TPA122DR [TI]

Dual Audio Amplifier ; 双路音频放大器\n
TPA122DR
型号: TPA122DR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Dual Audio Amplifier
双路音频放大器\n

音频放大器
文件: 总25页 (文件大小:440K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
D OR DGN PACKAGE  
(TOP VIEW)  
150 mW Stereo Output  
PC Power Supply Compatible  
– Fully Specified for 3.3 V and 5 V  
Operation  
V 1  
O
V
DD  
1
2
3
4
8
7
6
5
IN–  
BYPASS  
GND  
V 2  
O
– Operation to 2.5 V  
IN2–  
Pop Reduction Circuitry  
SHUTDOWN  
Internal Mid-Rail Generation  
Thermal and Short-Circuit Protection  
Surface-Mount Packaging  
– PowerPAD MSOP  
– SOIC  
Pin Compatible With LM4880 and LM4881  
(SOIC)  
description  
The TPA122 is a stereo audio power amplifier packaged in either an 8-pin SOIC, or an 8-pin PowerPAD MSOP  
package capable of delivering 150 mW of continuous RMS power per channel into 8-loads. Amplifier gain  
isexternallyconfiguredbymeansoftworesistorsperinputchannelanddoesnotrequireexternalcompensation  
for settings of 1 to 10.  
THD+N when driving an 8-load from 5 V is 0.1% at 1 kHz, and less than 2% across the audio band of 20 Hz  
to 20 kHz. For 32-loads, the THD+N is reduced to less than 0.06% at 1 kHz, and is less than 1% across the  
audiobandof20Hzto20kHz. For10-kloads, theTHD+Nperformanceis0.01%at1kHz, andlessthan0.02%  
across the audio band of 20 Hz to 20 kHz.  
typical application circuit  
320 kΩ  
320 kΩ  
V
8
1
R
DD  
F
V
DD  
Audio  
Input  
C
S
V
/2  
DD  
R
I
IN1–  
2
3
V
1
O
O
+
C
I
C
C
BYPASS  
IN2–  
C
Audio  
Input  
B
R
I
6
5
V
2
7
4
+
C
I
C
C
From Shutdown  
Control Circuit  
SHUTDOWN  
Bias  
Control  
R
F
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
MSOP  
Symbolization  
MSOP  
T
A
SMALL OUTLINE  
(D)  
(DGN)  
40°C to 85°C  
TPA122D  
TPA122DGN  
TI AAE  
The D and DGN package is available in left-ended tape and reel only (e.g., TPA122DR,  
TPA122DGNR).  
Terminal Functions  
TERMINAL  
NAME  
BYPASS  
I/O  
DESCRIPTION  
NO.  
3
I
Tap to voltage divider for internal mid-supply bias supply. Connect to a 0.1 µF to 1 µF low ESR capacitor for  
best performance.  
GND  
4
2
6
5
8
1
7
I
I
GND is the ground connection.  
IN1–  
IN1– is the inverting input for channel 1.  
IN2– is the inverting input for channel 2.  
Puts the device in a low quiescent current mode when held high  
IN2–  
I
SHUTDOWN  
I
V
V
V
I
V
V
V
is the supply voltage terminal.  
DD  
DD  
1
2
O
O
1 is the audio output for channel 1.  
2 is the audio output for channel 2.  
O
O
O
O
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
DD  
Input voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V + 0.3 V  
I
DD  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . internally limited  
Operating junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T = 85°C  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
D
725 mW  
5.8 mW/°C  
464 mW  
1.37 W  
377 mW  
1.11 W  
DGN  
2.14 W  
17.1 mW/°C  
Please see the Texas Instruments document, PowerPAD Thermally Enhanced Package Application Report  
(literature number SLMA002), for more information on the PowerPAD package. The thermal data was  
measured on a PCB layout based on the information in the section entitled Texas InstrumentsRecommended  
Board for PowerPAD on page 33 of the before mentioned document.  
recommended operating conditions  
MIN  
2.5  
MAX  
5.5  
UNIT  
V
Supply voltage, V  
DD  
Operating free-air temperature, T  
–40  
85  
°C  
A
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
dc electrical characteristics at T = 25°C, V  
= 3.3 V  
DD  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mV  
dB  
V
Input offset voltage  
5
IO  
PSRR  
Power supply rejection ratio  
Supply current  
V
DD  
= 3.2 V to 3.4 V  
83  
1.5  
10  
I
I
3
mA  
µA  
DD  
Supply current in SHUTDOWN mode  
Input impedance  
50  
DD(SD)  
Z
I
>1  
MΩ  
ac operating characteristics, V  
= 3.3 V, T = 25°C, R = 8 Ω  
DD  
A
L
PARAMETER  
Output power (each channel)  
Total harmonic distortion + noise  
Maximum output power BW  
Phase margin  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
70  
P
THD 0.1%  
= 70 mW,  
mW  
O
THD+N  
P
20–20 kHz  
THD <5%  
2%  
>20  
58°  
68  
O
B
OM  
G = 10,  
kHz  
Open loop  
f = 1 kHz  
f = 1 kHz  
Supply ripple rejection  
dB  
dB  
Channel/Channel output separation  
Signal-to-noise ratio  
86  
SNR  
P
O
= 100 mW  
100  
9.5  
dB  
V
n
Noise output voltage  
µV(rms)  
Measured at 1 kHz  
dc electrical characteristics at T = 25°C, V  
= 5 V  
DD  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mV  
dB  
V
Input offset voltage  
5
IO  
PSRR  
Power supply rejection ratio  
Supply current  
V
DD  
= 4.9 V to 5.1 V  
76  
1.5  
60  
I
I
3
mA  
µA  
DD  
Supply current in SHUTDOWN mode  
Input impedance  
100  
DD(SD)  
Z
I
>1  
MΩ  
ac operating characteristics, V  
= 5 V, T = 25°C, R = 8 Ω  
A L  
DD  
PARAMETER  
Output power (each channel)  
Total harmonic distortion + noise  
Maximum output power BW  
Phase margin  
TEST CONDITIONS  
THD 0.1%  
P = 150 mW, 20–20 kHz  
O
MIN  
TYP  
70†  
2%  
>20  
56°  
68  
MAX  
UNIT  
P
mW  
O
THD+N  
B
OM  
G = 10,  
THD <5%  
kHz  
Open loop  
f = 1 kHz  
f = 1 kHz  
Supply ripple rejection ratio  
dB  
dB  
Channel/channel output separation  
Signal-to-noise ratio  
86  
SNR  
P
O
= 150 mW  
100  
9.5  
dB  
V
n
Noise output voltage  
µV(rms)  
Measured at 1 kHz  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
ac operating characteristics, V  
= 3.3 V, T = 25°C, R = 32 Ω  
DD  
A
L
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
P
Output power (each channel)  
Total harmonic distortion + noise  
Maximum output power BW  
Phase margin  
THD 0.1%  
= 30 mW,  
40  
mW  
O
THD+N  
P
O
20–20 kHz  
THD <2%  
0.5%  
>20  
58°  
68  
B
OM  
G = 10,  
kHz  
Open loop  
f = 1 kHz  
f = 1 kHz  
Supply ripple rejection  
dB  
dB  
Channel/channel output separation  
Signal-to-noise ratio  
86  
SNR  
P
O
= 100 mW  
100  
9.5  
dB  
V
n
Noise output voltage  
µV(rms)  
Measured at 1 kHz  
ac operating characteristics, V  
= 5 V, T = 25°C, R = 32 Ω  
A L  
DD  
PARAMETER  
TEST CONDITIONS  
THD 0.1%  
= 60 mW,  
MIN  
TYP  
40†  
0.4%  
>20  
56°  
68  
MAX  
UNIT  
P
O
Output power (each channel)  
Total harmonic distortion + noise  
Maximum output power BW  
Phase margin  
mW  
THD+N  
P
O
20–20 kHz  
THD <2%  
B
OM  
G = 10,  
kHz  
Open loop  
f = 1 kHz  
f = 1 kHz  
Supply ripple rejection  
dB  
dB  
Channel/channel output separation  
Signal-to-noise ratio  
86  
SNR  
P
O
= 150 mW  
100  
9.5  
dB  
V
n
Noise output voltage  
µV(rms)  
Measured at 1 kHz  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
1, 2, 4, 5, 7, 8,  
10, 11, 13, 14,  
16, 17, 34, 36  
vs Frequency  
THD+N  
Total harmonic distortion plus noise  
3, 6, 9,  
12, 15, 18  
vs Power output  
Supply ripple rejection  
Output noise voltage  
vs Frequency  
vs Frequency  
19, 20  
21, 22  
V
n
23 – 26,  
37, 38  
Crosstalk  
vs Frequency  
Mute attenuation  
vs Frequency  
27, 28  
29, 30  
31, 32  
39 – 44  
31, 32  
33  
Open-loop gain and phase margin  
Output power  
vs Frequency  
vs Load resistance  
vs Frequency  
Closed-Loop gain and phase  
Output power  
vs Load resistance  
vs Supply voltage  
vs Voltage gain  
vs Frequency  
I
Supply current  
DD  
SNR  
Signal-to-noise ratio  
Closed-loop gain  
35  
39 – 44  
45, 46  
Power dissipation/amplifier  
vs Output power  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
10  
1
10  
1
V
P
C
R
= 3.3 V  
DD  
O
B
L
V
= 3.3 V  
= –1 V/V  
= 32 Ω  
DD  
= 30 mW  
= 1 µ F  
= 32 Ω  
A
V
R
C
L
B
= 1 µ F  
A
V
= –5 V/V  
A
V
= –10 V/V  
P
O
= 15 mW  
0.1  
0.1  
P
O
= 10 mW  
A
V
= –1 V/V  
0.01  
0.01  
P
O
= 30 mW  
0.001  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
f – Frequency – Hz  
10k 20k  
f – Frequency – Hz  
Figure 1  
Figure 2  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
OUTPUT POWER  
FREQUENCY  
10  
10  
1
V
= 3.3 V  
V
P
R
C
= 5 V  
= 60 mW  
= 32 Ω  
DD  
= 32 Ω  
DD  
O
L
B
R
A
L
= –1 V/V  
= 1 µF  
V
C
= 1 µF  
B
20 kHz  
10 kHz  
1
A
V
= –10 V/V  
A
V
= –5 V/V  
0.1  
0.1  
1 kHz  
20 Hz  
0.01  
A
V
= –1 V/V  
0.001  
0.01  
1
10  
– Output Power – mW  
50  
20  
100  
1k  
f – Frequency – Hz  
10k 20k  
P
O
Figure 3  
Figure 4  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
FREQUENCY  
OUTPUT POWER  
10  
10  
1
V
= 5 V  
= 32 Ω  
= –1 V/V  
= 1 µF  
V
= 5 V  
= –1 V/V  
= 32 Ω  
= 1 µF  
DD  
L
DD  
R
A
A
V
R
C
V
L
B
C
B
20 kHz  
10 kHz  
1
P
O
= 30 mW  
0.1  
P
O
= 15 mW  
0.1  
1 kHz  
0.01  
20 Hz  
P
O
= 60 mW  
0.001  
0.01  
20  
100  
1k  
10k 20k  
0.002  
0.01  
– Output Power – W  
0.1  
0.2  
P
O
f – Frequency – Hz  
Figure 5  
Figure 6  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
10  
1
10  
1
V
R
= 3.3 V  
= 10 kΩ  
= 100 µF  
= 1 µF  
DD  
L
V
= 3.3 V  
= 10 kΩ  
= –1 V/V  
= 1 µF  
DD  
R
L
P
C
O
A
V
B
C
B
A
V
= –5 V/V  
0.1  
0.1  
P
O
= 45 µW  
0.01  
0.01  
A
V
= –2 V/V  
P
O
= 90 µW  
P
O
= 130 µW  
0.001  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
f – Frequency – Hz  
Figure 8  
10k 20k  
f – Frequency – Hz  
Figure 7  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
OUTPUT POWER  
FREQUENCY  
10  
1
10  
1
V
= 3.3 V  
= 10 kΩ  
= –1 V/V  
= 1 µF  
DD  
L
V
= 5 V  
R
A
DD  
L
R
P
= 10 kΩ  
= 300 µW  
= 1 µF  
V
C
B
O
C
B
0.1  
0.1  
A
V
= –5 V/V  
20 Hz  
10 kHz  
A
V
= –1 V/V  
0.01  
0.01  
20 Hz  
1 kHz  
A
V
= –2 V/V  
0.001  
0.001  
5
10  
100  
200  
20  
100  
1k  
10k 20k  
P
O
– Output Power – µW  
f – Frequency – Hz  
Figure 9  
Figure 10  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
FREQUENCY  
OUTPUT POWER  
10  
10  
1
V
R
= 5 V  
= 10 kΩ  
= –1 V/V  
= 1 µF  
DD  
L
V
= 5 V  
= 10 kΩ  
= –1 V/V  
= 1 µ F  
DD  
R
L
A
V
A
V
C
B
C
B
1
P
O
= 300 µW  
0.1  
0.1  
P
O
= 200 µW  
20 Hz  
20 kHz  
0.01  
0.01  
10 kHz  
100  
P
O
= 100 µW  
1 kHz  
0.001  
0.001  
20  
100  
1k  
10k 20k  
5
10  
500  
f – Frequency – Hz  
P
O
– Output Power – µW  
Figure 11  
Figure 12  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
2
1
10  
1
V
= 3.3 V  
= 75 mW  
= 8 Ω  
DD  
V
R
A
V
= 3.3 V  
DD  
= 8 Ω  
P
R
C
O
L
A
V
= –5 V/V  
L
= –1 V/V  
= 1 µF  
B
P
O
= 30 mW  
A
V
= –2 V/V  
0.1  
P
O
= 15 mW  
A
V
= –1 V/V  
0.1  
0.01  
0.01  
P
O
= 75 mW  
1k  
0.001  
0.001  
20  
100  
1k  
f – Frequency – Hz  
10k 20k  
20  
100  
10k 20k  
f – Frequency – Hz  
Figure 13  
Figure 14  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
OUTPUT POWER  
FREQUENCY  
2
1
10  
V
R
A
V
= 3.3 V  
= 8 Ω  
= –1 V/V  
DD  
L
V
= 5 V  
= 100 mW  
= 8 Ω  
A
= –2 V/V  
DD  
V
P
R
C
O
A = –5 V/V  
V
20 kHz  
10 kHz  
L
= 1 µF  
B
1
0.1  
A
V
= –1 V/V  
1 kHz  
0.1  
0.01  
20 Hz  
0.001  
0.01  
20  
100  
1k  
f – Frequency – Hz  
10k 20k  
10m  
0.1  
– Output Power – W  
0.3  
P
O
Figure 15  
Figure 16  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
FREQUENCY  
POWER OUTPUT  
10  
1
10  
V
= 5 V  
= 8 Ω  
= –1 V/V  
V
= 5 V  
= 8 Ω  
= –1 V/V  
DD  
L
DD  
L
R
A
R
A
V
V
20 kHz  
P
O
= 30 mW  
1
0.1  
P
O
= 60 mW  
10 kHz  
1 kHz  
0.1  
0.01  
20 Hz  
P
O
= 10 mW  
1k  
0.001  
0.01  
20  
100  
10k 20k  
10m  
0.1  
1
f – Frequency – Hz  
P
O
– Output Power – W  
Figure 17  
Figure 18  
SUPPLY RIPPLE REJECTION RATIO  
SUPPLY RIPPLE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
0
–10  
–20  
–30  
0
–10  
–20  
–30  
V
R
= 3.3 V  
= 8 to 10 kΩ  
DD  
L
V
R
= 5 V  
= 8 to 10 kΩ  
DD  
L
C
= 0.1 µF  
B
C = 0.1 µF  
B
C
= 1 µF  
B
C = 1 µF  
B
–40  
–50  
–60  
–40  
–50  
–60  
C
= 2 µF  
B
C = 2 µF  
B
–70  
–80  
–90  
Bypass = 1.65 V  
–70  
–80  
–90  
Bypass = 2.5 V  
–100  
20  
–100  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 19  
Figure 20  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
OUTPUT NOISE VOLTAGE  
OUTPUT NOISE VOLTAGE  
vs  
vs  
FREQUENCY  
FREQUENCY  
20  
10  
20  
10  
V
= 3.3 V  
DD  
BW = 10 Hz to 22 kHz  
V
= 5 V  
DD  
BW = 10 Hz to 22 kHz  
A
= –1 V/V  
= 8 to 10 kΩ  
V
R
A
V
= 8 to 10 kΩ  
= –1 V/V  
L
R
L
1
1
20  
20  
100  
1k  
10k 20k  
100  
1k  
10k 20k  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 21  
Figure 22  
CROSSTALK  
vs  
FREQUENCY  
CROSSTALK  
vs  
FREQUENCY  
–60  
–50  
–55  
–60  
–65  
P
V
R
C
= 25 mW  
= 3.3 V  
= 32 Ω  
= 1 µF  
O
DD  
L
B
P
V
R
C
= 100 mW  
O
–65  
–70  
–75  
= 3.3 V  
= 8 Ω  
DD  
L
B
= 1 µF  
= –1 V/V  
A
V
= –1 V/V  
A
V
–80  
–85  
–90  
–70  
–75  
–80  
IN 2 TO OUT 1  
IN 2 TO OUT 1  
–95  
–100  
–105  
–85  
–90  
–95  
IN 1 TO OUT 2  
IN 1 TO OUT 2  
–110  
–100  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 23  
Figure 24  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
CROSSTALK  
vs  
FREQUENCY  
CROSSTALK  
vs  
FREQUENCY  
–60  
–65  
–65  
–50  
–55  
–60  
V
= 5 V  
= 25 mW  
= 1 µF  
= 32 Ω  
= –1 V/V  
V
P
= 5 V  
= 100 mW  
= 1 µF  
= 8 Ω  
= –1 V/V  
DD  
DD  
O
B
L
P
O
C
R
A
C
R
A
B
L
V
V
–75  
–80  
–65  
–70  
IN 2 TO OUT 1  
–85  
–90  
–95  
–75  
–80  
–85  
IN 2 TO OUT 1  
–100  
–105  
–110  
–90  
–95  
IN 1 TO OUT 2  
IN 1 TO OUT 2  
–100  
20  
100  
1k  
10k  
20k  
20  
100  
1k  
10k  
20k  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 25  
Figure 26  
MUTE ATTENUATION  
vs  
MUTE ATTENUATION  
vs  
FREQUENCY  
FREQUENCY  
0
–10  
–20  
–30  
0
–10  
–20  
V
R
C
= 3.3 V  
= 32 Ω  
= 1 µF  
DD  
L
B
V
C
R
= 5 V  
= 1 µF  
= 32 Ω  
DD  
B
L
–30  
–40  
–40  
–50  
–60  
–50  
–60  
–70  
–70  
–80  
–90  
–80  
–90  
–100  
–100  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k  
20k  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 27  
Figure 28  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
OPEN-LOOP GAIN AND PHASE MARGIN  
vs  
FREQUENCY  
150°  
120°  
100  
80  
60  
40  
20  
V
= 3.3 V  
DD  
= 25°C  
T
A
No Load  
Phase  
90°  
60°  
30°  
0°  
Gain  
0
–20  
–30°  
10  
100  
1k  
10k  
100k  
10M  
f – Frequency – Hz  
Figure 29  
OPEN-LOOP GAIN AND PHASE MARGIN  
vs  
FREQUENCY  
100  
150°  
120°  
V
= 5 V  
DD  
= 25°C  
T
A
No Load  
80  
60  
40  
20  
Phase  
90°  
60°  
30°  
0°  
Gain  
0
–20  
–30°  
10M  
100  
1k  
10k  
100k  
1M  
f – Frequency – Hz  
Figure 30  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
OUTPUT POWER  
vs  
LOAD RESISTANCE  
OUTPUT POWER  
vs  
LOAD RESISTANCE  
120  
100  
300  
250  
THD+N = 1 %  
THD+N = 1 %  
V
A
= 3.3 V  
= –1 V/V  
DD  
V
A
= 5 V  
= –1 V/V  
DD  
V
V
80  
60  
40  
200  
150  
100  
20  
0
50  
0
8
16  
24  
32  
40  
48  
56  
64  
8
16  
24  
32  
40  
48  
56  
64  
R
– Load Resistance – Ω  
L
R
– Load Resistance – Ω  
L
Figure 31  
Figure 32  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
FREQUENCY  
1
1.4  
V = 1 V  
I
A
R
= –1 V/V  
= 10 kΩ  
= 1 µF  
V
1.2  
1
L
B
C
0.1  
0.01  
0.8  
0.6  
0.4  
0.2  
0
0.001  
20  
100  
1k  
10k 20k  
2.5  
3
3.5  
4
4.5  
5
5.5  
f – Frequency – Hz  
V
DD  
– Supply Voltage – V  
Figure 33  
Figure 34  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
SIGNAL-TO-NOISE RATIO  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
VOLTAGE GAIN  
FREQUENCY  
104  
102  
1
V = 1 V  
I
V
= 5 V  
DD  
A
= –1 V/V  
= 10 kΩ  
= 1 µF  
V
R
C
L
B
100  
98  
0.1  
96  
94  
0.01  
0.001  
92  
1
2
3
4
5
6
7
8
9
10  
20  
100  
1k  
10k 20k  
A
V
– Voltage Gain – V/V  
f – Frequency – Hz  
Figure 35  
Figure 36  
CROSSTALK  
vs  
FREQUENCY  
CROSSTALK  
vs  
FREQUENCY  
–60  
–70  
–60  
–70  
V
V
R
C
= 5 V  
= 1 V  
= 10 kΩ  
= 1 µF  
DD  
O
L
B
V
V
R
C
= 3.3 V  
= 1 V  
= 10 kΩ  
= 1 µF  
DD  
O
L
B
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–100  
–110  
–120  
–130  
–140  
–150  
IN2 to OUT1  
IN2 to OUT1  
IN1 to OUT2  
IN1 to OUT2  
100  
20  
100  
1k  
10k 20k  
20  
1k  
10k 20k  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 37  
Figure 38  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
CLOSED-LOOP GAIN AND PHASE  
vs  
FREQUENCY  
200°  
180°  
160°  
140°  
120°  
Phase  
V
= 3.3 V  
DD  
R = 20 kΩ  
100°  
80°  
I
R
R
= 20 kΩ  
= 32 Ω  
F
L
I
C = 1 µF  
A
V
30  
20  
= –1 V/V  
10  
0
Gain  
–10  
10  
100  
1k  
10k  
100k  
1M  
f – Frequency – Hz  
Figure 39  
CLOSED-LOOP GAIN AND PHASE  
vs  
FREQUENCY  
200°  
180°  
160°  
140°  
120°  
Phase  
V
= 5 V  
DD  
R = 20 kΩ  
100°  
80°  
I
R
R
= 20 kΩ  
= 32 Ω  
F
L
I
C = 1 µF  
A
V
30  
20  
= –1 V/V  
10  
0
Gain  
–10  
10  
100  
1k  
10k  
100k  
1M  
f – Frequency – Hz  
Figure 40  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
CLOSED-LOOP GAIN AND PHASE  
vs  
FREQUENCY  
200°  
180°  
160°  
140°  
120°  
Phase  
V
= 3.3 V  
DD  
R = 20 kΩ  
100°  
80°  
I
R
R
= 20 kΩ  
= 8 Ω  
F
L
I
C = 1 µF  
A
V
60°  
= –1 V/V  
40  
Gain  
20  
0
–20  
10  
100  
1k  
10k  
100k  
1M  
f – Frequency – Hz  
Figure 41  
CLOSED-LOOP GAIN AND PHASE  
vs  
FREQUENCY  
200°  
180°  
160°  
140°  
120°  
Phase  
V
= 3.3 V  
DD  
R = 20 kΩ  
100°  
80°  
I
R
R
= 20 kΩ  
= 10 kΩ  
F
L
I
C = 1 µF  
A
V
30  
20  
= –1 V/V  
10  
0
Gain  
–10  
10  
100  
1k  
10k  
100k  
1M  
f – Frequency – Hz  
Figure 42  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
CLOSED-LOOP GAIN AND PHASE  
vs  
FREQUENCY  
200°  
180°  
160°  
140°  
120°  
Phase  
V
= 5 V  
DD  
R = 20 kΩ  
I
R
R
= 20 kΩ  
= 8 Ω  
F
L
I
100°  
80°  
C = 1 µF  
A
V
= –1 V/V  
60°  
40°  
Gain  
20  
0
–20  
10  
100  
1k  
10k  
100k  
1M  
f – Frequency – Hz  
Figure 43  
CLOSED-LOOP GAIN AND PHASE  
vs  
FREQUENCY  
200°  
180°  
160°  
140°  
120°  
Phase  
V
= 5 V  
DD  
R = 20 kΩ  
I
100°  
80°  
R
R
= 20 kΩ  
= 10 kΩ  
F
L
I
C = 1 µF  
A
V
30  
20  
= –1 V/V  
10  
0
Gain  
10k  
–10  
10  
100  
1k  
100k  
1M  
f – Frequency – Hz  
Figure 44  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
POWER DISSIPATION/AMPLIFIER  
POWER DISSIPATION/AMPLIFIER  
vs  
vs  
OUTPUT POWER  
OUTPUT POWER  
80  
70  
60  
50  
180  
160  
V
= 3.3 V  
V
= 5 V  
DD  
DD  
8 Ω  
8 Ω  
140  
120  
100  
80  
40  
30  
20  
10  
16 Ω  
16 Ω  
60  
32 Ω  
64 Ω  
40  
32 Ω  
64 Ω  
20  
0
0
0
20 40 60 80 100 120 140  
Load Power – mW  
180 200  
160  
0
20 40 60 80 100 120 140  
Load Power – mW  
180 200  
160  
Figure 45  
Figure 46  
APPLICATION INFORMATION  
gain setting resistors, R and R  
F
I
The gain for the TPA122 is set by resistors R and R according to equation 1.  
F
I
R
F
Gain  
(1)  
R
I
Given that the TPA122 is a MOS amplifier, the input impedance is very high. Consequently input leakage  
currents are not generally a concern, although noise in the circuit increases as the value of R increases. In  
F
addition, a certain range of R values is required for proper start-up operation of the amplifier. Taken together  
F
it is recommended that the effective impedance seen by the inverting node of the amplifier be set between  
5 kand 20 k. The effective impedance is calculated in equation 2.  
R R  
F I  
Effective Impedance  
(2)  
R
R
F
I
As an example, consider an input resistance of 20 kand a feedback resistor of 20 k. The gain of the amplifier  
would be 1 and the effective impedance at the inverting terminal would be 10 k, which is within the  
recommended range.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
APPLICATION INFORMATION  
gain setting resistors, R and R (continued)  
F
I
For high performance applications, metal film resistors are recommended because they tend to have lower  
noise levels than carbon resistors. For values of R above 50 k, the amplifier tends to become unstable due  
F
to a pole formed from R and the inherent input capacitance of the MOS input structure. For this reason, a small  
F
compensation capacitor of approximately 5 pF should be placed in parallel with R . This, in effect, creates a  
F
low-pass filter network with the cutoff frequency defined in equation 3.  
1
2 R C  
f
(3)  
c(lowpass)  
F
F
For example, if R is 100 kand C is 5 pF then f is 318 kHz, which is well outside the audio range.  
c(lowpass)  
F
F
input capacitor, C  
I
In the typical application, an input capacitor, C , is required to allow the amplifier to bias the input signal to the  
I
proper dc level for optimum operation. In this case, C and R form a high-pass filter with the corner frequency  
I
I
determined in equation 4.  
1
f
(4)  
c(highpass)  
2 R C  
I
I
The value of C is important to consider, as it directly affects the bass (low frequency) performance of the circuit.  
I
Consider the example where R is 20 kand the specification calls for a flat bass response down to 20 Hz.  
I
Equation 4 is reconfigured as equation 5.  
1
C
(5)  
I
2 R f  
c(highpass)  
I
In this example, C is 0.40 µF, so one would likely choose a value in the range of 0.47 µF to 1 µF. A further  
I
consideration for this capacitor is the leakage path from the input source through the input network (R , C ) and  
I
I
thefeedbackresistor(R )totheload. Thisleakagecurrentcreatesadcoffsetvoltageattheinputtotheamplifier  
F
that reduces useful headroom, especially in high-gain applications (> 10). For this reason a low-leakage  
tantalum or ceramic capacitor is the best choice. When polarized capacitors are used, the positive side of the  
capacitor should face the amplifier input in most applications, as the dc level there is held at V /2, which is  
DD  
likely higher than the source dc level. Please note that it is important to confirm the capacitor polarity in the  
application.  
power supply decoupling, C  
S
The TPA122 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to  
ensure that the output total harmonic distortion (THD) is as low as possible. Power supply decoupling also  
prevents oscillations for long lead lengths between the amplifier and the speaker. The optimum decoupling is  
achieved by using two capacitors of different types that target different types of noise on the power supply leads.  
For higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance  
(ESR) ceramic capacitor, typically 0.1 µF, placed as close as possible to the device V  
filtering lower-frequency noise signals, a larger aluminum electrolytic capacitor of 10 µF or greater placed near  
lead, works best. For  
DD  
the power amplifier is recommended.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
APPLICATION INFORMATION  
midrail bypass capacitor, C  
B
The midrail bypass capacitor, C , serves several important functions. During start-up, C determines the rate  
B
B
at which the amplifier starts up. This helps to push the start-up pop noise into the subaudible range (so low it  
can not be heard). The second function is to reduce noise produced by the power supply caused by coupling  
intotheoutputdrivesignal. Thisnoiseisfromthemidrailgenerationcircuitinternaltotheamplifier. Thecapacitor  
is fed from a 160-ksource inside the amplifier. To keep the start-up pop as low as possible, the relationship  
shown in equation 6 should be maintained.  
1
1
(6)  
C
160 kΩ  
C R  
I
B
I
As an example, consider a circuit where C is 1 µF, C is 1 µF, and R is 20 k. Inserting these values into the  
B
I
I
equation 9 results in: 6.25 50 which satisfies the rule. Bypass capacitor, C , values of 0.1 µF to 1 µF ceramic  
B
or tantalum low-ESR capacitors are recommended for the best THD and noise performance.  
output coupling capacitor, C  
C
In the typical single-supply single-ended (SE) configuration, an output coupling capacitor (C ) is required to  
C
block the dc bias at the output of the amplifier, thus preventing dc currents in the load. As with the input coupling  
capacitor, the output coupling capacitor and impedance of the load form a high-pass filter governed by  
equation 7.  
1
f
c
(7)  
2 R C  
L
C
The main disadvantage, from a performance standpoint, is that the typically small load impedances drive the  
low-frequency corner higher. Large values of C are required to pass low frequencies into the load. Consider  
C
the example where a C of 68 µF is chosen and loads vary from 32 to 47 k. Table 1 summarizes the  
C
frequency response characteristics of each configuration.  
Table 1. Common Load Impedances vs Low Frequency Output Characteristics in SE Mode  
R
C
LOWEST FREQUENCY  
L
C
32 Ω  
10,000 Ω  
47,000 Ω  
68 µF  
68 µF  
68 µF  
73 Hz  
0.23 Hz  
0.05 Hz  
As Table 1 indicates, headphone response is adequate and drive into line level inputs (a home stereo for  
example) is very good.  
The output coupling capacitor required in single-supply SE mode also places additional constraints on the  
selection of other components in the amplifier circuit. With the rules described earlier still valid, add the following  
relationship:  
(8)  
1
1
1
R C  
C
160 kΩ  
C R  
I
L C  
B
I
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
APPLICATION INFORMATION  
using low-ESR capacitors  
Low-ESR capacitors are recommended throughout this application. A real capacitor can be modeled simply as  
a resistor in series with an ideal capacitor. The voltage drop across this resistor minimizes the beneficial effects  
of the capacitor in the circuit. The lower the equivalent value of this resistance, the more the real capacitor  
behaves like an ideal capacitor.  
5-V versus 3.3-V operation  
The TPA122 was designed for operation over a supply range of 2.7 V to 5.5 V. This data sheet provides full  
specifications for 5-V and 3.3-V operation since these are considered to be the two most common standard  
voltages. There are no special considerations for 3.3-V versus 5-V operation as far as supply bypassing, gain  
setting, or stability. Supply current is slightly reduced from 3.5 mA (typical) to 2.5 mA (typical). The most  
important consideration is that of output power. Each amplifier in the TPA122 can produce a maximum voltage  
swing ofV  
– 1 V. This means, for 3.3-V operation, clipping starts to occur when V  
= 4 V while operating at 5 V. The reduced voltage swing subsequently reduces maximum output  
= 2.3 V as opposed  
DD  
O(PP)  
when V  
O(PP)  
power into the load before distortion begins to become significant.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
A
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA122  
150-mW STEREO AUDIO POWER AMPLIFIER  
SLOS211C – AUGUST1998 – REVISED MARCH 2000  
MECHANICAL DATA  
DGN (S-PDSO-G8)  
PowerPAD PLASTIC SMALL-OUTLINE PACKAGE  
0,38  
0,25  
0,65  
M
0,25  
8
5
Thermal Pad  
(See Note D)  
0,15 NOM  
3,05  
2,95  
4,98  
4,78  
Gage Plane  
0,25  
0°6°  
1
4
0,69  
0,41  
3,05  
2,95  
Seating Plane  
0,10  
0,15  
0,05  
1,07 MAX  
4073271/A 04/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions include mold flash or protrusions.  
D. The package thermal performance may be enhanced by attaching an external heat sink to the thermal pad.  
This pad is electrically and thermally connected to the backside of the die and possibly selected leads.  
E. Falls within JEDEC MO-187  
PowerPAD is a trademark of Texas Instruments.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

TPA122EVM

150-mW STEREO AUDIO POWER AMPLIFIER
TI

TPA12A

Power Operational Amplifier
ETC

TPA12V

1W 3KVDC Isolated Single and Dual Output DC/DC Converters
TOPPOWER

TPA130

TRISIL
STMICROELECTR

TPA130

TELECOMMUNICATION PROTECTION
BL Galaxy Ele

TPA130A-12

173V, 30A, SILICON SURGE PROTECTOR
STMICROELECTR

TPA130A-12-RL

173V, 30A, SILICON SURGE PROTECTOR
STMICROELECTR

TPA130A-18

173V, 30A, SILICON SURGE PROTECTOR
STMICROELECTR

TPA130B-12-RL

157V, 30A, SILICON SURGE PROTECTOR
STMICROELECTR

TPA130B-18

157V, 30A, SILICON SURGE PROTECTOR
STMICROELECTR

TPA130B-18-RL

157V, 30A, SILICON SURGE PROTECTOR
STMICROELECTR

TPA130RL

TRISIL FOR TELECOM EQUIPMENT PROTECTION
STMICROELECTR