TMS570LS3137-EP [TI]

增强型产品 16/32 位 RISC 闪存 Arm Cortex-R4F、EMAC、FlexRay;
TMS570LS3137-EP
型号: TMS570LS3137-EP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

增强型产品 16/32 位 RISC 闪存 Arm Cortex-R4F、EMAC、FlexRay

闪存
文件: 总160页 (文件大小:6061K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
TMS570LS3137-EP 16 位和 32 RISC 闪存微控制器  
1 器件概述  
1.1 特性  
1
用于安全关键型应用的高性能微控制器  
运行在锁步中的双中央处理单元 (CPU)  
闪存和 RAM 接口上的 ECC  
内置 CPU 和片上 RAM 自检  
带有错误引脚的错误信令模块  
电压和时钟监视  
跟踪和校准功能  
嵌入式跟踪宏单元 (ETM-R4)  
数据修改模块 (DMM)  
– RAM 跟踪端口 (RTP)  
参数覆盖模块 (POM)  
多通信接口  
• ARM® Cortex™ – R4F 32 RISC CPU  
带有 8 级管线的高效 1.66DMIPS/MHz  
支持单精度和双精度的浮点运算单元 (FPU)  
– 12 区域内存保护单元  
– 10/100Mbps 以太网 MAC (EMAC)  
符合 IEEE 802.3 标准(只适用于 3.3V I/O)  
支持媒介独立接口 (MII),精简媒介独立接口  
(RMII) 和管理数据输入输出 (MDIO)  
带有 2 个通道的 FlexRay 控制器  
带有第三方支持的开放式架构  
运行条件  
带有奇偶检验保护的 8KB 消息 RAM  
专用传输单元 (FTU)  
高达180MHz 系统时钟  
– 3 CAN 控制器 (DCAN)  
内核电源电压 (VCC):标称值 1.2V  
– I/O 电源电压 (VCCOI):标称值 3.3V  
– ADC 电源电压 (VCCAD): 3.0 5.25V  
64 个邮箱,每个邮箱均具有奇偶校验保护  
CAN 协议 2.0B 版兼容  
本地互连网络 (LIN) 接口控制器  
采用 IP 模块门级设计,工作温度范围为 -40°C  
125°C,仅包含闪存,MibADC 定时  
器,nPORRSTN2HET FlexRay  
LIN 协议版本 2.1 兼容  
可被配置为第二个 SCI  
集成存储器  
标准串行通信接口 (SCI)  
内部集成电路 (I2C)  
– 3 个多通道经缓冲串行外设接口 (MibSPI)  
支持 ECC 3MB 程序闪存  
– 256KB 且支持 ECC RAM  
支持 ECC、用于仿真 EERPOM 64KB 闪存  
• 16 位外部存储器接口  
128 个字,每个字具有奇偶校验保护  
– 2 个标准串行外设接口 (SPI)  
• 2 个高端定时器模块 (N2HET)  
– N2HET132 个 可编程通道  
通用平台架构  
系列间一致的存储器映射  
实时中断定时器 (RTI) 操作系统 (OS) 定时器  
– 96 通道矢量中断模块 (VIM)  
– 2 通道循环冗余校验器 (CRC)  
直接内存访问 (DMA) 控制器  
– 16 通道和 32 控制数据包  
– N2HET218 个可编程通道  
– 160 个字指令 RAM,每个都带有奇偶校验保护  
每个 N2HET 包括硬件角发生器  
针对每个 N2HET (HTU) 的具有 MPU 的专用传  
输单元  
针对控制数据包 RAM 的奇偶校验保护  
由专用 MPU 保护的 DMA 访问  
带有内置跳周检测器的调频锁相环 (FMPLL)  
独立的非调制 PLL  
• IEEE 1149.1 JTAG,边界扫描和 ARM CoreSight™  
组件  
• 2 10 12 位多通道经缓冲 ADC 模块  
– ADC124 个通道  
– ADC2:与 ADC1 共用的 16 个通道  
– 64 个结果缓冲器,每个缓冲器具有奇偶校验保护  
• 16 个能够生成中断的通用输入/输出引脚 (GPIO)  
封装  
• JTAG 安全模块  
– 337 球状引脚栅格阵列 (SnPb)(GWT)  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SPNS230  
 
 
 
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
1.2 应用范围  
刹车系统(防抱死制动系统和电子稳定性控制)  
支持国防、航天和医疗应用  
受控基线  
电动助力转向  
同一组装和测试场所  
同一制造场所  
混合动力汽车 (HEV) 和电动汽车 (EV) 反向器系统  
电池管理系统  
主动驾驶员辅助系统  
航天和航空电子设备  
轨道交通  
支持温度范围 –55°C 125°C  
延长的产品生命周期  
延长的产品变更通知  
产品可追溯性  
越野车  
1.3 说明  
TMS570LS3137-EP 器件是一款用于安全系统的高性能 系列微控制器。 此安全架构包括:  
以锁步模式运行的双核 CPU  
CPU 和内存内置自检 (BIST) 逻辑  
闪存和数据 SRAM 上的 ECC  
外设存储器的奇偶校验  
外设 I/O 上的回路功能  
TMS570LS3137-EP 器件集成了 ARM Cortex-R4F 浮点 CPU,此 CPU 可提供一个高效的 1.66  
DMIPS/MHz,并且 具有能够以高达 180 MHz 运行的配置,从而提供高达 298 DMIPS。 此器件支持字不变  
大端序 [BE32] 格式。  
TMS570LS3137-EP 器件具有 3MB 的集成闪存以及 256KB 的数据 RAM,这些闪存和 RAM 支持单位错误  
校正和双位错误检测。 这个器件上的闪存存储器是一个由 64 位宽数据总线接口实现的非易失性、电可擦除  
并且可编程的存储器。 为了实现所有读取、编程和擦除操作,此闪存运行在一个 3.3V 电源输入上(与 I/O  
电源一样的电平)。 当处于管线模式中时,闪存可在高达 180MHz 的系统时钟频率下运行。 在字节、半  
字、字和双字模式中,SRAM 支持单循环读取和写入访问。  
TMS570LS3137-EP 器件特有针对基于实时控制应用的外设,其中包括 2 个下一代高端定时器 (N2HET) 时  
序协处理器和 2 个支持多达 24 个输入的 12 位模数转换器 (ADC) 。  
N2HET1 是一款高级智能定时器,此定时器能够为实时应用提供精密的计时功能。 该定时器为软件控制  
型,采用一个精简指令集,并具有一个专用的定时器微级机和一个连接的 I/O 端口。 N2HET 可被用于脉宽  
调制输出,捕捉或比较输入,GPION2HET 特别适合于要求多个传感器信息并且用复杂和准确时间脉冲来  
驱动致动器的应用。 一个高端定时器传输单元 (HTU) 能够执行 DMA 类型处理来与主存储器之间传输  
N2HET 数据。 一个内存保护单元 (MPU) 被内置于 HTU 内。  
此器件具有 2 12 位分辨率 MibADC,每个 MibADC 具有 24 个通道和受 64 字奇偶校验保护的缓冲器  
RAMMibADC 通道可被独立转换或者可针对顺序转换序列由软件成组。 16 个通道可在两个 MibADC 间  
共用。 有三个独立的组。 当被触发或者针对连续转换模式进行配置后,每个序列可被转换一次。  
此器件有多个通信接口:3 MibSPI,,1 LIN1 SCI3 DACN1 I2CSPI 为相似移位寄存  
器类型器件之间串行高速通信的提供了一个便捷方法。 LIN 支持本地互联标准 2.0 并可被用作一个使用标准  
不归零码 (NRZ) 格式的全双工模式 UART。  
DCAN 支持 CAN 2.0A B)协议标准并使用一个串行、多主控通信协议,此协议用高达 1Mbps 的稳健  
耐用通信速率有效支持分布式实时控制。 DCAN 非常适合于工作于嘈杂和恶劣环境中的系统(例如,汽车  
网络互连和工业领域),此类系统需要可靠的串行通信或多路复用布线。  
I2C 模块是一个多主控通信模块,此模块通过 I2C 串行总线在微控制器和一个 I2C 兼容器件之间提供一个接  
口。 此 I2C 支持 100Kbps 400Kbps 的速度。  
此调频锁相环 (FMPLL) 时钟模块被用来将外部频率基准与一个内部使用的更高频率相乘。 这个器件上有两  
FMPLL 模块。 当被启用时,这些模块提供 7 个可能的时钟源中的两个到全局时钟模块 (GCM)。 此  
GCM 管理可用时钟源与器件时钟域间的映射。  
2
器件概述  
版权 © 2013–2015, Texas Instruments Incorporated  
 
 
 
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
此器件还有一个外部时钟前置分频器 (ECP) 模块,当被启用时,此模块在 ECLK 引脚/焊球上输出一个连续  
外部时钟。 ECLK 频率是一个外设接口时钟 (VCLK) 频率的用户可编程比例。 这个可被外部监视的低频输出  
作为此器件运行频率的指示器。  
直接内存访问 (DMA) 控制器有 16 个通道,32 个控制数据包和针对其内存的奇偶校验保护。 在 DMA 中内  
置了一个 MPU 来将 DMA 限制在存储器的指定区域,并且保护存储器系统的剩余部分不受 DMA 故障的影  
响。  
错误信令模块 (ESM) 监控所有器件错误并在检测到一个故障时确定是生成一个中断还是触发一个外部  
ERROR 引脚。 可从外部监视此 ERROR 引脚,将其作为一个微控制器内故障条件的指示器。  
外部存储器接口 (EMIF) 提供芯片外扩展功能,此功能可实现与同步 DRAM (SDRAM) 器件、异步存储器、  
外设或现场可编程门阵列 (FPGA) 器件的对接。  
执行几个接口来提高应用代码的调试能力。 除了内置的 ARM Cortex-R4F CoreSight 调试特性,一个外部跟  
踪宏单元 (ETM) 提供程序执行的指令和数据跟踪。 为了实现仪器测量的目的,执行了一个 RAM 跟踪端口  
模块 (RTP) 来支持由 CPU 或者任何其它主控所访问的 RAM 和外设的高速跟踪。 一个数据修改模块  
(DMM) 提供向器件内存写入外部数据的功能。 RTP DMM 对于应用代码的程序执行时间没有影响或者只  
有很小的影响。 一个参数覆盖模块 (POM) 可将闪存访问重新路由至内部存储器或 EMIF。 这个重新路由可  
对照生产代码对参数和表格进行动态校准,而无需重建代码以明确访问 RAM 或停止处理器来重新编辑数据  
闪存。  
借助集成的安全特性和通信与控制外设的广泛选择, 器件是针对具有安全关键要求的高性能实时控制应用的  
理想解决方案。  
1-1. 器件信息(1)  
订货编号  
TMS5703137CGWTQEP  
TMS5703137CGWTMEP  
封装  
TA  
-40°C 105°C  
-55°C 125°C  
NFBGA (337)  
(1) 更多信息请参见 9机械封装和可订购产品信息。  
版权 © 2013–2015, Texas Instruments Incorporated  
器件概述  
3
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
1.4 功能方框图  
Color Legend for Power Domains  
RAM  
Core/RAM  
Core  
always on  
# 1  
# 2  
# 3  
# 4  
# 5  
# 1  
# 2  
64K  
3M  
256K  
64K RAM  
with  
Flash  
with  
ECC  
# 3  
64K  
ECC  
64K  
ETM-R4  
RTP  
DMA  
POM  
DMM  
HTU1  
FTU  
HTU2  
EMAC  
Dual Cortex-R4F  
CPUs in Lockstep  
Switched Central Resource Switched Central Resource Switched Central Resource  
Main Cross Bar: Arbitration and Prioritization Control  
64 KB Flash  
Peripheral Central Resource Bridge  
SYS  
CRC Switched Central Resource  
for EEPROM  
Emulation  
with ECC  
nPORRST  
nRST  
ECLK  
IOMM  
EMAC Slaves  
nERROR  
ESM  
EMIF_nWAIT  
EMIF_CLK  
MDCLK  
MDIO  
PMM  
VIM  
CAN1_RX  
CAN1_TX  
CAN2_RX  
CAN2_TX  
CAN3_RX  
CAN3_TX  
MDIO  
DCAN1  
MII_RXD[3:0]  
MII_RXER  
MII_TXD[3:0]  
MII_TXEN  
MII_TXCLK  
MII_RXCLK  
EMIF_CKE  
EMIF_nCS[4:2]  
EMIF_nCS[0]  
EMIF_ADDR[21:0]  
EMIF_BA[1:0]  
EMIF_DATA[15:0]  
EMIF_nDQM[1:0]  
EMIF_nOE  
DCAN2  
DCAN3  
MII  
MIBSPI1_CLK  
EMIF  
MIBSPI1_SIMO[1:0]  
MIBSPI1_SOMI[1:0]  
MII_CRS  
MII_RXDV  
MII_COL  
MibSPI1  
SPI2  
RTI  
MIBSPI1_nCS[5:0]  
MIBSPI1_nENA  
EMIF_nWE  
EMIF_nRAS  
EMIF_nCAS  
EMIF_nRW  
SPI2_CLK  
SPI2_SIMO  
SPI2_SOMI  
DCC1  
SPI2_nCS[1:0]  
SPI2_nENA  
MIBSPI3_CLK  
MIBSPI3_SIMO  
MIBSPI3_SOMI  
MIBSPI3_nCS[5:0]  
MIBSPI3_nENA  
MibSPI3  
SPI4  
DCC2  
SPI4_CLK  
SPI4_SIMO  
SPI4_SOMI  
SPI4_nCS0  
SPI4_nENA  
FlexRay  
MibADC1  
MibADC2  
N2HET1 N2HET2 GIO  
I2C  
MIBSPI5_SIMO[3:0]  
MIBSPI5_SOMI[3:0]  
MIBSPI5_nCS[3:0]  
MIBSPI5_nENA  
MibSPI5  
LIN_RX  
LIN_TX  
LIN  
SCI  
SCI_RX  
SCI_TX  
1-1. 功能方框图  
4
器件概述  
版权 © 2013–2015, Texas Instruments Incorporated  
 
 
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
内容  
1
器件概.................................................... 1  
6.11 Tightly-Coupled RAM Interface Module............. 67  
6.12 Parity Protection for Peripheral RAMs .............. 67  
6.13 On-Chip SRAM Initialization and Testing ........... 69  
6.14 External Memory Interface (EMIF) .................. 71  
6.15 Vectored Interrupt Manager ......................... 78  
6.16 DMA Controller ...................................... 81  
6.17 Real Time Interrupt Module ......................... 83  
6.18 Error Signaling Module.............................. 85  
6.19 Reset / Abort / Error Sources ....................... 89  
6.20 Digital Windowed Watchdog ........................ 91  
6.21 Debug Subsystem................................... 92  
Peripheral Information............................... 103  
7.1 Peripheral Legend ................................. 103  
1.1 特性 ................................................... 1  
1.2 应用范围 .............................................. 2  
1.3 说明 ................................................... 2  
1.4 功能方框图............................................ 4  
修订历史记录............................................... 6  
Device Comparison Table.............................. 7  
3.1 Device Comparison................................... 7  
Pin Configuration and Functions..................... 8  
4.1 Pin Diagrams ......................................... 8  
Specifications ........................................... 29  
5.1 Absolute Maximum Ratings......................... 29  
5.2 ESD Ratings ........................................ 29  
5.3 Power-On Hours (POH)............................. 29  
5.4 Recommended Operating Conditions............... 29  
5.5 Power Consumption................................. 31  
5.6 Thermal Data........................................ 31  
5.7 Switching Characteristics ........................... 32  
5.8 Wait States Required ............................... 32  
5.9 I/O Electrical Characteristics ........................ 33  
5.10 Output Buffer Drive Strengths ...................... 33  
5.11 Input Timings........................................ 34  
5.12 Output Timings...................................... 35  
5.13 Low-EMI Output Buffers ............................ 37  
2
3
4
5
7
7.2  
Multi-Buffered 12bit Analog-to-Digital Converter .. 103  
7.3 General-Purpose Input/Output..................... 114  
7.4 Enhanced High-End Timer (N2HET) .............. 115  
7.5 FlexRay Interface .................................. 120  
7.6 Controller Area Network (DCAN) .................. 122  
7.7  
Local Interconnect Network Interface (LIN)........ 123  
Serial Communication Interface (SCI) ............. 124  
7.8  
7.9 Inter-Integrated Circuit (I2C) ....................... 125  
7.10 Multi-Buffered / Standard Serial Peripheral  
Interface............................................ 128  
7.11 Ethernet Media Access Controller ................. 141  
8
Device and Documentation Support.............. 145  
6
System Information and Electrical  
Specifications ........................................... 38  
8.1  
Device and Development-Support Tool  
Nomenclature ...................................... 145  
6.1 Device Power Domains ............................. 38  
6.2 Voltage Monitor Characteristics ..................... 39  
8.2 Documentation Support............................ 147  
8.3 商标 ................................................ 147  
8.4 静电放电警告....................................... 147  
8.5 术语.............................................. 147  
8.6 Device Identification................................ 148  
8.7 Module Certifications............................... 150  
6.3  
Power Sequencing and Power On Reset ........... 40  
6.4 Warm Reset (nRST)................................. 42  
6.5 ARM© Cortex™-R4F CPU Information.............. 43  
6.6 Clocks ............................................... 46  
6.7 Clock Monitoring .................................... 54  
6.8 Glitch Filters......................................... 56  
6.9 Device Memory Map ................................ 57  
6.10 Flash Memory ....................................... 64  
9
Mechanical, Packaging, and Orderable  
Information............................................. 153  
9.1 Packaging Information ............................. 153  
版权 © 2013–2015, Texas Instruments Incorporated  
内容  
5
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
2 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (October 2013) to Revision C  
Page  
已将格式更新为新标准版.......................................................................................................... 1  
扩大了支持的温度范围 ............................................................................................................... 2  
Updated TJ minimum and removed TA .......................................................................................... 29  
Changed Lifetime POH from 20k to 100k. ...................................................................................... 29  
Updated TJ minimum ............................................................................................................... 30  
Updated test condition temperatures for ........................................................................................ 31  
Added conditions ................................................................................................................... 34  
Added conditions ................................................................................................................... 36  
Added test conditions .............................................................................................................. 41  
Added conditions ................................................................................................................... 42  
Added conditions ................................................................................................................... 47  
Added test conditions .............................................................................................................. 50  
Added test conditions .............................................................................................................. 54  
Updated Glitch Filter Timing Specifications table. ............................................................................. 56  
Updated the minimum timing for ETMDATA parameters to show new orderable part number .......................... 97  
Added conditions ................................................................................................................... 98  
Added conditions .................................................................................................................. 100  
Added conditions to 7-8 ...................................................................................................... 108  
Added conditions .................................................................................................................. 109  
Added conditions .................................................................................................................. 110  
Added conditions for 7-11 .................................................................................................... 115  
Added conditions for 7-12 .................................................................................................... 116  
Added conditions for tpw .......................................................................................................... 120  
Added conditions for 7-17 .................................................................................................... 121  
Added conditions for 7-24 .................................................................................................... 132  
Added conditions to 7-25 ..................................................................................................... 135  
Added conditions to 7-26 ..................................................................................................... 137  
Added conditions to 7-27 ..................................................................................................... 139  
Added conditions to transition time ............................................................................................. 144  
Changes from Revision A (October 2013) to Revision B  
Page  
Changed Operation Life Derating Chart ......................................................................................... 30  
6
修订历史记录  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
3 Device Comparison Table  
3.1 Device Comparison  
To compare the TMS570LS3137-EP with other devices, see Compare on the product folder.  
Copyright © 2013–2015, Texas Instruments Incorporated  
Device Comparison Table  
7
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
4 Pin Configuration and Functions  
4.1 Pin Diagrams  
337-Ball Grid Array  
GWT BGA Package  
Top View  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
AD1IN[15] AD1IN[22]  
AD1IN[11]  
/
AD2IN[11]  
N2HET1 MIBSPI5 MIBSPI1 MIBSPI1 MIBSPI5 MIBSPI5 N2HET1  
SIMO[0]  
DMM_  
DATA[0]  
AD1IN  
[06]  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VSS  
VSS  
TMS  
CAN3RX AD1EVT  
/
/
AD2IN[15] AD2IN[06]  
VSSAD  
VSSAD 19  
[10]  
NCS[0]  
SIMO  
NENA  
CLK  
[28]  
AD1IN[08] AD1IN[14] AD1IN[13]  
N2HET1 MIBSPI1 MIBSPI1 MIBSPI5 MIBSPI5 N2HET1  
SOMI[0]  
DMM_  
DATA[1]  
AD1IN  
[04]  
AD1IN  
[02]  
VSS  
TDI  
TCK  
TDO  
nTRST  
CAN3TX  
NC  
/
AD2IN[08] AD2IN[14] AD2IN[13]  
/
/
VSSAD 18  
AD1IN[09]  
[08]  
CLK  
SOMI  
NENA  
[0]  
AD1IN[10]  
/
AD2IN[10]  
EMIF_  
ADDR[21]  
EMIF_  
nWE  
MIBSPI5  
SOMI[1]  
DMM_  
CLK  
MIBSPI5 MIBSPI5 N2HET1  
[31]  
EMIF_  
nCS[3]  
EMIF_  
nCS[2]  
EMIF_  
nCS[4]  
EMIF_  
nCS[0]  
AD1IN  
[05]  
AD1IN  
[03]  
AD1IN  
[01]  
RST  
NC  
NC  
/
AD2IN[09]  
17  
SIMO[3] SIMO[2]  
AD1IN[23] AD1IN[12] AD1IN[19]  
FRAY EMIF_  
TXEN1 ADDR[20]  
EMIF_  
BA[1]  
MIBSPI5  
SIMO[1]  
DMM_  
NENA  
MIBSPI5 MIBSPI5  
SOMI[3] SOMI[2]  
DMM_  
SYNC  
RTCK  
NC  
NC  
NC  
NC  
/
/
AD2IN[07] AD2IN[12] AD2IN[03]  
/
ADREFLO VSSAD 16  
ADREFHI VCCAD 15  
ETM  
DATA[16] /  
EMIF_  
ETM  
DATA[17] /  
EMIF_  
ETM  
DATA[18] /  
EMIF_  
ETM  
DATA[19] /  
EMIF_  
AD1IN[21] AD1IN[20]  
FRAY  
RX1  
FRAY  
TX1  
EMIF_ ETM  
ADDR[19] ADDR[18] DATA[06] DATA[05] DATA[04] DATA[03] DATA[02]  
EMIF_  
ETM  
ETM  
ETM  
ETM  
NC  
NC  
NC  
/
AD2IN[05] AD2IN[04]  
/
DATA[0]  
DATA[1]  
DATA[2]  
DATA[3]  
AD1IN[18]  
/
AD2IN[02]  
N2HET1  
[26]  
EMIF_ ETM  
ADDR[17] ADDR[16] DATA[07]  
EMIF_  
AD1IN  
[07]  
AD1IN  
[0]  
nERROR  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCC  
VCCIO  
VCCIO  
VCC  
VCC  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCPLL  
VCC  
NC  
NC  
14  
13  
12  
11  
AD1IN[17] AD1IN[16]  
/
AD2IN[01] AD2IN[0]  
ETM  
DATA[12] /  
NC  
N2HET1 N2HET1  
[17]  
EMIF_  
ADDR[15]  
EMIF_BA[0]  
ETM  
DATA[01]  
/
NC  
NC  
NC  
[19]  
ETM  
DATA[13] /  
NC  
N2HET1  
[04]  
EMIF_  
ADDR[14]  
EMIF_nOE  
ETM  
DATA[0]  
MIBSPI5  
NCS[3]  
ECLK  
VSS  
VSS  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VSS  
VSS  
VSS  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VSS  
VSS  
NC  
NC  
NC  
NC  
ETM  
ETME  
TRACE  
CTL  
N2HET1 N2HET1  
[14] [30]  
EMIF_  
ADDR[13]  
DATA[14] /  
EMIF_  
nDQM[1]  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
ETM  
ETM  
TRACE  
CLKOUT  
EMIF_  
ADDR[12]  
MIBSPI3  
NCS[0]  
DATA[15] /  
EMIF_  
nDQM[0]  
10 CAN1TX CAN1RX  
NC  
GIOB[3] 10  
ETM  
DATA[08] /  
EMIF_  
ETM  
TRACE  
CLKIN  
N2HET1  
[27]  
FRAY EMIF_  
TXEN2 ADDR[11]  
MIBSPI3 MIBSPI3  
NENA  
9
8
7
6
5
4
3
2
1
VCC  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
NC  
9
8
7
6
5
4
3
2
1
CLK  
ADDR[5]  
ETM  
DATA[09] /  
EMIF_  
ETM  
FRAY  
RX2  
FRAY  
TX2  
EMIF_  
ADDR[10]  
MIBSPI3 MIBSPI3  
SIMO  
DATA[31] /  
EMIF_  
DATA[15]  
VCCP  
VCCIO  
VCCIO  
NC  
SOMI  
ADDR[4]  
ETM  
DATA[10] /  
EMIF_  
ETM  
EMIF_  
ADDR[9]  
N2HET1  
[09]  
DATA[30] /  
EMIF_  
DATA[14]  
nPORRST  
LINRX  
LINTX  
NC  
ADDR[3]  
ETM  
ETM  
MIBSPI5  
NCS[1]  
EMIF_  
ADDR[8]  
N2HET1 MIBSPI5  
[05] NCS[2]  
DATA[11] /  
EMIF_  
ADDR[2]  
DATA[29] /  
EMIF_  
DATA[13]  
GIOA[4]  
NC  
VCCIO  
VCCIO  
FLTP2  
VCCIO  
FLTP1  
VCC  
VCC  
VCCIO  
VCCIO  
NC  
ETM  
DATA[20] /  
EMIF_  
ETM  
DATA[21] /  
EMIF_  
ETM  
DATA[22] /  
EMIF_  
ETM  
DATA[23] /  
EMIF_  
ETM  
DATA[24] /  
EMIF_  
ETM  
DATA[25] /  
EMIF_  
ETM  
ETM  
ETM  
EMIF_ EMIF_  
ADDR[7] ADDR[1]  
MIBSPI3 N2HET1  
[02]  
DATA[26] /  
EMIF_  
DATA[10]  
DATA[27] /  
EMIF_  
DATA[11]  
DATA[28] /  
EMIF_  
DATA[12]  
GIOA[0] GIOA[5]  
N2HET1 N2HET1  
NC  
NCS[1]  
DATA[4]  
DATA[5]  
DATA[6]  
DATA[7]  
DATA[8]  
DATA[9]  
EMIF_ EMIF_  
ADDR[6] ADDR[0]  
N2HET1 N2HET1  
[21]  
EMIF_  
nCAS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
[16]  
[12]  
[23]  
N2HET1 N2HET1 MIBSPI3  
NCS[3]  
SPI2  
NENA  
N2HET1 MIBSPI1 MIBSPI1  
[11] NCS[1] NCS[2]  
MIBSPI1  
NCS[3]  
EMIF_  
CLK  
EMIF_  
CKE  
N2HET1  
[25]  
SPI2  
NCS[0]  
EMIF_  
nWAIT  
EMIF_  
nRAS  
N2HET1  
[06]  
GIOA[6]  
NC  
NC  
[29]  
[22]  
MIBSPI3  
NCS[2]  
SPI2  
SOMI  
KELVIN_  
GND  
N2HET1 N2HET1 MIBSPI1  
[20]  
N2HET1  
[01]  
VSS  
GIOA[1]  
SPI2 CLK GIOB[2] GIOB[5] CAN2TX GIOB[6] GIOB[1]  
GIOB[0]  
TEST  
VSS  
[13]  
NCS[0]  
SPI2  
SIMO  
N2HET1  
[18]  
N2HET1 N2HET1  
[24]  
N2HET1 N2HET1  
[07]  
VSS  
A
VSS  
B
GIOA[2]  
C
GIOA[3] GIOB[7] GIOB[4] CAN2RX  
OSCIN  
K
OSCOUT GIOA[7]  
NC  
R
VSS  
V
VSS  
W
[15]  
[03]  
D
E
F
G
H
J
L
M
N
P
T
U
NOTE: Balls can have multiplexed functions. Only the default function is depicted in above diagram, except for the EMIF  
signals that are multiplexed with ETM signals.  
8
Pin Configuration and Functions  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
4.1.1 Pin Attributes  
4.1.1.1 identifies the external signal names, the associated pin/ball numbers along with the mechanical  
package designator, the pin/ball type (Input, Output, IO, Power or Ground), whether the pin/ball has any  
internal pullup/pulldown, whether the pin/ball can be configured as a GPIO, and a functional pin/ball  
description. The first signal name listed is the primary function for that terminal. The signal name in Bold is  
the function being described. Refer to the TMS570LS31X/21X Technical Reference Manual (SPNU499)  
for information on how to select between different multiplexed functions.  
NOTE  
All I/O signals except nRST are configured as inputs while nPORRST is low and immediately  
after nPORRST goes High.  
All output-only signals are configured as inputs while nPORRST is low, and are  
configured as outputs immediately after nPORRST goes High.  
While nPORRST is low, the input buffers are disabled, and the output buffers are  
tri-stated.  
In the Pin Functions table below, the "Default Pull State" is the state of the pullup or  
pulldown while nPORRST is low and immediately after nPORRST goes High. The  
default pull direction may change when software configures the pin for an alternate  
function. The "Pull Type" is the type of pull asserted when the signal name in bold  
is enabled for the given pin.  
Copyright © 2013–2015, Texas Instruments Incorporated  
Pin Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
4.1.1.1 GWT Package  
4.1.1.1.1 Multi-Buffered Analog-to-Digital Converters (MibADC)  
Table 4-1. GWT Multi-Buffered Analog-to-Digital Converters (MibADC1, MibADC2)  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
ADREFHI(1)  
V15  
Input  
-
-
None  
ADC high reference  
supply  
ADREFLO(1)  
VCCAD(1)  
VSSAD  
V16  
W15  
V19  
Input  
Power  
Ground  
ADC low reference supply  
Operating supply for ADC  
ADC supply power  
None  
W16  
W18  
W19  
N19  
AD1EVT  
I/O  
I/O  
Pull Down Programmable, ADC1 event trigger input,  
20uA or GPIO  
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/N2HET2_PIN_nDIS  
V10  
Pull Up  
Programmable, ADC2 event trigger input,  
20uA  
or GPIO  
AD1IN[0]  
W14  
V17  
V18  
T17  
U18  
R17  
T19  
V14  
P18  
W17  
U17  
U19  
T16  
T18  
R18  
P19  
V13  
U13  
U14  
U16  
U15  
T15  
R19  
R16  
Input  
-
None  
ADC1 analog input  
AD1IN[1]  
AD1IN[2]  
AD1IN[3]  
AD1IN[4]  
AD1IN[5]  
AD1IN[6]  
AD1IN[7]  
AD1IN[8] / AD2IN[8]  
AD1IN[9] / AD2IN[9]  
AD1IN[10] / AD2IN[10]  
AD1IN[11] / AD2IN[11]  
AD1IN[12] / AD2IN[12]  
AD1IN[13] / AD2IN[13]  
AD1IN[14] / AD2IN[14]  
AD1IN[15] / AD2IN[15]  
AD1IN[16] / AD2IN[0]  
AD1IN[17] / AD2IN[1]  
AD1IN[18] / AD2IN[2]  
AD1IN[19] / AD2IN[3]  
AD1IN[20] / AD2IN[4]  
AD1IN[21] / AD2IN[5]  
AD1IN[22] / AD2IN[6]  
AD1IN[23] / AD2IN[7]  
Input  
-
None  
ADC1/ADC2 shared  
analog inputs  
(1) The ADREFHI, ADREFLO, VCCAD and VSSAD connections are common for both ADC cores.  
10  
Pin Configuration and Functions  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
4.1.1.1.2 Enhanced High-End Timer Modules (N2HET)  
Table 4-2. GWT Enhanced High-End Timer Modules (N2HET)  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
N2HET1[0]/SPI4CLK  
K18  
V2  
I/O  
Pull Down Programmable,  
20uA  
N2HET1  
capture  
compare, or GIO.  
time  
or  
input  
output  
N2HET1[1]/SPI4NENA/N2HET2[8]  
N2HET1[2]/SPI4SIMO[0]  
N2HET1[3]/SPI4NCS[0]/N2HET2[10]  
N2HET1[4]  
W5  
U1  
Each terminal has  
suppression filter that  
ignores  
smaller  
programmable duration.  
a
B12  
V6  
input  
than  
pulses  
a
N2HET1[5]/SPI4SOMI[0]/N2HET2[12]  
N2HET1[6]/SCIRX  
N2HET1[7]/N2HET2[14]  
N2HET1[8]/MIBSPI1SIMO[1]  
N2HET1[9]/N2HET2[16]  
N2HET1[10]  
W3  
T1  
E18  
V7  
D19  
E3  
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]  
N2HET1[12]  
B4  
N2HET1[13]/SCITX  
N2HET1[14]  
N2  
A11  
N1  
N2HET1[15]/MIBSPI1NCS[4]  
N2HET1[16]  
A4  
N2HET1[17]  
A13  
J1  
N2HET1[18]  
N2HET1[19]  
B13  
P2  
N2HET1[20]  
N2HET1[21]  
H4  
N2HET1[22]  
B3  
N2HET1[23]  
J4  
N2HET1[24]/MIBSPI1NCS[5]  
N2HET1[25]  
P1  
M3  
A14  
A9  
N2HET1[26]/  
N2HET1[27]  
N2HET1[28]/  
K19  
A3  
N2HET1[29]  
N2HET1[30]  
B11  
J17  
B5  
N2HET1[31]  
GIOA[5]/EXTCLKIN/N2HET1_PIN_nDIS  
I/O  
Pull Down Programmable,  
20uA  
Copyright © 2013–2015, Texas Instruments Incorporated  
Pin Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
Table 4-2. GWT Enhanced High-End Timer Modules (N2HET) (continued)  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
GIOA[2]/N2HET2[0]  
C1  
D4  
E1  
I/O  
Pull Down Programmable,  
20uA  
N2HET2  
capture  
compare, or GIO.  
time  
or  
input  
output  
EMIF_ADDR[0]/N2HET2[1]  
GIOA[3]/N2HET2[2]  
Each terminal has  
suppression filter that  
a
EMIF_ADDR[1]/N2HET2[3]  
D5  
H3  
D16  
M1  
N17  
V2  
GIOA[6]/N2HET2[4]  
ignores  
smaller  
input  
than  
pulses  
a
EMIF_BA[1]/N2HET2[5]  
programmable duration.  
GIOA[7]/N2HET2[6]  
EMIF_nCS[0]/RTP_DATA[15]/N2HET2[7]  
N2HET1[1]/SPI4NENA/N2HET2[8]  
EMIF_nCS[3]/RTP_DATA[14]/N2HET2[9]  
N2HET1[3]/SPI4NCS[0]/N2HET2[10]  
EMIF_ADDR[6]/RTP_DATA[13]/N2HET2[11]  
N2HET1[5]/SPI4SOMI[0]/N2HET2[12]  
EMIF_ADDR[7]/RTP_DATA[12]/N2HET2[13]  
N2HET1[7]/N2HET2[14]  
K17  
U1  
C4  
V6  
C5  
T1  
EMIF_ADDR[8]/RTP_DATA[11]/N2HET2[15]  
N2HET1[9]/N2HET2[16]  
C6  
V7  
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]  
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/N2HET2_PIN_nDIS  
E3  
V10  
I/O  
Pull Up  
Programmable,  
20uA  
12  
Pin Configuration and Functions  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
4.1.1.1.3 General-Purpose Input / Output (GPIO)  
Table 4-3. GWT General-Purpose Input / Output (GPIO)  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
GIOA[0]  
A5  
C2  
C1  
E1  
I/O  
Pull Down Programmable, General-purpose I/O.  
20uA  
All GPIO terminals are  
capable of generating  
interrupts to the CPU on  
rising / falling / both  
edges.  
GIOA[1]  
GIOA[2]/N2HET2[0]  
GIOA[3]/N2HET2[2]  
GIOA[4]  
A6  
GIOA[5]/EXTCLKIN/N2HET1_PIN_nDIS  
B5  
GIOA[6]/N2HET2[4]  
H3  
M1  
M2  
K2  
GIOA[7]/N2HET2[6]  
GIOB[0]  
GIOB[1]  
GIOB[2]  
F2  
GIOB[3]  
W10  
G1  
G2  
J2  
GIOB[4]  
GIOB[5]  
GIOB[6]  
GIOB[7]  
F1  
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/N2HET2_PIN_nDIS  
V10  
Pull Up  
Fixed 20uA pull GIOB[2] is input only on  
down  
this terminal. When  
GIOB[2] function is  
selected, the pull is a fixed  
pull down  
4.1.1.1.4 FlexRay Interface Controller (FlexRay)  
Table 4-4. FlexRay Interface Controller (FlexRay)  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
FRAYRX1  
FRAYTX1  
A15  
B15  
B16  
A8  
Input  
Output  
Output  
Input  
Pull Up  
None  
Fixed, 100uA  
-
FlexRay data receive  
(channel 1)  
FlexRay data transmit  
(channel 1)  
FRAYTXEN1  
FRAYRX2  
FRAYTX2  
FlexRay transmit enable  
(channel 1)  
Pull Up  
None  
Fixed, 100uA  
-
FlexRay data receive  
(channel 2)  
B8  
Output  
Output  
FlexRay data transmit  
(channel 2)  
FRAYTXEN2  
B9  
FlexRay transmit enable  
(channel 2)  
Copyright © 2013–2015, Texas Instruments Incorporated  
Pin Configuration and Functions  
13  
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
4.1.1.1.5 Controller Area Network Controllers (DCAN)  
Table 4-5. GWT Controller Area Network Controllers (DCAN)  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
CAN1RX  
CAN1TX  
CAN2RX  
CAN2TX  
CAN3RX  
CAN3TX  
B10  
A10  
H1  
I/O  
Pull Up  
Programmable, CAN1 receive, or GPIO  
20uA  
CAN1 transmit, or GPIO  
CAN2 receive, or GPIO  
CAN2 transmit, or GPIO  
CAN3 receive, or GPIO  
CAN3 transmit, or GPIO  
H2  
M19  
M18  
4.1.1.1.6 Local Interconnect Network Interface Module (LIN)  
Table 4-6. GWT Local Interconnect Network Interface Module (LIN)  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
LINRX  
LINTX  
A7  
B7  
I/O  
Pull Up  
Programmable, LIN receive, or GPIO  
20uA  
LIN transmit, or GPIO  
4.1.1.1.7 Standard Serial Communication Interface (SCI)  
Table 4-7. GWT Standard Serial Communication Interface (SCI)  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
N2HET1[6]/SCIRX  
N2HET1[13]/SCITX  
W3  
N2  
I/O  
Pull Down Programmable, SCI receive, or GPIO  
20uA  
SCI transmit, or GPIO  
14  
Pin Configuration and Functions  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
4.1.1.1.8 Inter-Integrated Circuit Interface Module (I2C)  
Table 4-8. GWT Inter-Integrated Circuit Interface Module (I2C)  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]  
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]  
B2  
C3  
I/O  
Pull Up  
Programmable, I2C serial data, or GPIO  
20uA  
I2C serial clock, or GPIO  
4.1.1.1.9 Standard Serial Peripheral Interface (SPI)  
Table 4-9. GWT Standard Serial Peripheral Interface (SPI)  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
SPI2CLK  
E2  
N3  
D3  
D3  
D1  
I/O  
Pull Up  
Programmable, SPI2 clock, or GPIO  
20uA  
SPI2NCS[0]  
SPI2 chip select, or GPIO  
SPI2NENA/SPI2NCS[1]  
SPI2NENA/SPI2NCS[1]  
SPI2SIMO[0]  
SPI2 chip select, or GPIO  
SPI2 enable, or GPIO  
SPI2 slave-input master-  
output, or GPIO  
SPI2SOMI[0]  
D2  
SPI2 slave-output master-  
input, or GPIO  
N2HET1[0]/SPI4CLK  
K18  
U1  
I/O  
Pull Down Programmable, SPI4 clock, or GPIO  
20uA  
N2HET1[3]/SPI4NCS[0]/N2HET2[10]  
N2HET1[1]/SPI4NENA/N2HET2[8]  
N2HET1[2]/SPI4SIMO[0]  
SPI4 chip select, or GPIO  
V2  
SPI4 enable, or GPIO  
W5  
SPI4 slave-input master-  
output, or GPIO  
N2HET1[5]/SPI4SOMI[0]/N2HET2[12]  
V6  
SPI4 slave-output master-  
input, or GPIO  
Copyright © 2013–2015, Texas Instruments Incorporated  
Pin Configuration and Functions  
15  
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
4.1.1.1.10 Multi-Buffered Serial Peripheral Interface Modules (MibSPI)  
Table 4-10. GWT Multi-Buffered Serial Peripheral Interface Modules (MibSPI)  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
MIBSPI1CLK  
F18  
R2  
I/O  
Pull Up  
Programmable, MibSPI1 clock, or GPIO  
20uA  
MIBSPI1NCS[0]/MIBSPI1SOMI[1]  
MIBSPI1NCS[1]/N2HET1[17]  
MIBSPI1NCS[2]/N2HET1[19]  
MIBSPI1NCS[3]/N2HET1[21]  
N2HET1[15]/MIBSPI1NCS[4]  
N2HET1[24]/MIBSPI1NCS[5]  
MIBSPI1NENA/N2HET1[23]  
MIBSPI1SIMO[0]  
MibSPI1 chip select, or  
GPIO  
F3  
G3  
J3  
N1  
Pull Down Programmable, MibSPI1 chip select, or  
20uA GPIO  
P1  
G19  
F19  
Pull Up  
Programmable, MibSPI1 enable, or GPIO  
20uA  
MibSPI1 slave-in master-  
out, or GPIO  
N2HET1[8]/MIBSPI1SIMO[1]  
E18  
Pull Down Programmable, MibSPI1 slave-in master-  
20uA out, or GPIO  
MIBSPI1SOMI[0]  
G18  
R2  
V9  
Pull Up  
Programmable, MibSPI1 slave-out master-  
20uA in, or GPIO  
MIBSPI1NCS[0]/MIBSPI1SOMI[1]  
MIBSPI3CLK  
I/O  
Pull Up  
Programmable, MibSPI3 clock, or GPIO  
20uA  
MIBSPI3NCS[0]/AD2EVT/GIOB[2]/N2HET2_PIN_nDIS  
MIBSPI3NCS[1]/N2HET1[25]/MDCLK  
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]  
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]  
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]  
V10  
V5  
MibSPI3 chip select, or  
GPIO  
B2  
C3  
E3  
Pull Down Programmable, MibSPI3 chip select, or  
20uA GPIO  
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31]  
W9  
Pull Up  
Programmable, MibSPI3 chip select, or  
20uA  
GPIO  
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31]  
W9  
W8  
MibSPI3 enable, or GPIO  
MIBSPI3SIMO[0]  
MibSPI3 slave-in master-  
out, or GPIO  
MIBSPI3SOMI[0]  
V8  
MibSPI3 slave-out master-  
in, or GPIO  
MIBSPI5CLK/DMM_DATA[4]  
H19  
E19  
B6  
I/O  
Pull Up  
Programmable, MibSPI5 clock, or GPIO  
20uA  
MIBSPI5NCS[0]/DMM_DATA[5]  
MIBSPI5NCS[1]/DMM_DATA[6]  
MIBSPI5NCS[2]/DMM_DATA[2]  
MIBSPI5NCS[3]/DMM_DATA[3]  
MIBSPI5NENA/DMM_DATA[7]/  
MIBSPI5SIMO[0]/DMM_DATA[8]  
MIBSPI5SIMO[1]/DMM_DATA[9]  
MIBSPI5SIMO[2]/DMM_DATA[10]  
MIBSPI5SIMO[3]/DMM_DATA[11]  
MIBSPI5SOMI[0]/DMM_DATA[12]  
MIBSPI5SOMI[1]/DMM_DATA[13]  
MIBSPI5SOMI[2]/DMM_DATA[14]  
MIBSPI5SOMI[3]/DMM_DATA[15]  
MibSPI5 chip select, or  
GPIO  
W6  
T12  
H18  
J19  
E16  
H17  
G17  
J18  
E17  
H16  
G16  
MibSPI5 enable, or GPIO  
MibSPI5 slave-in master-  
out, or GPIO  
16  
Pin Configuration and Functions  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
4.1.1.1.11 Ethernet Controller  
Table 4-11. GWT Ethernet Controller: MDIO Interface  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
MIBSPI3NCS[1]/N2HET1[25]/MDCLK  
MIBSPI1NCS[2]/N2HET1[19]/MDIO  
V5  
G3  
Output  
I/O  
Pull Up  
Pull Up  
-
Serial clock output  
Fixed, 20uA  
Serial data input/output  
Table 4-12. GWT Ethernet Controller: Reduced Media Independent Interface (RMII)  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
N2HET1[12]/MII_CRS/RMII_CRS_DV  
B4  
Input  
Pull Down  
Fixed, 20uA  
RMII carrier sense and  
data valid  
N2HET1[28]/MII_RX_CLK/RMII_REFCLK/MII_RX_AVCLK4  
K19  
RMII synchronous  
reference clock for  
receive, transmit and  
control interface  
AD1EVT/MII_RX_ER/RMII_RX_ER  
N19  
P1  
RMII receive error  
RMII receive data  
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0]/RMII_RXD[0]  
N2HET1[26]/MII_RXD[1]/RMII_RXD[1]  
A14  
J18  
J19  
H19  
MIBSPI5SOMI[0]/DMM_DATA[12]/MII_TXD[0]/RMII_TXD[0]  
MIBSPI5SIMO[0]/DMM_DATA[8]/MII_TXD[1]/RMII_TXD[1]  
MIBSPI5CLK/DMM_DATA[4]/MII_TXEN/RMII_TXEN  
Output  
Pull Up  
-
RMII transmit data  
RMII transmit enable  
Table 4-13. GWT Ethernet Controller: Media Independent Interface (MII)  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
MIBSPI1NCS[1]/N2HET1[17]/MII_COL  
N2HET1[12]/MII_CRS/RMII_CRS_DV  
F3  
B4  
Input  
Pull Up  
-
Collision detect  
Pull Down  
Fixed, 20uA  
Carrier sense and receive  
valid  
N2HET1[28]/MII_RX_CLK/RMII_REFCLK/MII_RX_AVCLK4  
N2HET1[30]/MII_RX_DV  
K19  
B11  
N19  
K19  
P1  
I/O  
Pull Down  
Pull Down  
-
MII output receive clock  
Received data valid  
Receive error  
Input  
Fixed, 20uA  
AD1EVT/MII_RX_ER/RMII_RX_ER  
N2HET1[28]/MII_RX_CLK/RMII_REFCLK/MII_RX_AVCLK4  
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0]/RMII_RXD[0]  
N2HET1[26]/MII_RXD[1]/RMII_RXD[1]  
I/O  
Receive clock  
Input  
Receive data  
A14  
G19  
H18  
D19  
D19  
J18  
J19  
R2  
MIBSPI1NENA/N2HET1[23]/MII_RXD[2]  
MIBSPI5NENA/DMM_DATA[7]/  
Pull Up  
Pull Down  
Pull Up  
Fixed, 20uA  
N2HET1[10]/MII_TX_CLK/MII_TX_AVCLK4  
N2HET1[10]/MII_TX_CLK/MII_TX_AVCLK4  
MIBSPI5SOMI[0]/DMM_DATA[12]/RMII_TXD[0]  
MIBSPI5SIMO[0]/DMM_DATA[8]/RMII_TXD[1]  
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]  
N2HET1[8]/MIBSPI1SIMO[1]/MII_TXD[3]  
MIBSPI5CLK/DMM_DATA[4]/RMII_TXEN  
I/O  
-
-
MII output transmit clock  
Transmit clock  
Output  
Transmit data  
E18  
H19  
Pull Down  
Pull Up  
-
-
Transmit enable  
Copyright © 2013–2015, Texas Instruments Incorporated  
Pin Configuration and Functions  
17  
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
4.1.1.1.12 External Memory Interface (EMIF)  
Table 4-14. External Memory Interface (EMIF)  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
EMIF_CKE  
EMIF_CLK  
L3  
K3  
Output Pull Down Programmable, EMIF Clock Enablen  
20uA  
I/O  
EMIF clock. This is an  
output signal in functional  
mode. It is gated off by  
default, so that the signal  
is tri-stated. PINMUX29[8]  
must be cleared to enable  
this output.  
EMIF_nWE/EMIF_RNW  
D17  
E12  
P3  
Output  
I/O  
Pull Up  
Programmable, EMIF Read-Not-Write  
20uA  
ETMDATA[13]/EMIF_nOE  
Pull Down Programmable, EMIF Output Enable  
20uA  
EMIF_nWAIT  
Pull Up  
Fixed, 20uA  
EMIF Extended Wait  
Signal  
EMIF_nWE/EMIF_RNW  
D17  
R4  
Output  
Output  
Pull Up  
Programmable, EMIF Write Enable.  
20uA  
EMIF_nCAS  
EMIF column address  
strobe  
EMIF_nRAS  
R3  
Output  
EMIF row address strobe  
EMIF_nCS[0]/RTP_DATA[15]/N2HET2[7]  
N17  
Output Pull Down Programmable, EMIF chip select, SDRAM  
20uA  
EMIF_nCS[2]  
L17  
K17  
M17  
Output  
Pull Up  
Programmable, EMIF chip selects,  
20uA  
asynchronous  
This applies to chip  
selects 2, 3 and 4  
EMIF_nCS[3]/RTP_DATA[14]/N2HET2[9]  
EMIF_nCS[4]/RTP_DATA[7]  
Output Pull Down Programmable,  
20uA  
Output  
Pull Up  
Programmable,  
20uA  
18  
Pin Configuration and Functions  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
Table 4-14. External Memory Interface (EMIF) (continued)  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
ETMDATA[15]/EMIF_nDQM[0]  
ETMDATA[14]/EMIF_nDQM[1]  
E10  
E11  
Output Pull Down Programmable, EMIF Data Mask or Write  
20uA  
Strobe.  
Output  
Data mask for SDRAM  
devices, write strobe for  
connected asynchronous  
devices.  
ETMDATA[12]/EMIF_BA[0]  
EMIF_BA[1]/N2HET2[5]  
E13  
D16  
Output  
Output  
EMIF bank address or  
address line  
EMIF bank address or  
address line  
EMIF_ADDR[0]/N2HET2[1]  
D4  
D5  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output Pull Down  
Output  
Output  
Output  
Output  
EMIF address  
EMIF_ADDR[1]/N2HET2[3]  
ETMDATA[11]/EMIF_ADDR[2]  
ETMDATA[10]/EMIF_ADDR[3]  
ETMDATA[9]/EMIF_ADDR[4  
ETMDATA[8]/EMIF_ADDR[5]  
EMIF_ADDR[6]/RTP_DATA[13]  
EMIF_ADDR[7]/RTP_DATA[12]  
EMIF_ADDR[8]/RTP_DATA[11]  
EMIF_ADDR[9]/RTP_DATA[10]  
EMIF_ADDR[10]/RTP_DATA[9]  
EMIF_ADDR[11]/RTP_DATA[8]  
EMIF_ADDR[12]/RTP_DATA[6]  
EMIF_ADDR[13]/RTP_DATA[5]  
EMIF_ADDR[14]/RTP_DATA[4]  
EMIF_ADDR[15]/RTP_DATA[3]  
EMIF_ADDR[16]/RTP_DATA[2]  
EMIF_ADDR[17]/RTP_DATA[1]  
EMIF_ADDR[18]/RTP_DATA[0]  
EMIF_ADDR[19]/RTP_nENA  
EMIF_ADDR[20]/RTP_nSYNC  
EMIF_ADDR[21]/RTP_CLK  
E6  
E7  
E8  
E9  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
D14  
C14  
D15  
C15  
C16  
C17  
K15  
L15  
M15  
N15  
E5  
-
ETMDATA[16]/EMIF_DATA[0]  
ETMDATA[17]/EMIF_DATA[1]  
ETMDATA[18]/EMIF_DATA[2]  
ETMDATA[19]/EMIF_DATA[3]  
ETMDATA[20]/EMIF_DATA[4]  
ETMDATA[21]/EMIF_DATA[5]  
ETMDATA[22]/EMIF_DATA[6]  
ETMDATA[23]/EMIF_DATA[7]  
ETMDATA[24]/EMIF_DATA[8]  
ETMDATA[25]/EMIF_DATA[9]  
ETMDATA[26]/EMIF_DATA[10]  
ETMDATA[27]/EMIF_DATA[11]  
ETMDATA[28]/EMIF_DATA[12]  
ETMDATA[29]/EMIF_DATA[13]  
ETMDATA[30]/EMIF_DATA[14]  
ETMDATA[31]/EMIF_DATA[15]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Pull Down  
Fixed, 20uA  
EMIF Data  
F5  
G5  
K5  
L5  
M5  
N5  
P5  
R5  
R6  
R7  
R8  
Copyright © 2013–2015, Texas Instruments Incorporated  
Pin Configuration and Functions  
19  
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
4.1.1.1.13 Embedded Trace Macrocell for Cortex-R4F CPU (ETM-R4F)  
Table 4-15. Embedded Trace Macrocell for Cortex-R4F CPU (ETM-R4F)  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
ETMTRACECLKIN/EXTCLKIN2  
R9  
R10  
R11  
R12  
R13  
J15  
H15  
G15  
F15  
E15  
E14  
E9  
Input Pull Down Fixed, 20uA  
ETM Trace Clock Input  
ETM Trace Clock Output  
ETM trace control  
ETM data  
ETMTRACECLKOUT  
Output Pull Down  
Output Pull Down  
-
-
ETMTRACECTL  
ETMDATA[0]  
ETMDATA[1]  
ETMDATA[2]  
ETMDATA[3]  
ETMDATA[4]  
ETMDATA[5]  
ETMDATA[6]  
ETMDATA[7]  
ETMDATA[8]/EMIF_ADDR[5]  
ETMDATA[9]/EMIF_ADDR[4]  
ETMDATA[10]/EMIF_ADDR[3]  
ETMDATA[11]/EMIF_ADDR[2]  
ETMDATA[12]/EMIF_BA[0]  
ETMDATA[13]/EMIF_nOE  
ETMDATA[14]/EMIF_nDQM[1]  
ETMDATA[15]/EMIF_nDQM[0]  
ETMDATA[16]/EMIF_DATA[0]  
ETMDATA[17]/EMIF_DATA[1]  
ETMDATA[18]/EMIF_DATA[2]  
ETMDATA[19]/EMIF_DATA[3]  
ETMDATA[20]/EMIF_DATA[4]  
ETMDATA[21]/EMIF_DATA[5]  
ETMDATA[22]/EMIF_DATA[6]  
ETMDATA[23]/EMIF_DATA[7]  
ETMDATA[24]/EMIF_DATA[8]  
ETMDATA[25]/EMIF_DATA[9]  
ETMDATA[26]/EMIF_DATA[10]  
ETMDATA[27]/EMIF_DATA[11]  
ETMDATA[28]/EMIF_DATA[12]  
ETMDATA[29]/EMIF_DATA[13]  
ETMDATA[30]/EMIF_DATA[14]  
ETMDATA[31]/EMIF_DATA[15]  
E8  
E7  
E6  
E13  
E12  
E11  
E10  
K15  
L15  
M15  
N15  
E5  
F5  
G5  
K5  
L5  
M5  
N5  
P5  
R5  
R6  
R7  
R8  
20  
Pin Configuration and Functions  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
4.1.1.1.14 RAM Trace Port (RTP)  
Table 4-16. RAM Trace Port (RTP)  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
EMIF_ADDR[21]/RTP_CLK  
EMIF_ADDR[19]/RTP_nENA  
EMIF_ADDR[20]/RTP_nSYNC  
C17  
C15  
C16  
I/O  
I/O  
I/O  
I/O  
Pull Down Programmable, RTP packet clock, or  
20uA  
GPIO  
RTP packet handshake,  
or GPIO  
RTP synchronization, or  
GPIO  
EMIF_ADDR[18]/RTP_DATA[0]  
EMIF_ADDR[17]/RTP_DATA[1]  
EMIF_ADDR[16]/RTP_DATA[2]  
EMIF_ADDR[15]/RTP_DATA[3]  
EMIF_ADDR[14]/RTP_DATA[4]  
EMIF_ADDR[13]/RTP_DATA[5]  
EMIF_ADDR[12]/RTP_DATA[6]  
EMIF_nCS[4]/RTP_DATA[7]  
D15  
C14  
D14  
C13  
C12  
C11  
C10  
M17  
RTP packet data, or GPIO  
Pull Up  
Programmable,  
20uA  
EMIF_ADDR[11]/RTP_DATA[8]  
EMIF_ADDR[10]/RTP_DATA[9]  
EMIF_ADDR[9]/RTP_DATA[10]  
EMIF_ADDR[8]/RTP_DATA[11]  
EMIF_ADDR[7]/RTP_DATA[12]  
EMIF_ADDR[6]/RTP_DATA[13]  
EMIF_nCS[0]/RTP_DATA[15]/N2HET2[7]  
EMIF_nCS[3]/RTP_DATA[14]/N2HET2[9]  
C9  
C8  
Pull Down Programmable,  
20uA  
C7  
C6  
C5  
C4  
N17  
K17  
Copyright © 2013–2015, Texas Instruments Incorporated  
Pin Configuration and Functions  
21  
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
4.1.1.1.15 Data Modification Module (DMM)  
Table 4-17. Data Modification Module (DMM)  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
DMM_CLK  
DMM_nENA  
DMM_SYNC  
F17  
F16  
J16  
I/O  
Pull Up  
Programmable, DMM clock, or GPIO  
20uA  
DMM handshake, or GPIO  
DMM synchronization, or  
GPIO  
DMM_DATA[0]  
DMM_DATA[1]  
L19  
L18  
W6  
DMM data, or GPIO  
MIBSPI5NCS[2]/DMM_DATA[2]  
MIBSPI5NCS[3]/DMM_DATA[3]  
MIBSPI5CLK/DMM_DATA[4]  
T12  
H19  
E19  
B6  
MIBSPI5NCS[0]/DMM_DATA[5]  
MIBSPI5NCS[1]/DMM_DATA[6]  
MIBSPI5NENA/DMM_DATA[7]  
MIBSPI5SIMO[0]/DMM_DATA[8]  
MIBSPI5SIMO[1]/DMM_DATA[9]  
MIBSPI5SIMO[2]/DMM_DATA[10]  
MIBSPI5SIMO[3]/DMM_DATA[11]  
MIBSPI5SOMI[0]/DMM_DATA[12]  
MIBSPI5SOMI[1]/DMM_DATA[13]  
MIBSPI5SOMI[2]/DMM_DATA[14]  
MIBSPI5SOMI[3]/DMM_DATA[15]  
H18  
J19  
E16  
H17  
G17  
J18  
E17  
H16  
G16  
22  
Pin Configuration and Functions  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
4.1.1.1.16 System Module Interface  
Table 4-18. GWT System Module Interface  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
nPORRST  
W7  
Input  
Pull Down  
100uA  
Power-on reset, cold reset  
External power supply  
monitor circuitry must  
drive nPORRST low when  
any of the supplies to the  
microcontroller fall out of  
the specified range. This  
terminal has a glitch filter.  
See 6.8.  
nRST  
B17  
I/O  
Pull Up  
100uA  
System reset, warm reset,  
bidirectional.  
The internal circuitry  
indicates any reset  
condition by driving nRST  
low.  
The external circuitry can  
assert a system reset by  
driving nRST low. To  
ensure that an external  
reset is not arbitrarily  
generated, TI  
recommends that an  
external pull-up resistor is  
connected to this terminal.  
This terminal has a glitch  
filter. See 6.8.  
nERROR  
B14  
I/O  
Pull Down  
20uA  
ESM Error Signal  
Indicates error of high  
severity. See 6.18.  
4.1.1.1.17 Clock Inputs and Outputs  
Table 4-19. GWT Clock Inputs and Outputs  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
OSCIN  
K1  
Input  
-
-
From external  
crystal/resonator, or  
external clock input  
KELVIN_GND  
OSCOUT  
L2  
L1  
Input  
Kelvin ground for oscillator  
Output  
To external  
crystal/resonator  
ECLK  
A12  
I/O  
Pull Down Programmable, External prescaled clock  
20uA  
output, or GIO.  
GIOA[5]/EXTCLKIN/N2HET1_PIN_nDIS  
ETMTRACECLKIN/EXTCLKIN2  
VCCPLL  
B5  
R9  
Input  
Input  
Pull Down  
20uA  
External clock input #1  
External clock input #2  
P11  
1.2V  
Power  
-
Dedicated core supply for  
PLL's  
Copyright © 2013–2015, Texas Instruments Incorporated  
Pin Configuration and Functions  
23  
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
4.1.1.1.18 Test and Debug Modules Interface  
Table 4-20. GWT Test and Debug Modules Interface  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
TEST  
nTRST  
RTCK  
TCK  
U2  
I/O  
Input  
Output  
Input  
I/O  
Pull Down  
Fixed, 100uA  
Test enable  
D18  
A16  
B18  
A17  
C18  
C19  
JTAG test hardware reset  
JTAG return test clock  
JTAG test clock  
-
None  
Pull Down  
Pull Up  
Fixed, 100uA  
TDI  
JTAG test data in  
TDO  
I/O  
Pull Down  
Pull Up  
JTAG test data out  
JTAG test select  
TMS  
I/O  
4.1.1.1.19 Flash Supply and Test Pads  
Table 4-21. GWT Flash Supply and Test Pads  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
VCCP  
F8  
3.3V  
-
None  
Flash pump supply  
Power  
FLTP1  
FLTP2  
J5  
Flash test pads. These  
terminals are reserved for  
TI use only. For proper  
operation these terminals  
must connect only to a  
test pad or not be  
H5  
connected at all [no  
connect (NC)].  
24  
Pin Configuration and Functions  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
4.1.1.1.20 No Connects  
Table 4-22. No Connects  
Pin  
Signal Name  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
337  
GWT  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
A8  
B8  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
No Connects. These balls  
are not connected to any  
internal logic and can be  
connected to the PCB  
ground without affecting  
the functionality of the  
device. Any other ball  
marked as "NC" may be  
internally connected to  
some functionality. It is  
recommended for such  
balls to be left  
B9  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
E4  
unconnected.  
F4  
G4  
K4  
K16  
L4  
L16  
M4  
M16  
N4  
N16  
N18  
P4  
P15  
P16  
P17  
R1  
R14  
R15  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T13  
T14  
U3  
U4  
Copyright © 2013–2015, Texas Instruments Incorporated  
Pin Configuration and Functions  
25  
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
Table 4-22. No Connects (continued)  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
U6  
U7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
No Connects. These balls  
are not connected to any  
internal logic and can be  
connected to the PCB  
ground without affecting  
the functionality of the  
device. Any other ball  
marked as "NC" may be  
internally connected to  
some functionality. It is  
recommended for such  
balls to be left  
U8  
U9  
U10  
U11  
V3  
V4  
V11  
V12  
W4  
W11  
W12  
W13  
unconnected.  
4.1.1.1.21 Supply for Core Logic: 1.2V nominal  
Table 4-23. GWT Supply for Core Logic: 1.2V nominal  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
F9  
F10  
H10  
J14  
K6  
1.2V  
Power  
-
None  
Core supply  
K8  
K12  
K14  
L6  
M10  
P10  
26  
Pin Configuration and Functions  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
4.1.1.1.22 Supply for I/O Cells: 3.3V nominal  
Table 4-24. GWT Supply for I/O Cells: 3.3V nominal  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
F6  
F7  
3.3V  
Power  
-
None  
Operating supply for I/Os  
F11  
F12  
F13  
F14  
G6  
G14  
H6  
H14  
J6  
L14  
M6  
M14  
N6  
N14  
P6  
P7  
P8  
P9  
P12  
P13  
P14  
Copyright © 2013–2015, Texas Instruments Incorporated  
Pin Configuration and Functions  
27  
Submit Documentation Feedback  
Product Folder Links: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
4.1.1.1.23 Ground Reference for All Supplies Except VCCAD  
Table 4-25. GWT Ground Reference for All Supplies Except VCCAD  
Pin  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
337  
GWT  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A1  
A2  
Ground  
-
None  
Ground reference  
A18  
A19  
B1  
B19  
H8  
H9  
H11  
H12  
J8  
J9  
J10  
J11  
J12  
K9  
K10  
K11  
L8  
L9  
L10  
L11  
L12  
M8  
M9  
M11  
M12  
V1  
W1  
W2  
28  
Pin Configuration and Functions  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
5 Specifications  
5.1 Absolute Maximum Ratings  
over operating free-air temperature(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
1.43  
4.6  
UNIT  
(2)  
VCC  
(2)  
Supply voltage  
Input voltage  
VCCIO, VCCP  
V
VCCAD  
5.5  
All input pins  
ADC input pins  
IIK (VI < 0 or VI > VCCIO  
4.6  
V
5.5  
)
–20  
–10  
20  
10  
All pins, except AD1IN[23:0] and AD2IN[15:0]  
Input clamp current  
IIK (VI < 0 or VI > VCCAD  
AD1IN[23:0] and AD2IN[15:0]  
)
mA  
Total  
–40  
–55  
–65  
40  
TJ  
Operating junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to their associated  
grounds.  
5.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human Body Model (HBM), per AEC Q100-002(1)  
VESD  
Electrostatic discharge  
All pins  
V
Charged Device Model (CDM),  
per AEC Q100-011  
Corner pins  
±750  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS001 specification.  
5.3 Power-On Hours (POH)  
POH is a function of voltage and temperature. Usage at higher voltages and temperatures will result in a reduction in POH to  
achieve the same reliability performance.(1)(2)(3)(4)  
JUNCTION  
TEMPERATURE (TJ)  
NOMINAL CVDD VOLTAGE (V)  
LIFETIME POH(5)  
1.2  
105 °C  
100K  
(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard terms  
and conditions for TI semiconductor products.  
(2) To avoid significant degradation, the device power-on hours (POH) must be limited to those specified in this table.  
(3) Logic functions and parameter values are not assured out of the range specified in the recommended operating conditions.  
(4) Notations in this table cannot be deemed a warranty or deemed to extend or modify the warranty under TI's standard terms and  
conditions for TI semiconductor products.  
(5) POH represent device operation under the specified nominal conditions continuously for the duration of the calculated lifetime.  
5.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
1.14  
1.14  
3
NOM  
1.2  
MAX UNIT  
VCC  
Digital logic supply voltage (Core)  
PLL supply voltage  
1.32  
1.32  
3.6  
V
V
V
V
V
V
VCCPLL  
VCCIO  
VCCAD  
VCCP  
VSS  
1.2  
Digital logic supply voltage (I/O)  
MibADC supply voltage  
3.3  
3
3.3/5.0  
3.3  
5.25  
3.6  
Flash pump supply voltage  
Digital logic supply ground  
3
0
(1) All voltages are with respect to VSS, except VCCAD, which is with respect to VSSAD  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
Specifications  
29  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.1  
NOM  
MAX UNIT  
VSSAD  
VADREFHI  
VADREFLO  
VSLEW  
TA  
MibADC supply ground  
0.1  
VCCAD  
VCCAD  
1
V
V
A-to-D high-voltage reference source  
A-to-D low-voltage reference source  
Maximum positive slew rate for VCCIO, VCCAD and VCCP supplies  
Operating free-air temperature  
VSSAD  
VSSAD  
V
V/µs  
°C  
°C  
–55  
–55  
125  
TJ  
Operating junction temperature(2)  
150  
(2) Reliability data is based upon a temperature profile that is equivalent to 100000 power-on hours at 105°C junction temperature. See  
5-1 for more details.  
1000000  
100000  
10000  
1000  
90  
100  
110  
120  
130  
140  
150  
160  
Operation Junction Temperature (°C)  
(1) Silicon operating life design goal is 100000 power-on hours (POH) at 105°C junction temperature (does not include package  
interconnect life).  
(2) The predicted operating lifetime versus junction temperature is based on reliability modeling using electromigration as the dominant  
failure mechanism affecting device wearout for the specific device process and design characteristics.  
5-1. TMS570LS3137-EP Operating Life Derating Chart  
30  
Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
 
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
5.5 Power Consumption  
over Recommended Operating Conditions  
PARAMETER  
TEST CONDITIONS  
fHCLK = 180 MHz  
MIN  
TYP  
MAX UNIT  
VCC Digital supply current (operating mode)  
220(1)  
440(2)  
mA  
fVCLK = 90 MHz, Flash in pipelined  
mode, VCCmax  
VCC Digital supply current (LBIST mode)  
VCC Digital supply current (PBIST mode)  
700(3)(4)  
700(3)(4)  
mA  
mA  
LBIST clock rate = 90 MHz  
PBIST ROM clock frequency = 90  
MHz  
ICC, ICCPLL  
fHCLK = 160 MHz  
VCC Digital supply current (operating mode)  
VCC Digital supply current (LBIST mode)  
200(1)  
420(2)  
mA  
mA  
fVCLK = 80 MHz, Flash in pipelined  
mode, VCCmax (–40°C to 125°C)  
665(3)(4)  
LBIST clock rate = 80 MHz (–40°C  
to 125°C)  
PBIST ROM clock frequency = 80  
MHz (–40°C to 125°C)  
VCC Digital supply current (PBIST mode)  
VCCIO supply current (operating mode)  
665(3)(4)  
10  
mA  
mA  
ICCIO  
No DC load, VCCmax  
Single ADC operational, VCCADmax  
(–40°C to 125°C)  
15  
ICCAD  
VCCAD supply current (operating mode)  
mA  
Both ADCs operational, VCCADmax  
(–40°C to 125°C)  
30  
Single ADC operational, ADREFHImax  
(–40°C to 125°C)  
3
6
IADREFHI  
ADREFHI supply current (operating mode)  
VCCP pump supply current  
mA  
mA  
Both ADCs operational, ADREFHImax  
Read from 1 bank and program or  
erase another bank, VCCPmax  
(–40°C to 125°C)  
ICCP  
60  
(1) The typical value is the average current for the nominal process corner and junction temperature of 25°C.  
(2) The maximum ICC, value can be derated  
linearly with voltage  
by 1 ma/MHz for lower operating frequency when fHCLK= 2 × fVCLK  
for lower junction temperature by the equation below where TJK is the junction temperature in Kelvin and the result is in milliamperes.  
235 - 0.15 e0.0174 T  
JK  
(3) The maximum ICC, value can be derated  
linearly with voltage  
by 1.7 ma/MHz for lower operating frequency when fHCLK= 2 × fVCLK  
for lower junction temperature by the equation below where TJK is the junction temperature in Kelvin and the result is in milliamperes.  
235 - 0.15 e0.0174 T  
JK  
(4) LBIST and PBIST currents are for a short duration, typically less than 10 ms. They are usually ignored for thermal calculations for the  
device and the voltage regulator  
5.6 Thermal Data  
5-1 shows the thermal resistance characteristics for the BGA - GWT mechanical package.  
5-1. Thermal Resistance Characteristics  
(GWT Package)  
PARAMETER  
RΘJA  
°C/W  
18.8  
14.1  
7.1  
RΘJB  
RΘJC  
版权 © 2013–2015, Texas Instruments Incorporated  
Specifications  
31  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
5.7 Switching Characteristics  
over Recommended Operating Conditions for clock domains  
5-2. Clock Domain Timing Specifications  
PARAMETER  
TEST CONDITIONS  
Pipeline mode enabled  
Pipeline mode disabled  
MIN  
MAX  
180  
50  
UNIT  
fHCLK  
HCLK - System clock frequency  
MHz  
fGCLK  
fVCLK  
GCLK - CPU clock frequency  
fHCLK  
100  
MHz  
MHz  
VCLK - Primary peripheral clock  
frequency  
fVCLK2  
VCLK2 - Secondary peripheral clock  
frequency  
100  
100  
100  
100  
50  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
fVCLK3  
VCLK3 - Secondary peripheral clock  
frequency  
fVCLKA1  
fVCLKA2  
fVCLKA4  
fRTICLK  
VCLKA1 - Primary asynchronous  
peripheral clock frequency  
VCLKA2 - Secondary asynchronous  
peripheral clock frequency  
VCLKA4 - Secondary asynchronous  
peripheral clock frequency  
RTICLK - clock frequency  
fVCLK  
5.8 Wait States Required  
RAM  
0
0
Address Waitstates  
0MHz  
fHCLK(max)  
Data Waitstates  
0MHz  
fHCLK(max)  
Flash  
1
Address Waitstates  
0
1
150MHz  
150MHz  
0MHz  
fHCLK(max)  
Data Waitstates  
0
2
3
0MHz  
50MHz  
100MHz  
fHCLK(max)  
5-2. Wait States Scheme  
As shown in the figure above, the TCM RAM can support program and data fetches at full CPU speed without any address or data wait  
states required.  
The TCM flash can support zero address and data wait states up to a CPU speed of 50 MHz in non-pipelined mode. The flash supports a  
maximum CPU clock speed of 180MHz for the GWT package, with one address wait state and three data wait states.  
The flash wrapper defaults to non-pipelined mode with zero address wait state and one random-read data wait state.  
32  
Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
5.9 I/O Electrical Characteristics  
over recommended operating conditions(1)  
TMS5703137CGWTQEP  
TMS5703137CGWTMEP  
TEST  
CONDITIONS  
PARAMETER  
UNIT  
MIN  
TYP  
MAX  
0.2 VCCIO  
0.2  
MIN  
MAX  
IOL = IOLmax  
0.2 VCCIO  
0.2  
IOL = 50 µA,  
standard output  
mode  
VOL Low-level output voltage  
V
IOL = 50 µA, low-  
EMI output mode  
(see 5.13)  
0.2 VCCIO  
0.2 VCCIO  
IOH = IOHmax  
0.8 VCCIO  
0.8 VCCIO  
IOH = 50 µA,  
standard output  
mode  
VCCIO – 0.3  
VCCIO – 0.3  
VO  
H
High-level output voltage  
V
IOH = 50 µA, low-  
EMI output mode  
(see 5.13)  
0.8 VCCIO  
0.8 VCCIO  
–3.5  
VI < VSSIO - 0.3 or  
VI > VCCIO + 0.3  
-3.5  
3.5  
3.5  
40  
IIC Input clamp current (I/O pins)  
mA  
µA  
IIH Pulldown 20 µA  
VI = VCCIO  
5
40  
40  
195  
-5  
IIH Pulldown 100 µA VI = VCCIO  
30  
Input current  
(I/O pins)  
IIL Pullup 20 µA  
IIL Pullup 100 µA  
VI = VSS  
VI = VSS  
-40  
-195  
-1  
–60  
–2  
II  
-40  
1
No pullup or  
pulldown  
–1.5  
1.5  
All other pins  
Input  
capacitance  
2
3
CI  
pF  
pF  
Output  
capacitance  
CO  
(1) Source currents (out of the device) are negative while sink currents (into the device) are positive.  
5.10 Output Buffer Drive Strengths  
5-3. Output Buffer Drive Strengths  
Low-Level Output Current,  
IOL for VI = VOLmax  
or  
Signals  
High-Level Output Current,  
IOH for VI = VOHmin  
FRAYTX2, FRAYTX1, FRAYTXEN1, FRAYTXEN2,  
MIBSPI5CLK, MIBSPI5SOMI[0], MIBSPI5SOMI[1], MIBSPI5SOMI[2], MIBSPI5SOMI[3],  
MIBSPI5SIMO[0], MIBSPI5SIMO[1], MIBSPI5SIMO[2], MIBSPI5SIMO[3],  
8 mA  
4 mA  
TMS, TDI, TDO, RTCK,  
SPI4CLK, SPI4SIMO, SPI4SOMI, nERROR,  
N2HET2[1], N2HET2[3],  
All EMIF Outputs and I/Os, All ETM Outputs  
MIBSPI3SOMI, MIBSPI3SIMO, MIBSPI3CLK, MIBSPI1SIMO, MIBSPI1SOMI, MIBSPI1CLK,  
nRST  
版权 © 2013–2015, Texas Instruments Incorporated  
Specifications  
33  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
5-3. Output Buffer Drive Strengths (continued)  
Low-Level Output Current,  
IOL for VI = VOLmax  
or  
Signals  
High-Level Output Current,  
IOH for VI = VOHmin  
AD1EVT,  
CAN1RX, CAN1TX, CAN2RX, CAN2TX, CAN3RX, CAN3TX,  
DMM_CLK, DMM_DATA[0], DMM_DATA[1], DMM_nENA, DMM_SYNC,  
GIOA[0-7], GIOB[0-7],  
LINRX, LINTX,  
2 mA zero-dominant  
MIBSPI1NCS[0], MIBSPI1NCS[1-3], MIBSPI1NENA, MIBSPI3NCS[0-3], MIBSPI3NENA,  
MIBSPI5NCS[0-3], MIBSPI5NENA,  
N2HET1[0-31], N2HET2[0], N2HET2[2], N2HET2[4], N2HET2[5], N2HET2[6], N2HET2[7],  
N2HET2[8], N2HET2[9], N2HET2[10], N2HET2[11], N2HET2[12], N2HET2[13], N2HET2[14],  
N2HET2[15], N2HET2[16], N2HET2[18],  
SPI4NCS[0], SPI4NENA  
ECLK,  
selectable 8 mA / 2 mA  
SPI2CLK, SPI2SIMO, SPI2SOMI  
The default output buffer drive strength is 8mA for these signals.  
5-4. Selectable 8 mA/2 mA Control  
Signal  
ECLK  
Control Bit  
Address  
8 mA  
2 mA  
SYSPC10[0]  
SPI2PC9[9]  
SPI2PC9[10]  
SPI2PC9[11]  
0xFFFF FF78  
0xFFF7 F668  
0xFFF7 F668  
0xFFF7 F668  
0
0
0
0
1
1
1
1
SPI2CLK  
SPI2SIMO  
SPI2SOMI  
5.11 Input Timings  
tpw  
VCCIO  
Input  
VIH  
VIH  
VIL  
VIL  
0
5-3. TTL-Level Inputs  
5-5. Timing Requirements for Inputs(1)  
MIN  
tc(VCLK) + 10(2)  
MAX  
UNIT  
ns  
tpw  
Input minimum pulse width  
–40°C to 125°C  
(1) tc(VCLK) = peripheral VBUS clock cycle time = 1 / f(VCLK)  
(2) The timing shown above is only valid for pin used in GPIO mode.  
34  
Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
5.12 Output Timings  
5-6. Switching Characteristics for Output Timings versus Load Capacitance (CL)  
CL= 15 pF, CL=50pF, CL = 100 pF TA = TJ = -40°C to 125°C, but for CL= 150 pF load TA = TJ = –55°C to 125°C  
PARAMETER  
MIN  
MAX  
2.5  
4
UNIT  
Rise time, tr  
Fall time, tf  
Rise time, tr  
Fall time, tf  
Rise time, tr  
Fall time, tf  
Rise time, tr  
Fall time, tf  
Rise time, tr  
Fall time, tf  
8 mA low EMI pins  
(see 5-3)  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
ns  
7.2  
12.5  
2.5  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7.2  
12.5  
5.6  
10.4  
16.8  
23.2  
5.6  
10.4  
16.8  
23.2  
8
4 mA low EMI pins  
(see 5-3)  
2 mA-z low EMI pins  
(see 5-3)  
15  
23  
33  
8
15  
23  
33  
Selectable 8 mA / 2 mA-z 8mA mode  
pins  
(see 5-3)  
2.5  
4
7.2  
12.5  
2.5  
4
7.2  
12.5  
8
2mA-z mode  
15  
23  
33  
8
15  
23  
33  
版权 © 2013–2015, Texas Instruments Incorporated  
Specifications  
35  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
 
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
tr  
t
f
VCCIO  
Output  
VOH  
VOH  
VOL  
VOL  
0
5-4. CMOS-Level Outputs  
5-7. Timing Requirements for Outputs(1)  
MIN  
MAX UNIT  
ns  
td(parallel_out)  
Delay between low to high, or high to low transition of  
–40°C to 125°C  
5
general-purpose output signals that can be configured by an  
application in parallel, for example, all signals in a GIOA  
port, or all N2HET1 signals, and so forth  
(1) This specification does not account for any output buffer drive strength differences or any external capacitive loading differences. Check  
5-3 for output buffer drive strength information on each signal.  
36  
Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
5.13 Low-EMI Output Buffers  
The low-EMI output buffer has been designed explicitly to address the issue of decoupling sources of  
emissions from the pins which they drive. This is accomplished by adaptively controlling the impedance of  
the output buffer, and is particularly effective with capacitive loads.  
This is not the default mode of operation of the low-EMI output buffers and must be enabled by setting the  
system module GPCR1 register for the desired module or signal, as shown in 5-8. The adaptive  
impedance control circuit monitors the DC bias point of the output signal. The buffer internally generates  
two reference levels, VREFLOW and VREFHIGH, which are set to approximately 10% and 90% of  
VCCIO, respectively.  
Once the output buffer has driven the output to a low level, if the output voltage is below VREFLOW, then  
the output buffer’s impedance will increase to hi-Z. A high degree of decoupling between the internal  
ground bus and the output pin will occur with capacitive loads, or any load in which no current is flowing,  
e.g. the buffer is driving low on a resistive path to ground. Current loads on the buffer which attempt to pull  
the output voltage above VREFLOW will be opposed by the buffer’s output impedance so as to maintain  
the output voltage at or below VREFLOW.  
Conversely, once the output buffer has driven the output to a high level, if the output voltage is above  
VREFHIGH then the output buffer’s impedance will again increase to hi-Z. A high degree of decoupling  
between internal power bus ad output pin will occur with capacitive loads or any loads in which no current  
is flowing, e.g. buffer is driving high on a resistive path to VCCIO. Current loads on the buffer which  
attempt to pull the output voltage below VREFHIGH will be opposed by the buffer’s output impedance so  
as to maintain the output voltage at or above VREFHIGH.  
The bandwidth of the control circuitry is relatively low, so that the output buffer in adaptive impedance  
control mode cannot respond to high-frequency noise coupling into the buffer’s power buses. In this  
manner, internal bus noise approaching 20% peak-to-peak of VCCIO can be rejected.  
Unlike standard output buffers which clamp to the rails, an output buffer in impedance control mode will  
allow a positive current load to pull the output voltage up to VCCIO + 0.6V without opposition. Also, a  
negative current load will pull the output voltage down to VSSIO – 0.6V without opposition. This is not an  
issue since the actual clamp current capability is always greater than the IOH / IOL specifications.  
The low-EMI output buffers are automatically configured to be in the standard buffer mode when the  
device enters a low-power mode.  
5-8. Low-EMI Output Buffer Hookup  
Module or Signal Name  
Control Register to Enable Low-EMI Mode  
GPREG1.0  
Module: MibSPI1  
GPREG1.1  
Module: MibSPI3  
Reserved  
GPREG1.2  
GPREG1.3  
Module: MibSPI5  
Signal: TMS  
Signal: TDI  
GPREG1.4  
GPREG1.8  
GPREG1.9  
Signal: TDO  
Signal: RTCK  
Signal: TEST  
Signal: nERROR  
Reserved  
GPREG1.10  
GPREG1.11  
GPREG1.12  
GPREG1.13  
GPREG1.14  
版权 © 2013–2015, Texas Instruments Incorporated  
Specifications  
37  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6 System Information and Electrical Specifications  
6.1 Device Power Domains  
The device core logic is split up into multiple power domains in order to optimize the power for a given  
application use case. There are 8 core power domains in total: PD1, PD2, PD3, PD4, PD5, RAM_PD1,  
RAM_PD2, and RAM_PD3.  
The actual contents of these power domains are indicated in 1.4.  
PD1 is an "always-ON" power domain, which cannot be turned off. Each of the other core power domains  
can be turned ON/OFF one time during device initialization as per the application requirement. Refer to  
the Power Management Module (PMM) chapter of TMS570LS31X/21X Technical Reference Manual  
(SPNU499) for more details.  
The clocks to a module must be turned off before powering down the core domain that  
contains the module.  
The logic in the modules that are powered down lose power completely. Any access to  
modules that are powered down results in an abort being generated. When power is  
restored, the modules power-up to their default states (after normal power-up). No register or  
memory contents are preserved in the core domains that are turned off.  
38  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6.2 Voltage Monitor Characteristics  
A voltage monitor is implemented on this device. The purpose of this voltage monitor is to eliminate the  
requirement for a specific sequence when powering up the core and I/O voltage supplies.  
6.2.1 Important Considerations  
The voltage monitor does not eliminate the need of a voltage supervisor circuit to ensure that the  
device is held in reset when the voltage supplies are out of range.  
The voltage monitor only monitors the core supply (VCC) and the I/O supply (VCCIO). The other  
supplies are not monitored by the VMON. For example, if the VCCAD or VCCP are supplied from a  
source different from that for VCCIO, then there is no internal voltage monitor for the VCCAD and  
VCCP supplies.  
6.2.2 Voltage Monitor Operation  
The voltage monitor generates the Power Good MCU signal (PGMCU) as well as the I/Os Power Good IO  
signal (PGIO) on the device. During power-up or power-down, the PGMCU and PGIO are driven low when  
the core or I/O supplies are lower than the specified minimum monitoring thresholds. The PGIO and  
PGMCU being low isolates the core logic as well as the I/O controls during the power-up or power-down  
of the supplies. This allows the core and I/O supplies to be powered up or down in any order.  
When the voltage monitor detects a low voltage on the I/O supply, it will assert a power-on reset. When  
the voltage monitor detects an out-of-range voltage on the core supply, it asynchronously makes all output  
pins high impedance, and asserts a power-on reset. The voltage monitor is disabled when the device  
enters a low power mode.  
The VMON also incorporates a glitch filter for the nPORRST input. Refer to 6.3.3.1 for the timing  
information on this glitch filter.  
6-1. Voltage Monitoring Specifications  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
VCC low - VCC level below this threshold is detected as too  
low.  
0.75  
0.9  
1.13  
V
Voltage monitoring VCC high - VCC level above this threshold is detected as too  
1.40  
1.85  
1.7  
2.4  
2.1  
2.9  
VMON  
thresholds  
high.  
VCCIO low - VCCIO level below this threshold is detected as  
too low.  
6.2.3 Supply Filtering  
The VMON has the capability to filter glitches on the VCC and VCCIO supplies.  
The following table shows the characteristics of the supply filtering. Glitches in the supply larger than the  
maximum specification cannot be filtered.  
6-2. VMON Supply Glitch Filtering Capability  
PARAMETER  
Width of glitch on VCC that can be filtered  
MIN  
250  
250  
MAX  
1000  
1000  
UNIT  
ns  
Width of glitch on VCCIO that can be filtered  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
39  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.3 Power Sequencing and Power On Reset  
6.3.1 Power-Up Sequence  
There is no timing dependency between the ramp of the VCCIO and the VCC supply voltage. The power-  
up sequence starts with the I/O voltage rising above the minimum I/O supply threshold, (see 6-4 for  
more details), core voltage rising above the minimum core supply threshold and the release of power-on  
reset. The high frequency oscillator will start up first and its amplitude will grow to an acceptable level. The  
oscillator start up time is dependent on the type of oscillator and is provided by the oscillator vendor. The  
different supplies to the device can be powered up in any order.  
The device goes through the following sequential phases during power up.  
6-3. Power-Up Phases  
Phases  
Oscillator start-up and validity check  
eFuse autoload  
Oscillator Cycles  
1032 oscillator cycles  
1180 oscillator cycles  
688 oscillator cycles  
617 oscillator cycles  
3517 oscillator cycles  
Flash pump power-up  
Flash bank power-up  
Total  
The CPU reset is released at the end of the above sequence and fetches the first instruction from address  
0x00000000.  
40  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6.3.2 Power-Down Sequence  
The different supplies to the device can be powered down in any order.  
6.3.3 Power-On Reset: nPORRST  
This is the power-on reset. This reset must be asserted by an external circuitry whenever the I/O or core  
supplies are outside the specified recommended range. This signal has a glitch filter on it. It also has an  
internal pulldown.  
6.3.3.1 nPORRST Electrical and Timing Requirements  
6-4. Electrical Requirements for nPORRST  
NO.  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
VCCPORL  
VCCPORH  
VCC low supply level when nPORRST must be active –40°C to 125°C  
during power-up  
0.5  
V
VCC high supply level when nPORRST must remain  
active during power-up and become active during  
power down  
–40°C to 125°C  
1.14  
V
VCCIOPORL  
VCCIOPORH  
VCCIO / VCCP low supply level when nPORRST must –40°C to 125°C  
be active during power-up  
1.1  
V
V
VCCIO / VCCP high supply level when nPORRST must –40°C to 125°C  
remain active during power-up and become active  
during power down  
3.0  
VIL(PORRST)  
Low-level input voltage of nPORRST VCCIO > 2.5 V  
Low-level input voltage of nPORRST VCCIO < 2.5 V  
–40°C to 125°C  
–40°C to 125°C  
0.2 × VCCIO  
0.5  
V
V
3
tsu(PORRST)  
Setup time, nPORRST active before VCCIO and VCCP –40°C to 125°C  
> VCCIOPORL during power-up  
0
ms  
6
7
th(PORRST)  
tsu(PORRST)  
Hold time, nPORRST active after VCC > VCCPORH  
–40°C to 125°C  
1
2
ms  
µs  
Setup time, nPORRST active before VCC < VCCPORH –40°C to 125°C  
during power down  
8
9
th(PORRST)  
Hold time, nPORRST active after VCCIO and VCCP  
VCCIOPORH  
>
–40°C to 125°C  
1
ms  
th(PORRST)  
tf(nPORRST)  
Hold time, nPORRST active after VCC < VCCPORL  
–40°C to 125°C  
0
ms  
ns  
Filter time nPORRST pin;  
500  
2000  
Pulses less than MIN will be filtered out, pulses  
greater than MAX will generate a reset.  
3.3 V  
VCCIOPORH  
VCCIOPORH  
VCCIO / VCCP  
8
6
1.2 V  
VCCPORH  
VCC  
VCCPORH  
7
6
VCCIOPORL  
7
VCCIOPORL  
VCCPORL  
VCCPORL  
VCC (1.2 V)  
VCCIO / VCCP(3.3 V)  
3
9
VIL  
VIL  
VIL  
VIL(PORRST)  
VIL(PORRST)  
nPORRST  
NOTE: There is no timing dependency between the ramp of the VCCIO and the VCC supply voltage; this is just an exemplary drawing.  
6-1. nPORRST Timing Diagram  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
41  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.4 Warm Reset (nRST)  
This is a bidirectional reset signal. The internal circuitry drives the signal low on detecting any device reset  
condition. An external circuit can assert a device reset by forcing the signal low. On this terminal, the  
output buffer is implemented as an open drain (drives low only). To ensure an external reset is not  
arbitrarily generated, TI recommends that an external pullup resistor is connected to this terminal.  
This terminal has a glitch filter. It also has an internal pullup  
6.4.1 Causes of Warm Reset  
6-5. Causes of Warm Reset  
DEVICE EVENT  
SYSTEM STATUS FLAG  
Exception Status Register, bit 15  
Global Status Register, bit 0  
Power-Up Reset  
Oscillator fail  
PLL slip  
Global Status Register, bits 8 and 9  
Exception Status Register, bit 13  
Exception Status Register, bit 5  
Exception Status Register, bit 4  
Exception Status Register, bit 3  
Watchdog exception / Debugger reset  
CPU Reset (driven by the CPU STC)  
Software Reset  
External Reset  
6.4.2 nRST Timing Requirements  
6-6. nRST Timing Requirements(1)  
MIN  
2252 × tc(OSC)  
32 × tc(VCLK)  
MAX UNIT  
tv(RST)  
Valid time, nRST active after nPORRST inactive  
Valid time, nRST active (all other system reset conditions)  
Filter time nRST pin;  
–40°C to 125°C  
–40°C to 125°C  
ns  
tf(nRST)  
475  
2000  
ns  
Pulses less than MIN will be filtered out, pulses greater than MAX will generate a reset  
(1) Specified values do NOT include rise/fall times. For rise and fall timings, see 5-6.  
42  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6.5 ARM© Cortex™-R4F CPU Information  
6.5.1 Summary of ARM Cortex-R4F CPU Features  
The features of the ARM Cortex-R4F CPU include:  
An integer unit with integral EmbeddedICE-RT logic  
High-speed Advanced Microprocessor Bus Architecture (AMBA) Advanced eXtensible Interfaces (AXI)  
for Level two (L2) master and slave interfaces  
Floating Point Coprocessor  
Dynamic branch prediction with a global history buffer, and a 4-entry return stack  
Low interrupt latency  
Non-maskable interrupt  
A Harvard Level one (L1) memory system with:  
Tightly-Coupled Memory (TCM) interfaces with support for error correction or parity checking  
memories  
ARMv7-R architecture Memory Protection Unit (MPU) with 12 regions  
Dual core logic for fault detection in safety-critical applications  
An L2 memory interface:  
Single 64-bit master AXI interface  
64-bit slave AXI interface to TCM RAM blocks  
A debug interface to a CoreSight Debug Access Port (DAP)  
A trace interface to a CoreSight ETM-R4  
A Performance Monitoring Unit (PMU)  
A Vectored Interrupt Controller (VIC) port  
For more information on the ARM Cortex-R4F CPU, see www.arm.com.  
6.5.2 ARM Cortex-R4F CPU Features Enabled by Software  
The following CPU features are disabled on reset and must be enabled by the application if required.  
ECC On Tightly-Coupled Memory (TCM) Accesses  
Harware Vectored Interrupt (VIC) Port  
Floating Point Coprocessor  
Memory Protection Unit (MPU)  
6.5.3 Dual Core Implementation  
The device has two Cortex-R4F cores, where the output signals of both CPUs are compared in the CCM-  
R4 unit. To avoid common mode impacts the signals of the CPUs to be compared are delayed by 2 clock  
cycles as shown in 6-3.  
The CPUs have a diverse CPU placement given by following requirements:  
Different orientation; for example, CPU1 = "north" orientation, CPU2 = "flip west" orientation  
Dedicated guard ring for each CPU  
Flip West  
North  
F
6-2. Dual - CPU Orientation  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
43  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.5.4 Duplicate Clock Tree After GCLK  
The CPU clock domain is split into two clock trees, one for each CPU, with the clock of the 2nd CPU  
running at the same frequency and in phase to the clock of CPU1. See 6-3.  
6.5.5 ARM Cortex-R4F CPU Compare Module (CCM-R4) for Safety  
This device has two ARM Cortex-R4F CPU cores, where the output signals of both CPUs are compared in  
the CCM-R4 unit. To avoid common mode impacts the signals of the CPUs to be compared are delayed in  
a different way as shown in the figure below.  
Output + Control  
CCM-R4  
2 cycle delay  
CCM-R4  
compare  
compare  
error  
CPU1CLK  
CPU 1  
CPU 2  
2 cycle delay  
CPU2CLK  
Input + Control  
6-3. Dual Core Implementation  
To avoid an erroneous CCM-R4 compare error, the application software must initialize the registers of  
both CPUs before the registers are used, including function calls where the register values are pushed  
onto the stack.  
6.5.6 CPU Self-Test  
The CPU STC (Self-Test Controller) is used to test the two Cortex-R4F CPU Cores using the  
Deterministic Logic BIST Controller as the test engine.  
The main features of the self-test controller are:  
Ability to divide the complete test run into independent test intervals  
Capable of running the complete test as well as running few intervals at a time  
Ability to continue from the last executed interval (test set) as well as ability to restart from the  
beginning (First test set)  
Complete isolation of the self-tested CPU core from rest of the system during the self-test run  
Ability to capture the Failure interval number  
Timeout counter for the CPU self-test run as a fail-safe feature  
44  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6.5.6.1 Application Sequence for CPU Self-Test  
1. Configure clock domain frequencies.  
2. Select number of test intervals to be run.  
3. Configure the timeout period for the self-test run.  
4. Enable self-test.  
5. Wait for CPU reset.  
6. In the reset handler, read CPU self-test status to identify any failures.  
7. Retrieve CPU state if required.  
For more information see the device specific technical reference manual.  
6.5.6.2 CPU Self-Test Clock Configuration  
The maximum clock rate for the self-test is 90MHz. The STCCLK is divided down from the CPU clock.  
This divider is configured by the STCCLKDIV register at address 0xFFFFE108.  
For more information see the device specific technical reference manual.  
6.5.6.3 CPU Self-Test Coverage  
6-7 shows CPU test coverage achieved for each self-test interval. It also lists the cumulative test  
cycles. The test time can be calculated by multiplying the number of test cycles with the STC clock period.  
6-7. CPU Self-Test Coverage  
INTERVALS  
TEST COVERAGE (%)  
0
TEST CYCLES  
0
0
1
62.13  
70.09  
74.49  
77.28  
79.28  
80.90  
82.02  
83.10  
84.08  
84.87  
85.59  
86.11  
86.67  
87.16  
87.61  
87.98  
88.38  
88.69  
88.98  
89.28  
89.50  
89.76  
90.01  
90.21  
1365  
2
2730  
3
4095  
4
5460  
5
6825  
6
8190  
7
9555  
8
10920  
12285  
13650  
15015  
16380  
17745  
19110  
20475  
21840  
23205  
24570  
25935  
27300  
28665  
30030  
31395  
32760  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
45  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.6 Clocks  
6.6.1 Clock Sources  
The table below lists the available clock sources on the device. Each of the clock sources can be enabled  
or disabled using the CSDISx registers in the system module. The clock source number in the table  
corresponds to the control bit in the CSDISx register for that clock source.  
The table also shows the default state of each clock source.  
6-8. Available Clock Sources  
Clock Source  
Number  
Name  
Description  
Default State  
0
1
2
3
4
5
6
7
7
OSCIN  
PLL1  
Main oscillator  
Output from PLL1  
Reserved  
Enabled  
Disabled  
Disabled  
Disabled  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Reserved  
EXTCLKIN1  
CLK80K  
CLK10M  
PLL2  
External clock input 1  
Low frequency output of internal reference oscillator  
High frequency output of internal reference oscillator  
Output from PLL2  
EXTCLKIN2  
Reserved  
External clock input 2  
Reserved  
6.6.1.1 Main Oscillator  
The oscillator is enabled by connecting the appropriate fundamental resonator/crystal and load capacitors  
across the external OSCIN and OSCOUT pins as shown in 6-4. The oscillator is a single stage inverter  
held in bias by an integrated bias resistor. This resistor is disabled during leakage test measurement and  
low power modes.  
TI strongly encourages each customer to submit samples of the device to the resonator/crystal  
vendors for validation. The vendors are equipped to determine what load capacitors will best tune  
their resonator/crystal to the microcontroller device for optimum start-up and operation over  
temperature/voltage extremes.  
An external oscillator source can be used by connecting a 3.3V clock signal to the OSCIN pin and leaving  
the OSCOUT pin unconnected (open) as shown in the figure below.  
(see Note B)  
OSCIN  
Kelvin_GND  
OSCOUT  
OSCIN  
OSCOUT  
C1  
C2  
External  
Clock Signal  
(toggling 0-3.3V)  
(see Note A)  
Crystal  
(a)  
(b)  
Note A: The values of C1 and C2 should be provided by the resonator/crystal vendor.  
Note B: Kelvin_GND should not be connected to any other GND.  
6-4. Recommended Crystal/Clock Connection  
46  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
 
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6.6.1.1.1 Timing Requirements for Main Oscillator  
6-9. Timing Requirements for Main Oscillator  
MIN  
50  
MAX  
200  
UNIT  
ns  
tc(OSC)  
Cycle time, OSCIN (when using a sine-wave input)  
tc(OSC_SQR)  
Cycle time, OSCIN, (when input to the OSCIN is a  
square wave)  
50  
200  
ns  
tw(OSCIL)  
tw(OSCIH)  
Pulse duration, OSCIN low (when input to the OSCIN –40°C to 125°C  
is a square wave)  
6
6
ns  
ns  
Pulse duration, OSCIN high (when input to the  
OSCIN is a square wave)  
–40°C to 125°C  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
47  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.6.1.2 Low Power Oscillator (LPO)  
The LPO is comprised of two oscillators — HF LPO and LF LPO, in a single macro.  
6.6.1.2.1 Features  
The main features of the LPO are:  
Supplies a clock at extremely low power for power-saving modes. This is connected as clock source #  
4 of the Global Clock Module.  
Supplies a high-frequency clock for non-timing-critical systems. This is connected as clock source # 5  
of the Global Clock Module.  
Provides a comparison clock for the crystal oscillator failure detection circuit.  
BIAS_EN  
LFEN  
CLK80K  
LF_TRIM  
Low  
Power  
Oscillator  
HFEN  
CLK10M  
HF_TRIM  
CLK10M_VALID  
nPORRST  
6-5. LPO Block Diagram  
6-5 shows a block diagram of the internal reference oscillator. This is a low power oscillator (LPO) and  
provides two clock sources: one nominally 80KHz and one nominally 10MHz.  
6.6.1.2.2 LPO Electrical and Timing Specifications  
6-10. LPO Specifications  
MIN  
NOM  
MAX UNIT  
LPO - HF oscillator  
LPO - LF oscillator  
Untrimmed frequency  
5.5  
9.6  
19.5 MHz  
Startup time from STANDBY (LPO BIAS_EN High for at least  
900 µs)  
10  
µs  
Cold startup time  
900  
µs  
Untrimmed frequency  
36  
85  
180 kHz  
Startup time from STANDBY (LPO BIAS_EN High for at least  
900 µs)  
100  
µs  
Cold startup time  
2000  
µs  
48  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6.6.1.3 Phase Locked Loop (PLL) Clock Modules  
The PLL is used to multiply the input frequency to some higher frequency.  
The main features of the PLL are:  
Frequency modulation can be optionally superimposed on the synthesized frequency of PLL1. The  
frequency modulation capability of PLL2 is permanently disabled.  
Configurable frequency multipliers and dividers.  
Built-in PLL Slip monitoring circuit.  
Option to reset the device on a PLL slip detection.  
6.6.1.3.1 Block Diagram  
The 6-6 shows a high-level block diagram of the two PLL macros on this microcontroller. PLLCTL1 and  
PLLCTL2 are used to configure the multiplier and dividers for the PLL1. PLLCTL3 is used to configure the  
multiplier and dividers for PLL2.  
/NR  
/OD  
/R  
PLLCLK  
OSCIN  
INTCLK  
VCOCLK  
post_ODCLK  
PLL  
/1 to /64  
/1 to /8  
/1 to /32  
fPLLCLK = (fOSCIN / NR) * NF / (OD * R)  
/NF  
/1 to /256  
/NR2  
/OD2  
/R2  
PLL2CLK  
OSCIN  
VCOCLK2  
INTCLK2  
post_ODCLK2  
/1 to /64  
PLL#2  
/1 to /8  
/1 to /32  
fPLL2CLK = (fOSCIN / NR2) * NF2 / (OD2 * R2)  
/NF2  
/1 to /256  
6-6. GWT PLLx Block Diagram  
6-11. PLL Timing Specifications  
6.6.1.3.2 PLL Timing Specifications  
MIN  
MAX  
20  
UNIT  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
fINTCLK  
PLL1 reference clock frequency  
1
fpost_ODCLK  
fVCOCLK  
Post-ODCLK – PLL1 post-divider input clock frequency  
VCOCLK – PLL1 output divider (OD) input clock frequency  
PLL2 reference clock frequency  
400  
550  
20  
150  
1
fINTCLK2  
fpost_ODCLK2  
fVCOCLK2  
Post-ODCLK – PLL2 post-divider input clock frequency  
VCOCLK – PLL2 output divider (OD) input clock frequency  
400  
550  
150  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
49  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.6.1.4 External Clock Inputs  
The device supports up to two external clock inputs. This clock input must be a square wave input. The  
electrical and timing requirements for these clock inputs are specified below. The external clock sources  
are not checked for validity. They are assumed valid when enabled.  
6-12. External Clock Timing and Electrical Specifications  
PARAMETER  
TEST CONDITIONS  
–40°C to 125°C  
MIN  
MAX UNIT  
fEXTCLKx  
External clock input frequency  
EXTCLK high-pulse duration  
EXTCLK low-pulse duration  
Low-level input voltage  
High-level input voltage  
80  
MHz  
ns  
ns  
V
tw(EXTCLKIN)H  
tw(EXTCLKIN)L  
viL(EXTCLKIN)  
viH(EXTCLKIN)  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
6
6
–0.3  
2
0.8  
VCCIO + 0.3  
V
6.6.2 Clock Domains  
6.6.2.1 Clock Domain Descriptions  
6-13 lists the device clock domains and their default clock sources. The table also shows the system  
module control register that is used to select an available clock source for each clock domain.  
6-13. Clock Domain Descriptions  
Default Clock  
Source  
Clock Source  
Selection Register  
Clock Domain Name  
Description  
HCLK  
OSCIN  
GHVSRC  
Is disabled via the CDDISx registers bit 1  
Used for all system modules including DMA, ESM  
GCLK  
OSCIN  
GHVSRC  
Always the same frequency as HCLK  
In phase with HCLK  
Is disabled separately from HCLK via the CDDISx registers bit 0  
Can be divided by 1up to 8 when running CPU self-test (LBIST)  
using the CLKDIV field of the STCCLKDIV register at address  
0xFFFFE108  
GCLK2  
OSCIN  
GHVSRC  
Always the same frequency as GCLK  
2 cycles delayed from GCLK  
Is disabled along with GCLK  
Gets divided by the same divider setting as that for GCLK when  
running CPU self-test (LBIST)  
VCLK  
OSCIN  
OSCIN  
GHVSRC  
GHVSRC  
Divided down from HCLK  
Can be HCLK/1, HCLK/2, ... or HCLK/16  
Is disabled separately from HCLK via the CDDISx registers bit 2  
VCLK2  
Divided down from HCLK  
Can be HCLK/1, HCLK/2, ... or HCLK/16  
Frequency must be an integer multiple of VCLK frequency  
Is disabled separately from HCLK via the CDDISx registers bit 3  
VCLK3  
OSCIN  
GHVSRC  
Divided down from HCLK  
Can be HCLK/1, HCLK/2, ... or HCLK/16  
Is disabled separately from HCLK via the CDDISx registers bit 8  
VCLKA1  
VCLKA2  
VCLK  
VCLK  
VCLKASRC  
VCLKASRC  
Defaults to VCLK as the source  
Is disabled via the CDDISx registers bit 4  
Defaults to VCLK as the source  
Is disabled via the CDDISx registers bit 5  
50  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6-13. Clock Domain Descriptions (continued)  
Default Clock  
Source  
Clock Source  
Selection Register  
Clock Domain Name  
Description  
VCLKA3_S  
VCLK  
VCLKACON  
Defaults to VCLK as the source  
Frequency can be as fast as HCLK frequency.  
Is disabled via the CDDISx registers bit 10  
VCLKA3_DIVR  
VCLK  
VCLKACON1  
Divided down from the VCLKA3_S using the VCLKA3R field of  
the VCLKACON1 register at address 0xFFFFE140  
Frequency can be VCLKA3_S/1, VCLKA3_S/2, ..., or  
VCLKA3_S/8  
Default frequency is VCLKA3_S/2  
Is disabled separately via the VCLKACON1 register  
VCLKA3_DIV_CDDIS bit only if the VCLKA3_S clock is not  
disabled  
VCLKA4  
RTICLK  
VCLK  
VCLK  
VCLKACON1  
RCLKSRC  
Defaults to VCLK as the source  
Is disabled via the CDDISx registers bit 11  
Defaults to VCLK as the source  
If a clock source other than VCLK is selected for RTICLK, then  
the RTICLK frequency must be less than or equal to VCLK/3  
Application can ensure this by programming the RTI1DIV  
field of the RCLKSRC register, if necessary  
Is disabled via the CDDISx registers bit 6  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
51  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.6.2.2 Mapping of Clock Domains to Device Modules  
Each clock domain has a dedicated functionality as shown in the figures below.  
GCM  
0
GCLK, GCLK2 (to CPU)  
HCLK (to SYSTEM)  
OSCIN  
FMzPLL  
X1..256  
(SSPLL)  
/1..8  
1
/1..32  
/1..64  
*
VCLK_peri (VCLK to peripherals on PCR1)  
VCLK_sys (VCLK to system modules)  
VCLK2 (to N2HETx and HTUx)  
/1..16  
4
5
80kHz  
/1..16  
/1..16  
Low Power  
Oscillator  
10MHz  
VCLK3 (to EMIF, and Ethernet)  
PLL # 2 (SSPLL)  
6
/1..32  
*
/1..64 X1..256  
/1..8  
0
1
3
4
5
6
3
7
* the frequency at this node must not  
exceed the maximum HCLK specifiation.  
EXTCLKIN1  
EXTCLKIN2  
VCLKA1 (to DCANx)  
7
VCLK  
VCLK3  
0
1
3
VCLKA4  
4
5
6
VCLKA2 (to FlexRay)  
7
VCLK  
Ethernet  
0
1
3
4
VCLKA4 (to Ethernet, as alternate  
for MIITXCLK and/or MIIRXCLK)  
5
6
7
0
1
VCLK  
3
4
/1, 2, 4, or 8  
5
6
7
RTICLK (to RTI, DWWD)  
EMIF  
VCLK  
VCLKA1  
VCLK  
VCLK2  
VCLKA2  
VCLK2  
VCLKA2  
HRP  
/1..64  
/2,3..224  
/1,2..32  
/1,2..65536  
/1,2..256  
/1,2,..4  
/1,2,..256  
/1,2,..1024  
N2HETx  
TU  
FlexRay  
TU  
GTUC1,2  
LRP  
/20..25  
Prop_seg  
Phase_seg2  
FlexRay  
Baud  
Rate  
I2C baud  
rate  
ECLK  
SPI  
Baud Rate  
ADCLK  
LIN / SCI  
Baud Rate  
Phase_seg1  
I2C  
Loop  
High  
Resolution Clock  
SPIx,MibSPIx  
LIN, SCI  
External Clock  
MibADCx  
FlexRay  
EXTCLKIN1  
NTU[3]  
CAN Baud Rate  
DCANx  
PLL#2 output  
Start of cycle  
Macro Tick  
NTU[2]  
NTU[1]  
NTU[0]  
N2HETx  
RTI  
6-7. Device Clock Domains  
52  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6.6.3 Clock Test Mode  
The TMS570 platform architecture defines a special mode that allows various clock signals to be brought  
out on to the ECLK pin and N2HET1[12] device outputs. This mode is called the Clock Test mode. It is  
very useful for debugging purposes and can be configured via the CLKTEST register in the system  
module.  
6-14. Clock Test Mode Options  
SEL_ECP_PIN  
SEL_GIO_PIN  
=
=
SIGNAL ON ECLK  
SIGNAL ON N2HET1[12]  
CLKTEST[3-0]  
CLKTEST[11-8]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Oscillator  
Main PLL free-running clock output  
Reserved  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Oscillator Valid Status  
Main PLL Valid status  
Reserved  
EXTCLKIN1  
Reserved  
CLK80K  
Reserved  
CLK10M  
CLK10M Valid status  
Secondary PLL Valid Status  
Reserved  
Secondary PLL free-running clock output  
GCLK  
CLK80K  
RTI Base  
Reserved  
VCLKA1  
VCLKA2  
Reserved  
VCLKA4  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
53  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.7 Clock Monitoring  
The LPO Clock Detect (LPOCLKDET) module consists of a clock monitor (CLKDET) and an internal low  
power oscillator (LPO).  
The LPO provides two different clock sources – a low frequency (CLK80K) and a high frequency  
(CLK10M).  
The CLKDET is a supervisor circuit for an externally supplied clock signal (OSCIN). In case the OSCIN  
frequency falls out of a frequency window, the CLKDET flags this condition in the global status register  
(GLBSTAT bit 0: OSC FAIL) and switches all clock domains sourced by OSCIN to the CLK10M clock (limp  
mode clock).  
The valid OSCIN frequency range is defined as: fCLK10M / 4 < fOSCIN < fCLK10M * 4.  
6.7.1 Clock Monitor Timings  
6-15. LPO and Clock Detection  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
Clock Detection  
oscillator fail frequency - lower threshold,  
using untrimmed LPO output  
1.375  
2.4  
4.875  
MHz  
oscillator fail frequency - higher threshold,  
using untrimmed LPO output  
22  
38.4  
9.6  
78  
MHz  
LPO - HF oscillator untrimmed frequency  
5.5  
19.5  
10  
MHz  
µs  
startup time from STANDBY (LPO BIAS_EN  
High for at least 900ms)  
cold startup time  
900  
150  
180  
100  
µs  
µA  
kHz  
µs  
ICC, CLK10M and CLK80K active  
–40°C to 125°C  
LPO - LF oscillator untrimmed frequency  
36  
85  
startup time from STANDBY (LPO BIAS_EN  
High for at least 900ms)  
cold startup time  
2000  
27  
µs  
µA  
µA  
ICC, only CLK80K active  
total ICC STANDBY current  
–40°C to 125°C  
–40°C to 125°C  
LPO  
20  
upper  
threshold  
lower  
threshold  
guaranteed fail  
guaranteed pass  
guaranteed fail  
f[MHz]  
1.375  
4.875  
22  
78  
6-8. LPO and Clock Detection, Untrimmed CLK10M  
6.7.2 External Clock (ECLK) Output Functionality  
The ECLK pin can be configured to output a pre-scaled clock signal indicative of an internal device clock.  
This output can be externally monitored as a safety diagnostic.  
6.7.3 Dual Clock Comparators  
The Dual Clock Comparator (DCC) module determines the accuracy of selectable clock sources by  
counting the pulses of two independent clock sources (counter 0 and counter 1). If one clock is out of  
spec, an error signal is generated. For example, the DCC1 can be configured to use CLK10M as the  
reference clock (for counter 0) and VCLK as the "clock under test" (for counter 1). This configuration  
allows the DCC1 to monitor the PLL output clock when VCLK is using the PLL output as its source.  
54  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
An additional use of this module is to measure the frequency of a selectable clock source, using the input  
clock as a reference, by counting the pulses of two independent clock sources. Counter 0 generates a  
fixed-width counting window after a preprogrammed number of pulses. Counter 1 generates a fixed-width  
pulse (1 cycle) after a pre-programmed number of pulses. This pulse sets as an error signal if counter 1  
does not reach 0 within the counting window generated by counter 0.  
6.7.3.1 Features  
Takes two different clock sources as input to two independent counter blocks.  
One of the clock sources is the known-good, or reference clock; the second clock source is the "clock  
under test."  
Each counter block is programmable with initial, or seed values.  
The counter blocks start counting down from their seed values at the same time; a mismatch from the  
expected frequency for the clock under test generates an error signal which is used to interrupt the  
CPU.  
6.7.3.2 Mapping of DCC Clock Source Inputs  
6-16. DCC1 Counter 0 Clock Sources  
CLOCK SOURCE [3:0]  
CLOCK NAME  
oscillator (OSCIN)  
high frequency LPO  
test clock (TCK)  
others  
0x5  
0xA  
6-17. DCC1 Counter 1 Clock Sources  
KEY [3:0]  
CLOCK SOURCE [3:0]  
CLOCK NAME  
N2HET1[31]  
others  
0x0  
Main PLL free-running clock output  
0x1  
0x2  
low frequency LPO  
high frequency LPO  
flash HD pump oscillator  
EXTCLKIN1  
0xA  
0x3  
0x4  
0x5  
0x6  
0x7  
ring oscillator  
VCLK  
0x8 - 0xF  
6-18. DCC2 Counter 0 Clock Sources  
CLOCK SOURCE [3:0]  
CLOCK NAME  
oscillator (OSCIN)  
test clock (TCK)  
others  
0xA  
6-19. DCC2 Counter 1 Clock Sources  
KEY [3:0]  
others  
0xA  
CLOCK SOURCE [3:0]  
CLOCK NAME  
N2HET2[0]  
Reserved  
VCLK  
00x0 - 0x7  
0x8 - 0xF  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
55  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.8 Glitch Filters  
A glitch filter is present on the following signals.  
6-20. Glitch Filter Timing Specifications  
PIN  
PARAMETER  
TMS5703137CGWTQEP  
TMS5703137CGWTMEP  
UNIT  
MIN  
TYP  
MAX  
MIN  
MAX  
tf(nPORRST)  
500  
2000  
475  
2000  
ns  
Filter time nPORRST pin;  
pulses less than MIN will be filtered out,  
pulses greater than MAX will generate a  
reset(1)  
tf(nRST)  
tf(TEST)  
475  
500  
2000  
2000  
450  
475  
2000  
2000  
ns  
ns  
Filter time nRST pin;  
pulses less than MIN will be filtered out,  
pulses greater than MAX will generate a  
reset  
Filter time TEST pin;  
pulses less than MIN will be filtered out,  
pulses greater than MAX will pass through  
(1) The glitch filter design on the nPORRST signal is designed such that no size pulse will reset any part of the microcontroller (flash pump,  
I/O pins, etc.) without also generating a valid reset signal to the CPU.  
56  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6.9 Device Memory Map  
6.9.1 Memory Map Diagram  
The figure below shows the device memory map.  
0xFFFFFFFF  
SYSTEM Modules  
0xFFF80000  
Peripherals - Frame 1  
0xFF000000  
0xFE000000  
CRC  
RESERVED  
0xFCFFFFFF  
0xFC000000  
Peripherals - Frame 2  
RESERVED  
0xF07FFFFF  
Flash Module Bus2 Interface  
(Flash ECC, OTP and EEPROM accesses)  
0xF0000000  
RESERVED  
0x87FFFFFF  
0x80000000  
EMIF (128MB)  
SDRAM  
CS0  
RESERVED  
reserved  
CS4  
0x6FFFFFFF  
0x60000000  
0x6C000000  
0x68000000  
0x64000000  
EMIF (16MB * 3)  
Async RAM  
CS3  
CS2  
RESERVED  
0x202FFFFF  
0x20000000  
Flash (3MB) (Mirrored Image)  
RESERVED  
0x0843FFFF  
0x08400000  
RAM - ECC  
RESERVED  
0x0803FFFF  
0x08000000  
RAM (256KB)  
RESERVED  
Flash (3MB)  
0x002FFFFF  
0x00000000  
6-9. Memory Map  
The Flash memory is mirrored to support ECC logic testing. The base address of the mirrored Flash  
image is 0x2000 0000.  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
57  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.9.2 Memory Map Table  
6-21. Device Memory Map  
FRAME ADDRESS RANGE  
START END  
Memories Tightly Coupled to the ARM Cortex-R4F CPU  
RESPONSE FOR ACCESS TO  
UNIMPLEMENTED LOCATIONS IN  
FRAME  
FRAME CHIP  
SELECT  
FRAME ACTUA  
SIZE L SIZE  
MODULE NAME  
TCM Flash  
CS0  
0x0000_0000  
0x00FF_FFFF  
16MB  
3MB  
TCM RAM + RAM  
ECC  
CSRAM0  
0x0800_0000  
0x0BFF_FFFF  
64MB  
KB  
Abort  
Flash mirror  
frame  
Mirrored Flash  
0x2000_0000  
0x20FF_FFFF  
16MB  
MB  
External Memory Accesses  
EMIF Chip Select  
2 (asynchronous)  
EMIF select 2  
EMIF select 3  
EMIF select 4  
EMIF select 0  
0x6000_0000  
0x6400_0000  
0x6800_0000  
0x8000_0000  
0x63FF_FFFF  
0x67FF_FFFF  
0x6BFF_FFFF  
0x87FF_FFFF  
64MB  
16MB  
16MB  
16MB  
EMIF Chip Select  
3 (asynchronous)  
64MB  
64MB  
Access to "Reserved" space will  
generate Abort  
EMIF Chip Select  
4 (asynchronous)  
EMIF Chip Select  
0 (synchronous)  
128MB 128MB  
Flash Module Bus2 Interface  
Customer OTP,  
TCM Flash Bank  
0
0xF000_0000  
0xF000_1FFF  
8KB  
4KB  
Customer OTP,  
TCM Flash Bank  
1
0xF000_2000  
0xF000_E000  
0xF004_0000  
0xF000_3FFF  
0xF000_FFFF  
0xF004_03FF  
8KB  
8KB  
1KB  
4KB  
4KB  
Customer OTP,  
EEPROM Bank 7  
Customer  
OTP–ECC, TCM  
Flash Bank 0  
512B  
Customer  
OTP–ECC, TCM  
Flash Bank 1  
0xF004_0400  
0xF004_1C00  
0xF004_07FF  
0xF004_1FFF  
1KB  
1KB  
512B  
1KB  
Customer  
OTP–ECC,  
EEPROM Bank 7  
TI OTP, TCM  
Flash Bank 0  
0xF008_0000  
0xF008_2000  
0xF008_E000  
0xF008_1FFF  
0xF008_3FFF  
0xF008_FFFF  
8KB  
8KB  
8KB  
4KB  
4KB  
4KB  
Abort  
TI OTP, TCM  
Flash Bank 1  
TI OTP, EEPROM  
Bank 7  
TI OTP–ECC,  
TCM Flash Bank  
0
0xF00C_0000  
0xF00C_03FF  
1KB  
512B  
TI OTP–ECC,  
TCM Flash Bank  
1
0xF00C_0400  
0xF00C_1C00  
0xF00C_07FF  
0xF00C_1FFF  
1KB  
1KB  
512B  
1KB  
TI OTP–ECC,  
EEPROM Bank 7  
EEPROM  
Bank–ECC  
0xF010_0000  
0xF020_0000  
0xF040_0000  
0xF013_FFFF  
0xF03F_FFFF  
0xF04F_FFFF  
256KB  
2MB  
8KB  
64KB  
384KB  
EEPROM Bank  
Flash Data Space  
ECC  
1MB  
58  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6-21. Device Memory Map (continued)  
FRAME ADDRESS RANGE  
RESPONSE FOR ACCESS TO  
UNIMPLEMENTED LOCATIONS IN  
FRAME  
FRAME CHIP  
SELECT  
FRAME ACTUA  
MODULE NAME  
SIZE  
L SIZE  
START  
END  
EMIF Slave Interfaces  
CPPI Memory  
Slave (Ethernet  
RAM)  
0xFC52_0000  
0xFCF7_8000  
0xFC52_1FFF  
0xFCF7_87FF  
8KB  
2KB  
8KB  
2KB  
Abort  
EMAC Slave  
(Ethernet Slave)  
No error  
EMACSS  
Wrapper  
(Ethernet  
Wrapper)  
0xFCF7_8800  
0xFCF7_88FF  
256B  
256B  
No error  
Ethernet MDIO  
Interface  
0xFCF7_8900  
0xFCFF_E800  
0xFCF7_89FF  
0xFCFF_E8FF  
256B  
256B  
256B  
256B  
No error  
Abort  
EMIF Registers  
Cyclic Redundancy Checker (CRC) Module Registers  
CRC  
CRC frame  
0xFE00_0000  
0xFEFF_FFFF  
Peripheral Memories  
0xFF0B_FFFF  
16MB  
512B  
Accesses above 0x200 generate abort.  
MIBSPI5 RAM  
MIBSPI3 RAM  
MIBSPI1 RAM  
PCS[5]  
PCS[6]  
PCS[7]  
0xFF0A_0000  
0xFF0C_0000  
0xFF0E_0000  
128KB  
128KB  
128KB  
2KB  
2KB  
2KB  
Abort for accesses above 2KB  
Abort for accesses above 2KB  
Abort for accesses above 2KB  
0xFF0D_FFFF  
0xFF0F_FFFF  
Wrap around for accesses to  
unimplemented address offsets lower  
than 0x7FF. Abort generated for  
accesses beyond offset 0x800.  
DCAN3 RAM  
DCAN2 RAM  
DCAN1 RAM  
MIBADC2 RAM  
MIBADC1 RAM  
N2HET2 RAM  
N2HET1 RAM  
PCS[13]  
PCS[14]  
PCS[15]  
PCS[29]  
PCS[31]  
PCS[34]  
0xFF1A_0000  
0xFF1C_0000  
0xFF1E_0000  
0xFF3A_0000  
0xFF3E_0000  
0xFF44_0000  
0xFF1B_FFFF  
0xFF1D_FFFF  
0xFF1F_FFFF  
0xFF3B_FFFF  
0xFF3F_FFFF  
0xFF45_FFFF  
0xFF47_FFFF  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
2KB  
2KB  
2KB  
8KB  
8KB  
16KB  
Wrap around for accesses to  
unimplemented address offsets lower  
than 0x7FF. Abort generated for  
accesses beyond offset 0x800.  
Wrap around for accesses to  
unimplemented address offsets lower  
than 0x7FF. Abort generated for  
accesses beyond offset 0x800.  
Wrap around for accesses to  
unimplemented address offsets lower  
than 0x1FFF. Abort generated for  
accesses beyond 0x1FFF.  
Wrap around for accesses to  
unimplemented address offsets lower  
than 0x1FFF. Abort generated for  
accesses beyond 0x1FFF.  
Wrap around for accesses to  
unimplemented address offsets lower  
than 0x3FFF. Abort generated for  
accesses beyond 0x3FFF.  
Wrap around for accesses to  
unimplemented address offsets lower  
than 0x3FFF. Abort generated for  
accesses beyond 0x3FFF.  
PCS[35]  
PCS[38]  
0xFF46_0000  
0xFF4C_0000  
128KB  
128KB  
16KB  
1KB  
N2HET2 TU2  
RAM  
0xFF4D_FFFF  
0xFF4F_FFFF  
Abort  
N2HET1 TU1  
RAM  
PCS[39]  
PCS[40]  
0xFF4E_0000  
0xFF50_0000  
128KB  
128KB  
1KB  
1KB  
Abort  
Abort  
FlexRay TU RAM  
0xFF51_FFFF  
Debug Components  
CoreSight Debug  
ROM  
CSCS0  
0xFFA0_0000  
0xFFA0_0FFF  
4KB  
4KB  
Reads: 0, writes: no effect  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
59  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6-21. Device Memory Map (continued)  
FRAME ADDRESS RANGE  
RESPONSE FOR ACCESS TO  
UNIMPLEMENTED LOCATIONS IN  
FRAME  
FRAME CHIP  
SELECT  
FRAME ACTUA  
MODULE NAME  
SIZE  
L SIZE  
START  
END  
Cortex-R4F  
Debug  
CSCS1  
0xFFA0_1000  
0xFFA0_1FFF  
4KB  
4KB  
Reads: 0, writes: no effect  
ETM-R4  
CoreSight TPIU  
POM  
CSCS2  
CSCS3  
CSCS4  
0xFFA0_2000  
0xFFA0_3000  
0xFFA0_4000  
0xFFA0_2FFF  
0xFFA0_3FFF  
0xFFA0_4FFF  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Abort  
Peripheral Control Registers  
0xFFF7_A400 256B  
HTU1  
HTU2  
PS[22]  
PS[22]  
PS[17]  
PS[17]  
PS[16]  
PS[15]  
PS[15]  
PS[12]+PS[13]  
PS[10]  
PS[8]  
0xFFF7_A4FF  
0xFFF7_A5FF  
0xFFF7_B8FF  
0xFFF7_B9FF  
0xFFF7_BCFF  
0xFFF7_C1FF  
0xFFF7_C3FF  
0xFFF7_CFFF  
0xFFF7_D4FF  
0xFFF7_DDFF  
0xFFF7_DFFF  
0xFFF7_E1FF  
0xFFF7_E4FF  
0xFFF7_E5FF  
0xFFF7_F5FF  
0xFFF7_F7FF  
0xFFF7_F9FF  
0xFFF7_FBFF  
0xFFF7_FDFF  
256B  
256B  
256B  
256B  
256B  
512B  
512B  
2KB  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
0xFFF7_A500  
0xFFF7_B800  
0xFFF7_B900  
0xFFF7_BC00  
0xFFF7_C000  
0xFFF7_C200  
0xFFF7_C800  
0xFFF7_D400  
0xFFF7_DC00  
0xFFF7_DE00  
0xFFF7_E000  
0xFFF7_E400  
0xFFF7_E500  
0xFFF7_F400  
0xFFF7_F600  
0xFFF7_F800  
0xFFF7_FA00  
0xFFF7_FC00  
256B  
256B  
256B  
256B  
512B  
512B  
2KB  
N2HET1  
N2HET2  
GPIO  
MIBADC1  
MIBADC2  
FlexRay  
I2C  
256B  
512B  
512B  
512B  
256B  
256B  
512B  
512B  
512B  
512B  
512B  
256B  
512B  
512B  
512B  
256B  
256B  
512B  
512B  
512B  
512B  
512B  
DCAN1  
DCAN2  
DCAN3  
LIN  
PS[8]  
PS[7]  
PS[6]  
SCI  
PS[6]  
MibSPI1  
SPI2  
PS[2]  
PS[2]  
MibSPI3  
SPI4  
PS[1]  
PS[1]  
MibSPI5  
PS[0]  
System Modules Control Registers and Memories  
DMA RAM  
VIM RAM  
PPCS0  
PPCS2  
0xFFF8_0000  
0xFFF8_0FFF  
4KB  
4KB  
Abort  
Wrap around for accesses to  
unimplemented address offsets  
between 1kB and 4kB.  
0xFFF8_2000  
0xFFF8_2FFF  
4KB  
1KB  
RTP RAM  
Flash Module  
eFuse Controller  
PPCS3  
PPCS7  
PPCS12  
0xFFF8_3000  
0xFFF8_7000  
0xFFF8_C000  
0xFFF8_3FFF  
0xFFF8_7FFF  
0xFFF8_CFFF  
4KB  
4KB  
4KB  
4KB  
4KB  
4KB  
Abort  
Abort  
Abort  
Power  
Management  
Module (PMM)  
PPSE0  
0xFFFF_0000  
0xFFFF_01FF  
512B  
512B  
Abort  
Test Controller  
(FMTM)  
PPSE1  
PPS0  
0xFFFF_0400  
0xFFFF_E000  
0xFFFF_07FF  
0xFFFF_E0FF  
1KB  
1KB  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
PCR registers  
256B  
256B  
System Module -  
Frame 2 (see  
device TRM)  
PPS0  
0xFFFF_E100  
0xFFFF_E1FF  
256B  
256B  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
PBIST  
PPS1  
PPS1  
0xFFFF_E400  
0xFFFF_E600  
0xFFFF_E5FF  
0xFFFF_E6FF  
512B  
256B  
512B  
256B  
Generates address error interrupt, if  
enabled  
STC  
IOMM  
Multiplexing  
Control Module  
PPS2  
PPS3  
0xFFFF_EA00  
0xFFFF_EC00  
0xFFFF_EBFF  
0xFFFF_ECFF  
512B  
256B  
512B  
256B  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
DCC1  
60  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6-21. Device Memory Map (continued)  
FRAME ADDRESS RANGE  
RESPONSE FOR ACCESS TO  
UNIMPLEMENTED LOCATIONS IN  
FRAME  
FRAME CHIP  
SELECT  
FRAME ACTUA  
MODULE NAME  
SIZE  
L SIZE  
START  
END  
DMA  
DCC2  
PPS4  
PPS5  
PPS5  
PPS5  
PPS5  
PPS6  
PPS6  
PPS7  
PPS7  
PPS7  
0xFFFF_F000  
0xFFFF_F400  
0xFFFF_F500  
0xFFFF_F600  
0xFFFF_F700  
0xFFFF_F800  
0xFFFF_F900  
0xFFFF_FC00  
0xFFFF_FD00  
0xFFFF_FE00  
0xFFFF_F3FF  
0xFFFF_F4FF  
0xFFFF_F5FF  
0xFFFF_F6FF  
0xFFFF_F7FF  
0xFFFF_F8FF  
0xFFFF_F9FF  
0xFFFF_FCFF  
0xFFFF_FDFF  
0xFFFF_FEFF  
1KB  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
1KB  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
ESM  
CCMR4  
DMM  
RAM ECC even  
RAM ECC odd  
RTI + DWWD  
VIM Parity  
VIM  
System Module -  
Frame 1 (see  
device TRM)  
PPS7  
0xFFFF_FF00  
0xFFFF_FFFF  
256B  
256B  
Reads: 0, writes: no effect  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
61  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.9.3 Master/Slave Access Privileges  
The table below lists the access permissions for each bus master on the device. A bus master is a module  
that can initiate a read or a write transaction on the device.  
Each slave module on the main interconnect is listed in the table. A "Yes" indicates that the module listed  
in the "MASTERS" column can access that slave module.  
6-22. Master / Slave Access Matrix  
SLAVES ON MAIN SCR  
Flash Module  
Bus2 Interface:  
OTP, ECC,  
Non-CPU  
Accesses to  
Program Flash and  
CPU Data RAM  
Peripheral Control Registers,  
All Peripheral Memories, and  
All System Module Control  
Registers and Memories  
MASTERS  
ACCESS MODE  
Slave  
Interfaces  
CRC  
EEPROM Bank  
CPU READ  
CPU WRITE  
DMA  
User/Privilege  
User/Privilege  
User  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
POM  
User  
DAP  
Privilege  
Privilege  
Privilege  
HTU1  
HTU2  
No  
6.9.3.1 Special Notes on Accesses to Certain Slaves  
Write accesses to the Power Domain Management Module (PMM) control registers are limited to the CPU  
(master id = 1). The other masters can only read from these registers.  
A debugger can also write to the PMM registers. The master-id check is disabled in debug mode.  
The device contains dedicated logic to generate a bus error response on any access to a module that is in  
a power domain that has been turned OFF.  
62  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6.9.4 POM Overlay Considerations  
The POM overlay can map onto up to 8MB of the internal or external memory space. The starting  
address and the size of the memory overlay are configurable via the POM module control registers.  
Care must be taken to ensure that the overlay is mapped on to available memory.  
ECC must be disabled by software via CP15 in case POM overlay is enabled; otherwise ECC errors  
will be generated.  
POM overlay must not be enabled when the flash and internal RAM memories are swapped via the  
MEM SWAP field of the Bus Matrix Module Control Register 1 (BMMCR1).  
When POM is used to overlay the flash onto internal or external RAM, there is a bus contention  
possibility when another master accesses the TCM flash. This results in a system hang.  
The POM module implements a timeout feature to detect this exact scenario. The timeout needs to  
be enabled whenever POM overlay is enabled.  
The timeout can be enabled by writing 1010 to the Enable TimeOut (ETO) field of the POM Global  
Control register (POMGLBCTRL, address = 0xFFA04000).  
In case a read request by the POM cannot be completed within 32 HCLK cycles, the timeout (TO)  
flag is set in the POM Flag register (POMFLG, address = 0xFFA0400C). Also, an abort is  
generated to the CPU. This can be a prefetch abort for an instruction fetch or a data abort for a  
data fetch.  
The prefetch- and data-abort handlers must be modified to check if the TO flag in the POM module  
is set. If so, then the application can assume that the timeout is caused by a bus contention  
between the POM transaction and another master accessing the same memory region. The abort  
handlers need to clear the TO flag, so that any further aborts are not misinterpreted as having been  
caused due to a timeout from the POM.  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
63  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.10 Flash Memory  
6.10.1 Flash Memory Configuration  
Flash Bank: A separate block of logic consisting of 1 to 16 sectors. Each flash bank normally has a  
customer-OTP and a TI-OTP area. These flash sectors share input/output buffers, data paths, sense  
amplifiers, and control logic.  
Flash Sector: A contiguous region of flash memory which must be erased simultaneously due to physical  
construction constraints.  
Flash Pump: A charge pump which generates all the voltages required for reading, programming, or  
erasing the flash banks.  
Flash Module: Interface circuitry required between the host CPU and the flash banks and pump module.  
6-23. Flash Memory Banks and Sectors  
Memory Arrays (or Banks)(1)  
Sector  
No.  
Segment  
Low Address  
High Address  
BANK0 (1.5MBytes)  
0
1
32K Bytes  
32K Bytes  
32K Bytes  
32K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
16K Bytes  
0x0000_0000  
0x0000_8000  
0x0001_0000  
0x0001_8000  
0x0002_0000  
0x0004_0000  
0x0006_0000  
0x0008_0000  
0x000A_0000  
0x000C_0000  
0x000E_0000  
0x0010_0000  
0x0012_0000  
0x0014_0000  
0x0016_0000  
0x0018_0000  
0x001A_0000  
0x001C_0000  
0x001E_0000  
0x0020_0000  
0x0022_0000  
0x0024_0000  
0x0026_0000  
0x0028_0000  
0x002A_0000  
0x002C_0000  
0x002E_0000  
0xF020_0000  
0xF020_4000  
0xF020_8000  
0xF020_C000  
0x0000_7FFF  
0x0000_FFFF  
0x0001_7FFF  
0x0001_FFFF  
0x0003_FFFF  
0x0005_FFFF  
0x0007_FFFF  
0x0009_FFFF  
0x000B_FFFF  
0x000D_FFFF  
0x000F_FFFF  
0x0011_FFFF  
0x0013_FFFF  
0x0015_FFFF  
0x0017_FFFF  
0x0019_FFFF  
0x001B_FFFF  
0x001D_FFFF  
0x001F_FFFF  
0x0021_FFFF  
0x0023_FFFF  
0x0025_FFFF  
0x0027_FFFF  
0x0029_FFFF  
0x002B_FFFF  
0x002D_FFFF  
0x002F_FFFF  
0xF020_3FFF  
0xF020_7FFF  
0xF020_BFFF  
0xF020_FFFF  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
0
BANK1 (1.5MBytes)  
1
2
3
4
5
6
7
8
9
10  
11  
0
BANK7 (64kBytes) for EEPROM emulation(2)(3)  
1
2
3
(1) The Flash banks are 144-bit wide bank with ECC support.  
(2) The flash bank7 can be programmed while executing code from flash bank0 or bank1.  
(3) Code execution is not allowed from flash bank7.  
64  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6.10.2 Main Features of Flash Module  
Support for multiple flash banks for program and/or data storage  
Simultaneous read access on a bank while performing program or erase operation on any other bank  
Integrated state machines to automate flash erase and program operations  
Software interface for flash program and erase operations  
Pipelined mode operation to improve instruction access interface bandwidth  
Support for Single Error Correction Double Error Detection (SECDED) block inside Cortex-R4F CPU  
Error address is captured for host system debugging  
Support for a rich set of diagnostic features  
6.10.3 ECC Protection for Flash Accesses  
All accesses to the program flash memory are protected by Single Error Correction Double Error Detection  
(SECDED) logic embedded inside the CPU. The flash module provides 8 bits of ECC code for 64 bits of  
instructions or data fetched from the flash memory. The CPU calculates the expected ECC code based on  
the 64 bits received and compares it with the ECC code returned by the flash module. A signle-bit error is  
corrected and flagged by the CPU, while a multi-bit error is only flagged. The CPU signals an ECC error  
via its Event bus. This signaling mechanism is not enabled by default and must be enabled by setting the  
"X" bit of the Performance Monitor Control Register, c9.  
MRC p15,#0,r1,c9,c12,#0  
ORR r1, r1, #0x00000010  
MCR p15,#0,r1,c9,c12,#0  
MRC p15,#0,r1,c9,c12,#0  
;Enabling Event monitor states  
;Set 4th bit (‘X’) of PMNC register  
The application must also explicitly enable the CPU's ECC checking for accesses on the CPU's ATCM  
and BTCM interfaces. These are connected to the program flash and data RAM respectively. ECC  
checking for these interfaces can be done by setting the B1TCMPCEN, B0TCMPCEN and ATCMPCEN  
bits of the System Control coprocessor's Auxiliary Control Register, c1.  
MRC p15, #0, r1, c1, c0, #1  
ORR r1, r1, #0x0e000000  
DMB  
;Enable ECC checking for ATCM and BTCMs  
MCR p15, #0, r1, c1, c0, #1  
6.10.4 Flash Access Speeds  
For information on flash memory access speeds and the relevant wait states required, refer to 5.8.  
6.10.5 Flash Program and Erase Timings for Program Flash  
6-24. Timing Specifications for Program Flash  
MIN  
NOM  
MAX  
300  
32  
UNIT  
tprog (144 bit)  
tprog (Total)  
Wide Word (144 bit) programming time  
3MByte programming time(1)  
40  
µs  
s
-40°C to 125°C  
0°C to 60°C, for first  
25 cycles  
8
16  
s
terase  
Sector/Bank erase time(2)  
-40°C to 125°C  
0.03  
16  
4
s
0°C to 60°C, for first  
25 cycles  
100  
ms  
twec  
tret  
Write/erase cycles  
Data retention(3)  
-40°C to 125°C  
125°C  
1000  
5
cycles  
years  
(1) This programming time includes overhead of state machine, but does not include data transfer time. The programming time assumes  
programming 144 bits at a time at the maximum specified operating frequency.  
(2) During bank erase, the selected sectors are erased simultaneously. The time to erase the bank is specified as equal to the time to erase  
a sector.  
(3) The data retention specification is based on process qualification testing at 250°C for 168 hours and using an Arrhenius model with  
activation energy of 0.8 eV.  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
65  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.10.6 Flash Program and Erase Timings for Data Flash  
6-25. Timing Specifications for Data Flash  
MIN  
NOM  
MAX  
UNIT  
µs  
tprog (144 bit)  
tprog (Total)  
Wide Word (144 bit) programming time  
64KB programming time(1)  
40  
300  
660  
330  
-40°C to 125°C  
ms  
0°C to 60°C, for first  
25 cycles  
165  
ms  
terase  
Sector/Bank erase time(2)  
--40°C to 125°C  
0.2  
14  
8
s
0°C to 60°C, for first  
25 cycles  
100  
ms  
twec  
tret  
Write/erase cycles  
Data retention(3)  
-40°C to 125°C  
125°C  
100000  
5
cycles  
years  
(1) This programming time includes overhead of state machine, but does not include data transfer time. The programming time assumes  
programming 144 bits at a time at the maximum specified operating frequency.  
(2) During bank erase, the selected sectors are erased simultaneously. The time to erase the bank is specified as equal to the time to erase  
a sector.  
(3) The data retention specification is based on process qualification testing at 250°C for 168 hours and using an Arrhenius model with  
activation energy of 0.8 eV.  
66  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6.11 Tightly-Coupled RAM Interface Module  
6-10 illustrates the connection of the tightly coupled RAM (TCRAM) to the Cortex-R4F CPU.  
VBUSP I/F PMT I/F  
36 Bit  
Upper 32 bits data &  
4 ECC bits  
wide  
RAM  
Cortex R4F™  
EVEN Address  
TCM BUS  
TCRAM  
B0  
TCM  
36 Bit  
Interface 1  
wide  
RAM  
64 Bit data bus  
Lower32 bits data &  
4 ECC bits  
A
TCM  
36 Bit
wide
RAM  
Upper 32 bits data &  
4 ECC bits  
B1  
TCM  
ODD Address  
TCM BUS  
TCRAM  
Interface 2  
64 Bit data bus  
36 Bit  
wide  
RAM  
Lower32 bits data &  
4 ECC bits  
VBUSP I/F PMT I/F  
6-10. TCRAM Block Diagram  
6.11.1 Features  
The features of the Tightly Coupled RAM (TCRAM) Module are:  
Acts as slave to the Cortex-R4F CPU's BTCM interface  
Supports CPU's internal ECC scheme by providing 64-bit data and 8-bit ECC code  
Monitors CPU Event Bus and generates single or multi-bit error interrupts  
Stores addresses for single and multi-bit errors  
Supports RAM trace module  
Provides CPU address bus integrity checking by supporting parity checking on the address bus  
Performs redundant address decoding for the RAM bank chip select and ECC select generation logic  
Provides enhanced safety for the RAM addressing by implementing two 36-bit wide byte-interleaved  
RAM banks and generating independent RAM access control signals to the two banks  
Supports auto-initialization of the RAM banks along with the ECC bits  
No support for bit-wise RAM accesses  
6.11.2 TCRAMW ECC Support  
The TCRAMW passes on the ECC code for each data read by the Cortex-R4F CPU from the RAM. It also  
stores the CPU's ECC port contents in the ECC RAM when the CPU does a write to the RAM. The  
TCRAMW monitors the CPU's event bus and provides registers for indicating single/multi-bit errors and  
also for identifying the address that caused the single or multi-bit error. The event signaling and the ECC  
checking for the RAM accesses must be enabled inside the CPU.  
For more information see the device specific technical reference manual.  
6.12 Parity Protection for Peripheral RAMs  
Most peripheral RAMs are protected by odd/even parity checking. During a read access the parity is  
calculated based on the data read from the peripheral RAM and compared with the good parity value  
stored in the parity RAM for that peripheral. If any word fails the parity check, the module generates a  
parity error signal that is mapped to the Error Signaling Module. The module also captures the peripheral  
RAM address that caused the parity error.  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
67  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
The parity protection for peripheral RAMs is not enabled by default and must be enabled by the  
application. Each individual peripheral contains control registers to enable the parity protection for  
accesses to its RAM.  
The CPU read access gets the actual data from the peripheral. The application can choose  
to generate an interrupt whenever a peripheral RAM parity error is detected.  
68  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6.13 On-Chip SRAM Initialization and Testing  
6.13.1 On-Chip SRAM Self-Test Using PBIST  
6.13.1.1 Features  
Extensive instruction set to support various memory test algorithms  
ROM-based algorithms allow application to run TI production-level memory tests  
Independent testing of all on-chip SRAM  
6.13.1.2 PBIST RAM Groups  
6-26. PBIST RAM Grouping  
Test Pattern (Algorithm)  
March 13N(1)  
two port  
(cycles)  
March 13N(1)  
single port  
(cycles)  
triple read  
slow read  
triple read  
fast read  
Memory  
RAM Group  
Test Clock  
MEM Type  
ALGO MASK  
0x1  
ALGO MASK  
0x2  
ALGO MASK  
0x4  
ALGO MASK  
0x8  
PBIST_ROM  
STC_ROM  
DCAN1  
DCAN2  
DCAN3  
ESRAM1  
MIBSPI1  
MIBSPI3  
MIBSPI5  
VIM  
1
ROM CLK  
ROM CLK  
VCLK  
VCLK  
VCLK  
HCLK  
VCLK  
VCLK  
VCLK  
VCLK  
VCLK  
HCLK  
VCLK  
VCLK  
HCLK  
VCLK  
ROM  
24578  
19586  
8194  
6530  
2
ROM  
3
Dual Port  
Dual Port  
Dual Port  
Single Port  
Dual Port  
Dual Port  
Dual Port  
Dual Port  
Dual Port  
Dual Port  
Dual Port  
Dual Port  
Dual Port  
Dual Port  
Single Port  
Dual Port  
Dual Port  
Dual Port  
Single Port  
Single Port  
25200  
25200  
25200  
4
5
6
266280  
7
33440  
33440  
33440  
12560  
4200  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
28  
MIBADC1  
DMA  
18960  
31680  
6480  
N2HET1  
HET TU1  
RTP  
37800  
75400  
FLEXRAY  
133160  
MIBADC2  
N2HET2  
HET TU2  
ESRAM5  
ESRAM6  
VCLK  
VCLK  
VCLK  
HCLK  
HCLK  
4200  
31680  
6480  
266280  
266280  
8700  
6360  
Dual Port  
ETHERNET  
ESRAM8  
VCLK3  
HCLK  
Single Port  
Single Port  
133160  
266280  
(1) There are several memory testing algorithms stored in the PBIST ROM. However, TI recommends the March13N algorithm for  
application testing.  
The PBIST ROM clock frequency is limited to 90MHz, if 90MHz < HCLK HCLKmax, or HCLK, if HCLK ≤  
90MHz.  
The PBIST ROM clock is divided down from HCLK. The divider is selected by programming the ROM_DIV  
field of the Memory Self-Test Global Control Register (MSTGCR) at address 0xFFFFFF58.  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
69  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.13.2 On-Chip SRAM Auto Initialization  
This microcontroller allows some of the on-chip memories to be initialized to zero via the Memory  
Hardware Initialization mechanism in the System module. This hardware mechanism allows an application  
to program the memory arrays with error detection capability to a known state based on their error  
detection scheme (odd/even parity or ECC).  
The MINITGCR register enables the memory initialization sequence, and the MSINENA register selects  
the memories that are to be initialized.  
For more information on these registers see the device specific technical reference manual.  
The mapping of the different on-chip memories to the specific bits of the MSINENA registers is shown in  
6-27.  
6-27. Memory Initialization  
ADDRESS RANGE  
CONNECTING MODULE  
MSINENA REGISTER BIT #  
BASE ADDRESS  
0x08000000  
0x08010000  
0x08020000  
0xFF0A0000  
0xFF0C0000  
0xFF0E0000  
0xFF1A0000  
0xFF1C0000  
0xFF1E0000  
ENDING ADDRESS  
0x0800FFFF  
0x0801FFFF  
0x0802FFFF  
0xFF0BFFFF  
0xFF0DFFFF  
0xFF0FFFFF  
0xFF1BFFFF  
0xFF1DFFFF  
0xFF1FFFFF  
RAM (PD#1)  
RAM (RAM_PD#1)  
RAM (RAM_PD#2)  
MIBSPI5 RAM  
MIBSPI3 RAM  
MIBSPI1 RAM  
DCAN3 RAM  
DCAN2 RAM  
DCAN1 RAM  
FlexRay RAM  
MIBADC2 RAM  
MIBADC1 RAM  
N2HET2 RAM  
N2HET1 RAM  
HET TU2 RAM  
HET TU1 RAM  
DMA RAM  
0(1)  
0(1)  
0(1)  
12(2)  
11(2)  
7(2)  
10  
6
5
RAM is not CPU-Addressable  
n/a(3)  
14  
8
0xFF3A0000  
0xFF3E0000  
0xFF440000  
0xFF460000  
0xFF4C0000  
0xFF4E0000  
0xFFF80000  
0xFFF82000  
0xFFF83000  
0xFF500000  
0xFF3BFFFF  
0xFF3FFFFF  
0xFF57FFFF  
0xFF47FFFF  
0xFF4DFFFF  
0xFF4FFFFF  
0xFFF80FFF  
0xFFF82FFF  
0xFFF83FFF  
0xFF51FFFF  
15  
3
16  
4
1
VIM RAM  
2
RTP RAM  
n/a  
13  
FlexRay TU RAM  
Ethernet RAM (CPPI Memory  
Slave)  
0xFC520000  
0xFC521FFF  
n/a  
(1) The TCM RAM wrapper has separate control bits to select the RAM power domain that is to be auto-initialized.  
(2) The MibSPIx modules perform an initialization of the transmit and receive RAMs as soon as the module is released from its local reset  
via the SPIGCR0 register. This is independent of whether the application chooses to initialize the MibSPIx RAMs using the system  
module auto-initialization method. Before the MibSPI RAM can be initialized using the system module auto-initialization method: (i) The  
module must be released from its local reset, AND (ii) The application must poll for the "BUF INIT ACTIVE" status flag in the SPIFLG  
register to become cleared (zero)  
(3) Reserved only. The FlexRay RAM has its own initialization mechanism.  
70  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6.14 External Memory Interface (EMIF)  
6.14.1 Features  
The EMIF includes many features to enhance the ease and flexibility of connecting to external  
asynchronous memories or SDRAM devices. The EMIF features includes support for:  
3 addressable chip select for asynchronous memories of up to 16MB each  
1 addressable chip select space for SDRAMs up to 128MB  
8 or 16-bit data bus width  
Programmable cycle timings such as setup, strobe, and hold times as well as turnaround time  
Select strobe mode  
Extended Wait mode  
Data bus parking  
6.14.2 Electrical and Timing Specifications  
6.14.2.1 Asynchronous RAM  
3
1
EMIF_nCS[3:2]  
EMIF_BA[1:0]  
EMIF_ADDR[21:0]  
EMIF_nDQM[1:0]  
4
8
5
9
6
7
29  
30  
10  
EMIF_nOE  
13  
12  
EMIF_DATA[15:0]  
EMIF_nWE  
6-11. Asynchronous Memory Read Timing  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
71  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
Extended Due to EMIF_WAIT  
SETUP  
STROBE  
STROBE HOLD  
EMIF_nCS[3:2]  
EMIF_BA[1:0]  
EMIF_ADDR[21:0]  
EMIF_DATA[15:0]  
14  
11  
EMIF_nOE  
EMIF_WAIT  
2
2
Asserted  
Deasserted  
6-12. EMIFnWAIT Read Timing Requirements  
15  
1
EMIF_nCS[3:2]  
EMIF_BA[1:0]  
EMIF_ADDR[21:0]  
EMIF_nDQM[1:0]  
16  
17  
19  
21  
23  
18  
20  
22  
24  
EMIF_nWE  
27  
26  
EMIF_DATA[15:0]  
EMIF_nOE  
6-13. Asynchronous Memory Write Timing  
72  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
Extended Due to EMIF_WAIT  
SETUP  
STROBE  
STROBE HOLD  
EMIF_nCS[3:2]  
EMIF_BA[1:0]  
EMIF_ADDR[21:0]  
EMIF_DATA[15:0]  
28  
25  
EMIF_nWE  
EMIF_WAIT  
2
2
Asserted  
Deasserted  
6-14. EMIFnWAIT Write Timing Requirements  
6-28. EMIF Asynchronous Memory Timing Requirements  
NO.  
MIN  
NOM  
MAX  
UNIT  
Reads and Writes  
E
EMIF clock period  
ns  
ns  
2
tw(EM_WAIT)  
Pulse duration, EMIFnWAIT assertion and  
deassertion  
2E  
Reads  
12  
13  
14  
tsu(EMDV-EMOEH)  
th(EMOEH-EMDIV)  
tsu(EMOEL-EMWAIT)  
Setup time, EMIFDATA[15:0] valid before EMIFnOE  
high  
30  
0.5  
ns  
ns  
ns  
Hold time, EMIFDATA[15:0] valid after EMIFnOE  
high  
Setup Time, EMIFnWAIT asserted before end of  
Strobe Phase(1)  
4E+30  
Writes  
28  
tsu(EMWEL-EMWAIT)  
Setup Time, EMIFnWAIT asserted before end of  
Strobe Phase(1)  
4E+30  
ns  
(1) Setup before end of STROBE phase (if no extended wait states are inserted) by which EMIFnWAIT must be asserted to add extended  
wait states. Figure 6-12 and Figure 6-14 describe EMIF transactions that include extended wait states inserted during the  
STROBE phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start  
of where the HOLD phase would begin if there were no extended wait cycles.  
6-29. EMIF Asynchronous Memory Switching Characteristics(1)(2)(3)  
NO.  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
Reads and Writes  
(TA) × E - 4  
1
td(TURNAROUND)  
Turn around time  
(TA) × E  
(TA) × E + 3  
ns  
Reads  
(1) TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold,  
MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle  
Configuration Registers. These support the following ranges of values: TA[4–1], RS[16–1], RST[64–1], RH[8–1], WS[16–1], WST[64–1],  
WH[8–1], and MEWC[1–256]. See the for more information.  
(2) E = EMIF_CLK period in ns.  
(3) EWC = external wait cycles determined by EMIFnWAIT input signal. EWC supports the following range of values. EWC[256–1]. Note  
that the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. See  
the for more information.  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
73  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6-29. EMIF Asynchronous Memory Switching Characteristics(1)(2)(3) (continued)  
NO.  
PARAMETER  
EMIF read cycle time (EW = 0)  
MIN  
(RS+RST+RH) (RS+RST+RH) (RS+RST+RH)  
× E -3 × E × E + 3  
NOM  
MAX  
UNIT  
3
tc(EMRCYCLE)  
ns  
EMIF read cycle time (EW = 1)  
(RS+RST+RH+( (RS+RST+RH+( (RS+RST+RH+(  
EWC × 16)) × E EWC × 16)) × E EWC × 16)) × E  
ns  
ns  
ns  
-3  
+ 3  
4
5
tsu(EMCEL-EMOEL)  
Output setup time,  
EMIFnCS[4:2] low to EMIFnOE  
low (SS = 0)  
(RS) × E-4  
(RS) × E  
0
(RS) × E+3  
Output setup time,  
-3  
+3  
EMIFnCS[4:2] low to EMIFnOE  
low (SS = 1)  
th(EMOEH-EMCEH)  
Output hold time, EMIFnOE high  
to EMIFnCS[4:2] high (SS = 0)  
(RH) × E -4  
-3  
(RH) × E  
0
(RH) × E + 3  
+3  
ns  
ns  
ns  
ns  
ns  
Output hold time, EMIFnOE high  
to EMIFnCS[4:2] high (SS = 1)  
6
7
8
tsu(EMBAV-EMOEL)  
th(EMOEH-EMBAIV)  
tsu(EMAV-EMOEL)  
Output setup time, EMIFBA[1:0]  
valid to EMIFnOE low  
(RS) × E-4  
(RH) × E-4  
(RS) × E-4  
(RS) × E  
(RH) × E  
(RS) × E  
(RS) × E+3  
(RH) × E+3  
(RS) × E+3  
Output hold time, EMIFnOE high  
to EMIFBA[1:0] invalid  
Output setup time,  
EMIFADDR[21:0] valid to  
EMIFnOE low  
9
th(EMOEH-EMAIV)  
tw(EMOEL)  
Output hold time, EMIFnOE high  
to EMIFADDR[21:0] invalid  
(RH) × E-4  
(RH) × E  
(RH) × E+3  
ns  
ns  
ns  
ns  
ns  
10  
EMIFnOE active low width (EW  
= 0)  
(RST) × E-3  
(RST) × E  
(RST) × E+3  
EMIFnOE active low width (EW  
= 1)  
(RST+(EWC ×  
16)) × E-3  
(RST+(EWC ×  
16)) × E  
(RST+(EWC ×  
16)) × E+3  
11  
29  
td(EMWAITH-EMOEH)  
tsu(EMDQMV-EMOEL)  
Delay time from EMIFnWAIT  
deasserted to EMIFnOE high  
3E-3  
4E  
4E+30  
Output setup time,  
EMIFnDQM[1:0] valid to  
EMIFnOE low  
(RS) × E-4  
(RS) × E  
(RS) × E+3  
30  
15  
th(EMOEH-EMDQMIV)  
Output hold time, EMIFnOE high  
to EMIFnDQM[1:0] invalid  
(RH) × E-4  
(RH) × E  
(RH) × E+3  
ns  
Writes  
(WS+WST+WH (WS+WST+WH (WS+WST+WH  
) × E-3 ) × E ) × E+3  
(WS+WST+WH (WS+WST+WH (WS+WST+WH  
tc(EMWCYCLE)  
EMIF write cycle time (EW = 0)  
EMIF write cycle time (EW = 1)  
ns  
ns  
+( EWC × 16))  
× E -3  
+(E WC × 16))  
× E  
+( EWC × 16))  
× E + 3  
16  
17  
tsu(EMCEL-EMWEL)  
Output setup time,  
EMIFnCS[4:2] low to EMIFnWE  
low (SS = 0)  
(WS) × E -4  
(WS) × E  
(WS) × E + 3  
ns  
ns  
ns  
ns  
Output setup time,  
EMIFnCS[4:2] low to EMIFnWE  
low (SS = 1)  
-4  
(WH) × E-4  
-4  
0
(WH) × E  
0
+3  
(WH) × E+3  
+3  
th(EMWEH-EMCEH)  
Output hold time, EMIFnWE  
high to EMIFnCS[4:2] high (SS =  
0)  
Output hold time, EMIFnWE  
high to EMIFCS[4:2] high (SS =  
1)  
18  
19  
tsu(EMDQMV-EMWEL)  
th(EMWEH-EMDQMIV)  
Output setup time, EMIFBA[1:0]  
valid to EMIFnWE low  
(WS) × E-4  
(WH) × E-4  
(WS) × E  
(WH) × E  
(WS) × E+3  
(WH) × E+3  
ns  
ns  
Output hold time, EMIFnWE  
high to EMIFBA[1:0] invalid  
74  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6-29. EMIF Asynchronous Memory Switching Characteristics(1)(2)(3) (continued)  
NO.  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
20  
21  
22  
tsu(EMBAV-EMWEL)  
th(EMWEH-EMBAIV)  
tsu(EMAV-EMWEL)  
Output setup time, EMIFBA[1:0]  
valid to EMIFnWE low  
(WS) × E-4  
(WS) × E  
(WS) × E+3  
ns  
Output hold time, EMIFnWE  
high to EMIFBA[1:0] invalid  
(WH) × E-4  
(WS) × E-4  
(WH) × E  
(WS) × E  
(WH) × E+3  
(WS) × E+3  
ns  
ns  
Output setup time,  
EMIFADDR[21:0] valid to  
EMIFnWE low  
23  
24  
th(EMWEH-EMAIV)  
tw(EMWEL)  
Output hold time, EMIFnWE  
high to EMIFADDR[21:0] invalid  
(WH) × E-4  
(WH) × E  
(WH) × E+3  
ns  
ns  
ns  
ns  
ns  
EMIFnWE active low width (EW  
= 0)  
(WST) × E-3  
(WST) × E  
(WST) × E+3  
EMIFnWE active low width (EW  
= 1)  
(WST+(EWC × (WST+(EWC × (WST+(EWC ×  
16)) × E-3  
16)) × E  
16)) × E+3  
25  
26  
td(EMWAITH-EMWEH)  
tsu(EMDV-EMWEL)  
Delay time from EMIFnWAIT  
deasserted to EMIFnWE high  
3E-4  
4E  
4E+30  
Output setup time,  
EMIFDATA[15:0] valid to  
EMIFnWE low  
(WS) × E-4  
(WS) × E  
(WS) × E+3  
27  
31  
th(EMWEH-EMDIV)  
Output hold time, EMIFnWE  
high to EMIFDATA[15:0] invalid  
(WH) × E-4  
(WH) × E-4  
(WH) × E  
(WH) × E  
(WH) × E+3  
(WH) × E+3  
ns  
ns  
tsu(EMDQMV-EMWEL)  
Output setup time,  
EMIFnDQM[1:0] valid to  
EMIFnWE low  
32  
th(EMWEH-EMDQMIV)  
Output hold time, EMIFnWE  
(WH) × E-4  
(WH) × E  
(WH) × E+3  
ns  
hight to EMIFnDQM[1:0] invalid  
6.14.2.2 Synchronous Timing  
BASIC SDRAM  
1
READ OPERATION  
2
2
EMIF_CLK  
4
3
5
7
7
EMIF_nCS[0]  
6
EMIF_nDQM[1:0]  
EMIF_BA[1:0]  
8
8
EMIF_ADDR[21:0]  
19  
20  
2 EM_CLK Delay  
18  
17  
EMIF_DATA[15:0]  
EMIF_nRAS  
11  
12  
13  
14  
EMIF_nCAS  
EMIF_nWE  
6-15. Basic SDRAM Read Operation  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
75  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
1
BASIC SDRAM  
WRITE OPERATION  
2
2
EMIF_CLK  
EMIF_CS[0]  
3
5
7
7
9
4
6
EMIF_DQM[1:0]  
EMIF_BA[1:0]  
8
8
EMIF_ADDR[21:0]  
10  
EMIF_DATA[15:0]  
EMIF_nRAS  
EMIF_nCAS  
EMIF_nWE  
11  
12  
13  
15  
16  
6-16. Basic SDRAM Write Operation  
6-30. EMIF Synchronous Memory Timing Requirements  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
19  
tsu(EMIFDV-EM_CLKH)  
th(CLKH-DIV)  
Input setup time, read data valid on EMIFDATA[15:0] before  
EMIF_CLK rising  
2
ns  
20  
Input hold time, read data valid on EMIFDATA[15:0] after  
EMIF_CLK rising  
1.5  
ns  
6-31. EMIF Synchronous Memory Switching Characteristics  
NO.  
1
PARAMETER  
MIN  
MAX  
UNIT  
ns  
tc(CLK)  
Cycle time, EMIF clock EMIF_CLK  
2
tw(CLK)  
Pulse width, EMIF clock EMIF_CLK high or low  
Delay time, EMIF_CLK rising to EMIFnCS[0] valid  
Output hold time, EMIF_CLK rising to EMIFnCS[0] invalid  
Delay time, EMIF_CLK rising to EMIFnDQM[1:0] valid  
Output hold time, EMIF_CLK rising to EMIFnDQM[1:0] invalid  
5
1
1
ns  
3
td(CLKH-CSV)  
toh(CLKH-CSIV)  
td(CLKH-DQMV)  
toh(CLKH-DQMIV)  
td(CLKH-AV)  
13  
13  
13  
ns  
4
ns  
5
ns  
6
ns  
7
Delay time, EMIF_CLK rising to EMIFADDR[21:0] and EMIFBA[1:0]  
valid  
ns  
8
toh(CLKH-AIV)  
Output hold time, EMIF_CLK rising to EMIFADDR[21:0] and  
EMIFBA[1:0] invalid  
1
ns  
9
td(CLKH-DV)  
Delay time, EMIF_CLK rising to EMIFDATA[15:0] valid  
Output hold time, EMIF_CLK rising to EMIFDATA[15:0] invalid  
Delay time, EMIF_CLK rising to EMIFnRAS valid  
13  
13  
13  
ns  
ns  
ns  
ns  
ns  
10  
11  
12  
13  
toh(CLKH-DIV)  
td(CLKH-RASV)  
toh(CLKH-RASIV)  
td(CLKH-CASV)  
1
1
Output hold time, EMIF_CLK rising to EMIFnRAS invalid  
Delay time, EMIF_CLK rising to EMIFnCAS valid  
76  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6-31. EMIF Synchronous Memory Switching Characteristics (continued)  
NO.  
PARAMETER  
MIN  
MAX  
13  
UNIT  
ns  
14  
15  
16  
17  
18  
toh(CLKH-CASIV)  
Output hold time, EMIF_CLK rising to EMIFnCAS invalid  
Delay time, EMIF_CLK rising to EMIFnWE valid  
Output hold time, EMIF_CLK rising to EMIFnWE invalid  
Delay time, EMIF_CLK rising to EMIFDATA[15:0] tri-stated  
Output hold time, EMIF_CLK rising to EMIFDATA[15:0] driving  
1
td(CLKH-WEV)  
toh(CLKH-WEIV)  
tdis(CLKH-DHZ)  
tena(CLKH-DLZ)  
ns  
1
1
ns  
7
ns  
ns  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
77  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.15 Vectored Interrupt Manager  
The vectored interrupt manager (VIM) provides hardware assistance for prioritizing and controlling the  
many interrupt sources present on this device. Interrupts are caused by events outside of the normal flow  
of program execution. Normally, these events require a timely response from the central processing unit  
(CPU); therefore, when an interrupt occurs, the CPU switches execution from the normal program flow to  
an interrupt service routine (ISR).  
6.15.1 VIM Features  
The VIM module has the following features:  
Supports 96 interrupt channels.  
Provides programmable priority and enable for interrupt request lines.  
Provides a direct hardware dispatch mechanism for fastest IRQ dispatch.  
Provides two software dispatch mechanisms when the CPU VIC port is not used.  
Index interrupt  
Register vectored interrupt  
Parity protected vector interrupt table  
6.15.2 Interrupt Request Assignments  
6-32. Interrupt Request Assignments  
Modules  
Interrupt Sources  
Default VIM Interrupt  
Channel  
ESM  
Reserved  
RTI  
ESM High level interrupt (NMI)  
Reserved  
0
1
RTI compare interrupt 0  
RTI compare interrupt 1  
RTI compare interrupt 2  
RTI compare interrupt 3  
RTI overflow interrupt 0  
RTI overflow interrupt 1  
RTI timebase interrupt  
GPIO interrupt A  
2
RTI  
3
RTI  
4
RTI  
5
RTI  
6
RTI  
7
RTI  
8
GPIO  
9
N2HET1  
HET TU1  
MIBSPI1  
LIN  
N2HET1 level 0 interrupt  
HET TU1 level 0 interrupt  
MIBSPI1 level 0 interrupt  
LIN level 0 interrupt  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
MIBADC1  
MIBADC1  
DCAN1  
SPI2  
MIBADC1 event group interrupt  
MIBADC1 sw group 1 interrupt  
DCAN1 level 0 interrupt  
SPI2 level 0 interrupt  
FlexRay level 0 interrupt  
CRC Interrupt  
FlexRay  
CRC  
ESM  
ESM Low level interrupt  
Software interrupt (SSI)  
PMU Interrupt  
SYSTEM  
CPU  
GPIO  
GPIO interrupt B  
N2HET1  
HET TU1  
MIBSPI1  
N2HET1 level 1 interrupt  
HET TU1 level 1 interrupt  
MIBSPI1 level 1 interrupt  
78  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6-32. Interrupt Request Assignments (continued)  
Modules  
Interrupt Sources  
Default VIM Interrupt  
Channel  
LIN  
MIBADC1  
DCAN1  
SPI2  
LIN level 1 interrupt  
MIBADC1 sw group 2 interrupt  
DCAN1 level 1 interrupt  
SPI2 level 1 interrupt  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67-72  
73  
74  
75  
76  
77  
78  
MIBADC1  
FlexRay  
DMA  
MIBADC1 magnitude compare interrupt  
FlexRay level 1 interrupt  
FTCA interrupt  
DMA  
LFSA interrupt  
DCAN2  
DMM  
DCAN2 level 0 interrupt  
DMM level 0 interrupt  
MIBSPI3 level 0 interrupt  
MIBSPI3 level 1 interrupt  
HBCA interrupt  
MIBSPI3  
MIBSPI3  
DMA  
DMA  
BTCA interrupt  
EMIF  
AEMIFINT3  
DCAN2  
DMM  
DCAN2 level 1 interrupt  
DMM level 1 interrupt  
DCAN1 IF3 interrupt  
DCAN1  
DCAN3  
DCAN2  
FPU  
DCAN3 level 0 interrupt  
DCAN2 IF3 interrupt  
"OR" of the six Cortex R4F FPU Exceptions  
FlexRay TU Transfer Status interrupt  
SPI4 level 0 interrupt  
FlexRay TU  
SPI4  
MIBADC2  
MIBADC2  
FlexRay  
MIBSPI5  
SPI4  
MibADC2 event group interrupt  
MibADC2 sw group1 interrupt  
FlexRay T0C interrupt  
MIBSPI5 level 0 interrupt  
SPI4 level 1 interrupt  
DCAN3  
MIBSPI5  
MIBADC2  
FlexRay TU  
MIBADC2  
DCAN3  
FMC  
DCAN3 level 1 interrupt  
MIBSPI5 level 1 interrupt  
MibADC2 sw group2 interrupt  
FlexRay TU Error interrupt  
MibADC2 magnitude compare interrupt  
DCAN3 IF3 interrupt  
FSM_DONE interrupt  
FlexRay  
N2HET2  
SCI  
FlexRay T1C interrupt  
N2HET2 level 0 interrupt  
SCI level 0 interrupt  
HET TU2  
I2C  
HET TU2 level 0 interrupt  
I2C level 0 interrupt  
Reserved  
N2HET2  
SCI  
Reserved  
N2HET2 level 1 interrupt  
SCI level 1 interrupt  
HET TU2  
Ethernet  
Ethernet  
Ethernet  
HET TU2 level 1 interrupt  
C0_MISC_PULSE  
C0_TX_PULSE  
C0_THRESH_PULSE  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
79  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6-32. Interrupt Request Assignments (continued)  
Modules  
Interrupt Sources  
Default VIM Interrupt  
Channel  
Ethernet  
HWAG1  
HWAG2  
DCC1  
C0_RX_PULSE  
HWA_INT_REQ_H  
HWA_INT_REQ_H  
DCC1 done interrupt  
DCC2 done interrupt  
Reserved  
79  
80  
81  
82  
DCC2  
83  
Reserved  
PBIST  
84  
PBIST_DONE  
85  
Reserved  
Reserved  
HWAG1  
HWAG2  
Reserved  
Reserved  
86  
Reserved  
87  
HWA_INT_REQ_L  
HWA_INT_REQ_L  
Reserved  
88  
89  
90-95  
Address location 0x00000000 in the VIM RAM is reserved for the phantom interrupt ISR  
entry; therefore only request channels 0..94 can be used and are offset by 1 address in the  
VIM RAM.  
The EMIF_nWAIT signal has a pull-up on it. The EMIF module generates a "Wait Rise"  
interrupt whenever it detects a rising edge on the EMIF_nWAIT signal. This interrupt  
condition is indicated as soon as the device is powered up. This can be ignored if the  
EMIF_nWAIT signal is not used in the application. If the EMIF_nWAIT signal is actually used  
in the application, then the external slave memory must always drive the EMIF_nWAIT signal  
such that an interrupt is not caused due to the default pull-up on this signal.  
The lower-order interrupt channels are higher priority channels than the higher-order interrupt  
channels.  
The application can change the mapping of interrupt sources to the interrupt channels via the  
interrupt channel control registers (CHANCTRLx) inside the VIM module.  
80  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6.16 DMA Controller  
The DMA controller is used to transfer data between two locations in the memory map in the background  
of CPU operations. Typically, the DMA is used to:  
Transfer blocks of data between external and internal data memories  
Restructure portions of internal data memory  
Continually service a peripheral  
6.16.1 DMA Features  
CPU independent data transfer  
One master port - PortB (64 bits wide) that interfaces to the TMS570 Memory System.  
FIFO buffer(4 entries deep and each 64bit wide)  
Channel control information is stored in RAM protected by parity  
16 channels with individual enable  
Channel chaining capability  
32 peripheral DMA requests  
Hardware and Software DMA requests  
8, 16, 32 or 64-bit transactions supported  
Multiple addressing modes for source/destination (fixed, increment, offset)  
Auto-initiation  
Power-management mode  
Memory Protection with four configurable memory regions  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
81  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.16.2 Default DMA Request Map  
The DMA module on this microcontroller has 16 channels and up to 32 hardware DMA requests. The  
module contains DREQASIx registers which are used to map the DMA requests to the DMA channels. By  
default, channel 0 is mapped to request 0, channel 1 to request 1, and so on.  
Some DMA requests have multiple sources, as shown in 6-33. The application must ensure that only  
one of these DMA request sources is enabled at any time.  
6-33. DMA Request Line Connection  
Modules  
MIBSPI1  
DMA Request Sources  
MIBSPI1[1](1)  
DMA Request  
DMAREQ[0]  
DMAREQ[1]  
DMAREQ[2]  
DMAREQ[3]  
DMAREQ[4]  
DMAREQ[5]  
DMAREQ[6]  
DMAREQ[7]  
DMAREQ[8]  
DMAREQ[9]  
DMAREQ[10]  
DMAREQ[11]  
DMAREQ[12]  
DMAREQ[13]  
DMAREQ[14]  
DMAREQ[15]  
DMAREQ[16]  
DMAREQ[17]  
DMAREQ[18]  
DMAREQ[19]  
DMAREQ[20]  
MIBSPI1  
MIBSPI1[0](2)  
SPI2  
SPI2 receive  
SPI2  
SPI2 transmit  
MIBSPI1 / MIBSPI3 / DCAN2  
MIBSPI1 / MIBSPI3 / DCAN2  
DCAN1 / MIBSPI5  
MIBSPI1[2] / MIBSPI3[2] / DCAN2 IF3  
MIBSPI1[3] / MIBSPI3[3] / DCAN2 IF2  
DCAN1 IF2 / MIBSPI5[2]  
MIBADC1 / MIBSPI5  
MIBSPI1 / MIBSPI3 / DCAN1  
MIBSPI1 / MIBSPI3 / DCAN2  
MIBADC1 / I2C / MIBSPI5  
MIBADC1 / I2C / MIBSPI5  
RTI / MIBSPI1 / MIBSPI3  
RTI / MIBSPI1 / MIBSPI3  
MIBSPI3 / MibADC2 / MIBSPI5  
MIBSPI3 / MIBSPI5  
MIBADC1 event / MIBSPI5[3]  
MIBSPI1[4] / MIBSPI3[4] / DCAN1 IF1  
MIBSPI1[5] / MIBSPI3[5] / DCAN2 IF1  
MIBADC1 G1 / I2C receive / MIBSPI5[4]  
MIBADC1 G2 / I2C transmit / MIBSPI5[5]  
RTI DMAREQ0 / MIBSPI1[6] / MIBSPI3[6]  
RTI DMAREQ1 / MIBSPI1[7] / MIBSPI3[7]  
MIBSPI3[1](1) / MibADC2 event / MIBSPI5[6]  
MIBSPI3[0](2) / MIBSPI5[7]  
MIBSPI1 / MIBSPI3 / DCAN1 / MibADC2  
MIBSPI1 / MIBSPI3 / DCAN3 / MibADC2  
RTI / MIBSPI5  
MIBSPI1[8] / MIBSPI3[8] / DCAN1 IF3 / MibADC2 G1  
MIBSPI1[9] / MIBSPI3[9] / DCAN3 IF1 / MibADC2 G2  
RTI DMAREQ2 / MIBSPI5[8]  
RTI / MIBSPI5  
RTI DMAREQ3 / MIBSPI5[9]  
N2HET1 / N2HET2 / DCAN3  
N2HET1 DMAREQ[4] / N2HET2 DMAREQ[4] / DCAN3  
IF2  
N2HET1 / N2HET2 / DCAN3  
N2HET1 DMAREQ[5] / N2HET2 DMAREQ[5] / DCAN3  
IF3  
DMAREQ[21]  
MIBSPI1 / MIBSPI3 / MIBSPI5  
MIBSPI1 / MIBSPI3 / MIBSPI5  
MIBSPI1[10] / MIBSPI3[10] / MIBSPI5[10]  
MIBSPI1[11] / MIBSPI3[11] / MIBSPI5[11]  
DMAREQ[22]  
DMAREQ[23]  
DMAREQ[24]  
N2HET1 / N2HET2 / SPI4 / MIBSPI5  
N2HET1 DMAREQ[6] / N2HET2 DMAREQ[6] / SPI4  
receive / MIBSPI5[12]  
N2HET1 / N2HET2 / SPI4 / MIBSPI5  
N2HET1 DMAREQ[7] / N2HET2 DMAREQ[7] / SPI4  
transmit / MIBSPI5[13]  
DMAREQ[25]  
CRC / MIBSPI1 / MIBSPI3  
CRC / MIBSPI1 / MIBSPI3  
LIN / MIBSPI5  
CRC DMAREQ[0] / MIBSPI1[12] / MIBSPI3[12]  
CRC DMAREQ[1] / MIBSPI1[13] / MIBSPI3[13]  
LIN receive / MIBSPI5[14]  
DMAREQ[26]  
DMAREQ[27]  
DMAREQ[28]  
DMAREQ[29]  
DMAREQ[30]  
LIN / MIBSPI5  
LIN transmit / MIBSPI5[15]  
MIBSPI1 / MIBSPI3 / SCI / MIBSPI5  
MIBSPI1[14] / MIBSPI3[14] / SCI receive /  
MIBSPI5[1](1)  
MIBSPI1 / MIBSPI3 / SCI / MIBSPI5  
MIBSPI1[15] / MIBSPI3[15] / SCI transmit /  
MIBSPI5[0](2)  
DMAREQ[31]  
(1) SPI1, SPI3, SPI5 receive in standard SPI mode  
(2) SPI1, SPI3, SPI5 transmit in standard SPI mode  
82  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6.17 Real Time Interrupt Module  
The real-time interrupt (RTI) module provides timer functionality for operating systems and for  
benchmarking code. The RTI module can incorporate several counters that define the timebases needed  
for scheduling an operating system.  
The timers also allow you to benchmark certain areas of code by reading the values of the counters at the  
beginning and the end of the desired code range and calculating the difference between the values.  
In addition the RTI provides a mechanism to synchronize the operating system to the FlexRay  
communication cycle. Clock supervision can detect issues on the FlexRay bus with an automatic switch to  
an internally generated timebase.  
6.17.1 Features  
The RTI module has the following features:  
Two independent 64 bit counter blocks  
Four configurable compares for generating operating system ticks or DMA requests. Each event can  
be driven by either counter block 0 or counter block 1.  
One counter block usable for application synchronization to FlexRay network including clock  
supervision  
Fast enabling/disabling of events  
Two time-stamp (capture) functions for system or peripheral interrupts, one for each counter block  
6.17.2 Block Diagrams  
6-17 shows a high-level block diagram for one of the two 64-bit counter blocks inside the RTI module.  
Both the counter blocks are identical except the Network Time Unit (NTUx) inputs are only available as  
time base inputs for the counter block 0.  
31  
0
Compare  
up counter  
RTICPUCx  
OVLINTx  
31  
0
=
Up counter  
RTIUCx  
31  
0
RTICLK  
To Compare  
Unit  
Free running counter  
RTIFRCx  
NTU0  
NTU1  
NTU2  
NTU3  
31  
0
31  
0
Capture  
up counter  
RTICAUCx  
Capture  
free running counter  
RTICAFRCx  
CAP event source 0  
CAP event source 1  
External  
control  
6-17. Counter Block Diagram  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
83  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
31  
Update  
compare  
0
RTIUDCPy  
+
31  
0
DMAREQy  
INTy  
Compare  
RTICOMPy  
From counter  
block 0  
=
From counter  
block 1  
Compare  
control  
6-18. Compare Block Diagram  
6.17.3 Clock Source Options  
The RTI module uses the RTI1CLK clock domain for generating the RTI time bases.  
The application can select the clock source for the RTI1CLK by configuring the RCLKSRC register in the  
System module at address 0xFFFFFF50. The default source for RTI1CLK is VCLK.  
For more information on clock sources refer to 6-8 and 6-13.  
6.17.4 Network Time Synchronization Inputs  
The RTI module supports 4 Network Time Unit (NTU) inputs that signal internal system events, and which  
can be used to synchronize the time base used by the RTI module. On this device, these NTU inputs are  
connected as shown below.  
6-34. Network Time Synchronization Inputs  
NTU Input  
Source  
Macrotick  
0
1
2
3
Start of Cycle  
PLL2 Clock output  
EXTCLKIN1 clock input  
84  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6.18 Error Signaling Module  
The Error Signaling Module (ESM) manages the various error conditions on the TMS570 microcontroller.  
The error condition is handled based on a fixed severity level assigned to it. Any severe error condition  
can be configured to drive a low level on a dedicated device terminal called nERROR. This can be used  
as an indicator to an external monitor circuit to put the system into a safe state.  
6.18.1 Features  
The features of the Error Signaling Module are:  
128 interrupt/error channels are supported, divided into 3 different groups  
64 channels with maskable interrupt and configurable error pin behavior  
32 error channels with non-maskable interrupt and predefined error pin behavior  
32 channels with predefined error pin behavior only  
Error pin to signal severe device failure  
Configurable timebase for error signal  
Error forcing capability  
6.18.2 ESM Channel Assignments  
The Error Signaling Module (ESM) integrates all the device error conditions and groups them in the order  
of severity. Group1 is used for errors of the lowest severity while Group3 is used for errors of the highest  
severity. The device response to each error is determined by the severity group it is connected to. 6-36  
shows the channel assignment for each group.  
6-35. ESM Groups  
ERROR GROUP  
Group1  
INTERRUPT CHARACTERISTICS  
maskable, low or high priority  
non-maskable, high priority  
no interrupt generated  
INFLUENCE ON ERROR PIN  
configurable  
fixed  
Group2  
Group3  
fixed  
6-36. ESM Channel Assignments  
ERROR SOURCES  
GROUP  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
CHANNELS  
Reserved  
MibADC2 - parity  
DMA - MPU  
0
1
2
3
4
5
DMA - parity  
Reserved  
DMA - imprecise read error  
FMC - correctable error: bus1 and bus2 interfaces  
(does not include accesses to EEPROM bank)  
Group1  
6
N2HET1/N2HET2 - parity  
HET TU1/HET TU2 - parity  
HET TU1/HET TU2 - MPU  
PLL - Slip  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
Clock Monitor - interrupt  
FlexRay - parity  
DMA - imprecise write error  
FlexRay TU - parity  
VIM RAM - parity  
FlexRay TU - MPU  
MibSPI1 - parity  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
85  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6-36. ESM Channel Assignments (continued)  
ERROR SOURCES  
MibSPI3 - parity  
GROUP  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
CHANNELS  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
MibADC1 - parity  
Reserved  
DCAN1 - parity  
DCAN3 - parity  
DCAN2 - parity  
MibSPI5 - parity  
Reserved  
RAM even bank (B0TCM) - correctable error  
CPU - selftest  
RAM odd bank (B1TCM) - correctable error  
Reserved  
DCC1 - error  
CCM-R4 - selftest  
Reserved  
Reserved  
Reserved  
FMC - correctable error (EEPROM bank access)  
FMC - uncorrectable error (EEPROM bank access)  
IOMM - Mux configuration error  
Power domain controller compare error  
Power domain controller self-test error  
eFuse Controller Error – this error signal is generated when any bit in the eFuse  
controller error status register is set. The application can choose to generate an  
interrupt whenever this bit is set to service any eFuse controller error conditions.  
Group1  
Group1  
40  
41  
eFuse Controller - Self Test Error. This error signal is generated only when a self  
test on the eFuse controller generates an error condition. When an ECC self test  
error is detected, group 1 channel 40 error signal will also be set.  
PLL2 - Slip  
Ethernet Controller master interface  
Reserved  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
86  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6-36. ESM Channel Assignments (continued)  
ERROR SOURCES  
DCC2 - error  
GROUP  
Group1  
CHANNELS  
62  
63  
Reserved  
Group1  
GROUP 2  
Reserved  
Reserved  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
0
1
CCMR4 - compare  
Reserved  
2
3
FMC - uncorrectable error (address parity on bus1 accesses)  
4
Reserved  
5
RAM even bank (B0TCM) - uncorrectable error  
6
Reserved  
7
RAM odd bank (B1TCM) - uncorrectable error  
8
Reserved  
9
RAM even bank (B0TCM) - address bus parity error  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Reserved  
RAM odd bank (B1TCM) - address bus parity error  
Reserved  
Reserved  
Reserved  
TCM - ECC live lock detect  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RTI_WWD_NMI  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
GROUP 3  
Reserved  
eFuse Controller - autoload error  
Reserved  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
0
1
2
3
4
5
6
RAM even bank (B0TCM) - ECC uncorrectable error  
Reserved  
RAM odd bank (B1TCM) - ECC uncorrectable error  
Reserved  
FMC - uncorrectable error: bus1 and bus2 interfaces  
(does not include address parity error and errors on accesses to EEPROM bank)  
Group3  
7
Reserved  
Reserved  
Reserved  
Group3  
Group3  
Group3  
8
9
10  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
87  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6-36. ESM Channel Assignments (continued)  
ERROR SOURCES  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
GROUP  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
CHANNELS  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
88  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6.19 Reset / Abort / Error Sources  
6-37. Reset/Abort/Error Sources  
ESM HOOKUP  
group.channel  
ERROR SOURCE  
SYSTEM MODE  
ERROR RESPONSE  
CPU TRANSACTIONS  
User/Privilege  
Precise write error (NCNB/Strongly Ordered)  
Precise read error (NCB/Device or Normal)  
Imprecise write error (NCB/Device or Normal)  
Precise Abort (CPU)  
Precise Abort (CPU)  
Imprecise Abort (CPU)  
n/a  
n/a  
n/a  
User/Privilege  
User/Privilege  
Undefined Instruction Trap  
(CPU)(1)  
Illegal instruction  
User/Privilege  
n/a  
n/a  
MPU access violation  
User/Privilege  
SRAM  
Abort (CPU)  
B0 TCM (even) ECC single error (correctable)  
User/Privilege  
ESM  
1.26  
3.3  
Abort (CPU), ESM =>  
nERROR  
B0 TCM (even) ECC double error (non-correctable)  
User/Privilege  
User/Privilege  
B0 TCM (even) uncorrectable error (i.e. redundant address  
decode)  
ESM => NMI => nERROR  
2.6  
B0 TCM (even) address bus parity error  
User/Privilege  
User/Privilege  
ESM => NMI => nERROR  
ESM  
2.10  
1.28  
B1 TCM (odd) ECC single error (correctable)  
Abort (CPU), ESM =>  
nERROR  
B1 TCM (odd) ECC double error (non-correctable)  
User/Privilege  
User/Privilege  
3.5  
B1 TCM (odd) uncorrectable error (i.e. redundant address  
decode)  
ESM => NMI => nERROR  
ESM => NMI => nERROR  
2.8  
B1 TCM (odd) address bus parity error  
User/Privilege  
2.12  
FLASH  
FMC correctable error - Bus1 and Bus2 interfaces (does not  
include accesses to EEPROM bank)  
User/Privilege  
User/Privilege  
ESM  
1.6  
3.7  
FMC uncorrectable error - Bus1 accesses  
(does not include address parity error)  
Abort (CPU), ESM =>  
nERROR  
FMC uncorrectable error - Bus2 accesses  
(does not include address parity error and EEPROM bank  
accesses)  
User/Privilege  
ESM => nERROR  
3.7  
FMC uncorrectable error - address parity error on Bus1  
accesses  
User/Privilege  
ESM => NMI => nERROR  
2.4  
FMC correctable error - Accesses to EEPROM bank  
FMC uncorrectable error - Accesses to EEPROM bank  
User/Privilege  
User/Privilege  
ESM  
ESM  
1.35  
1.36  
DMA TRANSACTIONS  
External imprecise error on read (Illegal transaction with ok  
response)  
User/Privilege  
ESM  
ESM  
1.5  
External imprecise error on write (Illegal transaction with ok  
response)  
User/Privilege  
1.13  
Memory access permission violation  
Memory parity error  
User/Privilege  
User/Privilege  
ESM  
ESM  
1.2  
1.3  
DMM TRANSACTIONS  
External imprecise error on read (Illegal transaction with ok  
response)  
User/Privilege  
ESM  
ESM  
1.5  
External imprecise error on write (Illegal transaction with ok  
response)  
User/Privilege  
1.13  
HET TU1 (HTU1)  
NCNB (Strongly Ordered) transaction with slave error response  
External imprecise error (Illegal transaction with ok response)  
Memory access permission violation  
User/Privilege  
User/Privilege  
User/Privilege  
Interrupt => VIM  
Interrupt => VIM  
ESM  
n/a  
n/a  
1.9  
(1) The Undefined Instruction TRAP is NOT detectable outside the CPU. The trap is taken only if the instruction reaches the execute stage  
of the CPU.  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
89  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6-37. Reset/Abort/Error Sources (continued)  
ESM HOOKUP  
group.channel  
ERROR SOURCE  
SYSTEM MODE  
ERROR RESPONSE  
Memory parity error  
User/Privilege  
ESM  
1.8  
HET TU2 (HTU2)  
NCNB (Strongly Ordered) transaction with slave error response  
External imprecise error (Illegal transaction with ok response)  
Memory access permission violation  
User/Privilege  
User/Privilege  
User/Privilege  
User/Privilege  
N2HET1  
Interrupt => VIM  
Interrupt => VIM  
ESM  
n/a  
n/a  
1.9  
1.8  
Memory parity error  
ESM  
Memory parity error  
Memory parity error  
Memory parity error  
User/Privilege  
N2HET2  
ESM  
ESM  
ESM  
1.7  
1.7  
User/Privilege  
FLEXRAY  
User/Privilege  
FLEXRAY TU  
User/Privilege  
User/Privilege  
User/Privilege  
User/Privilege  
1.12  
NCNB (Strongly Ordered) transaction with slave error response  
External imprecise error (Illegal transaction with ok response)  
Memory access permission violation  
Interrupt => VIM  
Interrupt => VIM  
ESM  
n/a  
n/a  
1.16  
1.14  
Memory parity error  
ESM  
ETHERNET MASTER INTERFACE  
User/Privilege  
MIBSPI  
Any error reported by slave being accessed  
ESM  
1.43  
MibSPI1 memory parity error  
MibSPI3 memory parity error  
MibSPI5 memory parity error  
User/Privilege  
User/Privilege  
User/Privilege  
MIBADC  
ESM  
ESM  
ESM  
1.17  
1.18  
1.24  
MibADC1 Memory parity error  
MibADC2 Memory parity error  
User/Privilege  
User/Privilege  
DCAN  
ESM  
ESM  
1.19  
1.1  
DCAN1 memory parity error  
DCAN2 memory parity error  
DCAN3 memory parity error  
User/Privilege  
User/Privilege  
User/Privilege  
PLL  
ESM  
ESM  
ESM  
1.21  
1.23  
1.22  
PLL slip error  
User/Privilege  
User/Privilege  
CLOCK MONITOR  
User/Privilege  
DCC  
ESM  
ESM  
1.10  
1.42  
PLL #2 slip error  
Clock monitor interrupt  
ESM  
1.11  
DCC1 error  
DCC2 error  
User/Privilege  
User/Privilege  
CCM-R4  
ESM  
ESM  
1.30  
1.62  
Self test failure  
Compare failure  
User/Privilege  
User/Privilege  
VIM  
ESM  
1.31  
2.2  
ESM => NMI => nERROR  
Memory parity error  
User/Privilege  
VOLTAGE MONITOR  
n/a  
ESM  
Reset  
ESM  
1.15  
n/a  
VMON out of voltage range  
CPU Selftest (LBIST) error  
CPU SELFTEST (LBIST)  
User/Privilege  
1.27  
90  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6-37. Reset/Abort/Error Sources (continued)  
ESM HOOKUP  
group.channel  
ERROR SOURCE  
SYSTEM MODE  
ERROR RESPONSE  
PIN MULTIPLEXING CONTROL  
User/Privilege  
Mux configuration error  
ESM  
1.37  
POWER DOMAIN CONTROL  
User/Privilege  
PSCON compare error  
PSCON self-test error  
ESM  
ESM  
1.38  
1.39  
User/Privilege  
eFuse Controller  
User/Privilege  
eFuse Controller Autoload error  
ESM => nERROR  
3.1  
eFuse Controller - Any bit set in the error status register  
eFuse Controller self-test error  
User/Privilege  
User/Privilege  
ESM  
ESM  
1.40  
1.41  
WINDOWED WATCHDOG  
n/a  
WWD Non-Maskable Interrupt exception  
ESM => NMI => nERROR  
2.24  
ERRORS REFLECTED IN THE SYSESR REGISTER  
Power-Up Reset  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
Reset  
Reset  
Reset  
Reset  
Reset  
Reset  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
Oscillator fail / PLL slip(2)  
Watchdog exception  
CPU Reset (driven by the CPU STC)  
Software Reset  
External Reset  
(2) Oscillator fail/PLL slip can be configured in the system register (SYS.PLLCTL1) to generate a reset.  
6.20 Digital Windowed Watchdog  
This device includes a digital windowed watchdog (DWWD) module that protects against runaway code  
execution.  
The DWWD module allows the application to configure the time window within which the DWWD module  
expects the application to service the watchdog. A watchdog violation occurs if the application services the  
watchdog outside of this window, or fails to service the watchdog at all. The application can choose to  
generate a system reset or a non-maskable interrupt to the CPU in case of a watchdog violation.  
The watchdog is disabled by default and must be enabled by the application. Once enabled, the watchdog  
can only be disabled upon a system reset.  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
91  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.21 Debug Subsystem  
6.21.1 Block Diagram  
The device contains an ICEPICK module to allow JTAG access to the scan chains.  
Boundary Scan  
Boundary Scan I/F  
BSR/BSDL  
Debug  
ROM1  
TRST  
TMS  
TCK  
RTCK  
TDI  
TDO  
Debug APB  
DAP  
Secondary Tap 0  
APB Mux  
AHB-AP  
APB slave  
Cortex  
R4F  
POM  
ETM  
TPIU  
from  
PCR1/Bridge  
to SCR1 via A2A  
RTP  
DMM  
TAP 0  
Secondary Tap 1  
TAP 1  
Secondary Tap 2  
AJSM  
6-19. Debug Subsystem Block Diagram  
6.21.2 Debug Components Memory Map  
6-38. Debug Components Memory Map  
FRAME ADDRESS RANGE  
RESPNSE FOR ACCESS TO  
UNIMPLEMENTED LOCATIONS IN  
FRAME  
FRAME CHIP  
SELECT  
FRAME ACTUA  
MODULE NAME  
SIZE  
4KB  
4KB  
L SIZE  
START  
END  
CoreSight Debug  
ROM  
CSCS0  
CSCS1  
0xFFA0_0000  
0xFFA0_0FFF  
4KB  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
Cortex-R4F  
Debug  
0xFFA0_1000  
0xFFA0_1FFF  
4KB  
ETM-R4  
CSCS2  
CSCS3  
0xFFA0_2000  
0xFFA0_3000  
0xFFA0_2FFF  
0xFFA0_3FFF  
4KB  
4KB  
4KB  
4KB  
Reads: 0, writes: no effect  
Reads: 0, writes: no effect  
CoreSight TPIU  
6.21.3 JTAG Identification Code  
The JTAG ID code for this device is the same as the device ICEPick Identification Code.  
JTAG ID Code  
Silicon Revision  
ID  
Rev A  
0x0D8A002F  
92  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
JTAG ID Code (continued)  
Silicon Revision  
Rev B  
ID  
0x2D8A002F  
0x3D8A002F  
Rev C  
6.21.4 Debug ROM  
The Debug ROM stores the location of the components on the Debug APB bus:  
6-39. Debug ROM table  
ADDRESS  
0x000  
DESCRIPTION  
pointer to Cortex-R4F  
ETM-R4  
VALUE  
0x0000 1003  
0x0000 2003  
0x0000 3003  
0x0000 4003  
0x0000 0000  
0x001  
0x002  
TPIU  
0x003  
POM  
0x004  
end of table  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
93  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.21.5 JTAG Scan Interface Timings  
6-40. JTAG Scan Interface Timing(1)  
NO.  
MIN  
MAX  
UNIT  
MHz  
MHz  
ns  
fTCK  
TCK frequency (at HCLKmax)  
12  
fRTCK  
RTCK frequency (at TCKmax and HCLKmax)  
Delay time, TCK to RTCK  
10  
1
2
3
4
5
td(TCK -RTCK)  
tsu(TDI/TMS - RTCKr)  
th(RTCKr -TDI/TMS)  
th(RTCKr -TDO)  
td(TCKf -TDO)  
24  
12  
Setup time, TDI, TMS before RTCK rise (RTCKr)  
Hold time, TDI, TMS after RTCKr  
26  
0
ns  
ns  
Hold time, TDO after RTCKf  
0
ns  
Delay time, TDO valid after RTCK fall (RTCKf)  
ns  
(1) Timings for TDO are specified for a maximum of 50pF load on TDO  
TCK  
RTCK  
1
1
TMS  
TDI  
2
3
TDO  
4
5
6-20. JTAG Timing  
94  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6.21.6 Advanced JTAG Security Module  
This device includes an Advanced JTAG Security Module (AJSM). which provides maximum security to  
the device’s memory content by allowing users to secure the device after programming.  
Flash Module Output  
OTP Contents  
(example)  
. . .  
. . .  
H
L
H
L
H
L
L
H
Unlock By Scan  
Register  
H
H
L
L
Internal Tie-Offs  
(example only)  
L
L
H
H
UNLOCK  
128-bit comparator  
Internal Tie-Offs  
(example only)  
H
L
L
H
H
L
L
H
6-21. AJSM Unlock  
The device is unsecure by default by virtue of a 128-bit visible unlock code programmed in the OTP  
address 0xF0000000.The OTP contents are XOR-ed with the "Unlock By Scan" register contents. The  
outputs of these XOR gates are again combined with a set of secret internal tie-offs. The output of this  
combinational logic is compared against a secret hard-wired 128-bit value. A match results in the  
UNLOCK signal being asserted, so that the device is now unsecure.  
A user can secure the device by changing at least one bit in the visible unlock code from 1 to 0. Changing  
a 0 to 1 is not possible since the visible unlock code is stored in the One Time Programmable (OTP) flash  
region. Also, changing all the 128 bits to zeros is not a valid condition and will permanently secure the  
device.  
Once secured, a user can unsecure the device by scanning an appropriate value into the "Unlock By  
Scan" register of the AJSM module. The value to be scanned is such that the XOR of the OTP contents  
and the Unlock-By-Scan register contents results in the original visible unlock code.  
The Unlock-By-Scan register is reset only upon asserting power-on reset (nPORRST).  
A secure device only permits JTAG accesses to the AJSM scan chain via the Secondary Tap 2 of the  
ICEPick module. All other secondary taps, test taps and the boundary scan interface are not accessible in  
this state.  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
95  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.21.7 Embedded Trace Macrocell (ETM-R4)  
The device contains a ETM-R4 module with a 32-bit internal data port. The ETM-R4 module is connected  
to a TPIU with a 32-bit data bus; the TPIU provides a 35-bit (32-bit data, 3-bit control) external interface  
for trace. The ETM-R4 is CoreSight compliant and follows the ETM v3 specification; for more details see  
ARM CoreSight ETM-R4 TRM specification.  
6.21.7.1 ETM TRACECLKIN Selection  
The ETM clock source can be selected as either VCLK or the external ETMTRACECLKIN pin. The  
selection is done by the EXTCTRLOUT[1:0] control bits of the TPIU; the default is '00'. The address of this  
register is TPIU base address + 0x404.  
Before you begin accessing TPIU registers, TPIU should be unlocked via coresight key and 1 or 2 should  
be written to this register.  
6-41. TPIU / TRACECLKIN Selection  
EXTCTRLOUT[1:0]  
TPIU/TRACECLKIN  
tied-zero  
00  
01  
10  
11  
VCLK  
ETMTRACECLKIN  
tied-zero  
6.21.7.2 Timing Specifications  
tl(ETM)  
th(ETM)  
tr(ETM)  
tf(ETM)  
tcyc(ETM)  
6-22. ETMTRACECLKOUT Timing  
6-42. ETMTRACECLK Timing  
MIN  
MAX  
UNIT  
tcyc(ETM)  
tl(ETM)  
Clock period  
t(HCLK) × 4  
Low pulse width  
20  
20  
ns  
ns  
ns  
ns  
th(ETM)  
tr(ETM)  
tf(ETM)  
High pulse width  
Clock and data rise time  
Clock and data fall time  
3
3
96  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6-23. ETMDATA Timing  
6-43. ETMDATA Timing  
TMS5703137CGWTQEP  
TMS5703137CGWTMEP  
UNIT  
MIN  
MAX  
MIN  
MAX  
td(ETMTRACECLKH- Delay time from ETM trace clock high to ETM  
1.5  
7
1.3  
7
ns  
data valid  
ETMDATAV)  
td(ETMTRACECLKl- Delay time from ETM trace clock low to ETM  
1.5  
7
1.3  
7
data valid  
ETMDATAV)  
SPACE  
The ETMTRACECLK and ETMDATA timing is based on a 15pF load and for ambient  
temperature lower than 85°C.  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
97  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.21.8 RAM Trace Port (RTP)  
The RTP provides the ability to datalog the RAM contents of the devices or accesses to peripherals  
without program intrusion. It can trace all data write or read accesses to internal RAM. In addition, it  
provides the capability to directly transfer data to a FIFO to support a CPU-controlled transmission of the  
data. The trace data is transmitted over a dedicated external interface.  
6.21.8.1 Features  
The RTP offers the following features:  
Two modes of operation - Trace Mode and Direct Data Mode  
Trace Mode  
Non-intrusive data trace on write or read operation  
Visibility of RAM content at any time on external capture hardware  
Trace of peripheral accesses  
Two configurable trace regions for each RAM module to limit amount of data to be traced  
FIFO to store data and address of data of multiple read/write operations  
Trace of CPU and/or DMA accesses with indication of the master in the transmitted data packet  
Direct Data Mode  
Directly write data with the CPU or trace read operations to a FIFO, without transmitting header  
and address information  
Dedicated synchronous interface to transmit data to external devices  
Free-running clock generation or clock stop mode between transmissions  
Up to 100 Mbit per sec/pin transfer rate for transmitting data  
Pins not used in functional mode can be used as GIOs  
6.21.8.2 Timing Specifications  
6-44. RTPCLK Timing  
MIN  
UNIT  
tcyc(RTP)  
Clock period, prescaled from HCLK; must not be  
–40°C to 125°C  
11 (90 MHz)  
ns  
faster than HCLK / 2  
High pulse width  
Low pulse width  
th(RTP)  
tl(RTP)  
–40°C to 125°C  
–40°C to 125°C  
((tcyc(RTP)) / 2) – ((tr + tf) / 2)  
((tcyc(RTP)) / 2) – ((tr + tf) / 2)  
tl(RTP)  
th(RTP)  
tf  
tr  
tcyc(RTP)  
6-24. RTPCLK Timing  
6-45. RTPDATA Timing  
MIN  
–5  
MAX  
UNIT  
td(RTPCLKH-RTPSYNCV)  
td(RTPCLKH-RTPDATAV)  
SYNC delay time  
Data delay time  
4
4
ns  
–5  
98  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
6-25. RTPDATA Timing  
6-46. RTPnENA Timing  
MIN  
MAX  
UNIT  
tdis(RTP)  
Time RTPnENA must go high before what would be the 3tc(HCLK) + tr(RTPSYNC) + 12 ns  
next RTPSYNC, to ensure delaying the next packet  
tena(RTP) Time after RTPnENA goes low before a packet that has  
been halted, resumes  
4tc(HCLK) + tr(RTPSYNC)  
5tc(HCLK) + tr(RTPSYNC)  
+
12 ns  
tena(RTP)  
tdis(RTP)  
1
2
3
4
5
6
7
8
9
10 11  
12 13  
14  
15 16  
HCLK  
RTPCLK  
RTPnENA  
RTPSYNC  
RTPDATA  
d1  
d2  
d3  
d4  
Divide by 1  
d5  
d6  
d7  
d8  
6-26. RTPnENA Timing  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
99  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.21.9 Data Modification Module (DMM)  
The DMM provides the capability to modify data in the entire 4 GB address space of the devices from an  
external peripheral, with minimal interruption of the application.  
6.21.9.1 Features  
The DMM module has the following features:  
Acts as a bus master, thus enabling direct writes to the 4GB address space without CPU intervention  
Writes to memory locations specified in the received packet (leverages packets defined by trace mode  
of the RAM trace port (RTP) module  
Writes received data to consecutive addresses, which are specified by the DMM module (leverages  
packets defined by direct data mode of RTP module)  
Configurable port width (1, 2, 4, 8, 16 pins)  
Up to 100 Mbit/s pin data rate  
Unused pins configurable as GPIO pins  
6.21.9.2 Timing Specifications  
6-47. DMMCLK Timing  
MIN  
tc(HCLK) × 2  
UNIT  
tcyc(DMM)  
th(DMM)  
tl(DMM)  
Clock period  
High pulse width  
Low pulse width  
–40°C to 125°C  
–40°C to 125°C  
((tcyc(DMM)) / 2) – ((tr + tf) / 2)  
((tcyc(DMM)) / 2) – ((tr + tf) / 2)  
tl(DMM)  
th(DMM)  
tf  
tr  
tcyc(DMM)  
6-27. DMMCLK Timing  
6-48. DMMDATA Timing  
PARAMETER  
MIN  
2 ns  
3 ns  
2 ns  
3 ns  
UNIT  
ns  
tssu(DMM)  
tsh(DMM)  
tdsu(DMM)  
tdh(DMM)  
SYNC active to clk falling edge setup time  
clk falling edge to SYNC deactive hold time  
DATA to clk falling edge setup time  
clk falling edge to DATA hold time  
100  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
tssu(DMM)  
tsh(DMM)  
DMMSYNC  
DMMCLK  
DMMDATA  
tdsu(DMM)  
tdh(DMM)  
6-28. DMMDATA Timing  
6-29 shows a case with 1 DMM packet per 2 DMMCLK cycles (Mode = Direct Data Mode, data width =  
8, portwidth = 4) where none of the packets received by the DMM are sent out, leading to filling up of the  
internal buffers. The DMMnENA signal is shown asserted, after the first two packets have been received  
and synchronised to the HCLK domain. Here, the DMM has the capacity to accept packets D4x, D5x, D6x,  
D7x. Packet D8 would result in an overflow. Once DMMnENA is asserted, the DMM expects to stop  
receiving packets after 4 HCLK cycles; once DMMnENA is de-asserted, the DMM can handle packets  
immediately (after 0 HCLK cycles).  
HCLK  
DMMCLK  
DMMSYNC  
D00  
D01  
D10  
D11  
D20  
D21  
D30  
D31  
D40  
D41  
D50  
DMMDATA  
DMMnENA  
6-29. DMMnENA Timing  
版权 © 2013–2015, Texas Instruments Incorporated  
System Information and Electrical Specifications  
101  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
6.21.10 Boundary Scan Chain  
The device supports IEEE1149.1-compliant boundary scan for testing pin-to-pin compatibility. The  
boundary scan chain is connected to the Boundary Scan Interface of the ICEPICK module.  
Device Pins (conceptual)  
TRST  
TMS  
TCK  
TDI  
Boundary  
Scan  
Boundary Scan Interface  
TDO  
RTCK  
TDI  
TDO  
BSDL  
6-30. Boundary Scan Implementation (Conceptual Diagram)  
Data is serially shifted into all boundary-scan buffers via TDI, and out via TDO.  
102  
System Information and Electrical Specifications  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
7 Peripheral Information  
7.1 Peripheral Legend  
7-1. Peripheral Legend  
Abbreviation  
MibADC  
CCM-R4F  
CRC  
Full Name  
Analog To Digital Converter  
CPU Compare Module - CortexR4F  
Cyclic Redundancy Check  
Controller Area Network  
Dual Clock Comparator  
Direct Memory Access  
DCAN  
DCC  
DMA  
DMM  
EMIF  
ESM  
Data Modification Module  
External Memory Interface  
Error Signaling Module  
ETM-R4F  
FTU  
Embedded Trace Macrocell - CortexR4F  
FlexRay Transfer Unit  
GPIO  
HTU  
General-Purpose Input/Output  
High End Timer Transfer Unit  
Inter-Integrated Circuit  
I2C  
LIN  
Local Interconnect Network  
Multibuffer Serial Peripheral Interface  
Platform High-End Timer  
MIBSPI  
N2HET  
POM  
Parameter Overlay Module  
Real-Time Interrupt Module  
RAM Trace Port  
RTI  
RTP  
SCI  
Serial Communications Interface  
Serial Peripheral Interface  
Vectored Interrupt Manager  
SPI  
VIM  
7.2 Multi-Buffered 12bit Analog-to-Digital Converter  
The multibuffered A-to-D converter (MibADC) has a separate power bus for its analog circuitry that  
enhances the A-to-D performance by preventing digital switching noise on the logic circuitry which could  
be present on VSS and VCC from coupling into the A-to-D analog stage. All A-to-D specifications are given  
with respect to ADREFLO unless otherwise noted.  
7-2. MibADC Overview  
Description  
Resolution  
Value  
12 bits  
Assured  
Monotonic  
Output conversion code  
00h to FFFh [00 for VAI ADREFLO; FFF for VAI ADREFHI]  
7.2.1 Features  
10-/12-bit resolution  
ADREFHI and ADREFLO pins (high and low reference voltages)  
Total Sample/Hold/Convert time: 600ns Typical Minimum at 30MHz ADCLK  
One memory region per conversion group is available (event, group 1, group 2)  
Allocation of channels to conversion groups is completely programmable  
Memory regions are serviced either by interrupt or by DMA  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
103  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
Programmable interrupt threshold counter is available for each group  
Programmable magnitude threshold interrupt for each group for any one channel  
Option to read either 8-bit, 10-bit or 12-bit values from memory regions  
Single or continuous conversion modes  
Embedded self-test  
Embedded calibration logic  
Enhanced power-down mode  
Optional feature to automatically power down ADC core when no conversion is in progress  
External event pin (ADEVT) programmable as general-purpose I/O  
7.2.2 Event Trigger Options  
The ADC module supports 3 conversion groups: Event Group, Group1 and Group2. Each of these 3  
groups can be configured to be hardware event-triggered. In that case, the application can select from  
among 8 event sources to be the trigger for a group's conversions.  
7.2.2.1 Default MIBADC1 Event Trigger Hookup  
7-3. MIBADC1 Event Trigger Hookup  
Event Number  
Source Select Bits For G1, G2 Or Event  
(G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0])  
Trigger  
1
2
3
4
5
6
7
8
000  
001  
010  
011  
100  
101  
110  
111  
ADEVT  
N2HET1[8]  
N2HET1[10]  
RTI compare 0 interrupt  
N2HET1[12]  
N2HET1[14]  
GIOB[0]  
GIOB[1]  
For ADEVT, N2HET1 and GIOB trigger sources, the connection to the MibADC1 module  
trigger input is made from the output side of the input buffer. This way, a trigger condition  
can be generated either by configuring the function as output onto the pad (via the mux  
control), or by driving the function from an external trigger source as input. If the mux control  
module is used to select different functionality instead of the ADEVT, N2HET1[x] or GIOB[x]  
signals, then care must be taken to disable these signals from triggering conversions; there  
is no multiplexing on the input connections.  
For the RTI compare 0 interrupt source, the connection is made directly from the output of  
the RTI module. That is, the interrupt condition can be used as a trigger source even if the  
actual interrupt is not signaled to the CPU.  
7.2.2.2 Alternate MIBADC1 Event Trigger Hookup  
7-4. Alternate MIBADC1 Event Trigger Hookup  
Event Number  
Source Select Bits for G1, G2 or Event  
(G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0])  
Trigger  
1
2
000  
001  
ADEVT  
N2HET2[5]  
104  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
7-4. Alternate MIBADC1 Event Trigger Hookup (continued)  
Event Number  
Source Select Bits for G1, G2 or Event  
(G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0])  
Trigger  
3
4
5
6
7
8
010  
011  
100  
101  
110  
111  
N2HET1[27]  
RTI compare 0 interrupt  
N2HET1[17]  
N2HET1[19]  
N2HET1[11]  
N2HET2[13]  
The selection between the default MIBADC1 event trigger hook-up versus the alternate event trigger hook-  
up is done by multiplexing control module register 30 bits 0 and 1.  
If 30[0] = 1, then the default MibADC1 event trigger hook-up is used.  
If 30[0] = 0 and 30[1] = 1, then the alternate MibADC1 event trigger hook-up is used.  
For ADEVT trigger source, the connection to the MibADC1 module trigger input is made from  
the output side of the input buffer. This way, a trigger condition can be generated either by  
configuring ADEVT as an output function on to the pad (via the mux control), or by driving  
the ADEVT signal from an external trigger source as input. If the mux control module is used  
to select different functionality instead of the ADEVT signal, then care must be taken to  
disable ADEVT from triggering conversions; there is no multiplexing on the input connection.  
For N2HETx trigger sources, the connection to the MibADC1 module trigger input is made  
from the input side of the output buffer (at the N2HETx module boundary). This way, a  
trigger condition can be generated even if the N2HETx signal is not selected to be output on  
the pad.  
For the RTI compare 0 interrupt source, the connection is made directly from the output of  
the RTI module. That is, the interrupt condition can be used as a trigger source even if the  
actual interrupt is not signaled to the CPU.  
7.2.2.3 Default MIBADC2 Event Trigger Hookup  
7-5. MIBADC2 Event Trigger Hookup  
Event Number  
Source Select Bits for G1, G2 or Event  
(G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0])  
Trigger  
1
2
3
4
5
6
7
8
000  
001  
010  
011  
100  
101  
110  
111  
AD2EVT  
N2HET1[8]  
N2HET1[10]  
RTI compare 0  
N2HET1[12]  
N2HET1[14]  
GIOB[0]  
GIOB[1]  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
105  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
For AD2EVT, N2HET1 and GIOB trigger sources, the connection to the MibADC2 module  
trigger input is made from the output side of the input buffer. This way, a trigger condition  
can be generated either by configuring the function as output onto the pad (via the mux  
control), or by driving the function from an external trigger source as input. If the mux control  
module is used to select different functionality instead of the AD2EVT, N2HET1[x] or GIOB[x]  
signals, then care must be taken to disable these signals from triggering conversions; there  
is no multiplexing on the input connections.  
For the RTI compare 0 interrupt source, the connection is made directly from the output of  
the RTI module. That is, the interrupt condition can be used as a trigger source even if the  
actual interrupt is not signaled to the CPU.  
7.2.2.4 Alternate MIBADC2 Event Trigger Hookup  
7-6. Alternate MIBADC2 Event Trigger Hookup  
Event Number  
Source Select Bits for G1, G2 or Event  
(G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0])  
Trigger  
1
2
3
4
5
6
7
8
000  
001  
010  
011  
100  
101  
110  
111  
AD2EVT  
N2HET2[5]  
N2HET1[27]  
RTI compare 0  
N2HET1[17]  
N2HET1[19]  
N2HET1[11]  
N2HET2[13]  
The selection between the default MIBADC2 event trigger hook-up versus the alternate event trigger hook-  
up is done by multiplexing control module register 30 bits 0 and 1.  
If 30[0] = 1, then the default MibADC2 event trigger hook-up is used.  
If 30[0] = 0 and 30[1] = 1, then the alternate MibADC2 event trigger hook-up is used.  
For AD2EVT trigger source, the connection to the MibADC2 module trigger input is made  
from the output side of the input buffer. This way, a trigger condition can be generated either  
by configuring AD2EVT as an output function on to the pad (via the mux control), or by  
driving the AD2EVT signal from an external trigger source as input. If the mux control module  
is used to select different functionality instead of the AD2EVT signal, then care must be  
taken to disable AD2EVT from triggering conversions; there is no multiplexing on the input  
connections.  
For N2HETx trigger sources, the connection to the MibADC2 module trigger input is made  
from the input side of the output buffer (at the N2HETx module boundary). This way, a  
trigger condition can be generated even if the N2HETx signal is not selected to be output on  
the pad.  
106  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
For the RTI compare 0 interrupt source, the connection is made directly from the output of  
the RTI module. That is, the interrupt condition can be used as a trigger source even if the  
actual interrupt is not signaled to the CPU.  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
107  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
7.2.3 ADC Electrical and Timing Specifications  
7-7. MibADC Recommended Operating Conditions  
MIN  
ADREFLO  
VSSAD  
MAX  
VCCAD  
ADREFHI  
ADREFHI  
2
UNIT  
V
ADREFHI  
ADREFLO  
VAI  
A-to-D high-voltage reference source  
A-to-D low-voltage reference source  
Analog input voltage  
V
ADREFLO  
–2  
V
IAIC  
Analog input clamp current  
mA  
(VAI < VSSAD – 0.3 or VAI > VCCAD + 0.3)  
7-8. MibADC Electrical Characteristics Over Full Ranges of Recommended Operating Conditions  
PARAMETER  
DESCRIPTION / TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Rmux  
Analog input mux on-  
resistance  
See 7-1  
250  
Ω
Rsamp  
ADC sample switch on-  
resistance  
See 7-1  
250  
Ω
Cmux  
Csamp  
IAIL  
Input mux capacitance  
See 7-1  
See 7-1  
16  
13  
pF  
pF  
nA  
nA  
ADC sample capacitance  
Analog off-state input  
leakage current  
VCCAD = 3.6 V  
maximum  
V
SSAD VIN < VSSAD + 100 mV  
-300  
-200  
200  
200  
VSSAD + 100 mV VIN VCCAD - 200  
mV  
VCCAD - 200 mV < VIN VCCAD  
-200  
-1000  
-250  
500  
250  
250  
nA  
nA  
nA  
Analog off-state input  
leakage current  
VCCAD = 5.5 V  
maximum  
VSSAD VIN < VSSAD + 300 mV  
VSSAD + 300 mV VIN VCCAD - 300  
mV  
VCCAD - 300 mV < VIN VCCAD  
-250  
-8  
1000  
2
nA  
µA  
VSSAD VIN < VSSAD + 100 mV  
ADC1 Analog on-state input VCCAD = 3.6 V  
bias current maximum  
VSSAD + 100 mV < VIN < VCCAD - 200  
mV  
(1)  
(1)  
(1)  
(1)  
IAOSB1  
IAOSB2  
IAOSB1  
IAOSB2  
-4  
2
VCCAD - 200 mV < VIN < VCCAD  
-4  
-7  
12  
2
VSSAD VIN < VSSAD + 100 mV  
ADC2 Analog on-state input VCCAD = 3.6V  
bias current maximum  
VSSAD + 100 mV VIN VCCAD - 200  
mV  
-4  
2
µA  
µA  
VCCAD - 200 mV < VIN VCCAD  
-4  
10  
3
VSSAD VIN < VSSAD + 300 mV  
-10  
ADC1 Analog on-state input VCCAD = 5.5V  
bias current maximum  
VSSAD + 300 mV VIN VCCAD -  
300mV  
-5  
3
VCCAD - 300 mV < VIN VCCAD  
-5  
-8  
14  
3
VSSAD VIN < VSSAD + 300 mV  
ADC2 Analog on-state input VCCAD = 5.5V  
VSSAD + 300 mV VIN VCCAD - 300  
mV  
-5  
-5  
3
12  
3
µA  
bias current  
maximum  
VCCAD - 300 mV < VIN VCCAD  
ADREFHI input  
current  
ADREFHI = VCCAD, ADREFLO = VSSAD  
;
IADREFHI  
ICCAD  
mA  
–40°C to 125°C  
Normal operating mode; –40°C to 125°C  
15 mA  
µA  
Static supply current  
ADC core in power down mode; –40°C to 125°C  
5
(1) If a shared channel is being converted by both ADC converters at the same time, the on-state leakage is equal to IAOSL1 + IAOSL2  
108  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
Rext  
Pin  
Rmux  
Smux  
VS1  
IAOSB  
Cext  
On-State  
Bias Current  
Smux  
Rext  
Pin  
Rmux  
VS2  
IAIL  
Cext  
IAIL  
IAIL  
Off-State  
Leakages  
Smux  
Rext  
Pin  
Rmux  
Ssamp  
Rsamp  
VS24  
IAIL  
Csamp  
Cmux  
Cext  
IAIL  
IAIL  
7-1. MibADC Input Equivalent Circuit  
7-9. MibADC Timing Specifications  
MIN  
NOM  
MAX  
UNIT  
(1)  
tc(ADCLK)  
Cycle time, MibADC clock  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
0.033  
µs  
µs  
µs  
(2)  
td(SH)  
Delay time, sample and hold time  
0.2  
1
td(PU-ADV)  
Delay time from ADC power on until first  
input can be sampled  
12-bit mode  
td(c)  
Delay time, conversion time  
–40°C to 125°C  
–40°C to 125°C  
0.4  
0.6  
µs  
µs  
(3)  
td(SHC)  
Delay time, total sample/hold and  
conversion time  
10-bit mode  
td(c)  
Delay time, conversion time  
–40°C to 125°C  
–40°C to 125°C  
0.33  
0.53  
µs  
µs  
(3)  
td(SHC)  
Delay time, total sample/hold and  
conversion time  
(1) The MibADC clock is the ADCLK, generated by dividing down the VCLK by a prescale factor defined by the ADCLOCKCR register bits  
4:0.  
(2) The sample and hold time for the ADC conversions is defined by the ADCLK frequency and the AD<GP>SAMP register for each  
conversion group. The sample time needs to be determined by accounting for the external impedance connected to the input channel as  
well as the ADC’s internal impedance.  
(3) This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors, e.g the  
prescale settings.  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
109  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
7-10. MibADC Operating Characteristics Over Full Ranges of Recommended Operating Conditions  
PARAMETER  
DESCRIPTION / TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
CR  
Conversion range  
over which specified  
accuracy is  
ADREFHI – ADREFLO  
–40°C to 125°C  
3
5.5  
V
maintained  
ZSET  
Zero Scale Offset  
Difference between the first ideal  
transition (from code 000h to 001h) and –40°C to 125°C  
the actual transition  
10-bit mode;  
1
2
2
3
LSB(1)  
LSB(2)  
LSB  
12-bit mode;  
–40°C to 125°C  
FSET  
Full Scale Offset  
Difference between the range of the  
measured code transitions (from first to –40°C to 125°C  
last) and the range of the ideal code  
transitions  
10-bit mode;  
12-bit mode;  
–40°C to 125°C  
LSB  
EDNL  
Differential  
nonlinearity error  
Difference between the actual step width 10-bit mode  
±1.5  
±2  
LSB  
LSB  
LSB  
LSB  
and the ideal value. (See Figure 76)  
12-bit mode  
EINL  
Integral nonlinearity  
error  
Maximum deviation from the best  
straight line through the MibADC.  
MibADC transfer characteristics,  
excluding the quantization error.  
10-bit mode  
12-bit mode  
±2  
±2  
ETOT  
Total unadjusted error Maximum value of the difference  
between an analog value and the ideal  
midstep value.  
10-bit mode  
12-bit mode  
±2  
±4  
LSB  
LSB  
(1) 1 LSB = (ADREFHI – ADREFLO)/ 210 for 10-bit mode  
(2) 1 LSB = (ADREFHI – ADREFLO)/ 212 for 12-bit mode  
110  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
7.2.4 Performance (Accuracy) Specifications  
7.2.4.1 MibADC Nonlinearity Errors  
The differential nonlinearity error shown in Figure 7-2 (sometimes referred to as differential linearity) is  
the difference between an actual step width and the ideal value of 1 LSB.  
0 ... 110  
0 ... 101  
0 ... 100  
0 ... 011  
Differential Linearity  
Error (–½ LSB)  
1 LSB  
0 ... 010  
Differential Linearity  
Error (–½ LSB)  
0 ... 001  
0 ... 000  
1 LSB  
0
1
2
3
4
5
Analog Input Value (LSB)  
NOTE A: 1 LSB = (ADREFHI – ADREFLO)/212  
7-2. Differential Nonlinearity (DNL) Error  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
111  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
The integral nonlinearity error shown in Figure 7-3 (sometimes referred to as linearity error) is the  
deviation of the values on the actual transfer function from a straight line.  
0 ... 111  
0 ... 110  
Ideal  
Transition  
0 ... 101  
0 ... 100  
0 ... 011  
0 ... 010  
0 ... 001  
0 ... 000  
Actual  
Transition  
At Transition  
011/100  
(–½ LSB)  
End-Point Lin. Error  
At Transition  
001/010 (–1/4 LSB)  
0
1
2
3
4
5
6
7
Analog Input Value (LSB)  
NOTE A: 1 LSB = (ADREFHI – ADREFLO)/212  
7-3. Integral Nonlinearity (INL) Error  
112  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
7.2.4.2 MibADC Total Error  
The absolute accuracy or total error of an MibADC as shown in Figure 7-4 is the maximum value of the  
difference between an analog value and the ideal midstep value.  
0 ... 111  
0 ... 110  
0 ... 101  
0 ... 100  
Total Error  
At Step 0 ... 101  
(–1 1/4 LSB)  
0 ... 011  
0 ... 010  
Total Error  
At Step  
0 ... 001 (1/2 LSB)  
0 ... 001  
0 ... 000  
0
1
2
3
4
5
6
7
Analog Input Value (LSB)  
NOTE A: 1 LSB = (ADREFHI – ADREFLO)/212  
7-4. Absolute Accuracy (Total) Error  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
113  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
7.3 General-Purpose Input/Output  
The GPIO module on this device supports two ports, GIOA and GIOB. The I/O pins are bidirectional and  
bit-programmable. Both GIOA and GIOB support external interrupt capability.  
7.3.1 Features  
The GPIO module has the following features:  
Each IO pin can be configured as:  
Input  
Output  
Open Drain  
The interrupts have the following characteristics:  
Programmable interrupt detection either on both edges or on a single edge (set in GIOINTDET)  
Programmable edge-detection polarity, either rising or falling edge (set in GIOPOL register)  
Individual interrupt flags (set in GIOFLG register)  
Individual interrupt enables, set and cleared through GIOENASET and GIOENACLR registers  
respectively  
Programmable interrupt priority, set through GIOLVLSET and GIOLVLCLR registers  
Internal pullup/pulldown allows unused I/O pins to be left unconnected  
For information on input and output timings see 5.11 and 5.12  
114  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
7.4 Enhanced High-End Timer (N2HET)  
The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time  
applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer  
micromachine and an attached I/O port. The N2HET can be used for pulse width modulated outputs,  
capture or compare inputs, or general-purpose I/O.. It is especially well suited for applications requiring  
multiple sensor information and drive actuators with complex and accurate time pulses.  
7.4.1 Features  
The N2HET module has the following features:  
Programmable timer for input and output timing functions  
Reduced instruction set (30 instructions) for dedicated time and angle functions  
160 words of instruction RAM protected by parity  
User defined number of 25-bit virtual counters for timer, event counters and angle counters  
7-bit hardware counters for some pins allow up to 32-bit resolution in conjunction with the 25-bit virtual  
counters  
Up to 32 pins usable for input signal measurements or output signal generation  
Programmable suppression filter for each input pin with adjustable limiting frequency  
Low CPU overhead and interrupt load  
Efficient data transfer to or from the CPU memory with dedicated High-End-Timer Transfer Unit (HTU)  
or DMA  
Diagnostic capabilities with different loopback mechanisms and pin status readback functionality  
7.4.2 N2HET RAM Organization  
The timer RAM uses 4 RAM banks, where each bank has two port access capability. This means that one  
RAM address may be written while another address is read. The RAM words are 96-bits wide, which are  
split into three 32-bit fields (program, control, and data).  
7.4.3 Input Timing Specifications  
The N2HET instructions PCNT and WCAP impose some timing constraints on the input signals.  
7-11. Input Timing Requirements for the N2HET Input Capture Functionality  
MIN(1) (2)  
MAX(1) (2) UNI  
T
1
2
3
4
Input signal period, PCNT or WCAP –40°C to 125°C  
for rising edge to rising edge  
2 (hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns  
2 (hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns  
(hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns  
(hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns  
Input signal period, PCNT or WCAP –40°C to 125°C  
for falling edge to falling edge  
Input signal high phase, PCNT or  
WCAP for rising edge to falling edge  
–40°C to 125°C  
Input signal low phase, PCNT or  
–40°C to 125°C  
WCAP for falling edge to rising edge  
(1) hr = High-resolution prescaler, configured using the HRPFC field of the Prescale Factor Register (HETPFR).  
(2) lr = Loop-resolution prescaler, configured using the LFPRC field of the Prescale Factor Register (HETPFR)  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
115  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
1
N2HETx  
3
4
2
7-5. N2HET Input Capture Timings  
Both N2HET1 and N2HET2 have channels that are enhanced to be able to capture inputs with smaller  
pulse widths than that specified in 7-11. See 7-13 for a list of which pins support small pulse  
capture.  
The input capture capability for these channels is specified in the following table.  
7-12. Input Timing Requirements for N2HET Channels With Enhanced Pulse Capture  
MIN  
MAX UNIT  
1
2
3
4
Input signal period, PCNT or WCAP for rising  
edge to rising edge  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
(hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2  
(hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2  
2 (hr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2  
2 (hr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2  
ns  
ns  
ns  
ns  
Input signal period, PCNT or WCAP for falling  
edge to falling edge  
Input signal high phase, PCNT or WCAP for  
rising edge to falling edge  
Input signal low phase, PCNT or WCAP for  
falling edge to rising edge  
7-13. Input Capture Pin Capability  
Channel  
Supports 32-bit Capture  
Enhanced Pulse Capture  
N2HET1[00]  
N2HET1[01]  
N2HET1[02]  
N2HET1[03]  
N2HET1[04]  
N2HET1[05]  
N2HET1[06]  
N2HET1[07]  
N2HET1[08]  
N2HET1[09]  
N2HET1[10]  
N2HET1[11]  
N2HET1[12]  
N2HET1[13]  
N2HET1[14]  
N2HET1[15]  
N2HET1[16]  
N2HET1[17]  
N2HET1[18]  
N2HET1[19]  
N2HET1[20]  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
No  
No  
No  
No  
Yes  
116  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
7-13. Input Capture Pin Capability (continued)  
Channel  
Supports 32-bit Capture  
Enhanced Pulse Capture  
N2HET1[21]  
N2HET1[22]  
N2HET1[23]  
N2HET1[24]  
N2HET1[25]  
N2HET1[26]  
N2HET1[27]  
N2HET1[28]  
N2HET1[29]  
N2HET1[30]  
N2HET1[31]  
N2HET2[00]  
N2HET2[01]  
N2HET2[02]  
N2HET2[03]  
N2HET2[04]  
N2HET2[05]  
N2HET2[06]  
N2HET2[07]  
N2HET2[08]  
N2HET2[09]  
N2HET2[10]  
N2HET2[11]  
N2HET2[12]  
N2HET2[13]  
N2HET2[14]  
N2HET2[15]  
N2HET2[16]  
N2HET2[18]  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
No  
Yes  
No  
Yes  
No  
No  
No  
Yes  
No  
Yes  
No  
No  
No  
No  
No  
Yes  
No  
Yes  
No  
Yes  
No  
7.4.4 N2HET1-N2HET2 Interconnections  
In some applications the N2HET resolutions must be synchronized. Some other applications require a  
single time base to be used for all PWM outputs and input timing captures.  
The N2HET provides such a synchronization mechanism. The Clk_master/slave (HETGCR.16) configures  
the N2HET in master or slave mode (default is slave mode). A N2HET in master mode provides a signal  
to synchronize the prescalers of the slave N2HET. The slave N2HET synchronizes its loop resolution to  
the loop resolution signal sent by the master. The slave does not require this signal after it receives the  
first synchronization signal. However, anytime the slave receives the re-synchronization signal from the  
master, the slave must synchronize itself again..  
N2HET1  
N2HET2  
NHET_LOOP_SYNC  
EXT_LOOP_SYNC  
NHET_LOOP_SYNC  
EXT_LOOP_SYNC  
7-6. N2HET1 – N2HET2 Synchronization Hookup  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
117  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
7.4.5 N2HET Checking  
7.4.5.1 Internal Monitoring  
To assure correctness of the high-end timer operation and output signals, the two N2HET modules can be  
used to monitor each other’s signals as shown in 7-7. The direction of the monitoring is controlled by  
the I/O multiplexing control module.  
IOMM mux control signal x  
N2HET1[1,3,5,7,9,11]  
N2HET1[1,3,5,7,9,11] / N2HET2[8,10,12,14,16,18]  
N2HET1  
N2HET2[8,10,12,14,16,18]  
N2HET2  
7-7. N2HET Monitoring  
7.4.5.2 Output Monitoring using Dual Clock Comparator (DCC)  
N2HET1[31] is connected as a clock source for counter 1 in DCC1. This allows the application to measure  
the frequency of the pulse-width modulated (PWM) signal on N2HET1[31].  
Similarly, N2HET2[0] is connected as a clock source for counter 1 in DCC2. This allows the application to  
measure the frequency of the pulse-width modulated (PWM) signal on N2HET2[0].  
Both N2HET1[31] and N2HET2[0] can be configured to be internal-only channels. That is, the connection  
to the DCC module is made directly from the output of the N2HETx module (from the input of the output  
buffer).  
For more information on DCC see 6.7.3.  
7.4.6 Disabling N2HET Outputs  
Some applications require the N2HET outputs to be disabled under some fault condition. The N2HET  
module provides this capability via the "Pin Disable" input signal. This signal, when driven low, causes the  
N2HET outputs identified by a programmable register (HETPINDIS) to be tri-stated. Please refer to the  
device specific technical reference manual for more details on the "N2HET Pin Disable" feature.  
GIOA[5] is connected to the "Pin Disable" input for N2HET1, and GIOB[2] is connected to the "Pin  
Disable" input for N2HET2.  
118  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
7.4.7 High-End Timer Transfer Unit (HET-TU)  
A High End Timer Transfer Unit (HET-TU) can perform DMA type transactions to transfer N2HET data to  
or from main memory. A Memory Protection Unit (MPU) is built into the HET-TU.  
7.4.7.1 Features  
CPU and DMA independent  
Master Port to access system memory  
8 control packets supporting dual buffer configuration  
Control packet information is stored in RAM protected by parity  
Event synchronization (HET transfer requests)  
Supports 32 or 64 bit transactions  
Addressing modes for HET address (8 byte or 16 byte) and system memory address (fixed, 32 bit or  
64bit)  
One shot, circular and auto switch buffer transfer modes  
Request lost detection  
7.4.7.2 Trigger Connections  
7-14. HET TU1 Request Line Connection  
Modules  
N2HET1  
N2HET1  
N2HET1  
N2HET1  
N2HET1  
N2HET1  
N2HET1  
N2HET1  
Request Source  
HTUREQ[0]  
HTUREQ[1]  
HTUREQ[2]  
HTUREQ[3]  
HTUREQ[4]  
HTUREQ[5]  
HTUREQ[6]  
HTUREQ[7]  
HET TU1 Request  
HET TU1 DCP[0]  
HET TU1 DCP[1]  
HET TU1 DCP[2]  
HET TU1 DCP[3]  
HET TU1 DCP[4]  
HET TU1 DCP[5]  
HET TU1 DCP[6]  
HET TU1 DCP[7]  
7-15. HET TU2 Request Line Connection  
Modules  
N2HET2  
N2HET2  
N2HET2  
N2HET2  
N2HET2  
N2HET2  
N2HET2  
N2HET2  
Request Source  
HTUREQ[0]  
HTUREQ[1]  
HTUREQ[2]  
HTUREQ[3]  
HTUREQ[4]  
HTUREQ[5]  
HTUREQ[6]  
HTUREQ[7]  
HET TU2 Request  
HET TU2 DCP[0]  
HET TU2 DCP[1]  
HET TU2 DCP[2]  
HET TU2 DCP[3]  
HET TU2 DCP[4]  
HET TU2 DCP[5]  
HET TU2 DCP[6]  
HET TU2 DCP[7]  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
119  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
7.5 FlexRay Interface  
The FlexRay module performs communication according to the FlexRay protocol specification v2.1. The  
sample clock bitrate can be programmed to values up to 10 MBit per second. Additional bus driver (BD)  
hardware is required for connection to the physical layer.  
For communication on a FlexRay network, individual message buffers with up to 254 data bytes are  
configurable. The message storage consists of a single-ported message RAM that holds up to 128  
message buffers. All functions concerning the handling of messages are implemented in the message  
handler. Those functions are the acceptance filtering, the transfer of messages between the two FlexRay  
Channel Protocol Controllers and the message RAM, maintaining the transmission schedule as well as  
providing message status information.  
The register set of the FlexRay module can be accessed directly by the CPU via the VBUS interface.  
These registers are used to control, configure and monitor the FlexRay channel protocol controllers,  
message handler, global time unit, system universal control, frame/symbol processing, network  
management, interrupt control, and to access the message RAM via the input / output buffer.  
7.5.1 Features  
The FlexRay module has the following features:  
Conformance with FlexRay protocol specification v2.1  
Data rates of up to 10 Mb/s on each channel  
Up to 128 message buffers  
8 Kbyte of message RAM for storage of, for example, 128 message buffers with max 48 byte data  
section or up to 30 message buffers with 254 byte data section  
Configuration of message buffers with different payload lengths  
One configurable receive FIFO  
Each message buffer can be configured as receive buffer, as transmit buffer or as part of the receive  
FIFO  
CPU access to message buffers via input and output buffer  
FlexRay transfer unit (FTU) for automatic data transfer between data memory and message buffers  
without CPU interaction  
Filtering for slot counter, cycle counter, and channel ID  
Maskable module interrupts  
Supports Network Management  
7.5.2 Electrical and Timing Specifications  
7-16. Timing Requirements for FlexRay Inputs  
MIN  
tc(AVCLK2) + 2.5(1)  
MAX  
UNIT  
tpw  
Input minimum pulse width to meet the FlexRay sampling  
requirement  
–40°C to 125°C  
ns  
(1) tRxAsymDelay parameter  
tpw  
VCCIO  
Input  
0.4*VCCIO  
0.6*VCCIO  
0.6*VCCIO  
0.4*VCCIO  
0
7-8. FlexRay Inputs  
120  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
7-17. FlexRay Jitter Timing  
MIN  
98  
MAX  
102  
UNIT  
ns  
tTx1bit  
Clock jitter and signal symmetry  
FlexRay BSS (byte start sequence) to BSS –40°C to 125°C  
Average over 10000 samples –40°C to 125°C  
tTx10bit  
999  
999.5  
1001  
1000.5  
2.5  
ns  
tTx10bitAvg  
tRxAsymDelay  
ns  
Delay difference between rise and fall from –40°C to 125°C  
Rx pin to sample point in FlexRay core  
ns  
tjit(SCLK)  
Jitter for the 80MHz Sample Clock  
generated by the PLL  
–40°C to 125°C  
0.5  
ns  
7.5.3 FlexRay Transfer Unit  
The FlexRay Transfer Unit is able to transfer data between the input buffer (IBF) and output buffer (OBF)  
of the communication controller and the system memory without CPU interaction.  
Because the FlexRay module is accessed through the FTU, the FTU must be powered up by the setting  
bit 23 in the Peripheral Power Down Registers of the System Module before accessing any FlexRay  
module register.  
For more information on the FTU see the TMS570LS31X/TMS570LS21X Technical Reference Manual  
(SPNU499).  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
121  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
7.6 Controller Area Network (DCAN)  
The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster communication  
protocol that efficiently supports distributed real-time control with robust communication rates of up to 1  
megabit per second (Mbps). The DCAN is ideal for applications operating in noisy and harsh  
environments (e.g., automotive and industrial fields) that require reliable serial communication or  
multiplexed wiring.  
7.6.1 Features  
Features of the DCAN module include:  
Supports CAN protocol version 2.0 part A, B  
Bit rates up to 1 MBit/s  
The CAN kernel can be clocked by the oscillator for baud-rate generation.  
64 mailboxes on each DCAN  
Individual identifier mask for each message object  
Programmable FIFO mode for message objects  
Programmable loop-back modes for self-test operation  
Automatic bus on after Bus-Off state by a programmable 32-bit timer  
Message RAM protected by parity  
Direct access to Message RAM during test mode  
CAN Rx / Tx pins configurable as general purpose IO pins  
Message RAM Auto Initialization  
DMA support  
For more information on the DCAN see the TMS570LS31X/21X Technical Reference Manual (SPNU499).  
7.6.2 Electrical and Timing Specifications  
7-18. Dynamic Characteristics for the DCANx TX and RX pins  
PARAMETER  
Delay time, transmit shift register to CANnTX pin(1)  
MIN  
MAX  
15  
UNIT  
ns  
td(CANnTX)  
td(CANnRX)  
Delay time, CANnRX pin to receive shift register  
5
ns  
(1) These values do not include rise/fall times of the output buffer.  
122  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
7.7 Local Interconnect Network Interface (LIN)  
The SCI/LIN module can be programmed to work either as an SCI or as a LIN. The core of the module is  
an SCI. The SCI’s hardware features are augmented to achieve LIN compatibility.  
The SCI module is a universal asynchronous receiver-transmitter that implements the standard nonreturn  
to zero format. The SCI can be used to communicate, for example, through an RS-232 port or over a K-  
line.  
The LIN standard is based on the SCI (UART) serial data link format. The communication concept is  
single-master/multiple-slave with a message identification for multi-cast transmission between any network  
nodes.  
7.7.1 LIN Features  
The following are features of the LIN module:  
Compatible to LIN 1.3, 2.0 and 2.1 protocols  
Multi-buffered receive and transmit units DMA capability for minimal CPU intervention  
Identification masks for message filtering  
Automatic Master Header Generation  
Programmable Synch Break Field  
Synch Field  
Identifier Field  
Slave Automatic Synchronization  
Synch break detection  
Optional baudrate update  
Synchronization Validation  
231 programmable transmission rates with 7 fractional bits  
Error detection  
2 Interrupt lines with priority encoding  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
123  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
7.8 Serial Communication Interface (SCI)  
7.8.1 Features  
Standard universal asynchronous receiver-transmitter (UART) communication  
Supports full- or half-duplex operation  
Standard nonreturn to zero (NRZ) format  
Double-buffered receive and transmit functions  
Configurable frame format of 3 to 13 bits per character based on the following:  
Data word length programmable from one to eight bits  
Additional address bit in address-bit mode  
Parity programmable for zero or one parity bit, odd or even parity  
Stop programmable for one or two stop bits  
Asynchronous or isosynchronous communication modes  
Two multiprocessor communication formats allow communication between more than two devices.  
Sleep mode is available to free CPU resources during multiprocessor communication.  
The 24-bit programmable baud rate supports 224 different baud rates provide high accuracy baud rate  
selection.  
Four error flags and Five status flags provide detailed information regarding SCI events.  
Capability to use DMA for transmit and receive data.  
124  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
7.9 Inter-Integrated Circuit (I2C)  
The inter-integrated circuit (I2C) module is a multi-master communication module providing an interface  
between the microcontroller and devices compliant with Philips Semiconductor I2C-bus specification  
version 2.1 and connected by an I2C-bus. This module will support any slave or master I2C compatible  
device.  
7.9.1 Features  
The I2C has the following features:  
Compliance to the Philips I2C bus specification, v2.1 (The I2C Specification, Philips document number  
9398 393 40011)  
Bit/Byte format transfer  
7-bit and 10-bit device addressing modes  
General call  
START byte  
Multi-master transmitter/ slave receiver mode  
Multi-master receiver/ slave transmitter mode  
Combined master transmit/receive and receive/transmit mode  
Transfer rates of 10 kbps up to 400 kbps (Phillips fast-mode rate)  
Free data format  
Two DMA events (transmit and receive)  
DMA event enable/disable capability  
Seven interrupts that can be used by the CPU  
Module enable/disable capability  
The SDA and SCL are optionally configurable as general purpose I/O  
Slew rate control of the outputs  
Open drain control of the outputs  
Programmable pullup/pulldown capability on the inputs  
Supports Ignore NACK mode  
This I2C module does not support:  
High-speed (HS) mode  
C-bus compatibility mode  
The combined format in 10-bit address mode (the I2C sends the slave address second  
byte every time it sends the slave address first byte)  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
125  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
7.9.2 I2C I/O Timing Specifications  
7-19. I2C Signals (SDA and SCL) Switching Characteristics(1)  
STANDARD MODE  
FAST MODE  
MIN MAX  
PARAMETER  
UNIT  
MIN  
MAX  
tc(I2CCLK)  
Cycle time, internal module clock for I2C,  
prescaled from VCLK  
75.2  
149  
75.2  
149  
ns  
f(SCL)  
SCL clock frequency  
Cycle time, SCL  
0
10  
100  
0
2.5  
0.6  
400  
kHz  
µs  
tc(SCL)  
tsu(SCLH-SDAL)  
Setup time, SCL high before SDA low (for a  
repeated START condition)  
4.7  
µs  
th(SCLL-SDAL)  
Hold time, SCL low after SDA low (for a repeated  
START condition)  
4
0.6  
µs  
tw(SCLL)  
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
100  
0
µs  
µs  
ns  
µs  
tw(SCLH)  
Pulse duration, SCL high  
tsu(SDA-SCLH)  
th(SDA-SCLL)  
Setup time, SDA valid before SCL high  
250  
0
Hold time, SDA valid after SCL low (for I2C bus  
devices)  
3.45(2)  
0.9  
tw(SDAH)  
Pulse duration, SDA high between STOP and  
START conditions  
4.7  
4.0  
1.3  
0.6  
0
µs  
µs  
tsu(SCLH-SDAH)  
Setup time, SCL high before SDA high (for STOP  
condition)  
tw(SP)  
Pulse duration, spike (must be suppressed)  
Capacitive load for each bus line  
50  
ns  
(3)  
Cb  
400  
400  
pF  
(1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down.  
(2) The maximum th(SDA-SCLL) for I2C bus devices has only to be met if the device does not stretch the low period (tw(SCLL)) of the SCL  
signal.  
(3) Cb = The total capacitance of one bus line in pF.  
SDA  
tw(SDAH)  
tsu(SDA-SCLH)  
tw(SP)  
tw(SCLL)  
tr(SCL)  
tsu(SCLH-SDAH)  
tw(SCLH)  
SCL  
tc(SCL)  
th(SCLL-SDAL)  
tf(SCL)  
th(SCLL-SDAL)  
tsu(SCLH-SDAL)  
th(SDA-SCLL)  
Stop  
Start  
Repeated Start  
Stop  
7-9. I2C Timings  
126  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
A device must internally provide a hold time of at least 300 ns for the SDA signal  
(referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling  
edge of SCL.  
The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW  
period (tw(SCLL)) of the SCL signal.  
A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the  
requirement tsu(SDA-SCLH) 250 ns must then be met. This will automatically be the case if  
the device does not stretch the LOW period of the SCL signal. If such a device does  
stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line  
tr max + tsu(SDA-SCLH)  
.
Cb = total capacitance of one bus line in pF. If mixed with fast-mode devices, faster fall-  
times are allowed.  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
127  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
7.10 Multi-Buffered / Standard Serial Peripheral Interface  
The MibSPI is a high-speed synchronous serial input/output port that allows a serial bit stream of  
programmed length (2 to 16 bits) to be shifted in and out of the device at a programmed bit-transfer rate.  
Typical applications for the SPI include interfacing to external peripherals, such as I/Os, memories, display  
drivers, and analog-to-digital converters.  
7.10.1 Features  
Both Standard and MibSPI modules have the following features:  
16-bit shift register  
Receive buffer register  
5-bit baud clock generator  
SPICLK can be internally-generated (master mode) or received from an external clock source (slave  
mode)  
Each word transferred can have a unique format  
SPI I/Os not used in the communication can be used as digital input/output signals  
7-20. MibSPI/SPI Configurations  
MibSPIx/SPIx  
MibSPI1  
I/Os  
MIBSPI1SIMO[1:0], MIBSPI1SOMI[1:0], MIBSPI1CLK, MIBSPI1nCS[5:0], MIBSPI1nENA  
MIBSPI3SIMO, MIBSPI3SOMI, MIBSPI3CLK, MIBSPI3nCS[5:0], MIBSPI3nENA  
MIBSPI5SIMO[3:0], MIBSPI5SOMI[3:0], MIBSPI5CLK, MIBSPI5nCS[3:0], MIBSPI5nENA  
SPI2SIMO, SPI2SOMI, SPI2CLK, SPI2nCS[1:0], SPI2nENA  
MibSPI3  
MibSPI5  
SPI2  
SPI4  
SPI4SIMO, SPI4SOMI, SPI4CLK, SPI4nCS[0], SPI4nENA  
7.10.2 MibSPI Transmit and Receive RAM Organization  
The Multibuffer RAM is comprised of 128 buffers. Each entry in the Multibuffer RAM consists of 4 parts: a  
16-bit transmit field, a 16-bit receive field, a 16-bit control field and a 16-bit status field. The Multibuffer  
RAM can be partitioned into multiple transfer group with variable number of buffers each.  
7.10.3 MibSPI Transmit Trigger Events  
Each of the transfer groups can be configured individually. For each of the transfer groups a trigger event  
and a trigger source can be chosen. A trigger event can be for example a rising edge or a permanent low  
level at a selectable trigger source. For example, up to 15 trigger sources are available which can be  
utilized by each transfer group. These trigger options are listed in 7-21 for MIBSPI1, 7.10.3.2 for  
MIBSPI3 and 7.10.3.3 for MibSPI5.  
128  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
7.10.3.1 MIBSPI1 Event Trigger Hookup  
7-21. MIBSPI1 Event Trigger Hookup  
Event Number  
Disabled  
EVENT0  
EVENT1  
EVENT2  
EVENT3  
EVENT4  
EVENT5  
EVENT6  
EVENT7  
EVENT8  
EVENT9  
EVENT10  
EVENT11  
EVENT12  
EVENT13  
EVENT14  
TGxCTRL TRIGSRC[3:0]  
Trigger  
No trigger source  
GIOA[0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
GIOA[1]  
GIOA[2]  
GIOA[3]  
GIOA[4]  
GIOA[5]  
GIOA[6]  
GIOA[7]  
N2HET1[8]  
N2HET1[10]  
N2HET1[12]  
N2HET1[14]  
N2HET1[16]  
N2HET1[18]  
Internal Tick counter  
space  
For N2HET1 trigger sources, the connection to the MibSPI1 module trigger input is made  
from the input side of the output buffer (at the N2HET1 module boundary). This way, a  
trigger condition can be generated even if the N2HET1 signal is not selected to be output on  
the pad.  
For GIOx trigger sources, the connection to the MibSPI1 module trigger input is made from  
the output side of the input buffer. This way, a trigger condition can be generated either by  
selecting the GIOx pin as an output pin plus selecting the pin to be a GIOx pin, or by driving  
the GIOx pin from an external trigger source. If the mux control module is used to select  
different functionality instead of the GIOx signal, then care must be taken to disable GIOx  
from triggering MibSPI1 transfers; there is no multiplexing on the input connections.  
7.10.3.2 MIBSPI3 Event Trigger Hookup  
7-22. MIBSPI3 Event Trigger Hookup  
Event Number  
Disabled  
EVENT0  
EVENT1  
EVENT2  
EVENT3  
EVENT4  
EVENT5  
EVENT6  
EVENT7  
TGxCTRL TRIGSRC[3:0]  
Trigger  
No trigger source  
GIOA[0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
GIOA[1]  
GIOA[2]  
GIOA[3]  
GIOA[4]  
GIOA[5]  
GIOA[6]  
GIOA[7]  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
129  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
7-22. MIBSPI3 Event Trigger Hookup (continued)  
Event Number  
EVENT8  
TGxCTRL TRIGSRC[3:0]  
Trigger  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
HET[8]  
EVENT9  
N2HET1[10]  
N2HET1[12]  
N2HET1[14]  
N2HET1[16]  
N2HET1[18]  
EVENT10  
EVENT11  
EVENT12  
EVENT13  
EVENT14  
Internal Tick counter  
For N2HET1 trigger sources, the connection to the MibSPI3 module trigger input is made  
from the input side of the output buffer (at the N2HET1 module boundary). This way, a  
trigger condition can be generated even if the N2HET1 signal is not selected to be output on  
the pad.  
For GIOx trigger sources, the connection to the MibSPI3 module trigger input is made from  
the output side of the input buffer. This way, a trigger condition can be generated either by  
selecting the GIOx pin as an output pin plus selecting the pin to be a GIOx pin, or by driving  
the GIOx pin from an external trigger source. If the mux control module is used to select  
different functionality instead of the GIOx signal, then care must be taken to disable GIOx  
from triggering MibSPI3 transfers; there is no multiplexing on the input connections.  
7.10.3.3 MIBSPI5 Event Trigger Hookup  
7-23. MIBSPI5 Event Trigger Hookup  
Event Number  
Disabled  
EVENT0  
EVENT1  
EVENT2  
EVENT3  
EVENT4  
EVENT5  
EVENT6  
EVENT7  
EVENT8  
EVENT9  
EVENT10  
EVENT11  
EVENT12  
EVENT13  
EVENT14  
TGxCTRL TRIGSRC[3:0]  
Trigger  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
No trigger source  
GIOA[0]  
GIOA[1]  
GIOA[2]  
GIOA[3]  
GIOA[4]  
GIOA[5]  
GIOA[6]  
GIOA[7]  
N2HET1[8]  
N2HET1[10]  
N2HET1[12]  
N2HET1[14]  
N2HET1[16]  
N2HET1[18]  
Internal Tick counter  
For N2HET1 trigger sources, the connection to the MibSPI5 module trigger input is made  
from the input side of the output buffer (at the N2HET1 module boundary). This way, a  
trigger condition can be generated even if the N2HET1 signal is not selected to be output on  
the pad.  
130  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
For GIOx trigger sources, the connection to the MibSPI5 module trigger input is made from  
the output side of the input buffer. This way, a trigger condition can be generated either by  
selecting the GIOx pin as an output pin + selecting the pin to be a GIOx pin, or by driving the  
GIOx pin from an external trigger source. If the mux control module is used to select different  
functionality instead of the GIOx signal, then care must be taken to disable GIOx from  
triggering MibSPI5 transfers; there is no multiplexing on the input connections.  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
131  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
7.10.4 MibSPI/SPI Master Mode I/O Timing Specifications  
7-24. SPI Master Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = output, SPISIMO =  
output, and SPISOMI = input)(1)(2)(3)  
NO.  
MIN  
40  
MAX UNIT  
256tc(VCLK) ns  
1
tc(SPC)M  
Cycle time, SPICLK(4)  
2(5) tw(SPCH)M  
tw(SPCL)M  
3(5) tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPICLK high  
(clock polarity = 0)  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
0.5tc(SPC)M – tr(SPC)M – 3  
0.5tc(SPC)M + 3 ns  
Pulse duration, SPICLK low  
(clock polarity = 1)  
0.5tc(SPC)M – tf(SPC)M – 3  
0.5tc(SPC)M – tf(SPC)M – 3  
0.5tc(SPC)M – tr(SPC)M – 3  
0.5tc(SPC)M – 6  
0.5tc(SPC)M + 3  
0.5tc(SPC)M + 3 ns  
0.5tc(SPC)M + 3  
ns  
Pulse duration, SPICLK low  
(clock polarity = 0)  
Pulse duration, SPICLK high  
(clock polarity = 1)  
4(5) td(SPCH-  
Delay time, SPISIMO valid  
before SPICLK low (clock  
polarity = 0)  
SIMO)M  
td(SPCL-  
SIMO)M  
Delay time, SPISIMO valid  
before SPICLK high (clock  
polarity = 1)  
0.5tc(SPC)M – 6  
0.5tc(SPC)M – tf(SPC) – 4  
0.5tc(SPC)M – tr(SPC) – 4  
5(5) tv(SPCL-  
Valid time, SPISIMO data valid  
after SPICLK low (clock polarity  
= 0)  
ns  
SIMO)M  
tv(SPCH-  
SIMO)M  
Valid time, SPISIMO data valid  
after SPICLK high (clock polarity  
= 1)  
6(5) tsu(SOMI-  
SPCL)M  
Setup time, SPISOMI before  
SPICLK low (clock polarity = 0)  
tf(SPC) + 2.2  
tr(SPC) + 2.2  
10  
ns  
ns  
tsu(SOMI-  
SPCH)M  
7(5) th(SPCL-  
SOMI)M  
Setup time, SPISOMI before  
SPICLK high (clock polarity = 1)  
Hold time, SPISOMI data valid  
after SPICLK low (clock polarity  
= 0)  
th(SPCH-  
SOMI)M  
Hold time, SPISOMI data valid  
after SPICLK high (clock polarity  
= 1)  
10  
8(6) tC2TDELAY  
Setup time CS  
active until SPICLK  
high (clock polarity  
= 0)  
CSHOLD =  
0
C2TDELAY*tc(VCLK)  
2*tc(VCLK) - tf(SPICS)  
+
+
(C2TDELAY+2) * tc(VCLK)  
-
ns  
ns  
tf(SPICS) + tr(SPC) + 5.5  
tr(SPC) – 7  
CSHOLD =  
1
C2TDELAY*tc(VCLK)  
3*tc(VCLK) - tf(SPICS)  
+
+
(C2TDELAY+3) * tc(VCLK)  
-
tf(SPICS) + tr(SPC) + 5.5  
tr(SPC) – 7  
Setup time CS  
active until SPICLK  
low (clock polarity  
= 1)  
CSHOLD =  
0
C2TDELAY*tc(VCLK)  
2*tc(VCLK) - tf(SPICS)  
+
+
(C2TDELAY+2) * tc(VCLK)  
-
tf(SPICS) + tf(SPC) + 5.5  
tf(SPC) – 7  
CSHOLD =  
1
C2TDELAY*tc(VCLK)  
3*tc(VCLK) - tf(SPICS)  
+
+
(C2TDELAY+3) * tc(VCLK)  
-
tf(SPICS) + tf(SPC) + 5.5  
tf(SPC) – 7  
(1) The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.  
(2) tc(VCLK) = interface clock cycle time = 1 / f(VCLK)  
(3) For rise and fall timings, see 5-6.  
(4) When the SPI is in master mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)M (PS +1) tc(VCLK) 40 ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.  
For PS values of 0: tc(SPC)M = 2tc(VCLK) 40 ns.  
The external load on the SPICLK pin must be less than 60 pF.  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(6) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
132  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
7-24. SPI Master Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = output, SPISIMO =  
output, and SPISOMI = input)(1)(2)(3) (continued)  
NO.  
MIN  
MAX UNIT  
9(6) tT2CDELAY  
Hold time SPICLK low until CS  
inactive (clock polarity = 0)  
0.5*tc(SPC)M  
T2CDELAY*tc(VCLK)  
tc(VCLK) - tf(SPC) + tr(SPICS)  
+
+
-
0.5*tc(SPC)M  
T2CDELAY*tc(VCLK)  
tc(VCLK) - tf(SPC) + tr(SPICS)  
+ 11  
+
+
ns  
7
Hold time SPICLK high until CS  
inactive (clock polarity = 1)  
0.5*tc(SPC)M  
T2CDELAY*tc(VCLK)  
tc(VCLK) - tr(SPC)  
+
+
+
0.5*tc(SPC)M  
T2CDELAY*tc(VCLK)  
tc(VCLK) - tr(SPC) + tr(SPICS)  
+ 11  
+
+
ns  
tr(SPICS) - 7  
(C2TDELAY+1) * tc(VCLK)  
tf(SPICS) – 29  
10 tSPIENA  
SPIENAn Sample point  
-
(C2TDELAY+1)*tc(VCLK) ns  
11 tSPIENAW  
SPIENAn Sample point from  
write to buffer  
–40°C to 125°C  
(C2TDELAY+2)*tc(VCLK) ns  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
6
7
Master In Data  
Must Be Valid  
SPISOMI  
7-10. SPI Master Mode External Timing (CLOCK PHASE = 0)  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
133  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
Master Out Data Is Valid  
8
9
SPICSn  
10  
11  
SPIENAn  
7-11. SPI Master Mode Chip Select Timing (CLOCK PHASE = 0)  
134  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
7-25. SPI Master Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = output, SPISIMO =  
output, and SPISOMI = input)(1)(2)(3)  
NO.  
MIN  
MAX UNIT  
256tc(VCLK) ns  
(4)  
1
tc(SPC)M  
Cycle time, SPICLK  
40  
2(5) tw(SPCH)M  
tw(SPCL)M  
3(5) tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPICLK high (clock –40°C to 125°C  
polarity = 0)  
0.5tc(SPC)M – tr(SPC)M  
3
0.5tc(SPC)M + 3 ns  
Pulse duration, SPICLK low (clock  
polarity = 1)  
–40°C to 125°C  
0.5tc(SPC)M – tf(SPC)M  
0.5tc(SPC)M – tf(SPC)M  
0.5tc(SPC)M – tr(SPC)M  
3
0.5tc(SPC)M + 3  
0.5tc(SPC)M + 3 ns  
0.5tc(SPC)M + 3  
ns  
Pulse duration, SPICLK low (clock  
polarity = 0)  
–40°C to 125°C  
3
Pulse duration, SPICLK high (clock –40°C to 125°C  
polarity = 1)  
3
4(5) tv(SIMO-SPCH)M  
Valid time, SPICLK high after  
0.5tc(SPC)M – 6  
SPISIMO data valid (clock polarity =  
0)  
tv(SIMO-SPCL)M  
Valid time, SPICLK low after  
0.5tc(SPC)M – 6  
SPISIMO data valid (clock polarity =  
1)  
5(5) tv(SPCH-SIMO)M  
tv(SPCL-SIMO)M  
6(5) tsu(SOMI-SPCH)M  
tsu(SOMI-SPCL)M  
7(5) tv(SPCH-SOMI)M  
tv(SPCL-SOMI)M  
Valid time, SPISIMO data valid after  
SPICLK high (clock polarity = 0)  
0.5tc(SPC)M – tr(SPC) – 4  
ns  
ns  
ns  
Valid time, SPISIMO data valid after  
SPICLK low (clock polarity = 1)  
0.5tc(SPC)M – tf(SPC) – 4  
Setup time, SPISOMI before  
SPICLK high (clock polarity = 0)  
tr(SPC) + 2.2  
tf(SPC) + 2.2  
10  
Setup time, SPISOMI before  
SPICLK low (clock polarity = 1)  
Valid time, SPISOMI data valid after  
SPICLK high (clock polarity = 0)  
Valid time, SPISOMI data valid after  
SPICLK low (clock polarity = 1)  
10  
8(6) tC2TDELAY  
Setup time CS active  
until SPICLK high  
(clock polarity = 0)  
CSHOLD  
= 0  
0.5*tc(SPC)M  
(C2TDELAY+2) *  
tc(VCLK) - tf(SPICS)  
tr(SPC) – 7  
+
0.5*tc(SPC)M  
(C2TDELAY+2) *  
tc(VCLK) - tf(SPICS)  
tr(SPC) + 5.5  
+
ns  
+
+
CSHOLD  
= 1  
0.5*tc(SPC)M  
(C2TDELAY+3) *  
tc(VCLK) - tf(SPICS)  
tr(SPC) – 7  
+
0.5*tc(SPC)M  
(C2TDELAY+3) *  
tc(VCLK) - tf(SPICS)  
tr(SPC) + 5.5  
+
+
+
Setup time CS active  
until SPICLK low (clock  
polarity = 1)  
CSHOLD  
= 0  
0.5*tc(SPC)M  
(C2TDELAY+2) *  
tc(VCLK) - tf(SPICS)  
tf(SPC) – 7  
+
0.5*tc(SPC)M  
(C2TDELAY+2) *  
tc(VCLK) - tf(SPICS)  
tf(SPC) + 5.5  
+
ns  
+
+
CSHOLD  
= 1  
0.5*tc(SPC)M  
(C2TDELAY+3) *  
tc(VCLK) - tf(SPICS)  
tf(SPC) – 7  
+
0.5*tc(SPC)M  
(C2TDELAY+3) *  
tc(VCLK) - tf(SPICS)  
tf(SPC) + 5.5  
+
+
+
9(6) tT2CDELAY  
Hold time SPICLK low until CS  
inactive (clock polarity = 0)  
T2CDELAY*tc(VCLK)  
tc(VCLK) - tf(SPC)  
+
+
T2CDELAY*tc(VCLK)  
tc(VCLK) - tf(SPC)  
+
+
ns  
ns  
tr(SPICS) - 7  
tr(SPICS) + 11  
Hold time SPICLK high until CS  
inactive (clock polarity = 1)  
T2CDELAY*tc(VCLK)  
tc(VCLK) - tr(SPC)  
+
+
T2CDELAY*tc(VCLK)  
tc(VCLK) - tr(SPC)  
+
+
tr(SPICS) - 7  
tr(SPICS) + 11  
(1) The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.  
(2) tc(VCLK) = interface clock cycle time = 1 / f(VCLK)  
(3) For rise and fall timings, see the 5-6.  
(4) When the SPI is in Master mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)M (PS +1)tc(VCLK) 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.  
For PS values of 0: tc(SPC)M = 2tc(VCLK) 40ns.  
The external load on the SPICLK pin must be less than 60pF.  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(6) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
135  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
7-25. SPI Master Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = output, SPISIMO =  
output, and SPISOMI = input)(1)(2)(3) (continued)  
NO.  
MIN  
MAX UNIT  
10 tSPIENA  
SPIENAn Sample Point  
(C2TDELAY+1)* (C2TDELAY+1)*tc(VCLK) ns  
tc(VCLK) - tf(SPICS) – 29  
11 tSPIENAW  
SPIENAn Sample point from write to –40°C to 125°C  
buffer  
(C2TDELAY+2)*tc(VCLK) ns  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
Master Out Data Is Valid  
Data Valid  
SPISIMO  
SPISOMI  
6
7
Master In Data  
Must Be Valid  
7-12. SPI Master Mode External Timing (CLOCK PHASE = 1)  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
SPICSn  
Master Out Data Is Valid  
8
9
10  
11  
SPIENAn  
7-13. SPI Master Mode Chip Select Timing (CLOCK PHASE = 1)  
136  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
7.10.5 SPI Slave Mode I/O Timings  
7-26. SPI Slave Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = input, SPISIMO =  
input, and SPISOMI = output)(1)(2)(3)(4)  
NO.  
MIN  
40  
MAX UNIT  
1
tc(SPC)S  
Cycle time, SPICLK(5)  
ns  
ns  
2(6) tw(SPCH)S  
tw(SPCL)S  
3(6) tw(SPCL)S  
tw(SPCH)S  
Pulse duration, SPICLK high (clock polarity = 0) –40°C to 125°C  
14  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
–40°C to 125°C  
–40°C to 125°C  
14  
14  
ns  
Pulse duration, SPICLK high (clock polarity = 1) –40°C to 125°C  
14  
4(6) td(SPCH-SOMI)S  
Delay time, SPISOMI valid after SPICLK high  
(clock polarity = 0)  
trf(SOMI) + 20  
trf(SOMI) + 20  
ns  
ns  
ns  
ns  
ns  
ns  
td(SPCL-SOMI)S  
5(6) th(SPCH-SOMI)S  
th(SPCL-SOMI)S  
Delay time, SPISOMI valid after SPICLK low  
(clock polarity = 1)  
Hold time, SPISOMI data valid after SPICLK  
high (clock polarity =0)  
2
2
4
4
2
2
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity =1)  
6(6) tsu(SIMO-SPCL)S Setup time, SPISIMO before SPICLK low (clock  
polarity = 0)  
tsu(SIMO-SPCH)S Setup time, SPISIMO before SPICLK high (clock  
polarity = 1)  
7(6) th(SPCL-SIMO)S  
Hold time, SPISIMO data valid after SPICLK low  
(clock polarity = 0)  
th(SPCH-SIMO)S  
Hold time, SPISIMO data valid after S PICLK  
high (clock polarity = 1)  
8
9
td(SPCL-SENAH)S Delay time, SPIENAn high after last SPICLK low  
(clock polarity = 0)  
1.5tc(VCLK) 2.5tc(VCLK)+tr(ENA  
n)+ 22  
td(SPCH-SENAH)S Delay time, SPIENAn high after last SPICLK  
high (clock polarity = 1)  
1.5tc(VCLK)  
2.5tc(VCLK)  
+
tr(ENAn) + 22  
td(SCSL-SENAL)S Delay time, SPIENAn low after SPICSn low (if  
new data has been written to the SPI buffer)  
tf(ENAn) tc(VCLK)+tf(ENAn)  
+
27  
(1) The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.  
(2) If the SPI is in slave mode, the following must be true: tc(SPC)S (PS + 1) tc(VCLK), where PS = prescale value set in SPIFMTx.[15:8].  
(3) For rise and fall timings, see 5-6.  
(4) tc(VCLK) = interface clock cycle time = 1 /f(VCLK)  
(5) When the SPI is in Slave mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)S (PS +1)tc(VCLK) 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.  
For PS values of 0: tc(SPC)S = 2tc(VCLK) 40ns.  
(6) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
137  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
5
4
SPISOMI Data Is Valid  
SPISOMI  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
7-14. SPI Slave Mode External Timing (CLOCK PHASE = 0)  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
8
SPIENAn  
SPICSn  
9
7-15. SPI Slave Mode Enable Timing (CLOCK PHASE = 0)  
138  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
7-27. SPI Slave Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = input, SPISIMO =  
input, and SPISOMI = output)(1)(2)(3)(4)  
NO.  
MIN  
40  
MAX UNIT  
1
tc(SPC)S  
Cycle time, SPICLK(5)  
ns  
ns  
2(6) tw(SPCH)S  
tw(SPCL)S  
3(6) tw(SPCL)S  
tw(SPCH)S  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
14  
14  
14  
ns  
14  
4(6) td(SOMI-SPCL)S  
Dealy time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)  
trf(SOMI) + 20  
trf(SOMI) + 20  
ns  
ns  
ns  
ns  
ns  
td(SOMI-SPCH)S  
5(6) th(SPCL-SOMI)S  
th(SPCH-SOMI)S  
Delay time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity =0)  
2
2
4
4
2
2
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity =1)  
6(6) tsu(SIMO-SPCH)S Setup time, SPISIMO before SPICLK high (clock  
polarity = 0)  
tsu(SIMO-SPCL)S Setup time, SPISIMO before SPICLK low (clock  
polarity = 1)  
7(6) tv(SPCH-SIMO)S  
High time, SPISIMO data valid after SPICLK high  
(clock polarity = 0)  
tv(SPCL-SIMO)S  
High time, SPISIMO data valid after SPICLK low  
(clock polarity = 1)  
8
9
td(SPCH-SENAH)S Delay time, SPIENAn high after last SPICLK high  
(clock polarity = 0)  
1.5tc(VCLK) 2.5tc(VCLK)+tr(  
ENAn) + 22  
td(SPCL-SENAH)S Delay time, SPIENAn high after last SPICLK low  
(clock polarity = 1)  
1.5tc(VCLK) 2.5tc(VCLK)+tr(  
ENAn) + 22  
td(SCSL-SENAL)S Delay time, SPIENAn low after SPICSn low (if new  
data has been written to the SPI buffer)  
tf(ENAn) tc(VCLK)+tf(ENA  
n)+ 27  
ns  
ns  
10 td(SCSL-SOMI)S  
Delay time, SOMI valid after SPICSn low (if new  
data has been written to the SPI buffer)  
tc(VCLK) 2tc(VCLK)+trf(S  
OMI)+ 28  
(1) The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.  
(2) If the SPI is in slave mode, the following must be true: tc(SPC)S (PS + 1) tc(VCLK), where PS = prescale value set in SPIFMTx.[15:8].  
(3) For rise and fall timings, see 5-6.  
(4) tc(VCLK) = interface clock cycle time = 1 /f(VCLK)  
(5) When the SPI is in Slave mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)S (PS +1)tc(VCLK) 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.  
For PS values of 0: tc(SPC)S = 2tc(VCLK) 40ns.  
(6) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
139  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
5
4
SPISOMI  
SPISOMI Data Is Valid  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
7-16. SPI Slave Mode External Timing (CLOCK PHASE = 1)  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
8
SPIENAn  
SPICSn  
9
10  
SPISOMI  
Slave Out Data Is Valid  
7-17. SPI Slave Mode Enable Timing (CLOCK PHASE = 1)  
140  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
7.11 Ethernet Media Access Controller  
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the CPU and the  
network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps  
in either half- or full-duplex mode, with hardware flow control and quality of service (QoS) support.  
The EMAC controls the flow of packet data from the device to the PHY. The MDIO module controls PHY  
configuration and status monitoring.  
Both the EMAC and the MDIO modules interface to the device through a custom interface that allows  
efficient data transmission and reception. This custom interface is referred to as the EMAC control  
module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to  
multiplex and control interrupts.  
7.11.1 Ethernet MII Electrical and Timing Specifications  
1
2
MII_MRCLK  
MII_MRXD  
MII_MRXDV  
MII_MRXER  
VALID  
7-18. MII Receive Timing  
7-28. MII Receive Timing  
MIN  
8
MAX  
UNIT  
ns  
tsu(MIIMRXD)  
tsu(MIIMRXDV)  
tsu(MIIMRXER)  
th(MIIMRXD)  
Setup time, MIIMRXD to MIIMRCLK rising edge  
Setup time, MIIMRXDV to MIIMRCLK rising edge  
Setup time, MIIMRXER to MIIMRCLK rising edge  
Hold time, MIIMRXD valid after MIIRCLK rising edge  
Hold time, MIIMRXDV valid after MIIRCLK rising edge  
Hold time, MIIMRXDV valid after MIIRCLK rising edge  
8
ns  
8
ns  
8
ns  
th(MIIMRXDV)  
th(MIIMRXER)  
8
ns  
8
ns  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
141  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
1
MII_MTCLK  
MII_MTXD  
VALID  
MII_MTXEN  
7-19. MII Transmit Timing  
7-29. MII Transmit Timing  
MIN  
5
MAX  
25  
UNIT  
ns  
td(MIIMTXD)  
Delay time, MIIMTCLK rising edge to MIIMTXD  
Delay time, MIIMTCLK rising edge to MIIMTXEN  
td(MIIMTXEN)  
5
25  
ns  
142  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
7.11.2 Ethernet RMII Timing  
1
2
3
RMII_MHz_50_CLK  
5
5
RMII_TXEN  
4
RMII_TXD[1:0]  
6
7
RMII_RXD[1:0]  
RMII_CRS_DV  
9
8
10  
11  
RMII_RXER  
7-20. RMII Timing Diagram  
7-30. RMII Timing Requirements  
NO.  
MIN  
7
NOM  
20  
MAX  
UNIT  
ns  
1
2
3
6
tc(REFCLK)  
Cycle time, RMII_REF_CLK  
tw(REFCLKH)  
tw(REFCLKL)  
tsu(RXD-REFCLK)  
Pulse width, RMII_REF_CLK High  
Pulse width, RMII_REF_CLK Low  
13  
ns  
7
13  
ns  
Input setup time, RMII_RXD valid before  
RMII_REF_CLK High  
4
ns  
7
8
th(REFCLK-RXD)  
Input hold time, RMII_RXD valid after  
RMII_REF_CLK High  
2
4
2
4
2
2
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tsu(CRSDV-REFCLK)  
th(REFCLK-CRSDV)  
tsu(RXER-REFCLK)  
th(REFCLK-RXER)  
td(REFCLK-TXD)  
Input setup time, RMII_CRSDV valid before  
RMII_REF_CLK High  
9
Input hold time, RMII_CRSDV valid after  
RMII_REF_CLK High  
10  
11  
4
Input setup time, RMII_RXER valid before  
RMII_REF_CLK High  
Input hold time, RMII_RXER valid after  
RMII_REF_CLK High  
Output delay time, RMII_REF_CLK High to  
RMII_TXD valid  
5
td(REFCLK-TXEN)  
Output delay time, RMII_REF_CLK High to  
RMII_TX_EN valid  
版权 © 2013–2015, Texas Instruments Incorporated  
Peripheral Information  
143  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
7.11.3 Management Data Input/Output (MDIO)  
1
3
3
MDCLK  
4
5
MDIO  
(input)  
7-21. MDIO Input Timing  
7-31. MDIO Input Timing Requirements  
NO.  
1
MIN  
400  
180  
MAX  
UNIT  
ns  
tc(MDCLK)  
tw(MDCLK)  
tt(MDCLK)  
Cycle time, MDCLK  
5
2
Pulse duration, MDCLK high/low  
ns  
3
Transition time, MDCLK  
–40°C to 125°C  
ns  
4
tsu(MDIO-  
MDCLKH)  
Setup time, MDIO data input valid before MDCLK high  
33(1)  
ns  
5
th(MDCLKH-MDIO) Hold time, MDIO data input valid after MDCLK high  
10  
ns  
(1) This is a discrepancy to IEEE 802.3, but is compatible with many PHY devices.  
1
MDCLK  
7
MDIO  
(output)  
7-22. MDIO Output Timing  
7-32. MDIO Output Timing Requirements  
NO.  
1
MIN  
400  
–7  
MAX  
UNIT  
ns  
tc(MDCLK)  
Cycle time, MDCLK  
7
td(MDCLKL-MDIO)  
Delay time, MDCLK low to MDIO data output valid  
100  
ns  
144  
Peripheral Information  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
8 Device and Documentation Support  
8.1 Device and Development-Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
devices. Each commercial family member has one of three prefixes: TMX, TMP, or TMS (for example,  
TMS570LS3137). These prefixes represent evolutionary stages of product development from engineering  
prototypes (TMX) through fully qualified production devices/tools (TMS).  
Device development evolutionary flow:  
TMX  
TMP  
TMS  
Experimental device that is not necessarily representative of the final device's electrical  
specifications.  
Final silicon die that conforms to the device's electrical specifications but has not completed  
quality and reliability verification.  
Fully-qualified production device.  
TMX and TMP devices are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices have been characterized fully, and the quality and reliability of the device have been  
demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard  
production devices. Texas Instruments recommends that these devices not be used in any production  
system because their expected end-use failure rate still is undefined. Only qualified production devices are  
to be used.  
版权 © 2013–2015, Texas Instruments Incorporated  
Device and Documentation Support  
145  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
Full Part Number  
TMS  
TMS  
570  
570  
LS 31  
31  
3
3
7
7
C
C
GWT  
GWT  
Q
Q
EP  
EP  
Orderable Part Number  
Prefix: TM  
TMS = Fully Qualified  
TMP = Prototype  
TMX = Samples  
Core Technology:  
570 = Cortex R4F  
Architecture:  
LS = Dual CPUs in Lockstep  
(not included in orderable part number)  
Flash Memory Size:  
31 = 3MB  
RAM MemorySize:  
3 = 256kB  
Peripheral Set:  
7 = FlexRay, Ethernet  
Die Revision:  
Blank = Initial Die  
A = First Die Revision  
B = Second Die Revision  
C = Third Die Revision  
Package Type:  
GWT = 337 BGA Package  
Temperature Range:  
Q = –40 to 125oC  
M = –55 to 125oC  
Quality Designator:  
EP = HiRel  
8-1. TMS570LS3137-EP Device Numbering Conventions  
146  
Device and Documentation Support  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
8.2 Documentation Support  
8.2.1 Related Documentation from Texas Instruments  
The following documents describe the TMS570LS3137-EP microcontroller.  
SPNU499  
TMS570LS31x/21x 16/32-Bit RISC Flash Microcontroller Technical Reference  
Manual details the integration, the environment, the functional description, and the  
programming models for each peripheral and subsytem in the device.  
SPNZ195  
TMS570LS31x/21x Microcontroller Silicon Errata (Silicon Revision C) describes the  
known exceptions to the functional specifications for the device silicon revision(s).  
8.2.2 社区资源  
下列链接提供到 TI 社区资源的连接。 链接的内容由各个分销商按照原样提供。 这些内容并不构成 TI 技术  
规范和标准且不一定反映 TI 的观点;请见 TI 使用条款。  
TI E2E™ 在线社区 TI 工程师对工程师 (E2E) 社区。 此社区的创建目的是为了促进工程师之间协作。 在  
e2e.ti.com 中,您可以咨询问题、共享知识、探索思路,在同领域工程师的帮助下解决问题。  
德州仪器 (TI) 嵌入式处理器维基网站 德州仪器 (TI) 嵌入式处理器维基网站。 此网站的建立是为了帮助开发  
人员从德州仪器 (TI) 的嵌入式处理器入门并且也为了促进与这些器件相关的硬件和软件的总体  
知识的创新和增长。  
8.3 商标  
E2E is a trademark of Texas Instruments.  
Cortex is a trademark of ARM Limited.  
ARM is a registered trademark of ARM Limited.  
All other trademarks are the property of their respective owners.  
8.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
8.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
Device and Documentation Support  
147  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
8.6 Device Identification  
8.6.1 Device Identification Code Register  
The device identification code register identifies several aspects of the device including the silicon version.  
The details of the device identification code register are shown in 8-1. The device identification code  
register value for this device is:  
Rev A = 0x802AAD05  
Rev B = 0x802AAD15  
Rev C = 0x802AAD1D  
8-2. Device ID Bit Allocation Register  
31  
CP-15  
R-1  
30  
22  
29  
21  
13  
28  
27  
26  
18  
10  
25  
17  
9
24  
UNIQUE ID  
R-0000000  
23  
20  
19  
16  
TECH  
R-0  
UNIQUE ID  
R-0010101  
15  
14  
12  
11  
8
TECH  
I/O VOLTAGE  
PERIPH  
PARITY  
FLASH ECC  
R-10  
RAM ECC  
R-101  
6
R-0  
4
R-1  
3
R-1  
7
5
2
1
1
0
0
1
VERSION  
R-00000  
R-1  
R-0  
R-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8-1. Device ID Bit Allocation Register Field Descriptions  
Bit  
Field  
Value  
Description  
31  
CP15  
Indicates the presence of coprocessor 15  
CP15 present  
1
30-17  
UNIQUE ID  
10101  
Silicon version (revision) bits.  
This bitfield holds a unique number for a dedicated device configuration (die).  
16-13  
12  
TECH  
Process technology on which the device is manufactured.  
0101  
0
F021  
I/O VOLTAGE  
I/O voltage of the device.  
I/O are 3.3v  
11  
PERIPHERAL  
PARITY  
Peripheral Parity  
1
10  
1
Parity on peripheral memories  
Flash ECC  
10-9  
8
FLASH ECC  
RAM ECC  
Program memory with ECC  
Indicates if RAM memory ECC is present.  
ECC implemented  
7-3  
2-0  
REVISION  
101  
Revision of the Device.  
The platform family ID is always 0b101  
148  
Device and Documentation Support  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
8.6.2 Die Identification Registers  
The four die ID registers at addresses 0xFFFFE1F0, 0xFFFFE1F4, 0xFFFFE1F8 and FFFFE1FC form a  
128-bit dieid with the information as shown in 8-2.  
8-2. Die-ID Registers  
Item  
Number of Bits  
Bit Location  
0xFFFFE1F0[11:0]  
X-coordinate on wafer  
Y-coordinate on wafer  
Wafer number  
Lot number  
12  
12  
8
0xFFFFE1F0[23:12]  
0xFFFFE1F0[31:24]  
24  
72  
0xFFFFE1F4[23:0]  
Reserved  
0xFFFFE1F4[31:24], 0xFFFFE1F8[31:0], 0xFFFFE1FC[31:0]  
版权 © 2013–2015, Texas Instruments Incorporated  
Device and Documentation Support  
149  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
 
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
8.7 Module Certifications  
The following communications modules have received certification of adherence to a standard.  
150  
Device and Documentation Support  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
FlexRay™ Certifications  
8-3. Flexray Certification for GWT Package  
版权 © 2013–2015, Texas Instruments Incorporated  
Device and Documentation Support  
151  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
www.ti.com.cn  
DCAN Certification  
8-4. DCAN Certification  
152  
Device and Documentation Support  
版权 © 2013–2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
TMS570LS3137-EP  
www.ti.com.cn  
ZHCSBS0C OCTOBER 2013REVISED JANUARY 2015  
9 Mechanical, Packaging, and Orderable Information  
9.1 Packaging Information  
The following packaging information reflects the most current released data available for the designated  
device(s). This data is subject to change without notice and without revision of this document.  
版权 © 2013–2015, Texas Instruments Incorporated  
Mechanical, Packaging, and Orderable Information  
153  
提交文档反馈意见  
产品主页链接: TMS570LS3137-EP  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Nov-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
90  
90  
90  
90  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS5703137CGWTMEP  
TMS5703137CGWTQEP  
V62/13629-01XE  
ACTIVE  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
GWT  
337  
337  
337  
337  
Non-RoHS  
& Green  
SNPB  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
-55 to 125  
-40 to 125  
-40 to 125  
-55 to 125  
TMS570  
LS3137CGWTMEP  
ACTIVE  
ACTIVE  
ACTIVE  
GWT  
Non-RoHS  
& Green  
SNPB  
SNPB  
SNPB  
TMS570  
LS3137CGWTQEP  
GWT  
Non-RoHS  
& Green  
TMS570  
LS3137CGWTQEP  
V62/13629-02XE  
GWT  
Non-RoHS  
& Green  
TMS570  
LS3137CGWTMEP  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Nov-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TMS570LS3137-EP :  
Catalog : TMS570LS3137  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
TMS5703137CGWTME  
P
GWT  
NFBGA  
337  
90  
6 X 15  
150  
315 135.9 7620  
20  
17.5 15.45  
TMS5703137CGWTQEP  
V62/13629-01XE  
GWT  
GWT  
GWT  
NFBGA  
NFBGA  
NFBGA  
337  
337  
337  
90  
90  
90  
6 X 15  
6 X 15  
6 X 15  
150  
150  
150  
315 135.9 7620  
315 135.9 7620  
315 135.9 7620  
20  
20  
20  
17.5 15.45  
17.5 15.45  
17.5 15.45  
V62/13629-02XE  
Pack Materials-Page 1  
PACKAGE OUTLINE  
GWT0337A  
NFBGA - 1.4 mm max height  
S
C
A
L
E
1
.
0
0
0
PLASTIC BALL GRID ARRAY  
16.1  
15.9  
A
B
BALL A1  
CORNER  
16.1  
15.9  
0.95  
0.84  
0.23  
0.15  
C
SEATING PLANE  
0.12 C  
1.40  
1.19  
14.4 TYP  
SYMM  
0.45  
0.35  
(0.8)  
W
V
U
T
(0.8)  
R
P
N
M
L
SYMM  
K
14.4 TYP  
J
H
G
F
E
D
C
0.55  
337X  
0.45  
0.15  
0.05  
C A B  
C
B
A
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
0.8 TYP  
0.8 TYP  
4229175/A 11/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
GWT0337A  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
(0.8) TYP  
337X ( 0.4)  
(0.8) TYP  
9
10  
11  
12 13  
14  
15  
16  
17  
18  
19  
7
8
1
2
3
4
5
6
A
B
C
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
U
V
W
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 7X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
EXPOSED METAL  
(
0.4)  
(
0.4)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL EDGE  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4229175/A 11/2022  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
GWT0337A  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
(0.8) TYP  
337X ( 0.4)  
(0.8) TYP  
9
10  
11  
12 13  
14  
15  
16  
17  
18  
19  
7
8
1
2
3
4
5
6
A
B
C
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
U
V
W
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.150 mm THICK STENCIL  
SCALE: 7X  
4229175/A 11/2022  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TMS570LS3137_12

TMS570LS3137 16/32-Bit RISC Flash Microcontroller
TI

TMS570LS31_12

TMS570LS31 HDK User Guide
TI

TMS570_14

Flash options from 256 KB to 4 MB and performance from 80 MHz to 300 MHz
TI

TMS57535A

480CH 64G/S COLOR TFT SOURCE DRIVER
TI

TMS62256L-10DH

IC,SRAM,32KX8,CMOS,SOP,28PIN,PLASTIC
TI

TMS62256L-10NW

IC,SRAM,32KX8,CMOS,DIP,28PIN,PLASTIC
TI

TMS62256L-12DH

IC,SRAM,32KX8,CMOS,SOP,28PIN,PLASTIC
TI

TMS62256L-12NW

IC,SRAM,32KX8,CMOS,DIP,28PIN,PLASTIC
TI

TMS62256L-15DH

IC,SRAM,32KX8,CMOS,SOP,28PIN,PLASTIC
TI

TMS62256L-15NW

IC IC,SRAM,32KX8,CMOS,DIP,28PIN,PLASTIC, Static RAM
TI

TMS62256L-85DH

IC IC,SRAM,32KX8,CMOS,SOP,28PIN,PLASTIC, Static RAM
TI

TMS62256L-85NW

IC,SRAM,32KX8,CMOS,DIP,28PIN,PLASTIC
TI