TMUX7462F [TI]

具有可调节故障阈值、1.8V 逻辑电平和闩锁效应抑制的 ±60V 故障保护、4 通道保护器;
TMUX7462F
型号: TMUX7462F
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调节故障阈值、1.8V 逻辑电平和闩锁效应抑制的 ±60V 故障保护、4 通道保护器

文件: 总46页 (文件大小:2060K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
TMUX7462F 具有可调节故障阈值、1.8V 逻辑电平和闩锁效应抑制±60V 故障  
保护、4 通道保护器  
1 特性  
3 说明  
• 宽电源电压范围8V 44V 单电源  
±5V 22V 双电源  
• 通道保护器无需为每通道设置专用选择引脚  
– 减少整PCB 布线的控制逻辑信号数量  
• 集成故障保护:  
TMUX7462F 是一款四通道保护器可置于信号路径的  
前端保护下游敏感元件不会因过压故障受损。4 个通  
道中均有内部开关可在发生过压故障时自动关闭无  
需外部控制。它使器件的每个通道不再需要控制信号,  
可简化稳健系统级保护设计。TMUX7462F 在通电和断  
电情况下均提供过压保护适用于无法精确控制电源定  
序的应用。  
– 过压保护从源极到电源或到漏极):±85V  
– 过压保护±60V  
– 断电保护±60V  
– 指示故障状态的中断标志  
– 可调节过压触发阈值  
如果器件电源浮动、接地或低于欠压 (UV) 阈值开关  
通道都将保持高阻抗状态无论开关输入条件如何。  
如果任何 Sx 引脚上的信号电平超过故障电压VFP 或  
VFN一个阈值电压 (VT)Sx 引脚将变为高阻态一  
个输出故障标志将置于低电平指示正常运行中的故障  
情况。漏极引脚 (Dx) 将被拉至超出范围的故障电源电  
压或保持悬空具体取决DR 控制逻辑。  
VFP3V VDDVFN0V VSS  
– 故障期间的可调节输出行为钳位或开路)  
• 器件构造可实现闩锁效应抑制  
6kV 人体放电模(HBM) ESD 等级  
• 低导通电阻8.3Ω型值  
该器件在双电源±5V ±22V、单电源8V 至  
44V 或 非 对 称 电 源 供 电 时 均 能 正 常 运 行 。  
TMUX7462F 具有平缓的低导通电阻因此非常适合出  
色线性度和低失真至关重要的数据采集应用。  
• 平缓的导通电阻5mΩ型值  
• 业界通TSSOP 封装和较小WQFN 封装  
2 应用  
工厂自动化和控制  
可编程逻辑控制(PLC)  
模拟输入模块  
半导体测试设备  
电池测试设备  
封装信息  
封装(1)  
封装尺寸(2)  
器件型号  
TMUX7462F  
PWTSSOP165 mm × 6.4 mm  
RRPWQFN164mm x 4mm  
伺服驱动器控制模块  
数据采集系(DAQ)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 封装尺寸× 为标称值并包括引脚如适用。  
VDD VSS  
VFP VFN  
SW  
SW  
SW  
SW  
S1  
S2  
S3  
S4  
D1  
D2  
D3  
D4  
Input  
Output  
Fault Detection/  
Switch Driver  
DR  
FF  
GND  
方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCDS394  
 
 
 
 
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
Table of Contents  
7.7 Fault Flag Recovery Time.........................................24  
7.8 Fault Drain Enable Time........................................... 25  
7.9 Inter-Channel Crosstalk............................................ 25  
7.10 Bandwidth............................................................... 26  
7.11 THD + Noise............................................................26  
8 Detailed Description......................................................27  
8.1 Overview...................................................................27  
8.2 Functional Block Diagram.........................................27  
8.3 Feature Description...................................................27  
8.4 Device Functional Modes..........................................30  
9 Application and Implementation..................................31  
9.1 Application Information............................................. 31  
9.2 Typical Application.................................................... 31  
9.3 Power Supply Recommendations.............................33  
9.4 Layout....................................................................... 33  
10 Device and Documentation Support..........................35  
10.1 Documentation Support.......................................... 35  
10.2 接收文档更新通知................................................... 35  
10.3 支持资源..................................................................35  
10.4 Trademarks.............................................................35  
10.5 静电放电警告.......................................................... 35  
10.6 术语表..................................................................... 35  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Thermal Information....................................................5  
6.4 Recommended Operating Conditions.........................5  
6.5 Electrical Characteristics (Global)...............................5  
6.6 ±15 V Dual Supply: Electrical Characteristics.............6  
6.7 ±20 V Dual Supply: Electrical Characteristics.............8  
6.8 12 V Single Supply: Electrical Characteristics.......... 10  
6.9 36 V Single Supply: Electrical Characteristics.......... 12  
6.10 Typical Characteristics............................................15  
7 Parameter Measurement Information..........................21  
7.1 On-Resistance.......................................................... 21  
7.2 On-Leakage Current................................................. 21  
7.3 Input and Output Leakage Current under  
Overvoltage Fault........................................................22  
7.4 Fault Response Time................................................23  
7.5 Fault Recovery Time.................................................23  
7.6 Fault Flag Response Time........................................24  
Information.................................................................... 35  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (October 2021) to Revision B (November 2022)  
Page  
PW 封装状态从预发布 更改为正在供货 ........................................................................................................1  
• 更新了封装信息 表的格式以包含封装引线..........................................................................................................1  
Changes from Revision * (March 2021) to Revision A (October 2021)  
Page  
• 将数据表的状态从预告信息 更改为量产数据 .....................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS394  
2
Submit Document Feedback  
Product Folder Links: TMUX7462F  
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
VFN  
D1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VFP  
D2  
S1  
S2  
S1  
VSS  
GND  
S4  
1
2
3
4
12  
11  
10  
9
S2  
VSS  
GND  
S4  
VDD  
FF  
VDD  
FF  
Thermal  
Pad  
S3  
S3  
D4  
D3  
DR  
NC  
Not to scale  
Not to scale  
5-1. PW Package, 16-Pin TSSOP (Top View)  
5-2. RRP Package, 16-Pin WQFN (Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
TSSOP  
WQFN  
Drain pin 1 can be an input or output. The drain pin is not overvoltage protected and shall remain within the  
recommended operating range.  
D1  
2
15  
10  
7
16  
I/O  
I/O  
I/O  
I/O  
Drain pin 2 can be an input or output. The drain pin is not overvoltage protected and shall remain within the  
recommended operating range.  
D2  
D3  
D4  
13  
8
Drain pin 3 can be an input or output. The drain pin is not overvoltage protected and shall remain within the  
recommended operating range.  
Drain pin 4 can be an input or output. The drain pin is not overvoltage protected and shall remain within the  
recommended operating range.  
5
Drain Response (DR) input. Tying the DR pin to GND enables the drain to be pulled to VFP or VFN through a  
40 kΩresistor during an overvoltage fault event. The drain pin becomes open circuit when the DR pin is a  
logic high or left floating.  
DR  
FF  
8
6
I
General fault flag. This pin is an open drain output and is asserted low when overvoltage condition is  
detected on any of the source (Sx) pins. Connect this pin to an external supply (1.8 V to 5.5 V) through a 1  
kΩpull-up resistor.  
12  
10  
O
P
GND  
N.C.  
S1  
5
9
3
7
Ground (0 V) reference.  
No internal connection  
3
1
I/O  
I/O  
I/O  
I/O  
Overvoltage protected source pin 1 can be an input or output.  
Overvoltage protected source pin 2 can be an input or output.  
Overvoltage protected source pin 3 can be an input or output.  
Overvoltage protected source pin 4 can be an input or output.  
S2  
14  
11  
6
12  
9
S3  
S4  
4
Positive power supply. This pin is the most positive power-supply potential. Connect a decoupling capacitor  
ranging from 0.1 µF to 10 µF between VDD and GND for reliable operation.  
VDD  
13  
16  
11  
14  
P
P
Positive fault voltage supply that determines the overvoltage protection triggering threshold on the positive  
side. Connect to VDD if the triggering threshold is the same as the device's positive supply. Connect a  
decoupling capacitor ranging from 0.1 µF to 10 µF between VFP and GND for reliable operation.  
VFP  
Negative fault voltage supply that determines the overvoltage protection triggering threshold on the negative  
side. Connect to VSS if the triggering threshold is the same as the device's negative supply. Connect a  
decoupling capacitor ranging from 0.1 µF to 10 µF between VFN and GND for reliable operation.  
VFN  
1
15  
2
P
Negative power supply. This pin is the most negative power-supply potential. This pin can be connected to  
ground in single-supply applications. Connect a decoupling capacitor ranging from 0.1 µF to 10 µF between  
VSS and GND for reliable operation.  
VSS  
4
P
The thermal pad is not connected internally. No requirement to solder this pad. For best performance it is  
recommended that the pad be tied to GND or VSS.  
Thermal Pad  
(1) I = input, O = output, I/O = input and output, P = power.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMUX7462F  
English Data Sheet: SCDS394  
 
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
VDD to VSS  
48  
48  
VDD to GND  
VSS to GND  
VFP to GND  
VFN to GND  
VS to GND  
VS to VDD  
VS to VSS  
VD  
V
Supply voltage  
0.3  
48  
0.3  
V
VDD + 0.3  
0.3  
V
0.3  
Fault clamping voltage  
V
VSS 0.3  
65  
Source input pin (Sx) voltage to GND  
Source input pin (Sx) voltage to VDD or VD  
Source input pin (Sx) voltage to VSS or VD  
Drain pin (Dx) voltage  
65  
V
V
90  
90  
V
VFP+0.7  
V
V
FN0.7  
VDR  
Logic input pin (DR) voltage(2)  
Logic output pin (FF) voltage(2)  
Logic input pin (DR) current(2)  
Logic output pin (FF) current(2)  
Source or drain continuous current (Sx or Dx)  
Storage temperature  
48  
V
GND 0.7  
GND 0.7  
30  
VFF  
6
V
IDR  
30  
mA  
mA  
mA  
°C  
°C  
°C  
mW  
IFF  
10  
IDC ± 10 %(3)  
150  
10  
IS or ID (CONT)  
Tstg  
IDC ± 10 %(3)  
65  
TA  
Ambient temperature  
150  
55  
TJ  
Junction temperature  
150  
(4)  
Ptot  
Total power dissipation (QFN)  
1600  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Stresses have to be kept at or below both voltage and current ratings at all time.  
(3) Refer to Recommended Operating Conditions for IDC ratings.  
(4) For QFN package: Ptot derates linearly above TA = 70°C by 23.5 mW/°C  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001, all pins(1)  
±6000  
V
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per ANSI/ESDA/JEDEC  
JS-002, all pins(2)  
±750  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS394  
4
Submit Document Feedback  
Product Folder Links: TMUX7462F  
 
 
 
 
 
 
 
 
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
6.3 Thermal Information  
TMUX7462F  
THERMAL METRIC(1)  
PW (TSSOP)  
16 PINS  
100.4  
31.3  
RRP (WQFN)  
16 PINS  
42.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
28.5  
46.4  
17.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.7  
0.3  
ΨJT  
45.8  
17.9  
ΨJB  
RθJC(bot)  
N/A  
4.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
8
NOM  
MAX UNIT  
(1)  
Power supply voltage differential  
Positive power supply voltage  
44  
V
DD VSS  
VDD  
5
44  
V
VDD  
VFP  
Positive fault clamping voltage  
3
VFN  
Negative fault clamping voltage  
VSS  
VFN  
60  
85  
0
VFP  
60  
VS  
Source pin (Sx) voltage (non-fault condition)  
Source pin (Sx) voltage to GND (fault condition)  
Source pin (Sx) voltage to VDD or VD (fault condition)  
Source pin (Sx) voltage to VSS or VD (fault condition)  
Drain pin (Dx) voltage  
VS to GND  
(2)  
V
VS to VDD  
VS to VSS  
VD  
(2)  
85  
VFN  
GND  
GND  
40  
VFP  
VDR  
Logic input pin (DR) voltage  
44  
V
5.5  
(3)  
VFF  
Logic output pin (FF) voltage  
TA  
Ambient temperature  
125  
150  
°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
IDC  
Continuous current through switch, WQFN package  
100 mA  
60  
(1) VDD and VSS can be any value as long as 8 V (VDD VSS) 44 V, and the minimum VDD is met.  
(2) Source pin voltage (Sx) under a fault condition may not exceed 85 V from supply pins (VDD and VSS.) or drain pins (D, Dx).  
(3) Logic output pin (FF) is an open drain output and should be pulled up to a voltage within the max ratings  
6.5 Electrical Characteristics (Global)  
at TA = 25°C (unless otherwise noted)  
Typical at VDD = 15 V, VSS = 15 V, GND = 0 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
VT Threshold voltage for fault detector  
LOGIC INPUT/ OUTPUT  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
0.7  
V
VIH  
High-level input voltage  
DR pin  
DR pin  
1.3  
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
VIL  
Low-level input voltage  
High-level input current  
Low-level input current  
Low-level output voltage  
0.8  
3
V
µA  
µA  
V
IIH  
VDR = logic high  
VDR = logic low  
FF pin, IO = 5 mA  
0.4  
IIL  
1 0.65  
VOL(FLAG)  
0.35  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMUX7462F  
English Data Sheet: SCDS394  
 
 
 
 
 
 
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
MAX UNIT  
6.5 Electrical Characteristics (Global) (continued)  
at TA = 25°C (unless otherwise noted)  
Typical at VDD = 15 V, VSS = 15 V, GND = 0 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
POWER SUPPLY  
Rising edge, single supply  
5.1  
5
5.8  
5.7  
6.4  
6.3  
V
V
40°C to +125°C  
40°C to +125°C  
Undervoltage lockout (UVLO)  
threshold voltage (VDD VSS  
VUVLO  
)
Falling edge, single supply  
Single supply  
VDD Undervoltage lockout  
(UVLO) hysteresis  
VHYS  
0.2  
40  
V
40°C to +125°C  
Drain resistance to fault supply during overvoltage protection  
when enabled by DR pin  
RD(OVP)  
25°C  
kΩ  
6.6 ±15 V Dual Supply: Electrical Characteristics  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
8.3  
10.7  
VS = 10 V to +10 V  
ID = 10 mA  
13.5  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
16  
0.05  
0.45  
On-resistance mismatch between VS = 10 V to +10 V  
0.5  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
channels  
ID = 10 mA  
0.6  
0.4  
0.005  
VS = 10 V to +10 V  
ID = 10 mA  
0.4  
RFLAT  
On-resistance flatness  
On-resistance drift  
40°C to +85°C  
40°C to +125°C  
40°C to +125°C  
25°C  
0.4  
RON_DRIFT  
0.04  
0.1  
VS = 0 V, IS = 10 mA  
/°C  
0.7  
0.7  
2  
Switch state is on,  
VDD = 16.5 V, VSS = 16.5 V,  
VS = VD = ±10 V  
IS(ON)  
,
Channel on leakage current (1)  
2
nA  
40°C to +85°C  
40°C to +125°C  
ID(ON)  
15  
15  
FAULT CONDITION  
VS = ± 60 V, GND = 0 V,  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V  
Input leakage current  
during overvoltage  
IS(FA)  
±110  
±135  
µA  
µA  
40°C to +125°C  
40°C to +125°C  
Input leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN= 0 V  
IS(FA) Grounded  
Input leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN= floating,  
IS(FA) Floating  
±140  
±0.1  
µA  
nA  
40°C to +125°C  
25°C  
20  
30  
60  
30  
50  
90  
20  
30  
60  
30  
50  
90  
VS = ± 60 V, GND = 0 V,  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V, 40°C to +85°C  
VDR = 5 V or floating  
Output leakage current  
during overvoltage  
ID(FA)  
40°C to +125°C  
25°C  
±0.01  
Output leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN = 0 V  
ID(FA) Grounded  
nA  
µA  
40°C to +85°C  
40°C to +125°C  
25°C  
±0.6  
±1.2  
±2.2  
Output leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN = floating  
ID(FA) Floating  
40°C to +85°C  
40°C to +125°C  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS394  
6
Submit Document Feedback  
Product Folder Links: TMUX7462F  
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
6.6 ±15 V Dual Supply: Electrical Characteristics (continued)  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
SWITCHING CHARACTERISTICS  
25°C  
100  
350  
VFP = 10 V, VFN = 10 V,  
RL = 300 Ω, CL= 12 pF  
380  
400  
tRESPONSE  
Fault response time  
Fault recovery time  
40°C to +85°C  
40°C to +125°C  
25°C  
ns  
ns  
1600  
4500  
4800  
4800  
VFP = 10 V, VFN = 10 V,  
RL = 300 Ω, CL= 12 pF  
tRECOVERY  
40°C to +85°C  
40°C to +125°C  
VFP = 10 V, VFN = 10 V,  
VPU = 5 V, RPU = 1 kΩ, CL= 12 pF  
tRESPONSE(FLAG) Fault flag response time  
tRECOVERY(FLAG) Fault flag recovery time  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
250  
ns  
µs  
VFP = 10 V, VFN = 10 V,  
VPU = 5 V, RPU = 1 kΩ, CL= 15 pF  
1.2  
2.7  
VFP = 10 V, VFN = 10 V,  
VPU = 5 V, CL= 12 pF  
tRESPONSE(DR)  
Fault output response time  
Intra-channel crosstalk  
µs  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
XTALK  
dB  
100  
650  
3 dB bandwidth (WQFN  
Package)  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V  
BW  
MHz  
MHz  
dB  
3 dB bandwidth (TSSOP  
Package)  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V  
BW  
580  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
ILOSS  
Insertion loss  
0.7  
RS = 50 Ω, RL = 10 kΩ,  
VS = 15 VPP, VBIAS = 0 V,  
f = 20 Hz to 20 kHz  
Total harmonic distortion plus  
noise  
THD+N  
25°C  
25°C  
0.0006  
14  
%
CS(ON)  
,
Input/Output on-capacitance  
f = 1 MHz, VS = 0 V  
pF  
CD(ON)  
POWER SUPPLY  
25°C  
0.32  
0.26  
0.5  
0.5  
0.6  
0.4  
0.4  
0.5  
VDD = VFP = 16.5 V,  
VSS = VFN = 16.5 V,  
VDR = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
VSS supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
mA  
VDD = VFP = 16.5 V,  
VSS = VFN = 16.5 V,  
VDR = 0 V, 5 V, or VDD  
ISS  
40°C to +85°C  
40°C to +125°C  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V,  
VDR = 0 V, 5 V, or VDD  
IGND  
GND current  
25°C  
25°C  
25°C  
0.06  
10  
mA  
µA  
µA  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V,  
VDR = 0 V, 5 V, or VDD  
IFP  
VFP supply current  
VFN supply current  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V,  
VDR = 0 V, 5 V, or VDD  
IFN  
10  
25°C  
0.27  
0.5  
0.5  
0.6  
0.3  
0.3  
0.4  
VS = ± 60 V,  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V,  
VDR = 0 V, 5 V, or VDD  
IDD(FA)  
VDD supply current under fault  
VSS supply current under fault  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
mA  
0.2  
VS = ± 60 V,  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V,  
VDR = 0 V, 5 V, or VDD  
ISS(FA)  
40°C to +85°C  
40°C to +125°C  
25°C  
IGND(FA)  
IFP(FA)  
IFN(FA)  
GND current under fault  
0.15  
10  
mA  
µA  
µA  
VS = ± 60 V,  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V,  
VDR = 0 V, 5 V, or VDD  
VFP supply current under fault  
VFN supply current under fault  
25°C  
25°C  
10  
(1) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMUX7462F  
English Data Sheet: SCDS394  
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
6.7 ±20 V Dual Supply: Electrical Characteristics  
VDD = +20 V ± 10%, VSS = 20 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +20 V, VSS = 20 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
8.3  
10.5  
VS = 15 V to +15 V  
ID = 10 mA  
14  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
17  
0.05  
0.35  
On-resistance mismatch between VS = 15 V to +15 V  
0.5  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
channels  
ID = 10 mA  
0.5  
0.4  
0.006  
VS = 15 V to +15 V  
ID = 10 mA  
0.5  
RFLAT  
On-resistance flatness  
On-resistance drift  
40°C to +85°C  
40°C to +125°C  
40°C to +125°C  
25°C  
0.5  
RON_DRIFT  
0.04  
0.1  
VS = 0 V, IS = 10 mA  
/°C  
0.7  
0.7  
2  
Switch state is on,  
VDD = 22 V, VSS = 22 V  
VS = VD = ±15 V  
IS(ON)  
,
Channel on leakage current (1)  
2
nA  
40°C to +85°C  
40°C to +125°C  
ID(ON)  
15  
15  
FAULT CONDITION  
VS = ± 60 V, GND = 0 V,  
VDD = VFP = 22 V, VSS = VFN = 22 V  
Input leakage current  
during overvoltage  
IS(FA)  
±95  
µA  
µA  
40°C to +125°C  
40°C to +125°C  
Input leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0V,  
VDD = VSS = VFP = VFN = 0 V  
IS(FA) Grounded  
±135  
Input leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0V,  
VDD = VSS = VFP = VFN = floating  
IS(FA) Floating  
±140  
±10  
µA  
40°C to +125°C  
25°C  
50  
70  
nA  
nA  
nA  
nA  
nA  
nA  
µA  
µA  
µA  
50  
70  
VS = ± 60 V, GND = 0 V,  
VDD = VFP = 22 V, VSS = VFN = 22 V,  
VDR = 5 V or floating  
Output leakage current  
during overvoltage  
ID(FA)  
40°C to +85°C  
40°C to +125°C  
25°C  
90  
90  
±500  
700  
700  
700  
700  
700  
700  
Output leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN = 0 V  
ID(FA) Grounded  
40°C to +85°C  
40°C to +125°C  
25°C  
±0.6  
±1.3  
±2.3  
Output leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN = floating  
ID(FA) Floating  
40°C to +85°C  
40°C to +125°C  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS394  
8
Submit Document Feedback  
Product Folder Links: TMUX7462F  
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
6.7 ±20 V Dual Supply: Electrical Characteristics (continued)  
VDD = +20 V ± 10%, VSS = 20 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +20 V, VSS = 20 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
SWITCHING CHARACTERISTICS  
25°C  
150  
400  
VFP = 10 V, VFN = 10 V,  
RL = 300 Ω, CL= 12 pF  
430  
450  
tRESPONSE  
Fault response time  
Fault recovery time  
40°C to +85°C  
40°C to +125°C  
25°C  
ns  
ns  
1100  
4500  
4900  
4900  
VFP = 10 V, VFN = 10 V,  
RL = 300 Ω, CL= 12 pF  
tRECOVERY  
40°C to +85°C  
40°C to +125°C  
VFP = 10 V, VFN = 10 V,  
VPU = 5 V, RPU = 1 kΩ, CL= 12 pF  
tRESPONSE(FLAG) Fault flag response time  
tRECOVERY(FLAG) Fault flag recovery time  
220  
ns  
µs  
40°C to +125°C  
VFP = 10 V, VFN = 10 V,  
VPU = 5 V, RPU = 1 kΩ, CL= 12 pF  
1.1  
2.7  
40°C to +125°C  
VFP = 10 V, VFN = 10 V, VPU = 5 V, CL=  
12 pF  
tRESPONSE(DR)  
Fault output response time  
Intra-channel crosstalk  
µs  
40°C to +125°C  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
XTALK  
25°C  
25°C  
25°C  
25°C  
dB  
100  
650  
3 dB bandwidth (WQFN  
Package)  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V  
BW  
MHz  
MHz  
dB  
3 dB bandwidth (TSSOP  
Package)  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V  
BW  
590  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
ILOSS  
Insertion loss  
0.7  
RS = 50 Ω, RL = 10 kΩ,  
VS = 20 VPP, VBIAS = 0 V,  
f = 20 Hz to 20 kHz  
Total harmonic distortion plus  
noise  
THD+N  
25°C  
25°C  
0.0006  
14  
%
CS(ON)  
,
Input/Output on-capacitance  
f = 1 MHz, VS = 0 V  
pF  
CD(ON)  
POWER SUPPLY  
25°C  
0.32  
0.26  
0.5  
0.5  
0.6  
0.4  
0.4  
0.5  
VDD = VFP = 22 V,  
VSS = VFN = 22 V,  
VDR = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
VSS supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
mA  
VDD = VFP = 22 V,  
VSS = VFN = 22 V,  
VDR = 0 V, 5 V, or VDD  
ISS  
40°C to +85°C  
40°C to +125°C  
VDD = VFP = 22 V, VSS = VFN = 22 V,  
VDR = 0 V, 5 V, or VDD  
IGND  
GND current  
25°C  
25°C  
25°C  
0.07  
10  
mA  
µA  
µA  
VDD = VFP = 22 V, VSS = VFN = 22 V,  
VDR = 0 V, 5 V, or VDD  
IFP  
VFP supply current  
VFN supply current  
VDD = VFP = 22 V, VSS = VFN = 22 V,  
VDR = 0 V, 5 V, or VDD  
IFN  
10  
25°C  
0.27  
0.5  
0.5  
0.6  
0.3  
0.3  
0.4  
VS = ± 60 V,  
VDD = VFP = 22 V, VSS = VFN = 22 V,  
VDR = 0 V, 5 V, or VDD  
IDD(FA)  
VDD supply current under fault  
VSS supply current under fault  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
mA  
0.2  
VS = ± 60 V,  
VDD = VFP = 22 V, VSS = VFN = 22 V,  
VDR = 0 V, 5 V, or VDD  
ISS(FA)  
40°C to +85°C  
40°C to +125°C  
25°C  
IGND(FA)  
IFP(FA)  
IFN(FA)  
GND current under fault  
0.15  
10  
mA  
µA  
µA  
VS = ± 60 V,  
VDD = VFP = 22 V, VSS = VFN = 22 V,  
VDR = 0 V, 5 V, or VDD  
VFP supply current under fault  
VFN supply current under fault  
25°C  
25°C  
10  
(1) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMUX7462F  
English Data Sheet: SCDS394  
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
6.8 12 V Single Supply: Electrical Characteristics  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
VS = 0 V to 7.8 V,  
IS = 10 mA  
25°C  
8.3  
11  
RON  
On-resistance  
15  
18  
VS = 0 V to 7.8 V, IS = 10 mA  
VS = 0 V to 7.8 V, IS = 10 mA  
40°C to +85°C  
40°C to +125°C  
25°C  
0.05  
0.05  
0.5  
0.6  
0.7  
0.4  
0.5  
0.5  
VS = 0 V to 7.8 V,  
IS = 10 mA  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
VS = 0 V to 7.8 V,  
IS = 10 mA  
RFLAT  
On-resistance flatness  
On-resistance drift  
40°C to +85°C  
40°C to +125°C  
40°C to +125°C  
25°C  
RON_DRIFT  
0.04  
0.1  
VS = 6 V, IS = 10 mA  
/°C  
nA  
0.7  
2
0.7  
2  
Switch state is on,  
VDD = 13.2 V, VSS = 0 V,  
VS = VD = 1 V/ 10 V,  
IS(ON)  
ID(ON)  
,
Output on leakage current(1)  
40°C to +85°C  
40°C to +125°C  
14  
14  
FAULT CONDITION  
Input leakage current  
during overvoltage  
VS = ± 60 V, GND = 0 V,  
VDD = VFP = 13.2 V, VSS = VFN = 0 V,  
IS(FA)  
±145  
±135  
µA  
µA  
40°C to +125°C  
40°C to +125°C  
Input leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN = 0 V  
IS(FA) Grounded  
Input leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN = floating  
IS(FA) Floating  
±140  
±2  
µA  
nA  
40°C to +125°C  
25°C  
20  
30  
50  
30  
50  
90  
20  
30  
50  
30  
50  
90  
VS = ± 60 V, GND = 0V,  
VDD = VFP = 13.2 V, VSS = VFN = 0 V,  
VDR = 5 V or floating  
Output leakage current  
during overvoltage  
ID(FA)  
40°C to +85°C  
40°C to +125°C  
25°C  
±10  
Output leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN = 0 V  
ID(FA) Grounded  
nA  
µA  
40°C to +85°C  
40°C to +125°C  
25°C  
±0.6  
±1.3  
±2.3  
Output leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN = floating  
ID(FA) Floating  
40°C to +85°C  
40°C to +125°C  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS394  
10  
Submit Document Feedback  
Product Folder Links: TMUX7462F  
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
6.8 12 V Single Supply: Electrical Characteristics (continued)  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
SWITCHING CHARACTERISTICS  
25°C  
500  
600  
VFP = 8 V, VFN = 0 V,  
RL = 300 Ω, CL= 12 pF  
650  
700  
tRESPONSE  
Fault response time  
Fault recovery time  
40°C to +85°C  
40°C to +125°C  
25°C  
ns  
ns  
850  
2400  
2900  
2900  
VFP = 8 V, VFN = 0 V,  
RL = 300 Ω, CL= 12 pF  
tRECOVERY  
40°C to +85°C  
40°C to +125°C  
VFP = 8 V, VFN = 0 V,  
VPU = 5 V, RPU = 1 kΩ, CL= 12 pF  
tRESPONSE(FLAG) Fault flag response time  
tRECOVERY(FLAG) Fault flag recovery time  
110  
0.8  
ns  
µs  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
25°C  
VFP = 8 V, VFN = 0 V,  
VPU = 5 V, RPU = 1 kΩ, CL= 12 pF  
VFP = 8 V, VFN = 0 V, RL = 1 kΩ, CL= 12  
pF  
tRESPONSE(DR)  
Fault output response time  
Inter-channel crosstalk  
3
µs  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 2 V, f = 1 MHz  
XTALK  
dB  
100  
620  
3 dB bandwidth (WQFN  
Package)  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 2 V  
BW  
25°C  
MHz  
MHz  
dB  
3 dB bandwidth (TSSOP  
Package)  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 2 V  
BW  
25°C  
560  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 2 V, f = 1 MHz  
ILOSS  
Insertion loss  
25°C  
0.7  
RS = 50 Ω, RL = 10 kΩ,  
VS = 6 VPP, VBIAS = 6 V,  
f = 20 Hz to 20 kHz  
Total harmonic distortion plus  
noise  
THD+N  
25°C  
25°C  
0.0007  
16  
%
CS(ON), CD(ON)  
Input/Output on-capacitance  
f = 1 MHz, VS = 6 V  
pF  
POWER SUPPLY  
25°C  
0.3  
0.5  
0.5  
0.6  
mA  
mA  
mA  
VDD = VFP = 13.2 V,  
VSS = VFN = 0 V,  
VDR = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
VDD = VFP = 13.2 V,  
VSS = VFN = 0 V,  
VDR = 0 V, 5 V, or VDD  
IGND  
GND current  
25°C  
25°C  
25°C  
0.06  
10  
mA  
µA  
µA  
VDD = VFP = 13.2 V,  
VSS = VFN = 0 V,  
VDR = 0 V, 5 V, or VDD  
IFP  
VFP supply current  
VFN supply current  
VDD = VFP = 13.2 V,  
VSS = VFN = 0 V,  
IFN  
10  
VDR = 0 V, 5 V, or VDD  
25°C  
0.32  
0.5  
0.5  
0.6  
mA  
mA  
mA  
VS = ± 60 V,  
VDD = VFP = 13.2 V, VSS = VFN = 0 V,  
VDR = 0 V, 5 V, or VDD  
IDD(FA)  
VDD supply current under fault  
40°C to +85°C  
40°C to +125°C  
VS = ± 60 V,  
IGND(FA)  
IFP(FA)  
IFN(FA)  
GND current under fault  
VDD = VFP = 13.2 V, VSS = VFN = 0 V,  
VDR = 0 V, 5 V, or VDD  
25°C  
25°C  
25°C  
0.16  
10  
mA  
µA  
µA  
VS = ± 60 V,  
VDD = VFP = 13.2 V, VSS = VFN = 0 V,  
VDR = 0 V, 5 V, or VDD  
VFP supply current under fault  
VFN supply current under fault  
VS = ± 60 V,  
VDD = VFP = 13.2 V, VSS = VFN = 0 V,  
VDR = 0 V, 5 V, or VDD  
10  
(1) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMUX7462F  
English Data Sheet: SCDS394  
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
6.9 36 V Single Supply: Electrical Characteristics  
VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
8.3  
11  
VS = 0 V to 30 V,  
IS = 10 mA  
14  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
17  
0.05  
0.06  
0.5  
VS = 0 V to 30 V,  
IS = 10 mA  
On-resistance mismatch between  
channels  
0.6  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
0.7  
0.9  
VS = 0 V to 30 V,  
IS = 10 mA  
1.1  
RFLAT  
On-resistance flatness  
On-resistance drift  
40°C to +85°C  
40°C to +125°C  
40°C to +125°C  
25°C  
1.3  
RON_DRIFT  
0.04  
0.2  
VS = 18 V, IS = 10 mA  
/°C  
0.7  
0.7  
2  
Switch state is on,  
VDD = 39.6 V, VSS = 0 V,  
VS = VD = 1 V/ 30 V  
IS(ON)  
,
Output on leakage current(1)  
2
nA  
40°C to +85°C  
40°C to +125°C  
ID(ON)  
15  
15  
FAULT CONDITION  
Input leakage current  
during overvoltage  
VS = 60 / 40 V, GND = 0 V,  
VDD = VFP = 39.6 V, VSS = VFN = 0 V  
IS(FA)  
±98  
µA  
µA  
40°C to +125°C  
40°C to +125°C  
Input leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN = 0 V  
IS(FA) Grounded  
±135  
Input leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN = floating  
IS(FA) Floating  
±140  
±2  
µA  
nA  
40°C to +125°C  
25°C  
20  
30  
50  
30  
50  
90  
20  
30  
50  
30  
50  
90  
VS = 60 / 40 V, GND = 0 V,  
VDD = VFP = 39.2 V, VSS = VFN = 0 V,  
VDR = 5 V or floating  
Output leakage current  
during overvoltage  
ID(FA)  
40°C to +85°C  
40°C to +125°C  
25°C  
±10  
Output leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN = 0 V  
ID(FA) Grounded  
nA  
µA  
40°C to +85°C  
40°C to +125°C  
25°C  
±0.6  
±1.3  
±2.3  
Output leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN = floating  
ID(FA) Floating  
40°C to +85°C  
40°C to +125°C  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS394  
12  
Submit Document Feedback  
Product Folder Links: TMUX7462F  
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
6.9 36 V Single Supply: Electrical Characteristics (continued)  
VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
SWITCHING CHARACTERISTICS  
25°C  
150  
310  
VFP = 18 V, VFN = 0 V,  
RL = 300 Ω, CL= 12 pF  
330  
350  
tRESPONSE  
Fault response time  
Fault recovery time  
40°C to +85°C  
40°C to +125°C  
25°C  
ns  
ns  
1100  
2200  
2700  
2700  
VFP = 18 V, VFN = 0 V,  
RL = 300 Ω, CL= 12 pF  
tRECOVERY  
40°C to +85°C  
40°C to +125°C  
VFP = 18 V, VFN = 0 V,  
VPU = 5 V, RPU = 1 kΩ, CL= 12 pF  
tRESPONSE(FLAG) Fault flag response time  
tRECOVERY(FLAG) Fault flag recovery time  
110  
0.8  
ns  
µs  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
25°C  
VFP = 18 V, VFN = 0 V,  
VPU = 5 V, RPU = 1 kΩ, CL= 12 pF  
VFP = 8 V, VFN = 0 V,  
RL = 1 kΩ, CL= 12 pF  
tRESPONSE(DR)  
Fault output response time  
Inter-channel crosstalk  
2.7  
µs  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200m VRMS, VBIAS = 2 V, f = 1 MHz  
XTALK  
dB  
100  
600  
3 dB bandwidth (WQFN  
Package)  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 2 V  
BW  
25°C  
MHz  
MHz  
dB  
3 dB bandwidth (TSSOP  
Package)  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 2 V  
BW  
25°C  
580  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 2 V, f = 1 MHz  
ILOSS  
Insertion loss  
25°C  
0.7  
RS = 50 Ω, RL = 10 kΩ,  
VS = 18 VPP, VBIAS = 18 V,  
f = 20 Hz to 20 kHz  
Total harmonic distortion plus  
noise  
THD+N  
25°C  
25°C  
0.0006  
17  
%
CS(ON), CD(ON)  
Input/Output on-capacitance  
f = 1 MHz, VS = 18 V  
pF  
POWER SUPPLY  
25°C  
0.3  
0.5  
0.5  
0.6  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VDR = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
mA  
VDD = VFP = 39.6 V VSS = VFN = 0 V,  
VDR = 0 V, 5 V, or VDD  
ISS  
VSS supply current  
GND current  
25°C  
25°C  
25°C  
25°C  
0.25  
0.07  
10  
mA  
mA  
µA  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VDR = 5 V, or VDD  
IGND  
IFP  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VDR = 5 V, or VDD  
VFP supply current  
VFN supply current  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VDR = 5 V, or VDD  
IFN  
10  
µA  
25°C  
0.32  
0.5  
0.5  
0.6  
VS = 60 / 40 V,  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VDR = 0 V, 5 V, or VDD  
IDD(FA)  
VDD supply current under fault  
40°C to +85°C  
40°C to +125°C  
mA  
VS = 60 / 40 V,  
ISS(FA)  
IGND(FA)  
IFP(FA)  
VSS supply current under fault  
GND current under fault  
25°C  
25°C  
25°C  
0.18  
0.12  
10  
mA  
mA  
µA  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VDR = 0 V, 5 V, or VDD  
VS = 60 / 40 V,  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VDR = 0 V, 5 V, or VDD  
VS = 60 / 40 V,  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VDR = 0 V, 5 V, or VDD  
VFP supply current under fault  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMUX7462F  
English Data Sheet: SCDS394  
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
6.9 36 V Single Supply: Electrical Characteristics (continued)  
VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
VS = 60 / 40 V,  
IFN(FA)  
VFN supply current under fault  
25°C  
10  
µA  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VDR = 0 V, 5 V, or VDD  
(1) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS394  
14  
Submit Document Feedback  
Product Folder Links: TMUX7462F  
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
6.10 Typical Characteristics  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
Dual Supply Flat Ron Region  
Dual Supply Voltages  
6-2. On-Resistance vs Source or Drain Voltage  
6-1. On-Resistance vs Source or Drain Voltage  
Flattest RON region for all supply voltages shown  
±15 V Supply Flattest Ron Region  
6-3. On-Resistance vs Source or Drain Voltage  
6-4. On-Resistance vs Source or Drain Voltage  
Single Supply Voltages  
±20 V Supply Flattest Ron Region  
6-6. On-Resistance vs Source or Drain Voltage  
6-5. On-Resistance vs Source or Drain Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMUX7462F  
English Data Sheet: SCDS394  
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
Single Supply Flat Ron Region  
12 V VDD Flattest Ron Region  
6-7. On-Resistance vs Source or Drain Voltage  
6-8. On-Resistance vs Source or Drain Voltage  
Single Supply Voltages  
Single Supply Flat Ron Region  
6-9. On-Resistance vs Source or Drain Voltage  
6-10. On-Resistance vs Source or Drain Voltage  
36 V VDD Flattest Ron Region  
44 V VDD Flattest Ron Region  
6-11. On-Resistance vs Source or Drain Voltage  
6-12. On-Resistance vs Source or Drain Voltage  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMUX7462F  
English Data Sheet: SCDS394  
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
VDD = 12 V, VSS = 0 V  
VDD = 15 V, VSS = -15 V  
6-13. ION Leakage Current vs Temperature  
6-14. ION Leakage Current vs Temperature  
VDD = 36 V, VSS = 0 V  
VDD = +20 V, VSS = -20 V  
6-15. ION Leakage Current vs Temperature  
6-16. ION Leakage Current vs Temperature  
±20 V Dual Supply  
±15 V Dual Supply  
6-18. ID(FA) Overvoltage Leakage Current vs Temperature  
6-17. ID(FA) Overvoltage Leakage Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMUX7462F  
English Data Sheet: SCDS394  
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
VDD = 12 V Single Supply  
VDD = 36 V Single Supply  
6-19. ID(FA) Overvoltage Leakage Current vs Temperature  
6-20. ID(FA) Overvoltage Leakage Current vs Temperature  
±15 V Dual Supply  
.
6-21. Crosstalk vs Frequency  
6-22. Insertion Loss vs Frequency  
.
.
6-24. Threshold Voltage vs Temperature  
6-23. THD+N vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMUX7462F  
English Data Sheet: SCDS394  
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
VDD = VFP = 15 V  
VDD = 15 V, VFP = 10 V  
6-25. Drain Output Response - Positive Overvoltage  
6-26. Drain Output Response - Positive Overvoltage  
.
.
6-27. Drain Output Recovery - Positive Overvoltage  
6-28. Drain Output Recovery - Negative Overvoltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMUX7462F  
English Data Sheet: SCDS394  
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
.
6-29. Drain Output Response - Negative Overvoltage  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS394  
20  
Submit Document Feedback  
Product Folder Links: TMUX7462F  
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 On-Resistance  
The TMUX7462F's on-resistance is the ohmic resistance across the source (Sx) and drain (Dx) pins of the  
device. The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-  
resistance. The measurement setup used to measure RON is shown in 7-1. ΔRON represents the difference  
between the RON of any two channels, while RON_FLAT denotes the flatness that is defined as the difference  
between the maximum and minimum value of on-resistance measured over the specified analog signal range.  
V
VDD  
VSS  
8
410  
=
+
5
VDD  
VSS  
IS  
SW  
Sx  
Dx  
VS  
GND  
7-1. On-Resistance Measurement Setup  
7.2 On-Leakage Current  
Source on-leakage current (IS(ON)) and drain on-leakage current (ID(ON)) denotes the channel leakage currents  
when the switch is in the on state. IS(ON) is measured with the drain floating, while ID(ON) is measured with the  
source floating. 7-2 shows the circuit used for measuring the on-leakage currents.  
VDD  
VSS  
VDD  
VSS  
Is (OFF)  
A
ID (OFF)  
A
SW  
SW  
S1  
S1  
D1  
D4  
D1  
D4  
N.C. N.C.  
VS  
VS  
GND  
GND  
GND  
Is (OFF)  
A
ID (OFF)  
A
SW  
SW  
S4  
S4  
N.C. N.C.  
VS  
VS  
GND  
GND  
GND  
IS(ON)  
ID(ON)  
7-2. On-Leakage Measurement Setup  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMUX7462F  
English Data Sheet: SCDS394  
 
 
 
 
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
7.3 Input and Output Leakage Current under Overvoltage Fault  
If any of the source pin voltage goes above the fault supplies (VFP or VFN) by one threshold voltage (VT), the  
TMUX7462F's overvoltage protection feature is triggered to turn off the switch under fault, keeping the fault  
channel in the high-impedance state. IS(FA) and ID(FA) denotes the input and output leakage current under  
overvoltage fault conditions, respectively. The supply (or supplies) can either be in normal operating condition  
(7-3) or abnormal operating condition (7-4) when the overvoltage fault occurs. The supply (or supplies) can  
either be unpowered (VDD= VSS = VFN = VFP = 0 V), floating (VDD= VSS = VFN = VFP = No Connection), or at any  
level that is below the undervoltage (UV) threshold during abnormal operating conditions.  
VDD VSS  
VFP VFN  
Is (FA)  
A
ID (FA)  
A
VD  
SW  
S1  
D1  
VS  
GND  
ID (FA)  
GND  
Is (FA)  
A
SW  
D4  
S4  
A
VD  
VS  
GND  
GND  
GND  
IS(FA) / ID(FA)  
( |VS| > |VFP + VT| or |VFN - VT| , DR = Floating or VDD  
)
7-3. Measurement Setup for Input and Output Leakage Current Under Overvoltage Fault with Normal  
Supplies  
N.C.  
GND  
VDD VSS  
VFP VFN  
VDD VSS  
SW  
VFP VFN  
D1  
Is (FA)  
A
Is (FA)  
A
ID (FA)  
A
ID (FA)  
A
SW  
SW  
S1  
S4  
S1  
S4  
D1  
D4  
RL  
RL  
VS  
VS  
GND  
GND  
GND  
GND  
GND  
GND  
Is (FA)  
A
ID (FA)  
A
Is (FA)  
A
ID (FA)  
A
SW  
D4  
RL  
RL  
VS  
VS  
GND  
GND  
GND  
GND  
Unpowered  
(VDD = VSS = VFN = VFP = 0 V)  
Floating  
(VDD = VSS = VFN = VFP = N.C.)  
7-4. Measurement Setup for Input and Output Leakage Current Under Overvoltage Fault with  
Unpowered or Floating Supplies  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS394  
22  
Submit Document Feedback  
Product Folder Links: TMUX7462F  
 
 
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
7.4 Fault Response Time  
Fault response time (tRESPONSE) measures the delay between the source voltage exceeding the fault supply  
voltage (VFP or VFN) by 0.5V and the drain voltage failing to 90% of the fault supply voltage exceeded. 7-5  
shows the setup used to measure tRESPONSE  
.
VSS  
VFP  
0.1 µF  
GND  
0.1 µF  
GND  
Max positive fault  
0 V  
VDD  
VFN  
VFP + 0.5 V  
60V/µs  
ramp  
60V/µs  
ramp  
VS  
VS  
0.1 µF  
GND  
0.1 µF  
VFN - 0.5 V  
0 V  
VDD VSS  
VFP VFN  
Max negative fault  
GND  
tRESPONSE (FP)  
VFP  
tRESPONSE (FN)  
SW  
0 V  
Sx  
Dx  
Output  
Output × 90%  
Output  
Output  
VS  
Output × 90%  
RL  
CL  
VFN  
tRESPONSE = max ( tRESPONSE(FP), tRESPONSE(FN)  
All other source &  
drain pins  
0 V  
GND  
GND  
GND  
)
GND  
GND  
7-5. Fault Response Time Measurement Setup  
7.5 Fault Recovery Time  
Fault recovery time (tRECOVERY) measures the delay between the source voltage falling from overvoltage  
condition to below fault supply voltage (VFP or VFN) plus 0.5 V and the drain voltage rising from 0V to 50% of the  
fault supply voltage exceeded. 7-6 shows the setup used to measure tRECOVERY  
.
VSS  
VFP  
0.1 µF  
0.1 µF  
GND  
VDD  
VFN  
0 V  
GND  
VFN + 2 V  
VFP + 0.5 V  
VFN - 0.5 V  
VFP - 2 V  
0.1 µF  
GND  
0.1 µF  
VS  
VS  
tRECOVERY (FN)  
0 V  
VDD VSS  
VFP VFN  
0 V  
tRECOVERY (FP)  
GND  
SW  
Sx  
Dx  
Output  
All other  
source &  
drain pins  
VS  
Output  
VFN × 0.5  
VFP × 0.5  
RL  
CL  
Output  
0 V  
GND  
GND  
GND  
tRECOVERY = max ( tRECOVERY(FP), tRECOVERY(FN)  
)
GND  
GND  
7-6. Fault Recovery Time Measurement Setup  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMUX7462F  
English Data Sheet: SCDS394  
 
 
 
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
7.6 Fault Flag Response Time  
Fault flag response time (tRESPONSE(FLAG)) measures the delay between the source voltage exceeding the fault  
supply voltage (VFP or VFN) by 0.5 V and the general fault flag (FF) pin to go below 10% of its original value. 图  
7-7 shows the setup used to measure tRESPONSE(FLAG)  
.
VSS  
VFP  
0.1 µF  
GND  
0.1 µF  
GND  
VDD  
VFN  
0 V  
0.1 µF  
GND  
0.1 µF  
GND  
VFP + 0.5 V  
VDD VSS  
VFP VFN  
VS  
VS  
VFN - 0.5 V  
tRESPONSE(FLAG)_FN  
0 V  
SW  
Sx  
Dx  
tRESPONSE(FLAG)_FP  
5 V  
5 V  
VS  
5V  
RL  
CL  
VFF  
VFF  
All other  
source &  
drain pins  
GND  
RPU  
0.5 V  
0.5 V  
GND  
GND  
0 V  
0 V  
tRESPONSE(FLAG) = max ( tRESPONSE(FLAG)_FP, tRESPONSE(FLAG)_FN  
)
FF  
GND  
CL_FF  
GND  
GND  
7-7. Fault Flag Response Time Measurement Setup  
7.7 Fault Flag Recovery Time  
Fault flag recovery time (tRECOVERY(FLAG)) measures the delay between the source voltage falling from the  
overvoltage condition to below the fault supply voltage (VFP or VFN) plus 0.5 V and the general fault flag (FF) pin  
to rise above 3 V with 5 V external pull-up. 7-8 shows the setup used to measure tRECOVERY(FLAG)  
.
VSS  
VFP  
0.1 µF  
GND  
0.1 µF  
GND  
VDD  
VFN  
0 V  
0.1 µF  
GND  
0.1 µF  
GND  
VFP + 0.5 V  
VFN - 0.5 V  
VDD VSS  
VFP VFN  
VS  
VS  
SW  
0 V  
Sx  
Dx  
tRECOVERY(FLAG)_FN  
tRECOVERY(FLAG)_FP  
VS  
5 V  
VFF  
5 V  
5V  
RL  
CL  
3 V  
3 V  
All other  
source &  
drain pins  
VFF  
GND  
RPU  
GND  
GND  
0 V  
0 V  
tRECOVERY(FLAG) = max ( tRECOVERY(FLAG)_FP, tRECOVERY(FLAG)_FN  
)
FF  
GND  
CL_FF  
GND  
GND  
7-8. Fault Flag Recovery Time Measurement Setup  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS394  
24  
Submit Document Feedback  
Product Folder Links: TMUX7462F  
 
 
 
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
7.8 Fault Drain Enable Time  
tRESPONSE(DR) represents the delay between the voltage at the DR pin falling from a high to low signal and the  
output of the drain pin reaching 90% of the fault supplies (VFP or VFN). tRESPONSE(DR) is a measure of how quickly  
the internal pull-up engages in response to the DR pin. 7-9 shows the setup used to measure tRESPONSE(DR)  
.
VSS  
VFP  
0.1 µF  
GND  
0.1 µF  
VDD  
VFN  
GND  
3 V  
3 V  
0.1 µF  
GND  
0.1 µF  
GND  
VDD VSS  
VFP VFN  
VDR  
1.5V  
VDR  
1.5V  
SW  
Sx  
Dx  
0 V  
tRESPONSE(DR)_FP  
tRESPONSE(DR)_FN  
0 V  
Output (VD)  
VS  
CL  
VFP  
VFP x 0.9  
Output (VD)  
GND  
GND  
All other  
source &  
drain pins  
0 V  
VFN x 0.9  
DR  
VFN  
VDR  
GND  
tRESPONSE(DR) = max ( tRESPONSE(DR)_FP, tRESPONSE(DR)_FN  
)
GND  
GND  
VS > VFP + VT (to measure tRECOVERY(DR)_FP) or  
VS < VFN - VT (to measure tRECOVERY(DR)_FN  
)
7-9. Fault Drain Enable Time Measurement Setup  
7.9 Inter-Channel Crosstalk  
7-10 and 方程式 1 shows how the inter-channel crosstalk (XTALK(INTER)) is measured as the voltage at the  
source pin (Sx) of an on-switch input, when a 1-VRMS signal is applied at the source pin of an on-switch input in a  
different channel.  
VSS  
VFP  
0.1 µF  
GND  
0.1 µF  
GND  
VDD  
VFN  
0.1 µF  
GND  
0.1 µF  
GND  
VDD VSS  
VFP VFN  
Network Analyzer  
SW  
SW  
SX  
SY  
DX  
DY  
Other  
50  
RS  
VOUT  
Sx/ Dx  
pins  
50  
VS  
50  
GND  
50  
7-10. Inter-Channel Crosstalk Measurement Setup  
V
OUT  
Inter − cannel Crosstalk = 20 × Log  
(1)  
V
S
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMUX7462F  
English Data Sheet: SCDS394  
 
 
 
 
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
7.10 Bandwidth  
Bandwidth (BW) is defined as the range of frequencies that are attenuated by < 3 dB when the input is applied to  
the source pin (Sx) of an on-channel, and the output is measured at the TMUX7462F's drain pin (D or Dx). 图  
7-11 and 方程2 shows the setup used to measure bandwidth of the switch.  
VSS  
VFP  
0.1 µF  
GND  
0.1 µF  
GND  
VDD  
VFN  
0.1 µF  
GND  
0.1 µF  
GND  
VDD VSS  
VFP VFN  
Network Analyzer  
SW  
SX  
VOUT  
RS  
Dx  
Other  
Sx/ Dx  
pins  
VS  
50  
50  
GND  
7-11. Bandwidth Measurement Setup  
V
OUT  
Bandwidtℎ = 20 × Log  
(2)  
V
S
7.11 THD + Noise  
The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as  
the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the  
multiplexer output. The on-resistance of the TMUX7462F varies with the amplitude of the input signal and results  
in distortion when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is  
denoted as THD+N. 7-12 shows the setup used to measure THD+N of the devices.  
VSS  
VFP  
0.1 µF  
GND  
0.1 µF  
GND  
VDD  
VFN  
0.1 µF  
GND  
0.1 µF  
GND  
VDD VSS  
VFP VFN  
Audio Precision  
SW  
SX  
RS  
Dx  
VOUT  
VS  
RL  
Other  
Sx/ Dx  
pins  
GND  
50Ω  
7-12. THD+N Measurement Setup  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS394  
26  
Submit Document Feedback  
Product Folder Links: TMUX7462F  
 
 
 
 
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TMUX7462F is a four-channel protector that can be placed in series with the signal path to protect sensitive  
components downstream from overvoltage faults. The channel protector prevents overvoltages in both powered  
and powered-off conditions, making it suitable for applications where correct power supply sequencing cannot be  
precisely controlled. The powered-off condition includes floating power supplies, grounded power supplies, or  
power supplies at any level that are below the undervoltage (UV) threshold. The internal switch is turned-on and  
turned-off autonomously based on the fault situation without the need of external controls, making the device  
extremely easy to implement in the system. The primary supply voltages define the on-resistance profile, while  
the secondary supply voltages define the voltage level at which the overvoltage protection engages. The device  
works well with dual supplies (±5 V to ±22 V), a single supply (8 V to 44 V), or asymmetric supplies (such as VDD  
= 12 V, VSS = 5 V).  
8.2 Functional Block Diagram  
VDD VSS  
VFP VFN  
SW  
SW  
SW  
SW  
S1  
S2  
S3  
S4  
D1  
D2  
D3  
D4  
Input  
Output  
Fault Detection/  
Switch Driver  
DR  
FF  
GND  
8.3 Feature Description  
8.3.1 Flat ON-Resistance  
The TMUX7462F are designed with a special switch architecture to produce ultra-flat on-resistance (RON) across  
most of the switch input operation region. The flat RON response allows the device to be used in precision sensor  
applications since the RON is controlled regardless of the signals sampled. The architecture is implemented  
without a charge pump so no unwanted noise is produced from the device to affect sampling accuracy.  
8.3.2 Protection Features  
The TMUX7462F offers a number of protection features to enable robust system implementations.  
8.3.2.1 Input Voltage Tolerance  
The maximum voltage that can be applied to any source input pin is +60 V or -60 V, allowing the device to  
handle typical voltage fault conditions in industrial applications. Take caution: the device has different maximum  
stress ratings across different pin combinations and are defined as the following:  
1. Between source pins and supply rails: 85 V  
For example, if the device is powered by VDD supply of 25 V, then the maximum negative signal level on any  
source pin is 60 V. If the device is powered by VDD supply of 40 V, then the maximum negative signal level  
on any source pin is reduced to 45 V to maintain the 85 V maximum rating across the source pin and the  
supply.  
2. Between source pins and drain pin of the same channel: 85 V  
For example, if the DR pin is left floating and an overvoltage voltage fault of 60 V occurs on the source pin  
S1, then the maximum positive voltage signal level driven on the drain pin channel D1 is 25 V to maintain the  
85 V maximum rating across the source pin and the drain pin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMUX7462F  
English Data Sheet: SCDS394  
 
 
 
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
8.3.2.2 Powered-Off Protection  
The source (Sx) pins of the device remain in the high impedance (Hi-Z) state, and the device performance  
remains within the leakage performance specifications when the supplies of TMUX7462F are removed (VDD/ VSS  
= 0 V or floating) or at a level that is below the undervoltage (UV) threshold. Powered-off protection minimizes  
system design complexity by removing the need to control the system's power supply sequencing. The feature  
prevents errant voltages on the input source pins from reaching the rest of the system and maintains isolation  
when the system is powering up. Without powered-off protection, signal on the input source pins can back-power  
the supply rails through internal ESD diodes and cause potential damage to the system.  
A GND reference must always be present to for proper operation. Source and drain voltage levels of up to ±60 V  
are blocked in the powered-off condition.  
8.3.2.3 Fail-Safe Logic  
Fail-Safe logic circuitry allows voltages on the control input pin (DR) to be applied before the supply pins. This  
eliminates the need for power sequencing of the logic signals and protects the device from potential damage.  
The control inputs are protected against positive faults of up to +44 V in the powered-off condition, but do not  
offer protection against a negative overvoltage condition.  
8.3.2.4 Overvoltage Protection and Detection  
The TMUX7462F detects overvoltage inputs by comparing the voltage on a source pin (Sx) with the fault  
supplies (VFP and VFN). A signal is considered overvoltage if it exceeds the fault supply voltages by the threshold  
voltage (VT).  
The switch automatically turns OFF and the source pin becomes high impedance so that only small leakage  
currents flow through the switch when an overvoltage is detected. The drain pin (Dx) behavior can be adjusted  
by controlling the drain response (DR) pin in the following ways:  
1. DR pin floating or driven above VIH:  
If the DR pin is driven about VIH level of the pin, then the drain pin becomes high impedance (Hi-Z) upon  
overvoltage fault.  
2. DR driven below VIL:  
If the DR pin is driven below VIL level of the pin, then the drain pin (Dx) is pulled to the supply that was  
exceeded. For example, if the source voltage exceeds VFP, then the drain output is pulled to VFP. If the  
source voltage exceeds VFN, then the drain output is pulled to VFN. The pull-up impedance is approximately  
40 kΩ, and as a result, the drain current is limited to roughly 1 mA during a shorted load (to GND) condition.  
8-1 shows a detailed view of the how the DR pin controls the output state of the drain pin under a fault  
scenario.  
VDD VSS  
VFP  
DR  
Logic  
Fault  
Detection  
40 k  
Sx  
Dx  
40 k  
ESD  
Protection  
VFN  
GND  
8-1. Detailed Functional Diagram  
VFP and VFN are required fault supplies that set the level at which the overvoltage protection is engaged. VFP can  
be supplied from 3 V to VDD, while the VFN can be supplied from VSS to 0 V. If the fault supplies are not available  
in the system, then the VFP pin must be connected to VDD, while the VFN pin must be connected to VSS. In this  
case, the overvoltage protection then engages at the primary supply voltages VDD and VSS  
.
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS394  
28  
Submit Document Feedback  
Product Folder Links: TMUX7462F  
 
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
8.3.2.5 Latch-Up Immunity  
Latch-up is a condition where a low impedance path is created between a supply pin and ground. This condition  
is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains  
even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic  
damage due to excessive current levels. The Latch-up condition typically requires a power cycle to eliminate the  
low impedance path.  
An insulating oxide layer is placed on top of the silicon substrate to prevent any parasitic junctions from forming  
in the TMUX7462F devices. As a result, the devices are latch-up immune under all circumstances by device  
construction.  
8.3.2.6 EMC Protection  
The TMUX7462F is not intended for standalone electromagnetic compatibility (EMC) protection in industrial  
applications. There are three common high voltage transient specifications that govern industrial high voltage  
transient specifications: IEC61000-4-2 (ESD), IEC61000-4-4 (EFT), and IEC61000-4-5 (surge immunity). A  
transient voltage suppressor (TVS), along with some low-value series current limiting resistor, are required to  
prevent source input voltages from going above the rated ±60 V limits.  
It is critical to ensure that the maximum working voltage is greater than the normal operating range of the input  
source pins protected and any known system common-mode overvoltage that may be present due to incorrect  
wiring, loss of power, or short circuit when selecting a TVS protection device. 8-2 shows an example of the  
proper design window when selecting a TVS device.  
Region 1 denotes the normal operation region of TMUX7462F, where the input source voltages stay below the  
fault supplies VFP and VFN. Region 2 represents the range of possible persistent DC (or long duration AC  
overvoltage fault) presented on the source input pins. Region 3 represents the margin between any known DC  
overvoltage level and the absolute maximum rating of the TMUX7462F. The TVS breakdown voltage must be  
selected to be less than the absolute maximum rating of the TMUX7462F, but greater than any known possible  
persistent DC or long duration AC overvoltage fault to avoid triggering the TVS inadvertently. Region 4  
represents the margin the system designers must impose when selecting the TVS protection device to prevent  
accidental triggering the ESD cells of the TMUX7462F.  
Internal ESD  
Trigger Voltage  
4
Device Absolute  
Max Rating  
TVS  
Breakdown  
Voltage  
3
2
System  
Overvoltage  
Overvoltage  
Protection Window  
Fault Voltage  
Supply VFP  
0 V  
1
Normal Operation  
Fault Voltage  
Supply VFN  
2
3
4
System  
Overvoltage  
Overvoltage  
Protection Window  
TVS  
Breakdown  
Voltage  
Device Absolute  
Max Rating  
Internal ESD  
Trigger Voltage  
8-2. System Operation Regions and Proper Region of Selecting a TVS Protection Device  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMUX7462F  
English Data Sheet: SCDS394  
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
8.3.3 Overvoltage Fault Flags  
The voltages on TMUX7462F's source input pins are continuously monitored, and the status of whether an  
overvoltage condition occurs is indicated by an active low general fault flag (FF). The voltage on the FF pin  
indicates if any of the source input pins are experiencing an overvoltage condition. If any source pin voltage  
exceeds the fault supply voltages by a VT, the FF output is pulled-down to below VOL. The FF pin is an open-  
drain output, and external pull-up resistors of 1 kare recommended. The pull-up voltage can be in the range of  
1.8 V to 5.5 V, depending on the controller voltage the device interfaces with.  
8.3.4 Bidirectional Operation  
The TMUX7462F conducts equally well from source (Sx) to drain (Dx) or from drain (Dx) to source (Sx). Each  
signal path has very similar characteristics in both directions; however, it is noted that the overvoltage protection  
is implemented only on the source (Sx) side. The voltage on the drain is only allowed to swing between VFP and  
VFN and no overvoltage protection is available on the drain side.  
The primary supplies (VDD and VSS) define the on-resistance profile of the switch channel, whereas the fault  
voltage supplies (VFP and VFN) define the signal range that can be passed through from source to drain of the  
device. It is good practice to use voltages on VFP and VFN that are lower than VDD and VSS to take advantage of  
the flat on-resistance region of the device for better input-to-output linearity. The flattest on-resistance region  
extends from VSS to roughly 3 V below VDD. Once the signal is within 3 V of VDD the on-resistance will  
exponentially increase and may impact desired signal transmission.  
8.4 Device Functional Modes  
The TMUX7462F offers two modes of operation (Normal mode and Fault mode) depending on whether any of  
the input pins experience an overvoltage condition.  
8.4.1 Normal Mode  
In Normal mode operation, signals of up to VFP and VFN can be passed through the switch from source (Sx) to  
drain (Dx) or from drain (Dx) to source (Sx). The following conditions must be satisfied for the switch to stay in  
the ON condition:  
The difference between the primary supplies (VDD VSS) must be higher or equal to 8 V.  
VFP must be between 3 V and VDD, and VFN must be between VSS and 0 V.  
The input signals on the source (Sx) or the drain (Dx) must be between VFP+ VT and VFN VT.  
8.4.2 Fault Mode  
The TMUX7462F enters into the Fault mode when any of the input signals on the source (Sx) pins exceed VFP  
or VFN by a threshold voltage VT. The switch input experiencing the fault automatically turns off, and the source  
pin becomes high impedance with negligible amount of leakage current flowing through the switch under the  
overvoltage condition. For how the drain pin (Dx) behavior under the Fault mode can be programmed, refer to 节  
8.3.2.4. The general fault flag (FF) is asserted low in the Fault mode.  
The overvoltage protection is provided only for the source (Sx) input pins. The drain (Dx) pin, if used as signal  
input, must stay in between VFP and VFN at all time since no overvoltage protection is implemented on the drain  
pin.  
8.4.3 Truth Table  
8-1 provides the truth tables for the TMUX7462F. Each switch is independently controlled by its own select  
pin.  
8-1. TMUX7462F Truth Table  
Dx State During Fault  
DR PIN STATE  
Condition  
0
1
Pulled up to VFP or VFN  
Open (HI-Z)  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMUX7462F  
English Data Sheet: SCDS394  
 
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TMUX7462F is part of the fault protected switches and multiplexers family of devices. The ability to protect  
downstream components from overvoltage events up to ±60 V and latch-up immunity features makes these  
switches and multiplexers suitable for harsh environments.  
9.2 Typical Application  
The need to monitor remote sensors is common among factory automation control systems. For example, an  
analog input module or mixed module (AI, AO, DI, and DO) of a programmable logic controller (PLC) will  
interface to a field transmitter to monitor various process sensors at remote locations around the factory. A  
switch or multiplexer is often used to connect multiple inputs from the system and reduce the number of  
downstream channels.  
There are a number of fault cases that may occur that can be damaging to many of the integrated circuits. Such  
fault conditions may include, but are not limited to, human error due to miswiring, component failure, wire shorts,  
electromagnetic interference (EMI), transient disturbances, and more.  
Field Module  
PLC Anaog Input / Output Module  
Fault  
Protected  
Mux Inputs  
+15 V  
TMUX7462F  
+24 V  
+
-15 V  
+15 V-15 V  
+10 V-10 V  
VFP VFN  
VSense  
VOUT  
VDD VSS  
DAC  
Wire  
Fault!  
Short  
S1  
D1  
D2  
D3  
D4  
Analog Input  
Signals  
DAC  
S2  
S3  
S4  
+10 V  
+
-
Analog Output  
Signals  
High voltage  
offset shift  
+10 V  
IN1  
Fault!  
-10 V  
+
-
ADC  
-10 V  
IN2  
V
Does not require logic control  
pins from MCU/processor  
9-1. Typical Application  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMUX7462F  
English Data Sheet: SCDS394  
 
 
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
9.2.1 Design Requirements  
9-1. Design Parameters  
PARAMETER  
VALUE  
+15 V  
Positive supply (VDD) mux  
Negative supply (VSS) mux  
Power board supply voltage  
-15 V  
24 V  
Input or output signal range non-faulted  
Overvoltage protection levels  
Control logic thresholds  
-10 V to 10 V  
-60 V to 60 V  
1.8 V compatible, up to 44 V  
-40°C to +125°C  
Temperature range  
9.2.2 Detailed Design Procedure  
The TMUX7462F device's normal operation is to provide fault protection for the system while minimizing the  
control logic signals required to route across the PCB. The device works as a channel protector by allowing the  
signals to pass when in the valid voltage range, and opening the switch if there is a fault case. A fault protected  
switch can add extra robustness to the system against fault conditions while also reducing the number of  
components required to interface with the physical input channels.  
The application shows two channels of the TMUX7462F connected as analog outputs and two channels  
connected as analog inputs to the PLC system. The analog input channels utilize the TMUX7462F to protect  
down stream operational amplifiers that are operating at a lower supply voltage than the multiplexer. The  
TMUX7462F only has overvoltage protection on the source pins, therefore these pins are connected to the  
external system connector on the analog output channels. If there is a miswiring or wire short issue on the  
connectors, the channel protector will open the switch channel to help prevent long term fault conditions from  
damaging the DAC.  
If there is a fault condition, the drain pin of the channels can either be pulled up to the fault supply voltage (VFP  
and VFN) through a 40 kΩ resistor or be left floating depending on the state of the DR pin. This can be  
configured to match the system requirements on how to handle a fault condition.  
9.2.3 Application Curves  
The example application utilizes adjustable fault threshold voltages of the TMUX7462F to allow for protection of  
downstream components operating on lower supply voltages. 9-2 shows an example of positive overvoltage  
fault response with a fast fault ramp rate of 60 V/us. 9-3 shows the extremely flat on-resistance across source  
voltage while operating within the fault threshold voltage levels for many supply voltage scenarios. These  
features make the TMUX7462F an excellent solution for data acquisition applications that may face various fault  
conditions but also require excellent linearity and low distortion.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS394  
32  
Submit Document Feedback  
Product Folder Links: TMUX7462F  
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
VDD = 15 V, VFP = 10 V  
VFP = 10 V, VFN = -10 V  
9-2. Positive Overvoltage Response  
9-3. RON Flatness in Non-Fault Region  
9.3 Power Supply Recommendations  
The TMUX7462F operates across a wide supply range of ±5 V to ±22 V (8 V to 44 V in single-supply mode). The  
device also performs well with asymmetrical supplies such as VDD = 12 V and VSS= 5 V. For improved supply  
noise immunity, use a supply decoupling capacitor ranging from 1 µF to 10 µF at the VDD and VSS pins to  
ground. Always ensure the ground (GND) connection is established before supplies are ramped.  
The fault supplies (VFP and VFN) provide the current required to operate the fault protection, and thus, must be  
low impedance supplies. They can be derived from the primary supplies by using a resistor divider and buffer or  
be an independent supply rail. The fault supplies must not exceed the primary supplies as it might cause  
unexpected behavior of the switch. Use a supply decoupling capacitor ranging from 1 µF to 10 µF at the VFP and  
VFN pins to ground for improved supply noise immunity.  
The positive supply, VDD, must be ramped before the positive fault rail, VFP, for proper power sequencing of the  
TMUX7462F. Similarly, the negative supply, VSS, must be ramped before the negative fault voltage rail, VFN  
.
9.4 Layout  
9.4.1 Layout Guidelines  
The following images shows an example of a PCB layout with the TMUX7462F. Some key considerations are as  
follows:  
Decouple the VDD and VSS pins with a 1-µF capacitor, placed as close to the pin as possible. Make sure that  
the capacitor voltage rating is sufficient for the supplies.  
Multiple decoupling capacitors can be used if their is a lot of noise in the system. For example, a 0.1-µF and  
1-µF can be placed on the supply pins. If multiple capacitors are used, then it is recommended to place the  
lowest value capacitor closest to the supply pin.  
Keep the input lines as short as possible.  
Use a solid ground plane to help distribute heat and reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMUX7462F  
English Data Sheet: SCDS394  
 
 
 
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
9.4.2 Layout Example  
To VFN supply  
C
To VFP supply  
C
VFN  
D1  
VFP  
Wide (low inductance)  
trace for VSS  
D2  
S2  
Wide (low inductance)  
trace for VDD  
S1  
VSS  
GND  
S4  
VDD  
FF  
TMUX7462F  
To Pull-up resistor  
S3  
D3  
D4  
DR  
N.C.  
Via to ground plane  
9-4. TSSOP Layout Example  
C
C
S2  
VDD  
FF  
S1  
VSS  
GND  
S4  
C
To Pull-up resistor  
S3  
Via to ground plane  
Via to power plane  
9-5. WQFN Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS394  
34  
Submit Document Feedback  
Product Folder Links: TMUX7462F  
TMUX7462F  
ZHCSNM9B MARCH 2021 REVISED JUNE 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Documentation Support  
10.1.1 Related Documentation  
Texas Instruments, Multiplexers and Signal Switches Glossary  
Texas Instruments, Protection Against Overvoltage Events, Miswiring, and Common Mode Voltages  
Texas Instruments, Improving Analog Input Modules Reliability Using Fault Protected Multiplexers  
Texas Instruments, Using Latch-Up Immune Multiplexers to Help Improve System Reliability  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMUX7462F  
English Data Sheet: SCDS394  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX7462FPWR  
TMUX7462FRRPR  
ACTIVE  
ACTIVE  
TSSOP  
WQFN  
PW  
16  
16  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
TM7462F  
Samples  
Samples  
RRP  
NIPDAU  
TMUX  
7462F  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX7462FRRPR  
WQFN  
RRP  
16  
3000  
330.0  
12.4  
4.25  
4.25  
1.15  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WQFN RRP 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
TMUX7462FRRPR  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
RRP0016A  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
4.1  
3.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 1.95  
SYMM  
(0.2) TYP  
5
8
EXPOSED  
THERMAL PAD  
4
9
2X 1.95  
SYMM  
17  
2.6 0.1  
12X 0.65  
1
12  
0.35  
16X  
PIN 1 ID  
0.25  
13  
16  
0.1  
C A B  
0.45  
0.35  
0.05  
16X  
4224816/A 02/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RRP0016A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.6)  
SYMM  
SEE SOLDER MASK  
DETAIL  
13  
16  
16X (0.6)  
1
12  
16X (0.3)  
17  
SYMM  
12X (0.65)  
(3.8)  
(1.05)  
4
9
(R0.05) TYP  
(
0.2) TYP  
VIA  
5
8
(1.05)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224816/A 02/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RRP0016A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.675) TYP  
13  
16  
16X (0.6)  
1
12  
16X (0.3)  
(0.675) TYP  
(3.8)  
17  
SYMM  
12X (0.65)  
4X ( 1.15)  
9
4
(R0.05) TYP  
8
5
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 17  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4224816/A 02/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMUX7462FRRPR

具有可调节故障阈值、1.8V 逻辑电平和闩锁效应抑制的 ±60V 故障保护、4 通道保护器 | RRP | 16 | -40 to 125
TI

TMUX8108

TMUX810x 100-V, Flat RON, Single 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX8108PWR

具有闩锁效应抑制和 1.8V 逻辑电平的 100V、扁平 RON、单路 8:1 多路复用器 | PW | 16 | -40 to 125
TI

TMUX8108_V01

TMUX810x 100-V, Flat RON, Single 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX8109

TMUX810x 100-V, Flat RON, Single 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX8109PWR

具有闩锁效应抑制和 1.8V 逻辑电平的 100V、扁平 RON、双路 4:1 多路复用器 | PW | 16 | -40 to 125
TI

TMUX810X

TMUX810x 100-V, Flat RON, Single 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX8211

TMUX821x 100-V, Flat Ron, 1:1 (SPST), 4-Channel Switches with Latch-Up Immunity and 1.8-V Logic
TI

TMUX8211PWR

具有闩锁效应抑制和 1.8V 逻辑电平(逻辑低电平)的 100V、扁平 RON、1:1 (SPST)、四通道开关 | PW | 16 | -40 to 125
TI

TMUX8212

TMUX821x 100-V, Flat Ron, 1:1 (SPST), 4-Channel Switches with Latch-Up Immunity and 1.8-V Logic
TI

TMUX8212PWR

TMUX821x 100-V, Flat Ron, 1:1 (SPST), 4-Channel Switches with Latch-Up Immunity and 1.8-V Logic
TI

TMUX8212RUMR

具有闩锁效应抑制和 1.8V 逻辑电平的 100V、扁平 RON、1:1 (SPST)、四通道开关 | RUM | 16 | -40 to 125
TI