TMUX1101DBVR [TI]

3pA 导通状态漏电流、5V、1:1 (SPST)、单通道精密开关(高电平有效) | DBV | 5 | -40 to 125;
TMUX1101DBVR
型号: TMUX1101DBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3pA 导通状态漏电流、5V、1:1 (SPST)、单通道精密开关(高电平有效) | DBV | 5 | -40 to 125

开关
文件: 总41页 (文件大小:1187K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMUX1101, TMUX1102  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
TMUX110x 5V、低泄漏电流、1:1 (SPST) 精密开关  
1 特性  
3 说明  
1
宽电源电压范围:1.08V 5.5V  
TMUX1101 TMUX1102 是精密互补金属氧化物半  
导体 (CMOS) 单极单投 (SPST) 开关。1.08V 5.5V  
的宽电源电压工作范围 可支持 医疗设备到工业系统的  
大量应用。这些器件可支持源极 (S) 和漏极 (D) 引脚上  
GND VDD 范围的双向模拟和数字信号。  
低泄漏电流:3pA  
低电荷注入:–1.5pC  
低导通电阻:1.8Ω  
–40°C +125°C 工作温度  
1.8V 逻辑兼容  
逻辑控制输入 (SEL) 具有兼容 1.8V 逻辑电平的阈值。  
当器件在有效电源电压范围内运行时,该阈值可确保  
TTL CMOS 的逻辑兼容性。SEL 为逻辑 1  
时,TMUX1101 的开关打开,而 SEL 为逻辑 0  
时,TMUX1102 打开。失效防护逻辑电路要求先在  
SEL 引脚上施加电压,然后在电源引脚上施加电压,  
从而保护器件免受潜在的损害。  
失效防护逻辑  
轨至轨运行  
双向信号路径  
先断后合开关  
ESD 保护 HBM2000V  
2 应用  
TMUX110x 器件是精密开关和多路复用器器件系列中  
的一部分。这些器件具有非常低的导通和关断泄漏电流  
以及较低的电荷注入,因此可用于高精度测量 应用提  
供了出色的功能性与安全性。  
采样保持电路  
反馈增益开关  
信号隔离  
现场变送器  
3nA 的低电源电流和小型封装选项使其可用于便携式  
应用标准。  
可编程逻辑控制器 (PLC)  
工厂自动化和控制  
超声波扫描仪  
器件信息(1)  
患者监护和诊断  
心电图 (ECG)  
器件型号  
TMUX1101  
封装  
封装尺寸(标称值)  
2.00mm × 1.25mm  
2.90mm x 1.60mm  
SC70 (5) (DCK)  
SOT-23 (5) (DBV)  
TMUX1102  
数据采集系统 (DAQ)  
ATE 测试设备  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
电池测试设备  
仪表:实验室、分析、便携  
智能仪表:水表和燃气表  
光纤网络  
光学测试设备  
TMUX110x 方框图  
TMUX1101  
TMUX1102  
S
D
S
D
SEL  
SEL  
ALL SWITCHES SHOWN FOR A LOGIC 0 INPUT  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SCDS410  
 
 
 
 
 
TMUX1101, TMUX1102  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
目录  
8.7 Bandwidth ............................................................... 19  
Detailed Description ............................................ 20  
9.1 Overview ................................................................. 20  
9.2 Functional Block Diagram ....................................... 20  
9.3 Feature Description................................................. 20  
9.4 Device Functional Modes........................................ 22  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics (VDD = 5 V ±10 %)............ 5  
7.6 Electrical Characteristics (VDD = 3.3 V ±10 %)......... 7  
7.7 Electrical Characteristics (VDD = 1.8 V ±10 %)......... 9  
7.8 Electrical Characteristics (VDD = 1.2 V ±10 %)....... 11  
7.9 Typical Characteristics............................................ 13  
Parameter Measurement Information ................ 16  
8.1 On-resistance.......................................................... 16  
8.2 Off-leakage current ................................................. 16  
8.3 On-leakage current ................................................. 17  
8.4 Transition time......................................................... 17  
8.5 Charge injection ...................................................... 18  
8.6 Off isolation ............................................................. 18  
9
10 Application and Implementation........................ 23  
10.1 Application Information.......................................... 23  
10.2 Typical Application - Sample-and-Hold Circuit .... 23  
10.3 Typical Application - Switched Gain Amplifier ...... 25  
11 Power Supply Recommendations ..................... 27  
12 Layout................................................................... 27  
12.1 Layout Guidelines ................................................. 27  
12.2 Layout Example .................................................... 28  
13 器件和文档支持 ..................................................... 29  
13.1 文档支持................................................................ 29  
13.2 相关链接................................................................ 29  
13.3 接收文档更新通知 ................................................. 29  
13.4 社区资源................................................................ 29  
13.5 ....................................................................... 29  
13.6 静电放电警告......................................................... 29  
13.7 Glossary................................................................ 29  
14 机械、封装和可订购信息....................................... 30  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (July 2019) to Revision B  
Page  
删除了器件信息 表中的产品预览 说明 .................................................................................................................................... 1  
Deleted the Product Preview note from the Device Comparison Table table ........................................................................ 3  
Added DBV (SOT-23) thermal values to Thermal Information ............................................................................................. 4  
Changes from Original (March 2019) to Revision A  
Page  
将文档从预告信息更改为混合状态。 ...................................................................................................................................... 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TMUX1101, TMUX1102  
www.ti.com.cn  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
5 Device Comparison Table  
PRODUCT  
TMUX1101  
TMUX1102  
DESCRIPTION  
Low-Leakage-Current, 1:1 (SPST), Precision Switch (Logic High)  
Low-Leakage-Current, 1:1 (SPST), Precision Switch (Logic Low)  
6 Pin Configuration and Functions  
DCK Package  
5-Pin SC70  
Top View  
DBV Package  
5-Pin SOT-23  
Top View  
D
S
1
2
3
5
VDD  
SEL  
D
S
1
2
3
5
4
VDD  
SEL  
GND  
4
GND  
Not to scale  
Not to scale  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
D
NO.  
1
I/O  
I/O  
P
Drain pin. Can be an input or output.  
Source pin. Can be an input or output.  
Ground (0 V) reference  
S
2
GND  
SEL  
3
4
I
Logic control input. Controls the switch state as shown in Truth Tables.  
Positive power supply. This pin is the most positive power-supply potential. For reliable operation,  
connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
5
P
(1) I = input, O = output, I/O = input and output, P = power  
Copyright © 2019, Texas Instruments Incorporated  
3
TMUX1101, TMUX1102  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1) (2) (3)  
MIN  
–0.5  
–0.5  
–30  
–0.5  
–30  
–65  
MAX  
UNIT  
V
VDD  
Supply voltage  
6
6
VSEL  
Logic control input pin voltage (SEL)  
Logic control input pin current (SEL)  
Source or drain voltage (S, D)  
Source or drain continuous current (S, D)  
Storage temperature  
V
ISEL  
30  
mA  
V
VS or VD  
IS or ID (CONT)  
Tstg  
VDD+0.5  
30  
mA  
°C  
°C  
150  
TJ  
Junction temperature  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(3) All voltages are with respect to ground, unless otherwise specified.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101  
or ANSI/ESDA/JEDEC JS-002, all pins(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.08  
0
NOM  
MAX  
5.5  
UNIT  
VDD  
Supply voltage  
V
V
VS or VD  
VSEL  
TA  
Signal path input/output voltage (source or drain pin) (S, D)  
Logic control input pin voltage (SEL)  
Ambient temperature  
VDD  
5.5  
0
V
–40  
125  
°C  
7.4 Thermal Information  
TMUX1101 / TMUX1102  
THERMAL METRIC(1)  
DCK (SC70)  
DBV (SOT-23)  
5 PINS  
224.9  
UNIT  
5 PINS  
348.5  
238.3  
205.7  
141.4  
204.7  
N/A  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
150.6  
130.0  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
74.8  
ΨJB  
129.3  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2019, Texas Instruments Incorporated  
TMUX1101, TMUX1102  
www.ti.com.cn  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
7.5 Electrical Characteristics (VDD = 5 V ±10 %)  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
1.8  
4
4.5  
4.9  
Ω
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-resistance  
RON  
On-resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Ω
0.85  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-resistance  
RON  
FLAT  
On-resistance flatness  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.6  
1.6  
Ω
Ω
VDD = 5 V  
Switch Off  
VD = 4.5 V / 1.5 V  
VS = 1.5 V / 4.5 V  
Refer to Off-leakage current  
–0.08 ±0.005  
–0.3  
0.08  
0.3  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = 5 V  
Switch Off  
VD = 4.5 V / 1.5 V  
VS = 1.5 V / 4.5 V  
Refer to Off-leakage current  
25°C  
–0.08 ±0.005  
–0.3  
0.08  
0.3  
nA  
nA  
–40°C to +85°C  
ID(OFF) Drain off leakage current(1)  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = 5 V  
Switch On  
VD = VS = 2.5 V  
Refer to On-leakage current  
25°C  
–0.025 ±0.003  
–0.2  
0.025  
0.2  
nA  
nA  
ID(ON)  
–40°C to +85°C  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
–0.95  
0.95  
nA  
VDD = 5 V  
Switch On  
VD = VS = 4.5 V / 1.5 V  
Refer to On-leakage current  
25°C  
–0.1  
±0.01  
0.1  
nA  
nA  
ID(ON)  
–40°C to +85°C  
–0.35  
0.35  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
–2  
2
nA  
LOGIC INPUTS (SEL)  
VIH  
VIL  
Input logic high  
Input logic low  
–40°C to +125°C  
–40°C to +125°C  
1.49  
0
5.5  
V
V
0.87  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.06  
2
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
1
pF  
pF  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.003  
µA  
µA  
IDD VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
1
(1) When VS is 4.5 V, VD is 1.5 V or when VS is 1.5 V, VD is 4.5 V.  
Copyright © 2019, Texas Instruments Incorporated  
5
TMUX1101, TMUX1102  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
Electrical Characteristics (VDD = 5 V ±10 %) (continued)  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
12  
ns  
VS = 3 V  
tTRAN  
Transition time from control input RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
17  
18  
ns  
ns  
Refer to Transition time  
VS = 1 V  
QC  
Charge Injection  
RS = 0 , CL = 1 nF  
Refer to Charge injection  
25°C  
25°C  
–1.5  
–62  
pC  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off isolation  
OISO  
Off Isolation  
Bandwidth  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off isolation  
25°C  
25°C  
–40  
300  
dB  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
6
pF  
pF  
10  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
17  
pF  
6
Copyright © 2019, Texas Instruments Incorporated  
TMUX1101, TMUX1102  
www.ti.com.cn  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
7.6 Electrical Characteristics (VDD = 3.3 V ±10 %)  
at TA = 25°C, VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
3.7  
8.8  
9.5  
9.8  
Ω
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-resistance  
RON  
On-resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Ω
1.9  
2
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-resistance  
RON  
FLAT  
On-resistance flatness  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Ω
2.2  
Ω
VDD = 3.3 V  
Switch Off  
VD = 3 V / 1 V  
–0.05 ±0.001  
–0.2  
0.05  
0.2  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VS = 1 V / 3 V  
Refer to Off-leakage current  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = 3.3 V  
Switch Off  
VD = 3 V / 1 V  
25°C  
–0.05 ±0.001  
–0.2  
0.05  
0.2  
nA  
nA  
–40°C to +85°C  
ID(OFF) Drain off leakage current(1)  
VS = 1 V / 3 V  
Refer to Off-leakage current  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = 3.3 V  
Switch On  
VD = VS = 3 V / 1 V  
Refer to On-leakage current  
25°C  
–0.1 ±0.005  
–0.35  
0.1  
nA  
nA  
ID(ON)  
–40°C to +85°C  
0.35  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
–2  
2
nA  
LOGIC INPUTS (SEL)  
VIH  
VIL  
Input logic high  
Input logic low  
–40°C to +125°C  
–40°C to +125°C  
1.35  
0
5.5  
0.8  
V
V
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
1
pF  
pF  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.002  
µA  
µA  
IDD VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
0.65  
(1) When VS is 3 V, VD is 1 V or when VS is 1 V, VD is 3 V.  
Copyright © 2019, Texas Instruments Incorporated  
7
TMUX1101, TMUX1102  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
Electrical Characteristics (VDD = 3.3 V ±10 %) (continued)  
at TA = 25°C, VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
14  
ns  
VS = 2 V  
tTRAN  
Transition time from control input RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
20  
22  
ns  
ns  
Refer to Transition time  
VS = 1 V  
QC  
Charge Injection  
RS = 0 , CL = 1 nF  
Refer to Charge injection  
25°C  
25°C  
–1.5  
–62  
pC  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off isolation  
OISO  
Off Isolation  
Bandwidth  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off isolation  
25°C  
25°C  
–40  
300  
dB  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
6
pF  
pF  
10  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
17  
pF  
8
Copyright © 2019, Texas Instruments Incorporated  
TMUX1101, TMUX1102  
www.ti.com.cn  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
7.7 Electrical Characteristics (VDD = 1.8 V ±10 %)  
at TA = 25°C, VDD = 1.8 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
40  
Ω
VS = 0 V to VDD  
RON  
On-resistance  
ISD = 10 mA  
Refer to On-resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
80  
80  
Ω
Ω
VDD = 1.98 V  
Switch Off  
VD = 1.62 V / 1 V  
VS = 1 V / 1.62 V  
Refer to Off-leakage current  
–0.05 ±0.001  
–0.2  
0.05  
0.2  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = 1.98 V  
Switch Off  
VD = 1.62 V / 1 V  
VS = 1 V / 1.62 V  
Refer to Off-leakage current  
25°C  
–0.05 ±0.001  
–0.2  
0.05  
0.2  
nA  
nA  
–40°C to +85°C  
ID(OFF) Drain off leakage current(1)  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = 1.98 V  
Switch On  
VD = VS = 1.62 V / 1 V  
Refer to On-leakage current  
25°C  
–0.1 ±0.005  
–0.35  
0.1  
nA  
nA  
ID(ON)  
–40°C to +85°C  
0.35  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
–2  
2
nA  
LOGIC INPUTS (SEL)  
VIH  
VIL  
Input logic high  
Input logic low  
–40°C to +125°C  
–40°C to +125°C  
1.07  
0
5.5  
V
V
0.68  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
1
pF  
pF  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.001  
µA  
µA  
IDD VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
0.45  
(1) When VS is 1.62 V, VD is 1 V or when VS is 1 V, VD is 1.62 V.  
Copyright © 2019, Texas Instruments Incorporated  
9
TMUX1101, TMUX1102  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
Electrical Characteristics (VDD = 1.8 V ±10 %) (continued)  
at TA = 25°C, VDD = 1.8 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
25  
ns  
VS = 1 V  
tTRAN  
Transition time from control input RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
44  
44  
ns  
ns  
Refer to Transition time  
VS = 1 V  
QC  
Charge Injection  
RS = 0 , CL = 1 nF  
Refer to Charge injection  
25°C  
25°C  
–1.5  
–62  
pC  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off isolation  
OISO  
Off Isolation  
Bandwidth  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off isolation  
25°C  
25°C  
–40  
300  
dB  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
6
pF  
pF  
10  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
17  
pF  
10  
Copyright © 2019, Texas Instruments Incorporated  
TMUX1101, TMUX1102  
www.ti.com.cn  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
7.8 Electrical Characteristics (VDD = 1.2 V ±10 %)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
70  
Ω
VS = 0 V to VDD  
RON  
On-resistance  
ISD = 10 mA  
Refer to On-resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
105  
105  
0.05  
0.2  
Ω
Ω
VDD = 1.32 V  
Switch Off  
VD = 1 V / 0.8 V  
VS = 0.8 V / 1 V  
Refer to Off-leakage current  
–0.05 ±0.001  
–0.2  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = 1.32 V  
Switch Off  
VD = 1 V / 0.8 V  
VS = 0.8 V / 1 V  
Refer to Off-leakage current  
25°C  
–0.05 ±0.001  
–0.2  
0.05  
0.2  
nA  
nA  
–40°C to +85°C  
ID(OFF) Drain off leakage current(1)  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = 1.32 V  
Switch On  
VD = VS = 1 V / 0.8 V  
Refer to On-leakage current  
25°C  
–0.1 ±0.005  
–0.35  
0.1  
nA  
nA  
ID(ON)  
–40°C to +85°C  
0.35  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
–2  
2
nA  
LOGIC INPUTS (SEL)  
VIH  
VIL  
Input logic high  
Input logic low  
–40°C to +125°C  
–40°C to +125°C  
0.96  
0
5.5  
V
V
0.36  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
1
pF  
pF  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.001  
µA  
µA  
IDD VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
0.38  
(1) When VS is 1 V, VD is 0.8 V or when VS is 0.8 V, VD is 1 V.  
Copyright © 2019, Texas Instruments Incorporated  
11  
TMUX1101, TMUX1102  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
Electrical Characteristics (VDD = 1.2 V ±10 %) (continued)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
55  
ns  
VS = 1 V  
tTRAN  
Transition time from control input RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
190  
190  
ns  
ns  
Refer to Transition time  
VS = 1 V  
QC  
Charge Injection  
RS = 0 , CL = 1 nF  
Refer to Charge injection  
25°C  
25°C  
–1.5  
–62  
pC  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off isolation  
OISO  
Off Isolation  
Bandwidth  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off isolation  
25°C  
25°C  
–42  
300  
dB  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
6
pF  
pF  
10  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
17  
pF  
12  
版权 © 2019, Texas Instruments Incorporated  
TMUX1101, TMUX1102  
www.ti.com.cn  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
7.9 Typical Characteristics  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
6
5
4.5  
4
VDD = 3 V  
VDD = 3.63 V  
VDD = 4.5 V  
VDD = 5.5 V  
TA = 125°C  
TA = 85°C  
TA = 25°C  
TA = -40°C  
5
4
3
2
1
0
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
1
2
3
4
5
5.5  
0
0
0
1
2
3
4
5
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
D001  
D002  
TA = 25°C  
VDD = 5 V  
1. On-Resistance vs Source or Drain Voltage  
2. On-Resistance vs Temperature  
8
7
6
5
4
3
2
1
0
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = 1.08 V  
TA = 125°C  
TA = 85°C  
TA = 25°C  
TA = -40°C  
VDD = 1.32 V  
VDD = 1.62 V  
VDD = 1.98 V  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
D004  
D003  
TA = 25°C  
VDD = 3.3 V  
4. On-Resistance vs Source or Drain Voltage  
3. On-Resistance vs Temperature  
20  
15  
10  
5
80  
60  
40  
VDD = 1.98 V  
VDD = 3.63 V  
VDD = 1.32 V  
20  
0
0
-5  
-20  
-40  
-60  
-80  
-10  
-15  
-20  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
1
2
3
4
5
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
D005  
D006  
TA = 25°C  
VDD = 5 V  
5. On-Leakage vs Source or Drain Voltage  
6. On-Leakage vs Source or Drain Voltage  
版权 © 2019, Texas Instruments Incorporated  
13  
TMUX1101, TMUX1102  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
1
0.75  
0.5  
2
1.5  
1
IOFF  
ION  
IOFF  
ION  
0.25  
0
0.5  
0
-0.25  
-0.5  
-0.75  
-1  
-0.5  
-1  
-1.5  
-2  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D007  
D008  
VDD = 3.3 V  
VDD = 5 V  
7. Leakage Current vs Temperature  
8. Leakage Current vs Temperature  
500  
400  
300  
200  
100  
0
0.4  
0.3  
0.2  
0.1  
0
VDD = 5 V  
VDD = 5 V  
VDD = 3.3 V  
VDD = 1.8 V  
VDD = 1.2 V  
VDD = 3.3 V  
VDD = 1.8 V  
VDD = 1.2 V  
-0.1  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Temperature (èC)  
Logic Voltage (V)  
D009  
D010  
VSEL = 5.5 V  
9. Supply Current vs Temperature  
TA = 25°C  
10. Supply Current vs Logic Voltage  
20  
8
6
VDD = 3.3 V  
VDD = 5 V  
VDD = 1.2 V  
VDD = 1.8 V  
15  
10  
5
4
2
0
0
-5  
-2  
-4  
-6  
-8  
-10  
-15  
-20  
0
1
2
3
4
5
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
VS - Source Voltage (V)  
Source Voltage (V)  
D011  
D012  
TA = -40°C to 125°C  
TA = –40°C to 125°C  
11. Charge Injection vs Source Voltage  
12. Charge Injection vs Source Voltage  
14  
版权 © 2019, Texas Instruments Incorporated  
 
TMUX1101, TMUX1102  
www.ti.com.cn  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
Typical Characteristics (接下页)  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
10  
0
Transition ON  
Transition OFF  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
100k  
1M  
10M  
100M  
VDD - Supply Voltage (V)  
Frequency (Hz)  
D013  
D014  
TA = -40°C to +125°C  
TA = -40°C to +125°C  
13. Output TTRANSITION vs Supply Voltage  
14. Off-Isolation vs Frequency  
0
-1  
-2  
-3  
-4  
-5  
-6  
1M  
10M  
Frequency (Hz)  
100M  
D015  
TA = -40°C to +125°C  
15. On Response vs Frequency  
版权 © 2019, Texas Instruments Incorporated  
15  
TMUX1101, TMUX1102  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 On-resistance  
The on-resistance of a device is the ohmic resistance between the source (S) and drain (D) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-resistance.  
The measurement setup used to measure RON is shown in 16. Voltage (V) and current (ISD) are measured  
using this setup, and RON is computed with RON = V / ISD  
:
V
ISD  
S
D
VS  
16. On-Resistance measurement setup  
8.2 Off-leakage current  
There are two types of leakage currents associated with a switch during the off state:  
1. Source off-leakage current  
2. Drain off-leakage current  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
.
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID(OFF)  
.
The setup used to measure both off-leakage currents is shown in 17.  
VDD  
VDD  
VDD  
VDD  
IS (OFF)  
A
ID (OFF)  
A
S
D
D
S
VS  
VD  
VD  
VS  
GND  
GND  
17. Off-leakage measurement setup  
16  
版权 © 2019, Texas Instruments Incorporated  
 
 
TMUX1101, TMUX1102  
www.ti.com.cn  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
8.3 On-leakage current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS(ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID(ON)  
.
Either the source pin or drain pin is left floating during the measurement. 18 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VDD  
VDD  
VDD  
IS (ON)  
A
ID (ON)  
S1  
D1  
D1  
S1  
N.C.  
N.C.  
A
VS  
VD  
GND  
GND  
18. On-leakage measurement setup  
8.4 Transition time  
Transition time is defined as the time taken by the output of the device to rise or fall 10% after the address signal  
has risen or fallen past the logic threshold. The 10% transition measurement is utilized to provide the timing of  
the device. System level timing can then account for the time constant added from the load resistance and load  
capacitance. 19 shows the setup used to measure transition time, denoted by the symbol tTRANSITION  
.
VDD  
0.1F  
VDD  
VDD  
ADDRESS  
tf < 5ns  
tr < 5ns  
DRIVE  
(VSEL  
VIH  
)
VIL  
0 V  
OUTPUT  
RL  
S
D
VS  
CL  
tTRANSITION  
tTRANSITION  
90%  
SEL  
OUTPUT  
VSEL  
GND  
10%  
0 V  
19. Transition-time measurement setup  
版权 © 2019, Texas Instruments Incorporated  
17  
 
 
TMUX1101, TMUX1102  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
8.5 Charge injection  
The TMUX110x devices have a transmission-gate topology. Any mismatch in capacitance between the NMOS  
and PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the  
gate signal. The amount of charge injected into the source or drain of the device is known as charge injection,  
and is denoted by the symbol QC. 20 shows the setup used to measure charge injection from source (S) to  
drain (D).  
VDD  
0.1F  
VDD  
VDD  
VSEL  
OUTPUT  
S
D
VOUT  
CL  
VS  
0 V  
Output  
VS  
VOUT  
QC = CL  
×
VOUT  
SEL  
VSEL  
GND  
20. Charge-injection measurement setup  
8.6 Off isolation  
Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the  
source pin (S) of an off-channel. The characteristic impedance, Z0, for the measurement is 50 Ω. 21 shows  
the setup used to measure off isolation. Use off isolation equation to compute off isolation.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
S
D
50Ω  
VSIG  
VOUT  
RL  
50Ω  
GND  
21. Off isolation measurement setup  
«
÷
VOUT  
VS  
Off Isolation = 20 Log  
(1)  
18  
版权 © 2019, Texas Instruments Incorporated  
 
 
TMUX1101, TMUX1102  
www.ti.com.cn  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
8.7 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (S) of an on-channel, and the output is measured at the drain pin (D) of the device. The  
characteristic impedance, Z0, for the measurement is 50 Ω. 22 shows the setup used to measure bandwidth.  
VDD  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
S
D
50Ω  
VSIG  
VOUT  
RL  
50Ω  
GND  
22. Bandwidth measurement setup  
版权 © 2019, Texas Instruments Incorporated  
19  
 
TMUX1101, TMUX1102  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TMUX1101 and TMUX1102 are 1:1 (SPST) switches. The TMUX110x devices have a controllable single-  
pole, single-throw switch that is turned on or off based on the state of the select pin. The switch of the  
TMUX1101 is turned on with a Logic 1 on the select pin, while a Logic 0 is required to turn on switch in the  
TMUX1102. 23 shows the functional block diagram for the TMUX110x devices.  
9.2 Functional Block Diagram  
TMUX1101  
TMUX1102  
S
D
S
D
SEL  
SEL  
ALL SWITCHES SHOWN FOR A LOGIC 0 INPUT  
23. TMUX110x Functional Block Diagram  
9.3 Feature Description  
9.3.1 Bidirectional operation  
The TMUX110x conducts equally well from source (S) to drain (D) or from drain (D) to source (S). Each channel  
has very similar characteristics in both directions and supports both analog and digital signals.  
9.3.2 Rail to rail operation  
The valid signal path input/output voltage for TMUX110x ranges from GND to VDD  
.
9.3.3 1.8 V Logic compatible inputs  
The TMUX110x devices have 1.8-V logic compatible control for all logic control inputs. The logic input thresholds  
scale with supply but still provide 1.8-V logic control when operating at 5.5 V supply voltage. 1.8-V logic level  
inputs allows the TMUX110x devices to interface with processors that have lower logic I/O rails and eliminates  
the need for an external translator, which saves both space and BOM cost. The current consumption of the  
TMUX110x devices increase when using 1.8V logic with higher supply voltage as shown in 10. For more  
information on 1.8 V logic implementations refer to Simplifying Design with 1.8 V logic Muxes and Switches.  
9.3.4 Fail-safe logic  
The TMUX110x supports Fail-Safe Logic on the control input pin (SEL) allowing for operation up to 5.5 V,  
regardless of the state of the supply pin. This feature allows voltages on the control pin to be applied before the  
supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by  
removing the need for power supply sequencing on the logic control pin. For example, the Fail-Safe Logic feature  
allows the select pin of the TMUX110x devices to be ramped to 5.5 V while VDD = 0 V. Additionally, the feature  
enables operation of the TMUX110x with VDD = 1.2 V while allowing the select pin to interface with a logic level  
of another device up to 5.5 V.  
20  
版权 © 2019, Texas Instruments Incorporated  
 
TMUX1101, TMUX1102  
www.ti.com.cn  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
Feature Description (接下页)  
9.3.5 Ultra-low Leakage Current  
The TMUX110x devices provide extremely low on-leakage and off-leakage currents. The TMUX110x devices are  
capable of switching signals from high source-impedance inputs into a high input-impedance op amp with  
minimal offset error because of the ultra-low leakage currents. 24 shows typical leakage currents of the  
TMUX110x devices versus temperature at VDD = 5V.  
2
IOFF  
ION  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
D008  
24. Leakage Current vs Temperature  
9.3.6 Ultra-low Charge Injection  
The TMUX110x devices have a transmission gate topology, as shown in 25. Any mismatch in the stray  
capacitance associated with the NMOS and PMOS causes an output level change whenever the switch is  
opened or closed.  
The TMUX110x devices have special charge-injection cancellation circuitry that reduces the source-to-drain  
charge injection to -1.5 pC at VS = 1 V as shown in 26.  
20  
15  
10  
5
OFF ON  
VDD = 3.3 V  
VDD = 5 V  
CGDN  
CGSN  
0
D
S
-5  
-10  
-15  
-20  
CGSP  
CGDP  
0
1
2
3
4
5
OFF ON  
VS - Source Voltage (V)  
D011  
25. Transmission Gate Topology  
26. Charge Injection vs Source Voltage  
版权 © 2019, Texas Instruments Incorporated  
21  
 
 
 
TMUX1101, TMUX1102  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
9.4 Device Functional Modes  
The TMUX110x devices have a controllable single-pole, single-throw switch that is turned on or turned off based  
on the state of the corresponding select pin. The control pin can be as high as 5.5 V.  
The TMUX110x devices can be operated without any external components except for the supply decoupling  
capacitors. Unused logic control pins should be tied to GND or VDD in order to ensure the device does not  
consume additional current as highlighted in Implications of Slow or Floating CMOS Inputs. Unused signal path  
inputs (Sx or Dx) should be connection to GND.  
9.4.1 Truth Tables  
1 and 2 show the truth tables for the TMUX1101 and TMUX1102 respectively.  
1. TMUX1101 Truth table  
SEL  
0
SWITCH STATE  
OFF (HI-Z)  
ON  
1
2. TMUX1102 Truth table  
SEL  
0
SWITCH STATE  
ON  
1
OFF (HI-Z)  
22  
版权 © 2019, Texas Instruments Incorporated  
 
 
TMUX1101, TMUX1102  
www.ti.com.cn  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The TMUX11xx family offers ulta-low input/output leakage currents and low charge injection. These devices  
operate up to 5.5 V, and offer true rail-to-rail input and output of both analog and digital signals. The TMUX110x  
have a low on-capacitance which allows faster settling time when multiplexing inputs in the time domain. These  
features make the TMUX11xx devices a family of precision, high-performance switches and multiplexers for low-  
voltage applications.  
10.2 Typical Application - Sample-and-Hold Circuit  
One useful application to take advantage of the TMUX1101 and TMUX1102's performance is the sample-and-  
hold circuit. A sample-and-hold circuit can be useful for an analog to digital converter (ADC) to sample a varying  
input voltage with improved reliability and stability. It can also be used to store the output samples from a single  
digital-to-analog converter (DAC) in a multi-output application. A simple sample-and-hold circuit can be realized  
using an analog switch such as the TMUX1101, and TMUX1102 analog switches. 27 shows a single channel  
sample-and hold circuit using either of the TMUX110x devices.  
TMUX110x  
DAC  
+
OP AMP  
+
RL  
VOUT  
CL  
œ
OP AMP  
CH  
SEL  
œ
(1.8V Capable Control Logic)  
27. Single Channel Sample-and-Hold Circuit Example  
An optional op amp is used before the switch since driving large capacitive loads is a typical limitation of buffered  
DACs. The additional buffer stage is included following the DAC to prevent potential stability problems from  
driving a large capacitive load.  
Ideally, the switch delivers only the input signals to the holding capacitors. However, when the switch is toggled,  
some amount of charge is transferred to the switch output in the form of charge injection, resulting in a pedestal  
sampling error. The TMUX1101 and TMUX1102 switches have excellent charge injection performance of only  
-1.5 pC, making them ideal choices for this implementation to minimize sampling error. The pedestal error  
voltage is indirectly related to the size of the capacitance on the output, for better precision a larger capacitor is  
required due to charge injection.  
版权 © 2019, Texas Instruments Incorporated  
23  
 
TMUX1101, TMUX1102  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
Typical Application - Sample-and-Hold Circuit (接下页)  
10.2.1 Design Requirements  
The purpose of this precision design is to implement an optimized single channel sample-and-hold circuit using a  
precision 1:1 (SPST) CMOS switch. The sample-and-hold circuit needs to be capable of supporting high  
accuracy with minimized pedestal error and fast settling time.  
10.2.2 Detailed Design Procedure  
The TMUX1101 or TMUX1102 switch is used in conjunction with the voltage holding capacitors (CH) to  
implement the sample-and-hold circuit. The basic operation is:  
1. When the switch is closed, it samples the input voltage and charges the holding capacitors (CH) to the input  
voltage values.  
2. When the switch is open, the holding capacitors (CH) holds its previous value, maintaining stable voltage at  
the amplifier output (VOUT).  
Due to switch and capacitor leakage current, as well as amplifier bias current, the voltage on the hold capacitors  
droops with time. The TMUX1101 and TMUX1102 minimize the droops due to its ultra-low leakage performance.  
At 25°C, the TMUX1101 and TMUX1102 have extremely low leakage current of 3pA typical.  
Refer to Sample & Hold Glitch Reduction for Precision Outputs Reference Design for more information on  
sample-and-hold circuits.  
10.2.3 Application Curve  
TMUX1101 and TMUX1102 have excellent charge injection performance and ultra-low leakage current, making  
them ideal choices to minimize sampling error for the sample-and-hold application. The charge injection and  
leakage performance are shown in 28 and 29 respectively.  
20  
15  
10  
5
80  
VDD = 3.3 V  
VDD = 5 V  
60  
40  
20  
0
0
-20  
-40  
-60  
-80  
-5  
-10  
-15  
-20  
0
1
2
3
4
5
0
1
2
3
4
5
VS or VD - Source or Drain Voltage (V)  
VS - Source Voltage (V)  
D006  
D011  
VDD = 5 V  
TA = –40°C to +125°C  
28. Charge Injection vs Source Voltage  
29. On-Leakage vs Source or Drain Voltage  
24  
版权 © 2019, Texas Instruments Incorporated  
 
TMUX1101, TMUX1102  
www.ti.com.cn  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
10.3 Typical Application - Switched Gain Amplifier  
Switches and multiplexers are commonly used in the feedback path of amplifier circuits to provide configurable  
gain control. By using various resistor values on the switch path, the TMUX110x allows the system to have  
multiple gain settings. An external resistor ensures the amplifier isn't operating in an open loop configuration. A  
transimpedance amplifier (TIA) for photodiode inputs is a common circuit that requires gain control using a switch  
to convert the output current of the photodiode into a voltage for the MCU or processor. The amount of light  
present during a photodiode measurement is dependent on the time of day and available light source. An  
external switch such as the TMUX110x can be utilized to increase the gain when a smaller photodiode current is  
present. The leakage current, capacitance, and charge injection performance of the TMUX110x are key  
specifications to evaluate when selecting a device for gain control. An example switched gain amplifier circuit is  
shown in 30.  
VI/O  
VDD  
VDD  
0.1µF  
Processor  
1.8V Logic I/O  
SEL  
Digital Processing  
RF_2  
RF_1  
VDD  
VDD  
-
OP  
AMP  
Gain / Filter  
Network  
ADC  
+
30. Configurable Gain Setting of a TIA circuit  
10.3.1 Design Requirements  
For this design example, use the parameters listed in 3.  
3. Design parameters  
PARAMETERS  
Supply (VDD  
VALUES  
3.3 V  
)
Input / Output signal range  
Control logic thresholds  
0 µA to 10 µA  
1.8 V compatible  
版权 © 2019, Texas Instruments Incorporated  
25  
 
 
TMUX1101, TMUX1102  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
10.3.2 Detailed Design Procedure  
The TMUX110x devices can be operated without any external components except for the supply decoupling  
capacitors. All inputs signals passing through the switch must fall within the recommended operating conditions  
of the TMUX110x, including signal range and continuous current. For this design example, with a supply of 3.3 V,  
the signals can range from 0 V to 3.3 V when the device is powered. The max continuous current can be 30 mA.  
Photodiodes commonly have a current output that ranges from a few hundred picoamps to tens of microamps  
based on the amount of light being absorbed. The TMUX110x devices have a typical On-leakage current of less  
than 10 pA, which would lead to an accuracy well within 1% of a full scale 10 µA signal. The low ON and OFF  
capacitance of the TMUX110x improves system stability by minimizing the total capacitance on the output of the  
amplifier. Lower capacitance leads to less overshoot and ringing in the system, which can cause the amplifier  
circuit to become unstable if the phase margin is not at least 45°. Refer to Improve Stability Issues with Low CON  
Multiplexers for more information on calculating the phase margin vs. percent overshoot.  
10.3.3 Application Curve  
The TMUX110x devices are capable of switching signals from high source-impedance inputs into a high input-  
impedance op amp with minimal offset error because of the ultra-low leakage currents.  
20  
15  
10  
VDD = 1.98 V  
VDD = 3.63 V  
VDD = 1.32 V  
5
0
-5  
-10  
-15  
-20  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
VS or VD - Source or Drain Voltage (V)  
D005  
TA = 25°C  
31. On-Leakage vs Source or Drain Voltage  
26  
版权 © 2019, Texas Instruments Incorporated  
TMUX1101, TMUX1102  
www.ti.com.cn  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
11 Power Supply Recommendations  
The TMUX110x devices operate across a wide supply range of 1.08 V to 5.5 V. Do not exceed the absolute  
maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the VDD supply to  
other components. Good power-supply decoupling is important to achieve optimum performance. For improved  
supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF from VDD to ground.  
Place the bypass capacitors as close to the power supply pins of the device as possible using low-impedance  
connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low equivalent series  
resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes. For very sensitive  
systems, or for systems in harsh noise environments, avoiding the use of vias for connecting the capacitors to  
the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers the overall  
inductance and is beneficial for connections to ground planes.  
12 Layout  
12.1 Layout Guidelines  
12.1.1 Layout Information  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners.32 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
1W min.  
W
32. Trace example  
Route high-speed signals using a minimum of vias and corners which reduces signal reflections and  
impedance changes. When a via must be used, increase the clearance size around it to minimize its  
capacitance. Each via introduces discontinuities in the signal’s transmission line and increases the chance of  
picking up interference from the other layers of the board. Be careful when designing test points, through-  
hole pins are not recommended at high frequencies.  
版权 © 2019, Texas Instruments Incorporated  
27  
 
TMUX1101, TMUX1102  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
Layout Guidelines (接下页)  
33 illustrates an example of a PCB layout with the TMUX110x. Some key considerations are:  
Decouple the VDD pin with a 0.1-µF capacitor, placed as close to the pin as possible. Make sure that the  
capacitor voltage rating is sufficient for the VDD supply.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
12.2 Layout Example  
C
Wide (low inductance)  
trace for power  
TMUX110x  
Via to  
GND plane  
33. TMUX110x Layout example  
28  
版权 © 2019, Texas Instruments Incorporated  
 
TMUX1101, TMUX1102  
www.ti.com.cn  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档  
德州仪器 (TI)《通过采样保持减少干扰实现精密输出的参考设计》。  
德州仪器 (TI)《真差分 4 x 2 多路复用器、模拟前端、同步采样 ADC 电路》。  
德州仪器 (TI)《使用低 CON 多路复用器改善稳定性问题》。  
德州仪器 (TI)《使用 1.8V 逻辑多路复用器和开关简化设计》。  
德州仪器 (TI)《利用关断保护信号开关消除电源排序》。  
德州仪器 (TI)《高电压模拟多路复用器的系统级保护》。  
13.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
4. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
TMUX1101  
TMUX1102  
13.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2019, Texas Instruments Incorporated  
29  
TMUX1101, TMUX1102  
ZHCSJG7B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
30  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX1101DBVR  
TMUX1101DCKR  
TMUX1102DBVR  
TMUX1102DCKR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SC70  
DBV  
DCK  
DBV  
DCK  
5
5
5
5
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1W1F  
101  
NIPDAU  
NIPDAU  
NIPDAU  
SOT-23  
SC70  
1W3F  
102  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX1101DBVR  
TMUX1101DCKR  
TMUX1102DBVR  
TMUX1102DCKR  
SOT-23  
SC70  
DBV  
DCK  
DBV  
DCK  
5
5
5
5
3000  
3000  
3000  
3000  
180.0  
178.0  
180.0  
178.0  
8.4  
9.0  
8.4  
9.0  
3.2  
2.4  
3.2  
2.4  
3.2  
2.5  
3.2  
2.5  
1.4  
1.2  
1.4  
1.2  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
SOT-23  
SC70  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMUX1101DBVR  
TMUX1101DCKR  
TMUX1102DBVR  
TMUX1102DCKR  
SOT-23  
SC70  
DBV  
DCK  
DBV  
DCK  
5
5
5
5
3000  
3000  
3000  
3000  
210.0  
180.0  
210.0  
180.0  
185.0  
180.0  
185.0  
180.0  
35.0  
18.0  
35.0  
18.0  
SOT-23  
SC70  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMUX1101DCKR

3pA 导通状态漏电流、5V、1:1 (SPST)、单通道精密开关(高电平有效) | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1102

3pA 导通状态漏电流、5V、1:1 (SPST)、单通道精密开关(低电平有效)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1102DBVR

3pA 导通状态漏电流、5V、1:1 (SPST)、单通道精密开关(低电平有效) | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1102DCKR

3pA 导通状态漏电流、5V、1:1 (SPST)、单通道精密开关(低电平有效) | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1104

3pA 导通状态泄漏电流、5V、4:1、单通道精密多路复用器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1104DGSR

3pA 导通状态泄漏电流、5V、4:1、单通道精密多路复用器 | DGS | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1104DQAR

3pA 导通状态泄漏电流、5V、4:1、单通道精密多路复用器 | DQA | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1108

3pA 导通状态泄漏电流、5V、±2.5V、8:1、单通道精密多路复用器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1108PWR

3pA 导通状态泄漏电流、5V、±2.5V、8:1、单通道精密多路复用器 | PW | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1108RSVR

3pA 导通状态泄漏电流、5V、±2.5V、8:1、单通道精密多路复用器 | RSV | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1109

3pA 导通状态泄漏电流、5V、±2.5V、4:1、2 通道精密多路复用器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1109PWR

3pA 导通状态泄漏电流、5V、±2.5V、4:1、2 通道精密多路复用器 | PW | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI