  
t
su(SFC)  
t
t
t
h(SFC)  
h(SFC)  
su(SFC)  
1
2
t
2
DSF  
t
su(rd)  
su(WCH)  
d(CLWL)  
d(CAWL)  
t
su(WCH)  
t
t
d(DCL)  
t
t
d(CLGH)  
t
d(RLWL)  
t
t
t
t
h(TRG)  
d(CLGH)  
su(WRH)  
t
su(TRG)  
w(TRG)  
TRG  
WEx  
t
w(TRG)  
t
su(WMR)  
t
t
w(WL)  
h(RWM)  
3
t
a(C)  
t
t
a(CA)  
su(DWL)  
t
t
h(WLD)  
su(DQR)  
t
t
h(WLD)  
t
d(DCL)  
t
d(GHD)  
5
t
su(DWL)  
h(RDQ)  
t
a(CP)  
DQ0DQ15  
4
Valid Out  
5
t
t
Valid Out  
a(G)  
d(DGL)  
t
d(DGL)  
t
t
dis(G)  
d(GHD)  
t
a(R)  
t
a(C)  
NOTE A: A read cycle or a write cycle can be mixed with read-modify-write cycles as long as the read and write timing specifications are not  
violated.  
Figure 44. Enhanced-Page-Mode Read-Modify-Write-Cycle Timing  
Table 13. Enhanced Page-Mode Read-Modify-Write-Cycle State Table  
STATE  
CYCLE  
1
L
L
L
2
L
L
L
3
H
L
4
5
Write operation (nonmasked)  
Dont care  
Write mask  
Dont care  
Valid data  
Valid data  
Valid data  
Write operation with nonpersistent write-per-bit  
Write operation with persistent write-per-bit  
L
Load-write-mask register on either the first falling edge of  
WEx or the falling edge of CAS, whichever occurs later.  
H
L
H
Dont care  
Write mask  
53  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
w(RH)  
t
w(RL)P  
RAS  
CAS  
t
t
d(CLRH)  
d(RLCL)  
t
t
t
w(CH)  
t
d(CHRL)  
t
t
w(CL)  
t
d(RLCA)  
t
d(RLCH)  
t
c(P)  
t
su(RA)  
t
t
su(CA)  
d(CACH)  
t
h(CLCA)  
h(RA)  
t
d(CARH)  
t
h(RLCA)  
h(SFR)  
Row  
Column  
Column  
A0A8  
t
t
d(CLGH)  
t
su(SFR)  
su(TRG)  
DSF  
t
su(WCL)  
t
h(TRG)  
t
t
h(CLW)  
TRG  
WEx  
t
su(WMR)  
t
su(rd)  
t
w(WL)  
t
a(C)  
t
a(CA)  
t
h(CLD)  
t
d(DGL)  
Data In  
t
a(G)  
t
su(DCL)  
t
dis(WL)  
t
a(R)  
DQ0–  
DQ15  
Data In  
Data Out  
t
d(DCL)  
Figure 45. Extended-Data-Output Read-Followed-by-Write-Cycle Timing (TMS551x6)  
54  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
w(RL)P  
RAS  
CAS  
t
t
t
w(RH)  
d(RLCH)  
d(RLCL)  
c(P)  
t
t
d(CLRH)  
t
w(CH)  
w(CL)  
t
d(CHRL)  
t
t
d(CHRL)  
t
d(RLCA)  
t
h(CLCA)  
t
su(CA)  
t
t
d(CACH)  
h(RA)  
t
h(RLCA)  
t
d(CARH)  
t
su(RA)  
Block Address  
Block Address  
Row  
A0A8  
A3A8  
A3A8  
t
h(SFR)  
t
t
h(SFC)  
h(SFC)  
t
t
su(SFC)  
t
su(SFC)  
su(SFR)  
DSF  
t
h(TRG)  
su(TRG)  
t
TRG  
See Note A  
su(WCH)  
t
su(WMR)  
t
su(WCH)  
t
t
w(WL)  
t
t
su(WRH)  
h(RWM)  
WEx  
1
t
su(DWL)  
t
h(CLD)  
t
su(DQR)  
t
h(WLD)  
t
t
h(RDQ)  
su(DCL)  
3
t
h(RLD)  
DQ0–  
DQ15  
2
3
Inlate-writeoperations, TRGmustremainhighthroughouttheentireCAScycletoassureCAScycletimet  
. Inearly-writeoperations, thestate  
c(P)  
of TRG is ignored after the t  
specification is satisfied.  
h(TRG)  
DQ0DQ15arelatchedoneitherthefallingedgeofCASorthefirstfallingedgeofWEx,whicheveroccurslater.Inearly-writeoperations,t  
su(DWL)  
arereferencedonlytothe  
andt  
arenotapplicable.Inlate-writeoperations,t  
andt  
arenotapplicable;t  
andt  
su(DWL) h(WLD)  
h(WLD)  
su(DCL)  
h(CLD)  
first falling edge of WEx.  
NOTE A: A read cycle or a read-modify-write cycle can be mixed with write cycles as long as read- and read-modify-write timing specifications  
are not violated.  
Figure 46. Enhanced-Page-Mode Block-Write-Cycle Timing  
Table 14. Enhanced-Page-Mode Block-Write-Cycle State Table  
STATE  
CYCLE  
1
H
L
2
3
Block-write operation (nonmasked)  
Dont care  
Write mask  
Dont care  
Column mask  
Column mask  
Column mask  
Block-write operation with nonpersistent write-per-bit  
Block-write operation with persistent write-per-bit  
L
55  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(rd)  
t
w(RL)  
RAS  
t
t
w(RH)  
t
t
t
d(RHCL)  
t
d(CHRL)  
d(CHRL)  
CAS  
t
h(RA)  
t
su(RA)  
Row  
A0A8  
DSF  
TRG  
t
h(TRG)  
t
su(TRG)  
WEx  
DQ0–  
DQ15  
Hi-Z  
Figure 47. RAS-Only Refresh-Cycle Timing  
56  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(rd)  
t
w(RH)  
t
w(RL)  
RAS  
CAS  
t
d(RHCL)  
t
t
t
d(CLRL)  
t
d(RLCH)  
t
d(CHRL)  
t
t
t
t
su(RA)  
h(RA)  
1
2
A0A8  
su(SFR)  
h(SFR)  
DSF  
TRG  
t
t
h(RWM)  
su(WMR)  
3
WEx  
Hi-Z  
DQ0DQ15  
Figure 48. CBR-Refresh-Cycle TIming  
Table 15. CBR-Cycle State Table  
STATE  
CYCLE  
1
2
L
3
H
H
L
CBR refresh with option reset  
CBR refresh with no reset (CBRN)  
CBR refresh with stop point set and no reset (CBRS)  
Dont care  
Dont care  
H
H
Stop address  
57  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
Memory Read Cycle  
Refresh Cycle  
Refresh Cycle  
t
c(rd)  
t
c(rd)  
t
c(rd)  
t
w(RH)  
t
w(RH)  
t
t
w(RL)  
w(RL)  
RAS  
CAS  
t
d(CARH)  
t
d(RLCH)  
t
t
d(CHRL)  
t
t
w(CL)  
t
d(RLCA)  
t
su(RA)  
t
su(RA)  
t
h(CLCA)  
t
su(CA)  
t
h(RA)  
t
h(RA)  
t
h(RA)  
t
t
su(RA)  
t
t
su(RA)  
Col  
h(RA)  
Row  
1
1
2
1
2
A0A8  
t
t
su(SFR)  
su(SFR)  
t
su(SFR)  
t
h(SFR)  
t
h(SFR)  
h(SFR)  
DSF  
2
t
h(RHrd)  
t
dis(CH)  
t
su(TRG)  
t
t
h(TRG)  
dis(G)  
t
d(GLRH)  
TRG  
WEx  
t
su(WMR)  
t
t
su(WMR)  
t
su(rd)  
t
h(RWM)  
t
h(RWM)  
t
a(G)  
3
3
3
t
a(C)  
t
a(R)  
DQ0–  
DQ15  
Data Out  
Figure 49. Hidden-Refresh-Cycle Timing  
Table 16. Hidden-Refresh-Cycle State Table  
STATE  
CYCLE  
1
2
L
3
H
H
L
CBR refresh with option reset  
Dont care  
Dont care  
Stop address  
CBR refresh with no reset (CBRN)  
H
H
CBR refresh with stop point set and no option reset (CBRS)  
58  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(TRD)  
t
w(RL)  
t
d(RLCL)  
RAS  
CAS  
t
w(RH)  
t
d(RLCH)  
t
d(CHRL)  
t
d(CARH)  
t
t
w(CL)  
d(RLCA)  
t
h(RA)  
t
su(CA)  
t
h(CLCA)  
t
su(RA)  
t
h(RLCA)  
See Note C  
Tap Point  
A0A8  
Row  
A0A8  
DSF  
t
su(SFR)  
t
h(SFR)  
t
su(TRG)  
t
h(TRG)  
TRG  
t
w(GH)  
t
h(RWM)  
t
t
su(WMR)  
d(CASH)  
WEx  
See Note A  
DQ0–  
DQ15  
Hi-Z  
t
d(SCTR)  
t
d(CLSH)  
t
t
w(SCH)  
w(SCL)  
t
d(RLSH)  
SC  
SQ  
t
w(SCH)  
t
t
c(SC)  
a(SQ)  
t
a(SQ)  
t
t
h(SHSQ)  
Old Data  
h(SHSQ)  
Old Data  
New Data  
t
d(GHQSF)  
Tap Point Bit A7  
QSF  
SE  
t
d(CLQSF)  
H
L
t
d(RLQSF)  
NOTES: A. DQ outputs remain in the high-impedance state for the entire memory-to-data-register-transfer cycle. The  
memory-to-data-register-transfercycle is used to load the data registers in parallel from the memory array. The 256 locations in each  
data register are written into from the 256 corresponding columns of the selected row.  
B. Once data is transferred into the data registers, SAM is in the serial-read mode (that is, SQx is enabled), allowing data to be shifted  
out of the registers. Also, the first bit to read from the data register after TRG has gone high must be activated by a positive transition  
of SC.  
C. A0A7: register tap point; A8: identifies the DRAM half of the row  
D. Early-load operation is defined as t  
) min < t  
) < t  
min.  
d(RLTH)  
h(TRG  
h(TRG  
Figure 50. Full-Register-Transfer Read Timing, Early-Load Operations  
59  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(TRD)  
t
w(RL)  
RAS  
CAS  
t
d(RLCL)  
t
w(RH)  
t
d(RLCH)  
t
d(CHRL)  
t
w(CL)  
t
d(RLCA)  
t
h(RA)  
t
t
su(CA)  
t
su(RA)  
h(RLCA)  
t
See Note C  
h(CLCA)  
Tap Point  
A0A8  
Row  
A0A8  
DSF  
t
t
su(SFR)  
h(SFR)  
t
d(CLTH)  
t
d(THRL)  
d(THRH)  
t
su(TRG)  
t
See Note D  
t
d(CAGH)  
t
d(RLTH)  
TRG  
t
w(GH)  
t
h(RWM)  
t
su(WMR)  
WEx  
t
d(SCTR)  
t
d(THSC)  
See Note A  
See Note B  
DQ0–  
Hi-Z  
DQ15  
t
w(SCH)  
SC  
SQ  
t
a(SQ)  
t
a(SQ)  
t
c(SC)  
t
h(SHSQ)  
t
w(SCL)  
t
h(SHSQ)  
Old Data  
Old Data  
Old Data  
New Data  
t
d(GHQSF)  
QSF  
SE  
Tap Point Bit A7  
t
H
L
d(CLQSF)  
t
d(RLQSF)  
NOTES: A. DQ outputs remain in the high-impedance state for the entire memory-to-data-register-transfer cycle. The memory to data  
register-transfer cycle is used to load the data registers in parallel from the memory array. The 256 locations in each data register  
are written into from the 256 corresponding columns of the selected row.  
B. Once data is transferred into the data registers, SAM is in the serial-read mode (i.e., SQ is enabled), allowing data to be shifted out  
of the registers. Also, the first bit to read from the data register after TRG has gone high must be activated by a positive transition  
of SC.  
C. A0A7: register tap point; A8: identifies the DRAM half of the row  
D. Late-load operation is defined as t  
) < 0 ns.  
d(THRH  
Figure 51. Full-Register-Transfer Read Timing, Real-Time Load Operation/Late-Load Operation  
60  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(TRD)  
t
w(RH)  
t
w(RL)  
t
RAS  
CAS  
d(RLCL)  
t
d(CHRL)  
t
t
w(CH)  
d(RLCH)  
t
t
d(RLCA)  
w(CL)  
t
su(CA)  
t
h(RA)  
t
t
h(CLCA)  
su(RA)  
A0A8  
Tap Point A0A8  
Row  
t
See Note A  
su(TRG)  
t
h(TRG)  
TRG  
DSF  
t
h(SFR)  
t
su(SFR)  
t
h(RWM)  
t
su(WMR)  
WEx  
DQ0–  
DQ15  
Hi-Z  
t
d(MSRL)  
t
d(RHMS)  
t
c(SC)  
t
t
c(SC)  
w(SCH)  
t
w(SCL)  
Bit 127  
or 255  
Tap  
Point M  
Bit 255  
or 127  
Tap  
Point N  
SC  
SQ  
t
t
a(SQ)  
t
t
a(SQ)  
t
a(SQ)  
w(SCL)  
h(SHSQ)  
Bit 126 or  
Bit 254  
Bit 127 or  
Bit 255  
Bit 127 or  
Bit 255  
Tap  
Point N  
Tap Point M  
t
t
a(SQ)  
d(SCQSF)  
t
d(SCQSF)  
QSF  
SE  
MSB Old  
New MSB  
V
IL  
NOTE A: A0A6: tap point of the given half; A7: dont care; A8: identifies the DRAM half of the row  
Figure 52. Split-Register-Transfer Read Timing  
61  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
RAS  
TRG  
t
su(TRG)  
t
h(TRG)  
t
c(SC)  
t
t
w(SCH)  
c(SC)  
t
w(SCH)  
t
w(SCH)  
t
w(SCL)  
t
w(SCL)  
SC  
t
a(SQ)  
t
a(SQ)  
t
a(SQ)  
t
t
h(SHSQ)  
h(SHSQ)  
t
h(SHSQ)  
SQ  
SE  
Valid Out  
Valid Out  
Valid Out  
t
a(SE)  
NOTE A: While reading data through the serial-data register, TRG is a dont care, except TRG must be held high when RAS goes low. This is  
to avoid the initiation of a register-data transfer operation.  
Figure 53. Serial-Read Timing (SE = V )  
IL  
62  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
RAS  
TRG  
t
su(TRG)  
t
h(TRG)  
t
c(SC)  
t
c(SC)  
t
w(SCH)  
t
w(SCH)  
t
w(SCH)  
t
w(SCL)  
t
w(SCL)  
SC  
t
a(SQ)  
t
a(SQ)  
t
a(SQ)  
t
h(SHSQ)  
t
a(SE)  
t
h(SHSQ)  
Valid Out  
SQ  
SE  
Valid Out  
Valid Out  
Valid Out  
t
dis(SE)  
NOTE A: While reading data through the serial-data register, TRG is a dont care except TRG must be held high when RAS goes low. This is  
to avoid the initiation of a register-data transfer operation.  
Figure 54. Serial-Read Timing (SE-Controlled Read)  
63  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
RAS  
CAS  
ADDR  
RowTap1  
(low)  
RowTap1  
(high)  
RowTap2  
(low)  
RowTap2  
(high)  
TRG  
DSF  
CASE I  
SC  
Tap1  
(low)  
Bit Tap1  
127 (high)  
Bit  
255  
Tap2  
(low)  
Bit  
127  
QSF  
CASE II  
SC  
Tap1  
(high)  
Tap1  
(low)  
Bit  
127  
Bit  
255  
Tap2  
(low)  
Bit  
127  
QSF  
CASE III  
SC  
Tap1  
(low)  
Bit Tap1  
127 (high)  
Bit  
255  
Tap2  
(low)  
Bit  
127  
QSF  
Split Register to the  
High Half of the  
Data Register  
Split Register to the  
Split Register to the  
High Half of the  
Data Register  
Full-Register-Transfer Read  
Low Half of the  
Data Register  
NOTES: A. In order to achieve proper split-register operation, a full-register-transfer read should be performed before the first  
split-register-transfer cycle. This is necessary to initialize the data register and the starting tap location. First serial access can then  
begin either after the full-register-transfer read cycle (CASE I), during the first split-register-transfer cycle (CASE II), or even after  
the first split-register-transfer cycle (CASE III). There is no minimum requirement of SC clock between the full-register-transfer read  
cycle and the first split-register cycle.  
B. Asplit-register-transferintotheinactivehalfisnotalloweduntilt  
ismet.t  
istheminimumdelaytimebetweentherising  
d(MSRL)  
d(MSRL)  
edge of the serial clock of the last bit (bit 127 or 255) and the falling edge of RAS of the split-register-transfer cycle into the inactive  
half. After the t is met, the split-register-transfer into the inactive half must also satisfy the minimum t requirement.  
d(MSRL)  
d(RHMS)  
t
is the minimum delay time between the rising edge of RAS of the split-register-transfer cycle into the inactive half and the  
d(RHMS)  
rising edge of the serial clock of the last bit (bit 127 or 255).  
Figure 55. Split-Register Operating Sequence  
64  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
MECHANICAL DATA  
DGH (R-PDSO-G64)  
PLASTIC SMALL-OUTLINE PACKAGE  
0,45  
0,25  
M
0,80  
64  
0,12  
33  
12,12 14,50  
11,96 14,00  
0,15 NOM  
1
32  
Gage Plane  
26,42  
26,17  
0,25  
0°5°  
0,70  
0,40  
Seating Plane  
0,10  
2,38 MAX  
0,00 MIN  
4040068/B 10/94  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Plastic body dimensions do not include mold flash or protrusion. Maximum mold protrusion is 0,125.  
65  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TMS55165, TMS55166, TMS55175, TMS55176  
262144 BY 16-BIT MULTIPORT VIDEO RAM  
SMVS463 DECEMBER 1995  
device symbolization  
TI  
-SS  
P
Speed Code (-60, -70)  
Package Code  
TMS57175  
DGH  
LLLL  
W
B
Y
M
Assembly Site Code  
Lot Traceability Code  
Month Code  
Year Code  
Die Revision Code  
Wafer Fab Code  
66  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
Input  
Buffer  
DSF  
1 of 4 Sub-Blocks  
(see next page)  
Refresh  
Counter  
Special-  
Function  
Logic  
Input  
Buffer  
Column  
Buffer  
1 of 4 Sub-Blocks  
(see next page)  
9
16  
DQ0–  
DQ15  
A0A8  
Row  
Buffer  
Output  
Buffer  
SC  
1 of 4 Sub-Blocks  
(see next page)  
Serial-  
Address  
Counter  
Split-  
Register  
Status  
Serial-  
Output  
Buffer  
16  
SQ0SQ15  
SE  
1 of 4 Sub-Blocks  
(see next page)  
RAS  
CAS  
QSF  
Timing  
Generator  
TRG  
WEx  
SE  
67  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
Special-  
Function  
Logic  
Refresh  
Counter  
DSF  
1 of 2 Sub-Blocks  
(see next page)  
Input  
Buffer  
Row  
9
Buffer  
16  
DQ0–  
DQ15  
A0A8  
Output  
Buffer  
Column  
Buffer  
Serial-  
Address  
Counter  
SC  
Split-  
Register  
Status  
1 of 2 Sub-Blocks  
(see next page)  
16  
SQ0SQ15  
QSF  
Serial-  
Output  
Buffer  
SE  
SE  
RAS  
CAS  
TRG  
WEx  
Timing  
Generator  
68  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
MECHANICAL DATA  
DGE (R-PDSO-G64/70)  
PLASTIC SMALL-OUTLINE PACKAGE  
0.013 (0,33)  
0.011 (0,28)  
0.0256 (0,65)  
70  
0.004 (0,10)  
M
36  
0.471 (11,96)  
0.455 (11,56)  
0.404 (10,26)  
0.396 (10,06)  
1
35  
0.006 (0,15) NOM  
0.930 (23,63)  
0.920 (23,36)  
Gage Plane  
0.010 (0,25)  
0°5°  
0.024 (0,60)  
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.047 (1,20) MAX  
0.002 (0,05) MIN  
4040070-5/C 4/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
69  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its products to the specifications applicable at the time of sale in accordance with  
TIsstandardwarranty. TestingandotherqualitycontroltechniquesareutilizedtotheextentTIdeemsnecessary  
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except  
those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customers applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
products or services might be or are used. TIs publication of information regarding any third partys products  
or services does not constitute TIs approval, license, warranty or endorsement thereof.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation  
or reproduction of this information with alteration voids all warranties provided for an associated TI product or  
service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.  
Resale of TIs products or services with statements different from or beyond the parameters stated by TI for  
that product or service voids all express and any implied warranties for the associated TI product or service,  
is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.  
Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2001, Texas Instruments Incorporated  

相关型号:

TMS55166-70DGH

256KX16 VIDEO DRAM, 70ns, PDSO64, SOP-64
ROCHESTER

TMS55166-70DGH

262144 BY 16-BIT MULTIPORT VIDEO RAM
TI

TMS55170

262144 BY 16-BIT MULTIPORT VIDEO RAMS
TI

TMS55170-70DGH

256KX16 VIDEO DRAM, 70ns, PDSO64, PLASTIC, SOP-64
TI

TMS55171

262144 BY 16-BIT MULTIPORT VIDEO RAMS
TI

TMS55171-60DGH

256KX16 VIDEO DRAM, 60ns, PDSO64, PLASTIC, SOP-64
TI

TMS55171-70DGH

256KX16 VIDEO DRAM, 70ns, PDSO64, PLASTIC, SOP-64
TI

TMS55175

262144 BY 16-BIT MULTIPORT VIDEO RAM
TI

TMS55175-60DGH

256KX16 VIDEO DRAM, 60ns, PDSO64, SOP-64
TI

TMS55176

262144 BY 16-BIT MULTIPORT VIDEO RAM
TI

TMS55176-60DGH

256KX16 VIDEO DRAM, 60ns, PDSO64, SOP-64
ROCHESTER

TMS55176-70DGE

256KX16 VIDEO DRAM, 70ns, PDSO64, PLASTIC, SOP-70/64
TI