TPA3128D2DAP [TI]

具有低空闲电流的 30W 立体声、60W 单声道、4.5V 至 26V、模拟输入 D 类音频放大器 | DAP | 32 | -40 to 85;
TPA3128D2DAP
型号: TPA3128D2DAP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有低空闲电流的 30W 立体声、60W 单声道、4.5V 至 26V、模拟输入 D 类音频放大器 | DAP | 32 | -40 to 85

放大器 光电二极管 商用集成电路 音频放大器
文件: 总39页 (文件大小:3449K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPA3128D2, TPA3129D2  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
具有较低空闲功率损耗的TPA3128D2TPA3129D2 2x30W 2x15W D 类  
放大器  
1 特性  
3 说明  
1
支持多路输出配置  
TPA3128D2 TPA3129D2 低空闲功率损耗,有助于  
延长蓝牙/无线扬声器和其他电池供电音频系统的电池  
寿命。TPA3128D2 器件的效率非常高,可在双层  
PCB 上提供 2 × 30W 的功率,且无需外部散热器。  
TPA3129D2 器件的效率非常高,可在双层 PCB 上提  
2 × 15W 的功率,且无需外部散热器。 该器件建议  
用于高效升压模式,这样能够动态减小外部 LC 滤波器  
的电流纹波和空闲电流。  
24V 电压下,为 8Ω BTL 负载提供 2 × 30W  
负载 (TPA3128D2)  
15V 电压下,为 8Ω BTL 负载提供 2 × 15W  
功率 (TPA3129D2)  
宽电压范围:4.5V 26V  
高效 D 类运行  
采用推荐的 LC 滤波器配置时静态电流超低:  
<23mA  
TPA31xxD2 高级振荡器/PLL 电路在使用主/从模式选  
项时,采用多开关频率选项来避免 AM 干扰,从而可  
实现多个器件的同步。  
功率效率达 90% 以上且静态损耗低,因此无需  
散热器  
基于输出功率的自适应调制机制  
智能放大器驱动器可降低对 RC 缓冲器的要求  
TPA31xxD2 器件具有短路保护和热保护以及过压、欠  
压和直流保护,可全面防止出现故障。在过载情况下,  
器件会将故障情况报告给处理器,从而避免自身遭到损  
坏。  
多重开关频率  
AM 抑制  
主从同步  
300kHz 1.2MHz 开关频率  
器件信息(1)  
采用具有高 PSRR 的反馈功率级架构,降低了  
PSU 要求  
器件型号  
TPA3128D2  
TPA3129D2  
封装  
封装尺寸(标称值)  
11.00mm x 6.20mm  
11.00mm x 6.20mm  
DAP (32)  
DAP (32)  
可编程功率限制  
支持并联 BTL 模式和单通道模式  
支持单电源和双电源供电模式  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
集成式自保护电路,包括过压、欠压、过热、直流  
检测和短路等保护,并且具有错误报告功能  
简化应用电路  
热增强型封装  
TPA3128D2  
TPA3129D2  
DAP32 引脚 HTSSOP 封装,焊盘朝下,用  
TPA3128D2 TPA3129D2)  
MONO  
RIGHT  
LC  
DETECT  
Audio  
Source  
And Control  
PBTL  
LEFT  
DETECT  
LC  
2 应用  
SD  
MUTE  
蓝牙/无线扬声器  
FAULT  
条形音箱  
Power Supply  
4.5V-26V  
AM2,1,0  
AM Avoidance Control  
PVCC  
AVCC  
迷你组件,接口盒  
GAIN control and Master/Slave setting  
GAIN/SLV  
液晶显示屏 (LCD)/发光二极管 (LED) 电视 (TV)  
PLIMIT  
SYNC  
Power Limit  
Separate Power  
Supply (Optional)  
Capable of synchronizaing to other devices  
4.5V-26V  
家庭影院  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLOS941  
 
 
 
 
 
 
TPA3128D2, TPA3129D2  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 21  
Applications and Implementation ...................... 22  
8.1 Application Information............................................ 22  
8.2 Typical Application .................................................. 22  
Power Supply Recommendations...................... 25  
9.1 Power Supply Mode................................................ 25  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings ............................................................ 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 DC Electrical Characteristics .................................... 6  
6.6 AC Electrical Characteristics..................................... 6  
6.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 13  
8
9
10 Layout................................................................... 25  
10.1 Layout Guidelines ................................................. 25  
10.2 Layout Example .................................................... 26  
11 器件和文档支持 ..................................................... 28  
11.1 文档支持 ............................................................... 28  
11.2 社区资源................................................................ 28  
11.3 ....................................................................... 28  
11.4 静电放电警告......................................................... 28  
11.5 Glossary................................................................ 28  
12 机械、封装和可订购信息....................................... 29  
7
4 Revision History  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (June 2017) to Revision C  
Page  
Added mA to the Unit value for ICC in the DC Electrical Characteristics table ...................................................................... 6  
Changes from Revision A (December 2016) to Revision B  
Page  
已添加 将 TPA3129D2 器件添加到数据表.............................................................................................................................. 1  
已添加 添加了 TPA3129D2 器件的输出功率值....................................................................................................................... 1  
已更改 GVDD max value for both devices to 6.3 V................................................................................................................ 6  
已更改 over current trip point value for TPA3129D2 device to 5.5 A..................................................................................... 7  
Changes from Original (May 2016) to Revision A  
Page  
将完整数据表作为量产数据发布 ............................................................................................................................................. 1  
2
Copyright © 2016–2018, Texas Instruments Incorporated  
 
TPA3128D2, TPA3129D2  
www.ti.com.cn  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
5 Pin Configuration and Functions  
DAP Package  
32-Pin HTSSOP With PowerPAD Down  
TPA3128D2, TPA3129D2, Top View  
1
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
PVCC  
PVCC  
BSPR  
OUTPR  
GND  
MODSEL  
SDZ  
FAULTZ  
RINP  
3
4
RINN  
5
PLIMIT  
GVDD  
GAIN/SLV  
GND  
6
OUTNR  
BSNR  
GND  
7
8
Thermal  
PAD  
9
BSPL  
OUTPL  
GND  
LINP  
10  
11  
12  
13  
14  
15  
16  
LINN  
MUTE  
AM2  
OUTNL  
BSNL  
PVCC  
PVCC  
AVCC  
AM1  
AM0  
SYNC  
Pin Functions  
PIN  
NAME  
TYPE(1)  
DESCRIPTION  
NO.  
1
MODSEL  
I
Mode selection logic input (LOW = Ultra Low Idle Loss Mode, HIGH = BD Mode). TTL logic levels with  
compliance to AVCC.  
2
3
SDZ  
I
Shutdown logic input for audio amp (LOW = outputs Hi-Z, HIGH = outputs enabled). TTL logic levels with  
compliance to AVCC.  
FAULTZ  
DO  
General fault reporting including Over-temp, DC Detect. Open drain.  
FAULTZ = High, normal operation  
FAULTZ = Low, fault condition  
4
5
6
RINP  
RINN  
I
I
I
Positive audio input for right channel. Connect to GND for MONO mode.  
Negative audio input for right channel. Connect to GND for MONO mode.  
PLIMIT  
Power limit level adjust. Connect a resistor divider from GVDD to GND to set power limit. Connect directly  
to GVDD for no power limit.  
7
GVDD  
PO  
Internally generated gate voltage supply. Not to be used as a supply or connected to any component other  
than a 1 µF X7R ceramic decoupling capacitor and the PLIMIT and GAIN/SLV resistor dividers.  
8
GAIN/SLV  
GND  
I
G
I
Selects Gain and selects between Master and Slave mode depending on pin voltage divider.  
Ground  
9
10  
11  
12  
LINP  
Positive audio input for left channel. Connect to GND for PBTL mode.  
Negative audio input for left channel. Connect to GND for PBTL mode.  
LINN  
I
MUTE  
I
Mute signal for fast disable/enable of outputs (HIGH = outputs Hi-Z, LOW = outputs enabled). TTL logic  
levels with compliance to AVCC.  
13  
14  
15  
16  
17  
AM2  
AM1  
I
AM Avoidance Frequency Selection  
I
I
AM Avoidance Frequency Selection  
AM0  
AM Avoidance Frequency Selection  
SYNC  
AVCC  
DIO  
P
Clock input/output for synchronizing multiple class-D devices. Direction determined by GAIN/SLV terminal.  
Analog Supply  
(1) TYPE: DO = Digital Output, I = Analog Input, G = General Ground, PO = Power Output, BST = Boot Strap.  
Copyright © 2016–2018, Texas Instruments Incorporated  
3
TPA3128D2, TPA3129D2  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
NAME  
PVCC  
PVCC  
BSNL  
P
P
Power supply  
Power supply  
BST  
PO  
G
Boot strap for negative left channel output, connect to 220 nF X5R, or better ceramic cap to OUTPL  
OUTNL  
GND  
Negative left channel output  
Ground  
OUTPL  
BSPL  
PO  
BST  
G
Positive left channel output  
Boot strap for positive left channel output, connect to 220 nF X5R, or better ceramic cap to OUTNL  
GND  
Ground  
BSNR  
OUTNR  
GND  
BST  
PO  
G
Boot strap for negative right channel output, connect to 220 nF X5R, or better ceramic cap to OUTNR  
Negative right channel output  
Ground  
OUTPR  
BSPR  
PO  
BST  
P
Positive right channel output  
Boot strap for positive right channel output, connect to 220 nF X5R or better ceramic cap to OUTPR  
PVCC  
PVCC  
PowerPAD  
Power supply  
P
Power supply  
G
Connect to GND for best system performance. If not connected to GND, leave floating.  
4
Copyright © 2016–2018, Texas Instruments Incorporated  
TPA3128D2, TPA3129D2  
www.ti.com.cn  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
30  
UNIT  
V
Supply voltage, VCC  
Input voltage, VI  
PVCC, AVCC  
INPL, INNL, INPR, INNR  
6.3  
V
PLIMIT, GAIN / SLV, SYNC  
AM0, AM1, AM2, MUTE, SDZ, MODSEL  
AM0, AM1, AM2, MUTE, SDZ, MODSEL  
GVDD+0.3  
PVCC+0.3  
10  
V
V
Slew rate, maximum(2)  
V/ms  
°C  
°C  
°C  
Operating free-air temperature, TA  
Operating junction temperature , TJ  
Storage temperature, Tstg  
–40  
–40  
–40  
85  
150  
125  
(1) Stresses beyond those listed under absolute maximum ratings can cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability.  
(2) 100-kΩ series resistor is required if maximum slew rate is exceeded.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. .  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM  
MAX UNIT  
VCC  
VIH  
Supply voltage  
PVCC, AVCC  
4.5  
26  
V
High-level input  
voltage  
AM0, AM1, AM2, MUTE, SDZ, SYNC, MODSEL  
2
V
Low-level input  
voltage  
VIL  
VOL  
IIH  
AM0, AM1, AM2, MUTE, SDZ, SYNC, MODSEL  
FAULTZ, RPULL-UP = 100 kΩ, PVCC = 26 V  
0.8  
0.8  
50  
V
V
Low-level output  
voltage  
High-level input  
current  
AM0, AM1, AM2, MUTE, SDZ, MODSEL (VI = 2 V, VCC = 18 V)  
µA  
TPA3128D2  
Output filter: L = 10 µH, C = 680 nF  
TPA3129D2  
3.2  
5.6  
1.6  
3.2  
4
8
2
4
RL(BTL)  
Minimum load  
Impedance  
Ω
TPA3128D2  
Output filter: L = 10 µH, C = 1 µF  
TPA3129D2  
RL(PBTL)  
Lo  
Output-filter  
Inductance  
Minimum output filter inductance under short-circuit condition  
1
µH  
Copyright © 2016–2018, Texas Instruments Incorporated  
5
TPA3128D2, TPA3129D2  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
www.ti.com.cn  
6.4 Thermal Information  
TPA3128D2, TPA3129D2  
THERMAL METRIC(1)  
DAP(2)  
32 PINS  
22  
UNIT  
RθJA  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.3  
ψJB  
4.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) For the PCB layout, see the TPS3128D2EVM user guide.  
6.5 DC Electrical Characteristics  
TA = 25°C, AVCC = PVCC = 12 V to 24 V, RL = 4 Ω, fs = 400 kHz, low idle-loss mode(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Class-D output offset voltage (measured  
differentially)  
| VOS  
ICC  
|
VI = 0 V  
1.5  
5
mV  
SDZ = 2 V, With load and filter, PVCC = 12 V  
SDZ = 2 V, With load and filter, PVCC = 24 V  
SDZ = 0.8 V, With load and filter, PVCC = 12 V  
SDZ = 0.8 V, With load and filter, PVCC = 24 V  
17  
23  
20  
30  
mA  
mA  
Quiescent supply current  
Quiescent supply current in shutdown  
mode  
ICC(SD)  
rDS(on)  
µA  
mΩ  
dB  
Drain-source on-state resistance,  
measured pin to pin  
PVCC = 21 V, Iout = 500 mA, TJ = 25°C  
90  
R1 = 5.6 kΩ, R2 = Open  
R1 = 20 kΩ, R2 = 100 kΩ  
R1 = 39 kΩ, R2 = 100 kΩ  
R1 = 47 kΩ, R2 = 75 kΩ  
R1 = 51 kΩ, R2 = 51 kΩ  
R1 = 75 kΩ, R2 = 47 kΩ  
R1 = 100 kΩ, R2 = 39 kΩ  
R1 = 100 kΩ, R2 = 16 kΩ  
SDZ = 2 V  
19  
25  
31  
35  
19  
25  
31  
35  
20  
26  
32  
36  
20  
26  
32  
36  
40  
2
21  
27  
33  
37  
21  
27  
33  
37  
G
G
Gain (BTL)  
Gain (SLV)  
dB  
dB  
dB  
ton  
Turn-on time  
ms  
µs  
V
tOFF  
GVDD  
Turn-off time  
SDZ = 0.8 V  
Gate drive supply  
IGVDD < 200 µA  
5.1  
5.6  
6.3  
Output voltage maximum under PLIMIT  
control  
VO  
V(PLIMIT) = 2 V; VI = 1 Vrms  
6.75  
8.2  
8.75  
V
6.6 AC Electrical Characteristics  
TA = 25°C, AVCC = PVCC = 12 V to 24 V, RL = 4 Ω (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
200 mVPP ripple at 1 kHz, Gain = 20 dB, Inputs AC-  
coupled to GND  
KSVR  
PO  
Power supply ripple rejection  
–70  
dB  
THD+N = 10%, f = 1 kHz, PVCC = 14.4 V  
THD+N = 10%, f = 1 kHz, PVCC = 21 V  
VCC = 21 V, f = 1 kHz, PO = 15 W (half-power)  
25  
30  
Continuous output power  
W
THD+N Total harmonic distortion + noise  
0.1%  
65  
µV  
dBV  
dB  
Vn  
Output integrated noise  
20 Hz to 22 kHz, A-weighted filter, Gain = 20 dB  
VO = 1 Vrms, Gain = 20 dB, f = 1 kHz  
–80  
–100  
Crosstalk  
Maximum output at THD+N < 1%, f = 1 kHz, Gain = 20 dB,  
A-weighted  
SNR  
Signal-to-noise ratio  
102  
dB  
6
版权 © 2016–2018, Texas Instruments Incorporated  
TPA3128D2, TPA3129D2  
www.ti.com.cn  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
AC Electrical Characteristics (接下页)  
TA = 25°C, AVCC = PVCC = 12 V to 24 V, RL = 4 Ω (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
AM2=0, AM1=0, AM0=0  
MIN TYP  
376 400  
470 500  
564 600  
940 1000  
1128 1200  
282 300  
MAX UNIT  
424  
AM2=0, AM1=0, AM0=1  
AM2=0, AM1=1, AM0=0  
AM2=0, AM1=1, AM0=1  
AM2=1, AM1=0, AM0=0  
AM2=1, AM1=0, AM0=1  
AM2=1, AM1=1, AM0=0  
AM2=1, AM1=1, AM0=1  
530  
636  
1060  
kHz  
fOSC  
Oscillator frequency  
1278  
318  
Reserved  
Thermal trip point  
Thermal hysteresis  
150  
15  
°C  
°C  
TPA3128D2  
TPA3129D2  
7.5  
5.5  
Over current trip point  
A
版权 © 2016–2018, Texas Instruments Incorporated  
7
TPA3128D2, TPA3129D2  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
www.ti.com.cn  
6.7 Typical Characteristics  
fs = 400 kHz, Ultra Low Idle Loss Mode, TPA3128D2EVM Tested With AP2722. (unless otherwise noted)  
10  
30  
20  
10  
0
Gain=26dB  
PVcc=12V  
TA=25èC  
RL=8W  
P O=1W  
PO =2.5W  
PO=5W  
Gain=26dB  
TA=25qC  
RL=4:  
1
0.1  
0.01  
0.001  
20  
100  
1k  
10k 20k  
5
10  
15  
Supply Voltage (V)  
20  
25  
Frequency (Hz)  
D005  
D001  
2. Total Harmonic Distortion + Noise (BTL) vs Frequency  
1. Idle Current vs PVCC  
10  
10  
Gain=26dB  
PVcc=24V  
TA=25èC  
RL=8W  
P O=1W  
PO =5W  
PO=10W  
Gain=26dB  
PVCC=6V  
TA=25èC  
RL=4W  
1
0.1  
1
0.1  
0.01  
0.01  
f= 20Hz  
f= 1kHz  
f= 6KHz  
0.001  
0.001  
20  
100  
1k  
10k 20k  
0.01  
0.1  
Output Power (W)  
1
10  
Frequency (Hz)  
D006  
D007  
3. Total Harmonic Distortion + Noise (BTL) vs Frequency  
4. Total Harmonic Distortion + Noise (BTL) vs Output  
Power  
10  
10  
Gain=26dB  
PVCC=12V  
TA=25èC  
Gain=26dB  
PVCC=24V  
TA=25èC  
RL=4W  
RL=4W  
1
0.1  
1
0.1  
0.01  
0.01  
f= 20Hz  
f= 20Hz  
f= 1kHz  
f= 6KHz  
f= 1kHz  
f= 6KHz  
0.001  
0.001  
0.01  
0.1  
1
10  
40  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
D008  
D009  
5. Total Harmonic Distortion + Noise (BTL) vs Output  
6. Total Harmonic Distortion + Noise (BTL) vs Output  
Power  
Power  
8
版权 © 2016–2018, Texas Instruments Incorporated  
TPA3128D2, TPA3129D2  
www.ti.com.cn  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
Typical Characteristics (接下页)  
fs = 400 kHz, Ultra Low Idle Loss Mode, TPA3128D2EVM Tested With AP2722. (unless otherwise noted)  
10  
10  
Gain=26dB  
PVCC=24V  
TA=25èC  
RL=8W  
Gain=26dB  
PVCC=12V  
TA=25èC  
RL=8W  
1
1
0.1  
0.1  
0.01  
0.01  
f= 20Hz  
f= 20Hz  
f= 1kHz  
f= 6KHz  
f= 1kHz  
f= 6KHz  
0.001  
0.001  
0.01  
0.1  
1
10  
50  
0.01  
0.1  
1
10  
50  
Output Power (W)  
Output Power (W)  
D010  
D011  
7. Total Harmonic Distortion + Noise (BTL) vs Output  
8. Total Harmonic Distortion + Noise (BTL) vs Output  
Power  
Power  
50  
30  
20  
300  
200  
100  
0
Gain=26dB  
TA=25èC  
PVCC=24V  
RL=4W  
40  
30  
20  
10  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-100  
-200  
-300  
-400  
-500  
Gain=26dB  
PVCC=12V  
TA=25èC  
RL=4W  
Gain  
Phase  
1
2
3
4
5
20  
100  
1k  
10k 20k  
100k  
PLIMIT Voltage(V)  
Frequency (Hz)  
D0012  
D0225  
9. Output Power (BTL) vs Plimit Voltage  
10. Gain/Phase (BTL) vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Gain=26dB  
TA=25èC  
RL=4W  
Gain=26dB  
TA=25èC  
RL=8W  
THD+N=1%  
THD+N=10%  
THD+N=1%  
THD+N=10%  
0
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage (V)  
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage (V)  
D014  
D037  
15  
D037  
11. Maximum Output Power (BTL) vs Supply Voltage  
12. Maximum Output Power (BTL) vs Supply Voltage  
版权 © 2016–2018, Texas Instruments Incorporated  
9
TPA3128D2, TPA3129D2  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
fs = 400 kHz, Ultra Low Idle Loss Mode, TPA3128D2EVM Tested With AP2722. (unless otherwise noted)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain=26dB  
TA=25èC  
RL=8W  
Gain=26dB  
TA=25èC  
RL=4W  
PVCC = 6V  
PVCC = 12 V  
PVCC = 24 V  
PVCC = 6V  
PVCC = 12 V  
PVCC = 24 V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Output Power (W)  
Output Power (W)  
D016  
D017  
13. Power Efficiency (BTL) vs Output Power  
14. Power Efficiency (BTL) vs Output Power  
0
-20  
0
-20  
Gain=26dB  
PVCC=24V  
TA=25èC  
RL=8W  
Gain=26dB  
PVCC=12V  
TA=25èC  
RL=4W  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
Right to Left  
Left to Right  
Right to Left  
Left to Right  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D01083  
D00139  
15. Crosstalk vs Frequency  
16. Crosstalk vs Frequency  
0
-20  
10  
Gain=26dB  
PVCC=12VDC+200mVP-P  
TA=25èC  
Gain=26dB  
PVcc=12V  
TA=25èC  
RL=2W  
P O=1W  
PO =5W  
PO=10W  
RL=8W  
1
0.1  
-40  
-60  
0.01  
-80  
Left Channel  
Right Channel  
-100  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D020  
D021  
17. Supply Ripple Rejection Ratio (BTL) vs Frequency  
18. Total Harmonic Distortion + Noise (PBTL) vs  
Frequency  
10  
版权 © 2016–2018, Texas Instruments Incorporated  
TPA3128D2, TPA3129D2  
www.ti.com.cn  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
Typical Characteristics (接下页)  
fs = 400 kHz, Ultra Low Idle Loss Mode, TPA3128D2EVM Tested With AP2722. (unless otherwise noted)  
180  
160  
140  
120  
100  
80  
10  
Gain=26dB  
TA=25èC  
RL=2W  
Gain=26dB  
PVCC=12V  
TA=25èC  
RL=2W  
1
0.1  
60  
0.01  
40  
f= 20Hz  
f= 1kHz  
f= 6KHz  
THD+N=1%  
THD+N=10%  
20  
0.001  
0
0.01  
0.1  
1
10  
40  
4
6
8
10  
12  
14  
16  
18  
20  
22  
Output Power (W)  
Supply Voltage (V)  
D022  
D023  
19. Total Harmonic Distortion + Noise (PBTL) vs Output  
20. Maximum Output Power (PBTL) vs Supply Voltage  
Power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
0
Gain=26dB  
PVCC=12VDC+200mVP-P  
TA=25èC  
RL=2W  
-20  
-40  
-60  
-80  
Gain=26dB  
TA=25èC  
RL=2W  
PVCC = 6V  
PVCC = 12 V  
PVCC = 24 V  
10  
0
-100  
20  
0
10  
20  
30  
40  
50  
60  
70  
100  
1k  
10k 20k  
Output Power (W)  
Frequency (Hz)  
D024  
D025  
21. Power Efficiency (PBTL) vs Output Power  
22. Supply Ripple Rejection Ratio (PBTL) vs Frequency  
140  
10  
Gain=26dB  
TA=25èC  
RL=3W  
Gain=26dB  
PVCC=24V  
TA=25èC  
RL=3W  
130  
120  
110  
1
0.1  
100  
90  
80  
70  
60  
50  
40  
30  
0.01  
f= 20Hz  
f= 1kHz  
f= 6KHz  
20  
THD+N=1%  
10  
THD+N=10%  
0.001  
0
0.01  
0.1  
1
10  
50 100 200  
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage (V)  
Output Power (W)  
D026  
D027  
23. Total Harmonic Distortion + Noise (PBTL) vs Output  
24. Maximum Output Power (PBTL) vs Supply Voltage  
Power  
版权 © 2016–2018, Texas Instruments Incorporated  
11  
TPA3128D2, TPA3129D2  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPA3128D2and TPA3129D2 devices are a highly efficient Class D audio amplifier with extreme low idle  
power dissipation. It can support as low as 23-mA idle loss current using standard LC filter configurations. It is  
integrated with 90-mΩ MOSFET that allows output currents up to 7.5 A for TPA3128D2 and 5.5 A for  
TPA3129D2. The high efficiency allows the amplifier to provide an excellent audio performance without the  
requirement for a bulky heat sink.  
The device can be configured for either master or slave operation by using the SYNC pin. Configuring using the  
SYNC pin helps to prevent audible beats noise.  
7.2 Functional Block Diagram  
GVDD  
PVCC  
BSPR  
SDZ  
PVCC  
TTL  
Buffer  
Modulation and  
PBTL Select  
MUTE  
Gain  
Control  
OUTPR_FB  
Gate  
Drive  
OUTPR  
GAIN  
+
OUTPR_FB  
GND  
RINP  
RINN  
+
+
PWM  
Logic  
Gain  
Control  
PLIMIT  
GVDD  
PVCC  
+
BSNR  
+
PVCC  
OUTPNR_FB  
OUTNR_  
FB  
+
FAULTZ  
Gate  
Drive  
OUTNR  
GND  
Input  
Sense  
MONO  
Select  
SC Detect  
DC Detect  
SYNC  
GAIN/SLV  
Ramp  
Generator  
Startup Protection  
Logic  
Biases and  
References  
Thermal  
Detect  
AM<2:0>  
PLIMIT  
Reference  
PLIMIT  
PVCC  
UVLO/OVLO  
PVCC  
GVDD  
PVCC  
BSNL  
AVDD  
PVCC  
LDO  
Regulator  
AVCC  
GVDD  
GVDD  
Gate  
Drive  
OUTNL  
OUTNL_FB  
OUTNL_  
FB  
+
+
LINP  
LINN  
GND  
+
+
Gain  
Control  
PWM  
Logic  
PLIMIT  
GVDD  
PVCC  
+
+
BSPL  
PVCC  
OUTPL_FB  
Gate  
Drive  
OUTPL  
GND  
Input  
Sense  
PBTL  
Select  
Modulation and  
PBTL Select  
OUTPL_FB  
GND  
Thermal  
Pad  
Copyright © 2016, Texas Instruments Incorporated  
12  
版权 © 2016–2018, Texas Instruments Incorporated  
TPA3128D2, TPA3129D2  
www.ti.com.cn  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
7.3 Feature Description  
7.3.1 Gain Setting and Master and Slave  
The gain of the TPA312xD2 is set by the voltage divider connected to the GAIN/SLV control pin. Master or Slave  
mode is also controlled by the same pin. An internal ADC is used to detect the 8 input states. The first four  
stages sets the GAIN in Master mode in gains of 20, 26, 32, 36 dB respectively, while the next four stages sets  
the GAIN in Slave mode in gains of 20, 26, 32, 36 dB respectively. The gain setting is latched during power-up  
and cannot be changed while device is powered. 1 lists the recommended resistor values and the state and  
gain:  
1. Gain and Master/Slave  
MASTER / SLAVE  
GAIN  
R1 (to GND)(1)  
R2 (to GVDD)(1)  
INPUT IMPEDANCE  
MODE  
Master  
Master  
Master  
Master  
Slave  
20 dB  
26 dB  
32 dB  
36 dB  
20 dB  
26 dB  
32 dB  
36 dB  
5.6 kΩ  
20 kΩ  
39 kΩ  
47 kΩ  
51 kΩ  
75 kΩ  
100 kΩ  
100 kΩ  
OPEN  
100 kΩ  
100 kΩ  
75 kΩ  
51 kΩ  
47 kΩ  
39 kΩ  
16 kΩ  
60 kΩ  
30 kΩ  
15 kΩ  
9 kΩ  
60 kΩ  
30 kΩ  
15 kΩ  
9 kΩ  
Slave  
Slave  
Slave  
(1) Resistor tolerance should be 5% or better.  
5
6
INNR  
2
1
PLIMIT  
GVDD  
1
C5 1 µF  
2
7
2
1
R2  
8
51 k  
GAIN/SLV  
GND  
9
R1 51 k  
10  
25. Gain, Master/Slave  
In Master mode, SYNC terminal is an output, in Slave mode, SYNC terminal is an input for a clock input. TTL  
logic levels with compliance to GVDD.  
7.3.2 Input Impedance  
The TPA31xxD2 input stage is a fully differential input stage and the input impedance changes with the gain  
setting from 9 kat 36 dB gain to 60 kat 20 dB gain. 1 lists the values from min to max gain. The tolerance  
of the input resistor value is ±20% so the minimum value will be higher than 7.2 k. The inputs must be AC-  
coupled to minimize the output dc-offset and ensure correct ramping of the output voltages during power-ON and  
power-OFF. The input ac-coupling capacitor together with the input impedance forms a high-pass filter with the  
following cut-off frequency:  
1
ƒ
=  
2pZiCi  
(1)  
If a flat bass response is required down to 20 Hz the recommended cut-off frequency is a tenth of that, 2 Hz. 2  
lists the recommended ac-couplings capacitors for each gain step. If a –3-dB capacitor is accepted at 20 Hz 10  
times lower capacitors can used – for example, a 1-µF capacitor can be used.  
版权 © 2016–2018, Texas Instruments Incorporated  
13  
 
TPA3128D2, TPA3129D2  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
www.ti.com.cn  
2. Recommended Input AC-Coupling Capacitors  
GAIN  
20 dB  
26 dB  
32 dB  
36 dB  
INPUT IMPEDANCE  
INPUT CAPACITANCE  
HIGH-PASS FILTER  
60 kΩ  
30 kΩ  
15 kΩ  
9 kΩ  
1.5 µF  
3.3 µF  
5.6 µF  
10 µF  
1.8 Hz  
1.6 Hz  
2.3 Hz  
1.8 Hz  
Z
f
C
i
Z
i
IN  
Input  
Signal  
26. Input Impedance  
The input capacitors used should be a type with low leakage, such as quality electrolytic, tantalum, or ceramic  
capacitors. If a polarized type is used the positive connection should face the input pins which are biased to 3  
Vdc.  
7.3.3 Startup and Shutdown Operation  
The TPA31xxD2 employs a shutdown mode of operation designed to reduce supply current (Icc) to the absolute  
minimum level during periods of nonuse for power conservation. The SDZ input terminal should be held high  
(see specification table for trip point) during normal operation when the amplifier is in use. Pulling SDZ low will  
put the outputs to mute and the amplifier to enter a low-current state. Do not leave SDZ unconnected, because  
amplifier operation would be unpredictable.  
For the best power-off pop performance, place the amplifier in the shutdown mode prior to removing the power  
supply. The gain setting is selected at the end of the start-up cycle. At the end of the start-up cycle, the gain is  
selected and cannot be changed until the next power-up.  
7.3.4 PLIMIT Operation  
The TPA31xxD2 has a built-in voltage limiter that can be used to limit the output voltage level below the supply  
rail, the amplifier operates as if it was powered by a lower supply voltage, and thereby limits the output power.  
Add a resistor divider from GVDD to ground to set the voltage at the PLIMIT pin. An external reference may also  
be used if tighter tolerance is required. Add a 1-µF capacitor from pin PLIMIT to ground to ensure stability.  
27. Power Limit Example  
14  
版权 © 2016–2018, Texas Instruments Incorporated  
TPA3128D2, TPA3129D2  
www.ti.com.cn  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
The PLIMIT circuit sets a limit on the output peak-to-peak voltage. The limiting is done by limiting the duty cycle  
to a fixed maximum value. The limit can be thought of as a "virtual" voltage rail which is lower than the supply  
connected to PVCC. The "virtual" rail is approximately four times the voltage at the PLIMIT pin. The output  
voltage can be used to calculate the maximum output power for a given maximum input voltage and speaker  
impedance.  
æ
ö2  
æ
ç
è
ö
÷
ø
RL  
´ V  
ç
÷
P
ç
÷
RL + 2 ´ RS  
è
ø
POUT  
=
for unclipped power  
2 ´ RL  
where  
POUT (10%THD) = 1.25 × POUT (unclipped)  
RL is the load resistance.  
RS is the total series resistance including RDS(on), and output filter resistance.  
VP is the peak amplitude, which is limited by "virtual" voltage rail.  
(2)  
3. Power Limit Example  
PVCC (V)  
24 V  
PLIMIT VOLTAGE (V)(1)  
R to GND  
Open  
R to GVDD  
Short  
OUTPUT VOLTAGE (Vrms)  
GVDD  
3.3  
17.9  
12.67  
9
24 V  
45 kΩ  
24 kΩ  
Open  
51 kΩ  
24 V  
2.25  
GVDD  
2.25  
1.5  
51 kΩ  
12 V  
Short  
10.33  
9
12 V  
24 kΩ  
18 kΩ  
51 kΩ  
12 V  
68 kΩ  
6.3  
(1) PLIMIT measurements taken with EVM gain set to 26 dB and input voltage set to 1 Vrms  
.
7.3.5 GVDD Supply  
The GVDD Supply is used to power the gates of the output full bridge transistors. The GVDD Supply can also be  
used to supply the PLIMIT and GAIN/SLV voltage dividers. Decouple GVDD with a X5R ceramic 1-µF capacitor  
to GND. The GVDD supply is not intended to be used for external supply. The current consumption should be  
limited by using resistor voltage dividers for GAIN/SLV and PLIMIT of 100 kor more.  
7.3.6 BSPx AND BSNx Capacitors  
The full H-bridge output stages use only NMOS transistors. Therefore, they require bootstrap capacitors for the  
high side of each output to turn on correctly. A 220-nF ceramic capacitor of quality X5R or better, rated for at  
least 16 V, must be connected from each output to the corresponding bootstrap input. (See the application circuit  
diagram in 36.) The bootstrap capacitors connected between the BSxx pins and corresponding output function  
as a floating power supply for the high-side N-channel power MOSFET gate drive circuitry. During each high-side  
switching cycle, the bootstrap capacitors hold the gate-to-source voltage high enough to keep the high-side  
MOSFETs turned on.  
7.3.7 Differential Inputs  
The differential input stage of the amplifier cancels any noise that appears on both input lines of the channel. To  
use the TPA31xxD2 with a differential source, connect the positive lead of the audio source to the RINP or LINP  
input and the negative lead from the audio source to the RINN or LINN input. To use the TPA31xxD2 with a  
single-ended source, ac ground the negative input through a capacitor equal in value to the input capacitor on  
positive and apply the audio source to either input. In a single-ended input application, the unused input should  
be ac grounded at the audio source instead of at the device input for best noise performance. For good transient  
performance, the impedance seen at each of the two differential inputs should be the same.  
The impedance seen at the inputs should be limited to an RC time constant of 1 ms or less if possible to allow  
the input dc blocking capacitors to become completely charged during the 40-ms power-up time. If the input  
capacitors are not allowed to completely charge, there will be some additional sensitivity to component matching  
which can result in pop if the input components are not well matched.  
版权 © 2016–2018, Texas Instruments Incorporated  
15  
TPA3128D2, TPA3129D2  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
www.ti.com.cn  
7.3.8 Device Protection System  
The TPA31xxD2 contains a complete set of protection circuits carefully designed to make system design efficient  
as well as to protect the device against any kind of permanent failures due to short circuits, overload, over  
temperature, and under-voltage. The FAULTZ pin will signal if an error is detected according to 4:  
4. Fault Reporting  
TRIGGERING CONDITION  
(typical value)  
LATCHED/SELF-  
CLEARING  
FAULT  
FAULTZ  
ACTION  
Over Current  
Output short or short to PVCC or GND  
Tj > 150°C  
Low  
Low  
Low  
Output high impedance  
Output high impedance  
Output high impedance  
Latched  
Latched  
Latched  
Over Temperature  
Too High DC Offset  
DC output voltage  
Under Voltage on  
PVCC  
PVCC < 4.5V  
PVCC > 27V  
Output high impedance  
Output high impedance  
Self-clearing  
Self-clearing  
Over Voltage on  
PVCC  
7.3.9 DC Detect Protection  
The TPA31xxD2 has circuitry which will protect the speakers from DC current which might occur due to defective  
capacitors on the input or shorts on the printed circuit board at the inputs. A DC detect fault will be reported on  
the FAULT pin as a low state. The DC Detect fault will also cause the amplifier to shutdown by changing the  
state of the outputs to Hi-Z.  
If automatic recovery from the short circuit protection latch is desired, connect the FAULTZ pin directly to the  
SDZ pin. Connecting the FAULTZ and SDZ pins allows the FAULTZ pin function to automatically drive the SDZ  
pin low which clears the DC Detect protection latch.  
A DC Detect Fault is issued when the output differential voltage of either channel exceeds DC protection  
threshold level for more than 640 ms at the same polarity. 5 below shows some examples of the typical DC  
Detect Protection threshold for several values of the supply voltage. The Detect Protection Threshold feature  
protects the speaker from large DC currents or AC currents less than 2 Hz. To avoid nuisance faults due to the  
DC detect circuit, hold the SD pin low at power-up until the signals at the inputs are stable. Also, take care to  
match the impedance seen at the positive and negative inputs to avoid nuisance DC detect faults.  
5 lists the minimum output offset voltages required to trigger the DC detect. The outputs must remain at or  
above the voltage listed in the table for more than 640 ms to trigger the DC detect.  
5. DC Detect Threshold  
PVCC (V)  
VOS - OUTPUT OFFSET VOLTAGE (V)  
4.5  
6
1.35  
1.8  
12  
18  
3.6  
5.4  
7.3.10 Short-Circuit Protection and Automatic Recovery Feature  
The TPA31xxD2 has protection from over current conditions caused by a short circuit on the output stage. The  
short circuit protection fault is reported on the FAULTZ pin as a low state. The amplifier outputs are switched to a  
high impedance state when the short circuit protection latch is engaged. The latch can be cleared by cycling the  
SDZ pin through the low state.  
If automatic recovery from the short circuit protection latch is desired, connect the FAULTZ pin directly to the  
SDZ pin. Connecting the FAULTZ and SDZ pins allows the FAULTZ pin function to automatically drive the SDZ  
pin low which clears the short-circuit protection latch.  
In systems where a possibility of a permanent short from the output to PVDD or to a high voltage battery like a  
car battery can occur, pull the MUTE pin low with the FAULTZ signal with a inverting transistor to ensure a high-  
Z restart, like shown in the 28 below:  
16  
版权 © 2016–2018, Texas Instruments Incorporated  
 
 
 
TPA3128D2, TPA3129D2  
www.ti.com.cn  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
> 1.4sec  
SDZ  
MUTE  
mP  
TPA312xD2  
FAULTZ  
SDZ  
MUTE  
FAULTZ  
TPA3128D2  
28. MUTE Driven by Inverted FAULTZ  
29. Timing Requirement for SDZ  
7.3.11 Thermal Protection  
Thermal protection on the TPA31xxD2 prevents damage to the device when the internal die temperature  
exceeds 150°C. This trip point has a ±15°C tolerance from device to device. Once the die temperature exceeds  
the thermal trip point, the device enters into the shutdown state and the outputs are disabled. This is a latched  
fault.  
Thermal protection faults are reported on the FAULTZ terminal as a low state.  
If automatic recovery from the thermal protection latch is desired, connect the FAULTZ pin directly to the SDZ  
pin. This allows the FAULTZ pin function to automatically drive the SDZ pin low which clears the thermal  
protection latch.  
7.3.12 Device Modulation Scheme  
The TPA3128D2 and TPA3129D2 have the option of running in either BD modulation or low idle-loss mode.  
7.3.12.1 BD-Modulation  
This is a modulation scheme that allows operation without the classic LC reconstruction filter when the amp is  
driving an inductive load with short speaker wires. Each output is switching from 0 volts to the supply voltage.  
The OUTPx and OUTNx are in phase with each other with no input so that there is little or no current in the  
speaker. The duty cycle of OUTPx is greater than 50% and OUTNx is less than 50% for positive output voltages.  
The duty cycle of OUTPx is less than 50% and OUTNx is greater than 50% for negative output voltages. The  
voltage across the load sits at 0V throughout most of the switching period, reducing the switching current, which  
reduces any I2R losses in the load.  
版权 © 2016–2018, Texas Instruments Incorporated  
17  
TPA3128D2, TPA3129D2  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
www.ti.com.cn  
OUTP  
OUTN  
No Output  
0V  
OUTP-OUTN  
Speaker  
Current  
OUTP  
OUTN  
PVCC  
Positive Output  
-
OUTP OUTN  
0V  
Speaker  
Current  
0A  
OUTP  
Negative Output  
OUTN  
0V  
OUTP-OUTN  
-
PVCC  
0A  
Speaker  
Current  
30. BD Mode Modulation  
18  
版权 © 2016–2018, Texas Instruments Incorporated  
TPA3128D2, TPA3129D2  
www.ti.com.cn  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
7.3.13 Efficiency: LC Filter Required with the Traditional Class-D Modulation Scheme  
The main reason that the traditional class-D amplifier-based on AD modulation requires an output filter is that the  
switching waveform results in maximum current flow. This causes more loss in the load, which causes lower  
efficiency. The ripple current is large for the traditional modulation scheme, because the ripple current is  
proportional to voltage multiplied by the time at that voltage. The differential voltage swing is 2 × VCC, and the  
time at each voltage is half the period for the traditional modulation scheme. An ideal LC filter is required to store  
the ripple current from each half cycle for the next half cycle, while any resistance causes power dissipation. The  
speaker is both resistive and reactive, whereas an LC filter is almost purely reactive.  
The TPA3128D2 and TPA3129D2 modulation schemes have little loss in the load without a filter because the  
pulses are short and the change in voltage is VCC instead of 2 × VCC. As the output power increases, the  
pulses widen, making the ripple current larger. Ripple current could be filtered with an LC filter for increased  
efficiency, but for most applications the filter is not required.  
An LC filter with a cutoff frequency less than the class-D switching frequency allows the switching current to flow  
through the filter instead of the load. The filter has less resistance but higher impedance at the switching  
frequency than the speaker, which results in less power dissipation, therefore increasing efficiency.  
7.3.14 Ferrite Bead Filter Considerations  
Using the Advanced Emissions Suppression Technology in the TPA3128D2 and TPA3129D2 amplifiers, a high  
efficiency class-D audio amplifier can be designed while minimizing interference to surrounding circuits.  
Designing the amplifier can also be accomplished with only a low-cost ferrite bead filter. In this case the user  
must carefully select the ferrite bead used in the filter. One important aspect of the ferrite bead selection is the  
type of material used in the ferrite bead. Not all ferrite material is alike, therefore the user must select a material  
that is effective in the 10-MHz to 100-MHz range which is key to the operation of the class-D amplifier. Many of  
the specifications regulating consumer electronics have emissions limits as low as 30 MHz. The ferrite bead filter  
should be used to block radiation in the 30-MHz and above range from appearing on the speaker wires and the  
power supply lines which are good antennas for these signals. The impedance of the ferrite bead can be used  
along with a small capacitor with a value in the range of 1000 pF to reduce the frequency spectrum of the signal  
to an acceptable level. For best performance, the resonant frequency of the ferrite bead/ capacitor filter should  
be less than 10 MHz.  
Also, the ferrite bead must be large enough to maintain its impedance at the peak currents expected for the  
amplifier. Some ferrite bead manufacturers specify the bead impedance at a variety of current levels. In this case  
the user can make sure the ferrite bead maintains an adequate amount of impedance at the peak current the  
amplifier will see. If these specifications are not available, the device can also estimate the bead current handling  
capability by measuring the resonant frequency of the filter output at low power and at maximum power. A  
change of resonant frequency of less than fifty percent under this condition is desirable. Examples of ferrite  
beads which have been tested and work well with the TPA3136D2 can be seen in the TPA3136D2EVM user  
guide SLOU444.  
A high quality ceramic capacitor is also required for the ferrite bead filter. A low ESR capacitor with good  
temperature and voltage characteristics will work best.  
Additional EMC improvements may be obtained by adding snubber networks from each of the class-D outputs to  
ground. Suggested values for a simple RC series snubber network would be 18 Ω in series with a 330 pF  
capacitor although design of the snubber network is specific to every application and must be designed taking  
into account the parasitic reactance of the printed circuit board as well as the audio amp. Take care to evaluate  
the stress on the component in the snubber network especially if the amp is running at high PVCC. Also, make  
sure the layout of the snubber network is tight and returns directly to the GND pins on the IC.  
31 and 32 are TPA3128D2 EN55022 Radiated Emissions results uses TPA3128D2EVM with 8-Ω  
speakers.  
版权 © 2016–2018, Texas Instruments Incorporated  
19  
TPA3128D2, TPA3129D2  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
www.ti.com.cn  
31. TPA3128D2 Radiated Emissions-Horizontal  
32. TPA3128D2 Radiated Emissions-Vertical  
(PVCC=12V, PO=1W)  
(PVCC=12V, PO=1W)  
7.3.15 When to Use an Output Filter for EMI Suppression  
A complete LC reconstruction filter should be added in some circuit instances. These circumstances might occur  
if there are nearby circuits which are sensitive to noise. In these cases a classic second order Butterworth filter  
similar to those shown in the figures below can be used.  
Some systems have little power supply decoupling from the AC line but are also subject to line conducted  
interference (LCI) regulations. These include systems powered by "wall warts" and "power bricks." In these  
cases, LC reconstruction filters can be the lowest cost means to pass LCI tests. Common mode chokes using  
low frequency ferrite material can also be effective at preventing line conducted interference.  
10 µH  
OUTP  
C2  
L1  
0.68 µF  
4 W - 8 W  
10 µH  
OUTN  
C3  
L2  
0.68 µF  
Ferrite  
Chip Bead  
OUTP  
1 nF  
4 W - 8 W  
Ferrite  
Chip Bead  
OUTN  
1 nF  
33. TPA31xxD2 Output Filters  
7.3.16 AM Avoidance EMI Reduction  
6. AM Frequencies  
US  
EUROPEAN  
AM FREQUENCY (kHz)  
522-540  
SWITCHING FREQUENCY (kHz)  
AM2  
AM1  
AM0  
AM FREQUENCY (kHz)  
540-917  
917-1125  
1125-1375  
1375-1547  
540-914  
500  
0
0
0
0
0
0
0
1
0
0
1
0
1
0
0
1
0
0
914-1122  
1122-1373  
1373-1548  
600 (or 400)  
500  
600 (or 400)  
20  
版权 © 2016–2018, Texas Instruments Incorporated  
 
TPA3128D2, TPA3129D2  
www.ti.com.cn  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
6. AM Frequencies (接下页)  
US  
EUROPEAN  
SWITCHING FREQUENCY (kHz)  
AM2  
AM1  
AM0  
AM FREQUENCY (kHz)  
AM FREQUENCY (kHz)  
0
0
1
0
0
1
1547-1700  
1548-1701  
600 (or 500)  
7.4 Device Functional Modes  
7.4.1 PBTL Mode  
The TPA3128D2 can be connected in PBTL mode enabling up to 60W output power. This is done by:  
Connect INPL and INNL directly to Ground (without capacitors) this sets the device in Mono mode during  
power up.  
Connect OUTPR and OUTNR together for the positive speaker terminal and OUTNL and OUTPL together for  
the negative pin.  
Analog input signal is applied to INPR and INNR.  
TPA3128D2  
4.5 V–26 V  
PSU  
OUTPR  
OUTNR  
Right  
LC Filter  
OUTPL  
OUTNL  
PBTL  
Detect  
Left  
34. PBTL Mode  
7.4.2 Mono Mode (Single Channel Mode)  
The and TPA3129D2 can be connected in MONO mode to cut the idle power-loss nearly by half. This is done by:  
Connect INPR and INNR directly to Ground (without capacitors) this sets the device in Mono mode during  
power up.  
Connect OUTPL and OUTNL to speaker just like normal BTL mode.  
Analog input signal is applied to INPL and INNL.  
TPA3128D2,  
4.5 V–26 V  
TPA3129D2  
PSU  
MONO  
Detect  
OUTPR  
OUTNR  
Right  
OUTPL  
OUTNL  
LC Filter  
Left  
35. MONO Mode  
版权 © 2016–2018, Texas Instruments Incorporated  
21  
TPA3128D2, TPA3129D2  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
www.ti.com.cn  
8 Applications and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
This section describes a 2.1 Master and Slave application. The Master is configured as stereo outputs and the  
Slave is configured as mono PBTL output.  
8.2 Typical Application  
A 2.1 solution, U1 TPA312xD2 in Master mode 400 kHz, BTL, gain if 20 dB, power limit not implemented. U2 in  
Slave, PBTL mode gain of 20dB. Inputs are connected for differential inputs.  
22  
版权 © 2016–2018, Texas Instruments Incorporated  
TPA3128D2, TPA3129D2  
www.ti.com.cn  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
Typical Application (接下页)  
PVCC DECOUPLING  
OUTPUT LC FILTER  
EMI C-RC SNUBBER  
PVCC  
1
2
PVCC  
C74  
10nF  
C101  
L7  
10uH  
R25  
3.3R  
1
2
1
2
C108  
1nF  
C107  
GND  
100nF  
220uF  
R10 3.3R  
C47 100nF  
U3  
C77  
680nF  
C112  
1nF  
GND  
GND  
GVDD  
C114  
10nF  
R28 100k  
1
2
GND  
GND  
1
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
+
SDZ  
GND  
SDZ  
PVCC  
PVCC  
BSPR  
OUTPR  
GND  
FAULTZ  
C43 220nF  
1 2  
GND  
GND  
-
C95 1uF  
1
3
FAULTZ  
RINP  
RINN  
PLIMIT  
GVDD  
GAIN/SLV  
GND  
2
C115  
10nF  
C109  
1nF  
RINP  
4
2
1
C113  
680nF  
RINN  
5
C121 1uF  
6
R26  
3.3R  
OUTNR  
BSNR  
GND  
GVDD  
7
1
2
1
1
2
R27  
100k  
8
C40 220nF  
C119 220nF  
C117  
1uF  
L8  
10uH  
2
9
1
2
R17  
20k  
BSPL  
10  
11  
12  
13  
14  
15  
16  
L10  
10uH  
R24  
3.3R  
LINP  
OUTPL  
GND  
C46 1uF  
GND  
LINN  
2
1
1
C59  
680nF  
C80  
1nF  
LINP  
LINN  
MUTE  
AM2  
OUTNL  
BSNL  
PVCC  
PVCC  
AVCC  
2
C75  
10nF  
1
2
C1161uF  
C111 220nF  
+
MUTE  
AM1  
1
2
GND  
GND  
C79  
10nF  
C110  
1nF  
AM0  
PVCC  
-
R18 100k  
SYNC  
C58  
680nF  
GND  
C120  
1nF  
C118  
100nF  
C76  
TPA312xD2  
R23  
3.3R  
220uF  
L9  
10uH  
4.7k  
1
2
GND  
PVCC DECOUPLING  
PVCC DECOUPLING  
PVCC  
47pF  
C126  
220uF  
C128  
1nF  
C127  
100nF  
U4  
GVDD2  
R49 100k  
1
2
GND  
GND  
1
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
SDZ  
GND  
PVCC  
PVCC  
BSPR  
OUTPR  
GND  
OUTPUT LC FILTER  
EMI C-RC SNUBBER  
FAULTZ  
SDZ  
1
2
C122 220nF  
1 2  
C125 1uF  
1
3
FAULTZ  
RINP  
RINN  
PLIMIT  
GVDD  
GAIN/SLV  
GND  
2
L15  
10uH  
R46  
3.3R  
RINP  
RINN  
4
2
1
5
C124  
680nF  
C131  
1nF  
C139 1uF  
6
C133  
10nF  
OUTNR  
BSNR  
GND  
GVDD2  
7
1
2
R48  
47k  
+
8
C140 220nF  
C137 220nF  
C135  
1uF  
9
1
2
R35  
75k  
GND  
GND  
-
BSPL  
10  
11  
12  
13  
14  
15  
16  
C134  
10nF  
LINP  
OUTPL  
GND  
C132  
680nF  
C129  
1nF  
LINN  
GND  
MUTE  
MUTE  
AM2  
OUTNL  
BSNL  
PVCC  
PVCC  
AVCC  
R47  
3.3R  
1
2
1
2
R36  
C130 220nF  
100k  
AM1  
L16  
10uH  
AM0  
PVCC  
SYNC  
GND  
C138  
1nF  
C136  
100nF  
C123  
220uF  
TPA312xD2  
GND  
PVCC DECOUPLING  
Copyright © 2016, Texas Instruments Incorporated  
36. TPA312xD2 Schematic  
版权 © 2016–2018, Texas Instruments Incorporated  
23  
TPA3128D2, TPA3129D2  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
www.ti.com.cn  
Typical Application (接下页)  
8.2.1 Design Requriements  
DESIGN PARAMETERS  
Input voltage range PVCC  
PWM output frequencies  
Maximum output power  
EXAMPLE VALUE  
4.5 V to 26 V  
300kHz, 400 kHz, 500 kHz, 600 kHz, 1 MHz or 1.2 MHz  
50 W  
8.2.2 Detailed Design Procedure  
The TPA31xxD2 devices are very flexible and easy to use Class D amplifier; therefore the design process is  
straightforward. Before beginning the design, gather the following information regarding the audio system.  
PVCC rail planned for the design  
Speaker or load impedance  
Maximum output power requirement  
Desired PWM frequency  
8.2.2.1 Select the PWM Frequency  
Set the PWM frequency by using AM0, AM1 and AM2 pins.  
8.2.2.2 Select the Amplifier Gain and Master/Slave Mode  
In order to select the amplifier gain setting, the designer must determine the maximum power target and the  
speaker impedance. Once these parameters have been determined, calculate the required output voltage swing  
which delivers the maximum output power.  
Choose the lowest analog gain setting that corresponds to produce an output voltage swing greater than the  
required output swing for maximum power. The analog gain and master/slave mode can be set by selecting the  
voltage divider resistors (R1 and R2) on the Gain/SLV pin.  
8.2.2.3 Select Input Capacitance  
Select the bulk capacitors at the PVCC inputs for proper voltage margin and adequate capacitance to support the  
power requirements. In practice, with a well-designed power supply, two 100-μF, 50-V capacitors should be  
sufficient. One capacitor should be placed near the PVCC inputs at each side of the device. PVCC capacitors  
should be a low ESR type because they are being used in a high-speed switching application.  
8.2.2.4 Select Decoupling Capacitors  
Good quality decoupling capacitors must be added at each of the PVCC inputs to provide good reliability, good  
audio performance, and to meet regulatory requirements. X5R or better ratings should be used in this  
application. Consider temperature, ripple current, and voltage overshoots when selecting decoupling capacitors.  
Also, these decoupling capacitors should be located near the PVCC and GND connections to the device in order  
to minimize series inductances.  
8.2.2.5 Select Bootstrap Capacitors  
Each of the outputs require bootstrap capacitors to provide gate drive for the high-side output FETs. For this  
design, use 0.22-μF, 25-V capacitors of X5R quality or better.  
24  
版权 © 2016–2018, Texas Instruments Incorporated  
TPA3128D2, TPA3129D2  
www.ti.com.cn  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
8.2.3 Application Curves  
140  
130  
120  
110  
100  
90  
10  
Gain=26dB  
A=25èC  
RL=3W  
Gain=26dB  
PVCC=24V  
T
T
A=25èC  
RL=3W  
1
0.1  
80  
70  
60  
50  
40  
0.01  
30  
f= 20Hz  
f= 1kHz  
f= 6KHz  
20  
THD+N=1%  
10  
THD+N=10%  
0.001  
0
0.01  
0.1  
1
10  
50 100 200  
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage (V)  
Output Power (W)  
D026  
D027  
37. Total Harmonic Distortion + Noise (PBTL) vs Output  
38. Maximum Output Power (PBTL) vs Supply Voltage  
Power  
9 Power Supply Recommendations  
The power supply requirements for the TPA312xD2 consist of one higher-voltage supply to power the output  
stage of the speaker amplifier. Several on-chip regulators are included on the TPA312xD2 to generate the  
voltages necessary for the internal circuitry of the audio path. The voltage regulators which have been integrated  
are sized only to provide the current necessary to power the internal circuitry. The external pins are provided only  
as a connection point for off-chip bypass capacitors to filter the supply. Connecting external circuitry to these  
regulator outputs may result in reduced performance and damage to the device. The high voltage supply,  
between 4.5 V and 26 V, supplies the analog circuitry (AVCC) and the power stage (PVCC). The AVCC supply  
feeds internal LDO including GVDD. This LDO output are connected to external pins for filtering purposes, but  
should not be connected to external circuits. GVDD LDO output have been sized to provide current necessary for  
internal functions but not for external loading.  
9.1 Power Supply Mode  
The TPA3128D2 and TPA3129D2 devices support both single and dual power supply modes. Dual power supply  
mode is benefit for low PVCC power consumption. For dual power supply mode application, when AVCC is  
supplied with 4.5V power, PVCC is recommended to be lower than 20V. When PVCC is supplied with power  
greater than 20V, AVCC is recommended to be higher than 6V.  
10 Layout  
10.1 Layout Guidelines  
The TPA312xD2 can be used with a small, inexpensive ferrite bead output filter for most applications. However,  
because the class-D switching edges are fast, the layout of the printed circuit board must be planned carefully.  
The following suggestions will help to meet EMC requirements.  
Decoupling capacitors — The high-frequency decoupling capacitors should be placed as close to the PVCC  
and AVCC terminals as possible. Large (100 μF or greater) bulk power supply decoupling capacitors should  
be placed near the TPA312xD2 on the PVCC supplies. Local, high-frequency bypass capacitors should be  
placed as close to the PVCC pins as possible. These caps can be connected to the IC GND pad directly for  
an excellent ground connection. Consider adding a small, good quality low ESR ceramic capacitor between  
220 pF and 1 nF and a larger mid-frequency cap of value between 100 nF and 1 µF also of good quality to  
the PVCC connections at each end of the chip.  
Keep the current loop from each of the outputs through the ferrite bead and the small filter cap and back to  
GND as small and tight as possible. The size of this current loop determines its effectiveness as an antenna.  
Grounding — The PVCC decoupling capacitors should connect to GND. All ground should be connected at  
the IC GND, which should be used as a central ground connection or star ground for the TPA312xD2.  
Output filter — The ferrite EMI filter (see 33) should be placed as close to the output terminals as possible  
for the best EMI performance. The LC filter should be placed close to the outputs. The capacitors used in  
both the ferrite and LC filters should be grounded.  
版权 © 2016–2018, Texas Instruments Incorporated  
25  
TPA3128D2, TPA3129D2  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
www.ti.com.cn  
Layout Guidelines (接下页)  
For an example layout, see the TPA3128D2 Evaluation Module (TPA3128D2EVM) User Guide (SLOU336). Both  
the EVM user manual and the thermal pad application reports, SLMA002 and SLMA004, are available on the TI  
Web site at http://www.ti.com.  
10.2 Layout Example  
39. Layout Example Top  
26  
版权 © 2016–2018, Texas Instruments Incorporated  
TPA3128D2, TPA3129D2  
www.ti.com.cn  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
Layout Example (接下页)  
40. Layout Example Bottom  
版权 © 2016–2018, Texas Instruments Incorporated  
27  
TPA3128D2, TPA3129D2  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
28  
版权 © 2016–2018, Texas Instruments Incorporated  
TPA3128D2, TPA3129D2  
www.ti.com.cn  
ZHCSFV8C MAY 2016REVISED JANUARY 2018  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2016–2018, Texas Instruments Incorporated  
29  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPA3128D2DAP  
TPA3128D2DAPR  
TPA3129D2DAP  
TPA3129D2DAPR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
DAP  
DAP  
DAP  
DAP  
32  
32  
32  
32  
46  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TPA3128D2  
2000 RoHS & Green  
46 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
TPA3128D2  
TPA3129D2  
TPA3129D2  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPA3128D2DAPR  
TPA3129D2DAPR  
HTSSOP  
HTSSOP  
DAP  
DAP  
32  
32  
2000  
2000  
330.0  
330.0  
24.4  
24.4  
8.6  
8.6  
11.5  
11.5  
1.6  
1.6  
12.0  
12.0  
24.0  
24.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPA3128D2DAPR  
TPA3129D2DAPR  
HTSSOP  
HTSSOP  
DAP  
DAP  
32  
32  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TPA3128D2DAP  
TPA3129D2DAP  
DAP  
DAP  
HTSSOP  
HTSSOP  
32  
32  
46  
46  
530  
530  
11.89  
11.89  
3600  
3600  
4.9  
4.9  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
DAP 32  
8.1 x 11, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225303/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPA3128D2DAPR

具有低空闲电流的 30W 立体声、60W 单声道、4.5V 至 26V、模拟输入 D 类音频放大器 | DAP | 32 | -40 to 85
TI

TPA3129D2

具有低空闲电流的 15W 立体声、30W 单声道、4.5V 至 26V、模拟输入 D 类音频放大器
TI

TPA3129D2DAP

具有低空闲电流的 15W 立体声、30W 单声道、4.5V 至 26V、模拟输入 D 类音频放大器 | DAP | 32 | -40 to 85
TI

TPA3129D2DAPR

具有低空闲电流的 15W 立体声、30W 单声道、4.5V 至 26V、模拟输入 D 类音频放大器 | DAP | 32 | -40 to 85
TI

TPA3130D2

15W,30W,50W Filter-Free Class-D Stereo Amplifier Family with AM Avoidance
TI

TPA3130D2DAP

15W,30W,50W Filter-Free Class-D Stereo Amplifier Family with AM Avoidance
TI

TPA3130D2DAPR

15W,30W,50W Filter-Free Class-D Stereo Amplifier Family with AM Avoidance
TI

TPA3131D2

4W, 25W Filter-Free Class-D Stereo Amplifier with AM Avoidance
TI

TPA3131D2RHBR

支持无滤波器操作的 4W 立体声、8W 单声道、4.5V 至 26V 电源电压、模拟输入 D 类音频放大器 | RHB | 32 | -40 to 85
TI

TPA3131D2RHBT

支持无滤波器操作的 4W 立体声、8W 单声道、4.5V 至 26V 电源电压、模拟输入 D 类音频放大器 | RHB | 32 | -40 to 85
TI

TPA3132D2

4W, 25W Filter-Free Class-D Stereo Amplifier with AM Avoidance
TI

TPA3132D2RHBR

25-W stereo, 50-W mono, 4.5- to 26-V supply, analog input Class-D audio amplifier w/ filter free 32-VQFN -40 to 85
TI