TPA152D

更新时间:2024-09-18 02:16:32
品牌:TI
描述:75-mW STEREO AUDIO POWER AMPLIFIER

TPA152D 概述

75-mW STEREO AUDIO POWER AMPLIFIER 75毫瓦立体声音频功率放大器 音频放大器 音频/视频放大器

TPA152D 规格参数

是否无铅: 不含铅是否Rohs认证: 符合
生命周期:Active零件包装代码:SOIC
包装说明:SOP, SOP8,.25针数:8
Reach Compliance Code:compliantECCN代码:EAR99
HTS代码:8542.33.00.01Factory Lead Time:1 week
风险等级:0.8标称带宽:20 kHz
商用集成电路类型:AUDIO AMPLIFIER谐波失真:0.03%
JESD-30 代码:R-PDSO-G8JESD-609代码:e4
长度:4.9 mm湿度敏感等级:1
信道数量:2功能数量:1
端子数量:8最高工作温度:85 °C
最低工作温度:-40 °C标称输出功率:0.075 W
封装主体材料:PLASTIC/EPOXY封装代码:SOP
封装等效代码:SOP8,.25封装形状:RECTANGULAR
封装形式:SMALL OUTLINE峰值回流温度(摄氏度):260
认证状态:Not Qualified座面最大高度:1.75 mm
子类别:Audio/Video Amplifiers最大压摆率:14 mA
最大供电电压 (Vsup):5.5 V最小供电电压 (Vsup):4.5 V
表面贴装:YES技术:CMOS
温度等级:INDUSTRIAL端子面层:Nickel/Palladium/Gold (Ni/Pd/Au)
端子形式:GULL WING端子节距:1.27 mm
端子位置:DUAL处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:3.91 mmBase Number Matches:1

TPA152D 数据手册

通过下载TPA152D数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
TPA152  
75-mW STEREO AUDIO POWER AMPLIFIER  
SLOS210A – JUNE 1998 – REVISED MARCH 2000  
D PACKAGE  
(TOP VIEW)  
High-Fidelity Line-Out/HP Driver  
75-mW Stereo Output  
PC Power Supply Compatible  
Pop Reduction Circuitry  
V 1  
O
IN1–  
GND  
1
2
3
4
8
7
6
5
MUTE  
BYPASS  
IN2–  
V
DD  
Internal Mid-Rail Generation  
Thermal and Short-Circuit Protection  
Surface-Mount Packaging  
Pin Compatible With TPA302  
V 2  
O
description  
The TPA152 is a stereo audio power amplifier capable of less than 0.1% THD+N at 1 kHz when delivering  
75 mW per channel into a 32-load. THD+N is less than 0.2% across the audio band of 20 to 20 kHz. For  
10 kloads, the THD+N performance is better than 0.005% at 1 kHz, and less than 0.01% across the audio  
band of 20 to 20 kHz.  
The TPA152 is ideal for use as an output buffer for the audio CODEC in PC systems. It is also excellent for use  
where a high-performance head phone/line-out amplifier is needed. Depop circuitry is integrated to reduce  
transients during power up, power down, and mute mode.  
Amplifier gain is externally configured by means of two resistors per input channel and does not require external  
compensationfor settings of 1 to 10. The TPA152 is packaged in the 8-pin SOIC (D) package that reduces board  
space and facilitates automated assembly.  
typical application circuit  
R
F
6
1
V
DD  
C
Stereo Audio  
Input  
B
R
I
C
IN1–  
C
8
V
O
1
R
R
C
3 BYPASS  
C
+
I
C
B
R
R
L
Depop  
Circuitry  
L
From System  
Control  
Mute  
Control  
2
4
Stereo  
R
I
IN2–  
C
C
L
V
O
2
5
C
I
+
R
C
R
F
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA152  
75-mW STEREO AUDIO POWER AMPLIFIER  
SLOS210A – JUNE 1998 – REVISED MARCH 2000  
AVAILABLE OPTIONS  
PACKAGED DEVICE  
SMALL OUTLINE  
T
A
TPA152D  
40°C to 85°C  
TheDpackagesareavailabletapedandreeled.To  
order a taped and reeled part, add the suffix R  
(e.g., TPA152DR)  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
BYPASS  
3
BYPASS is the tap to the voltage divider for internal mid-supply bias. This terminal should be connected to a 0.1-µF  
to 1-µF capacitor.  
GND  
IN1–  
IN2–  
MUTE  
7
8
4
2
6
1
5
GND is the ground connection.  
I
I
IN1– is the inverting input for channel 1.  
IN2– is the inverting input for channel 2.  
A logic high puts the device into MUTE mode.  
I
V
V
V
I
V
V
V
is the supply voltage terminal.  
DD  
DD  
1
2
O
O
1 is the audio output for channel 1.  
2 is the audio output for channel 1.  
O
O
O
O
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA152  
75-mW STEREO AUDIO POWER AMPLIFIER  
SLOS210A – JUNE 1998 – REVISED MARCH 2000  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
DD  
Input voltage , V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V + 0.3 V  
I
DD  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . internally limited (See Dissipation Rating Table)  
Operating junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 150° C  
J
Operating case temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 125° C  
C
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
DISSIPATION RATING TABLE  
PACKAGE  
T
A
25°C  
DERATING FACTOR  
T
A
= 70°C  
T = 85°C  
A
D
724 mW  
5.8 mW/°C  
464 mW  
376 mW  
recommended operating conditions  
MIN  
4.5  
MAX  
5.5  
UNIT  
V
Supply voltage, V  
DD  
Operating free-air temperature, T  
40  
85  
°C  
A
dc electrical characteristics at T = 25°C, V  
= 5 V  
DD  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mV  
dB  
V
OO  
Output offset voltage  
Supply ripple rejection ratio  
Supply current  
10  
V
= 4.9 V to 5.1 V  
DD  
See Figure 13  
81  
5.5  
5.5  
>1  
I
I
14  
14  
mA  
mA  
MΩ  
DD  
Supply current in MUTE  
Input impedance  
DD(MUTE)  
Z
I
ac operating characteristics V  
= 5 V, T = 25°C, R = 32 (unless otherwise noted)  
DD  
A
L
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
75  
P
O
Output power (each channel)  
THD 0.03%,  
Gain = 1,  
See Figure 1  
mW  
P
= 75 mW,  
20 Hz–20 kHz, Gain = 1,  
O
THD+N Total harmonic distortion plus noise  
0.2%  
See Figure 2  
B
OM  
Maximum output power bandwidth  
Phase margin  
A
= 5,  
THD <0.6%, See Figure 2  
See Figure 16  
>20  
80°  
65  
kHz  
V
Open loop,  
1 kHz,  
Supply ripple rejection ratio  
Mute attenuation  
C
= 1 µF,  
See Figure 12  
dB  
dB  
B
See Figure 15  
See Figure 13  
110  
102  
104  
6
Ch/Ch output separation  
Signal-to-Noise ratio  
dB  
V
O
= 1 V  
,
Gain = 1  
See Figure 11  
dB  
(rms)  
V
n
Noise output voltage  
See Figure 10  
µV(rms)  
Measured at 1 kHz.  
NOTES: 1. The dc output voltage is approximately V /2.  
DD  
2. Output power is measured at the output pins of the IC at 1 kHz.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA152  
75-mW STEREO AUDIO POWER AMPLIFIER  
SLOS210A – JUNE 1998 – REVISED MARCH 2000  
ac operating characteristics V  
= 5 V, T = 25°C, R = 10 kΩ  
DD  
A
L
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V = 1 V  
See Figure 6  
,
20 Hz–20 kHz, Gain = 1,  
I
(rms)  
0.005%  
THD+N Total harmonic distortion plus noise  
V
= 4 V,  
20 Hz–20 kHz, Gain = 1,  
O(PP)  
0.005%  
See Figure 8  
B
Maximum output power bandwidth  
Phase margin  
G = 5,  
THD <0.02%, See Figure 6  
See Figure 16  
>20  
80°  
65  
kHz  
OM  
Open loop,  
1 kHz,  
k
Supply voltage rejection ratio  
Mute attenuation  
C
= 1 µF,  
B
See Figure 12  
dB  
dB  
SVR  
See Figure 15  
See Figure 13  
110  
102  
104  
6
Ch/Ch output separation  
Signal-to-Noise ratio  
dB  
V
O
= 1 V  
,
Gain = 1,  
See Figure 11  
dB  
(rms)  
V
n
Noise output voltage  
See Figure 10  
µV(rms)  
Measured at 1 kHz.  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
1, 4  
THD+N  
THD+N  
THD+N  
Total harmonic distortion plus noise  
Total harmonic distortion plus noise  
Total harmonic distortion plus noise  
Output noise voltage  
vs Output power  
vs Frequency  
vs Output voltage  
vs Frequency  
vs Gain  
2, 3, 6, 8, 9  
5, 7  
10  
V
n
SNR  
Signal-to-noise ratio  
11  
Supply ripple rejection ratio  
Crosstalk  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Supply voltage  
vs Load resistance  
vs Output power  
12  
13, 14  
15  
Mute Attenuation  
Open-loop gain and phase  
Closed-loop gain and phase  
Supply current  
16, 17  
18  
I
19  
DD  
P
Output power  
20  
O
D
P
Power dissipation  
21  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA152  
75-mW STEREO AUDIO POWER AMPLIFIER  
SLOS210A – JUNE 1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
OUTPUT POWER  
FREQUENCY  
2
1
2
1
P
R
= 75 mW  
= 32 Ω  
f = 1 kHz  
O
L
A
= –1 V/V  
V
A
V
= –5 V/V  
A
V
=– 2 V/V  
0.1  
0.01  
0.1  
0.01  
A
V
= –1 V/V  
0.001  
0.001  
1
10 20  
30  
40 50  
60  
70  
80 90  
20  
100  
1k  
10k 20k  
P
O
– Output Power – mW  
f – Frequency – Hz  
Figure 1  
Figure 2  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
FREQUENCY  
OUTPUT POWER  
0.3  
0.1  
2
1
A
R
= –1 V/V  
= 32 Ω  
V
L
R = 32 Ω  
L
P
O
= 75 mW  
20 kHz  
P
O
= 25 mW  
0.1  
0.01  
0.01  
1 kHz  
20 Hz  
P
O
= 50 mW  
1k  
0.001  
0.001  
20  
100  
10k 20k  
0.1  
1
10  
100  
f – Frequency – Hz  
P
O
– Output Power – mW  
Figure 3  
Figure 4  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA152  
75-mW STEREO AUDIO POWER AMPLIFIER  
SLOS210A – JUNE 1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
OUTPUT VOLTAGE  
FREQUENCY  
2
1
0.1  
V
R
= 1 V  
(rms)  
= 10 kΩ  
f = 1 kHz  
O
L
A
R
= –1 V/V  
= 10 kΩ  
V
L
A
= –5 V/V  
= –2 V/V  
V
0.1  
0.01  
0.01  
A
V
A
V
= –1 V/V  
0.001  
0.001  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
20  
100  
1k  
10k 20k  
V
O
– Output Voltage – V  
f – Frequency – Hz  
(rms)  
Figure 5  
Figure 6  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
OUTPUT VOLTAGE  
FREQUENCY  
2
0.1  
V
= 4 V  
A
R
= –1 V/V  
= 10 kΩ  
O(PP)  
= –1 V/V  
V
L
1
A
V
R
= 10 kΩ  
L
f = 20 kHz  
0.1  
0.01  
f = 20 Hz  
0.01  
0.001  
f = 1 kHz  
0.001  
0.1  
0.2  
0.4  
1
2
20  
100  
1k  
f – Frequency – Hz  
Figure 8  
10k 20k  
V
O
– Output Voltage – V  
(rms)  
Figure 7  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA152  
75-mW STEREO AUDIO POWER AMPLIFIER  
SLOS210A – JUNE 1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
OUTPUT NOISE VOLTAGE  
vs  
vs  
FREQUENCY  
FREQUENCY  
0.1  
20  
10  
V = 1 V  
A
V
V
= 5 V  
I
(rms)  
= –1 V/V  
DD  
BW = 10 Hz to 22 kHz  
R
A
V
= 32 to 10 kΩ  
= –1 V/V  
L
R
= 32 Ω  
L
0.01  
R
= 10,47, and 100 kΩ  
L
0.001  
1
20  
20  
100  
1k  
10k 20k  
100  
1k  
10k 20k  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 9  
Figure 10  
SIGNAL-TO-NOISE RATIO  
SUPPLY RIPPLE REJECTION RATIO  
vs  
GAIN  
vs  
FREQUENCY  
110  
105  
100  
95  
0
–10  
V
R
= 5 V  
= 32 to 10 kΩ  
R = 20 kΩ  
I
DD  
L
–20  
–30  
–40  
–50  
–60  
–70  
–80  
C
= 0.1 µF  
B
C
= 1 µF  
R
= 10 kΩ  
B
L
90  
R
= 32 Ω  
L
85  
C
= 2.5 V  
B
–90  
80  
1
–100  
2
3
4
5
6
7
8
9
10  
20  
100  
1k  
10k 20k  
Gain – V/V  
f – Frequency – Hz  
Figure 11  
Figure 12  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA152  
75-mW STEREO AUDIO POWER AMPLIFIER  
SLOS210A – JUNE 1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
CROSSTALK  
vs  
FREQUENCY  
CROSSTALK  
vs  
FREQUENCY  
–60  
–70  
–60  
–70  
P
V
R
C
= 75 mW  
O
V
= 1 V  
O
= 5 V  
= 32 Ω  
= 1 µF  
DD  
V
R
C
= 5 V  
= 10 kΩ  
= 1 µF  
DD  
L
B
L
B
A
V
= –1 V/V  
A
V
= –1 V/V  
–80  
–80  
–90  
–90  
–100  
–110  
Right to Left  
Right to Left  
Left to Right  
–100  
–110  
–120  
–120  
–130  
Left to Right  
10k 20k  
20  
100  
1k  
10k 20k  
20  
100  
1k  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 13  
Figure 14  
MUTE ATTENUATION  
vs  
FREQUENCY  
–70  
–80  
V
R
C
= 5 V  
= 32Ω  
= 1 µF  
DD  
L
B
90  
–100  
–110  
–120  
–130  
–140  
20  
100  
1k  
10k 20k  
f – Frequency – Hz  
Figure 15  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA152  
75-mW STEREO AUDIO POWER AMPLIFIER  
SLOS210A – JUNE 1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
OPEN-LOOP GAIN AND PHASE  
vs  
FREQUENCY  
100  
80  
60  
40  
20  
0
160  
No Load  
140  
120  
100  
80  
60  
40  
20  
0
–20  
100  
1k  
10k  
100k  
1M  
10M  
100M  
f – Frequency – Hz  
Figure 16  
CLOSED-LOOP GAIN AND PHASE  
vs  
FREQUENCY  
1
185  
180  
175  
170  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
165  
160  
155  
–0.4  
–0.6  
R = 20 kΩ  
I
R = 20 kΩ  
f
L
R
= 32 Ω  
C = 1 µF  
–0.8  
–1  
I
A
= –1 V/V  
V
10  
100  
1k  
10k  
100k  
1M  
f – Frequency – Hz  
Figure 17  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA152  
75-mW STEREO AUDIO POWER AMPLIFIER  
SLOS210A – JUNE 1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
CLOSED-LOOP GAIN AND PHASE  
vs  
FREQUENCY  
1
0.8  
0.6  
0.4  
0.2  
0
185  
180  
175  
170  
–0.2  
165  
160  
155  
–0.4  
–0.6  
R = 20 kΩ  
I
R = 20 kΩ  
f
L
R
= 10 kΩ  
C = 1 µF  
I
–0.8  
–1  
A
= –1 V/V  
100k  
V
10  
100  
1k  
10k  
1M  
f – Frequency – Hz  
Figure 18  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
OUTPUT POWER  
vs  
LOAD RESISTANCE  
10  
9
90  
80  
70  
60  
50  
40  
30  
20  
THD+N = 0.1%  
= –1 V/V  
A
V
8
7
6
5
4
3
10  
4.5  
5
5.5  
30 50 70  
90 110 130 150 170 190 210  
V
DD  
– Supply Voltage – V  
R
– Load Resistance – Ω  
L
Figure 19  
Figure 20  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA152  
75-mW STEREO AUDIO POWER AMPLIFIER  
SLOS210A – JUNE 1998 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
POWER DISSIPATION  
vs  
OUTPUT POWER  
100  
80  
R
= 32 Ω  
L
60  
40  
20  
0
0
5
10  
15  
20  
25  
P
O
– Output Power – mW  
Figure 21  
APPLICATION INFORMATION  
selection of components  
Figure 22 is a schematic diagram of a typical application circuit.  
R
20 kΩ  
F
C
1 µF  
I
R
20 kΩ  
I
C
C
Audio Input 1  
330 µF  
R
C
R
8
7
O
1
2
V
1
IN1–  
GND  
O
20 kΩ  
100 Ω  
R
32 Ω  
R
L
32 Ω  
L
Shutdown  
(from System Control)  
MUTE  
IN2  
HP  
Jack  
1 µF  
3
4
6
5
V
DD  
V
DD  
C
1 µF  
B
IN2–  
V 2  
O
C
1 µF  
I
R
I
20 kΩ  
C
C
330 µF  
R
C
100 Ω  
R
O
20 kΩ  
R
F
20 kΩ  
Audio Input 2  
These resistors are optional. Adding these resistors improves the depop performance of the TPA152.  
Figure 22. TPA152 Typical Application Circuit  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA152  
75-mW STEREO AUDIO POWER AMPLIFIER  
SLOS210A – JUNE 1998 – REVISED MARCH 2000  
APPLICATION INFORMATION  
gain setting resistors, R and R  
F
I
The gain for the TPA152 is set by resistors R and R according to equation 1.  
F
I
R
F
Gain  
(1)  
R
I
Given that the TPA152 is a MOS amplifier, the input impedance is very high, consequently input leakage  
currents are not generally a concern although noise in the circuit increases as the value of R increases. In  
F
addition, a certain range of R values are required for proper start-up operation of the amplifier. Taken together  
F
it is recommended that the effective impedance seen by the inverting node of the amplifier be set between 5  
kand 20 k. The effective impedance is calculated in equation 2.  
R R  
F I  
Effective Impedance  
(2)  
R
R
F
I
As an example, consider an input resistance of 20 kand a feedback resistor of 20 k. The gain of the amplifier  
would be 1 and the effective impedance at the inverting terminal would be 10 k, which is within the  
recommended range.  
For high performance applications, metal film resistors are recommended because they tend to have lower  
noise levels than carbon resistors. For values of R above 50 k, the amplifier tends to become unstable due  
F
to a pole formed from R and the inherent input capacitance of the MOS input structure. For this reason, a small  
F
compensation capacitor of approximately 5 pF should be placed in parallel with R . This, in effect, creates a  
F
low-pass filter network with the cutoff frequency defined in equation 3.  
1
2 R C  
f
(3)  
c(lowpass)  
F
F
For example if R is 100 kand C is 5 pF then f is 318 kHz, which is well outside the audio range.  
co(lowpass)  
F
F
input capacitor, C  
I
In the typical application, an input capacitor, C , is required to allow the amplifier to bias the input signal to the  
I
proper dc level for optimum operation. In this case, C and R form a high-pass filter with the corner frequency  
I
I
determined in equation 4.  
1
f
(4)  
c(highpass)  
2 R C  
I
I
The value of C is important to consider as it directly affects the bass (low frequency) performance of the circuit.  
I
Consider the example where R is 20 kand the specification calls for a flat bass response down to 20 Hz.  
I
Equation 4 is reconfigured as equation 5.  
1
C
(5)  
I
2 R f  
c(highpass)  
I
In this example, C is 0.40 µF, so one would likely choose a value in the range of 0.47 µF to 1 µF. A further  
I
consideration for this capacitor is the leakage path from the input source through the input network (R , C ) and  
I
I
thefeedbackresistor(R )totheload. Thisleakagecurrentcreatesadcoffsetvoltageattheinputtotheamplifier  
F
that reduces useful headroom, especially in high-gain applications (> 10). For this reason a low-leakage  
tantalum or ceramic capacitor is the best choice. When polarized capacitors are used, the positive side of the  
capacitor should face the amplifier input in most applications, as the dc level there is held at V /2, which is  
DD  
likely higher that the source dc level. Please note that it is important to confirm the capacitor polarity in the  
application.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA152  
75-mW STEREO AUDIO POWER AMPLIFIER  
SLOS210A – JUNE 1998 – REVISED MARCH 2000  
APPLICATION INFORMATION  
power supply decoupling, C  
S
The TPA152 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to  
ensure that the output total harmonic distortion (THD) is as low as possible. Power supply decoupling also  
prevents oscillations for long lead lengths between the amplifier and the speaker. The optimum decoupling is  
achieved by using two capacitors of different types that target different types of noise on the power supply leads.  
For higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance  
(ESR) ceramic capacitor, typically 0.1 µF, placed as close as possible to the device V  
filtering lower-frequency noise signals, a larger aluminum electrolytic capacitor of 10 µF or greater placed near  
lead, works best. For  
DD  
the power amplifier is recommended.  
midrail bypass capacitor, C  
B
The midrail bypass capacitor, C , serves several important functions. During startup or recovery from shutdown  
B
mode, C determines the rate at which the amplifier starts up. This helps to push the start-up pop noise into  
B
the subaudible range (so slow it can not be heard). The second function is to reduce noise produced by the  
power supply caused by coupling into the output drive signal. This noise is from the midrail generation circuit  
internal to the amplifier. The capacitor is fed from a 160-ksource inside the amplifier. To keep the start-up pop  
as low as possible, the relationship shown in equation 6 should be maintained.  
1
1
(6)  
C
160 kΩ  
C R  
I
B
I
As an example, consider a circuit where C is 1 µF, C is 1 µF and R is 20 k. Inserting these values into the  
B
I
I
equation 9 results in:  
6.25 50  
which satisfies the rule. Bypass capacitor, C , values of 0.1 µF to 1 µF ceramic or tantalum low-ESR capacitors  
B
are recommended for the best THD and noise performance.  
output coupling capacitor, C  
C
In the typical single-supply single-ended (SE) configuration, an output coupling capacitor (C ) is required to  
C
block the dc bias at the output of the amplifier thus preventing dc currents in the load. As with the input coupling  
capacitor, the output coupling capacitor and impedance of the load form a high-pass filter governed by  
equation 7.  
1
2 R C  
f
(7)  
c(high)  
L
C
The main disadvantage, from a performance standpoint, is that the load impedances are typically small, which  
drive the low-frequency corner higher. Large values of C are required to pass low frequencies into the load.  
C
Consider the example where a C of 68 µF is chosen and loads vary from 32 to 47 k. Table 1 summarizes  
C
the frequency response characteristics of each configuration.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA152  
75-mW STEREO AUDIO POWER AMPLIFIER  
SLOS210A – JUNE 1998 – REVISED MARCH 2000  
APPLICATION INFORMATION  
Table 1. Common Load Impedances vs Low Frequency Output Characteristics in SE Mode  
R
C
LOWEST FREQUENCY  
L
C
32 Ω  
10,000 Ω  
47,000 Ω  
68 µF  
68 µF  
68 µF  
73 Hz  
0.23 Hz  
0.05 Hz  
As Table 1 indicates, headphone response is adequate and drive into line level inputs (a home stereo for  
example) is very good.  
The output coupling capacitor required in single-supply SE mode also places additional constraints on the  
selection of other components in the amplifier circuit. With the rules described earlier still valid, add the following  
relationship:  
1
1
1
(8)  
R C  
C
160 kΩ  
C R  
I
L C  
B
I
output pull-down resistor, R + R  
C
O
Placing a 100-resistor, R , from the output side of the coupling capacitor to ground insures the coupling  
C
capacitor, C , is charged before a plug is inserted into the jack. Without this resistor, the coupling capacitor  
C
would charge rapidly upon insertion of a plug, leading to an audible pop in the headphones.  
Placing a 20-kresistor, R , from the output of the IC to ground insures that the coupling capacitor fully  
O
discharges at power down. If the supply is rapidly cycled without this capacitor, a small pop may be audible in  
10-kloads.  
using low-ESR capacitors  
Low-ESR capacitors are recommended throughout this applications section. A real capacitor can be modeled  
simply as a resistor in series with an ideal capacitor. The voltage drop across this resistor minimizes the  
beneficial effects of the capacitor in the circuit. The lower the equivalent value of this resistance, the more the  
real capacitor behaves like an ideal capacitor.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPA152  
75-mW STEREO AUDIO POWER AMPLIFIER  
SLOS210A – JUNE 1998 – REVISED MARCH 2000  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
A
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

TPA152D CAD模型

  • 引脚图

  • 封装焊盘图

  • TPA152D 替代型号

    型号 制造商 描述 替代类型 文档
    TPA152DRG4 TI 75-mW STEREO AUDIO POWER AMPLIFIER 完全替代
    TPA701DGN TI 700-mW MONO LOW-VOLTAGE AUDIO POWER AMPLIFIER 类似代替
    TPA6111A2DR TI 150-mW STEREO AUDIO POWER AMPLIFIER 类似代替

    TPA152D 相关器件

    型号 制造商 描述 价格 文档
    TPA152DG4 TI 75-mW STEREO AUDIO POWER AMPLIFIER 获取价格
    TPA152DR TI Dual Audio Amplifier 获取价格
    TPA152DRG4 TI 75-mW STEREO AUDIO POWER AMPLIFIER 获取价格
    TPA152_06 TI 75-mW STEREO AUDIO POWER AMPLIFIER 获取价格
    TPA15V TOPPOWER 1W 3KVDC Isolated Single and Dual Output DC/DC Converters 获取价格
    TPA160A-12-RL STMICROELECTRONICS 213V, 30A, SILICON SURGE PROTECTOR 获取价格
    TPA160A-18 STMICROELECTRONICS 213V, 30A, SILICON SURGE PROTECTOR 获取价格
    TPA160B-12 STMICROELECTRONICS 193V, 30A, SILICON SURGE PROTECTOR 获取价格
    TPA160B-12-RL STMICROELECTRONICS 193V, 30A, SILICON SURGE PROTECTOR 获取价格
    TPA160B-18 STMICROELECTRONICS 193V, 30A, SILICON SURGE PROTECTOR 获取价格

    TPA152D 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6