TPA3156D2DAD [TI]

70W 立体声、140W 单声道、4.5V 至 26V、模拟输入 D 类音频放大器,低空闲电流 | DAD | 32 | -40 to 85;
TPA3156D2DAD
型号: TPA3156D2DAD
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

70W 立体声、140W 单声道、4.5V 至 26V、模拟输入 D 类音频放大器,低空闲电流 | DAD | 32 | -40 to 85

放大器 光电二极管 商用集成电路 音频放大器
文件: 总41页 (文件大小:3347K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPA3156D2  
SLOS992 DECEMBER 2017  
TPA3156D2 2 x 70-W, Analog Input, Stereo, Class-D Audio Amplifier With Low Idle Power  
Dissipation  
1 Features  
3 Description  
The TPA3156D2 has low idle power loss and helps to  
extend the battery life of Bluetooth/Wireless speakers  
and other battery-powered audio systems. The high  
efficiency of the TPA3156D2 device allows it to do 2  
× 70 W with external heat sink on a dual layer PCB.  
This device integrates an efficiency boost mode,  
which dynamically reduces the current ripple of the  
external LC filter and the idle current .  
1
2 × 70 W Into a 4-Ω BTL Load at 24 V  
Wide Voltage Range: 4.5 V to 26 V  
Efficient Class-D Operation  
Very Low Idle Current: <23 mA for  
recommended LC filter configurations  
Greater than 90% Power Efficiency  
Adaptive Modulation Schemes based on  
Output Power  
The TPA3156D2 advanced oscillator/PLL circuit  
employs a multiple switching frequency option to  
avoid AM interferences, which is achieved together  
with an option of either master or slave option,  
making it possible to synchronize multiple devices.  
Multiple Switching Frequencies  
AM Avoidance  
Master and Slave Synchronization  
300-KHz to 1.2-MHz Switching Frequency  
The TPA3156D2 devices are fully protected against  
faults with short-circuit protection and thermal  
protection as well as overvoltage, undervoltage, and  
DC protection. Faults are reported back to the  
processor to prevent devices from being damaged  
during overload conditions.  
Feedback Power-Stage Architecture With High  
PSRR Reduces PSU Requirements  
Programmable Power Limit  
Parallel BTL Mode and Mono-Channel Mode  
Support  
Device Information(1)  
Supports Both Single and Dual Power Supply  
Modes  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
TPA3156D2  
DAD (32)  
11.00 mm × 6.20 mm  
Integrated Self-Protection Circuits Including  
Overvoltage, Undervoltage, Overtemperature, DC-  
Detect, and Short Circuit With Error Reporting  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
Thermally Enhanced Packages  
Simplified Application Circuit  
DAD (32-Pin HTSSOP Pad Up)  
Çꢀ!3156ꢁ2  
Pin to Pin Compatible with TPA3116D2 and  
TPA3126D2  
[/  
Cilter  
ahbh  
wLDIÇ  
ꢁ9Ç9/Ç  
!udio  
{ource  
!nd /ontrol  
ꢀꢃÇ[  
ꢁ9Ç9/Ç  
[9CÇ  
[/  
Cilter  
2 Applications  
{ꢁ  
Bluetooth/Wireless Speakers  
Soundbars  
aÜÇ9  
C!Ü[Ç  
ꢀoꢂer {upply  
4.5ë t 26ë  
ꢀë//  
!ë//  
!a2,1,0  
!a !voidꢄnce /ontrol  
Mini-Micro Component, Docks  
Home Theaters  
aode {elect  
ahꢁ_{9[  
D!Lbꢅ{[ë  
ꢀ[LaLÇ  
D!Lb control ꢄnd aꢄsterꢅ{lꢄve setting  
ꢀoꢂer [imit  
{epꢄrꢄte ꢀoꢂer  
{upply (hptionꢄl)  
4.5ë-26ë  
/ꢄpꢄꢆle of syncꢇronizꢄing to otꢇer devices  
{òb/  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TPA3156D2  
SLOS992 DECEMBER 2017  
www.ti.com  
Table of Contents  
7.4 Device Functional Modes........................................ 21  
Applications and Implementation ...................... 23  
8.1 Application Information............................................ 23  
8.2 Typical Application .................................................. 23  
Power Supply Recommendations...................... 25  
9.1 Power Supply Mode................................................ 25  
1
2
3
4
5
6
Features.................................................................. 1  
8
9
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings ............................................................ 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 DC Electrical Characteristics .................................... 6  
6.6 AC Electrical Characteristics..................................... 7  
6.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 13  
10 Layout................................................................... 25  
10.1 Layout Guidelines ................................................. 25  
10.2 Layout Example .................................................... 27  
10.3 Heat Sink Used on the EVM................................. 29  
11 Device and Documentation Support ................. 30  
11.1 Documentation Support ....................................... 30  
11.2 Community Resources.......................................... 30  
11.3 Trademarks........................................................... 30  
11.4 Electrostatic Discharge Caution............................ 30  
11.5 Glossary................................................................ 30  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 31  
4 Revision History  
DATE  
REVISION  
NOTES  
December 2017  
*
Initial release.  
2
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TPA3156D2  
 
TPA3156D2  
www.ti.com  
SLOS992 DECEMBER 2017  
5 Pin Configuration and Functions  
DAD Package  
32-Pin HTSSOP With PowerPAD Up  
TPA3156D2, Top View  
1
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
PVCC  
PVCC  
BSPR  
OUTPR  
GND  
MODSEL  
SDZ  
FAULTZ  
RINP  
3
4
RINN  
5
PLIMIT  
GVDD  
GAIN/SLV  
GND  
6
OUTNR  
BSNR  
GND  
7
8
Thermal  
PAD  
9
BSPL  
OUTPL  
GND  
LINP  
10  
11  
12  
13  
14  
15  
16  
LINN  
MUTE  
AM2  
OUTNL  
BSNL  
PVCC  
PVCC  
AVCC  
AM1  
AM0  
SYNC  
Pin Functions  
PIN  
NAME  
TYPE(1)  
DESCRIPTION  
NO.  
1
MODSEL  
I
Mode selection logic input (LOW = Ultra Low Idle Loss Mode, HIGH = BD Mode). TTL logic levels with  
compliance to AVCC.  
2
3
SDZ  
I
Shutdown logic input for audio amp (LOW = outputs Hi-Z, HIGH = outputs enabled). TTL logic levels with  
compliance to AVCC.  
FAULTZ  
DO  
General fault reporting including Over-temp, DC Detect. Open drain.  
FAULTZ = High, normal operation  
FAULTZ = Low, fault condition  
4
5
6
RINP  
RINN  
I
I
I
Positive audio input for right channel. Connect to GND for MONO mode.  
Negative audio input for right channel. Connect to GND for MONO mode.  
PLIMIT  
Power limit level adjust. Connect a resistor divider from GVDD to GND to set power limit. Connect directly  
to GVDD for no power limit.  
7
GVDD  
PO  
Internally generated gate voltage supply. Not to be used as a supply or connected to any component other  
than a 1 µF X7R ceramic decoupling capacitor and the PLIMIT and GAIN/SLV resistor dividers.  
8
GAIN/SLV  
GND  
I
G
I
Selects Gain and selects between Master and Slave mode depending on pin voltage divider.  
Ground  
9
10  
11  
12  
LINP  
Positive audio input for left channel. Connect to GND for PBTL mode.  
Negative audio input for left channel. Connect to GND for PBTL mode.  
LINN  
I
MUTE  
I
Mute signal for fast disable/enable of outputs (HIGH = outputs Hi-Z, LOW = outputs enabled). TTL logic  
levels with compliance to AVCC.  
13  
14  
15  
16  
17  
AM2  
AM1  
I
AM Avoidance Frequency Selection  
I
I
AM Avoidance Frequency Selection  
AM0  
AM Avoidance Frequency Selection  
SYNC  
AVCC  
DIO  
P
Clock input/output for synchronizing multiple class-D devices. Direction determined by GAIN/SLV terminal.  
Analog Supply  
(1) DO = Digital Output, I = Analog Input, G = General Ground, PO = Power Output, BST = Boot Strap.  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
3
Product Folder Links: TPA3156D2  
TPA3156D2  
SLOS992 DECEMBER 2017  
www.ti.com  
Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
NAME  
PVCC  
PVCC  
BSNL  
P
P
Power supply  
Power supply  
BST  
PO  
G
Boot strap for negative left channel output, connect to 220 nF X5R, or better ceramic cap to OUTPL  
OUTNL  
GND  
Negative left channel output  
Ground  
OUTPL  
BSPL  
PO  
BST  
G
Positive left channel output  
Boot strap for positive left channel output, connect to 220 nF X5R, or better ceramic cap to OUTNL  
GND  
Ground  
BSNR  
OUTNR  
GND  
BST  
PO  
G
Boot strap for negative right channel output, connect to 220 nF X5R, or better ceramic cap to OUTNR  
Negative right channel output  
Ground  
OUTPR  
BSPR  
PO  
BST  
P
Positive right channel output  
Boot strap for positive right channel output, connect to 220 nF X5R or better ceramic cap to OUTPR  
PVCC  
PVCC  
PowerPAD  
Power supply  
P
Power supply  
G
Connect to GND for best system performance. If not connected to GND, leave floating.  
4
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TPA3156D2  
TPA3156D2  
www.ti.com  
SLOS992 DECEMBER 2017  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
30  
UNIT  
V
Supply voltage, VCC  
Input voltage, VI  
PVCC, AVCC  
INPL, INNL, INPR, INNR  
6.3  
V
PLIMIT, GAIN / SLV, SYNC  
AM0, AM1, AM2, MUTE, SDZ, MODSEL  
AM0, AM1, AM2, MUTE, SDZ, MODSEL  
GVDD+0.3  
PVCC+0.3  
10  
V
V
Slew rate, maximum(2)  
V/ms  
°C  
°C  
°C  
Operating free-air temperature, TA  
Operating junction temperature , TJ  
Storage temperature, Tstg  
–40  
–40  
–40  
85  
150  
125  
(1) Stresses beyond those listed under absolute maximum ratings can cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability.  
(2) 100-kΩ series resistor is required if maximum slew rate is exceeded.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. .  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
2
NOM  
MAX  
UNIT  
VCC  
VIH  
VIL  
Supply voltage  
PVCC, AVCC  
26  
V
V
V
V
High-level input voltage  
Low-level input voltage  
Low-level output voltage  
AM0, AM1, AM2, MUTE, SDZ, SYNC, MODSEL  
AM0, AM1, AM2, MUTE, SDZ, SYNC, MODSEL  
FAULTZ, RPULL-UP = 100 kΩ, PVCC = 26 V  
0.8  
0.8  
VOL  
AM0, AM1, AM2, MUTE, SDZ, MODSEL  
(VI = 2 V, VCC = 18 V)  
IIH  
High-level input current  
Minimum load Impedance  
Output-filter Inductance  
50  
µA  
Ω
RL(BTL)  
Output filter: L = 10 µH, C = 680 nF  
Output filter: L = 10 µH, C = 1 µF  
3.2  
1.6  
4
2
RL(PBTL)  
Minimum output filter inductance under short-  
circuit condition  
Lo  
1
µH  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TPA3156D2  
TPA3156D2  
SLOS992 DECEMBER 2017  
www.ti.com  
6.4 Thermal Information  
TPA3156D2  
DAD(2)  
32 PINS  
N/A  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
1.2  
1.2  
ψJB  
21  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) For the PCB layout please see the TPA3156D2EVM user guide.  
6.5 DC Electrical Characteristics  
TA = 25°C, AVCC = PVCC = 12 V to 24 V, RL = 4 Ω, fs = 400 kHz, low idle-loss mode(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Class-D output offset voltage  
(measured differentially)  
| VOS  
ICC  
|
VI = 0 V  
1.5  
5
mV  
mA  
SDZ = 2 V, With load and filter, PVCC = 12 V  
SDZ = 2 V, With load and filter, PVCC = 24 V  
SDZ = 0.8 V, With load and filter, PVCC = 12 V  
SDZ = 0.8 V, With load and filter, PVCC = 24 V  
15  
23  
20  
30  
Quiescent supply current  
Quiescent supply current in  
shutdown mode  
ICC(SD)  
rDS(on)  
µA  
mΩ  
dB  
Drain-source on-state resistance,  
measured pin to pin  
PVCC = 21 V, Iout = 500 mA, TJ = 25°C  
90  
R1 = 5.6 kΩ, R2 = Open  
R1 = 20 kΩ, R2 = 100 kΩ  
R1 = 39 kΩ, R2 = 100 kΩ  
R1 = 47 kΩ, R2 = 75 kΩ  
R1 = 51 kΩ, R2 = 51 kΩ  
R1 = 75 kΩ, R2 = 47 kΩ  
R1 = 100 kΩ, R2 = 39 kΩ  
R1 = 100 kΩ, R2 = 16 kΩ  
SDZ = 2 V  
19  
25  
31  
35  
19  
25  
31  
35  
20  
26  
32  
36  
20  
26  
32  
36  
40  
2
21  
27  
33  
37  
21  
27  
33  
37  
G
G
Gain (BTL)  
Gain (SLV)  
dB  
dB  
dB  
ton  
Turn-on time  
ms  
µs  
V
tOFF  
GVDD  
Turn-off time  
SDZ = 0.8 V  
Gate drive supply  
IGVDD < 200 µA  
5.1  
5.6  
6.3  
Output voltage maximum under  
PLIMIT control  
VO  
V(PLIMIT) = 2 V; VI = 1 Vrms  
6.75  
8.2  
8.75  
V
6
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TPA3156D2  
TPA3156D2  
www.ti.com  
SLOS992 DECEMBER 2017  
6.6 AC Electrical Characteristics  
TA = 25°C, AVCC = PVCC = 12 V to 24 V, RL = 4 Ω (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
200 mVPP ripple at 1 kHz, Gain = 26 dB,  
Inputs  
KSVR  
Power supply ripple rejection  
–70  
dB  
AC-coupled to GND  
THD+N = 10%, f = 1 kHz, PVCC = 14.4 V,  
Load = 4Ω  
25  
50  
THD+N = 10%, f = 1 kHz, PVCC = 21 V,  
Load = 8 Ω  
PO  
Continuous output power  
W
THD+N = 10%, f = 1 kHz, PVCC = 24 V,  
Load = 4 Ω  
70  
VCC = 21 V, f = 1 kHz, PO = 15 W (half-  
power)  
THD+N  
Vn  
Total harmonic distortion + noise  
Output integrated noise  
0.1%  
65  
–80  
µV  
dBV  
dB  
20 Hz to 22 kHz, A-weighted filter, Gain = 20  
dB  
Crosstalk  
VO = 1 Vrms, Gain = 20 dB, f = 1 kHz  
–100  
Maximum output at THD+N < 1%, f = 1 kHz,  
Gain = 20 dB, A-weighted  
SNR  
Signal-to-noise ratio  
102  
dB  
AM2=0, AM1=0, AM0=0  
AM2=0, AM1=0, AM0=1  
AM2=0, AM1=1, AM0=0  
AM2=0, AM1=1, AM0=1  
AM2=1, AM1=0, AM0=0  
AM2=1, AM1=0, AM0=1  
376  
470  
564  
940  
1128  
282  
282  
400  
500  
424  
530  
600  
636  
1000  
1200  
300  
1060  
1278  
318  
fOSC  
Oscillator frequency  
kHz  
300  
318  
AM2=1, AM1=1, AM0=0  
AM2=1, AM1=1, AM0=1  
Modulation scheme Fixed in  
1SPW Mode  
Reserved  
Thermal trip point  
150  
15  
°C  
°C  
A
Thermal hysteresis  
Over current trip point  
10  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TPA3156D2  
TPA3156D2  
SLOS992 DECEMBER 2017  
www.ti.com  
6.7 Typical Characteristics  
fs = 400 kHz, Ultra Low Idle Loss Mode, TPA3156D2EVM Tested With AP2722. (unless otherwise noted)  
30  
20  
10  
0
10  
Gain=26dB  
TA=25èC  
RL=4W  
Gain=26dB  
PVcc=12V  
TA=25èC  
RL=8W  
P O=1W  
PO =2.5W  
PO=5W  
1
0.1  
0.01  
FPWM = 400 kHz  
20 25  
0.001  
5
10  
15  
20  
100  
1k  
10k 20k  
Supply Voltage (V)  
Frequency (Hz)  
D0021  
D005  
Figure 1. Idle Current vs PVCC  
Figure 2. Total Harmonic Distortion + Noise (BTL) vs  
Frequency  
10  
1
10  
Gain=26dB  
PVcc=24V  
TA=25èC  
RL=8W  
P O=1W  
PO =5W  
PO=10W  
Gain=26dB  
PVCC=6V  
TA=25èC  
RL=4W  
1
0.1  
0.1  
0.01  
0.01  
f= 20Hz  
f= 1kHz  
f= 6KHz  
0.001  
0.001  
20  
100  
1k  
10k 20k  
0.01  
0.1  
Output Power (W)  
1
10  
Frequency (Hz)  
D006  
D007  
Figure 3. Total Harmonic Distortion + Noise (BTL) vs  
Frequency  
Figure 4. Total Harmonic Distortion + Noise (BTL) vs Output  
Power  
10  
10  
Gain=26dB  
PVCC=12V  
TA=25èC  
RL=4W  
Gain=26dB  
PVCC=24V  
TA=25èC  
RL=4W  
1
0.1  
1
0.1  
0.01  
0.01  
f= 20Hz  
f= 20Hz  
f= 1kHz  
f= 6KHz  
f= 1kHz  
f= 6KHz  
0.001  
0.001  
0.01  
0.1  
1
10  
40  
0.01  
0.1  
1
10  
100  
Output Power (W)  
Output Power (W)  
D008  
D009  
Figure 5. Total Harmonic Distortion + Noise (BTL) vs Output  
Power  
Figure 6. Total Harmonic Distortion + Noise (BTL) vs Output  
Power  
8
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TPA3156D2  
TPA3156D2  
www.ti.com  
SLOS992 DECEMBER 2017  
Typical Characteristics (continued)  
fs = 400 kHz, Ultra Low Idle Loss Mode, TPA3156D2EVM Tested With AP2722. (unless otherwise noted)  
10  
10  
Gain=26dB  
PVCC=24V  
TA=25èC  
RL=8W  
Gain=26dB  
PVCC=12V  
TA=25èC  
RL=8W  
1
1
0.1  
0.1  
0.01  
0.01  
f= 20Hz  
f= 20Hz  
f= 1kHz  
f= 6KHz  
f= 1kHz  
f= 6KHz  
0.001  
0.001  
0.01  
0.1  
1
10  
50  
0.01  
0.1  
1
10  
50  
Output Power (W)  
Output Power (W)  
D010  
D011  
Figure 7. Total Harmonic Distortion + Noise (BTL) vs Output  
Power  
Figure 8. Total Harmonic Distortion + Noise (BTL) vs Output  
Power  
50  
30  
300  
200  
100  
0
Gain=26dB  
TA=25èC  
PVCC=24V  
20  
40  
RL=4W  
10  
0
30  
-10  
-20  
-30  
-40  
-50  
-100  
-200  
-300  
-400  
-500  
20  
10  
0
Gain=26dB  
PVCC=12V  
TA=25èC  
RL=4W  
Gain  
Phase  
1
2
3
4
5
20  
100  
1k  
10k 20k  
100k  
PLIMIT Voltage(V)  
Frequency (Hz)  
D0012  
D0225  
Figure 9. Output Power (BTL) vs Plimit Voltage  
Figure 10. Gain/Phase (BTL) vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Gain=26dB  
TA=25èC  
RL=4W  
Gain=26dB  
TA=25èC  
RL=8W  
THD+N=1%  
THD+N=10%  
THD+N=1%  
THD+N=10%  
0
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage (V)  
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage (V)  
D014  
D037  
15  
D037  
Figure 11. Maximum Output Power (BTL) vs Supply Voltage  
Figure 12. Maximum Output Power (BTL) vs Supply Voltage  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TPA3156D2  
TPA3156D2  
SLOS992 DECEMBER 2017  
www.ti.com  
Typical Characteristics (continued)  
fs = 400 kHz, Ultra Low Idle Loss Mode, TPA3156D2EVM Tested With AP2722. (unless otherwise noted)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain=26dB  
TA=25èC  
RL=8W  
Gain=26dB  
TA=25èC  
RL=4W  
PVCC = 6V  
PVCC = 12 V  
PVCC = 24 V  
PVCC = 6V  
PVCC = 12 V  
PVCC = 24 V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Output Power (W)  
Output Power (W)  
D016  
D017  
Figure 13. Power Efficiency (BTL) vs Output Power  
Figure 14. Power Efficiency (BTL) vs Output Power  
0
0
-20  
Gain=26dB  
PVCC=24V  
TA=25èC  
RL=8W  
Gain=26dB  
PVCC=12V  
TA=25èC  
RL=4W  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
Right to Left  
Left to Right  
Right to Left  
Left to Right  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D010318  
D00139  
Figure 15. Crosstalk vs Frequency  
Figure 16. Crosstalk vs Frequency  
0
-20  
10  
1
Gain=26dB  
PVCC=12VDC+200mVP-P  
TA=25èC  
Gain=26dB  
P O=1W  
PO =5W  
PO=10W  
PVcc=12V  
TA=25èC  
RL=2W  
RL=8W  
-40  
0.1  
-60  
0.01  
-80  
Left Channel  
Right Channel  
-100  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D020  
D021  
Figure 17. Supply Ripple Rejection Ratio (BTL) vs  
Frequency  
Figure 18. Total Harmonic Distortion + Noise (PBTL) vs  
Frequency  
10  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TPA3156D2  
TPA3156D2  
www.ti.com  
SLOS992 DECEMBER 2017  
Typical Characteristics (continued)  
fs = 400 kHz, Ultra Low Idle Loss Mode, TPA3156D2EVM Tested With AP2722. (unless otherwise noted)  
180  
160  
140  
120  
100  
80  
10  
Gain=26dB  
TA=25èC  
RL=2W  
Gain=26dB  
PVCC=12V  
TA=25èC  
RL=2W  
1
0.1  
60  
0.01  
40  
f= 20Hz  
f= 1kHz  
f= 6KHz  
THD+N=1%  
THD+N=10%  
20  
0.001  
0
0.01  
0.1  
1
10  
40  
4
6
8
10  
12  
14  
16  
18  
20  
22  
Output Power (W)  
Supply Voltage (V)  
D022  
D023  
Figure 19. Total Harmonic Distortion + Noise (PBTL) vs  
Output Power  
Figure 20. Maximum Output Power (PBTL) vs Supply  
Voltage  
100  
0
Gain=26dB  
PVCC=12VDC+200mVP-P  
TA=25èC  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-20  
-40  
RL=2W  
-60  
-80  
Gain=26dB  
TA=25èC  
RL=2W  
PVCC = 6V  
PVCC = 12 V  
PVCC = 24 V  
-100  
0
10  
20  
30  
40  
50  
60  
70  
20  
100  
1k  
10k 20k  
Output Power (W)  
Frequency (Hz)  
D024  
D025  
Figure 21. Power Efficiency (PBTL) vs Output Power  
Figure 22. Supply Ripple Rejection Ratio (PBTL) vs  
Frequency  
10  
160 Gain=26dB  
Gain=26dB  
PVCC=24V  
TA=25èC  
RL=2W  
5
TA=25èC  
140  
120  
100  
80  
RL=2W  
2
1
0.5  
0.2  
0.1  
0.05  
60  
0.02  
0.01  
40  
f= 20Hz  
f= 1kHz  
f= 6KHz  
0.005  
20  
THD+N=1%  
THD+N=10%  
0.002  
0.001  
0
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage (V)  
0.01  
0.1  
1
10 20  
100  
Output Power (W)  
D014  
D03074  
D0037  
Figure 24. Maximum Output Power (PBTL) vs Supply  
Voltage  
Figure 23. Total Harmonic Distortion + Noise (PBTL) vs  
Output Power  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TPA3156D2  
TPA3156D2  
SLOS992 DECEMBER 2017  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The TPA3156D2 device is a highly efficient Class D audio amplifier with extreme low idle power dissipation. It  
can support as low as 23-mA idle loss current using standard LC filter configurations. It is integrated with 90-mΩ  
MOSFET that allows output currents up to 10 A for TPA3156D2. The high efficiency allows the amplifier to  
provide an excellent audio performance without the requirement for a bulky heat sink.  
The device can be configured for either master or slave operation by using the SYNC pin. Configuring using the  
SYNC pin helps to prevent audible beats noise.  
7.2 Functional Block Diagram  
GVDD  
PVCC  
BSPR  
SDZ  
PVCC  
TTL  
Buffer  
Modulation and  
PBTL Select  
MUTE  
Gain  
Control  
OUTPR_FB  
Gate  
Drive  
OUTPR  
GAIN  
+
OUTPR_FB  
GND  
RINP  
RINN  
+
+
PWM  
Logic  
Gain  
Control  
PLIMIT  
GVDD  
PVCC  
+
BSNR  
+
PVCC  
OUTPNR_FB  
OUTNR_  
FB  
+
FAULTZ  
Gate  
Drive  
OUTNR  
GND  
Input  
Sense  
MONO  
Select  
SC Detect  
DC Detect  
SYNC  
GAIN/SLV  
Ramp  
Generator  
Startup Protection  
Logic  
Biases and  
References  
Thermal  
Detect  
AM<2:0>  
PLIMIT  
Reference  
PLIMIT  
PVCC  
UVLO/OVLO  
PVCC  
GVDD  
PVCC  
BSNL  
AVDD  
PVCC  
LDO  
Regulator  
AVCC  
GVDD  
GVDD  
Gate  
Drive  
OUTNL  
OUTNL_FB  
OUTNL_  
FB  
+
+
LINP  
LINN  
GND  
+
+
Gain  
Control  
PWM  
Logic  
PLIMIT  
GVDD  
PVCC  
+
+
BSPL  
PVCC  
OUTPL_FB  
Gate  
Drive  
OUTPL  
GND  
Input  
Sense  
PBTL  
Select  
Modulation and  
PBTL Select  
OUTPL_FB  
GND  
Thermal  
Pad  
Copyright © 2016, Texas Instruments Incorporated  
12  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TPA3156D2  
TPA3156D2  
www.ti.com  
SLOS992 DECEMBER 2017  
7.3 Feature Description  
7.3.1 Gain Setting and Master and Slave  
The gain of the TPA3156D2 is set by the voltage divider connected to the GAIN/SLV control pin. Master or Slave  
mode is also controlled by the same pin. An internal ADC is used to detect the 8 input states. The first four  
stages sets the GAIN in Master mode in gains of 20, 26, 32, 36 dB respectively, while the next four stages sets  
the GAIN in Slave mode in gains of 20, 26, 32, 36 dB respectively. The gain setting is latched during power-up  
and cannot be changed while device is powered. Table 1 lists the recommended resistor values and the state  
and gain:  
Table 1. Gain and Master/Slave  
MASTER / SLAVE  
GAIN  
R1 (to GND)(1)  
R2 (to GVDD)(1)  
INPUT IMPEDANCE  
MODE  
Master  
Master  
Master  
Master  
Slave  
20 dB  
26 dB  
32 dB  
36 dB  
20 dB  
26 dB  
32 dB  
36 dB  
5.6 kΩ  
20 kΩ  
39 kΩ  
47 kΩ  
51 kΩ  
75 kΩ  
100 kΩ  
100 kΩ  
OPEN  
100 kΩ  
100 kΩ  
75 kΩ  
51 kΩ  
47 kΩ  
39 kΩ  
16 kΩ  
60 kΩ  
30 kΩ  
15 kΩ  
9 kΩ  
60 kΩ  
30 kΩ  
15 kΩ  
9 kΩ  
Slave  
Slave  
Slave  
(1) Resistor tolerance should be 5% or better.  
5
6
INNR  
2
1
PLIMIT  
GVDD  
1
C5 1 µF  
2
7
2
1
R2  
8
51 k  
GAIN/SLV  
GND  
9
R1 51 k  
10  
Figure 25. Gain, Master/Slave  
In Master mode, SYNC terminal is an output, in Slave mode, SYNC terminal is an input for a clock input. TTL  
logic levels with compliance to GVDD.  
7.3.2 Input Impedance  
The TPA3156D2 input stage is a fully differential input stage and the input impedance changes with the gain  
setting from 7.3 kat 36 dB gain to 50 kat 20 dB gain. Table 1 lists the values from min to max gain. The  
tolerance of the input resistor value is ±20% so the minimum value will be higher than 5.9 k. The inputs must  
be AC-coupled to minimize the output dc-offset and ensure correct ramping of the output voltages during power-  
ON and power-OFF. The input ac-coupling capacitor together with the input impedance forms a high-pass filter  
with the following cut-off frequency:  
1
ƒ
=  
2pZiCi  
(1)  
If a flat bass response is required down to 20 Hz the recommended cut-off frequency is a tenth of that, 2 Hz.  
Table 2 lists the recommended ac-couplings capacitors for each gain step. If a –3-dB capacitor is accepted at 20  
Hz 10 times lower capacitors can used – for example, a 1-µF capacitor can be used.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TPA3156D2  
 
TPA3156D2  
SLOS992 DECEMBER 2017  
www.ti.com  
Table 2. Recommended Input AC-Coupling Capacitors  
GAIN  
20 dB  
26 dB  
32 dB  
36 dB  
INPUT IMPEDANCE  
50 kΩ  
INPUT CAPACITANCE  
HIGH-PASS FILTER  
1.5 µF  
3.3 µF  
5.6 µF  
10 µF  
2.1 Hz  
1.9 Hz  
2.3 Hz  
2.2 Hz  
25 kΩ  
12.5 kΩ  
7.3 kΩ  
Z
f
C
i
Z
i
IN  
Input  
Signal  
Figure 26. Input Impedance  
The input capacitors used should be a type with low leakage, such as quality electrolytic, tantalum, or ceramic  
capacitors. If a polarized type is used the positive connection should face the input pins which are biased to 3  
Vdc.  
7.3.3 Startup and Shutdown Operation  
The TPA3156D2 employs a shutdown mode of operation designed to reduce supply current (Icc) to the absolute  
minimum level during periods of nonuse for power conservation. The SDZ input terminal should be held high  
(see specification table for trip point) during normal operation when the amplifier is in use. Pulling SDZ low will  
put the outputs to mute and the amplifier to enter a low-current state. Do not leave SDZ unconnected, because  
amplifier operation would be unpredictable.  
For the best power-off pop performance, place the amplifier in the shutdown mode prior to removing the power  
supply. The gain setting is selected at the end of the start-up cycle. At the end of the start-up cycle, the gain is  
selected and cannot be changed until the next power-up.  
7.3.4 PLIMIT Operation  
The TPA3156D2 has a built-in voltage limiter that can be used to limit the output voltage level below the supply  
rail, the amplifier operates as if it was powered by a lower supply voltage, and thereby limits the output power.  
Add a resistor divider from GVDD to ground to set the voltage at the PLIMIT pin. An external reference may also  
be used if tighter tolerance is required. Add a 1-µF capacitor from pin PLIMIT to ground to ensure stability.  
Figure 27. Power Limit Example  
14  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TPA3156D2  
TPA3156D2  
www.ti.com  
SLOS992 DECEMBER 2017  
The PLIMIT circuit sets a limit on the output peak-to-peak voltage. The limiting is done by limiting the duty cycle  
to a fixed maximum value. The limit can be thought of as a "virtual" voltage rail which is lower than the supply  
connected to PVCC. The "virtual" rail is approximately four times the voltage at the PLIMIT pin. The output  
voltage can be used to calculate the maximum output power for a given maximum input voltage and speaker  
impedance.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TPA3156D2  
TPA3156D2  
SLOS992 DECEMBER 2017  
www.ti.com  
æ
æ
ö2  
ö
÷
ø
RL  
´ V  
ç
÷
ç
P
ç
÷
RL + 2 ´ RS  
è
è
ø
POUT  
=
for unclipped power  
2 ´ RL  
where  
POUT (10%THD) = 1.25 × POUT (unclipped)  
RL is the load resistance.  
RS is the total series resistance including RDS(on), and output filter resistance.  
VP is the peak amplitude, which is limited by "virtual" voltage rail.  
(2)  
Table 3. Power Limit Example  
PVCC (V)  
24 V  
PLIMIT VOLTAGE (V)(1)  
R to GND  
Open  
R to GVDD  
Short  
OUTPUT VOLTAGE (Vrms)  
GVDD  
3.3  
17.9  
12.67  
9
24 V  
45 kΩ  
24 kΩ  
Open  
51 kΩ  
24 V  
2.25  
GVDD  
2.25  
1.5  
51 kΩ  
12 V  
Short  
10.33  
9
12 V  
24 kΩ  
18 kΩ  
51 kΩ  
12 V  
68 kΩ  
6.3  
(1) PLIMIT measurements taken with EVM gain set to 26 dB and input voltage set to 1 Vrms  
.
7.3.5 GVDD Supply  
The GVDD Supply is used to power the gates of the output full bridge transistors. The GVDD Supply can also be  
used to supply the PLIMIT and GAIN/SLV voltage dividers. Decouple GVDD with a X5R ceramic 1-µF capacitor  
to GND. The GVDD supply is not intended to be used for external supply. The current consumption should be  
limited by using resistor voltage dividers for GAIN/SLV and PLIMIT of 100 kor more.  
7.3.6 BSPx AND BSNx Capacitors  
The full H-bridge output stages use only NMOS transistors. Therefore, they require bootstrap capacitors for the  
high side of each output to turn on correctly. A 220-nF ceramic capacitor of quality X5R or better, rated for at  
least 16 V, must be connected from each output to the corresponding bootstrap input. (See the application circuit  
diagram in Figure 34.) The bootstrap capacitors connected between the BSxx pins and corresponding output  
function as a floating power supply for the high-side N-channel power MOSFET gate drive circuitry. During each  
high-side switching cycle, the bootstrap capacitors hold the gate-to-source voltage high enough to keep the high-  
side MOSFETs turned on.  
7.3.7 Differential Inputs  
The differential input stage of the amplifier cancels any noise that appears on both input lines of the channel. To  
use the TPA3156D2 with a differential source, connect the positive lead of the audio source to the RINP or LINP  
input and the negative lead from the audio source to the RINN or LINN input. To use the TPA3156D2 with a  
single-ended source, ac ground the negative input through a capacitor equal in value to the input capacitor on  
positive and apply the audio source to either input. In a single-ended input application, the unused input should  
be ac grounded at the audio source instead of at the device input for best noise performance. For good transient  
performance, the impedance seen at each of the two differential inputs should be the same.  
The impedance seen at the inputs should be limited to an RC time constant of 1 ms or less if possible to allow  
the input dc blocking capacitors to become completely charged during the 40-ms power-up time. If the input  
capacitors are not allowed to completely charge, there will be some additional sensitivity to component matching  
which can result in pop if the input components are not well matched.  
7.3.8 Device Protection System  
The TPA3156D2 contains a complete set of protection circuits carefully designed to make system design efficient  
as well as to protect the device against any kind of permanent failures due to short circuits, overload, over  
temperature, and under-voltage. The FAULTZ pin will signal if an error is detected according to Table 4:  
16  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TPA3156D2  
TPA3156D2  
www.ti.com  
SLOS992 DECEMBER 2017  
Table 4. Fault Reporting  
TRIGGERING CONDITION  
LATCHED/SELF-  
CLEARING  
FAULT  
FAULTZ  
ACTION  
(typical value)  
Output short or short to PVCC or GND  
Tj > 150°C  
Over Current  
Low  
Low  
Low  
Output high impedance  
Output high impedance  
Output high impedance  
Latched  
Latched  
Latched  
Over Temperature  
Too High DC Offset  
DC output voltage  
Under Voltage on  
PVCC  
PVCC < 4.5V  
PVCC > 27V  
Output high impedance  
Output high impedance  
Self-clearing  
Self-clearing  
Over Voltage on  
PVCC  
7.3.9 DC Detect Protection  
The TPA3156D2 has circuitry which will protect the speakers from DC current which might occur due to defective  
capacitors on the input or shorts on the printed circuit board at the inputs. A DC detect fault will be reported on  
the FAULT pin as a low state. The DC Detect fault will also cause the amplifier to shutdown by changing the  
state of the outputs to Hi-Z.  
If automatic recovery from the short circuit protection latch is desired, connect the FAULTZ pin directly to the  
SDZ pin. Connecting the FAULTZ and SDZ pins allows the FAULTZ pin function to automatically drive the SDZ  
pin low which clears the DC Detect protection latch.  
A DC Detect Fault is issued when the output differential voltage of either channel exceeds DC protection  
threshold level for more than 640 ms at the same polarity. Table 5 below shows some examples of the typical  
DC Detect Protection threshold for several values of the supply voltage. The Detect Protection Threshold feature  
protects the speaker from large DC currents or AC currents less than 2 Hz. To avoid nuisance faults due to the  
DC detect circuit, hold the SD pin low at power-up until the signals at the inputs are stable. Also, take care to  
match the impedance seen at the positive and negative inputs to avoid nuisance DC detect faults.  
Table 5 lists the minimum output offset voltages required to trigger the DC detect. The outputs must remain at or  
above the voltage listed in the table for more than 640 ms to trigger the DC detect.  
Table 5. DC Detect Threshold  
PVCC (V)  
VOS - OUTPUT OFFSET VOLTAGE (V)  
4.5  
6
1.35  
1.8  
12  
18  
3.6  
5.4  
7.3.10 Short-Circuit Protection and Automatic Recovery Feature  
The TPA3156D2 has protection from over current conditions caused by a short circuit on the output stage. The  
short circuit protection fault is reported on the FAULTZ pin as a low state. The amplifier outputs are switched to a  
high impedance state when the short circuit protection latch is engaged. The latch can be cleared by cycling the  
SDZ pin through the low state.  
If automatic recovery from the short circuit protection latch is desired, connect the FAULTZ pin directly to the  
SDZ pin. Connecting the FAULTZ and SDZ pins allows the FAULTZ pin function to automatically drive the SDZ  
pin low which clears the short-circuit protection latch.  
7.3.11 Thermal Protection  
Thermal protection on the TPA3156D2 prevents damage to the device when the internal die temperature  
exceeds 150°C. This trip point has a ±15°C tolerance from device to device. Once the die temperature exceeds  
the thermal trip point, the device enters into the shutdown state and the outputs are disabled. This is a latched  
fault.  
Thermal protection faults are reported on the FAULTZ terminal as a low state.  
If automatic recovery from the thermal protection latch is desired, connect the FAULTZ pin directly to the SDZ  
pin. This allows the FAULTZ pin function to automatically drive the SDZ pin low which clears the thermal  
protection latch.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TPA3156D2  
 
TPA3156D2  
SLOS992 DECEMBER 2017  
www.ti.com  
7.3.12 Device Modulation Scheme  
The TPA3156D2 and have the option of running in either BD modulation or low idle-loss mode.  
7.3.12.1 BD-Modulation  
This is a modulation scheme that allows operation without the classic LC reconstruction filter when the amp is  
driving an inductive load with short speaker wires. Each output is switching from 0 volts to the supply voltage.  
The OUTPx and OUTNx are in phase with each other with no input so that there is little or no current in the  
speaker. The duty cycle of OUTPx is greater than 50% and OUTNx is less than 50% for positive output voltages.  
The duty cycle of OUTPx is less than 50% and OUTNx is greater than 50% for negative output voltages. The  
voltage across the load sits at 0V throughout most of the switching period, reducing the switching current, which  
reduces any I2R losses in the load.  
OUTP  
OUTN  
No Output  
0V  
OUTP-OUTN  
Speaker  
Current  
OUTP  
OUTN  
Positive Output  
PVCC  
-
OUTP OUTN  
0V  
Speaker  
Current  
0A  
OUTP  
Negative Output  
OUTN  
0V  
OUTP-OUTN  
-
PVCC  
0A  
Speaker  
Current  
Figure 28. BD Mode Modulation  
18  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TPA3156D2  
TPA3156D2  
www.ti.com  
SLOS992 DECEMBER 2017  
7.3.13 Efficiency: LC Filter Required with the Traditional Class-D Modulation Scheme  
The main reason that the traditional class-D amplifier-based on AD modulation requires an output filter is that the  
switching waveform results in maximum current flow. This causes more loss in the load, which causes lower  
efficiency. The ripple current is large for the traditional modulation scheme, because the ripple current is  
proportional to voltage multiplied by the time at that voltage. The differential voltage swing is 2 × VCC, and the  
time at each voltage is half the period for the traditional modulation scheme. An ideal LC filter is required to store  
the ripple current from each half cycle for the next half cycle, while any resistance causes power dissipation. The  
speaker is both resistive and reactive, whereas an LC filter is almost purely reactive.  
The TPA3156D2 and modulation schemes have little loss in the load without a filter because the pulses are short  
and the change in voltage is VCC instead of 2 × VCC. As the output power increases, the pulses widen, making  
the ripple current larger. Ripple current could be filtered with an LC filter for increased efficiency, but for most  
applications the filter is not required.  
An LC filter with a cutoff frequency less than the class-D switching frequency allows the switching current to flow  
through the filter instead of the load. The filter has less resistance but higher impedance at the switching  
frequency than the speaker, which results in less power dissipation, therefore increasing efficiency.  
7.3.14 Ferrite Bead Filter Considerations  
Using the Advanced Emissions Suppression Technology in the TPA3156D2 and amplifiers, a high efficiency  
class-D audio amplifier can be designed while minimizing interference to surrounding circuits. Designing the  
amplifier can also be accomplished with only a low-cost ferrite bead filter. In this case the user must carefully  
select the ferrite bead used in the filter. One important aspect of the ferrite bead selection is the type of material  
used in the ferrite bead. Not all ferrite material is alike, therefore the user must select a material that is effective  
in the 10-MHz to 100-MHz range which is key to the operation of the class-D amplifier. Many of the specifications  
regulating consumer electronics have emissions limits as low as 30 MHz. The ferrite bead filter should be used to  
block radiation in the 30-MHz and above range from appearing on the speaker wires and the power supply lines  
which are good antennas for these signals. The impedance of the ferrite bead can be used along with a small  
capacitor with a value in the range of 1000 pF to reduce the frequency spectrum of the signal to an acceptable  
level. For best performance, the resonant frequency of the ferrite bead/ capacitor filter should be less than 10  
MHz.  
Also, the ferrite bead must be large enough to maintain its impedance at the peak currents expected for the  
amplifier. Some ferrite bead manufacturers specify the bead impedance at a variety of current levels. In this case  
the user can make sure the ferrite bead maintains an adequate amount of impedance at the peak current the  
amplifier will see. If these specifications are not available, the device can also estimate the bead current handling  
capability by measuring the resonant frequency of the filter output at low power and at maximum power. A  
change of resonant frequency of less than fifty percent under this condition is desirable. Examples of ferrite  
beads which have been tested and work well with the TPA3136D2 can be seen in the TPA3136D2EVM user  
guide SLOU444.  
A high quality ceramic capacitor is also required for the ferrite bead filter. A low ESR capacitor with good  
temperature and voltage characteristics will work best.  
Additional EMC improvements may be obtained by adding snubber networks from each of the class-D outputs to  
ground. Suggested values for a simple RC series snubber network would be 18 Ω in series with a 330 pF  
capacitor although design of the snubber network is specific to every application and must be designed taking  
into account the parasitic reactance of the printed circuit board as well as the audio amp. Take care to evaluate  
the stress on the component in the snubber network especially if the amp is running at high PVCC. Also, make  
sure the layout of the snubber network is tight and returns directly to the GND pins on the IC.  
Figure 29 and Figure 30 are TPA3156D2 EN55022 Radiated Emissions results uses TPA3156D2EVM with 8-Ω  
speakers.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TPA3156D2  
TPA3156D2  
SLOS992 DECEMBER 2017  
www.ti.com  
Figure 29. TPA3156D2 Radiated Emissions-Horizontal  
Figure 30. TPA3156D2 Radiated Emissions-Vertical  
(PVCC=19V, PO=1W)  
(PVCC=19V, PO=1W)  
7.3.15 When to Use an Output Filter for EMI Suppression  
A complete LC reconstruction filter should be added in some circuit instances. These circumstances might occur  
if there are nearby circuits which are sensitive to noise. In these cases a classic second order Butterworth filter  
similar to those shown in the figures below can be used.  
Some systems have little power supply decoupling from the AC line but are also subject to line conducted  
interference (LCI) regulations. These include systems powered by "wall warts" and "power bricks." In these  
cases, LC reconstruction filters can be the lowest cost means to pass LCI tests. Common mode chokes using  
low frequency ferrite material can also be effective at preventing line conducted interference.  
10 µH  
OUTP  
C2  
L1  
0.68 µF  
4 W - 8 W  
10 µH  
OUTN  
C3  
L2  
0.68 µF  
Ferrite  
Chip Bead  
OUTP  
1 nF  
4 W - 8 W  
Ferrite  
Chip Bead  
OUTN  
1 nF  
Figure 31. Output Filters  
7.3.16 AM Avoidance EMI Reduction  
Table 6. AM Frequencies  
US  
EUROPEAN  
AM FREQUENCY (kHz)  
522-540  
SWITCHING FREQUENCY (kHz)  
AM2  
AM1  
AM0  
AM FREQUENCY (kHz)  
540-917  
917-1125  
1125-1375  
1375-1547  
540-914  
500  
0
0
0
0
0
0
0
1
0
0
1
0
1
0
0
1
0
0
914-1122  
1122-1373  
1373-1548  
600 (or 400)  
500  
600 (or 400)  
20  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TPA3156D2  
 
TPA3156D2  
www.ti.com  
SLOS992 DECEMBER 2017  
Table 6. AM Frequencies (continued)  
US  
EUROPEAN  
SWITCHING FREQUENCY (kHz)  
AM2  
AM1  
AM0  
AM FREQUENCY (kHz)  
AM FREQUENCY (kHz)  
0
0
1
0
0
1
1547-1700  
1548-1701  
600 (or 500)  
7.4 Device Functional Modes  
7.4.1 PBTL Mode  
The TPA3156D2 can be connected in PBTL mode enabling up to 100W output power. This is done by:  
Connect INPL and INNL directly to Ground (without capacitors) this sets the device in Mono mode during  
power up.  
Connect OUTPR and OUTNR together for the positive speaker terminal and OUTNL and OUTPL together for  
the negative pin.  
Analog input signal is applied to INPR and INNR.  
ꢀë//  
Çꢀ!3156ꢁ2  
Çꢀ!3126ꢁ2  
Çꢀ!3128ꢁ2  
wLbꢀ  
!udio  
{ource  
!nd /ontrol  
ꢀoꢂer {upply  
4.5ë t 26ë  
Çꢀ!3129ꢁ2  
wLbb  
wLDIÇ  
hÜÇꢀw  
[Lbꢀ  
[Lbb  
hÜÇbw  
ꢀꢃÇ[  
ꢁꢄÇꢄ/Ç  
[/  
Cilter  
hÜÇꢀ[  
hÜÇb[  
Figure 32. PBTL Mode  
7.4.2 Mono Mode (Single Channel Mode)  
The TPA3156D2 and can be connected in MONO mode to cut the idle power-loss nearly by half. This is done by:  
Connect INPR and INNR directly to Ground (without capacitors) this sets the device in Mono mode during  
power up.  
Connect OUTPL and OUTNL to speaker just like normal BTL mode.  
Analog input signal is applied to INPL and INNL.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TPA3156D2  
TPA3156D2  
SLOS992 DECEMBER 2017  
www.ti.com  
Device Functional Modes (continued)  
Çꢀ!3156ꢁ2  
Çꢀ!3126ꢁ2  
Çꢀ!3128ꢁ2  
Çꢀ!312ꢂꢁ2  
ꢃLbꢀ  
ahbh  
ꢁ9Ç9/Ç  
ꢃLDIÇ  
ꢃLbb  
ꢀower {upply  
4.5ë t 26ë  
hÜÇꢀꢃ  
hÜÇbꢃ  
[Lbꢀ  
!udio  
{ource  
[Lbb  
[9CÇ  
hÜÇꢀ[  
hÜÇb[  
[/  
Cilter  
!nd /ontrol  
Figure 33. MONO Mode  
22  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TPA3156D2  
TPA3156D2  
www.ti.com  
SLOS992 DECEMBER 2017  
8 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
This section describes a 2.1 Master and Slave application. The Master is configured as stereo outputs and the  
Slave is configured as mono PBTL output.  
8.2 Typical Application  
A 2.1 solution, U1 TPA3156D2 in Master mode 400 kHz, BTL, gain if 26 dB, power limit not implemented. U2 in  
Slave, PBTL mode gain of 26 dB. Inputs are connected for differential inputs.  
39&&  
39&&ꢌ'(&283/,1*  
287387ꢌ/&ꢌ),/7(5  
/
(0,ꢌ&ꢎ5&ꢌ618%%(5  
39&&  
*1'  
&ꢁꢉ  
ꢀꢃQ)  
ꢂꢃ9  
&ꢀ  
ꢈꢈꢃ—)  
ꢇꢂ9  
&ꢈ  
&ꢇ  
ꢃꢄꢀ—)  
ꢂꢃ9  
ꢀꢃꢃꢃS)  
ꢂꢃ9  
ꢀꢃ—
ꢅꢄꢉ$  
&ꢈꢁ  
ꢃꢄꢃꢀ—
ꢂꢃ9  
5ꢀ  
&ꢀꢆ  
&ꢈꢃ  
ꢀꢃꢃꢃS) ꢂꢃ9  
ꢀꢃꢃN  
ꢃꢄꢆꢉ—
ꢂꢃ9  
ꢇꢄꢇꢈ  
*1'  
8ꢀ  
02'6(/  
ꢇꢈ  
ꢇꢀ  
ꢇꢃ  
ꢈꢊ  
ꢈꢉ  
ꢈꢅ  
ꢈꢆ  
ꢈꢂ  
ꢈꢁ  
ꢈꢇ  
ꢈꢈ  
ꢈꢀ  
ꢈꢃ  
ꢀꢊ  
ꢀꢉ  
ꢀꢅ  
*1'  
39&&  
39&&  
%635  
28735  
*1'  
*1'  
*1'  
6'=  
ꢁ5  
ꢋ6'B/5  
&ꢊ  
)$8/7=  
5,13  
5ꢉ  
ꢇꢄꢇꢈ  
&ꢁ ꢀ—)  
ꢃꢄꢈꢈ—) ꢈꢂ9  
*1'  
*1'  
,1B3B5,*+7  
,1B1B5,*+7  
&ꢀꢅ  
&ꢈꢀ  
ꢃꢄꢆꢉ—
ꢂꢃ9  
&ꢂ ꢀ—)  
ꢀꢃꢃꢃS) ꢂꢃ9  
&ꢈꢂ  
5,11  
3/,0,7  
*9''  
*$,1ꢋ6/9  
*1'  
*1'  
*1'  
*1'  
ꢃꢄꢃꢀ—
ꢂꢃ9  
28715  
%615  
*1'  
ꢀꢃ—
ꢅꢄꢉ$  
5ꢈ  
&ꢀꢃ  
ꢀꢃꢃN  
&ꢆ  
ꢃꢄꢈꢈ—) ꢈꢂ9  
/ꢇ  
—)  
5ꢇ  
&ꢀꢀ  
%63/  
ꢈꢃꢄꢃN  
ꢃꢄꢈꢈ—) ꢈꢂ9  
ꢀꢃ—
ꢅꢄꢉ$  
&ꢈꢆ  
ꢀꢃ  
ꢀꢀ  
ꢀꢈ  
ꢀꢇ  
ꢀꢁ  
ꢀꢂ  
ꢀꢆ  
ꢃꢄꢃꢀ—
ꢂꢃ9  
/,13  
2873/  
*1'  
*1'  
&ꢅ ꢀ—)  
&ꢉ ꢀ—)  
&ꢀꢉ  
&ꢈꢈ  
/,11  
,1B3B/()7  
,1B1B/()7  
39&&  
ꢃꢄꢆꢉ—
ꢂꢃ9  
5ꢊ  
ꢀꢃꢃꢃS) ꢂꢃ9  
087(  
$0ꢈ  
2871/  
%61/  
39&&  
39&&  
$9&&  
ꢇꢄꢇꢈ  
5ꢂ  
ꢀꢃꢃN  
&ꢀꢈ  
5ꢁ  
ꢃꢄꢈꢈ—) ꢈꢂ9  
ꢁ5  
ꢀꢃꢃN  
$0ꢀ  
5ꢀꢃ  
ꢇꢄꢇꢈ  
*1'  
&ꢀꢊ  
*1'&ꢈꢇ  
ꢀꢃꢃꢃS) ꢂꢃ9  
39&&ꢌ'(&283/,1*  
39&&  
ꢃꢄꢆꢉ—
ꢂꢃ9  
$0ꢃ  
5ꢀꢉ  
ꢀN  
4ꢀ  
087(B/5  
&ꢈꢅ  
ꢃꢄꢃꢀ—
ꢂꢃ9  
/ꢁ  
6<1&  
*1'  
73$ꢇꢀꢂꢆ'ꢈ  
&ꢀꢇ  
&ꢀꢁ  
&ꢀꢂ  
ꢈꢈꢃ—
ꢇꢂ9  
ꢃꢄꢀ—
ꢂꢃ9  
ꢀꢃꢃꢃS)  
ꢂꢃ9  
ꢀꢃ—
ꢅꢄꢉ$  
*1'  
39&&ꢌ'(&283/,1*  
5ꢆ  
ꢁꢄꢅꢃN  
*1'  
39&&  
39&&  
&ꢁꢈ  
ꢈꢈꢃ—)  
ꢇꢂ9  
&ꢁꢇ  
&ꢁꢁ  
ꢃꢄꢀ—)  
ꢂꢃ9  
ꢀꢃꢃꢃS)  
ꢂꢃ9  
5ꢀꢀ  
&ꢁꢊ  
ꢀꢃQ)  
ꢂꢃ9  
ꢀꢃꢃN  
*1'  
8ꢈ  
02'6(/  
287387ꢌ/&ꢌ),/7(5  
(0,ꢌ&ꢎ5&ꢌ618%%(5  
ꢇꢈ  
ꢇꢀ  
ꢇꢃ  
ꢈꢊ  
ꢈꢉ  
ꢈꢅ  
ꢈꢆ  
ꢈꢂ  
ꢈꢁ  
ꢈꢇ  
ꢈꢈ  
ꢈꢀ  
ꢈꢃ  
ꢀꢊ  
ꢀꢉ  
ꢀꢅ  
*1'  
39&&  
39&&  
%635  
28735  
*1'  
*1'  
6'=  
/ꢂ  
ꢋ6'B68%  
,1B3B68%  
,1B1B68%  
&ꢈꢉ  
&ꢈꢊ  
—)  
—)  
&ꢇꢈ  
)$8/7=  
5,13  
ꢃꢄꢈꢈ—) ꢈꢂ9  
ꢀꢃ—
ꢀꢇꢄꢂ$  
&ꢁꢃ  
ꢃꢄꢃꢀ—)  
ꢂꢃ9  
&ꢇꢆ  
&ꢇꢉ  
ꢃꢄꢆꢉ—
ꢂꢃ9  
ꢀꢃꢃꢃS)  
ꢂꢃ9  
5,11  
3/,0,7  
*9''  
*$,1ꢋ6/9  
*1'  
*1'  
*1'  
*1'  
5ꢀꢆ  
28715  
%615  
*1'  
ꢇꢄꢇꢈ  
5ꢀꢈ  
ꢁꢅN  
&ꢇꢇ  
&ꢇꢃ  
ꢃꢄꢈꢈ—) ꢈꢂ9  
ꢈ5  
—)  
5ꢀꢇ  
ꢅꢂN  
&ꢇꢁ  
%63/  
ꢃꢄꢈꢈ—) ꢈꢂ9  
*1'  
*1'  
ꢀꢃ  
ꢀꢀ  
ꢀꢈ  
ꢀꢇ  
ꢀꢁ  
ꢀꢂ  
ꢀꢆ  
/,13  
2873/  
*1'  
ꢇꢄꢇꢈ  
*1'  
39&&  
&ꢇꢅ  
&ꢇꢊ  
/,11  
ꢃꢄꢆꢉ—
ꢂꢃ9  
ꢀꢃꢃꢃS)  
ꢂꢃ9  
5ꢀꢂ  
ꢀꢃꢃN  
&ꢁꢀ  
ꢃꢄꢃꢀ—)  
ꢂꢃ9  
/ꢆ  
087(  
$0ꢈ  
2871/  
%61/  
39&&  
39&&  
$9&&  
5ꢀꢁ  
ꢀꢃꢃN  
&ꢇꢂ  
ꢃꢄꢈꢈ—) ꢈꢂ9  
ꢀꢃ—
ꢀꢇꢄꢂ$  
$0ꢀ  
39&&ꢌ'(&283/,1*  
39&&  
5ꢀ9  
42  
$0ꢃ  
087(B68%  
ꢀN  
6<1&  
73$ꢇꢀꢂꢆ'ꢈ  
&ꢁꢂ  
&ꢁꢆ  
&ꢁꢅ  
&ꢇꢀ  
ꢈꢈꢃ—)  
ꢇꢂ9  
ꢃꢄꢀ—)  
ꢂꢃ9  
ꢀꢃꢃꢃS)  
ꢂꢃ9  
ꢁꢅS)  
*1'  
*1'  
*1'  
Figure 34. TPA3156D2 Schematic  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TPA3156D2  
TPA3156D2  
SLOS992 DECEMBER 2017  
www.ti.com  
Typical Application (continued)  
8.2.1 Design Requriements  
DESIGN PARAMETERS  
Input voltage range PVCC  
PWM output frequencies  
Maximum output power  
EXAMPLE VALUE  
4.5 V to 26 V  
300kHz, 400 kHz, 500 kHz, 600 kHz, 1 MHz or 1.2 MHz  
2 × 70 W  
8.2.2 Detailed Design Procedure  
The TPA3156D2 devices are very flexible and easy to use Class D amplifier; therefore the design process is  
straightforward. Before beginning the design, gather the following information regarding the audio system.  
PVCC rail planned for the design  
Speaker or load impedance  
Maximum output power requirement  
Desired PWM frequency  
8.2.2.1 Select the PWM Frequency  
Set the PWM frequency by using AM0, AM1 and AM2 pins.  
8.2.2.2 Select the Amplifier Gain and Master/Slave Mode  
In order to select the amplifier gain setting, the designer must determine the maximum power target and the  
speaker impedance. Once these parameters have been determined, calculate the required output voltage swing  
which delivers the maximum output power.  
Choose the lowest analog gain setting that corresponds to produce an output voltage swing greater than the  
required output swing for maximum power. The analog gain and master/slave mode can be set by selecting the  
voltage divider resistors (R1 and R2) on the Gain/SLV pin.  
8.2.2.3 Select Input Capacitance  
Select the bulk capacitors at the PVCC inputs for proper voltage margin and adequate capacitance to support the  
power requirements. In practice, with a well-designed power supply, two 100-μF, 50-V capacitors should be  
sufficient. One capacitor should be placed near the PVCC inputs at each side of the device. PVCC capacitors  
should be a low ESR type because they are being used in a high-speed switching application.  
8.2.2.4 Select Decoupling Capacitors  
Good quality decoupling capacitors must be added at each of the PVCC inputs to provide good reliability, good  
audio performance, and to meet regulatory requirements. X5R or better ratings should be used in this  
application. Consider temperature, ripple current, and voltage overshoots when selecting decoupling capacitors.  
Also, these decoupling capacitors should be located near the PVCC and GND connections to the device in order  
to minimize series inductances.  
8.2.2.5 Select Bootstrap Capacitors  
Each of the outputs require bootstrap capacitors to provide gate drive for the high-side output FETs. For this  
design, use 0.22-μF, 25-V capacitors of X5R quality or better.  
24  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TPA3156D2  
TPA3156D2  
www.ti.com  
SLOS992 DECEMBER 2017  
8.2.3 Application Curves  
10  
160 Gain=26dB  
Gain=26dB  
PVCC=24V  
5
TA=25èC  
140  
120  
100  
80  
RL=2W  
2
1
T
A=25èC  
RL=2W  
0.5  
0.2  
0.1  
0.05  
60  
0.02  
0.01  
40  
f= 20Hz  
f= 1kHz  
f= 6KHz  
0.005  
20  
THD+N=1%  
THD+N=10%  
0.002  
0.001  
0
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage (V)  
0.01  
0.1  
1
10 20  
100  
Output Power (W)  
D014  
D03074  
D0037  
Figure 36. Maximum Output Power (PBTL) vs Supply  
Voltage  
Figure 35. Total Harmonic Distortion + Noise (PBTL) vs  
Output Power  
9 Power Supply Recommendations  
The power supply requirements for the TPA3156D2 consist of one higher-voltage supply to power the output  
stage of the speaker amplifier. Several on-chip regulators are included on the TPA3156D2 to generate the  
voltages necessary for the internal circuitry of the audio path. The voltage regulators which have been integrated  
are sized only to provide the current necessary to power the internal circuitry. The external pins are provided only  
as a connection point for off-chip bypass capacitors to filter the supply. Connecting external circuitry to these  
regulator outputs may result in reduced performance and damage to the device. The high voltage supply,  
between 4.5 V and 26 V, supplies the analog circuitry (AVCC) and the power stage (PVCC). The AVCC supply  
feeds internal LDO including GVDD. This LDO output are connected to external pins for filtering purposes, but  
should not be connected to external circuits. GVDD LDO output have been sized to provide current necessary for  
internal functions but not for external loading.  
9.1 Power Supply Mode  
The TPA3156D2 and devices support both single and dual power supply modes. Dual power supply mode is  
benefit for low PVCC power consumption. For dual power supply mode application, when AVCC is supplied with  
4.5V power, PVCC is recommended to be lower than 20V. When PVCC is supplied with power greater than 20V,  
AVCC is recommended to be higher than 6V.  
10 Layout  
10.1 Layout Guidelines  
The TPA3156D2 can be used with a small, inexpensive ferrite bead output filter for most applications. However,  
because the class-D switching edges are fast, the layout of the printed circuit board must be planned carefully.  
The following suggestions will help to meet EMC requirements.  
Decoupling capacitors — The high-frequency decoupling capacitors should be placed as close to the PVCC  
and AVCC terminals as possible. Large (100 μF or greater) bulk power supply decoupling capacitors should  
be placed near the TPA3156D2 on the PVCC supplies. Local, high-frequency bypass capacitors should be  
placed as close to the PVCC pins as possible. These caps can be connected to the IC GND pad directly for  
an excellent ground connection. Consider adding a small, good quality low ESR ceramic capacitor between  
220 pF and 1 nF and a larger mid-frequency cap of value between 100 nF and 1 µF also of good quality to  
the PVCC connections at each end of the chip.  
Keep the current loop from each of the outputs through the ferrite bead and the small filter cap and back to  
GND as small and tight as possible. The size of this current loop determines its effectiveness as an antenna.  
Grounding — The PVCC decoupling capacitors should connect to GND. All ground should be connected at  
the IC GND, which should be used as a central ground connection or star ground for the TPA3156D2.  
Output filter — The ferrite EMI filter (see Figure 31) should be placed as close to the output terminals as  
possible for the best EMI performance. The LC filter should be placed close to the outputs. The capacitors  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: TPA3156D2  
TPA3156D2  
SLOS992 DECEMBER 2017  
www.ti.com  
Layout Guidelines (continued)  
used in both the ferrite and LC filters should be grounded.  
For an example layout, see the TPA3156D2 Evaluation Module (TPA3156D2EVM) User Guide (SLOU449). Both  
the EVM user manual and the thermal pad application reports, SLMA002 and SLMA004, are available on the TI  
Web site at http://www.ti.com.  
26  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TPA3156D2  
TPA3156D2  
www.ti.com  
SLOS992 DECEMBER 2017  
10.2 Layout Example  
Figure 37. Layout Example Top  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: TPA3156D2  
TPA3156D2  
SLOS992 DECEMBER 2017  
www.ti.com  
Layout Example (continued)  
Figure 38. Layout Example Bottom  
28  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TPA3156D2  
TPA3156D2  
www.ti.com  
SLOS992 DECEMBER 2017  
10.3 Heat Sink Used on the EVM  
The heat sink used on the EVM is a 25-mm × 50-mm × 25-mm extruded aluminum heat sink with five fins (see  
Figure 39 )  
Figure 39. EVM Heat Sink  
This size heat sink has shown to be sufficient for continuous output power. The crest factor of music and having  
airflow lowers the requirement of heat sinking, and smaller types of heat sinks can be used.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: TPA3156D2  
 
TPA3156D2  
SLOS992 DECEMBER 2017  
www.ti.com  
11 Device and Documentation Support  
11.1 Documentation Support  
11.2 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
30  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TPA3156D2  
TPA3156D2  
www.ti.com  
SLOS992 DECEMBER 2017  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: TPA3156D2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
TPA3156D2DAD  
TPA3156D2DADR  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ACTIVE  
HTSSOP  
HTSSOP  
DAD  
32  
32  
46  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
TPA  
3156  
D2  
ACTIVE  
DAD  
2000 RoHS & Green  
NIPDAU  
-40 to 85  
TPA  
3156  
D2  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPA3156D2DADR  
HTSSOP DAD  
32  
2000  
330.0  
24.4  
8.6  
11.5  
1.6  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP DAD 32  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TPA3156D2DADR  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
DAD HTSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TPA3156D2DAD  
32  
46  
530  
11.89  
3600  
4.9  
Pack Materials-Page 3  
PACKAGE OUTLINE  
TM  
DAD0032A  
PowerPAD TSSOP - 1.15 mm max height  
S
C
A
L
E
1
.
6
0
0
PLASTIC SMALL OUTLINE  
C
8.3  
7.9  
SEATING PLANE  
TYP  
A
0.1 C  
PIN 1 ID AREA  
30X 0.65  
32  
1
EXPOSED  
THERMAL PAD  
11.1  
10.9  
NOTE 3  
4.36  
3.26  
2X  
9.75  
16  
17  
0.30  
32X  
0.19  
4.11  
3.31  
0.1  
C A  
B
6.2  
6.0  
B
(0.15) TYP  
0.25  
SEE DETAIL A  
1.15  
1.00  
GAGE PLANE  
0.75  
0.50  
0.15  
0.05  
0 - 8  
DETAIL A  
TYPICAL  
4222646/B 02/2020  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DAD0032A  
PowerPAD TMTSSOP - 1.15 mm max height  
PLASTIC SMALL OUTLINE  
32X (1.5)  
SEE DETAILS  
SYMM  
1
32  
32X (0.45)  
30X (0.65)  
SYMM  
(R0.05) TYP  
17  
16  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:8X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
OPENING  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222646/B 02/2020  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
TM  
DAD0032A  
PowerPAD TSSOP - 1.15 mm max height  
PLASTIC SMALL OUTLINE  
32X (1.5)  
SYMM  
1
32  
32X (0.45)  
30X (0.65)  
SYMM  
(R0.05) TYP  
16  
17  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:8X  
4222646/B 02/2020  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

TPA3156D2DADR

70W 立体声、140W 单声道、4.5V 至 26V、模拟输入 D 类音频放大器,低空闲电流 | DAD | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA31GPLFS

Multidirection SMT Navigation Switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CK-COMPONENTS

TPA3200D1

20-W MONO DIGITAL INPUT AUDIO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA3200D1DCP

20-W MONO DIGITAL INPUT AUDIO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA3200D1DCPG4

20-W MONO DIGITAL INPUT AUDIO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA3200D1DCPR

20-W MONO DIGITAL INPUT AUDIO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA3200D1DCPRG4

20-W MONO DIGITAL INPUT AUDIO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA3200D1_07

20-W MONO DIGITAL INPUT AUDIO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA321

350-mW MONO AUDIO POWER AMPLIFIER WITH DIFFERENTIAL INPUTS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA321D

350-mW MONO AUDIO POWER AMPLIFIER WITH DIFFERENTIAL INPUTS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA321DG4

350-mW MONO AUDIO POWER AMPLIFIER WITH DIFFERENTIAL INPUTS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPA321DGN

350-mW MONO AUDIO POWER AMPLIFIER WITH DIFFERENTIAL INPUTS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI