TMS5701115CZWTQQ1 [TI]

16/32 位 RISC 闪存 MCU,Cortex R4F,通过 Q100 车规认证,Flexray | ZWT | 337 | -40 to 125;
TMS5701115CZWTQQ1
型号: TMS5701115CZWTQQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16/32 位 RISC 闪存 MCU,Cortex R4F,通过 Q100 车规认证,Flexray | ZWT | 337 | -40 to 125

闪存
文件: 总177页 (文件大小:9819K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
TMS570LS1115 16- and 32-Bit RISC Flash Microcontroller  
1 Device Overview  
1.1 Features  
1
• High-Performance Automotive-Grade  
• Enhanced Timing Peripherals for Motor Control  
Microcontroller for Safety-Critical Applications  
– Dual CPUs Running in Lockstep  
– ECC on Flash and RAM Interfaces  
– 7 Enhanced Pulse Width Modulator (ePWM)  
Modules  
– 6 Enhanced Capture (eCAP) Modules  
– Built-In Self-Test (BIST) for CPU and On-chip  
RAMs  
– 2 Enhanced Quadrature Encoder Pulse (eQEP)  
Modules  
– Error Signaling Module With Error Pin  
– Voltage and Clock Monitoring  
• Two Next Generation High-End Timer (N2HET)  
Modules  
• ARM® Cortex®-R4F 32-Bit RISC CPU  
– 1.66 DMIPS/MHz With 8-Stage Pipeline  
– FPU With Single- and Double-Precision  
– 12-Region Memory Protection Unit (MPU)  
– Open Architecture With Third-Party Support  
• Operating Conditions  
– N2HET1: 32 Programmable Channels  
– N2HET2: 18 Programmable Channels  
– 160-Word Instruction RAM Each With Parity  
Protection  
– Each N2HET Includes Hardware Angle  
Generator  
– Dedicated High-End Timer Transfer Unit (HTU)  
for Each N2HET  
– Up to 180-MHz System Clock  
– Core Supply Voltage (VCC): 1.14 to 1.32 V  
– I/O Supply Voltage (VCCIO): 3.0 to 3.6 V  
• Integrated Memory  
• Two 12-Bit Multibuffered Analog-to-Digital  
Converter (MibADC) Modules  
– ADC1: 24 Channels  
– 1MB of Program Flash With ECC  
– 128KB of RAM With ECC  
– 64KB of Flash for Emulated EEPROM With  
ECC  
– ADC2: 16 Channels Shared With ADC1  
– 64 Result Buffers Each With Parity Protection  
• Multiple Communication Interfaces  
– FlexRay Controller With 2 Channels  
• 16-Bit External Memory Interface (EMIF)  
• Common Platform Architecture  
8KB of Message RAM With Parity Protection  
Dedicated FlexRay Transfer Unit (FTU)  
– Consistent Memory Map Across Family  
– Real-Time Interrupt (RTI) Timer (OS Timer)  
– 128-Channel Vectored Interrupt Module (VIM)  
– 2-Channel Cyclic Redundancy Checker (CRC)  
• Direct Memory Access (DMA) Controller  
– 16 Channels and 32 Control Packets  
– Parity Protection for Control Packet RAM  
– DMA Accesses Protected by Dedicated MPU  
• Frequency-Modulated Phase-Locked Loop  
(FMPLL) With Built-In Slip Detector  
• Separate Nonmodulating PLL  
• IEEE 1149.1 JTAG, Boundary Scan and ARM  
CoreSight™ Components  
• Advanced JTAG Security Module (AJSM)  
• Calibration Capabilities  
– Three CAN Controllers (DCANs)  
64 Mailboxes Each With Parity Protection  
Compliant to CAN Protocol Version 2.0A and  
2.0B  
– Inter-Integrated Circuit (I2C)  
– Three Multibuffered Serial Peripheral Interface  
(MibSPI) Modules  
128 Words Each With Parity Protection  
8 Transfer Groups  
– Up to Two Standard Serial Peripheral Interface  
(SPI) Modules  
– Two UART (SCI) Interfaces, One With Local  
Interconnect Network (LIN 2.1) Interface  
Support  
• Packages  
– Parameter Overlay Module (POM)  
• 16 General-Purpose Input/Output (GPIO) Pins  
Capable of Generating Interrupts  
– 144-Pin Quad Flatpack (PGE) [Green]  
– 337-Ball Grid Array (ZWT) [Green]  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
1.2 Applications  
Braking Systems (ABS and ESC)  
Electric Power Steering (EPS)  
HEV and EV Inverter Systems  
Battery Management Systems  
Active Driver Assistance Systems  
Aerospace and Avionics  
Railway Communications  
Off-road Vehicles  
1.3 Description  
The TMS570LS1115 device is a high-performance automotive-grade microcontroller family for safety  
systems. The safety architecture includes dual CPUs in lockstep, CPU and memory BIST logic, ECC on  
both the flash and the data SRAM, parity on peripheral memories, and loopback capability on peripheral  
I/Os.  
The TMS570LS1115 device integrates the ARM Cortex-R4F floating-point CPU which offers an efficient  
1.66 DMIPS/MHz, and has configurations which can run up to 180 MHz providing up to 298 DMIPS. The  
device supports the word-invariant big-endian [BE32] format.  
The TMS570LS1115 device has 1MB of integrated flash and 128KB of data RAM with single-bit error  
correction and double-bit error detection. The flash memory on this device is a nonvolatile, electrically  
erasable and programmable memory, implemented with a 64-bit-wide data bus interface. The flash  
operates on a 3.3-V supply input (same level as I/O supply) for all read, program, and erase operations.  
When in pipeline mode, the flash operates with a system clock frequency of up to 180 MHz. The SRAM  
supports single-cycle read and write accesses in byte, halfword, word, and double-word modes throughout  
the supported frequency range.  
The TMS570LS1115 device features peripherals for real-time control-based applications, including two  
Next Generation High-End Timer (N2HET) timing coprocessors with up to 44 I/O terminals, seven  
Enhanced Pulse Width Modulator (ePWM) modules with up to 14 outputs, six Enhanced Capture (eCAP)  
modules, two Enhanced Quadrature Encoder Pulse (eQEP) modules, and two 12-bit Analog-to-Digital  
Converters (ADCs) supporting up to 24 inputs.  
The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time  
applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer  
micromachine and an attached I/O port. The N2HET can be used for pulse-width-modulated outputs,  
capture or compare inputs, or general-purpose I/O (GIO). The N2HET is especially well suited for  
applications requiring multiple sensor information and drive actuators with complex and accurate time  
pulses. A High-End Timer Transfer Unit (HTU) can perform DMA-type transactions to transfer N2HET data  
to or from main memory. A Memory Protection Unit (MPU) is built into the HTU.  
The ePWM module can generate complex pulse width waveforms with minimal CPU overhead or  
intervention. The ePWM is easy to use and it supports both high-side and low-side PWM and deadband  
generation. With integrated trip zone protection and synchronization with the on-chip MibADC, the ePWM  
module is ideal for digital motor control applications.  
The eCAP module is essential in systems where the accurately timed capture of external events is  
important. The eCAP can also be used to monitor the ePWM outputs or for simple PWM generation when  
the eCAP is not needed for capture applications.  
The eQEP module is used for direct interface with a linear or rotary incremental encoder to get position,  
direction, and speed information from a rotating machine as used in high-performance motion and  
position-control systems.  
2
Device Overview  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
The device has two 12-bit-resolution MibADCs with 24 total inputs and 64 words of parity-protected buffer  
RAM each. The MibADC channels can be converted individually or can be grouped by software for  
sequential conversion sequences. Sixteen inputs are shared between the two MibADCs. Each MibADC  
supports three separate groupings of channels. Each group can be converted once when triggered or  
configured for continuous conversion mode. The MibADC has a 10-bit mode for use when compatibility  
with older devices or faster conversion time is desired. MibADC1 also supports the use of external analog  
multiplexers.  
The device has multiple communication interfaces: three MibSPIs, two SPIs, one LIN, one SCI, three  
DCANs, one I2C, and one FlexRay controller with two channels. The SPI provides a convenient method of  
serial high-speed communications between similar shift-register type devices. The LIN supports the Local  
Interconnect standard 2.0 and can be used as a UART in full-duplex mode using the standard Non-  
Return-to-Zero (NRZ) format. The DCAN supports the CAN 2.0 (A and B) protocol standard and uses a  
serial, multimaster communication protocol that efficiently supports distributed real-time control with robust  
communication rates of up to 1 Mbps. The DCAN is ideal for systems operating in noisy and harsh  
environments (for example, automotive and industrial fields) that require reliable serial communication or  
multiplexed wiring. The FlexRay controller uses a dual-channel serial, fixed time base multimaster  
communication protocol with communication rates of 10 Mbps per channel. A FlexRay Transfer Unit (FTU)  
enables autonomous transfers of FlexRay data to and from main CPU memory. Transfers are protected  
by a dedicated, built-in MPU.  
The I2C module is a multimaster communication module providing an interface between the  
microcontroller and an I2C-compatible device through the I2C serial bus. The I2C supports speeds of 100  
and 400 Kbps.  
A Frequency-Modulated Phase-Locked Loop (FMPLL) clock module is used to multiply the external  
frequency reference to a higher frequency for internal use. The Global Clock Module (GCM) manages the  
mapping between the available clock sources and the device clock domains.  
The device also has an External Clock Prescaler (ECP) module that when enabled, outputs a continuous  
external clock on the ECLK terminal. The ECLK frequency is a user-programmable ratio of the peripheral  
interface clock (VCLK) frequency. This low-frequency output can be monitored externally as an indicator of  
the device operating frequency.  
The Direct Memory Access (DMA) controller has 16 channels, 32 control packets, and parity protection on  
its memory. An MPU is built into the DMA to protect memory against erroneous transfers.  
The Error Signaling Module (ESM) monitors all device errors and determines whether an interrupt or  
external error pin (ball) is triggered when a fault is detected. The nERROR terminal can be monitored  
externally as an indicator of a fault condition in the microcontroller.  
The External Memory Interface (EMIF) provides a memory extension to asynchronous and synchronous  
memories or other slave devices.  
A Parameter Overlay Module (POM) enhances the calibration capabilities of application code. The POM  
can reroute flash accesses to internal memory or to the EMIF, thus avoiding the reprogramming steps  
necessary for parameter updates in flash.  
With integrated safety features and a wide choice of communication and control peripherals, the  
TMS570LS1115 device is an ideal solution for high-performance real-time control applications with safety-  
critical requirements.  
Table 1-1. Device Information(1)  
PART NUMBER  
TMS570LS1115ZWT  
TMS570LS1115PGE  
PACKAGE  
NFBGA (337)  
LQFP (144)  
BODY SIZE  
16.0 mm × 16.0 mm  
20.0 mm × 20.0 mm  
(1) For more information, see Section 9, Mechanical Packaging and Orderable Information.  
Copyright © 2012–2015, Texas Instruments Incorporated  
Device Overview  
3
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
1.4 Functional Block Diagram  
NOTE  
The block diagram reflects the 337BGA package. Some pins are multiplexed or not available  
in the 144QFP. For details, see the respective terminal functions tables in Section 4.3.  
128kB RAM  
with ECC  
1MB  
Flash  
with  
32K  
32K  
32K  
32K  
ECC  
DMA  
POM  
HTU1  
FTU  
HTU2  
Dual Cortex-R4F  
CPUs in Lockstep  
Switched Central Resource Switched Central Resource  
Main Cross Bar: Arbitration and Prioritization Control  
Peripheral Central Resource Bridge  
CRC  
Switched Central Resource  
Switched Central Resource  
nPORRST  
EMIF_nWAIT  
EMIF_CLK  
SYS  
nRST  
ECLK  
eQEPxA  
IOMM  
PMM  
64 KB Flash  
EMIF_CKE  
eQEP  
1,2  
eQEPxB  
eQEPxS  
eQEPxI  
nERROR  
ESM  
for EEPROM  
Emulation  
with ECC  
EMIF_nCS[4:2]  
EMIF_nCS[0]  
EMIF_ADDR[12:0]  
EMIF_BA[1:0]  
EMIF_DATA[15:0]  
EMIF_nDQM[1:0]  
EMIF_nOE  
CAN1_RX  
CAN1_TX  
CAN2_RX  
CAN2_TX  
DCAN1  
eCAP  
1..6  
EMIF  
eCAP[6:1]  
DCAN2  
DCAN3  
VIM  
CAN3_RX  
nTZ[3:1]  
SYNCO  
SYNCI  
CAN3_TX  
EMIF_nWE  
ePWM  
1..7  
MIBSPI1_CLK  
MIBSPI1_SIMO[1:0]  
MIBSPI1_SOMI[1:0]  
EMIF_nRAS  
ePWMxA  
ePWMxB  
EMIF_nCAS  
MibSPI1  
SPI2  
RTI  
MIBSPI1_nCS[5:0]  
MIBSPI1_nENA  
SPI2_CLK  
SPI2_SIMO  
SPI2_SOMI  
Color Legend for Power Domains  
RAM  
DCC1  
Core/RAM  
Core  
SPI2_nCS[1:0]  
SPI2_nENA  
always on  
# 1  
# 2  
# 3  
# 4  
# 5  
# 1  
MIBSPI3_CLK  
MIBSPI3_SIMO  
MIBSPI3_SOMI  
MIBSPI3_nCS[5:0]  
MIBSPI3_nENA  
MibSPI3  
SPI4  
DCC2  
SPI4_CLK  
SPI4_SIMO  
SPI4_SOMI  
SPI4_nCS0  
SPI4_nENA  
FlexRay  
N2HET1 N2HET2 GIO  
I2C  
MibADC1  
MibADC2  
MIBSPI5_CLK  
MIBSPI5_SIMO[3:0]  
MIBSPI5_SOMI[3:0]  
MIBSPI5_nCS[3:0]  
MibSPI5  
MIBSPI5_nENA  
LIN_RX  
LIN_TX  
LIN  
SCI  
SCI_RX  
SCI_TX  
Figure 1-1. Functional Block Diagram  
4
Device Overview  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Table of Contents  
Device Overview ......................................... 1  
1
6.10 Flash Memory ....................................... 77  
6.11 Tightly Coupled RAM Interface Module ............. 80  
6.12 Parity Protection for Accesses to Peripheral RAMs 80  
6.13 On-Chip SRAM Initialization and Testing ........... 82  
6.14 External Memory Interface (EMIF) .................. 84  
6.15 Vectored Interrupt Manager ......................... 92  
6.16 DMA Controller ...................................... 96  
6.17 Real Time Interrupt Module ......................... 98  
6.18 Error Signaling Module............................. 100  
6.19 Reset / Abort / Error Sources...................... 104  
6.20 Digital Windowed Watchdog....................... 107  
6.21 Debug Subsystem ................................. 108  
1.1 Features .............................................. 1  
1.2 Applications........................................... 2  
1.3 Description............................................ 2  
1.4 Functional Block Diagram ............................ 4  
Revision History ......................................... 6  
Device Comparison ..................................... 8  
Terminal Configuration and Functions ............. 9  
4.1 PGE QFP Package Pinout (144-Pin)................. 9  
2
3
4
4.2  
ZWT BGA Package Ball-Map (337 Ball Grid Array) 10  
4.3 Terminal Functions ................................. 11  
5
Specifications .......................................... 42  
5.1  
Absolute Maximum Ratings Over Operating Free-  
7
Peripheral Information and Electrical  
Air Temperature Range ............................ 42  
5.2 ESD Ratings ........................................ 42  
5.3 Power-On Hours (POH)............................. 42  
Specifications ......................................... 113  
7.1  
Enhanced Translator PWM Modules (ePWM)..... 113  
7.2 Enhanced Capture Modules (eCAP)............... 118  
7.3  
5.4  
Device Recommended Operating Conditions....... 43  
Switching Characteristics Over Recommended  
Enhanced Quadrature Encoder (eQEP) ........... 120  
Multibuffered 12bit Analog-to-Digital Converter.... 121  
5.5  
7.4  
Operating Conditions for Clock Domains ........... 44  
7.5 General-Purpose Input/Output..................... 133  
7.6 Enhanced High-End Timer (N2HET) .............. 134  
7.7 FlexRay Interface .................................. 138  
7.8 Controller Area Network (DCAN) .................. 140  
5.6 Wait States Required ............................... 44  
5.7  
Power Consumption Over Recommended  
Operating Conditions................................ 45  
Input/Output Electrical Characteristics Over  
5.8  
7.9  
Local Interconnect Network Interface (LIN)........ 141  
Recommended Operating Conditions............... 46  
7.10 Serial Communication Interface (SCI) ............. 142  
5.9 Thermal Resistance Characteristics ................ 46  
5.10 Output Buffer Drive Strengths ...................... 47  
5.11 Input Timings........................................ 48  
5.12 Output Timings...................................... 49  
5.13 Low-EMI Output Buffers ............................ 51  
7.11 Inter-Integrated Circuit (I2C) ....................... 143  
7.12 Multibuffered / Standard Serial Peripheral  
Interface............................................ 146  
8
Device and Documentation Support.............. 158  
8.1  
Device and Development-Support Tool  
6
System Information and Electrical  
Specifications ........................................... 52  
Nomenclature ...................................... 158  
8.2 Documentation Support............................ 160  
8.3 Trademarks ........................................ 160  
8.4 Electrostatic Discharge Caution ................... 160  
8.5 Glossary............................................ 160  
8.6 Device Identification................................ 161  
8.7 Module Certifications............................... 163  
6.1 Device Power Domains ............................. 52  
6.2 Voltage Monitor Characteristics ..................... 52  
6.3  
Power Sequencing and Power On Reset ........... 54  
6.4 Warm Reset (nRST)................................. 56  
6.5 ARM Cortex-R4F CPU Information ................. 57  
6.6 Clocks ............................................... 60  
6.7 Clock Monitoring .................................... 68  
6.8 Glitch Filters......................................... 70  
6.9 Device Memory Map ................................ 71  
9
Mechanical Packaging and Orderable  
Information............................................. 170  
9.1 Packaging Information ............................. 170  
Copyright © 2012–2015, Texas Instruments Incorporated  
Table of Contents  
5
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
2 Revision History  
This data manual revision history highlights the technical changes made to the SPNS189A device-specific  
data manual addendum to make it an SPNS189B revision.  
Scope: Applicable updates to the Hercules™ TMS570 MCU device family, specifically relating to the  
TMS570LS1115 devices, which are now in the production data (PD) stage of development have been  
incorporated.  
Changes from September 1, 2013 to February 28, 2015 (from A Revision (September 2013) to B Revision)  
Page  
Updated/Changed section title to "Device Overview" ........................................................................... 1  
Updated/changed the N2HET feature ............................................................................................. 1  
Added Table 1-1, Device Information .............................................................................................. 3  
Added Section 3, Device Comparison ............................................................................................. 8  
Updated/Changed section title to "Terminal Configuration and Functions" ................................................... 9  
Table 4-2 (PGE Enhanced High-End Timer Modules (N2HET)) Updated/Changed N2HET1 time input capture or  
output compare pin description.................................................................................................... 13  
Table 4-2 Updated/Changed N2HET2 time input capture or output compare pin description ............................ 14  
Table 4-5Updated/Changed the EPWM1SYNCI Signal Type from "Output" to "Input" .................................... 15  
Table 4-5Updated/Changed the EPWM1SYNCI pin description from "Output" to "Input"................................. 15  
Table 4-16 (PGE Test and Debug Modules Interface): Updated/Changed TEST pin description........................ 21  
Table 4-22 (ZWT Enhanced High-End Timer Modules (N2HET)) Updated/Changed N2HET1 time input capture  
or output compare pin description ................................................................................................ 25  
Table 4-22 Updated/Changed N2HET2 time input capture or output compare pin description .......................... 26  
Updated/Changed the EPWM1SYNCI pin description from "Output" to "Input" ............................................ 28  
Table 4-34 (External Memory Interface (EMIF)): Global: Deleted EMIF_RNW pin function............................... 33  
Table 4-37 (ZWT Test and Debug Modules Interface): Updated/Changed TEST pin description ....................... 36  
Updated/Changed section title to "Specifications" ............................................................................. 42  
Moved Storage temperature range, Tstg back to Section 5.1, Absolute Maximum Ratings Over Operating Free-  
Air Temperature Range ............................................................................................................ 42  
Added Section 5.2, Handling Ratings (Automotive) ............................................................................ 42  
Added Section 5.3, Power-On-Hours (POH) .................................................................................... 42  
Moved Thermal Data section here. ............................................................................................... 46  
Section 5.9 (Thermal Resistance Characteristics): Updated/Changed title from "Thermal Data" to "Thermal  
Resistance Characteristics"........................................................................................................ 46  
Added ΘJA test conditions and added ΨJT for PGE package.................................................................. 46  
Added ΘJA test conditions and added ΨJT for ZWT package.................................................................. 47  
Clarified impact of SPI2PC9 register on drive strength of SPI2SOMI pin .................................................. 48  
Changed the number of cycles of tv(RST) from 2252 to 2256................................................................... 56  
Figure 6-7 (Device Clock Domains): Added VCLK4 (to ePWM, eQEP, eCAP)............................................. 66  
Section 6.9.1 (Memory Map Diagram): Updated/Changed memory map (Figure 6-10 .................................... 71  
Table 6-22 (Flash Memory Banks and Sectors): Updated/Changed the BANK 0 Sector No. to support 1MB Flash.. 77  
Table 6-22: Added associated footnotes ........................................................................................ 77  
Figure 6-11 (TCRAM Block Diagram): Updated/Changed figure ............................................................. 80  
Added table notes identifying address ranges of ESRAM PBIST groups ................................................... 82  
Updated/Changed N2HET2 RAM ending address from "0xFF57FFFF" to "0xFF45FFFF" in Table 6-26, Memory  
Initialization .......................................................................................................................... 83  
Updated EMIF Timings ............................................................................................................ 84  
Changed maximum addressable size of asynchronous memories from 16MB to 32KB .................................. 84  
Updated/Changed the EMIF address bus signals from "EMIF_ADDR[21:0]" to "EMIF_ADDR[12:0]" for all figures  
in Section 6.14.2, Electrical and Timing Specifications ........................................................................ 84  
Updated/Changed EMIF address from "EMIF_ADDR[21:0]" to "EMIF_ADDR[12:0]"...................................... 84  
Changed EMIF tsu(EMDV-EMOEH) from 30nS to 9nS................................................................................ 86  
Changed EMIF th(EMOEH-EMDIV) from 0.5nS to 0nS ............................................................................... 86  
Changed EMIF tsu(EMOEL-EMWAIT) from 4E+30nS to 4E+9nS .................................................................... 86  
Changed EMIF tsu(EMWEL-EMWAIT) from 4E+30nS to 4E+14nS................................................................... 86  
Changed EMIF tsu(EMCEL-EMOEL) from (RS)*E-5 to (RS)*E-6..................................................................... 87  
Changed EMIF tsu(EMCEL-EMOEL) from -5 to -6 ..................................................................................... 87  
Changed EMIF th(EMOEH-EMCEH) from (RH)*E -4 to (RH)*E -3 ................................................................... 87  
6
Revision History  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Changed EMIF th(EMOEH-EMCEH) from (RH)*E +4 to (RH)*E +5.................................................................. 87  
Changed EMIF th(EMOEH-EMCEH) from -4 to -3...................................................................................... 87  
Changed EMIF th(EMOEH-EMCEH) from +4 to +5 .................................................................................... 87  
Changed EMIF tsu(EMBAV-EMOEL) from (RS)*E-5 to (RS)*E-6..................................................................... 87  
Changed EMIF th(EMOEH-EMBAIV) from (RS)*E-4 to (RS)*E-3..................................................................... 87  
Changed EMIF tsu(EMAV-EMOEL) from (RS)*E-5 to (RS)*E-6...................................................................... 87  
Changed EMIF th(EMOEH-EMAIV) from (RS)*E-4 to (RS)*E-3...................................................................... 87  
Changed EMIF td(EMWAITH-EMOEH) from 3E-3 to 3E+9 ............................................................................ 87  
Changed EMIF td(EMWAITH-EMOEH) from 4E+30 to 4E+20......................................................................... 87  
Changed EMIF tsu(EMDQMV-EMOEL) from (RS)*E-5 to (RS)*E-6................................................................... 87  
Changed EMIF th(EMOEH-EMDQMIV) from (RS)*E-4 to (RS)*E-3................................................................... 87  
Changed EMIF tsu(EMCEL-EMWEL) from (WS)*E -4 to (WS)*E -3 ................................................................. 88  
Changed EMIF tsu(EMCEL-EMWEL) from -4 to -3 ..................................................................................... 88  
Changed EMIF th(EMWEH-EMCEH) from (WS)*E -4 to (WS)*E -3.................................................................. 88  
Changed EMIF th(EMWEH-EMCEH) from -4 to -3 ..................................................................................... 88  
Changed EMIF tsu(EMDQMV-EMWEL) from (WS)*E -4 to (WS)*E -3................................................................ 88  
Changed EMIF th(EMWEH-EMDQMIV) from (WS)*E -4 to (WS)*E -3................................................................ 88  
Changed EMIF tsu(EMBAV-EMWEL) from (WS)*E -4 to (WS)*E -3 ................................................................. 88  
Changed EMIF th(EMWEH-EMBAIV) from (WS)*E -4 to (WS)*E -3 ................................................................. 88  
Changed EMIF tsu(EMAV-EMWEL) from (WS)*E -4 to (WS)*E -3................................................................... 88  
Changed EMIF th(EMWEH-EMAIV) from (WS)*E -4 to (WS)*E -3................................................................... 88  
Changed EMIF td(EMWAITH-EMWEH) from 3E-4 to 3E+11........................................................................... 88  
Changed EMIF td(EMWAITH-EMWEH) from 4E+30 to 4E+24 ........................................................................ 88  
Changed EMIF tsu(EMDV-EMWEL) from (WS)*E -4 to (WS)*E -3 .................................................................. 88  
Changed EMIF th(EMWEH-EMDIV) from (WS)*E -4 to (WS)*E -3................................................................... 88  
Changed EMIF tsu(EMDQMV-EMWEL) from (WS)*E -4 to (WS)*E -3................................................................ 88  
Changed EMIF th(EMWEH-EMDQMIV) from (WS)*E -4 to (WS)*E -3................................................................ 88  
Added JTAG ID for revision C silicon .......................................................................................... 108  
Revised description of ePWM Trip Zone Timing Requirement tw(TZ) ........................................................ 117  
Corrected SPI table note describing Master mode, phase = 0 condition .................................................. 150  
Added Device Identification code for revision C silicon ...................................................................... 161  
Changed address of die identification registers ............................................................................... 161  
Updated/Changed the section title to "Mechanical Packaging and Orderable Information" ............................. 170  
Section 9.1 (Packaging Information): Updated/Changed paragraph........................................................ 170  
Copyright © 2012–2015, Texas Instruments Incorporated  
Revision History  
7
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
3 Device Comparison  
Table 3-1 lists the features of the TMS570LS1115 devices.  
Table 3-1. TMS570LS1115 Device Comparison(1)(2)  
FEATURES  
DEVICES  
TMS570LS3137ZWT(3) TMS570LS1227ZWT(3) TMS570LS1115ZWT TMS570LS1115PGE TMS570LS0714PGE  
Generic Part  
Number  
TMS570LS0714PZ  
TMS570LS0432PZ  
Package  
337 BGA  
337 BGA  
337 BGA  
144 QFP  
144 QFP  
100 QFP  
100 QFP  
CPU  
ARM Cortex-R4F  
ARM Cortex-R4F  
ARM Cortex-R4F  
ARM Cortex-R4F  
ARM Cortex-R4F  
ARM Cortex-R4F  
ARM Cortex-R4  
Frequency (MHz)  
Flash (KB)  
RAM (KB)  
180  
3072  
256  
180  
1280  
192  
180  
1024  
128  
160  
1024  
128  
160  
768  
128  
100  
768  
128  
80  
384  
32  
Data Flash  
[EEPROM] (KB)  
64  
64  
64  
64  
64  
64  
16  
EMAC  
FlexRay  
CAN  
10/100  
2-ch  
3
10/100  
2-ch  
3
2-ch  
3
2-ch  
3
3
2
2
MibADC  
12-bit (Ch)  
2 (24ch)  
2 (24ch)  
2 (24ch)  
2 (24ch)  
2 (24ch)  
2 (16ch)  
1 (16ch)  
N2HET (Ch)  
ePWM Channels  
eCAP Channels  
eQEP Channels  
MibSPI (CS)  
SPI (CS)  
2 (44)  
2 (44)  
2 (44)  
2 (40)  
2 (40)  
2 (21)  
1 (19)  
14  
14  
14  
14  
8
6
6
6
6
4
0
2
2
2
3 (5 + 6 + 1)  
1 (1)  
2
3 (5 + 6 + 4)  
1 (1)  
1
2 (5 + 1)  
1 (1)  
1
3 (6 + 6 + 4)  
2 (2 + 1)  
2 (1 with LIN)  
1
3 (6 + 6 + 4)  
2 (2 + 1)  
2 (1 with LIN)  
1
3 (6 + 6 + 4)  
2 (2 + 1)  
2 (1 with LIN)  
1
1 (4)  
2
SCI (LIN)  
2 (1 with LIN)  
1
2 (1 with LIN)  
1
1 (with LIN)  
1 (with LIN)  
I2C  
144 (with 16 interrupt 101 (with 16 interrupt 101 (with 16 interrupt  
58 (with 4 interrupt  
capable)  
64 (with 10 interrupt  
capable)  
45 (with 9 interrupt  
capable)  
45 (with 8 interrupt  
capable)  
GPIO (INT)(4)  
capable)  
16-bit data  
32-bit  
capable)  
capable)  
EMIF  
16-bit data  
16-bit data  
ETM (Trace)  
RTP/DMM  
YES  
Operating  
Temperature  
-40ºC to 125ºC  
-40ºC to 125ºC  
-40ºC to 125ºC  
-40ºC to 125ºC  
-40ºC to 125ºC  
-40ºC to 125ºC  
-40ºC to 125ºC  
Core Supply (V)  
I/O Supply (V)  
1.14 V – 1.32 V  
3.0 V – 3.6 V  
1.14 V – 1.32 V  
3.0 V – 3.6 V  
1.14 V – 1.32 V  
3.0 V – 3.6 V  
1.14 V – 1.32 V  
3.0 V – 3.6 V  
1.14 V – 1.32 V  
3.0 V – 3.6 V  
1.14 V – 1.32 V  
3.0 V – 3.6 V  
1.14 V – 1.32 V  
3.0 V – 3.6 V  
(1) For additional device variants, see www.ti.com/tms570  
(2) This table reflects the maximum configuration for each peripheral. Some functions are multiplexed and not all pins are available at the  
same time.  
(3) Superset device.  
(4) Total number of pins that can be used as general purpose input or output when not used as part of a peripheral.  
8
Device Comparison  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
4 Terminal Configuration and Functions  
4.1 PGE QFP Package Pinout (144-Pin)  
AD1IN[10] / AD2IN[10]  
AD1IN[1]  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
nTRST  
TDI  
TDO  
TCK  
RTCK  
VCC  
VSS  
nRST  
AD1IN[9] / AD2IN[9]  
VCCAD  
VSSAD  
ADREFLO  
ADREFHI  
AD1IN[21] / AD2IN[5]  
AD1IN[20] / AD2IN[4]  
AD1IN[19] / AD2IN[3]  
AD1IN[18] / AD2IN[2]  
nERROR  
N2HET1[10]  
ECLK  
VCCIO  
VSS  
VSS  
AD1IN[7]  
AD1IN[0]  
AD1IN[17] / AD2IN[1]  
AD1IN[16] / AD2IN[0]  
VCC  
VCC  
N2HET1[12]  
N2HET1[14]  
FRAYRX1  
N2HET1[30]  
CAN2TX  
VSS  
MIBSPI3NCS[0]  
MIBSPI3NENA  
MIBSPI3CLK  
MIBSPI3SIMO  
MIBSPI3SOMI  
VSS  
VCC  
VCC  
VSS  
nPORRST  
VCC  
VSS  
VSS  
VCCIO  
CAN2RX  
MIBSPI1NCS[1]  
LINRX  
LINTX  
FRAYTX1  
VCCP  
VSS  
VCCIO  
VCC  
VSS  
N2HET1[16]  
N2HET1[18]  
N2HET1[20]  
FRAYTXEN1  
VCC  
N2HET1[15]  
MIBSPI1NCS[2]  
N2HET1[13]  
N2HET1[6]  
MIBSPI3NCS[1]  
VSS  
Figure 4-1. PGE QFP Package Pinout (144-Pin)  
Note: Pins can have multiplexed functions. Only the default function is depicted in above diagram.  
Copyright © 2012–2015, Texas Instruments Incorporated  
Terminal Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
4.2 ZWT BGA Package Ball-Map (337 Ball Grid Array)  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
AD1IN[15] AD1IN[22]  
AD1IN[11]  
/
AD2IN[11]  
N2HET1 MIBSPI5 MIBSPI1 MIBSPI1 MIBSPI5 MIBSPI5 N2HET1  
CLK  
AD1IN  
[6]  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VSS  
VSS  
TMS  
NC  
CAN3RX AD1EVT  
/
AD2IN[15] AD2IN[6]  
/
VSSAD  
VSSAD 19  
[10]  
NCS[0]  
SIMO  
NENA  
SIMO[0]  
[28]  
AD1IN[8] AD1IN[14] AD1IN[13]  
N2HET1 MIBSPI1 MIBSPI1 MIBSPI5 MIBSPI5 N2HET1  
NENA  
AD1IN  
[4]  
AD1IN  
[2]  
VSS  
TDI  
TCK  
TDO  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
nTRST  
NC  
CAN3TX  
NC  
/
AD2IN[8] AD2IN[14] AD2IN[13]  
/
/
VSSAD 18  
AD1IN[9]  
[8]  
CLK  
SOMI  
SOMI[0]  
[0]  
AD1IN[10]  
/
AD2IN[10]  
EMIF_  
nWE  
MIBSPI5  
SOMI[1]  
MIBSPI5 MIBSPI5 N2HET1  
[31]  
EMIF_  
nCS[3]  
EMIF_  
nCS[2]  
EMIF_  
nCS[4]  
EMIF_  
nCS[0]  
AD1IN  
[5]  
AD1IN  
[3]  
AD1IN  
[1]  
nRST  
NC  
NC  
NC  
/
AD2IN[9]  
17  
SIMO[3] SIMO[2]  
AD1IN[23] AD1IN[12] AD1IN[19]  
/
AD2IN[7] AD2IN[12] AD2IN[3]  
FRAY  
TXEN1  
EMIF_  
BA[1]  
MIBSPI5  
SIMO[1]  
MIBSPI5 MIBSPI5  
SOMI[3] SOMI[2]  
RTCK  
NC  
NC  
NC  
NC  
NC  
NC  
/
/
ADREFLO VSSAD 16  
ADREFHI VCCAD 15  
AD1IN[21] AD1IN[20]  
FRAY  
RX1  
FRAY  
TX1  
EMIF_  
DATA[0]  
EMIF_  
DATA[1]  
EMIF_  
DATA[2]  
EMIF_  
DATA[3]  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
/
/
AD2IN[5] AD2IN[4]  
AD1IN[18]  
/
AD2IN[2]  
N2HET1  
[26]  
AD1IN  
[7]  
AD1IN  
[0]  
nERROR  
NC  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCC  
VCCIO  
VCCIO  
VCC  
VCC  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCPLL  
VCC  
NC  
NC  
14  
13  
12  
11  
AD1IN[17] AD1IN[16]  
/
AD2IN[1] AD2IN[0]  
N2HET1 N2HET1  
[19]  
EMIF_BA[0]  
EMIF_nOE  
/
NC  
NC  
NC  
[17]  
N2HET1  
[4]  
MIBSPI5  
NCS[3]  
ECLK  
VSS  
VSS  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VSS  
VSS  
VSS  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VSS  
VSS  
NC  
NC  
NC  
NC  
N2HET1 N2HET1  
[14] [30]  
EMIF_  
nDQM[1]  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
EMIF_  
ADDR[12]  
MIBSPI3  
NCS[0]  
EMIF_  
nDQM[0]  
10 CAN1TX CAN1RX  
NC  
GIOB[3] 10  
N2HET1  
[27]  
FRAY EMIF_  
TXEN2 ADDR[11]  
EXTCLKI  
N2  
MIBSPI3 MIBSPI3  
NENA  
EMIF_  
ADDR[5]  
9
8
7
6
5
4
3
2
1
VCC  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
NC  
9
8
7
6
5
4
3
2
1
CLK  
FRAY  
RX2  
FRAY  
TX2  
EMIF_  
ADDR[10]  
MIBSPI3 MIBSPI3  
SIMO  
EMIF_  
ADDR[4]  
EMIF_  
DATA[15]  
VCCP  
VCCIO  
VCCIO  
NC  
SOMI  
EMIF_  
ADDR[9]  
N2HET1  
[9]  
EMIF_  
ADDR[3]  
EMIF_  
DATA[14]  
nPORRST  
LINRX  
LINTX  
NC  
MIBSPI5  
NCS[1]  
EMIF_  
ADDR[8]  
N2HET1 MIBSPI5  
[5] NCS[2]  
EMIF_  
ADDR[2]  
EMIF_  
DATA[13]  
GIOA[4]  
NC  
VCCIO  
VCCIO  
FLTP2  
VCCIO  
FLTP1  
VCC  
VCC  
VCCIO  
VCCIO  
NC  
EMIF_ EMIF_  
ADDR[7] ADDR[1]  
MIBSPI3 N2HET1  
[2]  
EMIF_  
DATA[4]  
EMIF_  
DATA[5]  
EMIF_  
DATA[6]  
EMIF_  
DATA[7]  
EMIF_  
DATA[8]  
EMIF_  
DATA[9]  
EMIF_  
DATA[10]  
EMIF_  
DATA[11]  
EMIF_  
DATA[12]  
GIOA[0] GIOA[5]  
N2HET1 N2HET1  
NC  
NCS[1]  
EMIF_ EMIF_  
ADDR[6] ADDR[0]  
N2HET1 N2HET1  
[21]  
EMIF_  
nCAS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
[16]  
[12]  
[23]  
N2HET1 N2HET1 MIBSPI3  
NCS[3]  
SPI2  
NENA  
N2HET1 MIBSPI1 MIBSPI1  
[11] NCS[1] NCS[2]  
MIBSPI1  
NCS[3]  
EMIF_  
CLK  
EMIF_  
CKE  
N2HET1  
[25]  
SPI2  
NCS[0]  
EMIF_  
nWAIT  
EMIF_  
nRAS  
N2HET1  
[6]  
GIOA[6]  
NC  
NC  
[29]  
[22]  
MIBSPI3  
NCS[2]  
SPI2  
SOMI  
KELVIN_  
GND  
N2HET1 N2HET1 MIBSPI1  
[20]  
N2HET1  
[1]  
VSS  
GIOA[1]  
SPI2 CLK GIOB[2] GIOB[5] CAN2TX GIOB[6] GIOB[1]  
GIOB[0]  
TEST  
VSS  
[13]  
NCS[0]  
SPI2  
SIMO  
N2HET1  
[18]  
N2HET1 N2HET1  
[24]  
N2HET1 N2HET1  
[7]  
VSS  
A
VSS  
B
GIOA[2]  
C
GIOA[3] GIOB[7] GIOB[4] CAN2RX  
OSCIN  
K
OSCOUT GIOA[7]  
NC  
R
VSS  
V
VSS  
W
[15]  
[3]  
D
E
F
G
H
J
L
M
N
P
T
U
Figure 4-2. ZWT Package Pinout. Top View  
Note: Balls can have multiplexed functions. Only the default function is depicted in above diagram.  
10  
Terminal Configuration and Functions  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
4.3 Terminal Functions  
Section 4.3.1 and Section 4.3.2 identify the external signal names, the associated pin/ball numbers along  
with the mechanical package designator, the pin/ball type (Input, Output, IO, Power or Ground), whether  
the pin/ball has any internal pullup/pulldown, whether the pin/ball can be configured as a GPIO, and a  
functional pin/ball description. The first signal name listed is the primary function for that terminal. The  
signal name in Bold is the function being described. Refer to the I/O Multiplexing Module (IOMM) chapter  
of the TMS570LS12x/11x Technical Reference Manual (SPNU515).  
NOTE  
In the Terminal Functions table below, the "Reset Pull State" is the state of the pull applied to  
the terminal while nPORRST is low and immediately after nPORRST goes High. The default  
pull direction may change when software configures the pin for an alternate function. The  
"Pull Type" is the type of pull asserted when the signal name in bold is enabled for the given  
terminal by the IOMM control registers.  
All I/O signals except nRST are configured as inputs while nPORRST is low and  
immediately after nPORRST goes High. While nPORRST is low, the input buffers  
are disabled, and the output buffers are disabled with the default pulls enabled.  
All output-only signals have the output buffer disabled and the default pull enabled  
while nPORRST is low, and are configured as outputs with the pulls disabled  
immediately after nPORRST goes High.  
4.3.1 PGE Package  
4.3.1.1 Multibuffered Analog-to-Digital Converters (MibADC)  
Table 4-1. PGE Multibuffered Analog-to-Digital Converters (MibADC1, MibADC2)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
ADREFHI(1)  
66  
Power  
N/A  
None  
ADC high reference  
supply  
ADREFLO(1)  
VCCAD(1)  
VSSAD(1)  
AD1EVT  
67  
69  
68  
86  
Power  
Power  
Ground  
I/O  
ADC low reference supply  
Operating supply for ADC  
Pull Down Programmable, ADC1 event trigger input,  
20 µA or GPIO  
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/  
55  
I/O  
Pull Up  
Programmable, ADC2 event trigger input,  
EQEP1I/N2HET2_PIN_nDIS  
20 µA  
or GPIO  
AD1IN[0]  
AD1IN[1]  
AD1IN[2]  
AD1IN[3]  
AD1IN[4]  
AD1IN[5]  
AD1IN[6]  
AD1IN[7]  
60  
71  
73  
74  
76  
78  
80  
61  
Input  
N/A  
None  
ADC1 analog input  
(1) The ADREFHI, ADREFLO, VCCAD and VSSAD connections are common for both ADC cores.  
Terminal Configuration and Functions  
Copyright © 2012–2015, Texas Instruments Incorporated  
11  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Table 4-1. PGE Multibuffered Analog-to-Digital Converters (MibADC1, MibADC2) (continued)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
AD1IN[8] / AD2IN[8]  
AD1IN[9] / AD2IN[9]  
AD1IN[10] / AD2IN[10]  
AD1IN[11] / AD2IN[11]  
AD1IN[12] / AD2IN[12]  
AD1IN[13] / AD2IN[13]  
AD1IN[14] / AD2IN[14]  
AD1IN[15] / AD2IN[15]  
AD1IN[16] / AD2IN[0]  
AD1IN[17] / AD2IN[1]  
AD1IN[18] / AD2IN[2]  
AD1IN[19] / AD2IN[3]  
AD1IN[20] / AD2IN[4]  
AD1IN[21] / AD2IN[5]  
AD1IN[22] / AD2IN[6]  
AD1IN[23] / AD2IN[7]  
83  
70  
72  
75  
77  
79  
82  
85  
58  
59  
62  
63  
64  
65  
81  
84  
51  
Input  
N/A  
None  
ADC1/ADC2 shared  
analog inputs  
MIBSPI3SOMI[0]/AWM1_EXT_ENA/ECAP2  
MIBSPI3SIMO[0]/AWM1_EXT_SEL[0]/ECAP3  
MIBSPI3CLK/AWM1_EXT_SEL[1]/EQEP1A  
Output  
Output  
Output  
Pull Up  
Pull Up  
Pull Up  
None  
None  
None  
AWM1 external analog  
mux enable  
52  
53  
AWM1 external analog  
mux select line0  
AWM1 external analog  
mux select line0  
12  
Terminal Configuration and Functions  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
4.3.1.2 Enhanced High-End Timer Modules (N2HET)  
Table 4-2. PGE Enhanced High-End Timer Modules (N2HET)  
Terminal  
Signal  
Type  
Reset Pull  
State  
Pull Type  
Description  
Signal Name  
144  
PGE  
N2HET1[0]/SPI4CLK/EPWM2B  
25  
23  
I/O  
Pull Down  
Programmable,  
20 µA  
N2HET1  
capture  
compare, or GIO.  
time  
or  
input  
output  
N2HET1[1]/SPI4NENA/N2HET2[8]/EQEP2A  
N2HET1[2]/SPI4SIMO[0]/EPWM3A  
N2HET1[3]/SPI4NCS[0]/N2HET2[10]/EQEP2B  
N2HET1[4]/EPWM4B  
30  
Each terminal has  
suppression filter with a  
programmable duration.  
a
24  
36  
N2HET1[5]/SPI4SOMI[0]/N2HET2[12]/EPWM3B  
N2HET1[6]/SCIRX/EPWM5A  
N2HET1[7]/N2HET2[14]/EPWM7B  
N2HET1[8]/MIBSPI1SIMO[1]  
31  
38  
33  
106  
35  
N2HET1[9]/N2HET2[16]/EPWM7A  
N2HET1[10]/nTZ3  
118  
6
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/ EPWM1SYNCO  
N2HET1[12]  
124  
39  
N2HET1[13]/SCITX/EPWM5B  
N2HET1[14]  
125  
41  
N2HET1[15]/MIBSPI1NCS[4]/ECAP1  
N2HET1[16]/EPWM1SYNCI/EPWM1SYNCO  
MIBSPI1NCS[1]/N2HET1[17]/EQEP1S  
N2HET1[18]/EPWM6A  
139  
130  
140  
40  
Pull Up  
Pull Down  
Pull Up  
MIBSPI1NCS[2]/N2HET1[19]  
N2HET1[20]/EPWM6B  
141  
15  
Pull Down  
N2HET1[22]  
MIBSPI1NENA/N2HET1[23]/ECAP4  
N2HET1[24]/MIBSPI1NCS[5]  
MIBSPI3NCS[1]/N2HET1[25]/MDCLK  
N2HET1[26]  
96  
Pull Up  
Pull Down  
Pull Up  
91  
37  
92  
Pull Down  
Pull Up  
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]/nTZ2  
N2HET1[28]  
4
107  
3
Pull Down  
Pull Up  
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]/nTZ1  
N2HET1[30]/EQEP2S  
127  
54  
Pull Down  
Pull Up  
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31]/EQEP1B  
Copyright © 2012–2015, Texas Instruments Incorporated  
Terminal Configuration and Functions  
13  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Table 4-2. PGE Enhanced High-End Timer Modules (N2HET) (continued)  
Terminal  
Signal  
Type  
Reset Pull  
State  
Pull Type  
Description  
Signal Name  
144  
PGE  
GIOA[5]/EXTCLKIN/EPWM1A/N2HET1_PIN_nDIS  
14  
I/O  
I/O  
Pull Down  
Pull Down  
Programmable, Disable selected PWM  
20 µA(1)  
outputs  
GIOA[2]/N2HET2[0]/ EQEP2I  
9
Programmable,  
20 µA  
N2HET2  
capture  
time  
or  
input  
output  
GIOA[6]/N2HET2[4]/EPWM1B  
16  
22  
23  
24  
31  
33  
35  
6
compare, or GPIO  
GIOA[7]/N2HET2[6]/EPWM2A  
Each terminal has  
suppression filter with a  
programmable duration.  
a
N2HET1[1]/SPI4NENA/N2HET2[8]/EQEP2A  
N2HET1[3]/SPI4NCS[0]/N2HET2[10]/EQEP2B  
N2HET1[5]/SPI4SOMI[0]/N2HET2[12]/EPWM3B  
N2HET1[7]/N2HET2[14]/EPWM7B  
N2HET1[9]/N2HET2[16]/EPWM7A  
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/ EPWM1SYNCO  
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/  
EQEP1I/N2HET2_PIN_nDIS  
55  
I/O  
Pull Up  
Programmable, Disable selected PWM  
20 µA(1)  
outputs  
(1) The N2HETx_PIN_nDIS function is always available on this terminal. There is no mux control to select this function. The pull direction is  
controlled by the function which is selected by the output mux control for this terminal.  
4.3.1.3 Enhanced Capture Modules (eCAP)  
Table 4-3. PGE Enhanced Capture Modules (eCAP)(1)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
N2HET1[15]/MIBSPI1NCS[4]/ECAP1  
41  
51  
I/O  
Pull Down  
Pull Up  
Fixed 20 µA  
Pull Up  
Enhanced Capture  
Module 1 I/O  
MIBSPI3SOMI[0]/AWM1_EXT_ENA/ECAP2  
MIBSPI3SIMO[0]/AWM1_EXT_SEL[0]/ECAP3  
MIBSPI1NENA/N2HET1[23]/ECAP4  
Enhanced Capture  
Module 2 I/O  
52  
Enhanced Capture  
Module 3 I/O  
96  
Enhanced Capture  
Module 4 I/O  
MIBSPI5NENA/MIBSPI5SOMI[1]/ ECAP5  
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/ECAP6  
97  
Enhanced Capture  
Module 5 I/O  
105  
Enhanced Capture  
Module 6 I/O  
(1) These signals, when used as inputs, are double-synchronized and then optionally filtered with a 6-cycle VCLK4-based counter.  
14  
Terminal Configuration and Functions  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
4.3.1.4 Enhanced Quadrature Encoder Pulse Modules (eQEP)  
Table 4-4. PGE Enhanced Quadrature Encoder Pulse Modules (eQEP)(1)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
MIBSPI3CLK/AWM1_EXT_SEL[1]/EQEP1A  
53  
54  
55  
Input  
Input  
I/O  
Pull Up  
Fixed 20 µA  
Pull Up  
Enhanced QEP1 Input A  
Enhanced QEP1 Input B  
Enhanced QEP1 Index  
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31]/EQEP1B  
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/  
EQEP1I/N2HET2_PIN_nDIS  
MIBSPI1NCS[1]/N2HET1[17]/EQEP1S  
N2HET1[1]/SPI4NENA/N2HET2[8]/EQEP2A  
N2HET1[3]/SPI4NCS[0]/N2HET2[10]/EQEP2B  
GIOA[2]/N2HET2[0]/ EQEP2I  
130  
23  
24  
9
I/O  
Input  
Input  
I/O  
Enhanced QEP1 Strobe  
Enhanced QEP2 Input A  
Enhanced QEP2 Input B  
Enhanced QEP2 Index  
Enhanced QEP2 Strobe  
Pull Down  
N2HET1[30]/EQEP2S  
127  
I/O  
(1) These signals are double-synchronized and then optionally filtered with a 6-cycle VCLK4-based counter.  
4.3.1.5 Enhanced Pulse-Width Modulator Modules (ePWM)  
Table 4-5. PGE Enhanced Pulse-Width Modulator Modules (ePWM)  
Terminal  
Signal Reset Pull  
Type State  
Pull Type  
Description  
Signal Name  
144  
PGE  
GIOA[5]/EXTCLKIN/EPWM1A/N2HET1_PIN_nDIS  
GIOA[6]/N2HET2[4]/EPWM1B  
14  
16  
6
Output Pull Down  
None  
Enhanced PWM1 Output  
A
Enhanced PWM1 Output  
B
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/EPWM1SYNCO  
N2HET1[16]/EPWM1SYNCI/EPWM1SYNCO  
GIOA[7]/N2HET2[6]/EPWM2A  
External ePWM Sync  
Pulse Output  
139  
22  
25  
30  
31  
32  
36  
38  
39  
140  
141  
35  
33  
Input  
Fixed 20 µA  
Pull Up  
External ePWM Sync  
Pulse Input  
Output  
None  
Enhanced PWM2 Output  
A
N2HET1[0]/SPI4CLK/EPWM2B  
N2HET1[2]/SPI4SIMO[0]/EPWM3A  
N2HET1[5]/SPI4SOMI[0]/N2HET2[12]/EPWM3B  
MIBSPI5NCS[0]/EPWM4A  
Enhanced PWM2 Output  
B
Enhanced PWM3 Output  
A
Enhanced PWM3 Output  
B
Pull Up  
Enhanced PWM4 Output  
A
N2HET1[4]/EPWM4B  
Pull Down  
Enhanced PWM4 Output  
B
N2HET1[6]/SCIRX/EPWM5A  
Enhanced PWM5 Output  
A
N2HET1[13]/SCITX/EPWM5B  
Enhanced PWM5 Output  
B
N2HET1[18]/EPWM6A  
Enhanced PWM6 Output  
A
N2HET1[20]/EPWM6B  
Enhanced PWM6 Output  
B
N2HET1[9]/N2HET2[16]/EPWM7A  
N2HET1[7]/N2HET2[14]/EPWM7B  
Enhanced PWM7 Output  
A
Enhanced PWM7 Output  
B
Copyright © 2012–2015, Texas Instruments Incorporated  
Terminal Configuration and Functions  
15  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Table 4-5. PGE Enhanced Pulse-Width Modulator Modules (ePWM) (continued)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]/nTZ1  
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]/nTZ2  
N2HET1[10]/nTZ3  
3
4
Input  
Pull Up  
Fixed 20 µA  
Pull Up  
Trip Zone Inputs 1, 2 and  
3. These signals are  
either connected  
118  
Pull Down  
asynchronously to the  
ePWMx trip zone inputs,  
or double-synchronized  
with VCLK4, or double-  
synchronized and then  
filtered with a 6-cycle  
VCLK4-based counter  
before connecting to the  
ePWMx trip zone inputs.  
4.3.1.6 General-Purpose Input / Output (GPIO)  
Table 4-6. PGE General-Purpose Input / Output (GPIO)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
GIOA[2]/N2HET2[0]/EQEP2I  
9
14  
I/O  
Pull Down Programmable, General-purpose I/O.  
20 µA  
All GPIO terminals are  
capable of generating  
interrupts to the CPU on  
rising / falling / both  
edges.  
GIOA[5]/EXTCLKIN/EPWM1A/N2HET1_PIN_nDIS  
GIOA[6]/N2HET2[4]/EPWM1B  
16  
GIOA[7]/N2HET2[6]/EPWM2A  
22  
55(1)  
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/  
Pull Up  
EQEP1I/N2HET2_PIN_nDIS  
(1) GIOB[2] cannot output a level on to pin 55. Only the input functionality is supported so that the application can generate an interrupt  
whenever the N2HET2_PIN_nDIS is asserted (driven low). Also, a pull up is enabled on the input. This is not programmable using the  
GIO module control registers.  
4.3.1.7 FlexRay Interface Controller (FlexRay)  
Table 4-7. FlexRay Interface Controller (FlexRay)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
FRAYRX1  
FRAYTX1  
126  
133  
142  
2
Input  
Output  
Output  
Input  
Pull Up  
N/A  
Fixed 100 µA  
Pull Up  
FlexRay data receive  
(channel 1)  
None  
FlexRay data transmit  
(channel 1)  
FRAYTXEN1  
FRAYRX2  
FRAYTX2  
FlexRay transmit enable  
(channel 1)  
Pull Up  
N/A  
Fixed 100 µA  
Pull Up  
FlexRay data receive  
(channel 2)  
1
Output  
Output  
None  
FlexRay data transmit  
(channel 2)  
FRAYTXEN2  
5
FlexRay transmit enable  
(channel 2)  
16  
Terminal Configuration and Functions  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
4.3.1.8 Controller Area Network Controllers (DCAN)  
Table 4-8. PGE Controller Area Network Controllers (DCAN)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
CAN1RX  
CAN1TX  
CAN2RX  
CAN2TX  
CAN3RX  
CAN3TX  
90  
89  
I/O  
Pull Up  
Programmable, CAN1 receive, or GPIO  
20 µA  
CAN1 transmit, or GPIO  
129  
128  
12  
CAN2 receive, or GPIO  
CAN2 transmit, or GPIO  
CAN3 receive, or GPIO  
CAN3 transmit, or GPIO  
13  
4.3.1.9 Local Interconnect Network Interface Module (LIN)  
Table 4-9. PGE Local Interconnect Network Interface Module (LIN)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
LINRX  
LINTX  
131  
132  
I/O  
Pull Up  
Programmable, LIN receive, or GPIO  
20 µA  
LIN transmit, or GPIO  
4.3.1.10 Standard Serial Communication Interface (SCI)  
Table 4-10. PGE Standard Serial Communication Interface (SCI)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
N2HET1[6]/SCIRX/EPWM5A  
N2HET1[13]/SCITX/EPWM5B  
38  
39  
I/O  
Pull Down Programmable, SCI receive, or GPIO  
20 µA  
SCI transmit, or GPIO  
4.3.1.11 Inter-Integrated Circuit Interface Module (I2C)  
Table 4-11. PGE Inter-Integrated Circuit Interface Module (I2C)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]/nTZ2  
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]/nTZ1  
4
3
I/O  
Pull Up  
Programmable, I2C serial data, or GPIO  
20 µA  
I2C serial clock, or GPIO  
Copyright © 2012–2015, Texas Instruments Incorporated  
Terminal Configuration and Functions  
17  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
4.3.1.12 Standard Serial Peripheral Interface (SPI)  
Table 4-12. PGE Standard Serial Peripheral Interface (SPI)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
N2HET1[0]/SPI4CLK/EPWM2B  
25  
24  
23  
30  
I/O  
Pull Down Programmable, SPI4 clock, or GPIO  
20 µA  
N2HET1[3]/SPI4NCS[0]/N2HET2[10]/EQEP2B  
N2HET1[1]/SPI4NENA/N2HET2[8]/EQEP2A  
N2HET1[2]/SPI4SIMO[0]/EPWM3A  
SPI4 chip select, or GPIO  
SPI4 enable, or GPIO  
SPI4 slave-input master-  
output, or GPIO  
N2HET1[5]/SPI4SOMI[0]/N2HET2[12]/EPWM3B  
31  
SPI4 slave-output master-  
input, or GPIO  
4.3.1.13 Multibuffered Serial Peripheral Interface Modules (MibSPI)  
Table 4-13. PGE Multibuffered Serial Peripheral Interface Modules (MibSPI)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
MIBSPI1CLK  
95  
105  
130  
40  
I/O  
Pull Up  
Programmable, MibSPI1 clock, or GPIO  
20 µA  
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/ECAP6  
MIBSPI1NCS[1]/N2HET1[17]/EQEP1S  
MIBSPI1NCS[2]/N2HET1[19]  
MibSPI1 chip select, or  
GPIO  
N2HET1[15]/MIBSPI1NCS[4]/ECAP1  
N2HET1[24]/MIBSPI1NCS[5]  
41  
Pull Down Programmable, MibSPI1 chip select, or  
20 µA GPIO  
91  
MIBSPI1NENA/N2HET1[23]/ECAP4  
MIBSPI1SIMO[0]  
96  
Pull Up  
Programmable, MibSPI1 enable, or GPIO  
20 µA  
93  
MibSPI1 slave-in master-  
out, or GPIO  
N2HET1[8]/MIBSPI1SIMO[1]  
106  
Pull Down Programmable, MibSPI1 slave-in master-  
20 µA out, or GPIO  
MIBSPI1SOMI[0]  
94  
Pull Up  
Programmable, MibSPI1 slave-out master-  
20 µA in, or GPIO  
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/ECAP6  
105  
MIBSPI3CLK/AWM1_EXT_SEL[1]/EQEP1A  
53  
55  
I/O  
Pull Up  
Programmable, MibSPI3 clock, or GPIO  
20 µA  
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/  
MibSPI3 chip select, or  
EQEP1I/N2HET2_PIN_nDIS  
GPIO  
MIBSPI3NCS[1]/N2HET1[25]/MDCLK  
37  
4
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]/nTZ2  
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]/nTZ1  
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/EPWM1SYNCO  
3
6
Pull Down Programmable, MibSPI3 chip select, or  
20 µA GPIO  
MIBSPI3NENA /MIBSPI3NCS[5]/N2HET1[31]/EQEP1B  
54  
Pull Up  
Programmable, MibSPI3 chip select, or  
20 µA  
GPIO  
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31]/EQEP1B  
MIBSPI3SIMO[0]/AWM1_EXT_SEL[0]/ECAP3  
54  
52  
MibSPI3 enable, or GPIO  
MibSPI3 slave-in master-  
out, or GPIO  
MIBSPI3SOMI[0]/AWM1_EXT_ENA/ECAP2  
51  
MibSPI3 slave-out master-  
in, or GPIO  
18  
Terminal Configuration and Functions  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Table 4-13. PGE Multibuffered Serial Peripheral Interface Modules (MibSPI) (continued)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
MIBSPI5CLK  
100  
32  
I/O  
Pull Up  
Programmable, MibSPI5 clock, or GPIO  
20 µA  
MIBSPI5NCS[0]/EPWM4A  
MibSPI5 chip select, or  
GPIO  
MIBSPI5NENA/MIBSPI5SOMI[1]/ ECAP5  
MIBSPI5SIMO[0]/MIBSPI5SOMI[2]  
97  
99  
MibSPI5 enable, or GPIO  
MibSPI5 slave-in master-  
out, or GPIO  
MIBSPI5SOMI[0]  
98  
97  
99  
MibSPI5 slave-out master-  
in, or GPIO  
MIBSPI5NENA/MIBSPI5SOMI[1]/ ECAP5  
MIBSPI5SIMO[0]/MIBSPI5SOMI[2]  
MibSPI5 slave-out master-  
in, or GPIO  
MibSPI5 slave-out master-  
in, or GPIO  
Copyright © 2012–2015, Texas Instruments Incorporated  
Terminal Configuration and Functions  
19  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
4.3.1.14 System Module Interface  
Table 4-14. PGE System Module Interface  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
nPORRST  
46  
Input  
Pull Down  
Fixed 100 µA  
Pull Down  
Power-on reset, cold reset  
External power supply  
monitor circuitry must  
drive nPORRST low when  
any of the supplies to the  
microcontroller fall out of  
the specified range. This  
terminal has a glitch filter.  
See Section 6.8.  
nRST  
116  
I/O  
Pull Up  
Fixed 100 µA  
Pull Up  
System reset, warm reset,  
bidirectional.  
The internal circuitry  
indicates any reset  
condition by driving nRST  
low.  
The external circuitry can  
assert a system reset by  
driving nRST low. To  
ensure that an external  
reset is not arbitrarily  
generated, TI  
recommends that an  
external pull-up resistor is  
connected to this terminal.  
This terminal has a glitch  
filter. See Section 6.8.  
nERROR  
117  
I/O  
Pull Down  
Fixed 20 µA  
Pull Down  
ESM Error Signal  
Indicates error of high  
severity. See  
Section 6.18.  
4.3.1.15 Clock Inputs and Outputs  
Table 4-15. PGE Clock Inputs and Outputs  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
OSCIN  
18  
Input  
N/A  
None  
From external  
crystal/resonator, or  
external clock input  
KELVIN_GND  
OSCOUT  
19  
20  
Input  
Kelvin ground for oscillator  
Output  
To external  
crystal/resonator  
ECLK  
119  
14  
I/O  
Pull Down Programmable, External prescaled clock  
20 µA  
output, or GPIO.  
GIOA[5]/EXTCLKIN/EPWM1A /N2HET1_PIN_nDIS  
Input  
Pull Down  
Fixed 20 µA  
Pull Down  
External clock input #1  
20  
Terminal Configuration and Functions  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
4.3.1.16 Test and Debug Modules Interface  
Table 4-16. PGE Test and Debug Modules Interface  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
TEST  
34  
Input  
Pull Down  
Fixed 100 µA  
Pull Down  
Test enable. This terminal  
must be connected to  
ground directly or via a  
pull-down resistor.  
nTRST  
RTCK  
TCK  
109  
113  
112  
Input  
Output  
Input  
JTAG test hardware reset  
JTAG return test clock  
JTAG test clock  
N/A  
None  
Pull Down  
Fixed 100 µA  
Pull Down  
TDI  
110  
111  
108  
Input  
Output  
Input  
Pull Up  
Fixed 100 µA  
Pull Up  
JTAG test data in  
JTAG test data out  
JTAG test select  
TDO  
TMS  
100 µA  
Pull Down  
None  
Pull Up  
Fixed 100 µA  
Pull Up  
4.3.1.17 Flash Supply and Test Pads  
Table 4-17. PGE Flash Supply and Test Pads  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
VCCP  
134  
3.3V  
Power  
N/A  
None  
None  
Flash pump supply  
FLTP1  
FLTP2  
7
8
-
N/A-  
Flash test pads. These  
terminals are reserved for  
TI use only. For proper  
operation these terminals  
must connect only to a  
test pad or not be  
connected at all [no  
connect (NC)].  
Copyright © 2012–2015, Texas Instruments Incorporated  
Terminal Configuration and Functions  
21  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
4.3.1.18 Supply for Core Logic: 1.2V nominal  
Table 4-18. PGE Supply for Core Logic: 1.2V nominal  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
17  
29  
1.2V  
Power  
N/A  
None  
Core supply  
45  
48  
49  
57  
87  
101  
114  
123  
137  
143  
4.3.1.19 Supply for I/O Cells: 3.3V nominal  
Table 4-19. PGE Supply for I/O Cells: 3.3V nominal  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
10  
26  
3.3V  
Power  
N/A  
None  
Operating supply for I/Os  
42  
104  
120  
136  
22  
Terminal Configuration and Functions  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
4.3.1.20 Ground Reference for All Supplies Except VCCAD  
Table 4-20. PGE Ground Reference for All Supplies Except VCCAD  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
144  
PGE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
11  
21  
Ground  
N/A  
None  
Ground reference  
27  
28  
43  
44  
47  
50  
56  
88  
102  
103  
115  
121  
122  
135  
138  
144  
Copyright © 2012–2015, Texas Instruments Incorporated  
Terminal Configuration and Functions  
23  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
4.3.2 ZWT Package  
4.3.2.1 Multibuffered Analog-to-Digital Converters (MibADC)  
Table 4-21. ZWT Multibuffered Analog-to-Digital Converters (MibADC1, MibADC2)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
ADREFHI(1)  
V15  
Power  
N/A  
None  
ADC high reference  
supply  
ADREFLO(1)  
VCCAD(1)  
VSSAD  
V16  
W15  
V19  
Power  
Power  
Ground  
ADC low reference supply  
Operating supply for ADC  
ADC supply power  
N/A  
None  
VSSAD  
W16  
W18  
W19  
N19  
VSSAD  
VSSAD  
AD1EVT  
I/O  
I/O  
Pull Down Programmable, ADC1 event trigger input,  
20 µA or GPIO  
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/  
V10  
Pull Up  
Programmable, ADC2 event trigger input,  
EQEP1I/N2HET2_PIN_nDIS  
20 µA  
or GPIO  
AD1IN[0]  
W14  
V17  
V18  
T17  
U18  
R17  
T19  
V14  
P18  
W17  
U17  
U19  
T16  
T18  
R18  
P19  
V13  
U13  
U14  
U16  
U15  
T15  
R19  
R16  
V8  
Input  
N/A  
None  
ADC1 analog input  
AD1IN[1]  
AD1IN[2]  
AD1IN[3]  
AD1IN[4]  
AD1IN[5]  
AD1IN[6]  
AD1IN[7]  
AD1IN[8] / AD2IN[8]  
AD1IN[9] / AD2IN[9]  
AD1IN[10] / AD2IN[10]  
AD1IN[11] / AD2IN[11]  
AD1IN[12] / AD2IN[12]  
AD1IN[13] / AD2IN[13]  
AD1IN[14] / AD2IN[14]  
AD1IN[15] / AD2IN[15]  
AD1IN[16] / AD2IN[0]  
AD1IN[17] / AD2IN[1]  
AD1IN[18] / AD2IN[2]  
AD1IN[19] / AD2IN[3]  
AD1IN[20] / AD2IN[4]  
AD1IN[21] / AD2IN[5]  
AD1IN[22] / AD2IN[6]  
AD1IN[23] / AD2IN[7]  
MIBSPI3SOMI[0]/AWM1_EXT_ENA/ECAP2  
Input  
N/A  
None  
ADC1/ADC2 shared  
analog inputs  
Output  
Pull Up  
None  
AWM1 external analog  
mux enable  
MIBSPI3SIMO[0]/AWM1_EXT_SEL[0]/ECAP3  
MIBSPI3CLK/AWM1_EXT_SEL[1]/EQEP1A  
W8  
V9  
AWM1 external analog  
mux select line0  
AWM1 external analog  
mux select line0  
(1) The ADREFHI, ADREFLO, VCCAD and VSSAD connections are common for both ADC cores.  
24  
Terminal Configuration and Functions  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
4.3.2.2 Enhanced High-End Timer Modules (N2HET)  
Table 4-22. ZWT Enhanced High-End Timer Modules (N2HET)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
N2HET1[0]/SPI4CLK/EPWM2B  
K18  
V2  
I/O  
Pull Down Programmable,  
20 µA  
N2HET1  
capture  
compare, or GIO.  
time  
or  
input  
output  
N2HET1[1]/SPI4NENA/N2HET2[8]/EQEP2A  
N2HET1[2]/SPI4SIMO[0]/EPWM3A  
N2HET1[3]/SPI4NCS[0]/N2HET2[10]/EQEP2B  
N2HET1[4]/EPWM4B  
W5  
U1  
B12  
V6  
Each terminal has  
suppression filter with  
programmable duration.  
a
a
N2HET1[5]/SPI4SOMI[0]/N2HET2[12]/EPWM3B  
N2HET1[6]/SCIRX/EPWM5A  
N2HET1[7]/N2HET2[14]/EPWM7B  
N2HET1[8]/MIBSPI1SIMO[1]  
N2HET1[9]/N2HET2[16]/EPWM7A  
N2HET1[10]/nTZ3  
W3  
T1  
E18  
V7  
D19  
E3  
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/EPWM1SYNCO  
N2HET1[12]  
B4  
N2HET1[13]/SCITX/EPWM5B  
N2HET1[14]  
N2  
A11  
N1  
A4  
N2HET1[15]/MIBSPI1NCS[4]/ECAP1  
N2HET1[16]/EPWM1SYNCI/EPWM1SYNCO  
N2HET1[17]  
A13  
F3  
MIBSPI1NCS[1]/N2HET1[17]/ EQEP1S  
N2HET1[18]/EPWM6A  
J1  
N2HET1[19]  
B13  
G3  
P2  
MIBSPI1NCS[2]/N2HET1[19]  
N2HET1[20]/EPWM6B  
N2HET1[21]  
H4  
J3  
MIBSPI1NCS[3]/N2HET1[21]  
N2HET1[22]  
B3  
N2HET1[23]  
J4  
MIBSPI1NENA/N2HET1[23]/ECAP4  
N2HET1[24]/MIBSPI1NCS[5]  
N2HET1[25]  
G19  
P1  
Pull Up  
Pull Down  
M3  
V5  
MIBSPI3NCS[1]/N2HET1[25]/MDCLK  
N2HET1[26]  
A14  
A9  
N2HET1[27]  
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]/nTZ2  
N2HET1[28]  
B2  
Pull Up  
K19  
A3  
Pull Down  
N2HET1[29]  
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]/nTZ1  
C3  
Copyright © 2012–2015, Texas Instruments Incorporated  
Terminal Configuration and Functions  
25  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Table 4-22. ZWT Enhanced High-End Timer Modules (N2HET) (continued)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
N2HET1[30]/EQEP2S  
B11  
J17  
W9  
B5  
I/O  
Pull Down Programmable,  
20 µA  
N2HET1[31]  
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31]/EQEP1B  
GIOA[5]/EXTCLKIN/EPWM1A/N2HET1_PIN_nDIS  
Pull Up  
input  
I/O  
Pull Down Programmable, Disable selected PWM  
20 µA(1)  
outputs  
GIOA[2]/N2HET2[0] /EQEP2I  
C1  
D4  
E1  
Pull Down Programmable,  
20 µA  
N2HET2  
capture  
compare, or GIO.  
time  
or  
input  
output  
EMIF_ADDR[0]/N2HET2[1]  
GIOA[3]/N2HET2[2]  
Each terminal has  
suppression filter with  
programmable duration.  
a
a
EMIF_ADDR[1]/N2HET2[3]  
D5  
H3  
D16  
M1  
N17  
V2  
GIOA[6]/N2HET2[4]/EPWM1B  
EMIF_BA[1]/N2HET2[5]  
GIOA[7]/N2HET2[6]/EPWM2A  
EMIF_nCS[0]/N2HET2[7]  
N2HET1[1]/SPI4NENA/ N2HET2[8]/EQEP2A  
EMIF_nCS[3]/N2HET2[9]  
K17  
U1  
C4  
V6  
N2HET1[3]/SPI4NCS[0]/N2HET2[10]/EQEP2B  
EMIF_ADDR[6]/N2HET2[11]  
N2HET1[5]/SPI4SOMI[0]/N2HET2[12]/EPWM3B  
EMIF_ADDR[7]/N2HET2[13]  
C5  
T1  
N2HET1[7]/N2HET2[14]/EPWM7B  
EMIF_ADDR[8]/N2HET2[15]  
C6  
V7  
N2HET1[9]/N2HET2[16]/EPWM7A  
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/EPWM1SYNCO  
E3  
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/  
EQEP1I/N2HET2_PIN_nDIS  
V10  
I/O  
Pull Up  
Programmable, Disable selected PWM  
20 µA(1)  
outputs  
(1) The N2HETx_PIN_nDIS function is always available on this terminal. There is no mux control to select this function. The pull direction is  
controlled by the function which is selected by the output mux control for this terminal.  
26  
Terminal Configuration and Functions  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
4.3.2.3 Enhanced Capture Modules (eCAP)  
Table 4-23. ZWT Enhanced Capture Modules (eCAP)(1)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
N2HET1[15]/MIBSPI1NCS[4]/ECAP1  
N1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Pull Down  
Pull Up  
Fixed 20 µA  
Pull Up  
Enhanced Capture  
Module 1 I/O  
MIBSPI3SOMI[0]/AWM1_EXT_ENA/ECAP2  
MIBSPI3SIMO[0]/AWM1_EXT_SEL[0]/ECAP3  
MIBSPI1NENA/N2HET1[23]/ECAP4  
V8  
Enhanced Capture  
Module 2 I/O  
W8  
G19  
H18  
R2  
Enhanced Capture  
Module 3 I/O  
Enhanced Capture  
Module 4 I/O  
MIBSPI5NENA/MIBSPI5SOMI[1]/ ECAP5  
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/ ECAP6  
Enhanced Capture  
Module 5 I/O  
Enhanced Capture  
Module 6 I/O  
(1) These signals, when used as inputs, are double-synchronized and then optionally filtered with a 6-cycle VCLK4-based counter.  
4.3.2.4 Enhanced Quadrature Encoder Pulse Modules (eQEP)  
Table 4-24. ZWT Enhanced Quadrature Encoder Pulse Modules (eQEP)(1)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
MIBSPI3CLK/AWM1_EXT_SEL[1]/EQEP1A  
V9  
W9  
V10  
Input  
Input  
I/O  
Pull Up  
Fixed 20 µA  
Pull Up  
Enhanced QEP1 Input A  
Enhanced QEP1 Input B  
Enhanced QEP1 Index  
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31]/EQEP1B  
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/  
EQEP1I/N2HET2_PIN_nDIS  
MIBSPI1NCS[1]/N2HET1[17]/ EQEP1S  
N2HET1[1]/SPI4NENA/N2HET2[8]/EQEP2A  
N2HET1[3]/SPI4NCS[0]/N2HET2[10]/EQEP2B  
GIOA[2]/N2HET2[0]/ EQEP2I  
F3  
V2  
I/O  
Input  
Input  
I/O  
Enhanced QEP1 Strobe  
Enhanced QEP2 Input A  
Enhanced QEP2 Input B  
Enhanced QEP2 Index  
Enhanced QEP2 Strobe  
Pull Down  
Pull Down  
Pull Down  
Pull Down  
U1  
C1  
B11  
N2HET1[30]/EQEP2S  
I/O  
(1) These signals are double-synchronized and then optionally filtered with a 6-cycle VCLK4-based counter.  
Copyright © 2012–2015, Texas Instruments Incorporated  
Terminal Configuration and Functions  
27  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
4.3.2.5 Enhanced Pulse-Width Modulator Modules (ePWM)  
Table 4-25. ZWT Enhanced Pulse-Width Modulator Modules (ePWM)  
TERMINAL  
SIGNA Reset Pull  
L TYPE State  
PULL TYPE  
DESCRIPTION  
337  
ZWT  
SIGNAL NAME  
GIOA[5]/EXTCLKIN/EPWM1A/N2HET1_PIN_nDIS  
GIOA[6]/N2HET2[4]/EPWM1B  
B5  
H3  
E3  
Output Pull Down  
None  
Enhanced PWM1 Output A  
Enhanced PWM1 Output B  
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/EPWM1SYNCO  
External ePWM Sync Pulse  
Output  
N2HET1[16]/EPWM1SYNCI/EPWM1SYNCO  
A4  
Input  
Fixed 20 µA External ePWM Sync Pulse  
Pull Up  
Input  
GIOA[7]/N2HET2[6]/EPWM2A  
N2HET1[0]/SPI4CLK/EPWM2B  
N2HET1[2]/SPI4SIMO[0]/EPWM3A  
N2HET1[5]/SPI4SOMI[0]/N2HET2[12]/EPWM3B  
MIBSPI5NCS[0]/EPWM4A  
M1  
K18  
W5  
V6  
Output  
None  
Enhanced PWM2 Output A  
Enhanced PWM2 Output B  
Enhanced PWM3 Output A  
Enhanced PWM3 Output B  
Enhanced PWM4 Output A  
Enhanced PWM4 Output B  
Enhanced PWM5 Output A  
Enhanced PWM5 Output B  
Enhanced PWM6 Output A  
Enhanced PWM6 Output B  
Enhanced PWM7 Output A  
Enhanced PWM7 Output B  
E19  
B12  
W3  
N2  
Pull Up  
N2HET1[4]/EPWM4B  
Pull Down  
N2HET1[6]/SCIRX/EPWM5A  
N2HET1[13]/SCITX/EPWM5B  
N2HET1[18]/EPWM6A  
J1  
N2HET1[20]/EPWM6B  
P2  
N2HET1[9]/N2HET2[16]/EPWM7A  
N2HET1[7]/N2HET2[14]/EPWM7B  
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]/nTZ1  
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]/nTZ2  
N2HET1[10]/nTZ3  
V7  
T1  
C3  
Input  
Pull Up  
Fixed 20 µA Trip Zone Inputs 1, 2 and 3.  
Pull Up  
These signals are either  
connected asynchronously to  
the ePWMx trip zone inputs,  
or double-synchronized with  
VCLK4, or double-  
B2  
D19  
Pull Down  
synchronized and then  
filtered with a 6-cycle  
VCLK4-based counter before  
connecting to the ePWMx  
trip zone inputs.  
28  
Terminal Configuration and Functions  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
4.3.2.6 General-Purpose Input / Output (GPIO)  
Table 4-26. ZWT General-Purpose Input / Output (GPIO)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
GIOA[0]  
GIOA[1]  
A5  
C2  
I/O  
Pull Down Programmable, General-purpose I/O.  
20 µA  
All GPIO terminals are  
capable of generating  
interrupts to the CPU on  
rising / falling / both  
edges.  
GIOA[2]/N2HET2[0] /EQEP2I  
GIOA[3]/N2HET2[2]  
GIOA[4]  
C1  
E1  
A6  
GIOA[5]/EXTCLKIN/EPWM1A/N2HET1_PIN_nDIS  
GIOA[6]/N2HET2[4]/EPWM1B  
GIOA[7]/N2HET2[6]/EPWM2A  
GIOB[0]  
B5  
H3  
M1  
M2  
K2  
GIOB[1]  
GIOB[2]  
F2  
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/  
V10(1)  
EQEP1I/N2HET2_PIN_nDIS  
GIOB[3]  
GIOB[4]  
GIOB[5]  
GIOB[6]  
GIOB[7]  
W10  
G1  
G2  
J2  
F1  
(1) GIOB[2] cannot output a level on to terminal V10. Only the input functionality is supported so that the application can generate an  
interrupt whenever the N2HET2_PIN_nDIS is asserted (driven low). Also, a pull up is enabled on the input. This is not programmable  
using the GIO module control registers.  
4.3.2.7 FlexRay Interface Controller (FlexRay)  
Table 4-27. FlexRay Interface Controller (FlexRay)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
FRAYRX1  
FRAYTX1  
A15  
B15  
B16  
A8  
Input  
Output  
Output  
Input  
Pull Up  
N/A  
Fixed 100 µA  
Pull Up  
FlexRay data receive  
(channel 1)  
None  
FlexRay data transmit  
(channel 1)  
FRAYTXEN1  
FRAYRX2  
FRAYTX2  
FlexRay transmit enable  
(channel 1)  
Pull Up  
N/A  
Fixed 100 µA  
Pull Up  
FlexRay data receive  
(channel 2)  
B8  
Output  
Output  
None  
FlexRay data transmit  
(channel 2)  
FRAYTXEN2  
B9  
FlexRay transmit enable  
(channel 2)  
Copyright © 2012–2015, Texas Instruments Incorporated  
Terminal Configuration and Functions  
29  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
4.3.2.8 Controller Area Network Controllers (DCAN)  
Table 4-28. ZWT Controller Area Network Controllers (DCAN)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
CAN1RX  
CAN1TX  
CAN2RX  
CAN2TX  
CAN3RX  
CAN3TX  
B10  
A10  
H1  
I/O  
Pull Up  
Programmable, CAN1 receive, or GPIO  
20 µA  
CAN1 transmit, or GPIO  
CAN2 receive, or GPIO  
CAN2 transmit, or GPIO  
CAN3 receive, or GPIO  
CAN3 transmit, or GPIO  
H2  
M19  
M18  
4.3.2.9 Local Interconnect Network Interface Module (LIN)  
Table 4-29. ZWT Local Interconnect Network Interface Module (LIN)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
LINRX  
LINTX  
A7  
B7  
I/O  
Pull Up  
Programmable, LIN receive, or GPIO  
20 µA  
LIN transmit, or GPIO  
4.3.2.10 Standard Serial Communication Interface (SCI)  
Table 4-30. ZWT Standard Serial Communication Interface (SCI)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
N2HET1[6]/SCIRX/EPWM5A  
N2HET1[13]/SCITX/EPWM5B  
W3  
N2  
I/O  
Pull Down Programmable, SCI receive, or GPIO  
20 µA  
SCI transmit, or GPIO  
30  
Terminal Configuration and Functions  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
4.3.2.11 Inter-Integrated Circuit Interface Module (I2C)  
Table 4-31. ZWT Inter-Integrated Circuit Interface Module (I2C)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]/nTZ2  
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]/nTZ1  
B2  
C3  
I/O  
Pull Up  
Programmable, I2C serial data, or GPIO  
20 µA  
I2C serial clock, or GPIO  
4.3.2.12 Standard Serial Peripheral Interface (SPI)  
Table 4-32. ZWT Standard Serial Peripheral Interface (SPI)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
SPI2CLK  
E2  
N3  
D3  
D3  
D1  
I/O  
Pull Up  
Programmable, SPI2 clock, or GPIO  
20 µA  
SPI2NCS[0]  
SPI2 chip select, or GPIO  
SPI2NENA/SPI2NCS[1]  
SPI2NENA/SPI2NCS[1]  
SPI2SIMO[0]  
SPI2 chip select, or GPIO  
SPI2 enable, or GPIO  
SPI2 slave-input master-  
output, or GPIO  
SPI2SOMI[0]  
D2  
SPI2 slave-output master-  
input, or GPIO  
N2HET1[0]/SPI4CLK/EPWM2B  
K18  
U1  
I/O  
Pull Down Programmable, SPI4 clock, or GPIO  
20 µA  
N2HET1[3]/SPI4NCS[0]/N2HET2[10]/EQEP2B  
N2HET1[1]/SPI4NENA/N2HET2[8]/EQEP2A  
N2HET1[2]/SPI4SIMO[0]/EPWM3A  
SPI4 chip select, or GPIO  
V2  
SPI4 enable, or GPIO  
W5  
SPI4 slave-input master-  
output, or GPIO  
N2HET1[5]/SPI4SOMI[0]/N2HET2[12]/EPWM3B  
V6  
SPI4 slave-output master-  
input, or GPIO  
Copyright © 2012–2015, Texas Instruments Incorporated  
Terminal Configuration and Functions  
31  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
4.3.2.13 Multibuffered Serial Peripheral Interface Modules (MibSPI)  
Table 4-33. ZWT Multibuffered Serial Peripheral Interface Modules (MibSPI)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
MIBSPI1CLK  
F18  
R2  
I/O  
Pull Up  
Programmable, MibSPI1 clock, or GPIO  
20 µA  
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/ECAP6  
MIBSPI1NCS[1]/N2HET1[17]/EQEP1S  
MIBSPI1NCS[2]/N2HET1[19]  
MibSPI1 chip select, or  
GPIO  
F3  
G3  
J3  
MIBSPI1NCS[3]/N2HET1[21]  
N2HET1[15]/MIBSPI1NCS[4]/ECAP1  
N2HET1[24]/MIBSPI1NCS[5]  
N1  
Pull Down Programmable, MibSPI1 chip select, or  
20 µA GPIO  
P1  
MIBSPI1NENA/N2HET1[23]/ECAP4  
MIBSPI1SIMO[0]  
G19  
F19  
Pull Up  
Programmable, MibSPI1 enable, or GPIO  
20 µA  
MibSPI1 slave-in master-  
out, or GPIO  
N2HET1[8]/MIBSPI1SIMO[1]  
E18  
Pull Down Programmable, MibSPI1 slave-in master-  
20 µA out, or GPIO  
MIBSPI1SOMI[0]  
G18  
R2  
Pull Up  
Programmable, MibSPI1 slave-out master-  
20 µA in, or GPIO  
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/ECAP6  
MIBSPI3CLK/AWM1_EXT_SEL[1]/EQEP1A  
V9  
I/O  
Pull Up  
Programmable, MibSPI3 clock, or GPIO  
20 µA  
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/  
V10  
MibSPI3 chip select, or  
EQEP1I/N2HET2_PIN_nDIS  
GPIO  
MIBSPI3NCS[1]/N2HET1[25]/MDCLK  
V5  
B2  
C3  
E3  
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]/nTZ2  
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]/nTZ1  
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/EPWM1SYNCO  
Pull Down Programmable, MibSPI3 chip select, or  
20 µA GPIO  
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31]/EQEP1B  
W9  
Pull Up  
Programmable, MibSPI3 chip select, or  
20 µA  
GPIO  
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31]/EQEP1B  
MIBSPI3SIMO[0]/AWM1_EXT_SEL[0]/ECAP3  
W9  
W8  
MibSPI3 enable, or GPIO  
MibSPI3 slave-in master-  
out, or GPIO  
MIBSPI3SOMI[0]/AWM1_EXT_ENA/ECAP2  
V8  
MibSPI3 slave-out master-  
in, or GPIO  
MIBSPI5CLK  
H19  
E19  
B6  
I/O  
Pull Up  
Programmable, MibSPI5 clock, or GPIO  
20 µA  
MIBSPI5NCS[0]/EPWM4A  
MIBSPI5NCS[1]  
MibSPI5 chip select, or  
GPIO  
MIBSPI5NCS[2]  
W6  
MIBSPI5NCS[3]  
T12  
H18  
J19  
E16  
H17  
G17  
J18  
E17  
H18  
H16  
J19  
G16  
MIBSPI5NENA/MIBSPI5SOMI[1]/ECAP5  
MIBSPI5SIMO[0]/MIBSPI5SOMI[2]  
MIBSPI5SIMO[1]  
MibSPI5 enable, or GPIO  
MibSPI5 slave-in master-  
out, or GPIO  
MIBSPI5SIMO[2]  
MIBSPI5SIMO[3]  
MIBSPI5SOMI[0]  
MibSPI5 slave-out master-  
in, or GPIO  
MIBSPI5SOMI[1]  
MIBSPI5NENA/MIBSPI5SOMI[1]/ECAP5  
MIBSPI5SOMI[2]  
MIBSPI5SIMO[0]/MIBSPI5SOMI[2]  
MIBSPI5SOMI[3]  
32  
Terminal Configuration and Functions  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
4.3.2.14 External Memory Interface (EMIF)  
Table 4-34. External Memory Interface (EMIF)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
EMIF_CKE  
EMIF_CLK  
L3  
K3  
Output  
I/O  
Pull Up  
None  
None  
EMIF Clock Enable  
EMIF clock. This is an  
output signal in functional  
mode. It is gated off by  
default, so that the signal  
is pulled up. PINMUX29[8]  
must be cleared to enable  
this output.  
EMIF_nOE  
E12  
P3  
Output  
I/O  
Pull Up  
Pull Up  
None  
EMIF Read Enable  
EMIF_nWAIT  
Fixed 20 µA  
Pull Up  
EMIF Extended Wait  
Signal  
EMIF_nWE  
EMIF_nCAS  
D17  
R4  
Output  
Output  
Pull Up  
None  
EMIF Write Enable  
EMIF column address  
strobe  
EMIF_nRAS  
EMIF_nCS[0]/N2HET2[7](1)  
R3  
Output  
Output  
EMIF row address strobe  
N17  
EMIF chip select,  
synchronous  
EMIF_nCS[2]  
EMIF_nCS[3]/N2HET2[9](1)  
L17  
K17  
M17  
E10  
E11  
Output  
Output  
Output  
Output  
Output  
EMIF chip selects,  
asynchronous  
This applies to chip  
selects 2, 3 and 4  
EMIF_nCS[4]  
EMIF_nDQM[0]  
EMIF_nDQM[1]  
EMIF Data Mask or Write  
Strobe.  
Data mask for SDRAM  
devices, write strobe for  
connected asynchronous  
devices.  
EMIF_BA[0]  
E13  
D16  
Output  
Output  
EMIF bank address or  
address line  
EMIF_BA[1]/N2HET2[5](1)  
EMIF bank address or  
address line  
EMIF_ADDR[0]/N2HET2[1](1)  
EMIF_ADDR[1]/N2HET2[3](1)  
EMIF_ADDR[2]  
D4  
D5  
E6  
E7  
E8  
E9  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
EMIF address  
EMIF_ADDR[3]  
EMIF_ADDR[4]  
EMIF_ADDR[5]  
EMIF_ADDR[6]/N2HET2[11](1)  
EMIF_ADDR[7]/N2HET2[13](1)  
EMIF_ADDR[8]/N2HET2[15](1)  
EMIF_ADDR[9]  
EMIF_ADDR[10]  
EMIF_ADDR[11]  
EMIF_ADDR[12]  
(1) These signals are tri-stated and pulled up by default after power-up. Any application that requires the EMIF must set the bit 31 of the  
system module general-purpose register GPREG1.  
Copyright © 2012–2015, Texas Instruments Incorporated  
Terminal Configuration and Functions  
33  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Table 4-34. External Memory Interface (EMIF) (continued)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
EMIF_DATA[0]  
EMIF_DATA[1]  
EMIF_DATA[2]  
EMIF_DATA[3]  
EMIF_DATA[4]  
EMIF_DATA[5]  
EMIF_DATA[6]  
EMIF_DATA[7]  
EMIF_DATA[8]  
EMIF_DATA[9]  
EMIF_DATA[10]  
EMIF_DATA[11]  
EMIF_DATA[12]  
EMIF_DATA[13]  
EMIF_DATA[14]  
EMIF_DATA[15]  
K15  
L15  
M15  
N15  
E5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Pull Up  
Fixed 20 µA  
Pull Up  
EMIF Data  
F5  
G5  
K5  
L5  
M5  
N5  
P5  
R5  
R6  
R7  
R8  
34  
Terminal Configuration and Functions  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
4.3.2.15 System Module Interface  
Table 4-35. ZWT System Module Interface  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
nPORRST  
W7  
Input  
Pull Down  
Fixed 100 µA  
Pull Down  
Power-on reset, cold reset  
External power supply  
monitor circuitry must  
drive nPORRST low when  
any of the supplies to the  
microcontroller fall out of  
the specified range. This  
terminal has a glitch filter.  
See Section 6.8.  
nRST  
B17  
I/O  
Pull Up  
Fixed 100 µA  
Pull Up  
System reset, warm reset,  
bidirectional.  
The internal circuitry  
indicates any reset  
condition by driving nRST  
low.  
The external circuitry can  
assert a system reset by  
driving nRST low. To  
ensure that an external  
reset is not arbitrarily  
generated, TI  
recommends that an  
external pull-up resistor is  
connected to this terminal.  
This terminal has a glitch  
filter. See Section 6.8.  
nERROR  
B14  
I/O  
Pull Down  
Fixed 20 µA  
Pull Down  
ESM Error Signal  
Indicates error of high  
severity. See  
Section 6.18.  
4.3.2.16 Clock Inputs and Outputs  
Table 4-36. ZWT Clock Inputs and Outputs  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
OSCIN  
K1  
Input  
N/A  
None  
From external  
crystal/resonator, or  
external clock input  
KELVIN_GND  
OSCOUT  
L2  
L1  
Input  
Kelvin ground for oscillator  
Output  
To external  
crystal/resonator  
ECLK  
A12  
I/O  
Pull Down Programmable, External prescaled clock  
20 µA  
output, or GIO.  
GIOA[5]/EXTCLKIN/EPWM1A/N2HET1_PIN_nDIS  
B5  
R9  
Input  
Input  
Pull Down  
N/A  
20 µA  
External clock input #1  
External clock input #2  
EXTCLKIN2  
VCCPLL  
P11  
1.2V  
Power  
None  
Dedicated core supply for  
PLL's  
Copyright © 2012–2015, Texas Instruments Incorporated  
Terminal Configuration and Functions  
35  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
4.3.2.17 Test and Debug Modules Interface  
Table 4-37. ZWT Test and Debug Modules Interface  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
TEST  
U2  
Input  
Pull Down  
Fixed 100 µA  
Pull Down  
Test enable. This terminal  
must be connected to  
ground directly or via a  
pull-down resistor.  
nTRST  
RTCK  
TCK  
D18  
A16  
B18  
Input  
Output  
Input  
JTAG test hardware reset  
JTAG return test clock  
JTAG test clock  
N/A  
None  
Pull Down  
Fixed 100 µA  
Pull Down  
TDI  
A17  
C18  
C19  
Input  
Output  
Input  
Pull Up  
Fixed 100 µA  
Pull Up  
JTAG test data in  
JTAG test data out  
JTAG test select  
TDO  
TMS  
100 µA  
Pull Down  
None  
Pull Up  
Fixed 100 µA  
Pull Up  
4.3.2.18 Flash Supply and Test Pads  
Table 4-38. ZWT Flash Supply and Test Pads  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
VCCP  
F8  
3.3V  
Power  
N/A  
N/A  
None  
None  
Flash pump supply  
FLTP1  
FLTP2  
J5  
-
Flash test pads. These  
terminals are reserved for  
TI use only. For proper  
operation these terminals  
must connect only to a  
test pad or not be  
H5  
connected at all [no  
connect (NC)].  
36  
Terminal Configuration and Functions  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
4.3.2.19 No Connects  
Table 4-39. No Connects  
Terminal  
Signal Name  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
337  
ZWT  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
D6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
No Connects. These balls  
are not connected to any  
internal logic and can be  
connected to the PCB  
ground without affecting  
the functionality of the  
device.  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
E4  
E14  
E15  
F4  
F15  
F16  
F17  
G4  
G15  
H15  
J15  
J16  
K4  
K16  
L4  
L16  
L18  
L19  
M4  
M16  
N4  
N16  
N18  
P4  
Copyright © 2012–2015, Texas Instruments Incorporated  
Terminal Configuration and Functions  
37  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Table 4-39. No Connects (continued)  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
P15  
P16  
P17  
R1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A-  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
No Connects. These balls  
are not connected to any  
internal logic and can be  
connected to the PCB  
ground without affecting  
the functionality of the  
device.  
R10  
R11  
R12  
R13  
R14  
R15  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T13  
T14  
U3  
U4  
U5  
U6  
U7  
U8  
U9  
U10  
U11  
U12  
V3  
V4  
V11  
V12  
W4  
W11  
W12  
W13  
38  
Terminal Configuration and Functions  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
4.3.2.20 Supply for Core Logic: 1.2V nominal  
Table 4-40. ZWT Supply for Core Logic: 1.2V nominal  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
F9  
F10  
H10  
J14  
K6  
1.2V  
Power  
N/A  
None  
Core supply  
K8  
K12  
K14  
L6  
M10  
P10  
Copyright © 2012–2015, Texas Instruments Incorporated  
Terminal Configuration and Functions  
39  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
4.3.2.21 Supply for I/O Cells: 3.3V nominal  
Table 4-41. ZWT Supply for I/O Cells: 3.3V nominal  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
F6  
F7  
3.3V  
Power  
N/A  
None  
Operating supply for I/Os  
F11  
F12  
F13  
F14  
G6  
G14  
H6  
H14  
J6  
L14  
M6  
M14  
N6  
N14  
P6  
P7  
P8  
P9  
P12  
P13  
P14  
40  
Terminal Configuration and Functions  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
4.3.2.22 Ground Reference for All Supplies Except VCCAD  
Table 4-42. ZWT Ground Reference for All Supplies Except VCCAD  
Terminal  
Signal Reset Pull  
Pull Type  
Description  
Type  
State  
Signal Name  
337  
ZWT  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A1  
A2  
Ground  
N/A  
None  
Ground reference  
A18  
A19  
B1  
B19  
H8  
H9  
H11  
H12  
J8  
J9  
J10  
J11  
J12  
K9  
K10  
K11  
L8  
L9  
L10  
L11  
L12  
M8  
M9  
M11  
M12  
V1  
W1  
W2  
Copyright © 2012–2015, Texas Instruments Incorporated  
Terminal Configuration and Functions  
41  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
5 Specifications  
(1)  
5.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range  
MIN  
MAX  
1.43  
4.6  
UNIT  
(2)  
VCC  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
V
V
V
V
V
(2)  
Supply voltage range:  
Input voltage range:  
VCCIO, VCCP  
VCCAD  
6.25  
4.6  
All input pins, with exception of ADC pins  
ADC input pins  
6.25  
IIK (VI < 0 or VI > VCCIO  
All pins, except AD1IN[23:0] or AD2IN[15:0]  
)
-20  
-10  
+20  
+10  
mA  
mA  
Input clamp current:  
IIK (VI < 0 or VI > VCCAD)  
AD1IN[23:0] or AD2IN[15:0]  
Total  
-40  
-40  
-40  
-65  
+40  
125  
150  
150  
mA  
°C  
°C  
°C  
Operating free-air temperature range, TA:  
Operating junction temperature range, TJ:  
Storage temperature range, Tstg  
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to their associated  
grounds.  
5.2 ESD Ratings  
VALUE  
±2  
UNIT  
kV  
Human body model (HBM), per AEC Q100-002(1)  
Electrostatic discharge  
(ESD) performance:  
All pins  
±500  
V
VESD  
Charged device model (CDM),  
per AEC Q100-011  
Corner pins on 144-pin PGE  
(1, 36, 37, 72, 73, 108, 109, 144)  
±750  
±750  
V
V
Corner balls on 337-ball ZWT  
(A1, A19, W1, W19)  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS001 specification.  
5.3 Power-On Hours (POH)(1)(2)  
JUNCTION  
TEMPERATURE (Tj)  
NOMINAL CORE VOLTAGE (VCC  
)
LIFETIME POH  
1.2  
105ºC  
100K  
(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard terms  
and conditions for TI semiconductor products.  
(2) To avoid significant degradation, the device power-on hours (POH) must be limited to those specified in this table. To convert to  
equivalent POH for a specific temperature profile, see the Calculating Equivalent Power-on-Hours for Hercules Safety MCUs Application  
Report (SPNA207).  
42  
Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
5.4 Device Recommended Operating Conditions(1)  
MIN  
1.14  
1.14  
3
NOM  
1.2  
MAX UNIT  
VCC  
Digital logic supply voltage (Core)  
PLL Supply Voltage  
1.32  
1.32  
3.6  
V
V
VCCPLL  
VCCIO  
VCCAD  
VCCP  
1.2  
Digital logic supply voltage (I/O)  
MibADC supply voltage  
3.3  
V
3
5.25  
3.6  
V
Flash pump supply voltage  
3
3.3  
0
V
VSS  
Digital logic supply ground  
V
VSSAD  
VADREFHI  
VADREFLO  
VSLEW  
TA  
MibADC supply ground  
-0.1  
VSSAD  
VSSAD  
0.1  
VCCAD  
VCCAD  
1
V
A-to-D high-voltage reference source  
A-to-D low-voltage reference source  
Maximum positive slew rate for VCCIO, VCCAD and VCCP supplies  
Operating free-air temperature  
Operating junction temperature(2)  
V
V
V/µs  
°C  
°C  
-40  
-40  
125  
TJ  
150  
(1) All voltages are with respect to VSS, except VCCAD, which is with respect to VSSAD  
(2) Reliability data is based upon a temperature profile that is equivalent to 100,000 power-on hours at 105°C junction temperature.  
Copyright © 2012–2015, Texas Instruments Incorporated  
Specifications  
43  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
5.5 Switching Characteristics Over Recommended Operating Conditions for Clock Domains  
Table 5-1. Clock Domain Timing Specifications  
PARAMETER  
DESCRIPTION  
CONDITIONS  
Pipeline mode  
MAX  
UNIT  
160  
MHz  
enabled  
PGE  
ZWT  
Pipeline mode  
disabled  
50  
180  
50  
MHz  
MHz  
MHz  
fHCLK  
HCLK - System clock frequency  
Pipeline mode  
enabled  
Pipeline mode  
disabled  
fGCLK  
fVCLK  
GCLK - CPU clock frequency  
fHCLK  
100  
MHz  
MHz  
VCLK - Primary peripheral clock frequency  
VCLK2 - Secondary peripheral clock  
frequency  
fVCLK2  
fVCLK3  
fVCLK4  
fVCLKA1  
fVCLKA2  
fVCLKA3  
100  
100  
150  
100  
100  
100  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
VCLK3 - Secondary peripheral clock  
frequency  
VCLK4 - Secondary peripheral clock  
frequency  
VCLKA1 - Primary asynchronous  
peripheral clock frequency  
VCLKA2 - Secondary asynchronous  
peripheral clock frequency  
VCLKA3 - Primary asynchronous  
peripheral clock frequency  
VCLKA4 - Secondary asynchronous  
peripheral clock frequency  
fVCLKA4  
fRTICLK  
100  
MHz  
MHz  
RTICLK - clock frequency  
fVCLK  
5.6 Wait States Required  
RAM  
0
0
Address Wait States  
0MHz  
fHCLK(max)  
Data Wait States  
0MHz  
fHCLK(max)  
Flash (Main Memory)  
1
Address Wait States  
0
150MHz  
150MHz  
0MHz  
fHCLK(max)  
fHCLK(max)  
Data Wait States  
0
0
1
2
2
3
3
0MHz  
50MHz  
50MHz  
100MHz  
Flash (Data Memory)  
1
Data Wait States  
0MHz  
100MHz  
150MHz  
fHCLK(max)  
Figure 5-1. Wait States Scheme  
As shown in the figure above, the TCM RAM can support program and data fetches at full CPU speed without  
any address or data wait states required.  
The TCM flash can support zero address and data wait states up to a CPU speed of 50 MHz in nonpipelined  
mode. The flash supports a maximum CPU clock speed of 160 MHz in pipelined mode for the PGE Package and  
180 MHz for the ZWT package, with one address wait state and three data wait states.  
The flash wrapper defaults to non-pipelined mode with zero address wait state and one random-read data wait  
state.  
44  
Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
5.7 Power Consumption Over Recommended Operating Conditions  
PARAMETER  
TEST CONDITIONS  
fHCLK = 160MHz  
fHCLK = 180MHz  
MIN  
TYP  
MAX UNIT  
(1)  
(2)  
175  
350  
VCC digital supply current (operating mode)  
fVCLK = fHCLK/2; Flash in pipelined mode; VCCmax  
mA  
195(1)  
370(2)  
215(1)  
465(3)(4) mA  
ICC  
LBIST/PBIST clock  
frequency = 80MHz  
VCC Digital supply current (LBIST/PBIST mode)  
LBIST/PBIST clock  
frequency = 90MHz  
(3)(4)  
240(1)  
465  
mA  
ICCPLL  
ICCIO  
VCCPLL digital supply current (operating mode)  
VCCIO Digital supply current (operating mode.  
VCCPLL = VCCPLLmax  
No DC load, VCCmax  
10 mA  
10 mA  
Single ADC  
operational,  
VCCADmax  
15  
ICCAD  
VCCAD supply current (operating mode)  
mA  
30  
Both ADCs  
operational,  
VCCADmax  
Single ADC  
operational,  
ADREFHImax  
3
IADREFHI  
ADREFHI supply current (operating mode)  
mA  
6
Both ADCs  
operational,  
ADREFHImax  
read from 1 bank  
and program  
another bank,  
VCCPmax  
ICCP  
VCCP supply current  
55 mA  
(1) The typical value is the average current for the nominal process corner and junction temperature of 25C.  
(2) The maximum ICC, value can be derated  
linearly with voltage  
by 1 ma/MHz for lower operating frequency when fHCLK= 2 * fVCLK  
for lower junction temperature by the equation below where TJK is the junction temperature in Kelvin and the result is in milliamperes.  
164 - 0.07 0.01813T  
JK  
(3) The maximum ICC, value can be derated  
linearly with voltage  
by 1.5 ma/MHz for lower operating frequency  
for lower junction temperature by the equation below where TJK is the junction temperature in Kelvin and the result is in milliamperes.  
164 - 0.07 0.01813T  
JK  
(4) LBIST and PBIST currents are for a short duration, typically less than 10ms. They are usually ignored for thermal calculations for the  
device and the voltage regulator  
Copyright © 2012–2015, Texas Instruments Incorporated  
Specifications  
45  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
5.8 Input/Output Electrical Characteristics Over Recommended Operating Conditions(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
180  
100  
-0.3  
TYP  
MAX UNIT  
All inputs (except  
FRAYRX1,  
FRAYRX2)  
mV  
mV  
Vhys  
Input hysteresis  
FRAYRX1, FRAYRX2  
All inputs(2) (except  
FRAYRX1,  
0.8  
0.4 VCCIO  
V
V
V
V
VIL  
Low-level input voltage  
High-level input voltage  
FRAYRX2)  
FRAYRX1, FRAYRX2  
All inputs(2) (except  
FRAYRX1,  
2
VCCIO + 0.3  
VIH  
FRAYRX2)  
FRAYRX1, FRAYRX2  
0.6 VCCIO  
IOL = IOLmax  
0.2 VCCIO  
0.2  
IOL = 50 µA, standard  
output mode  
VOL  
Low-level output voltage  
V
IOL = 50 µA, low-EMI  
output mode (see  
Section 5.13)  
0.2 VCCIO  
IOH = IOHmax  
0.8 VCCIO  
VCCIO -0.3  
IOH = 50 µA, standard  
output mode  
VOH  
High-level output voltage  
Input clamp current (I/O pins)(3)  
Input current (I/O pins)  
V
IOH = 50 µA, low-EMI  
output mode (see  
Section 5.13)  
0.8 VCCIO  
-3.5  
VI < VSSIO - 0.3 or VI  
> VCCIO + 0.3  
IIK  
3.5  
mA  
µA  
IIH Pulldown 20µA  
IIH Pulldown 100µA  
IIL Pullup 20µA  
IIL Pullup 100µA  
All other pins  
VI = VCCIO  
5
40  
40  
195  
-5  
VI = VCCIO  
II  
VI = VSS  
-40  
-195  
-1  
VI = VSS  
-40  
1
No pullup or pulldown  
CI  
Input capacitance  
Output capacitance  
2
3
pF  
pF  
CO  
(1) Source currents (out of the device) are negative while sink currents (into the device) are positive.  
(2) This does not apply to the nPORRST pin.  
(3) If the input voltage extends outside of the range VIL to VIH then the input current must be limited to IIK to maintain proper operation. See  
the application note SPNA201 for more information on limiting input clamp currents.  
5.9 Thermal Resistance Characteristics  
Table 5-2 shows the thermal resistance characteristics for the QFP - PGE mechanical package.  
Table 5-3 shows the thermal resistance characteristics for the BGA - ZWT mechanical package.  
Table 5-2. Thermal Resistance Characteristics (PGE Package)  
°C/W  
Junction-to-free air thermal resistance, Still  
RΘJA  
40  
air using JEDEC 2S2P test board  
Junction-to-board thermal resistance  
Junction-to-case thermal resistance  
Junction-to-package top, Still air  
RΘJB  
RΘJC  
ΨJT  
27.2  
7.3  
0.10  
46  
Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Table 5-3. Thermal Resistance Characteristics (ZWT Package)  
°C/W  
Junction-to-free air thermal resistance, Still  
air (includes 5x5 thermal via cluster in 2s2p  
PCB connected to 1st ground plane)  
RΘJA  
18.8  
RΘJB  
RΘJC  
Junction-to-board thermal resistance  
Junction-to-case thermal resistance  
14.1  
7.1  
Junction-to-package top, Still air (includes  
5x5 thermal via cluster in 2s2p PCB  
connected to 1st ground plane)  
ΨJT  
0.33  
5.10 Output Buffer Drive Strengths  
Table 5-4. Output Buffer Drive Strengths  
LOW-LEVEL OUTPUT CURRENT,  
IOL for VI=VOLmax  
or  
SIGNALS  
HIGH-LEVEL OUTPUT CURRENT,  
IOH for VI=VOHmin  
FRAYTX2, FRAYTX1, FRAYTXEN1, FRAYTXEN2,  
MIBSPI5CLK, MIBSPI5SOMI[0], MIBSPI5SOMI[1], MIBSPI5SOMI[2], MIBSPI5SOMI[3],  
MIBSPI5SIMO[0], MIBSPI5SIMO[1], MIBSPI5SIMO[2], MIBSPI5SIMO[3],  
TMS, TDI, TDO, RTCK,  
SPI4CLK, SPI4SIMO, SPI4SOMI, nERROR,  
N2HET2[1], N2HET2[3], N2HET2[5], N2HET2[7], N2HET2[9], N2HET2[11], N2HET2[13],  
N2HET2[15]  
8 mA  
ECAP1, ECAP4, ECAP5, ECAP6  
EQEP1I, EQEP1S, EQEP2I, EQEP2S  
EPWM1A, EPWM1B, EPWM1SYNCO, ETPW2A, EPWM2B, EPWM3A, EPWM3B,  
EPWM4A, EPWM4B, EPWM5A, EPWM5B, EPWM6A, EPWM6B, EPWM7A, EPWM7B  
EMIF_ADDR[0:12], EMIF_BA[0:1], EMIF_CKE, EMIF_CLK, EMIF_DATA[0:15], EMIF_nCAS,  
EMIF_nCS[0:4], EMIF_nDQM[0:1], EMIF_nOE, EMIF_nRAS, EMIF_nWAIT, EMIF_nWE,  
EMIF_RNW  
TEST,  
MIBSPI3SOMI, MIBSPI3SIMO, MIBSPI3CLK, MIBSPI1SIMO, MIBSPI1SOMI, MIBSPI1CLK,  
4 mA  
ECAP2, ECAP3  
nRST  
AD1EVT,  
CAN1RX, CAN1TX, CAN2RX, CAN2TX, CAN3RX, CAN3TX,  
GIOA[0-7], GIOB[0-7],  
LINRX, LINTX,  
2 mA zero-dominant  
MIBSPI1nCS[0], MIBSPI1nCS[1-3], MIBSPI1nENA, MIBSPI3nCS[0-3], MIBSPI3nENA,  
MIBSPI5nCS[0-3], MIBSPI5nENA,  
N2HET1[0-31], N2HET2[0], N2HET2[2], N2HET2[4], N2HET2[5], N2HET2[6], N2HET2[7],  
N2HET2[8], N2HET2[9], N2HET2[10], N2HET2[11], N2HET2[12], N2HET2[13], N2HET2[14],  
N2HET2[15], N2HET2[16], N2HET2[18],  
SPI2nCS[0], SPI2nENA, SPI4nCS[0], SPI4nENA  
ECLK,  
selectable 8 mA / 2 mA  
SPI2CLK, SPI2SIMO, SPI2SOMI  
The default output buffer drive strength is 8 mA for these signals.  
Copyright © 2012–2015, Texas Instruments Incorporated  
Specifications  
47  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Table 5-5. Selectable 8 mA/2 mA Control  
Signal  
ECLK  
Control Bit  
SYSPC10[0]  
SPI2PC9[9]  
Address  
8 mA  
2 mA  
0xFFFF FF78  
0xFFF7 F668  
0xFFF7 F668  
0xFFF7 F668  
0
0
0
0
1
1
1
1
SPI2CLK  
SPI2SIMO  
SPI2SOMI  
SPI2PC9[10]  
SPI2PC9[11](1)  
(1) Either SPI2PC9[11] or SPI2PC9[24] can change the output strength of the SPI2SOMI pin. In case of a 32-bit write where these two bits  
differ, SPI2PC9[11] determines the drive strength.  
5.11 Input Timings  
tpw  
VCCIO  
Input  
VIH  
VIH  
VIL  
VIL  
0
Figure 5-2. TTL-Level Inputs  
Table 5-6. Timing Requirements for Inputs(1)  
Parameter  
MIN  
tc(VCLK) + 10(2)  
MAX  
Unit  
ns  
tpw  
Input minimum pulse width  
tin_slew  
Time for input signal to go from VIL to VIH or from VIH to VIL  
1
ns  
(1) tc(VCLK) = peripheral VBUS clock cycle time = 1 / f(VCLK)  
(2) The timing shown above is only valid for pin used in general-purpose input mode.  
tpw  
VCCIO  
Input  
0.6*VCCIO  
0.6*VCCIO  
0.4*VCCIO  
0.4*VCCIO  
0
Figure 5-3. Flexray Inputs  
Table 5-7. Timing Requirements for FlexRay Inputs(1)  
Parameter  
MIN  
MAX  
Unit  
tpw  
Input minimum pulse width to meet the Flexray sampling  
requirement  
tc(VCLKA2) + 2.5  
ns  
(1) tc(VCLKA2) = sample clock cycle time for FlexRay = 1 / f(VCLKA2)  
48  
Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
5.12 Output Timings  
Table 5-8. Switching Characteristics for Output Timings versus Load Capacitance ©L)  
Parameter  
MIN  
MAX  
2.5  
4
Unit  
Rise time, tr  
Fall time, tf  
Rise time, tr  
Fall time, tf  
Rise time, tr  
Fall time, tf  
Rise time, tr  
Fall time, tf  
Rise time, tr  
Fall time, tf  
8 mA low EMI pins  
(see Table 5-4)  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL= 50 pF  
ns  
7.2  
12.5  
2.5  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7.2  
12.5  
5.6  
10.4  
16.8  
23.2  
5.6  
10.4  
16.8  
23.2  
8
4 mA low EMI pins  
(see Table 5-4)  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
2 mA-z low EMI pins  
(see Table 5-4)  
15  
23  
33  
8
15  
23  
33  
Selectable 8 mA / 2 mA-z 8 mA mode  
2.5  
4
pins  
(see Table 5-4)  
7.2  
12.5  
2.5  
4
7.2  
12.5  
8
2 mA-z mode  
15  
23  
33  
8
15  
23  
33  
Copyright © 2012–2015, Texas Instruments Incorporated  
Specifications  
49  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
 
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
tr  
t
f
VCCIO  
Output  
VOH  
VOH  
VOL  
VOL  
0
Figure 5-4. CMOS-Level Outputs  
Table 5-9. Timing Requirements for Outputs(1)  
Parameter  
MIN  
MAX  
UNIT  
td(parallel_out)  
Delay between low to high, or high to low transition of general-purpose output signals  
that can be configured by an application in parallel, e.g. all signals in a GIOA port, or  
all N2HET1 signals, etc.  
6
ns  
(1) This specification does not account for any output buffer drive strength differences or any external capacitive loading differences. Check  
Table 5-4 for output buffer drive strength information on each signal.  
50  
Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
5.13 Low-EMI Output Buffers  
The low-EMI output buffer has been designed explicitly to address the issue of decoupling sources of  
emissions from the pins which they drive. This is accomplished by adaptively controlling the impedance of  
the output buffer, and is particularly effective with capacitive loads.  
This is not the default mode of operation of the low-EMI output buffers and must be enabled by setting the  
system module GPCR1 register for the desired module or signal, as shown in . The adaptive impedance  
control circuit monitors the DC bias point of the output signal. The buffer internally generates two  
reference levels, VREFLOW and VREFHIGH, which are set to approximately 10% and 90% of VCCIO  
,
respectively.  
Once the output buffer has driven the output to a low level, if the output voltage is below VREFLOW, then  
the output buffer’s impedance will increase to hi-Z. A high degree of decoupling between the internal  
ground bus and the output pin will occur with capacitive loads, or any load in which no current is flowing,  
e.g. the buffer is driving low on a resistive path to ground. Current loads on the buffer which attempt to pull  
the output voltage above VREFLOW will be opposed by the buffer’s output impedance so as to maintain  
the output voltage at or below VREFLOW.  
Conversely, once the output buffer has driven the output to a high level, if the output voltage is above  
VREFHIGH then the output buffer’s impedance will again increase to hi-Z. A high degree of decoupling  
between internal power bus ad output pin will occur with capacitive loads or any loads in which no current  
is flowing, e.g. buffer is driving high on a resistive path to VCCIO. Current loads on the buffer which  
attempt to pull the output voltage below VREFHIGH will be opposed by the buffer’s output impedance so  
as to maintain the output voltage at or above VREFHIGH.  
The bandwidth of the control circuitry is relatively low, so that the output buffer in adaptive impedance  
control mode cannot respond to high-frequency noise coupling into the buffer’s power buses. In this  
manner, internal bus noise approaching 20% peak-to-peak of VCCIO can be rejected.  
Unlike standard output buffers which clamp to the rails, an output buffer in impedance control mode will  
allow a positive current load to pull the output voltage up to VCCIO + 0.6V without opposition. Also, a  
negative current load will pull the output voltage down to VSSIO – 0.6V without opposition. This is not an  
issue since the actual clamp current capability is always greater than the IOH / IOL specifications.  
The low-EMI output buffers are automatically configured to be in the standard buffer mode when the  
device enters a low-power mode.  
Table 5-10. Low-EMI Output Buffer Hookup  
Module or Signal Name  
Control Register to Enable Low-EMI Mode  
GPREG1.0  
Module: MibSPI1  
Module: SPI2  
Module: MibSPI3  
Reserved  
GPREG1.1  
GPREG1.2  
GPREG1.3  
Module: MibSPI5  
Module: FlexRay  
Module: EMIF  
Reserved  
GPREG1.4  
GPREG1.5  
GPREG1.6  
GPREG1.7  
Signal: TMS  
GPREG1.8  
Signal: TDI  
GPREG1.9  
Signal: TDO  
GPREG1.10  
GPREG1.11  
GPREG1.12  
GPREG1.13  
GPREG1.14  
Signal: RTCK  
Signal: TEST  
Signal: nERROR  
Signal: AD1EVT  
Copyright © 2012–2015, Texas Instruments Incorporated  
Specifications  
51  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6 System Information and Electrical Specifications  
6.1 Device Power Domains  
The device core logic is split up into multiple power domains to optimize the Self-Test Clock Configuration  
power for a given application use case. There are 7 power domains in total: PD1, PD2, PD3, PD4, PD5,  
and RAM_PD1. Refer to Section 1.4 for more information.  
PD1 is an "always-ON" power domain, which cannot be turned off. Each of the other power domains can  
be turned OFF one time during device initialization as per the application requirement. Refer to the Power  
Management Module (PMM) chapter of TMS570LS12x/11x Technical Reference Manual (SPNU515) for  
more details.  
NOTE  
The clocks to a module must be turned off before powering down the core domain that  
contains the module.  
NOTE  
The logic in the modules that are powered down loses its power completely. Any access to  
modules that are powered down results in an abort being generated. When power is  
restored, the modules power-up to their default states (after normal power-up). No register or  
memory contents are preserved in the core domains that are turned off.  
6.2 Voltage Monitor Characteristics  
A voltage monitor is implemented on this device. The purpose of this voltage monitor is to eliminate the  
requirement for a specific sequence when powering up the core and I/O voltage supplies.  
6.2.1 Important Considerations  
The voltage monitor does not eliminate the need of a voltage supervisor circuit to ensure that the device is held in  
reset when the voltage supplies are out of range.  
The voltage monitor only monitors the core supply (VCC) and the I/O supply (VCCIO). The other supplies are not  
monitored by the VMON. For example, if the VCCAD or VCCP are supplied from a source different from that for  
VCCIO, then there is no internal voltage monitor for the VCCAD and VCCP supplies.  
6.2.2 Voltage Monitor Operation  
The voltage monitor generates the Power Good MCU signal (PGMCU) as well as the I/Os Power Good IO  
signal (PGIO) on the device. During power-up or power-down, the PGMCU and PGIO are driven low when  
the core or I/O supplies are lower than the specified minimum monitoring thresholds. The PGIO and  
PGMCU being low isolates the core logic as well as the I/O controls during the power-up or power-down  
of the supplies. This allows the core and I/O supplies to be powered up or down in any order.  
When the voltage monitor detects a low voltage on the I/O supply, it will assert a power-on reset. When  
the voltage monitor detects an out-of-range voltage on the core supply, it asynchronously makes all output  
pins high impedance, and asserts a power-on reset. The voltage monitor is disabled when the device  
enters a low power mode.  
The VMON also incorporates a glitch filter for the nPORRST input. Refer to Section 6.3.3.1 for the timing  
information on this glitch filter.  
52  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Table 6-1. Voltage Monitoring Specifications  
PARAMETER  
VCC low - VCC level below this  
MIN  
0.75  
TYP  
MAX  
UNIT  
0.9  
1.13  
V
threshold is detected as too low.  
Voltage monitoring  
thresholds  
VCC high - VCC level above this  
threshold is detected as too high.  
1.40  
1.85  
1.7  
2.4  
2.1  
2.9  
VMON  
VCCIO low - VCCIO level below this  
threshold is detected as too low.  
6.2.3 Supply Filtering  
The VMON has the capability to filter glitches on the VCC and VCCIO supplies.  
The following table shows the characteristics of the supply filtering. Glitches in the supply larger than the  
maximum specification cannot be filtered.  
Table 6-2. VMON Supply Glitch Filtering Capability  
Parameter  
MIN  
MAX  
1 µs  
1 µs  
Width of glitch on VCC that can be filtered  
Width of glitch on VCCIO that can be filtered  
250 ns  
250 ns  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
53  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.3 Power Sequencing and Power On Reset  
6.3.1 Power-Up Sequence  
There is no timing dependency between the ramp of the VCCIO and the VCC supply voltage. The power-  
up sequence starts with the I/O voltage rising above the minimum I/O supply threshold, (see Table 6-4 for  
more details), core voltage rising above the minimum core supply threshold and the release of power-on  
reset. The high frequency oscillator will start up first and its amplitude will grow to an acceptable level. The  
oscillator start up time is dependent on the type of oscillator and is provided by the oscillator vendor. The  
different supplies to the device can be powered up in any order.  
The device goes through the following sequential phases during power up.  
Table 6-3. Power-Up Phases  
Oscillator start-up and validity check  
eFuse autoload  
1032 oscillator cycles  
1160 oscillator cycles  
688 oscillator cycles  
617 oscillator cycles  
3497 oscillator cycles  
Flash pump power-up  
Flash bank power-up  
Total  
The CPU reset is released at the end of the above sequence and fetches the first instruction from address  
0x00000000.  
6.3.2 Power-Down Sequence  
The different supplies to the device can be powered down in any order.  
6.3.3 Power-On Reset: nPORRST  
This is the power-on reset. This reset must be asserted by an external circuitry whenever the I/O or core  
supplies are outside the specified recommended range. This signal has a glitch filter on it. It also has an  
internal pulldown.  
6.3.3.1 nPORRST Electrical and Timing Requirements  
Table 6-4. Electrical Requirements for nPORRST  
NO Parameter  
MIN  
MAX  
Unit  
VCCPORL  
VCC low supply level when nPORRST must be active during power-  
up  
0.5  
V
VCCPORH  
VCC high supply level when nPORRST must remain active during  
power-up and become active during power down  
1.14  
V
V
V
VCCIOPORL  
VCCIOPORH  
VIL(PORRST)  
VCCIO / VCCP low supply level when nPORRST must be active during  
power-up  
1.1  
VCCIO / VCCP high supply level when nPORRST must remain active  
during power-up and become active during power down  
3.0  
Low-level input voltage of nPORRST VCCIO > 2.5V  
Low-level input voltage of nPORRST VCCIO < 2.5V  
0.2 * VCCIO  
0.5  
V
V
3
tsu(PORRST)  
Setup time, nPORRST active before VCCIO and VCCP > VCCIOPORL  
during power-up  
0
ms  
6
7
th(PORRST)  
tsu(PORRST)  
Hold time, nPORRST active after VCC > VCCPORH  
1
2
ms  
µs  
Setup time, nPORRST active before VCC < VCCPORH during power  
down  
8
9
th(PORRST)  
th(PORRST)  
Hold time, nPORRST active after VCCIO and VCCP > VCCIOPORH  
Hold time, nPORRST active after VCC < VCCPORL  
1
0
ms  
ms  
54  
System Information and Electrical Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Table 6-4. Electrical Requirements for nPORRST (continued)  
NO Parameter  
MIN  
475  
MAX  
Unit  
tf(nPORRST)  
2000  
ns  
Filter time nPORRST pin;  
pulses less than MIN will be filtered out, pulses greater than MAX  
will generate a reset.  
3.3 V  
1.2 V  
VCCIOPORH  
VCCIOPORH  
VCCIO / VCCP  
8
6
VCCPORH  
VCC  
VCCPORH  
7
6
VCCIOPORL  
7
VCCIOPORL  
VCCPORL  
VCCPORL  
VCC (1.2 V)  
VCCIO / VCCP(3.3 V)  
3
9
VIL  
VIL  
VIL  
VIL(PORRST)  
VIL(PORRST)  
nPORRST  
NOTE: There is no timing dependency between the ramp of the VCCIO and the VCC supply voltage; this is just an exemplary drawing.  
Figure 6-1. nPORRST Timing Diagram  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
55  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.4 Warm Reset (nRST)  
This is a bidirectional reset signal. The internal circuitry drives the signal low on detecting any device reset  
condition. An external circuit can assert a device reset by forcing the signal low. On this terminal, the  
output buffer is implemented as an open drain (drives low only). To ensure an external reset is not  
arbitrarily generated, TI recommends that an external pullup resistor is connected to this terminal.  
This terminal has a glitch filter. It also has an internal pullup.  
6.4.1 Causes of Warm Reset  
Table 6-5. Causes of Warm Reset  
DEVICE EVENT  
SYSTEM STATUS FLAG  
Exception Status Register, bit 15  
Global Status Register, bit 0  
Power-Up Reset  
Oscillator fail  
PLL slip  
Global Status Register, bits 8 and 9  
Exception Status Register, bit 13  
Exception Status Register, bit 4  
Exception Status Register, bit 3  
Watchdog exception / Debugger reset  
Software Reset  
External Reset  
6.4.2 nRST Timing Requirements  
Table 6-6. nRST Timing Requirements  
PARAMETER  
MIN  
MAX  
UNIT  
(1)  
tv(RST)  
Valid time, nRST active after  
nPORRST inactive  
2256 tc(OSC)  
ns  
Valid time, nRST active (all other  
System reset conditions)  
32 tc(VCLK)  
475  
tf(nRST)  
2000  
ns  
Filter time nRST pin;  
pulses less than MIN will be  
filtered out, pulses greater than  
MAX will generate a reset  
(1) Assumes the oscillator has started up and stabilized before nPORRST is released ..  
56  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
6.5 ARM Cortex-R4F CPU Information  
6.5.1 Summary of ARM Cortex-R4F CPU Features  
The features of the ARM Cortex-R4F CPU include:  
An integer unit with integral Embedded ICE-RT logic.  
High-speed Advanced Microprocessor Bus Architecture (AMBA) Advanced eXtensible Interfaces (AXI)  
for Level two (L2) master and slave interfaces.  
Floating Point Coprocessor  
Dynamic branch prediction with a global history buffer, and a 4-entry return stack  
Low interrupt latency.  
Non-maskable interrupt.  
A Harvard Level one (L1) memory system with:  
Tightly-Coupled Memory (TCM) interfaces with support for error correction or parity checking  
memories  
ARMv7-R architecture Memory Protection Unit (MPU) with 12 regions  
Dual core logic for fault detection in safety-critical applications.  
An L2 memory interface:  
Single 64-bit master AXI interface  
64-bit slave AXI interface to TCM RAM blocks  
A debug interface to a CoreSight Debug Access Port (DAP).  
A Performance Monitoring Unit (PMU).  
A Vectored Interrupt Controller (VIC) port.  
For more information on the ARM Cortex-R4F CPU, see www.arm.com.  
6.5.2 ARM Cortex-R4F CPU Features Enabled by Software  
The following CPU features are disabled on reset and must be enabled by the application if required.  
ECC On Tightly-Coupled Memory (TCM) Accesses  
Hardware Vectored Interrupt (VIC) Port  
Floating Point Coprocessor  
Memory Protection Unit (MPU)  
6.5.3 Dual Core Implementation  
The device has two Cortex-R4F cores, where the output signals of both CPUs are compared in the CCM-  
R4 unit. To avoid common mode impacts the signals of the CPUs to be compared are delayed by 2 clock  
cycles as shown in Figure 6-3.  
The CPUs have a diverse CPU placement given by following requirements:  
different orientation; for example, CPU1 = "north" orientation, CPU2 = "flip west" orientation  
dedicated guard ring for each CPU  
Flip West  
North  
F
Figure 6-2. Dual - CPU Orientation  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
57  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.5.4 Duplicate clock tree after GCLK  
The CPU clock domain is split into two clock trees, one for each CPU, with the clock of the 2nd CPU  
running at the same frequency and in phase to the clock of CPU1. See Figure 6-3.  
6.5.5 ARM Cortex-R4F CPU Compare Module (CCM-R4) for Safety  
This device has two ARM Cortex-R4F CPU cores, where the output signals of both CPUs are compared in  
the CCM-R4 unit. To avoid common mode impacts the signals of the CPUs to be compared are delayed in  
a different way as shown in the figure below.  
Output + Control  
CCM-R4  
2 cycle delay  
CCM-R4  
compare  
compare  
error  
CPU1CLK  
CPU 1  
CPU 2  
2 cycle delay  
CPU2CLK  
Input + Control  
Figure 6-3. Dual Core Implementation  
To avoid an erroneous CCM-R4 compare error, the application software must initialize the registers of  
both CPUs before the registers are used, including function calls where the register values are pushed  
onto the stack.  
6.5.6 CPU Self-Test  
The CPU STC (Self-Test Controller) is used to test the two Cortex-R4F CPU Cores using the  
Deterministic Logic BIST Controller as the test engine.  
The main features of the self-test controller are:  
Ability to divide the complete test run into independent test intervals  
Capable of running the complete test as well as running few intervals at a time  
Ability to continue from the last executed interval (test set) as well as ability to restart from the  
beginning (First test set)  
Complete isolation of the self-tested CPU core from rest of the system during the self-test run  
Ability to capture the Failure interval number  
Timeout counter for the CPU self-test run as a fail-safe feature  
58  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
6.5.6.1 Application Sequence for CPU Self-Test  
1. Configure clock domain frequencies.  
2. Select number of test intervals to be run.  
3. Configure the timeout period for the self-test run.  
4. Enable self-test.  
5. Wait for CPU reset.  
6. In the reset handler, read CPU self-test status to identify any failures.  
7. Retrieve CPU state if required.  
For more information see TMS570LS12x/11x Technical Reference Manual (SPNU515).  
6.5.6.2 CPU Self-Test Clock Configuration  
The maximum clock rate for the self-test is 90MHz. The STCCLK is divided down from the CPU clock.  
This divider is configured by the STCCLKDIV register at address 0xFFFFE108.  
For more information see TMS570LS12x/11x Technical Reference Manual (SPNU515).  
6.5.6.3 CPU Self-Test Coverage  
Table 6-7 shows CPU test coverage achieved for each self-test interval. It also lists the cumulative test  
cycles. The test time can be calculated by multiplying the number of test cycles with the STC clock period.  
Table 6-7. CPU Self-Test Coverage  
INTERVALS  
TEST COVERAGE, %  
0
TEST CYCLES  
0
0
1
62.13  
70.09  
74.49  
77.28  
79.28  
80.90  
82.02  
83.10  
84.08  
84.87  
85.59  
86.11  
86.67  
87.16  
87.61  
87.98  
88.38  
88.69  
88.98  
89.28  
89.50  
89.76  
90.01  
90.21  
1365  
2
2730  
3
4095  
4
5460  
5
6825  
6
8190  
7
9555  
8
10920  
12285  
13650  
15015  
16380  
17745  
19110  
20475  
21840  
23205  
24570  
25935  
27300  
28665  
30030  
31395  
32760  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
59  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.6 Clocks  
6.6.1 Clock Sources  
The table below lists the available clock sources on the device. Each of the clock sources can be enabled  
or disabled using the CSDISx registers in the system module. The clock source number in the table  
corresponds to the control bit in the CSDISx register for that clock source.  
The table also shows the default state of each clock source.  
Table 6-8. Available Clock Sources  
Clock  
Source #  
Name  
Description  
Default State  
0
1
2
3
4
OSCIN  
PLL1  
Main Oscillator  
Output From PLL1  
Enabled  
Disabled  
Disabled  
Disabled  
Enabled  
Reserved  
EXTCLKIN1  
LFLPO  
Reserved  
External Clock Input #1  
Low Frequency Output of Internal Reference Oscillator  
High Frequency Output of Internal Reference  
Oscillator  
5
HFLPO  
Enabled  
6
7
PLL2  
Output From PLL2  
Disabled  
Disabled  
EXTCLKIN2  
External Clock Input #2  
6.6.1.1 Main Oscillator  
The oscillator is enabled by connecting the appropriate fundamental resonator/crystal and load capacitors  
across the external OSCIN and OSCOUT pins as shown in Figure 6-4. The oscillator is a single stage  
inverter held in bias by an integrated bias resistor. This resistor is disabled during leakage test  
measurement and low power modes.  
TI strongly encourages each customer to submit samples of the device to the resonator/crystal  
vendors for validation. The vendors are equipped to determine what load capacitors will best tune  
their resonator/crystal to the microcontroller device for optimum start-up and operation over  
temperature/voltage extremes.  
An external oscillator source can be used by connecting a 3.3 V clock signal to the OSCIN pin and leaving  
the OSCOUT pin unconnected (open) as shown in the figure below.  
(see Note B)  
OSCIN  
Kelvin_GND  
OSCOUT  
OSCIN  
OSCOUT  
C1  
C2  
External  
Clock Signal  
(toggling 0 V to 3.3 V)  
(see Note A)  
Crystal  
(a)  
(b)  
Note A: The values of C1 and C2 should be provided by the resonator/crystal vendor.  
Note B: Kelvin_GND should not be connected to any other GND.  
Figure 6-4. Recommended Crystal/Clock Connection  
60  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
6.6.1.1.1 Timing Requirements for Main Oscillator  
Table 6-9. Timing Requirements for Main Oscillator  
Parameter  
MIN  
50  
Type  
MAX  
200  
Unit  
ns  
tc(OSC)  
Cycle time, OSCIN (when using a sine-wave input)  
tc(OSC_SQR)  
Cycle time, OSCIN, (when input to the OSCIN is a  
square wave )  
50  
200  
ns  
tw(OSCIL)  
tw(OSCIH)  
Pulse duration, OSCIN low (when input to the OSCIN  
is a square wave)  
15  
15  
ns  
ns  
Pulse duration, OSCIN high (when input to the OSCIN  
is a square wave)  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
61  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.6.1.2 Low Power Oscillator  
The Low Power Oscillator (LPO) is comprised of two oscillators — HF LPO and LF LPO, in a single  
macro.  
6.6.1.2.1 Features  
The main features of the LPO are:  
Supplies a clock at extremely low power for power-saving modes. This is connected as clock source #  
4 of the Global Clock Module.  
Supplies a high-frequency clock for non-timing-critical systems. This is connected as clock source # 5  
of the Global Clock Module.  
Provides a comparison clock for the crystal oscillator failure detection circuit.  
BIAS_EN  
LFEN  
LFLPO  
LF_TRIM  
Low  
Power  
Oscillator  
HFEN  
HFLPO  
HF_TRIM  
HFLPO_VALID  
nPORRST  
Figure 6-5. LPO Block Diagram  
Figure 6-5 shows a block diagram of the internal reference oscillator. This is a low power oscillator (LPO)  
and provides two clock sources: one nominally 80KHz and one nominally 10MHz.  
Table 6-10. LPO Specifications  
Parameter  
MIN  
Typical  
MAX  
Unit  
Clock Detection  
oscillator fail frequency - lower threshold, using  
untrimmed LPO output  
1.375  
2.4  
4.875  
MHz  
oscillator fail frequency - higher threshold, using  
untrimmed LPO output  
22  
38.4  
78  
MHz  
LPO - HF oscillator  
untrimmed frequency  
trimmed frequency  
5.5  
8
9
19.5  
11  
MHz  
MHz  
µs  
(fHFLPO  
)
9.6  
startup time from STANDBY (LPO BIAS_EN High for  
at least 900µs)  
10  
cold startup time  
900  
180  
100  
µs  
kHz  
µs  
LPO - LF oscillator  
untrimmed frequency  
36  
85  
startup time from STANDBY (LPO BIAS_EN High for  
at least 900µs)  
cold startup time  
2000  
µs  
62  
System Information and Electrical Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
6.6.1.3 Phase Locked Loop (PLL) Clock Modules  
The PLL is used to multiply the input frequency to some higher frequency.  
The main features of the PLL are:  
Frequency modulation can be optionally superimposed on the synthesized frequency of PLL1. The  
frequency modulation capability of PLL2 is permanently disabled.  
Configurable frequency multipliers and dividers.  
Built-in PLL Slip monitoring circuit.  
Option to reset the device on a PLL slip detection.  
6.6.1.3.1 Block Diagram  
Figure 6-6 shows a high-level block diagram of the two PLL macros on this microcontroller. PLLCTL1 and  
PLLCTL2 are used to configure the multiplier and dividers for the PLL1. PLLCTL3 is used to configure the  
multiplier and dividers for PLL2.  
/NR  
/OD  
/R  
PLLCLK  
OSCIN  
INTCLK  
VCOCLK  
post_ODCLK  
PLL  
/1 to /64  
/1 to /8  
/1 to /32  
fPLLCLK = (fOSCIN / NR) * NF / (OD * R)  
/NF  
/1 to /256  
/NR2  
/OD2  
/R2  
PLL2CLK  
OSCIN  
VCOCLK2  
INTCLK2  
post_ODCLK2  
/1 to /64  
PLL#2  
/1 to /8  
/1 to /32  
fPLL2CLK = (fOSCIN / NR2) * NF2 / (OD2 * R2)  
/NF2  
/1 to /256  
Figure 6-6. PLLx Block Diagram  
6.6.1.3.2 PLL Timing Specifications  
Table 6-11. PLL Timing Specifications  
PARAMETER  
MIN  
MAX  
f(OSC_SQR)  
400  
UNIT  
fINTCLK  
PLL1 Reference Clock frequency  
1
MHz  
MHz  
fpost_ODCLK  
Post-ODCLK – PLL1 Post-divider input  
clock frequency  
fVCOCLK  
VCOCLK – PLL1 Output Divider (OD) input  
clock frequency  
150  
1
550  
MHz  
fINTCLK2  
PLL2 Reference Clock frequency  
f(OSC_SQR)  
400  
MHz  
MHz  
fpost_ODCLK2  
Post-ODCLK – PLL2 Post-divider input  
clock frequency  
fVCOCLK2  
VCOCLK – PLL2 Output Divider (OD) input  
clock frequency  
150  
550  
MHz  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
63  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.6.1.4 External Clock Inputs  
The device supports up to two external clock inputs. This clock input must be a square wave input. The  
electrical and timing requirements for these clock inputs are specified below. The external clock sources  
are not checked for validity. They are assumed valid when enabled.  
Table 6-12. External Clock Timing and Electrical Specifications  
Parameter  
fEXTCLKx  
Description  
External clock input frequency  
EXTCLK high-pulse duration  
EXTCLK low-pulse duration  
Low-level input voltage  
Min  
Max  
Unit  
MHz  
ns  
80  
tw(EXTCLKIN)H  
tw(EXTCLKIN)L  
viL(EXTCLKIN)  
viH(EXTCLKIN)  
6
6
ns  
-0.3  
2
0.8  
V
High-level input voltage  
VCCIO + 0.3  
V
6.6.2 Clock Domains  
6.6.2.1 Clock Domain Descriptions  
The table below lists the device clock domains and their default clock sources. The table also shows the  
system module control register that is used to select an available clock source for each clock domain.  
Table 6-13. Clock Domain Descriptions  
Clock Domain Name  
Default Clock  
Source  
Clock Source  
Selection Register  
Description  
HCLK  
OSCIN  
GHVSRC  
Is disabled through the CDDISx registers bit 1  
Used for all system modules including DMA, ESM  
GCLK  
OSCIN  
GHVSRC  
Always the same frequency as HCLK  
In phase with HCLK  
Is disabled separately from HCLK through the CDDISx registers  
bit 0  
Can be divided by 1up to 8 when running CPU self-test (LBIST)  
using the CLKDIV field of the STCCLKDIV register at address  
0xFFFFE108  
GCLK2  
OSCIN  
GHVSRC  
Always the same frequency as GCLK  
2 cycles delayed from GCLK  
Is disabled along with GCLK  
Gets divided by the same divider setting as that for GCLK when  
running CPU self-test (LBIST)  
VCLK  
OSCIN  
OSCIN  
GHVSRC  
GHVSRC  
Divided down from HCLK  
Can be HCLK/1, HCLK/2, ... or HCLK/16  
Is disabled separately from HCLK through the CDDISx registers  
bit 2  
VCLK2  
Divided down from HCLK  
Can be HCLK/1, HCLK/2, ... or HCLK/16  
Frequency must be an integer multiple of VCLK frequency  
Is disabled separately from HCLK through the CDDISx registers  
bit 3  
VCLK3  
VCLK4  
OSCIN  
OSCIN  
GHVSRC  
GHVSRC  
Divided down from HCLK  
Can be HCLK/1, HCLK/2, ... or HCLK/16  
Is disabled separately from HCLK through the CDDISx registers  
bit 8  
Divided down from HCLK  
Can be HCLK/1, HCLK/2, ... or HCLK/16  
Is disabled separately from HCLK through the CDDISx registers  
bit 9  
64  
System Information and Electrical Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Table 6-13. Clock Domain Descriptions (continued)  
Clock Domain Name  
Default Clock  
Source  
Clock Source  
Selection Register  
Description  
VCLKA1  
VCLK  
VCLK  
VCLK  
VCLKASRC  
VCLKASRC  
VCLKACON1  
Defaults to VCLK as the source  
Is disabled through the CDDISx registers bit 4  
VCLKA2  
Defaults to VCLK as the source  
Is disabled through the CDDISx registers bit 5  
VCLKA4_S  
Defaults to VCLK as the source  
Frequency can be as fast as HCLK frequency  
Is disabled through the CDDISx registers bit 11  
VCLKA4_DIVR  
VCLK  
VCLKACON1  
Divided down from the VCLKA4_S using the VCLKA4R field of  
the VCLKACON1 register at address 0xFFFFE140  
Frequency can be VCLKA4_S/1, VCLKA4_S/2, ..., or  
VCLKA4_S/8  
Default frequency is VCLKA4_S/2  
Is disabled separately through the VCLKACON1 register  
VCLKA4_DIV_CDDIS bit only if the VCLKA4_S clock is not  
disabled  
RTICLK  
VCLK  
RCLKSRC  
Defaults to VCLK as the source  
If a clock source other than VCLK is selected for RTICLK, then  
the RTICLK frequency must be less than or equal to VCLK/3  
Application can ensure this by programming the RTI1DIV  
field of the RCLKSRC register, if necessary  
Is disabled through the CDDISx registers bit 6  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
65  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.6.2.2 Mapping of Clock Domains to Device Modules  
Each clock domain has a dedicated functionality as shown in the figures below.  
GCM  
0
GCLK, GCLK2 (to CPU)  
HCLK (to SYSTEM)  
OSCIN  
PLL #1 (FMzPLL)  
1
X1..256  
/1..32  
/1..64  
/1..8  
*
VCLK_peri (VCLK toperipherals on PCR1)  
VCLK_sys (VCLK to system modules)  
VCLK2 (to N2HETx and HTUx)  
/1..16  
4
5
80kHz  
10MHz  
/1..16  
/1..16  
/1..16  
Low Power  
Oscillator  
VCLK3 (to EMIF)  
PLL #2 (FMzPLL)  
VCLK4 (to ePWM, eQEP, eCAP)  
6
/1..32  
*
/1..64 X1..256  
/1..8  
0
1
3
4
3
7
* the frequency at this node must not  
exceed the maximum HCLK specifiation.  
EXTCLKIN1  
EXTCLKIN2  
VCLKA1 (to DCANx)  
5
6
7
VCLK  
VCLK3  
0
1
3
4
5
6
7
VCLKA2 (to FlexRay)  
VCLKA4_S (left open)  
VCLK  
0
1
3
4
5
6
7
VCLK  
0
1
3
4
5
6
7
/1, 2, 4, or 8  
EMIF  
RTICLK (to RTI, DWWD)  
VCLK  
VCLKA1  
VCLK  
VCLK2  
VCLKA2  
VCLKA2  
VCLK2  
HRP  
/1..64  
/2,3..224  
/1,2..32  
/1,2..65536  
/1,2..256  
/1,2,..4  
/1,2,..256  
/1,2,..1024  
N2HETx  
TU  
FlexRay  
TU  
GTUC1,2  
FlexRay  
Baud  
Rate  
LRP  
/20..25  
Prop_seg  
Phase_seg2  
I2C baud  
rate  
ECLK  
SPI  
Baud Rate  
ADCLK  
LIN / SCI  
Baud Rate  
Phase_seg1  
I2C  
Loop  
High  
Resolution Clock  
SPIx,MibSPIx  
LIN, SCI  
External Clock  
MibADCx  
FlexRay  
EXTCLKIN1  
NTU[3]  
CAN Baud Rate  
DCANx  
PLL#2 output  
Startof cycle  
Macro Tick  
NTU[2]  
NTU[1]  
NTU[0]  
N2HETx  
RTI  
Figure 6-7. Device Clock Domains  
66  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
6.6.3 Clock Test Mode  
The RM4x platform architecture defines a special mode that allows various clock signals to be brought out  
on to the ECLK pin and N2HET1[12] device outputs. This mode is called the Clock Test mode. It is very  
useful for debugging purposes and can be configured through the CLKTEST register in the system  
module.  
Table 6-14. Clock Test Mode Options  
SEL_ECP_PIN  
SEL_GIO_PIN  
=
=
SIGNAL ON ECLK  
SIGNAL ON N2HET1[12]  
CLKTEST[3-0]  
CLKTEST[11-8]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Oscillator  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Oscillator Valid Status  
Main PLL Valid status  
Reserved  
Main PLL free-running clock output  
Reserved  
EXTCLKIN1  
Reserved  
LFLPO  
Reserved  
HFLPO  
HFLPO Valid status  
Secondary PLL Valid Status  
Reserved  
Secondary PLL free-running clock output  
EXTCLKIN2  
GCLK  
LFLPO  
RTI Base  
Reserved  
VCLKA1  
Oscillator Valid status  
Oscillator Valid status  
Oscillator Valid status  
Oscillator Valid status  
Reserved  
VCLKA2  
Reserved  
VCLKA4_DIVR  
Reserved  
VCLKA4_S  
Oscillator Valid status  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
67  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.7 Clock Monitoring  
The LPO Clock Detect (LPOCLKDET) module consists of a clock monitor (CLKDET) and an internal low  
power oscillator (LPO).  
The LPO provides two different clock sources – a low frequency (LFLPO) and a high frequency (HFLPO).  
The CLKDET is a supervisor circuit for an externally supplied clock signal (OSCIN). In case the OSCIN  
frequency falls out of a frequency window, the CLKDET flags this condition in the global status register  
(GLBSTAT bit 0: OSC FAIL) and switches all clock domains sourced by OSCIN to the HFLPO clock (limp  
mode clock).  
The valid OSCIN frequency range is defined as: fHFLPO / 4 < fOSCIN < fHFLPO * 4.  
6.7.1 Clock Monitor Timings  
For more information on LPO and Clock detection, refer to Table 6-10.  
upper  
threshold  
lower  
threshold  
fail  
pass  
fail  
f[MHz]  
1.375  
4.875  
22  
78  
Figure 6-8. LPO and Clock Detection, Untrimmed HFLPO  
6.7.2 External Clock (ECLK) Output Functionality  
The ECLK pin can be configured to output a pre-scaled clock signal indicative of an internal device clock.  
This output can be externally monitored as a safety diagnostic.  
6.7.3 Dual Clock Comparators  
The Dual Clock Comparator (DCC) module determines the accuracy of selectable clock sources by  
counting the pulses of two independent clock sources (counter 0 and counter 1). If one clock is out of  
spec, an error signal is generated. For example, the DCC1 can be configured to use HFLPO as the  
reference clock (for counter 0) and VCLK as the "clock under test" (for counter 1). This configuration  
allows the DCC1 to monitor the PLL output clock when VCLK is using the PLL output as its source.  
An additional use of this module is to measure the frequency of a selectable clock source, using the input  
clock as a reference, by counting the pulses of two independent clock sources. Counter 0 generates a  
fixed-width counting window after a preprogrammed number of pulses. Counter 1 generates a fixed-width  
pulse (1 cycle) after a pre-programmed number of pulses. This pulse sets as an error signal if counter 1  
does not reach 0 within the counting window generated by counter 0.  
6.7.3.1 Features  
Takes two different clock sources as input to two independent counter blocks.  
One of the clock sources is the known-good, or reference clock; the second clock source is the "clock under test."  
Each counter block is programmable with initial, or seed values.  
The counter blocks start counting down from their seed values at the same time; a mismatch from the expected  
frequency for the clock under test generates an error signal which is used to interrupt the CPU.  
6.7.3.2 Mapping of DCC Clock Source Inputs  
Table 6-15. DCC1 Counter 0 Clock Sources  
CLOCK SOURCE [3:0]  
CLOCK NAME  
oscillator (OSCIN)  
high frequency LPO  
others  
0x5  
68  
System Information and Electrical Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Table 6-15. DCC1 Counter 0 Clock Sources (continued)  
CLOCK SOURCE [3:0]  
CLOCK NAME  
0xA  
test clock (TCK)  
Table 6-16. DCC1 Counter 1 Clock Sources  
KEY [3:0]  
CLOCK SOURCE [3:0]  
CLOCK NAME  
N2HET1[31]  
others  
-
0x0  
Main PLL free-running clock output  
PLL #2 free-running clock output  
low frequency LPO  
high frequency LPO  
reserved  
0x1  
0x2  
0xA  
0x3  
0x4  
0x5  
EXTCLKIN1  
0x6  
EXTCLKIN2  
0x7  
reserved  
0x8 - 0xF  
VCLK  
Table 6-17. DCC2 Counter 0 Clock Sources  
CLOCK SOURCE [3:0]  
CLOCK NAME  
others  
0xA  
oscillator (OSCIN)  
test clock (TCK)  
Table 6-18. DCC2 Counter 1 Clock Sources  
KEY [3:0]  
others  
0xA  
CLOCK SOURCE [3:0]  
CLOCK NAME  
N2HET2[0]  
Reserved  
VCLK  
-
00x0 - 0x7  
0x8 - 0xF  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
69  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.8 Glitch Filters  
A glitch filter is present on the following signals.  
Table 6-19. Glitch Filter Timing Specifications  
Pin  
Parameter  
MIN  
MAX  
Unit  
nPORRST  
tf(nPORRST)  
475  
2000  
ns  
Filter time nPORRST pin;  
pulses less than MIN will be filtered out, pulses greater than  
MAX will generate a reset(1)  
nRST  
TEST  
tf(nRST)  
475  
475  
2000  
2000  
ns  
ns  
Filter time nRST pin;  
pulses less than MIN will be filtered out, pulses greater than  
MAX will generate a reset  
tf(TEST)  
Filter time TEST pin;  
pulses less than MIN will be filtered out, pulses greater than  
MAX will pass through  
(1) The glitch filter design on the nPORRST signal is designed such that no size pulse will reset any part of the microcontroller (flash pump,  
I/O pins, etc.) without also generating a valid reset signal to the CPU.  
70  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
6.9 Device Memory Map  
6.9.1 Memory Map Diagram  
The figure below shows the device memory map.  
Figure 6-9. Memory Map  
0xFFFFFFFF  
SYSTEM Modules  
0xFFF80000  
Peripherals - Frame 1  
0xFF000000  
0xFE000000  
CRC  
RESERVED  
0xFCFFFFFF  
0xFC000000  
Peripherals - Frame 2  
RESERVED  
0xF07FFFFF  
Flash Module Bus2 Interface  
(Flash ECC, OTP and  
EEPROM Emulation accesses)  
0xF0000000  
RESERVED  
0x87FFFFFF  
0x80000000  
EMIF (128MB)  
SDRAM  
CS0  
RESERVED  
reserved  
CS4  
0x6FFFFFFF  
0x60000000  
0x6C000000  
EMIF (32KB * 3)  
0x68000000  
CS3  
CS2  
Async RAM  
0x64000000  
RESERVED  
0x200FFFFF  
0x20000000  
Flash (1MB) (Mirrored Image)  
RESERVED  
0x0841FFFF  
0x08400000  
RAM - ECC  
RESERVED  
0x0801FFFF  
0x08000000  
RAM (128KB)  
RESERVED  
Flash (1MB)  
0x000FFFFF  
0x00000000  
Figure 6-10. Memory Map  
The Flash memory is mirrored to support ECC logic testing. The base address of the mirrored Flash  
image is 0x2000 0000.  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
71  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.9.2 Memory Map Table  
Table 6-20. Device Memory Map  
FRAME ADDRESS RANGE  
START END  
Memories tightly coupled to the ARM Cortex-R4F CPU  
RESPNSE FOR ACCESS TO  
UNIMPLEMENTED LOCATIONS IN  
FRAME  
FRAME CHIP  
SELECT  
FRAME ACTUAL  
SIZE SIZE  
MODULE NAME  
TCM Flash  
CS0  
0x0000_0000  
0x00FF_FFFF  
16MB  
1MB  
TCM RAM + RAM  
ECC  
CSRAM0  
0x0800_0000  
0x0BFF_FFFF  
64MB  
128KB  
Abort  
Flash mirror  
frame  
Mirrored Flash  
0x2000_0000  
0x20FF_FFFF  
16MB  
1MB  
External Memory Accesses  
EMIF Chip Select  
2 (asynchronous)  
EMIF select 2  
EMIF select 3  
EMIF select 4  
EMIF select 0  
0x6000_0000  
0x6400_0000  
0x6800_0000  
0x8000_0000  
0x63FF_FFFF  
0x67FF_FFFF  
0x6BFF_FFFF  
0x87FF_FFFF  
64MB  
32KB  
32KB  
EMIF Chip Select  
3 (asynchronous)  
64MB  
64MB  
Access to "Reserved" space will  
generate Abort  
EMIF Chip Select  
4 (asynchronous)  
32KB  
EMIF Chip Select  
0 (synchronous)  
128MB  
128MB  
Flash Module Bus2 Interface  
Customer OTP,  
TCM Flash Banks  
0xF000_0000  
0xF000_1FFF  
0xF000_FFFF  
8KB  
4KB  
2KB  
Customer OTP,  
Bank 7  
0xF000_E000  
0xF004_0000  
8KB  
1KB  
Customer  
OTP–ECC, TCM  
Flash Banks  
0xF004_03FF  
0xF004_1FFF  
512B  
256B  
Customer  
OTP–ECC,  
Bank 7  
0xF004_1C00  
1KB  
TI OTP, TCM  
Flash Banks  
0xF008_0000  
0xF008_E000  
0xF00C_0000  
0xF00C_1C00  
0xF008_1FFF  
0xF008_FFFF  
0xF00C_03FF  
0xF00C_1FFF  
8KB  
8KB  
1KB  
1KB  
4KB  
2KB  
Abort  
TI OTP,  
Bank 7  
TI OTP–ECC,  
TCM Flash Banks  
512B  
256B  
TI OTP–ECC,  
Bank 7  
Bank 7 – ECC  
Bank 7  
0xF010_0000  
0xF020_0000  
0xF013_FFFF  
0xF03F_FFFF  
256KB  
2MB  
8KB  
64KB  
Flash Data Space  
ECC  
0xF040_0000  
0xF04F_FFFF  
1MB  
128KB  
EMIF slave interfaces  
EMIF Registers  
0xFCFF_E800  
0xFCFF_E8FF  
256B  
256B  
Abort  
SCR5: Enhanced Timer Peripherals  
ePWM1  
ePWM2  
ePWM3  
ePWM4  
ePWM5  
ePWM6  
ePWM7  
eCAP1  
0xFCF7_8C00  
0xFCF7_8D00  
0xFCF7_8E00  
0xFCF7_8F00  
0xFCF7_9000  
0xFCF7_9100  
0xFCF7_9200  
0xFCF7_9300  
0xFCF7_8CFF  
0xFCF7_8DFF  
0xFCF7_8EFF  
0xFCF7_8FFF  
0xFCF7_90FF  
0xFCF7_91FF  
0xFCF7_92FF  
0xFCF7_93FF  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
Abort  
Abort  
Abort  
Abort  
Abort  
Abort  
Abort  
Abort  
72  
System Information and Electrical Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Table 6-20. Device Memory Map (continued)  
FRAME ADDRESS RANGE  
RESPNSE FOR ACCESS TO  
UNIMPLEMENTED LOCATIONS IN  
FRAME  
FRAME CHIP  
SELECT  
FRAME ACTUAL  
MODULE NAME  
SIZE  
SIZE  
START  
END  
eCAP2  
eCAP3  
eCAP4  
eCAP5  
eCAP6  
eQEP1  
eQEP2  
0xFCF7_9400  
0xFCF7_9500  
0xFCF7_9600  
0xFCF7_9700  
0xFCF7_9800  
0xFCF7_9900  
0xFCF7_9A00  
0xFCF7_94FF  
0xFCF7_95FF  
0xFCF7_96FF  
0xFCF7_97FF  
0xFCF7_98FF  
0xFCF7_99FF  
0xFCF7_9AFF  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
Abort  
Abort  
Abort  
Abort  
Abort  
Abort  
Abort  
Cyclic Redundancy Checker (CRC) Module Registers  
Accesses above 0x200 generate  
abort.  
CRC  
CRC frame  
0xFE00_0000  
0xFEFF_FFFF  
16MB  
512B  
Peripheral Memories  
0xFF0B_FFFF  
MIBSPI5 RAM  
MIBSPI3 RAM  
MIBSPI1 RAM  
PCS[5]  
PCS[6]  
PCS[7]  
0xFF0A_0000  
0xFF0C_0000  
0xFF0E_0000  
128KB  
128KB  
128KB  
2KB  
2KB  
2KB  
Abort for accesses above 2KB  
Abort for accesses above 2KB  
Abort for accesses above 2KB  
0xFF0D_FFFF  
0xFF0F_FFFF  
Wrap around for accesses to  
unimplemented address offsets lower  
than 0x7FF. Abort generated for  
accesses beyond offset 0x800.  
DCAN3 RAM  
DCAN2 RAM  
DCAN1 RAM  
MIBADC2 RAM  
PCS[13]  
PCS[14]  
PCS[15]  
0xFF1A_0000  
0xFF1C_0000  
0xFF1E_0000  
0xFF1B_FFFF  
0xFF1D_FFFF  
0xFF1F_FFFF  
128KB  
128KB  
128KB  
2KB  
2KB  
2KB  
8KB  
Wrap around for accesses to  
unimplemented address offsets lower  
than 0x7FF. Abort generated for  
accesses beyond offset 0x800.  
Wrap around for accesses to  
unimplemented address offsets lower  
than 0x7FF. Abort generated for  
accesses beyond offset 0x800.  
Wrap around for accesses to  
unimplemented address offsets lower  
than 0x1FFF. Abort generated for  
accesses beyond 0x1FFF.  
Look-Up Table for ADC2 wrapper.  
Starts at address offset 0x2000 and  
ends at address offset 0x217F. Wrap  
around for accesses between offsets  
0x0180 and 0x3FFF. Abort generated  
for accesses beyond offset 0x4000.  
PCS[29]  
0xFF3A_0000  
0xFF3B_FFFF  
128KB  
MIBADC2 Look-  
Up Table  
384B  
8KB  
Wrap around for accesses to  
unimplemented address offsets lower  
than 0x1FFF. Abort generated for  
accesses beyond 0x1FFF.  
MIBADC1 RAM  
Look-Up Table for ADC1 wrapper.  
Starts at address offset 0x2000 and  
ends at address offset 0x217F. Wrap  
around for accesses between offsets  
0x0180 and 0x3FFF. Abort generated  
for accesses beyond offset 0x4000.  
PCS[31]  
0xFF3E_0000  
0xFF3F_FFFF  
128KB  
MibADC1 Look-  
Up Table  
384B  
Wrap around for accesses to  
unimplemented address offsets lower  
than 0x3FFF. Abort generated for  
accesses beyond 0x3FFF.  
N2HET2 RAM  
N2HET1 RAM  
PCS[34]  
PCS[35]  
0xFF44_0000  
0xFF46_0000  
0xFF45_FFFF  
0xFF47_FFFF  
128KB  
128KB  
16KB  
16KB  
Wrap around for accesses to  
unimplemented address offsets lower  
than 0x3FFF. Abort generated for  
accesses beyond 0x3FFF.  
HTU2 RAM  
HTU1 RAM  
PCS[38]  
PCS[39]  
0xFF4C_0000  
0xFF4E_0000  
0xFF4D_FFFF  
0xFF4F_FFFF  
128KB  
128KB  
1KB  
1KB  
Abort  
Abort  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
73  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Table 6-20. Device Memory Map (continued)  
FRAME ADDRESS RANGE  
RESPNSE FOR ACCESS TO  
UNIMPLEMENTED LOCATIONS IN  
FRAME  
FRAME CHIP  
SELECT  
FRAME ACTUAL  
MODULE NAME  
SIZE  
SIZE  
START  
END  
FlexRay TU RAM  
PCS[40]  
0xFF50_0000  
0xFF51_FFFF  
128KB  
1KB  
Abort  
Debug Components  
CoreSight Debug  
ROM  
Reads return zeros, writes have no  
effect  
CSCS0  
0xFFA0_0000  
0xFFA0_0FFF  
4KB  
4KB  
Cortex-R4F  
Debug  
Reads return zeros, writes have no  
effect  
CSCS1  
CSCS4  
0xFFA0_1000  
0xFFA0_4000  
0xFFA0_1FFF  
0xFFA0_4FFF  
4KB  
4KB  
4KB  
4KB  
POM  
Abort  
Peripheral Control Registers  
Reads return zeros, writes have no  
effect  
FTU  
HTU1  
PS[23]  
PS[22]  
PS[22]  
PS[17]  
PS[17]  
PS[16]  
PS[15]  
PS[15]  
PS[12]+PS[13]  
PS[10]  
PS[8]  
0xFFF7_A000 512B  
0xFFF7_A1FF  
0xFFF7_A4FF  
0xFFF7_A5FF  
0xFFF7_B8FF  
0xFFF7_B9FF  
0xFFF7_BDFF  
0xFFF7_C1FF  
0xFFF7_C3FF  
0xFFF7_CFFF  
0xFFF7_D4FF  
0xFFF7_DDFF  
0xFFF7_DFFF  
0xFFF7_E1FF  
0xFFF7_E4FF  
0xFFF7_E5FF  
0xFFF7_F5FF  
0xFFF7_F7FF  
0xFFF7_F9FF  
0xFFF7_FBFF  
0xFFF7_FDFF  
512B  
256B  
256B  
256B  
256B  
256B  
512B  
512B  
2KB  
Reads return zeros, writes have no  
effect  
0xFFF7_A400  
0xFFF7_A500  
0xFFF7_B800  
0xFFF7_B900  
0xFFF7_BC00  
0xFFF7_C000  
0xFFF7_C200  
0xFFF7_C800  
0xFFF7_D400  
0xFFF7_DC00  
0xFFF7_DE00  
0xFFF7_E000  
0xFFF7_E400  
0xFFF7_E500  
0xFFF7_F400  
0xFFF7_F600  
0xFFF7_F800  
0xFFF7_FA00  
0xFFF7_FC00  
256B  
256B  
256B  
256B  
512B  
512B  
512B  
2KB  
Reads return zeros, writes have no  
effect  
HTU2  
Reads return zeros, writes have no  
effect  
N2HET1  
N2HET2  
GIO  
Reads return zeros, writes have no  
effect  
Reads return zeros, writes have no  
effect  
Reads return zeros, writes have no  
effect  
MIBADC1  
MIBADC2  
FlexRay  
I2C  
Reads return zeros, writes have no  
effect  
Reads return zeros, writes have no  
effect  
Reads return zeros, writes have no  
effect  
256B  
512B  
512B  
512B  
256B  
256B  
512B  
512B  
512B  
512B  
512B  
256B  
512B  
512B  
512B  
256B  
256B  
512B  
512B  
512B  
512B  
512B  
Reads return zeros, writes have no  
effect  
DCAN1  
DCAN2  
DCAN3  
LIN  
Reads return zeros, writes have no  
effect  
PS[8]  
Reads return zeros, writes have no  
effect  
PS[7]  
Reads return zeros, writes have no  
effect  
PS[6]  
Reads return zeros, writes have no  
effect  
SCI  
PS[6]  
Reads return zeros, writes have no  
effect  
MibSPI1  
SPI2  
PS[2]  
Reads return zeros, writes have no  
effect  
PS[2]  
Reads return zeros, writes have no  
effect  
MibSPI3  
SPI4  
PS[1]  
Reads return zeros, writes have no  
effect  
PS[1]  
Reads return zeros, writes have no  
effect  
MibSPI5  
PS[0]  
System Modules Control Registers and Memories  
DMA RAM  
VIM RAM  
PPCS0  
PPCS2  
0xFFF8_0000  
0xFFF8_0FFF  
4KB  
4KB  
Abort  
Wrap around for accesses to  
unimplemented address offsets  
between 1KB and 4KB.  
0xFFF8_2000  
0xFFF8_2FFF  
4KB  
1KB  
74  
System Information and Electrical Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Table 6-20. Device Memory Map (continued)  
FRAME ADDRESS RANGE  
RESPNSE FOR ACCESS TO  
UNIMPLEMENTED LOCATIONS IN  
FRAME  
FRAME CHIP  
SELECT  
FRAME ACTUAL  
MODULE NAME  
SIZE  
SIZE  
START  
END  
Flash Module  
PPCS7  
0xFFF8_7000  
0xFFF8_C000  
0xFFF8_7FFF  
0xFFF8_CFFF  
4KB  
4KB  
4KB  
4KB  
Abort  
Abort  
eFuse Controller  
PPCS12  
Power  
Management  
Module (PMM)  
PPSE0  
PPS0  
PPS0  
0xFFFF_0000  
0xFFFF_E000  
0xFFFF_E100  
0xFFFF_01FF  
0xFFFF_E0FF  
0xFFFF_E1FF  
512B  
256B  
256B  
512B  
256B  
256B  
Abort  
Reads return zeros, writes have no  
effect  
PCR registers  
System Module -  
Frame 2 (see  
SPNU515)  
Reads return zeros, writes have no  
effect  
Reads return zeros, writes have no  
effect  
PBIST  
STC  
PPS1  
PPS1  
0xFFFF_E400  
0xFFFF_E600  
0xFFFF_E5FF  
0xFFFF_E6FF  
512B  
256B  
512B  
256B  
Generates address error interrupt, if  
enabled  
IOMM  
Multiplexing  
Control Module  
Reads return zeros, writes have no  
effect  
PPS2  
0xFFFF_EA00  
0xFFFF_EBFF  
512B  
512B  
Reads return zeros, writes have no  
effect  
DCC1  
DMA  
PPS3  
PPS4  
PPS5  
PPS5  
PPS5  
PPS6  
PPS6  
PPS7  
PPS7  
PPS7  
0xFFFF_EC00  
0xFFFF_F000  
0xFFFF_F400  
0xFFFF_F500  
0xFFFF_F600  
0xFFFF_F800  
0xFFFF_F900  
0xFFFF_FC00  
0xFFFF_FD00  
0xFFFF_FE00  
0xFFFF_ECFF  
0xFFFF_F3FF  
0xFFFF_F4FF  
0xFFFF_F5FF  
0xFFFF_F6FF  
0xFFFF_F8FF  
0xFFFF_F9FF  
0xFFFF_FCFF  
0xFFFF_FDFF  
0xFFFF_FEFF  
256B  
1KB  
256B  
1KB  
Reads return zeros, writes have no  
effect  
Reads return zeros, writes have no  
effect  
DCC2  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
Reads return zeros, writes have no  
effect  
ESM  
Reads return zeros, writes have no  
effect  
CCMR4  
Reads return zeros, writes have no  
effect  
RAM ECC even  
RAM ECC odd  
RTI + DWWD  
VIM Parity  
VIM  
Reads return zeros, writes have no  
effect  
Reads return zeros, writes have no  
effect  
Reads return zeros, writes have no  
effect  
Reads return zeros, writes have no  
effect  
System Module -  
Frame 1 (see  
SPNU515)  
Reads return zeros, writes have no  
effect  
PPS7  
0xFFFF_FF00  
0xFFFF_FFFF  
256B  
256B  
6.9.3 Special Consideration for CPU Access Errors Resulting in Imprecise Aborts  
Any CPU write access to a Normal or Device type memory, which generates a fault, will generate an  
imprecise abort. The imprecise abort exception is disabled by default and must be enabled for the CPU to  
handle this exception. The imprecise abort handling is enabled by clearing the "A" bit in the CPU’s  
program status register (CPSR).  
6.9.4 Master/Slave Access Privileges  
The table below lists the access permissions for each bus master on the device. A bus master is a module  
that can initiate a read or a write transaction on the device.  
Each slave module on the main interconnect is listed in the table. A "Yes" indicates that the module listed  
in the "MASTERS" column can access that slave module.  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
75  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Table 6-21. Master / Slave Access Matrix  
MASTERS  
ACCESS MODE  
SLAVES ON MAIN SCR  
CRC  
Flash Module  
Bus2 Interface:  
OTP, ECC, Bank  
7
Non-CPU  
Accesses to  
Program Flash  
and CPU Data  
RAM  
EMIF Slave  
Interface  
Peripheral  
Control  
Registers, All  
Peripheral  
Memories, And  
All System  
Module Control  
Registers And  
Memories  
CPU READ  
CPU WRITE  
DMA  
User/Privilege  
User/Privilege  
User  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
POM  
User  
DAP  
Privilege  
Privilege  
Privilege  
User  
HTU1  
HTU2  
No  
FTU  
No  
6.9.5 Special Notes on Accesses to Certain Slaves  
Write accesses to the Power Domain Management Module (PMM) control registers are limited to the CPU  
(master id = 1). The other masters can only read from these registers.  
A debugger can also write to the PMM registers. The master-id check is disabled in debug mode.  
The device contains dedicated logic to generate a bus error response on any access to a module that is in  
a power domain that has been turned OFF.  
6.9.6 Parameter Overlay Module (POM) Considerations  
The POM can map onto up to 8MB of the internal or external memory space. The starting address and the size of  
the memory overlay are configurable through the POM control registers. Care must be taken to ensure that the  
overlay is mapped on to available memory.  
ECC must be disabled by software through CP15 in case POM overlay is enabled; otherwise ECC errors will be  
generated.  
POM overlay must not be enabled when the flash and internal RAM memories are swapped through the MEM  
SWAP field of the Bus Matrix Module Control Register 1 (BMMCR1).  
When POM is used to overlay the flash on to internal or external RAM, there is a bus contention possibility when  
another master accesses the TCM flash. This results in a system hang.  
The POM implements a timeout feature to detect this exact scenario. The timeout needs to be enabled  
whenever POM overlay is enabled.  
The timeout can be enabled by writing 1010 to the Enable TimeOut (ETO) field of the POM Global Control  
register (POMGLBCTRL, address = 0xFFA04000).  
In case a read request by the POM cannot be completed within 32 HCLK cycles, the timeout (TO) flag is set in  
the POM Flag register (POMFLG, address = 0xFFA0400C). Also, an abort is generated to the CPU. This can  
be a prefetch abort for an instruction fetch or a data abort for a data fetch.  
The prefetch- and data-abort handlers must be modified to check if the TO flag in the POM is set. If so, then  
the application can assume that the timeout is caused by a bus contention between the POM transaction and  
another master accessing the same memory region. The abort handlers need to clear the TO flag, so that any  
further aborts are not misinterpreted as having been caused due to a timeout from the POM.  
76  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
6.10 Flash Memory  
6.10.1 Flash Memory Configuration  
Flash Bank: A separate block of logic consisting of 1 to 16 sectors. Each flash bank normally has a  
customer-OTP and a TI-OTP area. These flash sectors share input/output buffers, data paths, sense  
amplifiers, and control logic.  
Flash Sector: A contiguous region of flash memory which must be erased simultaneously due to physical  
construction constraints.  
Flash Pump: A charge pump which generates all the voltages required for reading, programming, or  
erasing the flash banks.  
Flash Module: Interface circuitry required between the host CPU and the flash banks and pump module.  
Table 6-22. Flash Memory Banks and Sectors  
Memory Arrays (or Banks)  
Sector  
No.  
Segment  
Low Address  
High Address  
BANK0 (1MByte)(1)  
0
1
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
32K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
0x0000_0000  
0x0000_4000  
0x0000_8000  
0x0000_C000  
0x0001_0000  
0x0001_4000  
0x0001_8000  
0x0002_0000  
0x0004_0000  
0x0006_0000  
0x0008_0000  
0x000A_0000  
0x000C_0000  
0x000E_0000  
0xF020_0000  
0xF020_4000  
0xF020_8000  
0xF020_C000  
0x0000_3FFF  
0x0000_7FFF  
0x0000_BFFF  
0x0000_FFFF  
0x0001_3FFF  
0x0001_7FFF  
0x0001_FFFF  
0x0003_FFFF  
0x0005_FFFF  
0x0007_FFFF  
0x0009_FFFF  
0x000B_FFFF  
0x000D_FFFF  
0x000F_FFFF  
0xF020_3FFF  
0xF020_7FFF  
0xF020_BFFF  
0xF020_FFFF  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
0
BANK7 (64KBytes) for EEPROM emulation(2)(3)  
1
2
3
(1) The Flash banks are 144-bit wide bank with ECC support.  
(2) The flash bank7 can be programmed while executing code from flash bank0.  
(3) Code execution is not allowed from flash bank7.  
6.10.2 Main Features of Flash Module  
Support for multiple flash banks for program and/or data storage  
Simultaneous read access on a bank while performing program or erase operation on any other bank  
Integrated state machines to automate flash erase and program operations  
Pipelined mode operation to improve instruction access interface bandwidth  
Support for Single Error Correction Double Error Detection (SECDED) block inside Cortex-R4F CPU  
Error address is captured for host system debugging  
Support for a rich set of diagnostic features  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
77  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.10.3 ECC Protection for Flash Accesses  
All accesses to the program flash memory are protected by Single Error Correction Double Error Detection  
(SECDED) logic embedded inside the CPU. The flash module provides 8 bits of ECC code for 64 bits of  
instructions or data fetched from the flash memory. The CPU calculates the expected ECC code based on  
the 64 bits received and compares it with the ECC code returned by the flash module. A single-bit error is  
corrected and flagged by the CPU, while a multibit error is only flagged. The CPU signals an ECC error  
through its Event bus. This signaling mechanism is not enabled by default and must be enabled by setting  
the "X" bit of the Performance Monitor Control Register, c9.  
MRC p15,#0,r1,c9,c12,#0  
ORR r1, r1, #0x00000010  
MCR p15,#0,r1,c9,c12,#0  
MRC p15,#0,r1,c9,c12,#0  
;Enabling Event monitor states  
;Set 4th bit (‘X’) of PMNC register  
The application must also explicitly enable the CPU's ECC checking for accesses on the CPU's ATCM  
and BTCM interfaces. These are connected to the program flash and data RAM respectively. ECC  
checking for these interfaces can be done by setting the B1TCMPCEN, B0TCMPCEN and ATCMPCEN  
bits of the System Control coprocessor's Auxiliary Control Register, c1.  
MRC p15, #0, r1, c1, c0, #1  
ORR r1, r1, #0x0e000000  
DMB  
;Enable ECC checking for ATCM and BTCMs  
MCR p15, #0, r1, c1, c0, #1  
6.10.4 Flash Access Speeds  
For information on flash memory access speeds and the relevant wait states required, refer to Section 5.6.  
78  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
6.10.5 Program Flash  
Table 6-23. Timing Requirements for Program Flash  
Parameter  
MIN  
NOM  
MAX  
300  
11  
Unit  
µs  
s
tprog(144bit)  
tprog(Total)  
Wide Word (144bit) programming time  
1MByte programming time(1)  
40  
-40°C to 125°C  
0°C to 60°C, for first  
25 cycles  
2.8  
5.5  
s
terase(bank0)  
Sector/Bank erase time(2)  
-40°C to 125°C  
0.03  
16  
4
s
0°C to 60°C, for first  
25 cycles  
100  
ms  
twec  
Write/erase cycles with 15 year Data Retention -40°C to 125°C  
requirement  
1000  
cycles  
(1) This programming time includes overhead of state machine, but does not include data transfer time. The programming time assumes  
programming 144 bits at a time at the maximum specified operating frequency.  
(2) During bank erase, the selected sectors are erased simultaneously. The time to erase the bank is specified as equal to the time to erase  
a sector.  
6.10.6 Data Flash  
Table 6-24. Timing Requirements for Data Flash  
Parameter  
MIN  
NOM  
MAX  
300  
660  
330  
Unit  
µs  
tprog(144bit)  
tprog(Total)  
Wide Word (144bit) programming time  
40  
EEPROM Emulation (bank 7) 64KByte  
programming time(1)  
-40°C to 125°C  
ms  
ms  
0°C to 60°C, for first  
25 cycles  
165  
terase(bank7)  
EEPROM Emulation (bank 7) Sector/Bank  
erase time  
-40°C to 125°C  
0.2  
14  
8
s
(2)  
0°C to 60°C, for first  
25 cycles  
100  
ms  
twec  
Write/erase cycles with 15 year Data Retention -40°C to 125°C  
requirement  
100000  
cycles  
(1) This programming time includes overhead of state machine, but does not include data transfer time. The programming time assumes  
programming 144 bits at a time at the maximum specified operating frequency.  
(2) During bank erase, the selected sectors are erased simultaneously. The time to erase the bank is specified as equal to the time to erase  
a sector.  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
79  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.11 Tightly Coupled RAM Interface Module  
Figure 6-11 illustrates the connection of the Tightly Coupled RAM (TCRAM) to the Cortex-R4F CPU.  
36 Bit  
Upper 32 bitsdata &  
4 ECC bits  
wide  
RAM  
Cortex-R4F  
TCM BUS  
TCRAM  
B0  
TCM  
36 Bit  
Interface 1  
wide  
RAM  
72 Bit data + ECC  
Lower32 bits data &  
4 ECC bits  
36 Bit
wide
RAM  
Upper 32 bitsdata &  
4 ECC bits  
B1  
TCM  
TCM BUS  
TCRAM  
Interface 2  
72 Bit data + ECC  
36 Bit  
wide  
RAM  
Lower32 bits data &  
4 ECC bits  
Figure 6-11. TCRAM Block Diagram  
6.11.1 Features  
The features of the Tightly Coupled RAM (TCRAM) Module are:  
Acts as slave to the BTCM interface of the Cortex-R4F CPU  
Supports the internal ECC scheme of the CPU by providing 64-bit data and 8-bit ECC code  
Monitors CPU Event Bus and generates single or multibit error interrupts  
Stores addresses for single and multibit errors  
Supports RAM trace module  
Provides CPU address bus integrity checking by supporting parity checking on the address bus  
Performs redundant address decoding for the RAM bank chip select and ECC select generation logic  
Provides enhanced safety for the RAM addressing by implementing two 36-bit-wide byte-interleaved RAM banks  
and generating independent RAM access control signals to the two banks  
Supports auto-initialization of the RAM banks along with the ECC bits  
6.11.2 TCRAM ECC Support  
The TCRAM interface passes on the ECC code for each data read by the Cortex-R4F CPU from the RAM.  
It also stores the contents of the CPU ECC port in the ECC RAM when the CPU does a write to the RAM.  
The TCRAM interface monitors the CPU event bus and provides registers for indicating single/multibit  
errors and also for identifying the address that caused the single or multibit error. The event signaling and  
the ECC checking for the RAM accesses must be enabled inside the CPU.  
For more information see TMS570LS12x/11x Technical Reference Manual (SPNU515).  
6.12 Parity Protection for Accesses to Peripheral RAMs  
Accesses to some peripheral RAMs are protected by odd/even parity checking. During a read access the  
parity is calculated based on the data read from the peripheral RAM and compared with the good parity  
value stored in the parity RAM for that peripheral. If any word fails the parity check, the module generates  
a parity error signal that is mapped to the Error Signaling Module. The module also captures the  
peripheral RAM address that caused the parity error.  
The parity protection for peripheral RAMs is not enabled by default and must be enabled by the  
application. Each individual peripheral contains control registers to enable the parity protection for  
accesses to its RAM.  
80  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
NOTE  
The CPU read access gets the actual data from the peripheral. The application can choose  
to generate an interrupt whenever a peripheral RAM parity error is detected.  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
81  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.13 On-Chip SRAM Initialization and Testing  
6.13.1 On-Chip SRAM Self-Test Using PBIST  
6.13.1.1 Features  
Extensive instruction set to support various memory test algorithms  
ROM-based algorithms allow application to run TI production-level memory tests  
Independent testing of all on-chip SRAM  
6.13.1.2 PBIST RAM Groups  
Table 6-25. PBIST RAM Grouping  
Test Pattern (Algorithm)  
March 13N(1)  
two port  
(cycles)  
March 13N(1)  
single port  
(cycles)  
triple read  
slow read  
triple read  
fast read  
Memory  
RAM Group  
Test Clock  
MEM Type  
ALGO MASK  
0x1  
ALGO MASK  
0x2  
ALGO MASK  
0x4  
ALGO MASK  
0x8  
PBIST_ROM  
STC_ROM  
DCAN1  
1
2
ROM CLK  
ROM CLK  
VCLK  
ROM  
24578  
19586  
8194  
6530  
ROM  
3
Dual Port  
Dual Port  
Dual Port  
Single Port  
Dual Port  
Dual Port  
Dual Port  
Dual Port  
Dual Port  
Dual Port  
Dual Port  
Dual Port  
25200  
25200  
25200  
DCAN2  
4
VCLK  
DCAN3  
5
VCLK  
ESRAM1(2)  
MIBSPI1  
MIBSPI3  
MIBSPI5  
VIM  
6
HCLK  
VCLK  
266280  
7
33440  
33440  
33440  
12560  
4200  
8
VCLK  
9
VCLK  
10  
11  
12  
13  
14  
VCLK  
MIBADC1  
DMA  
VCLK  
HCLK  
VCLK  
18960  
31680  
6480  
N2HET1  
HTU1  
VCLK  
FLEXRAY I/O  
buffer,  
Transient  
16(3)  
VCLK  
Dual Port  
75400  
Buffer, FTU  
Control Packet  
FLEXRAY  
Message RAM  
17(4)  
VCLK  
Single Port  
133160  
266280  
MIBADC2  
N2HET2  
HTU2  
18  
19  
20  
21  
VCLK  
VCLK  
VCLK  
HCLK  
Dual Port  
Dual Port  
Dual Port  
Single Port  
4200  
31680  
6480  
ESRAM5(5)  
(1) There are several memory testing algorithms stored in the PBIST ROM. However, TI recommends the March13N algorithm for  
application testing.  
(2) ESRAM1: Address 0x08000000 - 0x0800FFFF  
(3) This RAM group includes the FTU control packet RAM, the FlexRay controller's I/O buffer, and the transient buffer.  
(4) This RAM group inclludes the FlexRay controller's message RAM  
(5) ESRAM5: Address 0x08010000 - 0x0801FFFF  
The PBIST ROM clock frequency is limited to 100MHz, if 100MHz < HCLK <= HCLKmax, or HCLK, if  
HCLK <= 100MHz.  
The PBIST ROM clock is divided down from HCLK. The divider is selected by programming the ROM_DIV  
field of the Memory Self-Test Global Control Register (MSTGCR) at address 0xFFFFFF58.  
82  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
6.13.2 On-Chip SRAM Auto Initialization  
This microcontroller allows some of the on-chip memories to be initialized through the Memory Hardware  
Initialization mechanism in the System module. This hardware mechanism allows an application to  
program the memory arrays with error detection capability to a known state based on their error detection  
scheme (odd/even parity or ECC).  
The MINITGCR register enables the memory initialization sequence, and the MSINENA register selects  
the memories that are to be initialized.  
For more information on these registers see TMS570LS12x/11x Technical Reference Manual (SPNU515).  
The mapping of the different on-chip memories to the specific bits of the MSINENA registers is shown in  
Table 6-26.  
Table 6-26. Memory Initialization  
ADDRESS RANGE  
CONNECTING MODULE  
MSINENA REGISTER BIT #  
BASE ADDRESS  
0x08000000  
0x08010000  
0xFF0A0000  
0xFF0C0000  
0xFF0E0000  
0xFF1A0000  
0xFF1C0000  
0xFF1E0000  
ENDING ADDRESS  
0x0800FFFF  
0x0801FFFF  
0xFF0BFFFF  
0xFF0DFFFF  
0xFF0FFFFF  
0xFF1BFFFF  
0xFF1DFFFF  
0xFF1FFFFF  
RAM (PD#1)  
RAM (RAM_PD#1)  
MIBSPI5 RAM  
MIBSPI3 RAM  
MIBSPI1 RAM  
DCAN3 RAM  
DCAN2 RAM  
DCAN1 RAM  
FlexRay RAM  
MIBADC2 RAM  
MIBADC1 RAM  
N2HET2 RAM  
N2HET1 RAM  
HTU2 RAM  
0(1)  
0(1)  
12(2)  
11(2)  
7(2)  
10  
6
5
RAM is not CPU-Addressable  
n/a(3)  
14  
8
0xFF3A0000  
0xFF3E0000  
0xFF440000  
0xFF460000  
0xFF4C0000  
0xFF4E0000  
0xFFF80000  
0xFFF82000  
0xFF500000  
0xFF3BFFFF  
0xFF3FFFFF  
0xFF45FFFF  
0xFF47FFFF  
0xFF4DFFFF  
0xFF4FFFFF  
0xFFF80FFF  
0xFFF82FFF  
0xFF51FFFF  
15  
3
16  
4
HTU1 RAM  
DMA RAM  
1
VIM RAM  
2
FlexRay TU (FTU) RAM  
13  
(1) The TCM RAM interface module has separate control bits to select the RAM power domain that is to be auto-initialized.  
(2) The MibSPIx modules perform an initialization of the transmit and receive RAMs as soon as the module is released from its local reset..  
This is independent of whether the application chooses to initialize the MibSPIx RAMs using the system module auto-initialization  
method. The MibSPIx module must be first brought out of its local reset in order to use the system module auto-initialization method.  
(3) Reserved only. The FlexRay RAM has its own initialization mechanism.  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
83  
 
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.14 External Memory Interface (EMIF)  
6.14.1 Features  
The EMIF includes many features to enhance the ease and flexibility of connecting to external  
asynchronous memories or SDRAM devices. The EMIF features includes support for:  
3 addressable chip select for asynchronous memories of up to 32KB each  
1 addressable chip select space for SDRAMs up to 128MB  
8 or 16-bit data bus width  
Programmable cycle timings such as setup, strobe, and hold times as well as turnaround time  
Select strobe mode  
Extended Wait mode  
Data bus parking  
6.14.2 Electrical and Timing Specifications  
6.14.2.1 Asynchronous RAM  
3
1
EMIF_nCS[3:2]  
EMIF_BA[1:0]  
EMIF_ADDR[12:0]  
EMIF_nDQM[1:0]  
4
8
5
9
6
7
29  
30  
10  
EMIF_nOE  
13  
12  
EMIF_DATA[15:0]  
EMIF_nWE  
Figure 6-12. Asynchronous Memory Read Timing  
84  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Extended Due to EMIF_WAIT  
SETUP  
STROBE  
STROBE HOLD  
EMIF_nCS[3:2]  
EMIF_BA[1:0]  
EMIF_ADDR[12:0]  
EMIF_DATA[15:0]  
14  
11  
EMIF_nOE  
EMIF_WAIT  
2
2
Asserted  
Deasserted  
Figure 6-13. EMIFnWAIT Read Timing Requirements  
15  
1
EMIF_nCS[3:2]  
EMIF_BA[1:0]  
EMIF_ADDR[12:0]  
EMIF_nDQM[1:0]  
16  
18  
17  
19  
21  
23  
20  
24  
22  
EMIF_nWE  
27  
26  
EMIF_DATA[15:0]  
EMIF_nOE  
Figure 6-14. Asynchronous Memory Write Timing  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
85  
 
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Extended Due to EMIF_WAIT  
SETUP  
STROBE  
STROBE HOLD  
EMIF_nCS[3:2]  
EMIF_BA[1:0]  
EMIF_ADDR[12:0]  
EMIF_DATA[15:0]  
28  
25  
EMIF_nWE  
EMIF_WAIT  
2
2
Asserted  
Deasserted  
Figure 6-15. EMIFnWAIT Write Timing Requirements  
Table 6-27. EMIF Asynchronous Memory Timing Requirements(1)  
NO.  
Value  
Unit  
MIN  
Reads and Writes  
11  
NOM  
MAX  
E
EMIF clock period  
ns  
ns  
2
tw(EM_WAIT)  
Pulse duration, EMIF_nWAIT  
assertion and deassertion  
2E  
Reads  
12  
13  
14  
tsu(EMDV-EMOEH)  
th(EMOEH-EMDIV)  
tsu(EMOEL-EMWAIT)  
Setup time, EMIF_DATA[15:0]  
valid before EMIFnOE high  
9
0
ns  
ns  
ns  
Hold time, EMIF_DATA[15:0]  
valid after EMIF_nOE high  
Setup Time, EMIF_nWAIT  
asserted before end of Strobe  
Phase(2)  
4E+9  
Writes  
28  
tsu(EMWEL-EMWAIT)  
Setup Time, EMIF_nWAIT  
asserted before end of Strobe  
Phase(2)  
4E+14  
ns  
(1) E = EMIF_CLK period in ns.  
(2) Setup before end of STROBE phase (if no extended wait states are inserted) by which EMIFnWAIT must be asserted to add extended  
wait states. Figure 6-13 and Figure 6-15 describe EMIF transactions that include extended wait states inserted during the STROBE  
phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where  
the HOLD phase would begin if there were no extended wait cycles.  
86  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Table 6-28. EMIF Asynchronous Memory Switching Characteristics(1)(2)(3)  
NO  
PARAMETER  
Value  
NOM  
UNIT  
MIN  
MAX  
Reads and Writes  
1
3
td(TURNAROUND)  
Turnaround time  
(TA)*E - 4  
Reads  
(RS+RST+RH)* (RS+RST+RH)* (RS+RST+RH)*  
E -3 E + 3  
(RS+RST+RH+( (RS+RST+RH+( (RS+RST+RH+(  
(TA)*E  
(TA)*E + 3  
ns  
tc(EMRCYCLE)  
EMIF read cycle time (EW = 0)  
EMIF read cycle time (EW = 1)  
ns  
ns  
E
EWC*16))*E -3  
EWC*16))*E  
EWC*16))*E +  
3
4
5
6
tsu(EMCEL-EMOEL)  
Output setup time,  
EMIF_nCS[4:2] low to  
EMIF_nOE low (SS = 0)  
(RS)*E-6  
(RS)*E  
(RS)*E+3  
ns  
ns  
ns  
ns  
ns  
Output setup time,  
EMIF_nCS[4:2] low to  
EMIF_nOE low (SS = 1)  
-6  
0
+3  
th(EMOEH-EMCEH)  
Output hold time, EMIF_nOE  
high to EMIF_nCS[4:2] high (SS  
= 0)  
(RH)*E -3  
-3  
(RH)*E  
0
(RH)*E + 5  
+5  
Output hold time, EMIF_nOE  
high to EMIF_nCS[4:2] high (SS  
= 1)  
tsu(EMBAV-EMOEL)  
Output setup time,  
EMIF_BA[1:0] valid to  
EMIF_nOE low  
(RS)*E-6  
(RS)*E  
(RS)*E+3  
7
8
th(EMOEH-EMBAIV)  
tsu(EMAV-EMOEL)  
Output hold time, EMIF_nOE  
high to EMIF_BA[1:0] invalid  
(RH)*E-3  
(RS)*E-6  
(RH)*E  
(RS)*E  
(RH)*E+5  
(RS)*E+3  
ns  
ns  
Output setup time,  
EMIF_ADDR[12:0] valid to  
EMIFnOE low  
9
th(EMOEH-EMAIV)  
Output hold time, EMIF_nOE  
high to EMIF_ADDR[12:0]  
invalid  
(RH)*E-3  
(RH)*E  
(RH)*E+5  
ns  
10  
tw(EMOEL)  
EMIF_nOE active low width (EW  
= 0)  
(RST)*E-3  
(RST)*E  
(RST)*E+3  
ns  
ns  
ns  
ns  
EMIF_nOE active low width (EW (RST+(EWC*16 (RST+(EWC*16 (RST+(EWC*16  
= 1)  
)) *E-3  
))*E  
)) *E+3  
11  
29  
td(EMWAITH-EMOEH)  
tsu(EMDQMV-EMOEL)  
Delay time from EMIF_nWAIT  
deasserted to EMIF_nOE high  
3E+9  
4E  
4E+20  
Output setup time,  
EMIF_nDQM[1:0] valid to  
EMIF_nOE low  
(RS)*E-6  
(RH)*E-3  
(RS)*E  
(RH)*E  
(RS)*E+3  
(RH)*E+5  
30  
15  
th(EMOEH-EMDQMIV)  
Output hold time, EMIF_nOE  
high to EMIF_nDQM[1:0] invalid  
ns  
Writes  
(WS+WST+WH (WS+WST+WH (WS+WST+WH  
)* E-3 )*E )* E+3  
tc(EMWCYCLE)  
EMIF write cycle time (EW = 0)  
EMIF write cycle time (EW = 1)  
ns  
ns  
(WS+WST+WH (WS+WST+WH (WS+WST+WH  
+( EWC*16))*E +(E WC*16))*E +( EWC*16))*E  
-3  
+ 3  
(1) TA = Turnaround, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold,  
MEWC = Maximum external wait cycles. These parameters are programmed through the Asynchronous Bank and Asynchronous Wait  
Cycle Configuration Registers. These support the following ranges of values: TA[4–1], RS[16–1], RST[64–1], RH[8–1], WS[16–1],  
WST[64–1], WH[8–1], and MEWC[1–256]. See the TMS570LS12x/11x Technical Reference Manual (SPNU515) for more information.  
(2) E = EMIF_CLK period in ns.  
(3) EWC = external wait cycles determined by EMIF_nWAIT input signal. EWC supports the following range of values. EWC[256–1]. Note  
that the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. See  
the TMS570LS12x/11x Technical Reference Manual (SPNU515) for more information.  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
87  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Table 6-28. EMIF Asynchronous Memory Switching Characteristics(1)(2)(3) (continued)  
NO  
PARAMETER  
Value  
NOM  
UNIT  
MIN  
MAX  
16  
tsu(EMCEL-EMWEL)  
th(EMWEH-EMCEH)  
tsu(EMDQMV-EMWEL)  
Output setup time,  
EMIF_nCS[4:2] low to  
EMIF_nWE low (SS = 0)  
(WS)*E -3  
(WS)*E  
(WS)*E + 3  
ns  
Output setup time,  
EMIF_nCS[4:2] low to  
EMIF_nWE low (SS = 1)  
-3  
0
+3  
ns  
ns  
ns  
ns  
17  
Output hold time, EMIF_nWE  
high to EMIF_nCS[4:2] high (SS  
= 0)  
(WH)*E-3  
-3  
(WH)*E  
0
(WH)*E+3  
+3  
Output hold time, EMIF_nWE  
high to EMIF_CS[4:2] high (SS =  
1)  
18  
Output setup time,  
EMIF_BA[1:0] valid to  
EMIF_nWE low  
(WS)*E-3  
(WS)*E  
(WS)*E+3  
19  
20  
th(EMWEH-EMDQMIV)  
tsu(EMBAV-EMWEL)  
Output hold time, EMIF_nWE  
high to EMIF_BA[1:0] invalid  
(WH)*E-3  
(WS)*E-3  
(WH)*E  
(WS)*E  
(WH)*E+3  
(WS)*E+3  
ns  
ns  
Output setup time,  
EMIF_BA[1:0] valid to  
EMIF_nWE low  
21  
22  
th(EMWEH-EMBAIV)  
tsu(EMAV-EMWEL)  
Output hold time, EMIF_nWE  
high to EMIF_BA[1:0] invalid  
(WH)*E-3  
(WS)*E-3  
(WH)*E  
(WS)*E  
(WH)*E+3  
(WS)*E+3  
ns  
ns  
Output setup time,  
EMIF_ADDR[12:0] valid to  
EMIF_nWE low  
23  
24  
th(EMWEH-EMAIV)  
Output hold time, EMIF_nWE  
high to EMIF_ADDR[12:0]  
invalid  
(WH)*E-3  
(WH)*E  
(WH)*E+3  
ns  
tw(EMWEL)  
EMIF_nWE active low width  
(EW = 0)  
(WST)*E-3  
(WST)*E  
(WST)*E+3  
ns  
ns  
ns  
ns  
EMIF_nWE active low width  
(EW = 1)  
(WST+(EWC*1 (WST+(EWC*1 (WST+(EWC*1  
6)) *E-3  
6))*E  
6)) *E+3  
25  
26  
td(EMWAITH-EMWEH)  
tsu(EMDV-EMWEL)  
Delay time from EMIF_nWAIT  
deasserted to EMIF_nWE high  
3E+11  
4E  
4E+24  
Output setup time,  
EMIF_DATA[15:0] valid to  
EMIF_nWE low  
(WS)*E-3  
(WS)*E  
(WS)*E+3  
27  
31  
th(EMWEH-EMDIV)  
Output hold time, EMIF_nWE  
high to EMIF_DATA[15:0] invalid  
(WH)*E-3  
(WH)*E-3  
(WH)*E  
(WH)*E  
(WH)*E+3  
(WH)*E+3  
ns  
ns  
tsu(EMDQMV-EMWEL)  
Output setup time,  
EMIF_nDQM[1:0] valid to  
EMIF_nWE low  
32  
th(EMWEH-EMDQMIV)  
Output hold time, EMIF_nWE  
high to EMIF_nDQM[1:0] invalid  
(WH)*E-3  
(WH)*E  
(WH)*E+3  
ns  
88  
System Information and Electrical Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
6.14.2.2 Synchronous Timing  
BASIC SDRAM  
1
READ OPERATION  
2
2
EMIF_CLK  
4
3
5
7
7
EMIF_nCS[0]  
6
EMIF_nDQM[1:0]  
EMIF_BA[1:0]  
8
8
EMIF_ADDR[12:0]  
19  
20  
2 EM_CLK Delay  
18  
17  
EMIF_DATA[15:0]  
EMIF_nRAS  
11  
12  
13  
14  
EMIF_nCAS  
EMIF_nWE  
Figure 6-16. Basic SDRAM Read Operation  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
89  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
1
BASIC SDRAM  
WRITE OPERATION  
2
2
EMIF_CLK  
EMIF_CS[0]  
3
5
7
7
9
4
6
EMIF_DQM[1:0]  
EMIF_BA[1:0]  
8
8
EMIF_ADDR[12:0]  
10  
EMIF_DATA[15:0]  
EMIF_nRAS  
EMIF_nCAS  
EMIF_nWE  
11  
12  
13  
15  
16  
Figure 6-17. Basic SDRAM Write Operation  
Table 6-29. EMIF Synchronous Memory Timing Requirements  
NO.  
Parameter  
tsu(EMIFDV-EM_CLKH)  
MIN  
MAX  
Unit  
19  
Input setup time, read data valid on  
EMIF_DATA[15:0] before EMIF_CLK  
rising  
2
ns  
20  
th(CLKH-DIV)  
Input hold time, read data valid on  
EMIF_DATA[15:0] after EMIF_CLK  
rising  
2
ns  
Table 6-30. EMIF Synchronous Memory Switching Characteristics  
NO.  
1
Parameter  
tc(CLK)  
MIN  
22  
5
MAX  
Unit  
ns  
Cycle time, EMIF clock EMIF_CLK  
2
tw(CLK)  
Pulse width, EMIF clock EMIF_CLK  
high or low  
ns  
3
4
5
6
7
td(CLKH-CSV)  
toh(CLKH-CSIV)  
td(CLKH-DQMV)  
toh(CLKH-DQMIV)  
td(CLKH-AV)  
Delay time, EMIF_CLK rising to  
EMIF_nCS[0] valid  
13  
13  
13  
ns  
ns  
ns  
ns  
ns  
Output hold time, EMIF_CLK rising to  
EMIF_nCS[0] invalid  
1
1
Delay time, EMIF_CLK rising to  
EMIF_nDQM[1:0] valid  
Output hold time, EMIF_CLK rising to  
EMIF_nDQM[1:0] invalid  
Delay time, EMIF_CLK rising to  
EMIF_ADDR[12:0] and EMIFBA[1:0]  
valid  
90  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Table 6-30. EMIF Synchronous Memory Switching Characteristics (continued)  
NO.  
Parameter  
MIN  
MAX  
13  
13  
13  
13  
7
Unit  
8
toh(CLKH-AIV)  
Output hold time, EMIF_CLK rising to  
EMIF_ADDR[12:0] and EMIF_BA[1:0]  
invalid  
1
ns  
9
td(CLKH-DV)  
Delay time, EMIF_CLK rising to  
EMIF_DATA[15:0] valid  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
11  
12  
13  
14  
15  
16  
17  
18  
toh(CLKH-DIV)  
td(CLKH-RASV)  
toh(CLKH-RASIV)  
td(CLKH-CASV)  
toh(CLKH-CASIV)  
td(CLKH-WEV)  
toh(CLKH-WEIV)  
tdis(CLKH-DHZ)  
tena(CLKH-DLZ)  
Output hold time, EMIF_CLK rising to  
EMIF_DATA[15:0] invalid  
1
1
1
1
1
Delay time, EMIF_CLK rising to  
EMIF_nRAS valid  
Output hold time, EMIF_CLK rising to  
EMIF_nRAS invalid  
Delay time, EMIF_CLK rising to  
EMIF_nCAS valid  
Output hold time, EMIF_CLK rising to  
EMIF_nCAS invalid  
Delay time, EMIF_CLK rising to  
EMIF_nWE valid  
Output hold time, EMIF_CLK rising to  
EMIF_nWE invalid  
Delay time, EMIF_CLK rising to  
EMIF_DATA[15:0] tri-stated  
Output hold time, EMIF_CLK rising to  
EMIF_DATA[15:0] driving  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
91  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.15 Vectored Interrupt Manager  
The vectored interrupt manager (VIM) provides hardware assistance for prioritizing and controlling the  
many interrupt sources present on this device. Interrupts are caused by events outside of the normal flow  
of program execution. Normally, these events require a timely response from the central processing unit  
(CPU); therefore, when an interrupt occurs, the CPU switches execution from the normal program flow to  
an interrupt service routine (ISR).  
6.15.1 VIM Features  
The VIM module has the following features:  
Supports 128 interrupt channels.  
Provides programmable priority and enable for interrupt request lines.  
Provides a direct hardware dispatch mechanism for fastest IRQ dispatch.  
Provides two software dispatch mechanisms when the CPU VIC port is not used.  
Index interrupt  
Register vectored interrupt  
Parity protected vector interrupt table against soft errors.  
6.15.2 Interrupt Request Assignments  
Table 6-31. Interrupt Request Assignments  
Modules  
Interrupt Sources  
Default VIM Interrupt  
Channel  
ESM  
Reserved  
RTI  
ESM High level interrupt (NMI)  
Reserved  
0
1
RTI compare interrupt 0  
RTI compare interrupt 1  
RTI compare interrupt 2  
RTI compare interrupt 3  
RTI overflow interrupt 0  
RTI overflow interrupt 1  
RTI timebase interrupt  
GIO interrupt A  
2
RTI  
3
RTI  
4
RTI  
5
RTI  
6
RTI  
7
RTI  
8
GIO  
9
N2HET1  
HTU1  
MIBSPI1  
LIN  
N2HET1 level 0 interrupt  
HTU1 level 0 interrupt  
MIBSPI1 level 0 interrupt  
LIN level 0 interrupt  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
MIBADC1  
MIBADC1  
DCAN1  
SPI2  
MIBADC1 event group interrupt  
MIBADC1 sw group 1 interrupt  
DCAN1 level 0 interrupt  
SPI2 level 0 interrupt  
FlexRay level 0 interrupt  
CRC Interrupt  
FlexRay  
CRC  
ESM  
ESM Low level interrupt  
Software interrupt (SSI)  
PMU Interrupt  
SYSTEM  
CPU  
GIO  
GIO interrupt B  
N2HET1  
HTU1  
MIBSPI1  
N2HET1 level 1 interrupt  
HTU1 level 1 interrupt  
MIBSPI1 level 1 interrupt  
92  
System Information and Electrical Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Table 6-31. Interrupt Request Assignments (continued)  
Modules  
Interrupt Sources  
Default VIM Interrupt  
Channel  
LIN  
MIBADC1  
DCAN1  
SPI2  
LIN level 1 interrupt  
MIBADC1 sw group 2 interrupt  
DCAN1 level 1 interrupt  
SPI2 level 1 interrupt  
MIBADC1 magnitude compare interrupt  
FlexRay level 1 interrupt  
FTCA interrupt  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
73  
74  
75  
76-79  
80  
81  
82  
MIBADC1  
FlexRay  
DMA  
DMA  
LFSA interrupt  
DCAN2  
Reserved  
MIBSPI3  
MIBSPI3  
DMA  
DCAN2 level 0 interrupt  
Reserved  
MIBSPI3 level 0 interrupt  
MIBSPI3 level 1 interrupt  
HBCA interrupt  
DMA  
BTCA interrupt  
EMIF  
AEMIFINT3  
DCAN2  
Reserved  
DCAN1  
DCAN3  
DCAN2  
FPU  
DCAN2 level 1 interrupt  
Reserved  
DCAN1 IF3 interrupt  
DCAN3 level 0 interrupt  
DCAN2 IF3 interrupt  
FPU interrupt  
FlexRay TU (FTU)  
SPI4  
FTU Transfer Status interrupt  
SPI4 level 0 interrupt  
MibADC2 event group interrupt  
MibADC2 sw group1 interrupt  
FlexRay T0C interrupt  
MIBSPI5 level 0 interrupt  
SPI4 level 1 interrupt  
DCAN3 level 1 interrupt  
MIBSPI5 level 1 interrupt  
MibADC2 sw group2 interrupt  
FTU Error interrupt  
MIBADC2  
MIBADC2  
FlexRay  
MIBSPI5  
SPI4  
DCAN3  
MIBSPI5  
MIBADC2  
FlexRay TU (FTU)  
MIBADC2  
DCAN3  
FMC  
MibADC2 magnitude compare interrupt  
DCAN3 IF3 interrupt  
FSM_DONE interrupt  
FlexRay T1C interrupt  
N2HET2 level 0 interrupt  
SCI level 0 interrupt  
FlexRay  
N2HET2  
SCI  
HTU2  
HTU2 level 0 interrupt  
I2C level 0 interrupt  
I2C  
N2HET2  
SCI  
N2HET2 level 1 interrupt  
SCI level 1 interrupt  
HTU2  
HTU2 level 1 interrupt  
Reserved  
Reserved  
HWAG1  
HWAG2  
DCC1  
HWA_INT_REQ_H  
HWA_INT_REQ_H  
DCC done interrupt  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
93  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Table 6-31. Interrupt Request Assignments (continued)  
Modules  
Interrupt Sources  
Default VIM Interrupt  
Channel  
DCC2  
DCC2 done interrupt  
Reserved  
83  
Reserved  
84  
PBIST Controller  
Reserved  
PBIST Done Interrupt  
Reserved  
85  
86-87  
88  
HWAG1  
HWA_INT_REQ_L  
HWA_INT_REQ_L  
ePWM1 Interrupt  
HWAG2  
89  
ePWM1INTn  
ePWM1TZINTn  
ePWM2INTn  
ePWM2TZINTn  
ePWM3INTn  
ePWM3TZINTn  
ePWM4INTn  
ePWM4TZINTn  
ePWM5INTn  
ePWM5TZINTn  
ePWM6INTn  
ePWM6TZINTn  
ePWM7INTn  
ePWM7TZINTn  
eCAP1INTn  
eCAP2INTn  
eCAP3INTn  
eCAP4INTn  
eCAP5INTn  
eCAP6INTn  
eQEP1INTn  
eQEP2INTn  
Reserved  
90  
ePWM1 Trip Zone Interrupt  
ePWM2 Interrupt  
91  
92  
ePWM2 Trip Zone Interrupt  
ePWM3 Interrupt  
93  
94  
ePWM3 Trip Zone Interrupt  
ePWM4 Interrupt  
95  
96  
ePWM4 Trip Zone Interrupt  
ePWM5 Interrupt  
97  
98  
ePWM5 Trip Zone Interrupt  
ePWM6 Interrupt  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112-127  
ePWM6 Trip Zone Interrupt  
ePWM7 Interrupt  
ePWM7 Trip Zone Interrupt  
eCAP1 Interrupt  
eCAP2 Interrupt  
eCAP3 Interrupt  
eCAP4 Interrupt  
eCAP5 Interrupt  
eCAP6 Interrupt  
eQEP1 Interrupt  
eQEP2 Interrupt  
Reserved  
NOTE  
Address location 0x00000000 in the VIM RAM is reserved for the phantom interrupt ISR  
entry; therefore only request channels 0..126 can be used and are offset by 1 address in the  
VIM RAM.  
NOTE  
The EMIF_nWAIT signal has a pull-up on it. The EMIF module generates a "Wait Rise"  
interrupt whenever it detects a rising edge on the EMIF_nWAIT signal. This interrupt  
condition is indicated as soon as the device is powered up. This can be ignored if the  
EMIF_nWAIT signal is not used in the application. If the EMIF_nWAIT signal is actually used  
in the application, then the external slave memory must always drive the EMIF_nWAIT signal  
such that an interrupt is not caused due to the default pull-up on this signal.  
NOTE  
The lower-order interrupt channels are higher priority channels than the higher-order interrupt  
channels.  
94  
System Information and Electrical Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
NOTE  
The application can change the mapping of interrupt sources to the interrupt channels  
through the interrupt channel control registers (CHANCTRLx) inside the VIM module.  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
95  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.16 DMA Controller  
The DMA controller is used to transfer data between two locations in the memory map in the background  
of CPU operations. Typically, the DMA is used to:  
Transfer blocks of data between external and internal data memories  
Restructure portions of internal data memory  
Continually service a peripheral  
6.16.1 DMA Features  
CPU independent data transfer  
One 64-bit master port that interfaces to the RM4x Memory System.  
FIFO buffer(4 entries deep and each 64bit wide)  
Channel control information is stored in RAM protected by parity  
16 channels with individual enable  
Channel chaining capability  
32 peripheral DMA requests  
Hardware and Software DMA requests  
8, 16, 32 or 64-bit transactions supported  
Multiple addressing modes for source/destination (fixed, increment, offset)  
Auto-initiation  
Power-management mode  
Memory Protection with four configurable memory regions  
96  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
6.16.2 Default DMA Request Map  
The DMA module on this microcontroller has 16 channels and up to 32 hardware DMA requests. The  
module contains DREQASIx registers which are used to map the DMA requests to the DMA channels. By  
default, channel 0 is mapped to request 0, channel 1 to request 1, and so on.  
Some DMA requests have multiple sources, as shown in Table 6-32. The application must ensure that  
only one of these DMA request sources is enabled at any time.  
Table 6-32. DMA Request Line Connection  
Modules  
MIBSPI1  
DMA Request Sources  
MIBSPI1[1](1)  
DMA Request  
DMAREQ[0]  
DMAREQ[1]  
DMAREQ[2]  
DMAREQ[3]  
DMAREQ[4]  
DMAREQ[5]  
DMAREQ[6]  
DMAREQ[7]  
DMAREQ[8]  
DMAREQ[9]  
DMAREQ[10]  
DMAREQ[11]  
DMAREQ[12]  
DMAREQ[13]  
DMAREQ[16]  
DMAREQ[17]  
DMAREQ[20]  
MIBSPI1  
MIBSPI1[0](2)  
SPI2  
SPI2 receive  
SPI2  
SPI2 transmit  
MIBSPI1 / MIBSPI3 / DCAN2  
MIBSPI1 / MIBSPI3 / DCAN2  
DCAN1 / MIBSPI5  
MIBSPI1[2] / MIBSPI3[2] / DCAN2 IF3  
MIBSPI1[3] / MIBSPI3[3] / DCAN2 IF2  
DCAN1 IF2 / MIBSPI5[2]  
MIBADC1 / MIBSPI5  
MIBADC1 event / MIBSPI5[3]  
MIBSPI1 / MIBSPI3 / DCAN1  
MIBSPI1 / MIBSPI3 / DCAN2  
MIBADC1 / I2C / MIBSPI5  
MIBADC1 / I2C / MIBSPI5  
RTI / MIBSPI1 / MIBSPI3  
RTI / MIBSPI1 / MIBSPI3  
MIBSPI1 / MIBSPI3 / DCAN1 / MibADC2  
MIBSPI1 / MIBSPI3 / DCAN3 / MibADC2  
N2HET1 / N2HET2 / DCAN3  
MIBSPI1[4] / MIBSPI3[4] / DCAN1 IF1  
MIBSPI1[5] / MIBSPI3[5] / DCAN2 IF1  
MIBADC1 G1 / I2C receive / MIBSPI5[4]  
MIBADC1 G2 / I2C transmit / MIBSPI5[5]  
RTI DMAREQ0 / MIBSPI1[6] / MIBSPI3[6]  
RTI DMAREQ1 / MIBSPI1[7] / MIBSPI3[7]  
MIBSPI1[8] / MIBSPI3[8] / DCAN1 IF3 / MibADC2 G1  
MIBSPI1[9] / MIBSPI3[9] / DCAN3 IF1 / MibADC2 G2  
N2HET1 DMAREQ[4] / N2HET2 DMAREQ[4] / DCAN3  
IF2  
N2HET1 / N2HET2 / DCAN3  
N2HET1 DMAREQ[5] / N2HET2 DMAREQ[5] / DCAN3  
IF3  
DMAREQ[21]  
MIBSPI1 / MIBSPI3 / MIBSPI5  
MIBSPI1 / MIBSPI3 / MIBSPI5  
MIBSPI1[10] / MIBSPI3[10] / MIBSPI5[10]  
MIBSPI1[11] / MIBSPI3[11] / MIBSPI5[11]  
DMAREQ[22]  
DMAREQ[23]  
DMAREQ[24]  
N2HET1 / N2HET2 / SPI4 / MIBSPI5  
N2HET1 DMAREQ[6] / N2HET2 DMAREQ[6] / SPI4  
receive / MIBSPI5[12]  
N2HET1 / N2HET2 / SPI4 / MIBSPI5  
N2HET1 DMAREQ[7] / N2HET2 DMAREQ[7] / SPI4  
transmit / MIBSPI5[13]  
DMAREQ[25]  
CRC / MIBSPI1 / MIBSPI3  
CRC / MIBSPI1 / MIBSPI3  
CRC DMAREQ[0] / MIBSPI1[12] / MIBSPI3[12]  
CRC DMAREQ[1] / MIBSPI1[13] / MIBSPI3[13]  
DMAREQ[26]  
DMAREQ[27]  
DMAREQ[30]  
MIBSPI1 / MIBSPI3 / SCI / MIBSPI5  
MIBSPI1[14] / MIBSPI3[14] / SCI receive /  
MIBSPI5[1](1)  
MIBSPI1 / MIBSPI3 / SCI / MIBSPI5  
MIBSPI1[15] / MIBSPI3[15] / SCI transmit /  
MIBSPI5[0](2)  
DMAREQ[31]  
(1) Receive DMA when configured in standard SPI mode  
(2) Transmit DMA when configured in standard SPI mode  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
97  
 
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.17 Real Time Interrupt Module  
The real-time interrupt (RTI) module provides timer functionality for operating systems and for  
benchmarking code. The RTI module can incorporate several counters that define the timebases needed  
for scheduling an operating system.  
The timers also allow you to benchmark certain areas of code by reading the values of the counters at the  
beginning and the end of the desired code range and calculating the difference between the values.  
In addition the RTI provides a mechanism to synchronize the operating system to the FlexRay  
communication cycle. Clock supervision can detect issues on the FlexRay bus with an automatic switch to  
an internally generated timebase.  
6.17.1 Features  
The RTI module has the following features:  
Two independent 64 bit counter blocks  
Four configurable compares for generating operating system ticks or DMA requests. Each event can  
be driven by either counter block 0 or counter block 1.  
One counter block usable for application synchronization to FlexRay network including clock  
supervision  
Fast enabling/disabling of events  
Two time-stamp (capture) functions for system or peripheral interrupts, one for each counter block  
6.17.2 Block Diagrams  
Figure 6-18 shows a high-level block diagram for one of the two 64-bit counter blocks inside the RTI  
module. Both the counter blocks are identical except the Network Time Unit (NTUx) inputs are only  
available as time base inputs for the counter block 0.  
31  
0
Compare  
up counter  
RTICPUCx  
OVLINTx  
31  
0
=
Up counter  
RTIUCx  
31  
0
RTICLK  
To Compare  
Unit  
Free running counter  
RTIFRCx  
NTU0  
NTU1  
NTU2  
NTU3  
31  
0
31  
0
Capture  
up counter  
RTICAUCx  
Capture  
free running counter  
RTICAFRCx  
CAP event source 0  
CAP event source 1  
External  
control  
Figure 6-18. Counter Block Diagram  
98  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
31  
Update  
compare  
0
RTIUDCPy  
+
31  
0
DMAREQy  
INTy  
Compare  
RTICOMPy  
From counter  
block 0  
=
From counter  
block 1  
Compare  
control  
Figure 6-19. Compare Block Diagram  
6.17.3 Clock Source Options  
The RTI module uses the RTI1CLK clock domain for generating the RTI time bases.  
The application can select the clock source for the RTI1CLK by configuring the RCLKSRC register in the  
System module at address 0xFFFFFF50. The default source for RTI1CLK is VCLK.  
For more information on clock sources refer to Table 6-8 and Table 6-13.  
6.17.4 Network Time Synchronization Inputs  
The RTI module supports 4 Network Time Unit (NTU) inputs that signal internal system events, and which  
can be used to synchronize the time base used by the RTI module. On this device, these NTU inputs are  
connected as shown below.  
Table 6-33. Network Time Synchronization Inputs  
NTU Input  
Source  
0
1
2
3
FlexRay Macrotick  
FlexRay Start of Cycle  
PLL2 Clock output  
EXTCLKIN1 clock input  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
99  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.18 Error Signaling Module  
The Error Signaling Module (ESM) manages the various error conditions on the RM4x microcontroller. The  
error condition is handled based on a fixed severity level assigned to it. Any severe error condition can be  
configured to drive a low level on a dedicated device terminal called nERROR. This can be used as an  
indicator to an external monitor circuit to put the system into a safe state.  
6.18.1 Features  
The features of the Error Signaling Module are:  
128 interrupt/error channels are supported, divided into 3 different groups  
64 channels with maskable interrupt and configurable error pin behavior  
32 error channels with non-maskable interrupt and predefined error pin behavior  
32 channels with predefined error pin behavior only  
Error pin to signal severe device failure  
Configurable timebase for error signal  
Error forcing capability  
6.18.2 ESM Channel Assignments  
The Error Signaling Module (ESM) integrates all the device error conditions and groups them in the order  
of severity. Group1 is used for errors of the lowest severity while Group3 is used for errors of the highest  
severity. The device response to each error is determined by the severity group it is connected to.  
Table 6-35 shows the channel assignment for each group.  
Table 6-34. ESM Groups  
ERROR GROUP  
Group1  
INTERRUPT CHARACTERISTICS  
maskable, low or high priority  
non-maskable, high priority  
no interrupt generated  
INFLUENCE ON ERROR PIN  
configurable  
fixed  
Group2  
Group3  
fixed  
Table 6-35. ESM Channel Assignments  
ERROR Condition  
Group  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Channels  
Reserved  
0
1
2
3
4
5
6
MibADC2 - RAM parity error  
DMA - MPU configuration violation  
DMA - control packet RAM parity error  
Reserved  
DMA - error on DMA read access, imprecise error  
FMC - correctable ECC error: bus1 and bus2 interfaces  
(does not include accesses to Bank 7)  
N2HET1 - RAM parity error  
HTU1/HTU2 - dual-control packet RAM parity error  
HTU1/HTU2 - MPU configuration violation  
PLL1 - Slip  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
Clock Monitor - oscillator fail  
Flexray - message RAM parity error  
DMA - error on DMA write access, imprecise error  
Flexray TU (FTU) - control packet RAM parity error  
VIM RAM - parity error  
FTU - MPU configuration violation  
MibSPI1 - RAM parity error  
MibSPI3 - RAM parity error  
100  
System Information and Electrical Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Table 6-35. ESM Channel Assignments (continued)  
ERROR Condition  
MibADC1 - RAM parity error  
Reserved  
Group  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Channels  
19  
20  
DCAN1 - RAM parity error  
DCAN3 - RAM parity error  
DCAN2 - RAM parity error  
MibSPI5 - RAM parity error  
Reserved  
21  
22  
23  
24  
25  
RAM even bank (B0TCM) - correctable ECC error  
CPU - self-test failed  
26  
27  
RAM odd bank (B1TCM) - correctable ECC error  
Reserved  
28  
29  
DCC1 - error  
30  
CCM-R4 - self-test failed  
Reserved  
31  
32  
Reserved  
33  
N2HET2 - RAM parity error  
FMC - correctable ECC error (Bank 7 access)  
FMC - uncorrectable ECC error (Bank 7 access)  
34  
35  
36  
IOMM - Access to unimplemented location in IOMM frame, or write access  
detected in unprivileged mode  
37  
Power domain controller compare error  
Power domain controller self-test error  
Group1  
Group1  
Group1  
38  
39  
40  
eFuse Controller Error – this error signal is generated when any bit in the eFuse  
controller error status register is set. The application can choose to generate an  
interrupt whenever this bit is set to service any eFuse controller error conditions.  
eFuse Controller - Self Test Error. This error signal is generated only when a self  
test on the eFuse controller generates an error condition. When an ECC self test  
error is detected, group 1 channel 40 error signal will also be set.  
Group1  
41  
PLL#2 - Slip  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
DCC2 - error  
Reserved  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
42  
43  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
101  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Table 6-35. ESM Channel Assignments (continued)  
ERROR Condition  
Group  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Channels  
Reserved  
0
1
Reserved  
CCMR4 - dual-CPU lock-step error  
2
Reserved  
3
FMC - uncorrectable address parity error on accesses to main flash  
4
Reserved  
5
RAM even bank (B0TCM) - uncorrectable redundant address decode error  
6
Reserved  
7
RAM odd bank (B1TCM) - uncorrectable redundant address decode error  
8
Reserved  
9
RAM even bank (B0TCM) - address bus parity error  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0
Reserved  
RAM odd bank (B1TCM) - address bus parity error  
Reserved  
Reserved  
Reserved  
TCM - ECC live lock detect  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Windowed Watchdog (WWD) violation  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
eFuse Farm - autoload error  
Reserved  
1
2
RAM even bank (B0TCM) - ECC uncorrectable error  
Reserved  
3
4
RAM odd bank (B1TCM) - ECC uncorrectable error  
Reserved  
5
6
FMC - uncorrectable ECC error: ATCM and Flash OTP interfaces  
(does not include address parity error and errors on accesses to Bank 7 data  
memory)  
7
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
8
9
10  
11  
12  
13  
102  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Copyright © 2012–2015, Texas Instruments Incorporated  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Table 6-35. ESM Channel Assignments (continued)  
ERROR Condition  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Group  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Channels  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
103  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.19 Reset / Abort / Error Sources  
Table 6-36. Reset/Abort/Error Sources  
ESM HOOKUP  
group.channel  
ERROR SOURCE  
SYSTEM MODE  
ERROR RESPONSE  
CPU TRANSACTIONS  
User/Privilege  
Precise write error (NCNB/Strongly Ordered)  
Precise read error (NCB/Device or Normal)  
Imprecise write error (NCB/Device or Normal)  
Precise Abort (CPU)  
Precise Abort (CPU)  
Imprecise Abort (CPU)  
n/a  
n/a  
n/a  
User/Privilege  
User/Privilege  
Undefined Instruction Trap  
(CPU)(1)  
Illegal instruction  
User/Privilege  
n/a  
n/a  
MPU access violation  
User/Privilege  
SRAM  
Abort (CPU)  
B0 TCM (even) ECC single error (correctable)  
User/Privilege  
ESM  
1.26  
3.3  
Abort (CPU), ESM =>  
nERROR  
B0 TCM (even) ECC double error (non-correctable)  
User/Privilege  
B0 TCM (even) uncorrectable error (for example, redundant  
address decode)  
User/Privilege  
ESM => NMI => nERROR  
2.6  
B0 TCM (even) address bus parity error  
User/Privilege  
User/Privilege  
ESM => NMI => nERROR  
ESM  
2.10  
1.28  
B1 TCM (odd) ECC single error (correctable)  
Abort (CPU), ESM =>  
nERROR  
B1 TCM (odd) ECC double error (non-correctable)  
User/Privilege  
3.5  
B1 TCM (odd) uncorrectable error (for example, redundant  
address decode)  
User/Privilege  
User/Privilege  
ESM => NMI => nERROR  
ESM => NMI => nERROR  
2.8  
B1 TCM (odd) address bus parity error  
2.12  
FLASH WITH CPU BASED ECC  
FMC correctable error - Bus1 and Bus2 interfaces (does not  
include accesses to Bank 7)  
User/Privilege  
User/Privilege  
User/Privilege  
ESM  
1.6  
3.7  
2.4  
FMC uncorrectable error - Bus1 and Bus2 accesses  
(does not include address parity error)  
Abort (CPU), ESM =>  
nERROR  
FMC uncorrectable error - address parity error on Bus1  
accesses  
ESM => NMI => nERROR  
FMC correctable error - Accesses to Bank 7  
FMC uncorrectable error - Accesses to Bank 7  
User/Privilege  
User/Privilege  
ESM  
ESM  
1.35  
1.36  
DMA TRANSACTIONS  
External imprecise error on read (Illegal transaction with ok  
response)  
User/Privilege  
User/Privilege  
ESM  
ESM  
1.5  
External imprecise error on write (Illegal transaction with ok  
response)  
1.13  
Memory access permission violation  
Memory parity error  
User/Privilege  
User/Privilege  
ESM  
ESM  
1.2  
1.3  
High-End Timer Transfer Unit 1 (HTU1)  
NCNB (Strongly Ordered) transaction with slave error response  
User/Privilege  
User/Privilege  
User/Privilege  
User/Privilege  
Interrupt => VIM  
Interrupt => VIM  
ESM  
n/a  
n/a  
1.9  
1.8  
External imprecise error (Illegal transaction with ok response)  
Memory access permission violation  
Memory parity error  
ESM  
High-End Timer Transfer Unit 2 (HTU2)  
NCNB (Strongly Ordered) transaction with slave error response  
User/Privilege  
User/Privilege  
User/Privilege  
User/Privilege  
Interrupt => VIM  
Interrupt => VIM  
ESM  
n/a  
n/a  
1.9  
1.8  
External imprecise error (Illegal transaction with ok response)  
Memory access permission violation  
Memory parity error  
ESM  
(1) The Undefined Instruction TRAP is NOT detectable outside the CPU. The trap is taken only if the instruction reaches the execute stage  
of the CPU.  
104  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Table 6-36. Reset/Abort/Error Sources (continued)  
ESM HOOKUP  
group.channel  
ERROR SOURCE  
SYSTEM MODE  
ERROR RESPONSE  
N2HET1  
User/Privilege  
Memory parity error  
Memory parity error  
Memory parity error  
ESM  
ESM  
ESM  
1.7  
N2HET2  
User/Privilege  
1.34  
1.12  
FLEXRAY  
User/Privilege  
FLEXRAY Transfer Unit (FTU)  
NCNB (Strongly Ordered) transaction with slave error response  
External imprecise error (Illegal transaction with ok response)  
Memory access permission violation  
User/Privilege  
User/Privilege  
User/Privilege  
User/Privilege  
Interrupt => VIM  
Interrupt => VIM  
ESM  
n/a  
n/a  
1.16  
1.14  
Memory parity error  
ESM  
MIBSPI  
MibSPI1 memory parity error  
MibSPI3 memory parity error  
MibSPI5 memory parity error  
User/Privilege  
User/Privilege  
User/Privilege  
ESM  
ESM  
ESM  
1.17  
1.18  
1.24  
MIBADC  
MibADC1 Memory parity error  
MibADC2 Memory parity error  
User/Privilege  
User/Privilege  
ESM  
ESM  
1.19  
1.1  
DCAN  
DCAN1 memory parity error  
DCAN2 memory parity error  
DCAN3 memory parity error  
User/Privilege  
User/Privilege  
User/Privilege  
PLL  
ESM  
ESM  
ESM  
1.21  
1.23  
1.22  
PLL slip error  
User/Privilege  
User/Privilege  
ESM  
ESM  
1.10  
1.42  
PLL #2 slip error  
CLOCK MONITOR  
User/Privilege  
Clock monitor interrupt  
ESM  
1.11  
DCC  
DCC1 error  
DCC2 error  
User/Privilege  
ESM  
ESM  
1.30  
1.62  
User/Privilege  
CCM-R4  
Self test failure  
Compare failure  
User/Privilege  
ESM  
1.31  
2.2  
User/Privilege  
ESM => NMI => nERROR  
VIM  
Memory parity error  
User/Privilege  
ESM  
Reset  
ESM  
ESM  
1.15  
n/a  
VOLTAGE MONITOR  
n/a  
VMON out of voltage range  
CPU Selftest (LBIST) error  
Mux configuration error  
CPU SELFTEST (LBIST)  
User/Privilege  
1.27  
1.37  
PIN MULTIPLEXING CONTROL  
User/Privilege  
POWER DOMAIN CONTROL  
User/Privilege  
PSCON compare error  
PSCON self-test error  
ESM  
ESM  
1.38  
1.39  
User/Privilege  
eFuse CONTROLLER  
User/Privilege  
eFuse Controller Autoload error  
ESM => nERROR  
ESM  
3.1  
eFuse Controller - Any bit set in the error status register  
User/Privilege  
1.40  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
105  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Table 6-36. Reset/Abort/Error Sources (continued)  
ESM HOOKUP  
group.channel  
ERROR SOURCE  
eFuse Controller self-test error  
SYSTEM MODE  
ERROR RESPONSE  
User/Privilege  
WINDOWED WATCHDOG  
n/a  
ESM  
1.41  
WWD Non-Maskable Interrupt exception  
ESM => NMI => nERROR  
2.24  
ERRORS REFLECTED IN THE SYSESR REGISTER  
Power-Up Reset  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
Reset  
Reset  
Reset  
Reset  
Reset  
Reset  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
Oscillator fail / PLL slip(2)  
Watchdog exception  
CPU Reset (driven by the CPU STC)  
Software Reset  
External Reset  
(2) Oscillator fail/PLL slip can be configured in the system register (SYS.PLLCTL1) to generate a reset.  
106  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
6.20 Digital Windowed Watchdog  
This device includes a digital windowed watchdog (DWWD) module that protects against runaway code  
execution.  
The DWWD module allows the application to configure the time window within which the DWWD module  
expects the application to service the watchdog. A watchdog violation occurs if the application services the  
watchdog outside of this window, or fails to service the watchdog at all. The application can choose to  
generate a system reset or an ESM group2 error signal in case of a watchdog violation.  
The watchdog is disabled by default and must be enabled by the application. Once enabled, the watchdog  
can only be disabled upon a system reset.  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
107  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.21 Debug Subsystem  
6.21.1 Block Diagram  
The device contains an ICEPICK module to allow JTAG access to the scan chains.  
Boundary Scan  
Boundary Scan I/F  
BSR/BSDL  
Debug  
ROM1  
TRST  
TMS  
TCK  
RTCK  
Debug APB  
TDI  
TDO  
DAP  
Secondary Tap 0  
APB Mux  
AHB-AP  
APB slave  
Cortex  
R4F  
POM  
from  
to SCR1 via A2A  
PCR1/Bridge  
Secondary Tap 2  
Test Tap 0  
AJSM  
eFuse Farm  
PSCON  
Test Tap 1  
Figure 6-20. Debug Subsystem Block Diagram  
6.21.2 Debug Components Memory Map  
Table 6-37. Debug Components Memory Map  
FRAME ADDRESS RANGE  
RESPNSE FOR ACCESS TO  
UNIMPLEMENTED LOCATIONS IN  
FRAME  
FRAME CHIP  
SELECT  
FRAME ACTUA  
MODULE NAME  
SIZE  
4KB  
4KB  
L SIZE  
START  
END  
CoreSight Debug  
ROM  
Reads return zeros, writes have no  
effect  
CSCS0  
CSCS1  
0xFFA0_0000  
0xFFA0_0FFF  
4KB  
Cortex-R4F  
Debug  
Reads return zeros, writes have no  
effect  
0xFFA0_1000  
0xFFA0_1FFF  
4KB  
6.21.3 JTAG Identification Code  
The JTAG ID code for this device is the same as the device ICEPick Identification Code.  
Table 6-38. JTAG ID Code  
Silicon Revision  
Rev A  
ID  
0x0B95502F  
0x2B95502F  
0x3B95502F  
Rev B  
Rev C  
108  
System Information and Electrical Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
6.21.4 Debug ROM  
The Debug ROM stores the location of the components on the Debug APB bus:  
Table 6-39. Debug ROM table  
ADDRESS  
0x000  
DESCRIPTION  
pointer to Cortex-R4F  
Reserved  
VALUE  
0x0000 1003  
0x0000 2002  
0x0000 3002  
0x0000 4003  
0x0000 0000  
0x001  
0x002  
Reserved  
0x003  
POM  
0x004  
end of table  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
109  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.21.5 JTAG Scan Interface Timings  
Table 6-40. JTAG Scan Interface Timing(1)  
No.  
Parameter  
Min  
MAX  
Unit  
MHz  
MHz  
ns  
fTCK  
TCK frequency (at HCLKmax)  
12  
fRTCK  
RTCK frequency (at TCKmax and HCLKmax)  
Delay time, TCK to RTCK  
10  
1
2
3
4
5
td(TCK -RTCK)  
tsu(TDI/TMS - RTCKr)  
th(RTCKr -TDI/TMS)  
th(RTCKr -TDO)  
td(TCKf -TDO)  
24  
12  
Setup time, TDI, TMS before RTCK rise (RTCKr)  
Hold time, TDI, TMS after RTCKr  
26  
0
ns  
ns  
Hold time, TDO after RTCKf  
0
ns  
Delay time, TDO valid after RTCK fall (RTCKf)  
ns  
(1) Timings for TDO are specified for a maximum of 50pF load on TDO  
TCK  
RTCK  
1
1
TMS  
TDI  
2
3
TDO  
4
5
Figure 6-21. JTAG Timing  
110  
System Information and Electrical Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
6.21.6 Advanced JTAG Security Module  
This device includes a an Advanced JTAG Security Module (AJSM). which provides maximum security to  
the device’s memory content by allowing users to secure the device after programming.  
Flash Module Output  
OTP Contents  
(example)  
. . .  
. . .  
H
L
H
L
H
L
L
H
Unlock By Scan  
Register  
H
H
L
L
Internal Tie-Offs  
(example only)  
L
L
H
H
UNLOCK  
128-bit comparator  
Internal Tie-Offs  
(example only)  
H
L
L
H
H
L
L
H
Figure 6-22. AJSM Unlock  
The device is unsecure by default by virtue of a 128-bit visible unlock code programmed in the OTP  
address 0xF0000000.The OTP contents are XOR-ed with the "Unlock By Scan" register contents. The  
outputs of these XOR gates are again combined with a set of secret internal tie-offs. The output of this  
combinational logic is compared against a secret hard-wired 128-bit value. A match results in the  
UNLOCK signal being asserted, so that the device is now unsecure.  
A user can secure the device by changing at least one bit in the visible unlock code from 1 to 0. Changing  
a 0 to 1 is not possible since the visible unlock code is stored in the One Time Programmable (OTP) flash  
region. Also, changing all the 128 bits to zeros is not a valid condition and will permanently secure the  
device.  
Once secured, a user can unsecure the device by scanning an appropriate value into the "Unlock By  
Scan" register of the AJSM module. This register is accessible by configuring an IR value of 0b1011 on  
the AJSM TAP. The value to be scanned is such that the XOR of the OTP contents and the Unlock-By-  
Scan register contents results in the original visible unlock code.  
The Unlock-By-Scan register is reset only upon asserting power-on reset (nPORRST).  
A secure device only permits JTAG accesses to the AJSM scan chain through the Secondary Tap # 2 of  
the ICEPick module. All other secondary taps, test taps and the boundary scan interface are not  
accessible in this state.  
Copyright © 2012–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
111  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
6.21.7 Boundary Scan Chain  
The device supports BSDL-compliant boundary scan for testing pin-to-pin compatibility. The boundary  
scan chain is connected to the Boundary Scan Interface of the ICEPICK module.  
Device Pins (conceptual)  
TRST  
TMS  
TCK  
TDI  
Boundary  
Scan  
Boundary Scan Interface  
TDO  
RTCK  
TDI  
TDO  
BSDL  
Figure 6-23. Boundary Scan Implementation (Conceptual Diagram)  
Data is serially shifted into all boundary-scan buffers through TDI, and out through TDO.  
112  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
7 Peripheral Information and Electrical Specifications  
7.1 Enhanced Translator PWM Modules (ePWM)  
Figure 7-1 illustrates the connections between the seven ePWM modules (ePWM1,2,3,4,5,6,7) on the  
device.  
PINMMR36[25]  
NHET1_LOOP_SYNC  
EPWMSYNCI  
EPWM1A  
EPWM1TZINTn  
EPWM1INTn  
VIM  
VIM  
EPWM1B  
TZ1/2/3n  
Mux  
Selector  
SOCA1, SOCB1  
ADC Wrapper  
EPWM1  
VBus32  
EQEP1ERR / EQEP2ERR /  
EQEP1ERR or EQEP2ERR  
OSC FAIL or PLL Slip  
EQEP1 + EQEP2  
System Module  
CPU  
TZ4n  
VCLK4, SYS_nRST  
EPWM1ENCLK  
TBCLKSYNC  
TZ5n  
TZ6n  
Debug Mode Entry  
EPWM2/3/4/5/6A  
EPWM2/3/4/5/6B  
EPWM2/3/4/5/6TZINTn  
EPWM2/3/4/5/6INTn  
VIM  
VIM  
TZ1/2/3n  
ADC Wrapper  
Mux  
Selector  
SOCA2/3/4/5/6  
SOCB2/3/4/5/6  
EPWM  
2/3/4/5/6  
VBus32  
EQEP1ERR / EQEP2ERR /  
EQEP1ERR or EQEP2ERR  
OSC FAIL or PLL Slip  
EQEP1 + EQEP2  
System Module  
CPU  
TZ4n  
VCLK4, SYS_nRST  
EPWM2/3/4/5/6ENCLK  
TBCLKSYNC  
TZ5n  
TZ6n  
Debug Mode Entry  
EPWM7A  
EPWM7TZINTn  
EPWM7INTn  
VIM  
VIM  
EPWM7B  
TZ1/2/3n  
Mux  
Selector  
SOCA7, SOCB7  
ADC Wrapper  
EPWM  
7
VBus32  
EQEP1ERR / EQEP2ERR /  
EQEP1ERR or EQEP2ERR  
OSC FAIL or PLL SLip  
EQEP1 + EQEP2  
System Module  
CPU  
TZ4n  
TZ5n  
TZ6n  
VCLK4, SYS_nRST  
EPWM7ENCLK  
TBCLKSYNC  
Debug Mode Entry  
Pulse  
Stretch,  
8 VCLK4  
cycles  
EPWMSYNCO  
ECAP1  
VBus32 / VBus32DP  
ECAP  
1
ECAP1INTn  
VIM  
Figure 7-1. ePWMx Module Interconnections  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
113  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
7.1.1 ePWM Clocking and Reset  
Each ePWM module has a clock enable (EPWMxENCLK). When SYS_nRST is active low, the clock  
enables are ignored and the ePWM logic is clocked so that it can reset to a proper state. When  
SYS_nRST goes in-active high, the state of clock enable is respected.  
Table 7-1. ePWMx Clock Enable Control  
ePWM Module Instance  
ePWM1  
Control Register to Enable Clock  
PINMMR37[8]  
Default Value  
1
1
1
1
1
1
1
ePWM2  
PINMMR37[16]  
ePWM3  
PINMMR37[24]  
ePWM4  
PINMMR38[0]  
ePWM5  
PINMMR38[8]  
ePWM6  
PINMMR38[16]  
ePWM7  
PINMMR38[24]  
The default value of the control registers to enable the clocks to the ePWMx modules is 1. This means  
that the VCLK4 clock connections to the ePWMx modules are enabled by default. The application can  
choose to gate off the VCLK4 clock to any ePWMx module individually by clearing the respective control  
register bit.  
7.1.2 Synchronization of ePWMx Time Base Counters  
A time-base synchronization scheme connects all of the ePWM modules on a device. Each ePWM  
module has a synchronization input (EPWMxSYNCI) and a synchronization output (EPWMxSYNCO). The  
input synchronization for the first instance (ePWM1) comes from an external pin. Figure 7-1 shows the  
synchronization connections for all the ePWMx modules. Each ePWM module can be configured to use or  
ignore the synchronization input. Refer to the ePWM chapter in the TMS570LS12x/11x Technical  
Reference Manual (SPNU515) for more information.  
7.1.3 Synchronizing all ePWM Modules to the N2HET1 Module Time Base  
The connection between the N2HET1_LOOP_SYNC and SYNCI input of ePWM1 module is implemented  
as shown in Figure 7-2.  
N2HET1_LOOP_SYNC  
EXT_LOOP_SYNC  
N2HET1  
N2HET2  
ePWM1  
2 VCLK4 cycles  
Pulse Strength  
SYNCI  
ePWM1_SYNCI  
ePWM1_SYNCI_SYNCED  
ePWM1_SYNCI_FILTERED  
PINMMR36[25]  
PINMMR47[8,9,10]  
Figure 7-2. Synchronizing Time Bases Between N2HET1, N2HET2 and ePWMx Modules  
114  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
7.1.4 Phase-Locking the Time-Base Clocks of Multiple ePWM Modules  
The TBCLKSYNC bit can be used to globally synchronize the time-base clocks of all enabled ePWM  
modules on a device. This bit is implemented as PINMMR37 register bit 1.  
When TBCLKSYNC = 0, the time-base clock of all ePWM modules is stopped. This is the default  
condition.  
When TBCLKSYNC = 1, all ePWM time-base clocks are started with the rising edge of TBCLK aligned.  
For perfectly synchronized TBCLKs, the prescaler bits in the TBCTL register of each ePWM module must  
be set identically. The proper procedure for enabling the ePWM clocks is as follows:  
1. Enable the individual ePWM module clocks (if disable) using the control registers shown in Table 7-1.  
2. Configure TBCLKSYNC = 0. This will stop the time-base clock within any enabled ePWM module.  
3. Configure the prescaler values and desired ePWM modes.  
4. Configure TBCLKSYNC = 1.  
7.1.5 ePWM Synchronization with External Devices  
The output sync from EPWM1 Module is also exported to a device output terminal so that multiple devices  
can be synchronized together. The signal pulse is stretched by eight VCLK4 cycles before being exported  
on the terminal as the EPWM1SYNCO signal.  
7.1.6 ePWM Trip Zones  
The ePWMx modules have six trip zone inputs each. These are active-low signals. The application can  
control the ePWMx module response to each of the trip zone input separately. The timing requirements  
from the assertion of the trip zone inputs to the actual response are specified in Section 7.1.8.  
7.1.6.1 Trip Zones TZ1n, TZ2n, TZ3n  
These three trip zone inputs are driven by external circuits and are connected to device-level inputs.  
These signals are either connected asynchronously to the ePWMx trip zone inputs, or double-  
synchronized with VCLK4, or double-synchronized and then filtered with a 6-cycle VCLK4-based counter  
before connecting to the ePWMx. By default, the trip zone inputs are asynchronously connected to the  
ePWMx modules.  
Table 7-2. Connection to ePWMx Modules for Device-Level Trip Zone Inputs  
Trip Zone Input  
Control for  
Asynchronous  
Control for Double-Synchronized  
Connection to ePWMx  
Control for Double-Synchronized and Filtered  
Connection to ePWMx  
Connection to ePWMx  
TZ1n  
TZ2n  
TZ3n  
PINMMR46[16] = 1  
PINMMR46[24] = 1  
PINMMR47[0] = 1  
PINMMR46[16] = 0 AND  
PINMMR46[17] = 1  
PINMMR46[16] = 0 AND PINMMR46[17] = 0  
AND PINMMR46[18] = 1  
PINMMR46[24] = 0 AND  
PINMMR46[25] = 1  
PINMMR46[24] = 0 AND PINMMR46[25] = 0  
AND PINMMR46[26] = 1  
PINMMR47[0] = 0 AND PINMMR47[1] PINMMR47[0] = 0 AND PINMMR47[1] = 0 AND  
= 1 PINMMR47[2] = 1  
7.1.6.2 Trip Zone TZ4n  
This trip zone input is dedicated to eQEPx error indications. There are two eQEP modules on this device.  
Each eQEP module indicates a phase error by driving its EQEPxERR output High. The following control  
registers allow the application to configure the trip zone input (TZ4n) to each ePWMx module based on  
the application’s requirements.  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Table 7-3. TZ4n Connections for ePWMx Modules  
ePWMx  
Control for TZ4n =  
not(EQEP1ERR OR  
EQEP2ERR)  
Control for TZ4n = not(EQEP1ERR)  
Control for TZ4n = not(EQEP2ERR)  
ePWM1  
ePWM2  
ePWM3  
ePWM4  
ePWM5  
ePWM6  
ePWM7  
PINMMR41[0] = 1  
PINMMR41[8]  
PINMMR41[16]  
PINMMR41[24]  
PINMMR42[0]  
PINMMR42[8]  
PINMMR42[16]  
PINMMR41[0] = 0 AND PINMMR41[1] PINMMR41[0] = 1 AND PINMMR41[1] = 0 AND  
= 1 PINMMR41[2] = 1  
PINMMR41[8] = 0 AND PINMMR41[9] PINMMR41[8] = 1 AND PINMMR41[9] = 0 AND  
= 1  
PINMMR41[10] = 1  
PINMMR41[16] = 0 AND  
PINMMR41[17] = 1  
PINMMR41[16] = 1 AND PINMMR41[17] = 0  
AND PINMMR41[18] = 1  
PINMMR41[24] = 0 AND  
PINMMR41[25] = 1  
PINMMR41[24] = 1 AND PINMMR41[25] = 0  
AND PINMMR41[26] = 1  
PINMMR42[0] = 0 AND PINMMR42[1] PINMMR42[0] = 1 AND PINMMR42[1] = 0 AND  
= 1 PINMMR42[2] = 1  
PINMMR42[8] = 0 AND PINMMR42[9] PINMMR42[8] = 1 AND PINMMR42[9] = 0 AND  
= 1  
PINMMR42[10] = 1  
PINMMR42[16] = 0 AND  
PINMMR42[17] = 1  
PINMMR42[16] = 1 AND PINMMR42[17] = 0  
AND PINMMR42[18] = 1  
7.1.6.3 Trip Zone TZ5n  
This trip zone input is dedicated to a clock failure on the device. That is, this trip zone input is asserted  
whenever an oscillator failure or a PLL slip is detected on the device. The application can use this trip  
zone input for each ePWMx module in order to prevent the external system from going out of control when  
the device clocks are not within expected range (system running at limp clock).  
The oscillator failure and PLL slip signals used for this trip zone input are taken from the status flags in the  
system module. These are level signals are set until cleared by the application.  
7.1.6.4 Trip Zone TZ6n  
This trip zone input to the ePWMx modules is dedicated to a debug mode entry of the CPU. If enabled,  
the user can force the PWM outputs to a known state when the emulator stops the CPU. This prevents the  
external system from going out of control when the CPU is stopped.  
7.1.7 Triggering of ADC Start of Conversion Using ePWMx SOCA and SOCB Outputs  
A special scheme is implemented in order to select the actual signal used for triggering the start of  
conversion on the two ADCs on this device. This scheme is defined in Section 7.4.2.3.  
7.1.8 Enhanced Translator-Pulse Width Modulator (ePWMx) Timings  
Table 7-4. ePWMx Timing Requirements  
PARAMETER  
TEST CONDITIONS  
Asynchronous  
MIN  
MAX  
UNIT  
cycles  
cycles  
cycles  
tw(SYNCIN)  
Synchronization input pulse width  
2 tc(VCLK4)  
2 tc(VCLK4)  
Synchronous  
Synchronous, with input 2 tc(VCLK4) + filter width  
filter  
Table 7-5. ePWMx Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
33.33  
MAX  
UNIT  
ns  
tw(PWM)  
Pulse duration, ePWMx output high or low  
tw(SYNCOUT Synchronization Output Pulse Width  
8 tc(VCLK4)  
cycles  
)
td(PWM)tza  
Delay time, trip input active to PWM forced high,  
no pin load  
25  
ns  
OR Delay time, trip input active to PWM forced  
low  
116  
Peripheral Information and Electrical Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Table 7-5. ePWMx Switching Characteristics (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
td(TZ-  
Delay time, trip input active to PWM Hi-Z  
20  
ns  
PWM)HZ  
Table 7-6. ePWMx Trip-Zone Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
tw(TZ)  
Pulse duration, TZn input low  
Asynchronous  
2 * HSPCLKDIV *  
CLKDIV * tc(VCLK4)  
ns  
(1)  
Synchronous  
2 tc(VCLK4)  
ns  
ns  
Synchronous, with input  
filter  
8 tc(VCLK4)  
(1) Refer to the ePWM chapter of the TMS570LS12x/11x Technical Reference Manual (SPNU515) for more information on the clock divider  
fields HSPCLKDIV and CLKDIV.  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
117  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
7.2 Enhanced Capture Modules (eCAP)  
Figure 7-3 shows how the eCAP modules are interconnected on this microcontroller.  
EPWM1SYNCO  
ECAP1SYNCI  
ECAP1  
ECAP1INTn  
ECAP1  
VIM  
VBus32  
VCLK4, SYS_nRST  
ECAP1ENCLK  
ECAP1SYNCO  
ECAP2SYNCI  
ECAP2  
ECAP  
ECAP2INTn  
VIM  
2/3/4/5  
VBus32  
VCLK4, SYS_nRST  
ECAP2ENCLK  
ECAP2SYNCO  
ECAP6  
ECAP  
6
VBus32  
VIM  
ECAP6INTn  
VCLK4, SYS_nRST  
ECAP6ENCLK  
Figure 7-3. eCAP Module Connections  
7.2.1 Clock Enable Control for eCAPx Modules  
Each of the ECAPx modules have a clock enable (ECAPxENCLK). These signals need to be generated  
from a device-level control register. When SYS_nRST is active low, the clock enables are ignored and the  
ECAPx logic is clocked so that it can reset to a proper state. When SYS_nRST goes in-active high, the  
state of clock enable is respected.  
118  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Table 7-7. eCAPx Clock Enable Control  
ePWM Module Instance  
Control Register to Enable Clock  
PINMMR39[0]  
Default Value  
eCAP1  
eCAP2  
eCAP3  
eCAP4  
eCAP5  
eCAP6  
1
1
1
1
1
1
PINMMR39[8]  
PINMMR39[16]  
PINMMR39[24]  
PINMMR40[0]  
PINMMR40[8]  
The default value of the control registers to enable the clocks to the eCAPx modules is 1. This means that  
the VCLK4 clock connections to the eCAPx modules are enabled by default. The application can choose  
to gate off the VCLK4 clock to any eCAPx module individually by clearing the respective control register  
bit.  
7.2.2 PWM Output Capability of eCAPx  
When not used in capture mode, each of the eCAPx modules can be used as a single-channel PWM  
output. This is called the auxiliary PWM (APWM) mode of operation of the eCAP modules. Refer to the  
eCAP chapter of the TMS570LS12x/11x Technical Reference Manual (SPNU515) for more information.  
7.2.3 Input Connection to eCAPx Modules  
The input connection to each of the eCAP modules can be selected between a double-VCLK4-  
synchronized input or a double-VCLK4-synchronized and filtered input, as shown in Table 7-8.  
Table 7-8. Device-Level Input Connection to eCAPx Modules  
Input Signal  
Control for Double-Synchronized Connection to  
eCAPx  
Control for Double-Synchronized and Filtered  
Connection to eCAPx  
eCAP1  
eCAP2  
eCAP3  
eCAP4  
eCAP5  
eCAP6  
PINMMR43[0] = 1  
PINMMR43[8] = 1  
PINMMR43[16] = 1  
PINMMR43[24] = 1  
PINMMR44[0] = 1  
PINMMR44[8] = 1  
PINMMR43[0] = 0 AND PINMMR43[1] = 1  
PINMMR43[8] = 0 AND PINMMR43[9] = 1  
PINMMR43[16] = 0 AND PINMMR43[17] = 1  
PINMMR43[24] = 0 AND PINMMR43[25] = 1  
PINMMR44[0] = 0 AND PINMMR44[1] = 1  
PINMMR44[8] = 0 AND PINMMR44[9] = 1  
7.2.4 Enhanced Capture Module (eCAP) Timings  
Table 7-9. eCAPx Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
MAX  
UNIT  
cycles  
cycles  
tw(CAP)  
Capture input pulse width  
Synchronous  
2 tc(VCLK4)  
Synchronous, with input 2 tc(VCLK4) + filter width  
filter  
Table 7-10. eCAPx Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
UNIT  
tw(APWM)  
Pulse duration, APWMx output high or low  
20  
ns  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
119  
 
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
7.3 Enhanced Quadrature Encoder (eQEP)  
Figure 7-4 shows the eQEP module interconnections on the device.  
VBus32  
EQEP1A  
EQEP1B  
EQEP1ENCLK  
VCLK4  
SYS_nRST  
EQEP1I  
EQEP1IO  
EQEP1IOE  
EQEP1  
Module  
EPWM1/../7  
EQEP1INTn  
EQEP1ERR  
VIM  
EQEP1S  
EQEP1SO  
EQEP1SOE  
IO  
Mux  
VBus32  
EQEP2A  
EQEP2B  
EQEP2ENCLK  
VCLK4  
SYS_nRST  
EQEP2I  
EQEP2IO  
EQEP2IOE  
EQEP2  
Module  
EQEP2INTn  
EQEP2ERR  
VIM  
Connection  
Selection  
Mux  
EQEP2S  
EQEP2SO  
EQEP2SOE  
Figure 7-4. eQEP Module Interconnections  
7.3.1 Clock Enable Control for eQEPx Modules  
Device-level control registers are implemented to generate the EQEPxENCLK signals. When SYS_nRST  
is active low, the clock enables are ignored and the eQEPx logic is clocked so that it can reset to a proper  
state. When SYS_nRST goes in-active high, the state of clock enable is respected.  
Table 7-11. eQEPx Clock Enable Control  
ePWM Module Instance  
eQEP1  
Control Register to Enable Clock  
PINMMR40[16]  
Default Value  
1
1
eQEP2  
PINMMR40[24]  
The default value of the control registers to enable the clocks to the eQEPx modules is 1. This means that  
the VCLK4 clock connections to the eQEPx modules are enabled by default. The application can choose  
to gate off the VCLK4 clock to any eQEPx module individually by clearing the respective control register  
bit.  
7.3.2 Using eQEPx Phase Error to Trip ePWMx Outputs  
The eQEP module sets the EQEPERR signal output whenever a phase error is detected in its inputs  
EQEPxA and EQEPxB. This error signal from both the eQEP modules is input to the connection selection  
multiplexor. This multiplexor is defined in Table 7-3. As shown in Figure 7-1, the output of this selection  
multiplexor is inverted and connected to the TZ4n trip-zone input of all EPWMx modules. This connection  
allows the application to define the response of each ePWMx module on a phase error indicated by the  
eQEP modules.  
7.3.3 Input Connections to eQEPx Modules  
The input connections to each of the eQEP modules can be selected between a double-VCLK4-  
synchronized input or a double-VCLK4-synchronized and filtered input, as shown in Table 7-12.  
120  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Table 7-12. Device-Level Input Connection to eCAPx Modules  
Input Signal  
Control for Double-Synchronized Connection to  
eQEPx  
Control for Double-Synchronized and Filtered  
Connection to eQEPx  
eQEP1A  
eQEP1B  
eQEP1I  
eQEP1S  
eQEP2A  
eQEP2B  
eQEP2I  
eQEP2S  
PINMMR44[16] = 1  
PINMMR44[24] = 1  
PINMMR45[0] = 1  
PINMMR45[8] = 1  
PINMMR45[16] = 1  
PINMMR45[24] = 1  
PINMMR46[0] = 1  
PINMMR46[8] = 1  
PINMMR44[16] = 0 and PINMMR44[17] = 1  
PINMMR44[24] = 0 and PINMMR44[25] = 1  
PINMMR45[0] = 0 and PINMMR45[1] = 1  
PINMMR45[8] = 0 and PINMMR45[9] = 1  
PINMMR45[16] = 0 and PINMMR45[17] = 1  
PINMMR45[24] = 0 and PINMMR45[25] = 1  
PINMMR46[0] = 0 and PINMMR46[1] = 1  
PINMMR46[8] = 0 and PINMMR46[9] = 1  
7.3.4 Enhanced Quadrature Encoder Pulse (eQEPx) Timing  
Table 7-13. eQEPx Timing Requirements  
PARAMETER  
QEP input period  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
cycles  
cycles  
tw(QEPP)  
Synchronous  
2 tc(VCLK4)  
Synchronous, with input 2 tc(VCLK4) + filter width  
filter  
tw(INDEXH)  
QEP Index Input High Time  
QEP Index Input Low Time  
Synchronous  
2 tc(VCLK4)  
cycles  
cycles  
Synchronous, with input 2 tc(VCLK4) + filter width  
filter  
tw(INDEXL)  
Synchronous  
2 tc(VCLK4)  
cycles  
cycles  
Synchronous, with input 2 tc(VCLK4) + filter width  
filter  
tw(STROBH) QEP Strobe Input High Time  
tw(STROBL) QEP Strobe Input Low Time  
Synchronous  
2 tc(VCLK4)  
cycles  
cycles  
Synchronous, with input 2 tc(VCLK4) + filter width  
filter  
Synchronous  
2 tc(VCLK4)  
cycles  
cycles  
Synchronous, with input 2 tc(VCLK4) + filter width  
filter  
Table 7-14. eQEPx Switching Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
td(CNTR)xin  
Delay time, external clock to counter increment  
4 tc(VCLK4)  
6 tc(VCLK4)  
cycles  
cycles  
td(PCS-OUT)QEP  
Delay time, QEP input edge to position compare sync output  
7.4 Multibuffered 12bit Analog-to-Digital Converter  
The multibuffered A-to-D converter (MibADC) has a separate power bus for its analog circuitry that  
enhances the A-to-D performance by preventing digital switching noise on the logic circuitry which could  
be present on VSS and VCC from coupling into the A-to-D analog stage. All A-to-D specifications are given  
with respect to ADREFLO unless otherwise noted.  
Table 7-15. MibADC Overview  
Description  
Resolution  
Value  
12 bits  
Assured  
Monotonic  
Output conversion code  
00h to 3FFh [00 for VAI ADREFLO; 3FFh for VAI ADREFHI]  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
121  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
7.4.1 Features  
12-bit resolution  
ADREFHI and ADREFLO pins (high and low reference voltages)  
Total Sample/Hold/Convert time: 600ns Minimum at 30MHz ADCLK  
One memory region per conversion group is available (event, group 1, group 2)  
Allocation of channels to conversion groups is completely programmable  
Supports flexible channel conversion order  
Memory regions are serviced either by interrupt or by DMA  
Programmable interrupt threshold counter is available for each group  
Programmable magnitude threshold interrupt for each group for any one channel  
Option to read either 8-bit, 10-bit or 12-bit values from memory regions  
Single or continuous conversion modes  
Embedded self-test  
Embedded calibration logic  
Enhanced power-down mode  
Optional feature to automatically power down ADC core when no conversion is in progress  
External event pin (ADxEVT) programmable as general-purpose I/O  
7.4.2 Event Trigger Options  
The ADC module supports 3 conversion groups: Event Group, Group1 and Group2. Each of these 3  
groups can be configured to be hardware event-triggered. In that case, the application can select from  
among 8 event sources to be the trigger for a group's conversions.  
7.4.2.1 MIBADC1 Event Trigger Hookup  
Table 7-16. MIBADC1 Event Trigger Hookup  
Trigger Event Signal  
Group Source  
Select, G1SRC,  
G2SRC or  
EVSRC  
PINMMR30[0] = 0 and PINMMR30[1] = 1  
Event #  
PINMMR30[0] = 1  
(default)  
Control for  
Option B  
Option A  
Control for  
Option B  
Option A  
000  
001  
010  
1
2
3
AD1EVT  
N2HET1[8]  
N2HET1[10]  
AD1EVT  
PINMMR30[8] = 1  
AD1EVT  
PINMMR30[8] = 0  
and  
PINMMR30[9] = 1  
N2HET2[5]  
ePWM_B  
N2HET1[27]  
N2HET1[27]  
PINMMR30[16] =  
RTI Compare 0  
Interrupt  
RTI Compare 0  
Interrupt  
PINMMR30[16] =  
1
0 and  
PINMMR30[17] =  
1
011  
100  
101  
4
5
6
ePWM_A1  
N2HET1[17]  
N2HET2[1]  
N2HET1[12]  
N2HET1[14]  
N2HET1[17]  
N2HET1[19]  
PINMMR30[24] =  
PINMMR30[24] =  
1
0 and  
PINMMR30[25] =  
1
PINMMR31[0] = 0  
and  
PINMMR31[1] = 1  
110  
111  
7
8
GIOB[0]  
GIOB[1]  
N2HET1[11]  
N2HET2[13]  
PINMMR31[0] = 1  
ePWM_A2  
ePWM_AB  
PINMMR31[8] = 0  
and  
PINMMR31[9] = 1  
PINMMR32[16] =  
1
122  
Peripheral Information and Electrical Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
NOTE  
If ADEVT, N2HET1 or GIOB is used as a trigger source, the connection to the MibADC1  
module trigger input is made from the output side of the input buffer. This way, a trigger  
condition can be generated either by configuring the function as output onto the pad (through  
the mux control), or by driving the function from an external trigger source as input. If the  
mux control module is used to select different functionality instead of the ADEVT, N2HET1[x]  
or GIOB[x] signals, then care must be taken to disable these signals from triggering  
conversions; there is no multiplexing on the input connections.  
If ePWM_B, ePWM_S2, ePWM_AB, N2HET2[1], N2HET2[5], N2HET2[13],  
N2HET1[11], N2HET1[17] or N2HET1[19] is used to trigger the ADC the connection  
to the ADC is made directly from the N2HET or ePWM module outputs. As a result,  
the ADC can be triggered without having to enable the signal from being output on  
a device terminal.  
NOTE  
For the RTI compare 0 interrupt source, the connection is made directly from the output of  
the RTI module. That is, the interrupt condition can be used as a trigger source even if the  
actual interrupt is not signaled to the CPU.  
7.4.2.2 MIBADC2 Event Trigger Hookup  
Table 7-17. MIBADC2 Event Trigger Hookup  
Trigger Event Signal  
Group Source  
Select, G1SRC,  
G2SRC or  
PINMMR30[0] = 0 and PINMMR30[1] = 1  
Event #  
PINMMR30[0] = 1  
(default)  
Control for  
Option B  
Option A  
Control for  
Option B  
Option A  
EVSRC  
000  
001  
010  
011  
1
2
3
4
AD2EVT  
N2HET1[8]  
N2HET1[10]  
AD2EVT  
AD2EVT  
PINMMR31[16] =  
PINMMR31[16] =  
1
0 and  
PINMMR31[17] =  
1
N2HET2[5]  
ePWM_B  
N2HET1[27]  
N2HET1[27]  
ePWM_A1  
PINMMR31[24] =  
RTI Compare 0  
Interrupt  
RTI Compare 0  
Interrupt  
PINMMR31[24] =  
1
0 and  
PINMMR31[25] =  
1
100  
101  
5
6
N2HET1[12]  
N2HET1[14]  
N2HET1[17]  
N2HET1[19]  
N2HET1[17]  
N2HET2[1]  
PINMMR32[0] = 0  
and  
PINMMR32[0] = 1  
PINMMR32[1] = 1  
PINMMR32[8] = 0  
and  
PINMMR32[9] = 1  
110  
111  
7
8
GIOB[0]  
GIOB[1]  
N2HET1[11]  
N2HET2[13]  
PINMMR32[8] = 1  
ePWM_A2  
ePWM_AB  
PINMMR32[16] =  
PINMMR32[16] =  
1
0 and  
PINMMR32[17] =  
1
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
123  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
NOTE  
If AD2EVT, N2HET1 or GIOB is used as a trigger source, the connection to the MibADC2  
module trigger input is made from the output side of the input buffer. This way, a trigger  
condition can be generated either by configuring the function as output onto the pad (through  
the mux control), or by driving the function from an external trigger source as input. If the  
mux control module is used to select different functionality instead of the AD2EVT,  
N2HET1[x] or GIOB[x] signals, then care must be taken to disable these signals from  
triggering conversions; there is no multiplexing on the input connections.  
If ePWM_B, ePWM_S2, ePWM_AB, N2HET2[5], N2HET2[1], N2HET2[13],  
N2HET1[11], N2HET1[17] or N2HET1[19] is used to trigger the ADC the connection  
to the ADC is made directly from the N2HET or ePWM module outputs. As a result,  
the ADC can be triggered without having to enable the signal from being output on  
a device terminal.  
NOTE  
For the RTI compare 0 interrupt source, the connection is made directly from the output of  
the RTI module. That is, the interrupt condition can be used as a trigger source even if the  
actual interrupt is not signaled to the CPU.  
7.4.2.3 Controlling ADC1 and ADC2 Event Trigger Options Using SOC Output from ePWM Modules  
As shown in Figure 7-5, the ePWMxSOCA and ePWMxSOCB outputs from each ePWM module are used  
to generate 4 signals – ePWM_B, ePWM_A1, ePWM_A2 and ePWM_AB, that are available to trigger the  
ADC based on the application requirement.  
124  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
SOCAEN, SOCBEN bits  
inside ePWMx modules  
Controlled by PINMMR  
EPWM1SOCA  
EPWM1  
module  
EPWM1SOCB  
EPWM2SOCA  
EPWM2SOCB  
EPWM2  
module  
EPWM3SOCA  
EPWM3SOCB  
EPWM3  
module  
EPWM4SOCA  
EPWM4SOCB  
EPWM4  
module  
EPWM5SOCA  
EPWM5SOCB  
EPWM5  
module  
EPWM6SOCA  
EPWM6SOCB  
EPWM6  
module  
EPWM7SOCA  
EPWM7SOCB  
EPWM7  
module  
ePWM_B ePWM_A1 ePWM_A2 ePWM_AB  
Figure 7-5. ADC Trigger Source Generation from ePWMx  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
125  
 
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Table 7-18. Control Bit to SOC Output  
Control Bit  
PINMMR35[0]  
PINMMR35[8]  
PINMMR35[16]  
PINMMR35[24]  
PINMMR36[0]  
PINMMR36[8]  
PINMMR36[16]  
SOC Output  
SOC1A_SEL  
SOC2A_SEL  
SOC3A_SEL  
SOC4A_SEL  
SOC5A_SEL  
SOC6A_SEL  
SOC7A_SEL  
The SOCA output from each ePWM module is connected to a "switch" shown in Figure 7-5.  
The logic equations for the 4 outputs from the combinational logic shown in Figure 7-5 are:  
ePWM_  
SOC1B or SOC2B or SOC3B or SOC4B or SOC5B or SOC6B or SOC7B  
B =  
ePWM_  
[ SOC1A and not(SOC1A_SEL) ] or [ SOC2A and not(SOC2A_SEL) ] or [ SOC3A and not(SOC3A_SEL) ] or  
A1 =  
[ SOC4A and not(SOC4A_SEL) ] or [ SOC5A and not(SOC5A_SEL) ] or [ SOC6A and not(SOC6A_SEL) ] or  
[ SOC7A and not(SOC7A_SEL) ]  
ePWM_  
[ SOC1A and SOC1A_SEL ] or [ SOC2A and SOC2A_SEL ] or [ SOC3A and SOC3A_SEL ] or  
A2 =  
[ SOC4A and SOC4A_SEL ] or [ SOC5A and SOC5A_SEL ] or [ SOC6A and SOC6A_SEL ] or  
[ SOC7A and SOC7A_SEL ]  
ePWM_  
ePWM_B or ePWM_A2  
AB =  
126  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
7.4.3 ADC Electrical and Timing Specifications  
Table 7-19. MibADC Recommended Operating Conditions  
Parameter  
MIN  
MAX  
Unit  
V
(1)  
ADREFHI  
ADREFLO  
VAI  
A-to-D high-voltage reference source  
A-to-D low-voltage reference source  
Analog input voltage  
ADREFLO  
VCCAD  
ADREFHI  
ADREFHI  
2
(1)  
VSSAD  
V
ADREFLO  
- 2  
V
IAIK  
Analog input clamp current(2)  
mA  
(VAI < VSSAD – 0.3 or VAI > VCCAD + 0.3)  
(1) For VCCAD and VSSAD recommended operating conditions, see Section 5.4.  
(2) Input currents into any ADC input channel outside the specified limits could affect conversion results of other channels.  
Table 7-20. MibADC Electrical Characteristics Over Full Ranges of Recommended Operating Conditions  
Parameter  
Description/Conditions  
MIN  
Nom  
MAX  
Unit  
Rmux  
Analog input mux on-  
resistance  
See Figure 7-6  
250  
Ω
Rsamp  
ADC sample switch on-  
resistance  
See Figure 7-6  
250  
Ω
Cmux  
Csamp  
IAIL  
Input mux capacitance  
See Figure 7-6  
See Figure 7-6  
16  
13  
200  
200  
500  
250  
250  
1000  
2
pF  
pF  
nA  
nA  
nA  
nA  
nA  
nA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
µA  
ADC sample capacitance  
Analog off-state input  
leakage current  
VCCAD = 3.6V  
maximum  
V
SSAD VIN < VSSAD + 100mV  
-300  
-200  
-200  
-1000  
-250  
-250  
-8  
VSSAD + 100mV VIN VCCAD - 200mV  
VCCAD - 200mV < VIN VCCAD  
IAIL  
Analog off-state input  
leakage current  
VCCAD = 5.5V  
maximum  
VSSAD VIN < VSSAD + 300mV  
VSSAD + 300mV VIN VCCAD - 300mV  
VCCAD - 300mV < VIN VCCAD  
(1)  
IAOSB1  
ADC1 Analog on-state input VCCAD = 3.6V  
bias current maximum  
VSSAD VIN < VSSAD + 100mV  
VSSAD + 100mV < VIN < VCCAD - 200mV  
VCCAD - 200mV < VIN < VCCAD  
-4  
2
-4  
12  
2
(1)  
IAOSB2  
ADC2 Analog on-state input VCCAD = 3.6V  
bias current maximum  
VSSAD VIN < VSSAD + 100mV  
-7  
VSSAD + 100mV VIN VCCAD - 200mV  
VCCAD - 200mV < VIN VCCAD  
-4  
2
-4  
10  
3
(1)  
IAOSB1  
ADC1 Analog on-state input VCCAD = 5.5V  
bias current maximum  
VSSAD VIN < VSSAD + 300mV  
-10  
-5  
VSSAD + 300mV VIN VCCAD - 300mV  
VCCAD - 300mV < VIN VCCAD  
3
-5  
14  
3
(1)  
IAOSB2  
ADC2 Analog on-state input VCCAD = 5.5V  
bias current  
VSSAD VIN < VSSAD + 300mV  
-8  
maximum  
VSSAD + 300mV VIN VCCAD - 300mV  
VCCAD - 300mV < VIN VCCAD  
-5  
3
-5  
12  
3
IADREFHI  
ICCAD  
ADREFHI input current  
Static supply current  
ADREFHI = VCCAD, ADREFLO = VSSAD  
Normal operating mode  
15  
5
ADC core in power down mode  
(1) If a shared channel is being converted by both ADC converters at the same time, the on-state leakage is equal to IAOSB1 + IAOSB2  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
127  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Rext  
Pin  
Rmux  
Smux  
VS1  
IAOSB  
Cext  
On-State  
Bias Current  
Smux  
Rext  
Pin  
Rmux  
VS2  
IAIL  
Cext  
IAIL  
IAIL  
Off-State  
Leakages  
Smux  
Rext  
Pin  
Rmux  
Ssamp  
Rsamp  
VS24  
IAIL  
Csamp  
Cmux  
Cext  
IAIL  
IAIL  
Figure 7-6. MibADC Input Equivalent Circuit  
Table 7-21. MibADC Timing Specifications  
Parameter  
Cycle time, MibADC clock  
MIN  
0.033  
0.2  
NOM  
MAX  
Unit  
µs  
(1)  
tc(ADCLK)  
(2)  
td(SH)  
Delay time, sample and hold  
time  
µs  
td(PU-ADV)  
Delay time from ADC power on  
until first input can be sampled  
1
µs  
12-bit mode  
td©)  
Delay time, conversion time  
0.4  
0.6  
µs  
µs  
(3)  
td(SHC)  
Delay time, total sample/hold  
and conversion time  
10-bit mode  
td©)  
Delay time, conversion time  
0.33  
0.53  
µs  
µs  
(3)  
td(SHC)  
Delay time, total sample/hold  
and conversion time  
(1) The MibADC clock is the ADCLK, generated by dividing down the VCLK by a prescale factor defined by the ADCLOCKCR register bits  
4:0.  
(2) The sample and hold time for the ADC conversions is defined by the ADCLK frequency and the AD<GP>SAMP register for each  
conversion group. The sample time needs to be determined by accounting for the external impedance connected to the input channel as  
well as the ADC’s internal impedance.  
(3) This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors, for  
example, the prescale settings.  
128  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Table 7-22. MibADC Operating Characteristics Over Full Ranges of Recommended Operating  
Conditions(1)(2)  
Parameter  
Description/Conditions  
MIN  
Type  
MAX  
Unit  
CR  
Conversion range over ADREFHI - ADREFLO  
3
5.5  
V
which specified  
accuracy is  
maintained  
ZSET  
Zero Scale Offset  
Difference between the first ideal transition  
(from code 000h to 001h) and the actual  
transition  
10-bit  
mode  
1
2
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
12-bit  
mode  
FSET  
EDNL  
EINL  
Full Scale Offset  
Difference between the range of the  
measured code transitions (from first to last)  
and the range of the ideal code transitions  
10-bit  
mode  
2
12-bit  
mode  
3
Differential  
nonlinearity error  
Difference between the actual step width and 10-bit  
the ideal value. (See Figure 7-7)  
± 1.5  
± 2  
± 2  
± 2  
± 2  
± 4  
mode  
12-bit  
mode  
Integral nonlinearity  
error  
Maximum deviation from the best straight line 10-bit  
through the MibADC. MibADC transfer  
characteristics, excluding the quantization  
error.  
mode  
12-bit  
mode  
ETOT  
Total unadjusted error Maximum value of the difference between an 10-bit  
analog value and the ideal midstep value.  
mode  
12-bit  
mode  
(1) 1 LSB = (ADREFHI – ADREFLO)/ 212 for 12-bit mode  
(2) 1 LSB = (ADREFHI – ADREFLO)/ 210 for 10-bit mode  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
129  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
7.4.4 Performance (Accuracy) Specifications  
7.4.4.1 MibADC Nonlinearity Errors  
The differential nonlinearity error shown in Figure 7-7 (sometimes referred to as differential linearity) is the  
difference between an actual step width and the ideal value of 1 LSB.  
0 ... 110  
0 ... 101  
0 ... 100  
0 ... 011  
Differential Linearity  
Error (–½ LSB)  
1 LSB  
0 ... 010  
Differential Linearity  
Error (–½ LSB)  
0 ... 001  
0 ... 000  
1 LSB  
0
1
2
3
4
5
Analog Input Value (LSB)  
NOTE A: 1 LSB = (ADREFHI – ADREFLO)/212  
Figure 7-7. Differential Nonlinearity (DNL) Error  
130  
Peripheral Information and Electrical Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
The integral nonlinearity error shown in Figure 7-8 (sometimes referred to as linearity error) is the  
deviation of the values on the actual transfer function from a straight line.  
0 ... 111  
0 ... 110  
Ideal  
Transition  
0 ... 101  
0 ... 100  
0 ... 011  
0 ... 010  
0 ... 001  
0 ... 000  
Actual  
Transition  
At Transition  
011/100  
(–½ LSB)  
End-Point Lin. Error  
At Transition  
001/010 (–1/4 LSB)  
0
1
2
3
4
5
6
7
Analog Input Value (LSB)  
NOTE A: 1 LSB = (ADREFHI – ADREFLO)/212  
Figure 7-8. Integral Nonlinearity (INL) Error  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
131  
 
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
7.4.4.2 MibADC Total Error  
The absolute accuracy or total error of an MibADC as shown in Figure 7-9 is the maximum value of the  
difference between an analog value and the ideal midstep value.  
0 ... 111  
0 ... 110  
0 ... 101  
0 ... 100  
Total Error  
At Step 0 ... 101  
(–1 1/4 LSB)  
0 ... 011  
0 ... 010  
Total Error  
At Step  
0 ... 001 (1/2 LSB)  
0 ... 001  
0 ... 000  
0
1
2
3
4
5
6
7
Analog Input Value (LSB)  
NOTE A: 1 LSB = (ADREFHI – ADREFLO)/212  
Figure 7-9. Absolute Accuracy (Total) Error  
132  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
7.5 General-Purpose Input/Output  
The GPIO module on this device supports two ports, GIOA and GIOB. The I/O pins are bidirectional and  
bit-programmable. Both GIOA and GIOB support external interrupt capability.  
7.5.1 Features  
The GPIO module has the following features:  
Each IO pin can be configured as:  
Input  
Output  
Open Drain  
The interrupts have the following characteristics:  
Programmable interrupt detection either on both edges or on a single edge (set in GIOINTDET)  
Programmable edge-detection polarity, either rising or falling edge (set in GIOPOL register)  
Individual interrupt flags (set in GIOFLG register)  
Individual interrupt enables, set and cleared through GIOENASET and GIOENACLR registers  
respectively  
Programmable interrupt priority, set through GIOLVLSET and GIOLVLCLR registers  
Internal pullup/pulldown allows unused I/O pins to be left unconnected  
For information on input and output timings see Section 5.11 and Section 5.12  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
133  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
7.6 Enhanced High-End Timer (N2HET)  
The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time  
applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer  
micromachine and an attached I/O port. The N2HET can be used for pulse width modulated outputs,  
capture or compare inputs, or general-purpose I/O. It is especially well suited for applications requiring  
multiple sensor information and drive actuators with complex and accurate time pulses.  
7.6.1 Features  
The N2HET module has the following features:  
Programmable timer for input and output timing functions  
Reduced instruction set (30 instructions) for dedicated time and angle functions  
160 words of instruction RAM protected by parity  
User defined number of 25-bit virtual counters for timer, event counters and angle counters  
7-bit hardware counters for each pin allow up to 32-bit resolution in conjunction with the 25-bit virtual  
counters  
Up to 32 pins usable for input signal measurements or output signal generation  
Programmable suppression filter for each input pin with adjustable limiting frequency  
Low CPU overhead and interrupt load  
Efficient data transfer to or from the CPU memory with dedicated High-End-Timer Transfer Unit (HTU)  
or DMA  
Diagnostic capabilities with different loopback mechanisms and pin status read back functionality  
7.6.2 N2HET RAM Organization  
The timer RAM uses 4 RAM banks, where each bank has two port access capability. This means that one  
RAM address may be written while another address is read. The RAM words are 96-bits wide, which are  
split into three 32-bit fields (program, control, and data).  
134  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
7.6.3 Input Timing Specifications  
All of the N2HET channels have an enhanced pulse capture circuit. The N2HET instructions PCNT and  
WCAP use this circuit to achieve the input timing requirements shown in Figure 7-10 and Table 7-23  
below.  
1
N2HETx  
3
4
2
Figure 7-10. N2HET Input Capture Timings  
Table 7-23. Input Timing Requirements for N2HET Channels with Enhanced Pulse Capture  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
1, 2 Input signal period, PCNT or WCAP  
(HRP) (LRP) tc(VCLK2) + 2  
2 (HRP) tc(VCLK2) + 2  
2 (HRP) tc(VCLK2) + 2  
225 (HRP) (LRP) tc(VCLK2) - 2  
225 (HRP) (LRP) tc(VCLK2) - 2  
225 (HRP) (LRP) tc(VCLK2) - 2  
3
4
Input signal high phase, PCNT or WCAP  
Input signal low phase, PCNT or WCAP  
ns  
ns  
7.6.4 N2HET1-N2HET2 Synchronization  
In some applications the N2HET resolutions must be synchronized. Some other applications require a  
single time base to be used for all PWM outputs and input timing captures.  
The N2HET provides such a synchronization mechanism. The Clk_master/slave (HETGCR.16) configures  
the N2HET in master or slave mode (default is slave mode). A N2HET in master mode provides a signal  
to synchronize the prescalers of the slave N2HET. The slave N2HET synchronizes its loop resolution to  
the loop resolution signal sent by the master. The slave does not require this signal after it receives the  
first synchronization signal. However, anytime the slave receives the re-synchronization signal from the  
master, the slave must synchronize itself again..  
N2HET1  
N2HET2  
NHET_LOOP_SYNC  
EXT_LOOP_SYNC  
NHET_LOOP_SYNC  
EXT_LOOP_SYNC  
Figure 7-11. N2HET1 – N2HET2 Synchronization Hookup  
7.6.5 N2HET Checking  
7.6.5.1 Internal Monitoring  
To assure correctness of the high-end timer operation and output signals, the two N2HET modules can be  
used to monitor each other’s signals as shown in Figure 7-12. The direction of the monitoring is controlled  
by the I/O multiplexing control module.  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
135  
 
 
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
IOMM mux control signal x  
N2HET1[1,3,5,7,9,11]  
N2HET1[1,3,5,7,9,11] / N2HET2[8,10,12,14,16,18]  
N2HET1  
N2HET2[8,10,12,14,16,18]  
N2HET2  
Figure 7-12. N2HET Monitoring  
7.6.5.2 Output Monitoring using Dual Clock Comparator (DCC)  
N2HET1[31] is connected as a clock source for counter 1 in DCC1. This allows the application to measure  
the frequency of the pulse-width modulated (PWM) signal on N2HET1[31].  
Similarly, N2HET2[0] is connected as a clock source for counter 1 in DCC2. This allows the application to  
measure the frequency of the pulse-width modulated (PWM) signal on N2HET2[0].  
Both N2HET1[31] and N2HET2[0] can be configured to be internal-only channels. That is, the connection  
to the DCC module is made directly from the output of the N2HETx module (from the input of the output  
buffer).  
For more information on DCC see Section 6.7.3.  
7.6.6 Disabling N2HET Outputs  
Some applications require the N2HET outputs to be disabled under some fault condition. The N2HET  
module provides this capability through the "Pin Disable" input signal. This signal, when driven low,  
causes the N2HET outputs identified by a programmable register (HETPINDIS) to be tri-stated. For more  
details on the "N2HET Pin Disable" feature, see the device-specific Terminal Reference Manual.  
GIOA[5] is connected to the "Pin Disable" input for N2HET1, and GIOB[2] is connected to the "Pin  
Disable" input for N2HET2.  
136  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
7.6.7 High-End Timer Transfer Unit (HTU)  
A High End Timer Transfer Unit (HTU) can perform DMA type transactions to transfer N2HET data to or  
from main memory. A Memory Protection Unit (MPU) is built into the HTU.  
7.6.7.1 Features  
CPU and DMA independent  
Master Port to access system memory  
8 control packets supporting dual buffer configuration  
Control packet information is stored in RAM protected by parity  
Event synchronization (HET transfer requests)  
Supports 32 or 64 bit transactions  
Addressing modes for HET address (8 byte or 16 byte) and system memory address (fixed, 32 bit or 64bit)  
One shot, circular and auto switch buffer transfer modes  
Request lost detection  
7.6.7.2 Trigger Connections  
Table 7-24. HTU1 Request Line Connection  
Modules  
N2HET1  
N2HET1  
N2HET1  
N2HET1  
N2HET1  
N2HET1  
N2HET1  
N2HET1  
Request Source  
HTUREQ[0]  
HTUREQ[1]  
HTUREQ[2]  
HTUREQ[3]  
HTUREQ[4]  
HTUREQ[5]  
HTUREQ[6]  
HTUREQ[7]  
HTU1 Request  
HTU1 DCP[0]  
HTU1 DCP[1]  
HTU1 DCP[2]  
HTU1 DCP[3]  
HTU1 DCP[4]  
HTU1 DCP[5]  
HTU1 DCP[6]  
HTU1 DCP[7]  
Table 7-25. HET TU2 Request Line Connection  
Modules  
N2HET2  
N2HET2  
N2HET2  
N2HET2  
N2HET2  
N2HET2  
N2HET2  
N2HET2  
Request Source  
HTUREQ[0]  
HTUREQ[1]  
HTUREQ[2]  
HTUREQ[3]  
HTUREQ[4]  
HTUREQ[5]  
HTUREQ[6]  
HTUREQ[7]  
HET TU2 Request  
HTU2 DCP[0]  
HTU2 DCP[1]  
HTU2 DCP[2]  
HTU2 DCP[3]  
HTU2 DCP[4]  
HTU2 DCP[5]  
HTU2 DCP[6]  
HTU2 DCP[7]  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
137  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
7.7 FlexRay Interface  
The FlexRay module performs communication according to the FlexRay protocol specification v2.1. The  
sample clock bitrate can be programmed to values up to 10 MBit per second. Additional bus driver (BD)  
hardware is required for connection to the physical layer.  
For communication on a FlexRay network, individual message buffers with up to 254 data bytes are  
configurable. The message storage consists of a single-ported message RAM that holds up to 128  
message buffers. All functions concerning the handling of messages are implemented in the message  
handler. Those functions are the acceptance filtering, the transfer of messages between the two FlexRay  
Channel Protocol Controllers and the message RAM, maintaining the transmission schedule as well as  
providing message status information.  
The register set of the FlexRay module can be accessed directly by the CPU via the VBUS interface.  
These registers are used to control, configure and monitor the FlexRay channel protocol controllers,  
message handler, global time unit, system universal control, frame/symbol processing, network  
management, interrupt control, and to access the message RAM via the input / output buffer.  
7.7.1 Features  
The FlexRay module has the following features:  
Conformance with FlexRay protocol specification v2.1  
Data rates of up to 10 Mbit/s on each channel  
Up to 128 message buffers  
8 Kbyte of message RAM for storage of, for example, 128 message buffers with a maximum 48 byte  
data section or up to 30 message buffers with 254 byte data section  
Configuration of message buffers with different payload lengths  
One configurable receive FIFO  
Each message buffer can be configured as receive buffer, as transmit buffer or as part of the receive  
FIFO  
CPU access to message buffers via input and output buffer  
FlexRay Transfer Unit (FTU) for automatic data transfer between data memory and message buffers  
without CPU interaction  
Filtering for slot counter, cycle counter, and channel ID  
Maskable module interrupts  
Supports Network Management  
7.7.2 Electrical and Timing Specifications  
Table 7-26. Timing Requirements for FlexRay Inputs  
Parameter  
MIN  
MAX  
UNIT  
tpw  
Input minimum pulse width to meet the FlexRay sampling  
requirement  
tc(VCLKA2) + 2.5(1)  
ns  
(1) tRxAsymDelay parameter  
tpw  
0.6*VCCIO  
VCCIO  
Input  
0.4*VCCIO  
0.6*VCCIO  
0.4*VCCIO  
0
Figure 7-13. FlexRay Inputs  
138  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Table 7-27. FlexRay Jitter Timing(1)  
Parameter  
MIN  
98  
MAX  
102  
Unit  
ns  
tTx1bit  
Clock jitter and signal symmetry  
FlexRay BSS (byte start sequence) to BSS  
Average over 10000 samples  
tTx10bit  
999  
999.5  
1001  
1000.5  
2.5  
ns  
tTx10bitAvg  
tRxAsymDelay  
ns  
(2)  
Delay difference between rise and fall from Rx pin to sample  
point in FlexRay core  
ns  
tjit(SCLK)  
Jitter for the 80MHz Sample Clock generated by the PLL  
0.5  
ns  
(1) This parameter will be characterized, but not production-tested.  
(2) This value is based on design simulation.  
7.7.3 FlexRay Transfer Unit  
The FlexRay Transfer Unit is able to transfer data between the input buffer (IBF) and output buffer (OBF)  
of the communication controller and the system memory without CPU interaction.  
Because the FlexRay module is accessed through the FTU, the FTU must be powered up by the setting  
bit 23 in the Peripheral Power Down Registers of the System Module before accessing any FlexRay  
module register.  
For more information on the FTU refer to the TMS570LS12x/11x Technical Reference Manual  
(SPNU515).  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
139  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
7.8 Controller Area Network (DCAN)  
The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster communication  
protocol that efficiently supports distributed real-time control with robust communication rates of up to 1  
megabit per second (Mbps). The DCAN is ideal for applications operating in noisy and harsh  
environments (for example, automotive and industrial fields) that require reliable serial communication or  
multiplexed wiring.  
7.8.1 Features  
Features of the DCAN module include:  
Supports CAN protocol version 2.0 part A, B  
Bit rates up to 1 MBit/s  
The CAN kernel can be clocked by the oscillator for baud-rate generation.  
64 mailboxes on each DCAN  
Individual identifier mask for each message object  
Programmable FIFO mode for message objects  
Programmable loop-back modes for self-test operation  
Automatic bus on after Bus-Off state by a programmable 32-bit timer  
Message RAM protected by parity  
Direct access to Message RAM during test mode  
CAN Rx / Tx pins configurable as general purpose IO pins  
Message RAM Auto Initialization  
DMA support  
For more information on the DCAN see the TMS570LS12x/11x Technical Reference Manual (SPNU515).  
7.8.2 Electrical and Timing Specifications  
Table 7-28. Dynamic Characteristics for the DCANx TX and RX pins  
Parameter  
MIN  
MAX  
15  
Unit  
ns  
td(CANnTX)  
td(CANnRX)  
Delay time, transmit shift register to CANnTX pin(1)  
Delay time, CANnRX pin to receive shift register  
5
ns  
(1) These values do not include rise/fall times of the output buffer.  
140  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
7.9 Local Interconnect Network Interface (LIN)  
The SCI/LIN module can be programmed to work either as an SCI or as a LIN. The core of the module is  
an SCI. The SCI’s hardware features are augmented to achieve LIN compatibility.  
The SCI module is a universal asynchronous receiver-transmitter that implements the standard nonreturn  
to zero format. The SCI can be used to communicate, for example, through an RS-232 port or over a K-  
line.  
The LIN standard is based on the SCI (UART) serial data link format. The communication concept is  
single-master/multiple-slave with a message identification for multi-cast transmission between any network  
nodes.  
7.9.1 LIN Features  
The following are features of the LIN module:  
Compatible to LIN 1.3, 2.0 and 2.1 protocols  
Multibuffered receive and transmit units DMA capability for minimal CPU intervention  
Identification masks for message filtering  
Automatic Master Header Generation  
Programmable Synch Break Field  
Synch Field  
Identifier Field  
Slave Automatic Synchronization  
Synch break detection  
Optional baudrate update  
Synchronization Validation  
231 programmable transmission rates with 7 fractional bits  
Error detection  
2 Interrupt lines with priority encoding  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
141  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
7.10 Serial Communication Interface (SCI)  
7.10.1 Features  
Standard universal asynchronous receiver-transmitter (UART) communication  
Supports full- or half-duplex operation  
Standard nonreturn to zero (NRZ) format  
Double-buffered receive and transmit functions  
Configurable frame format of 3 to 13 bits per character based on the following:  
Data word length programmable from one to eight bits  
Additional address bit in address-bit mode  
Parity programmable for zero or one parity bit, odd or even parity  
Stop programmable for one or two stop bits  
Asynchronous or isosynchronous communication modes  
Two multiprocessor communication formats allow communication between more than two devices.  
Sleep mode is available to free CPU resources during multiprocessor communication.  
The 24-bit programmable baud rate supports 224 different baud rates provide high accuracy baud rate selection.  
Four error flags and Five status flags provide detailed information regarding SCI events.  
Capability to use DMA for transmit and receive data.  
142  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
7.11 Inter-Integrated Circuit (I2C)  
The inter-integrated circuit (I2C) module is a multi-master communication module providing an interface  
between the RM4x microcontroller and devices compliant with Philips Semiconductor I2C-bus specification  
version 2.1 and connected by an I2C-bus. This module will support any slave or master I2C compatible  
device.  
7.11.1 Features  
The I2C has the following features:  
Compliance to the Philips I2C bus specification, v2.1 (The I2C Specification, Philips document number  
9398 393 40011)  
Bit/Byte format transfer  
7-bit and 10-bit device addressing modes  
General call  
START byte  
Multi-master transmitter/ slave receiver mode  
Multi-master receiver/ slave transmitter mode  
Combined master transmit/receive and receive/transmit mode  
Transfer rates of 10 kbps up to 400 kbps (Phillips fast-mode rate)  
Free data format  
Two DMA events (transmit and receive)  
DMA event enable/disable capability  
Seven interrupts that can be used by the CPU  
Module enable/disable capability  
The SDA and SCL are optionally configurable as general purpose I/O  
Slew rate control of the outputs  
Open drain control of the outputs  
Programmable pullup/pulldown capability on the inputs  
Supports Ignore NACK mode  
NOTE  
This I2C module does not support:  
High-speed (HS) mode  
C-bus compatibility mode  
The combined format in 10-bit address mode (the I2C sends the slave address second  
byte every time it sends the slave address first byte)  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
143  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
7.11.2 I2C I/O Timing Specifications  
Table 7-29. I2C Signals (SDA and SCL) Switching Characteristics(1)  
Parameter  
Standard Mode  
Fast Mode  
Unit  
MIN  
MAX  
MIN  
MAX  
tc(I2CCLK)  
Cycle time, Internal Module clock for I2C,  
prescaled from VCLK  
75.2  
149  
75.2  
149  
ns  
f(SCL)  
SCL Clock frequency  
Cycle time, SCL  
0
100  
0
400  
kHz  
µs  
tc(SCL)  
10  
4.7  
2.5  
0.6  
tsu(SCLH-SDAL)  
Setup time, SCL high before SDA low (for a  
repeated START condition)  
µs  
th(SCLL-SDAL)  
Hold time, SCL low after SDA low (for a repeated  
START condition)  
4
0.6  
µs  
tw(SCLL)  
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
100  
0
µs  
µs  
ns  
µs  
tw(SCLH)  
Pulse duration, SCL high  
tsu(SDA-SCLH)  
th(SDA-SCLL)  
Setup time, SDA valid before SCL high  
250  
0
Hold time, SDA valid after SCL low (for I2C bus  
devices)  
3.45(2)  
0.9  
tw(SDAH)  
Pulse duration, SDA high between STOP and  
START conditions  
4.7  
4.0  
1.3  
0.6  
0
µs  
µs  
tsu(SCLH-SDAH)  
Setup time, SCL high before SDA high (for STOP  
condition)  
tw(SP)  
Pulse duration, spike (must be suppressed)  
Capacitive load for each bus line  
50  
ns  
(3)  
Cb  
400  
400  
pF  
(1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down.  
(2) The maximum th(SDA-SCLL) for I2C bus devices has only to be met if the device does not stretch the low period (tw(SCLL)) of the SCL  
signal.  
(3) Cb = The total capacitance of one bus line in pF.  
SDA  
tw(SDAH)  
tsu(SDA-SCLH)  
tw(SP)  
tw(SCLL)  
tr(SCL)  
tsu(SCLH-SDAH)  
tw(SCLH)  
SCL  
tc(SCL)  
th(SCLL-SDAL)  
tf(SCL)  
th(SCLL-SDAL)  
tsu(SCLH-SDAL)  
th(SDA-SCLL)  
Stop  
Start  
Repeated Start  
Stop  
Figure 7-14. I2C Timings  
144  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
NOTE  
A device must internally provide a hold time of at least 300 ns for the SDA signal  
(referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling  
edge of SCL.  
The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW  
period (tw(SCLL)) of the SCL signal.  
A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the  
requirement tsu(SDA-SCLH) 250 ns must then be met. This will automatically be the case if  
the device does not stretch the LOW period of the SCL signal. If such a device does  
stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line  
tr max + tsu(SDA-SCLH)  
.
Cb = total capacitance of one bus line in pF. If mixed with fast-mode devices, faster fall-  
times are allowed.  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
145  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
7.12 Multibuffered / Standard Serial Peripheral Interface  
The MibSPI is a high-speed synchronous serial input/output port that allows a serial bit stream of  
programmed length (2 to 16 bits) to be shifted in and out of the device at a programmed bit-transfer rate.  
Typical applications for the SPI include interfacing to external peripherals, such as I/Os, memories, display  
drivers, and analog-to-digital converters.  
7.12.1 Features  
Both Standard and MibSPI modules have the following features:  
16-bit shift register  
Receive buffer register  
8-bit baud clock generator  
SPICLK can be internally-generated (master mode) or received from an external clock source (slave  
mode)  
Each word transferred can have a unique format  
SPI I/Os not used in the communication can be used as digital input/output signals  
Table 7-30. MibSPI/SPI Configurations PGE Package  
MibSPIx/SPIx  
MibSPI1  
I/Os  
MIBSPI1SIMO[1:0], MIBSPI1SOMI[1:0], MIBSPI1CLK, MIBSPI1nCS[5:4,2:0], MIBSPI1nENA  
MIBSPI3SIMO[0], MIBSPI3SOMI[0], MIBSPI3CLK, MIBSPI3nCS[5:0], MIBSPI3nENA  
MIBSPI5SIMO[0], MIBSPI5SOMI[2:0], MIBSPI5CLK, MIBSPI5nCS[0], MIBSPI5nENA  
SPI4SIMO[0], SPI4SOMI[0], SPI4CLK, SPI4nCS[0], SPI4nENA  
MibSPI3  
MibSPI5  
SPI4  
Table 7-31. MibSPI/SPI Configurations ZWT Package  
MibSPIx/SPIx  
I/Os  
MibSPI1  
MibSPI3  
MibSPI5  
SPI2  
MIBSPI1SIMO[1:0], MIBSPI1SOMI[1:0], MIBSPI1CLK, MIBSPI1nCS[5:0], MIBSPI1nENA  
MIBSPI3SIMO[0], MIBSPI3SOMI[0], MIBSPI3CLK, MIBSPI3nCS[5:0], MIBSPI3nENA  
MIBSPI5SIMO[3:0], MIBSPI5SOMI[3:0], MIBSPI5CLK, MIBSPI5nCS[3:0], MIBSPI5nENA  
SPI2SIMO[0], SPI2SOMI[0], SPI2CLK, SPI2nCS[1:0], SPI2nENA  
SPI4  
SPI4SIMO[0], SPI4SOMI[0], SPI4CLK, SPI4nCS[0], SPI4nENA  
7.12.2 MibSPI Transmit and Receive RAM Organization  
The Multibuffer RAM is comprised of 128 buffers. Each entry in the Multibuffer RAM consists of 4 parts: a  
16-bit transmit field, a 16-bit receive field, a 16-bit control field and a 16-bit status field. The Multibuffer  
RAM can be partitioned into multiple transfer group with variable number of buffers each. Each MibSPIx  
module supports 8 transfer groups.  
7.12.3 MibSPI Transmit Trigger Events  
Each of the transfer groups can be configured individually. For each of the transfer groups a trigger event  
and a trigger source can be chosen. A trigger event can be for example a rising edge or a permanent low  
level at a selectable trigger source. For example, up to 15 trigger sources are available for use by each  
transfer group. These trigger options are listed in Table 7-32 and Section 7.12.3.2 for MibSPI1 and  
MibSPi3 respectively.  
146  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
7.12.3.1 MIBSPI1 Event Trigger Hookup  
Table 7-32. MIBSPI1 Event Trigger Hookup  
Event #  
Disabled  
EVENT0  
EVENT1  
EVENT2  
EVENT3  
EVENT4  
EVENT5  
EVENT6  
EVENT7  
EVENT8  
EVENT9  
EVENT10  
EVENT11  
EVENT12  
EVENT13  
EVENT14  
TGxCTRL TRIGSRC[3:0]  
Trigger  
No trigger source  
GIOA[0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
GIOA[1]  
GIOA[2]  
GIOA[3]  
GIOA[4]  
GIOA[5]  
GIOA[6]  
GIOA[7]  
N2HET1[8]  
N2HET1[10]  
N2HET1[12]  
N2HET1[14]  
N2HET1[16]  
N2HET1[18]  
Internal Tick counter  
NOTE  
For N2HET1 trigger sources, the connection to the MibSPI1 module trigger input is made  
from the input side of the output buffer (at the N2HET1 module boundary). This way, a  
trigger condition can be generated even if the N2HET1 signal is not selected to be output on  
the pad.  
NOTE  
For GIOx trigger sources, the connection to the MibSPI1 module trigger input is made from  
the output side of the input buffer. This way, a trigger condition can be generated either by  
selecting the GIOx pin as an output pin and selecting the pin to be a GIOx pin, or by driving  
the GIOx pin from an external trigger source. If the mux control module is used to select  
different functionality instead of the GIOx signal, then care must be taken to disable GIOx  
from triggering MibSPI1 transfers; there is no multiplexing on the input connections.  
7.12.3.2 MIBSPI3 Event Trigger Hookup  
Table 7-33. MIBSPI3 Event Trigger Hookup  
Event #  
Disabled  
EVENT0  
EVENT1  
EVENT2  
EVENT3  
EVENT4  
EVENT5  
EVENT6  
EVENT7  
EVENT8  
TGxCTRL TRIGSRC[3:0]  
Trigger  
No trigger source  
GIOA[0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
GIOA[1]  
GIOA[2]  
GIOA[3]  
GIOA[4]  
GIOA[5]  
GIOA[6]  
GIOA[7]  
N2HET1[8]  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
147  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Table 7-33. MIBSPI3 Event Trigger Hookup (continued)  
Event #  
EVENT9  
TGxCTRL TRIGSRC[3:0]  
Trigger  
N2HET1[10]  
1010  
1011  
1100  
1101  
1110  
1111  
EVENT10  
EVENT11  
EVENT12  
EVENT13  
EVENT14  
N2HET1[12]  
N2HET1[14]  
N2HET1[16]  
N2HET1[18]  
Internal Tick counter  
NOTE  
For N2HET1 trigger sources, the connection to the MibSPI3 module trigger input is made  
from the input side of the output buffer (at the N2HET1 module boundary). This way, a  
trigger condition can be generated even if the N2HET1 signal is not selected to be output on  
the pad.  
NOTE  
For GIOx trigger sources, the connection to the MibSPI3 module trigger input is made from  
the output side of the input buffer. This way, a trigger condition can be generated either by  
selecting the GIOx pin as an output pin and selecting the pin to be a GIOx pin, or by driving  
the GIOx pin from an external trigger source. If the mux control module is used to select  
different functionality instead of the GIOx signal, then care must be taken to disable GIOx  
from triggering MibSPI3 transfers; there is no multiplexing on the input connections.  
7.12.3.3 MIBSPI5 Event Trigger Hookup  
Table 7-34. MIBSPI5 Event Trigger Hookup  
Event #  
TGxCTRL TRIGSRC[3:0]  
Trigger  
Disabled  
EVENT0  
EVENT1  
EVENT2  
EVENT3  
EVENT4  
EVENT5  
EVENT6  
EVENT7  
EVENT8  
EVENT9  
EVENT10  
EVENT11  
EVENT12  
EVENT13  
EVENT14  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
No trigger source  
GIOA[0]  
GIOA[1]  
GIOA[2]  
GIOA[3]  
GIOA[4]  
GIOA[5]  
GIOA[6]  
GIOA[7]  
N2HET1[8]  
N2HET1[10]  
N2HET1[12]  
N2HET1[14]  
N2HET1[16]  
N2HET1[18]  
Internal Tick counter  
NOTE  
For N2HET1 trigger sources, the connection to the MibSPI5 module trigger input is made  
from the input side of the output buffer (at the N2HET1 module boundary). This way, a  
trigger condition can be generated even if the N2HET1 signal is not selected to be output on  
the pad.  
148  
Peripheral Information and Electrical Specifications  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
NOTE  
For GIOx trigger sources, the connection to the MibSPI5 module trigger input is made from  
the output side of the input buffer. This way, a trigger condition can be generated either by  
selecting the GIOx pin as an output pin and selecting the pin to be a GIOx pin, or by driving  
the GIOx pin from an external trigger source. If the mux control module is used to select  
different functionality instead of the GIOx signal, then care must be taken to disable GIOx  
from triggering MibSPI5 transfers; there is no multiplexing on the input connections.  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
149  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
7.12.4 MibSPI/SPI Master Mode I/O Timing Specifications  
Table 7-35. SPI Master Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = output, SPISIMO  
= output, and SPISOMI = input)(1)(2)(3)  
NO. Parameter  
tc(SPC)M  
2(5) tw(SPCH)M  
MIN  
MAX  
Unit  
ns  
1
Cycle time, SPICLK(4)  
40  
256tc(VCLK)  
0.5tc(SPC)M + 3  
Pulse duration, SPICLK high (clock  
polarity = 0)  
0.5tc(SPC)M – tr(SPC)M – 3  
ns  
tw(SPCL)M  
3(5) tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPICLK low (clock  
polarity = 1)  
0.5tc(SPC)M – tf(SPC)M – 3  
0.5tc(SPC)M – tf(SPC)M – 3  
0.5tc(SPC)M – tr(SPC)M – 3  
0.5tc(SPC)M – 6  
0.5tc(SPC)M + 3  
0.5tc(SPC)M + 3  
0.5tc(SPC)M + 3  
Pulse duration, SPICLK low (clock  
polarity = 0)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SPICLK high (clock  
polarity = 1)  
4(5) td(SPCH-SIMO)M Delay time, SPISIMO valid before  
SPICLK low (clock polarity = 0)  
td(SPCL-SIMO)M Delay time, SPISIMO valid before  
SPICLK high (clock polarity = 1)  
5(5) tv(SPCL-SIMO)M  
0.5tc(SPC)M – 6  
Valid time, SPISIMO data valid after  
SPICLK low (clock polarity = 0)  
0.5tc(SPC)M – tf(SPC) – 4  
0.5tc(SPC)M – tr(SPC) – 4  
tf(SPC) + 2.2  
tv(SPCH-SIMO)M Valid time, SPISIMO data valid after  
SPICLK high (clock polarity = 1)  
6(5) tsu(SOMI-SPCL)M Setup time, SPISOMI before SPICLK  
low (clock polarity = 0)  
tsu(SOMI-SPCH)M Setup time, SPISOMI before SPICLK  
high (clock polarity = 1)  
7(5) th(SPCL-SOMI)M Hold time, SPISOMI data valid after  
SPICLK low (clock polarity = 0)  
tr(SPC) + 2.2  
10  
th(SPCH-SOMI)M Hold time, SPISOMI data valid after  
SPICLK high (clock polarity = 1)  
8(6) tC2TDELAY  
10  
Setup time CS active  
until SPICLK high  
(clock polarity = 0)  
CSHOLD = 0 C2TDELAY*tc(VCLK) + 2*tc(VCLK)  
- tf(SPICS) + tr(SPC) – 7  
(C2TDELAY+2) * tc(VCLK)  
tf(SPICS) + tr(SPC) + 5.5  
-
-
-
-
CSHOLD = 1 C2TDELAY*tc(VCLK) + 3*tc(VCLK)  
- tf(SPICS) + tr(SPC) – 7  
(C2TDELAY+3) * tc(VCLK)  
tf(SPICS) + tr(SPC) + 5.5  
Setup time CS active  
until SPICLK low  
CSHOLD = 0 C2TDELAY*tc(VCLK) + 2*tc(VCLK)  
- tf(SPICS) + tf(SPC) – 7  
(C2TDELAY+2) * tc(VCLK)  
tf(SPICS) + tf(SPC) + 5.5  
(clock polarity = 1)  
CSHOLD = 1 C2TDELAY*tc(VCLK) + 3*tc(VCLK)  
- tf(SPICS) + tf(SPC) – 7  
(C2TDELAY+3) * tc(VCLK)  
tf(SPICS) + tf(SPC) + 5.5  
9(6) tT2CDELAY  
Hold time SPICLK low until CS inactive  
(clock polarity = 0)  
0.5*tc(SPC)M  
T2CDELAY*tc(VCLK) + tc(VCLK)  
tf(SPC) + tr(SPICS) - 7  
+
0.5*tc(SPC)M  
T2CDELAY*tc(VCLK) + tc(VCLK)  
tf(SPC) + tr(SPICS) + 11  
+
ns  
ns  
-
-
-
-
Hold time SPICLK high until CS  
inactive (clock polarity = 1)  
0.5*tc(SPC)M  
T2CDELAY*tc(VCLK) + tc(VCLK)  
tr(SPC) + tr(SPICS) - 7  
+
0.5*tc(SPC)M +  
T2CDELAY*tc(VCLK) + tc(VCLK)  
tr(SPC) + tr(SPICS) + 11  
10  
11  
tSPIENA  
SPIENAn Sample point  
(C2TDELAY+1) * tc(VCLK)  
tf(SPICS) – 29  
-
(C2TDELAY+1)*tc(VCLK)  
ns  
ns  
tSPIENAW  
SPIENAn Sample point from write to  
buffer  
(C2TDELAY+2)*tc(VCLK)  
(1) The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is cleared.  
(2) tc(VCLK) = interface clock cycle time = 1 / f(VCLK)  
(3) For rise and fall timings, see Table 5-8.  
(4) When the SPI is in Master mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)M (PS +1)tc(VCLK) 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.  
For PS values of 0: tc(SPC)M = 2tc(VCLK) 40ns.  
The external load on the SPICLK pin must be less than 60pF.  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(6) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
150  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
6
7
Master In Data  
Must Be Valid  
SPISOMI  
Figure 7-15. SPI Master Mode External Timing (CLOCK PHASE = 0)  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
SPICSn  
Master Out Data Is Valid  
8
9
10  
11  
SPIENAn  
Figure 7-16. SPI Master Mode Chip Select Timing (CLOCK PHASE = 0)  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
151  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Table 7-36. SPI Master Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = output, SPISIMO  
= output, and SPISOMI = input)(1)(2)(3)  
NO.  
Parameter  
MIN  
MAX  
Unit  
ns  
(4)  
1
tc(SPC)M  
Cycle time, SPICLK  
40  
256tc(VCLK)  
0.5tc(SPC)M + 3  
2(5) tw(SPCH)M  
tw(SPCL)M  
3(5) tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPICLK high (clock  
polarity = 0)  
0.5tc(SPC)M – tr(SPC)M – 3  
ns  
Pulse duration, SPICLK low (clock  
polarity = 1)  
0.5tc(SPC)M – tf(SPC)M – 3  
0.5tc(SPC)M – tf(SPC)M – 3  
0.5tc(SPC)M – tr(SPC)M – 3  
0.5tc(SPC)M – 6  
0.5tc(SPC)M + 3  
0.5tc(SPC)M + 3  
0.5tc(SPC)M + 3  
Pulse duration, SPICLK low (clock  
polarity = 0)  
ns  
ns  
Pulse duration, SPICLK high (clock  
polarity = 1)  
4(5) tv(SIMO-SPCH)M  
Valid time, SPICLK high after  
SPISIMO data valid (clock polarity =  
0)  
tv(SIMO-SPCL)M  
Valid time, SPICLK low after  
0.5tc(SPC)M – 6  
SPISIMO data valid (clock polarity =  
1)  
5(5) tv(SPCH-SIMO)M  
tv(SPCL-SIMO)M  
6(5) tsu(SOMI-SPCH)M  
tsu(SOMI-SPCL)M  
7(5) tv(SPCH-SOMI)M  
tv(SPCL-SOMI)M  
Valid time, SPISIMO data valid after  
SPICLK high (clock polarity = 0)  
0.5tc(SPC)M – tr(SPC) – 4  
ns  
ns  
ns  
ns  
Valid time, SPISIMO data valid after  
SPICLK low (clock polarity = 1)  
0.5tc(SPC)M – tf(SPC) – 4  
Setup time, SPISOMI before  
SPICLK high (clock polarity = 0)  
tr(SPC) + 2.2  
tf(SPC) + 2.2  
10  
Setup time, SPISOMI before  
SPICLK low (clock polarity = 1)  
Valid time, SPISOMI data valid after  
SPICLK high (clock polarity = 0)  
Valid time, SPISOMI data valid after  
SPICLK low (clock polarity = 1)  
10  
8(6) tC2TDELAY  
Setup time CS  
active until SPICLK  
high (clock polarity =  
0)  
CSHOLD = 0  
CSHOLD = 1  
CSHOLD = 0  
CSHOLD = 1  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
(C2TDELAY+2) * tc(VCLK)  
tf(SPICS) + tr(SPC) + 5.5  
(C2TDELAY+2) * tc(VCLK)  
tf(SPICS) + tr(SPC) – 7  
-
-
-
-
-
-
-
-
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
(C2TDELAY+3) * tc(VCLK)  
tf(SPICS) + tr(SPC) + 5.5  
(C2TDELAY+3) * tc(VCLK)  
tf(SPICS) + tr(SPC) – 7  
Setup time CS  
active until SPICLK  
low (clock polarity =  
1)  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M  
+
ns  
(C2TDELAY+2) * tc(VCLK)  
tf(SPICS) + tf(SPC) – 7  
(C2TDELAY+2) * tc(VCLK)  
tf(SPICS) + tf(SPC) + 5.5  
-
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
(C2TDELAY+3) * tc(VCLK)  
tf(SPICS) + tf(SPC) + 5.5  
(C2TDELAY+3) * tc(VCLK)  
tf(SPICS) + tf(SPC) – 7  
-
9(6) tT2CDELAY  
Hold time SPICLK low until CS  
inactive (clock polarity = 0)  
T2CDELAY*tc(VCLK)  
tc(VCLK) - tf(SPC) + tr(SPICS)  
7
+
T2CDELAY*tc(VCLK)  
tc(VCLK) - tf(SPC) + tr(SPICS)  
11  
+
ns  
ns  
+
+
Hold time SPICLK high until CS  
inactive (clock polarity = 1)  
T2CDELAY*tc(VCLK)  
tc(VCLK) - tr(SPC) + tr(SPICS)  
7
+
T2CDELAY*tc(VCLK)  
tc(VCLK) - tr(SPC) + tr(SPICS)  
11  
+
10 tSPIENA  
SPIENAn Sample Point  
(C2TDELAY+1)* tc(VCLK)  
tf(SPICS) – 29  
-
(C2TDELAY+1)*tc(VCLK)  
ns  
ns  
11 tSPIENAW  
SPIENAn Sample point from write to  
buffer  
(C2TDELAY+2)*tc(VCLK)  
(1) The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.  
(2) tc(VCLK) = interface clock cycle time = 1 / f(VCLK)  
(3) For rise and fall timings, see the Table 5-8.  
(4) When the SPI is in Master mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)M (PS +1)tc(VCLK) 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.  
For PS values of 0: tc(SPC)M = 2tc(VCLK) 40ns.  
The external load on the SPICLK pin must be less than 60pF.  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(6) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
152  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
Master Out Data Is Valid  
Data Valid  
SPISIMO  
SPISOMI  
6
7
Master In Data  
Must Be Valid  
Figure 7-17. SPI Master Mode External Timing (CLOCK PHASE = 1)  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
SPICSn  
Master Out Data Is Valid  
8
9
10  
11  
SPIENAn  
Figure 7-18. SPI Master Mode Chip Select Timing (CLOCK PHASE = 1)  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
153  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
7.12.5 SPI Slave Mode I/O Timings  
Table 7-37. SPI Slave Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = input, SPISIMO =  
input, and SPISOMI = output)(1)(2)(3)(4)  
NO.  
1
Parameter  
tc(SPC)S  
MIN  
40  
MAX  
Unit  
ns  
Cycle time, SPICLK(5)  
2(6)  
tw(SPCH)S  
tw(SPCL)S  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
14  
ns  
14  
3(6)  
4(6)  
tw(SPCL)S  
14  
ns  
ns  
tw(SPCH)S  
td(SPCH-SOMI)S  
14  
Delay time, SPISOMI valid after SPICLK high (clock  
polarity = 0)  
trf(SOMI) + 20  
trf(SOMI) + 20  
td(SPCL-SOMI)S  
th(SPCH-SOMI)S  
th(SPCL-SOMI)S  
tsu(SIMO-SPCL)S  
tsu(SIMO-SPCH)S  
th(SPCL-SIMO)S  
th(SPCH-SIMO)S  
td(SPCL-SENAH)S  
td(SPCH-SENAH)S  
td(SCSL-SENAL)S  
Delay time, SPISOMI valid after SPICLK low (clock polarity  
= 1)  
5(6)  
6(6)  
7(6)  
8
Hold time, SPISOMI data valid after SPICLK high (clock  
polarity =0)  
2
ns  
ns  
ns  
ns  
ns  
Hold time, SPISOMI data valid after SPICLK low (clock  
polarity =1)  
2
Setup time, SPISIMO before SPICLK low (clock polarity =  
0)  
4
Setup time, SPISIMO before SPICLK high (clock polarity =  
1)  
4
2
Hold time, SPISIMO data valid after SPICLK low (clock  
polarity = 0)  
Hold time, SPISIMO data valid after S PICLK high (clock  
polarity = 1)  
2
Delay time, SPIENAn high after last SPICLK low (clock  
polarity = 0)  
1.5tc(VCLK)  
1.5tc(VCLK)  
tf(ENAn)  
2.5tc(VCLK)+tr(ENAn)  
+
22  
Delay time, SPIENAn high after last SPICLK high (clock  
polarity = 1)  
2.5tc(VCLK)+ tr(ENAn)  
22  
+
9
Delay time, SPIENAn low after SPICSn low (if new data  
has been written to the SPI buffer)  
tc(VCLK)+tf(ENAn)+27  
(1) The MASTER bit (SPIGCR1.0) is cleared and the CLOCK PHASE bit (SPIFMTx.16) is cleared.  
(2) If the SPI is in slave mode, the following must be true: tc(SPC)S (PS + 1) tc(VCLK), where PS = prescale value set in SPIFMTx.[15:8].  
(3) For rise and fall timings, see Table 5-8.  
(4) tc(VCLK) = interface clock cycle time = 1 /f(VCLK)  
(5) When the SPI is in Slave mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)S (PS +1)tc(VCLK) 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.  
For PS values of 0: tc(SPC)S = 2tc(VCLK) 40ns.  
(6) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
154  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
5
4
SPISOMI Data Is Valid  
SPISOMI  
SPISIMO  
6
7
SPISIMO Data  
Must Be Valid  
Figure 7-19. SPI Slave Mode External Timing (CLOCK PHASE = 0)  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
8
SPIENAn  
SPICSn  
9
Figure 7-20. SPI Slave Mode Enable Timing (CLOCK PHASE = 0)  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
155  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Table 7-38. SPI Slave Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = input, SPISIMO =  
input, and SPISOMI = output)(1)(2)(3)(4)  
NO. Parameter  
tc(SPC)S  
2(6) tw(SPCH)S  
tw(SPCL)S  
3(6) tw(SPCL)S  
tw(SPCH)S  
MIN  
40  
MAX  
Unit  
ns  
1
Cycle time, SPICLK(5)  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
14  
ns  
14  
14  
ns  
ns  
14  
4(6) td(SOMI-SPCL)S  
Delay time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)  
trf(SOMI) + 20  
trf(SOMI) + 20  
td(SOMI-SPCH)S  
5(6) th(SPCL-SOMI)S  
th(SPCH-SOMI)S  
Delay time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity =0)  
2
ns  
ns  
ns  
ns  
Hold time, SPISOMI data valid after SPICLK low (clock  
polarity =1)  
2
6(6) tsu(SIMO-SPCH)S Setup time, SPISIMO before SPICLK high (clock  
polarity = 0)  
4
tsu(SIMO-SPCL)S Setup time, SPISIMO before SPICLK low (clock polarity  
= 1)  
7(6) tv(SPCH-SIMO)S  
4
2
High time, SPISIMO data valid after SPICLK high  
(clock polarity = 0)  
tv(SPCL-SIMO)S  
High time, SPISIMO data valid after SPICLK low (clock  
polarity = 1)  
2
8
td(SPCH-SENAH)S Delay time, SPIENAn high after last SPICLK high  
(clock polarity = 0)  
1.5tc(VCLK)  
1.5tc(VCLK)  
tf(ENAn)  
tc(VCLK)  
2.5tc(VCLK)+tr(ENAn) + 22  
2.5tc(VCLK)+tr(ENAn) + 22  
tc(VCLK)+tf(ENAn)+ 27  
td(SPCL-SENAH)S Delay time, SPIENAn high after last SPICLK low (clock  
polarity = 1)  
9
td(SCSL-SENAL)S Delay time, SPIENAn low after SPICSn low (if new data  
has been written to the SPI buffer)  
ns  
ns  
10  
td(SCSL-SOMI)S  
Delay time, SOMI valid after SPICSn low (if new data  
has been written to the SPI buffer)  
2tc(VCLK)+trf(SOMI)+ 28  
(1) The MASTER bit (SPIGCR1.0) is cleared and the CLOCK PHASE bit (SPIFMTx.16) is set.  
(2) If the SPI is in slave mode, the following must be true: tc(SPC)S (PS + 1) tc(VCLK), where PS = prescale value set in SPIFMTx.[15:8].  
(3) For rise and fall timings, see Table 5-8.  
(4) tc(VCLK) = interface clock cycle time = 1 /f(VCLK)  
(5) When the SPI is in Slave mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)S (PS +1)tc(VCLK) 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.  
For PS values of 0: tc(SPC)S = 2tc(VCLK) 40ns.  
(6) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
156  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
5
4
SPISOMI  
SPISOMI Data Is Valid  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
Figure 7-21. SPI Slave Mode External Timing (CLOCK PHASE = 1)  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
8
SPIENAn  
SPICSn  
9
10  
SPISOMI  
Slave Out Data Is Valid  
Figure 7-22. SPI Slave Mode Enable Timing (CLOCK PHASE = 1)  
Copyright © 2012–2015, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
157  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
8 Device and Documentation Support  
8.1 Device and Development-Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of  
all devices and support tools. Each commercial family member has one of three prefixes: TMX, TMP,  
or TMS (for example,TMS570LS1115). Texas Instruments recommends two of three possible prefix  
designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of  
product development from engineering prototypes (TMX/TMDX) through fully qualified production  
devices/tools (TMS/TMDS).  
Device development evolutionary flow:  
TMX  
Experimental device that is not necessarily representative of the final device's electrical  
specifications.  
TMP  
TMS  
Final silicon die that conforms to the device's electrical specifications but has not completed  
quality and reliability verification.  
Fully-qualified production device.  
TMX and TMP devices are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices have been characterized fully, and the quality and reliability of the device have been  
demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard  
production devices. Texas Instruments recommends that these devices not be used in any production  
system because their expected end-use failure rate still is undefined. Only qualified production devices  
are to be used.  
The figure below illustrates the numbering and symbol nomenclature for the TMS570LS1115 .  
158  
Device and Documentation Support  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Full Part #  
TMS  
TMX  
570  
570  
LS 11  
11  
1
1
5
5
B
B
ZWT  
ZWT  
Q
Q
Q1  
Q1  
R
R
Orderable Part #  
Prefix: TM  
TMS = Fully Qualified  
TMP = Prototype  
TMX = Samples  
Core Technology:  
570 = Cortex R4F  
Architecture:  
LS = Dual CPUs in Lockstep  
(not included in orderable part #)  
Flash Memory Size:  
11 = 1MB  
RAM MemorySize:  
1 = 128kB  
Peripheral Set:  
5 = FlexRay  
Die Revision:  
A
= Die Revision A  
= Die Revision B  
B
Package Type:  
ZWT = 337-Pin Plastic BGA with pb-free solder ball  
PGE = 144 Pin Plastic Quad Flatpack  
Temperature Range:  
Q = -40...+125oC  
Quality Designator:  
Q1 = Automotive  
Shipping Options:  
R = Tape and Reel  
Figure 8-1. TMS570LS1115 Device Numbering Conventions  
Copyright © 2012–2015, Texas Instruments Incorporated  
Device and Documentation Support  
159  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
8.2 Documentation Support  
8.2.1 Related Documentation from Texas Instruments  
The following documents describe the TMS570LS11x/12x microcontroller..  
SPNU515  
TMS570LS12x/11x 16/32-Bit RISC Flash Microcontroller Technical Reference Manual details the  
integration, the environment, the functional description, and the programming models for each  
peripheral and subsystem in the device.  
SPNZ199  
SPNZ218  
TMS570LS12x/11x Microcontroller, Silicon Revision B, Silicon Errata describes the usage notes  
and known exceptions to the functional specifications for the device silicon revision B.  
TMS570LS12x/11x Microcontroller, Silicon Revision C, Silicon Errata describes the usage notes  
and known exceptions to the functional specifications for the device silicon revision C.  
8.2.2 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the  
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;  
see TI's Terms of Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among  
engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve  
problems with fellow engineers.  
TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help developers  
get started with Embedded Processors from Texas Instruments and to foster innovation and growth of  
general knowledge about the hardware and software surrounding these devices.  
8.3 Trademarks  
E2E is a trademark of Texas Instruments.  
CoreSight is a trademark of ARM Limited.  
ARM, Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere.  
All rights reserved.  
All other trademarks are the property of their respective owners.  
8.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
8.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
160  
Device and Documentation Support  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
8.6 Device Identification  
8.6.1 Device Identification Code Register  
The device identification code register identifies several aspects of the device including the silicon version.  
The details of the device identification code register are shown in Table 8-1. The device identification code  
register value for this device is:  
Rev A = 0x8046AD05  
Rev B = 0x8046AD15  
Rev C = 0x8046AD1D  
Figure 8-2. Device ID Bit Allocation Register  
31  
CP-15  
R-1  
30  
29  
13  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
3
18  
17  
16  
TECH  
R-0  
UNIQUE ID  
R-00000000100011  
15  
14  
12  
11  
10  
9
8
7
6
5
4
2
1
1
0
0
1
TECH  
I/O  
PERIPH FLASH ECC  
RAM  
ECC  
VERSION  
VOLT PARITY  
AGE  
R-101  
R-0  
R-1  
R-10  
R-1  
R-00011  
R-1  
R-0  
R-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8-1. Device ID Bit Allocation Register Field Descriptions  
Bit  
Field  
Value  
Description  
31  
CP15  
Indicates the presence of coprocessor 15  
CP15 present  
1
30-17  
16-13  
UNIQUE ID  
TECH  
100011 Unique device identification number  
This bitfield holds a unique number for a dedicated device configuration (die).  
Process technology on which the device is manufactured.  
0101  
F021  
12  
I/O VOLTAGE  
I/O voltage of the device.  
I/O are 3.3v  
0
1
11  
PERIPHERAL  
PARITY  
Peripheral Parity  
Parity on peripheral memories  
10-9  
FLASH ECC  
Flash ECC  
10  
1
Program memory with ECC  
Indicates if RAM memory ECC is present.  
ECC implemented  
8
RAM ECC  
7-3  
2-0  
REVISION  
101  
Revision of the Device.  
The platform family ID is always 0b101  
8.6.2 Die Identification Registers  
The two die ID registers at addresses 0xFFFFFF7C and 0xFFFFFF80 form a 64-bit dieid with the  
information as shown in Table 8-2.  
Table 8-2. Die-ID Registers  
Item  
X Coordinate on Wafer  
Y Coordinate on Wafer  
Wafer #  
# of Bits  
Bit Location  
12  
12  
8
0xFFFFFF7C[11:0]  
0xFFFFFF7C[23:12]  
0xFFFFFF7C[31:24]  
0xFFFFFF80[23:0]  
Lot #  
24  
Copyright © 2012–2015, Texas Instruments Incorporated  
Device and Documentation Support  
161  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
 
 
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
Table 8-2. Die-ID Registers (continued)  
Item  
# of Bits  
Bit Location  
Reserved  
8
0xFFFFFF80[31:24]  
162  
Device and Documentation Support  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
8.7 Module Certifications  
The following communications modules have received certification of adherence to a standard.  
Copyright © 2012–2015, Texas Instruments Incorporated  
Device and Documentation Support  
163  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
8.7.1 FlexRay™ Certifications  
Figure 8-3. Flexray Certification for ZWT Package  
164  
Device and Documentation Support  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
Figure 8-4. Flexray Certification for PGE Package  
Copyright © 2012–2015, Texas Instruments Incorporated  
Device and Documentation Support  
165  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
8.7.2 DCAN Certification  
Figure 8-5. DCAN Certification  
166  
Device and Documentation Support  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
8.7.3 LIN Certification  
8.7.3.1 LIN Master Mode  
Figure 8-6. LIN Certification - Master Mode  
Copyright © 2012–2015, Texas Instruments Incorporated  
Device and Documentation Support  
167  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
8.7.3.2 LIN Slave Mode - Fixed Baud Rate  
Figure 8-7. LIN Certification - Slave Mode - Fixed Baud Rate  
168  
Device and Documentation Support  
Copyright © 2012–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
www.ti.com  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
8.7.3.3 LIN Slave Mode - Adaptive Baud Rate  
Figure 8-8. LIN Certification - Slave Mode - Adaptive Baud Rate  
Copyright © 2012–2015, Texas Instruments Incorporated  
Device and Documentation Support  
169  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
TMS570LS1115  
SPNS189B OCTOBER 2012REVISED FEBRUARY 2015  
www.ti.com  
9 Mechanical Packaging and Orderable Information  
9.1 Packaging Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and  
without revision of this document. For browser-based versions of this data sheet, refer to the left-hand  
navigation.  
170  
Mechanical Packaging and Orderable Information  
Submit Documentation Feedback  
Product Folder Links: TMS570LS1115  
Copyright © 2012–2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS5701115CPGEQQ1  
TMS5701115CZWTQQ1  
ACTIVE  
LQFP  
PGE  
144  
337  
60  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
TMS570LS  
1115CPGEQQ1  
ACTIVE  
NFBGA  
ZWT  
90  
SNAGCU  
TMS570LS  
1115CZWTQQ1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
ZWT0337A  
NFBGA - 1.4 mm max height  
SCALE 0.950  
PLASTIC BALL GRID ARRAY  
16.1  
15.9  
A
B
BALL A1 CORNER  
16.1  
15.9  
1.4 MAX  
C
SEATING PLANE  
0.12 C  
0.45  
0.35  
BALL TYP  
TYP  
14.4 TYP  
SYMM  
(0.8) TYP  
(0.8) TYP  
W
V
U
T
R
P
N
M
L
14.4  
TYP  
SYMM  
K
J
H
G
F
0.55  
337X  
0.45  
E
D
C
0.15  
0.05  
C A B  
C
B
A
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19  
0.8 TYP  
0.8 TYP  
BALL A1 CORNER  
4223381/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZWT0337A  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
(0.8) TYP  
337X ( 0.4)  
11  
12  
13 14 15 16 17 18 19  
1
3
4
6
7
8
9
10  
2
5
A
B
C
(0.8) TYP  
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
U
V
W
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:7X  
METAL UNDER  
SOLDER MASK  
0.05 MAX  
0.05 MIN  
(
0.4)  
METAL  
EXPOSED METAL  
(
0.4)  
SOLDER MASK  
OPENING  
EXPOSED METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223381/A 02/2017  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZWT0337A  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
(
0.4) TYP  
(0.8) TYP  
11  
12  
13 14 15 16 17 18 19  
1
3
4
6
7
8
9
10  
2
5
A
B
C
(0.8) TYP  
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
U
V
W
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE:7X  
4223381/A 02/2017  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
MECHANICAL DATA  
MTQF017A – OCTOBER 1994 – REVISED DECEMBER 1996  
PGE (S-PQFP-G144)  
PLASTIC QUAD FLATPACK  
108  
73  
109  
72  
0,27  
M
0,08  
0,17  
0,50  
0,13 NOM  
144  
37  
1
36  
Gage Plane  
17,50 TYP  
20,20  
SQ  
19,80  
0,25  
0,05 MIN  
22,20  
SQ  
0°7°  
21,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040147/C 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TMS5701115PGEQQ1

Flash options from 256 KB to 4 MB and performance from 80 MHz to 300 MHz

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS5701115ZWTQQ1

Flash options from 256 KB to 4 MB and performance from 80 MHz to 300 MHz

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS5701224CPGEQQ1

16/32 位 RISC 闪存 MCU,Cortex R4F,通过 Q100 车规认证 | PGE | 144 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS5701224CZWTQQ1

16/32 位 RISC 闪存 MCU,Cortex R4F,通过 Q100 车规认证 | ZWT | 337 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS5701224PGEQQ1

Flash options from 256 KB to 4 MB and performance from 80 MHz to 300 MHz

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS5701224ZWTQQ1

Flash options from 256 KB to 4 MB and performance from 80 MHz to 300 MHz

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS5701225BPGEQQ1

16- and 32-Bit RISC Flash Microcontroller 144-LQFP -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS5701225BZWTQQ1

16- and 32-Bit RISC Flash Microcontroller 337-NFBGA -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS5701225CPGEQQ1

16/32 位 RISC 闪存 MCU,Cortex R4F,通过 Q100 车规认证,Flexray | PGE | 144 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS5701225PGEQQ1

Flash options from 256 KB to 4 MB and performance from 80 MHz to 300 MHz

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS5701225ZWTQQ1

Flash options from 256 KB to 4 MB and performance from 80 MHz to 300 MHz

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS5701227BPGEQQ1

16- and 32-Bit RISC Flash Microcontroller 144-LQFP -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI