TMX320F28334PGFA [TI]

Digital Signal Controllers (DSCs); 数字信号控制器(DSC )
TMX320F28334PGFA
型号: TMX320F28334PGFA
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Digital Signal Controllers (DSCs)
数字信号控制器(DSC )

控制器
文件: 总170页 (文件大小:2247K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
Data Manual  
Literature Number: SPRS439C  
June 2007Revised February 2008  
ADVANCE INFORMATION concerns new products in the sampling  
or preproduction phase of development. Characteristic data and  
other specifications are subject to change without notice.  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Contents  
Revision History.......................................................................................................................... 11  
1
2
3
TMS320F2833x, TMS320F2823x DSCs................................................................................... 13  
1.1  
Features ..................................................................................................................... 13  
Getting Started.............................................................................................................. 14  
1.2  
Introduction....................................................................................................................... 15  
2.1  
Pin Assignments............................................................................................................ 17  
Signal Descriptions......................................................................................................... 26  
2.2  
Functional Overview ........................................................................................................... 35  
3.1  
Memory Maps .............................................................................................................. 36  
Brief Descriptions........................................................................................................... 42  
3.2  
3.2.1  
3.2.2  
3.2.3  
3.2.4  
3.2.5  
3.2.6  
3.2.7  
3.2.8  
3.2.9  
C28x CPU ....................................................................................................... 42  
Memory Bus (Harvard Bus Architecture) .................................................................... 43  
Peripheral Bus .................................................................................................. 43  
Real-Time JTAG and Analysis ................................................................................ 43  
External Interface (XINTF) ..................................................................................... 43  
Flash .............................................................................................................. 44  
M0, M1 SARAMs ............................................................................................... 44  
L0, L1, L2, L3, L4, L5, L6, L7 SARAMs ..................................................................... 44  
Boot ROM ........................................................................................................ 44  
3.2.10 Security .......................................................................................................... 45  
3.2.11 Peripheral Interrupt Expansion (PIE) Block .................................................................. 46  
3.2.12 External Interrupts (XINT1-XINT7, XNMI).................................................................... 47  
3.2.13 Oscillator and PLL .............................................................................................. 47  
3.2.14 Watchdog ........................................................................................................ 47  
3.2.15 Peripheral Clocking ............................................................................................. 47  
3.2.16 Low-Power Modes .............................................................................................. 47  
3.2.17 Peripheral Frames 0, 1, 2, 3 (PFn) ........................................................................... 47  
3.2.18 General-Purpose Input/Output (GPIO) Multiplexer ......................................................... 48  
3.2.19 32-Bit CPU-Timers (0, 1, 2) ................................................................................... 48  
3.2.20 Control Peripherals ............................................................................................. 48  
3.2.21 Serial Port Peripherals ......................................................................................... 48  
Register Map................................................................................................................ 49  
Device Emulation Registers............................................................................................... 50  
Interrupts .................................................................................................................... 52  
3.3  
3.4  
3.5  
3.5.1  
External Interrupts .............................................................................................. 56  
3.6  
System Control ............................................................................................................. 56  
3.6.1  
OSC and PLL Block ............................................................................................ 58  
3.6.1.1 External Reference Oscillator Clock Option....................................................... 59  
3.6.1.2 PLL-Based Clock Module............................................................................ 59  
3.6.1.3 Loss of Input Clock ................................................................................... 61  
Watchdog Block ................................................................................................. 61  
3.6.2  
3.7  
Low-Power Modes Block .................................................................................................. 62  
4
Peripherals ........................................................................................................................ 63  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
DMA Overview.............................................................................................................. 64  
32-Bit CPU-Timers 0/1/2 .................................................................................................. 65  
Enhanced PWM Modules (ePWM1/2/3/4/5/6).......................................................................... 67  
High-Resolution PWM (HRPWM) ........................................................................................ 69  
Enhanced CAP Modules (eCAP1/2/3/4/5/6)............................................................................ 70  
Enhanced QEP Modules (eQEP1/2)..................................................................................... 72  
Analog-to-Digital Converter (ADC) Module ............................................................................. 74  
2
Contents  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
4.7.1  
4.7.2  
4.7.3  
ADC Connections if the ADC Is Not Used ................................................................... 77  
ADC Registers ................................................................................................... 77  
ADC Calibration.................................................................................................. 78  
4.8  
4.9  
Multichannel Buffered Serial Port (McBSP) Module................................................................... 79  
Enhanced Controller Area Network (eCAN) Modules (eCAN-A and eCAN-B)..................................... 82  
4.10 Serial Communications Interface (SCI) Modules (SCI-A, SCI-B, SCI-C) ........................................... 87  
4.11 Serial Peripheral Interface (SPI) Module (SPI-A) ...................................................................... 91  
4.12 Inter-Integrated Circuit (I2C) .............................................................................................. 94  
4.13 GPIO MUX .................................................................................................................. 96  
4.14 External Interface (XINTF)............................................................................................... 101  
Device Support................................................................................................................. 104  
5
6
5.1  
Device and Development Support Tool Nomenclature .............................................................. 104  
5.2  
Documentation Support.................................................................................................. 106  
Electrical Specifications .................................................................................................... 109  
6.1  
6.2  
6.3  
6.4  
Absolute Maximum Ratings ............................................................................................. 109  
Recommended Operating Conditions.................................................................................. 110  
Electrical Characteristics ................................................................................................ 110  
Current Consumption..................................................................................................... 111  
6.4.1  
Reducing Current Consumption ............................................................................. 113  
Current Consumption Graphs ................................................................................ 114  
6.4.2  
6.4.2.1 Thermal Design Considerations.............................................................................. 115  
Emulator Connection Without Signal Buffering for the DSP ........................................................ 115  
Timing Parameter Symbology........................................................................................... 116  
6.5  
6.6  
6.6.1  
6.6.2  
6.6.3  
General Notes on Timing Parameters....................................................................... 116  
Test Load Circuit .............................................................................................. 116  
Device Clock Table ........................................................................................... 116  
6.7  
6.8  
Clock Requirements and Characteristics ............................................................................. 118  
Power Sequencing........................................................................................................ 119  
6.8.1  
Power Management and Supervisory Circuit Solutions................................................... 119  
6.9  
General-Purpose Input/Output (GPIO)................................................................................. 122  
6.9.1  
6.9.2  
6.9.3  
6.9.4  
GPIO - Output Timing ......................................................................................... 122  
GPIO - Input Timing ........................................................................................... 123  
Sampling Window Width for Input Signals.................................................................. 124  
Low-Power Mode Wakeup Timing........................................................................... 125  
6.10 Enhanced Control Peripherals .......................................................................................... 128  
6.10.1 Enhanced Pulse Width Modulator (ePWM) Timing........................................................ 128  
6.10.2 Trip-Zone Input Timing ........................................................................................ 128  
6.10.3 External Interrupt Timing...................................................................................... 130  
6.10.4 I2C Electrical Specification and Timing ..................................................................... 131  
6.10.5 Serial Peripheral Interface (SPI) Master Mode Timing.................................................... 131  
6.10.6 SPI Slave Mode Timing ....................................................................................... 135  
6.10.7 External Interface (XINTF) Timing ........................................................................... 137  
6.10.7.1 USEREADY = 0.................................................................................... 138  
6.10.7.2 Synchronous Mode (USEREADY = 1, READYMODE = 0) .................................. 138  
6.10.7.3 Asynchronous Mode (USEREADY = 1, READYMODE = 1)................................. 139  
6.10.7.4 XINTF Signal Alignment to XCLKOUT.......................................................... 140  
6.10.7.5 External Interface Read Timing.................................................................. 141  
6.10.7.6 External Interface Write Timing.................................................................. 142  
6.10.7.7 External Interface Ready-on-Read Timing With One External Wait State ................. 143  
6.10.7.8 External Interface Ready-on-Write Timing With One External Wait State ................. 147  
6.10.8 XHOLD and XHOLDA Timing ................................................................................ 149  
6.10.9 On-Chip Analog-to-Digital Converter ........................................................................ 152  
Contents  
3
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6.10.9.1 ADC Power-Up Control Bit Timing .............................................................. 153  
6.10.9.2 Definitions........................................................................................... 154  
6.10.9.3 Sequential Sampling Mode (Single-Channel) (SMODE = 0)................................. 155  
6.10.9.4 Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1)............................... 156  
6.10.10 Detailed Descriptions ........................................................................................ 157  
6.10.11 Multichannel Buffered Serial Port (McBSP) Timing....................................................... 158  
6.10.11.0.1 McBSP Transmit and Receive Timing ...................................................... 158  
6.10.11.0.2 McBSP as SPI Master or Slave Timing..................................................... 160  
6.11 Migrating From F2833x Devices to F2823x Devices................................................................. 163  
Thermal/Mechanical Data................................................................................................... 164  
7
4
Contents  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
List of Figures  
2-1  
F2833x, F2823x 176-Pin PGF LQFP (Top View)............................................................................. 17  
F2833x, F2823x 179-Ball ZHH MicroStar BGA™ (Upper Left Quadrant) (Bottom View) ............................... 18  
F2833x, F2823x 179-Ball ZHH MicroStar BGA™ (Upper Right Quadrant) (Bottom View).............................. 19  
F2833x, F2823x 179-Ball ZHH MicroStar BGA™ (Lower Left Quadrant) (Bottom View) ............................... 20  
F2833x, F2823x 179-Ball ZHH MicroStar BGA ™(Lower Right Quadrant) (Bottom View).............................. 21  
F2833x, F2823x 176-Ball ZJZ Plastic BGA (Upper Left Quadrant) (Bottom View) ...................................... 22  
F2833x, F2823x 176-Ball ZJZ Plastic BGA (Upper Right Quadrant) (Bottom View)..................................... 23  
F2833x, F2823x 176-Ball ZJZ Plastic BGA (Lower Left Quadrant) (Bottom View) ...................................... 24  
F2833x, F2823x 176-Ball ZJZ Plastic BGA (Lower Right Quadrant) (Bottom View)..................................... 25  
Functional Block Diagram ....................................................................................................... 35  
F28335/F28235 Memory Map ................................................................................................... 37  
F28334/F28234 Memory Map ................................................................................................... 38  
F28332/F28232 Memory Map ................................................................................................... 39  
External and PIE Interrupt Sources............................................................................................. 52  
External Interrupts ................................................................................................................ 53  
Multiplexing of Interrupts Using the PIE Block ................................................................................ 54  
Clock and Reset Domains ....................................................................................................... 57  
OSC and PLL Block Diagram ................................................................................................... 58  
Using a 3.3-V External Oscillator ............................................................................................... 59  
Using a 1.9-V External Oscillator ............................................................................................... 59  
Using the Internal Oscillator ..................................................................................................... 59  
Watchdog Module................................................................................................................. 61  
DMA Functional Block Diagram ................................................................................................. 64  
CPU-Timers........................................................................................................................ 65  
CPU-Timer Interrupt Signals and Output Signal .............................................................................. 65  
Multiple PWM Modules in a F2833x/F2823x System ........................................................................ 67  
ePWM Sub-Modules Showing Critical Internal Signal Interconnections................................................... 69  
eCAP Functional Block Diagram................................................................................................ 70  
eQEP Functional Block Diagram................................................................................................ 72  
Block Diagram of the ADC Module ............................................................................................. 75  
ADC Pin Connections With Internal Reference ............................................................................... 76  
ADC Pin Connections With External Reference .............................................................................. 76  
McBSP Module ................................................................................................................... 80  
eCAN Block Diagram and Interface Circuit .................................................................................... 83  
eCAN-A Memory Map ............................................................................................................ 84  
eCAN-B Memory Map ............................................................................................................ 85  
Serial Communications Interface (SCI) Module Block Diagram ............................................................ 90  
SPI Module Block Diagram (Slave Mode) ..................................................................................... 93  
I2C Peripheral Module Interfaces ............................................................................................... 95  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-8  
2-9  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
3-9  
3-10  
3-11  
3-12  
3-13  
4-1  
4-2  
4-3  
4-4  
4-5  
4-6  
4-7  
4-8  
4-9  
4-10  
4-11  
4-12  
4-13  
4-14  
4-15  
4-16  
4-17  
List of Figures  
5
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
4-18  
4-19  
4-20  
4-21  
4-22  
5-1  
GPIO MUX Block Diagram....................................................................................................... 96  
Qualification Using Sampling Window ........................................................................................ 101  
External Interface Block Diagram ............................................................................................. 102  
Typical 16-bit Data Bus XINTF Connections................................................................................. 102  
Typical 32-bit Data Bus XINTF Connections................................................................................. 103  
Example of F2833x, F2823x Device Nomenclature......................................................................... 105  
Typical Operational Current Versus Frequency (F28335/F28235/F28334/F28234).................................... 114  
Typical Operational Power Versus Frequency (F28335/F28235/F28334/F28234) ..................................... 114  
Emulator Connection Without Signal Buffering for the DSP ............................................................... 115  
3.3-V Test Load Circuit ......................................................................................................... 116  
Clock Timing ..................................................................................................................... 119  
Power-on Reset.................................................................................................................. 120  
Warm Reset ...................................................................................................................... 121  
Example of Effect of Writing Into PLLCR Register.......................................................................... 122  
General-Purpose Output Timing............................................................................................... 122  
Sampling Mode .................................................................................................................. 123  
General-Purpose Input Timing................................................................................................. 124  
IDLE Entry and Exit Timing .................................................................................................... 125  
STANDBY Entry and Exit Timing Diagram................................................................................... 126  
HALT Wake-Up Using GPIOn ................................................................................................. 127  
PWM Hi-Z Characteristics ...................................................................................................... 128  
ADCSOCAO or ADCSOCBO Timing ......................................................................................... 130  
External Interrupt Timing ....................................................................................................... 130  
SPI Master Mode External Timing (Clock Phase = 0) ...................................................................... 133  
SPI Master Mode External Timing (Clock Phase = 1) ...................................................................... 135  
SPI Slave Mode External Timing (Clock Phase = 0)........................................................................ 136  
SPI Slave Mode External Timing (Clock Phase = 1)........................................................................ 137  
Relationship Between XTIMCLK and SYSCLKOUT ........................................................................ 140  
Example Read Access.......................................................................................................... 142  
Example Write Access .......................................................................................................... 143  
Example Read With Synchronous XREADY Access ....................................................................... 145  
Example Read With Asynchronous XREADY Access...................................................................... 146  
Write With Synchronous XREADY Access................................................................................... 148  
Write With Asynchronous XREADY Access ................................................................................. 149  
External Interface Hold Waveform ............................................................................................ 150  
XHOLD/XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK)................................................... 151  
ADC Power-Up Control Bit Timing ............................................................................................ 153  
ADC Analog Input Impedance Model ......................................................................................... 154  
Sequential Sampling Mode (Single-Channel) Timing....................................................................... 155  
Simultaneous Sampling Mode Timing ........................................................................................ 156  
McBSP Receive Timing......................................................................................................... 159  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
6-7  
6-8  
6-9  
6-10  
6-11  
6-12  
6-13  
6-14  
6-15  
6-16  
6-17  
6-18  
6-19  
6-20  
6-21  
6-22  
6-23  
6-24  
6-25  
6-26  
6-27  
6-28  
6-29  
6-30  
6-31  
6-32  
6-33  
6-34  
6-35  
6
List of Figures  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6-36  
6-37  
6-38  
6-39  
6-40  
McBSP Transmit Timing........................................................................................................ 160  
McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0.................................................... 161  
McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0.................................................... 161  
McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1.................................................... 162  
McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1.................................................... 163  
List of Figures  
7
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
List of Tables  
2-1  
F2833x Hardware Features ..................................................................................................... 15  
2-2  
F2823x Hardware Features ..................................................................................................... 16  
Signal Descriptions ............................................................................................................... 26  
Addresses of Flash Sectors in F28335/F28235 .............................................................................. 40  
Addresses of Flash Sectors in F28334/F28234............................................................................... 40  
Addresses of Flash Sectors in F28332/F28232............................................................................... 40  
Handling Security Code Locations.............................................................................................. 41  
Wait-states ......................................................................................................................... 42  
Boot Mode Selection.............................................................................................................. 45  
Peripheral Frame 0 Registers .................................................................................................. 49  
Peripheral Frame 1 Registers ................................................................................................... 50  
Peripheral Frame 2 Registers ................................................................................................... 50  
Peripheral Frame 3 Registers ................................................................................................... 50  
Device Emulation Registers ..................................................................................................... 51  
PIE Peripheral Interrupts ........................................................................................................ 54  
PIE Configuration and Control Registers ...................................................................................... 55  
External Interrupt Registers...................................................................................................... 56  
PLL, Clocking, Watchdog, and Low-Power Mode Registers ................................................................ 58  
PLLCR Bit Descriptions .......................................................................................................... 60  
CLKIN Divide Options ............................................................................................................ 60  
Possible PLL Configuration Modes ............................................................................................. 60  
Low-Power Modes ................................................................................................................ 62  
CPU-Timers 0, 1, 2 Configuration and Control Registers ................................................................... 66  
ePWM Control and Status Registers ........................................................................................... 68  
eCAP Control and Status Registers ............................................................................................ 71  
eQEP Control and Status Registers............................................................................................ 73  
ADC Registers..................................................................................................................... 77  
McBSP Register Summary ...................................................................................................... 81  
3.3-V eCAN Transceivers ....................................................................................................... 83  
CAN Register Map ............................................................................................................... 86  
SCI-A Registers .................................................................................................................. 88  
SCI-B Registers .................................................................................................................. 88  
SCI-C Registers .................................................................................................................. 89  
SPI-A Registers ................................................................................................................... 92  
I2C-A Registers.................................................................................................................... 95  
GPIO Registers ................................................................................................................... 97  
GPIO-A Mux Peripheral Selection Matrix ..................................................................................... 98  
GPIO-B Mux Peripheral Selection Matrix ..................................................................................... 99  
GPIO-C Mux Peripheral Selection Matrix .................................................................................... 100  
2-3  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
3-9  
3-10  
3-11  
3-12  
3-13  
3-14  
3-15  
3-16  
3-17  
3-18  
3-19  
4-1  
4-2  
4-3  
4-4  
4-5  
4-6  
4-7  
4-8  
4-9  
4-10  
4-11  
4-12  
4-13  
4-14  
4-15  
4-16  
4-17  
8
List of Tables  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
4-18  
6-1  
XINTF Configuration and Control Register Mapping........................................................................ 103  
TMS320F28335/F28235 Current Consumption by Power-Supply Pins at 150-MHz SYSCLKOUT .................. 111  
TMS320F28334/F28234 Current Consumption by Power-Supply Pins at 150-MHz SYSCLKOUT .................. 112  
Typical Current Consumption by Various Peripherals (at 150 MHz) ..................................................... 113  
Clocking and Nomenclature (150-MHz devices) ............................................................................ 117  
Clocking and Nomenclature (100-MHz devices) ............................................................................ 117  
Input Clock Frequency .......................................................................................................... 118  
XCLKIN Timing Requirements - PLL Enabled............................................................................... 118  
XCLKIN Timing Requirements - PLL Disabled .............................................................................. 118  
XCLKOUT Switching Characteristics (PLL Bypassed or Enabled) ....................................................... 118  
Power Management and Supervisory Circuit Solutions .................................................................... 119  
Reset (XRS) Timing Requirements ........................................................................................... 121  
General-Purpose Output Switching Characteristics......................................................................... 122  
General-Purpose Input Timing Requirements ............................................................................... 123  
IDLE Mode Timing Requirements ............................................................................................. 125  
IDLE Mode Switching Characteristics......................................................................................... 125  
STANDBY Mode Timing Requirements ...................................................................................... 125  
STANDBY Mode Switching Characteristics ................................................................................. 126  
HALT Mode Timing Requirements ............................................................................................ 126  
HALT Mode Switching Characteristics ....................................................................................... 127  
ePWM Timing Requirements................................................................................................... 128  
ePWM Switching Characteristics .............................................................................................. 128  
Trip-Zone input Timing Requirements ........................................................................................ 128  
High Resolution PWM Characteristics at SYSCLKOUT = (60 - 150 MHz) .............................................. 129  
Enhanced Capture (eCAP) Timing Requirement............................................................................ 129  
eCAP Switching Characteristics ............................................................................................... 129  
Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements.................................................... 129  
eQEP Switching Characteristics............................................................................................... 129  
External ADC Start-of-Conversion Switching Characteristics.............................................................. 129  
External Interrupt Timing Requirements...................................................................................... 130  
External Interrupt Switching Characteristics ................................................................................. 130  
I2C Timing ....................................................................................................................... 131  
SPI Master Mode External Timing (Clock Phase = 0) ...................................................................... 132  
SPI Master Mode External Timing (Clock Phase = 1) ...................................................................... 134  
SPI Slave Mode External Timing (Clock Phase = 0)........................................................................ 135  
SPI Slave Mode External Timing (Clock Phase = 1)........................................................................ 136  
Relationship Between Parameters Configured in XTIMING and Duration of Pulse .................................... 137  
XINTF Clock Configurations.................................................................................................... 139  
External Interface Read Timing Requirements .............................................................................. 141  
External Interface Read Switching Characteristics.......................................................................... 141  
External Interface Write Switching Characteristics.......................................................................... 142  
6-2  
6-3  
6-4  
6-5  
6-6  
6-7  
6-8  
6-9  
6-10  
6-11  
6-12  
6-13  
6-14  
6-15  
6-16  
6-17  
6-18  
6-19  
6-20  
6-21  
6-22  
6-23  
6-24  
6-25  
6-26  
6-27  
6-28  
6-29  
6-30  
6-31  
6-32  
6-33  
6-34  
6-35  
6-36  
6-37  
6-38  
6-39  
6-40  
List of Tables  
9
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6-41  
6-42  
6-43  
6-44  
6-45  
6-46  
6-47  
6-48  
6-49  
6-50  
6-51  
6-52  
6-53  
6-54  
6-55  
6-56  
6-57  
6-58  
6-59  
6-60  
6-61  
6-62  
6-63  
6-64  
7-1  
External Interface Read Switching Characteristics (Ready-on-Read, 1 Wait State).................................... 143  
External Interface Read Timing Requirements (Ready-on-Read, 1 Wait State) ........................................ 143  
Synchronous XREADY Timing Requirements (Ready-on-Read, 1 Wait State) ......................................... 144  
Asynchronous XREADY Timing Requirements (Ready-on-Read, 1 Wait State)........................................ 144  
External Interface Write Switching Characteristics (Ready-on-Write, 1 Wait State).................................... 147  
Synchronous XREADY Timing Requirements (Ready-on-Write, 1 Wait State) ......................................... 147  
Asynchronous XREADY Timing Requirements (Ready-on-Write, 1 Wait State)........................................ 147  
XHOLD/XHOLDA Timing Requirements (XCLKOUT = XTIMCLK) ....................................................... 150  
XHOLD/XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK)................................................... 151  
ADC Electrical Characteristics (over recommended operating conditions) .............................................. 152  
ADC Power-Up Delays.......................................................................................................... 153  
Current Consumption for Different ADC Configurations (at 25-MHz ADCCLK)......................................... 153  
Sequential Sampling Mode Timing............................................................................................ 155  
Simultaneous Sampling Mode Timing ........................................................................................ 156  
McBSP Timing Requirements.................................................................................................. 158  
McBSP Switching Characteristics ............................................................................................. 158  
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0) ................................. 160  
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0)............................. 160  
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0) ................................. 161  
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0)............................. 161  
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1) ................................. 162  
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1)............................. 162  
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1) ................................. 162  
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1)............................. 163  
Thermal Model 176-pin PGF Results ......................................................................................... 164  
Thermal Model 179-pin ZHH Results ......................................................................................... 164  
Thermal Model 176-pin ZJZ Results ......................................................................................... 164  
7-2  
7-3  
10  
List of Tables  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
The table lists the technical changes made for this revision.  
Changes Made in Revision C  
Location  
Global  
Additions, Deletions, Modifications  
Added TMS320F28235, TMS320F28234, and TMS320F28232 devices.  
Added F2823x hardware features table.  
Table 2-2  
Figure 3-1  
Section 3.1  
Modified the functional block diagram.  
Changed the fifth bullet under memory maps section.  
Figure 3-2 Figure 3-4 Modified all three memory maps.  
Section 3.2.19  
Section 3.6.1.2  
Figure 3-8  
Deleted a sentence in section on 32-Bit CPU Timers (0, 1, 2).  
Added a sentence to the section on PLL-Based Clock Module.  
Modified the Clock and Reset Diagram.  
Figure 4-9 and  
Figure 4-10  
Modified the ADC Pin Connection Figures.  
Figure 4-11  
Figure 5-1  
Modified the McBSP block diagram.  
Modified the Device Nomenclature figure to include new devices.  
Table 6-1 and Table 6-2 Modified current consumption tables by adding a seventh note.  
Table 6-3  
Table 6-50  
Section 6.11  
Modified Typical Current Consumption table by adding a fourth note.  
Modified ADC Electrical Characteristics table by deleting a row.  
Added section on migrating from F2833x to F2823x devices  
Revision History  
11  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
12  
Revision History  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
1
TMS320F2833x, TMS320F2823x DSCs  
1.1 Features  
Up to 6 Event Capture Inputs  
Up to 2 Quadrature Encoder Interfaces  
Up to 8 32-bit/Six 16-bit Timers  
High-Performance Static CMOS Technology  
Up to 150 MHz (6.67-ns Cycle Time)  
1.9-V Core, 3.3-V I/O Design  
Three 32-Bit CPU Timers  
Serial Port Peripherals  
High-Performance 32-Bit CPU (TMS320C28x)  
IEEE-754 Single-Precision Floating-Point  
Unit (FPU) (2833x only)  
Up to 2 CAN Modules  
Up to 3 SCI (UART) Modules  
Up to 2 McBSP Modules (Configurable as  
SPI)  
One SPI Module  
16 x 16 and 32 x 32 MAC Operations  
16 x 16 Dual MAC  
Harvard Bus Architecture  
Fast Interrupt Response and Processing  
Unified Memory Programming Model  
Code-Efficient (in C/C++ and Assembly)  
One Inter-Integrated-Circuit (I2C) Bus  
12-Bit ADC, 16 Channels  
80-ns Conversion Rate  
2 x 8 Channel Input Multiplexer  
Two Sample-and-Hold  
Single/Simultaneous Conversions  
Internal or External Reference  
Six Channel DMA Controller (for ADC, McBSP,  
XINTF, and SARAM)  
16-bit or 32-bit External Interface (XINTF)  
Over 2M x 16 Address Reach  
On-Chip Memory  
Up to 88 Individually Programmable,  
Multiplexed GPIO Pins With Input Filtering  
F28335/F28235: 256K x 16 Flash, 34K x 16  
SARAM  
F28334/F28234: 128K x 16 Flash, 34K x 16  
SARAM  
F28332/F28232: 64K x 16 Flash, 26K x 16  
SARAM  
1K x 16 OTP ROM  
(1)  
JTAG Boundary Scan Support  
Advanced Emulation Features  
Analysis and Breakpoint Functions  
Real-Time Debug via Hardware  
Development Support Includes  
Boot ROM (8K x 16)  
ANSI C/C++ Compiler/Assembler/Linker  
Code Composer Studio™ IDE  
DSP/BIOS™  
Digital Motor Control and Digital Power  
Software Libraries  
With Software Boot Modes (via SCI, SPI,  
CAN, I2C, McBSP, XINTF, and Parallel I/O)  
Standard Math Tables  
Clock and System Control  
Dynamic PLL Ratio Changes Supported  
On-Chip Oscillator  
Watchdog Timer Module  
Low-Power Modes and Power Savings  
IDLE, STANDBY, HALT Modes Supported  
Disable Individual Peripheral Clocks  
GPIO0 to GPIO63 Pins Can Be Connected to  
One of the Eight External Core Interrupts  
Package Options  
Lead-free Green Packaging  
Thin Quad Flatpack (PGF)  
MicroStar BGA™ (ZHH)  
Plastic BGA (ZJZ)  
Peripheral Interrupt Expansion (PIE) Block  
That Supports All 58 Peripheral Interrupts  
128-Bit Security Key/Lock  
Protects Flash/OTP/RAM Blocks  
Prevents Firmware Reverse Engineering  
Temperature Options:  
A: –40°C to 85°C (PGF, ZHH, ZJZ)  
S: –40°C to 125°C (ZJZ)  
Enhanced Control Peripherals  
Up to 18 PWM Outputs  
Up to 6 HRPWM Outputs With 150 ps MEP  
Resolution  
(1) IEEE Standard 1149.1-1990 Standard Test Access Port and  
Boundary Scan Architecture  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this document.  
Code Composer Studio, DSP/BIOS, MicroStar BGA, TMS320C28x, TMS320C54x, TMS320C55x, C28x are trademarks of Texas  
Instruments.  
ADVANCE INFORMATION concerns new products in the sampling  
Copyright © 2007–2008, Texas Instruments Incorporated  
or preproduction phase of development. Characteristic data and  
other specifications are subject to change without notice.  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
1.2 Getting Started  
This section gives a brief overview of the steps to take when first developing for a C28x device. For more  
detail on each of these steps, see the following:  
Getting Started With TMS320C28x™ Digital Signal Controllers (literature number SPRAAM0).  
C2000 Getting Started Website (http://www.ti.com/c2000getstarted)  
14  
TMS320F2833x, TMS320F2823x DSCs  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
2
Introduction  
The TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235, TMS320F28234, and  
TMS320F28232 devices, members of the TMS320C28x™ DSC generation, are highly integrated,  
high-performance solutions for demanding control applications.  
Throughout this document, the devices are abbreviated as F28335, F28334, F28332, F28235, F28234,  
and F28232, respectively. Table 2-1 and Table 2-2 provide a summary of features for each device.  
Table 2-1. F2833x Hardware Features  
FEATURE  
F28335 (150 MHz)  
F28334 (150 MHz)  
F28332 (100 MHz)  
Instruction cycle  
Floating-point Unit  
6.67 ns  
Yes  
6.67 ns  
Yes  
10 ns  
Yes  
3.3-V on-chip flash (16-bit word)  
256K  
34K  
128K  
34K  
64K  
26K  
Single-access RAM (SARAM) (16-bit word)  
One-time programmable (OTP) ROM  
(16-bit word)  
1K  
1K  
1K  
Code security for on-chip flash/SARAM/OTP  
blocks  
Yes  
Yes  
Yes  
Boot ROM (8K X16)  
Yes  
Yes  
Yes  
16/32-bit External Interface (XINTF)  
6-channel Direct Memory Access (DMA)  
PWM outputs  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
ePWM1/2/3/4/5/6  
ePWM1/2/3/4/5/6  
ePWM1/2/3/4/5/6  
HRPWM channels  
ePWM1A/2A/3A/4A/5A/6A  
ePWM1A/2A/3A/4A/5A/6A  
ePWM1A/2A/3A/4A  
32-bit Capture inputs or auxiliary PWM outputs  
32-bit QEP channels (four inputs/channel)  
Watchdog timer  
6
6
4
2
2
2
Yes  
Yes  
Yes  
No. of channels  
16  
16  
16  
12-Bit ADC  
MSPS  
12.5  
12.5  
12.5  
Conversion time  
80 ns  
80 ns  
80 ns  
32-Bit CPU timers  
3
3
3
Multichannel Buffered Serial Port (McBSP)/SPI  
Serial Peripheral Interface (SPI)  
Serial Communications Interface (SCI)  
Enhanced Controller Area Network (eCAN)  
Inter-Integrated Circuit (I2C)  
2
2
1
1
1
1
3
3
2
2
2
2
1
1
1
General Purpose I/O pins (shared)  
External interrupts  
88  
88  
88  
8
8
8
176-Pin PGF  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Packaging  
179-Ball ZHH  
176-Ball ZJZ  
Yes  
Yes  
Yes  
A: –40°C to 85°C  
S: –40°C to 125°C  
(PGF, ZHH, ZJZ)  
(ZJZ)  
(PGF, ZHH, ZJZ)  
(ZJZ)  
(PGF, ZHH, ZJZ)  
(ZJZ)  
Temperature options  
Product status  
TMX  
TMX  
TMX  
Submit Documentation Feedback  
Introduction  
15  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 2-2. F2823x Hardware Features  
FEATURE  
F28235 (150 MHz)  
F28234 (150 MHz)  
F28232 (100 MHz)  
Instruction cycle  
6.67 ns  
No  
6.67 ns  
No  
10 ns  
No  
Floating-point Unit  
3.3-V on-chip flash (16-bit word)  
256K  
34K  
128K  
34K  
64K  
26K  
Single-access RAM (SARAM) (16-bit word)  
One-time programmable (OTP) ROM  
(16-bit word)  
1K  
1K  
1K  
Code security for on-chip flash/SARAM/OTP  
blocks  
Yes  
Yes  
Yes  
Boot ROM (8K X16)  
Yes  
Yes  
Yes  
16/32-bit External Interface (XINTF)  
6-channel Direct Memory Access (DMA)  
PWM outputs  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
ePWM1/2/3/4/5/6  
ePWM1/2/3/4/5/6  
ePWM1/2/3/4/5/6  
HRPWM channels  
ePWM1A/2A/3A/4A/5A/6A  
ePWM1A/2A/3A/4A/5A/6A  
ePWM1A/2A/3A/4A  
32-bit Capture inputs or auxiliary PWM outputs  
32-bit QEP channels (four inputs/channel)  
Watchdog timer  
6
6
4
2
2
2
Yes  
Yes  
Yes  
No. of channels  
16  
16  
16  
12-Bit ADC  
MSPS  
12.5  
12.5  
12.5  
Conversion time  
80 ns  
80 ns  
80 ns  
32-Bit CPU timers  
3
3
3
Multichannel Buffered Serial Port (McBSP)/SPI  
Serial Peripheral Interface (SPI)  
Serial Communications Interface (SCI)  
Enhanced Controller Area Network (eCAN)  
Inter-Integrated Circuit (I2C)  
2
2
1
1
1
1
3
3
2
2
2
2
1
1
1
General Purpose I/O pins (shared)  
External interrupts  
88  
88  
88  
8
8
8
176-Pin PGF  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Packaging  
179-Ball ZHH  
176-Ball ZJZ  
Yes  
Yes  
Yes  
A: –40°C to 85°C  
S: –40°C to 125°C  
(PGF, ZHH, ZJZ)  
(ZJZ)  
(PGF, ZHH, ZJZ)  
(ZJZ)  
(PGF, ZHH, ZJZ)  
(ZJZ)  
Temperature options  
Product status(1)  
TMX  
TMX  
TMX  
(1) See Section 5.1, Device and Development Support Nomenclature for descriptions of device stages.  
16  
Introduction  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
2.1 Pin Assignments  
The 176-pin PZ low-profile quad flatpack (LQFP) pin assignments are shown in Figure 2-1. The 179-ball  
ZHH ball grid array (BGA) terminal assignments are shown in Figure 2-2 through Figure 2-5. The 176-ball  
ZJZ plastic ball grid array (PBGA) terminal assignments are shown in Figure 2-6 through  
Figure 2-9.Table 2-3 describes the function(s) of each pin.  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
GPIO76/XD3  
GPIO77/XD2  
GPIO78/XD1  
GPIO79/XD0  
88 GPIO48/ECAP5/XD31  
87 TCK  
86 EMU1  
85  
84  
83  
EMU0  
V
DD3VFL  
GPIO38/XWE0  
XCLKOUT  
V
SS  
V
V
82 TEST2  
81 TEST1  
80  
79 TMS  
78  
DD  
GPIO28/SCIRXDA/XZCS6  
SS  
XRS  
GPIO28/SCIRXDA/XZCS6  
GPIO34/ECAP1/XREADY  
V
TRST  
DDIO  
V
77 TDO  
76 TDI  
SS  
GPIO36/SCIRXDA/XZCS0  
V
75 GPIO33/SCLA/EPWMSYNCO/ADCSOCBO  
74 GPIO32/SDAA/EPWMSYNCI/ADCSOCAO  
73 GPIO27/ECAP4/EQEP2S/MFSXB  
72 GPIO26/ECAP3/EQEP2I/MCLKXB  
DD  
V
SS  
GPIO35/SCITXDA/XR/W  
XRD  
GPIO37/ECAP2/XZCS7  
GPIO40/XA0/XWE1  
V
71  
70  
DDIO  
V
SS  
GPIO41/XA1  
GPIO42/XA2  
69 GPIO25/ECAP2/EQEP2B/MDRB  
68 GPIO24/ECAP1/EQEP2A/MDXB  
67 GPIO23/EQEP1I/MFSXA/SCIRXDB  
66 GPIO22/EQEP1S/MCLKXA/SCITXDB  
65 GPIO21/EQEP1B/MDRA/CANRXB  
64 GPIO20/EQEP1A/MDXA/CANTXB  
63 GPIO19/SPISTEA/SCIRXDB/CANTXA  
62 GPIO18/SPICLKA/SCITXDB/CANRXA  
V
V
DD  
SS  
GPIO43/XA3  
GPIO44/XA4  
GPIO45/XA5  
V
DDIO  
V
V
V
V
V
61  
60  
59  
58  
SS  
GPIO46/XA6  
GPIO47/XA7  
DD  
SS  
DD2A18  
SS2AGND  
GPIO80/XA8 163  
164  
165  
166  
167  
168  
169  
170  
171  
GPIO81/XA9  
GPIO82/XA10  
57 ADCRESEXT  
56 ADCREFP  
55 ADCREFM  
54 ADCREFIN  
53 ADCINB7  
V
SS  
V
DD  
GPIO83/XA11  
ADCINB6  
ADCINB5  
ADCINB4  
ADCINB3  
ADCINB2  
ADCINB1  
ADCINB0  
GPIO84/XA12  
V
52  
51  
50  
49  
48  
47  
46  
45  
DDIO  
V
SS  
GPIO85/XA13 172  
GPIO86/XA14  
GPIO87/XA15  
173  
174  
175  
176  
GPIO39/XA16  
GPIO31/CANTXA/XA17  
V
DDAIO  
Figure 2-1. F2833x, F2823x 176-Pin PGF LQFP (Top View)  
Submit Documentation Feedback  
Introduction  
17  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
1
2
3
4
5
6
7
GPIO21/  
EQEP1B/  
MDRA/  
VSSAIO  
VSS  
P
N
ADCINB0  
ADCINB2  
ADCINB6  
ADCREFP  
P
N
CANRXB  
GPIO22/  
EQEP1S/  
MCLKXA/  
SCITXDB  
VDDAIO  
VDD  
ADCINA1  
ADCINB1  
ADCINB5  
ADCREFM  
GPIO23/  
EQEP1I/  
MFSXA/  
SCIRXDB  
VDD2A18  
M
ADCINA2  
ADCINA5  
VSS1AGND  
ADCLO  
ADCINA4  
VDDA2  
ADCINA0  
ADCINA3  
VSSA2  
ADCINB4  
ADCINB3  
ADCINA7  
ADCRESEXT  
ADCREFIN  
ADCINB7  
M
GPIO18/  
SPICLKA/  
SCITXDB/  
CANRXA  
GPIO20/  
EQEP1A/  
MDXA/  
L
L
CANTXB  
GPIO19/  
SPISTEA/  
SCIRXDB/  
CANTXA  
VSS2AGND  
K
K
6
7
GPIO17/  
SPISOMIA/  
CANRXB/  
TZ6  
VDD  
VSS  
VDD1A18  
J
ADCINA6  
GPIO16/  
J
GPIO14/  
TZ3/XHOLD/  
SCITXDB/  
MCLKXB  
GPIO13/  
TZ2/  
GPIO15/  
TZ4/XHOLDA/ SPISIMOA/  
VDD  
H
H
CANRXB/  
MDRB  
SCIRXDB/  
MFSXB  
CANTXB/  
TZ5  
1
2
3
4
5
Figure 2-2. F2833x, F2823x 179-Ball ZHH MicroStar BGA™ (Upper Left Quadrant) (Bottom View)  
18  
Introduction  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
8
9
10  
11  
12  
13  
14  
GPIO33/  
SCLA/  
GPIO48/  
ECAP5/  
XD31  
GPIO50/  
EQEP1A/  
XD29  
VSS  
P
N
TMS  
TEST2  
EMU1  
P
N
EPWMSYNCO/  
ADCSOCBO  
GPIO25/  
ECAP2/  
EQEP2B/  
MDRB  
GPIO32/  
SDAA/  
GPIO49/  
ECAP6/  
XD30  
VSS  
VSS  
VDDIO  
TCK  
EPWMSYNCI/  
ADCSOCAO  
GPIO24/  
ECAP1/  
EQEP2A/  
MDXB  
GPIO51/  
EQEP1B/  
XD28  
GPIO52/  
EQEP1S/  
XD27  
VDD3VFL  
VSS  
M
TDI  
M
TRST  
GPIO27/  
ECAP4/  
EQEP2S/  
MFSXB  
GPIO53/  
EQEP1I/  
XD26  
GPIO54/  
SPISIMOA/  
XD25  
GPIO55/  
SPISOMIA/  
XD24  
VDDIO  
L
EMU0  
L
XRS  
TEST1  
VSS  
GPIO26/  
ECAP3/  
EQEP2I/  
MCLKXB  
GPIO56/  
SPICLKA/  
XD23  
GPIO58/  
MCLKRA/  
XD21  
GPIO57/  
SPISTEA/  
XD22  
VDD  
K
TDO  
K
8
9
VSS  
J
X2  
X1  
XCLKIN  
J
GPIO59/  
MFSRA/  
XD20  
VSS  
VDDIO  
VDD  
VSS  
H
H
10  
11  
12  
13  
14  
Figure 2-3. F2833x, F2823x 179-Ball ZHH MicroStar BGA™ (Upper Right Quadrant) (Bottom View)  
Submit Documentation Feedback  
Introduction  
19  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
1
2
3
4
5
GPIO11/  
EPWM6B/  
SCIRXDB/  
ECAP4  
GPIO12/  
TZ1/  
GPIO10/  
EPWM6A/  
CANRXB/  
GPIO9/  
EPWM5B/  
SCITXDB/  
ECAP3  
VSS  
G
G
CANTXB/  
MDXB  
ADCSOCBO  
GPIO8/  
EPWM5A/  
CANTXB/  
GPIO7/  
EPWM4B/  
MCLKRA/  
ECAP2  
VDD  
VSS  
VDDIO  
F
F
ADCSOCAO  
6
7
GPIO6/  
GPIO5/  
EPWM3B/  
MFSRA/  
ECAP1  
GPIO3/  
EPWM2B/  
ECAP5/  
EPWM4A/  
GPIO4/  
GPIO84/  
XA12  
GPIO81/  
XA9  
VDDIO  
E
D
E
EPWMSYNCI/  
EPWMSYNCO  
EPWM3A  
MCLKRB  
GPIO1/  
EPWM1B/  
ECAP6/  
MFSRB  
GPIO2/  
GPIO86/  
XA14  
GPIO83/  
XA11  
GPIO45/  
XA5  
VSS  
VSS  
D
EPWM2A  
GPIO29/  
SCITXDA/  
XA19  
GPIO0/  
GPIO85/  
XA13  
GPIO82/  
XA10  
GPIO80/  
XA8  
VSS  
VSS  
C
B
C
B
EPWM1A  
GPIO30/  
CANRXA/  
XA18  
GPIO39/  
XA16  
GPIO46/  
XA6  
GPIO43/  
XA3  
VDD  
VSS  
VDD  
GPIO31/  
CANTXA/  
XA17  
GPIO87/  
XA15  
GPIO47/  
XA7  
GPIO44/  
XA4  
VDDIO  
VSS  
A
A
1
2
3
4
5
6
7
Figure 2-4. F2833x, F2823x 179-Ball ZHH MicroStar BGA™ (Lower Left Quadrant) (Bottom View)  
20  
Introduction  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
10  
11  
12  
13  
14  
GPIO63/  
SCITXDC/  
XD16  
GPIO61/  
MFSRB/  
XD18  
GPIO62/  
SCIRXDC  
XD17  
GPIO60/  
MCLKRB/  
XD19  
GPIO64/  
XD15  
G
G
GPIO69/  
XD10  
GPIO66/  
XD13  
GPIO65/  
XD14  
VSS  
VDD  
F
F
8
9
GPIO28/  
SCIRXDA/  
XZCS6  
GPIO68/  
XD11  
GPIO67/  
XD12  
VSS  
VDD  
VDDIO  
VSS  
E
D
C
B
A
E
D
C
B
A
GPIO40/  
XA0/  
GPIO37/  
ECAP2/  
XZCS7  
GPIO34/  
ECAP1/  
XREADY  
GPIO38/  
XWE0  
GPIO70/  
XD9  
VDD  
VSS  
XWE1  
GPIO36/  
SCIRXDA/  
XZCS0  
GPIO73/  
XD6  
GPIO74/  
XD5  
GPIO71/  
XD8  
VDD  
VSS  
XCLKOUT  
GPIO42/  
XA2  
GPIO78/  
XD1  
GPIO76/  
XD3  
GPIO72/  
XD7  
VDD  
VDDIO  
XRD  
GPIO35/  
GPIO41/  
XA1  
GPIO79/  
XD0  
GPIO77/  
XD2  
GPIO75/  
XD4  
VSS  
VSS  
SCITXDA/  
XR/W  
8
9
10  
11  
12  
13  
14  
Figure 2-5. F2833x, F2823x 179-Ball ZHH MicroStar BGA ™(Lower Right Quadrant) (Bottom View)  
Submit Documentation Feedback  
Introduction  
21  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
1
2
3
4
5
6
7
VSSA2  
VSS2AGND  
P
N
ADCINB0  
ADCREFM  
ADCREFP ADCRESEXT ADCREFIN  
VSSAIO  
ADCLO  
ADCINB1  
ADCINA0  
ADCINB3  
ADCINB5  
ADCINB7  
EMU0  
M
ADCINA2  
ADCINA5  
ADCINA1  
ADCINA4  
ADCINB2  
VSS1AGND  
VDDA2  
ADCINB4  
ADCINB6  
TEST1  
TEST2  
VDDAIO  
VDD2A18  
L
ADCINA3  
VDD1A18  
ADCINA7  
GPIO15/  
ADCINA6  
GPIO16/  
K
GPIO17/  
SPISOMIA/  
CANRXB/  
TZ6  
TZ4/XHOLDA/ SPISIMOA/  
VDD  
VSS  
VSS  
J
SCIRXDB/  
MFSXB  
CANTXB/  
TZ5  
GPIO12/  
TZ1/  
GPIO13/  
TZ2/  
GPIO14/  
TZ3/XHOLD/  
SCITXDB/  
MCLKXB  
VDD  
VSS  
VSS  
H
CANTXB/  
MDXB  
CANRXB/  
MDRB  
Figure 2-6. F2833x, F2823x 176-Ball ZJZ Plastic BGA (Upper Left Quadrant) (Bottom View)  
22  
Introduction  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
8
9
10  
11  
12  
13  
14  
GPIO20/  
EQEP1A/  
MDXA/  
GPIO23/  
EQEP1I/  
MFSXA/  
SCIRXDB  
GPIO26/  
ECAP3/  
EQEP2I/  
MCLKXB  
GPIO33/  
SCLA/  
VSS  
VSS  
EMU1  
P
N
M
L
EPWMSYNCO/  
ADCSOCBO  
CANTXB  
GPIO18/  
SPICLKA/  
SCITXDB/  
CANRXA  
GPIO21/  
EQEP1B/  
MDRA/  
GPIO24/  
ECAP1/  
EQEP2A/  
MDXB  
GPIO27/  
ECAP4/  
EQEP2S/  
MFSXB  
VDDIO  
TDI  
TDO  
XRS  
CANRXB  
GPIO19/  
SPISTEA/  
SCIRXDB/  
CANTXA  
GPIO22/  
EQEP1S/  
MCLKXA/  
SCITXDB  
GPIO25/  
ECAP2/  
EQEP2B/  
MDRB  
GPIO32/  
SDAA/  
TMS  
TCK  
EPWMSYNCI/  
ADSOCAO  
GPIO50/  
EQEP1A/  
XD29  
GPIO49/  
ECAP6/  
XD30  
GPIO48/  
ECAP5/  
XD31  
VDD  
VDD3VFL  
VDDIO  
TRST  
GPIO53  
EQEP1I/  
XD26  
GPIO52/  
EQEP1S/  
XD27  
GPIO51/  
EQEP1B/  
XD28  
VDD  
K
GPIO56/  
SPICLKA/  
XD23  
GPIO55/  
SPISOMIA/  
XD24  
GPIO54/  
SPISIMOA/  
XD25  
VSS  
VSS  
VDD  
J
GPIO59/  
MFSRA/  
XD20  
GPIO58/  
MCLKRA/  
XD21  
GPIO57/  
SPISTEA/  
XD22  
VSS  
VSS  
X2  
H
Figure 2-7. F2833x, F2823x 176-Ball ZJZ Plastic BGA (Upper Right Quadrant) (Bottom View)  
Submit Documentation Feedback  
Introduction  
23  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
GPIO9/  
EPWM5B/  
SCITXDB/  
ECAP3  
GPIO10/  
EPWM6A/  
CANRXB/  
GPIO11/  
EPWM6B/  
SCIRXDB/  
ECAP4  
VDDIO  
VSS  
VSS  
G
ADCSOCBO  
GPIO6/  
GPIO7/  
EPWM4B/  
MCLKRA/  
ECAP2  
GPIO8/  
EPWM5A/  
CANTXB/  
EPWM4A/  
VDD  
VSS  
VSS  
F
EPWMSYNCI/  
EPWMSYNCO  
ADCSOCAO  
GPIO3/  
EPWM2B/  
ECAP5/  
GPIO5/  
EPWM3B/  
MFSRA/  
ECAP1  
GPIO4/  
VDDIO  
E
D
C
B
A
EPWM3A  
MCLKRB  
GPIO1/  
EPWM1B/  
ECAP6/  
MFSRB  
GPIO0/  
GPIO2/  
GPIO47/  
XA7  
VDD  
VDD  
VDDIO  
EPWM1A  
EPWM2A  
GPIO29/  
SCITXDA/  
XA19  
GPIO30/  
CANRXA/  
XA18  
GPIO39/  
XA16  
GPIO85/  
XA13  
GPIO82/  
XA10  
GPIO46/  
XA6  
GPIO43/  
XA3  
GPIO31/  
CANTXA/  
XA17  
GPIO87/  
XA15  
GPIO84/  
XA12  
GPIO81/  
XA9  
GPIO45/  
XA5  
GPIO42/  
XA2  
VDDIO  
GPIO86/  
XA14  
GPIO83/  
XA11  
GPIO80/  
XA8  
GPIO44/  
XA4  
GPIO41/  
XA1  
VSS  
VSS  
1
2
3
4
5
6
7
Figure 2-8. F2833x, F2823x 176-Ball ZJZ Plastic BGA (Lower Left Quadrant) (Bottom View)  
24  
Introduction  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
GPIO60/  
VSS  
VSS  
VDDIO  
MCLKRB/  
XD19  
XCLKIN  
X1  
G
GPIO63/  
SCITXDC/  
XD16  
GPIO62/  
SCIRXDC/  
XD17  
GPIO61/  
MFSRB/  
XD18  
VSS  
VSS  
VDD  
F
GPIO66/  
XD13  
GPIO65/  
XD14  
GPIO64/  
XD15  
VDD  
E
D
C
B
A
GPIO28/  
SCIRXDA/  
XZCS6  
GPIO69/  
XD10  
GPIO68/  
XD11  
GPIO67/  
XD12  
VDD  
VDD  
VDDIO  
GPIO36/  
SCIRXDA/  
XZCS0  
GPIO40/  
GPIO38/  
XWE0  
GPIO78/  
XD1  
GPIO75/  
XD4  
GPIO71/  
XD8  
GPIO70/  
XD9  
XA0/XWE1  
GPIO37/  
ECAP2/  
XZCS7  
GPIO35/  
SCITXDA/  
XR/W  
GPIO79/  
XD0  
GPIO77/  
XD2  
GPIO74/  
XD5  
GPIO72  
XD7  
VSS  
GPIO34/  
ECAP1/  
XREADY  
GPIO76/  
XD3  
GPIO73/  
XD6  
VDDIO  
VSS  
XCLKOUT  
XRD  
8
9
10  
11  
12  
13  
14  
Figure 2-9. F2833x, F2823x 176-Ball ZJZ Plastic BGA (Lower Right Quadrant) (Bottom View)  
Submit Documentation Feedback  
Introduction  
25  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
2.2 Signal Descriptions  
Table 2-3 describes the signals. The GPIO function (shown in Italics) is the default at reset. The peripheral  
signals that are listed under them are alternate functions. Some peripheral functions may not be available  
in all devices. See Table 2-1 for details. Inputs are not 5-V tolerant. All XINTF pins have a drive strength  
of 8 mA (typical), with the exception of XREADY, which is 4 mA (typical). All GPIO pins are I/O/Z, 4-mA  
drive typical (unless otherwise indicated), and have an internal pullup, which can be selectively  
enabled/disabled on a per-pin basis. This feature only applies to the GPIO pins. The pullups on  
GPIO0-GPIO11 pins are not enabled at reset. The pullups on GPIO12-GPIO34 are enabled upon reset.  
Table 2-3. Signal Descriptions  
PIN NO.  
(1)  
PGF ZHH ZJZ  
PIN BAL BAL  
NAME  
DESCRIPTION  
#
L #  
L #  
JTAG  
JTAG test reset with internal pulldown. TRST, when driven high, gives the scan system control of  
the operations of the device. If this signal is not connected or driven low, the device operates in its  
functional mode, and the test reset signals are ignored.  
NOTE: TRST is an active high test pin and must be maintained low at all times during normal  
device operation. An external pulldown resistor is recommended on this pin. The value of this  
resistor should be based on drive strength of the debugger pods applicable to the design. A 2.2-kΩ  
resistor generally offers adequate protection. Since this is application-specific, it is recommended  
that each target board be validated for proper operation of the debugger and the application. (I, )  
TRST  
78  
M10 L11  
TCK  
TMS  
87  
79  
N12 M14 JTAG test clock with internal pullup (I, )  
JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP  
P10 M12  
controller on the rising edge of TCK. (I, )  
JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction  
or data) on a rising edge of TCK. (I, )  
TDI  
76  
77  
M9  
K9  
N12  
N13  
JTAG scan out, test data output (TDO). The contents of the selected register (instruction or data)  
are shifted out of TDO on the falling edge of TCK. (O/Z 8 mA drive)  
TDO  
Emulator pin 0. When TRST is driven high, this pin is used as an interrupt to or from the emulator  
system and is defined as input/output through the JTAG scan. This pin is also used to put the  
device into boundary-scan mode. With the EMU0 pin at a logic-high state and the EMU1 pin at a  
logic-low state, a rising edge on the TRST pin would latch the device into boundary-scan mode.  
EMU0  
85  
L11  
N7 (I/O/Z, 8 mA drive )  
NOTE: An external pullup resistor is recommended on this pin. The value of this resistor should be  
based on the drive strength of the debugger pods applicable to the design. A 2.2-kto 4.7-kΩ  
resistor is generally adequate. Since this is application-specific, it is recommended that each target  
board be validated for proper operation of the debugger and the application.  
Emulator pin 1. When TRST is driven high, this pin is used as an interrupt to or from the emulator  
system and is defined as input/output through the JTAG scan. This pin is also used to put the  
device into boundary-scan mode. With the EMU0 pin at a logic-high state and the EMU1 pin at a  
logic-low state, a rising edge on the TRST pin would latch the device into boundary-scan mode.  
P8 (I/O/Z, 8 mA drive )  
EMU1  
86  
P12  
NOTE: An external pullup resistor is recommended on this pin. The value of this resistor should be  
based on the drive strength of the debugger pods applicable to the design. A 2.2-kto 4.7-kΩ  
resistor is generally adequate. Since this is application-specific, it is recommended that each target  
board be validated for proper operation of the debugger and the application.  
FLASH  
VDD3VFL  
TEST1  
TEST2  
84  
81  
82  
M11  
K10  
P11  
L9 3.3-V Flash Core Power Pin. This pin should be connected to 3.3 V at all times.  
M7 Test Pin. Reserved for TI. Must be left unconnected. (I/O)  
L7 Test Pin. Reserved for TI. Must be left unconnected. (I/O)  
CLOCK  
Output clock derived from SYSCLKOUT. XCLKOUT is either the same frequency, one-half the  
frequency, or one-fourth the frequency of SYSCLKOUT. This is controlled by bits 18:16 (XTIMCLK)  
XCLKOUT  
138 C11 A10 and bit 2 (CLKMODE) in the XINTCNF2 register. At reset, XCLKOUT = SYSCLKOUT/4. The  
XCLKOUT signal can be turned off by setting XINTCNF2[CLKOFF] to 1. Unlike other GPIO pins,  
the XCLKOUT pin is not placed in high-impedance state during a reset. (O/Z, 8 mA drive).  
(1) I = Input, O = Output, Z = High impedance, OD = Open drain, = Pullup, = Pulldown  
26 Introduction  
Submit Documentation Feedback  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 2-3. Signal Descriptions (continued)  
PIN NO.  
(1)  
PGF ZHH ZJZ  
PIN BAL BAL  
NAME  
DESCRIPTION  
#
L #  
L #  
External Oscillator Input. This pin is to feed a clock from an external 3.3-V oscillator. In this case,  
XCLKIN  
105  
J14 G13 the X1 pin must be tied to GND. If a crystal/resonator is used (or if an external 1.9-V oscillator is  
used to feed clock to X1 pin), this pin must be tied to GND. (I)  
Internal/External Oscillator Input. To use the internal oscillator, a quartz crystal or a ceramic  
resonator may be connected across X1 and X2. The X1 pin is referenced to the 1.9-V core digital  
J13 G14 power supply. A 1.9-V external oscillator may be connected to the X1 pin. In this case, the XCLKIN  
pin must be connected to ground. If a 3.3-V external oscillator is used with the XCLKIN pin, X1  
must be tied to GND. (I)  
X1  
X2  
104  
102  
Internal Oscillator Output. A quartz crystal or a ceramic resonator may be connected across X1 and  
J11 H14  
X2. If X2 is not used it must be left unconnected. (O)  
RESET  
Device Reset (in) and Watchdog Reset (out).  
Device reset. XRS causes the device to terminate execution. The PC will point to the address  
contained at the location 0x3FFFC0. When XRS is brought to a high level, execution begins at the  
location pointed to by the PC. This pin is driven low by the DSC when a watchdog reset occurs.  
During watchdog reset, the XRS pin is driven low for the watchdog reset duration of 512 OSCCLK  
XRS  
80  
L10 M13  
cycles. (I/OD, )  
The output buffer of this pin is an open-drain with an internal pullup. It is recommended that this pin  
be driven by an open-drain device.  
ADC SIGNALS  
ADCINA7  
ADCINA6  
ADCINA5  
ADCINA4  
ADCINA3  
ADCINA2  
ADCINA1  
ADCINA0  
ADCINB7  
ADCINB6  
ADCINB5  
ADCINB4  
ADCINB3  
ADCINB2  
ADCINB1  
ADCINB0  
ADCLO  
35  
36  
37  
38  
39  
40  
41  
42  
53  
52  
51  
50  
49  
48  
47  
46  
43  
57  
54  
K4  
J5  
K1 ADC Group A, Channel 7 input (I)  
K2 ADC Group A, Channel 6 input (I)  
L1 ADC Group A, Channel 5 input (I)  
L2 ADC Group A, Channel 4 input (I)  
L3 ADC Group A, Channel 3 input (I)  
M1 ADC Group A, Channel 2 input (I)  
M2 ADC Group A, Channel 1 input (I)  
M3 ADC Group A, Channel 0 input (I)  
N6 ADC Group B, Channel 7 input (I)  
M6 ADC Group B, Channel 6 input (I)  
N5 ADC Group B, Channel 5 input (I)  
M5 ADC Group B, Channel 4 input (I)  
N4 ADC Group B, Channel 3 input (I)  
M4 ADC Group B, Channel 2 input (I)  
N3 ADC Group B, Channel 1 input (I)  
P3 ADC Group B, Channel 0 input (I)  
N2 Low Reference (connect to analog ground) (I)  
P6 ADC External Current Bias Resistor. Connect a 22-kresistor to analog ground.  
P7 External reference input (I)  
L1  
L2  
L3  
M1  
N1  
M3  
K5  
P4  
N4  
M4  
L4  
P3  
N3  
P2  
M2  
M5  
L5  
ADCRESEXT  
ADCREFIN  
Internal Reference Positive Output. Requires a low ESR (50 m- 1.5 ) ceramic bypass capacitor  
of 2.2 µF to analog ground. (O)  
ADCREFP  
ADCREFM  
56  
55  
P5  
N5  
P5  
Internal Reference Medium Output. Requires a low ESR (50 m- 1.5 ) ceramic bypass capacitor  
of 2.2 µF to analog ground. (O)  
P4  
CPU AND I/O POWER PINS  
K4 ADC Analog Power Pin  
VDDA2  
34  
33  
45  
44  
31  
32  
K2  
K3  
N2  
P1  
J4  
VSSA2  
P1 ADC Analog Ground Pin  
VDDAIO  
VSSAIO  
VDD1A18  
VSS1AGND  
L5 ADC Analog I/O Power Pin  
N1 ADC Analog I/O Ground Pin  
K3 ADC Analog Power Pin  
K1  
L4 ADC Analog Ground Pin  
Submit Documentation Feedback  
Introduction  
27  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 2-3. Signal Descriptions (continued)  
PIN NO.  
(1)  
PGF ZHH ZJZ  
PIN BAL BAL  
NAME  
DESCRIPTION  
#
59  
58  
4
L #  
M6  
K6  
L #  
VDD2A18  
VSS2AGND  
VDD  
L6 ADC Analog Power Pin  
P2 ADC Analog Ground Pin  
B1  
D4  
D5  
D8  
D9  
VDD  
15  
23  
29  
61  
101  
109  
B5  
VDD  
B11  
C8  
VDD  
VDD  
D13 E11  
VDD  
E9  
F3  
F4  
VDD  
F11 CPU and Logic Digital Power Pins  
VDD  
117 F13  
126 H1  
H4  
J4  
VDD  
VDD  
139 H12 J11  
VDD  
146  
J2  
K11  
L8  
VDD  
154 K14  
VDD  
167  
9
N6  
A4  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VSS  
A13  
B1  
71  
93  
B10  
E7  
D7  
107 E12 D11  
121  
143  
F5  
L8  
E4 Digital I/O Power Pin  
G4  
159 H11 G11  
170 N14 L10  
N14  
3
A5  
A1  
A2  
VSS  
8
A10  
VSS  
14  
22  
30  
60  
70  
83  
92  
A11 A14  
VSS  
B4  
C3  
C7  
C9  
D1  
D6  
B14  
F6  
F7  
F8  
F9  
G6  
G7  
G8  
G9  
H6  
H7  
H8  
H9  
J6  
VSS  
VSS  
VSS  
VSS  
VSS  
Digital Ground Pins  
VSS  
103 D14  
106 E8  
108 E14  
118 F4  
120 F12  
125 G1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
140 H10  
144 H13  
VSS  
VSS  
147  
155  
160  
J3  
J7  
VSS  
J10  
J12  
J8  
VSS  
J9  
28  
Introduction  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 2-3. Signal Descriptions (continued)  
PIN NO.  
(1)  
PGF ZHH ZJZ  
PIN BAL BAL  
NAME  
DESCRIPTION  
#
L #  
L #  
VSS  
VSS  
VSS  
VSS  
VSS  
166 M12 P13  
171 N10 P14  
Digital Ground Pins  
N11  
P6  
P8  
GPIOA AND PERIPHERAL SIGNALS  
General purpose input/output 0 (I/O/Z)  
GPIO0  
EPWM1A  
-
-
Enhanced PWM1 Output A and HRPWM channel (O)  
-
-
5
C1  
D3  
D2  
E4  
E2  
E3  
E1  
F2  
F1  
G5  
G4  
G2  
D1  
D2  
D3  
E1  
E2  
E3  
F1  
F2  
F3  
G1  
G2  
G3  
GPIO1  
General purpose input/output 1 (I/O/Z)  
Enhanced PWM1 Output B (O)  
Enhanced Capture 6 input/output (I/O)  
McBSP-B receive frame synch (I/O)  
EPWM1B  
ECAP6  
MFSRB  
6
GPIO2  
EPWM2A  
-
-
General purpose input/output 2 (I/O/Z)  
Enhanced PWM2 Output A and HRPWM channel (O)  
-
-
7
GPIO3  
EPWM2B  
ECAP5  
General purpose input/output 3 (I/O/Z)  
Enhanced PWM2 Output B (O)  
Enhanced Capture 5 input/output (I/O)  
McBSP-B receive clock (I/O)  
10  
11  
12  
13  
16  
17  
18  
19  
20  
MCLKRB  
GPIO4  
EPWM3A  
-
-
General purpose input/output 4 (I/O/Z)  
Enhanced PWM3 output A and HRPWM channel (O)  
-
-
GPIO5  
General purpose input/output 5 (I/O/Z)  
Enhanced PWM3 output B (O)  
McBSP-A receive frame synch (I/O)  
Enhanced Capture input/output 1 (I/O)  
EPWM3B  
MFSRA  
ECAP1  
GPIO6  
EPWM4A  
EPWMSYNCI  
EPWMSYNCO  
General purpose input/output 6 (I/O/Z)  
Enhanced PWM4 output A and HRPWM channel (O)  
External ePWM sync pulse input (I)  
External ePWM sync pulse output (O)  
GPIO7  
General purpose input/output 7 (I/O/Z)  
Enhanced PWM4 output B (O)  
McBSP-A receive clock (I/O)  
EPWM4B  
MCLKRA  
ECAP2  
Enhanced capture input/output 2 (I/O)  
GPIO8  
General Purpose Input/Output 8 (I/O/Z)  
Enhanced PWM5 output A and HRPWM channel (O)  
Enhanced CAN-B transmit (O)  
EPWM5A  
CANTXB  
ADCSOCAO  
ADC start-of-conversion A (O)  
GPIO9  
General purpose input/output 9 (I/O/Z)  
Enhanced PWM5 output B (O)  
SCI-B transmit data(O)  
EPWM5B  
SCITXDB  
ECAP3  
Enhanced capture input/output 3 (I/O)  
GPIO10  
General purpose input/output 10 (I/O/Z)  
Enhanced PWM6 output A and HRPWM channel (O)  
Enhanced CAN-B receive (I)  
EPWM6A  
CANRXB  
ADCSOCBO  
ADC start-of-conversion B (O)  
GPIO11  
EPWM6B  
SCIRXDB  
ECAP4  
General purpose input/output 11 (I/O/Z)  
Enhanced PWM6 output B (O)  
SCI-B receive data (I)  
Enhanced CAP Input/Output 4 (I/O)  
Submit Documentation Feedback  
Introduction  
29  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 2-3. Signal Descriptions (continued)  
PIN NO.  
(1)  
PGF ZHH ZJZ  
PIN BAL BAL  
NAME  
DESCRIPTION  
#
L #  
L #  
GPIO12  
TZ1  
CANTXB  
MDXB  
General purpose input/output 12 (I/O/Z)  
Trip Zone input 1 (I)  
Enhanced CAN-B transmit (O)  
McBSP-B transmit serial data (O)  
21  
G3  
H1  
GPIO13  
TZ2  
CANRXB  
MDRB  
General purpose input/output 13 (I/O/Z)  
Trip Zone input 2 (I)  
Enhanced CAN-B receive (I)  
McBSP-B receive serial data (I)  
24  
25  
H3  
H2  
H2  
H3  
GPIO14  
General purpose input/output 14 (I/O/Z)  
Trip Zone input 3/External Hold Request. XHOLD, when active (low), requests the external interface  
(XINTF) to release the external bus and place all buses and strobes into a high-impedance state.  
To prevent this from happening when TZ3 signal goes active, disable this function by writing  
XINTCNF2[HOLD] = 1. If this is not done, the XINTF bus will go into high impedance anytime TZ3  
goes low. On the ePWM side, TZn signals are ignored by default, unless they are enabled by the  
code. The XINTF will release the bus when any current access is complete and there are no  
pending accesses on the XINTF. (I)  
TZ3/XHOLD  
SCITXDB  
MCLKXB  
SCI-B Transmit (I)  
McBSP-B transmit clock (I/O)  
GPIO15  
General purpose input/output 15 (I/O/Z)  
Trip Zone input 4/External Hold Acknowledge. The pin function for this option is based on the  
direction chosen in the GPADIR register. If the pin is configured as an input, then TZ4 function is  
chosen. If the pin is configured as an output, then XHOLDA function is chosen. XHOLDA is driven  
TZ4/XHOLDA  
26  
H4  
J1 active (low) when the XINTF has granted an XHOLD request. All XINTF buses and strobe signals  
will be in a high-impedance state. XHOLDA is released when the XHOLD signal is released.  
External devices should only drive the external bus when XHOLDA is active (low). (I/0)  
SCIRXDB  
MFSXB  
SCI-B receive (I)  
McBSP-B transmit frame synch (I/O)  
GPIO16  
SPISIMOA  
CANTXB  
TZ5  
General purpose input/output 16 (I/O/Z)  
SPI slave in, master out (I/O)  
Enhanced CAN-B transmit (O)  
Trip Zone input 5 (I)  
27  
28  
62  
63  
64  
65  
66  
H5  
J1  
J2  
GPIO17  
SPISOMIA  
CANRXB  
TZ6  
General purpose input/output 17 (I/O/Z)  
SPI-A slave out, master in (I/O)  
Enhanced CAN-B receive (I)  
Trip zone input 6 (I)  
J3  
GPIO18  
General purpose input/output 18 (I/O/Z)  
SPI-A clock input/output (I/O)  
SCI-B transmit (O)  
Enhanced CAN-A receive (I)  
SPICLKA  
SCITXDB  
CANRXA  
L6  
K7  
L7  
P7  
N7  
N8  
GPIO19  
General purpose input/output 19 (I/O/Z)  
SPI-A slave transmit enable input/output (I/O)  
SCI-B receive (I)  
Enhanced CAN-A transmit (O)  
SPISTEA  
SCIRXDB  
CANTXA  
M8  
GPIO20  
EQEP1A  
MDXA  
General purpose input/output 20 (I/O/Z)  
Enhanced QEP1 input A (I)  
McBSP-A transmit serial data (O)  
Enhanced CAN-B transmit (O)  
P9  
CANTXB  
GPIO21  
EQEP1B  
MDRA  
General purpose input/output 21 (I/O/Z)  
Enhanced QEP1 input B (I)  
McBSP-A receive serial data (I)  
Enhanced CAN-B receive (I)  
N9  
CANRXB  
GPIO22  
General purpose input/output 22 (I/O/Z)  
Enhanced QEP1 strobe (I/O)  
McBSP-A transmit clock (I/O)  
SCI-B transmit (O)  
EQEP1S  
MCLKXA  
SCITXDB  
M9  
30  
Introduction  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 2-3. Signal Descriptions (continued)  
PIN NO.  
(1)  
PGF ZHH ZJZ  
PIN BAL BAL  
NAME  
DESCRIPTION  
#
L #  
L #  
GPIO23  
EQEP1I  
MFSXA  
General purpose input/output 23 (I/O/Z)  
Enhanced QEP1 index (I/O)  
McBSP-A transmit frame synch (I/O)  
SCI-B receive (I)  
67  
M7  
P10  
SCIRXDB  
GPIO24  
ECAP1  
EQEP2A  
MDXB  
General purpose input/output 24 (I/O/Z)  
Enhanced capture 1 (I/O)  
Enhanced QEP2 input A (I)  
68  
69  
72  
73  
M8  
N8  
K8  
L9  
N10  
M10  
P11  
N11  
McBSP-B transmit serial data (O)  
GPIO25  
ECAP2  
EQEP2B  
MDRB  
General purpose input/output 25 (I/O/Z)  
Enhanced capture 2 (I/O)  
Enhanced QEP2 input B (I)  
McBSP-B receive serial data (I)  
GPIO26  
ECAP3  
EQEP2I  
MCLKXB  
General purpose input/output 26 (I/O/Z)  
Enhanced capture 3 (I/O)  
Enhanced QEP2 index (I/O)  
McBSP-B transmit clock (I/O)  
GPIO27  
ECAP4  
EQEP2S  
MFSXB  
General purpose input/output 27 (I/O/Z)  
Enhanced capture 4 (I/O)  
Enhanced QEP2 strobe (I/O)  
McBSP-B transmit frame synch (I/O)  
GPIO28  
SCIRXDA  
XZCS6  
General purpose input/output 28 (I/O/Z)  
141 E10 D10 SCI receive data (I)  
External Interface zone 6 chip select (O)  
GPIO29  
SCITXDA  
XA19  
General purpose input/output 29. (I/O/Z)  
C1 SCI transmit data (O)  
2
1
C2  
B2  
A2  
External Interface Address Line 19 (O)  
GPIO30  
CANRXA  
XA18  
General purpose input/output 30 (I/O/Z)  
C2 Enhanced CAN-A receive (I)  
External Interface Address Line 18 (O)  
GPIO31  
CANTXA  
XA17  
General purpose input/output 31 (I/O/Z)  
B2 Enhanced CAN-A transmit (O)  
176  
External Interface Address Line 17 (O)  
GPIO32  
General purpose input/output 32 (I/O/Z)  
SDAA  
EPWMSYNCI  
ADCSOCAO  
I2C data open-drain bidirectional port (I/OD)  
Enhanced PWM external sync pulse input (I)  
ADC start-of-conversion A (O)  
74  
75  
N9  
P9  
M11  
P12  
GPIO33  
SCLA  
EPWMSYNCO  
ADCSOCBO  
General-Purpose Input/Output 33 (I/O/Z)  
I2C clock open-drain bidirectional port (I/OD)  
Enhanced PWM external synch pulse output (O)  
ADC start-of-conversion B (O)  
GPIO34  
ECAP1  
XREADY  
General-Purpose Input/Output 34 (I/O/Z)  
A9 Enhanced Capture input/output 1 (I/O)  
External Interface Ready signal  
142 D10  
GPIO35  
SCITXDA  
XR/W  
General-Purpose Input/Output 35 (I/O/Z)  
B9 SCI-A transmit data (O)  
148  
A9  
External Interface read, not write strobe  
GPIO36  
SCIRXDA  
XZCS0  
General-Purpose Input/Output 36 (I/O/Z)  
C9 SCI receive data (I)  
145 C10  
External Interface zone 0 chip select (O)  
GPIO37  
ECAP2  
XZCS7  
General-Purpose Input/Output 37 (I/O/Z)  
B8 Enhanced Capture input/output 2 (I/O)  
External Interface zone 7 chip select (O)  
150  
D9  
GPIO38  
-
General-Purpose Input/Output 38 (I/O/Z)  
-
137 D11 C10  
XWE0  
External Interface Write Enable 0 (O)  
GPIO39  
-
General-Purpose Input/Output 39 (I/O/Z)  
-
175  
B3  
C3  
XA16  
External Interface Address Line 16 (O)  
Submit Documentation Feedback  
Introduction  
31  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 2-3. Signal Descriptions (continued)  
PIN NO.  
(1)  
PGF ZHH ZJZ  
PIN BAL BAL  
NAME  
DESCRIPTION  
#
L #  
L #  
GPIO40  
-
General-Purpose Input/Output 40 (I/O/Z)  
-
151  
D8  
C8  
XA0/XWE1  
External Interface Address Line 0/External Interface Write Enable 1 (O)  
GPIO41  
General-Purpose Input/Output 41 (I/O/Z)  
-
152  
153  
156  
157  
158  
161  
162  
88  
A8  
B8  
B7  
A7  
D7  
B6  
A6  
A7  
B7  
C7  
A6  
B6  
C6  
D6  
-
XA1  
External Interface Address Line 1 (O)  
GPIO42  
-
XA2  
General-Purpose Input/Output 42 (I/O/Z)  
-
External Interface Address Line 2 (O)  
GPIO43  
-
XA3  
General-Purpose Input/Output 43 (I/O/Z)  
-
External Interface Address Line 3 (O)  
GPIO44  
-
XA4  
General-Purpose Input/Output 44 (I/O/Z)  
-
External Interface Address Line 4 (O)  
GPIO45  
-
XA5  
General-Purpose Input/Output 45 (I/O/Z)  
-
External Interface Address Line 5 (O)  
GPIO46  
-
XA6  
General-Purpose Input/Output 46 (I/O/Z)  
-
External Interface Address Line 6 (O)  
GPIO47  
-
XA7  
General-Purpose Input/Output 47 (I/O/Z)  
-
External Interface Address Line 7 (O)  
GPIO48  
ECAP5  
XD31  
General-Purpose Input/Output 48 (I/O/Z)  
P13 L14 Enhanced Capture input/output 5 (I/O)  
External Interface Data Line 31 (O)  
GPIO49  
ECAP6  
XD30  
General-Purpose Input/Output 49 (I/O/Z)  
N13 L13 Enhanced Capture input/output 6 (I/O)  
External Interface Data Line 30 (O)  
89  
GPIO50  
EQEP1A  
XD29  
General-Purpose Input/Output 50 (I/O/Z)  
P14 L12 Enhanced QEP 1input A (I)  
External Interface Data Line 29 (O)  
90  
GPIO51  
EQEP1B  
XD28  
General-Purpose Input/Output 51 (I/O/Z)  
M13 K14 Enhanced QEP 1input B (I)  
External Interface Data Line 28 (O)  
91  
GPIO52  
EQEP1S  
XD27  
General-Purpose Input/Output 52 (I/O/Z)  
M14 K13 Enhanced QEP 1Strobe (I/O)  
External Interface Data Line 27 (O)  
94  
GPIO53  
EQEP1I  
XD26  
General-Purpose Input/Output 53 (I/O/Z)  
L12 K12 Enhanced CAP1 lndex (I/O)  
External Interface Data Line 26 (O)  
95  
GPIO54  
SPISIMOA  
XD25  
General-Purpose Input/Output 54 (I/O/Z)  
J14 SPI-A slave in, master out (I/O)  
External Interface Data Line 25 (O)  
96  
L13  
L14  
GPIO55  
SPISOMIA  
XD24  
General-Purpose Input/Output 55 (I/O/Z)  
J13 SPI-A slave out, master in (I/O)  
External Interface Data Line 24 (O)  
97  
GPIO56  
SPICLKA  
XD23  
General-Purpose Input/Output 56 (I/O/Z)  
K11 J12 SPI-A clock (I/O)  
External Interface Data Line 23 (O)  
98  
GPIO57  
SPISTEA  
XD22  
General-Purpose Input/Output 57 (I/O/Z)  
K13 H13 SPI-A slave transmit enable (I/O)  
External Interface Data Line 22 (O)  
99  
GPIO58  
MCLKRA  
XD21  
General-Purpose Input/Output 58 (I/O/Z)  
100 K12 H12 McBSP-A receive clock (I/O)  
External Interface Data Line 21 (O)  
32  
Introduction  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 2-3. Signal Descriptions (continued)  
PIN NO.  
(1)  
PGF ZHH ZJZ  
PIN BAL BAL  
NAME  
DESCRIPTION  
#
L #  
L #  
GPIO59  
General-Purpose Input/Output 59 (I/O/Z)  
MFSRA  
XD20  
110 H14 H11 McBSP-A receive frame synch (I/O)  
External Interface Data Line 20 (O)  
GPIO60  
MCLKRB  
XD19  
General-Purpose Input/Output 60 (I/O/Z)  
111 G14 G12 McBSP-B receive clock (I/O)  
External Interface Data Line 19 (O)  
GPIO61  
MFSRB  
XD18  
General-Purpose Input/Output 61 (I/O/Z)  
112 G12 F14 McBSP-B receive frame synch (I/O)  
External Interface Data Line 18 (O)  
GPIO62  
SCIRXDC  
XD17  
General-Purpose Input/Output 62 (I/O/Z)  
113 G13 F13 SCI-C receive data (I)  
External Interface Data Line 17 (O)  
GPIO63  
SCITXDC  
XD16  
General-Purpose Input/Output 63 (I/O/Z)  
114 G11 F12 SCI-C transmit data (O)  
External Interface Data Line 16 (O)  
GPIO64  
-
XD15  
General-Purpose Input/Output 64 (I/O/Z)  
-
External Interface Data Line 15 (O)  
115 G10 E14  
116 F14 E13  
119 F11 E12  
122 E13 D14  
123 E11 D13  
124 F10 D12  
127 D12 C14  
128 C14 C13  
129 B14 B13  
130 C12 A12  
131 C13 B12  
132 A14 C12  
133 B13 A11  
134 A13 B11  
GPIO65  
-
XD14  
General-Purpose Input/Output 65 (I/O/Z)  
-
External Interface Data Line 14 (O)  
GPIO66  
-
XD13  
General-Purpose Input/Output 66 (I/O/Z)  
-
External Interface Data Line 13 (O)  
GPIO67  
-
XD12  
General-Purpose Input/Output 67 (I/O/Z)  
-
External Interface Data Line 12 (O)  
GPIO68  
-
XD11  
General-Purpose Input/Output 68 (I/O/Z)  
-
External Interface Data Line 11 (O)  
GPIO69  
-
XD10  
General-Purpose Input/Output 69 (I/O/Z)  
-
External Interface Data Line 10 (O)  
GPIO70  
-
XD9  
General-Purpose Input/Output 70 (I/O/Z)  
-
External Interface Data Line 9 (O)  
GPIO71  
-
XD8  
General-Purpose Input/Output 71 (I/O/Z)  
-
External Interface Data Line 8 (O)  
GPIO72  
-
XD7  
General-Purpose Input/Output 72 (I/O/Z)  
-
External Interface Data Line 7 (O)  
GPIO73  
-
XD6  
General-Purpose Input/Output 73 (I/O/Z)  
-
External Interface Data Line 6 (O)  
GPIO74  
-
XD5  
General-Purpose Input/Output 74 (I/O/Z)  
-
External Interface Data Line 5 (O)  
GPIO75  
-
XD4  
General-Purpose Input/Output 75 (I/O/Z)  
-
External Interface Data Line 4 (O)  
GPIO76  
-
XD3  
General-Purpose Input/Output 76 (I/O/Z)  
-
External Interface Data Line 3 (O)  
GPIO77  
-
General-Purpose Input/Output 77 (I/O/Z)  
-
XD2  
External Interface Data Line 2 (O)  
Submit Documentation Feedback  
Introduction  
33  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 2-3. Signal Descriptions (continued)  
PIN NO.  
(1)  
PGF ZHH ZJZ  
PIN BAL BAL  
NAME  
DESCRIPTION  
#
L #  
L #  
GPIO78  
General-Purpose Input/Output 78 (I/O/Z)  
-
135 B12 C11  
136 A12 B10  
-
XD1  
External Interface Data Line 1 (O)  
GPIO79  
-
General-Purpose Input/Output 79 (I/O/Z)  
-
XD0  
External Interface Data Line 0 (O)  
GPIO80  
General-Purpose Input/Output 80 (I/O/Z)  
-
163  
164  
165  
168  
169  
172  
173  
C6  
E6  
C5  
D5  
E5  
C4  
D4  
A5  
B5  
C5  
A4  
B4  
C4  
A3  
B3  
-
XA8  
External Interface Address Line 8 (O)  
GPIO81  
-
XA9  
General-Purpose Input/Output 81 (I/O/Z)  
-
External Interface Address Line 9 (O)  
GPIO82  
-
XA10  
General-Purpose Input/Output 82 (I/O/Z)  
-
External Interface Address Line 10 (O)  
GPIO83  
-
XA11  
General-Purpose Input/Output 83 (I/O/Z)  
-
External Interface Address Line 11 (O)  
GPIO84  
-
XA12  
General-Purpose Input/Output 84 (I/O/Z)  
External Interface Address Line 12 (O)  
GPIO85  
-
XA13  
General-Purpose Input/Output 85 (I/O/Z)  
-
External Interface Address Line 13 (O)  
GPIO86  
-
XA14  
General-Purpose Input/Output 86 (I/O/Z)  
-
External Interface Address Line 14 (O)  
GPIO87  
-
XA15  
General-Purpose Input/Output 87 (I/O/Z)  
-
External Interface Address Line 15 (O)  
174  
149  
A3  
B9  
XRD  
A8 External Interface Read Enable  
34  
Introduction  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
3
Functional Overview  
M0 SARAM 1Kx16  
(0-Wait)  
L0 SARAM 4K x 16  
(0-Wait, Dual Map)  
OTP 2K x 16  
M1 SARAM 1Kx16  
(0-Wait)  
L1 SARAM 4K x 16  
(0-Wait, Dual Map)  
Flash  
256K x 16  
8 Sectors  
L2 SARAM 4K x 16  
(0-Wait, Dual Map)  
Code  
Security  
Module  
L3 SARAM 4K x 16  
(0-Wait, Dual Map)  
TEST2  
L4 SARAM 4K x 16  
(0-W Data, 1-W Prog)  
Pump  
TEST1  
PSWD  
L5 SARAM 4K x 16  
(0-W Data, 1-W Prog)  
Boot ROM  
8K x 16  
Flash  
Wrapper  
L6 SARAM 4K x 16  
(0-W Data, 1-W Prog)  
L7 SARAM 4K x 16  
(0-W Data, 1-W Prog)  
Memory Bus  
XD31:0  
FPU (F2833x only)  
TCK  
XHOLDA  
XHOLD  
XREADY  
XR/W  
TDI  
TMS  
CPU  
TDO  
(150 MHZ @ 1.9 V)  
GPIO  
MUX  
88 GPIOs  
TRST  
EMU0  
EMU1  
XZCS0  
XZCS7  
XZCS6  
XWE0  
XCLKIN  
CPU Timer 0  
XA0/XWE1  
XA19:1  
OSC,  
PLL,  
LPM,  
WD  
X1  
X2  
DMA  
6 Ch  
CPU Timer 1  
CPU Timer 2  
XRS  
XCLKOUT  
XRD  
PIE  
(Interrupts)  
88 GPIOs  
8 External Interrupts  
GPIO  
MUX  
A7:0  
B7:0  
Memory Bus  
12-Bit  
ADC  
2-S/H  
DMA Bus  
32-bit peripheral bus  
(DMA accessible)  
32-bit peripheral bus  
16-bit peripheral bus  
FIFO  
(16 Levels)  
FIFO  
(16 Levels)  
FIFO  
(16 Levels)  
EPWM-1/../6  
CAN-A/B  
(32-mbox)  
EQEP-1/2  
McBSP-A/B  
ECAP-1/../6  
SCI-A/B/C  
SPI-A  
I2C  
HRPWM-1/../6  
GPIO MUX  
88 GPIOs  
Figure 3-1. Functional Block Diagram  
Submit Documentation Feedback  
Functional Overview  
35  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
3.1 Memory Maps  
In Figure 3-2 through Figure 3-4, the following apply:  
Memory blocks are not to scale.  
Peripheral Frame 0, Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 memory maps  
are restricted to data memory only. A user program cannot access these memory maps in program  
space.  
Protected means the order of "Write followed by Read" operations is preserved rather than the pipeline  
order.  
Certain memory ranges are EALLOW protected against spurious writes after configuration.  
Locations 0x38 0080 - 0x38 008F contain the ADC calibration routine. It is not programmable by the  
user.  
If the eCAN module is not used in an application, the RAM available (LAM, MOTS, MOTO, and  
mailbox RAM) can be used as general-purpose RAM. The CAN module clock should be enabled for  
this.  
36  
Functional Overview  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Block  
Start Address  
On-Chip Memory  
External Memory XINTF  
Data Space  
Prog Space  
Data Space  
Prog Space  
0x00 0000  
M0 Vector - RAM (32 x 32)  
(Enable if VMAP = 0)  
0x00 0040  
0x00 0400  
0x00 0800  
M0 SARAM (1K x 16)  
M1 SARA(1K x 16)  
Peripheral Frame 0  
Reserved  
PIE Vector - RAM  
(256 x16)  
(Enabled if  
VMAP = 1,  
ENPIE =1)  
0x00 0D00  
Reserved  
0x00 0E00  
0x00 2000  
Peripheral Frame 0  
0x00 4000  
0x00 5000  
XINTF Zone 0 (4K x 16,XZCS0)  
(Protected, DMA Accessible)  
Reserved  
0x00 5000  
0x00 6000  
0x00 7000  
Peripheral Frame 3  
Protected (DMA Accessible)  
Peripheral Frame 1  
(Protected)  
Reserved  
Peripheral Frame 2  
(Protected)  
0x00 8000  
L0 SARAM (4K x16, Secure Zone Dual Mapped)  
L1 SARAM (4K x 16, Secure Zone Dual Mapped)  
L2 SARAM (4Kx16, Secure Zone, Dual Mapped)  
L3 SARAM (4Kx16, Secure Zone, Dual Mapped)  
L4 SARAM (4Kx16, DMA Accessible)  
0x00 9000  
0x00 A000  
0x00 B000  
0x00 C000  
Reserved  
0x00 D000  
0x00 E000  
0x00 F000  
0x01 0000  
L5 SARAM (4Kx16, DMA Accessible)  
L6 SARAM (4Kx16, DMA Accessible)  
0x10 0000  
0x20 0000  
0x30 0000  
Reserved  
XINTF Zone 6 (1 M x 16, XZCS6)(DMA Accessible)  
XINTF Zone 7 (1 M x 16, XZCS7)(DMA Accessible)  
0x30 0000  
0x33 FFF8  
FLASH (256 K x 16, Secure Zone)  
0x34 0000  
0x38 0080  
Reserved  
ADC Calibration Data  
0x38 0090  
Reserved  
0x38 0400  
0x38 0800  
User OTP (1K x 16, Secure Zone)  
Reserved  
0x3F 8000  
L0 SARAM (4K x 16, Secure Zone Dual Mapped)  
L1 SARAM (4K x 16, Secure Zone Dual Mapped)  
L2 SARAM (4K x 16, Secure Zone Dual Mapped)  
L3 SARAM (4K x 16, Secure Zone Dual Mapped)  
0x3F 9000  
0x3F A000  
0x3F B000  
0x3F C000  
Reserved  
Reserved  
0x3F E000  
0x3F FFC0  
Boot ROM (8K x 16)  
BROM Vector - ROM (32 x 32)  
(Enable if VMAP = 1, ENPIE = 0)  
LEGEND:  
Only one of these vector maps-M0 vector, PIE vector, BROM vector- should be enabled at a time.  
Figure 3-2. F28335/F28235 Memory Map  
Submit Documentation Feedback  
Functional Overview  
37  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Block  
On-Chip Memory  
Start Address  
External Memory XINTF  
Data Space  
Prog Space  
Data Space  
Prog Space  
0x00 0000  
M0 Vector - RAM (32 x 32)  
(Enable if VMAP = 0)  
0x00 0040  
0x00 0400  
0x00 0800  
M0 SARAM (1K x 16)  
M1 SARA
Peripheral Frame 0  
Reserved  
0x00 0D00  
PIE Vector - RAM  
(256 x 16)  
Reserved  
(Enabled if  
VMAP = 1,  
ENPIE =1)  
0x00 0E00  
0x00 2000  
Peripheral Frame 0  
0x00 4000  
Reserved  
(Protected, DMA Accessible)  
0x00 5000  
0x00 5000  
Peripheral Frame 3  
Protected (DMA Accessible)  
0x00 6000  
0x00 7000  
Peripheral Frame 1  
(Protected)  
Reserved  
Peripheral Frame 2  
(Protected)  
0x00 8000  
L0 SARAM (4K x16, Secure Zone Dual Mapped)  
L1 SARAM (4K x 16, Secure Zone Dual Mapped)  
L2 SARAM (4K x 16, Secure Zone, Dual Mapped)  
L3 SARAM (4K x 16, Secure Zone, Dual Mapped)  
L4 SARAM (4K x 16, DMA Accessible)  
0x00 9000  
0x00 A000  
0x00 B000  
Reserved  
0x00 C000  
0x00 D000  
0x00 E000  
L5 SARAM (4K x 16, DMA Accessible)  
L6 SARAM (4K x 16, DMA Accessible)  
0x00 F000  
0x01 0000  
0x10 0000  
0x20 0000  
0x30 0000  
XINTF Zone 6 (1 M x 16, XZCS6) (DMA Accessible)  
XINTF Zone 7 (1 M x 16, XZCS7) (DMA Accessible)  
Reserved  
0x32 0000  
0x33 FFF8  
FLASH (128 K x 16, Secure Zone)  
0x34 0000  
0x38 0080  
Reserved  
ADC Calibration Data  
0x38 0090  
0x38 0400  
Reserved  
User OTP (1K x 16, Secure Zone)  
0x38 0800  
0x3F 8000  
0x3F 9000  
0x3F A000  
Reserved  
L0 SARAM (4K x 16, Secure Zone Dual Mapped)  
Reserved  
L1 SARAM (4K x 16, Secure Zone Dual Mapped)  
L2 SARAM (4K x 16, Secure Zone Dual Mapped)  
0x3F B000  
0x3F C000  
0x3F E000  
L3 SARAM (4K x 16, Secure Zone Dual Mapped)  
Reserved  
Boot ROM (8K x 16)  
0x3F FFC0  
BROM Vector - ROM (32 x 32)  
(Enable if VMAP = 1, ENPIE = 0)  
LEGEND:  
Only one of these vector maps-M0 vector, PIE vector, BROM vector,-should be enabled at a time.  
Figure 3-3. F28334/F28234 Memory Map  
38  
Functional Overview  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Block  
Start Address  
On-Chip Memory  
External Memory XINTF  
Data Space  
Prog Space  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
M0 Vector - RAM (32 x 32)  
(Enable if VMAP = 0)  
M0 SARAM (1K x 16)  
M1 SARA
0x00 0400  
0x00 0800  
Peripheral Frame 0  
Reserved  
PIE Vector - RAM  
(256 x 16)  
(Enabled if  
VMAP = 1,  
ENPIE =1)  
0x00 0D00  
Reserved  
0x00 0E00  
0x00 2000  
Peripheral Frame 0  
0x00 4000  
0x00 5000  
(Protected, DMA Accessible)  
Res
0x00 5000  
0x00 6000  
0x00 7000  
Peripheral Frame 3  
Protected (DMA Accessible)  
Peripheral Frame 1  
(Protected)  
Reserved  
Peripheral Frame 2  
(Protected)  
0x00 8000  
L0 SARAM (4K x 16, Secure Zone Dual Mapped)  
L1 SARAM (4K x 16, Secure Zone Dual Mapped)  
L2 SARAM (4K x 16, Secure Zone, Dual Mapped)  
L3 SARAM (4K x 16, Secure Zone, Dual Mapped)  
L4 SARAM (4K x 16, DMA Accessible)  
Reserved  
0x00 9000  
0x00 A000  
0x00 B000  
0x00 C000  
0x00 D000  
0x00 E000  
0x10 0000  
0x20 0000  
0x30 0000  
XINTF Zone 6 (1 M x 16, XZCS6) (DMA Accessible)  
XINTF Zone 7 (1 M x 16, XZCS7) (DMA Accessible)  
Reserved  
0x33 0000  
0x33 FFF8  
FLASH (64 K x 16, Secure Zone)  
0x34 0000  
0x38 0080  
Reserved  
ADC Calibration Data  
Reserved  
0x38 0090  
0x38 0400  
Reserved  
0x38 0800  
0x3F 8000  
0x3F 9000  
0x3F A000  
L0 SARAM (4K x 16, Secure Zone Dual Mapped)  
L1 SARAM (4K x 16, Secure Zone Dual Mapped)  
L2 SARAM (4K x 16, Secure Zone Dual Mapped)  
L3 SARAM (4K x 16, Secure Zone Dual Mapped)  
Reserved  
0x3F B000  
0x3F C000  
Reserved  
0x3F E000  
0x3F FFC0  
Boot ROM (8K x 16)  
BROM Vector - ROM (32 x 32)  
(Enable if VMAP = 1, ENPIE = 0)  
LEGEND:  
Only one of these vector maps-M0 vector, PIE vector, BROM vector,-should be enabled at a time.  
Figure 3-4. F28332/F28232 Memory Map  
Submit Documentation Feedback  
Functional Overview  
39  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 3-1. Addresses of Flash Sectors in F28335/F28235  
ADDRESS RANGE  
0x30 0000 - 0x30 7FFF  
0x30 8000 - 0x30 FFFF  
0x31 0000 - 0x31 7FFF  
0x31 8000 - 0x31 FFFF  
0x32 0000 - 0x32 7FFF  
0x32 8000 - 0x32 FFFF  
0x33 0000 - 0x33 7FFF  
0x33 8000 - 0x33 FF7F  
PROGRAM AND DATA SPACE  
Sector H (32K x 16)  
Sector G (32K x 16)  
Sector F (32K x 16)  
Sector E (32K x 16)  
Sector D (32K x 16)  
Sector C (32K x 16)  
Sector B (32K x 16)  
Sector A (32K x 16)  
Program to 0x0000 when using the  
Code Security Module  
0x33 FF80 - 0x33 FFF5  
0x33 FFF6 - 0x33 FFF7  
0x33 FFF8 - 0x33 FFFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password  
(128-Bit) (Do Not Program to all zeros)  
Table 3-2. Addresses of Flash Sectors in F28334/F28234  
ADDRESS RANGE  
0x32 0000 - 0x32 3FFF  
0x32 4000 - 0x32 7FFF  
0x32 8000 - 0x32 BFFF  
0x32 C000 - 0x32 FFFF  
0x33 0000 - 0x33 3FFF  
0x33 4000 - 0x33 7FFFF  
0x33 8000 - 0x33 BFFF  
0x33 C000 - 0x33 FF7F  
0x33 FF80 - 0x33 FFF5  
PROGRAM AND DATA SPACE  
Sector H (16K x 16)  
Sector G (16K x 16)  
Sector F (16K x 16)  
Sector E (16K x 16)  
Sector D (16K x 16)  
Sector C (16K x 16)  
Sector B (16K x 16)  
Sector A (16K x 16)  
Program to 0x0000 when using the  
Code Security Module  
0x33 FFF6 - 0x33 FFF7  
0x33 FFF8 - 0x33 FFFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password (128-Bit)  
(Do Not Program to all zeros)  
Table 3-3. Addresses of Flash Sectors in F28332/F28232  
ADDRESS RANGE  
0x33 0000 - 0x33 3FFF  
0x33 4000 - 0x33 7FFFF  
0x33 8000 - 0x33 BFFF  
0x33 C000 - 0x33 FF7F  
0x33 FF80 - 0x33 FFF5  
PROGRAM AND DATA SPACE  
Sector D (16K x 16)  
Sector C (16K x 16)  
Sector B (16K x 16)  
Sector A (16K x 16)  
Program to 0x0000 when using the Code Security  
Module  
0x33 FFF6 - 0x33 FFF7  
0x33 FFF8 - 0x33 FFFF  
Boot-to-Flash Entry Point (program branch  
instruction here)  
Security Password (128-Bit) (Do Not Program to all  
zeros)  
40  
Functional Overview  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
NOTE  
When the code-security passwords are programmed, all addresses between  
0x33FF80 and 0x33FFF5 cannot be used as program code or data. These locations  
must be programmed to 0x0000.  
If the code security feature is not used, addresses 0x33FF80 through 0x33FFEF may  
be used for code or data. Addresses 0x33FFF0 – 0x33FFF5 are reserved for data and  
should not contain program code. .  
Table 3-4 shows how to handle these memory locations.  
Table 3-4. Handling Security Code Locations  
ADDRESS  
FLASH  
Code security enabled  
Code security disabled  
Application code and data  
Reserved for data only  
0x33FF80 - 0x33FFEF  
0x33FFF0 - 0x33FFF5  
Fill with 0x0000  
Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 are grouped together to enable these  
blocks to be write/read peripheral block protected. The protected mode ensures that all accesses to these  
blocks happen as written. Because of the C28x pipeline, a write immediately followed by a read, to  
different memory locations, will appear in reverse order on the memory bus of the CPU. This can cause  
problems in certain peripheral applications where the user expected the write to occur first (as written).  
The C28x CPU supports a block protection mode where a region of memory can be protected so as to  
make sure that operations occur as written (the penalty is extra cycles are added to align the operations).  
This mode is programmable and by default, it will protect the selected zones.  
The wait-states for the various spaces in the memory map area are listed in Table 3-5.  
Submit Documentation Feedback  
Functional Overview  
41  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 3-5. Wait-states  
Area  
Wait-States (CPU)  
0-wait  
Wait-States (DMA)(1)  
Comments  
M0 and M1 SARAMs  
Peripheral Frame 0  
Fixed  
0-wait (writes)  
1-wait (reads)  
0-wait (writes)  
2-wait (reads)  
0-wait (writes)  
2-wait (reads)  
0-wait (reads)  
Peripheral Frame 3  
Peripheral Frame 1  
0-wait (writes)  
1-wait (reads)  
Assumes no conflicts between CPU and DMA.  
Cycles can be extended by peripheral generated ready.  
Consecutive writes to the CAN will experience a 1-cycle  
pipeline hit.  
Peripheral Frame 2  
0-wait (writes)  
2-wait (reads)  
Fixed. Cycles cannot be extended by the peripheral.  
L0 SARAM  
L1 SARAM  
L2 SARAM  
L3 SARAM  
L4 SARAM  
L5 SARAM  
L6 SARAM  
L7 SARAM  
XINTF  
0-wait data and  
program  
Assumes no CPU conflicts  
0-wait data (read)  
0-wait data (write)  
1-wait program (read)  
1-wait program (write)  
Programmable  
0-wait data (write)  
0-wait data (read)  
Assumes no conflicts between CPU and DMA.  
Programmed via the XTIMING registers or extendable via  
external XREADY signal.  
1-wait minimum  
1-wait is minimum wait states allowed on external waveforms  
for both reads and writes on XINTF.  
0-wait minimum writes  
with write buffer  
enabled  
0-wait data (write)  
0-wait data (read)  
0-wait minimum for writes assumes write buffer enabled and  
not full.  
Assumes no conflicts between CPU and DMA. When DMA  
and CPU attempt simultaneous conflict, 1-cycle delay is  
added for arbitration.  
OTP  
Programmable  
1-wait minimum  
Programmed via the Flash registers.  
1-wait is minimum number of wait states allowed. 1-wait-state  
operation is possible at a reduced CPU frequency.  
FLASH  
Programmable  
Programmed via the Flash registers.  
1-wait Paged min  
0-wait minimum for paged access is not allowed  
1-wait Random min  
Random Paged  
1-wait-state operation is possible at a reduced CPU  
frequency.  
FLASH Password  
Boot-ROM  
Wait states of password locations are fixed.  
0-wait speed is not possible.  
16-wait fixed  
1-wait  
(1) The DMA has a base of 4 cycles/word.  
3.2 Brief Descriptions  
3.2.1 C28x CPU  
The F2833x (C28x+FPU) family is a member of the TMS320C2000™ digital signal controller (DSC)  
platform. The C28x+FPU based controllers have the same 32-bit fixed-point architecture as TI's existing  
C28x DSCs, but also include a single-precision (32-bit) IEEE 754 floating-point unit (FPU). It is a very  
efficient C/C++ engine, hence enabling users to develop not only their system control software in a  
high-level language, but also enables math algorithms to be developed using C/C++. The device is as  
efficient in DSP math tasks as it is in system control tasks that typically are handled by microcontroller  
devices. This efficiency removes the need for a second processor in many systems. The 32 x 32-bit MAC  
capabilities of the F2833x and its 64-bit processing capabilities, enable it to efficiently handle higher  
numerical resolution problems. Add to this the fast interrupt response with automatic context save of  
42  
Functional Overview  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
critical registers, resulting in a device that is capable of servicing many asynchronous events with minimal  
latency. The device has an 8-level-deep protected pipeline with pipelined memory accesses. This  
pipelining enables it to execute at high speeds without resorting to expensive high-speed memories.  
Special branch-look-ahead hardware minimizes the latency for conditional discontinuities. Special store  
conditional operations further improve performance.  
The F2823x family is also a member of the TMS320C2000™ digital signal controller (DSC) platform but it  
does not include a floating-point unit (FPU).  
3.2.2 Memory Bus (Harvard Bus Architecture)  
As with many DSC type devices, multiple busses are used to move data between the memories and  
peripherals and the CPU. The C28x memory bus architecture contains a program read bus, data read bus  
and data write bus. The program read bus consists of 22 address lines and 32 data lines. The data read  
and write busses consist of 32 address lines and 32 data lines each. The 32-bit-wide data busses enable  
single cycle 32-bit operations. The multiple bus architecture, commonly termed Harvard Bus, enables the  
C28x to fetch an instruction, read a data value and write a data value in a single cycle. All peripherals and  
memories attached to the memory bus will prioritize memory accesses. Generally, the priority of memory  
bus accesses can be summarized as follows:  
Highest:  
Data Writes  
(Simultaneous data and program writes cannot occur on the memory bus.)  
Program Writes (Simultaneous data and program writes cannot occur on the memory bus.)  
Data Reads  
Program Reads (Simultaneous program reads and fetches cannot occur on the memory bus.)  
Lowest:  
Fetches  
(Simultaneous program reads and fetches cannot occur on the memory bus.)  
3.2.3 Peripheral Bus  
To enable migration of peripherals between various Texas Instruments (TI) DSC family of devices, the  
F2833x/F2823x devices adopt a peripheral bus standard for peripheral interconnect. The peripheral bus  
bridge multiplexes the various busses that make up the processor Memory Bus into a single bus  
consisting of 16 address lines and 16 or 32 data lines and associated control signals. Three versions of  
the peripheral bus are supported. One version supports only 16-bit accesses (called peripheral frame 2).  
Another version supports both 16- and 32-bit accesses (called peripheral frame 1). The third version  
supports DMA access and both 16- and 32-bit accesses (called peripheral frame 3).  
3.2.4 Real-Time JTAG and Analysis  
The F2833x/F2823x devices implement the standard IEEE 1149.1 JTAG interface. Additionally, the  
devices support real-time mode of operation whereby the contents of memory, peripheral and register  
locations can be modified while the processor is running and executing code and servicing interrupts. The  
user can also single step through non-time critical code while enabling time-critical interrupts to be  
serviced without interference. The device implements the real-time mode in hardware within the CPU. This  
is a feature unique to the F2833x/F2823x device, requiring no software monitor. Additionally, special  
analysis hardware is provided that allows setting of hardware breakpoint or data/address watch-points and  
generate various user-selectable break events when a match occurs.  
3.2.5 External Interface (XINTF)  
This asynchronous interface consists of 20 address lines, 32 data lines, and three chip-select lines. The  
chip-select lines are mapped to three external zones, Zones 0, 6, and 7. Each of the three zones can be  
programmed with a different number of wait states, strobe signal setup and hold timing and each zone can  
be programmed for extending wait states externally or not. The programmable wait-state, chip-select and  
programmable strobe timing enables glueless interface to external memories and peripherals.  
Submit Documentation Feedback  
Functional Overview  
43  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
3.2.6 Flash  
The F28335/F28235 devices contain 256K × 16 of embedded flash memory, segregated into eight 32K ×  
16 sectors. The F28334/F28234 devices contain 128K × 16 of embedded flash memory, segregated into  
eight 16K × 16 sectors. The F28332/F28232 devices contain 64K ×16 of embedded flash, segregated into  
four 16K × 16 sectors. All the devices also contain a single 1K × 16 of OTP memory at address range  
0x380400 – 0x3807FF. The user can individually erase, program, and validate a flash sector while leaving  
other sectors untouched. However, it is not possible to use one sector of the flash or the OTP to execute  
flash algorithms that erase/program other sectors. Special memory pipelining is provided to enable the  
flash module to achieve higher performance. The flash/OTP is mapped to both program and data space;  
therefore, it can be used to execute code or store data information. Note that addresses 0x33FFF0 –  
0x33FFF5 are reserved for data variables and should not contain program code.  
NOTE  
The Flash and OTP wait-states can be configured by the application. This allows  
applications running at slower frequencies to configure the flash to use fewer wait-states.  
Flash effective performance can be improved by enabling the flash pipeline mode in the  
Flash options register. With this mode enabled, effective performance of linear code  
execution will be much faster than the raw performance indicated by the wait-state  
configuration alone. The exact performance gain when using the Flash pipeline mode is  
application-dependent.  
For more information on the Flash options, Flash wait-state, and OTP wait-state registers,  
see the TMS320F2833x Digital Signal Controller (DSC) System Control and Interrupts  
Reference Guide (literature number SPRUFB0).  
3.2.7 M0, M1 SARAMs  
All F2833x/F2823x devices contain these two blocks of single access memory, each 1K × 16 in size. The  
stack pointer points to the beginning of block M1 on reset. The M0 and M1 blocks, like all other memory  
blocks on C28x devices, are mapped to both program and data space. Hence, the user can use M0 and  
M1 to execute code or for data variables. The partitioning is performed within the linker. The C28x device  
presents a unified memory map to the programmer. This makes for easier programming in high-level  
languages.  
3.2.8 L0, L1, L2, L3, L4, L5, L6, L7 SARAMs  
The F28335/F28235 and F28334/F28234 each contain an additional 32K × 16 of single-access RAM,  
divided into 8 blocks (L0-L7 with 4K each). The F28332/F28232 contain an additional 24K × 16 of  
single-access RAM, divided into 6 blocks (L0-L5 with 4K each). Each block can be independently  
accessed to minimize CPU pipeline stalls. Each block is mapped to both program and data space. L4, L5,  
L6, and L7 are DMA accessible  
3.2.9 Boot ROM  
The Boot ROM is factory-programmed with boot-loading software. Boot-mode signals are provided to tell  
the bootloader software what boot mode to use on power up. The user can select to boot normally or to  
download new software from an external connection or to select boot software that is programmed in the  
internal Flash/ROM. The Boot ROM also contains standard tables, such as SIN/COS waveforms, for use  
in math related algorithms.  
44  
Functional Overview  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 3-6. Boot Mode Selection  
MODE  
GPIO87/XA15  
GPIO86/XA14  
GPIO85/XA13  
GPIO84/XA12  
MODE(1)  
F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Jump to Flash  
SCI-A boot  
SPI-A boot  
I2C-A boot  
eCAN-A boot  
McBSP-A boot  
Jump to XINTF x16  
Jump to XINTF x32  
Jumpto OTP  
Parallel GPIO I/O boot  
Parallel XINTF boot  
Jump to SARAM  
Branch to check boot mode  
Branch to Flash, skip ADC calibration  
Branch to SARAM, skip ADC  
calibration  
0
0
0
0
0
Branch to SCI, skip ADC calibration  
(1) All four GPIO pins have an internal pullup.  
NOTE  
Modes 0, 1, and 2 in Table 3-6 are for TI debug only. Skipping the ADC calibration  
function in an application will cause the ADC to operate outside of the stated  
specifications  
3.2.10 Security  
The devices support high levels of security to protect the user firmware from being reverse engineered.  
The security features a 128-bit password (hardcoded for 16 wait-states), which the user programs into the  
flash. One code security module (CSM) is used to protect the flash/OTP and the L0/L1/L2/L3 SARAM  
blocks. The security feature prevents unauthorized users from examining the memory contents via the  
JTAG port, executing code from external memory or trying to boot-load some undesirable software that  
would export the secure memory contents. To enable access to the secure blocks, the user must write the  
correct 128-bit KEY value, which matches the value stored in the password locations within the Flash.  
In addition to the CSM, the emulation code security logic (ECSL) has been implemented to prevent  
unauthorized users from stepping through secure code. Any code or data access to flash, user OTP, L0,  
L1, L2 or L3 memory while the emulator is connected will trip the ECSL and break the emulation  
connection. To allow emulation of secure code, while maintaining the CSM protection against secure  
memory reads, the user must write the correct value into the lower 64 bits of the KEY register, which  
matches the value stored in the lower 64 bits of the password locations within the flash. Note that dummy  
reads of all 128 bits of the password in the flash must still be performed. If the lower 64 bits of the  
password locations are all ones (unprogrammed), then the KEY value does not need to match.  
When initially debugging a device with the password locations in flash programmed (i.e., secured), the  
emulator takes some time to take control of the CPU. During this time, the CPU will start running and may  
execute an instruction that performs an access to a protected ECSL area. If this happens, the ECSL will  
trip and cause the emulator connection to be cut. Two solutions to this problem exist:  
1. The first is to use the Wait-In-Reset emulation mode, which will hold the device in reset until the  
emulator takes control. The emulator must support this mode for this option.  
2. The second option is to use the “Branch to check boot mode” boot option. This will sit in a loop and  
continuously poll the boot mode select pins. The user can select this boot mode and then exit this  
Submit Documentation Feedback  
Functional Overview  
45  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
mode once the emulator is connected by re-mapping the PC to another address or by changing the  
boot mode selection pin to the desired boot mode.  
NOTE  
When the code-security passwords are programmed, all addresses between  
0x33FF80 and 0x33FFF5 cannot be used as program code or data. These locations  
must be programmed to 0x0000.  
If the code security feature is not used, addresses 0x33FF80 through 0x33FFEF may  
be used for code or data. Addresses 0x33FFF0 – 0x33FFF5 are reserved for data and  
should not contain program code. .  
The 128-bit password (at 0x33 FFF8 – 0x33 FFFF) must not be programmed to zeros.  
Doing so would permanently lock the device.  
disclaimer  
Code Security Module Disclaimer  
THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS  
DESIGNED TO PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED  
MEMORY (EITHER ROM OR FLASH) AND IS WARRANTED BY TEXAS  
INSTRUMENTS (TI), IN ACCORDANCE WITH ITS STANDARD TERMS AND  
CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS FOR THE  
WARRANTY PERIOD APPLICABLE FOR THIS DEVICE.  
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE  
COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED  
MEMORY CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER,  
EXCEPT AS SET FORTH ABOVE, TI MAKES NO WARRANTIES OR  
REPRESENTATIONS CONCERNING THE CSM OR OPERATION OF THIS DEVICE,  
INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR  
A PARTICULAR PURPOSE.  
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL,  
INDIRECT, INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN  
ANY WAY OUT OF YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT  
TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED  
DAMAGES INCLUDE, BUT ARE NOT LIMITED TO LOSS OF DATA, LOSS OF  
GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR OTHER  
ECONOMIC LOSS.  
3.2.11 Peripheral Interrupt Expansion (PIE) Block  
The PIE block serves to multiplex numerous interrupt sources into a smaller set of interrupt inputs. The  
PIE block can support up to 96 peripheral interrupts. On the F2833x/F2823x, 58 of the possible 96  
interrupts are used by peripherals. The 96 interrupts are grouped into blocks of 8 and each group is fed  
into 1 of 12 CPU interrupt lines (INT1 to INT12). Each of the 96 interrupts is supported by its own vector  
stored in a dedicated RAM block that can be overwritten by the user. The vector is automatically fetched  
by the CPU on servicing the interrupt. It takes 8 CPU clock cycles to fetch the vector and save critical  
CPU registers. Hence the CPU can quickly respond to interrupt events. Prioritization of interrupts is  
controlled in hardware and software. Each individual interrupt can be enabled/disabled within the PIE  
block.  
46  
Functional Overview  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
3.2.12 External Interrupts (XINT1-XINT7, XNMI)  
The devices support eight masked external interrupts (XINT1-XINT7, XNMI). XNMI can be connected to  
the INT13 or NMI interrupt of the CPU. Each of the interrupts can be selected for negative, positive, or  
both negative and positive edge triggering and can also be enabled/disabled (including the XNMI). XINT1,  
XINT2, and XNMI also contain a 16-bit free running up counter, which is reset to zero when a valid  
interrupt edge is detected. This counter can be used to accurately time stamp the interrupt. Unlike the  
281x devices, there are no dedicated pins for the external interrupts. XINT1 XINT2, and XNMI interrupts  
can accept inputs from GPIO0 – GPIO31 pins. XINT3 – XINT7 interrupts can accept inputs from GPIO32  
– GPIO63 pins.  
3.2.13 Oscillator and PLL  
The device can be clocked by an external oscillator or by a crystal attached to the on-chip oscillator circuit.  
A PLL is provided supporting up to 10 input-clock-scaling ratios. The PLL ratios can be changed on-the-fly  
in software, enabling the user to scale back on operating frequency if lower power operation is desired.  
Refer to the Electrical Specification section for timing details. The PLL block can be set in bypass mode.  
3.2.14 Watchdog  
The devices contain a watchdog timer. The user software must regularly reset the watchdog counter  
within a certain time frame; otherwise, the watchdog will generate a reset to the processor. The watchdog  
can be disabled if necessary.  
3.2.15 Peripheral Clocking  
The clocks to each individual peripheral can be enabled/disabled so as to reduce power consumption  
when a peripheral is not in use. Additionally, the system clock to the serial ports (except I2C and eCAN)  
and the ADC blocks can be scaled relative to the CPU clock. This enables the timing of peripherals to be  
decoupled from increasing CPU clock speeds.  
3.2.16 Low-Power Modes  
The devices are full static CMOS devices. Three low-power modes are provided:  
IDLE:  
Place CPU into low-power mode. Peripheral clocks may be turned off selectively and only  
those peripherals that need to function during IDLE are left operating. An enabled interrupt  
from an active peripheral or the watchdog timer will wake the processor from IDLE mode.  
STANDBY: Turns off clock to CPU and peripherals. This mode leaves the oscillator and PLL functional.  
An external interrupt event will wake the processor and the peripherals. Execution begins  
on the next valid cycle after detection of the interrupt event  
HALT:  
Turns off the internal oscillator. This mode basically shuts down the device and places it in  
the lowest possible power consumption mode. A reset or external signal can wake the  
device from this mode.  
3.2.17 Peripheral Frames 0, 1, 2, 3 (PFn)  
The device segregates peripherals into three sections. The mapping of peripherals is as follows:  
PF0: PIE:  
Flash:  
PIE Interrupt Enable and Control Registers Plus PIE Vector Table  
Flash Waitstate Registers  
XINTF:  
DMA  
External Interface Registers  
DMA Registers  
Timers:  
CSM:  
ADC:  
CPU-Timers 0, 1, 2 Registers  
Code Security Module KEY Registers  
ADC Result Registers (dual-mapped)  
Submit Documentation Feedback  
Functional Overview  
47  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
PF1: eCAN:  
GPIO:  
eCAN Mailbox and Control Registers  
GPIO MUX Configuration and Control Registers  
Enhanced Pulse Width Modulator Module and Registers  
Enhanced Capture Module and Registers  
ePWM:  
eCAP:  
eQEP:  
Enhanced Quadrature Encoder Pulse Module and Registers  
System Control Registers  
PF2: SYS:  
SCI:  
Serial Communications Interface (SCI) Control and RX/TX Registers  
Serial Port Interface (SPI) Control and RX/TX Registers  
ADC Status, Control, and Result Register  
SPI:  
ADC:  
I2C:  
Inter-Integrated Circuit Module and Registers  
External Interrupt Registers  
XINT  
PF3: McBSP  
Multichannel Buffered Serial Port Registers  
3.2.18 General-Purpose Input/Output (GPIO) Multiplexer  
Most of the peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. This  
enables the user to use a pin as GPIO if the peripheral signal or function is not used. On reset, GPIO pins  
are configured as inputs. The user can individually program each pin for GPIO mode or peripheral signal  
mode. For specific inputs, the user can also select the number of input qualification cycles. This is to filter  
unwanted noise glitches. The GPIO signals can also be used to bring the device out of specific low-power  
modes.  
3.2.19 32-Bit CPU-Timers (0, 1, 2)  
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock  
prescaling. The timers have a 32-bit count down register, which generates an interrupt when the counter  
reaches zero. The counter is decremented at the CPU clock speed divided by the prescale value setting.  
When the counter reaches zero, it is automatically reloaded with a 32-bit period value. CPU-Timer 2 is  
reserved for Real-Time OS (RTOS)/BIOS applications. It is connected to INT14 of the CPU. If DSP/BIOS  
is not being used, CPU-Timer 2 is available for general use. CPU-Timer 1 is for general use and can be  
connected to INT13 of the CPU. CPU-Timer 0 is also for general use and is connected to the PIE block.  
3.2.20 Control Peripherals  
The F2833x/F2823x devices support the following peripherals which are used for embedded control and  
communication:  
ePWM:  
eCAP:  
eQEP:  
The enhanced PWM peripheral supports independent/complementary PWM generation,  
adjustable dead-band generation for leading/trailing edges, latched/cycle-by-cycle trip  
mechanism. Some of the PWM pins support HRPWM features.  
The enhanced capture peripheral uses a 32-bit time base and registers up to four  
programmable events in continuous/one-shot capture modes.  
This peripheral can also be configured to generate an auxiliary PWM signal.  
The enhanced QEP peripheral uses a 32-bit position counter, supports low-speed  
measurement using capture unit and high-speed measurement using a 32-bit unit timer.  
This peripheral has a watchdog timer to detect motor stall and input error detection logic  
to identify simultaneous edge transition in QEP signals.  
ADC:  
The ADC block is a 12-bit converter, single ended, 16-channels. It contains two  
sample-and-hold units for simultaneous sampling.  
3.2.21 Serial Port Peripherals  
48  
Functional Overview  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
The devices support the following serial communication peripherals:  
eCAN:  
This is the enhanced version of the CAN peripheral. It supports 32 mailboxes, time  
stamping of messages, and is CAN 2.0B-compliant.  
McBSP: The multichannel buffered serial port (McBSP) connects to E1/T1 lines, phone-quality  
codecs for modem applications or high-quality stereo audio DAC devices. The McBSP  
receive and transmit registers are supported by the DMA to significantly reduce the  
overhead for servicing this peripheral. Each McBSP module can be configured as an SPI  
as required.  
SPI:  
The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of  
programmed length (one to sixteen bits) to be shifted into and out of the device at a  
programmable bit-transfer rate. Normally, the SPI is used for communications between the  
DSC and external peripherals or another processor. Typical applications include external  
I/O or peripheral expansion through devices such as shift registers, display drivers, and  
ADCs. Multi-device communications are supported by the master/slave operation of the  
SPI. On the F2833x/F2823x, the SPI contains a 16-level receive and transmit FIFO for  
reducing interrupt servicing overhead.  
SCI:  
I2C:  
The serial communications interface is a two-wire asynchronous serial port, commonly  
known as UART. The SCI contains a 16-level receive and transmit FIFO for reducing  
interrupt servicing overhead.  
The inter-integrated circuit (I2C) module provides an interface between a DSC and other  
devices compliant with Philips Semiconductors Inter-IC bus (I2C-bus) specification version  
2.1 and connected by way of an I2C-bus. External components attached to this 2-wire  
serial bus can transmit/receive up to 8-bit data to/from the DSC through the I2C module.  
On the F2833x/F2823x, the I2C contains a 16-level receive and transmit FIFO for  
reducing interrupt servicing overhead.  
3.3 Register Map  
The devices contain four peripheral register spaces. The spaces are categorized as follows:  
Peripheral  
Frame 0:  
These are peripherals that are mapped directly to the CPU memory bus.  
See Table 3-7  
Peripheral  
Frame 1  
These are peripherals that are mapped to the 32-bit peripheral bus.  
See Table 3-8  
Peripheral  
Frame 2:  
These are peripherals that are mapped to the 16-bit peripheral bus.  
See Table 3-9  
Peripheral  
Frame 3:  
These are peripherals that are mapped to the 32-bit DMA-accessible peripheral  
bus.  
See Table 3-10  
Table 3-7. Peripheral Frame 0 Registers(1)  
NAME  
ADDRESS RANGE  
0x00 0880 - 0x00 09FF  
0x00 0A80 - 0x00 0ADF  
0x00 0AE0 - 0x00 0AEF  
0x00 0B00 - 0x00 0B0F  
SIZE (×16)  
ACCESS TYPE(2)  
Device Emulation Registers  
FLASH Registers(3)  
384  
96  
EALLOW protected  
EALLOW protected  
EALLOW protected  
Not EALLOW protected  
Code Security Module Registers  
16  
ADC registers (dual-mapped)  
16  
0 wait (DMA), 1 wait (CPU), read only  
XINTF Registers  
0x00 0B20 - 0x00 0B3F  
32  
Not EALLOW protected  
(1) Registers in Frame 0 support 16-bit and 32-bit accesses.  
(2) If registers are EALLOW protected, then writes cannot be performed until the EALLOW instruction is executed. The EDIS instruction  
disables writes to prevent stray code or pointers from corrupting register contents.  
(3) The Flash Registers are also protected by the Code Security Module (CSM).  
Submit Documentation Feedback  
Functional Overview  
49  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 3-7. Peripheral Frame 0 Registers (continued)  
NAME  
ADDRESS RANGE  
0x00 0C00 - 0x00 0C3F  
0x00 0CE0 - 0x00 0CFF  
0x00 0D00 - 0x00 0DFF  
0x00 1000 - 0x00 11FF  
SIZE (×16)  
ACCESS TYPE(2)  
CPU–TIMER0/1/2 Registers  
PIE Registers  
64  
32  
Not EALLOW protected  
Not EALLOW protected  
EALLOW protected  
PIE Vector Table  
DMA Registers  
256  
512  
EALLOW protected  
Table 3-8. Peripheral Frame 1 Registers  
NAME  
ADDRESS RANGE  
SIZE (×16)  
512  
512  
64  
ECAN-A Registers  
0x0000 6000 - 0x0000 61FF  
0x0000 6200 - 0x0000 63FF  
0x0000 6800 - 0x0000 683F  
0x0000 6840 - 0x0000 687F  
0x0000 6880 - 0x0000 68BF  
0x0000 68C0 - 0x0000 68FF  
0x0000 6900 - 0x0000 693F  
0x0000 6940 - 0x0000 697F  
0x0000 6A00 - 0x0000 6A1F  
0x0000 6A20 - 0x0000 6A3F  
0x0000 6A40 - 0x0000 6A5F  
0x0000 6A60 - 0x0000 6A7F  
0x0000 6A80 - 0x0000 6A9F  
0x0000 6AA0 - 0x0000 6ABF  
0x0000 6B00 - 0x0000 6B3F  
0x0000 6B40 - 0x0000 6B7F  
0x0000 6F80 - 0x0000 6FFF  
ECAN-B Registers  
EPWM1 + HRPWM1 Registers  
EPWM2 + HRPWM2 Registers  
EPWM3 + HRPWM3 Registers  
EPWM4 + HRPWM4 Registers  
EPWM5 + HRPWM5 Registers  
EPWM6 + HRPWM6 Registers  
ECAP1 Registers  
64  
64  
64  
64  
64  
32  
ECAP2 Registers  
32  
ECAP3 Registers  
32  
ECAP4 Registers  
32  
ECAP5 Registers  
32  
ECAP6 Registers  
32  
EQEP1 Registers  
64  
EQEP2 Registers  
64  
GPIO Registers  
128  
Table 3-9. Peripheral Frame 2 Registers  
NAME  
ADDRESS RANGE  
SIZE (×16)  
System Control Registers  
SPI-A Registers  
SCI-A Registers  
External Interrupt Registers  
ADC Registers  
0x0000 7010 - 0x0000 702F  
0x0000 7040 - 0x0000 704F  
0x0000 7050 - 0x0000 705F  
0x0000 7070 - 0x0000 707F  
0x0000 7100 - 0x0000 711F  
0x0000 7750 - 0x0000 775F  
0x0000 7770 - 0x0000 777F  
0x0000 7900 - 0x0000 793F  
32  
16  
16  
16  
32  
16  
16  
64  
SCI-B Registers  
SCI-C Registers  
I2C-A Registers  
Table 3-10. Peripheral Frame 3 Registers  
NAME  
ADDRESS RANGE  
SIZE (×16)  
McBSP-A Registers  
McBSP-B Registers  
0x0000 5000 - 0x0000 503F  
0x0000 5040 - 0x0000 507F  
64  
64  
3.4 Device Emulation Registers  
These registers are used to control the protection mode of the C28x CPU and to monitor some critical  
device signals. The registers are defined in Table 3-11.  
50  
Functional Overview  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 3-11. Device Emulation Registers  
ADDRESS  
RANGE  
NAME  
SIZE (x16)  
DESCRIPTION  
0x0880  
0x0881  
DEVICECNF  
2
1
Device Configuration Register  
PARTID  
0x0882  
Part ID Register  
0x00F8(1) - F28332/F28232  
0x00F9 - F28334/F28234  
0x00FA - F28335/F28235  
REVID  
0x0883  
0x0884  
0x0885  
1
1
1
Revision ID Register  
0x0000 - Silicon Rev. 0 - TMX  
PROTSTART  
PROTRANGE  
Block Protection Start Address Register  
Block Protection Range Address Register  
(1) The first byte (00) denotes flash devices. FF denotes ROM devices. Other values are reserved for future devices.  
Submit Documentation Feedback  
Functional Overview  
51  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
3.5 Interrupts  
Figure 3-5 shows how the various interrupt sources are multiplexed.  
Peripherals  
(SPI, SCI, I2C, CAN, McBSP(A),  
EPWM, ECAP, EQEP, ADC(A))  
Clear  
DMA  
WDINT  
Watchdog  
Low Power Models  
WAKEINT  
DMA  
Sync  
LPMINT  
SYSCLKOUT  
XINT1  
XINT1  
Latch  
Interrupt Control  
INT1  
to  
INT12  
XINT1CR(15:0)  
XINT1CTR(15:0)  
GPIOXINT1SEL(4:0)  
XINT2SOC  
C28  
Core  
XINT2  
DMA  
XINT2  
ADC  
Latch  
Interrupt Control  
XINT2CR(15:0)  
XINT2CTR(15:0)  
GPIOXINT2SEL(4:0)  
DMA  
TINT0  
CPU Timer 0  
DMA  
TINT2  
CPU Timer 2  
CPU Timer 1  
INT14  
INT13  
TOUT1  
TINT1  
Flash Wrapper  
GPIO0.int  
XNMI_  
XINT13  
GPIO  
Mux  
Latch  
Interrupt Control  
XNMICR(15:0)  
XNMICTR(15:0)  
NMI  
GPIO31.int  
1
GPIOXNMISEL(4:0)  
DMA  
A. DMA-accessible  
Figure 3-5. External and PIE Interrupt Sources  
52  
Functional Overview  
Submit Documentation Feedback  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
DMA  
XINT3  
Interrupt Control  
XINT3CR(15:0)  
Latch  
GPIOXINT3SEL(4:0)  
DMA  
XINT4  
Interrupt Control  
XINT4CR(15:0)  
Latch  
GPIOXINT4SEL(4:0)  
DMA  
XINT5  
INT1  
to  
INT12  
PIE  
Latch  
Interrupt Control  
XINT5CR(15:0)  
C28  
Core  
GPIOXINT5SEL(4:0)  
DMA  
XINT6  
Interrupt Control  
XINT6CR(15:0)  
Latch  
GPIOXINT6SEL(4:0)  
DMA  
XINT7  
GPIO32.int  
GPIO63.int  
GPIO  
Mux  
Interrupt Control  
XINT7CR(15:0)  
Latch  
GPIOXINT7SEL(4:0)  
Figure 3-6. External Interrupts  
Eight PIE block interrupts are grouped into one CPU interrupt. In total, 12 CPU interrupt groups, with 8  
interrupts per group equals 96 possible interrupts. On the F2833x/F2823x, 58 of these are used by  
peripherals as shown in Table 3-12.  
The TRAP #VectorNumber instruction transfers program control to the interrupt service routine  
corresponding to the vector specified. TRAP #0 attempts to transfer program control to the address  
pointed to by the reset vector. The PIE vector table does not, however, include a reset vector. Therefore,  
TRAP #0 should not be used when the PIE is enabled. Doing so will result in undefined behavior.  
When the PIE is enabled, TRAP #1 through TRAP #12 will transfer program control to the interrupt service  
routine corresponding to the first vector within the PIE group. For example: TRAP #1 fetches the vector  
from INT1.1, TRAP #2 fetches the vector from INT2.1, and so forth.  
Submit Documentation Feedback  
Functional Overview  
53  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
IFR(12:1)  
IER(12:1)  
INTM  
INT1  
INT2  
1
CPU  
MUX  
0
INT11  
INT12  
Global  
Enable  
(Flag)  
(Enable)  
INTx.1  
INTx.2  
INTx.3  
INTx.4  
INTx.5  
From  
Peripherals or  
External  
INTx  
MUX  
INTx.6  
INTx.7  
INTx.8  
Interrupts  
PIEACKx  
(Enable)  
(Flag)  
(Enable/Flag)  
PIEIERx(8:1)  
PIEIFRx(8:1)  
Figure 3-7. Multiplexing of Interrupts Using the PIE Block  
Table 3-12. PIE Peripheral Interrupts(1)  
PIE INTERRUPTS  
CPU  
INTERRUPTS  
INTx.8  
INTx.7  
INTx.6  
INTx.5  
INTx.4  
INTx.3  
INTx.2  
INTx.1  
WAKEINT  
(LPM/WD)  
TINT0  
(TIMER 0)  
ADCINT  
(ADC)  
SEQ2INT  
(ADC)  
SEQ1INT  
(ADC)  
INT1  
INT2  
INT3  
INT4  
INT5  
INT6  
INT7  
INT8  
INT9  
XINT2  
XINT1  
Reserved  
EPWM6_TZINT EPWM5_TZINT EPWM4_TZINT EPWM3_TZINT EPWM2_TZINT EPWM1_TZINT  
(ePWM6)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
(ePWM5)  
(ePWM4)  
(ePWM3)  
(ePWM2)  
(ePWM1)  
EPWM6_INT  
(ePWM6)  
EPWM5_INT  
(ePWM5)  
EPWM4_INT  
(ePWM4)  
EPWM3_INT  
(ePWM3)  
EPWM2_INT  
(ePWM2)  
EPWM1_INT  
(ePWM1)  
ECAP6_INT  
(ECAP6)  
ECAP5_INT  
(ECAP5)  
ECAP4_INT  
(eCAP4)  
ECAP3_INT  
(eCAP3)  
ECAP2_INT  
(eCAP2)  
ECAP1_INT  
(eCAP1)  
EQEP2_INT  
(eQEP2)  
EQEP1_INT  
(eQEP1)  
Reserved  
Reserved  
Reserved  
Reserved  
MXINTA  
(McBSP-A)  
MRINTA  
(McBSP-A)  
MXINTB  
(McBSP-B)  
MRINTB  
(McBSP-B)  
SPITXINTA  
(SPI-A)  
SPIRXINTA  
(SPI-A)  
DINTCH6  
(DMA)  
DINTCH5  
(DMA)  
DINTCH4  
(DMA)  
DINTCH3  
(DMA)  
DINTCH2  
(DMA)  
DINTCH1  
(DMA)  
SCITXINTC  
(SCI-C)  
SCIRXINTC  
(SCI-C)  
I2CINT2A  
(I2C-A)  
I2CINT1A  
(I2C-A)  
Reserved  
Reserved  
ECAN1_INTB  
(CAN-B)  
ECAN0_INTB  
(CAN-B)  
ECAN1_INTA  
(CAN-A)  
ECAN0_INTA  
(CAN-A)  
SCITXINTB  
(SCI-B)  
SCIRXINTB  
(SCI-B)  
SCITXINTA  
(SCI-A)  
SCIRXINTA  
(SCI-A)  
INT10  
INT11  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
LUF  
(FPU)  
LVF  
(FPU)  
INT12  
Reserved  
XINT7  
XINT6  
XINT5  
XINT4  
XINT3  
(1) Out of the 96 possible interrupts, 58 interrupts are currently used. The remaining interrupts are reserved for future devices. These  
interrupts can be used as software interrupts if they are enabled at the PIEIFRx level, provided none of the interrupts within the group is  
being used by a peripheral. Otherwise, interrupts coming in from peripherals may be lost by accidentally clearing their flag while  
modifying the PIEIFR. To summarize, there are two safe cases when the reserved interrupts could be used as software interrupts:  
1) No peripheral within the group is asserting interrupts.  
2) No peripheral interrupts are assigned to the group (example PIE group 11).  
54  
Functional Overview  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 3-13. PIE Configuration and Control Registers  
NAME  
PIECTRL  
PIEACK  
PIEIER1  
PIEIFR1  
PIEIER2  
PIEIFR2  
PIEIER3  
PIEIFR3  
PIEIER4  
PIEIFR4  
PIEIER5  
PIEIFR5  
PIEIER6  
PIEIFR6  
PIEIER7  
PIEIFR7  
PIEIER8  
PIEIFR8  
PIEIER9  
PIEIFR9  
PIEIER10  
PIEIFR10  
PIEIER11  
PIEIFR11  
PIEIER12  
PIEIFR12  
Reserved  
ADDRESS  
0x0CE0  
0x0CE1  
0x0CE2  
0x0CE3  
0x0CE4  
0x0CE5  
0x0CE6  
0x0CE7  
0x0CE8  
0x0CE9  
0x0CEA  
0x0CEB  
0x0CEC  
0x0CED  
0x0CEE  
0x0CEF  
0x0CF0  
0x0CF1  
0x0CF2  
0x0CF3  
0x0CF4  
0x0CF5  
0x0CF6  
0x0CF7  
0x0CF8  
0x0CF9  
SIZE (X16)  
DESCRIPTION(1)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
PIE, Control Register  
PIE, Acknowledge Register  
PIE, INT1 Group Enable Register  
PIE, INT1 Group Flag Register  
PIE, INT2 Group Enable Register  
PIE, INT2 Group Flag Register  
PIE, INT3 Group Enable Register  
PIE, INT3 Group Flag Register  
PIE, INT4 Group Enable Register  
PIE, INT4 Group Flag Register  
PIE, INT5 Group Enable Register  
PIE, INT5 Group Flag Register  
PIE, INT6 Group Enable Register  
PIE, INT6 Group Flag Register  
PIE, INT7 Group Enable Register  
PIE, INT7 Group Flag Register  
PIE, INT8 Group Enable Register  
PIE, INT8 Group Flag Register  
PIE, INT9 Group Enable Register  
PIE, INT9 Group Flag Register  
PIE, INT10 Group Enable Register  
PIE, INT10 Group Flag Register  
PIE, INT11 Group Enable Register  
PIE, INT11 Group Flag Register  
PIE, INT12 Group Enable Register  
PIE, INT12 Group Flag Register  
Reserved  
0x0CFA  
0x0CFF  
(1) The PIE configuration and control registers are not protected by EALLOW mode. The PIE vector table  
is protected.  
Submit Documentation Feedback  
Functional Overview  
55  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
3.5.1 External Interrupts  
Table 3-14. External Interrupt Registers  
Name  
Address  
0x0000 7070  
0x0000 7071  
0x0000 7072  
0x0000 7073  
0x0000 7074  
0x0000 7075  
0x0000 7076  
0x0000 7077  
0x0000 7078  
0x0000 7079  
0x707A - 0x707E  
0x0000 707F  
Size (x16) Description  
XINT1CR  
XINT2CR  
XINT3CR  
XINT4CR  
XINT5CR  
XINT6CR  
XINT7CR  
XNMICR  
XINT1CTR  
XINT2CTR  
Reserved  
XNMICTR  
1
1
1
1
1
1
1
1
1
1
5
1
XINT1 configuration register  
XINT2 configuration register  
XINT3 configuration register  
XINT4 configuration register  
XINT5 configuration register  
XINT6 configuration register  
XINT7 configuration register  
XNMI configuration register  
XINT1 counter register  
XINT2 counter register  
XNMI counter register  
Each external interrupt can be enabled/disabled or qualified using positive, negative, or both positive and  
negative edge. For more information, see the TMS320F2833x Digital Signal Controller (DSC) System and  
Interrupts Reference Guide (literature number SPRUFB0).  
3.6 System Control  
This section describes the oscillator, PLL and clocking mechanisms, the watchdog function and the low  
power modes. Figure 3-8 shows the various clock and reset domains that will be discussed.  
56  
Functional Overview  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
C28x Core  
SYSCLKOUT  
System  
control  
register  
Clock enables  
LSPCLK  
LOSPCP  
Bridge  
I/O  
I/O  
I/O  
I/O  
Peripheral  
registers  
SPI-A, SCI-A/B/C, I2C-A  
Clock enables  
/2  
Peripheral  
registers  
eCAN-A/B  
Clock enables  
GPIO  
Mux  
Bridge  
Peripheral  
registers  
EPWM1/../6, HRPWM1/../6,  
ECAP1/../6, EQEP1/2  
Clock enables  
LSPCLK  
LOSPCP  
Peripheral  
registers  
Bridge  
McBSP-A/B  
Clock enable  
CPU timer  
registers  
CPU timer 0/1/2  
Clock enable  
HSPCLK  
HISPCP  
Bridge  
16 channels  
ADC  
registers  
12-Bit ADC  
Result  
registers  
DMA  
Clock Enables  
A. CLKIN is the clock into the CPU. It is passed out of the CPU as SYSCLKOUT (that is, CLKIN is the same frequency  
as SYSCLKOUT). See Figure 3-9 for an illustration of how CLKIN is derived.  
Figure 3-8. Clock and Reset Domains  
Submit Documentation Feedback  
Functional Overview  
57  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
The PLL, clocking, watchdog and low-power modes, are controlled by the registers listed in Table 3-15.  
Table 3-15. PLL, Clocking, Watchdog, and Low-Power Mode Registers  
Name  
Address  
0x0000-7011  
Size (x16) Description  
PLL Status Register  
PLLSTS  
Reserved  
HISPCP  
LOSPCP  
PCLKCR0  
PCLKCR1  
LPMCR0  
Reserved  
PCLKCR3  
PLLCR  
1
7
1
1
1
1
1
1
1
1
1
1
1
1
3
1
6
0x0000-7012 - 0x0000-7018  
0x0000-701A  
High-Speed Peripheral Clock Pre-Scaler Register  
Low-Speed Peripheral Clock Pre-Scaler Register  
Peripheral Clock Control Register 0  
Peripheral Clock Control Register 1  
Low Power Mode Control Register 0  
Low Power Mode Control Register 1  
Peripheral Clock Control Register 3  
PLL Control Register  
0x0000-701B  
0x0000-701C  
0x0000-701D  
0x0000-701E  
0x0000-701F  
0x0000-7020  
0x0000-7021  
SCSR  
0x0000-7022  
System Control and Status Register  
Watchdog Counter Register  
WDCNTR  
Reserved  
WDKEY  
Reserved  
WDCR  
0x0000-7023  
0x0000-7024  
0x0000-7025  
Watchdog Reset Key Register  
Watchdog Control Register  
0x0000-7026 - 0x0000-7028  
0x0000-7029  
Reserved  
0x0000-702A - 0x0000-702F  
3.6.1 OSC and PLL Block  
Figure 3-9 shows the OSC and PLL block.  
OSCCLK  
OSCCLK  
/1  
XCLKIN  
(3.3-V clock input  
from external  
oscillator)  
0
n
OSCCLK or  
VCOCLK  
CLKIN  
/2  
/4  
To  
CPU  
PLLSTS[OSCOFF]  
PLLSTS[PLLOFF]  
VCOCLK  
PLL  
n 0  
PLLSTS[DIVSEL]  
4-bit PLL Select (PLLCR)  
X1  
External  
Crystal or  
Resonator  
On-chip  
oscillator  
X2  
Figure 3-9. OSC and PLL Block Diagram  
The on-chip oscillator circuit enables a crystal/resonator to be attached to the F2833x/F2823x devices  
using the X1 and X2 pins. If the on-chip oscillator is not used, an external oscillator can be used in either  
one of the following configurations:  
1. A 3.3-V external oscillator can be directly connected to the XCLKIN pin. The X2 pin should be left  
unconnected and the X1 pin tied low. The logic-high level in this case should not exceed VDDIO  
.
2. A 1.9-V external oscillator can be directly connected to the X1 pin. The X2 pin should be left  
unconnected and the XCLKIN pin tied low. The logic-high level in this case should not exceed VDD  
.
The three possible input-clock configurations are shown in Figure 3-10 through Figure 3-12  
58  
Functional Overview  
Submit Documentation Feedback  
 
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
XCLKIN  
X1  
X2  
NC  
External Clock Signal  
(Toggling 0V  
)
DDIO  
Figure 3-10. Using a 3.3-V External Oscillator  
X2  
X1  
XCLKIN  
External Clock Signal  
NC  
(Toggling 0V  
)
DD  
Figure 3-11. Using a 1.9-V External Oscillator  
XCLKIN  
X1  
X2  
C
L2  
C
L1  
Crystal  
Figure 3-12. Using the Internal Oscillator  
3.6.1.1 External Reference Oscillator Clock Option  
The typical specifications for the external quartz crystal for a frequency of 20 MHz are listed below:  
Fundamental mode, parallel resonant  
CL (load capacitance) = 12 pF  
CL1 = CL2 = 24 pF  
Cshunt = 6 pF  
ESR range = 30 to 60 Ω  
TI recommends that customers have the resonator/crystal vendor characterize the operation of their  
device with the DSC chip. The resonator/crystal vendor has the equipment and expertise to tune the tank  
circuit. The vendor can also advise the customer regarding the proper tank component values that will  
produce proper start up and stability over the entire operating range.  
3.6.1.2 PLL-Based Clock Module  
The devices have an on-chip, PLL-based clock module. This module provides all the necessary clocking  
signals for the device, as well as control for low-power mode entry. The PLL has a 4-bit ratio control  
PLLCR[DIV] to select different CPU clock rates. The watchdog module should be disabled before writing  
to the PLLCR register. It can be re-enabled (if need be) after the PLL module has stabilized, which takes  
131072 OSCCLK cycles. The input clock and PLLCR[DIV] bits should be chosen in such a way that the  
output frequency of the PLL (VCOCLK) does not exceed 300 MHz.  
Submit Documentation Feedback  
Functional Overview  
59  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 3-16. PLLCR(1) Bit Descriptions  
SYSCLKOUT (CLKIN)  
PLLCR[DIV] VALUE(2)  
PLLSTS[DIVSEL] = 0 or 1  
OSCCLK/4 (Default)  
(OSCCLK * 1)/4  
(OSCCLK * 2)/4  
(OSCCLK * 3)/4  
(OSCCLK * 4)/4  
(OSCCLK * 5)/4  
(OSCCLK * 6)/4  
(OSCCLK * 7)/4  
(OSCCLK * 8)/4  
(OSCCLK * 9)/4  
(OSCCLK * 10)/4  
Reserved  
PLLSTS[DIVSEL] = 2  
OSCCLK/2  
PLLSTS[DIVSEL] = 3  
OSCCLK  
0000 (PLL bypass)  
0001  
(OSCCLK*1)/2  
(OSCCLK*2)/2  
(OSCCLK*3)/2  
(OSCCLK*4)/2  
(OSCCLK*5)/2  
(OSCCLK*6)/2  
(OSCCLK*7)/2  
(OSCCLK*8)/2  
(OSCCLK*9)/2  
(OSCCLK*10)/2  
Reserved  
OSCCLK*1  
OSCCLK*2  
OSCCLK*3  
OSCCLK*4  
OSCCLK*5  
OSCCLK*6  
OSCCLK*7  
OSCCLK*8  
OSCCLK*9  
OSCCLK*10  
Reserved  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011 - 1111  
(1) PLLSTS[DIVSEL] must be 0 before writing to the PLLCR and must be set only to 2 or 3 after PLLSTS[PLLLOCKS] = 1. By default,  
PLLSTS[DIVSEL] is configured for /4. The boot ROM changes this to /2.  
(2) The PLL control register (PLLCR) and PLL Status Register (PLLSTS) are reset to their default state by the XRS signal or a watchdog  
reset only. A reset issued by the debugger or the missing clock detect logic have no effect.  
Table 3-17. CLKIN Divide Options  
PLLSTS [DIVSEL]  
CLKIN DIVIDE  
0
1
2
3
/4  
/4  
/2  
/1  
The PLL-based clock module provides two modes of operation:  
Crystal-operation - This mode allows the use of an external crystal/resonator to provide the time base  
to the device.  
External clock source operation - This mode allows the internal oscillator to be bypassed. The device  
clocks are generated from an external clock source input on the X1 or the XCLKIN pin.  
Table 3-18. Possible PLL Configuration Modes  
CLKIN AND  
SYSCLKOUT  
PLL MODE  
REMARKS  
PLLSTS[DIVSEL](1)  
Invoked by the user setting the PLLOFF bit in the PLLSTS register. The PLL block  
is disabled in this mode. This can be useful to reduce system noise and for low  
power operation. The PLLCR register must first be set to 0x0000 (PLL Bypass)  
before entering this mode. The CPU clock (CLKIN) is derived directly from the  
input clock on either X1/X2, X1 or XCLKIN.  
0, 1  
2
3
OSCCLK/4  
OSCCLK/2  
OSCCLK/1  
PLL Off  
PLL Bypass is the default PLL configuration upon power-up or after an external  
reset (XRS). This mode is selected when the PLLCR register is set to 0x0000 or  
while the PLL locks to a new frequency after the PLLCR register has been  
modified. In this mode, the PLL itself is bypassed but the PLL is not turned off.  
0, 1  
2
3
OSCCLK/4  
OSCCLK/2  
OSCCLK/1  
PLL Bypass  
PLL Enable  
0, 1  
2
3
OSCCLK*n/4  
OSCCLK*n/2  
OSCCLK*n/1  
Achieved by writing a non-zero value n into the PLLCR register. Upon writing to the  
PLLCR the device will switch to PLL Bypass mode until the PLL locks.  
(1) PLLSTS[DIVSEL] must be 0 before writing to the PLLCR and must only be set to 1 after PLLSTS[PLLLOCKS] = 1. See the  
TMS320F2833x Digital Signal Controller (DSC) System Control and Interrupts Reference Guide (literature Number SPRUFB0) for more  
information.  
60  
Functional Overview  
Submit Documentation Feedback  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
3.6.1.3 Loss of Input Clock  
In PLL-enabled and PLL-bypass mode, if the input clock OSCCLK is removed or absent, the PLL will still  
issue a limp-mode clock. The limp-mode clock continues to clock the CPU and peripherals at a typical  
frequency of 1-5 MHz. Limp mode is not specified to work from power-up, only after input clocks have  
been present initially. In PLL bypass mode, the limp mode clock from the PLL is automatically routed to  
the CPU if the input clock is removed or absent.  
Normally, when the input clocks are present, the watchdog counter decrements to initiate a watchdog  
reset or WDINT interrupt. However, when the external input clock fails, the watchdog counter stops  
decrementing (i.e., the watchdog counter does not change with the limp-mode clock). In addition to this,  
the device will be reset and the “Missing Clock Status” (MCLKSTS) bit will be set. These conditions could  
be used by the application firmware to detect the input clock failure and initiate necessary shut-down  
procedure for the system.  
NOTE  
Applications in which the correct CPU operating frequency is absolutely critical should  
implement a mechanism by which the DSC will be held in reset, should the input clocks  
ever fail. For example, an R-C circuit may be used to trigger the XRS pin of the DSC,  
should the capacitor ever get fully charged. An I/O pin may be used to discharge the  
capacitor on a periodic basis to prevent it from getting fully charged. Such a circuit would  
also help in detecting failure of the flash memory and the VDD3VFL rail.  
3.6.2 Watchdog Block  
The watchdog block on the F2833x/F2823x device is similar to the one used on the 240x and 281x  
devices. The watchdog module generates an output pulse, 512 oscillator clocks wide (OSCCLK),  
whenever the 8-bit watchdog up counter has reached its maximum value. To prevent this, the user  
disables the counter or the software must periodically write a 0x55 + 0xAA sequence into the watchdog  
key register which will reset the watchdog counter. Figure 3-13 shows the various functional blocks within  
the watchdog module.  
WDCR (WDPS[2:0])  
WDCR (WDDIS)  
WDCNTR(7:0)  
OSCCLK  
WDCLK  
8-Bit  
Watchdog  
Counter  
CLR  
Watchdog  
Prescaler  
/512  
Clear Counter  
Internal  
Pullup  
WDKEY(7:0)  
WDRST  
WDINT  
Generate  
Watchdog  
55 + AA  
Key Detector  
Output Pulse  
(512 OSCCLKs)  
Good Key  
XRS  
Bad  
WDCHK  
Key  
Core-reset  
SCSR (WDENINT)  
WDCR (WDCHK[2:0])  
1
0
1
(A)  
WDRST  
A. The WDRST signal is driven low for 512 OSCCLK cycles.  
Figure 3-13. Watchdog Module  
The WDINT signal enables the watchdog to be used as a wakeup from IDLE/STANDBY mode.  
Submit Documentation Feedback  
Functional Overview  
61  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
In STANDBY mode, all peripherals are turned off on the device. The only peripheral that remains  
functional is the watchdog. The WATCHDOG module will run off OSCCLK. The WDINT signal is fed to the  
LPM block so that it can wake the device from STANDBY (if enabled). See Section Section 3.7,  
Low-Power Modes Block, for more details.  
In IDLE mode, the WDINT signal can generate an interrupt to the CPU, via the PIE, to take the CPU out of  
IDLE mode.  
In HALT mode, this feature cannot be used because the oscillator (and PLL) are turned off and hence so  
is the WATCHDOG.  
3.7 Low-Power Modes Block  
The low-power modes on the F2833x/F2823x devices are similar to the 240x devices. Table 3-19  
summarizes the various modes.  
Table 3-19. Low-Power Modes  
MODE  
LPMCR0(1:0)  
OSCCLK  
CLKIN  
SYSCLKOUT  
EXIT(1)  
XRS, Watchdog interrupt, any enabled  
interrupt, XNMI  
IDLE  
00  
On  
On  
On(2)  
On  
XRS, Watchdog interrupt, GPIO Port A  
signal, debugger(3), XNMI  
STANDBY  
HALT  
01  
1X  
Off  
Off  
Off  
Off  
(watchdog still running)  
Off  
XRS, GPIO Port A signal, XNMI,  
debugger(3)  
(oscillator and PLL turned off,  
watchdog not functional)  
(1) The Exit column lists which signals or under what conditions the low power mode will be exited. A low signal, on any of the signals, will  
exit the low power condition. This signal must be kept low long enough for an interrupt to be recognized by the device. Otherwise the  
IDLE mode will not be exited and the device will go back into the indicated low power mode.  
(2) The IDLE mode on the C28x behaves differently than on the 24x/240x. On the C28x, the clock output from the CPU (SYSCLKOUT) is  
still functional while on the 24x/240x the clock is turned off.  
(3) On the C28x, the JTAG port can still function even if the CPU clock (CLKIN) is turned off.  
The various low-power modes operate as follows:  
IDLE Mode:  
This mode is exited by any enabled interrupt or an XNMI that is recognized by  
the processor. The LPM block performs no tasks during this mode as long as the  
LPMCR0(LPM) bits are set to 0,0.  
STANDBY Mode:  
Any GPIO port A signal (GPIO[31:0]) can wake the device from STANDBY  
mode. The user must select which signal(s) will wake the device in the  
GPIOLPMSEL register. The selected signal(s) are also qualified by the OSCCLK  
before waking the device. The number of OSCCLKs is specified in the LPMCR0  
register.  
HALT Mode:  
Only the XRS and any GPIO port A signal (GPIO[31:0]) can wake the device  
from HALT mode. The user selects the signal in the GPIOLPMSEL register.  
NOTE  
The low-power modes do not affect the state of the output pins (PWM pins included).  
They will be in whatever state the code left them in when the IDLE instruction was  
executed. See the TMS320F2833x Digital Signal Controller (DSC) System and Interrupts  
Reference Guide (literature number SPRUFB0) for more details.  
62  
Functional Overview  
Submit Documentation Feedback  
 
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
4
Peripherals  
The integrated peripherals of the F2833x/F2823x devices are described in the following subsections:  
6-channel Direct Memory Access (DMA)  
Three 32-bit CPU-Timers  
Up to six enhanced PWM modules (ePWM1, ePWM2, ePWM3, ePWM4, ePWM5, ePWM6)  
Up to six enhanced capture modules (eCAP1, eCAP2, eCAP3, eCAP4, eCAP5, eCAP6)  
Up to two enhanced QEP modules (eQEP1, eQEP2)  
Enhanced analog-to-digital converter (ADC) module  
Up to two enhanced controller area network (eCAN) modules (eCAN-A, eCAN-B)  
Up to three serial communications interface modules (SCI-A, SCI-B, SCI-C)  
One serial peripheral interface (SPI) module (SPI-A)  
Inter-integrated circuit module (I2C)  
Up to two multichannel buffered serial port (McBSP-A, McBSP-B) modules  
Digital I/O and shared pin functions  
External Interface (XINTF)  
Submit Documentation Feedback  
Peripherals  
63  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
4.1 DMA Overview  
Features:  
6 Channels with independent PIE interrupts  
Trigger Sources:  
ADC Sequencer 1 and Sequencer 2  
McBSP-A and McBSP-B transmit and receive logic  
XINT1-7 and XINT13  
CPU Timers  
Software  
Data Sources/Destinations:  
L4-L7 16k x 16 SARAM  
All XINTF zones  
ADC Memory Bus mapped RESULT registers  
McBSP-A and McBSP-B transmit and receive buffers  
Word Size: 16-bit or 32-bit (McBSPs limited to 16-bit)  
Throughput: 4 cycles/word (5 cycles/word for McBSP reads)  
CPU bus  
INT7  
ADC  
CPU  
PF0  
I/F  
External  
interrupts  
CPU  
timers  
ADC  
control  
and  
ADC  
RESULT  
PIE  
ADC  
PF2  
I/F  
ADC  
DMA  
PF0  
I/F  
registers RESULT  
registers  
L4  
SARAM  
(4Kx16)  
L4  
I/F  
CPU  
L5  
SARAM  
(4Kx16)  
McBSP  
A
L5  
I/F  
Event  
triggers  
DMA  
6-ch  
PF3  
I/F  
McBSP  
B
L6  
SARAM  
(4Kx16)  
L6  
I/F  
L7  
SARAM  
(4Kx16)  
L7  
I/F  
DMA bus  
Figure 4-1. DMA Functional Block Diagram  
64  
Peripherals  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
4.2 32-Bit CPU-Timers 0/1/2  
There are three 32-bit CPU-timers on the devices (CPU-TIMER0/1/2).  
Timer 2 is reserved for DSP/BIOS™. CPU-Timer 0 and CPU-Timer 1 can be used in user applications.  
These timers are different from the timers that are present in the ePWM modules.  
NOTE  
NOTE: If the application is not using DSP/BIOS, then CPU-Timer 2 can be used in the  
application.  
Reset  
Timer Reload  
16-Bit Timer Divide-Down  
32-Bit Timer Period  
TDDRH:TDDR  
PRDH:PRD  
16-Bit Prescale Counter  
SYSCLKOUT  
PSCH:PSC  
TCR.4  
32-Bit Counter  
TIMH:TIM  
(Timer Start Status)  
Borrow  
Borrow  
TINT  
Figure 4-2. CPU-Timers  
The timer interrupt signals (TINT0, TINT1, TINT2) are connected as shown in Figure 4-3.  
INT1  
TINT0  
PIE  
CPU-TIMER 0  
to  
INT12  
28x  
CPU  
TINT1  
CPU-TIMER 1  
INT13  
INT14  
XINT13  
TINT2  
CPU-TIMER 2  
(Reserved for DSP/BIOS)  
A. The timer registers are connected to the memory bus of the C28x processor.  
B. The timing of the timers is synchronized to SYSCLKOUT of the processor clock.  
Figure 4-3. CPU-Timer Interrupt Signals and Output Signal  
Submit Documentation Feedback  
Peripherals  
65  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
The general operation of the timer is as follows: The 32-bit counter register "TIMH:TIM" is loaded with the  
value in the period register "PRDH:PRD". The counter register decrements at the SYSCLKOUT rate of the  
C28x. When the counter reaches 0, a timer interrupt output signal generates an interrupt pulse. The  
registers listed in Table 4-1 are used to configure the timers. For more information, see the  
TMS320F2833x Digital Signal Controller (DSC) System Control and Interrupts Reference Guide (literature  
number SPRUFB0)  
Table 4-1. CPU-Timers 0, 1, 2 Configuration and Control Registers  
NAME  
TIMER0TIM  
ADDRESS  
0x0C00  
0x0C01  
0x0C02  
0x0C03  
0x0C04  
0x0C05  
0x0C06  
0x0C07  
0x0C08  
0x0C09  
0x0C0A  
0x0C0B  
0x0C0C  
0x0C0D  
0x0C0E  
0x0C0F  
0x0C10  
0x0C11  
0x0C12  
0x0C13  
0x0C14  
0x0C15  
0x0C16  
0x0C17  
SIZE (x16)  
DESCRIPTION  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CPU-Timer 0, Counter Register  
TIMER0TIMH  
TIMER0PRD  
TIMER0PRDH  
TIMER0TCR  
Reserved  
CPU-Timer 0, Counter Register High  
CPU-Timer 0, Period Register  
CPU-Timer 0, Period Register High  
CPU-Timer 0, Control Register  
TIMER0TPR  
TIMER0TPRH  
TIMER1TIM  
TIMER1TIMH  
TIMER1PRD  
TIMER1PRDH  
TIMER1TCR  
Reserved  
CPU-Timer 0, Prescale Register  
CPU-Timer 0, Prescale Register High  
CPU-Timer 1, Counter Register  
CPU-Timer 1, Counter Register High  
CPU-Timer 1, Period Register  
CPU-Timer 1, Period Register High  
CPU-Timer 1, Control Register  
TIMER1TPR  
TIMER1TPRH  
TIMER2TIM  
TIMER2TIMH  
TIMER2PRD  
TIMER2PRDH  
TIMER2TCR  
Reserved  
CPU-Timer 1, Prescale Register  
CPU-Timer 1, Prescale Register High  
CPU-Timer 2, Counter Register  
CPU-Timer 2, Counter Register High  
CPU-Timer 2, Period Register  
CPU-Timer 2, Period Register High  
CPU-Timer 2, Control Register  
TIMER2TPR  
TIMER2TPRH  
CPU-Timer 2, Prescale Register  
CPU-Timer 2, Prescale Register High  
0x0C18  
0x0C3F  
Reserved  
40  
66  
Peripherals  
Submit Documentation Feedback  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
4.3 Enhanced PWM Modules (ePWM1/2/3/4/5/6)  
The F2833x/F2823x devices contain up to six enhanced PWM Modules (ePWM). Figure 4-4 shows a  
block diagram of multiple ePWM modules. Figure 4-4 shows the signal interconnections with the ePWM.  
See the TMS320x28xx, 28xxx Enhanced Pulse Width Modulator (ePWM) Module Reference Guide  
(literature number SPRU791) for more details.  
EPWM1SYNCI  
EPWM1SYNCI  
EPWM1INT  
EPWM1A  
EPWM1SOC  
ePWM1 module  
EPWM1B  
TZ1 to TZ6  
EPWM1SYNCO  
to eCAP1  
module  
(sync in)  
EPWM1SYNCO  
.
EPWM2SYNCI  
ePWM2 module  
EPWM2SYNCO  
EPWM2INT  
EPWM2A  
EPWM2B  
TZ1 to TZ6  
EPWM2SOC  
PIE  
GPIO  
MUX  
EPWMxSYNCI  
ePWMx module  
EPWMxINT  
EPWMxA  
EPWMxB  
EPWMxSOC  
TZ1 to TZ6  
ADCSOCx0  
EPWMxSYNCO  
Peripheral Bus  
ADC  
Figure 4-4. Multiple PWM Modules in a F2833x/F2823x System  
Table 4-2 shows the complete ePWM register set per module.  
Submit Documentation Feedback  
Peripherals  
67  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 4-2. ePWM Control and Status Registers  
SIZE (x16) /  
NAME  
TBCTL  
EPWM1  
EPWM2  
EPWM3  
EPWM4  
EPWM5  
EPWM6  
DESCRIPTION  
Time Base Control Register  
#SHADOW  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
1 / 0  
1 / 1  
1 / 1  
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
0x6800  
0x6801  
0x6802  
0x6803  
0x6804  
0x6805  
0x6807  
0x6808  
0x6809  
0x680A  
0x680B  
0x680C  
0x680D  
0x680E  
0x680F  
0x6810  
0x6811  
0x6812  
0x6814  
0x6815  
0x6816  
0x6817  
0x6818  
0x6819  
0x681A  
0x681B  
0x681C  
0x681D  
0x681E  
0x6820  
0x6840  
0x6841  
0x6842  
0x6843  
0x6844  
0x6845  
0x6847  
0x6848  
0x6849  
0x684A  
0x684B  
0x684C  
0x684D  
0x684E  
0x684F  
0x6850  
0x6851  
0x6852  
0x6854  
0x6855  
0x6856  
0x6857  
0x6858  
0x6859  
0x685A  
0x685B  
0x685C  
0x685D  
0x685E  
0x6860  
0x6880  
0x6881  
0x6882  
0x6883  
0x6884  
0x6885  
0x6887  
0x6888  
0x6889  
0x688A  
0x688B  
0x688C  
0x688D  
0x688E  
0x688F  
0x6890  
0x6891  
0x6892  
0x6894  
0x6895  
0x6896  
0x6897  
0x6898  
0x6899  
0x689A  
0x689B  
0x689C  
0x689D  
0x689E  
0x68A0  
0x68C0  
0x68C1  
0x68C2  
0x68C3  
0x68C4  
0x68C5  
0x68C7  
0x68C8  
0x68C9  
0x68CA  
0x68CB  
0x68CC  
0x68CD  
0x68CE  
0x68CF  
0x68D0  
0x68D1  
0x68D2  
0x68D4  
0x68D5  
0x68D6  
0x68D7  
0x68D8  
0x68D9  
0x68DA  
0x68DB  
0x68DC  
0x68DD  
0x68DE  
0x68E0  
0x6900  
0x6901  
0x6902  
0x6903  
0x6904  
0x6905  
0x6907  
0x6908  
0x6909  
0x690A  
0x690B  
0x690C  
0x690D  
0x690E  
0x690F  
0x6910  
0x6911  
0x6912  
0x6914  
0x6915  
0x6916  
0x6917  
0x6918  
0x6919  
0x691A  
0x691B  
0x691C  
0x691D  
0x691E  
0x6920  
0x6940  
0x6941  
0x6942  
0x6943  
0x6944  
0x6945  
0x6947  
0x6948  
0x6949  
0x694A  
0x694B  
0x694C  
0x694D  
0x694E  
0x694F  
0x6950  
0x6951  
0x6952  
0x6954  
0x6955  
0x6956  
0x6957  
0x6958  
0x6959  
0x695A  
0x695B  
0x695C  
0x695D  
0x695E  
0x6960  
TBSTS  
TBPHSHR  
TBPHS  
TBCTR  
TBPRD  
CMPCTL  
CMPAHR  
CMPA  
Time Base Status Register  
Time Base Phase HRPWM Register  
Time Base Phase Register  
Time Base Counter Register  
Time Base Period Register Set  
Counter Compare Control Register  
Time Base Compare A HRPWM Register  
Counter Compare A Register Set  
Counter Compare B Register Set  
CMPB  
AQCTLA  
AQCTLB  
AQSFRC  
AQCSFRC  
DBCTL  
DBRED  
DBFED  
TZSEL  
Action Qualifier Control Register For Output A  
Action Qualifier Control Register For Output B  
Action Qualifier Software Force Register  
Action Qualifier Continuous S/W Force Register Set  
Dead-Band Generator Control Register  
Dead-Band Generator Rising Edge Delay Count Register  
Dead-Band Generator Falling Edge Delay Count Register  
Trip Zone Select Register(1)  
TZCTL  
Trip Zone Control Register(1)  
Trip Zone Enable Interrupt Register(1)  
TZEINT  
TZFLG  
Trip Zone Flag Register  
Trip Zone Clear Register(1)  
Trip Zone Force Register(1)  
TZCLR  
TZFRC  
ETSEL  
Event Trigger Selection Register  
ETPS  
Event Trigger Prescale Register  
ETFLG  
ETCLR  
ETFRC  
PCCTL  
HRCNFG  
Event Trigger Flag Register  
Event Trigger Clear Register  
Event Trigger Force Register  
PWM Chopper Control Register  
HRPWM Configuration Register(1)  
(1) Registers that are EALLOW protected.  
68  
Peripherals  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Time−base (TB)  
Sync  
CTR=ZERO  
CTR=CMPB  
Disabled  
in/out  
select  
Mux  
TBPRD shadow (16)  
TBPRD active (16)  
EPWMxSYNCO  
EPWMxSYNCI  
CTR=PRD  
TBCTL[SYNCOSEL]  
TBCTL[CNTLDE]  
Counter  
up/down  
(16 bit)  
TBCTL[SWFSYNC]  
(software forced sync)  
CTR=ZERO  
CTR_Dir  
TBCNT  
active (16)  
TBPHSHR (8)  
16  
8
CTR = PRD  
CTR = ZERO  
CTR = CMPA  
CTR = CMPB  
CTR_Dir  
Phase  
Event  
trigger  
and  
interrupt  
(ET)  
EPWMxINT  
TBPHS active (24)  
control  
EPWMxSOCA  
EPWMxSOCB  
Counter compare (CC)  
CTR=CMPA  
CMPAHR (8)  
Action  
qualifier  
(AQ)  
16  
8
HiRes PWM (HRPWM)  
CMPA active (24)  
EPWMA  
EPWMB  
EPWMxAO  
CMPA shadow (24)  
CTR=CMPB  
Dead  
band  
(DB)  
PWM  
chopper  
(PC)  
Trip  
zone  
(TZ)  
16  
EPWMxBO  
EPWMxTZINT  
TZ1 to TZ6  
CMPB active (16)  
CMPB shadow (16)  
CTR = ZERO  
Figure 4-5. ePWM Sub-Modules Showing Critical Internal Signal Interconnections  
4.4 High-Resolution PWM (HRPWM)  
The HRPWM module offers PWM resolution (time granularity) which is significantly better than what can  
be achieved using conventionally derived digital PWM methods. The key points for the HRPWM module  
are:  
Significantly extends the time resolution capabilities of conventionally derived digital PWM  
Typically used when effective PWM resolution falls below ~ 9-10 bits. This occurs at PWM frequencies  
greater than ~200 KHz when using a CPU/System clock of 100 MHz.  
This capability can be utilized in both duty cycle and phase-shift control methods.  
Finer time granularity control or edge positioning is controlled via extensions to the Compare A and  
Phase registers of the ePWM module.  
HRPWM capabilities are offered only on the A signal path of an ePWM module (i.e., on the EPWMxA  
output). EPWMxB output has conventional PWM capabilities.  
Submit Documentation Feedback  
Peripherals  
69  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
4.5 Enhanced CAP Modules (eCAP1/2/3/4/5/6)  
The F2833x/F2823x device contains up to six enhanced capture (eCAP) modules. Figure 4-6 shows a  
functional block diagram of a module. See the TMS320x28xx, 28xxx Enhanced Capture (eCAP) Module  
Reference Guide (literature number SPRU807) for more details.  
CTRPHS  
(phase register−32 bit)  
APWM mode  
SYNCIn  
CTR_OVF  
OVF  
CTR [0−31]  
PRD [0−31]  
CMP [0−31]  
TSCTR  
(counter−32 bit)  
SYNCOut  
PWM  
compare  
logic  
Delta−mode  
RST  
32  
CTR=PRD  
CTR=CMP  
CTR [0−31]  
PRD [0−31]  
32  
eCAPx  
32  
32  
LD1  
CAP1  
(APRD active)  
Polarity  
select  
LD  
APRD  
shadow  
32  
CMP [0−31]  
32  
LD2  
CAP2  
(ACMP active)  
Polarity  
select  
LD  
Event  
qualifier  
Event  
Pre-scale  
32  
ACMP  
shadow  
Polarity  
select  
32  
32  
LD3  
LD4  
CAP3  
(APRD shadow)  
LD  
CAP4  
(ACMP shadow)  
Polarity  
select  
LD  
4
Capture events  
4
CEVT[1:4]  
Interrupt  
Trigger  
and  
Flag  
Continuous /  
Oneshot  
Capture Control  
to PIE  
CTR_OVF  
CTR=PRD  
CTR=CMP  
control  
Figure 4-6. eCAP Functional Block Diagram  
The eCAP modules are clocked at the SYSCLKOUT rate.  
70  
Peripherals  
Submit Documentation Feedback  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
The clock enable bits (ECAP1/2/3/4/5/6ENCLK) in the PCLKCR1 register are used to turn off the eCAP  
modules individually (for low power operation). Upon reset, ECAP1ENCLK, ECAP2ENCLK,  
ECAP3ENCLK, ECAP4ENCLK, ECAP5ENCLK, and ECAP6ENCLK are set to low, indicating that the  
peripheral clock is off.  
Table 4-3. eCAP Control and Status Registers  
SIZE  
(x16)  
NAME  
ECAP1  
ECAP2  
ECAP3  
ECAP4  
ECAP5  
ECAP6  
DESCRIPTION  
Time-Stamp Counter  
TSCTR  
0x6A00  
0x6A02  
0x6A20  
0x6A22  
0x6A40  
0x6A42  
0x6A60  
0x6A62  
0x6A80  
0x6A82  
0x6AA0  
0x6AA2  
2
2
CTRPHS  
Counter Phase Offset Value  
Register  
CAP1  
CAP2  
0x6A04  
0x6A06  
0x6A08  
0x6A0A  
0x6A24  
0x6A26  
0x6A28  
0x6A2A  
0x6A44  
0x6A46  
0x6A48  
0x6A4A  
0x6A64  
0x6A66  
0x6A68  
0x6A6A  
0x6A84  
0x6A86  
0x6A88  
0x6A8A  
0x6AA4  
0x6AA6  
0x6AA8  
0x6AAA  
2
2
2
2
8
Capture 1 Register  
Capture 2 Register  
Capture 3 Register  
Capture 4 Register  
Reserved  
CAP3  
CAP4  
Reserved  
0x6A0C-  
0x6A12  
0x6A2C-  
0x6A32  
0x6A4C-  
0x6A52  
0x6A6C-  
0x6A72  
0x6A8C- 0x6AAC-  
0x6A92  
0x6A94  
0x6A95  
0x6A96  
0x6A97  
0x6A98  
0x6A99  
0x6AB2  
0x6AB4  
0x6AB5  
0x6AB6  
0x6AB7  
0x6AB8  
0x6AB9  
ECCTL1  
ECCTL2  
ECEINT  
ECFLG  
0x6A14  
0x6A15  
0x6A16  
0x6A17  
0x6A18  
0x6A19  
0x6A34  
0x6A35  
0x6A36  
0x6A37  
0x6A38  
0x6A39  
0x6A54  
0x6A55  
0x6A56  
0x6A57  
0x6A58  
0x6A59  
0x6A74  
0x6A75  
0x6A76  
0x6A77  
0x6A78  
0x6A79  
1
1
1
1
1
1
6
Capture Control Register 1  
Capture Control Register 2  
Capture Interrupt Enable Register  
Capture Interrupt Flag Register  
Capture Interrupt Clear Register  
Capture Interrupt Force Register  
Reserved  
ECCLR  
ECFRC  
Reserved  
0x6A1A-  
0x6A1F  
0x6A3A-  
0x6A3F  
0x6A5A-  
0x6A5F  
0x6A7A-  
0x6A7F  
0x6A9A-  
0x6A9F  
0x6ABA-  
0x6ABF  
Submit Documentation Feedback  
Peripherals  
71  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
4.6 Enhanced QEP Modules (eQEP1/2)  
The device contains up to two enhanced quadrature encoder (eQEP) modules. See the TMS320x28xx,  
28xxx Enhanced Quadrature Encoder (eQEP) Module Reference Guide (literature number SPRU790) for  
more details.  
System  
control registers  
To CPU  
EQEPxENCLK  
SYSCLKOUT  
QCPRD  
QCAPCTL  
16  
QCTMR  
16  
16  
Quadrature  
capture unit  
(QCAP)  
QCTMRLAT  
QCPRDLAT  
QUTMR  
QUPRD  
QWDTMR  
QWDPRD  
Registers  
used by  
multiple units  
32  
16  
QEPCTL  
QEPSTS  
QFLG  
UTOUT  
UTIME  
QWDOG  
QDECCTL  
16  
WDTOUT  
EQEPxAIN  
EQEPxBIN  
EQEPxIIN  
EQEPxINT  
16  
QCLK  
QDIR  
QI  
EQEPxA/XCLK  
EQEPxB/XDIR  
EQEPxI  
PIE  
Position counter/  
control unit  
(PCCU)  
Quadrature  
decoder  
(QDU)  
EQEPxIOUT  
EQEPxIOE  
EQEPxSIN  
EQEPxSOUT  
EQEPxSOE  
QS  
GPIO  
MUX  
QPOSLAT  
QPOSSLAT  
QPOSILAT  
PHE  
PCSOUT  
EQEPxS  
32  
32  
16  
QPOSCNT  
QPOSINIT  
QPOSMAX  
QEINT  
QFRC  
QPOSCMP  
QCLR  
QPOSCTL  
Enhanced QEP (eQEP) peripheral  
Figure 4-7. eQEP Functional Block Diagram  
72  
Peripherals  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 4-4. eQEP Control and Status Registers  
EQEP1  
SIZE(x16)/  
#SHADOW  
EQEP1  
ADDRESS  
EQEP2  
ADDRESS  
NAME  
REGISTER DESCRIPTION  
QPOSCNT  
0x6B00  
0x6B02  
0x6B04  
0x6B06  
0x6B08  
0x6B0A  
0x6B0C  
0x6B0E  
0x6B10  
0x6B12  
0x6B13  
0x6B14  
0x6B15  
0x6B16  
0x6B17  
0x6B18  
0x6B19  
0x6B1A  
0x6B1B  
0x6B1C  
0x6B1D  
0x6B1E  
0x6B1F  
0x6B20  
0x6B40  
0x6B42  
0x6B44  
0x6B46  
0x6B48  
0x6B4A  
0x6B4C  
0x6B4E  
0x6B50  
0x6B52  
0x6B53  
0x6B54  
0x6B55  
0x6B56  
0x6B57  
0x6B58  
0x6B59  
0x6B5A  
0x6B5B  
0x6B5C  
0x6B5D  
0x6B5E  
0x6B5F  
0x6B60  
2/0  
2/0  
2/0  
2/1  
2/0  
2/0  
2/0  
2/0  
2/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
31/0  
eQEP Position Counter  
QPOSINIT  
QPOSMAX  
QPOSCMP  
QPOSILAT  
QPOSSLAT  
QPOSLAT  
QUTMR  
eQEP Initialization Position Count  
eQEP Maximum Position Count  
eQEP Position-compare  
eQEP Index Position Latch  
eQEP Strobe Position Latch  
eQEP Position Latch  
eQEP Unit Timer  
QUPRD  
eQEP Unit Period Register  
eQEP Watchdog Timer  
QWDTMR  
QWDPRD  
QDECCTL  
QEPCTL  
QCAPCTL  
QPOSCTL  
QEINT  
eQEP Watchdog Period Register  
eQEP Decoder Control Register  
eQEP Control Register  
eQEP Capture Control Register  
eQEP Position-compare Control Register  
eQEP Interrupt Enable Register  
eQEP Interrupt Flag Register  
eQEP Interrupt Clear Register  
eQEP Interrupt Force Register  
eQEP Status Register  
QFLG  
QCLR  
QFRC  
QEPSTS  
QCTMR  
eQEP Capture Timer  
QCPRD  
eQEP Capture Period Register  
eQEP Capture Timer Latch  
eQEP Capture Period Latch  
QCTMRLAT  
QCPRDLAT  
Reserved  
0x6B21-  
0x6B3F  
0x6B61-  
0x6B7F  
Submit Documentation Feedback  
Peripherals  
73  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
4.7 Analog-to-Digital Converter (ADC) Module  
A simplified functional block diagram of the ADC module is shown in Figure 4-8. The ADC module  
consists of a 12-bit ADC with a built-in sample-and-hold (S/H) circuit. Functions of the ADC module  
include:  
12-bit ADC core with built-in S/H  
Analog input: 0.0 V to 3.0 V (Voltages above 3.0 V produce full-scale conversion results.)  
Fast conversion rate: Up to 80 ns at 25-MHz ADC clock, 12.5 MSPS  
16-channel, MUXed inputs  
Autosequencing capability provides up to 16 "autoconversions" in a single session. Each conversion  
can be programmed to select any 1 of 16 input channels  
Sequencer can be operated as two independent 8-state sequencers or as one large 16-state  
sequencer (i.e., two cascaded 8-state sequencers)  
Sixteen result registers (individually addressable) to store conversion values  
The digital value of the input analog voltage is derived by:  
Digital Value + 0,  
when input 0 V  
Input Analog Voltage * ADCLO  
when 0 V < input < 3 V  
when input 3 V  
Digital Value + 4096   
3
Digital Value + 4095,  
A. All fractional values are truncated.  
Multiple triggers as sources for the start-of-conversion (SOC) sequence  
S/W - software immediate start  
ePWM start of conversion  
XINT2 ADC start of conversion  
Flexible interrupt control allows interrupt request on every end-of-sequence (EOS) or every other EOS.  
Sequencer can operate in "start/stop" mode, allowing multiple "time-sequenced triggers" to  
synchronize conversions.  
SOCA and SOCB triggers can operate independently in dual-sequencer mode.  
Sample-and-hold (S/H) acquisition time window has separate prescale control.  
The ADC module in the F2833x/F2823x devices has been enhanced to provide flexible interface to ePWM  
peripherals. The ADC interface is built around a fast, 12-bit ADC module with a fast conversion rate of up  
to 80 ns at 25-MHz ADC clock. The ADC module has 16 channels, configurable as two independent  
8-channel modules. The two independent 8-channel modules can be cascaded to form a 16-channel  
module. Although there are multiple input channels and two sequencers, there is only one converter in the  
ADC module. Figure 4-8 shows the block diagram of the ADC module.  
The two 8-channel modules have the capability to autosequence a series of conversions, each module  
has the choice of selecting any one of the respective eight channels available through an analog MUX. In  
the cascaded mode, the autosequencer functions as a single 16-channel sequencer. On each sequencer,  
once the conversion is complete, the selected channel value is stored in its respective RESULT register.  
Autosequencing allows the system to convert the same channel multiple times, allowing the user to  
perform oversampling algorithms. This gives increased resolution over traditional single-sampled  
conversion results.  
74  
Peripherals  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
SYSCLKOUT  
System  
Control Block  
High-Speed  
DSP  
Prescaler  
HALT  
HSPCLK  
ADCENCLK  
Analog  
MUX  
Result Registers  
70A8h  
Result Reg 0  
Result Reg 1  
ADCINA0  
ADCINA7  
ADCINB0  
ADCINB7  
S/H  
12-Bit  
ADC  
Module  
Result Reg 7  
Result Reg 8  
70AFh  
70B0h  
S/H  
Result Reg 15  
70B7h  
ADC Control Registers  
S/W  
S/W  
EPWMSOCB  
EPWMSOCA  
GPIO/  
SOC  
SOC  
Sequencer 2  
Sequencer 1  
XINT2_ADCSOC  
Figure 4-8. Block Diagram of the ADC Module  
To obtain the specified accuracy of the ADC, proper board layout is very critical. To the best extent  
possible, traces leading to the ADCIN pins should not run in close proximity to the digital signal paths.  
This is to minimize switching noise on the digital lines from getting coupled to the ADC inputs.  
Furthermore, proper isolation techniques must be used to isolate the ADC module power pins ( VDD1A18  
,
VDD2A18 , VDDA2, VDDAIO) from the digital supply.Figure 4-9 shows the ADC pin connections for the devices.  
NOTE  
1. The ADC registers are accessed at the SYSCLKOUT rate. The internal timing of the  
ADC module is controlled by the high-speed peripheral clock (HSPCLK).  
2. The behavior of the ADC module based on the state of the ADCENCLK and HALT  
signals is as follows:  
ADCENCLK: On reset, this signal will be low. While reset is active-low (XRS) the  
clock to the register will still function. This is necessary to make sure all registers  
and modes go into their default reset state. The analog module, however, will be  
in a low-power inactive state. As soon as reset goes high, then the clock to the  
registers will be disabled. When the user sets the ADCENCLK signal high, then  
the clocks to the registers will be enabled and the analog module will be enabled.  
There will be a certain time delay (ms range) before the ADC is stable and can be  
used.  
HALT: This mode only affects the analog module. It does not affect the registers.  
In this mode, the ADC module goes into low-power mode. This mode also will stop  
the clock to the CPU, which will stop the HSPCLK; therefore, the ADC register  
logic will be turned off indirectly.  
Submit Documentation Feedback  
Peripherals  
75  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Figure 4-9 shows the ADC pin-biasing for internal reference and Figure 4-10 shows the ADC pin-biasing  
for external reference.  
ADCINA[7:0]  
ADCINB[7:0]  
ADCLO  
ADC 16-Channel Analog Inputs  
Analog input 0−3 V with respect to ADCLO  
Connect to analog ground  
Float or ground if internal reference is used  
ADCREFIN  
22 kΩ  
ADC External Current Bias Resistor ADCRESEXT  
2.2 μF(A)  
2.2 μF(A)  
ADC Reference Positive Output  
ADC Reference Medium Output  
ADCREFP  
ADCREFM  
ADCREFP and ADCREFM should not  
be loaded by external circuitry  
V
DD1A18  
ADC Analog Power Pin (1.9 V)  
ADC Analog Power Pin (1.9 V)  
V
DD2A18  
ADC Power  
V
V
ADC Analog Ground Pin  
ADC Analog Ground Pin  
SS1AGND  
SS2AGND  
ADC Analog Power Pin (3.3 V)  
ADC Analog Ground Pin  
V
V
DDA2  
SSA2  
ADC Analog and Reference I/O Power  
ADC Analog Power Pin (3.3 V)  
ADC Analog I/O Ground Pin  
V
V
DDAIO  
SSAIO  
A. TAIYO YUDEN LMK212BJ225MG-T or equivalent  
B. External decoupling capacitors are recommended on all power pins.  
C. Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance.  
Figure 4-9. ADC Pin Connections With Internal Reference  
ADCINA[7:0]  
ADCINB[7:0]  
ADCLO  
ADC 16-Channel Analog Inputs  
Analog input 0−3 V with respect to ADCLO  
Connect to Analog Ground  
Connect to 1.500, 1.024, or 2.048-V precision source  
(D)  
ADCREFIN  
22 kΩ  
ADC External Current Bias Resistor ADCRESEXT  
2.2 µF(A)  
2.2 µF(A)  
ADC Reference Positive Output  
ADC Reference Medium Output  
ADCREFP  
ADCREFM  
ADCREFP and ADCREFM should not  
be loaded by external circuitry  
V
ADC Analog Power Pin (1.9 V)  
ADC Analog Power Pin (1.9 V)  
DD1A18  
V
DD2A18  
ADC Analog Power  
ADC Analog Ground Pin  
ADC Analog Ground Pin  
V
SS1AGND  
V
SS2AGND  
ADC Analog Power Pin (3.3 V)  
ADC Analog Ground Pin  
V
V
DDA2  
SSA2  
ADC Analog Power Pin (3.3 V)  
ADC Analog I/O Ground Pin  
V
V
DDAIO  
ADC Analog and Reference I/O Power  
SSAIO  
A. TAIYO YUDEN LMK212BJ225MG-T or equivalent  
B. External decoupling capacitors are recommended on all power pins.  
C. Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance.  
D. External voltage on ADCREFIN is enabled by changing bits 15:14 in the ADC Reference Select register depending on  
the voltage used on this pin. TI recommends TI part REF3020 or equivalent for 2.048-V generation. Overall gain  
accuracy will be determined by accuracy of this voltage source.  
Figure 4-10. ADC Pin Connections With External Reference  
76  
Peripherals  
Submit Documentation Feedback  
 
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
NOTE  
The temperature rating of any recommended component must match the rating of the end  
product.  
4.7.1 ADC Connections if the ADC Is Not Used  
It is recommended to keep the connections for the analog power pins, even if the ADC is not used.  
Following is a summary of how the ADC pins should be connected, if the ADC is not used in an  
application:  
VDD1A18/VDD2A18 – Connect to VDD  
VDDA2, VDDAIO – Connect to VDDIO  
VSS1AGND/VSS2AGND, VSSA2, VSSAIO – Connect to VSS  
ADCLO – Connect to VSS  
ADCREFIN – Connect to VSS  
ADCREFP/ADCREFM – Connect a 100-nF cap to VSS  
ADCRESEXT – Connect a 20-kresistor (very loose tolerance) to VSS  
ADCINAn, ADCINBn - Connect to VSS  
.
When the ADC is not used, be sure that the clock to the ADC module is not turned on to realize power  
savings.  
When the ADC module is used in an application, unused ADC input pins should be connected to analog  
ground (VSS1AGND/VSS2AGND  
)
NOTE  
ADC parameters for gain error and offset error are specified only if the ADC calibration  
routine is executed from the Boot ROM. See Section 4.7.3 for more information.  
4.7.2 ADC Registers  
The ADC operation is configured, controlled, and monitored by the registers listed in Table 4-5.  
Table 4-5. ADC Registers(1)  
NAME  
ADDRESS(1) ADDRESS(2) SIZE (x16)  
DESCRIPTION  
ADCTRL1  
0x7100  
0x7101  
0x7102  
0x7103  
0x7104  
0x7105  
0x7106  
0x7107  
0x7108  
0x7109  
0x710A  
0x710B  
0x710C  
0x710D  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
ADC Control Register 1  
ADC Control Register 2  
ADCTRL2  
ADCMAXCONV  
ADCCHSELSEQ1  
ADCCHSELSEQ2  
ADCCHSELSEQ3  
ADCCHSELSEQ4  
ADCASEQSR  
ADCRESULT0  
ADCRESULT1  
ADCRESULT2  
ADCRESULT3  
ADCRESULT4  
ADCRESULT5  
ADC Maximum Conversion Channels Register  
ADC Channel Select Sequencing Control Register 1  
ADC Channel Select Sequencing Control Register 2  
ADC Channel Select Sequencing Control Register 3  
ADC Channel Select Sequencing Control Register 4  
ADC Auto-Sequence Status Register  
0x0B00  
0x0B01  
0x0B02  
0x0B03  
0x0B04  
0x0B05  
ADC Conversion Result Buffer Register 0  
ADC Conversion Result Buffer Register 1  
ADC Conversion Result Buffer Register 2  
ADC Conversion Result Buffer Register 3  
ADC Conversion Result Buffer Register 4  
ADC Conversion Result Buffer Register 5  
(1) The registers in this column are Peripheral Frame 2 Registers.  
(2) The ADC result registers are dual mapped. Locations in Peripheral Frame 2 (0x7108-0x7117) are 2 wait-states and left justified.  
Locations in Peripheral frame 0 space (0x0B00-0x0B0F) are 1 wait-state for CPU accesses and 0 wait state for DMA accesses and right  
justified. During high speed/continuous conversion use of the ADC, use the 0 wait-state locations for fast transfer of ADC results to user  
memory.  
Submit Documentation Feedback  
Peripherals  
77  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 4-5. ADC Registers (continued)  
NAME  
ADDRESS(1) ADDRESS(2) SIZE (x16)  
DESCRIPTION  
ADCRESULT6  
ADCRESULT7  
ADCRESULT8  
ADCRESULT9  
ADCRESULT10  
ADCRESULT11  
ADCRESULT12  
ADCRESULT13  
ADCRESULT14  
ADCRESULT15  
ADCTRL3  
0x710E  
0x710F  
0x7110  
0x7111  
0x7112  
0x7113  
0x7114  
0x7115  
0x7116  
0x7117  
0x7118  
0x7119  
0x0B06  
0x0B07  
0x0B08  
0x0B09  
0x0B0A  
0x0B0B  
0x0B0C  
0x0B0D  
0x0B0E  
0x0B0F  
1
1
1
1
1
1
1
1
1
1
1
1
ADC Conversion Result Buffer Register 6  
ADC Conversion Result Buffer Register 7  
ADC Conversion Result Buffer Register 8  
ADC Conversion Result Buffer Register 9  
ADC Conversion Result Buffer Register 10  
ADC Conversion Result Buffer Register 11  
ADC Conversion Result Buffer Register 12  
ADC Conversion Result Buffer Register 13  
ADC Conversion Result Buffer Register 14  
ADC Conversion Result Buffer Register 15  
ADC Control Register 3  
ADCST  
ADC Status Register  
0x711A  
0x711B  
Reserved  
2
ADCREFSEL  
ADCOFFTRIM  
0x711C  
0x711D  
1
1
ADC Reference Select Register  
ADC Offset Trim Register  
0x711E  
0x711F  
Reserved  
2
4.7.3 ADC Calibration  
The ADC_cal() routine is programmed into TI reserved OTP memory by the factory. The boot ROM  
automatically calls the ADC_cal() routine to initialize the ADCREFSEL and ADCOFFTRIM registers with  
device specific calibration data. During normal operation, this process occurs automatically and no action  
is required by the user.  
If the boot ROM is bypassed by Code Composer Studio during the development process, then  
ADCREFSEL and ADCOFFTRIM must be initialized by the application. For working examples, see the  
ADC initialization in the C2833x C/C++ Header Files and Peripheral Examples (SPRC530). Methods for  
calling the ADC_cal() routine from an application are described in TMS3202833x Analog-to-Digital  
Converter (ADC) Module Reference Guide (SPRU812).  
NOTE  
FAILURE TO INITIALIZE THESE REGISTERS WILL CAUSE THE ADC TO FUNCTION  
OUT OF SPECIFICATION.  
Because TI reserved OTP memory is secure, the ADC_Cal() routine must be called from  
secure memory or called from non-secure memory after the Code Security Module is  
unlocked. If the system is reset or the ADC module is reset using Bit 14 (RESET) from the  
ADC Control Register 1, the routine must be repeated.  
78  
Peripherals  
Submit Documentation Feedback  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
4.8 Multichannel Buffered Serial Port (McBSP) Module  
The McBSP module has the following features:  
Compatible to McBSP in TMS320C54x™/TMS320C55x™ DSC devices  
Full–duplex communication  
Double–buffered data registers that allow a continuous data stream  
Independent framing and clocking for receive and transmit  
External shift clock generation or an internal programmable frequency shift clock  
A wide selection of data sizes including 8–, 12–, 16–, 20–, 24–, or 32–bits  
8–bit data transfers with LSB or MSB first  
Programmable polarity for both frame synchronization and data clocks  
Highly programmable internal clock and frame generation  
Direct interface to industry–standard CODECs, Analog Interface Chips (AICs), and other serially  
connected A/D and D/A devices  
Works with SPI–compatible devices  
The following application interfaces can be supported on the McBSP:  
T1/E1 framers  
MVIP switching–compatible and ST–BUS–compliant devices including:  
MVIP framers  
H.100 framers  
SCSA framers  
IOM–2 compliant devices  
AC97–compliant devices (the necessary multiphase frame synchronization capability is provided.)  
IIS–compliant devices  
McBSP clock rate,  
CLKSRG  
CLKG =  
1+ CLKGDV  
(
)
where CLKSRG source could be LSPCLK, CLKX, or CLKR. Serial port performance is limited by I/O  
buffer switching speed. Internal prescalers must be adjusted such that the peripheral speed is less  
than the I/O buffer speed limit—20–MHz maximum.  
Figure 4-11 shows the block diagram of the McBSP module.  
Submit Documentation Feedback  
Peripherals  
79  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
TX  
Interrupt  
MXINT  
Peripheral Write Bus  
CPU  
TX Interrupt Logic  
To CPU  
16  
16  
McBSP Transmit  
Interrupt Select Logic  
DXR2 Transmit Buffer  
16  
DXR1 Transmit Buffer  
16  
LSPCLK  
MFSXx  
MCLKXx  
MDXx  
Compand Logic  
XSR2  
XSR1  
MDRx  
CPU  
DMA Bus  
RSR1  
16  
RSR2  
16  
MCLKRx  
Expand Logic  
MFSRx  
RBR2 Register  
16  
RBR1 Register  
16  
DRR2 Receive Buffer  
DRR1 Receive Buffer  
McBSP Receive  
16  
16  
Interrupt Select Logic  
RX  
Interrupt  
RX Interrupt Logic  
MRINT  
CPU  
Peripheral Read Bus  
To CPU  
Figure 4-11. McBSP Module  
Table 4-6 provides a summary of the McBSP registers.  
80  
Peripherals  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 4-6. McBSP Register Summary  
NAME  
McBSP-A  
ADDRESS  
McBSP-B  
ADDRESS  
TYPE  
RESET VALUE DESCRIPTION  
DATA REGISTERS, RECEIVE, TRANSMIT  
DRR2  
DRR1  
DXR2  
DXR1  
0x5000  
0x5001  
0x5002  
0x5003  
0x5040  
0x5041  
0x5042  
0x5043  
R
R
0x0000  
0x0000  
0x0000  
0x0000  
McBSP Data Receive Register 2  
McBSP Data Receive Register 1  
McBSP Data Transmit Register 2  
McBSP Data Transmit Register 1  
W
W
McBSP CONTROL REGISTERS  
SPCR2  
SPCR1  
RCR2  
0x5004  
0x5005  
0x5006  
0x5007  
0x5008  
0x5009  
0x500A  
0x500B  
0x5044  
0x5045  
0x5046  
0x5047  
0x5048  
0x5049  
0x504A  
0x504B  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
McBSP Serial Port Control Register 2  
McBSP Serial Port Control Register 1  
McBSP Receive Control Register 2  
McBSP Receive Control Register 1  
McBSP Transmit Control Register 2  
McBSP Transmit Control Register 1  
McBSP Sample Rate Generator Register 2  
McBSP Sample Rate Generator Register 1  
RCR1  
XCR2  
XCR1  
SRGR2  
SRGR1  
MULTICHANNEL CONTROL REGISTERS  
MCR2  
0x500C  
0x500D  
0x500E  
0x500F  
0x5010  
0x5011  
0x5012  
0x5013  
0x5014  
0x5015  
0x5016  
0x5017  
0x5018  
0x5019  
0x501A  
0x501B  
0x501C  
0x501D  
0x501E  
0x5023  
0x5024  
0x504C  
0x504D  
0x504E  
0x504F  
0x5050  
0x5051  
0x5052  
0x5053  
0x5054  
0x5055  
0x5056  
0x5057  
0x5058  
0x5059  
0x505A  
0x505B  
0x505C  
0x505D  
0x505E  
0x5063  
0x5064  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
McBSP Multichannel Register 2  
MCR1  
McBSP Multichannel Register 1  
RCERA  
RCERB  
XCERA  
XCERB  
PCR  
McBSP Receive Channel Enable Register Partition A  
McBSP Receive Channel Enable Register Partition B  
McBSP Transmit Channel Enable Register Partition A  
McBSP Transmit Channel Enable Register Partition B  
McBSP Pin Control Register  
RCERC  
RCERD  
XCERC  
XCERD  
RCERE  
RCERF  
XCERE  
XCERF  
RCERG  
RCERH  
XCERG  
XCERH  
MFFINT  
MFFST  
McBSP Receive Channel Enable Register Partition C  
McBSP Receive Channel Enable Register Partition D  
McBSP Transmit Channel Enable Register Partition C  
McBSP Transmit Channel Enable Register Partition D  
McBSP Receive Channel Enable Register Partition E  
McBSP Receive Channel Enable Register Partition F  
McBSP Transmit Channel Enable Register Partition E  
McBSP Transmit Channel Enable Register Partition F  
McBSP Receive Channel Enable Register Partition G  
McBSP Receive Channel Enable Register Partition H  
McBSP Transmit Channel Enable Register Partition G  
McBSP Transmit Channel Enable Register Partition H  
McBSP Interrupt Enable Register  
McBSP Pin Status Register  
Submit Documentation Feedback  
Peripherals  
81  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
4.9 Enhanced Controller Area Network (eCAN) Modules (eCAN-A and eCAN-B)  
The CAN module has the following features:  
Fully compliant with CAN protocol, version 2.0B  
Supports data rates up to 1 Mbps  
Thirty-two mailboxes, each with the following properties:  
Configurable as receive or transmit  
Configurable with standard or extended identifier  
Has a programmable receive mask  
Supports data and remote frame  
Composed of 0 to 8 bytes of data  
Uses a 32-bit time stamp on receive and transmit message  
Protects against reception of new message  
Holds the dynamically programmable priority of transmit message  
Employs a programmable interrupt scheme with two interrupt levels  
Employs a programmable alarm on transmission or reception time-out  
Low-power mode  
Programmable wake-up on bus activity  
Automatic reply to a remote request message  
Automatic retransmission of a frame in case of loss of arbitration or error  
32-bit local network time counter synchronized by a specific message (communication in conjunction  
with mailbox 16)  
Self-test mode  
Operates in a loopback mode receiving its own message. A "dummy" acknowledge is provided,  
thereby eliminating the need for another node to provide the acknowledge bit.  
NOTE  
For a SYSCLKOUT of 100 MHz, the smallest bit rate possible is 15.625 kbps.  
For a SYSCLKOUT of 150 MHz, the smallest bit rate possible is 23.4 kbps.  
The F2833x CAN has passed the conformance test per ISO/DIS 16845. Contact TI for test report and  
exceptions.  
82  
Peripherals  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Address  
Controls  
Data  
32  
eCAN0INT  
eCAN1INT  
Enhanced CAN Controller  
Message Controller  
Mailbox RAM  
(512 Bytes)  
Memory Management  
Unit  
eCAN Memory  
(512 Bytes)  
Registers and Message  
Objects Control  
CPU Interface,  
Receive Control Unit,  
Timer Management Unit  
32-Message Mailbox  
of 4 × 32-Bit Words  
32  
32  
32  
Receive Buffer  
Transmit Buffer  
Control Buffer  
Status Buffer  
eCAN Protocol Kernel  
SN65HVD23x  
3.3-V CAN Transceiver  
CAN Bus  
Figure 4-12. eCAN Block Diagram and Interface Circuit  
Table 4-7. 3.3-V eCAN Transceivers  
SUPPLY  
VOLTAGE  
LOW-POWER  
MODE  
SLOPE  
CONTROL  
PART NUMBER  
VREF  
OTHER  
TA  
SN65HVD230  
SN65HVD230Q  
SN65HVD231  
SN65HVD231Q  
SN65HVD232  
SN65HVD232Q  
SN65HVD233  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
Standby  
Standby  
Sleep  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
None  
Yes  
Yes  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 125°C  
Yes  
Sleep  
Yes  
None  
None  
None  
None  
None  
None  
Standby  
Adjustable  
Diagnostic  
Loopback  
SN65HVD234  
SN65HVD235  
3.3 V  
3.3 V  
Standby and Sleep  
Standby  
Adjustable  
Adjustable  
None  
None  
-40°C to 125°C  
-40°C to 125°C  
Autobaud  
Loopback  
Submit Documentation Feedback  
Peripherals  
83  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
eCAN-A Control and Status Registers  
Mailbox Enable − CANME  
Mailbox Direction − CANMD  
Transmission Request Set − CANTRS  
Transmission Request Reset − CANTRR  
Transmission Acknowledge − CANTA  
Abort Acknowledge − CANAA  
eCAN-A Memory (512 Bytes)  
Received Message Pending − CANRMP  
Received Message Lost − CANRML  
Remote Frame Pending − CANRFP  
Global Acceptance Mask − CANGAM  
Master Control − CANMC  
6000h  
Control and Status Registers  
603Fh  
6040h  
607Fh  
6080h  
60BFh  
60C0h  
60FFh  
Local Acceptance Masks (LAM)  
(32 × 32-Bit RAM)  
Message Object Time Stamps (MOTS)  
Bit-Timing Configuration − CANBTC  
Error and Status − CANES  
(32 × 32-Bit RAM)  
Message Object Time-Out (MOTO)  
Transmit Error Counter − CANTEC  
Receive Error Counter − CANREC  
Global Interrupt Flag 0 − CANGIF0  
Global Interrupt Mask − CANGIM  
Global Interrupt Flag 1 − CANGIF1  
Mailbox Interrupt Mask − CANMIM  
Mailbox Interrupt Level − CANMIL  
Overwrite Protection Control − CANOPC  
TX I/O Control − CANTIOC  
(32 × 32-Bit RAM)  
eCAN-A Memory RAM (512 Bytes)  
Mailbox 0  
Mailbox 1  
Mailbox 2  
Mailbox 3  
Mailbox 4  
6100h−6107h  
6108h−610Fh  
6110h−6117h  
6118h−611Fh  
6120h−6127h  
RX I/O Control − CANRIOC  
Time Stamp Counter − CANTSC  
Time-Out Control − CANTOC  
Time-Out Status − CANTOS  
Mailbox 28  
Mailbox 29  
Mailbox 30  
Mailbox 31  
61E0h−61E7h  
61E8h−61EFh  
61F0h−61F7h  
61F8h−61FFh  
Reserved  
Message Mailbox (16 Bytes)  
Message Identifier − MSGID  
Message Control − MSGCTRL  
Message Data Low − MDL  
Message Data High − MDH  
61E8h−61E9h  
61EAh−61EBh  
61ECh−61EDh  
61EEh−61EFh  
Figure 4-13. eCAN-A Memory Map  
NOTE  
If the eCAN module is not used in an application, the RAM available (LAM, MOTS,  
MOTO, and mailbox RAM) can be used as general-purpose RAM. The CAN module clock  
should be enabled for this.  
84  
Peripherals  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
eCAN-B Control and Status Registers  
Mailbox Enable − CANME  
Mailbox Direction − CANMD  
Transmission Request Set − CANTRS  
Transmission Request Reset − CANTRR  
Transmission Acknowledge − CANTA  
Abort Acknowledge − CANAA  
eCAN-B Memory (512 Bytes)  
Control and Status Registers  
Received Message Pending − CANRMP  
Received Message Lost − CANRML  
Remote Frame Pending − CANRFP  
Global Acceptance Mask − CANGAM  
Master Control − CANMC  
6200h  
623Fh  
6240h  
627Fh  
6280h  
62BFh  
62C0h  
62FFh  
Local Acceptance Masks (LAM)  
(32 × 32-Bit RAM)  
Message Object Time Stamps (MOTS)  
Bit-Timing Configuration − CANBTC  
Error and Status − CANES  
(32 × 32-Bit RAM)  
Message Object Time-Out (MOTO)  
Transmit Error Counter − CANTEC  
Receive Error Counter − CANREC  
Global Interrupt Flag 0 − CANGIF0  
Global Interrupt Mask − CANGIM  
Global Interrupt Flag 1 − CANGIF1  
Mailbox Interrupt Mask − CANMIM  
Mailbox Interrupt Level − CANMIL  
Overwrite Protection Control − CANOPC  
TX I/O Control − CANTIOC  
(32 × 32-Bit RAM)  
eCAN-B Memory RAM (512 Bytes)  
Mailbox 0  
Mailbox 1  
Mailbox 2  
Mailbox 3  
Mailbox 4  
6300h−6307h  
6308h−630Fh  
6310h−6317h  
6318h−631Fh  
6320h−6327h  
RX I/O Control − CANRIOC  
Time Stamp Counter − CANTSC  
Time-Out Control − CANTOC  
Time-Out Status − CANTOS  
Mailbox 28  
Mailbox 29  
Mailbox 30  
Mailbox 31  
63E0h−63E7h  
63E8h−63EFh  
63F0h−63F7h  
63F8h−63FFh  
Reserved  
Message Mailbox (16 Bytes)  
Message Identifier − MSGID  
Message Control − MSGCTRL  
Message Data Low − MDL  
Message Data High − MDH  
63E8h−63E9h  
63EAh−63EBh  
63ECh−63EDh  
63EEh−63EFh  
Figure 4-14. eCAN-B Memory Map  
The CAN registers listed in Table 4-8 are used by the CPU to configure and control the CAN controller  
and the message objects. eCAN control registers only support 32-bit read/write operations. Mailbox RAM  
can be accessed as 16 bits or 32 bits. 32-bit accesses are aligned to an even boundary.  
Submit Documentation Feedback  
Peripherals  
85  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 4-8. CAN Register Map(1)  
ECAN-A  
ADDRESS  
ECAN-B  
ADDRESS  
SIZE  
(x32)  
REGISTER NAME  
DESCRIPTION  
CANME  
CANMD  
0x6000  
0x6002  
0x6004  
0x6006  
0x6008  
0x600A  
0x600C  
0x600E  
0x6010  
0x6012  
0x6014  
0x6016  
0x6018  
0x601A  
0x601C  
0x601E  
0x6020  
0x6022  
0x6024  
0x6026  
0x6028  
0x602A  
0x602C  
0x602E  
0x6030  
0x6032  
0x6200  
0x6202  
0x6204  
0x6206  
0x6208  
0x620A  
0x620C  
0x620E  
0x6210  
0x6212  
0x6214  
0x6216  
0x6218  
0x621A  
0x621C  
0x621E  
0x6220  
0x6222  
0x6224  
0x6226  
0x6228  
0x622A  
0x622C  
0x622E  
0x6230  
0x6232  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Mailbox enable  
Mailbox direction  
CANTRS  
CANTRR  
CANTA  
Transmit request set  
Transmit request reset  
Transmission acknowledge  
Abort acknowledge  
CANAA  
CANRMP  
CANRML  
CANRFP  
CANGAM  
CANMC  
Receive message pending  
Receive message lost  
Remote frame pending  
Global acceptance mask  
Master control  
CANBTC  
CANES  
Bit-timing configuration  
Error and status  
CANTEC  
CANREC  
CANGIF0  
CANGIM  
CANGIF1  
CANMIM  
CANMIL  
CANOPC  
CANTIOC  
CANRIOC  
CANTSC  
CANTOC  
CANTOS  
Transmit error counter  
Receive error counter  
Global interrupt flag 0  
Global interrupt mask  
Global interrupt flag 1  
Mailbox interrupt mask  
Mailbox interrupt level  
Overwrite protection control  
TX I/O control  
RX I/O control  
Time stamp counter (Reserved in SCC mode)  
Time-out control (Reserved in SCC mode)  
Time-out status (Reserved in SCC mode)  
(1) These registers are mapped to Peripheral Frame 1.  
86  
Peripherals  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
4.10 Serial Communications Interface (SCI) Modules (SCI-A, SCI-B, SCI-C)  
The devices include three serial communications interface (SCI) modules. The SCI modules support  
digital communications between the CPU and other asynchronous peripherals that use the standard  
non-return-to-zero (NRZ) format. The SCI receiver and transmitter are double-buffered, and each has its  
own separate enable and interrupt bits. Both can be operated independently or simultaneously in the  
full-duplex mode. To ensure data integrity, the SCI checks received data for break detection, parity,  
overrun, and framing errors. The bit rate is programmable to over 65000 different speeds through a 16-bit  
baud-select register.  
Features of each SCI module include:  
Two external pins:  
SCITXD: SCI transmit-output pin  
SCIRXD: SCI receive-input pin  
NOTE: Both pins can be used as GPIO if not used for SCI.  
Baud rate programmable to 64K different rates:  
LSPCLK  
(BRR ) 1) * 8  
Baud rate =  
when BRR 0  
when BRR = 0  
LSPCLK  
16  
Baud rate =  
Data-word format  
One start bit  
Data-word length programmable from one to eight bits  
Optional even/odd/no parity bit  
One or two stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: idle-line and address bit  
Half- or full-duplex operation  
Double-buffered receive and transmit functions  
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms  
with status flags.  
Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX  
EMPTY flag (transmitter-shift register is empty)  
Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag  
(break condition occurred), and RX ERROR flag (monitoring four interrupt conditions)  
Separate enable bits for transmitter and receiver interrupts (except BRKDT)  
150 MHz  
Max bit rate +  
+ 9.375   106 bńs  
16  
(for 150-MHz devices)  
(for 100-MHz devices)  
100 MHz  
16  
Max bit rate +  
+ 6.25   106 bńs  
NRZ (non-return-to-zero) format  
Ten SCI module control registers located in the control register frame beginning at address 7050h  
NOTE  
All registers in this module are 8-bit registers that are connected to Peripheral Frame 2.  
When a register is accessed, the register data is in the lower byte (7-0), and the upper  
byte (15-8) is read as zeros. Writing to the upper byte has no effect.  
Enhanced features:  
Auto baud-detect hardware logic  
Submit Documentation Feedback  
Peripherals  
87  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
16-level transmit/receive FIFO  
The SCI port operation is configured and controlled by the registers listed in Table 4-9, Table 4-10, and  
Table 4-11.  
Table 4-9. SCI-A Registers(1)  
NAME  
ADDRESS  
0x7050  
0x7051  
0x7052  
0x7053  
0x7054  
0x7055  
0x7056  
0x7057  
0x7059  
0x705A  
0x705B  
0x705C  
0x705F  
SIZE (x16)  
DESCRIPTION  
SCI-A Communications Control Register  
SCI-A Control Register 1  
SCICCRA  
1
1
1
1
1
1
1
1
1
1
1
1
1
SCICTL1A  
SCIHBAUDA  
SCILBAUDA  
SCICTL2A  
SCI-A Baud Register, High Bits  
SCI-A Baud Register, Low Bits  
SCI-A Control Register 2  
SCIRXSTA  
SCIRXEMUA  
SCIRXBUFA  
SCITXBUFA  
SCIFFTXA(2)  
SCIFFRXA(2)  
SCIFFCTA(2)  
SCIPRIA  
SCI-A Receive Status Register  
SCI-A Receive Emulation Data Buffer Register  
SCI-A Receive Data Buffer Register  
SCI-A Transmit Data Buffer Register  
SCI-A FIFO Transmit Register  
SCI-A FIFO Receive Register  
SCI-A FIFO Control Register  
SCI-A Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. 32-bit accesses produce  
undefined results.  
(2) These registers are new registers for the FIFO mode.  
Table 4-10. SCI-B Registers(1) (2)  
NAME  
ADDRESS  
0x7750  
0x7751  
0x7752  
0x7753  
0x7754  
0x7755  
0x7756  
0x7757  
0x7759  
0x775A  
0x775B  
0x775C  
0x775F  
SIZE (x16)  
DESCRIPTION  
SCI-B Communications Control Register  
SCI-B Control Register 1  
SCICCRB  
1
1
1
1
1
1
1
1
1
1
1
1
1
SCICTL1B  
SCIHBAUDB  
SCILBAUDB  
SCICTL2B  
SCI-B Baud Register, High Bits  
SCI-B Baud Register, Low Bits  
SCI-B Control Register 2  
SCIRXSTB  
SCIRXEMUB  
SCIRXBUFB  
SCITXBUFB  
SCIFFTXB(2)  
SCIFFRXB(2)  
SCIFFCTB(2)  
SCIPRIB  
SCI-B Receive Status Register  
SCI-B Receive Emulation Data Buffer Register  
SCI-B Receive Data Buffer Register  
SCI-B Transmit Data Buffer Register  
SCI-B FIFO Transmit Register  
SCI-B FIFO Receive Register  
SCI-B FIFO Control Register  
SCI-B Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. 32-bit accesses produce  
undefined results.  
(2) These registers are new registers for the FIFO mode.  
88  
Peripherals  
Submit Documentation Feedback  
 
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 4-11. SCI-C Registers(1) (2)  
NAME  
ADDRESS  
0x7770  
0x7771  
0x7772  
0x7773  
0x7774  
0x7775  
0x7776  
0x7777  
0x7779  
0x777A  
0x777B  
0x777C  
0x777F  
SIZE (x16)  
DESCRIPTION  
SCI-C Communications Control Register  
SCI-C Control Register 1  
SCICCRC  
1
1
1
1
1
1
1
1
1
1
1
1
1
SCICTL1C  
SCIHBAUDC  
SCILBAUDC  
SCICTL2C  
SCIRXSTC  
SCIRXEMUC  
SCIRXBUFC  
SCITXBUFC  
SCIFFTXC(2)  
SCIFFRXC(2)  
SCIFFCTC(2)  
SCIPRC  
SCI-C Baud Register, High Bits  
SCI-C Baud Register, Low Bits  
SCI-C Control Register 2  
SCI-C Receive Status Register  
SCI-C Receive Emulation Data Buffer Register  
SCI-C Receive Data Buffer Register  
SCI-C Transmit Data Buffer Register  
SCI-C FIFO Transmit Register  
SCI-C FIFO Receive Register  
SCI-C FIFO Control Register  
SCI-C Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. 32-bit accesses produce  
undefined results.  
(2) These registers are new registers for the FIFO mode.  
Submit Documentation Feedback  
Peripherals  
89  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Figure 4-15 shows the SCI module block diagram.  
SCICTL1.1  
SCITXD  
Frame Format and Mode  
SCITXD  
TXSHF  
Register  
TXENA  
Parity  
Even/Odd Enable  
TX EMPTY  
SCICTL2.6  
8
SCICCR.6 SCICCR.5  
TXRDY  
TX INT ENA  
SCICTL2.0  
Transmitter-Data  
Buffer Register  
SCICTL2.7  
TXWAKE  
SCICTL1.3  
1
8
TX FIFO _0  
TX FIFO  
Interrupts  
TXINT  
TX Interrupt  
Logic  
TX FIFO _1  
-----  
To CPU  
TX FIFO _15  
SCI TX Interrupt select logic  
SCITXBUF.7-0  
WUT  
TX FIFO registers  
SCIFFENA  
AutoBaud Detect logic  
SCIFFTX.14  
SCIHBAUD. 15 - 8  
SCIRXD  
RXSHF  
Register  
Baud Rate  
MSbyte  
Register  
SCIRXD  
RXWAKE  
LSPCLK  
SCIRXST.1  
SCILBAUD. 7 - 0  
RXENA  
SCICTL1.0  
8
Baud Rate  
LSbyte  
Register  
SCICTL2.1  
Receive Data  
Buffer register  
SCIRXBUF.7-0  
RXRDY  
RX/BK INT ENA  
SCIRXST.6  
8
RX FIFO _15  
BRKDT  
SCIRXST.5  
-----  
RX FIFO  
Interrupts  
RX FIFO_1  
RX FIFO _0  
RXINT  
RX Interrupt  
Logic  
SCIRXBUF.7-0  
RX FIFO registers  
To CPU  
RXFFOVF  
SCIRXST.7 SCIRXST.4 - 2  
SCIFFRX.15  
RX Error  
FE OE PE  
RX Error  
RX ERR INT ENA  
SCICTL1.6  
SCI RX Interrupt select logic  
Figure 4-15. Serial Communications Interface (SCI) Module Block Diagram  
90  
Peripherals  
Submit Documentation Feedback  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
4.11 Serial Peripheral Interface (SPI) Module (SPI-A)  
The devices include the four-pin serial peripheral interface (SPI) module. One SPI module (SPI-A) is  
available. The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of  
programmed length (one to sixteen bits) to be shifted into and out of the device at a programmable  
bit-transfer rate. Normally, the SPI is used for communications between the DSC controller and external  
peripherals or another processor. Typical applications include external I/O or peripheral expansion through  
devices such as shift registers, display drivers, and ADCs. Multidevice communications are supported by  
the master/slave operation of the SPI.  
The SPI module features include:  
Four external pins:  
SPISOMI: SPI slave-output/master-input pin  
SPISIMO: SPI slave-input/master-output pin  
SPISTE: SPI slave transmit-enable pin  
SPICLK: SPI serial-clock pin  
NOTE: All four pins can be used as GPIO, if the SPI module is not used.  
Two operational modes: master and slave  
Baud rate: 125 different programmable rates.  
LSPCLK  
Baud rate =  
when SPIBRR = 3 to 127  
when SPIBRR = 0,1, 2  
(SPIBRR ) 1)  
LSPCLK  
Baud rate =  
4
Data word length: one to sixteen data bits  
Four clocking schemes (controlled by clock polarity and clock phase bits) include:  
Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the  
SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the  
falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.  
Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the  
SPICLK signal and receives data on the falling edge of the SPICLK signal.  
Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the  
falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Simultaneous receive and transmit operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled  
algorithms.  
Nine SPI module control registers: Located in control register frame beginning at address 7040h.  
NOTE  
All registers in this module are 16-bit registers that are connected to Peripheral Frame 2.  
When a register is accessed, the register data is in the lower byte (7-0), and the upper  
byte (15-8) is read as zeros. Writing to the upper byte has no effect.  
Enhanced feature:  
16-level transmit/receive FIFO  
Delayed transmit control  
The SPI port operation is configured and controlled by the registers listed in Table 4-12.  
Submit Documentation Feedback  
Peripherals  
91  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 4-12. SPI-A Registers  
NAME  
SPICCR  
SPICTL  
ADDRESS  
0x7040  
0x7041  
0x7042  
0x7044  
0x7046  
0x7047  
0x7048  
0x7049  
0x704A  
0x704B  
0x704C  
0x704F  
SIZE (X16)  
DESCRIPTION(1)  
1
1
1
1
1
1
1
1
1
1
1
1
SPI-A Configuration Control Register  
SPI-A Operation Control Register  
SPI-A Status Register  
SPISTS  
SPIBRR  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
SPI-A Baud Rate Register  
SPI-A Receive Emulation Buffer Register  
SPI-A Serial Input Buffer Register  
SPI-A Serial Output Buffer Register  
SPI-A Serial Data Register  
SPIFFTX  
SPIFFRX  
SPIFFCT  
SPIPRI  
SPI-A FIFO Transmit Register  
SPI-A FIFO Receive Register  
SPI-A FIFO Control Register  
SPI-A Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined  
results.  
92  
Peripherals  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Figure 4-16 is a block diagram of the SPI in slave mode.  
SPIFFENA  
Overrun  
INT ENA  
Receiver  
Overrun Flag  
SPIFFTX.14  
RX FIFO registers  
SPISTS.7  
SPICTL.4  
SPIRXBUF  
RX FIFO _0  
RX FIFO _1  
SPIINT/SPIRXINT  
RX FIFO Interrupt  
−−−−−  
RX Interrupt  
Logic  
RX FIFO _15  
16  
SPIRXBUF  
Buffer Register  
SPIFFOVF FLAG  
SPIFFRX.15  
To CPU  
TX FIFO registers  
SPITXBUF  
TX FIFO _15  
TX Interrupt  
Logic  
TX FIFO Interrupt  
−−−−−  
TX FIFO _1  
SPITXINT  
TX FIFO _0  
16  
SPI INT  
ENA  
SPI INT FLAG  
SPITXBUF  
Buffer Register  
SPISTS.6  
16  
SPICTL.0  
16  
M
S
M
SPIDAT  
Data Register  
S
SW1  
SW2  
SPISIMO  
SPISOMI  
M
S
M
SPIDAT.15 − 0  
S
Talk  
SPICTL.1  
(A)  
SPISTE  
State Control  
Master/Slave  
SPICTL.2  
SPI Char  
SPICCR.3 − 0  
S
3
2
1
0
SW3  
Clock  
Polarity  
Clock  
Phase  
M
S
SPI Bit Rate  
LSPCLK  
SPICCR.6  
SPICTL.3  
SPICLK  
SPIBRR.6 − 0  
M
6
5
4
3
2
1
0
A. SPISTE is driven low by the master for a slave device.  
Figure 4-16. SPI Module Block Diagram (Slave Mode)  
Submit Documentation Feedback  
Peripherals  
93  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
4.12 Inter-Integrated Circuit (I2C)  
The device contains one I2C Serial Port. Figure 4-15 shows how the I2C peripheral module interfaces  
within the device.  
The I2C module has the following features:  
Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):  
Support for 1-bit to 8-bit format transfers  
7-bit and 10-bit addressing modes  
General call  
START byte mode  
Support for multiple master-transmitters and slave-receivers  
Support for multiple slave-transmitters and master-receivers  
Combined master transmit/receive and receive/transmit mode  
Data transfer rate of from 10 kbps up to 400 kbps (Philips Fast-mode rate)  
One 16-bit receive FIFO and one 16-bit transmit FIFO  
One interrupt that can be used by the CPU. This interrupt can be generated as a result of one of the  
following conditions:  
Transmit-data ready  
Receive-data ready  
Register-access ready  
No-acknowledgment received  
Arbitration lost  
Stop condition detected  
Addressed as slave  
An additional interrupt that can be used by the CPU when in FIFO mode  
Module enable/disable capability  
Free data format mode  
94  
Peripherals  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
System Control  
Block  
C28X CPU  
I2CAENCLK  
SYSCLKOUT  
SYSRS  
Control  
Data[16]  
SDAA  
SCLA  
Data[16]  
Addr[16]  
GPIO  
MUX  
2
I C−A  
I2CINT1A  
PIE  
Block  
I2CINT2A  
A. The I2C registers are accessed at the SYSCLKOUT rate. The internal timing and signal waveforms of the I2C port are  
also at the SYSCLKOUT rate.  
B. The clock enable bit (I2CAENCLK) in the PCLKCRO register turns off the clock to the I2C port for low power  
operation. Upon reset, I2CAENCLK is clear, which indicates the peripheral internal clocks are off.  
Figure 4-17. I2C Peripheral Module Interfaces  
The registers in Table 4-13 configure and control the I2C port operation.  
Table 4-13. I2C-A Registers  
NAME  
I2COAR  
I2CIER  
ADDRESS  
0x7900  
0x7901  
0x7902  
0x7903  
0x7904  
0x7905  
0x7906  
0x7907  
0x7908  
0x7909  
0x790A  
0x790C  
0x7920  
0x7921  
-
DESCRIPTION  
I2C own address register  
I2C interrupt enable register  
I2C status register  
I2CSTR  
I2CCLKL  
I2CCLKH  
I2CCNT  
I2CDRR  
I2CSAR  
I2CDXR  
I2CMDR  
I2CISRC  
I2CPSC  
I2CFFTX  
I2CFFRX  
I2CRSR  
I2CXSR  
I2C clock low-time divider register  
I2C clock high-time divider register  
I2C data count register  
I2C data receive register  
I2C slave address register  
I2C data transmit register  
I2C mode register  
I2C interrupt source register  
I2C prescaler register  
I2C FIFO transmit register  
I2C FIFO receive register  
I2C receive shift register (not accessible to the CPU)  
I2C transmit shift register (not accessible to the CPU)  
-
Submit Documentation Feedback  
Peripherals  
95  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
4.13 GPIO MUX  
On the F2833x/F2823x devices, the GPIO MUX can multiplex up to three independent peripheral signals  
on a single GPIO pin in addition to providing individual pin bit-banging IO capability. The GPIO MUX block  
diagram per pin is shown in Figure 4-18. Because of the open drain capabilities of the I2C pins, the GPIO  
MUX block diagram for these pins differ. See the TMS320F2833x Digital Signal Controller (DSC) System  
Control and Interrupts Reference Guide (literature number SPRUFB0) for details.  
GPIOXINT1SEL  
GPIOXINT2SEL  
GPIOXINT3SEL  
•
GPIOLMPSEL  
GPIOXINT7SEL  
LPMCR0  
GPIOXNMISEL  
External Interrupt  
MUX  
Low Power  
Modes Block  
PIE  
Asynchronous  
path  
GPxDAT (read)  
GPxQSEL1/2  
GPxCTRL  
GPxPUD  
N/C  
00  
01  
Peripheral 1 Input  
Peripheral 2 Input  
Input  
Internal  
Pullup  
Qualification  
10  
11  
Peripheral 3 Input  
GPxTOGGLE  
Asynchronous path  
GPIOx pin  
GPxCLEAR  
GPxSET  
00  
01  
GPxDAT (latch)  
Peripheral 1 Output  
10  
11  
Peripheral 2 Output  
Peripheral 3 Output  
High Impedance  
Output Control  
GPxDIR (latch)  
00  
01  
Peripheral 1 Output Enable  
Peripheral 2 Output Enable  
0 = Input, 1 = Output  
XRS  
10  
11  
Peripheral 3 Output Enable  
= Default at Reset  
GPxMUX1/2  
A. x stands for the port, either A or B. For example, GPxDIR refers to either the GPADIR and GPBDIR register  
depending on the particular GPIO pin selected.  
B. GPxDAT latch/read are accessed at the same memory location.  
C. This is a generic GPIO MUX block diagram. Not all options may be applicable for all GPIO pins. See the  
TMS320x2833x System Control and Interrupts Reference Guide (literature number SPRUFB0) for pin-specific  
variations.  
Figure 4-18. GPIO MUX Block Diagram  
96  
Peripherals  
Submit Documentation Feedback  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
The device supports 88 GPIO pins. The GPIO control and data registers are mapped to Peripheral Frame  
1 to enable 32-bit operations on the registers (along with 16-bit operations). Table 4-14 shows the GPIO  
register mapping.  
Table 4-14. GPIO Registers  
NAME  
ADDRESS  
GPIO CONTROL REGISTERS (EALLOW PROTECTED)  
0x6F80 GPIO A Control Register (GPIO0 to 31)  
SIZE (x16)  
DESCRIPTION  
GPACTRL  
GPAQSEL1  
GPAQSEL2  
GPAMUX1  
GPAMUX2  
GPADIR  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
8
2
2
2
2
18  
0x6F82  
0x6F84  
GPIO A Qualifier Select 1 Register (GPIO0 to 15)  
GPIO A Qualifier Select 2 Register (GPIO16 to 31)  
GPIO A MUX 1 Register (GPIO0 to 15)  
0x6F86  
0x6F88  
GPIO A MUX 2 Register (GPIO16 to 31)  
0x6F8A  
GPIO A Direction Register (GPIO0 to 31)  
GPIO A Pull Up Disable Register (GPIO0 to 31)  
GPAPUD  
0x6F8C  
Reserved  
GPBCTRL  
GPBQSEL1  
GPBQSEL2  
GPBMUX1  
GPBMUX2  
GPBDIR  
0x6F8E – 0x6F8F  
0x6F90  
GPIO B Control Register (GPIO32 to 35)  
GPIO B Qualifier Select 1 Register (GPIO32 to 35)  
Reserved  
0x6F92  
0x6F94  
0x6F96  
GPIO B MUX 1 Register (GPIO32 to 35)  
GPIO B MUX 2 Register (GPIO48 to 63)  
GPIO B Direction Register (GPIO32 to 35)  
GPIO B Pull Up Disable Register (GPIO32 to 35)  
0x6F98  
0x6F9A  
GPBPUD  
0x6F9C  
Reserved  
GPCMUX1  
GPCMUX2  
GPCDIR  
0x6F9E – 0x6FA5  
0x6FA6  
GPIO C MUX1 Register (GPIO64 to 79)  
GPIO C MUX2 Register (GPIO80 to 87)  
GPIO C Direction Register (GPIO64 to 87)  
GPIO C Pull Up Disable Register (GPIO64 to 87)  
0x6FA8  
0x6FAA  
GPCPUD  
Reserved  
0x6FAC  
0x6FAE – 0x6FBF  
GPIO DATA REGISTERS (NOT EALLOW PROTECTED)  
GPADAT  
GPASET  
0x6FC0  
0x6FC2  
2
2
2
2
2
2
2
2
2
2
2
2
8
GPIO A Data Register (GPIO0 to 31)  
GPIO A Data Set Register (GPIO0 to 31)  
GPIO A Data Clear Register (GPIO0 to 31)  
GPIO A Data Toggle Register (GPIO0 to 31)  
GPIO B Data Register (GPIO32 to 35)  
GPACLEAR  
GPATOGGLE  
GPBDAT  
0x6FC4  
0x6FC6  
0x6FC8  
GPBSET  
0x6FCA  
GPIO B Data Set Register (GPIO32 to 35)  
GPIO B Data Clear Register (GPIO32 to 35)  
GPIOB Data Toggle Register (GPIO32 to 35)  
GPIO C Data Register (GPIO64 to 87)  
GPBCLEAR  
GPBTOGGLE  
GPCDAT  
0x6FCC  
0x6FCE  
0x6FD0  
GPCSET  
0x6FD2  
GPIO C Data Set Register (GPIO64 to 87)  
GPIO C Data Clear Register (GPIO64 to 87)  
GPIO C Data Toggle Register (GPIO64 to 87)  
GPCCLEAR  
GPCTOGGLE  
Reserved  
0x6FD4  
0x6FD6  
0x6FD8 0x6FDF  
GPIO INTERRUPT AND LOW POWER MODES SELECT REGISTERS (EALLOW PROTECTED)  
GPIOXINT1SEL  
GPIOXINT2SEL  
GPIOXNMISEL  
GPIOXINT3SEL  
GPIOXINT4SEL  
GPIOXINT5SEL  
0x6FE0  
0x6FE1  
0x6FE2  
0x6FE3  
0x6FE4  
0x6FE5  
1
1
1
1
1
1
XINT1 GPIO Input Select Register (GPIO0 to 31)  
XINT2 GPIO Input Select Register (GPIO0 to 31)  
XNMI GPIO Input Select Register (GPIO0 to 31)  
XINT3 GPIO Input Select Register (GPIO32 to 63)  
XINT4 GPIO Input Select Register (GPIO32 to 63)  
XINT5 GPIO Input Select Register (GPIO32 to 63)  
Submit Documentation Feedback  
Peripherals  
97  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 4-14. GPIO Registers (continued)  
NAME  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
XINT6 GPIO Input Select Register (GPIO32 to 63)  
XINT7 GPIO Input Select Register (GPIO32 to 63)  
LPM GPIO Select Register (GPIO0 to 31)  
GPIOXINT6SEL  
GPIOINT7SEL  
GPIOLPMSEL  
Reserved  
0x6FE6  
0x6FE7  
1
1
0x6FE8  
2
0x6FEA – 0x6FFF  
22  
Table 4-15. GPIO-A Mux Peripheral Selection Matrix  
REGISTER BITS  
PERIPHERAL SELECTION  
GPADIR  
GPADAT  
GPAMUX1  
GPAQSEL1  
GPIOx  
GPAMUX1=0,0  
PER1  
GPAMUX1 = 0, 1  
PER2  
GPAMUX1 = 1, 0  
PER3  
GPAMUX1 = 1, 1  
GPASET  
GPACLR  
GPATOGGLE  
QUALPRD0  
0
1
1, 0  
GPIO0 (I/O)  
GPIO1 (I/O)  
GPIO2 (I/O)  
GPIO3 (I/O)  
GPIO4 (I/O)  
GPIO5 (I/O)  
GPIO6 (I/O)  
GPIO7 (I/O)  
GPIO8 (I/O)  
GPIO9 (I/O)  
GPIO10 (I/O)  
GPIO11 (I/O)  
GPIO12 (I/O)  
GPIO13 (I/O)  
GPIO14 (I/O)  
GPIO15 (I/O)  
GPAMUX2 =0, 0  
EPWM1A (O)  
EPWM1B (O)  
EPWM2A (O)  
EPWM2B (O)  
EPWM3A (O)  
EPWM3B (O)  
EPWM4A (O)  
EPWM4B (O)  
EPWM5A (O)  
EPWM5B (O)  
EPWM6A (O)  
EPWM6B (O)  
TZ1 (I)  
3, 2  
ECAP6 (I/O)  
ECAP5 (I/O)  
MFSRB (I/O)  
2
5, 4  
3
7, 6  
MCLKRB (I/O)  
4
9, 8  
5
11, 10  
13, 12  
15, 14  
17, 16  
19, 18  
21, 20  
23, 22  
25, 24  
27, 26  
29, 28  
31, 30  
MFSRA (I/O)  
EPWMSYNCI (I)  
MCLKRA (I/O)  
CANTXB (O)  
SCITXDB (O)  
CANRXB (I)  
ECAP1 (I/O)  
EPWMSYNCO (O)  
ECAP2 (I/O)  
6
7
QUALPRD1  
8
ADCSOCAO (O)  
ECAP3 (I/O)  
9
10  
11  
12  
13  
14  
15  
ADCSOCBO (O)  
ECAP4 (I/O)  
SCIRXDB (I)  
CANTXB (O)  
CANRXB (I)  
MDXB (O)  
TZ2 (I)  
MDRB (I)  
TZ3 (I)/XHOLD (I)  
TZ4 (I)/XHOLDA (O)  
GPAMUX2 = 0, 1  
SCITXDB (O)  
SCIRXDB (I)  
GPAMUX2 = 1, 0  
MCLKXB (I/O)  
MFSXB (I/O)  
GPAMUX2  
GPAMUX2 = 1, 1  
GPAQSEL2  
QUALPRD2  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
1, 0  
GPIO16 (I/O)  
GPIO17 (I/O)  
GPIO18 (I/O)  
GPIO19 (I/O)  
GPIO20 (I/O)  
GPIO21 (I/O)  
GPIO22 (I/O)  
GPIO23 (I/O)  
GPIO24 (I/O)  
GPIO25 (I/O)  
GPIO26 (I/O)  
GPIO27 (I/O)  
GPIO28 (I/O)  
GPIO29 (I/O)  
GPIO30 (I/O)  
GPIO31 (I/O)  
SPISIMOA (I/O)  
SPISOMIA (I/O)  
SPICLKA (I/O)  
SPISTEA (I/O)  
EQEP1A (I)  
CANTXB (O)  
CANRXB (I)  
SCITXDB (O)  
SCIRXDB (I)  
MDXA (O)  
TZ5 (I)  
3, 2  
TZ6 (I)  
5, 4  
CANRXA (I)  
CANTXA (O)  
CANTXB (O)  
CANRXB (I)  
SCITXDB (O)  
SCIRXDB (I)  
MDXB (O)  
7, 6  
9, 8  
11, 10  
13, 12  
15, 14  
17, 16  
19, 18  
21, 20  
23, 22  
25, 24  
27, 26  
29, 28  
31, 30  
EQEP1B (I)  
MDRA (I)  
EQEP1S (I/O)  
EQEP1I (I/O)  
ECAP1 (I/O)  
ECAP2 (I/O)  
ECAP3 (I/O)  
ECAP4 (I/O)  
SCIRXDA (I)  
SCITXDA (O)  
CANRXA (I)  
MCLKXA (I/O)  
MFSXA (I/O)  
EQEP2A (I)  
EQEP2B (I)  
EQEP2I (I/O)  
EQEP2S (I/O)  
XZCS6 (O)  
XA19 (O)  
QUALPRD3  
MDRB (I)  
MCLKXB (I/O)  
MFSXB (I/O)  
XA18 (O)  
CANTXA (O)  
XA17 (O)  
98  
Peripherals  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 4-16. GPIO-B Mux Peripheral Selection Matrix  
REGISTER BITS  
PERIPHERAL SELECTION  
GPBDIR  
GPBDAT  
GPBMUX1  
GPBQSEL1  
GPIOx  
GPBMUX1=0, 0  
PER1  
GPBMUX1 = 0, 1  
PER2  
GPBMUX1 = 1, 0  
PER3  
GPBMUX1 = 1, 1  
GPBSET  
GPBCLR  
GPBTOGGLE  
QUALPRD0  
0
1
1, 0  
GPIO32 (I/O)  
GPIO33 (I/O)  
GPIO34 (I/O)  
GPIO35 (I/O)  
GPIO36 (I/O)  
GPIO37 (I/O)  
GPIO38 (I/O)  
GPIO39 (I/O)  
GPIO40 (I/O)  
GPIO41 (I/O)  
GPIO42 (I/O)  
GPIO43 (I/O)  
GPIO44 (I/O)  
GPIO45 (I/O)  
GPIO46 (I/O)  
GPIO47 (I/O)  
GPBMUX2 =0, 0  
SDAA (I/OC)(1)  
SCLA (I/OC)(1)  
ECAP1 (I/O)  
SCITXDA (O)  
SCIRXDA (I)  
ECAP2 (I/O)  
EPWMSYNCI (I)  
ADCSOCAO (O)  
ADCSOCBO (O)  
3, 2  
EPWMSYNCO (O)  
2
5, 4  
XREADY (I)  
3
7, 6  
XR/W (O)  
XZCS0 (O)  
XZCS7 (O)  
XWE0 (O)  
XA16 (O)  
XA0/XWE1 (O)  
XA1 (O)  
4
9, 8  
5
11, 10  
13, 12  
15, 14  
17, 16  
19, 18  
21, 20  
23, 22  
25, 24  
27, 26  
29, 28  
31, 30  
6
7
QUALPRD1  
8
9
10  
11  
12  
13  
14  
15  
XA2 (O)  
Reserved  
XA3 (O)  
XA4 (O)  
XA5 (O)  
XA6 (O)  
XA7 (O)  
GPBMUX2  
GPBMUX2 = 0, 1  
GPBMUX2 = 1, 0  
GPBMUX2 = 1, 1  
GPBQSEL2  
QUALPRD2  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
1, 0  
GPIO48 (I/O)  
GPIO49 (I/O)  
GPIO50 (I/O)  
GPIO51 (I/O)  
GPIO52 (I/O)  
GPIO53 (I/O)  
GPIO54 (I/O)  
GPIO55 (I/O)  
GPIO56 (I/O)  
GPIO57 (I/O)  
GPIO58 (I/O)  
GPIO59 (I/O)  
GPIO60 (I/O)  
GPIO61 (I/O)  
GPIO62 (I/O)  
GPIO63 (I/O)  
ECAP5 (I/O)  
ECAP6 (I/O)  
XD31 (I/O)  
XD30 (I/O)  
XD29 (I/O)  
XD28 (I/O)  
XD27 (I/O)  
XD26 (I/O)  
XD25 (I/O)  
XD24 (I/O)  
XD23 (I/O)  
XD22 (I/O)  
XD21 (I/O)  
XD20 (I/O)  
XD19 (I/O)  
XD18 (I/O)  
XD17 (I/O)  
XD16 (I/O)  
3, 2  
5, 4  
EQEP1A (I)  
7, 6  
EQEP1B (I)  
9, 8  
EQEP1S (I/O)  
EQEP1I (I/O)  
SPISIMOA (I/O)  
SPISOMIA (I/O)  
SPICLKA (I/O)  
SPISTEA (I/O)  
MCLKRA (I/O)  
MFSRA (I/O)  
MCLKRB (I/O)  
MFSRB (I/O)  
SCIRXDC (I)  
SCITXDC (O)  
11, 10  
13, 12  
15, 14  
17, 16  
19, 18  
21, 20  
23, 22  
25, 24  
27, 26  
29, 28  
31, 30  
QUALPRD3  
(1) Open drain  
Submit Documentation Feedback  
Peripherals  
99  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 4-17. GPIO-C Mux Peripheral Selection Matrix  
REGISTER BITS  
PERIPHERAL SELECTION  
GPCDIR  
GPCDAT  
GPCMUX1  
GPIOx or PER1  
GPCMUX1 = 0, 0 or 0, 1  
PER2 or PER3  
GPCMUX1 = 1, 0 or 1, 1  
GPCSET  
GPCCLR  
GPCTOGGLE  
no qual  
0
1, 0  
3, 2  
GPIO64 (I/O)  
GPIO65 (I/O)  
GPIO66 (I/O)  
GPIO67 (I/O)  
GPIO68 (I/O)  
GPIO69 (I/O)  
GPIO70 (I/O)  
GPIO71 (I/O)  
GPIO72 (I/O)  
GPIO73 (I/O)  
GPIO74 (I/O)  
GPIO75 (I/O)  
GPIO76 (I/O)  
GPIO77 (I/O)  
GPIO78 (I/O)  
GPIO79 (I/O)  
GPCMUX2 = 0, 0 or 0, 1  
GPIO80 (I/O)  
GPIO81 (I/O)  
GPIO82 (I/O)  
GPIO83 (I/O)  
GPIO84 (I/O)  
GPIO85 (I/O)  
GPIO86 (I/O)  
GPIO87 (I/O)  
XD15 (I/O)  
XD14 (I/O)  
XD13 (I/O)  
XD12 (I/O)  
XD11 (I/O)  
XD10 (I/O)  
XD9 (I/O)  
1
2
5, 4  
3
7, 6  
4
9, 8  
5
11, 10  
13, 12  
15, 14  
17, 16  
19, 18  
21, 20  
23, 22  
25, 24  
27, 26  
29, 28  
31, 30  
GPCMUX2  
1, 0  
6
7
XD8 (I/O)  
no qual  
8
XD7 (I/O)  
9
XD6 (I/O)  
10  
11  
12  
13  
14  
15  
XD5 (I/O)  
XD4 (I/O)  
XD3 (I/O)  
XD2 (I/O)  
XD1 (I/O)  
XD0 (I/O)  
GPCMUX2 = 1, 0 or 1, 1  
XA8 (O)  
no qual  
16  
17  
18  
19  
20  
21  
22  
23  
3, 2  
XA9 (O)  
5, 4  
XA10 (O)  
7, 6  
XA11 (O)  
9, 8  
XA12 (O)  
11, 10  
13, 12  
15, 14  
XA13 (O)  
XA14 (O)  
XA15 (O)  
The user can select the type of input qualification for each GPIO pin via the GPxQSEL1/2 registers from  
four choices:  
Synchronization To SYSCLKOUT Only (GPxQSEL1/2=0, 0): This is the default mode of all GPIO pins  
at reset and it simply synchronizes the input signal to the system clock (SYSCLKOUT).  
Qualification Using Sampling Window (GPxQSEL1/2=0, 1 and 1, 0): In this mode the input signal, after  
synchronization to the system clock (SYSCLKOUT), is qualified by a specified number of cycles before  
the input is allowed to change.  
100  
Peripherals  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Time between samples  
GPyCTRL Reg  
Input Signal  
Qualification  
GPIOx  
SYNC  
Qualified By 3  
or 6 Samples  
GPxQSEL  
SYSCLKOUT  
Number of Samples  
Figure 4-19. Qualification Using Sampling Window  
The sampling period is specified by the QUALPRD bits in the GPxCTRL register and is configurable in  
groups of 8 signals. It specifies a multiple of SYSCLKOUT cycles for sampling the input signal. The  
sampling window is either 3-samples or 6-samples wide and the output is only changed when ALL  
samples are the same (all 0s or all 1s) as shown in Figure 4-18 (for 6 sample mode).  
No Synchronization (GPxQSEL1/2=1,1): This mode is used for peripherals where synchronization is  
not required (synchronization is performed within the peripheral).  
Due to the multi-level multiplexing that is required on the device, there may be cases where a peripheral  
input signal can be mapped to more then one GPIO pin. Also, when an input signal is not selected, the  
input signal will default to either a 0 or 1 state, depending on the peripheral.  
4.14 External Interface (XINTF)  
This section gives a top-level view of the external interface (XINTF) that is implemented on the  
F2833x/F2823x devices.  
The XINTF is a non-multiplexed asynchronous bus, similar to the 2812 XINTF. The XINTF is mapped into  
three fixed zones shown in Figure 4-20.  
Submit Documentation Feedback  
Peripherals  
101  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Data Space  
Prog Space  
0x0000−0000  
XD(31:0)  
XA(19:0)  
XZCS0  
0x0000−4000  
0x0000−5000  
XINTF Zone 0  
(8K x 16)  
0x0010−0000  
0x0020−0000  
0x0030−0000  
XZCS6  
XINTF Zone 6  
(1M x 16)  
XZCS7  
XINTF Zone 7  
(1M x 16)  
XA0/XWE1  
XWE0  
XRD  
XR/W  
XREADY  
XHOLD  
XHOLDA  
XCLKOUT  
A. Each zone can be programmed with different wait states, setup and hold timings, and is supported by zone chip  
selects that toggle when an access to a particular zone is performed. These features enable glueless connection to  
many external memories and peripherals.  
B. Zones 1 – 5 are reserved for future expansion.  
C. Zones 0, 6, and 7 are always enabled.  
Figure 4-20. External Interface Block Diagram  
Figure 4-21 and Figure 4-22 show typical 16-bit and 32-bit data bus XINTF connections, illustrating how  
the functionality of the XA0/XWE1 signal changes, depending on the configuration. Table 4-18 defines  
XINTF configuration and control registers.  
XINTF  
External  
wait-state  
generator  
XREADY  
16-bits  
XCLKOUT  
CS  
A(19:1)  
A(0)  
XZCS0/6/7  
XA(19:1)  
XA0/XWE1  
XRD  
OE  
WE  
XWE0  
D(15:0)  
XD(15:0)  
Figure 4-21. Typical 16-bit Data Bus XINTF Connections  
102  
Peripherals  
Submit Documentation Feedback  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
XINTF  
External  
wait-state  
generator  
XREADY  
Low 16-bits  
XCLKOUT  
CS  
A(18:0)  
OE  
XA(19:1)  
XRD  
WE  
XWE0  
D(15:0)  
XD(15:0)  
High 16-bits  
A(18:0)  
CS  
OE  
WE  
XZCS0/6/7  
XA0/XWE1  
(select XWE1)  
D(31:16)  
XD(31:16)  
Figure 4-22. Typical 32-bit Data Bus XINTF Connections  
Table 4-18. XINTF Configuration and Control Register Mapping  
NAME  
ADDRESS  
0x0000–0B20  
0x0000–0B2C  
0x0000–0B2E  
0x0000–0B34  
0x0000–0B38  
0x0000–0B3A  
0x0000 083D  
SIZE (x16)  
DESCRIPTION  
XTIMING0  
XTIMING6(1)  
XTIMING7  
XINTCNF2(2)  
XBANK  
2
2
2
2
1
1
1
XINTF Timing Register, Zone 0  
XINTF Timing Register, Zone 6  
XINTF Timing Register, Zone 7  
XINTF Configuration Register  
XINTF Bank Control Register  
XINTF Revision Register  
XINTF Reset Register  
XREVISION  
XRESET  
(1) XTIMING1 - XTIMING5 are reserved for future expansion and are not currently used.  
(2) XINTCNF1 is reserved and not currently used.  
Submit Documentation Feedback  
Peripherals  
103  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
5
Device Support  
Texas Instruments (TI) offers an extensive line of development tools for the C28x™ generation of DSCs,  
including tools to evaluate the performance of the processors, generate code, develop algorithm  
implementations, and fully integrate and debug software and hardware modules.  
The following products support development of 2833x-based applications:  
Software Development Tools  
Code Composer Studio™ Integrated Development Environment (IDE)  
C/C++ Compiler  
Code generation tools  
Assembler/Linker  
Cycle Accurate Simulator  
Application algorithms  
Sample applications code  
Hardware Development Tools  
2833x development board  
Evaluation modules  
JTAG-based emulators - SPI515, XDS510PP, XDS510PP Plus, XDS510USB  
Universal 5-V dc power supply  
Documentation and cables  
5.1 Device and Development Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
TMS320™ DSC devices and support tools. Each TMS320™ DSP commercial family member has one of  
three prefixes: TMX, TMP, or TMS (e.g., TMS320F28335). Texas Instruments recommends two of three  
possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary  
stages of product development from engineering prototypes (TMX/TMDX) through fully qualified  
production devices/tools (TMS/TMDS).  
Device development evolutionary flow:  
TMX  
TMP  
TMS  
Experimental device that is not necessarily representative of the final device's electrical  
specifications  
Final silicon die that conforms to the device's electrical specifications but has not completed  
quality and reliability verification  
Fully qualified production device  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification  
testing  
TMDS Fully qualified development-support product  
TMX and TMP devices and TMDX development-support tools are shipped against the following  
disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
104  
Device Support  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard  
production devices. Texas Instruments recommends that these devices not be used in any production  
system because their expected end-use failure rate still is undefined. Only qualified production devices are  
to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the  
package type (for example, PBK) and temperature range (for example, A). Figure 5-1 provides a legend  
for reading the complete device name for any family member.  
TMS 320  
F
28335  
PGF  
A
PREFIX  
TEMPERATURERANGE  
A = −40°C to 85°C  
S = −40°C to 125°C  
experimental device  
prototype device  
qualified device  
TMX =  
TMP =  
TMS =  
PACKAGE TYPE  
DEVICE FAMILY  
ZHH = 179-ball MicroStar BGA (lead-free)  
PGF = 176-pin LQFP  
ZJZ = 176-ball PBGA (lead-free)  
320 = TMS320 DSP Family  
DEVICE  
28335  
28334  
28332  
28235  
28234  
28232  
TECHNOLOGY  
F = Flash EEPROM (1.9-V Core/3.3-V I/O)  
BGA = Ball Grid Array  
PBGA = Plastic Ball Grid Array  
LQFP = Low-Profile Quad Flatpack  
Figure 5-1. Example of F2833x, F2823x Device Nomenclature  
Submit Documentation Feedback  
Device Support  
105  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
5.2 Documentation Support  
Extensive documentation supports all of the TMS320™ DSP family generations of devices from product  
announcement through applications development. The types of documentation available include: data  
sheets and data manuals, with design specifications; and hardware and software applications. Useful  
reference documentation includes:  
CPU User's Guides  
SPRU430  
TMS320C28x DSP CPU and Instruction Set Reference Guide describes the central  
processing unit (CPU) and the assembly language instructions of the TMS320C28x  
fixed-point digital signal processors (DSPs). It also describes emulation features available on  
these DSPs.  
SPRUEO2 TMS320C28x Floating Point Unit and Instruction Set Reference Guide describes the  
floating-point unit and includes the instructions for the FPU.  
Peripheral Guides  
SPRU566  
TMS320x28xx, 28xxx Peripheral Reference Guide describes the peripheral reference guides  
of the 28x digital signal processors (DSPs).  
SPRUFB0 TMS320x2833x System Control and Interrupts Reference Guide describes the various  
interrupts and system control features of the 2833x digital signal controllers (DSCs).  
SPRU812  
SPRU949  
SPRU963  
TMS320x2833x Analog-to-Digital Converter (ADC) Reference Guide describes how to  
configure and use the on-chip ADC module, which is a 12-bit pipelined ADC.  
TMS320x2833x External Interface (XINTF) User's Guide describes the XINTF, which is a  
nonmultiplexed asynchronous bus, as it is used on the 2833x devices.  
TMS320x2833x Boot ROM User's Guide describes the purpose and features of the  
bootloader (factory-programmed boot-loading software) and provides examples of code. It  
also describes other contents of the device on-chip boot ROM and identifies where all of the  
information is located within that memory.  
SPRUFB7 TMS320x2833x Multichannel Buffered Serial Port (McBSP) User's Guide describes the  
McBSP available on the F2833x devices. The McBSPs allow direct interface between a DSP  
and other devices in a system.  
SPRUFB8 TMS320x2833x Direct Memory Access (DMA) Reference Guide describes the DMA on the  
2833x devices.  
SPRU791  
TMS320x28xx, 28xxx Enhanced Pulse Width Modulator (ePWM) Module Reference Guide  
describes the main areas of the enhanced pulse width modulator that include digital motor  
control, switch mode power supply control, UPS (uninterruptible power supplies), and other  
forms of power conversion.  
SPRU924  
SPRU807  
SPRU790  
TMS320x28xx, 28xxx High-Resolution Pulse Width Modulator (HRPWM) describes the  
operation of the high-resolution extension to the pulse width modulator (HRPWM).  
TMS320x28xx, 28xxx Enhanced Capture (eCAP) Module Reference Guide describes the  
enhanced capture module. It includes the module description and registers.  
TMS320x28xx, 28xxx Enhanced Quadrature Encoder Pulse (eQEP) Reference Guide  
describes the eQEP module, which is used for interfacing with a linear or rotary incremental  
encoder to get position, direction, and speed information from a rotating machine in high  
performance motion and position control systems. It includes the module description and  
registers.  
SPRU074  
TMS320x28xx, 28xxx Enhanced Controller Area Network (eCAN) Reference Guide  
describes the eCAN that uses established protocol to communicate serially with other  
controllers in electrically noisy environments.  
106  
Device Support  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
SPRU051  
TMS320x28xx, 28xxx Serial Communication Interface (SCI) Reference Guide describes the  
SCI, which is a two-wire asynchronous serial port, commonly known as a UART. The SCI  
modules support digital communications between the CPU and other asynchronous  
peripherals that use the standard non-return-to-zero (NRZ) format.  
SPRU059  
SPRU721  
TMS320x28xx, 28xxx Serial Peripheral Interface (SPI) Reference Guide describes the SPI -  
a high-speed synchronous serial input/output (I/O) port - that allows a serial bit stream of  
programmed length (one to sixteen bits) to be shifted into and out of the device at a  
programmed bit-transfer rate.  
TMS320x28xx, 28xxx Inter-Integrated Circuit (I2C) Reference Guide describes the features  
and operation of the inter-integrated circuit (I2C) module.  
Tools Guides  
SPRU513  
TMS320C28x Assembly Language Tools User's Guide describes the assembly language  
tools (assembler and other tools used to develop assembly language code), assembler  
directives, macros, common object file format, and symbolic debugging directives for the  
TMS320C28x device.  
SPRU514  
SPRU608  
SPRU625  
TMS320C28x Optimizing C Compiler User's Guide describes the TMS320C28x™ C/C++  
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320  
DSP assembly language source code for the TMS320C28x device.  
The TMS320C28x Instruction Set Simulator Technical Overview describes the simulator,  
available within the Code Composer Studio for TMS320C2000 IDE, that simulates the  
instruction set of the C28x™ core.  
TMS320C28x DSP/BIOS Application Programming Interface (API) Reference Guide  
describes development using DSP/BIOS.  
Application Reports  
SPRAAM0 Getting Started With TMS320C28x™ Digital Signal Controllers is organized by development  
flow and functional areas to make your design effort as seamless as possible. Tips on  
getting started with C28x™ DSP software and hardware development are provided to aid in  
your initial design and debug efforts. Each section includes pointers to valuable information  
including technical documentation, software, and tools for use in each phase of design.  
SPRAAD5 Power Line Communication for Lighting Apps using BPSK w/ a Single DSP Controller  
presents a complete implementation of a power line modem following CEA-709 protocol  
using a single DSP.  
SPRAA85 Programming TMS320x28xx and 28xxx Peripherals in C/C++ explores a hardware  
abstraction layer implementation to make C/C++ coding easier on 28x DSPs. This method is  
compared to traditional #define macros and topics of code efficiency and special case  
registers are also addressed.  
SPRA958  
Running an Application from Internal Flash Memory on the TMS320F28xx DSP covers the  
requirements needed to properly configure application software for execution from on-chip  
flash memory. Requirements for both DSP/BIOS™ and non-DSP/BIOS projects are  
presented. Example code projects are included.  
SPRAA91 TMS320F280x DSC USB Connectivity Using TUSB3410 USB-to-UART Bridge Chip presents  
hardware connections as well as software preparation and operation of the development  
system using a simple communication echo program.  
SPRAA58 TMS320x281x to TMS320x280x Migration Overview describes differences between the  
Texas Instruments TMS320x281x and TMS320x280x DSPs to assist in application migration  
from the 281x to the 280x. While the main focus of this document is migration from 281x to  
280x, users considering migrating in the reverse direction (280x to 281x) will also find this  
document useful.  
Submit Documentation Feedback  
Device Support  
107  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
SPRAAD8 TMS320280x and TMS320F2801x ADC Calibration describes a method for improving the  
absolute accuracy of the 12-bit ADC found on the TMS320280x and TMS3202801x devices.  
Inherent gain and offset errors affect the absolute accuracy of the ADC. The methods  
described in this report can improve the absolute accuracy of the ADC to levels better than  
0.5%. This application report has an option to download an example program that executes  
from RAM on the F2808 EzDSP.  
SPRAAI1  
Using Enhanced Pulse Width Modulator (ePWM) Module for 0-100% Duty Cycle Control  
provides a guide for the use of the ePWM module to provide 0% to 100% duty cycle control  
and is applicable to the TMS320x280x family of processors.  
SPRAA88 Using PWM Output as a Digital-to-Analog Converter on a TMS320F280x presents a method  
for utilizing the on-chip pulse width modulated (PWM) signal generators on the  
TMS320F280x family of digital signal controllers as a digital-to-analog converter (DAC).  
SPRAAH1 Using the Enhanced Quadrature Encoder Pulse (eQEP) Module provides a guide for the use  
of the eQEP module as a dedicated capture unit and is applicable to the TMS320x280x,  
28xxx family of processors.  
SPRA820  
Online Stack Overflow Detection on the TMS320C28x DSP presents the methodology for  
online stack overflow detection on the TMS320C28x™ DSP. C-source code is provided that  
contains functions for implementing the overflow detection on both DSP/BIOS™ and  
non-DSP/BIOS applications.  
SPRA806  
An Easy Way of Creating a C-callable Assembly Function for the TMS320C28x DSP  
provides instructions and suggestions to configure the C compiler to assist with  
understanding of parameter-passing conventions and environments expected by the C  
compiler.  
A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support digital signal  
processing research and education. The TMS320 DSP newsletter, Details on Signal Processing, is  
published quarterly and distributed to update TMS320 DSP customers on product information.  
Updated information on the TMS320 DSP controllers can be found on the worldwide web at:  
http://www.ti.com.  
To send comments regarding this data manual (literature number SPRS230), use the  
comments@books.sc.ti.com email address, which is a repository for feedback. For questions and support,  
contact the Product Information Center listed at the http://www.ti.com/sc/docs/pic/home.htm site.  
108  
Device Support  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6
Electrical Specifications  
This section provides the absolute maximum ratings and the recommended operating conditions.  
6.1 Absolute Maximum Ratings(1)(2)  
Unless otherwise noted, the list of absolute maximum ratings are specified over operating temperature ranges.  
Supply voltage range, VDDIO, VDD3VFL  
Supply voltage range, VDDA2, VDDAIO  
Supply voltage range, VDD  
with respect to VSS  
with respect to VSSA  
with respect to VSS  
with respect to VSSA  
with respect to VSS  
– 0.3 V to 4.6 V  
– 0.3 V to 4.6 V  
– 0.3 V to 2.5 V  
– 0.3 V to 2.5 V  
– 0.3 V to 0.3 V  
– 0.3 V to 4.6 V  
– 0.3 V to 4.6 V  
± 20 mA  
Supply voltage range, VDD1A18, VDD2A18  
Supply voltage range, VSSA2, VSSAIO, VSS1AGND, VSS2AGND  
Input voltage range, VIN  
Output voltage range, VO  
(3)  
Input clamp current, IIK (VIN < 0 or VIN > VDDIO  
)
Output clamp current, IOK (VO < 0 or VO > VDDIO  
Operating ambient temperature ranges,  
)
± 20 mA  
(4)  
TA: A version  
– 40°C to 85°C  
– 40°C to 125°C  
– 40°C to 150°C  
– 65°C to 150°C  
TA: S version  
Junction temperature range, Tj(4)  
(4)  
Storage temperature range, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Section 6.2 is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) Continuous clamp current per pin is ± 2 mA. This includes the analog inputs which have an internal clamping circuit that clamps the  
voltage to a diode drop above VDDA2 or below VSSA2  
.
(4) Long-term high-temperature storage and/or extended use at maximum temperature conditions may result in a reduction of overall device  
life. For additional information, see IC Package Thermal Metrics Application Report (literature number SPRA953) and Reliability Data for  
TMS320LF24x and TMS320F281x Devices Application Report (literature number SPRA963)  
Submit Documentation Feedback  
Electrical Specifications  
109  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6.2 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.2  
NOM  
3.3  
1.9  
0
MAX  
3.4  
UNIT  
V
Device supply voltage, I/O, VDDIO  
Device supply voltage CPU, VDD  
Supply ground, VSS, VSSIO  
1.84  
1.96  
V
V
ADC supply voltage (3.3 V), VDDA2, VDDAIO  
ADC supply voltage (1.9 V), VDD1A18, VDD2A18  
Flash supply voltage, VDD3VFL  
3.2  
1.84  
3.2  
2
3.3  
1.9  
3.3  
3.4  
1.96  
3.4  
150  
100  
VDDIO  
0.8  
– 4  
-8  
V
V
V
Device clock frequency (system clock),  
fSYSCLKOUT  
F28335/F28235/F28334/F28234  
MHz  
V
F28332/F28232  
2
High-level input voltage, VIH  
Low-level input voltage, VIL  
2
All I/Os except Group 2  
Group 2(1)  
High-level output source current, VOH = 2.4 V,  
IOH  
mA  
All I/Os except Group 2  
Group 2(1)  
4
Low-level output sink current, VOL = VOL MAX,  
IOL  
mA  
8
A version  
– 40  
– 40  
85  
°C  
Ambient temperature, TA  
Junction temperature, Tj  
S version  
125  
125  
°C  
(1) Group 2 pins are as follows: GPIO28, GPIO29, GPIO30, GPIO31, TDO, XCLKOUT, EMU0, EMU1, XINTF pins, GPIO35-87, XRD.  
6.3 Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.4  
TYP  
MAX UNIT  
IOH = IOHMAX  
IOH = 50 µA  
VOH High-level output voltage  
VOL Low-level output voltage  
V
VDDIO – 0.2  
IOL = IOLMAX  
0.4  
V
Pin with pullup  
enabled  
VDDIO = 3.3 V, VIN = 0 V  
VDDIO = 3.3 V, VIN = 0 V  
VDDIO = 3.3 V, VIN = VDDIO  
VDDIO = 3.3 V, VIN = VDDIO  
VO = VDDIO or 0 V  
All I/Os (including XRS)  
– 80  
– 140  
– 190  
Input current  
(low level)  
IIL  
µA  
Pin with pulldown  
enabled  
± 2  
± 2  
80  
Pin with pullup  
enabled  
Input current  
(high level)  
IIH  
µA  
Pin with pulldown  
enabled  
28  
50  
2
Output current, pullup or  
pulldown disabled  
IOZ  
CI  
± 2  
µA  
Input capacitance  
pF  
110  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6.4 Current Consumption  
Table 6-1. TMS320F28335/F28235 Current Consumption by Power-Supply Pins at 150-MHz SYSCLKOUT  
(1)  
(2)  
(3)  
IDD  
IDDIO  
TYP(4)  
IDD3VFL  
IDDA18  
TYP(4)  
IDDA33  
TYP(4)  
MAX  
MODE  
TEST CONDITIONS  
TYP(4)  
MAX  
MAX  
TYP  
MAX  
MAX  
The following peripheral  
clocks are enabled:  
ePWM1/2/3/4/5/6  
eCAP1/2/3/4/5/6  
eQEP1/2  
eCAN-A  
SCI-A/B (FIFO  
mode)  
Operational  
(Flash)(5)  
290 mA  
25 mA  
35 mA  
40 mA  
30 mA  
38 mA  
1.5 mA  
2 mA  
SPI-A (FIFO mode)  
ADC  
I2C  
CPU Timer 0/1/2  
All PWM pins are toggled  
at 150 kHz.  
All I/O pins are left  
unconnected.(6)  
Flash is powered down.  
XCLKOUT is turned off.  
The following peripheral  
clocks are enabled:  
IDLE  
75 mA  
90 mA  
12 mA  
500 µA  
2 mA  
2 µA  
10 µA  
5 µA  
50 µA  
15 µA  
30 µA  
eCAN-A  
SCI-A  
SPI-A  
I2C  
Flash is powered down.  
Peripheral clocks are off.  
STANDBY  
HALT  
6 mA  
100 µA  
60 µA  
500 µA  
120 µA  
2 µA  
2 µA  
10 µA  
10 µA  
5 µA  
5 µA  
50 µA  
50 µA  
15 µA  
15 µA  
30 µA  
30 µA  
Flash is powered down.  
Peripheral clocks are off.  
Input clock is disabled.(7)  
70 µA  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) IDDA18 includes current into VDD1A18 and VDD2A18 pins. In order to realize the IDDA18 currents shown for IDLE, STANDBY, and HALT,  
clock to the ADC module must be turned off explicitly by writing to the PCLKCR0 register.  
(3) IDDA33 includes current into VDDA2 and VDDAIO pins.  
(4) The TYP numbers are applicable over room temperature and nominal voltage.  
(5) When the identical code is run off SARAM, IDD would increase as the code operates with zero wait states.  
(6) The following is done in a loop:  
Data is continuously transmitted out of the SCI-A, SCI-B, SPI-A, McBSP-A, and eCAN-A ports.  
Floating-point multiplication and addition are performed.  
Watchdog is reset.  
ADC is performing continuous conversion. Data from ADC is transferred to SARAM through the DMA.  
32-bit read/write of the XINTF is performed.  
GPIO19 is toggled.  
(7) If a quartz crystal or ceramic resonator is used as the clock source, the HALT mode shuts down the internal oscillator.  
NOTE  
The peripheral - I/O multiplexing implemented in the device prevents all available  
peripherals from being used at the same time. This is because more than one peripheral  
function may share an I/O pin. It is, however, possible to turn on the clocks to all the  
peripherals at the same time, although such a configuration is not useful. If this is done,  
the current drawn by the device will be more than the numbers specified in the current  
consumption tables.  
Submit Documentation Feedback  
Electrical Specifications  
111  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 6-2. TMS320F28334/F28234 Current Consumption by Power-Supply Pins at 150-MHz SYSCLKOUT  
(1)  
(2)  
(3)  
IDD  
IDDIO  
TYP(4)  
IDD3VFL  
IDDA18  
TYP(4)  
IDDA33  
TYP(4)  
MAX  
MODE  
TEST CONDITIONS  
TYP(4)  
MAX  
MAX  
TYP  
MAX  
MAX  
The following peripheral  
clocks are enabled:  
ePWM1/2/3/4/5/6  
eCAP1/2/3/4/5/6  
eQEP1/2  
eCAN-A  
SCI-A/B (FIFO  
mode)  
Operational  
(Flash)(5)  
290 mA  
25 mA  
35 mA  
40 mA  
30 mA  
38 mA  
1.5 mA  
2 mA  
SPI-A (FIFO mode)  
ADC  
I2C  
CPU Timer 0/1/2  
All PWM pins are toggled  
at 150 kHz.  
All I/O pins are left  
(6)  
unconnected.  
Flash is powered down.  
XCLKOUT is turned off.  
The following peripheral  
clocks are enabled:  
IDLE  
75 mA  
90 mA  
12 mA  
500 µA  
2 mA  
2 µA  
10 µA  
5 µA  
50 µA  
15 µA  
30 µA  
eCAN-A  
SCI-A  
SPI-A  
I2C  
Flash is powered down.  
Peripheral clocks are off.  
STANDBY  
HALT  
6 mA  
100 µA  
60 µA  
500 µA  
120 µA  
2 µA  
2 µA  
10 µA  
10 µA  
5 µA  
5 µA  
50 µA  
50 µA  
15 µA  
15 µA  
30 µA  
30 µA  
Flash is powered down.  
Peripheral clocks are off.  
Input clock is disabled.(7)  
70 µA  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) IDDA18 includes current into VDD1A18 and VDD2A18 pins. In order to realize the IDDA18 currents shown for IDLE, STANDBY, and HALT,  
clock to the ADC module must be turned off explicitly by writing to the PCLKCR0 register.  
(3) IDDA33 includes current into VDDA2 and VDDAIO pins.  
(4) The TYP numbers are applicable over room temperature and nominal voltage.  
(5) When the identical code is run off SARAM, IDD would increase as the code operates with zero wait states.  
(6) The following is done in a loop:  
Data is continuously transmitted out of the SCI-A, SCI-B, SPI-A, McBSP-A, and eCAN-A ports.  
Floating-point multiplication and addition are performed.  
Watchdog is reset.  
ADC is performing continuous conversion. Data from ADC is transferred to SARAM through the DMA.  
32-bit read/write of the XINTF is performed.  
GPIO19 is toggled.  
(7) If a quartz crystal or ceramic resonator is used as the clock source, the HALT mode shuts down the internal oscillator.  
112  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6.4.1 Reducing Current Consumption  
Like 280x and 281x, the F2833x/F2823x DSCs incorporate a unique method to reduce the device current  
consumption. Since each peripheral unit has an individual clock-enable bit, significant reduction in current  
consumption can be achieved by turning off the clock to any peripheral module that is not used in a given  
application. Furthermore, any one of the three low-power modes could be taken advantage of to reduce  
the current consumption even further. Table 6-3 indicates the typical reduction in current consumption  
achieved by turning off the clocks.  
Table 6-3. Typical Current Consumption by Various  
Peripherals (at 150 MHz)(1)  
PERIPHERAL  
MODULE  
IDD CURRENT  
REDUCTION (mA)  
ADC  
I2C  
8(2)  
2.5  
5
eQEP  
ePWM  
eCAP  
SCI  
5
2
5
SPI  
4
eCAN  
McBSP  
CPU - Timer  
XINTF  
DMA  
8
7
2
10(3)  
10  
15  
FPU  
(1) All peripheral clocks are disabled upon reset. Writing to/reading  
from peripheral registers is possible only after the peripheral clocks  
are turned on.  
(2) This number represents the current drawn by the digital portion of  
the ADC module. Turning off the clock to the ADC module results in  
the elimination of the current drawn by the analog portion of the  
ADC (IDDA18) as well.  
(3) Operating the XINTF bus has a significant effect on IDDIO current.  
It will increase considerably based on the following:  
How many address/data pins toggle from one cycle to another  
How fast they toggle  
Whether 16-bit or 32-bit interface is used and  
The load on these pins.  
Other methods to reduce power consumption further are as follow:  
The Flash module may be powered down if code is run off SARAM. This results in a current reduction  
of 35 mA (typical) in the VDD3VFL rail.  
IDDIO current consumption is reduced by 15 mA (typical) when XCLKOUT is turned off.  
The baseline IDD current (current when the core is executing a dummy loop with no peripherals enabled) is  
165 mA, (typical). To arrive at the IDD current for a given application, the current-drawn by the peripherals  
(enabled by that application) must be added to the baseline IDD current.  
Submit Documentation Feedback  
Electrical Specifications  
113  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6.4.2 Current Consumption Graphs  
Current Vs Frequency  
350.00  
300.00  
250.00  
200.00  
150.00  
100.00  
50.00  
0.00  
10  
20  
30  
40  
50  
60  
70  
80  
90  
10  
1
100  
120  
130  
140  
150  
SYSCLKOUT (MHz)  
IDDIO  
IDDA18  
3.3-V Current  
IDD  
IDD3VFL  
1.9-V Current  
Figure 6-1. Typical Operational Current Versus Frequency (F28335/F28235/F28334/F28234)  
Device Power Vs SYSCLKOUT  
900.0  
800.0  
700.0  
600.0  
500.0  
400.0  
300.0  
200.0  
100.0  
0.0  
0
0
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
10  
1
10  
12  
13  
14  
15  
SYSCLKOUT (MHz)  
Total Power  
Figure 6-2. Typical Operational Power Versus Frequency (F28335/F28235/F28334/F28234)  
114  
Electrical Specifications  
Submit Documentation Feedback  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
NOTE  
Typical operational current for 100-MHz devices can be estimated from Figure 6-1. For Idd  
current alone, subtract the current contribution of non-existent peripherals after scaling the  
peripheral currents for 100 MHz. For example, to compute the current of F2833x-100  
device, the contribution by the following peripherals must be subtracted from Idd: eCAP5,  
eCAP6.  
6.4.2.1 Thermal Design Considerations  
Based on the end application design and operational profile, the IDD and IDDIO currents could vary.  
Systems with more than 1 Watt power dissipation may require a product level thermal design. Care should  
be taken to keep Tj within specified limits. In the end applications, Tcase should be measured to estimate  
the operating junction temperature Tj. Tcase is normally measured at the center of the package top side  
surface. The thermal application notes IC Package Thermal Metrics (literature number SPRA953) and  
Reliability Data for TMS320LF24x and TMS320F281x Devices (literature number SPRA963) help to  
understand the thermal metrics and definitions.  
6.5 Emulator Connection Without Signal Buffering for the DSP  
Figure 6-3 shows the connection between the DSP and JTAG header for a single-processor configuration.  
If the distance between the JTAG header and the DSP is greater than 6 inches, the emulation signals  
must be buffered. If the distance is less than 6 inches, buffering is typically not needed. Figure 6-3 shows  
the simpler, no-buffering situation. For the pullup/pulldown resistor values, see the pin description section.  
For details on buffering JTAG signals and multiple processor connections, see TMS320F/C24x DSP  
Controllers CPU and Instruction Set Reference Guide (literature number SPRU160).  
6 inches or less  
VDDIO  
VDDIO  
13  
14  
2
5
EMU0  
EMU1  
TRST  
TMS  
TDI  
EMU0  
EMU1  
TRST  
TMS  
PD  
4
GND  
1
6
GND  
GND  
GND  
GND  
3
8
TDI  
7
10  
12  
TDO  
TDO  
11  
9
TCK  
TCK  
TCK_RET  
DSP  
JTAG Header  
Figure 6-3. Emulator Connection Without Signal Buffering for the DSP  
Submit Documentation Feedback  
Electrical Specifications  
115  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6.6 Timing Parameter Symbology  
Timing parameter symbols used are created in accordance with JEDEC Standard 100. To shorten the  
symbols, some of the pin names and other related terminology have been abbreviated as follows:  
Lowercase subscripts and their  
meanings:  
Letters and symbols and their  
meanings:  
a
c
d
f
access time  
cycle time (period)  
delay time  
H
L
High  
Low  
V
X
Z
Valid  
fall time  
Unknown, changing, or don't care level  
High impedance  
h
r
hold time  
rise time  
su  
t
setup time  
transition time  
valid time  
v
w
pulse duration (width)  
6.6.1 General Notes on Timing Parameters  
All output signals from the 28x devices (including XCLKOUT) are derived from an internal clock such that  
all output transitions for a given half-cycle occur with a minimum of skewing relative to each other.  
The signal combinations shown in the following timing diagrams may not necessarily represent actual  
cycles. For actual cycle examples, see the appropriate cycle description section of this document.  
6.6.2 Test Load Circuit  
This test load circuit is used to measure all switching characteristics provided in this document.  
Tester Pin Electronics  
Data Sheet Timing Reference Point  
Output  
Under  
Test  
42 Ω  
3.5 nH  
Transmission Line  
(Α)  
Z0 = 50 Ω  
(B)  
Device Pin  
4.0 pF  
1.85 pF  
A. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the  
device pin.  
B. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its  
transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to  
produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to  
add or subtract the transmission line delay (2 ns or longer) from the data sheet timing.  
Figure 6-4. 3.3-V Test Load Circuit  
6.6.3 Device Clock Table  
This section provides the timing requirements and switching characteristics for the various clock options  
available. Table 6-4 and Table 6-5 list the cycle times of various clocks.  
116  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 6-4. Clocking and Nomenclature (150-MHz devices)  
MIN  
NOM  
MAX UNIT  
tc(OSC), Cycle time  
Frequency  
28.6  
20  
50  
35  
ns  
MHz  
ns  
On-chip oscillator  
clock  
tc(CI), Cycle time  
Frequency  
6.67  
4
250  
150  
500  
150  
2000  
150  
XCLKIN(1)  
SYSCLKOUT  
XCLKOUT  
HSPCLK(2)  
LSPCLK(2)  
ADC clock  
MHz  
ns  
tc(SCO), Cycle time  
Frequency  
6.67  
2
MHz  
ns  
tc(XCO), Cycle time  
Frequency  
6.67  
0.5  
6.67  
MHz  
ns  
tc(HCO), Cycle time  
Frequency  
13.3(3)  
75(3)  
26.7(3)  
37.5(3)  
150  
75  
MHz  
ns  
tc(LCO), Cycle time  
Frequency  
13.3  
40  
MHz  
ns  
tc(ADCCLK), Cycle time  
Frequency  
25  
MHz  
(1) This also applies to the X1 pin if a 1.9-V oscillator is used.  
(2) Lower LSPCLK and HSPCLK will reduce device power consumption.  
(3) This is the default reset value if SYSCLKOUT = 150 MHz.  
Table 6-5. Clocking and Nomenclature (100-MHz devices)  
MIN  
NOM  
MAX UNIT  
tc(OSC), Cycle time  
28.6  
20  
10  
4
50  
35  
ns  
MHz  
ns  
On-chip oscillator  
clock  
Frequency  
tc(CI), Cycle time  
Frequency  
250  
100  
500  
100  
2000  
100  
XCLKIN(1)  
SYSCLKOUT  
XCLKOUT  
HSPCLK(2)  
LSPCLK(2)  
ADC clock  
MHz  
ns  
tc(SCO), Cycle time  
Frequency  
10  
2
MHz  
ns  
tc(XCO), Cycle time  
Frequency  
10  
0.5  
10  
MHz  
ns  
tc(HCO), Cycle time  
Frequency  
20(3)  
50(3)  
40(3)  
25(3)  
100  
50  
MHz  
ns  
tc(LCO), Cycle time  
Frequency  
20  
40  
MHz  
ns  
tc(ADCCLK), Cycle time  
Frequency  
25  
MHz  
(1) This also applies to the X1 pin if a 1.9-V oscillator is used.  
(2) Lower LSPCLK and HSPCLK will reduce device power consumption.  
(3) This is the default reset value if SYSCLKOUT = 100 MHz.  
Submit Documentation Feedback  
Electrical Specifications  
117  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6.7 Clock Requirements and Characteristics  
Table 6-6. Input Clock Frequency  
PARAMETER  
Resonator (X1/X2)  
MIN  
20  
20  
4
TYP MAX UNIT  
35  
Crystal (X1/X2)  
35  
MHz  
150  
fx  
Input clock frequency  
150-MHz device  
100-MHz device  
External oscillator/clock  
source (XCLKIN or X1 pin)  
4
100  
fl  
Limp mode SYSCLKOUT frequency range (with /2 enabled)  
1 - 5  
MHz  
Table 6-7. XCLKIN(1) Timing Requirements - PLL Enabled  
NO.  
C8  
MIN  
MAX UNIT  
tc(CI)  
tf(CI)  
Cycle time, XCLKIN  
33.3  
200  
6
ns  
ns  
ns  
%
C9  
Fall time, XCLKIN  
C10 tr(CI)  
Rise time, XCLKIN  
6
C11 tw(CIL)  
C12 tw(CIH)  
Pulse duration, XCLKIN low as a percentage of tc(OSCCLK)  
Pulse duration, XCLKIN high as a percentage of tc(OSCCLK)  
45  
45  
55  
55  
%
(1) This applies to the X1 pin also.  
Table 6-8. XCLKIN(1) Timing Requirements - PLL Disabled  
NO.  
MIN  
6.67  
10  
MAX UNIT  
C8  
tc(CI)  
Cycle time, XCLKIN  
Fall time, XCLKIN  
Rise time, XCLKIN  
150-MHz device  
100-MHz device  
Up to 30 MHz  
250  
250  
6
ns  
C9  
tf(CI)  
ns  
ns  
ns  
ns  
%
30 MHz to 150 MHz  
Up to 30 MHz  
2
C10 tr(CI)  
6
30 MHz to 150 MHz  
2
C11 tw(CIL)  
C12 tw(CIH)  
Pulse duration, XCLKIN low as a percentage of tc(OSCCLK)  
Pulse duration, XCLKIN high as a percentage of tc(OSCCLK)  
45  
45  
55  
55  
%
(1) This applies to the X1 pin also.  
The possible configuration modes are shown in Table 3-18.  
Table 6-9. XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)(1)(2)  
NO.  
PARAMETER  
MIN  
6.67  
10  
TYP  
MAX  
UNIT  
150-MHz device  
100-MHz device  
C1  
tc(XCO)  
Cycle time, XCLKOUT  
ns  
C3  
C4  
C5  
C6  
tf(XCO)  
tr(XCO)  
tw(XCOL)  
tw(XCOH)  
tp  
Fall time, XCLKOUT  
2
2
ns  
ns  
Rise time, XCLKOUT  
Pulse duration, XCLKOUT low  
Pulse duration, XCLKOUT high  
PLL lock time  
H – 2  
H – 2  
H + 2  
ns  
H + 2  
ns  
(3)  
131072tc(OSCCLK)  
cycles  
(1) A load of 40 pF is assumed for these parameters.  
(2) H = 0.5tc(XCO)  
(3) OSCCLK is either the output of the on-chip oscillator or the output from an external oscillator.  
118  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
C10  
C9  
C8  
(A)  
XCLKIN  
C6  
C3  
C1  
C4  
C5  
(B)  
XCLKOUT  
A. The relationship of XCLKIN to XCLKOUT depends on the divide factor chosen. The waveform relationship shown is  
intended to illustrate the timing parameters only and may differ based on actual configuration.  
B. XCLKOUT configured to reflect SYSCLKOUT.  
Figure 6-5. Clock Timing  
6.8 Power Sequencing  
No requirements are placed on the power up/down sequence of the various power pins to ensure the  
correct reset state for all the modules. However, if the 3.3-V transistors in the level shifting output buffers  
of the I/O pins are powered prior to the 1.9-V transistors, it is possible for the output buffers to turn on,  
causing a glitch to occur on the pin during power up. To avoid this behavior, power the VDD pins prior to or  
simultaneously with the VDDIO pins, ensuring that the VDD pins have reached 0.7 V before the VDDIO pins  
reach 0.7 V.  
There are some requirements on the XRS pin:  
1. During power up, the XRS pin must be held low for tw(RSL1) after the input clock is stable (see  
Table 6-11). This is to enable the entire device to start from a known condition.  
2. During power down, the XRS pin must be pulled low at least 8 µs prior to VDD reaching 1.5 V. This is to  
enhance flash reliability.  
Additionally it is recommended that no voltage larger than a diode drop (0.7 V) should be applied to any  
pin prior to powering up the device. Voltages applied to pins on an unpowered device can bias internal p-n  
junctions in unintended ways and produce unpredictable results.  
6.8.1 Power Management and Supervisory Circuit Solutions  
Table 6-10 lists the power management and supervisory circuit solutions for 280x DSPs. LDO selection  
depends on the total power consumed in the end application. Go to www.power.ti.com for a complete list  
of TI power ICs or select TI DSP Power Solutions for links to the DSP Power Selection Guide  
(slub006a.pdf) and links to specific power reference designs.  
Table 6-10. Power Management and Supervisory Circuit Solutions  
SUPPLIER  
Texas Instruments  
Texas Instruments  
Texas Instruments  
Texas Instruments  
Texas Instruments  
Texas Instruments  
Texas Instruments  
Texas Instruments  
Texas Instruments  
TYPE  
LDO  
PART  
DESCRIPTION  
TPS767D301 Dual 1-A low-dropout regulator (LDO) with supply voltage supervisor (SVS)  
LDO  
TPS70202  
TPS766xx  
TPS3808  
TPS3803  
TPS799xx  
TPS736xx  
TPS62110  
TPS6230x  
Dual 500/250-mA LDO with SVS  
LDO  
250-mA LDO with PG  
SVS  
Open Drain SVS with programmable delay  
Low-cost Open-drain SVS with 5 µS delay  
200-mA LDO in WCSP package  
SVS  
LDO  
LDO  
400-mA LDO with 40 mV of VDO  
DC/DC  
DC/DC  
High Vin 1.2-A dc/dc converter in 4x4 QFN package  
500-mA converter in WCSP package  
Submit Documentation Feedback  
Electrical Specifications  
119  
 
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
V , V  
DDIO DD3VFL  
V , V  
DDA2 DDAIO  
(3.3 V)  
V , V  
DD DD1A18,  
V
DD2A18  
(1.9 V)  
XCLKIN  
X1/X2  
(A)  
OSCCLK/8  
User-Code Dependent  
OSCCLK/16  
XCLKOUT  
XRS  
t
OSCST  
t
w(RSL1)  
Address/Data Valid. Internal Boot-ROM Code Execution Phase  
Address/Data/  
Control  
(Internal)  
User-Code Execution Phase  
User-Code Dependent  
t
d(EX)  
(B)  
h(boot-mode)  
t
Boot-Mode  
Pins  
GPIO Pins as Input  
Boot-ROM Execution Starts  
Peripheral/GPIO Function  
Based on Boot Code  
(C)  
GPIO Pins as Input (State Depends on Internal PU/PD)  
User-Code Dependent  
I/O Pins  
A. Upon power up, SYSCLKOUT is OSCCLK/4. Since both the XTIMCLK and CLKMODE bits in the XINTCNF2 register  
come up with a reset state of 1, SYSCLKOUT is further divided by 4 before it appears at XCLKOUT. This explains  
why XCLKOUT = OSCCLK/16 during this phase. Subsequently, boot ROM changes SYSCLKOUT to OSCCLK/2.  
Because the XTIMCLK register is unchanged by the boot ROM, XCLKOUT is OSCCLK/8 during this phase.  
B. After reset, the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode pin, the boot code  
branches to destination memory or boot code function. If boot ROM code executes after power-on conditions (in  
debugger environment), the boot code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT  
will be based on user environment and could be with or without PLL enabled.  
C. See Section 6.8 for requirements to ensure a high-impedance state for GPIO pins during power-up.  
Figure 6-6. Power-on Reset  
120  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 6-11. Reset (XRS) Timing Requirements  
MIN  
8tc(OSCCLK)  
8tc(OSCCLK)  
NOM  
MAX  
UNIT  
cycles  
cycles  
(1)  
tw(RSL1)  
Pulse duration, stable XCLKIN to XRS high  
Pulse duration, XRS low  
tw(RSL2)  
tw(WDRS)  
td(EX)  
Warm reset  
Pulse duration, reset pulse generated by  
watchdog  
512tc(OSCCLK)  
cycles  
Delay time, address/data valid after XRS high  
Oscillator start-up time  
32tc(OSCCLK)  
10  
cycles  
ms  
(2)  
tOSCST  
1
th(boot-mode)  
Hold time for boot-mode pins  
200tc(OSCCLK)  
cycles  
(1) In addition to the tw(RSL1) requirement, XRS has to be low at least for 1 ms after VDD reaches 1.5 V.  
(2) Dependent on crystal/resonator and board design.  
XCLKIN  
X1/X2  
OSCCLK/8  
XCLKOUT  
XRS  
User-Code Dependent  
OSCCLK * 5  
t
w(RSL2)  
User-Code Execution Phase  
t
d(EX)  
Address/Data/  
Control  
(Don’t Care)  
User-Code Execution  
(Internal)  
(A)  
t
Boot-ROM Execution Starts  
GPIO Pins as Input  
h(boot-mode)  
Boot-Mode  
Pins  
Peripheral/GPIO Function  
User-Code Dependent  
Peripheral/GPIO Function  
User-Code Execution Starts  
I/O Pins  
GPIO Pins as Input (State Depends on Internal PU/PD)  
User-Code Dependent  
A. After reset, the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code  
branches to destination memory or boot code function. If Boot ROM code executes after power-on conditions (in  
debugger environment), the Boot code execution time is based on the current SYSCLKOUT speed. The  
SYSCLKOUT will be based on user environment and could be with or without PLL enabled.  
Figure 6-7. Warm Reset  
Figure 6-8 shows an example for the effect of writing into PLLCR register. In the first phase, PLLCR =  
0x0004 and SYSCLKOUT = OSCCLK x 2. The PLLCR is then written with 0x0008. Right after the PLLCR  
register is written, the PLL lock-up phase begins. During this phase, SYSCLKOUT = OSCCLK/2. After the  
PLL lock-up is complete (which takes 131072 OSCCLK cycles), SYSCLKOUT reflects the new operating  
frequency, OSCCLK x 4.  
Submit Documentation Feedback  
Electrical Specifications  
121  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
OSCCLK  
Write to PLLCR  
SYSCLKOUT  
OSCCLK * 2  
OSCCLK/2  
OSCCLK * 4  
(Changed CPU Frequency)  
(Current CPU  
Frequency)  
(CPU Frequency While PLL is Stabilizing  
With the Desired Frequency. This Period  
(PLL Lock-up Time, t ) is  
p
131072 OSCCLK Cycles Long.)  
Figure 6-8. Example of Effect of Writing Into PLLCR Register  
6.9 General-Purpose Input/Output (GPIO)  
6.9.1 GPIO - Output Timing  
Table 6-12. General-Purpose Output Switching Characteristics  
PARAMETER  
Rise time, GPIO switching low to high  
Fall time, GPIO switching high to low  
Toggling frequency, GPO pins  
MIN  
MAX  
8
UNIT  
ns  
tr(GPO)  
tf(GPO)  
tfGPO  
All GPIOs  
All GPIOs  
8
ns  
25  
MHz  
GPIO  
t
r(GPO)  
t
f(GPO)  
Figure 6-9. General-Purpose Output Timing  
122  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6.9.2 GPIO - Input Timing  
(A)  
1
GPIO Signal  
GPxQSELn = 1,0 (6 samples)  
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
t
Sampling Period determined  
by GPxCTRL[QUALPRD]  
w(SP)  
(B)  
t
w(IQSW)  
(C)  
(SYSCLKOUT cycle * 2 * QUALPRD) * 5  
)
Sampling Window  
SYSCLKOUT  
QUALPRD = 1  
(SYSCLKOUT/2)  
(D)  
Output From  
Qualifier  
A. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It  
can vary from 00 to 0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLKOUT cycle. For any other value  
"n", the qualification sampling period in 2n SYSCLKOUT cycles (i.e., at every 2n SYSCLKOUT cycles, the GPIO pin  
will be sampled).  
B. The qualification period selected via the GPxCTRL register applies to groups of 8 GPIO pins.  
C. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is  
used.  
D. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLKOUT cycles or  
greater. In other words, the inputs should be stable for (5 x QUALPRD x 2) SYSCLKOUT cycles. This would ensure  
5 sampling periods for detection to occur. Since external signals are driven asynchronously, an 13-SYSCLKOUT-wide  
pulse ensures reliable recognition.  
Figure 6-10. Sampling Mode  
Table 6-13. General-Purpose Input Timing Requirements  
MIN  
1tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
cycles  
cycles  
cycles  
QUALPRD = 0  
tw(SP)  
Sampling period  
QUALPRD 0  
2tc(SCO) * QUALPRD  
tw(SP) * (n(1) – 1)  
2tc(SCO)  
tw(IQSW)  
Input qualifier sampling window  
Pulse duration, GPIO low/high  
Synchronous mode  
With input qualifier  
(2)  
tw(GPI)  
tw(IQSW) + tw(SP) + 1tc(SCO)  
(1) "n" represents the number of qualification samples as defined by GPxQSELn register.  
(2) For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal.  
Submit Documentation Feedback  
Electrical Specifications  
123  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6.9.3 Sampling Window Width for Input Signals  
The following section summarizes the sampling window width for input signals for various input qualifier  
configurations.  
Sampling frequency denotes how often a signal is sampled with respect to SYSCLKOUT.  
Sampling frequency = SYSCLKOUT/(2 * QUALPRD), if QUALPRD 0  
Sampling frequency = SYSCLKOUT, if QUALPRD = 0  
Sampling period = SYSCLKOUT cycle x 2 x QUALPRD, if QUALPRD 0  
In the above equations, SYSCLKOUT cycle indicates the time period of SYSCLKOUT.  
Sampling period = SYSCLKOUT cycle, if QUALPRD = 0  
In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of  
the signal. This is determined by the value written to GPxQSELn register.  
Case 1:  
Qualification using 3 samples  
Sampling window width = (SYSCLKOUT cycle x 2 x QUALPRD) x 2, if QUALPRD 0  
Sampling window width = (SYSCLKOUT cycle) x 2, if QUALPRD = 0  
Case 2:  
Qualification using 6 samples  
Sampling window width = (SYSCLKOUT cycle x 2 x QUALPRD) x 5, if QUALPRD 0  
Sampling window width = (SYSCLKOUT cycle) x 5, if QUALPRD = 0  
XCLKOUT  
GPIOxn  
t
w(GPI)  
Figure 6-11. General-Purpose Input Timing  
NOTE  
The pulse-width requirement for general-purpose input is applicable for the  
XINT2_ADCSOC signal as well.  
124  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6.9.4 Low-Power Mode Wakeup Timing  
Table 6-14 shows the timing requirements, Table 6-15 shows the switching characteristics, and  
Figure 6-12 shows the timing diagram for IDLE mode.  
Table 6-14. IDLE Mode Timing Requirements(1)  
MIN NOM  
MAX  
UNIT  
Without input qualifier  
With input qualifier  
2tc(SCO)  
5tc(SCO) + tw(IQSW)  
Pulse duration, external wake-up  
signal  
tw(WAKE-INT)  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 6-13.  
Table 6-15. IDLE Mode Switching Characteristics(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Delay time, external wake signal to  
(2)  
program execution resume  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
20tc(SCO)  
20tc(SCO) + tw(IQSW)  
1050tc(SCO)  
cycles  
cycles  
cycles  
Wake-up from Flash  
Flash module in active state  
td(WAKE-IDLE)  
Wake-up from Flash  
Flash module in sleep state  
1050tc(SCO) + tw(IQSW)  
20tc(SCO)  
Wake-up from SARAM  
20tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-13.  
(2) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. execution of an ISR (triggered  
by the wake up) signal involves additional latency.  
t
d(WAKE−IDLE)  
Address/Data  
(internal)  
XCLKOUT  
t
w(WAKE−INT)  
(A)  
WAKE INT  
A. WAKE INT can be any enabled interrupt, WDINT, XNMI, or XRS.  
Figure 6-12. IDLE Entry and Exit Timing  
Table 6-16. STANDBY Mode Timing Requirements  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
Without input qualification  
With input qualification(1)  
3tc(OSCCLK)  
Pulse duration, external  
wake-up signal  
tw(WAKE-INT)  
cycles  
(2 + QUALSTDBY) * tc(OSCCLK)  
(1) QUALSTDBY is a 6-bit field in the LPMCR0 register.  
Submit Documentation Feedback  
Electrical Specifications  
125  
 
 
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 6-17. STANDBY Mode Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Delay time, IDLE instruction  
executed to XCLKOUT low  
td(IDLE-XCOL)  
32tc(SCO)  
45tc(SCO)  
cycles  
Delay time, external wake  
signal to program execution  
resume(1)  
cycles  
cycles  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
100tc(SCO)  
100tc(SCO) + tw(WAKE-INT)  
1125tc(SCO)  
Wake up from flash  
Flash module in active  
state  
td(WAKE-STBY)  
Wake up from flash  
cycles  
cycles  
Flash module in sleep  
state  
1125tc(SCO) + tw(WAKE-INT)  
Without input qualifier  
With input qualifier  
100tc(SCO)  
Wake up from SARAM  
100tc(SCO) + tw(WAKE-INT)  
(1) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. execution of an ISR (triggered  
by the wake up signal) involves additional latency.  
(A)  
(C)  
(E)  
(D)  
(B)  
(F)  
Device  
Status  
STANDBY  
STANDBY  
Normal Execution  
Flushing Pipeline  
Wake−up  
Signal  
t
w(WAKE-INT)  
t
d(WAKE-STBY)  
X1/X2 or  
X1 or  
XCLKIN  
XCLKOUT  
t
d(IDLE−XCOL)  
A. IDLE instruction is executed to put the device into STANDBY mode.  
B. The PLL block responds to the STANDBY signal. SYSCLKOUT is held for approximately 32 cycles before being  
turned off. This 32-cycle delay enables the CPU pipe and any other pending operations to flush properly.  
C. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in  
STANDBY mode.  
D. The external wake-up signal is driven active.  
E. After a latency period, the STANDBY mode is exited.  
F. Normal execution resumes. The device will respond to the interrupt (if enabled).  
Figure 6-13. STANDBY Entry and Exit Timing Diagram  
Table 6-18. HALT Mode Timing Requirements  
MIN NOM  
MAX  
UNIT  
cycles  
cycles  
(1)  
tw(WAKE-GPIO)  
tw(WAKE-XRS)  
Pulse duration, GPIO wake-up signal  
Pulse duration, XRS wakeup signal  
toscst + 2tc(OSCCLK)  
toscst + 8tc(OSCCLK)  
(1) See Table 6-11 for an explanation of toscst  
.
126  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 6-19. HALT Mode Switching Characteristics  
PARAMETER  
MIN  
TYP  
MAX  
45tc(SCO)  
UNIT  
cycles  
cycles  
Delay time, IDLE instruction executed to XCLKOUT  
low  
td(IDLE-XCOL)  
32tc(SCO)  
tp  
PLL lock-up time  
131072tc(OSCCLK)  
Delay time, PLL lock to program execution resume  
1125tc(SCO)  
35tc(SCO)  
cycles  
cycles  
Wake up from flash  
Flash module in sleep state  
td(WAKE-HALT)  
Wake up from SARAM  
(G)  
(A)  
(C)  
(E)  
(B)  
(D)  
HALT  
(F)  
Device  
Status  
HALT  
Flushing Pipeline  
PLL Lock-up Time  
Normal  
Execution  
Wake-up Latency  
GPIOn  
t
d(WAKE−HALT)  
t
w(WAKE-GPIO)  
t
p
X1/X2  
or XCLKIN  
Oscillator Start-up Time  
XCLKOUT  
t
d(IDLE−XCOL)  
A. IDLE instruction is executed to put the device into HALT mode.  
B. The PLL block responds to the HALT signal. SYSCLKOUT is held for approximately 32 cycles before the oscillator is  
turned off and the CLKIN to the core is stopped. This 32-cycle delay enables the CPU pipe and any other pending  
operations to flush properly.  
C. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as  
the clock source, the internal oscillator is shut down as well. The device is now in HALT mode and consumes  
absolute minimum power.  
D. When the GPIOn pin is driven low, the oscillator is turned on and the oscillator wake-up sequence is initiated. The  
GPIO pin should be driven high only after the oscillator has stabilized. This enables the provision of a clean clock  
signal during the PLL lock sequence. Since the falling edge of the GPIO pin asynchronously begins the wakeup  
procedure, care should be taken to maintain a low noise environment prior to entering and during HALT mode.  
E. When GPIOn is deactivated, it initiates the PLL lock sequence, which takes 131,072 OSCCLK (X1/X2 or X1 or  
XCLKIN) cycles.  
F. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after a latency. The HALT  
mode is now exited.  
G. Normal operation resumes.  
Figure 6-14. HALT Wake-Up Using GPIOn  
Submit Documentation Feedback  
Electrical Specifications  
127  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6.10 Enhanced Control Peripherals  
6.10.1 Enhanced Pulse Width Modulator (ePWM) Timing  
PWM refers to PWM outputs on ePWM1-6. Table 6-20 shows the PWM timing requirements and  
Table 6-21, switching characteristics.  
Table 6-20. ePWM Timing Requirements(1)  
TEST CONDITIONS  
Asynchronous  
MIN  
2tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
cycles  
tw(SYCIN)  
Sync input pulse width  
Synchronous  
2tc(SCO)  
With input qualifier  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-13.  
Table 6-21. ePWM Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
20  
MAX  
UNIT  
ns  
tw(PWM)  
Pulse duration, PWMx output high/low  
Sync output pulse width  
tw(SYNCOUT)  
td(PWM)tza  
8tc(SCO)  
cycles  
ns  
Delay time, trip input active to PWM forced high  
Delay time, trip input active to PWM forced low  
no pin load  
25  
20  
td(TZ-PWM)HZ  
Delay time, trip input active to PWM Hi-Z  
ns  
6.10.2 Trip-Zone Input Timing  
(A)  
XCLKOUT  
t
w(TZ)  
TZ  
t
d(TZ-PWM)HZ  
(B)  
PWM  
A. TZ - TZ1, TZ2, TZ3, TZ4, TZ5, TZ6  
B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM  
recovery software.  
Figure 6-15. PWM Hi-Z Characteristics  
Table 6-22. Trip-Zone input Timing Requirements(1)  
MIN  
1tc(SCO)  
MAX UNIT  
cycles  
tw(TZ)  
Pulse duration, TZx input low  
Asynchronous  
Synchronous  
2tc(SCO)  
cycles  
With input qualifier  
1tc(SCO) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 6-13.  
Table 6-23 shows the high-resolution PWM switching characteristics.  
128  
Electrical Specifications  
Submit Documentation Feedback  
 
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 6-23. High Resolution PWM Characteristics at SYSCLKOUT = (60 - 150 MHz)  
MIN  
TYP  
MAX UNIT  
310 ps  
Micro Edge Positioning (MEP) step size(1)  
150  
(1) Maximum MEP step size is based on worst-case process, maximum temperature and maximum voltage. MEP step size will increase  
with low voltage and high temperature and decrease with voltage and cold temperature.  
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI  
software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per  
SYSCLKOUT period dynamically while the HRPWM is in operation.  
Table 6-24 shows the eCAP timing requirement and Table 6-25 shows the eCAP switching characteristics.  
Table 6-24. Enhanced Capture (eCAP) Timing Requirement(1)  
TEST CONDITIONS  
Asynchronous  
MIN  
2tc(SCO)  
MAX UNIT  
cycles  
tw(CAP)  
Capture input pulse width  
Synchronous  
2tc(SCO)  
cycles  
With input qualifier  
1tc(SCO) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 6-13.  
Table 6-25. eCAP Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
tw(APWM)  
Pulse duration, APWMx output high/low  
20  
ns  
Table 6-26 shows the eQEP timing requirement and Table 6-27 shows the eQEP switching  
characteristics.  
Table 6-26. Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements(1)  
TEST CONDITIONS  
Asynchronous/synchronous  
With input qualifier  
MIN  
MAX  
UNIT  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
tw(QEPP)  
QEP input period  
2tc(SCO)  
2(1tc(SCO) + tw(IQSW)  
)
tw(INDEXH)  
tw(INDEXL)  
tw(STROBH)  
tw(STROBL)  
QEP Index Input High time  
QEP Index Input Low time  
QEP Strobe High time  
QEP Strobe Input Low time  
Asynchronous/synchronous  
With input qualifier  
2tc(SCO)  
2tc(SCO) +tw(IQSW)  
2tc(SCO)  
Asynchronous/synchronous  
With input qualifier  
2tc(SCO) + tw(IQSW)  
2tc(SCO)  
2tc(SCO) + tw(IQSW)  
2tc(SCO)  
Asynchronous/synchronous  
With input qualifier  
Asynchronous/synchronous  
With input qualifier  
2tc(SCO) +tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-13.  
Table 6-27. eQEP Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
cycles  
cycles  
td(CNTR)xin  
Delay time, external clock to counter increment  
4tc(SCO)  
6tc(SCO)  
td(PCS-OUT)QEP  
Delay time, QEP input edge to position compare sync  
output  
Table 6-28. External ADC Start-of-Conversion Switching Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
tw(ADCSOCAL)  
Pulse duration, ADCSOCAO low  
32tc(HCO)  
cycles  
Submit Documentation Feedback  
Electrical Specifications  
129  
 
 
 
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
t
w(ADCSOCAL)  
ADCSOCAO  
or  
ADCSOCBO  
Figure 6-16. ADCSOCAO or ADCSOCBO Timing  
6.10.3 External Interrupt Timing  
t
w(INT)  
XNMI, XINT1, XINT2  
t
d(INT)  
Address bus  
(internal)  
Interrupt Vector  
Figure 6-17. External Interrupt Timing  
Table 6-29. External Interrupt Timing Requirements(1)  
TEST CONDITIONS  
MIN  
1tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
(2)  
tw(INT)  
Pulse duration, INT input low/high  
Synchronous  
With qualifier  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-13.  
(2) This timing is applicable to any GPIO pin configured for ADCSOC functionality.  
Table 6-30. External Interrupt Switching Characteristics(1)  
PARAMETER  
MIN  
MAX  
UNIT  
td(INT)  
Delay time, INT low/high to interrupt-vector fetch  
tw(IQSW) + 12tc(SCO)  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 6-13.  
130  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6.10.4 I2C Electrical Specification and Timing  
Table 6-31. I2C Timing  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
fSCL  
SCL clock frequency  
I2C clock module frequency is between  
7 MHz and 12 MHz and I2C prescaler and  
clock divider registers are configured  
appropriately  
400  
kHz  
vil  
Low level input voltage  
High level input voltage  
Input hysteresis  
0.3 VDDIO  
V
V
Vih  
0.7 VDDIO  
Vhys  
Vol  
0.05 VDDIO  
V
Low level output voltage  
Low period of SCL clock  
3-mA sink current  
0
0.4  
V
tLOW  
I2C clock module frequency is between  
7 MHz and 12 MHz and I2C prescaler and  
clock divider registers are configured  
appropriately  
1.3  
µs  
tHIGH  
High period of SCL clock  
I2C clock module frequency is between  
7 MHz and 12 MHz and I2C prescaler and  
clock divider registers are configured  
appropriately  
0.6  
-10  
µs  
lI  
Input current with an input voltage  
10  
µA  
between 0.1 VDDIO and 0.9 VDDIO MAX  
6.10.5 Serial Peripheral Interface (SPI) Master Mode Timing  
Table 6-32 lists the master mode timing (clock phase = 0) and Table 6-33 lists the timing (clock  
phase = 1). Figure 6-18 and Figure 6-19 show the timing waveforms.  
Submit Documentation Feedback  
Electrical Specifications  
131  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 6-32. SPI Master Mode External Timing (Clock Phase = 0)(1)(2)(3)(4)(5)  
NO.  
SPI WHEN (SPIBRR + 1) IS EVEN OR  
SPIBRR = 0 OR 2  
SPI WHEN (SPIBRR + 1) IS ODD  
AND SPIBRR > 3  
UNIT  
MIN  
4tc(LCO)  
MAX  
MIN  
MAX  
127tc(LCO)  
1
2
tc(SPC)M  
Cycle time, SPICLK  
128tc(LCO)  
0.5tc(SPC)M  
5tc(LCO)  
ns  
ns  
tw(SPCH)M  
Pulse duration, SPICLK high  
(clock polarity = 0)  
0.5tc(SPC)M -10  
0.5tc(SPC)M - 0.5tc(LCO) - 10  
0.5tc(SPC)M - 0.5tc(LCO) - 10  
0.5tc(SPC)M + 0.5tc(LCO)-10  
0.5tc(SPC)M + 0.5tc(LCO)- 10  
0.5tc(SPC)M - 0.5tc(LCO)  
0.5tc(SPC)M - 0.5tc(LCO)  
0.5tc(SPC)M + 0.5tc(LCO)  
0.5tc(SPC)M + 0.5tc(LCO)  
10  
tw(SPCL)M  
Pulse duration, SPICLK low  
(clock polarity = 1)  
0.5tc(SPC)M - 10  
0.5tc(SPC)M - 10  
0.5tc(SPC)M - 10  
0.5tc(SPC)M  
0.5tc(SPC)M  
0.5tc(SPC)M  
10  
3
4
5
8
9
tw(SPCL)M  
Pulse duration, SPICLK low  
(clock polarity = 0)  
ns  
ns  
tw(SPCH)M  
Pulse duration, SPICLK high  
(clock polarity = 1)  
td(SPCH-SIMO)M  
td(SPCL-SIMO)M  
tv(SPCL-SIMO)M  
tv(SPCH-SIMO)M  
tsu(SOMI-SPCL)M  
tsu(SOMI-SPCH)M  
tv(SPCL-SOMI)M  
tv(SPCH-SOMI)M  
Delay time, SPICLK high to SPISIMO  
valid (clock polarity = 0)  
Delay time, SPICLK low to SPISIMO  
valid (clock polarity = 1)  
10  
10  
Valid time, SPISIMO data valid after  
SPICLK low (clock polarity = 0)  
0.5tc(SPC)M -10  
0.5tc(SPC)M -10  
35  
0.5tc(SPC)M + 0.5tc(LCO) -10  
0.5tc(SPC)M + 0.5tc(LCO) -10  
35  
Valid time, SPISIMO data valid after  
SPICLK high (clock polarity = 1)  
Setup time, SPISOMI before SPICLK  
low (clock polarity = 0)  
ns  
ns  
Setup time, SPISOMI before SPICLK  
high (clock polarity = 1)  
35  
35  
Valid time, SPISOMI data valid after  
SPICLK low (clock polarity = 0)  
0.25tc(SPC)M -10  
0.25tc(SPC)M - 10  
0.5tc(SPC)M- 0.5tc(LCO)- 10  
0.5tc(SPC)M- 0.5tc(LCO)- 10  
Valid time, SPISOMI data valid after  
SPICLK high (clock polarity = 1)  
ns  
(1) The MASTER / SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR +1)  
(3) tc(LCO) = LSPCLK cycle time  
(4) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.  
(5) The active edge of the SPICLK signal referenced is controlled by the clock polarity bit (SPICCR.6).  
132  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
1
SPICLK  
(clock polarity = 0)  
2
4
3
SPICLK  
(clock polarity = 1)  
5
SPISIMO  
SPISOMI  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
(A)  
SPISTE  
A. In the master mode, SPISTE goes active 0.5tc(SPC) (minimum) before valid SPI clock edge. On the trailing end of the  
word, the SPISTE will go inactive 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit, except that SPISTE  
stays active between back-to-back transmit words in both FIFO and nonFIFO modes.  
Figure 6-18. SPI Master Mode External Timing (Clock Phase = 0)  
Submit Documentation Feedback  
Electrical Specifications  
133  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 6-33. SPI Master Mode External Timing (Clock Phase = 1)(1)(2)(3)(4)(5)  
NO.  
SPI WHEN (SPIBRR + 1) IS EVEN OR  
SPI WHEN (SPIBRR + 1) IS ODD  
AND SPIBRR > 3  
UNIT  
SPIBRR = 0  
OR 2  
MIN  
4tc(LCO)  
MAX  
128tc(LCO)  
0.5tc(SPC)M  
MIN  
MAX  
1
2
tc(SPC)M  
Cycle time, SPICLK  
5tc(LCO)  
127tc(LCO)  
ns  
ns  
tw(SPCH)M  
Pulse duration, SPICLK high (clock  
polarity = 0)  
0.5tc(SPC)M -10  
0.5tc(SPC)M - 0.5tc  
(LCO)-10  
0.5tc(SPC)M - 0.5tc(LCO)  
0.5tc(SPC)M - 0.5tc(LCO  
0.5tc(SPC)M + 0.5tc(LCO)  
0.5tc(SPC)M + 0.5tc(LCO)  
tw(SPCL))M  
Pulse duration, SPICLK low (clock polarity  
= 1)  
0.5tc(SPC)M -10  
0.5tc(SPC)M -10  
0.5tc(SPC)M -10  
0.5tc(SPC)M -10  
0.5tc(SPC)M -10  
0.5tc(SPC)M -10  
0.5tc(SPC)M -10  
35  
0.5tc(SPC)M  
0.5tc(SPC)M - 0.5tc  
(LCO)-10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
6
tw(SPCL)M  
Pulse duration, SPICLK low (clock polarity  
= 0)  
0.5tc(SPC)M 0.5tc(SPC)M + 0.5tc(LCO) -  
10  
tw(SPCH)M  
Pulse duration, SPICLK high (clock  
polarity = 1)  
0.5tc(SPC)M  
0.5tc(SPC)M + 0.5tc(LCO)  
-10  
tsu(SIMO-SPCH)M  
tsu(SIMO-SPCL)M  
tv(SPCH-SIMO)M  
tv(SPCL-SIMO)M  
tsu(SOMI-SPCH)M  
tsu(SOMI-SPCL)M  
tv(SPCH-SOMI)M  
tv(SPCL-SOMI)M  
Setup time, SPISIMO data valid before  
SPICLK high (clock polarity = 0)  
0.5tc(SPC)M - 10  
0.5tc(SPC)M - 10  
0.5tc(SPC)M - 10  
0.5tc(SPC)M -10  
35  
Setup time, SPISIMO data valid before  
SPICLK low (clock polarity = 1)  
7
Valid time, SPISIMO data valid after  
SPICLK high (clock polarity = 0)  
Valid time, SPISIMO data valid after  
SPICLK low (clock polarity = 1)  
10  
11  
Setup time, SPISOMI before SPICLK high  
(clock polarity = 0)  
Setup time, SPISOMI before SPICLK low  
(clock polarity = 1)  
35  
35  
Valid time, SPISOMI data valid after  
SPICLK high (clock polarity = 0)  
0.25tc(SPC)M -10  
0.25tc(SPC)M -10  
0.5tc(SPC)M -10  
0.5tc(SPC)M -10  
Valid time, SPISOMI data valid after  
SPICLK low (clock polarity = 1)  
(1) The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is set.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5 MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5 MHz MAX.  
(4) tc(LCO) = LSPCLK cycle time  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
134  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
6
7
SPISIMO  
SPISOMI  
Master Out Data Is Valid  
10  
Data Valid  
11  
Master In Data Must  
Be Valid  
(A)  
SPISTE  
A. In the master mode, SPISTE goes active 0.5tc(SPC) (minimum) before valid SPI clock edge. On the trailing end of the  
word, the SPISTE will go inactive 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit, except that SPISTE  
stays active between back-to-back transmit words in both FIFO and nonFIFO modes.  
Figure 6-19. SPI Master Mode External Timing (Clock Phase = 1)  
6.10.6 SPI Slave Mode Timing  
Table 6-34 lists the slave mode external timing (clock phase = 0) and Table 6-35 (clock phase = 1).  
Figure 6-20 and Figure 6-21 show the timing waveforms.  
Table 6-34. SPI Slave Mode External Timing (Clock Phase = 0)(1)(2)(3)(4)(5)  
NO.  
MIN  
4tc(LCO)  
MAX UNIT  
12 tc(SPC)S  
13 tw(SPCH)S  
tw(SPCL)S  
Cycle time, SPICLK  
ns  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
Delay time, SPICLK high to SPISOMI valid (clock polarity = 0)  
Delay time, SPICLK low to SPISOMI valid (clock polarity = 1)  
0.5tc(SPC)S - 10  
0.5tc(SPC)S - 10  
0.5tc(SPC)S - 10  
0.5tc(SPC)S - 10  
0.5tc(SPC)S  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5tc(SPC)S  
0.5tc(SPC)S  
0.5tc(SPC)S  
35  
14 tw(SPCL)S  
tw(SPCH)S  
15 td(SPCH-SOMI)S  
td(SPCL-SOMI)S  
16 tv(SPCL-SOMI)S  
35  
Valid time, SPISOMI data valid after SPICLK low (clock polarity  
= 0)  
0.75tc(SPC)S  
0.75tc(SPC)S  
tv(SPCH-SOMI)S  
Valid time, SPISOMI data valid after SPICLK high (clock polarity  
= 1)  
ns  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.  
(4) tc(LCO) = LSPCLK cycle time  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
Submit Documentation Feedback  
Electrical Specifications  
135  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 6-34. SPI Slave Mode External Timing (Clock Phase = 0) (continued)  
NO.  
MIN  
MAX UNIT  
19 tsu(SIMO-SPCL)S  
tsu(SIMO-SPCH)S  
20 tv(SPCL-SIMO)S  
Setup time, SPISIMO before SPICLK low (clock polarity = 0)  
Setup time, SPISIMO before SPICLK high (clock polarity = 1)  
35  
35  
ns  
ns  
ns  
Valid time, SPISIMO data valid after SPICLK low (clock polarity  
= 0)  
0.5tc(SPC)S-10  
tv(SPCH-SIMO)S  
Valid time, SPISIMO data valid after SPICLK high (clock polarity  
= 1)  
0.5tc(SPC)S-10  
ns  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
16  
SPISOMI  
SPISIMO  
SPISOMI Data Is Valid  
19  
20  
SPISIMO Data  
Must Be Valid  
(A)  
SPISTE  
A. In the slave mode, the SPISTE signal should be asserted low at least 0.5tc(SPC) (minimum) before the valid SPI clock  
edge and remain low for at least 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit.  
Figure 6-20. SPI Slave Mode External Timing (Clock Phase = 0)  
Table 6-35. SPI Slave Mode External Timing (Clock Phase = 1)(1)(2)(3)(4)  
NO.  
MIN  
8tc(LCO)  
MAX UNIT  
12 tc(SPC)S  
13 tw(SPCH)S  
tw(SPCL)S  
Cycle time, SPICLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
Setup time, SPISOMI before SPICLK high (clock polarity = 0)  
Setup time, SPISOMI before SPICLK low (clock polarity = 1  
0.5tc(SPC)S - 10  
0.5tc(SPC)S - 10  
0.5tc(SPC)S - 10  
0.5tc(SPC)S - 10  
0.125tc(SPC)S  
0.125tc(SPC)S  
0.75tc(SPC)S  
0.5tc(SPC)S  
0.5tc(SPC)S  
0.5tc(SPC)S  
0.5tc(SPC)S  
14 tw(SPCL)S  
tw(SPCH)S  
17 tsu(SOMI-SPCH)S  
tsu(SOMI-SPCL)S  
18 tv(SPCH-SOMI)S  
Valid time, SPISOMI data valid after SPICLK low (clock polarity =  
0)  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
136  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 6-35. SPI Slave Mode External Timing (Clock Phase = 1) (continued)  
NO.  
MIN  
0.75tc(SPC)S  
MAX UNIT  
tv(SPCL-SOMI)S  
Valid time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
ns  
21 tsu(SIMO-SPCH)S  
tsu(SIMO-SPCL)S  
Setup time, SPISIMO before SPICLK high (clock polarity = 0)  
Setup time, SPISIMO before SPICLK low (clock polarity = 1)  
35  
35  
ns  
ns  
ns  
22 tv(SPCH-SIMO)S  
Valid time, SPISIMO data valid after SPICLK high  
(clock polarity = 0)  
0.5tc(SPC)S-10  
tv(SPCL-SIMO)S  
Valid time, SPISIMO data valid after SPICLK low (clock polarity =  
1)  
0.5tc(SPC)S-10  
ns  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
17  
18  
SPISOMI  
SPISIMO  
SPISOMI Data Is Valid  
Data Valid  
21  
22  
SPISIMO Data  
Must Be Valid  
(A)  
SPISTE  
A. In the slave mode, the SPISTE signal should be asserted low at least 0.5tc(SPC) before the valid SPI clock edge and  
remain low for at least 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit.  
Figure 6-21. SPI Slave Mode External Timing (Clock Phase = 1)  
6.10.7 External Interface (XINTF) Timing  
Each XINTF access consists of three parts: Lead, Active, and Trail. The user configures the  
Lead/Active/Trail wait states in the XTIMING registers. There is one XTIMING register for each XINTF  
zone. Table 6-36 shows the relationship between the parameters configured in the XTIMING register and  
the duration of the pulse in terms of XTIMCLK cycles.  
Table 6-36. Relationship Between Parameters Configured in XTIMING and Duration of Pulse  
DESCRIPTION  
DURATION (ns)(1)(2)  
X2TIMING = 0  
X2TIMING = 1  
(XRDLEAD × 2) × tc(XTIM)  
LR  
AR  
TR  
Lead period, read access  
Active period, read access  
Trail period, read access  
XRDLEAD × tc(XTIM)  
(XRDACTIVE + WS + 1) × tc(XTIM)  
XRDTRAIL × tc(XTIM)  
(XRDACTIVE × 2 + WS + 1) × tc(XTIM)  
(XRDTRAIL × 2) × tc(XTIM)  
(1) tc(XTIM) – Cycle time, XTIMCLK  
(2) WS refers to the number of wait states inserted by hardware when using XREADY. If the zone is configured to ignore XREADY  
(USEREADY = 0), then WS = 0.  
Submit Documentation Feedback  
Electrical Specifications  
137  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 6-36. Relationship Between Parameters Configured in XTIMING and Duration of Pulse (continued)  
DESCRIPTION  
DURATION (ns)(1)(2)  
LW  
AW  
TW  
Lead period, write access  
Active period, write access  
Trail period, write access  
XWRLEAD × tc(XTIM)  
(XWRLEAD × 2) × tc(XTIM)  
(XWRACTIVE × 2 + WS + 1) × tc(XTIM)  
(XWRTRAIL × 2) × tc(XTIM)  
(XWRACTIVE + WS + 1) × tc(XTIM)  
XWRTRAIL × tc(XTIM)  
Minimum wait state requirements must be met when configuring each zone’s XTIMING register. These  
requirements are in addition to any timing requirements as specified by that device’s data sheet. No  
internal device hardware is included to detect illegal settings.  
6.10.7.1 USEREADY = 0  
If the XREADY signal is ignored (USEREADY = 0), then:  
Lead:  
LR tc(XTIM)  
LW tc(XTIM)  
These requirements result in the following XTIMING register configuration restrictions:  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
1  
0  
0  
1  
0  
0  
0, 1  
Examples of valid and invalid timing when not sampling XREADY:  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
0, 1  
Invalid(1)  
Valid  
0
1
0
0
0
0
0
1
0
0
0
0
0, 1  
(1) No hardware to detect illegal XTIMING configurations  
6.10.7.2 Synchronous Mode (USEREADY = 1, READYMODE = 0)  
If the XREADY signal is sampled in the synchronous mode (USEREADY = 1, READYMODE = 0), then:  
1
Lead:  
LR ≥ × tc(XTIM)  
LW tc(XTIM)  
2
Active:  
AR 2 × tc(XTIM)  
AW 2 × tc(XTIM)  
NOTE  
Restriction does not include external hardware wait states.  
These requirements result in the following XTIMING register configuration restrictions:  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
1  
1  
0  
1  
1  
0  
0, 1  
Examples of valid and invalid timing when using synchronous XREADY:  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
0, 1  
Invalid(1)  
Invalid(1)  
Valid  
0
1
1
0
0
1
0
0
0
0
1
1
0
0
1
0
0
0
0, 1  
0, 1  
(1) No hardware to detect illegal XTIMING configurations  
138  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6.10.7.3 Asynchronous Mode (USEREADY = 1, READYMODE = 1)  
If the XREADY signal is sampled in the asynchronous mode (USEREADY = 1, READYMODE = 1), then:  
1
Lead:  
LR ≥ × tc(XTIM)  
LW tc(XTIM)  
2
Active:  
AR 2 × tc(XTIM)  
AW 2 × tc(XTIM)  
3
Lead + Active: LR + AR 4 × tc(XTIM)  
LW + AW 4 × tc(XTIM)  
NOTE  
Restrictions do not include external hardware wait states.  
These requirements result in the following XTIMING register configuration restrictions:  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
1  
2  
0
1  
2  
0
0, 1  
or  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
2  
1  
0
2  
1  
0
0, 1  
Examples of valid and invalid timing when using asynchronous XREADY:  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
X2TIMING  
Invalid(1)  
Invalid(1)  
Invalid(1)  
Valid  
0
1
1
1
1
2
0
0
1
1
2
1
0
0
0
0
0
0
0
1
1
1
1
2
0
0
1
1
2
1
0
0
0
0
0
0
0, 1  
0, 1  
0
1
Valid  
0, 1  
0, 1  
Valid  
(1) No hardware to detect illegal XTIMING configurations  
Unless otherwise specified, all XINTF timing is applicable for the clock configurations shown in Table 6-37.  
Table 6-37. XINTF Clock Configurations  
MODE  
SYSCLKOUT  
XTIMCLK  
SYSCLKOUT  
150 MHz  
XCLKOUT  
SYSCLKOUT  
150 MHz  
1
Example:  
2
150 MHz  
SYSCLKOUT  
150 MHz  
1/2 SYSCLKOUT  
75 MHz  
Example:  
3
150 MHz  
1/2 SYSCLKOUT  
75 MHz  
1/2 SYSCLKOUT  
75 MHz  
Example:  
4
150 MHz  
1/2 SYSCLKOUT  
75 MHz  
1/4 SYSCLKOUT  
37.5 MHz  
Example:  
150 MHz  
Submit Documentation Feedback  
Electrical Specifications  
139  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
The relationship between SYSCLKOUT and XTIMCLK is shown in Figure 6-22.  
PCLKR3[XINTFENCLK]  
XTIMING0  
LEAD/ACTIVE/TRAIL  
XTIMING6  
XTIMING7  
XBANK  
0
0
1
SYSCLKOUT  
C28x  
CPU  
XTIMCLK  
/2  
1
0
XCLKOUT  
/2  
1
0
XINTCNF2 (XTIMCLK)  
XINTCNF2  
(CLKMODE)  
XINTCNF2  
(CLKOFF)  
Figure 6-22. Relationship Between XTIMCLK and SYSCLKOUT  
6.10.7.4 XINTF Signal Alignment to XCLKOUT  
For each XINTF access, the number of lead, active, and trail cycles is based on the internal clock  
XTIMCLK. Strobes such as XRD, XWE0, XWE1, and zone chip-select (XZCS) change state in relationship  
to the rising edge of XTIMCLK. The external clock, XCLKOUT, can be configured to be either equal to or  
one-half the frequency of XTIMCLK.  
For the case where XCLKOUT = XTIMCLK, all of the XINTF strobes will change state with respect to the  
rising edge of XCLKOUT. For the case where XCLKOUT = one-half XTIMCLK, some strobes will change  
state either on the rising edge of XCLKOUT or the falling edge of XCLKOUT. In the XINTF timing tables,  
the notation XCOHL is used to indicate that the parameter is with respect to either case; XCLKOUT rising  
edge (high) or XCLKOUT falling edge (low). If the parameter is always with respect to the rising edge of  
XCLKOUT, the notation XCOH is used.  
For the case where XCLKOUT = one-half XTIMCLK, the XCLKOUT edge with which the change will be  
aligned can be determined based on the number of XTIMCLK cycles from the start of the access to the  
point at which the signal changes. If this number of XTIMCLK cycles is even, the alignment will be with  
respect to the rising edge of XCLKOUT. If this number is odd, then the signal will change with respect to  
the falling edge of XCLKOUT. Examples include the following:  
Strobes that change at the beginning of an access always align to the rising edge of XCLKOUT. This is  
because all XINTF accesses begin with respect to the rising edge of XCLKOUT.  
Examples:  
XZCSL  
Zone chip-select active low  
XR/W active low  
XRNWL  
Strobes that change at the beginning of the active period will align to the rising edge of XCLKOUT if  
the total number of lead XTIMCLK cycles for the access is even. If the number of lead XTIMCLK  
cycles is odd, then the alignment will be with respect to the falling edge of XCLKOUT.  
Examples:  
XRDL  
XWEL  
XRD active low  
XWE1 or XWE0 active low  
Strobes that change at the beginning of the trail period will align to the rising edge of XCLKOUT if the  
total number of lead + active XTIMCLK cycles (including hardware waitstates) for the access is even. If  
the number of lead + active XTIMCLK cycles (including hardware waitstates) is odd, then the alignment  
140  
Electrical Specifications  
Submit Documentation Feedback  
 
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
will be with respect to the falling edge of XCLKOUT.  
Examples:  
XRDH  
XWEH  
XRD inactive high  
XWE1 or XWE0 inactive high  
Strobes that change at the end of the access will align to the rising edge of XCLKOUT if the total  
number of lead + active + trail XTIMCLK cycles (including hardware waitstates) is even. If the number  
of lead + active + trail XTIMCLK cycles (including hardware waitstates) is odd, then the alignment will  
be with respect to the falling edge of XCLKOUT.  
Examples:  
XZCSH  
Zone chip-select inactive high  
XR/W inactive high  
XRNWH  
6.10.7.5 External Interface Read Timing  
Table 6-38. External Interface Read Timing Requirements  
MIN  
Access time, read data from address valid  
MAX  
(LR + AR) –16(1)  
AR –14(1)  
UNIT  
ns  
ta(A)  
ta(XRD)  
Access time, read data valid from XRD active low  
ns  
tsu(XD)XRD  
th(XD)XRD  
Setup time, read data valid before XRD strobe inactive high  
Hold time, read data valid after XRD inactive high  
14  
0
ns  
ns  
(1) LR = Lead period, read access. AR = Active period, read access. See Table 6-36.  
Table 6-39. External Interface Read Switching Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
td(XCOH-XZCSL)  
td(XCOHL-XZCSH)  
td(XCOH-XA)  
Delay time, XCLKOUT high to zone chip-select active low  
Delay time, XCLKOUT high/low to zone chip-select inactive high  
Delay time, XCLKOUT high to address valid  
1
3
2
1
1
–2  
ns  
ns  
td(XCOHL-XRDL)  
td(XCOHL-XRDH  
th(XA)XZCSH  
Delay time, XCLKOUT high/low to XRD active low  
Delay time, XCLKOUT high/low to XRD inactive high  
Hold time, address valid after zone chip-select inactive high  
Hold time, address valid after XRD inactive high  
ns  
–2  
(1)  
ns  
ns  
(1)  
th(XA)XRD  
ns  
(1) During inactive cycles, the XINTF address bus always holds the last address put out on the bus. This includes alignment cycles.  
Submit Documentation Feedback  
Electrical Specifications  
141  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Trail  
(A)(B)  
(C)  
Active  
Lead  
XCLKOUT = XTIMCLK  
XCLKOUT = 1/2 XTIMCLK  
t
d(XCOH-XZCSL)  
t
d(XCOHL-XZCSH)  
XZCS0, XZCS6, XZCS7  
XA[0:19]  
t
d(XCOH-XA)  
t
d(XCOHL-XRDH)  
t
d(XCOHL-XRDL)  
XRD  
XWE0, XWE1(D)  
XR/W  
t
su(XD)XRD  
t
a(A)  
t
h(XD)XRD  
t
a(XRD)  
XD[0:31], XD[0:15]  
XREADY(E)  
DIN  
A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an  
alignment cycle before an access to meet this requirement.  
B. During alignment cycles, all signals transition to their inactive state.  
C. XA[0:19] holds the last address put on the bus during inactive cycles, including alignment cycles.  
D. XWE1 is used in 32-bit data bus mode. In 16-bit mode, this signal is XA0.  
E. For USEREADY = 0, the external XREADY input signal is ignored.  
Figure 6-23. Example Read Access  
XTIMING register parameters used for this example:  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
USEREADY  
X2TIMING  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
READYMODE  
1  
0  
0  
0
0
N/A(1)  
N/A(1)  
N/A(1)  
N/A(1)  
(1) N/A = Not applicable (or “Don’t care”) for this example  
6.10.7.6 External Interface Write Timing  
Table 6-40. External Interface Write Switching Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(XCOH-XZCSL)  
td(XCOHL-XZCSH)  
td(XCOH-XA)  
Delay time, XCLKOUT high to zone chip-select active low  
Delay time, XCLKOUT high or low to zone chip-select inactive high  
Delay time, XCLKOUT high to address valid  
Delay time, XCLKOUT high/low to XWE0, XWE1(1) low  
Delay time, XCLKOUT high/low to XWE0, XWE1 high  
Delay time, XCLKOUT high to XR/W low  
1
3
2
2
2
1
1
- 2  
td(XCOHL-XWEL)  
td(XCOHL-XWEH)  
td(XCOH-XRNWL)  
td(XCOHL-XRNWH)  
ten(XD)XWEL  
Delay time, XCLKOUT high/low to XR/W high  
Enable time, data bus driven from XWE0, XWE1 low  
Delay time, data valid after XWE0, XWE1 active low  
Hold time, address valid after zone chip-select inactive high  
- 2  
0
td(XWEL-XD)  
4
(2)  
th(XA)XZCSH  
th(XD)XWE  
Hold time, write data valid after XWE0, XWE1 inactive high  
TW-2(3)  
tdis(XD)XRNW  
Maximum time for DSP to release the data bus after XR/W inactive high  
4
(1) XWE1 is used in 32-bit data bus mode only. In 16-bit mode, this signal is XA0.  
(2) During inactive cycles, the XINTF address bus will always hold the last address put out on the bus. This includes alignment cycles.  
(3) TW = Trail period, write access. See Table 6-36.  
142  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Active  
(A) (B)  
(C)  
Lead  
Trail  
XCLKOUT = XTIMCLK  
XCLKOUT = 1/2 XTIMCLK  
t
d(XCOHL-XZCSH)  
t
d(XCOH-XZCSL)  
XZCS0, XZCS6, XZCS7  
t
d(XCOH-XA)  
XA[0:19]  
XRD  
t
t
d(XCOHL-XWEH)  
d(XCOHL-XWEL)  
XWE0, XWE1(D)  
XR/W  
t
t
d(XCOHL-XRNWH)  
d(XCOH-XRNWL)  
t
t
dis(XD)XRNW  
d(XWEL-XD)  
t
t
en(XD)XWEL  
h(XD)XWEH  
XD[0:31], XD[0:15]  
XREADY(E)  
DOUT  
A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an  
alignment cycle before an access to meet this requirement.  
B. During alignment cycles, all signals transition to their inactive state.  
C. XA[0:19] holds the last address put on the bus during inactive cycles, including alignment cycles.  
D. XWE1 is used in 32-bit data bus mode. In 16-bit mode, this signal is XA0.  
E. For USEREADY = 0, the external XREADY input signal is ignored.  
Figure 6-24. Example Write Access  
XTIMING register parameters used for this example:  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
USEREADY  
X2TIMING  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
READYMODE  
N/A(1)  
N/A(1)  
N/A(1)  
0
0
1  
0  
0  
N/A(1)  
(1) N/A = Not applicable (or “Don’t care”) for this example  
6.10.7.7 External Interface Ready-on-Read Timing With One External Wait State  
Table 6-41. External Interface Read Switching Characteristics (Ready-on-Read, 1 Wait State)  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
td(XCOH-XZCSL)  
td(XCOHL-XZCSH)  
Delay time, XCLKOUT high to zone chip-select active low  
1
3
Delay time, XCLKOUT high/low to zone chip-select inactive  
high  
- 2  
ns  
td(XCOH-XA)  
td(XCOHL-XRDL)  
td(XCOHL-XRDH)  
th(XA)XZCSH  
th(XA)XRD  
Delay time, XCLKOUT high to address valid  
2
1
1
ns  
ns  
ns  
ns  
ns  
Delay time, XCLKOUT high/low to XRD active low  
Delay time, XCLKOUT high/low to XRD inactive high  
Hold time, address valid after zone chip-select inactive high  
Hold time, address valid after XRD inactive high  
- 2  
(1)  
(1)  
(1) During inactive cycles, the XINTF address bus always holds the last address put out on the bus. This includes alignment cycles.  
Table 6-42. External Interface Read Timing Requirements (Ready-on-Read, 1 Wait State)  
MIN  
MAX  
UNIT  
ta(A)  
Access time, read data from address valid  
(LR + AR) - 16(1)  
ns  
(1) LR = Lead period, read access. AR = Active period, read access. See Table 6-36.  
Submit Documentation Feedback  
Electrical Specifications  
143  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 6-42. External Interface Read Timing Requirements (Ready-on-Read, 1 Wait State) (continued)  
MIN  
MAX  
AR - 14(1)  
UNIT  
ns  
ta(XRD)  
Access time, read data valid from XRD active low  
Setup time, read data valid before XRD strobe inactive high  
Hold time, read data valid after XRD inactive high  
tsu(XD)XRD  
th(XD)XRD  
14  
0
ns  
ns  
Table 6-43. Synchronous XREADY Timing Requirements (Ready-on-Read, 1 Wait State)(1)  
MIN  
15  
MAX  
UNIT  
ns  
tsu(XRDYsynchL)XCOHL  
th(XRDYsynchL)  
Setup time, XREADY (synchronous) low before XCLKOUT high/low  
Hold time, XREADY (synchronous) low  
12  
ns  
te(XRDYsynchH)  
Earliest time XREADY (synchronous) can go high before the sampling  
XCLKOUT edge  
3
ns  
tsu(XRDYsynchH)XCOHL  
th(XRDYsynchH)XZCSH  
Setup time, XREADY (synchronous) high before XCLKOUT high/low  
Hold time, XREADY (synchronous) held high after zone chip select high  
15  
0
ns  
ns  
(1) The first XREADY (synchronous) sample occurs with respect to E in Figure 6-25:  
E = (XRDLEAD + XRDACTIVE) tc(XTIM)  
When first sampled, if XREADY (synchronous) is found to be high, then the access will complete. If XREADY (synchronous) is found to  
be low, it will be sampled again each tc(XTIM) until it is found to be high.  
For each sample (n) the setup time (F) with respect to the beginning of the access can be calculated as:  
F = (XRDLEAD + XRDACTIVE +n – 1) tc(XTIM) – tsu(XRDYsynchL)XCOHL  
where n is the sample number: n = 1, 2, 3, and so forth.  
Table 6-44. Asynchronous XREADY Timing Requirements (Ready-on-Read, 1 Wait State)  
MIN  
11  
8
MAX  
UNIT  
ns  
tsu(XRDYAsynchL)XCOHL  
th(XRDYAsynchL)  
Setup time, XREADY (asynchronous) low before XCLKOUT high/low  
Hold time, XREADY (asynchronous) low  
ns  
te(XRDYAsynchH)  
Earliest time XREADY (asynchronous) can go high before the sampling  
XCLKOUT edge  
3
ns  
tsu(XRDYAsynchH)XCOHL  
th(XRDYasynchH)XZCSH  
Setup time, XREADY (asynchronous) high before XCLKOUT high/low  
Hold time, XREADY (asynchronous) held high after zone chip select high  
11  
0
ns  
ns  
144  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
WS (Synch)  
(C)  
(A) (B)  
Active  
Lead  
Trail  
XCLKOUT = XTIMCLK  
XCLKOUT = 1/2 XTIMCLK  
XZCS0 XZCS6, XZCS7  
t
t
t
d(XCOHL-XZCSH)  
d(XCOH-XZCSL)  
d(XCOH-XA)  
XA[0:19]  
XRD  
t
d(XCOHL-XRDH)  
t
d(XCOHL-XRDL)  
t
su(XD)XRD  
(D)  
XWE0, XWE1  
t
a(XRD)  
XR/W  
t
a(A)  
t
h(XD)XRD  
XD[0:31], XD[0:15]  
DIN  
t
su(XRDYsynchL)XCOHL  
t
e(XRDYsynchH)  
t
h(XRDYsynchL)  
t
h(XRDYsynchH)XZCSH  
t
su(XRDHsynchH)XCOHL  
XREADY(Synch)  
Legend:  
(E)  
(F)  
= Don’t care. Signal can be high or low during this time.  
A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an  
alignment cycle before an access to meet this requirement.  
B. During alignment cycles, all signals transition to their inactive state.  
C. During inactive cycles, the XINTF address bus always holds the last address put out on the bus. This includes  
alignment cycles.  
D. XWE1 is valid only in 32-bit data bus mode. In 16-bit mode, this signal is XA0.  
E. For each sample, setup time from the beginning of the access (E) can be calculated as:  
D = (XRDLEAD + XRDACTIVE +n - 1) tc(XTIM) – tsu(XRDYsynchL)XCOHL  
F. Reference for the first sample is with respect to this point: F = (XRDLEAD + XRDACTIVE) tc(XTIM) where n is the  
sample number: n = 1, 2, 3, and so forth.  
Figure 6-25. Example Read With Synchronous XREADY Access  
XTIMING register parameters used for this example:  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
USEREADY  
X2TIMING  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
READYMODE  
1  
3
1  
1
0
N/A(1)  
N/A(1)  
N/A(1)  
0 = XREADY  
(Synch)  
(1) N/A = “Don’t care” for this example  
Submit Documentation Feedback  
Electrical Specifications  
145  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
WS (Async)  
Active  
(A) (B)  
Lead  
Trail  
(C)  
XCLKOUT = XTIMCLK  
XCLKOUT = 1/2 XTIMCLK  
t
t
d(XCOH-XZCSL)  
d(XCOHL-XZCSH)  
XZCS0, XZCS6, XZCS7  
t
d(XCOH-XA)  
XA[0:19]  
t
d(XCOHL-XRDH)  
t
d(XCOHL-XRDL)  
XRD  
(D)  
t
su(XD)XRD  
XWE0, XWE1  
t
a(XRD)  
XR/W  
t
a(A)  
t
h(XD)XRD  
DIN  
XD[0:31], XD[0:15]  
t
su(XRDYasynchL)XCOHL  
t
e(XRDYasynchH)  
t
h(XRDYasynchH)XZCSH  
t
h(XRDYasynchL)  
t
su(XRDYasynchH)XCOHL  
XREADY(Asynch)  
(E)  
(F)  
Legend:  
= Don’t care. Signal can be high or low during this time.  
A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device will insert an  
alignment cycle before an access to meet this requirement.  
B. During alignment cycles, all signals will transition to their inactive state.  
C. During inactive cycles, the XINTF address bus will always hold the last address put out on the bus. This includes  
alignment cycles.  
D. XWE1 is valid only in 32-bit data bus mode. In 16-bit mode, this signal is XA0.  
E. For each sample, setup time from the beginning of the access can be calculated as:  
E = (XRDLEAD + XRDACTIVE -3 +n) tc(XTIM) – tsu(XRDYasynchL)XCOHL where n is the sample number: n = 1, 2, 3, and  
so forth.  
F. Reference  
for  
the  
first  
sample  
is  
with  
respect  
to  
this  
point:  
F = (XRDLEAD + XRDACTIVE –2) tc(XTIM)  
Figure 6-26. Example Read With Asynchronous XREADY Access  
XTIMING register parameters used for this example:  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
USEREADY  
X2TIMING  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
READYMODE  
1  
3
1  
1
0
N/A(1)  
N/A(1)  
N/A(1)  
1 = XREADY  
(Async)  
(1) N/A = “Don’t care” for this example  
146  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6.10.7.8 External Interface Ready-on-Write Timing With One External Wait State  
Table 6-45. External Interface Write Switching Characteristics (Ready-on-Write, 1 Wait State)  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(XCOH-XZCSL)  
td(XCOHL-XZCSH)  
td(XCOH-XA)  
Delay time, XCLKOUT high to zone chip-select active low  
Delay time, XCLKOUT high or low to zone chip-select inactive high  
Delay time, XCLKOUT high to address valid  
Delay time, XCLKOUT high/low to XWE0, XWE1 low(1)  
Delay time, XCLKOUT high/low to XWE0, XWE1 high(1)  
Delay time, XCLKOUT high to XR/W low  
1
3
2
2
2
1
1
– 2  
td(XCOHL-XWEL)  
td(XCOHL-XWEH)  
td(XCOH-XRNWL)  
td(XCOHL-XRNWH)  
ten(XD)XWEL  
Delay time, XCLKOUT high/low to XR/W high  
– 2  
0
Enable time, data bus driven from XWE0, XWE1 low(1)  
Delay time, data valid after XWE0, XWE1 active low(1)  
Hold time, address valid after zone chip-select inactive high  
Hold time, write data valid after XWE0, XWE1 inactive high(1)  
Maximum time for DSP to release the data bus after XR/W inactive high  
td(XWEL-XD)  
4
(2)  
th(XA)XZCSH  
th(XD)XWE  
TW-2(3)  
tdis(XD)XRNW  
4
(1) XWE1 is used in 32-bit data bus mode only. In 16-bit, this signal is XA0.  
(2) During inactive cycles, the XINTF address bus always holds the last address put out on the bus. This includes alignment cycles.  
(3) TW = trail period, write access (see Table 6-36)  
Table 6-46. Synchronous XREADY Timing Requirements (Ready-on-Write, 1 Wait State)(1)  
MIN  
15  
MAX  
UNIT  
ns  
tsu(XRDYsynchL)XCOHL  
th(XRDYsynchL)  
Setup time, XREADY (synchronous) low before XCLKOUT high/low  
Hold time, XREADY (synchronous) low  
12  
ns  
te(XRDYsynchH)  
Earliest time XREADY (synchronous) can go high before the sampling  
XCLKOUT edge  
3
ns  
tsu(XRDYsynchH)XCOHL  
th(XRDYsynchH)XZCSH  
Setup time, XREADY (synchronous) high before XCLKOUT high/low  
Hold time, XREADY (synchronous) held high after zone chip select high  
15  
0
ns  
ns  
(1) The first XREADY (synchronous) sample occurs with respect to E in Figure 6-27:  
E =(XWRLEAD + XWRACTIVE) tc(XTIM)  
When first sampled, if XREADY (synchronous) is high, then the access will complete. If XREADY (synchronous) is low, it is sampled  
again each tc(XTIM) until it is high.  
For each sample, setup time from the beginning of the access can be calculated as:  
F = (XWRLEAD + XWRACTIVE +n –1) tc(XTIM) – tsu(XRDYsynchL)XCOHL  
where n is the sample number: n = 1, 2, 3, and so forth.  
Table 6-47. Asynchronous XREADY Timing Requirements (Ready-on-Write, 1 Wait State)(1)  
MIN  
11  
8
MAX UNIT  
tsu(XRDYasynchL)XCOHL  
th(XRDYasynchL)  
Setup time, XREADY (asynchronous) low before XCLKOUT high/low  
Hold time, XREADY (asynchronous) low  
ns  
ns  
te(XRDYasynchH)  
Earliest time XREADY (asynchronous) can go high before the sampling  
XCLKOUT edge  
3
ns  
tsu(XRDYasynchH)XCOHL  
th(XRDYasynchH)XZCSH  
Setup time, XREADY (asynchronous) high before XCLKOUT high/low  
Hold time, XREADY (asynchronous) held high after zone chip select high  
11  
0
ns  
ns  
(1) The first XREADY (synchronous) sample occurs with respect to E in Figure 6-27:  
E = (XWRLEAD + XWRACTIVE –2) tc(XTIM). When first sampled, if XREADY (asynchronous) is high, then the access will complete. If  
XREADY (asynchronous) is low, it is sampled again each tc(XTIM) until it is high.  
For each sample, setup time from the beginning of the access can be calculated as:  
F = (XWRLEAD + XWRACTIVE –3 + n) tc(XTIM) – tsu(XRDYasynchL)XCOHL  
where n is the sample number: n = 1, 2, 3, and so forth.  
Submit Documentation Feedback  
Electrical Specifications  
147  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
WS (Synch)  
(C)  
(A) (B)  
Active  
Lead  
Trail  
XCLKOUT = XTIMCLK  
XCLKOUT = 1/2 XTIMCLK  
t
t
d(XCOHL-XZCSH)  
d(XCOH-XZCSL)  
XZCS0 XZCS6, XZCS7  
t
d(XCOH-XA)  
XA[0:19]  
t
d(XCOHL-XRDH)  
t
d(XCOHL-XRDL)  
XRD  
t
su(XD)XRD  
(D)  
XWE0, XWE1  
t
a(XRD)  
XR/W  
t
a(A)  
t
h(XD)XRD  
XD[0:31], XD[0:15]  
DIN  
t
su(XRDYsynchL)XCOHL  
t
e(XRDYsynchH)  
t
h(XRDYsynchL)  
t
h(XRDYsynchH)XZCSH  
t
su(XRDHsynchH)XCOHL  
XREADY(Synch)  
Legend:  
(E)  
(F)  
= Don’t care. Signal can be high or low during this time.  
A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an  
alignment cycle before an access to meet this requirement.  
B. During alignment cycles, all signals will transition to their inactive state.  
C. During inactive cycles, the XINTF address bus always holds the last address put out on the bus. This includes  
alignment cycles.  
D. XWE1 is used in 32-bit data bus mode only. In 16-bit, this signal is XA0  
E. For each sample, setup time from the beginning of the access can be calculated as E = (XWRLEAD + XWRACTIVE +  
n –1) tc(XTIM) – tsu(XRDYsynchL)XCOH where n is the sample number: n = 1, 2, 3, and so forth.  
F. Reference for the first sample is with respect to this point: F = (XWRLEAD + XWRACTIVE) tc(XTIM)  
Figure 6-27. Write With Synchronous XREADY Access  
XTIMING register parameters used for this example:  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
USEREADY  
X2TIMING  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
READYMODE  
N/A(1)  
N/A(1)  
N/A(1)  
1
0
1  
3
1  
0 = XREADY  
(Synch)  
(1) N/A = "Don't care" for this example.  
148  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
WS (Async)  
(A) (B)  
(C)  
Trail  
Active  
Lead 1  
XCLKOUT = XTIMCLK  
XCLKOUT = 1/2 XTIMCLK  
XZCS0, XZCS6, XZCS7  
t
t
d(XCOH-XZCSL)  
d(XCOHL-XZCSH)  
t
h(XRDYasynchH)XZCSH  
t
d(XCOH-XA)  
XA[0:19]  
XRD  
t
t
d(XCOHL-XWEH)  
d(XCOHL-XWEL)  
(D)  
XWE0, XWE1  
t
t
d(XCOH-XRNWL)  
d(XCOHL-XRNWH)  
XR/W  
t
dis(XD)XRNW  
t
d(XWEL-XD  
)
t
h(XD)XWEH  
t
en(XD)XWEL  
XD[31:0], XD[15:0]  
DOUT  
t
su(XRDYasynchL)XCOHL  
t
h(XRDYasynchL)  
t
e(XRDYasynchH)  
t
su(XRDYasynchH)XCOHL  
XREADY(Asynch)  
(D)  
(E)  
Legend:  
= Don’t care. Signal can be high or low during this time.  
A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device inserts an  
alignment cycle before an access to meet this requirement.  
B. During alignment cycles, all signals transition to their inactive state.  
C. During inactive cycles, the XINTF address bus always holds the last address put out on the bus. This includes  
alignment cycles.  
D. XWE1 is used in 32-bit data bus mode only. In 16-bit, this signal is XA0.  
E. For each sample, set up time from the beginning of the access can be calculated as: E = (XWRLEAD + XWRACTIVE  
-3 + n) tc(XTIM) – tsu(XRDYasynchL)XCOHL where n is the sample number: n = 1, 2, 3, and so forth.  
F. Reference for the first sample is with respect to this point: F = (XWRLEAD + XWRACTIVE – 2) tc(XTIM)  
Figure 6-28. Write With Asynchronous XREADY Access  
XTIMING register parameters used for this example:  
XRDLEAD  
XRDACTIVE  
XRDTRAIL  
USEREADY  
X2TIMING  
XWRLEAD  
XWRACTIVE  
XWRTRAIL  
READYMODE  
N/A(1)  
N/A(1)  
N/A(1)  
1
0
1  
3
1  
1 = XREADY  
(Async)  
(1) N/A = “Don’t care” for this example  
6.10.8 XHOLD and XHOLDA Timing  
If the HOLD mode bit is set while XHOLD and XHOLDA are both low (external bus accesses granted), the  
XHOLDA signal is forced high (at the end of the current cycle) and the external interface is taken out of  
high-impedance mode.  
Submit Documentation Feedback  
Electrical Specifications  
149  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
On a reset (XRS), the HOLD mode bit is set to 0. If the XHOLD signal is active low on a system reset, the  
bus and all signal strobes must be in high-impedance mode, and the XHOLDA signal is also driven active  
low.  
When HOLD mode is enabled and XHOLDA is active low (external bus grant active), the CPU can still  
execute code from internal memory. If an access is made to the external interface, the CPU is stalled until  
the XHOLD signal is removed.  
An external DMA request, when granted, places the following signals in a high-impedance mode:  
XA[19:0]  
XZCS0  
XZCS6  
XD[31:0], XD[15:0]  
XWE0, XWE1, XRD XZCS7  
XR/W  
All other signals not listed in this group remain in their default or functional operational modes during these  
signal events.  
Table 6-48. XHOLD/XHOLDA Timing Requirements (XCLKOUT = XTIMCLK)(1)(2)  
MIN  
MAX  
UNIT  
ns  
td(HL-HiZ)  
td(HL-HAL)  
td(HH-HAH)  
td(HH-BV)  
Delay time, XHOLD low to Hi-Z on all address, data, and control  
Delay time, XHOLD low to XHOLDA low  
4tc(XTIM)  
5tc(XTIM)  
3tc(XTIM)  
4tc(XTIM)  
ns  
Delay time, XHOLD high to XHOLDA high  
Delay time, XHOLD high to bus valid  
ns  
ns  
(1) When a low signal is detected on XHOLD, all pending XINTF accesses will be completed before the bus is placed in a high-impedance  
state.  
(2) The state of XHOLD is latched on the rising edge of XTIMCLK.  
XCLKOUT  
(/1 Mode)  
t
d(HL-Hiz)  
XHOLD  
t
d(HH-HAH)  
XHOLDA  
t
d(HL-HAL)  
t
d(HH-BV)  
XR/W  
High-Impedance  
XZCS0, XZCS6, XZCS7  
Valid  
XA[19:0]  
Valid  
High-Impedance  
XD[31:0], XD[15:0]  
Valid  
(A)  
(B)  
A. All pending XINTF accesses are completed.  
B. Normal XINTF operation resumes.  
Figure 6-29. External Interface Hold Waveform  
150  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 6-49. XHOLD/XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK)(1)(2)(3)  
MIN  
MAX  
4tc(XTIM) + tc(XCO)  
4tc(XTIM + 2tc(XCO)  
4tc(XTIM)  
UNIT  
ns  
td(HL-HiZ)  
td(HL-HAL)  
td(HH-HAH)  
td(HH-BV)  
Delay time, XHOLD low to Hi-Z on all address, data, and control  
Delay time, XHOLD low to XHOLDA low  
ns  
Delay time, XHOLD high to XHOLDA high  
Delay time, XHOLD high to bus valid  
ns  
6tc(XTIM)  
ns  
(1) When a low signal is detected on XHOLD, all pending XINTF accesses will be completed before the bus is placed in a high-impedance  
state.  
(2) The state of XHOLD is latched on the rising edge of XTIMCLK.  
(3) After the XHOLD is detected low or high, all bus transitions and XHOLDA transitions occur with respect to the rising edge of XCLKOUT.  
Thus, for this mode where XCLKOUT = 1/2 XTIMCLK, the transitions can occur up to 1 XTIMCLK cycle earlier than the maximum value  
specified.  
XCLKOUT  
(1/2 XTIMCLK)  
t
d(HL-HAL)  
XHOLD  
t
d(HH-HAH)  
XHOLDA  
t
d(HL-HiZ)  
t
d(HH-BV)  
XR/W,  
XZCS0,  
XZCS6,  
XZCS7  
High-Impedance  
High-Impedance  
High-Impedance  
Valid  
XA[19:0]  
Valid  
XD[0:31]XD[15:0]  
Valid  
(B)  
(A)  
A. All pending XINTF accesses are completed.  
B. Normal XINTF operation resumes.  
Figure 6-30. XHOLD/XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK)  
Submit Documentation Feedback  
Electrical Specifications  
151  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6.10.9 On-Chip Analog-to-Digital Converter  
Table 6-50. ADC Electrical Characteristics (over recommended operating conditions)(1)(2)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
DC SPECIFICATIONS(3)  
Resolution  
12  
Bits  
ADC clock  
0.001  
25  
MHz  
ACCURACY  
INL (Integral nonlinearity)  
1-12.5 MHz ADC clock (6.25 MSPS)  
±1.5  
±2  
LSB  
LSB  
12.5-25 MHz ADC clock (12.5  
MSPS)  
DNL (Differential nonlinearity)(4)  
±1  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
(5)(3)  
Offset error  
±15  
±30  
±30  
±4  
(6)(3)  
(3)  
Overall gain error with internal reference  
Overall gain error with external reference  
Channel-to-channel offset variation  
Channel-to-channel gain variation  
ANALOG INPUT  
±4  
(7)  
Analog input voltage (ADCINx to ADCLO)  
ADCLO  
0
3
5
V
–5  
0
mV  
pF  
µA  
Input capacitance  
10  
Input leakage current  
±5  
(6)  
INTERNAL VOLTAGE REFERENCE  
VADCREFP - ADCREFP output voltage at the pin based on  
internal reference  
1.275  
0.525  
V
V
VADCREFM - ADCREFM output voltage at the pin based on  
internal reference  
Voltage difference, ADCREFP - ADCREFM  
0.75  
50  
V
Temperature coefficient  
PPM/°C  
EXTERNAL VOLTAGE REFERENCE(6) (8)  
ADCREFSEL[15:14] = 11b  
ADCREFSEL[15:14] = 10b  
ADCREFSEL[15:14] = 01b  
1.024  
1.500  
2.048  
V
V
V
VADCREFIN - External reference voltage input on ADCREFIN  
pin 0.2% or better accurate reference recommended  
AC SPECIFICATIONS  
SINAD (100 kHz) Signal-to-noise ratio + distortion  
SNR (100 kHz) Signal-to-noise ratio  
THD (100 kHz) Total harmonic distortion  
ENOB (100 kHz) Effective number of bits  
SFDR (100 kHz) Spurious free dynamic range  
67.5  
68  
dB  
dB  
–79  
10.9  
83  
dB  
Bits  
dB  
(1) Tested at 25 MHz ADCCLK.  
(2) All voltages listed in this table are with respect to VSSA2  
.
(3) ADC parameters for gain error and offset error are only specified if the ADC calibration routine is executed from the Boot ROM. See  
Section 4.7.3 for more information.  
(4) TI specifies that the ADC will have no missing codes.  
(5) 1 LSB has the weighted value of 3.0/4096 = 0.732 mV.  
(6) A single internal/external band gap reference sources both ADCREFP and ADCREFM signals, and hence, these voltages track  
together. The ADC converter uses the difference between these two as its reference. The total gain error listed for the internal reference  
is inclusive of the movement of the internal bandgap over temperature. Gain error over temperature for the external reference option will  
depend on the temperature profile of the source used.  
(7) Voltages above VDDA + 0.3 V or below VSS - 0.3 V applied to an analog input pin may temporarily affect the conversion of another pin.  
To avoid this, the analog inputs should be kept within these limits.  
(8) TI recommends using high precision external reference TI part REF3020/3120 or equivalent for 2.048-V reference.  
152  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6.10.9.1 ADC Power-Up Control Bit Timing  
ADC Power Up Delay  
ADC Ready for Conversions  
PWDNBG  
PWDNREF  
t
d(BGR)  
PWDNADC  
t
d(PWD)  
Request for  
ADC  
Conversion  
Figure 6-31. ADC Power-Up Control Bit Timing  
Table 6-51. ADC Power-Up Delays  
PARAMETER(1)  
MIN  
TYP  
MAX  
UNIT  
td(BGR)  
td(PWD)  
Delay time for band gap reference to be stable. Bits 7 and 6 of the ADCTRL3  
register (ADCBGRFDN1/0) must be set to 1 before the PWDNADC bit is enabled.  
5
ms  
Delay time for power-down control to be stable. Bit delay time for band-gap  
reference to be stable. Bits 7 and 6 of the ADCTRL3 register (ADCBGRFDN1/0)  
must be set to 1 before the PWDNADC bit is enabled. Bit 5 of the ADCTRL3  
register (PWDNADC)must be set to 1 before any ADC conversions are initiated.  
20  
50  
µs  
1
ms  
(1) Timings maintain compatibility to the 281x ADC module. The F2833x/F2823x ADC also supports driving all 3 bits at the same time and  
waiting td(BGR) ms before first conversion.  
Table 6-52. Current Consumption for Different ADC Configurations (at 25-MHz ADCCLK)(1)(2)  
ADC OPERATING MODE  
CONDITIONS  
VDDA18  
VDDA3.3  
UNIT  
Mode A (Operational Mode):  
30  
2
mA  
BG and REF enabled  
PWD disabled  
Mode B:  
Mode C:  
Mode D:  
9
5
5
0.5  
20  
15  
mA  
µA  
µA  
ADC clock enabled  
BG and REF enabled  
PWD enabled  
ADC clock enabled  
BG and REF disabled  
PWD enabled  
ADC clock disabled  
BG and REF disabled  
PWD enabled  
(1) Test Conditions:  
SYSCLKOUT = 150 MHz  
ADC module clock = 25 MHz  
ADC performing a continuous conversion of all 16 channels in Mode A  
(2) VDDA18 includes current into VDD1A18 and VDD2A18. VDDA3.3 includes current into VDDA2 and VDDAIO  
.
Submit Documentation Feedback  
Electrical Specifications  
153  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
R
1 k  
on  
Switch  
R
s
ADCIN0  
C
10 pF  
C
h
1.64 pF  
p
Source  
Signal  
ac  
28x DSP  
Typical Values of the Input Circuit Components:  
Switch Resistance (R ):  
1 kΩ  
1.64 pF  
on  
Sampling Capacitor (C ):  
h
Parasitic Capacitance (C ): 10 pF  
p
Source Resistance (R ):  
50 Ω  
s
Figure 6-32. ADC Analog Input Impedance Model  
6.10.9.2 Definitions  
Reference Voltage  
The on-chip ADC has a built-in reference, which provides the reference voltages for the ADC.  
Analog Inputs  
The on-chip ADC consists of 16 analog inputs, which are sampled either one at a time or two channels at  
a time. These inputs are software-selectable.  
Converter  
The on-chip ADC uses a 12-bit four-stage pipeline architecture, which achieves a high sample rate with  
low power consumption.  
Conversion Modes  
The conversion can be performed in two different conversion modes:  
Sequential sampling mode (SMODE = 0)  
Simultaneous sampling mode (SMODE = 1)  
154  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6.10.9.3 Sequential Sampling Mode (Single-Channel) (SMODE = 0)  
In sequential sampling mode, the ADC can continuously convert input signals on any of the channels (Ax  
to Bx). The ADC can start conversions on event triggers from the ePWM, software trigger, or from an  
external ADCSOC signal. If the SMODE bit is 0, the ADC will do conversions on the selected channel on  
every Sample/Hold pulse. The conversion time and latency of the Result register update are explained  
below. The ADC interrupt flags are set a few SYSCLKOUT cycles after the Result register update. The  
selected channels will be sampled at every falling edge of the Sample/Hold pulse. The Sample/Hold pulse  
width can be programmed to be 1 ADC clock wide (minimum) or 16 ADC clocks wide (maximum).  
Sample n+2  
Sample n+1  
Analog Input on  
Sample n  
Channel Ax or Bx  
ADC Clock  
Sample and Hold  
SH Pulse  
SMODE Bit  
t
d(SH)  
t
dschx_n+1  
t
dschx_n  
ADC Event Trigger from  
ePWM or Other Sources  
t
SH  
Figure 6-33. Sequential Sampling Mode (Single-Channel) Timing  
Table 6-53. Sequential Sampling Mode Timing  
AT 25 MHz  
SAMPLE n  
SAMPLE n + 1  
ADC CLOCK,  
REMARKS  
tc(ADCCLK) = 40 ns  
td(SH)  
Delay time from event trigger to  
2.5tc(ADCCLK)  
sampling  
tSH  
Sample/Hold width/Acquisition  
Width  
(1 + Acqps) *  
tc(ADCCLK)  
40 ns with Acqps = 0 Acqps value = 0-15  
ADCTRL1[8:11]  
td(schx_n)  
td(schx_n+1)  
Delay time for first result to appear  
in Result register  
4tc(ADCCLK)  
160 ns  
Delay time for successive results to  
appear in Result register  
(2 + Acqps) *  
tc(ADCCLK)  
80 ns  
Submit Documentation Feedback  
Electrical Specifications  
155  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6.10.9.4 Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1)  
In simultaneous mode, the ADC can continuously convert input signals on any one pair of channels  
(A0/B0 to A7/B7). The ADC can start conversions on event triggers from the ePWM, software trigger, or  
from an external ADCSOC signal. If the SMODE bit is 1, the ADC will do conversions on two selected  
channels on every Sample/Hold pulse. The conversion time and latency of the result register update are  
explained below. The ADC interrupt flags are set a few SYSCLKOUT cycles after the Result register  
update. The selected channels will be sampled simultaneously at the falling edge of the Sample/Hold  
pulse. The Sample/Hold pulse width can be programmed to be 1 ADC clock wide (minimum) or 16 ADC  
clocks wide (maximum).  
NOTE  
In simultaneous mode, the ADCIN channel pair select has to be A0/B0, A1/B1, ..., A7/B7,  
and not in other combinations (such as A1/B3, etc.).  
Sample n  
Sample n+2  
Sample n+1  
Analog Input on  
Channel Ax  
Analog Input on  
Channel Bx  
ADC Clock  
Sample and Hold  
SH Pulse  
SMODE Bit  
t
d(SH)  
t
dschA0_n+1  
t
SH  
ADC Event Trigger from  
ePWM or Other Sources  
t
t
dschA0_n  
dschB0_n+1  
t
dschB0_n  
Figure 6-34. Simultaneous Sampling Mode Timing  
Table 6-54. Simultaneous Sampling Mode Timing  
AT 25 MHz  
ADC CLOCK,  
tc(ADCCLK) = 40 ns  
SAMPLE n  
SAMPLE n + 1  
REMARKS  
td(SH)  
Delay time from event trigger to  
2.5tc(ADCCLK)  
sampling  
tSH  
Sample/Hold width/Acquisition  
Width  
(1 + Acqps) *  
tc(ADCCLK)  
40 ns with Acqps = 0 Acqps value = 0-15  
ADCTRL1[8:11]  
td(schA0_n)  
td(schB0_n)  
Delay time for first result to  
appear in Result register  
4tc(ADCCLK)  
160 ns  
200 ns  
120 ns  
120 ns  
Delay time for first result to  
appear in Result register  
5tc(ADCCLK)  
td(schA0_n+1) Delay time for successive results  
to appear in Result register  
(3 + Acqps) * tc(ADCCLK)  
(3 + Acqps) * tc(ADCCLK)  
td(schB0_n+1) Delay time for successive results  
to appear in Result register  
156  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6.10.10 Detailed Descriptions  
Integral Nonlinearity  
Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero through full  
scale. The point used as zero occurs one-half LSB before the first code transition. The full-scale point is  
defined as level one-half LSB beyond the last code transition. The deviation is measured from the center  
of each particular code to the true straight line between these two points.  
Differential Nonlinearity  
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal  
value. A differential nonlinearity error of less than ±1 LSB ensures no missing codes.  
Zero Offset  
The major carry transition should occur when the analog input is at zero volts. Zero error is defined as the  
deviation of the actual transition from that point.  
Gain Error  
The first code transition should occur at an analog value one-half LSB above negative full scale. The last  
transition should occur at an analog value one and one-half LSB below the nominal full scale. Gain error is  
the deviation of the actual difference between first and last code transitions and the ideal difference  
between first and last code transitions.  
Signal-to-Noise Ratio + Distortion (SINAD)  
SINAD is the ratio of the rms value of the measured input signal to the rms sum of all other spectral  
components below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is  
expressed in decibels.  
Effective Number of Bits (ENOB)  
For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following  
(
)
SINAD * 1.76  
N +  
formula,  
6.02  
it is possible to get a measure of performance expressed as N, the effective  
number of bits. Thus, effective number of bits for a device for sine wave inputs at a given input frequency  
can be calculated directly from its measured SINAD.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first nine harmonic components to the rms value of the measured  
input signal and is expressed as a percentage or in decibels.  
Spurious Free Dynamic Range (SFDR)  
SFDR is the difference in dB between the rms amplitude of the input signal and the peak spurious signal.  
Submit Documentation Feedback  
Electrical Specifications  
157  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
6.10.11 Multichannel Buffered Serial Port (McBSP) Timing  
6.10.11.0.1 McBSP Transmit and Receive Timing  
Table 6-55. McBSP Timing Requirements(1)(2)  
NO.  
MIN  
MAX UNIT  
McBSP module clock (CLKG, CLKX, CLKR) range  
1
kHz  
20(3)  
MHz  
ns  
McBSP module cycle time (CLKG, CLKX, CLKR)  
range  
50  
1
ms  
ns  
M11  
M12  
M13  
M14  
M15  
tc(CKRX)  
Cycle time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
CLKR/X ext  
CLKR/X ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKX int  
2P  
tw(CKRX)  
tr(CKRX)  
Pulse duration, CLKR/X high or CLKR/X low  
Rise time, CLKR/X  
P – 7  
ns  
7
7
ns  
tf(CKRX)  
Fall time, CLKR/X  
ns  
tsu(FRH-CKRL)  
Setup time, external FSR high before CLKR low  
18  
2
ns  
M16  
M17  
M18  
M19  
M20  
th(CKRL-FRH)  
tsu(DRV-CKRL)  
th(CKRL-DRV)  
tsu(FXH-CKXL)  
th(CKXL-FXH)  
Hold time, external FSR high after CLKR low  
Setup time, DR valid before CLKR low  
Hold time, DR valid after CLKR low  
0
ns  
ns  
ns  
ns  
ns  
6
18  
2
0
6
Setup time, external FSX high before CLKX low  
Hold time, external FSX high after CLKX low  
18  
2
CLKX ext  
CLKX int  
0
CLKX ext  
6
(1) Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that  
signal are also inverted.  
CLKSRG  
(1 ) CLKGDV)  
(2) 2P = 1/CLKG in ns. CLKG is the output of sample rate generator mux. CLKG =  
CLKSRG can be LSPCLK, CLKX, CLKR  
as source. CLKSRG (SYSCLKOUT/2). McBSP performance is limited by I/O buffer switching speed.  
(3) Internal clock prescalers must be adjusted such that the McBSP clock (CLKG, CLKX, CLKR) speeds are not greater than the I/O buffer  
speed limit (20 MHz).  
Table 6-56. McBSP Switching Characteristics(1)(2)  
NO.  
M1  
M2  
M3  
M4  
PARAMETER  
Cycle time, CLKR/X  
MIN  
MAX UNIT  
tc(CKRX)  
CLKR/X int  
CLKR/X int  
CLKR/X int  
CLKR int  
CLKR ext  
CLKX int  
2P  
D-5(3)  
C-5(3)  
ns  
tw(CKRXH)  
tw(CKRXL)  
td(CKRH-FRV)  
Pulse duration, CLKR/X high  
D+5(3)  
C+5(3)  
ns  
ns  
ns  
Pulse duration, CLKR/X low  
Delay time, CLKR high to internal FSR valid  
0
3
0
3
4
27  
4
M5  
M6  
td(CKXH-FXV)  
Delay time, CLKX high to internal FSX valid  
ns  
ns  
CLKX ext  
CLKX int  
27  
8
tdis(CKXH-DXHZ)  
Disable time, CLKX high to DX high impedance  
following last data bit  
CLKX ext  
14  
(1) Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that  
signal are also inverted.  
(2) 2P = 1/CLKG in ns.  
(3) C=CLKRX low pulse width = P  
D=CLKRX high pulse width = P  
158  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 6-56. McBSP Switching Characteristics (continued)  
NO.  
PARAMETER  
MIN  
MAX UNIT  
M7  
td(CKXH-DXV)  
Delay time, CLKX high to DX valid.  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
9
28  
ns  
This applies to all bits except the first bit transmitted.  
Delay time, CLKX high to DX valid  
DXENA = 0  
8
14  
Only applies to first bit transmitted when DXENA = 1  
in Data Delay 1 or 2 (XDATDLY=01b or  
10b) modes  
P + 8  
P + 14  
M8  
ten(CKXH-DX)  
Enable time, CLKX high to DX driven  
DXENA = 0  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
0
6
ns  
Only applies to first bit transmitted when DXENA = 1  
in Data Delay 1 or 2 (XDATDLY=01b or  
10b) modes  
P
P + 6  
M9  
td(FXH-DXV)  
Delay time, FSX high to DX valid  
DXENA = 0  
FSX int  
FSX ext  
FSX int  
FSX ext  
FSX int  
FSX ext  
FSX int  
FSX ext  
8
14  
ns  
ns  
Only applies to first bit transmitted when DXENA = 1  
in Data Delay 0 (XDATDLY=00b) mode.  
P + 8  
P + 14  
M10  
ten(FXH-DX)  
Enable time, FSX high to DX driven  
DXENA = 0  
0
6
Only applies to first bit transmitted when DXENA = 1  
in Data Delay 0 (XDATDLY=00b) mode  
P
P + 6  
M1, M11  
M2, M12  
M3, M12  
M13  
CLKR  
FSR (int)  
FSR (ext)  
M4  
M4  
M14  
M15  
M16  
M18  
M17  
DR  
Bit (n−1)  
M17  
(n−2)  
(n−3)  
(n−2)  
(n−4)  
(n−3)  
(n−2)  
(RDATDLY=00b)  
M18  
DR  
Bit (n−1)  
(RDATDLY=01b)  
M17  
M18  
DR  
Bit (n−1)  
(RDATDLY=10b)  
Figure 6-35. McBSP Receive Timing  
Submit Documentation Feedback  
Electrical Specifications  
159  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
M1, M11  
M2, M12  
M13  
M3, M12  
CLKX  
M5  
M5  
FSX (int)  
M19  
M20  
FSX (ext)  
M9  
M7  
M7  
M10  
DX  
Bit 0  
Bit (n−1)  
(n−2)  
(n−3)  
(n−2)  
(XDATDLY=00b)  
M8  
DX  
Bit (n−1)  
M8  
Bit 0  
(XDATDLY=01b)  
M7  
M6  
DX  
Bit 0  
Bit (n−1)  
(XDATDLY=10b)  
Figure 6-36. McBSP Transmit Timing  
6.10.11.0.2 McBSP as SPI Master or Slave Timing  
Table 6-57. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0)  
NO.  
MASTER  
SLAVE  
MIN MAX  
UNIT  
MIN  
30  
1
MAX  
M30  
M31  
M32  
M33  
tsu(DRV-CKXL)  
th(CKXL-DRV)  
tsu(BFXL-CKXH)  
tc(CKX)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
Setup time, FSX low before CLKX high  
Cycle time, CLKX  
8P – 10  
ns  
ns  
ns  
ns  
8P –10  
8P + 10  
16P  
2P(1)  
(1) 2P = 1/CLKG  
Table 6-58. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0)  
NO.  
PARAMETER  
MASTER  
SLAVE  
MIN MAX  
UNIT  
MIN  
2P(1)  
P
MAX  
M24  
M25  
M28  
th(CKXL-FXL)  
td(FXL-CKXH)  
tdis(FXH-DXHZ)  
Hold time, FSX low after CLKX low  
Delay time, FSX low to CLKX high  
ns  
ns  
ns  
Disable time, DX high impedance following last data bit from  
FSX high  
6
6P + 6  
4P + 6  
M29  
td(FXL-DXV)  
Delay time, FSX low to DX valid  
6
ns  
(1) 2P = 1/CLKG  
160  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
For all SPI slave modes, CLKX has to be minimum 8 CLKG cycles. Also CLKG should be LSPCLK/2 by  
setting CLKSM = CLKGDV = 1. With maximum LSPCLK speed of 75 MHz, CLKX maximum frequency will  
be LSPCLK/16 , that is 4.6875 MHz and P = 13.3 ns.  
M33  
M32  
MSB  
LSB  
CLKX  
FSX  
M25  
M24  
M28  
M29  
DX  
DR  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
M30  
M31  
(n-2)  
Bit 0  
Bit(n-1)  
(n-3)  
(n-4)  
Figure 6-37. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
Table 6-59. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0)  
NO.  
MASTER  
SLAVE  
UNIT  
MIN  
30  
1
MAX  
MIN MAX  
M39  
M40  
M41  
M42  
tsu(DRV-CKXH)  
th(CKXH-DRV)  
tsu(FXL-CKXH)  
tc(CKX)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
Setup time, FSX low before CLKX high  
Cycle time, CLKX  
8P – 10  
ns  
ns  
ns  
ns  
8P – 10  
16P + 10  
16P  
2P(1)  
(1) 2P = 1/CLKG  
Table 6-60. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0)  
NO.  
PARAMETER  
MASTER  
MIN  
SLAVE  
MIN  
UNIT  
MAX  
MAX  
M34  
M35  
M37  
th(CKXL-FXL)  
td(FXL-CKXH)  
tdis(CKXL-DXHZ)  
Hold time, FSX low after CLKX low  
Delay time, FSX low to CLKX high  
P
2P(1)  
ns  
ns  
ns  
Disable time, DX high impedance following last data bit  
from CLKX low  
P + 6  
7P + 6  
4P + 6  
M38  
td(FXL-DXV)  
Delay time, FSX low to DX valid  
6
ns  
(1) 2P = 1/CLKG  
For all SPI slave modes, CLKX must be a minimum of 8 CLKG cycles. Also, CLKG should be LSPCLK/2  
by setting CLKSM = CLKGDV = 1. With a maximum LSPCLK speed of 75 MHz, CLKX maximum  
frequency is LSPCLK/16; that is, 4.6875 MHz and P =13.3 ns.  
M42  
MSB  
LSB  
M41  
CLKX  
FSX  
DX  
M35  
M34  
M37  
M38  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
M39  
M40  
(n-2)  
DR  
Bit 0  
(n-3)  
(n-4)  
Figure 6-38. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
Submit Documentation Feedback  
Electrical Specifications  
161  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 6-61. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1)  
NO.  
MASTER  
SLAVE  
MIN  
MIN  
30  
1
MAX  
MAX UNIT  
M49  
M50  
M51  
M52  
tsu(DRV-CKXH)  
th(CKXH-DRV)  
tsu(FXL-CKXL)  
tc(CKX)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
Setup time, FSX low before CLKX low  
Cycle time, CLKX  
8P –10  
ns  
ns  
ns  
ns  
8P –10  
8P + 10  
16P  
2P(1)  
(1) 2P = 1/CLKG  
Table 6-62. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1)  
NO.  
PARAMETER  
MASTER  
SLAVE  
MIN  
MIN  
2P(1)  
P
MAX  
MAX UNIT  
M43  
M44  
M47  
th(CKXH-FXL)  
td(FXL-CKXL)  
tdis(FXH-DXHZ)  
Hold time, FSX low after CLKX high  
Delay time, FSX low to CLKX low  
ns  
ns  
ns  
Disable time, DX high impedance following last data bit from  
FSX high  
6
6P + 6  
4P + 6  
M48  
td(FXL-DXV)  
Delay time, FSX low to DX valid  
6
ns  
(1) 2P = 1/CLKG  
For all SPI slave modes, CLKX must be a minimum of 8 CLKG cycles. Also, CLKG should be LSPCLK/2  
by setting CLKSM = CLKGDV = 1. With maximum LSPCLK speed of 75 MHz, CLKX maximum frequency  
will be LSPCLK/16; that is, 4.6875 MHz and P = 13.3 ns.  
M52  
M51  
MSB  
LSB  
CLKX  
FSX  
M43  
M44  
M48  
M47  
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
M50  
(n-3)  
(n-4)  
M49  
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 6-39. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
Table 6-63. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1)  
NO.  
MASTER  
SLAVE  
MIN MAX  
UNIT  
MIN  
30  
1
MAX  
M58 tsu(DRV-CKXL)  
M59 th(CKXL-DRV)  
M60 tsu(FXL-CKXL)  
M61 tc(CKX)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
Setup time, FSX low before CLKX low  
Cycle time, CLKX  
8P – 10  
ns  
ns  
ns  
ns  
8P – 10  
16P + 10  
16P  
2P(1)  
(1) 2P = 1/CLKG  
For all SPI slave modes, CLKX must be a minimum of 8 CLKG cycles. Also CLKG should be LSPCLK/2  
by setting CLKSM = CLKGDV = 1. With maximum LSPCLK speed of 75 MHz, CLKX maximum frequency  
is LSPCLK/16 , that is 4.6875 MHz and P = 13.3 ns.  
162  
Electrical Specifications  
Submit Documentation Feedback  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
Table 6-64. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1)(1)  
NO.  
PARAMETER  
MASTER(2)  
SLAVE  
MIN MAX  
UNIT  
MIN  
P
MAX  
M53  
M54  
M56  
th(CKXH-FXL)  
td(FXL-CKXL)  
Hold time, FSX low after CLKX high  
Delay time, FSX low to CLKX low  
ns  
ns  
ns  
2P(1)  
tdis(CKXH-DXHZ)  
Disable time, DX high impedance following last data bit from  
CLKX high  
P + 6  
7P + 6  
4P + 6  
M57  
td(FXL-DXV)  
Delay time, FSX low to DX valid  
6
ns  
(1) 2P = 1/CLKG  
(2) C = CLKX low pulse width = P  
D = CLKX high pulse width = P  
M61  
M60  
MSB  
M54  
LSB  
CLKX  
M53  
FSX  
M56  
M55  
(n-2)  
M57  
DX  
DR  
Bit 0  
Bit(n-1)  
(n-3)  
(n-4)  
M58  
M59  
(n-2)  
Bit 0  
Bit(n-1)  
(n-3)  
(n-4)  
Figure 6-40. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
6.11 Migrating From F2833x Devices to F2823x Devices  
The principal difference between these two devices is the absence of the floating-point unit (FPU) in the  
F2823x devices. The following options should be used in the Project Build_options Compiler →  
Advanced tab in Code Composer Studio:  
For F2833x devices: Use -v28 --float_support = fpu32, available in the compiler v5.0.0 or later.  
For F2823x devices: Either leave off the --float_support switch or use -v28 --float_support=none  
For quick portability between native floating-point and fixed-point devices, TI suggests writing your code  
using the IQmath macro language described in C28x IQMath Library - A Virtual Floating Point Engine  
(SPRC087).  
Submit Documentation Feedback  
Electrical Specifications  
163  
TMS320F28335, TMS320F28334, TMS320F28332  
TMS320F28235, TMS320F28234, TMS320F28232  
Digital Signal Controllers (DSCs)  
www.ti.com  
SPRS439CJUNE 2007REVISED FEBRUARY 2008  
7
Thermal/Mechanical Data  
Table 7-1, Table 7-2, and Table 7-3 show the thermal data.  
The mechanical package diagram(s) that follow the tables reflect the most current released mechanical  
data available for the designated device(s).  
Table 7-1. Thermal Model 176-pin PGF Results  
AIR FLOW  
PARAMETER  
0 lfm  
44  
θJA[°C/W] High k PCB  
ΨJT[°C/W]  
θJC  
0.1  
8.2  
θJB  
28.1  
Table 7-2. Thermal Model 179-pin ZHH Results  
AIR FLOW  
PARAMETER  
0 lfm  
32.8  
0.1  
θJA[°C/W] High k PCB  
ΨJT[°C/W]  
θJC  
8.8  
θJB  
12.5  
Table 7-3. Thermal Model 176-pin ZJZ Results  
AIR FLOW  
PARAMETER  
0 lfm  
30.1  
θJA[°C/W] High k PCB  
ΨJT[°C/W]  
θJC  
0.115  
7.29  
θJB  
9.99  
164  
Thermal/Mechanical Data  
Submit Documentation Feedback  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Feb-2008  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TMX320F28232ZHHA  
ACTIVE  
BGA MI  
CROSTA  
R
ZHH  
179  
TBD  
Call TI  
Call TI  
TMX320F28232ZJZA  
TMX320F28234ZHHA  
ACTIVE  
ACTIVE  
BGA  
ZJZ  
176  
179  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
BGA MI  
CROSTA  
R
ZHH  
TMX320F28234ZJZA  
TMX320F28235PGFA  
TMX320F28235ZHHA  
ACTIVE  
ACTIVE  
ACTIVE  
BGA  
ZJZ  
PGF  
ZHH  
176  
176  
179  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
LQFP  
1
BGA MI  
CROSTA  
R
TMX320F28235ZJZA  
TMX320F28332PGFA  
TMX320F28332ZHHA  
ACTIVE  
ACTIVE  
ACTIVE  
BGA  
ZJZ  
PGF  
ZHH  
176  
176  
179  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
LQFP  
BGA MI  
CROSTA  
R
TMX320F28334PGFA  
TMX320F28334ZHHA  
ACTIVE  
ACTIVE  
LQFP  
PGF  
ZHH  
176  
179  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
BGA MI  
CROSTA  
R
TMX320F28335PGFA  
TMX320F28335ZHHA  
ACTIVE  
ACTIVE  
LQFP  
PGF  
ZHH  
176  
179  
1
1
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
BGA MI  
CROSTA  
R
TMX320F28335ZJZ  
ACTIVE  
BGA  
ZJZ  
176  
1
TBD  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Feb-2008  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
ꢀ ꢁꢂꢃꢄ ꢅꢆꢂ ꢄꢇꢈ ꢉꢄꢊꢄ  
OCTOBER 1994  
PGF (S-PQFP-G176)  
PLASTIC QUAD FLATPACK  
132  
89  
133  
88  
0,27  
0,17  
M
0,08  
0,50  
0,13 NOM  
176  
45  
1
44  
Gage Plane  
21,50 SQ  
24,20  
SQ  
23,80  
26,20  
25,80  
0,25  
0,05 MIN  
0°ā7°  
SQ  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040134/B 03/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MO-136  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

TMX320F28334ZHHA

Digital Signal Controllers (DSCs)
TI

TMX320F28335PGFA

Digital Signal Controllers (DSCs)
TI

TMX320F28335ZHHA

Digital Signal Controllers (DSCs)
TI

TMX320F28335ZJZ

Digital Signal Controllers (DSCs)
TI

TMX320LC2401APAGA

DSP CONTROLLERS
TI

TMX320LC2401APAGS

DSP CONTROLLERS
TI

TMX320LC2401APGA

DSP CONTROLLERS
TI

TMX320LC2401APGEA

DSP CONTROLLERS
TI

TMX320LC2401APGES

DSP CONTROLLERS
TI

TMX320LC2401APGS

DSP CONTROLLERS
TI

TMX320LC2401APZA

DSP CONTROLLERS
TI

TMX320LC2401APZS

DSP CONTROLLERS
TI