TNETE110APCM [TI]

PCI ETHERNETE CONTROLLER SINGLE-CHIP 10 BASE-T;
TNETE110APCM
型号: TNETE110APCM
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

PCI ETHERNETE CONTROLLER SINGLE-CHIP 10 BASE-T

局域网(LAN)标准 以太网:16GBASE-T PC
文件: 总24页 (文件大小:357K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
Single-Chip Ethernet Adapter for the  
Peripheral Component Interconnect (PCI)  
Local Bus  
Integrated 10 Base-T, and 10 Base-5  
Attachment Unit Interface (AUI) Physical  
Layer Interface  
– Single-Chip IEEE 802.3 and Blue Book  
Ethernet-Compliant Solution  
– DSP-Based Digital Phase-Locked Loop  
– Smart Squelch Allows for Transparent  
Link Testing  
– 32-Bit PCI Glueless Host Interface  
– Compliant With PCI Local-Bus  
Specification (Revision 2.0)  
– 33-MHz Operation  
– 3-V or 5-V I/O Operation  
– Adaptive Performance Optimization  
(APO) by Texas Instruments (TI ) for  
Highest Available PCI Bandwidth  
– High-Performance Bus Master  
Architecture With Byte-Aligning DMA  
Controller for Low Host CPU and Bus  
Utilization  
– Transmission Waveshaping  
– Autopolarity (Reverse Polarity  
Correction)  
– External/Internal Loopback Including  
Twisted Pair and AUI  
– 10 Base-2 Supported Via AUI Interface  
Low-Power CMOS Technology  
– Green PC Compatible  
– Microsoft Advanced Power  
Management  
– Plug-and-Play Compatible  
Supports 32-Bit Data Streaming on PCI Bus  
– Time Division Multiplexed SRAM  
– 2-Gbps Internal Bandwidth  
EEPROM Interface Supports Jumperless  
Design and Autoconfiguration  
Driver Compatible With All Previous  
ThunderLAN Components  
Hardware Statistics Registers for  
Switched-Ethernet Compatible  
Management Information Base (MIB)  
Full-Duplex Compatible With Independent  
Transmit and Receive Channels  
DMTF (Desktop Management Task Force)  
Compatible  
No On-Board Memory Required  
IEEE Standard 1149.1 Test Access Port  
(JTAG)  
Auto-Negotiation (N-Way) Compatible  
144-Pin Quad Flat Packages (PCM Suffix)  
and Thin Quad Flat Packages (PGE Suffix)  
Supports the Card Bus CIS Pointer  
Register  
10 Base-T  
Ethernet  
10 Base-T  
Physical  
Layer  
FIFO  
Registers  
Ethernet  
LAN  
Controller  
10 Mbps  
PCI  
Bus Master  
Control  
Interface  
10 Base-5  
(AUI)  
PCI  
Bus  
Multiplexed  
SRAM  
FIFO  
Figure 1. ThunderLAN Architecture  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
The PCI Local-Bus Specification, Revision 2.0 should be used as a reference with this document.  
IEEE Standard 1149.1–1990, IEEE Standard Test-Access Port and Boundary-Scan Architecture  
ThunderLAN, Adaptive Performance Optimization, and TI are trademarks of Texas Instruments Incorporated.  
Ethernet is a trademark of Xerox Corporation.  
Microsoft is a trademark of Microsoft Corporation.  
Copyright 1996, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
description  
ThunderLAN is a high-speed networking architecture that provides a complete PCI-to-10 Base-T/AUI Ethernet  
solution. The TNETE110A, one implementation of the ThunderLAN architecture, is an intelligent protocol  
network interface. The ThunderLAN SRAM FIFO-based architecture eliminates the need for external memory  
and offers a single-chip glueless PCI-to-10 Base-T/AUI (IEEE 802.3) solution with an on-board physical layer  
interface. See Figure 1.  
The glueless PCI interface supports 32-bit streaming, operates at speeds up to 33 MHz and is capable of  
internal data-transfer rates up to 2 Gbps, taking full advantage of all available PCI bandwidth. The TNETE110A  
offers jumperless autoconfiguration using PCI configuration read/write cycles. Customizable configuration  
registers, which can be autoloaded from an external serial EEPROM, allow designers of TNETE110A-based  
systems to give their systems a unique identification code. The TNETE110A PCI interface, developed in  
conjunction with other leaders in the semiconductor and computer industries, has been vigorously tested on  
multiple platforms to ensure compatibility across a wide array of available PCI products. In addition, the  
ThunderLAN drivers and ThunderLAN architecture use TI’s patented adaptive performance optimization (APO)  
technology to dynamically adjust critical parameters for minimum latency, minimum host CPU utilization, and  
maximum system performance. This technology ensures that the maximum capabilities of the PCI interface are  
used by automatically tuning the adapter to the specific system in which it is operating.  
An intelligent protocol handler (PH) implements the serial protocols of the network. The PH is designed for  
minimum overhead related to multiple protocols, using common state machines to implement 95 percent of the  
total protocol handler. On transmit, the PH serializes data, adds framing and cyclic redundancy check (CRC)  
fields, and interfaces to the network physical layer (PHY) chip. On receive, it provides address recognition, CRC  
and error checking, frame disassembly, and deserialization. Data for multiple channels is passed to and from  
the PH by way of circular-buffer FIFOs in the FIFO SRAM.  
Compliant with IEEE Standard 1149.1, the TNETE110A provides a 5-pin test-access port that is used for  
boundary-scan testing.  
The TNETE110A is available in a 144-pin quad flat package and thin quad flat package.  
differences between TNETE110 and TNETE110A:  
The TNETE110A implements the CIS pointer register as defined in the PC card standard. This register can be  
found in the PCI configuration registers at offset 28h. For other differences between the TNETE110 and  
TNETE110A, consult the ThunderLAN Programmer’s Guide (literature number SPWU013).  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
pin assignments  
PCM and PGE PACKAGES  
(TOP VIEW)  
PAD24  
PC/BE3  
1
ARCVN  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
2
V
DDR  
V
3
ARCVP  
FRCVN  
SSI  
PIDSEL  
PAD23  
4
5
V
DDR  
V
FRCVP  
6
DDI  
PAD22  
PAD21  
PAD20  
V
7
SSR  
V
8
SST  
AXMTN  
AXMTP  
FXMTN  
FXMTP  
9
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
SSI  
98  
PAD19  
PAD18  
PAD17  
97  
96  
V
DDT  
95  
V
MRST  
DDI  
94  
PAD16  
PC/BE2  
V
MDIO  
DDL  
93  
92  
PFRAME  
V
SSL  
91  
V
MDCLK  
NC  
SSL  
90  
PIRDY  
PTRDY  
89  
NC  
88  
PDEVSEL  
V
SSI  
87  
V
NC  
NC  
NC  
DDL  
86  
PSTOP  
PPERR  
PSERR  
85  
84  
V
DDL  
83  
V
NC  
NC  
NC  
NC  
SSI  
82  
PPAR  
PC/BE1  
PAD15  
PAD14  
81  
80  
79  
V
DDL  
78  
V
NC  
NC  
NC  
SSI  
77  
PAD13  
PAD12  
76  
75  
V
V
DDI  
SSL  
74  
PAD11  
PAD10  
NC  
NC  
73  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
functional block diagram  
TNETE110A  
(ThunderLAN)  
TRST  
AXMTP  
AXMTN  
ARCVP  
ARCVN  
ACOLP  
ACOLN  
FXMTP  
FXMTN  
FRCVP  
FRCVN  
FXTL1  
TMS  
TCLK  
TDO  
TDI  
IEEE  
1149.1  
Test-  
Access  
Port  
Test-Access  
Port  
AUI  
Interface  
(TAP)  
10-Mbps  
Ethernet  
Physical  
Layer  
(PHY)  
Interface  
PCI  
Interface  
(PCIIF)  
Config  
& I/O  
Memory  
Registers  
10 Base-T  
Interface  
FXTL2  
Configuration  
EEPROM  
EDCLK  
EDIO  
S
l
FIREF  
Config  
EEPROM  
Interface  
a
Interface  
v
FATEST  
e
EAD[7:0]  
FIFO  
Pointer  
Registers  
(FPREGs)  
BIOS ROM  
and  
BIOS  
ROM/LED  
Driver  
EXLE  
EALE  
EOE  
LED I/F  
Interface  
PAD[31:0]  
Protocol  
Handler  
(PH)  
Address  
and Data  
FSRAM  
(FIFO SRAM)  
PC/BE[3:0]  
PPAR  
3
128  
Byte List  
PFRAME  
PTRDY  
PIRDY  
64  
64  
1.5K-Byte  
Rx Buffer  
Interface  
Control  
M
a
s
t
e
r
0.75K-Byte  
Tx Buffer  
PSTOP  
DMA  
Controller  
PDEVSEL  
PIDSEL  
0.75K-Byte  
Tx Buffer  
PPERR  
PSERR  
Error  
Reporting  
PREQ  
PGNT  
Bus  
Arbitration  
PCLK  
PCLKRUN  
PRST  
System  
Control  
PINTA  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
Pin Functions  
PIN  
NAME  
DESCRIPTION  
TYPE  
NO.  
TEST PORT  
Test clock. TCLK is used to clock state information and test data into and out of the device during  
operation of the test port.  
TCLK  
124  
126  
125  
I
I
Test data input. TDI is used to shift test data and test instructions serially into the device during  
operation of the test port.  
TDI  
Test data output. TDO is used to shift test data and test instructions serially out of the device during  
operation of the test port.  
TDO  
O
TMS  
123  
121  
I
I
Test mode select. TMS is used to control the state of the test port controller within TNETE110A.  
Test reset. TRST is used for asynchronous reset of the test port controller.  
TRST  
PCI INTERFACE  
PAD31  
PAD30  
PAD29  
PAD28  
PAD27  
PAD26  
PAD25  
PAD24  
PAD23  
PAD22  
PAD21  
PAD20  
PAD19  
PAD18  
PAD17  
PAD16  
PAD15  
PAD14  
PAD13  
PAD12  
PAD11  
PAD10  
PAD9  
135  
137  
138  
140  
141  
143  
144  
1
I/O  
I/O  
I/O  
PCI address/data bus. Byte 3 (most significant) of the PCI address/data bus.  
5
7
8
9
PCI address/data bus. Byte 2 of the PCI address/data bus.  
11  
12  
13  
15  
29  
30  
32  
33  
35  
36  
38  
39  
PCI address/data bus. Byte 1 of the PCI address/data bus.  
PAD8  
I = input, O = output, I/O = 3-state input/output  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
Pin Functions (Continued)  
PIN  
NAME  
DESCRIPTION  
TYPE  
NO.  
PCI INTERFACE (CONTINUED)  
PAD7  
42  
43  
45  
46  
47  
49  
50  
51  
PAD6  
PAD5  
PAD4  
PAD3  
PAD2  
PAD1  
PAD0  
I/O  
PCI address/data bus. Byte 0 (least significant) of the PCI address/data bus.  
PCI clock. PCLK is the clock reference for all PCI bus operations. All other PCI pins except PRST and  
PINTA are sampled on the rising edge of PCLK. All PCI bus timing parameters are defined with respect  
to this edge.  
PCLK  
131  
53  
I
Clock run control. PCLKRUN is the active-low PCI clock request/grant signal that allows the  
TNETE110AA to indicate when an active PCI clock is required. (This is an open drain.)  
PCLKRUN  
I/O  
PC/BE3  
PC/BE2  
PC/BE1  
PC/BE0  
2
PCI bus command and byte enables. PC/BE3 enables byte 3 (MSB) of the PC/BE pins.  
PCI bus command and byte enables. PC/BE2 enables byte 2 of PCI address/data bus.  
PCI bus command and byte enables. PC/BE1 enables byte 1 of PCI address/data bus.  
PCI bus command and byte enables. PC/BE0 enables byte 0 of PCI address/data bus.  
16  
28  
41  
I/O  
PCI device select. PDEVSEL indicates that the driving device has decoded one of its addresses as  
the target of the current access. The TNETE110A drives PDEVSEL when it decodes an access to one  
of its registers. As a bus master, the TNETE110A monitors PDEVSEL to detect accesses to illegal  
memory addresses.  
PDEVSEL  
PFRAME  
21  
17  
I/O  
I/O  
PCI cycle frame. PFRAME is driven by the active bus master to indicate the beginning and duration  
of an access. PFRAME is asserted to indicate the start of a bus transaction and remains asserted  
during the transaction, only being deasserted in the final data phase.  
PCI bus grant. PGNT is asserted by the system arbiter to indicate that the TNETE110A has been  
granted control of the PCI bus.  
PGNT  
132  
4
I
I
PIDSEL  
PINTA  
PCI initialization device select. PIDSEL is the chip select for access to PCI configuration registers.  
PCI interrupt. PINTA is the interrupt request from the TNETE110A. PCI interrupts are shared, so this  
is an open-drain (wired-OR) output.  
128  
O/D  
PCI initiator ready. PIRDY is driven by the active bus master to indicate that it is ready to complete the  
current data phase of a transaction. A data phase is not completed until both PIRDY and PTRDY are  
sampled asserted. When the TNETE110A is a bus master, it uses PIRDY to align incoming data on  
reads or outgoing data on writes with its internal RAM-access synchronization (maximum one cycle  
at the beginning of burst). When the TNETE110A is a bus slave, it extends the access appropriately  
until both PIRDY and PTRDY are asserted.  
PIRDY  
19  
20  
I/O  
I/O  
PCI target ready. PTRDY is driven by the selected device (bus slave or target) to indicate that it is ready  
to complete the current data phase of a transaction. A data phase is not completed until both PIRDY  
and PTRDY are sampled asserted.  
PTRDY  
ThunderLAN uses PTRDY to ensure every direct I/O (DIO) operation is correctly interlocked.  
PCI parity. PPAR carries even parity across PAD[31:0] and PC/BE[3:0]. It is driven by the TNETE110A  
during all address and write cycles as a bus master and during all read cycles as a bus slave.  
PPAR  
27  
24  
I/O  
I/O  
PPERR  
PCI parity error. PPERR indicates a data parity error on all PCI transactions except special cycles.  
I = input, I/O = 3-state input/output, O/D = open-drain output  
Open drain  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
Pin Functions (Continued)  
PIN  
NAME  
DESCRIPTION  
PCI INTERFACE (CONTINUED)  
TYPE  
NO.  
PCI bus request. PREQ is asserted by the TNETE110A to request control of the PCI bus. This is not  
a shared signal.  
PREQ  
134  
I/O  
PRST  
129  
25  
I
PCI reset signal.  
PSERR  
O/D  
PCI system error. PSERR indicates parity errors, or special cycle data parity errors.  
PSTOP  
23  
I/O  
PCI stop. PSTOP indicates the current target is requesting the master to stop the current transaction.  
BIOS ROM/LED DRIVER INTERFACE  
EPROM address/data. EAD[7:0] is a multiplexed byte bus that is used to address and read data from  
an external BIOS ROM.  
EAD7  
EAD6  
EAD5  
EAD4  
EAD3  
EAD2  
EAD1  
EAD0  
54  
55  
56  
57  
59  
60  
61  
62  
On the cycle when EXLE is asserted low, EAD[7:0] is driven with the high byte of the  
address.  
On the cycle when EALE is asserted low, EAD[7:0] is driven with the low byte of the  
address.  
When EOE is asserted, BIOS ROM data should be placed on the bus.  
I/O  
These pins can also be used to drive external status LEDs. Low-current (2–5 mA) LEDs can be  
connected directly (through appropriate resistors). High-current LEDs can be driven through buffers  
or from the BIOS ROM address latches.  
EPROM address latch enable. EALE is driven low to latch the low (least significant) byte of the BIOS  
ROM address from EAD[7:0].  
EALE  
EOE  
65  
64  
66  
O
O
O
EPROM output enable. When EOE is active (low) EAD[7:0] is in the high-impedance state and the  
output of the BIOS ROM should be placed on EAD[7:0].  
EPROM extended address latch enable. EXLE is driven low to latch the high (most significant) byte  
of the BIOS ROM address from EAD[7:0].  
EXLE  
CONFIGURATION EEPROM INTERFACE  
EEPROM data clock. EDCLK transfers serial clocked data to the 2K-bit serial EEPROMs (24C02) (see  
Note 1).  
EDCLK  
EDIO  
68  
69  
O
EEPROM data I/O. EDIO is the bidirectional serial data/address line to the 2K-bit serial EEPROM  
(24C02). EDIO requires an external pullup for EEPROM operation. Tying EDIO to ground disables the  
EEPROM interface and prevents autoconfiguration of the PCI configuration register.  
I/O  
NETWORK INTERFACE (10 Base-T AND AUI)  
ACOLN  
ACOLP  
111  
109  
AUI receive pair. ACOLN and ACOLP are differential line-receiver inputs and connect to receive pair  
via transformer isolation, etc.  
A
A
A
ARCVN  
ARCVP  
108  
106  
AUI receive pair. ARCVN and ARCVP are differential line-receiver inputs and connect to receive pair  
via transformer isolation, etc.  
AXMTP  
AXMTN  
99  
100  
AUI transmit pair. AXMTP and AXMTN are differential line-transmitter outputs.  
Analog test pin. FATEST provides access to the filter of the reference PLL. This pin should be left as  
a no connect.  
FATEST  
FIREF  
118  
116  
A
A
A
Current reference. FIREF is used to set a current reference for the analog circuitry.  
FRCVN  
FRCVP  
105  
103  
10 Base-T receive pair. FRCVN and FRCVP are differential line receiver inputs and connect to receive  
pair via transformer isolation, etc.  
FXTL1  
FXTL2  
113  
114  
A
Crystal oscillator pins. Drive FXTL1 from a 20-MHz crystal oscillator module.  
I = input, O = output, I/O = 3-state input/output, O/D = open-drain output, A = analog  
NOTE 1: This pin should be tied to V  
DD  
with a 4.7-k – 10-k pullup resistor.  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
Pin Functions (Continued)  
PIN  
NAME  
DESCRIPTION  
TYPE  
NO.  
NETWORK INTERFACE (10 Base-T AND AUI) (CONTINUED)  
FXMTP  
FXMTN  
97  
98  
A
I
10 Base-T transmit pair. FXMTP and FXMTN are differential line transmitter outputs.  
RESERVED  
120  
Reserved. Tie this pin low.  
SERIAL MANAGEMENT INTERFACE  
MDIO  
93  
91  
95  
I/O  
O
Management data I/O. MDIO is part of the serial management interface.  
Management data clock. MDCLK is part of the serial management interface to physical-media  
independent (PMI)/PHY chip.  
MDCLK  
MRST  
O
MII reset. MRST is the reset signal.  
POWER  
6, 14,  
34, 48,  
122,  
136,  
142  
PCI V  
DD  
pins. V  
DDI  
pins provide power for the PCI I/O pin drivers. Connect V  
supply when using 5-V signals on the PCI bus. Connect V  
3-V signals on the PCI bus.  
pins to a 5-V power  
DDI  
pins to a 3-volt power supply when using  
DDI  
V
PWR  
PWR  
DDI  
22, 37,  
58, 70,  
79, 84  
94,  
Logic V  
DD  
be connected to 5 V.  
pins (5 V). V  
pins provide power for internal TNETE110A logic, and they should always  
DDL  
V
DDL  
130  
V
V
115  
PWR  
PWR  
Analog power pin. V  
is the 5-V power for the crystal oscillator circuit.  
DDOSC  
DDOSC  
104  
107  
Analog power pin. V  
Analog power pin. V  
is the 5-V power for the receiver circuitry.  
DDR  
DDR  
V
V
96  
PWR  
PWR  
is the 5-V power for the transmitter circuitry.  
DDT  
DDT  
117  
Analog power pin. V  
is the 5-V power for the voltage controller oscillator (VCO) and filter input.  
DDVCO  
DDVCO  
3, 10,  
26, 31,  
40, 52,  
67, 88,  
127,  
V
SSI  
PWR  
PCI I/O ground pins  
139  
18, 44,  
63, 75,  
92,  
V
SSL  
PWR  
Logic ground pins  
133  
V
V
112  
PWR  
PWR  
Analog power pin. Ground for crystal oscillator circuit  
Analog power pin. Ground for receiver circuitry  
SSOSC  
102  
110  
SSR  
V
V
101  
119  
PWR  
PWR  
Analog power pin. Ground for transmitter circuitry  
Analog power pin. Ground for VCO and filter input  
SST  
SSVCO  
I = input, A = analog, PWR = power  
architecture  
The major blocks of the TNETE110A include the PCI interface (PCIIF), protocol handler (PH), physical layer  
(PHY), FIFO pointer registers (FPREGS), FIFO SRAM (FSRAM), and a test-access port (TAP). The  
functionality of these blocks is described in the following sections.  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
PCI interface (PCIIF)  
The TNETE110A PCIIF contains a byte-aligning DMA controller that allows frames to be fragmented into any  
byte length and transferred to any byte address while supporting 32-bit data streaming. For multipriority  
networks it can provide multiple data channels, each with separate lists, commands, and status. Data for the  
channels is passed to and from the PH by way of circular buffer FIFOs in the SRAM, controlled through FIFO  
registers. The configuration EEPROM interface (CEI), BIOS ROM/LEDdriver interface (BRI), configuration and  
I/O memory registers (CIOREGS), and DMA controller are subblocks of the PCIIF. The features of these  
subblocks are as follows:  
configuration EEPROM interface (CEI)  
The CEI provides a means for autoconfiguration of the PCI configuration registers. Certain registers in the PCI  
configuration space may be loaded using the CEI. Autoconfiguration allows builders of TNETE110A-based  
systems to customize the contents of these registers to identify their own system, rather than using the TI  
defaults. The EEPROM is read at power up and can then be read from, and written to, under program control.  
BIOS ROM/LED driver interface (BRI)  
The BRI addresses and reads data from an external BIOS ROM via a multiplexed byte-wide bus. The ROM  
address/data pins can also be multiplexed to drive external status LEDs.  
configuration and I/O memory registers (CIOREGS)  
The CIOREGS reside in the configuration space, which is 256 bytes in length. The first 64 bytes of the  
configuration space is the header region, which is explicitly defined by the PCI standard.  
DMA controller (DMAC)  
The DMAC is responsible for coordinating TNETE110A requests for mastership of the PCI bus. The DMAC  
provides byte-aligning DMA control allowing byte-size fragmented frames to be transferred to any byte address  
while supporting 32-bit data streaming.  
protocol handler (PH)  
The PH implements the serial protocols of the network. On transmit, it serializes data, adds framing and CRC  
fields, and interfaces to the network PHY. On receive, it provides address recognition, CRC and error checking,  
frame disassembly, and deserialization. Data for multiple channels is passed to and from the PH by way of  
circular buffer FIFOs in the FSRAM controlled through FPREGS.  
10 Base-T physical layer (PHY)  
The PHY acts as an on-chip front-end providing physical layer functions for 10 Base-5 (AUI), 10 Base-2, and  
10 Base-T (twisted pair). The PHY provides Manchester encoding/decoding from smart squelch, jabber  
detection, link pulse detection, autopolarity control, 10 Base-T transmission waveshaping, and antialiasing  
filtering. Connection to the AUI drop cable for the 10 Base-T twisted pair is made via simple isolation  
transformers (see Figure 2) and no external filter networks are required. Suitable external termination  
components allow the use of either shielded or unshielded twisted-pair cable (150 or 100 ). Some of the  
key features of the on-chip PHY include the following:  
Integrated filters  
10 Base-T transceiver  
AUI transceiver  
10 Base-2 transceiver  
Autopolarity (reverse polarity correction)  
Loopback for twisted pair and AUI  
Full-duplex mode for simultaneous 10 Base-T transmission and reception  
Low power  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
10 Base-T physical layer (continued)  
FXMTP  
FXMTN  
FRCVP  
RJ-45  
PCI  
TNETE110A  
FRCVN  
Figure 2. Schematic for 10 Base-T Network Interface Using TNETE110A  
FIFO pointer registers (FPREGS)  
The FPREGS are used to implement circular buffer FIFOs in the SRAM. They are a collection of pointer and  
counter registers used to maintain the FIFO operation. Both the PCIIF and PH use FPREGS to determine where  
to read or write data in the SRAM and to determine how much data the FIFO contains.  
FIFO SRAM (FSRAM)  
The FSRAM is a conventional SRAM array accessed synchronously to the PCI bus clock. Access to the RAM  
is allocated on a time-division multiplexed (TDM) basis, rather than through a conventional shared bus. This  
removes the need for bus arbitration and provides ensured bandwidth. Half of the RAM accesses (every other  
cycle) are allocated to the PCI controller. It has a 64-bit access port to the RAM, giving it 1 Gbps of bandwidth,  
sufficient to support 32-bit data streaming on the PCI bus. The PH has one quarter of the RAM accesses, and  
its port may be up to 64 bits wide. A 64-bit port for the PH provides 512 Mbps of bandwidth, more than sufficient  
for a full-duplex 100-Mbps network. The remaining RAM accesses can be allocated toward providing even more  
PH bandwidth. The RAM also is accessible (for diagnostic purposes) from the TNETE110A internal data bus.  
Host DIO (mapped I/O) accesses are used by the host to access internal TNETE110A registers and for adapter  
test.  
Some of the features of the FSRAM follow:  
3.375K bytes of FSRAM  
1.5K-byte FIFO for receive channel  
One 1.5K-byte FIFO for transmit channel  
Three 128-byte lists  
Supporting 1.5K byte of FIFO per channel allows full-frame buffering of Ethernet frames.  
test-access port (TAP)  
Compliant with IEEE Standard 1149.1, the TAP is composed of five pins that are used to interface serially with  
the device and the board on which it is installed for boundary-scan testing.  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
absolute maximum ratings over operating case temperature range (unless otherwise noted)  
Supply voltage range, V  
(see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 V to 7 V  
DD  
Input voltage range (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 V to 7 V  
Output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 V to 7 V  
Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.15 W  
Operating case temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 95°C  
Junction to ambient package thermal impedance,  
airflow = 100 LFPM, T PGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45.4°C/W  
C
JA(100)  
Junction to ambient package thermal impedance,  
airflow = 0 LFPM, T PGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51°C/W  
JA(0)  
Junction to ambient package thermal impedance,  
airflow = 0 LFPM, T PCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.4°C/W  
JA(0)  
Junction to ambient package thermal impedance,  
airflow = 100 LFPM, T PCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38.0°C/W  
JA(100)  
Junction to case package thermal impedance, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.22°C/W  
JC  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 2: Voltage values are with respect to V , and all V  
SS SS  
pins should be routed so as to minimize inductance to system ground.  
The recommended operating conditions and the electrical characteristics tables are divided into groups,  
depending on pin function:  
PCI interface pins  
Logic pins  
Physical layer pins  
The PCI signal pins are operated in one of two modes shown in the PCI tables.  
5-V signal mode  
3-V signal mode  
recommended operating conditions (PCI interface pins) (see Note 3)  
3-V SIGNALING  
OPERATION  
5-V SIGNALING  
OPERATION  
UNIT  
MIN  
NOM  
MAX  
MIN NOM  
MAX  
5.25  
+0.5  
V
V
V
Supply voltage (PCI)  
3
3.3  
3.6  
4.75  
2.0  
5
V
V
DD  
High-level input voltage  
0.5  
V
DD  
V
+0.5  
V
DD  
IH  
DD  
0.5  
0.5  
Low-level input voltage, TTL-level signal (see Note 4)  
0.5  
0.8  
–2  
V
IL  
I
High-level output current  
TTL outputs  
0.5  
1.5  
mA  
OH  
Low-level output current  
(see Note 5)  
I
TTL outputs  
6
mA  
OL  
Specified by design spice IV curve (please refer to PCI specification revision 2.1, section 4.2, paragraph 2 for explanation)  
NOTES: 3. PCI interface pins include V , PCLKRUN, PFRAME, PTRDY, PIRDY, PSTOP, PDEVSEL, PIDSEL, PPERR, PSERR, PREQ,  
DDI  
PGNT, PCLK, PPAR, PRST, PINTA, PAD[31:0], PC/BE[3:0], TRST, TMS, TCLK, TDO, TDI.  
4. The algebraic convention, where the more negative (less positive) limit is designated as a minimum, is used for logic-voltage levels  
only.  
5. Output current of 2 mA is sufficient to drive five low-power Schottky TTL loads or ten advanced low-power Schottky TTL loads (worst  
case).  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (PCI interface pins)  
3-V SIGNALING  
OPERATION  
5-V SIGNALING  
OPERATION  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
MAX  
MIN  
MAX  
High-level output voltage,  
TTL-level signal (see Note 6)  
V
V
V
V
= MIN,  
I
I
= MAX  
0.9  
V
DD  
2.4  
V
V
OH  
DD  
OH  
Low-level output voltage,  
TTL-level signal  
= MAX,  
= MAX  
= 0 V  
0.1  
V
0.5  
OL  
DD  
OL  
DD  
V
V
= MAX,  
= MAX,  
V
V
10  
10  
10  
10  
– 10  
10  
DD  
O
I
High-impedance output current  
µA  
OZ  
= V  
DD  
O
DD  
I
I
Input current, any input or input/output  
Supply current  
V = V  
to V  
DD  
µA  
mA  
pF  
I
I
SS  
= MAX  
DD  
V
50  
60  
DD  
§
C
Input capacitance, any input  
f = 1 MHz,  
Others at 0 V  
Others at 0 V  
10  
10  
i
Output capacitance, any output or  
C
f = 1 MHz,  
10  
10  
pF  
O
§
input/output  
§
For conditions shown as MIN/MAX, use the appropriate value specified under the recommended operating conditions.  
Assured by SPICE IV Curve (see PCI specification revision 2.1, section 4.2, paragraph 2 for explanation)  
Specified by design  
NOTE 6: The following signals require an external pullup resistor: PSERR, PINTA.  
recommended operating conditions (logic pins) (see Note 7)  
MIN NOM  
MAX  
5.25  
+0.3  
UNIT  
V
V
V
V
Supply voltage (5 V only)  
4.75  
2
5
DD  
High-level input voltage  
V
V
IH  
DD  
Low-level input voltage, TTL-level signal (see Note 4)  
High-level output current  
0.3  
0.8  
–4  
4
V
IL  
I
TTL outputs  
TTL outputs  
mA  
mA  
OH  
OL  
I
Low-level output current (see Note 5)  
NOTES: 4. The algebraic convention, where the more negative (less positive) limit is designated as a minimum, is used for logic-voltage levels  
only.  
5. Output current of 2 mA is sufficient to drive five low-power Schottky TTL loads or ten advanced low-power Schottky TTL loads (worst  
case).  
7. Logic pins include V , EAD[7:0], EXLE, EALE, EOE, EDCLK, EDIO.  
DDL  
electrical characteristics over recommended ranges of supply voltage (unless otherwise noted)  
(logic pins)  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
V
V
V
High-level output voltage, TTL-level signal  
Low-level output voltage, TTL-level signal  
V
V
V
V
= MIN,  
= MAX,  
= MIN,  
= MIN,  
I
I
= MAX  
= MAX  
2.4  
OH  
DD  
DD  
DD  
DD  
OH  
0.5  
10  
V
OL  
OL  
V
= V  
O
O
DD  
= 0 V  
I
I
I
High-impedance output current  
µA  
O
V
10  
10  
Input current  
V = V  
to V  
µA  
mA  
mA  
pF  
I
I
SS  
DD  
Supply current @ 25 MHz (PCLK)  
Supply current @ 33 MHz (PCLK)  
190  
V
= NOM  
DD  
DD  
228  
§
C
C
Input capacitance, any input  
f = 1 MHz,  
f = 1 MHz,  
Others at 0 V  
Others at 0 V  
10  
10  
i
§
Output capacitance, any output or input/output  
pF  
o
§
For conditions shown as MIN/MAX, use the appropriate value specified under the recommended operating conditions.  
Specified by design  
Characterized in system test not tested  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
recommended operating conditions (physical layer pins) (see Note 8)  
MIN NOM  
4.75  
MAX  
UNIT  
V
Supply voltage  
5
5.25  
V
DD  
NOTE 8: Physical layer pins include V  
, V , ACOLN, ACOLP, ARCVN, ARCVP, AXMTP, AXMTN, FATEST, FIREF,  
, V  
, V  
DDOSC DDR DDT DDVCO  
FRCVN, FRCVP, FXTL1, FXTL2, FXMTP, and FXMTN.  
electrical characteristics over recommended ranges of supply voltage (unless otherwise noted)  
(physical interface pins)  
10 Base-T receiver input (FRCVP, FRCVN)  
JEDEC  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
V
Differential input voltage  
V
0.6  
2.8  
4
V
I(DIFF)  
ID  
I
Common-mode current  
I
IC  
mA  
mV  
mV  
(CM)  
V
V
Rising input pair squelch threshold (see Note 9)  
Falling input pair squelch threshold (see Note 9)  
V
V
= V  
= V  
,
,
See Note 10  
See Note 10  
360  
SQ+  
CM  
SB  
360  
SQ–  
CM  
SB  
See recommended operating conditions.  
NOTES: 9. VSQ is the voltage at which input is assured to be seen as data.  
10. is the self-bias of the input FRCVP and FRCVN.  
V
SB  
10 Base-T transmitter drive characteristics (FXMTP, FXMTN)  
JEDEC  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
V
V
V
V
I
Differential voltage at specified slew rate  
Common-mode output voltage  
Differential output voltage  
V
V
V
V
I
2.2  
0
2.8  
4
V
V
SLW  
OD(SLEW)  
See Figure 3d  
O(CM)  
O(DIFF)  
O(I)  
OC  
Into open circuit  
5.25  
50  
V
OD  
Output idle differential voltage  
mV  
mA  
OD(IDLE)  
Output current, fault condition  
300  
O(FC)  
O(FC)  
Specified by design  
AUI receiver input (ARCVP, ARCVN, ACOLP, ACOLN)  
JEDEC  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
V
V
V
Differential input voltage 1  
V
V
See Note 11  
0
0
3
V
I(DIFF)1  
I(DIFF)2  
(SQ)  
ID(1)  
Differential input voltage 2  
See Note 12  
See Note 13  
100  
mV  
mV  
ID(2)  
Falling input pair squelch threshold  
325  
See recommended operating conditions.  
NOTES: 11. Common-mode frequency range – 10 Hz to 40 kHz  
12. Common-mode frequency range – 40 kHz to 10 MHz  
13. Input bias over the common mode dc voltage range  
AUI transmitter drive characteristics (AXMTP, AXMTN)  
JEDEC  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
V
V
V
Differential output voltage  
V
V
V
See Note 14  
240  
1300  
50  
mV  
mV  
mV  
mA  
O(DIFF)1  
OI(DIFF)  
OI(DIFF)U  
O(FC)  
OD(1)  
Output idle differential voltage  
OD(IDLE)  
OD(IDLE)U  
O(FC)  
Output differential undershoot  
Output current, fault condition  
100  
150  
I
I
See recommended operating conditions.  
Specified by design  
NOTE 14: The differential voltage is measured as per Figure 3b.  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
electrical characteristics over recommended ranges of supply voltage (unless otherwise noted)  
(physical interface pins) (continued)  
crystal-oscillator characteristics  
JEDEC  
SYMBOL  
PARAMETER  
Input self-bias voltage  
High-level output current  
TEST CONDITIONS  
MIN  
1.7  
MAX  
2.8  
UNIT  
V
V
V
IB  
SB(FXTL1)  
V
V
= V  
=V  
(FXTL2)  
(FXTL1)  
SB(FXTL1)  
SB(FXTL1)  
I
I
– 1.3  
– 5.0  
mA  
OH(FXTL2)  
OH  
OL  
+0.5V  
0.5V  
V
V
= V  
=V  
(FXTL2)  
(FXTL1)  
SB(FXTL1)  
SB(FXTL1)  
I
Low-level output current  
I
– 0.4  
1.5  
mA  
OL(FXTL2)  
PARAMETER MEASUREMENT INFORMATION  
Outputs are driven to a minimum high-logic level of 2.4 V and to a maximum low-logic level of 0.6 V. These levels  
are compatible with TTL devices.  
Output transition times are specified as follows: For a high-to-low transition on either an input or output signal,  
the level at which the signal is said to be no longer high is 2 V and the level at which the signal is said to be low  
is 0.8 V. For a low-to-high transition, the level at which the signal is said to be no longer low is 0.8 V and the level  
at which the signal is said to be high is 2 V, as shown below.  
TheriseandfalltimesarenotspecifiedbutareassumedtobethoseofstandardTTLdevices, whicharetypically  
1.5 ns.  
2 V (high)  
0.8 V (low)  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
test measurement  
The test-load circuit shown in Figure 3 represents the programmable load of the tester pin electronics that are  
used to verify timing parameters of the TNETE110A output signals.  
I
OL  
Test  
Point  
TTL  
Output  
Under  
Test  
V
LOAD  
C
L
I
OH  
(a) TTL OUTPUT TEST LOAD  
Test Point  
50 Ω  
AXMTP  
AXMTN  
50 Ω  
78 Ω  
FIREF  
180 Ω  
X1  
(c) FIREF TEST CIRCUIT  
(b) AXMTP AND AXMTN TEST LOAD (AC TESTING)  
X1–Fil–Mag 23Z90(1:1)  
Test Point  
Test Point  
25 Ω  
50 Ω  
50 Ω  
FXMTP  
FXMTN  
FXMTP  
FXMTN  
50 Ω  
50 Ω  
25 Ω  
50 Ω  
Test Point  
50 Ω  
X2  
(d) FXMTP AND FXMTN TEST LOAD (AC TESTING)  
(e) FXMTP and FXMTN TEST LOAD (DC TESTING)  
X2–Fil–Mag 23Z128(1:2)  
Where: I  
I
=
=
=
Refer to I  
Refer to I  
1.5 V, typical dc-level verification or  
0.7 V, typical timing verification  
in recommended operating conditions  
in recommended operating conditions  
OL  
OH  
LOAD  
OL  
OH  
V
C
=
18 pF, typical load-circuit capacitance  
L
Figure 3. Test and Load Circuit  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
switching characteristics, PCI 5-V and 3.3-V (see Note 15 and Figure 3 and Figure 4)  
PARAMETER  
MIN  
2
MAX  
11  
UNIT  
ns  
t
t
t
t
Delay time, PCLK to bused signals valid (see Notes 16 and 17)  
VAL  
Delay time, PCLK to bused signals valid point-to-point (see Notes 16 and 17)  
2
12  
ns  
VAL(PTP)  
on  
Float-to-active delay  
Active-to-float delay  
2
ns  
28  
ns  
off  
Characterized by design  
NOTES: 15. Some of the timing symbols in this table are not currently listed with EIA or JEDEC standards for semiconductor symbology but are  
consistent with the PCI Local-Bus Specification, Revision 2.0.  
16. Minimum times are measured with a 0-pF equivalent load; maximum times are measured with a 50-pF equivalent load. Actual test  
capacitance may vary, but results should be correlated to these specifications.  
17. PREQandPGNTarepoint-to-pointsignals, andhavedifferentoutputvaliddelayandinputsetuptimesthandobusedsignals. PGNT  
has a setup time of 10 ns; PREQ has a setup time of 12 ns. All other signals are bused.  
timing requirements, PCI 5-V and 3.3-V (see Note 15 and Figure 4)  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
t
t
t
Setup time, bused signals valid to PCLK (see Note 17)  
Setup time to PCLK—point-to-point (see Note 17)  
Input hold time from PCLK  
7
10, 12  
0
su  
ns  
su(PTP)  
h
ns  
4
Cycle time, PCLK (see Note 18)  
30  
500  
ns  
c
Pulse duration, PCLK high  
12  
ns  
w(H)  
w(L)  
slew  
Pulse duration, PCLK low  
12  
ns  
Slew rate, PCLK (see Note 19)  
1
V/ns  
Specified by design and system specification.  
NOTES: 15. Some of the timing symbols in this table are not currently listed with EIA or JEDEC standards for semiconductor symbology but are  
consistent with the PCI Local-Bus Specification, Revision 2.0.  
17. PREQandPGNTarepoint-to-pointsignals, andhavedifferentoutputvaliddelayandinputsetuptimesthandobusedsignals. PGNT  
has a setup time of 10 ns; PREQ has a setup time of 12 ns. All other signals are bused.  
18. As a requirement for frame transmission/reception, the minimum PCLK frequency varies with network speed. The clock may only  
be stopped in a low state.  
19. Rise and fall times are specified in terms of the edge rate measured in V/ns. This slew rate must be met across the minimum  
peak-to-peak portion of the clock waveform.  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
timing requirements, PCI 5-V and 3.3-V (see Note 15 and Figure 4) (continued)  
2 V  
5-V Clock  
1.5 V  
0.8 V  
t
c
t
w(H)  
t
w(L)  
0.475 × V  
DD  
DD  
3.3-V Clock  
0.4 × V  
DD  
0.326 × V  
t
VAL  
Output  
Delay  
3-State  
Output  
t
on  
t
off  
t
h
t
su  
Inputs  
Valid  
V
MAX  
Input  
Figure 4. PCI 5-V and 3.3-V Timing  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
timing requirements for management data I/O (MDIO) (see Figure 3 and Figure 5)  
MIN  
MAX  
UNIT  
t
Access time, MDIO valid from MDCLK high (see Note 20)  
0
300  
ns  
a(MDCLKH-MDIOV)  
switching characteristics for management data I/O (MDIO) (see Figure 6)  
PARAMETER  
MIN MAX  
UNIT  
ns  
t
t
Setup time, MDIO valid to MDCLK high (see Note 21)  
Hold time, MDCLK high to MDIO changing (see Note 21)  
10  
10  
su(MDIOV-MDCLKH)  
ns  
h(MDCLKH-MDIOX)  
NOTES: 20. When the MDIO signal is sourced by the PMI/PHY, it is sampled by TNETE110A synchronous to the rising edge of MDCLK.  
21. MDIO is a bidirectional signal that can be sourced by TNETE110A or the PMI/PHY. When TNETE110A sources the MDIO signal,  
TNETE110A asserts MDIO synchronous to the rising edge of MDCLK.  
MDCLK  
MDIO  
t
a(MDCLKH-MDIOV)  
Figure 5. Management Data I/O Timing (Sourced by PHY)  
MDCLK  
MDIO  
t
su(MDIOV-MDCLKH)  
t
h(MDCLKH-MDIOX)  
Figure 6. Management Data I/O Timing (Sourced by TNETE110A)  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
timing requirements, BIOS ROM and LED interface (see Figure 3 and Figure 7)  
MIN  
MAX  
UNIT  
ns  
t
t
Setup time, data  
Hold time, data  
250  
su  
0
ns  
h
switching characteristics, BIOS ROM and LED interface (see Figure 7)  
PARAMETER  
MIN  
MAX  
UNIT  
Delay time, address high byte valid to EXLE low (address high byte setup time for external  
latch)  
t
t
0
ns  
d(EADV-EXLEL)  
Delay time, EXLE low to address high byte invalid (address high byte hold time for external  
latch)  
10  
ns  
d(EXLEL-EADZ)  
t
t
t
Delay time, address low byte valid to EALE low (address low byte setup time for external latch)  
Delay time, EALE low to address low byte invalid (address low byte hold time for external latch)  
Access time, address  
0
10  
ns  
ns  
ns  
d(EADV-EALEL)  
d(EALEL-EADZ)  
a
288  
The EPROM interface, consisting of 11 pins, requires only two TTL ’373 latches to latch the high and low addresses.  
High  
Address  
Low  
Address  
Data  
EAD[7:0]  
t
d(EADV-EXLEL)  
t
d(EADV-EALEL)  
t
d(EXLEL-EADZ)  
t
d(EALEL-EADZ)  
EXLE  
EALE  
EOE  
t
a
t
su  
t
h
Figure 7. BIOS ROM and LED Interface Timing  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
switching characteristics, configuration EEPROM interface (see Figure 3 and Figure 8)  
PARAMETER  
MIN  
0
MAX  
100  
3.5  
UNIT  
kHz  
µs  
f
t
t
t
t
t
t
t
t
t
t
t
t
Clock frequency, EDCLK  
CLK(EDCLK)  
d(EDCLKL-EDIOV)  
d(EDIO free)  
d(EDIOV-EDCLKL)  
w(L)  
EDCLK low to EDIO data in valid  
0.3  
4.7  
4
Time the bus must be free before a new transmission can start  
Delay time, EDIO valid after EDCLK low (start condition hold time for EEPROM)  
Low period, clock  
µs  
µs  
4.7  
4
µs  
High period, clock  
µs  
w(H)  
Delay time, EDCLK high to EDIO valid (start condition setup time)  
Delay time, EDCLK low to EDIO changing (data out hold time)  
Delay time, EDIO valid to EDCLK high (data out setup time)  
Rise time, EDIO and EDCLK  
4.7  
0
µs  
d(EDCLKH-EDIOV)  
d(EDCLKL-EDIOX)  
d(EDIOV-EDCLKH)  
r
µs  
250  
ns  
1
µs  
Fall time, EDIO and EDCLK  
300  
ns  
f
Delay time, EDCLK high to EDIO high (stop condition setup time)  
Delay time, EDCLK low to EDIO changing (data in hold time)  
4.7  
µs  
d(EDCLKH-EDIOH)  
d(EDCLKL-EDIOX)  
300  
ns  
t
r
t
w(H)  
t
t
w(L)  
f
EDCLK  
t
d(EDCLKL-EDIOX)  
d(EDCLKH-EDIOV)  
t
d(EDCLKH-EDIOH)  
t
t
d(EDIOV-EDCLKL)  
t
d(EDIOV-EDCLKH)  
EDIO (OUT)  
t
d(EDIO free)  
t
d(EDCLKL-EDIOX)  
t
d(EDCLKL-EDIOV)  
EDIO (IN)  
Figure 8. Configuration EEPROM Interface Timing  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
timing requirements, crystal oscillator (see Figure 9)  
MIN  
TYP  
MAX  
UNIT  
ms  
ns  
100  
t
t
t
t
t
Delay time from minimum V  
DD  
high level to first valid FXTL1V full swing period  
d(VDDHFXTL1V)  
Pulse duration at FXTL1 high  
Pulse duration at FXTL1 low  
Transition time of FXTL1  
Cycle time, FXTL1  
13  
w(H)  
13  
ns  
w(L)  
7
50  
ns  
t
ns  
c
Tolerance of FXTL1 input frequency  
0.01  
%
The FXTL signal may be implemented by either connecting a 20-MHz crystal across the FXTL1 and FXTL2 pins or by driving the FXTL1 from  
a 20-MHz crystal oscillator module.  
This specification is provided as an aid to board design. This specification is not tested during manufacturing testing.  
Minimum V  
High Level  
DD  
V
DD  
t
c
t
w(H)  
t
d(VDDHFXTL1V)  
t
t
FXTL1  
t
t
t
w(L)  
Figure 9. Crystal Oscillator Timing  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
MECHANICAL DATA  
PCM (S-PQFP-G***)  
PLASTIC QUAD FLATPACK  
144 PIN SHOWN  
NO. OF  
A
108  
73  
PINS***  
22,75 TYP  
25,35 TYP  
144  
160  
109  
72  
0,38  
0,22  
M
0,13  
0,65  
144  
37  
0,16 NOM  
1
36  
A
28,20  
27,80  
Gage Plane  
SQ  
SQ  
31,45  
0,25  
30,95  
0,25 MIN  
3,60  
3,20  
1,03  
0,73  
Seating Plane  
0,10  
4,10 MAX  
4040024/B 10/94  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-022  
D. The 144 PCM is identical to the 160 PCM except that four leads per corner are removed.  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ThunderLAN TNETE110A  
PCI ETHERNET CONTROLLER  
SINGLE-CHIP 10 BASE-T  
SPWS022A – APRIL 1996 – REVISED NOVEMBER 1996  
MECHANICAL DATA  
PGE (S-PQFP-G144)  
PLASTIC QUAD FLATPACK  
108  
73  
109  
72  
0,27  
M
0,08  
0,17  
0,50  
0,13 NOM  
144  
37  
1
36  
Gage Plane  
17,50 TYP  
20,20  
SQ  
19,80  
0,25  
0,05 MIN  
22,20  
SQ  
0°7°  
21,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040147/B 10/94  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MO-136  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TNETE110APGE

PCI Ethernet Controller and Physical Layer Device 144-LQFP 0 to 0
TI

TNETE110PCE

暂无描述
TI

TNETE110PM

PCI ETHERNETE CONTROLLER SINGLE-CHIP 10 BASE-T
TI

TNETE110PMPCM

2 CHANNEL(S), 10Mbps, LOCAL AREA NETWORK CONTROLLER, PQFP144, PLASTIC, TQFP-144
TI

TNETE110PMPGE

2 CHANNEL(S), 10Mbps, LOCAL AREA NETWORK CONTROLLER, PQFP144, PLASTIC, QFP-144
TI

TNETE2004

MDIO-MANAGED QuadPHY FOUR 10BASE-T PHYSICAL-LAYER INTERFACES
TI

TNETE2004PAC

MDIO-MANAGED QuadPHY FOUR 10BASE-T PHYSICAL-LAYER INTERFACES
TI

TNETE2004PBE

MDIO-MANAGED QuadPHY FOUR 10BASE-T PHYSICAL-LAYER INTERFACES
TI

TNETE2008

OctalPHY EIGHT 10BASE-T PHYSICAL-LAYER INTERFACES
TI

TNETE2008PBE

暂无描述
TI

TNETE2101

10BASE-T/100BASE-TX/100BASE-FX LOW-POWER PHYSICAL-LAYER INTERFACE
TI

TNETE2101APZ

10BASE-T/100BASE-TX/100BASE-FX LOW-POWER PHYSICAL-LAYER INTERFACE
TI