TMUX1248DCKR [TI]

具有 3157 引脚排列的 3Ω 低 RON、5V、2:1 (SPDT) 通用开关 | DCK | 6 | -40 to 125;
TMUX1248DCKR
型号: TMUX1248DCKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 3157 引脚排列的 3Ω 低 RON、5V、2:1 (SPDT) 通用开关 | DCK | 6 | -40 to 125

开关 通用开关 光电二极管
文件: 总29页 (文件大小:1438K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMUX1248  
ZHCSNX2 JULY 2021  
TMUX1248 1.8V 逻辑RON5V2:1 (SPDT) 通用开关  
1 特性  
3 说明  
轨至轨运行  
双向信号路径  
1.8V 逻辑电平  
失效防护逻辑  
控制输入过压容差5.5V  
• 低导通电阻3Ω  
• 宽电源电压范围1.08V 5.5V  
• 工作温度范围-40°C +125°C  
• 低电源电流7nA  
TMUX1248 是一种通用 2:1 单极双投 (SPDT) 开关,  
1.08V 5.5V 的宽工作范围。此器件在源极 (Sx)  
和漏(D) 引脚上支持GND VDD 的双向模拟和数  
字信号。选择引脚 (SEL) 的状态决定连接到漏极引脚  
的源极引脚。此外TMUX1248 具有 7nA 的低电源电  
这使器件能够在许多手持设备或低功耗应用中使  
用。  
先断后合开关操作可防止同时启用两个源极引脚。此功  
能通过防止源极信号在开关事件期间短路增加了系统  
的稳健性。  
• 先断后合开关  
2 应用  
所有逻辑输入都具有兼容 1.8V 逻辑的阈值允许使用  
低压逻辑信号进行操作。失效防护逻辑电路允许先在控  
制引脚上施加电压然后在电源引脚上施加电压或在  
电压高于电源引脚最高为 5.5V时施加电压从而  
保护器件免受潜在的损害。  
• 模拟和数字开关  
I2C SPI 总线多路复用  
机架式服务器  
网络接口(NIC)  
条形码扫描仪  
楼宇自动化  
模拟输入模块  
电机驱动器  
视频监控  
器件信息(1)  
封装尺寸标称值)  
器件型号  
TMUX1248  
封装  
SC70 (6)  
2.00mm × 1.25mm  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
电子销售终端  
台式机  
电器  
空白  
空白  
TMUX1248  
Input  
R
R
S1  
S2  
Output  
S1  
S2  
Unity Gain  
Inverting  
D
D
TLV9001  
1.8 V  
SEL  
SEL  
TMUX1248  
应用示例  
TMUX1248 方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCDS447  
 
 
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
Table of Contents  
7.5 Break-Before-Make...................................................17  
7.6 Charge Injection........................................................17  
7.7 Off Isolation...............................................................18  
7.8 Crosstalk...................................................................18  
7.9 Bandwidth................................................................. 19  
8 Detailed Description......................................................19  
8.1 Overview...................................................................19  
8.2 Functional Block Diagram.........................................19  
8.3 Feature Description...................................................19  
8.4 Device Functional Modes..........................................20  
8.5 Truth Tables.............................................................. 20  
9 Power Supply Recommendations................................22  
10 Layout...........................................................................23  
10.1 Layout Guidelines................................................... 23  
10.2 Layout Example...................................................... 23  
11 Device and Documentation Support..........................24  
11.1 Documentation Support.......................................... 24  
11.2 接收文档更新通知................................................... 24  
11.3 支持资源..................................................................24  
11.4 Trademarks............................................................. 24  
11.5 Electrostatic Discharge Caution..............................24  
11.6 术语表..................................................................... 24  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................4  
6.5 Electrical Characteristics (VDD = 5 V ±10 %),  
GND = 0 V unless otherwise specified. ........................6  
6.6 Electrical Characteristics (VDD = 3.3 V ±10 %),  
GND = 0 V unless otherwise specified. ........................8  
6.7 Electrical Characteristics (VDD = 1.8 V ±10 %),  
GND = 0 V unless otherwise specified. ......................10  
6.8 Electrical Characteristics (VDD = 1.2 V ±10 %),  
GND = 0 V unless otherwise specified. ......................12  
6.9 Typical Characteristics..............................................14  
7 Parameter Measurement Information..........................15  
7.1 On-Resistance.......................................................... 15  
7.2 Off-Leakage Current................................................. 15  
7.3 On-Leakage Current................................................. 16  
7.4 Transition Time......................................................... 16  
Information.................................................................... 24  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
July 2021  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMUX1248  
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
S2  
GND  
S1  
1
2
3
6
5
4
SEL  
VDD  
D
Not to scale  
5-1. DCK Package 6-Pin SC70 Top View  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION(2)  
NAME  
D
NO.  
4
I/O  
P
Drain pin. Can be an input or output.  
Ground (0 V) reference.  
GND  
S1  
2
3
I/O  
I/O  
I
Source pin 1. Can be an input or output.  
Source pin 2. Can be an input or output.  
Select pin: controls state of the switch according to 8-1.  
S2  
1
SEL  
6
Positive power supply. This pin is the most positive power-supply potential. For reliable operation, connect  
a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
5
P
(1) I = input, O = output, I/O = input and output, P = power.  
(2) Refer to 8.4 for what to do with unused pins.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMUX1248  
 
 
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2) (3)  
MIN  
0.5  
0.5  
30  
0.5  
50  
30  
65  
MAX  
UNIT  
V
VDD  
Supply voltage  
6
6
VSEL or VEN  
ISEL or IEN  
VS or VD  
IS or ID (CONT)  
IK  
Logic control input pin voltage (SEL)  
Logic control input pin current (SEL)  
Source or drain voltage (Sx, D)  
Source or drain continuous current (Sx, D)  
Diode clamp current(4)  
V
30  
mA  
V
VDD+0.5  
50  
mA  
mA  
°C  
°C  
30  
Tstg  
Storage temperature  
150  
150  
TJ  
Junction temperature  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(3) All voltages are with respect to ground, unless otherwise specified.  
(4) Pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum ratings.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.08  
0
NOM  
MAX  
5.5  
UNIT  
V
VDD  
Supply voltage  
VS or VD  
VSEL  
TA  
Signal path input/output voltage (source or drain pin) (Sx, D)  
Logic control input pin voltage (SEL)  
Ambient temperature  
VDD  
5.5  
V
0
V
125  
70  
°C  
40  
tr,tf  
Logic input pin rise and fall time  
ns/V  
6.4 Thermal Information  
TMUX1248  
THERMAL METRIC(1)  
DCK (SC70)  
6 PINS  
243.6  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
180.9  
106.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
89.1  
106.0  
ΨJB  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMUX1248  
 
 
 
 
 
 
 
 
 
 
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
6.4 Thermal Information (continued)  
TMUX1248  
DCK (SC70)  
6 PINS  
THERMAL METRIC(1)  
UNIT  
RθJC(bot)  
Junction-to-case (bottom) thermal resistance  
N/A  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMUX1248  
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (VDD = 5 V ±10 %), GND = 0 V unless otherwise specified.  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
3
Ω
VS = 0 V to VDD  
ISD = 10 mA  
5
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
Ω
6
Ω
0.15  
Ω
On-resistance matching between  
channels  
VS = 0 V to VDD  
ISD = 10 mA  
1
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
Ω
1
Ω
1.5  
2
Ω
Ω
RON  
VS = 0 V to VDD  
ISD = 10 mA  
On-resistance flatness  
40°C to +85°C  
40°C to +125°C  
25°C  
FLAT  
3
Ω
±75  
nA  
VDD = 5 V  
Switch Off  
VD = 4.5 V / 1.5 V  
VS = 1.5 V / 4.5 V  
IS(OFF) Source off leakage current(1)  
40°C to +85°C  
40°C to +125°C  
25°C  
150  
175  
150  
175  
nA  
nA  
nA  
nA  
nA  
±200  
VDD = 5 V  
Switch On  
VD = VS = 4.5 V / 1 V  
ID(ON)  
500  
750  
Channel on leakage current  
IS(ON)  
40°C to +85°C  
40°C to +125°C  
500  
750  
LOGIC INPUTS  
VIH  
VIL  
Input logic high  
Input logic low  
-40°C to 125°C  
-40°C to 125°C  
1.42  
0
5.5  
V
V
0.87  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
1
µA  
µA  
IIH  
IIL  
±0.05  
2
40°C to +125°C  
CIN  
CIN  
Digital input capacitance  
Digital input capacitance  
25°C  
pF  
pF  
40°C to +125°C  
POWER SUPPLY  
25°C  
0.007  
µA  
µA  
IDD VDD supply current  
Digital Inputs = 0 V or 5.5 V  
1.5  
40°C to +125°C  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMUX1248  
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (VDD = 5 V ±10 %), GND = 0 V unless otherwise specified.  
(continued)  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
12  
ns  
VS = 3 V  
RL = 200 , CL = 15 pF  
18  
19  
ns  
ns  
ns  
ns  
ns  
tTRAN  
Switching time between channels  
40°C to +85°C  
40°C to +125°C  
25°C  
8
VS = 3 V  
RL = 200 , CL = 15 pF  
tOPEN  
1
1
Break before make time  
Charge Injection  
40°C to +85°C  
40°C to +125°C  
(BBM)  
VS = VDD /2  
RS = 0 , CL = 1 nF  
QC  
25°C  
25°C  
25°C  
25°C  
25°C  
pC  
dB  
dB  
dB  
dB  
10  
65  
45  
65  
45  
RL = 50 , CL = 5 pF  
f = 1 MHz  
OISO  
Off Isolation  
RL = 50 , CL = 5 pF  
f = 10 MHz  
RL = 50 , CL = 5 pF  
f = 1 MHz  
XTALK  
BW  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Bandwidth  
25°C  
25°C  
250  
7
MHz  
pF  
RL = 50 , CL = 5 pF  
CSOFF Source off capacitance  
f = 1 MHz  
CSON  
On capacitance  
CDON  
f = 1 MHz  
25°C  
23  
pF  
(1) When VS is 4.5 V, VD is 1.5 V or when VS is 1.5 V, VD is 4.5 V.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMUX1248  
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
6.6 Electrical Characteristics (VDD = 3.3 V ±10 %), GND = 0 V unless otherwise specified.  
at TA = 25°C, VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
4.5  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
12.5  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
Ω
13  
Ω
0.15  
Ω
On-resistance matching between  
channels  
VS = 0 V to VDD  
ISD = 10 mA  
1
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
Ω
1
Ω
3.5  
4
Ω
Ω
RON  
VS = 0 V to VDD  
ISD = 10 mA  
On-resistance flatness  
40°C to +85°C  
40°C to +125°C  
25°C  
FLAT  
5
Ω
±75  
nA  
VDD = 3.3 V  
Switch Off  
VD = 3 V / 1 V  
VS = 1 V / 3 V  
IS(OFF) Source off leakage current(1)  
40°C to +85°C  
40°C to +125°C  
25°C  
150  
175  
150  
175  
nA  
nA  
nA  
nA  
nA  
±200  
VDD = 3.3 V  
Switch On  
VD = VS = 3 V / 1 V  
ID(ON)  
500  
750  
Channel on leakage current  
IS(ON)  
40°C to +85°C  
40°C to +125°C  
500  
750  
LOGIC INPUTS  
VIH  
VIL  
Input logic high  
Input logic low  
-40°C to 125°C  
-40°C to 125°C  
1.3  
0
5.5  
0.8  
V
V
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
1
µA  
µA  
IIH  
IIL  
±0.05  
2
40°C to +125°C  
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
pF  
pF  
40°C to +125°C  
POWER SUPPLY  
25°C  
0.004  
µA  
µA  
IDD VDD supply current  
Digital Inputs = 0 V or 5.5 V  
0.8  
40°C to +125°C  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMUX1248  
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
6.6 Electrical Characteristics (VDD = 3.3 V ±10 %), GND = 0 V unless otherwise specified.  
(continued)  
at TA = 25°C, VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
14  
ns  
VS = 2 V  
RL = 200 , CL = 15 pF  
20  
22  
ns  
ns  
ns  
ns  
ns  
tTRAN  
Switching time between channels  
40°C to +85°C  
40°C to +125°C  
25°C  
8
VS = 2 V  
RL = 200 , CL = 15 pF  
tOPEN  
1
1
Break before make time  
Charge Injection  
40°C to +85°C  
40°C to +125°C  
(BBM)  
VS = VDD/2  
RS = 0 , CL = 1 nF  
QC  
25°C  
25°C  
25°C  
25°C  
25°C  
pC  
dB  
dB  
dB  
dB  
6  
65  
45  
65  
45  
RL = 50 , CL = 5 pF  
f = 1 MHz  
OISO  
Off Isolation  
RL = 50 , CL = 5 pF  
f = 10 MHz  
RL = 50 , CL = 5 pF  
f = 1 MHz  
XTALK  
BW  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Bandwidth  
25°C  
25°C  
250  
7
MHz  
pF  
RL = 50 , CL = 5 pF  
CSOFF Source off capacitance  
f = 1 MHz  
CSON  
On capacitance  
CDON  
f = 1 MHz  
25°C  
23  
pF  
(1) When VS is 3 V, VD is 1 V or when VS is 1 V, VD is 3 V.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMUX1248  
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
6.7 Electrical Characteristics (VDD = 1.8 V ±10 %), GND = 0 V unless otherwise specified.  
at TA = 25°C, VDD = 1.8 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
40  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
80  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
Ω
80  
Ω
0.4  
Ω
On-resistance matching between  
channels  
VS = 0 V to VDD  
ISD = 10 mA  
1.5  
40°C to +85°C  
40°C to +125°C  
ΔRON  
Ω
1.5  
Ω
RON  
VS = 0 V to VDD  
ISD = 10 mA  
On-resistance flatness  
25°C  
35  
Ω
FLAT  
25°C  
±75  
nA  
VDD = 1.98 V  
Switch Off  
VD = 1.8 V / 1 V  
VS = 1 V / 1.8 V  
IS(OFF) Source off leakage current(1)  
40°C to +85°C  
40°C to +125°C  
25°C  
150  
175  
150  
175  
nA  
nA  
nA  
nA  
nA  
±200  
VDD = 1.98 V  
Switch On  
VD = VS = 1.62 V / 1 V  
ID(ON)  
500  
750  
Channel on leakage current  
IS(ON)  
40°C to +85°C  
40°C to +125°C  
500  
750  
DIGITAL INPUTS  
VIH  
VIL  
Input logic high  
Input logic low  
1.07  
0
5.5  
V
V
40°C to +125°C  
40°C to +125°C  
0.68  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
1
µA  
µA  
IIH  
IIL  
±0.05  
2
40°C to +125°C  
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
pF  
pF  
40°C to +125°C  
POWER SUPPLY  
25°C  
0.002  
µA  
µA  
IDD VDD supply current  
Logic Inputs = 0 V or 5.5 V  
0.52  
40°C to +125°C  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMUX1248  
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
6.7 Electrical Characteristics (VDD = 1.8 V ±10 %), GND = 0 V unless otherwise specified.  
(continued)  
at TA = 25°C, VDD = 1.8 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
24  
ns  
VS = 1 V  
RL = 200 , CL = 15 pF  
44  
45  
ns  
ns  
ns  
ns  
ns  
tTRAN  
Switching time between channels  
40°C to +85°C  
40°C to +125°C  
25°C  
16  
VS = 1 V  
RL = 200 , CL = 15 pF  
tOPEN  
1
1
Break before make time  
Charge Injection  
40°C to +85°C  
40°C to +125°C  
(BBM)  
VS = VDD/2  
RS = 0 , CL = 1 nF  
QC  
25°C  
25°C  
25°C  
25°C  
25°C  
pC  
dB  
dB  
dB  
dB  
3  
65  
45  
65  
45  
RL = 50 , CL = 5 pF  
f = 1 MHz  
OISO  
Off Isolation  
RL = 50 , CL = 5 pF  
f = 10 MHz  
RL = 50 , CL = 5 pF  
f = 1 MHz  
XTALK  
BW  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Bandwidth  
25°C  
25°C  
250  
7
MHz  
pF  
RL = 50 , CL = 5 pF  
CSOFF Source off capacitance  
f = 1 MHz  
CSON  
On capacitance  
CDON  
f = 1 MHz  
25°C  
23  
pF  
(1) When VS is 1.8 V, VD is 1 V or when VS is 1 V, VD is 1.8 V.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMUX1248  
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
6.8 Electrical Characteristics (VDD = 1.2 V ±10 %), GND = 0 V unless otherwise specified.  
at TA = 25°C, VDD = 1.2 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
70  
Ω
VS = 0 V to VDD  
IDS = 10 mA  
105  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
Ω
105  
Ω
0.4  
Ω
On-resistance matching between  
channels  
VS = 0 V to VDD  
IDS = 10 mA  
1.5  
40°C to +85°C  
40°C to +125°C  
ΔRON  
Ω
1.5  
Ω
RON  
VS = 0 V to VDD  
IDS = 10 mA  
On-resistance flatness  
25°C  
65  
Ω
FLAT  
25°C  
±75  
nA  
VDD = 1.32 V  
Switch Off  
VD = 1.2 V / 1 V  
VS = 1 V / 1.2 V  
IS(OFF) Source off leakage current(1)  
40°C to +85°C  
40°C to +125°C  
25°C  
150  
175  
150  
175  
nA  
nA  
nA  
nA  
nA  
±200  
VDD = 1.32 V  
Switch On  
VD = VS = 1 V / 0.8 V  
ID(ON)  
500  
750  
Channel on leakage current  
IS(ON)  
40°C to +85°C  
40°C to +125°C  
500  
750  
DIGITAL INPUTS  
VIH  
VIL  
Input logic high  
Input logic low  
0.96  
V
V
40°C to +125°C  
40°C to +125°C  
0.36  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
1
µA  
µA  
IIH  
IIL  
±0.10  
2
40°C to +125°C  
CIN  
CIN  
Digital input capacitance  
Digital input capacitance  
25°C  
pF  
pF  
40°C to +125°C  
POWER SUPPLY  
25°C  
0.0015  
µA  
µA  
IDD VDD supply current  
Digital Inputs = 0 V or 5.5 V  
0.45  
40°C to +125°C  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMUX1248  
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
6.8 Electrical Characteristics (VDD = 1.2 V ±10 %), GND = 0 V unless otherwise specified.  
(continued)  
at TA = 25°C, VDD = 1.2 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
40  
ns  
VIN = VDD  
VS = 1 V  
RL = 200 , CL = 15 pF  
175  
175  
ns  
ns  
ns  
ns  
ns  
tTRAN  
Switching time between channels  
40°C to +85°C  
40°C to +125°C  
25°C  
27  
VS = 1 V  
RL = 200 , CL = 15 pF  
tOPEN  
1
1
Break before make time  
Charge Injection  
40°C to +85°C  
40°C to +125°C  
(BBM)  
VS = (VDD + VSS)/2  
RS = 0 , CL = 1 nF  
QC  
25°C  
25°C  
25°C  
25°C  
25°C  
±5  
64  
44  
64  
44  
pC  
dB  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
OISO  
Off Isolation  
RL = 50 , CL = 5 pF  
f = 10 MHz  
RL = 50 , CL = 5 pF  
f = 1 MHz  
XTALK  
BW  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Bandwidth  
25°C  
25°C  
250  
7
MHz  
pF  
RL = 50 , CL = 5 pF  
CSOFF Source off capacitance  
f = 1 MHz  
CSON  
On capacitance  
CDON  
f = 1 MHz  
25°C  
23  
pF  
(1) When VS is 1 V, VD is 1.2 V or when VS is 1.2 V, VD is 1 V.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMUX1248  
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
6.9 Typical Characteristics  
At TA = 25°C, VDD = 5 V (unless otherwise noted).  
80  
10  
8
VDD = 1.08V  
60  
TA = 125èC  
TA = 85èC  
6
40  
VDD = 1.62 V  
4
20  
2
VDD = 3 V  
VDD = 4.5 V  
TA = 25èC  
TA = -40èC  
0
0
0
0.5  
1
1.5  
Source or Drain Voltage (V)  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
Source or Drain Voltage (V)  
1.5  
2
2.5  
3
D001  
D002  
TA = 25°C  
VDD = 3 V  
6-1. On-Resistance vs Source or Drain Voltage  
6-2. On-Resistance vs Source or Drain Voltage  
500  
30  
25  
400  
300  
200  
20  
Rising  
15  
Falling  
10  
VDD = 3.3 V  
VDD = 5 V  
100  
0
5
0
0
0.5  
1
1.5  
2
2.5  
3
Logic Voltage (V)  
3.5  
4
4.5  
5
0.5  
1.5  
2.5 3.5  
VDD - Supply Voltage (V)  
4.5  
5.5  
D003  
D004  
TA = 25°C  
TA = 25°C  
6-3. Supply Current vs Logic Voltage  
6-4. Ttransition vs Supply Voltage  
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
100k  
1M  
10M  
Frequency (Hz)  
100M  
D005  
1M  
10M  
Frequency (Hz)  
100M  
D006  
TA = 25°C  
TA = 25°C  
6-5. Crosstalk and Off-Isolation vs Frequency  
6-6. Frequency Response  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMUX1248  
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 On-Resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-  
resistance. The measurement setup used to measure RON is shown in 7-1. Voltage (V) and current (ISD) are  
measured using this setup, and RON is computed with RON = V / ISD  
:
V
ISD  
Sx  
D
VS  
7-1. On-Resistance Measurement Setup  
7.2 Off-Leakage Current  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
.
The setup used to measure off-leakage current is shown in 7-2.  
VDD  
VDD  
Is (OFF)  
S1  
A
D
S2  
VS  
VD  
GND  
7-2. Off-Leakage Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMUX1248  
 
 
 
 
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
7.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS(ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID(ON)  
.
Either the source pin or drain pin is left floating during the measurement. 7-3 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VDD  
VDD  
VDD  
IS (ON)  
S1  
S2  
S1  
S2  
ID (ON)  
N.C.  
A
D
D
A
N.C.  
Vs  
VS  
VS  
VD  
GND  
GND  
7-3. On-Leakage Measurement Setup  
7.4 Transition Time  
Transition time is defined as the time taken by the output of the device to rise or fall 10% after the logic control  
signal has risen or fallen past the logic threshold. The 10% transition measurement is utilized to provide the  
timing of the device. System level timing can then account for the time constant added from the load resistance  
and load capacitance. 7-4 shows the setup used to measure transition time, denoted by the symbol  
tTRANSITION  
.
VDD  
0.1F  
VDD  
VDD  
Logic  
Control  
tf < 5ns  
tr < 5ns  
VIH  
(VSEL  
)
VIL  
S1  
S2  
VS  
OUTPUT  
0 V  
D
RL  
CL  
tTRANSITION  
tTRANSITION  
SEL  
90%  
OUTPUT  
VSEL  
10%  
GND  
0 V  
7-4. Transition-Time Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMUX1248  
 
 
 
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
7.5 Break-Before-Make  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is  
switching. The output first breaks from the on-state switch before making the connection with the next on-state  
switch. The time delay between the break and the make is known as break-before-make delay. 7-5 shows the  
setup used to measure break-before-make delay, denoted by the symbol tOPEN(BBM)  
.
VDD  
0.1F  
VDD  
VDD  
Logic  
Control  
S1  
S2  
tr < 5ns  
tf < 5ns  
VS  
OUTPUT  
D
(VSEL  
)
0 V  
RL  
CL  
90%  
Output  
SEL  
tBBM  
1
tBBM 2  
0 V  
VSEL  
tOPEN (BBM) = min ( tBBM 1, tBBM 2)  
GND  
7-5. Break-Before-Make Delay Measurement Setup  
7.6 Charge Injection  
The TMUX1248 has a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS  
transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal.  
The amount of charge injected into the source or drain of the device is known as charge injection, and is  
denoted by the symbol QC. 7-6 shows the setup used to measure charge injection from Drain (D) to Source  
(Sx).  
VDD  
VSS  
0.1F  
0.1F  
VSS  
VDD  
VDD  
VSEL  
S2  
N.C.  
D
VD  
OUTPUT  
S1  
VOUT  
0 V  
CL  
Output  
VOUT  
SEL  
VS  
QC = CL  
×
VOUT  
VSEL  
GND  
7-6. Charge-Injection Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMUX1248  
 
 
 
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
7.7 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. 7-7 shows the setup used to measure, and the equation used to calculate  
off isolation.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
50Q  
S
VSIG  
D
VOUT  
RL  
SX  
50Q  
GND  
RL  
50Q  
7-7. Off Isolation Measurement Setup  
«
÷
VOUT  
VS  
Off Isolation = 20 Log  
7.8 Crosstalk  
(1)  
Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. 7-8 shows the setup used to measure, and the equation used to  
calculate crosstalk.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
S1  
VOUT  
RL  
D
50Q  
VS  
RL  
S2  
50Q  
50Q  
VSIG  
GND  
7-8. Crosstalk Measurement Setup  
«
÷
VOUT  
VS  
Channel-to-Channel Crosstalk = 20 Log  
(2)  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMUX1248  
 
 
 
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
7.9 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device. 7-9  
shows the setup used to measure bandwidth.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
S
50Q  
VSIG  
D
VOUT  
RL  
50Q  
SX  
GND  
RL  
50Q  
7-9. Bandwidth Measurement Setup  
8 Detailed Description  
8.1 Overview  
The TMUX1248 is a 2:1 (SPDT), 1-channel switch where the input is controlled with a single select (SEL) control  
pin.  
8.2 Functional Block Diagram  
TMUX1248  
S1  
D
S2  
SEL  
8-1. TMUX1248 Functional Block Diagram  
8.3 Feature Description  
8.3.1 Bidirectional Operation  
The TMUX1248 conducts equally well from source (Sx) to drain (D) or from drain (D) to source (Sx). The device  
has very similar characteristics in both directions and supports both analog and digital signals.  
8.3.2 Rail to Rail Operation  
The valid signal path input/output voltage for TMUX1248 ranges from GND to VDD  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMUX1248  
 
 
 
 
 
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
8.3.3 1.8 V Logic Compatible Inputs  
The TMUX1248 has 1.8 V logic compatible control for the logic control input (SEL). The logic input threshold  
scales with supply but still provides 1.8 V logic control when operating at 5.5 V supply voltage. 1.8 V logic level  
inputs allow the TMUX1248 to interface with processors that have lower logic I/O rails and eliminates the need  
for an external translator, which saves both space and BOM cost. For more information on 1.8 V logic  
implementations refer to Simplifying Design with 1.8 V logic Muxes and Switches.  
8.3.4 Fail-Safe Logic  
The TMUX1248 supports Fail-Safe Logic on the control input pin (SEL) allowing for operation up to 5.5 V,  
regardless of the state of the supply pin. This feature allows voltages on the control pin to be applied before the  
supply pin, or allows higher voltages on the SEL pin up to 5.5 V, protecting the device from potential damage.  
Fail-Safe Logic minimizes system complexity by removing the need for power supply sequencing on the logic  
control pin. For example, the Fail-Safe Logic feature allows the select pin of the TMUX1248 to be ramped to 5.5  
V while VDD = 0 V. Additionally, the feature enables operation of the TMUX1248 with VDD = 1.2 V while allowing  
the select pin to interface with a logic level of another device up to 5.5 V.  
8.4 Device Functional Modes  
The select (SEL) pin of the TMUX1248 controls which switch is connected to the drain of the device. When a  
given input is not selected, that source pin is in high impedance mode (HI-Z). The control pins can be as high as  
5.5 V.  
The TMUX1248 can be operated without any external components except for the supply decoupling capacitors.  
Unused logic control pins should be tied to GND or VDD in order to ensure the device does not consume  
additional current as highlighted in Implications of Slow or Floating CMOS Inputs. Unused signal path inputs (Sx  
or D) should be connected to GND.  
8.5 Truth Tables  
8-1. TMUX1248 Truth Table  
CONTROL  
Selected Source (Sx) Connected To Drain (D) Pin  
LOGIC (SEL)  
0
1
S1  
S2  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMUX1248  
 
 
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TMUX12xx family offers good system performance across a wide operating supply (1.08 V to 5.5 V). These  
devices include 1.8 V logic compatible control input pins that enable operation in systems with 1.8 V I/O rails.  
Additionally, the control input pin supports Fail-Safe Logic which allows for operation up to 5.5 V, regardless of  
the state of the supply pin. This protection stops the logic pins from back-powering the supply rail. These  
features of the TMUX12xx, a family of general purpose multiplexers and switches, reduce system complexity,  
board size, and overall system cost.  
9.2 Typical Application  
9.2.1 Switchable Operational Amplifier Gain Setting  
Another example application of the TMUX1248 is to change an Op Amp from unity gain setting to an inverting  
amplifier configuration. Utilizing a switch allows a system to have a configurable gain and allows the same  
architecture to be utilized across the board for various inputs to the system. 9-1 shows the TMUX1248  
configured for gain setting application.  
Input  
R
R
Output  
S1  
S2  
Unity Gain  
Inverting  
D
TLV9001  
1.8 V  
SEL  
TMUX1248  
9-1. Switchable Op Amp Gain Setting  
9.2.1.1 Design Requirements  
This design example uses the parameters listed in 9-1.  
9-1. Design Parameters  
PARAMETERS  
VALUES  
0 V to 2.75 V  
Input Signal  
Mux Supply (VDD  
)
2.75 V  
Op Amp Supply (V+/ V-)  
Mux I/O signal range  
Control logic thresholds  
±2.75 V  
0 V to VDD (Rail to Rail)  
1.8 V compatible (up to 5.5 V)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMUX1248  
 
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
9.2.1.2 Detailed Design Procedure  
The application shown in 9-1 demonstrates how to use a single control input and toggle between gain settings  
of -1 and +1. If switching between inverting and unity gain is not required, the TMUX1248 can be utilized in the  
feedback path to select different feedback resistors and provide scalable gain settings for configurable signal  
conditioning.  
The TMUX1248 can be operated without any external components except for the supply decoupling capacitors.  
The select pin is recommended to have a pull-down or pull-up resistor to ensure the input is in a known state if  
the control signal becomes disconnected. All inputs to the switch must fall within the recommend operating  
conditions of the TMUX1248 including signal range and continuous current. For this design with a supply of 2.75  
V the signal range can be 0 V to 2.75 V and the max continuous current can be 50 mA.  
9.2.1.3 Application Curve  
80  
VDD = 1.08V  
60  
40  
VDD = 1.62 V  
20  
VDD = 3 V  
VDD = 4.5 V  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Source or Drain Voltage (V)  
4
4.5  
5
D001  
TA = 25°C  
9-2. On-Resistance vs Source or Drain Voltage  
9 Power Supply Recommendations  
The TMUX1248 operates across a wide supply range of 1.08 V to 5.5 V. Do not exceed the absolute maximum  
ratings because stresses beyond the listed ratings can cause permanent damage to the devices.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the VDD supply  
to other components. Good power-supply decoupling is important to achieve optimum performance. For  
improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF from VDD to  
ground. Place the bypass capacitors as close to the power supply pins of the device as possible using low-  
impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low  
equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes.  
For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting  
the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers  
the overall inductance and is beneficial for connections to ground planes.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMUX1248  
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
10.1.1 Layout Information  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection primarily occurs because the  
width of the trace changes. At the apex of the turn, the trace width increases to 1.414 times its width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and selfinductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners. 10-1 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
2W  
1W min.  
W
10-1. Trace Example  
Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance  
changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via  
introduces discontinuities in the signals transmission line and increases the chance of picking up interference  
from the other layers of the board. Be careful when designing test points, through-hole pins are not  
recommended at high frequencies.  
10-2 illustrates an example of a PCB layout with the TMUX1248. Some key considerations are:  
Decouple the VDD pin with a 0.1-µF capacitor, placed as close to the pin as possible. Make sure that the  
capacitor voltage rating is sufficient for the VDD supply.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
10.2 Layout Example  
Via to  
GND plane  
TMUX1248  
Wide (low inductance)  
trace for power  
C
10-2. TMUX1248 Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMUX1248  
 
 
 
 
 
TMUX1248  
ZHCSNX2 JULY 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Improve Stability Issues with Low CON Multiplexers application brief  
Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches application brief  
Texas Instruments, Eliminate Power Sequencing with Powered-off Protection Signal Switches application  
brief  
Texas Instruments, System-Level Protection for High-Voltage Analog Multiplexers application reports  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMUX1248  
 
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX1248DCKR  
ACTIVE  
SC70  
DCK  
6
3000 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
-40 to 125  
248  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMUX13

TMUX13xx 5-V, Bidirectional 8:1, 1-Channel and 4:1, 2-Channel Multiplexers with Injection Current Control
TI

TMUX1308

具有 1.8V 逻辑电平控制的 5V、8:1、单通道通用多路复用器
TI

TMUX1308-Q1

具有注入电流控制和 1.8V 逻辑电平的汽车类 5V、8:1、单通道多路复用器
TI

TMUX1308-Q1_V02

TMUX13xx-Q1 5-V, Bidirectional 8:1, 1-Channel and 4:1, 2-Channel Multiplexers with Injection Current Control
TI

TMUX1308-Q1_V03

TMUX13xx-Q1 5-V, Bidirectional 8:1, 1-Channel and 4:1, 2-Channel Multiplexers with Injection Current Control
TI

TMUX1308BQBR

TMUX13xx 5-V, Bidirectional 8:1, 1-Channel and 4:1, 2-Channel Multiplexers with Injection Current Control
TI

TMUX1308DYYR

具有 1.8V 逻辑电平控制的 5V、8:1、单通道通用多路复用器 | DYY | 16 | -40 to 125
TI

TMUX1308PWR

具有 1.8V 逻辑电平控制的 5V、8:1、单通道通用多路复用器 | PW | 16 | -40 to 125
TI

TMUX1308QBQBRQ1

TMUX13xx-Q1 5-V, Bidirectional 8:1, 1-Channel and 4:1, 2-Channel Multiplexers with Injection Current Control
TI

TMUX1308QDYYRQ1

TMUX13xx-Q1 5-V, Bidirectional 8:1, 1-Channel and 4:1, 2-Channel Multiplexers with Injection Current Control
TI

TMUX1308QPWRQ1

TMUX13xx-Q1 5-V, Bidirectional 8:1, 1-Channel and 4:1, 2-Channel Multiplexers with Injection Current Control
TI

TMUX1308_V01

TMUX13xx 5-V, Bidirectional 8:1, 1-Channel and 4:1, 2-Channel Multiplexers with Injection Current Control
TI