TMUX1122DGKR [TI]

3pA 导通状态泄漏电流、5V、1:1 (SPST)、2 通道精密开关(低电平有效) | DGK | 8 | -40 to 125;
TMUX1122DGKR
型号: TMUX1122DGKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3pA 导通状态泄漏电流、5V、1:1 (SPST)、2 通道精密开关(低电平有效) | DGK | 8 | -40 to 125

开关
文件: 总38页 (文件大小:1554K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMUX1121, TMUX1122, TMUX1123  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
TMUX112x 5V、低泄漏电流、1:1 (SPST)2 通道精密开关  
1 特性  
3 说明  
1
宽电源电压范围:1.08V 5.5V  
低泄漏电流:3pA  
TMUX1121TMUX1122 TMUX1123 是精密互补  
金属氧化物半导体 (CMOS) 器件,具有两个独立可选  
1:1、单极单投 (SPST) 开关。1.08V 5.5V 的宽电源  
电压工作范围 可支持 医疗设备到工业系统的大量应  
用。该器件可在源极 (Sx) 和漏极 (Dx) 引脚上支持从  
GND VDD 范围的双向模拟和数字信号。  
低电荷注入:–1.5pC  
低导通电阻:1.9Ω  
–40°C +125°C 工作温度  
1.8V 逻辑兼容  
失效防护逻辑  
TMUX1121 的开关可在恰当的逻辑控制输入下通过逻  
1 打开,而要打开 TMUX1122 中的开关,则需逻辑  
0TMUX1123 的两个通道分别支持逻辑 1 和逻辑 0。  
TMUX1123 具有先断后合开关,因此该器件可用于交  
叉点开关 应用。  
轨至轨运行  
双向信号路径  
先断后合开关  
ESD 保护 HBM2000V  
2 应用  
TMUX112x 器件是精密开关和多路复用器器件系列中  
的一部分。这些器件具有非常低的导通和关断泄漏电流  
以及较低的电荷注入,因此可用于高精度测量 应用。  
7nA 的低电源电流和小型封装选项使其可用于便携式  
应用。  
采样保持电路  
反馈增益开关  
信号隔离  
现场变送器  
可编程逻辑控制器 (PLC)  
工厂自动化和控制  
超声波扫描仪  
器件信息(1)  
器件型号  
TMUX1121  
封装  
封装尺寸(标称值)  
TMUX1122  
TMUX1123  
VSSOP (8) (DGK)  
3.00mm × 3.00mm  
患者监护和诊断  
心电图 (ECG)  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
数据采集系统 (DAQ)  
半导体测试设备  
电池测试设备  
SPACER  
空白  
仪表:实验室、分析、便携  
超声波智能仪表:水表和燃气表  
光纤网络  
SPACER  
光学测试设备  
TMUX112x 方框图  
CHANNEL 1  
CHANNEL 1  
CHANNEL 2  
CHANNEL 1  
CHANNEL 2  
S1  
D1  
D2  
S1  
S2  
D1  
D2  
S1  
S2  
D1  
D2  
CHANNEL 2  
S2  
SEL1  
SEL2  
SEL1  
SEL2  
SEL1  
SEL2  
TMUX1121  
TMUX1122  
TMUX1123  
ALL SWITCHES SHOWN FOR A LOGIC 0 INPUT  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SCDS413  
 
 
 
 
TMUX1121, TMUX1122, TMUX1123  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
目录  
8.8 Channel-to-Channel Crosstalk................................ 19  
8.9 Bandwidth ............................................................... 20  
Detailed Description ............................................ 21  
9.1 Overview ................................................................. 21  
9.2 Functional Block Diagram ....................................... 21  
9.3 Feature Description................................................. 21  
9.4 Device Functional Modes........................................ 23  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics (VDD = 5 V ±10 %)............ 5  
7.6 Electrical Characteristics (VDD = 3.3 V ±10 %)......... 7  
7.7 Electrical Characteristics (VDD = 1.8 V ±10 %)......... 9  
7.8 Electrical Characteristics (VDD = 1.2 V ±10 %)....... 11  
7.9 Typical Characteristics............................................ 13  
Parameter Measurement Information ................ 16  
8.1 On-resistance.......................................................... 16  
8.2 Off-leakage current ................................................. 16  
8.3 On-leakage current ................................................. 17  
8.4 Transition time......................................................... 17  
8.5 Break-before-make ................................................. 18  
8.6 Charge injection ...................................................... 18  
8.7 Off isolation ............................................................. 19  
9
10 Application and Implementation........................ 24  
10.1 Application Information.......................................... 24  
10.2 Typical Application - Sample-and-Hold Circuit .... 24  
10.3 Typical Application - Switched Gain Amplifier ..... 26  
11 Power Supply Recommendations ..................... 28  
12 Layout................................................................... 28  
12.1 Layout Guidelines ................................................. 28  
12.2 Layout Example .................................................... 29  
13 器件和文档支持 ..................................................... 30  
13.1 文档支持................................................................ 30  
13.2 相关链接................................................................ 30  
13.3 接收文档更新通知 ................................................. 30  
13.4 社区资源................................................................ 30  
13.5 ....................................................................... 30  
13.6 静电放电警告......................................................... 30  
13.7 Glossary................................................................ 30  
14 机械、封装和可订购信息....................................... 30  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (August 2019) to Revision A  
Page  
将文档从预告信息 更改为生产 数据........................................................................................................................................ 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TMUX1121, TMUX1122, TMUX1123  
www.ti.com.cn  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
5 Device Comparison Table  
PRODUCT  
TMUX1121  
TMUX1122  
DESCRIPTION  
Low-Leakage-Current, 1:1 (SPST), 2-Channel Precision Switches (Active High)  
Low-Leakage-Current, 1:1 (SPST), 2-Channel Precision Switches (Active Low)  
TMUX1123  
Low-Leakage-Current, 1:1 (SPST), 2-Channel Precision Switches (Active High + Active Low)  
6 Pin Configuration and Functions  
DGK Package  
8-Pin VSSOP  
Top View  
S1  
D1  
1
2
3
4
8
7
6
5
V
DD  
SEL1  
D2  
SEL2  
GND  
S2  
Not to scale  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION(2)  
NAME  
S1  
NO.  
1
I/O  
I/O  
I
Source pin 1. Can be an input or output.  
Drain pin 1. Can be an input or output.  
D1  
2
SEL2  
GND  
S2  
3
Logic control select pin 2. Controls channel 2 state as shown in Truth Tables.  
Ground (0 V) reference  
4
P
5
I/O  
I/O  
I
Source pin 2. Can be an input or output.  
D2  
6
Drain pin 2. Can be an input or output.  
SEL1  
7
Logic control select pin 1. Controls channel 1 state as shown in Truth Tables.  
Positive power supply. This pin is the most positive power-supply potential. For reliable operation,  
connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
8
P
(1) I = input, O = output, I/O = input and output, P = power  
(2) Refer to Device Functional Modes for what to do with unused pins  
Copyright © 2019, Texas Instruments Incorporated  
3
TMUX1121, TMUX1122, TMUX1123  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1) (2) (3)  
MIN  
–0.5  
–0.5  
–30  
–0.5  
–30  
–65  
MAX  
UNIT  
V
VDD  
Supply voltage  
6
6
VSEL  
Logic control input pin voltage (SELx)  
Logic control input pin current (SELx)  
Source or drain voltage (Sx, Dx)  
Source or drain continuous current (Sx, Dx)  
Storage temperature  
V
ISEL  
30  
mA  
V
VS or VD  
IS or ID (CONT)  
Tstg  
VDD+0.5  
30  
mA  
°C  
°C  
150  
TJ  
Junction temperature  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(3) All voltages are with respect to ground, unless otherwise specified.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.08  
0
NOM  
MAX  
5.5  
UNIT  
V
VDD  
Positive power supply voltage  
VS or VD  
VSEL  
Signal path input/output voltage (source or drain pins: Sx, Dx)  
Logic control input pin voltage (SELx)  
VDD  
5.5  
V
0
V
IS or ID  
TA  
Signal path continuous current (source or drain pins: Sx, Dx)  
Ambient temperature  
–30  
–40  
30  
mA  
°C  
125  
7.4 Thermal Information  
TMUX1121 / TMUX1122 /  
TMUX1123  
THERMAL METRIC(1)  
UNIT  
DGK (VSSOP)  
8 PINS  
205.5  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
91.7  
127.0  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
25.9  
ΨJB  
125.3  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2019, Texas Instruments Incorporated  
TMUX1121, TMUX1122, TMUX1123  
www.ti.com.cn  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
7.5 Electrical Characteristics (VDD = 5 V ±10 %)  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
1.9  
4
4.5  
4.9  
Ω
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-resistance  
RON  
On-resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Ω
0.13  
0.85  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
0.4  
0.5  
Ω
Ω
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-resistance  
RON  
FLAT  
On-resistance flatness  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.6  
1.6  
Ω
Ω
VDD = 5 V  
Switch Off  
VD = 4.5 V / 1.5 V  
VS = 1.5 V / 4.5 V  
Refer to Off-leakage current  
–0.08 ±0.003  
–0.3  
0.08  
0.3  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = 5 V  
Switch Off  
VD = 4.5 V / 1.5 V  
VS = 1.5 V / 4.5 V  
Refer to Off-leakage current  
25°C  
–0.08 ±0.003  
–0.3  
0.08  
0.3  
nA  
nA  
–40°C to +85°C  
ID(OFF) Drain off leakage current(1)  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = 5 V  
Switch On  
VD = VS = 4.5 V / 1.5 V  
Refer to On-leakage current  
25°C  
–0.1 ±0.003  
–0.35  
0.1  
nA  
nA  
ID(ON)  
–40°C to +85°C  
0.35  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
–2  
2
nA  
LOGIC INPUTS (SELx)  
VIH  
VIL  
Input logic high  
Input logic low  
–40°C to +125°C  
–40°C to +125°C  
1.49  
0
5.5  
V
V
0.87  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
1
pF  
pF  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.007  
µA  
µA  
IDD VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
1
(1) When VS is 4.5 V, VD is 1.5 V or when VS is 1.5 V, VD is 4.5 V.  
Copyright © 2019, Texas Instruments Incorporated  
5
TMUX1121, TMUX1122, TMUX1123  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (VDD = 5 V ±10 %) (continued)  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
12  
ns  
VS = 3 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
17  
18  
ns  
ns  
ns  
ns  
ns  
Refer to Transition time  
8
VS = 3 V  
Break before make time  
tOPEN  
(BBM)  
RL = 200 , CL = 15 pF  
Refer to Break-before-make  
–40°C to +85°C  
–40°C to +125°C  
1
1
(TMUX1123 Only)  
VS = 1 V  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to Charge injection  
25°C  
25°C  
25°C  
–1.5  
–62  
–40  
pC  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off isolation  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Channel-to-Channel  
Crosstalk  
25°C  
–100  
dB  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
25°C  
25°C  
–90  
300  
dB  
Refer to Channel-to-Channel  
Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
6
pF  
pF  
10  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
18  
pF  
6
Copyright © 2019, Texas Instruments Incorporated  
TMUX1121, TMUX1122, TMUX1123  
www.ti.com.cn  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
7.6 Electrical Characteristics (VDD = 3.3 V ±10 %)  
at TA = 25°C, VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
3.7  
8.8  
9.5  
9.8  
Ω
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-resistance  
RON  
On-resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Ω
0.13  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
0.4  
0.5  
Ω
Ω
1.9  
2
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-resistance  
RON  
FLAT  
On-resistance flatness  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Ω
2.2  
Ω
VDD = 3.3 V  
Switch Off  
VD = 3 V / 1 V  
–0.05 ±0.001  
–0.2  
0.05  
0.2  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VS = 1 V / 3 V  
Refer to Off-leakage current  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = 3.3 V  
Switch Off  
VD = 3 V / 1 V  
25°C  
–0.05 ±0.001  
–0.2  
0.05  
0.2  
nA  
nA  
–40°C to +85°C  
ID(OFF) Drain off leakage current(1)  
VS = 1 V / 3 V  
Refer to Off-leakage current  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = 3.3 V  
Switch On  
VD = VS = 3 V / 1 V  
Refer to On-leakage current  
25°C  
–0.1 ±0.003  
–0.35  
0.1  
nA  
nA  
ID(ON)  
–40°C to +85°C  
0.35  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
–2  
2
nA  
LOGIC INPUTS (SELx)  
VIH  
VIL  
Input logic high  
Input logic low  
–40°C to +125°C  
–40°C to +125°C  
1.35  
0
5.5  
0.8  
V
V
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
1
pF  
pF  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.004  
µA  
µA  
IDD VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
1
(1) When VS is 3 V, VD is 1 V or when VS is 1 V, VD is 3 V.  
Copyright © 2019, Texas Instruments Incorporated  
7
TMUX1121, TMUX1122, TMUX1123  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (VDD = 3.3 V ±10 %) (continued)  
at TA = 25°C, VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
14  
ns  
VS = 2 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
20  
22  
ns  
ns  
ns  
ns  
ns  
Refer to Transition time  
9
VS = 2 V  
Break before make time  
tOPEN  
(BBM)  
RL = 200 , CL = 15 pF  
Refer to Break-before-make  
–40°C to +85°C  
–40°C to +125°C  
1
1
(TMUX1123 Only)  
VS = 1 V  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to Charge injection  
25°C  
25°C  
25°C  
–1.5  
–62  
–40  
pC  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off isolation  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Channel-to-Channel  
Crosstalk  
25°C  
–100  
dB  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
25°C  
25°C  
–90  
300  
dB  
Refer to Channel-to-Channel  
Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
6
pF  
pF  
10  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
18  
pF  
8
Copyright © 2019, Texas Instruments Incorporated  
TMUX1121, TMUX1122, TMUX1123  
www.ti.com.cn  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
7.7 Electrical Characteristics (VDD = 1.8 V ±10 %)  
at TA = 25°C, VDD = 1.8 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
40  
Ω
VS = 0 V to VDD  
RON  
On-resistance  
ISD = 10 mA  
Refer to On-resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
80  
80  
Ω
Ω
0.4  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.5  
1.5  
Ω
Ω
VDD = 1.98 V  
Switch Off  
VD = 1.62 V / 1 V  
VS = 1 V / 1.62 V  
Refer to Off-leakage current  
–0.05 ±0.001  
–0.2  
0.05  
0.2  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = 1.98 V  
Switch Off  
VD = 1.62 V / 1 V  
VS = 1 V / 1.62 V  
Refer to Off-leakage current  
25°C  
–0.05 ±0.001  
–0.2  
0.05  
0.2  
nA  
nA  
–40°C to +85°C  
ID(OFF) Drain off leakage current(1)  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = 1.98 V  
Switch On  
VD = VS = 1.62 V / 1 V  
Refer to On-leakage current  
25°C  
–0.1 ±0.003  
–0.35  
0.1  
nA  
nA  
ID(ON)  
–40°C to +85°C  
0.35  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
–2  
2
nA  
LOGIC INPUTS (SELx)  
VIH  
VIL  
Input logic high  
Input logic low  
–40°C to +125°C  
–40°C to +125°C  
1.07  
0
5.5  
V
V
0.68  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
1
pF  
pF  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.001  
µA  
µA  
IDD VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
0.85  
(1) When VS is 1.62 V, VD is 1 V or when VS is 1 V, VD is 1.62 V.  
Copyright © 2019, Texas Instruments Incorporated  
9
TMUX1121, TMUX1122, TMUX1123  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (VDD = 1.8 V ±10 %) (continued)  
at TA = 25°C, VDD = 1.8 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
25  
ns  
VS = 1 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
44  
44  
ns  
ns  
ns  
ns  
ns  
Refer to Transition time  
17  
VS = 1 V  
Break before make time  
tOPEN  
(BBM)  
RL = 200 , CL = 15 pF  
Refer to Break-before-make  
–40°C to +85°C  
–40°C to +125°C  
1
1
(TMUX1123 Only)  
VS = 1 V  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to Charge injection  
25°C  
25°C  
25°C  
–0.5  
–62  
–40  
pC  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off isolation  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Channel-to-Channel  
Crosstalk  
25°C  
–100  
dB  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
25°C  
25°C  
–90  
300  
dB  
Refer to Channel-to-Channel  
Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
6
pF  
pF  
10  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
18  
pF  
10  
Copyright © 2019, Texas Instruments Incorporated  
TMUX1121, TMUX1122, TMUX1123  
www.ti.com.cn  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
7.8 Electrical Characteristics (VDD = 1.2 V ±10 %)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
70  
Ω
VS = 0 V to VDD  
RON  
On-resistance  
ISD = 10 mA  
Refer to On-resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
105  
105  
Ω
Ω
0.4  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.5  
1.5  
Ω
Ω
VDD = 1.32 V  
Switch Off  
VD = 1 V / 0.8 V  
VS = 0.8 V / 1 V  
Refer to Off-leakage current  
–0.05 ±0.001  
–0.2  
0.05  
0.2  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = 1.32 V  
Switch Off  
VD = 1 V / 0.8 V  
VS = 0.8 V / 1 V  
Refer to Off-leakage current  
25°C  
–0.05 ±0.001  
–0.2  
0.05  
0.2  
nA  
nA  
–40°C to +85°C  
ID(OFF) Drain off leakage current(1)  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = 1.32 V  
Switch On  
VD = VS = 1 V / 0.8 V  
Refer to On-leakage current  
25°C  
–0.1 ±0.003  
–0.35  
0.1  
nA  
nA  
ID(ON)  
–40°C to +85°C  
0.35  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
–2  
2
nA  
LOGIC INPUTS (SELx)  
VIH  
VIL  
Input logic high  
Input logic low  
–40°C to +125°C  
–40°C to +125°C  
0.96  
0
5.5  
V
V
0.36  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
1
pF  
pF  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.001  
µA  
µA  
IDD VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
0.7  
(1) When VS is 1 V, VD is 0.8 V or when VS is 0.8 V, VD is 1 V.  
Copyright © 2019, Texas Instruments Incorporated  
11  
TMUX1121, TMUX1122, TMUX1123  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (VDD = 1.2 V ±10 %) (continued)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
55  
ns  
VS = 1 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
190  
190  
ns  
ns  
ns  
ns  
ns  
Refer to Transition time  
28  
VS = 1 V  
Break before make time  
tOPEN  
(BBM)  
RL = 200 , CL = 15 pF  
Refer to Break-before-make  
–40°C to +85°C  
–40°C to +125°C  
1
1
(TMUX1123 Only)  
VS = 1 V  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to Charge injection  
25°C  
25°C  
25°C  
–0.5  
–62  
–40  
pC  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off isolation  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Channel-to-Channel  
Crosstalk  
25°C  
–100  
dB  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
25°C  
25°C  
–90  
300  
dB  
Refer to Channel-to-Channel  
Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
6
pF  
pF  
10  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
18  
pF  
12  
版权 © 2019, Texas Instruments Incorporated  
TMUX1121, TMUX1122, TMUX1123  
www.ti.com.cn  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
7.9 Typical Characteristics  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
6
5
4.5  
4
VDD = 3 V  
VDD = 3.63 V  
VDD = 4.5 V  
TA = 125°C  
TA = 85°C  
TA = 25°C  
TA = -40°C  
5
VDD = 5.5 V  
3.5  
3
4
3
2
1
0
2.5  
2
1.5  
1
0.5  
0
0
1
2
3
4
VS or VD - Source or Drain Voltage (V)  
5
5.5  
0
0
0
1
2
3
VS or VD - Source or Drain Voltage (V)  
4
5
D001  
D002  
TA = 25°C  
VDD = 5 V  
1. On-Resistance vs Source or Drain Voltage  
2. On-Resistance vs Temperature  
8
7
6
5
4
3
2
1
0
80  
70  
60  
50  
40  
30  
20  
10  
0
TA = 125°C  
TA = 85°C  
TA = 25°C  
TA = -40°C  
VDD = 1.08 V  
VDD = 1.32 V  
VDD = 1.62 V  
VDD = 1.98 V  
0
0.5  
1
1.5  
2
2.5  
VS or VD - Source or Drain Voltage (V)  
3
3.5  
0.2 0.4 0.6 0.8 1  
VS or VD - Source or Drain Voltage (V)  
1.2 1.4 1.6 1.8  
2
D003  
D004  
VDD = 3.3 V  
TA = 25°C  
3. On-Resistance vs Temperature  
4. On-Resistance vs Source or Drain Voltage  
20  
15  
10  
5
80  
60  
VDD = 3.63 V  
VDD = 1.98V  
VDD = 1.32V  
VDD = 5 V  
40  
20  
0
0
-5  
-20  
-40  
-60  
-80  
-10  
-15  
-20  
0
0.5  
1
VS or VD - Source or Drain Voltage (V)  
1.5  
2
2.5  
3
3.5  
4
1
VS or VD - Source or Drain Voltage (V)  
2
3
4
5
D005  
D006  
TA = 25°C  
TA = 25°C  
5. On-Leakage vs Source or Drain Voltage  
6. On-Leakage vs Source or Drain Voltage  
版权 © 2019, Texas Instruments Incorporated  
13  
TMUX1121, TMUX1122, TMUX1123  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
1
0.75  
0.5  
2
1.5  
1
IOFF  
ION  
IOFF  
ION  
0.25  
0
0.5  
0
-0.25  
-0.5  
-0.75  
-1  
-0.5  
-1  
-1.5  
-2  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D007  
D008  
VDD = 3.3 V  
VDD = 5 V  
7. Leakage Current vs Temperature  
8. Leakage Current vs Temperature  
0.4  
0.3  
0.2  
0.1  
0
500  
400  
300  
200  
100  
0
VDD = 5 V  
VDD = 5 V  
VDD = 3.3 V  
VDD = 1.8 V  
VDD = 1.2 V  
VDD = 3.3 V  
VDD = 1.8 V  
VDD = 1.2 V  
-0.1  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
0.5  
1
1.5  
2
2.5  
3
Logic Voltage (V)  
3.5  
4
4.5  
5
Temperature (èC)  
D009  
D010  
VSEL = 5.5 V  
9. Supply Current vs Temperature  
TA = 25°C  
10. Supply Current vs Logic Voltage  
20  
8
6
VDD = 3.3 V  
VDD = 5 V  
VDD = 1.2 V  
VDD = 1.8 V  
15  
10  
5
4
2
0
0
-5  
-2  
-4  
-6  
-8  
-10  
-15  
-20  
0
1
2
VS - Source Voltage (V)  
3
4
5
0
0.25  
0.5  
0.75  
1
Source Voltage (V)  
1.25  
1.5  
1.75  
2
D011  
D012  
TA = -40°C to 125°C  
TA = –40°C to 125°C  
11. Charge Injection vs Source Voltage  
12. Charge Injection vs Source Voltage  
14  
版权 © 2019, Texas Instruments Incorporated  
 
TMUX1121, TMUX1122, TMUX1123  
www.ti.com.cn  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
Typical Characteristics (接下页)  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
10  
0
Transition OFF  
Transition ON  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
Off-Isolation  
Crosstalk  
1
1.5  
2
2.5  
3
3.5  
4
VDD - Supply Voltage (V)  
4.5  
5
5.5  
100k  
1M  
10M  
Frequency (Hz)  
100M  
D013  
D014  
TA = -40°C to +125°C  
TA = -40°C to +125°C  
13. Output TTRANSITION vs Supply Voltage  
14. Off-Isolation vs Frequency  
0
-1  
-2  
-3  
-4  
-5  
-6  
1M  
10M  
Frequency (Hz)  
100M  
D015  
TA = -40°C to +125°C  
15. On Response vs Frequency  
版权 © 2019, Texas Instruments Incorporated  
15  
TMUX1121, TMUX1122, TMUX1123  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 On-resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (Dx) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-resistance.  
The measurement setup used to measure RON is shown in 16. Voltage (V) and current (ISD) are measured  
using this setup, and RON is computed with RON = V / ISD  
:
V
ISD  
Sx  
Dx  
VS  
16. On-Resistance measurement setup  
8.2 Off-leakage current  
There are two types of leakage currents associated with a switch during the off state:  
1. Source off-leakage current  
2. Drain off-leakage current  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
.
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID(OFF)  
.
The setup used to measure both off-leakage currents is shown in 17.  
VDD  
VDD  
VDD  
VDD  
IS (OFF)  
A
ID (OFF)  
A
S1  
D1  
D1  
S1  
VS  
VD  
VD  
VS  
IS (OFF)  
A
ID (OFF)  
A
S2  
D2  
D2  
S2  
VS  
VD  
VD  
VS  
GND  
GND  
17. Off-leakage measurement setup  
16  
版权 © 2019, Texas Instruments Incorporated  
 
 
TMUX1121, TMUX1122, TMUX1123  
www.ti.com.cn  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
8.3 On-leakage current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS(ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID(ON)  
.
Either the source pin or drain pin is left floating during the measurement. 18 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VDD  
VDD  
VDD  
IS (ON)  
A
ID (ON)  
S1  
D1  
D1  
S1  
N.C.  
N.C.  
A
VS  
VD  
IS (ON)  
A
ID (ON)  
A
S2  
D2  
D2  
S2  
N.C.  
N.C.  
VS  
VD  
GND  
GND  
18. On-leakage measurement setup  
8.4 Transition time  
Transition time is defined as the time taken by the output of the device to rise or fall 10% after the address signal  
has risen or fallen past the logic threshold. The 10% transition measurement is utilized to provide the timing of  
the device. System level timing can then account for the time constant added from the load resistance and load  
capacitance. 19 shows the setup used to measure transition time, denoted by the symbol tTRANSITION  
.
VDD  
0.1F  
VDD  
VDD  
tf < 5ns  
tr < 5ns  
VSEL  
VIH  
VIL  
OUTPUT  
RL  
S1  
D1  
0 V  
VS  
CL  
tTRANSITION  
tTRANSITION  
OUTPUT  
RL  
S2  
D2  
VS  
90%  
CL  
SEL1 œ SEL2  
OUTPUT  
VSEL  
GND  
10%  
0 V  
19. Transition-time measurement setup  
版权 © 2019, Texas Instruments Incorporated  
17  
 
 
TMUX1121, TMUX1122, TMUX1123  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.5 Break-before-make  
The TMUX1123 has break-before-make delay which allows the device to be used in cross-point switching  
application. The output first breaks from the on-state switch before making the connection with the next on-state  
switch. The time delay between the break and the make is known as break-before-make delay. 20 shows the  
setup used to measure break-before-make delay, denoted by the symbol tOPEN(BBM)  
.
VDD  
0.1F  
VDD  
VDD  
VIH  
VSEL  
VIL  
0 V  
OUTPUT 1  
CL  
S1  
D1  
VS  
90%  
90%  
RL  
Output 2  
0 V  
OUTPUT 2  
CL  
S2  
D2  
VS  
90%  
90%  
Output 1  
tBBM2  
RL  
tBBM1  
SEL1 œ SEL2  
0 V  
VSEL  
GND  
tBBM= min (tBBM1, tBBM2  
)
20. Break-before-make delay measurement setup  
8.6 Charge injection  
The TMUX112x devices have a transmission-gate topology. Any mismatch in capacitance between the NMOS  
and PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the  
gate signal. The amount of charge injected into the source or drain of the device is known as charge injection,  
and is denoted by the symbol QC. 21 shows the setup used to measure charge injection from source (Sx) to  
drain (Dx).  
VDD  
0.1F  
VDD  
VDD  
VSEL  
OUTPUT  
S1  
D1  
VOUT  
CL  
VS  
0 V  
Output  
VS  
OUTPUT  
VOUT  
S2  
D2  
VOUT  
CL  
VS  
QC = CL  
×
VOUT  
SEL1 œ SEL2  
VSEL  
GND  
21. Charge-injection measurement setup  
18  
版权 © 2019, Texas Instruments Incorporated  
 
 
TMUX1121, TMUX1122, TMUX1123  
www.ti.com.cn  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
8.7 Off isolation  
Off isolation is defined as the ratio of the signal at the drain pin (Dx) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. The characteristic impedance, Z0, for the measurement is 50 Ω. 22 shows  
the setup used to measure off isolation. Use off isolation equation to compute off isolation.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
S
D
50Ω  
VSIG  
VOUT  
RL  
50Ω  
SX/DX  
GND  
RL  
50Ω  
22. Off isolation measurement setup  
«
÷
VOUT  
VS  
Off Isolation = 20 Log  
(1)  
8.8 Channel-to-Channel Crosstalk  
Crosstalk is defined as the ratio of the signal at the drain pin (Dx) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. The characteristic impedance, Z0, for the measurement is 50 Ω. 23  
shows the setup used to measure, and the equation used to compute crosstalk.  
VDD  
0.1µF  
NETWORK  
VDD  
ANALYZER  
D1  
D2  
S1  
S2  
VOUT  
RL  
RL  
50Ω  
50Ω  
VS  
RL  
50Ω  
50Ω  
VSIG = 200 mVpp  
VBIAS = VDD / 2  
GND  
23. Channel-to-Channel Crosstalk Measurement Setup  
«
÷
VOUT  
VS  
Channel-to-Channel Crosstalk = 20 Log  
(2)  
19  
版权 © 2019, Texas Instruments Incorporated  
 
 
TMUX1121, TMUX1122, TMUX1123  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.9 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (Dx) of the device. The  
characteristic impedance, Z0, for the measurement is 50 Ω. 24 shows the setup used to measure bandwidth.  
VDD  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
S
D
50Ω  
VSIG  
VOUT  
RL  
50Ω  
GND  
24. Bandwidth measurement setup  
20  
版权 © 2019, Texas Instruments Incorporated  
 
TMUX1121, TMUX1122, TMUX1123  
www.ti.com.cn  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
9 Detailed Description  
9.1 Overview  
The TMUX1121, TMUX1122, and TMUX1123 are 1:1 (SPST), 2-Channel switches. The devices have two  
independently selectable single-pole, single-throw switches that are turned-on or turned-off based on the state of  
the corresponding select pin.  
9.2 Functional Block Diagram  
CHANNEL 1  
CHANNEL 2  
CHANNEL 1  
CHANNEL 2  
CHANNEL 1  
CHANNEL 2  
S1  
S2  
D1  
D2  
S1  
S2  
D1  
D2  
S1  
S2  
D1  
D2  
SEL1  
SEL2  
SEL1  
SEL2  
SEL1  
SEL2  
TMUX1121  
TMUX1122  
TMUX1123  
ALL SWITCHES SHOWN FOR A LOGIC 0 INPUT  
25. TMUX112x Functional Block Diagram  
9.3 Feature Description  
9.3.1 Bidirectional operation  
The TMUX112x conducts equally well from source (Sx) to drain (Dx) or from drain (Dx) to source (Sx). Each  
channel has very similar characteristics in both directions and supports both analog and digital signals.  
9.3.2 Rail to rail operation  
The valid signal path input/output voltage for TMUX112x ranges from GND to VDD  
.
9.3.3 1.8 V Logic compatible inputs  
The TMUX112x devices have 1.8-V logic compatible control for all logic control inputs. The logic input thresholds  
scale with supply but still provide 1.8-V logic control when operating at 5.5 V supply voltage. 1.8-V logic level  
inputs allows the TMUX112x devices to interface with processors that have lower logic I/O rails and eliminates  
the need for an external translator, which saves both space and BOM cost. The current consumption of the  
TMUX112x devices increase when using 1.8V logic with higher supply voltage as shown in 10. For more  
information on 1.8 V logic implementations refer to Simplifying Design with 1.8 V logic Muxes and Switches  
9.3.4 Fail-safe logic  
The TMUX112x supports Fail-Safe Logic on the control input pins (EN, A0, A1) allowing for operation up to 5.5  
V, regardless of the state of the supply pin. This feature allows voltages on the control pins to be applied before  
the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by  
removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic  
feature allows the select pins of the TMUX112x to be ramped to 5.5 V while VDD = 0 V. Additionally, the feature  
enables operation of the TMUX112x with VDD = 1.2 V while allowing the select pins to interface with a logic level  
of another device up to 5.5 V.  
版权 © 2019, Texas Instruments Incorporated  
21  
TMUX1121, TMUX1122, TMUX1123  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
9.3.5 Ultra-low Leakage Current  
The TMUX112x devices provide extremely low on-leakage and off-leakage currents. The TMUX112x devices are  
capable of switching signals from high source-impedance inputs into a high input-impedance op amp with  
minimal offset error because of the ultra-low leakage currents. 26 shows typical leakage currents of the  
TMUX112x devices versus temperature at VDD = 5V.  
2
IOFF  
ION  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
D008  
26. Leakage Current vs Temperature  
9.3.6 Ultra-low Charge Injection  
The TMUX112x devices have a transmission gate topology, as shown in 27. Any mismatch in the stray  
capacitance associated with the NMOS and PMOS causes an output level change whenever the switch is  
opened or closed.  
The TMUX112x devices have special charge-injection cancellation circuitry that reduces the source-to-drain  
charge injection to -1.5 pC at VS = 1 V as shown in 28.  
SPACER  
SPACER  
20  
OFF ON  
VDD = 3.3 V  
VDD = 5 V  
15  
10  
5
CGDN  
CGSN  
0
D
S
-5  
-10  
-15  
-20  
CGSP  
CGDP  
0
1
2
3
VS - Source Voltage (V)  
4
5
OFF ON  
D011  
28. Charge Injection vs Source Voltage  
27. Transmission Gate Topology  
22  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TMUX1121, TMUX1122, TMUX1123  
www.ti.com.cn  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
9.4 Device Functional Modes  
The TMUX112x devices have two independently selectable single-pole, single-throw switches that are turned-on  
or turned-off based on the state of the corresponding select pin. The control pins can be as high as 5.5 V.  
The TMUX112x devices can be operated without any external components except for the supply decoupling  
capacitors. Unused logic control pins should be tied to GND or VDD in order to ensure the device does not  
consume additional current as highlighted in Implications of Slow or Floating CMOS Inputs. Unused signal path  
inputs (Sx or Dx) should be connected to GND.  
9.4.1 Truth Tables  
1, 2, and 3 show the truth tables for the TMUX1121, TMUX1122, and TMUX1123, respectively.  
1. TMUX1121 Truth table(1)  
SEL1  
SEL2  
CHANNEL STATE  
Channel 1 OFF  
Channel 1 ON  
Channel 2 OFF  
Channel 2 ON  
0
1
X
X
0
1
X
X
(1) X denotes don't care.  
2. TMUX1122 Truth table(1)  
SEL1  
SEL2  
CHANNEL STATE  
Channel 1 ON  
Channel 1 OFF  
Channel 2 ON  
Channel 2 OFF  
0
1
X
X
0
1
X
X
(1) X denotes don't care.  
3. TMUX1123 Truth table(1)  
SEL1  
SEL2  
CHANNEL STATE  
Channel 1 OFF  
Channel 1 ON  
Channel 2 ON  
Channel 2 OFF  
0
1
X
X
0
1
X
X
(1) X denotes don't care.  
版权 © 2019, Texas Instruments Incorporated  
23  
 
 
 
TMUX1121, TMUX1122, TMUX1123  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The TMUX11xx family offers ulta-low input/output leakage currents and low charge injection. These devices  
operate up to 5.5 V, and offer true rail-to-rail input and output of both analog and digital signals. The TMUX112x  
have a low on-capacitance which allows faster settling time when multiplexing inputs in the time domain. These  
features make the TMUX11xx devices a family of precision, high-performance switches and multiplexers for low-  
voltage applications.  
10.2 Typical Application - Sample-and-Hold Circuit  
One useful application to take advantage of the TMUX1121, TMUX1122, and TMUX1123 performance is the  
sample-and-hold circuit. A sample-and-hold circuit can be useful for an analog to digital converter (ADC) to  
sample a varying input voltage with improved reliability and stability. It can also be used to store the output  
samples from a single digital-to-analog converter (DAC) in a multi-output application. A simple sample-and-hold  
circuit can be realized using an analog switch such as the TMUX1121, TMUX1122, and TMUX1123 analog  
switches. 29 shows a single channel sample-and hold circuit using only 1 of 2 channels in the TMUX112x  
devices.  
TMUX112x  
DAC  
+
OP AMP  
+
RL  
VOUT  
CL  
œ
OP AMP  
CH  
SEL1  
œ
2 Channels  
(1.8V Capable Control Logic)  
SEL2  
29. Single Channel Sample-and-Hold Circuit Example  
An optional operational amplifier is used before the switch since buffered DACs typically have limitations in  
driving capacitive loads. The additional buffer stage is included following the DAC to prevent potential stability  
problems from driving a large capacitive load.  
Ideally, the switch delivers only the input signals to the holding capacitors. However, when the switch gets  
toggled, some amount of charge also gets transferred to the switch output in the form of charge injection,  
resulting in a pedestal sampling error. The TMUX1121, TMUX1122, and TMUX1123 switches have excellent  
charge injection performance of only -1.5 pC, making them ideal choices for this implementation to minimize  
sampling error. The pedestal error voltage is indirectly related to the size of the capacitance on the output, for  
better precision a larger capacitor is required due to charge injection. Larger capacitance limits the system  
settling time which may not be acceptable in some applications. 30 shows a TMUX112x device configured for  
a 2-channel sample-and-hold circuit with pedestal error compensation.  
24  
版权 © 2019, Texas Instruments Incorporated  
 
TMUX1121, TMUX1122, TMUX1123  
www.ti.com.cn  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
Typical Application - Sample-and-Hold Circuit (接下页)  
5V  
CH  
VDD  
5V  
5V  
œ
SW1  
RL  
5V  
CC  
RC  
VOUT1  
CL  
VIN1  
OPA2192  
DAC9881  
+
SW2  
+
OPA2192  
0V  
œ
SEL1/  
SEL2  
CH  
0V  
TMUX112x  
30. 2-Channel Sample-and-Hold Circuit with Pedestal Error Compensation  
10.2.1 Design Requirements  
The purpose of this precision design is to implement an optimized 2-output sample-and-hold circuit using a 2-  
channel 1:1 (SPST) switch. The sample and hold circuit needs to be capable of supporting high accuracy with  
minimized pedestal error and fast settling time..  
10.2.2 Detailed Design Procedure  
The TMUX1121, TMUX1122, or TMUX1123 switch is used in conjunction with the voltage holding capacitors  
(CH) to implement the sample-and-hold circuit. The basic operation is:  
1. When the switch (SW2) is closed, it samples the input voltage and charges the holding capacitors (CH) to the  
input voltages values.  
2. When the switch (SW2) is open, the holding capacitors (CH) holds its previous value, maintaining stable  
voltage at the amplifier output (VOUT).  
Due to switch and capacitor leakage current, as well as amplifier bias current, the voltage on the hold capacitors  
droops with time. The TMUX1121, TMUX1122, or TMUX1123 minimize the droops due to its ultra-low leakage  
performance. At 25°C, the TMUX1121, TMUX1122, andTMUX1123 have extremely low leakage current at 3 pA  
typical.  
A second switch SW1 is also included to operate in parallel with SW2 to reduce pedestal error during switch  
toggling. Because both switches are driven at the same potential, they act as common-mode signal to the op-  
amp, thereby minimizing the charge injection effects caused by the switch toggling action. Compensation network  
consisting of RC and CC is also added to further reduce the pedestal error, whiling reducing the hold-time glitch  
and improving the settling time of the circuit. Refer to Sample & Hold Glitch Reduction for Precision Outputs  
Reference Design for more information on sample-and-hold circuits.  
版权 © 2019, Texas Instruments Incorporated  
25  
TMUX1121, TMUX1122, TMUX1123  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Application - Sample-and-Hold Circuit (接下页)  
10.2.3 Application Curve  
TMUX1121, TMUX1122, andTMUX1123 have excellent charge injection performance and ultra-low leakage  
current, making them ideal choices to minimize sampling error for the sample and hold application.  
20  
15  
10  
5
80  
VDD = 3.3 V  
VDD = 5 V  
VDD = 5 V  
60  
40  
20  
0
0
-20  
-40  
-60  
-80  
-5  
-10  
-15  
-20  
0
1
2
3
VS or VD - Source or Drain Voltage (V)  
4
5
0
1
2
3
VS - Source Voltage (V)  
4
5
D006  
D011  
VDD= 5 V  
TA = -40°C to +125°C  
31. Charge Injection vs Source Voltage  
32. On-Leakage vs Source or Drain Voltage  
10.3 Typical Application - Switched Gain Amplifier  
Switches and multiplexers are commonly used in the feedback path of amplifier circuits to provide configurable  
gain control. By using various resistor values on each switch path the TMUX112x allows the system to have  
multiple gain settings. An external resistor, or utilizing 1 channel always being closed, ensures the amplifier isn't  
operating in an open loop configuration. A transimpedance amplifier (TIA) for photodiode inputs is a common  
circuit that requires gain control using a multi-channel switch to convert the output current of the photodiode into  
a voltage for the MCU or processor. The leakage current, capacitance, and charge injection performance of the  
TMUX112x are key specifications to evaluate when selecting a device for gain control.  
VI/O  
VDD  
VDD  
0.1µF  
Processor  
SEL1  
SEL2  
1.8V Logic I/O  
RF_1  
RF_2  
Digital Processing  
VDD  
VDD  
-
OP  
Gain / Filter  
Network  
ADC  
AMP  
IPD  
+
33. Switching Gain Settings of a TIA circuit  
26  
版权 © 2019, Texas Instruments Incorporated  
TMUX1121, TMUX1122, TMUX1123  
www.ti.com.cn  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
Typical Application - Switched Gain Amplifier (接下页)  
10.3.1 Design Requirements  
For this design example, use the parameters listed in 4.  
4. Design parameters  
PARAMETERS  
VALUES  
3.3 V  
Supply (VDD  
)
Input / Output signal range  
Control logic thresholds  
0 µA to 10 µA  
1.8 V compatible  
10.3.2 Detailed Design Procedure  
The TMUX112x devices can be operated without any external components except for the supply decoupling  
capacitors. All inputs signals passing through the switch must fall within the recommend operating conditions of  
the TMUX112x including signal range and continuous current. For this design example, with a supply of 3.3 V,  
the signals can range from 0 V to 3.3 V when the device is powered. The max continuous current can be 30 mA.  
Photodiodes commonly have a current output that ranges from a few hundred picoamps to tens of microamps  
based on the amount of light being absorbed. The TMUX112x have a typical On-leakage current of less than 10  
pA which would lead to an accuracy well within 1% of a full scale 10 µA signal. The low ON and OFF  
capacitance of the TMUX112x improves system stability by minimizing the total capacitance on the output of the  
amplifier. Lower capacitance leads to less overshoot and ringing in the system which can cause the amplifier  
circuit to go unstable if the phase margin is not at least 45°. Refer to Improve Stability Issues with Low CON  
Multiplexers for more information on calculating the phase margin vs. percent overshoot.  
10.3.3 Application Curve  
The TMUX1121 is capable of switching signals from high source-impedance inputs into a high input-impedance  
op amp with minimal offset error because of the ultra-low leakage currents.  
20  
VDD = 3.63 V  
VDD = 1.98V  
VDD = 1.32V  
15  
10  
5
0
-5  
-10  
-15  
-20  
0
0.5  
1
1.5  
2
2.5  
3
VS or VD - Source or Drain Voltage (V)  
3.5  
4
D005  
TA = 25°C  
34. On-Leakage vs Source or Drain Voltage  
版权 © 2019, Texas Instruments Incorporated  
27  
 
TMUX1121, TMUX1122, TMUX1123  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
11 Power Supply Recommendations  
The TMUX112x operate across a wide supply range of 1.08 V to 5.5 V. Do not exceed the absolute maximum  
ratings because stresses beyond the listed ratings can cause permanent damage to the devices.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the VDD supply to  
other components. Good power-supply decoupling is important to achieve optimum performance. For improved  
supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF from VDD to ground.  
Place the bypass capacitors as close to the power supply pins of the device as possible using low-impedance  
connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low equivalent series  
resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes. For very sensitive  
systems, or for systems in harsh noise environments, avoiding the use of vias for connecting the capacitors to  
the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers the overall  
inductance and is beneficial for connections to ground planes.  
12 Layout  
12.1 Layout Guidelines  
12.1.1 Layout Information  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance  
of the trace which results in the reflection. Not all PCB traces can be straight, and therefore; some traces must  
turn corners.35 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
1W min.  
W
35. Trace example  
Route high-speed signals using a minimum of vias and corners which reduces signal reflections and  
impedance changes. When a via must be used, increase the clearance size around it to minimize its  
capacitance. Each via introduces discontinuities in the signal’s transmission line and increases the chance of  
picking up interference from the other layers of the board. Be careful when designing test points, through-  
hole pins are not recommended at high frequencies.  
28  
版权 © 2019, Texas Instruments Incorporated  
 
TMUX1121, TMUX1122, TMUX1123  
www.ti.com.cn  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
Layout Guidelines (接下页)  
36 illustrates an example of a PCB layout with the TMUX112x. Some key considerations are:  
Decouple the VDD pin with a 0.1-µF capacitor, placed as close to the pin as possible. Make sure that the  
capacitor voltage rating is sufficient for the VDD supply.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
12.2 Layout Example  
C
Wide (low inductance)  
trace for power  
S1  
D1  
1
2
8
7
6
5
VDD  
SEL1  
D2  
TMUX112x  
SEL2 3  
GND 4  
Via to  
GND plane  
S2  
Not to scale  
36. TMUX112x Layout example  
版权 © 2019, Texas Instruments Incorporated  
29  
 
TMUX1121, TMUX1122, TMUX1123  
ZHCSK59A AUGUST 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档  
德州仪器 (TI)《通过采样保持减少干扰实现精密输出的参考设计》。  
德州仪器 (TI)《真差分 4 x 2 多路复用器、模拟前端、同步采样 ADC 电路》。  
德州仪器 (TI)《使用低 CON 多路复用器改善稳定性问题》。  
德州仪器 (TI)《使用 1.8V 逻辑多路复用器和开关简化设计》。  
德州仪器 (TI)《利用关断保护信号开关消除电源排序》。  
德州仪器 (TI)《高电压模拟多路复用器的系统级保护》。  
13.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
5. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
单击此处  
TMUX1121  
TMUX1122  
TMUX1123  
13.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.4 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.5 商标  
E2E is a trademark of Texas Instruments.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
30  
版权 © 2019, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2019 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX1121DGKR  
TMUX1122DGKR  
TMUX1123DGKR  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
DGK  
DGK  
DGK  
8
8
8
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAUAG  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
121  
122  
123  
NIPDAUAG  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX1121DGKR  
TMUX1122DGKR  
TMUX1123DGKR  
VSSOP  
VSSOP  
VSSOP  
DGK  
DGK  
DGK  
8
8
8
2500  
2500  
2500  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
3.4  
3.4  
3.4  
1.4  
1.4  
1.4  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMUX1121DGKR  
TMUX1122DGKR  
TMUX1123DGKR  
VSSOP  
VSSOP  
VSSOP  
DGK  
DGK  
DGK  
8
8
8
2500  
2500  
2500  
364.0  
364.0  
364.0  
364.0  
364.0  
364.0  
27.0  
27.0  
27.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TMUX1123

5V、低泄漏电流、1:1 (SPST) 2 通道精密开关(1 个高电平有效,1 个低电平有效)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1123DGKR

5V、低泄漏电流、1:1 (SPST) 2 通道精密开关(1 个高电平有效,1 个低电平有效) | DGK | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1133

3pA 导通状态泄漏电流、低泄漏电流、2:1 (SPDT)、3 通道精密开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1133PWR

3pA 导通状态泄漏电流、低泄漏电流、2:1 (SPDT)、3 通道精密开关 | PW | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1134

3pA 导通状态泄漏电流、2:1 (SPDT)、4 通道精密模拟开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1134PWR

3pA 导通状态泄漏电流、2:1 (SPDT)、4 通道精密模拟开关 | PW | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1136

3pA 导通状态泄漏电流、5V、2:1、2 通道精密模拟开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1136DGSR

3pA 导通状态泄漏电流、5V、2:1、2 通道精密模拟开关 | DGS | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1136DQAR

3pA 导通状态泄漏电流、5V、2:1、2 通道精密模拟开关 | DQA | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1204

5V、4:1、单通道通用模拟多路复用器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1204DGSR

5V、4:1、单通道通用模拟多路复用器 | DGS | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1204DQAR

5V、4:1、单通道通用模拟多路复用器 | DQA | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI