TMUX7201 [TI]

具有 1.8V 逻辑电平和闩锁效应抑制的 44V、1:1 (SPST) 单通道精密开关(高电平有效);
TMUX7201
型号: TMUX7201
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1.8V 逻辑电平和闩锁效应抑制的 44V、1:1 (SPST) 单通道精密开关(高电平有效)

开关
文件: 总35页 (文件大小:1601K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
TMUX720x 具有闩锁效应抑制1.8V 逻辑电平44VRON1:1 (SPST)、单  
通道精密开关  
1 特性  
3 说明  
闩锁效应抑制  
TMUX720x 是一款具有闩锁效应抑制特性的互补金属  
氧化物半导体 (CMOS) 开关采用单通道 1:1 (SPST)  
配置。此器件在单电源4.5 V 44 V、双电源  
±4.5 V ±22 V或非对称电源例如 VDD = 12  
VVSS = 5 V供电时均能正常运行。TMUX720x  
可在源极 (S) 和漏极 (D) 引脚上支持从 VSS VDD 的  
双向模拟和数字信号。  
• 双电源电压范围±4.5 V ±22 V  
• 单电源电压范围4.5 V 44 V  
• 低导通电阻1.2Ω  
• 低电荷注入-10 pC  
• –40°C +125°C 工作温度  
逻辑引脚上带有集成下拉电阻器  
1.8V 逻辑电平  
失效防护逻辑  
可以通过控制 SEL 引脚来启用或禁用 TMUX720x。当  
禁用时两个信号路径开关都被关闭。所有逻辑控制输  
入均支持 1.8V VDD 的逻辑电平当器件在有效电源  
电压范围内运行时TTL CMOS 逻辑兼容。失  
效防护逻辑电路允许先在控制引脚上施加电压然后在  
电源引脚上施加电压从而保护器件免受潜在的损害。  
轨到轨运行  
双向信号路径  
• 先断后合开关  
2 应用  
光纤网络  
光学测试设备  
有线网络  
工厂自动化和工业控制  
可编程逻辑控制(PLC)  
半导体测试  
TMUX72xx 系列具有闩锁效应抑制特性可防止器件  
内寄生结构之间通常由过压事件引起的大电流不良事  
件。闩锁状态通常会一直持续到电源轨关闭为止并可  
能导致器件故障。闩锁效应抑制特性使得 TMUX72xx  
系列开关和多路复用器能够在恶劣的环境中使用。  
封装信息(1)  
超声波扫描仪  
患者监护和诊断  
远程无线电单元  
数据采集系统  
封装尺寸标称值)  
器件型号  
TMUX7202  
封装  
DGKVSSOP83.00mm × 3.00mm  
RQXWQFN83.00mm × 2.00mm  
TMUX7201  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
VDD VSS  
VDD  
VSS  
SW  
SW  
D
D
S
S
SEL  
SEL  
TMUX7201  
TMUX7202  
(SELx = Logic 1)  
(SELx = Logic 1)  
方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCDS443  
 
 
 
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
Table of Contents  
7.6 Propagation Delay.................................................... 21  
7.7 Charge Injection........................................................22  
7.8 Off Isolation...............................................................22  
7.9 Bandwidth................................................................. 23  
7.10 THD + Noise........................................................... 23  
7.11 Power Supply Rejection Ratio (PSRR)................... 24  
8 Detailed Description......................................................24  
8.1 Overview...................................................................24  
8.2 Functional Block Diagram.........................................24  
8.3 Feature Description...................................................25  
8.4 Device Functional Modes..........................................27  
8.5 Truth Tables.............................................................. 27  
9 Application and Implementation..................................28  
9.1 Application Information............................................. 28  
9.2 Typical Applications.................................................. 28  
9.3 Power Supply Recommendations.............................30  
9.4 Layout....................................................................... 30  
10 Device and Documentation Support..........................32  
10.1 Documentation Support.......................................... 32  
10.2 接收文档更新通知................................................... 32  
10.3 支持资源..................................................................32  
10.4 Trademarks.............................................................32  
10.5 静电放电警告.......................................................... 32  
10.6 术语表..................................................................... 32  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Thermal Information....................................................5  
6.4 Recommended Operating Conditions.........................5  
6.5 Source or Drain Continuous Current...........................5  
6.6 ±15 V Dual Supply: Electrical Characteristics ............6  
6.7 ±15 V Dual Supply: Switching Characteristics ...........7  
6.8 ±20 V Dual Supply: Electrical Characteristics.............8  
6.9 ±20 V Dual Supply: Switching Characteristics............9  
6.10 44 V Single Supply: Electrical Characteristics ....... 10  
6.11 44 V Single Supply: Switching Characteristics .......11  
6.12 12 V Single Supply: Electrical Characteristics ....... 12  
6.13 12 V Single Supply: Switching Characteristics ...... 13  
6.14 Typical Characteristics............................................14  
7 Parameter Measurement Information..........................19  
7.1 On-Resistance.......................................................... 19  
7.2 Off-Leakage Current................................................. 19  
7.3 On-Leakage Current................................................. 20  
7.4 tON and tOFF Time......................................................20  
7.5 tON (VDD) Time............................................................21  
Information.................................................................... 32  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (October 2022) to Revision A (March 2023)  
Page  
• 将数据表的状态从预告信息 更改为量产数据 .....................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS443  
2
Submit Document Feedback  
Product Folder Links: TMUX7201 TMUX7202  
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
S
NC  
1
2
3
4
8
7
6
5
D
S
NC  
1
2
3
4
8
7
6
5
D
VSS  
SEL  
NC  
VSS  
SEL  
NC  
Thermal  
Pad  
GND  
VDD  
GND  
VDD  
Not to scale  
Not to scale  
5-2. RQX Package, 8-Pin WSON (Top View)  
5-1. DGK Package, 8-Pin VSSOP (Top View)  
5-1. Pin Functions  
PIN  
DGK  
1
TYPE(1)  
DESCRIPTION(2)  
NAME  
S
RQX  
1
2
3
I/O  
NC  
P
Source pin. Can be an input or output.  
NC  
2
No connection. Not internally connected.  
Ground (0 V) reference  
GND  
3
Positive power supply. This pin is the most positive power-supply potential. For reliable  
operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and  
GND.  
VDD  
4
4
P
NC  
5
6
5
6
NC  
I
No connection. Not internally connected.  
Logic control input, has internal Pull-Down resistor. For information about the switch  
connection controls, see 8.5.  
SEL  
Negative power supply. This pin is the most negative power-supply potential. In single-supply  
applications, this pin can be connected to ground. For reliable operation, connect a decoupling  
capacitor ranging from 0.1 µF to 10 µF between VSS and GND.  
VSS  
7
8
7
8
P
D
I/O  
Drain pin. Can be an input or output.  
The thermal pad is not connected internally. No requirement to solder this pad, if connected it  
is recommended that the pad be left floating or tied to GND  
Thermal Pad  
(1) I = input, O = output, I/O = input or output, P = power, NC = no connection.  
(2) For what to do with unused pins, refer to 8.4.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMUX7201 TMUX7202  
English Data Sheet: SCDS443  
 
 
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
MAX  
UNIT  
V
48  
VDD VSS  
VDD  
Supply voltage  
48  
V
0.5  
48  
VSS  
0.5  
V
VSEL or VEN  
ISEL or IEN  
VS or VD  
IIK  
Logic control input pin voltage (SELx)  
Logic control input pin current (SELx)  
Source or drain voltage (Sx, Dx)  
Diode clamp current(3)  
48  
V
0.5  
30  
VDD+0.5  
30  
mA  
V
30  
VSS0.5  
30  
mA  
mA  
°C  
°C  
°C  
IS or ID (CONT)  
TA  
Source or drain continuous current (Sx, Dx)  
Ambient temperature  
IDC + 10 %(4)  
150  
55  
65  
Tstg  
Storage temperature  
150  
TJ  
Junction temperature  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Absolute Maximum Ratings. If used  
outside the Absolute Maximum Ratings but within the Absolute Maximum Ratings, the device may not be fully functional, and this may  
affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltages are with respect to ground, unless otherwise specified.  
(3) Pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum ratings.  
(4) Refer to Source or Drain Continuous Current table for IDC specifications.  
6.2 ESD Ratings  
VALUE  
UNIT  
TMUX720x  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC JS-002, all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS443  
4
Submit Document Feedback  
Product Folder Links: TMUX7201 TMUX7202  
 
 
 
 
 
 
 
 
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
6.3 Thermal Information  
TMUX720x  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
152.1  
48.4  
RQX (WQFN)  
8 PINS  
62.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
54.0  
73.2  
31.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
4.1  
0.8  
ΨJT  
71.8  
30.9  
ΨJB  
RθJC(bot)  
N/A  
23.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
4.5  
VSS  
0
NOM  
MAX  
44  
UNIT  
V
(1)  
Power supply voltage differential  
VDD VSS  
VDD  
Positive power supply voltage  
44  
V
VS or VD  
VSEL or VEN  
Signal path input/output voltage (source or drain pin) (Sx, D)  
Address or enable pin voltage  
VDD  
44  
V
V
(2)  
IS or ID (CONT) Source or drain continuous current (Sx, D)  
TA Ambient temperature  
IDC  
mA  
°C  
125  
40  
(1) VDD and VSS can be any value as long as 4.5 V (VDD VSS) 44 V, and the minimum VDD is met.  
(2) Refer to Source or Drain Continuous Current table for IDC specifications.  
6.5 Source or Drain Continuous Current  
at supply voltage of VDD ± 10%, VSS ± 10 % (unless otherwise noted)  
(2)  
CONTINUOUS CURRENT PER CHANNEL (IDC  
PACKAGE TEST CONDITIONS  
+44 V Dual Supply(1)  
)
TA = 25°C  
TA = 85°C  
TA = 125°C  
UNIT  
440  
420  
330  
300  
650  
600  
500  
450  
280  
260  
210  
200  
350  
340  
300  
265  
140  
130  
125  
120  
165  
150  
145  
135  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
±15 V Dual Supply  
+12 V Single Supply  
±5 V Dual Supply  
DSK (VSSOP)  
+44 V Single Supply(1)  
±15 V Dual Supply  
+12 V Single Supply  
±5 V Dual Supply  
RQX (WQFN)  
(1) Specified for nominal supply voltage only.  
(2) Refer to Total power dissipation (Ptot) limits in Absolute Maximum Ratings table that must be followed with max continuous current  
specification.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMUX7201 TMUX7202  
English Data Sheet: SCDS443  
 
 
 
 
 
 
 
 
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
MAX UNIT  
6.6 ±15 V Dual Supply: Electrical Characteristics  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
ANALOG SWITCH  
25°C  
1.2  
1.7  
2
Ω
Ω
VS = 10 V to +10 V  
ID = 10 mA  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
2.5  
0.5  
0.7  
0.8  
Ω
0.3  
Ω
VS = 10 V to +10 V  
ID = 10 mA  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
40°C to +125°C  
25°C  
Ω
Ω
0.01  
0.05  
VS = 0 V, IS = 10 mA  
/°C  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
0.3  
3.4  
33  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is off  
VS = +10 V / 10 V  
VD = 10 V / + 10 V  
0.3  
3.4  
33  
IS(OFF)  
Source off leakage current(1)  
Drain off leakage current(1)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
25°C  
0.05  
0.05  
0.3  
3.4  
33  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is off  
VS = +10 V / 10 V  
VD = 10 V / + 10 V  
0.3  
3.4  
33  
ID(OFF)  
40°C to +85°C  
40°C to +125°C  
25°C  
0.65  
2
0.65  
2  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is on  
VS = VD = ±10 V  
IS(ON)  
ID(ON)  
40°C to +85°C  
40°C to +125°C  
16  
16  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
44  
0.8  
2
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.4  
µA  
µA  
pF  
IIL  
0.1 0.005  
CIN  
3.5  
POWER SUPPLY  
25°C  
30  
7
45  
50  
55  
12  
15  
17  
µA  
µA  
µA  
µA  
µA  
µA  
VDD = 16.5 V, VSS = 16.5 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
VDD = 16.5 V, VSS = 16.5 V  
Logic inputs = 0 V, 5 V, or VDD  
ISS  
VSS supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS443  
6
Submit Document Feedback  
Product Folder Links: TMUX7201 TMUX7202  
 
 
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
6.7 ±15 V Dual Supply: Switching Characteristics  
VDD = +15 V ± 10%, VSS = 15 V ± 10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
120  
140  
155  
170  
150  
160  
190  
ns  
ns  
ns  
ns  
ns  
ns  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
tON  
Turn-on time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
130  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
tOFF  
Turn-off time from control input  
40°C to +85°C  
40°C to +125°C  
VDD rise time = 1 µs  
RL = 300 Ω, CL = 35 pF  
Device turn on time  
(VDD to output)  
tON (VDD)  
0.2  
ms  
40°C to +125°C  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
450  
-15  
ps  
RL = 50 Ω, CL = 5 pF  
QINJ  
VS = 0 V, CL = 100 pF  
pC  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
OISO  
OISO  
BW  
IL  
Off-isolation  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
70  
46  
22  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Off-isolation  
RL = 50 Ω, CL = 5 pF  
VS = 0 V  
MHz  
dB  
3 dB Bandwidth  
Insertion loss  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
0.11  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
40  
VPP = 15 V, VBIAS = 0 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0007  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
25°C  
25°C  
45  
65  
pF  
pF  
CS(ON),  
CD(ON)  
On capacitance  
VS = 0 V, f = 1 MHz  
25°C  
240  
pF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMUX7201 TMUX7202  
English Data Sheet: SCDS443  
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
MAX UNIT  
6.8 ±20 V Dual Supply: Electrical Characteristics  
VDD = +20 V ± 10%, VSS = 20 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +20 V, VSS = 20 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
ANALOG SWITCH  
25°C  
1
1.5  
1.8  
2.3  
0.5  
0.7  
0.8  
Ω
Ω
VS = 15 V to +15 V  
ID = 10 mA  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
Ω
0.3  
Ω
VS = 15 V to +15 V  
IS = 10 mA  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
40°C to +125°C  
25°C  
Ω
Ω
0.009  
0.05  
VS = 0 V, IS = 10 mA  
/°C  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
0.4  
5
VDD = 22 V, VSS = 22 V  
Switch state is off  
VS = +15 V / 15 V  
VD = 15 V / + 15 V  
0.4  
5  
IS(OFF)  
Source off leakage current(1)  
Drain off leakage current(1)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
25°C  
35  
0.4  
5
35  
0.4  
5  
0.05  
0.05  
VDD = 22 V, VSS = 22 V  
Switch state is off  
VS = +15 V / 15 V  
VD = 15 V / + 15 V  
ID(OFF)  
40°C to +85°C  
40°C to +125°C  
25°C  
35  
0.7  
2
35  
0.7  
2  
VDD = 22 V, VSS = 22 V  
Switch state is on  
VS = VD = ±15 V  
IS(ON)  
ID(ON)  
40°C to +85°C  
40°C to +125°C  
18  
18  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
44  
0.8  
2
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.4  
µA  
µA  
pF  
IIL  
0.1 0.005  
CIN  
3.5  
POWER SUPPLY  
25°C  
38  
8
50  
60  
70  
15  
19  
23  
µA  
µA  
µA  
µA  
µA  
µA  
VDD = 22 V, VSS = 22 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
VDD = 22 V, VSS = 22 V  
Logic inputs = 0 V, 5 V, or VDD  
ISS  
VSS supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS443  
8
Submit Document Feedback  
Product Folder Links: TMUX7201 TMUX7202  
 
 
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
6.9 ±20 V Dual Supply: Switching Characteristics  
VDD = +20 V ± 10%, VSS = 20 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +20 V, VSS = 20 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
120  
140  
155  
190  
150  
160  
190  
ns  
ns  
ns  
ns  
ns  
ns  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
tON  
Turn-on time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
120  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
tOFF  
Turn-off time from control input  
40°C to +85°C  
40°C to +125°C  
VDD rise time = 1 µs  
RL = 300 Ω, CL = 35 pF  
Device turn on time  
(VDD to output)  
tON (VDD)  
0.2  
ms  
40°C to +125°C  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
400  
-20  
ps  
RL = 50 Ω, CL = 5 pF  
QINJ  
VS = 0 V, CL = 100 pF  
pC  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
OISO  
OISO  
BW  
IL  
Off-isolation  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
65  
45  
22  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Off-isolation  
RL = 50 Ω, CL = 5 pF  
VS = 0 V  
MHz  
dB  
3 dB Bandwidth  
Insertion loss  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
0.10  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
40  
VPP = 20 V, VBIAS = 0 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0008  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
25°C  
25°C  
42  
62  
pF  
pF  
CS(ON),  
CD(ON)  
On capacitance  
VS = 0 V, f = 1 MHz  
25°C  
240  
pF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMUX7201 TMUX7202  
English Data Sheet: SCDS443  
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
MAX UNIT  
6.10 44 V Single Supply: Electrical Characteristics  
VDD = +44 V, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +44 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
ANALOG SWITCH  
25°C  
1.2  
1.6  
2
Ω
Ω
VS = 0 V to 40 V  
ID = 10 mA  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
2.4  
0.9  
1.1  
1.3  
Ω
0.25  
Ω
VS = 0 V to 40 V  
ID = 10 mA  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
40°C to +125°C  
25°C  
Ω
Ω
0.008  
0.05  
VS = 22 V, IS = 10 mA  
/°C  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
1
10  
60  
1
VDD = 44 V, VSS = 0 V  
Switch state is off  
VS = 40 V / 1 V  
1  
10  
60  
1  
IS(OFF)  
Source off leakage current(1)  
Drain off leakage current(1)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
25°C  
VD = 1 V / 40 V  
0.05  
0.05  
VDD = 44 V, VSS = 0 V  
Switch state is off  
VS = 40 V / 1 V  
ID(OFF)  
10  
60  
2
40°C to +85°C  
40°C to +125°C  
25°C  
10  
60  
2  
VD = 1 V / 40 V  
VDD = 44 V, VSS = 0 V  
Switch state is on  
VS = VD = 40 V or 1 V  
IS(ON)  
ID(ON)  
5
40°C to +85°C  
40°C to +125°C  
5  
30  
30  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
44  
0.8  
2
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.6  
µA  
µA  
pF  
IIL  
0.1 0.005  
CIN  
3.5  
POWER SUPPLY  
25°C  
30  
56  
64  
68  
µA  
µA  
µA  
VDD = 44 V, VSS = 0 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS443  
10  
Submit Document Feedback  
Product Folder Links: TMUX7201 TMUX7202  
 
 
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
6.11 44 V Single Supply: Switching Characteristics  
VDD = +44 V, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +44 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
100  
140  
150  
180  
150  
160  
180  
ns  
ns  
ns  
ns  
ns  
ns  
VS = 18 V  
RL = 300 Ω, CL = 35 pF  
tON  
Turn-on time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
125  
VS = 18 V  
RL = 300 Ω, CL = 35 pF  
tOFF  
Turn-off time from control input  
40°C to +85°C  
40°C to +125°C  
VDD rise time = 1 µs  
RL = 300 Ω, CL = 35 pF  
Device turn on time  
(VDD to output)  
tON (VDD)  
0.17  
ms  
40°C to +125°C  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
1000  
-20  
ps  
RL = 50 Ω, CL = 5 pF  
QINJ  
VS = 22 V, CL = 100 pF  
pC  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
OISO  
OISO  
BW  
IL  
Off-isolation  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
66  
46  
22  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Off-isolation  
RL = 50 Ω, CL = 5 pF  
VS = 6 V  
MHz  
dB  
3 dB Bandwidth  
Insertion loss  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
0.11  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
36  
VPP = 22 V, VBIAS = 22 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0008  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 22 V, f = 1 MHz  
VS = 22 V, f = 1 MHz  
25°C  
25°C  
45  
66  
pF  
pF  
CS(ON),  
CD(ON)  
On capacitance  
VS = 22 V, f = 1 MHz  
25°C  
240  
pF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMUX7201 TMUX7202  
English Data Sheet: SCDS443  
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
MAX UNIT  
6.12 12 V Single Supply: Electrical Characteristics  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
ANALOG SWITCH  
25°C  
2.1  
3.2  
3.8  
4.2  
1.2  
1.4  
1.6  
Ω
Ω
VS = 0 V to 10 V  
ID = 10 mA  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
Ω
0.5  
Ω
VS = 0 V to 10 V  
IS = 10 mA  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
40°C to +125°C  
25°C  
Ω
Ω
0.017  
0.05  
VS = 6 V, IS = 10 mA  
/°C  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
0.4  
3
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
0.4  
3  
IS(OFF)  
Source off leakage current(1)  
Drain off leakage current(1)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
25°C  
VD = 1 V / 10 V  
25  
0.4  
3
25  
0.4  
3  
0.05  
0.05  
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
ID(OFF)  
40°C to +85°C  
40°C to +125°C  
25°C  
VD = 1 V / 10 V  
25  
0.65  
2
25  
0.65  
2  
VDD = 13.2 V, VSS = 0 V  
Switch state is on  
VS = VD = 10 V or 1 V  
IS(ON)  
ID(ON)  
40°C to +85°C  
40°C to +125°C  
12  
12  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
44  
0.8  
2
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.4  
µA  
µA  
pF  
IIL  
0.1 0.005  
CIN  
3.5  
POWER SUPPLY  
25°C  
27  
35  
40  
45  
µA  
µA  
µA  
VDD = 13.2 V, VSS = 0 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS443  
12  
Submit Document Feedback  
Product Folder Links: TMUX7201 TMUX7202  
 
 
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
6.13 12 V Single Supply: Switching Characteristics  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
125  
145  
160  
180  
180  
205  
220  
ns  
ns  
ns  
ns  
ns  
ns  
VS = 8 V  
RL = 300 Ω, CL = 35 pF  
tON  
Turn-on time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
150  
VS = 8 V  
RL = 300 Ω, CL = 35 pF  
tOFF  
Turn-off time from control input  
40°C to +85°C  
40°C to +125°C  
VDD rise time = 1 µs  
RL = 300 Ω, CL = 35 pF  
Device turn on time  
(VDD to output)  
tON (VDD)  
0.2  
ms  
40°C to +125°C  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
1000  
-4  
ps  
RL = 50 Ω, CL = 5 pF  
QINJ  
VS = 6 V, CL = 100 pF  
pC  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
OISO  
OISO  
BW  
IL  
Off-isolation  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
65  
45  
23  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Off-isolation  
RL = 50 Ω, CL = 5 pF  
VS = 6 V  
MHz  
dB  
3 dB Bandwidth  
Insertion loss  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
0.18  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
40  
VPP = 6 V, VBIAS = 6 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0009  
CS(OFF)  
CD(OFF)  
CS(ON)  
CD(ON)  
Source off capacitance  
Drain off capacitance  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
25°C  
25°C  
53  
75  
pF  
pF  
,
On capacitance  
VS = 6 V, f = 1 MHz  
25°C  
240  
pF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMUX7201 TMUX7202  
English Data Sheet: SCDS443  
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
6.14 Typical Characteristics  
at TA = 25°C  
2
4
3.5  
3
VDD = 15 V, VSS = -15 V  
VDD = 5 V, VSS = -5 V  
VDD = 18 V, VSS = -18 V  
VDD = 20 V, VSS = -20 V  
VDD = 22 V, VSS = -22 V  
VDD = 10 V, VSS = -10 V  
VDD = 12 V, VSS = -12 V  
VDD = 13.5 V, VSS = -13.5 V  
1.75  
1.5  
2.5  
2
1.25  
1
1.5  
0.75  
1
-25 -20 -15 -10  
-5  
0
5
10  
15  
20  
25  
-15 -12  
-9  
-6  
-3  
0
3
6
9
12  
15  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
6-1. On-Resistance vs Source or Drain Voltage Dual  
6-2. On-Resistance vs Source or Drain Voltage Dual  
Supply  
Supply  
2.25  
6
VDD = 18 V, VSS = 0 V  
VDD = 24 V, VSS = 0 V  
VDD = 36 V, VSS = 0 V  
VDD = 44 V, VSS = 0 V  
VDD = 5 V, VSS = 0 V  
VDD = 8 V, VSS = 0 V  
VDD = 10.8 V, VSS = 0 V  
VDD = 12 V, VSS = 0 V  
5.5  
2
1.75  
1.5  
5
VDD = 15 V, VSS = 0 V  
4.5  
4
3.5  
3
1.25  
1
2.5  
2
0.75  
1.5  
0
4
8
12 16 20 24 28 32 36 40 44  
0
1.5  
3
4.5  
6
7.5  
9
10.5 12 13.5 15  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
6-3. On-Resistance vs Source or Drain Voltage Single  
6-4. On-Resistance vs Source or Drain Voltage Single  
Supply  
Supply  
3
3
TA = -40C  
TA = 25C  
TA = -40C  
TA = 25C  
TA = 85C  
TA = 85C  
2.5  
2.5  
TA = 125C  
TA = 125C  
2
2
1.5  
1
1.5  
1
0.5  
0.5  
-15  
-10  
-5  
0
5
10  
15  
-20 -16 -12  
-8  
-4  
0
4
8
12  
16  
20  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
VDD = 15 V, VSS = -15 V  
VDD = 20 V, VSS = -20 V  
6-5. On-Resistance vs Temperature  
6-6. On-Resistance vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS443  
14  
Submit Document Feedback  
Product Folder Links: TMUX7201 TMUX7202  
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
6.14 Typical Characteristics (continued)  
at TA = 25°C  
5.5  
3
2.5  
2
TA = -40C  
TA = -40C  
TA = 25C  
TA = 85C  
TA = 125C  
TA = 25C  
TA = 85C  
TA = 125C  
4.5  
3.5  
2.5  
1.5  
0.5  
1.5  
1
0.5  
0
4
8
12  
0
4
8
12  
16  
20  
24  
28  
32  
36  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
VDD = 12 V, VSS = 0 V  
VDD = 36 V, VSS = 0 V  
6-7. On-Resistance vs Temperature  
6-8. On-Resistance vs Temperature  
20  
12  
ION -10 V  
ION -15 V  
10.5  
9
7.5  
6
4.5  
3
1.5  
0
16  
12  
8
IDOFF VS = -10 V, VD = 10 V  
ISOFF VS = -10 V, VD = 10 V  
IDOFF VS = 10 V, VD = -10 V  
ISOFF VS = 10 V, VD = -10 V  
ION 10 V  
IDOFF VS = -15 V, VD = 15 V  
ISOFF VS = -15 V, VD = 15 V  
IDOFF VS = 15 V, VD = -15 V  
ISOFF VS = 15 V, VD = -15 V  
ION 15 V  
4
0
-1.5  
-3  
-4  
-4.5  
-6  
-8  
-7.5  
-9  
-10.5  
-12  
-12  
-16  
-20  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Temperature (C)  
Temperature (C)  
VDD = 15 V, VSS = -15 V  
VDD = 20 V, VSS = -20 V  
6-10. Leakage Current vs Temperature  
6-9. Leakage Current vs Temperature  
20  
16  
12  
8
10  
8
ION 1 V  
ION 1 V  
IDOFF VS = 1 V, VD = 30 V  
ISOFF VS = 1 V, VD = 30 V  
IDOFF VS = 30 V, VD = 1 V  
ISOFF VS = 30 V, VD = 1 V  
ION 30 V  
IDOFF VS = 1 V, VD = 10 V  
ISOFF VS = 1 V, VD = 10 V  
IDOFF VS = 10 V, VD = 1 V  
ISOFF VS = 10 V, VD = 1 V  
ION 10 V  
6
4
4
2
0
0
-4  
-2  
-4  
-6  
-8  
-8  
-12  
-16  
-20  
-10  
0
0
25  
50  
75  
100  
125  
25  
50  
75  
100  
125  
Temperature (C)  
Temperature (C)  
VDD = 36 V, VSS = 0 V  
VDD = 12 V, VSS = 0 V  
6-11. Leakage Current vs Temperature  
6-12. Leakage Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMUX7201 TMUX7202  
English Data Sheet: SCDS443  
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
6.14 Typical Characteristics (continued)  
at TA = 25°C  
60  
250  
225  
200  
175  
150  
125  
100  
75  
50  
25  
0
-25  
-50  
-75  
-100  
-125  
-150  
VDD = 5 V, VSS = -5 V  
VDD = 15 V, VSS = -15 V  
VDD = 20 V, VSS = -20 V  
VDD = 5 V, VSS = 0 V  
VDD = 5 V, VSS = -5 V  
VDD = 12 V, VSS = 0 V  
VDD = 15 V, VSS = -15 V  
VDD = 20 V, VSS = -20 V  
55  
50  
45  
40  
35  
30  
25  
20  
-20 -16 -12  
-8  
-4  
0
4
8
12  
16  
20  
0
5
10  
15  
20  
25  
30  
35  
40 44  
VS - Source Voltage (V)  
Logic Voltage (V)  
6-14. Charge Injection vs Source Voltage Dual Supplies  
6-13. Supply Current vs Logic Voltage  
125  
100  
75  
250  
VDD = 5 V, VSS = -5 V  
VDD = 15 V, VSS = -15 V  
VDD = 20 V, VSS = -20 V  
VDD = 5 V, VSS = 0 V  
VDD = 12 V, VSS = 0 V  
VDD = 15 V, VSS = 0 V  
VDD = 20 V, VSS = 0 V  
210  
170  
VDD = 36 V, VSS = 0 V  
130  
90  
50  
25  
50  
0
10  
-25  
-50  
-75  
-100  
-30  
-70  
-110  
-150  
-20 -16 -12  
-8  
-4  
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
24  
28  
32  
36  
VD - DrainVoltage (V)  
VS - Source Voltage (V)  
6-15. Charge Injection vs Drain Voltage Dual Supplies  
6-16. Charge Injection vs Source Voltage Single Supplies  
180  
160  
VDD = 5 V, VSS = 0 V  
TOFF  
VDD = 12 V, VSS = 0 V  
VDD = 15 V, VSS = 0 V  
VDD = 20 V, VSS = 0 V  
TON  
140  
150  
100  
60  
140  
130  
120  
110  
100  
90  
VDD = 36 V, VSS = 0 V  
20  
-20  
-60  
-100  
0
4
8
12  
16  
20  
24  
28  
32  
36  
-40  
-15  
10  
35  
60  
85  
110 125  
VD - Drain Voltage (V)  
Temperature (C)  
VDD = 15 V, VSS = -15 V  
6-18. TON and TOFF vs Temperature  
6-17. Charge Injection vs Drain Voltage Single Supplies  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS443  
16  
Submit Document Feedback  
Product Folder Links: TMUX7201 TMUX7202  
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
6.14 Typical Characteristics (continued)  
at TA = 25°C  
150  
0
-20  
TOFF  
TON  
145  
140  
135  
130  
125  
120  
115  
110  
-40  
-60  
-80  
-100  
-120  
-140  
-40  
-15  
10  
35  
60  
85  
110 125  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Temperature (C)  
Frequency(Hz)  
VDD = 44 V, VSS = 0 V  
6-19. TON and TOFF vs Temperature  
6-20. Off-Isolation vs Frequency  
0.01  
0.007  
0.005  
0.01  
0.007  
0.005  
VDD = 15 V, VSS = -15 V  
VDD = 20 V, VSS = -20 V  
VDD = 12 V, VSS = 0 V  
VDD = 36 V, VSS = 0 V  
0.003  
0.002  
0.003  
0.002  
0.001  
0.0007  
0.0005  
0.001  
0.0007  
0.0005  
0.0003  
0.0002  
0.0003  
0.0002  
0.0001  
0.0001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
6-21. THD+N vs Frequency (Dual Supplies)  
6-22. THD+N vs Frequency (Single Supplies)  
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
10k  
100k  
1M  
10M  
100M  
Frequency(Hz)  
VDD = +15 V, VSS = -15 V  
VDD = 15 V, VSS = -15 V  
6-24. ACPSRR vs Frequency  
6-23. On Response vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMUX7201 TMUX7202  
English Data Sheet: SCDS443  
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
6.14 Typical Characteristics (continued)  
at TA = 25°C  
320  
320  
280  
240  
200  
160  
120  
80  
CDOFF  
CON  
CSOFF  
CDOFF  
CON  
CSOFF  
280  
240  
200  
160  
120  
80  
40  
40  
-15  
-10  
-5  
0
5
10  
15  
0
2
4
6
8
10  
12  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
VDD = +15 V, VSS = -15 V  
VDD = 12 V, VSS = 0 V  
6-25. Capacitance vs Source Voltage or Drain Voltage  
6-26. Capacitance vs Source Voltage or Drain Voltage  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMUX7201 TMUX7202  
English Data Sheet: SCDS443  
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 On-Resistance  
The On-Resistance of a device is the ohmic resistance between the source (Sx) and drain (Dx) pins of the  
device. The On-Resistance varies with input voltage and supply voltage. The symbol RON is used to denote On-  
Resistance. 7-1 shows the measurement setup used to measure RON. Voltage (V) and current (ISD) are  
measured using this setup, and RON is computed with RON = V / ISD  
.
V
ISD  
S
D
VS  
7-1. On-Resistance Measurement Setup  
7.2 Off-Leakage Current  
There are two types of leakage currents associated with a switch during the off state:  
1. Source Off-Leakage current.  
2. Drain Off-Leakage current.  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID(OFF)  
7-2 shows the setup used to measure both Off-Leakage currents.  
.
.
VDD  
VSS  
VDD  
VSS  
Is (OFF)  
Is (OFF)  
S
S
D
D
A
A
GND  
GND  
VS  
VS  
VD  
VD  
ID(OFF)  
IS(OFF)  
7-2. Off-Leakage Measurement Setup  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMUX7201 TMUX7202  
English Data Sheet: SCDS443  
 
 
 
 
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
7.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS(ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID(ON)  
.
Either the source pin or drain pin is left floating during the measurement. 7-3 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VSS  
VDD  
VSS  
Is (ON)  
ID (ON)  
S
S
D
D
N.C.  
A
A
N.C.  
VS  
VD  
GND  
GND  
IS(ON)  
ID(ON)  
7-3. On-Leakage Measurement Setup  
7.4 tON and tOFF Time  
Turn-on time is defined as the time taken by the output of the device to rise to 90% after the enable has risen  
past the logic threshold. The 90% measurement is utilized to provide the timing of the device. System level  
timing can then account for the time constant added from the load resistance and load capacitance. 7-4  
shows the setup used to measure turn-on time, denoted by the symbol tON  
.
Turn-off time is defined as the time taken by the output of the device to fall to 10% after the enable has fallen  
past the logic threshold. The 10% measurement is utilized to provide the timing of the device. System level  
timing can then account for the time constant added from the load resistance and load capacitance. 7-4  
shows the setup used to measure turn-off time, denoted by the symbol tOFF  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VDD  
VSS  
tr < 20 ns  
tf < 20 ns  
50%  
50%  
VSEL  
0 V  
VS  
Output  
S
D
tON  
tOFF  
RL  
CL  
90%  
SEL  
Output  
0 V  
10%  
GND  
VSEL  
7-4. Turn-On and Turn-Off Time Measurement Setup  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS443  
20  
Submit Document Feedback  
Product Folder Links: TMUX7201 TMUX7202  
 
 
 
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
7.5 tON (VDD) Time  
The tON (VDD) time is defined as the time taken by the output of the device to rise to 90% after the supply has  
risen past the supply threshold. The 90% measurement is used to provide the timing of the device turning on in  
the system. 7-5 shows the setup used to measure turn on time, denoted by the symbol tON (VDD)  
.
VSS  
0.1 µF  
0.1 µF  
VDD  
Supply  
VDD  
VDD  
VSS  
tr = 10 µs  
4.5 V  
Ramp  
Output  
VS  
S
D
0 V  
tON  
RL  
CL  
90%  
SEL  
Output  
0 V  
3 V  
GND  
7-5. tON (VDD) Time Measurement Setup  
7.6 Propagation Delay  
Propagation delay is defined as the time taken by the output of the device to rise or fall 50% after the input signal  
has risen or fallen past the 50% threshold. 7-6 and 方程式 1 shows the setup used to measure propagation  
delay, denoted by the symbol tPD  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
250 mV  
Input  
VDD  
VSS  
50%  
50%  
tr < 40 ps  
tf < 40 ps  
(VS)  
0 V  
50 Ω  
Output  
D
S
VS  
tPD  
1
tPD 2  
RL  
CL  
Output  
0 V  
50%  
50%  
GND  
7-6. Propagation Delay Measurement Setup  
t
= max t 1, t 2  
PD  
(1)  
Prop Delay  
PD  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMUX7201 TMUX7202  
English Data Sheet: SCDS443  
 
 
 
 
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
7.7 Charge Injection  
The TMUX720x devices have a transmission-gate topology. Any mismatch in capacitance between the NMOS  
and PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the  
gate signal. The amount of charge injected into the source or drain of the device is known as charge injection,  
and is denoted by the symbol QC. 7-7 shows the setup used to measure charge injection from source (Sx) to  
drain (Dx).  
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VSEL  
VDD  
VSS  
tr < 20 ns  
tf < 20 ns  
S
Output  
D
0 V  
VS  
CL  
Output  
VD  
SEL  
VOUT  
QINJ = CL ×  
VOUT  
VSEL  
GND  
7-7. Charge-Injection Measurement Setup  
7.8 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (Dx) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. The characteristic impedance, Z0, for the measurement is 50 Ω. 7-8 and 方  
2 shows the setup used to measure off isolation. Use off isolation equation to compute off isolation.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
S1  
D
50  
VOUT  
VSIG  
50  
GND  
7-8. Off Isolation Measurement Setup  
V
OUT  
Off − Isolation = 20 × Log  
(2)  
V
S
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS443  
22  
Submit Document Feedback  
Product Folder Links: TMUX7201 TMUX7202  
 
 
 
 
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
7.9 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (Dx) of the device. The  
characteristic impedance, Z0, for the measurement is 50 Ω. 7-9 and 方程式 3 shows the setup used to  
measure bandwidth.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
S
D
50  
VOUT  
VSIG  
50  
S2  
GND  
7-9. Bandwidth Measurement Setup  
V
OUT  
Bandwidtℎ = 20 × Log  
(3)  
V
S
7.10 THD + Noise  
The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as  
the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the  
mux output. The On-Resistance of the device varies with the amplitude of the input signal and results in  
distortion when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is  
denoted as THD + N.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Audio Precision  
S
D
40  
VOUT  
VS  
RL  
GND  
7-10. THD + N Measurement Setup  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMUX7201 TMUX7202  
English Data Sheet: SCDS443  
 
 
 
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
7.11 Power Supply Rejection Ratio (PSRR)  
PSRR measures the ability of a device to prevent noise and spurious signals that appear on the supply voltage  
pin from coupling to the output of the switch. The DC voltage on the device supply is modulated by a sine wave  
of 100 mVPP. The ratio of the amplitude of signal on the output to the amplitude of the modulated signal is the  
AC PSRR.  
VDD  
Network Analyzer  
VSS  
DC Bias  
Injector  
With and Without  
Capacitor  
50  
0.1 µF  
0.1 µF  
VDD  
VSS  
620 mVPP  
VIN  
S
VBIAS  
50 Ω  
VOUT  
D
RL  
GND  
CL  
7-11. AC PSRR Measurement Setup  
V
OUT  
PSRR = 20 × Log  
(4)  
V
IN  
8 Detailed Description  
8.1 Overview  
The TMUX720x are 1:1, 1-channel switches. The switch is turned on or turned off based on the state of the  
select pin.  
8.2 Functional Block Diagram  
VDD  
VSS  
VDD  
VSS  
SW  
SW  
D
D
S
S
SEL  
SEL  
TMUX7201  
(SELx = Logic 1)  
TMUX7202  
(SELx = Logic 1)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS443  
24  
Submit Document Feedback  
Product Folder Links: TMUX7201 TMUX7202  
 
 
 
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Bidirectional Operation  
The TMUX720x conducts equally well from source (S) to drain (D) or from drain (D) to source (S). The switch  
has very similar characteristics in both directions and supports both analog and digital signals.  
8.3.2 Rail-to-Rail Operation  
The valid signal path input and output voltage for TMUX720x ranges from VSS to VDD  
.
8.3.3 1.8 V Logic Compatible Inputs  
The TMUX720x has 1.8 V logic compatible control for all logic control inputs. 1.8 V logic level inputs allows the  
device to interface with processors that have lower logic I/O rails and eliminates the need for an external  
translator, which saves both space and BOM cost. For more information on 1.8 V logic implementations, refer to  
Simplifying Design with 1.8 V logic Muxes and Switches.  
8.3.4 Integrated Pull-Down Resistor on Logic Pins  
The TMUX7201 and TMUX7202 have internal weak Pull-Down resistors to GND to ensure the logic pins are not  
left floating. The value of this Pull-Down resistor is approximately 4 MΩ, but is clamped to about 1 µA at higher  
voltages. This feature integrates an external component and reduces system size and cost.  
8.3.5 Fail-Safe Logic  
The TMUX720x supports Fail-Safe Logic on the control input pins (SEL) allowing for operation up to 44 V above  
ground, regardless of the state of the supply pins. This feature allows voltages on the control pins to be applied  
before the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity  
by removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic  
feature allows the logic input pins of the TMUX720x to be ramped to +44 V while VDD and VSS = 0 V. The logic  
control inputs are protected against positive faults of up to +44 V in powered-off condition, but do not offer  
protection against negative overvoltage conditions.  
8.3.6 Latch-Up Immune  
Latch-up is a condition where a low impedance path is created between a supply pin and ground. This condition  
is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains  
even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic  
damage due to excessive current levels. The Latch-Up condition typically requires a power cycle to eliminate the  
low impedance path.  
The TMUX720x family of devices are constructed on silicon-on-insulator (SOI) based process where an oxide  
layer is added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic structures  
from forming. The oxide layer is also known as an insulating trench and prevents triggering of latch up events  
due to overvoltage or current injections. The Latch-Up immunity feature allows the TMUX720x family of switches  
and multiplexers to be used in harsh environments.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMUX7201 TMUX7202  
English Data Sheet: SCDS443  
 
 
 
 
 
 
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
8.3.7 Ultra-Low Charge Injection  
8-1 shows how the TMUX720x devices have a transmission gate topology. Any mismatch in the stray  
capacitance associated with the NMOS and PMOS causes an output level change whenever the switch is  
opened or closed.  
OFF ON  
CGDN  
CGSN  
D
S
CGSP  
CGDP  
OFF ON  
8-1. Transmission Gate Topology  
The TMUX720x contains specialized architecture to reduce charge injection on the Drain (Dx). To further reduce  
charge injection in a sensitive application, a compensation capacitor (Cp) can be added on the Source (S). By  
design, the excess charge from the switch transition will be pushed into the compensation capacitor on the  
Source (S) instead of the Drain (D). As a general rule, Cp should be 20x larger than the equivalent load  
capacitance on the Drain (D). 8-2 shows charge injection variation with different compensation capacitors on  
the Source side. This plot was captured on the TMUX7219 as part of the TMUX72xx family with a 100 pF load  
capacitance.  
8-2. Charge Injection Compensation  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS443  
26  
Submit Document Feedback  
Product Folder Links: TMUX7201 TMUX7202  
 
 
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
8.4 Device Functional Modes  
When the SEL pin of the TMUX720x is pulled high, the switches will close. When the SEL pin is pulled low, the  
switches will open. The control pins can be as high as 44 V.  
The TMUX720x can operate without any external components except for the supply decoupling capacitors. The  
SEL pin has an internal Pull-Down resistor of 4 MΩ. If unused, then the SEL pin must be tied to GND so the  
device does not consume additional current as highlighted in Implications of Slow or Floating CMOS Inputs.  
8.5 Truth Tables  
8-1 provides the truth tables for the TMUX720x.  
8-1. TMUX720x Truth Table  
Selected Source Connected Selected Source Connected  
SEL  
To Drain (D) TMUX7201  
To Drain (D) TMUX7202  
0
1
All sources are off (HI-Z)  
S
S
All sources are off (HI-Z)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMUX7201 TMUX7202  
English Data Sheet: SCDS443  
 
 
 
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
TMUX720x is part of the precision switches and multiplexers family of devices. TMUX720x offers low RON, low  
on and off leakage currents and Ultra-Low charge injection performance. These properties make TMUX720x  
ideal for implementing high precision industrial systems requiring selection of one of two inputs or outputs.  
9.2 Typical Applications  
9.2.1 TIA Feedback Gain Switch  
One application of the TMUX720x is to configure the feedback on a discrete transimpedance amplifier (TIA)  
implementation. Often, TIAs are used in applications such as photodiode inputs, which then feeds into an ADC  
or MCU/processor. Depending on the expected strength of the photodiode input, and the needed accuracy,  
multiple gain levels are needed. A switch like the TMUX720x allows for different gain values to be selected,  
changing the level of amplifications. This solution can be scaled, but as much as needed for multiple gain  
options.  
9-1 shows the TMUX720x configured with a precision op amp to enable multiple gains.  
Processor  
VSS  
VDD  
0.1 µF  
1.8 V Logic I/O  
0.1 µF  
SEL  
Digital Processing  
RF_S  
RF  
VDD  
VDD  
RIN  
-
Gain / Filter  
Network  
TIA  
ADC  
IPD  
+
VSS  
VSS  
9-1. TIA Feedback Control  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS443  
28  
Submit Document Feedback  
Product Folder Links: TMUX7201 TMUX7202  
 
 
 
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
9.2.1.1 Design Requirements  
For this design example, use the parameters listed in 9-1.  
9-1. Design Parameters  
PARAMETERS  
Supply (VDD  
Supply (VSS  
VALUES  
)
15 V  
15 V  
)
MUX I/O signal range  
Control logic thresholds  
15 V to 15 V (Rail-to-Rail)  
1.8 V compatible (up to VDD  
)
9.2.1.2 Detailed Design Procedure  
9-1 shows an application that demonstrates how the TMUX720x can be used to select the gain of a TIA  
amplifier. Here RF is used to prevent any open loop configuration. For the lowest error, the RON of the switch  
should be much smaller than RF_S, as this will scale linearly with the potential error.  
The TMUX720x can support 1.8 V logic signals on the control input, allowing the device to interface with low  
logic controls of an FPGA or MCU. The TMUX720x can operate without any external components except for the  
supply decoupling capacitors. The select pin has an internal Pull-Down resistor to prevent floating input logic. All  
inputs to the switch must fall within the recommend operating conditions of the TMUX720x including signal range  
and continuous current. For this design with a positive supply of 15 V on VDD and negative supply of -15 V on  
V
SS, the signal range can be 15 V to -15 V. The maximum continuous current (IDC) can be up to 330 mA (for  
wide-range current measurement, see the Recommended Operating Conditions section).  
9.2.1.3 Application Curves  
The low on and off leakage currents of TMUX720x and Ultra-Low charge injection performance make this device  
ideal for implementing high precision industrial systems. The TMUX720x contains specialized architecture to  
reduce charge injection on the source (Sx) (for more details, see 8.3.7). 9-2 shows the plot for the charge  
injection versus source voltage for the TMUX720x.  
9-2. Charge Injection vs Source Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMUX7201 TMUX7202  
English Data Sheet: SCDS443  
 
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
9.3 Power Supply Recommendations  
The TMUX720x operates across a wide supply range of ±4.5 V to ±22 V (4.5 V to 44 V in single-supply mode).  
The device also performs well with asymmetrical supplies such as VDD = 12 V and VSS = 5 V.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the supply rails  
to other components. Good power-supply decoupling is important to achieve optimum performance. For  
improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF at both the  
VDD and VSS pins to ground. Place the bypass capacitors as close to the power supply pins of the device as  
possible using low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs)  
that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply  
decoupling purposes. For very sensitive systems, or for systems in harsh noise environments, avoiding the use  
of vias for connecting the capacitors to the device pins may offer superior noise immunity. The use of multiple  
vias in parallel lowers the overall inductance and is beneficial for connections to ground and power planes.  
Always ensure the ground (GND) connection is established before supplies are ramped.  
9.4 Layout  
9.4.1 Layout Guidelines  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and selfinductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners. 9-3 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
2W  
1W min.  
W
9-3. Trace Example  
Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance  
changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via  
introduces discontinuities in the signals transmission line and increases the chance of picking up interference  
from the other layers of the board. Be careful when designing test points, through-hole pins are not  
recommended at high frequencies.  
9-4 shows an example of a PCB layout with the TMUX720x. Some key considerations are as follows:  
For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD/VSS and  
GND. We recommend a 0.1 µF and 1 µF capacitor, placing the lowest value capacitor as close to the pin as  
possible. Make sure that the capacitor voltage rating is sufficient for the supply voltage.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
Using multiple vias in parallel will lower the overall inductance and is beneficial for connection to ground  
planes.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS443  
30  
Submit Document Feedback  
Product Folder Links: TMUX7201 TMUX7202  
 
 
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
9.4.2 Layout Example  
D
S
VSS  
SEL  
NC  
NC  
GND  
VDD  
Wide (low inductance)  
trace for power  
Wide (low inductance)  
trace for power  
Via to ground plane  
S
D
TMUX720x  
NC  
VSS  
SEL  
NC  
GND  
VDD  
Wide (low inductance)  
trace for power  
C
C
Wide (low inductance)  
trace for power  
Via to ground plane  
9-4. TMUX720x Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMUX7201 TMUX7202  
English Data Sheet: SCDS443  
 
TMUX7201, TMUX7202  
ZHCSNN0A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Documentation Support  
10.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Improve Stability Issues with Low CON Multiplexers application brief  
Texas Instruments, Improving Signal Measurement Accuracy in Automated Test Equipment application brief  
Texas Instruments, Multiplexers and Signal Switches Glossary application note  
Texas Instruments, QFN/SON PCB Attachment application note  
Texas Instruments, Quad Flatpack No-Lead Logic Packages application note  
Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches application brief  
Texas Instruments, System-Level Protection for High-Voltage Analog Multiplexers application notes  
Texas Instruments, True Differential, 4 x 2 MUX, Analog Front End, Simultaneous-Sampling ADC Circuit  
circuit design  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS443  
32  
Submit Document Feedback  
Product Folder Links: TMUX7201 TMUX7202  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX7201RQXR  
TMUX7202RQXR  
ACTIVE  
ACTIVE  
WSON  
WSON  
RQX  
RQX  
8
8
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
H201  
H202  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Apr-2023  
Addendum-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMUX7201RQXR

| RQX | 8 | -40 to 125
TI

TMUX7202

具有 1.8V 逻辑电平和闩锁效应抑制的 44V、1:1 (SPST) 单通道精密开关(低电平有效)
TI

TMUX7202RQXR

44-V, latch-up immune, 1:1 (SPST) 1 channel precision switch with 1.8V Logic (Active Low) | RQX | 8 | -40 to 125
TI

TMUX7208

TMUX720x 44-V, Latch-Up Immune, 8:1, 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8-V Logic
TI

TMUX7208PWR

TMUX720x 44-V, Latch-Up Immune, 8:1, 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8-V Logic
TI

TMUX7208RUMR

TMUX720x 44-V, Latch-Up Immune, 8:1, 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8-V Logic
TI

TMUX7208_V01

TMUX720x 44-V, Latch-Up Immune, 8:1, 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8-V Logic
TI

TMUX7208_V02

TMUX720x 44-V, Latch-Up Immune, 8:1, 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8-V Logic
TI

TMUX7208_V03

TMUX720x 44-V, Latch-Up Immune, 8:1, 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8-V Logic
TI

TMUX7209

TMUX720x 44-V, Latch-Up Immune, 8:1, 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8-V Logic
TI

TMUX7209PWR

TMUX720x 44-V, Latch-Up Immune, 8:1, 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8-V Logic
TI

TMUX7209RUMR

TMUX720x 44-V, Latch-Up Immune, 8:1, 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8-V Logic
TI