TPA3255TDDVRQ1 [TI]

汽车类 315W、2 通道、18V 至 53.5V 电源模拟输入 D 类音频放大器 | DDV | 44 | -40 to 105;
TPA3255TDDVRQ1
型号: TPA3255TDDVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 315W、2 通道、18V 至 53.5V 电源模拟输入 D 类音频放大器 | DDV | 44 | -40 to 105

放大器 光电二极管 商用集成电路 音频放大器
文件: 总45页 (文件大小:1553K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPA3255-Q1  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
TPA3255-Q1 315W 立体声、600W 单声道 PurePath™ 超高清模拟输入  
1 特性  
2 应用  
1
符合面向汽车应用的 AEC-Q100 标准  
温度等级 2–40°C +105°CTA  
汽车外部放大器  
低音炮  
传动器和悬架  
差分模拟输入  
THD+N 10% 时的总输出功率  
3 说明  
315W/4ΩBTL 立体声配置  
180W/8ΩBTL 立体声配置  
600W/2ΩPBTL 单声道配置  
TPA3255-Q1 是一款高性能 D 类功率放大器,可借助  
高效 D 类技术实现无与伦比的音质。该器件 特有 高级  
集成反馈设计和专有高速栅极驱动器错误校正功能  
PurePath™ 超高清)。该技术可使器件在整个音频  
频带内保持超低失真,同时展现完美音质。该器件在  
AD 模式下工作,THD 10% 时最多可驱动 2 个  
315W/4负载和 2 150W(未削波功率)/8负  
载,并且 具有 2VRMS 模拟输入接口,可与高性能  
DAC(如 TI PCM5242)无缝配合使用。TPA3255-  
Q1 除具有卓越的音频性能之外,还可实现较高的功效  
以及低于 2.5W 的超低功率级空闲损耗。这是通过使用  
85mMOSFET 和一个经优化的栅极驱动方案实现  
的,与典型的分立式实现相比,该方案可显著降低空闲  
损耗。  
THD+N 1% 时的总输出功率  
255W/4ΩBTL 立体声配置  
150W/8ΩBTL 立体声配置  
495W/2ΩPBTL 单声道配置  
具备高速栅极驱动器错误校正功能的高级集成式反  
馈设计  
高达 100kHz 的信号宽带,用于高清 (HD) 源的  
高频成分  
超低 THD+N1W/4时为 0.006%;削波时  
< 0.01%  
电源抑制比 (PSRR) > 65dBBTL1kHz,无  
输入信号)  
A 加权)输出噪声 < 85µV  
器件信息(1)  
A 加权)信噪比 (SNR) > 111dB  
器件型号  
封装  
封装尺寸(NOM)  
多种配置可供选择:  
立体声、单声道、2.1 4xSE  
TPA3255-Q1  
HTSSOP (44)  
6.10mm x 14.00mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
启动和停止时无喀哒声和噼啪声  
90% 高效 D 类操作 (4)  
18V 53.5V 宽电源电压工作范围  
自保护设计(包括欠压、过热、削波和短路保  
护),并且具有错误报告功能  
简化原理图  
总谐波失真  
10  
TPA3255-Q1  
4W  
8W  
RIGHT  
LC Filter  
Audio  
Source  
And Control  
1
0.1  
LEFT  
LC Filter  
/CLIP_OTW  
/RESET  
/FAULT  
GVDD  
M1:M2  
Operation Mode Select  
Power Supply  
FREQ_ADJ  
OSC_IO  
Switching Frequency Select  
51V  
Master/Slave Synchronization  
0.01  
110VAC->240VAC  
TA = 75èC  
0.001  
10m  
100m  
1
10  
100  
400  
Po - Output Power - W  
D000  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLASEM8  
 
 
 
 
TPA3255-Q1  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 17  
8.4 Device Functional Modes........................................ 17  
Application and Implementation ........................ 22  
9.1 Application Information............................................ 22  
9.2 Typical Applications ................................................ 22  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 7  
6.6 Audio Characteristics (BTL) ...................................... 8  
6.7 Audio Characteristics (SE) ....................................... 9  
6.8 Audio Characteristics (PBTL) ................................... 9  
6.9 Typical Characteristics, BTL Configuration............. 10  
6.10 Typical Characteristics, SE Configuration............. 12  
6.11 Typical Characteristics, PBTL Configuration ........ 13  
Parameter Measurement Information ................ 14  
Detailed Description ............................................ 14  
8.1 Overview ................................................................. 14  
8.2 Functional Block Diagrams ..................................... 15  
9
10 Power Supply Recommendations ..................... 29  
10.1 Power Supplies ..................................................... 29  
10.2 Powering Up.......................................................... 30  
10.3 Powering Down..................................................... 31  
10.4 Thermal Design..................................................... 31  
11 Layout................................................................... 33  
11.1 Layout Guidelines ................................................. 33  
11.2 Layout Examples................................................... 34  
12 器件和文档支持 ..................................................... 37  
12.1 文档支持................................................................ 37  
12.2 接收文档更新通知 ................................................. 37  
12.3 社区资源................................................................ 37  
12.4 ....................................................................... 37  
12.5 静电放电警告......................................................... 37  
12.6 术语表 ................................................................... 37  
13 机械、封装和可订购信息....................................... 37  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (January 2019) to Revision A  
Page  
将产品说明书状态从预告信息更改为生产数据” .................................................................................................................. 1  
2
版权 © 2019, Texas Instruments Incorporated  
 
TPA3255-Q1  
www.ti.com.cn  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
5 Pin Configuration and Functions  
The TPA3255-Q1 is available in a thermally enhanced TSSOP package.  
The package type contains a PowerPAD™ that is located on the top side of the device for convenient thermal  
coupling to the heat sink.  
DDV Package  
HTSSOP 44-Pin  
(Top View)  
BST_A  
BST_B  
GND  
GVDD_AB  
1
2
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
VDD  
M1  
3
GND  
M2  
4
OUT_A  
OUT_A  
PVDD_AB  
PVDD_AB  
PVDD_AB  
OUT_B  
GND  
5
INPUT_A  
6
INPUT_B  
OC_ADJ  
7
FREQ_ADJ  
OSC_IOM  
OSC_IOP  
DVDD  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
Thermal  
Pad  
GND  
GND  
OUT_C  
PVDD_CD  
PVDD_CD  
PVDD_CD  
OUT_D  
OUT_D  
GND  
GND  
AVDD  
C_START  
INPUT_C  
INPUT_D  
RESET  
FAULT  
VBG  
GND  
BST_C  
BST_D  
CLIP_OTW  
GVDD_CD  
Copyright © 2019, Texas Instruments Incorporated  
3
TPA3255-Q1  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
Pin Functions  
NAME  
NO.  
14  
44  
43  
24  
23  
21  
15  
11  
19  
8
I/O  
P
DESCRIPTION  
AVDD  
Internal voltage regulator, analog section  
BST_A  
BST_B  
BST_C  
BST_D  
P
HS bootstrap supply (BST), external 0.033 μF capacitor to OUT_A required.  
HS bootstrap supply (BST), external 0.033 μF capacitor to OUT_B required.  
HS bootstrap supply (BST), external 0.033 μF capacitor to OUT_C required.  
HS bootstrap supply (BST), external 0.033 μF capacitor to OUT_D required.  
Clipping warning and Over-temperature warning; open drain; active low. Do not connect if not used.  
Startup ramp, requires a charging capacitor to GND  
P
P
P
CLIP_OTW  
C_START  
DVDD  
O
O
P
Internal voltage regulator, digital section  
FAULT  
O
O
P
Shutdown signal, open drain; active low. Do not connect if not used.  
Oscillator freqency programming pin  
FREQ_ADJ  
12, 13, 25, 26,  
33, 34, 41, 42  
GND  
Ground  
GVDD_AB  
GVDD_CD  
INPUT_A  
INPUT_B  
INPUT_C  
INPUT_D  
M1  
1
P
P
I
Gate-drive voltage supply; AB-side, requires 0.1 µF capacitor to GND  
Gate-drive voltage supply; CD-side, requires 0.1 µF capacitor to GND  
Input signal for half bridge A  
22  
5
6
I
Input signal for half bridge B  
16  
I
Input signal for half bridge C  
17  
I
Input signal for half bridge D  
3
I
Mode selection 1 (LSB)  
M2  
4
I
Mode selection 2 (MSB)  
OC_ADJ  
OSC_IOM  
OSC_IOP  
OUT_A  
7
I/O  
I/O  
I/O  
O
O
O
O
P
P
I
Over-Current threshold programming pin  
Oscillator synchronization interface. Do not connect if not used.  
Oscillator synchronization interface. Do not connect if not used.  
Output, half bridge A  
9
10  
39, 40  
35  
OUT_B  
Output, half bridge B  
OUT_C  
32  
Output, half bridge C  
OUT_D  
27, 28  
36, 37, 38  
29, 30, 31  
18  
Output, half bridge D  
PVDD_AB  
PVDD_CD  
RESET  
PVDD supply for half-bridge A and B  
PVDD supply for half-bridge C and D  
Device reset Input; active low  
VDD  
2
P
P
P
Power supply for internal voltage regulator requires a 10-µF capacitor with a 0.1-µF capacitor to GND for decoupling.  
Internal voltage reference requires a 1-µF capacitor to GND for decoupling.  
Ground, connect to grounded heat sink  
VBG  
20  
PowerPad™  
Table 1. Mode Selection Pins  
MODE  
PINS(1)  
INPUT  
OUTPUT  
CONFIGURATION  
DESCRIPTION  
MODE(2)  
M2 M1  
0
0
0
1
2N + 1  
2 × BTL  
Stereo BTL output configuration  
2N/1N + 1  
1 x BTL + 2 x SE 2.1 BTL + SE mode. Channel AB: BTL, channel C + D: SE  
INPUT_C  
0
INPUT_D  
0
Parallelled BTL configuration. Connect INPUT_C and  
1 x PBTL  
INPUT_D to GND.(1)  
1
1
0
1
2N + 1  
1N +1  
Mono BTL configuration. BTL channel AB active,  
1 x BTL  
4 x SE  
channel CD not switching. Connect INPUT_C to DVDD  
1
0
and INPUT_D to GND.(1)  
Single ended output configuration  
(1) 1 refers to logic high (DVDD level), 0 refers to logic low (GND).  
(2) 2N refers to differential input signal, 1N refers to single ended input signal. +1 refers to number of logic control (RESET) input pins.  
4
Copyright © 2019, Texas Instruments Incorporated  
TPA3255-Q1  
www.ti.com.cn  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
-0.3  
MAX  
69  
UNIT  
V
BST_X to GVDD_X(2)(3)(4)  
VDD to GND  
GVDD_X to GND(2)(3)  
11.4  
11.4  
69  
V
V
Supply voltage  
PVDD_X to GND(2)(3)  
V
DVDD to GND  
4.2  
8.5  
4.2  
69  
V
AVDD to GND  
V
VBG to GND  
V
OUT_X to GND(2)(4)  
BST_X to GND(2)(4)  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
V
81.5  
4.2  
4.2  
7
V
OC_ADJ, M1, M2, OSC_IOP, OSC_IOM, FREQ_ADJ, C_START, to GND  
RESET, FAULT, CLIP_OTW to GND  
V
Interface pins  
V
INPUT_X to GND  
V
Continuous sink current, RESET, FAULT, CLIP_OTW to GND  
Operating ambient temperature  
9
mA  
°C  
°C  
TA  
-40  
105  
150  
Tstg  
Storage temperature range  
–40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) These voltages represents the DC voltage + peak AC waveform measured at the terminal of the device in all conditions.  
(3) GVDD_X and PVDD_X represent a full bridge gate drive or power supply. GVDD_X is GVDD_AB or GVDD_CD. PVDD_X is PVDD_AB  
or PVDD_CD  
(4) OUT_X and BST_X represent a half bridge output node or bootstrap supply. OUT_X is OUT_A, OUT_B, OUT_C or OUT_D. BST_X is  
BST_A, BST_B, BST_C or BST_D.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002 HBM ESD Classification  
Level 2  
±3000  
V
(1)  
VESD  
Electrostatic discharge  
Charged-device model (CDM), per AEC Q100-011 CDM ESD  
Classification Level C4A  
±500  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2019, Texas Instruments Incorporated  
5
TPA3255-Q1  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
TYP MAX  
UNIT  
PVDD_x  
GVDD_x  
Half-bridge supply  
DC supply voltage, RL = 4Ω  
DC supply voltage  
18  
51  
53.5  
11.4  
11.4  
V
Supply for logic regulators and gate-drive  
circuitry  
9.8  
10.6  
V
V
VDD  
Digital regulator supply voltage  
DC supply voltage  
9.8  
3.4  
1.7  
1.7  
5
10.6  
RL(BTL)  
RL(SE)  
4
3
2
Output filter inductance within recommended  
value range  
Load impedance  
RL(PBTL)  
LOUT(BTL)  
LOUT(SE)  
LOUT(PBTL)  
Output filter inductance  
Minimum output inductance at IOC  
5
μH  
kΩ  
5
Nominal; Master mode  
AM1; Master mode  
AM2; Master mode  
29.7  
19.8  
9.9  
30  
20  
10  
1
30.3  
20.2  
10.1  
R(FREQ_ADJ)  
PWM frame rate programming resistor  
CPVDD  
PVDD close decoupling capacitors  
Over-current programming resistor  
μF  
Resistor tolerance = 5%, RL = 4Ω  
22  
47  
30  
64  
ROC  
kΩ  
Resistor tolerance = 5%, RL 6Ω, PVDD =  
30  
53.5V(1)  
Resistor tolerance = 5%, RL = 4Ω  
ROC(LATCHED)  
Over-current programming resistor  
kΩ  
Resistor tolerance = 5%, RL 6Ω, PVDD =  
64  
53.5V(1)  
Voltage on FREQ_ADJ pin for slave mode  
operation  
V(FREQ_ADJ)  
TJ  
Slave mode  
3.3  
V
Junction temperature  
-40  
125  
°C  
(1) For load impedance 6 Ω PVDD can be increased, provided a reduced over-current threshold is set  
6.4 Thermal Information  
TPA3255  
DDV 44-PINS HTSSOP  
THERMAL METRIC(1)  
UNIT  
JEDEC STANDARD 4  
LAYER PCB  
FIXED 85°C HEATSINK  
TEMPERATURE(2)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
50.7  
0.36  
24.4  
0.19  
24.2  
n/a  
2.4(2)  
RθJC(top)  
RθJB  
0.3  
n/a  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ψJB  
n/a  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Thermal data are obtained with 85°C heat sink temperature using thermal compound with 0.7W/mK thermal conductivity and 2mil  
thickness. In this model heat sink temperature is considered to be the ambient temperature and only path for dissipation is to the  
heatsink.  
6
Copyright © 2019, Texas Instruments Incorporated  
 
TPA3255-Q1  
www.ti.com.cn  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
6.5 Electrical Characteristics  
PVDD_X = 51 V, GVDD_X = 10.6 V, VDD = 10.6 V, TC (Case temperature) = 75°C, fS = 450 kHz, unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
INTERNAL VOLTAGE REGULATOR AND CURRENT CONSUMPTION  
Voltage regulator, only used as reference  
node  
DVDD  
AVDD  
VDD = 10.6 V  
VDD = 10.6 V  
3
3.3  
3.6  
V
V
Voltage regulator, only used as reference  
node  
7.75  
Operating, 50% duty cycle  
Idle, reset mode  
30  
14  
44  
5
IVDD  
VDD supply current  
mA  
mA  
50% duty cycle  
IGVDD_X  
Gate-supply current per full-bridge  
Reset mode  
50% duty cycle with recommended output filter  
Reset mode, No switching  
VDD = 0V, GVDD_X = 0V  
24  
5
mA  
mA  
mA  
IPVDD_X  
PVDD idle current per full bridge  
1.25  
ANALOG INPUTS  
RIN  
Input resistance  
20  
kΩ  
V
VIN  
Maximum input voltage swing, peak - peak  
Maximum input current  
7
1
IIN  
mA  
dB  
G
Inverting voltage Gain  
VOUT/VIN  
21.5  
OSCILLATOR  
Nominal, Master Mode, 1% Resistor  
AM1, Master Mode, 1% Resistor  
AM2, Master Mode, 1% Resistor  
1% Resistor  
450  
500  
600  
5
FPWM  
PWM Output Frequency  
PWM Output Frequency Variation  
Oscillator Frequency  
kHz  
%
ΔFPWM  
Nominal, Master Mode, FPWM × 6  
AM1, Master Mode, FPWM × 6  
AM2, Master Mode, FPWM × 6  
2.7  
3
fOSC(IO+)  
MHz  
3.45  
1.86  
3.6  
5
3.75  
1.45  
ΔfOSC(IO+)  
VIH  
Oscillator Frequency Variation  
High level input voltage  
Low level input voltage  
%
V
VIL  
V
OUTPUT-STAGE MOSFETs  
Drain-to-source resistance, low side (LS)  
85  
85  
mΩ  
mΩ  
TJ = 25°C, Includes metallization resistance,  
GVDD = 10.6 V  
RDS(on)  
Drain-to-source resistance, high side (HS)  
I/O  
PROTECTION  
Undervoltage protection limit, GVDD_x and  
VDD  
Vuvp,VDD,GVDD  
8.7  
V
(1)  
Vuvp,VDD, GVDD,hyst  
Vuvp,PVDD  
0.6  
14.5  
1.4  
V
V
Undervoltage protection limit, PVDD_x  
Overtemperature warning, CLIP_OTW(1)  
(1)  
Vuvp,PVDD,hyst  
V
OTW  
110  
140  
120  
130  
160  
°C  
Temperature drop needed below OTW  
temperature for CLIP_OTW to be inactive  
after OTW event.  
(1)  
OTWhyst  
20  
°C  
OTE(1)  
Overtemperature error  
150  
15  
°C  
°C  
A reset needs to occur for FAULT to be  
released following an OTE event  
(1)  
OTEhyst  
OTE-  
OTW(differential)  
OTE-OTW differential  
30  
2.3  
17  
°C  
(1)  
OLPC  
Overload protection counter  
fPWM = 450 kHz (1024 PWM cycles)  
ms  
Resistor – programmable, nominal peak current in  
1load, ROCP = 22 kΩ  
IOC  
Overcurrent limit protection  
A
Resistor – programmable, nominal peak current in  
1load, ROCP = 30 kΩ  
13  
(1) Specified by design.  
Copyright © 2019, Texas Instruments Incorporated  
7
 
TPA3255-Q1  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
PVDD_X = 51 V, GVDD_X = 10.6 V, VDD = 10.6 V, TC (Case temperature) = 75°C, fS = 450 kHz, unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
Resistor – programmable, peak current in 1load,  
ROCP = 47kΩ  
17  
IOC(LATCHED)  
Overcurrent limit protection  
A
Resistor – programmable, peak current in 1load,  
ROCP = 64kΩ  
13  
1.5  
IDCspkr  
IOCT  
DC Speaker Protection Current Threshold  
Overcurrent response time  
BTL current imbalance threshold  
A
Time from switching transition to flip-state induced  
by overcurrent.  
150  
ns  
Connected when RESET is active to provide  
bootstrap charge. Not used in SE mode.  
IPD  
Output pulldown current of each half  
3
mA  
STATIC DIGITAL SPECIFICATIONS  
VIH  
VIL  
Ilkg  
High level input voltage  
1.9  
V
V
M1, M2, OSC_IOP, OSC_IOM, RESET  
Low level input voltage  
Input leakage current  
0.8  
100  
μA  
OTW/SHUTDOWN (FAULT)  
Internal pullup resistance, CLIP_OTW to  
DVDD, FAULT to DVDD  
RINT_PU  
26  
25  
kΩ  
Internal pullup resistance variation,  
CLIP_OTW to DVDD, FAULT to DVDD  
ΔRINT_PU  
%
VOH  
High level output voltage  
Low level output voltage  
CLIP_OTW, FAULT  
Internal pullup resistor  
IO = 4 mA  
3
3.3  
10  
30  
3.6  
V
VOL  
500  
mV  
Device fanout  
No external pullup  
devices  
6.6 Audio Characteristics (BTL)  
PCB and system configuration are in accordance with recommended guidelines. Audio frequency = 1 kHz, PVDD_X = 51 V,  
GVDD_X = 10.6 V, RL = 4 , fS = 450 kHz, ROC = 22 k, TC = 75°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, mode = 00,  
AES17 + AUX-0025 measurement filters, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
RL = 4 , 10% THD+N  
315  
RL = 4 , 1% THD+N  
255  
PO  
Power output per channel  
W
RL = 8 , 10% THD+N  
RL = 8 , 1% THD+N  
180  
150  
THD+N  
Vn  
Total harmonic distortion + noise  
Output integrated noise  
1 W  
0.006%  
85  
A-weighted, AES17 filter, Input Capacitor Grounded  
Inputs AC coupled to GND  
μV  
mV  
dB  
dB  
W
|VOS  
|
Output offset voltage  
Signal-to-noise ratio(1)  
15  
112  
113  
2.5  
60  
SNR  
DNR  
Pidle  
Dynamic range  
Power dissipation due to Idle losses (IPVDD  
)
PO = 0, 4 channels switching(2)  
(1) SNR is calculated relative to 1% THD+N output level.  
(2) Actual system idle losses also are affected by core losses of output inductors.  
8
Copyright © 2019, Texas Instruments Incorporated  
TPA3255-Q1  
www.ti.com.cn  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
6.7 Audio Characteristics (SE)  
PCB and system configuration are in accordance with recommended guidelines. Audio frequency = 1 kHz, PVDD_X = 51 V,  
GVDD_X = 10.6 V, RL = 2 , fS = 450 kHz, ROC = 22 k, TC = 75°C, Output Filter: LDEM = 15 μH, CDEM = 1 µF, MODE = 11,  
AES17 + AUX-0025 measurement filters, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
RL = 2 , 10% THD+N  
148  
PO  
Power output per channel  
W
RL = 2 , 1% THD+N  
120  
THD+N  
Vn  
Total harmonic distortion + noise  
Output integrated noise  
1 W  
0.04%  
160  
A-weighted, AES17 filter, Input Capacitor  
Grounded  
μV  
SNR  
DNR  
Pidle  
Signal to noise ratio(1)  
A-weighted  
101  
101  
2
dB  
dB  
W
Dynamic range  
A-weighted  
PO = 0, 4 channels switching(2)  
Power dissipation due to idle losses (IPVDD)  
(1) SNR is calculated relative to 1% THD+N output level.  
(2) Actual system idle losses are affected by core losses of output inductors.  
6.8 Audio Characteristics (PBTL)  
PCB and system configuration are in accordance with recommended guidelines. Audio frequency = 1 kHz, PVDD_X = 51 V,  
GVDD_X = 10.6 V, RL = 2 , fS = 450 kHz, ROC = 22 k, TC = 75°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, MODE = 10,  
AES17 + AUX-0025 measurement filters, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
RL = 2 , 10% THD+N  
605  
495  
RL = 2 , 1% THD+N  
RL = 3 , 10% THD+N  
RL = 3 , 1% THD+N  
RL = 4 , 10% THD+N  
RL = 4 , 1% THD+N  
1 W  
455  
PO  
Power output per channel  
W
370  
360  
285  
THD+N  
Vn  
Total harmonic distortion + noise  
Output integrated noise  
0.008%  
70  
A-weighted, AES17 filter, Input Capacitor  
Grounded  
μV  
SNR  
DNR  
Pidle  
Signal to noise ratio(1)  
A-weighted  
114  
114  
2.5  
dB  
dB  
W
Dynamic range  
A-weighted  
PO = 0, 4 channels switching(2)  
Power dissipation due to idle losses (IPVDD)  
(1) SNR is calculated relative to 1% THD+N output level.  
(2) Actual system idle losses are affected by core losses of output inductors.  
版权 © 2019, Texas Instruments Incorporated  
9
TPA3255-Q1  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
6.9 Typical Characteristics, BTL Configuration  
All Measurements taken at audio frequency = 1 kHz, PVDD_X = 51 V, GVDD_X = 10.6 V, RL = 4 , fS = 450 kHz, ROC = 22  
k, TC = 75°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, mode = 00, AES17 + AUX-0025 measurement filters,unless  
otherwise noted.  
10  
1
10  
1
TC = 75èC  
1W  
25W  
150W  
TC = 75èC  
1W  
25W  
150W  
0.1  
0.01  
0.1  
0.01  
0.001  
0.0003  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k  
40k  
f - Frequency - Hz  
f - Frequency - Hz  
D001  
D002  
RL = 4 Ω  
P = 1W, 25W,  
150W  
TC = 75°C  
RL = 4 Ω  
P = 1W, 25W,  
150W  
TC = 75°C  
PVDD = 51V  
AUX-0025 filter, 80 kHz analyzer BW  
PVDD = 51V  
1. Total Harmonic Distortion+Noise vs Frequency  
2. Total Harmonic Distortion+Noise vs Frequency  
10  
10  
TC = 75èC  
1W  
25W  
100W  
TC = 75èC  
1W  
25W  
100W  
1
0.1  
1
0.1  
0.01  
0.01  
0.001  
0.0002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k  
40k  
f - Frequency - Hz  
f - Frequency - Hz  
D003  
D004  
RL = 8 Ω  
P = 1W, 25W,  
100W  
TC = 75°C  
RL = 8 Ω  
P = 1W, 25W,  
100W  
TC = 75°C  
PVDD = 53.5V  
AUX-0025 filter, 80 kHz analyzer BW  
PVDD = 53.5V  
3. Total Harmonic Distortion+Noise vs Frequency  
4. Total Harmonic Distortion+Noise vs Frequency  
10  
10  
4W  
6W  
8W  
6W  
8W  
1
0.1  
1
0.1  
0.01  
0.01  
TA = 75èC  
TA = 75èC  
0.001  
0.001  
10m  
100m  
1
10  
100  
400  
10m  
100m  
1
10  
100 300  
Po - Output Power - W  
Po - Output Power - W  
D005  
D006  
RL = 4 Ω, 6 Ω, 8 Ω  
TC = 75°C  
PVDD = 51V  
RL = 6 Ω, 8 Ω  
TC = 75°C  
PVDD = 53.5V  
5. Total Harmonic Distortion + Noise vs Output Power  
6. Total Harmonic Distortion + Noise vs Output Power  
10  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TPA3255-Q1  
www.ti.com.cn  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
Typical Characteristics, BTL Configuration (接下页)  
All Measurements taken at audio frequency = 1 kHz, PVDD_X = 51 V, GVDD_X = 10.6 V, RL = 4 , fS = 450 kHz, ROC = 22  
k, TC = 75°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, mode = 00, AES17 + AUX-0025 measurement filters,unless  
otherwise noted.  
360  
320  
280  
240  
200  
160  
120  
80  
300  
250  
200  
150  
100  
50  
4W  
6W  
8W  
4W  
6W  
8W  
THD+N = 10%  
TC = 75èC  
THD+N = 1%  
TC = 75èC  
40  
0
0
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
PVDD - Supply Voltage - V  
PVDD - Supply Voltage - V  
D007  
D008  
RL = 4 Ω, 6 Ω, 8 Ω  
THD+N = 10%  
TC = 75°C  
RL = 4 Ω, 6 Ω, 8 Ω  
THD+N = 1%  
TC = 75°C  
7. Output Power vs Supply Voltage  
8. Output Power vs Supply Voltage  
100  
10  
1
100  
80  
60  
40  
20  
0
4W  
6W  
8W  
4W  
6W  
8W  
TC = 75èC  
TC = 75èC  
500 600 650  
10m  
100m  
1
10  
100  
700  
0
100  
200  
300  
400  
2 Channel Output Power - W  
2 Channel Output Power - W  
D009  
D010  
RL = 4 Ω, 6 Ω, 8 Ω  
THD+N = 10%  
TC = 75°C  
RL = 4 Ω, 6 Ω, 8 Ω  
THD+N = 10%  
TC = 75°C  
9. System Efficiency vs Output Power  
10. System Power Loss vs Output Power  
350  
300  
250  
200  
150  
100  
50  
0
-20  
TC = 75èC  
ref = 36.06 V  
FFT size = 16384  
4W  
V
-40  
-60  
-80  
-100  
-120  
-140  
-160  
4W  
6W  
8W  
THD+N = 10%  
75  
0
0
25  
50  
100  
0
5k 10k 15k 20k 25k 30k 35k 40k 45k48k  
f - Frequency - Hz  
TC - Case Temperature - èC  
D011  
D012  
RL = 4 Ω, 6 Ω, 8 Ω  
THD+N = 10%  
TC = 75°C  
4 Ω, VREF = 36.06 V  
(1% Output power)  
FFT =  
16384  
11. Output Power vs Case Temperature  
AUX-0025 filter, 80 kHz  
analyzer BW  
TC = 75°C  
12. Noise Amplitude vs Frequency  
版权 © 2019, Texas Instruments Incorporated  
11  
 
 
 
TPA3255-Q1  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
6.10 Typical Characteristics, SE Configuration  
All Measurements taken at audio frequency = 1 kHz, PVDD_X = 51 V, GVDD_X = 10.6 V, RL = 3 , fS = 450 kHz, ROC = 22  
k, TC = 75°C, Output Filter: LDEM = 15 μH, CDEM = 680 nF, MODE = 11, AES17 + AUX-0025 measurement filters, unless  
otherwise noted.  
10  
1
10  
1
TC = 75èC  
1W  
20W  
50W  
2W  
3W  
4W  
0.1  
0.1  
0.01  
0.01  
TA = 75èC  
0.001  
0.001  
20  
100  
1k  
10k 20k  
10m  
100m  
1
10  
100 200  
f - Frequency - Hz  
D014  
Po - Output Power - W  
D013  
RL = 3Ω  
P = 1W, 20W, 50W  
TC = 75°C  
RL = 2Ω, 3Ω, 4Ω  
TC = 75°C  
14. Total Harmonic Distortion+Noise vs Frequency  
13. Total Harmonic Distortion+Noise vs Output Power  
180  
10  
2W  
3W  
4W  
TC = 75èC  
1W  
20W  
50W  
160  
140  
120  
100  
80  
1
0.1  
60  
40  
0.01  
THD+N = 10%  
TC = 75èC  
20  
0
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
0.001  
PVDD - Supply Voltage - V  
D016  
20  
100  
1k  
10k 20k 40k  
RL = 2Ω, 3Ω, 4Ω  
THD+N = 10%  
TC = 75°C  
f - Frequency - Hz  
D015  
RL = 3Ω  
P = 1W, 20W, 50W  
TC = 75°C  
AUX-0025 filter, 80 kHz analyzer BW  
16. Output Power vs Supply Voltage  
15. Total Harmonic Distortion+Noise vs Frequency  
140  
175  
150  
125  
100  
75  
2W  
3W  
120  
4W  
100  
80  
60  
40  
50  
2W  
3W  
4W  
20  
25  
THD+N = 1%  
TC = 75èC  
THD+N = 10%  
75 100  
0
15  
0
20  
25  
30  
35  
40  
45  
50  
55  
60  
0
25  
50  
PVDD - Supply Voltage - V  
TC - Case Temperature - èC  
D017  
D018  
RL = 2Ω, 3Ω, 4Ω  
THD+N = 1%  
TC = 75°C  
RL = 2Ω, 3Ω, 4Ω  
THD+N = 10%  
TC = 75°C  
17. Output Power vs Supply Voltage  
18. Output Power vs Case Temperature  
12  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
TPA3255-Q1  
www.ti.com.cn  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
6.11 Typical Characteristics, PBTL Configuration  
All Measurements taken at audio frequency = 1 kHz, PVDD_X = 51V, GVDD_X = 10.6 V, RL = 2, fS = 450 kHz, ROC = 22  
k, TC = 75°C, Output Filter: LDEM = 10μH, CDEM = 1 µF, MODE = 10, AES17 + AUX-0025 measurement filters, unless  
otherwise noted.  
10  
1
10  
1
TC = 75èC  
1W  
50W  
375W  
2W  
3W  
4W  
0.1  
0.01  
0.1  
0.01  
0.001  
TA = 75èC  
0.001  
0.0003  
10m  
100m  
1
10  
100  
700  
20  
100  
1k  
10k 20k  
Po - Output Power - W  
f - Frequency - Hz  
D019  
D020  
RL = 2Ω, 3Ω, 4Ω  
TC = 75°C  
RL = 2Ω  
P = 1W, 50W, 375W  
TC = 75°C  
19. Total Harmonic Distortion+Noise vs Output Power  
20. Total Harmonic Distortion+Noise vs Frequency  
700  
10  
2W  
TC = 75èC  
1W  
50W  
375W  
3W  
600  
4W  
1
0.1  
500  
400  
300  
200  
0.01  
100  
THD+N = 10%  
TC = 75èC  
0
0.001  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
20  
100  
1k  
10k  
40k  
PVDD - Supply Voltage - V  
f - Frequency - Hz  
D022  
D021  
RL = 2Ω, 3Ω, 4Ω  
THD+N = 10%  
TC = 75°C  
RL = 2Ω  
P = 1W, 50W, 375W  
TC = 75°C  
AUX-0025 filter, 80 kHz analyzer BW  
22. Output Power vs Supply Voltage  
21. Total Harmonic Distortion+Noise vs Frequency  
600  
2W  
3W  
700  
600  
500  
400  
300  
200  
100  
0
500  
4W  
400  
300  
200  
100  
2W  
3W  
4W  
THD+N = 1%  
TC = 75èC  
THD+N = 10%  
75 100  
0
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
0
25  
50  
PVDD - Supply Voltage - V  
TC - Case Temperature - èC  
D023  
D024  
RL = 2Ω, 3Ω, 4Ω  
THD+N = 1%  
TC = 75°C  
RL = 2Ω, 3Ω, 4Ω  
THD+N = 10%  
TC = 75°C  
23. Output Power vs Supply Voltage  
24. Output Power vs Case Temperature  
版权 © 2019, Texas Instruments Incorporated  
13  
 
 
 
 
TPA3255-Q1  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
7 Parameter Measurement Information  
All parameters are measured according to the conditions described in the Recommended Operating Conditions,  
Typical Characteristics, BTL Configuration, Typical Characteristics, SE Configuration and Typical Characteristics,  
PBTL Configuration sections.  
Most audio analyzers will not give correct readings of Class-D amplifiers’ performance due to their sensitivity to  
out of band noise present at the amplifier output. AES-17 + AUX-0025 pre-analyzer filters are recommended to  
use for Class-D amplifier measurements. In absence of such filters, a 30-kHz low-pass filter (10 + 47 nF) can  
be used to reduce the out of band noise remaining on the amplifier outputs.  
8 Detailed Description  
8.1 Overview  
To facilitate system design, the TPA3255-Q1 needs only a low-voltage analog and digital supply in addition to the  
(typical) 51-V power-stage supply. An internal voltage regulator provides suitable voltage levels for the digital and  
low-voltage analog circuitry, AVDD and DVDD. Additionally, all circuitry requiring a floating voltage supply, that  
is, the high-side gate drive, is accommodated by built-in bootstrap circuitry requiring only an external capacitor  
for each half-bridge.  
The audio signal path including gate drive and output stage is designed as identical, independent half-bridges.  
For this reason, each half-bridge has separate bootstrap pins (BST_X). Power-stage supply pins (PVDD_X) and  
gate drive supply pins (GVDD_X) are separate for each full bridge. Although supplied from the same source,  
separating to GVDD_AB, GVDD_CD, and VDD on the printed-circuit board (PCB) by RC filters (see application  
diagram for details) is recommended. These RC filters provide the recommended high-frequency isolation.  
Special attention should be paid to placing all decoupling capacitors as close to their associated pins as possible.  
In general, the physical loop with the power supply pins, decoupling capacitors and GND return path to the  
device pins must be kept as short as possible and with as little area as possible to minimize induction (see  
reference board documentation for additional information).  
For a properly functioning bootstrap circuit, a small ceramic capacitor must be connected from each bootstrap pin  
(BST_X) to the power-stage output pin (OUT_X). When the power-stage output is low, the bootstrap capacitor is  
charged through an internal diode connected between the gate-drive power-supply pin (GVDD_X) and the  
bootstrap pins. When the power-stage output is high, the bootstrap capacitor potential is shifted above the output  
potential and thus provides a suitable voltage supply for the high-side gate driver. It is recommended to use 33-  
nF ceramic capacitors, size 0603 or 0805, for the bootstrap supply. These 33nF capacitors ensure sufficient  
energy storage, even during minimal PWM duty cycles, to keep the high-side power stage FET (LDMOS) fully  
turned on during the remaining part of the PWM cycle.  
Special attention should be paid to the power-stage power supply; this includes component selection, PCB  
placement, and routing. As indicated, each full-bridge has independent power-stage supply pins (PVDD_X). For  
optimal electrical performance, EMI compliance, and system reliability, it is important that each PVDD_X node is  
decoupled with 1-μF ceramic capacitor placed as close as possible to the supply pins. It is recommended to  
follow the PCB layout of the TPA3255-Q1 reference design. For additional information on recommended power  
supply and required components, see the application diagrams in this data sheet.  
The VDD, AVDD and DVDD supplies should be from a low-noise, low-output-impedance voltage regulator.  
Likewise, the 51-V power-stage supply is assumed to have low output impedance and low noise. The power-  
supply sequence is not critical as facilitated by the internal power-on-reset circuit, but it is recommended to  
release RESET after the power supply is settled for minimum turn on audible artefacts. Moreover, the TPA3255-  
Q1 is fully protected against erroneous power-stage turn on due to parasitic gate charging. Thus, voltage-supply  
ramp rates (dV/dt) are non-critical within the specified range (see the Recommended Operating Conditions table  
of this data sheet).  
14  
版权 © 2019, Texas Instruments Incorporated  
TPA3255-Q1  
www.ti.com.cn  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
8.2 Functional Block Diagrams  
/CLIP_OTW  
VDD  
VBG  
POWER-  
UP  
RESET  
VREG  
AVDD  
DVDD  
GND  
/FAULT  
UVP  
M1  
M2  
TEMP  
SENSE  
GND  
GVDD_AB  
GVDD_CD  
/RESET  
DIFFOC  
CB3C  
STARTUP  
CONTROL  
C_START  
OVER-LOAD  
PROTECTIO  
N
CURRENT  
SENSE  
OC_ADJ  
OSC_IOM  
OSCILLATO  
OSC_IOP  
PVDD_X  
OUT_X  
GND  
R
PPSC  
FREQ_ADJ  
GVDD_AB  
BST_A  
PWM  
ACTIVITY  
DETECTOR  
PVDD_AB  
OUT_A  
-
PWM  
RECEIVER  
TIMING  
CONTROL  
ANALOG  
INPUT_A  
CONTROL  
GATE-DRIVE  
GATE-DRIVE  
GATE-DRIVE  
GATE-DRIVE  
+
LOOP  
FILTER  
GND  
GVDD_AB  
BST_B  
PVDD_AB  
OUT_B  
-
PWM  
RECEIVER  
TIMING  
CONTROL  
ANALOG  
LOOP  
FILTER  
INPUT_B  
INPUT_C  
INPUT_D  
CONTROL  
CONTROL  
CONTROL  
+
GND  
GVDD_CD  
BST_C  
PVDD_CD  
OUT_C  
GND  
-
PWM  
RECEIVER  
TIMING  
CONTROL  
ANALOG  
LOOP  
FILTER  
+
GVDD_CD  
BST_D  
PVDD_CD  
OUT_D  
GND  
-
PWM  
RECEIVER  
TIMING  
CONTROL  
ANALOG  
LOOP  
+
FILTER  
Copyright © 2016, Texas Instruments Incorporated  
版权 © 2019, Texas Instruments Incorporated  
15  
TPA3255-Q1  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
Functional Block Diagrams (接下页)  
Capacitor for  
External  
Filtering  
System  
and  
Startup/Stop  
microcontroller or  
Analog circuitry  
BST_A  
BST_B  
OSC_IOP  
OSC_IOM  
Oscillator  
Synchronization  
Bootstrap  
Capacitors  
2nd Order  
L-C Output  
Filter for  
Each  
OUT_A  
Output  
H-Bridge 1  
INPUT_A  
Input DC  
Blocking  
Caps  
ANALOG_IN_A  
ANALOG_IN_B  
OUT_B  
Input  
H-Bridge 1  
INPUT_B  
H-Bridge  
2-CHANNEL  
H-BRIDGE  
BTL MODE  
Hardwire PWM  
Frame Adjust and  
Master/Slave  
Mode  
FREQ_ADJ  
2nd Order  
L-C Output  
Filter for  
Each  
OUT_C  
OUT_D  
INPUT_C  
INPUT_D  
Input DC  
Blocking  
Caps  
ANALOG_IN_C  
ANALOG_IN_D  
Input  
H-Bridge 2  
Output  
H-Bridge 2  
H-Bridge  
BST_C  
BST_D  
M1  
Hardwire  
Mode  
Control  
Bootstrap  
Capacitors  
M2  
GVDD, VDD,  
DVDD and  
AVDD  
Power Supply  
Decoupling  
Hardwire  
PVDD  
GND  
PVDD  
Power Supply  
Decoupling  
51V  
Over-  
Current  
Limit  
SYSTEM Power  
Supplies  
GND  
GVDD  
GVDD/VDD  
VAC  
*NOTE1: LogicAND in or outside microcontroller  
25. System Block Diagram  
16  
版权 © 2019, Texas Instruments Incorporated  
TPA3255-Q1  
www.ti.com.cn  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
8.3 Feature Description  
8.3.1 Error Reporting  
The FAULT, and CLIP_OTW, pins are active-low, open-drain outputs. The function is for protection-mode  
signaling to a system-control device.  
Any fault resulting in device shutdown is signaled by the FAULT pin going low. Also, CLIP_OTW goes low when  
the device junction temperature exceeds 125°C (see 2).  
2. Error Reporting  
FAULT  
CLIP_OTW  
DESCRIPTION  
Overtemperature (OTE), overload (OLP) or undervoltage (UVP) Junction temperature  
higher than 125°C (overtemperature warning)  
0
0
0
1
1
1
0
1
Overload (OLP) or undervoltage (UVP). Junction temperature lower than 125°C  
Junction temperature higher than 125°C (overtemperature warning)  
Junction temperature lower than 125°C and no OLP or UVP faults (normal operation)  
Note that asserting RESET low forces the FAULT signal high, independent of faults being present. TI  
recommends monitoring the CLIP_OTW signal using the system microcontroller and responding to an  
overtemperature warning signal by turning down the volume to prevent further heating of the device resulting in  
device shutdown (OTE).  
To reduce external component count, an internal pullup resistor to 3.3 V is provided on both FAULT and  
CLIP_OTW outputs.  
8.4 Device Functional Modes  
8.4.1 Device Protection System  
The TPA3255-Q1 contains advanced protection circuitry carefully designed to facilitate system integration and  
ease of use, as well as to safeguard the device from permanent failure due to a wide range of fault conditions  
such as short circuits, overload, overtemperature, and undervoltage. The TPA3255-Q1 responds to a fault by  
immediately setting the power stage in a high-impedance (Hi-Z) state and asserting the FAULT pin low. In  
situations other than overload and overtemperature error (OTE), the device automatically recovers when the fault  
condition has been removed, that is, the supply voltage has increased.  
The device will handle errors, as shown in 3.  
3. Device Protection  
BTL MODE  
PBTL MODE  
SE MODE  
LOCAL  
ERROR IN  
LOCAL  
ERROR IN  
LOCAL  
ERROR IN  
TURNS OFF  
TURNS OFF  
TURNS OFF  
A
B
C
D
A
B
C
D
A
B
C
D
A+B  
A+B  
A+B+C+D  
C+D  
C+D  
Bootstrap UVP does not shutdown according to the table, it shuts down the respective halfbridge (non-latching,  
does not assert FAULT).  
8.4.1.1 Overload and Short Circuit Current Protection  
TPA3255-Q1 has fast reacting current sensors with a programmable trip threshold (OC threshold) on all high-  
side and low-side FETs. To prevent output current from increasing beyond the programmed threshold, TPA3255-  
Q1 has the option of either limiting the output current for each switching cycle (Cycle By Cycle Current Control,  
CB3C) or to perform an immediate shutdown of the output in case of excess output current (Latching Shutdown).  
CB3C prevents premature shutdown due to high output current transients caused by high level music transients  
and a drop of real speaker’s load impedance, and allows the output current to be limited to a maximum  
版权 © 2019, Texas Instruments Incorporated  
17  
 
 
TPA3255-Q1  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
programmed level. If the maximum output current persists, i.e. the power stage being overloaded with too low  
load impedance, the device will shut down the affected output channel and the affected output is put in a high-  
impedance (Hi- Z) state until a RESET cycle is initiated. CB3C works individually for each half bridge output. If an  
over current event is triggered, CB3C performs a state flip of the half bridge output that is cleared upon beginning  
of next PWM frame.  
PWM_X  
RISING EDGE PWM  
SETS CB3C LATCH  
HS PWM  
LS PWM  
OC EVENT RESETS  
CB3C LATCH  
OC THRESHOLD  
OUTPUT CURRENT  
OCH  
HS GATE-DRIVE  
LS GATE-DRIVE  
26. CB3C Timing Example  
During CB3C an over load counter increments for each over current event and decrease for each non-over  
current PWM cycle. This allows full amplitude transients into a low speaker impedance without a shutdown  
protection action. In the event of a short circuit condition, the over current protection limits the output current by  
the CB3C operation and eventually shut down the affected output if the overload counter reaches its maximum  
value. If a latched OC operation is required such that the device shuts down the affected output immediately  
upon first detected over current event, this protection mode should be selected. The over current threshold and  
mode (CB3C or Latched OC) is programmed by the OC_ADJ resistor value. The OC_ADJ resistor needs to be  
within its intentional value range for either CB3C operation or Latched OC operation.  
I_OC  
IOC_max  
IOC_min  
Not Defined  
ROC_ADJ  
27. OC Threshold versus OC_ADJ Resistor Value Example  
OC_ADJ values outside specified value range for either CB3C or latched OC operation will result in minimum OC  
threshold.  
18  
版权 © 2019, Texas Instruments Incorporated  
TPA3255-Q1  
www.ti.com.cn  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
4. Device Protection  
OC_ADJ Resistor Value  
Protection Mode  
CB3C  
OC Threshold  
17.0A  
22kΩ  
24kΩ  
27kΩ  
30kΩ  
47kΩ  
51kΩ  
56kΩ  
64kΩ  
CB3C  
15.7A  
CB3C  
14.2A  
CB3C  
12.9A  
Latched OC  
Latched OC  
Latched OC  
Latched OC  
17.0A  
15.7A  
14.2A  
12.9A  
8.4.1.2 Signal Clipping and Pulse Injector  
A built in activity detector monitors the PWM activity of the OUT_X pins. TPA3255-Q1 is designed to drive  
unclipped output signals all the way to PVDD and GND rails. In case of audio signal clipping when applying  
excessive input signal voltage, or in case of CB3C current protection being active, the amplifier feedback loop of  
the audio channel will respond to this condition with a saturated state, and the output PWM signals would stop if  
the device did not have special circuitry implemented to handle this situation. To prevent the output PWM signals  
from stopping in a clipping or CB3C situation, narrow pulses are injected to the gate drive to maintain output  
activity. The injected narrow pulses are injected at every 4th PWM frame, and thus the effective switching  
frequency during this state is reduced to 1/4 of the normal switching frequency.  
Signal clipping is signalled on the CLIP_OTW pin and is self clearing when signal level reduces and the device  
reverts to normal operation. The CLIP_OTW pulses start at the onset to output clipping, typically at a THD level  
around 0.01%, resulting in narrow CLIP_OTW pulses starting with a pulse width of ~500 ns.  
28. Signal Clipping PWM and Speaker Output Signals  
8.4.1.3 DC Speaker Protection  
The output DC protection scheme protects a speaker from excess DC current in case one terminal of the  
speaker is connected to the amplifier while the other is accidentally shorted to the chassis ground. Such a short  
circuit results in a DC voltage of PVDD/2 across the speaker, which potentially can result in destructive current  
levels. The output DC protection detects any unbalance of the output and input current of a BTL output, and in  
the event of the unbalance exceeding a programmed threshold, the overload counter increments until its  
maximum value and the affected output channel is shut down. DC Speaker Protection is disabled in SE mode  
operation.  
版权 © 2019, Texas Instruments Incorporated  
19  
TPA3255-Q1  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
8.4.1.4 Pin-to-Pin Short Circuit Protection (PPSC)  
The PPSC detection system protects the device from permanent damage if a power output pin (OUT_X) is  
shorted to GND_X or PVDD_X. For comparison, the OC protection system detects an overcurrent after the  
demodulation filter where PPSC detects shorts directly at the pin before the filter. PPSC detection is performed at  
startup that is, when VDD is supplied, consequently a short to either GND_X or PVDD_X after system startup  
does not activate the PPSC detection system. When PPSC detection is activated by a short on the output, all  
half bridges are kept in a Hi-Z state until the short is removed; the device then continues the startup sequence  
and starts switching. The detection is controlled globally by a two step sequence. The first step ensures that  
there are no shorts from OUT_X to GND_X, the second step tests that there are no shorts from OUT_X to  
PVDD_X. The total duration of this process is roughly proportional to the capacitance of the output LC filter. The  
typical duration is < 15ms/μF. While the PPSC detection is in progress, FAULT is kept low, and the device will  
not react to changes applied to the RESET pin. If no shorts are present the PPSC detection passes, and FAULT  
is released. A device reset will not start a new PPSC detection. PPSC detection is enabled in BTL and PBTL  
output configurations, the detection is not performed in SE mode. To make sure not to trip the PPSC detection  
system it is recommended not to insert a resistive load to GND_X or PVDD_X.  
8.4.1.5 Overtemperature Protection OTW and OTE  
TPA3255-Q1 has a two-level temperature-protection system that asserts an active-low warning signal  
(CLIP_OTW) when the device junction temperature exceeds 120°C (typical) and, if the device junction  
temperature exceeds 155°C (typical), the device is put into thermal shutdown, resulting in all half-bridge outputs  
being set in the high-impedance (Hi-Z) state and FAULT being asserted low. OTE is latched in this case. To  
clear the OTE latch, RESET must be asserted. Thereafter, the device resumes normal operation.  
8.4.1.6 Undervoltage Protection (UVP) and Power-on Reset (POR)  
The UVP and POR circuits of the TPA3255-Q1 fully protect the device in any power-up/down and brownout  
situation. While powering up, the POR circuit ensures that all circuits are fully operational when the GVDD_X and  
VDD supply voltages reach values stated in the Electrical Characteristics table. Although GVDD_X and VDD are  
independently monitored, a supply voltage drop below the UVP threshold on any VDD or GVDD_X pin results in  
all half-bridge outputs immediately being set in the high-impedance (Hi-Z) state and FAULT being asserted low.  
The device automatically resumes operation when all supply voltages have increased above the UVP threshold.  
8.4.1.7 Fault Handling  
If a fault situation occurs while in operation, the device acts accordingly to the fault being a global or a channel  
fault. A global fault is a chip-wide fault situation and causes all PWM activity of the device to be shut down, and  
will assert FAULT low. A global fault is a latching fault and clearing FAULT and restarting operation requires  
resetting the device by toggling RESET. Deasserting RESET should never be allowed with excessive system  
temperature, so it is advised to monitor RESET by a system microcontroller and only allow releasing RESET  
(RESET high) if the CLIP_OTW signal is cleared (high). A channel fault results in shutdown of the PWM activity  
of the affected channel(s). Note that asserting RESET low forces the FAULT signal high, independent of faults  
being present.  
20  
版权 © 2019, Texas Instruments Incorporated  
TPA3255-Q1  
www.ti.com.cn  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
5. Error Reporting  
Fault/Event  
Description  
Global or  
Channel  
Reporting  
Method  
Latched/Self  
Clearing  
Action needed to Output  
Fault/Event  
Clear  
FETs  
PVDD_X UVP  
VDD UVP  
Increase affected  
supply voltage  
Voltage Fault  
Global  
Global  
FAULT pin  
FAULT pin  
Self Clearing  
HI-Z  
AVDD UVP  
Allow DVDD to  
rise  
POR (DVDD UVP)  
Power On Reset  
Voltage Fault  
Self Clearing  
Self Clearing  
Self Clearing  
HI-Z  
Allow BST cap to  
recharge (lowside  
ON, VDD applied)  
Channel (Half  
Bridge)  
HighSide  
off  
BST_X UVP  
None  
Cool below OTW  
threshold  
Normal  
operation  
OTW  
OTE  
Thermal Warning  
Global  
OTW pin  
Thermal Shutdown Global  
FAULT pin  
FAULT pin  
Latched  
Latched  
Toggle RESET  
Toggle RESET  
HI-Z  
HI-Z  
OLP (CB3C>1.7ms) OC Shutdown  
Channel  
Latched OC  
(47kΩ<ROC_ADJ<68k OC Shutdown  
Ω)  
Channel  
FAULT pin  
Latched  
Toggle RESET  
HI-Z  
Flip state,  
cycle by  
cycle at  
fs/3  
CB3C  
Reduce signal  
level or remove  
short  
(22kΩ<ROC_ADJ<30k OC Limiting  
Ω)  
Channel  
Global  
None  
Self Clearing  
Self Clearing  
No OSC_IO  
activity in Slave  
Mode  
Resume OSC_IO  
activity  
Stuck at Fault(1)  
None  
HI-Z  
(1) Stuck at Fault occurs when input OSC_IO input signal frequency drops below minimum frequency given in the Electrical Characteristics  
table of this data sheet.  
8.4.1.8 Device Reset  
Asserting RESET low initiates the device ramp down. The output FETs go into a Hi-Z state after the ramp down  
is complete. Output pull downs are active both in SE mode and BTL mode with RESET low.  
In BTL modes, to accommodate bootstrap charging prior to switching start, asserting the reset input low enables  
weak pulldown of the half-bridge outputs.  
Asserting reset input low removes any fault information to be signaled on the FAULT output, that is, FAULT is  
forced high. A rising-edge transition on reset input allows the device to resume operation after a fault. To ensure  
thermal reliability, the rising edge of reset must occur no sooner than 4 ms after the falling edge of FAULT.  
版权 © 2019, Texas Instruments Incorporated  
21  
TPA3255-Q1  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
TPA3255-Q1 can be configured either in stereo BTL mode, 4 channel SE mode, mono PBTL mode, or in 2.1  
mixed 1x BTL + 2x SE mode depending on output power conditions and system design.  
9.2 Typical Applications  
9.2.1 Stereo BTL Application  
3R3  
GVDD  
470uF  
100nF  
100nF  
33nF  
1
2
3
4
5
6
7
8
9
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
GVDD_AB  
VDD  
BST_A  
BST_B  
10µH  
10nF  
33nF  
M1  
GND  
1nF  
1nF  
1µF  
1µF  
M2  
GND  
3R3  
10µF  
10µF  
INPUT_A  
INPUT_B  
INPUT_A  
INPUT_B  
OC_ADJ  
FREQ_ADJ  
OSC_IOM  
OSC_IOP  
DVDD  
OUT_A  
OUT_A  
PVDD_AB  
PVDD_AB  
PVDD_AB  
OUT_B  
GND  
3R3  
22k  
10nF  
1µF  
10µH  
30k  
470uF  
PVDD  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1µF  
1µF  
1µF  
TPA3255-Q1  
GND  
GND  
GND  
OUT_C  
PVDD_CD  
PVDD_CD  
PVDD_CD  
OUT_D  
OUT_D  
GND  
1µF  
AVDD  
10µH  
47nF  
C_START  
INPUT_C  
INPUT_D  
/RESET  
1µF 470uF  
10nF  
10µF  
10µF  
INPUT_C  
INPUT_D  
/RESET  
1nF  
1nF  
1µF  
1µF  
3R3  
26  
25  
24  
23  
3R3  
/FAULT  
/FAULT  
VBG  
1µF  
20  
21  
22  
10nF  
GND  
33nF  
10µH  
/CLIP_OTW  
/CLIP_OTW  
GVDD_CD  
BST_C  
3R3  
BST_D  
100nF  
33nF  
29. Typical Differential (2N) BTL Application  
22  
版权 © 2019, Texas Instruments Incorporated  
 
 
TPA3255-Q1  
www.ti.com.cn  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
Typical Applications (接下页)  
9.2.1.1 Design Requirements  
For this design example, use the parameters in 6.  
6. Design Requirements, BTL Application  
DESIGN PARAMETER  
Low Power (Pull-up) Supply  
Mid Power Supply  
EXAMPLE  
3.3 V  
10.6 V  
18 - 51 V  
High Power Supply  
M2 = L  
Mode Selection  
Analog Inputs  
M1 = L  
INPUT_A = ±3.9 V (peak, max)  
INPUT_B = ± 3.9V (peak, max)  
INPUT_C = ±3.9 V (peak, max)  
INPUT_D = ±3.9 V (peak, max)  
Inductor-Capacitor Low Pass FIlter (10 µH + 1 µF)  
3-8 Ω  
Output Filters  
Speaker Impedance  
9.2.1.2 Detailed Design Procedures  
A rising-edge transition on reset input allows the device to execute the startup sequence and starts switching.  
The CLIP signal is indicating that the output is approaching clipping. The signal can be used either to decrease  
audio volume or to control an intelligent power supply nominally operating at a low rail adjusting to a higher  
supply rail.  
The device is inverting the audio signal from input to output.  
The DVDD and AVDD pins are not recommended to be used as a voltage sources for external circuitry.  
9.2.1.2.1 Decoupling Capacitor Recommendations  
In order to design an amplifier that has robust performance, passes regulatory requirements, and exhibits good  
audio performance, good quality decoupling capacitors should be used. In practice, X7R should be used in this  
application.  
9.2.1.2.2 PVDD Capacitor Recommendation  
The PVDD decoupling capacitors must be placed as close to the device pins a possible to insure short trace  
length and low a low inductance path. Likewise the ground path for these capacitors must provide a good  
reference and should be substantial. This will keep voltage ringing on PVDD to a minimum.  
The voltage of the decoupling capacitors should be selected in accordance with good design practices.  
Temperature, ripple current, and voltage overshoot must be considered. This fact is particularly true in the  
selection of the 1μF that is placed on the power supply to each full-bridge. It must withstand the voltage  
overshoot of the PWM switching, the heat generated by the amplifier during high power output, and the ripple  
current created by high power output. A minimum voltage rating of 100 V is required for use with a 51-V power  
supply.  
The large capacitors used in conjunction with each full-bridge, are referred to as the PVDD Capacitors. These  
capacitors should be selected for proper voltage margin and adequate capacitance to support the power  
requirements. In practice, with a well designed system power supply, 1000 μF, 80 V supports most applications.  
The PVDD capacitors should be low ESR type because they are used in a circuit associated with high-speed  
switching.  
9.2.1.2.3 PCB Material Recommendation  
FR-4 Glass Epoxy material with 2 oz. (70 μm) copper is recommended for use with the TPA3255-Q1. The use of  
this material can provide for higher power output, improved thermal performance, and better EMI margin (due to  
lower PCB trace inductance.  
版权 © 2019, Texas Instruments Incorporated  
23  
 
TPA3255-Q1  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
9.2.1.2.4 Oscillator  
The built in oscillator frequency can be trimmed by an external resistor from the FREQ_ADJ pin to GND.  
Changes in the oscillator frequency should be made with resistor values specified in Recommended Operating  
Conditions while RESET is low.  
To reduce interference problems while using a radio receiver tuned within the AM band, the switching frequency  
can be changed from nominal to lower or higher values. These values should be chosen such that the nominal  
and the alternate switching frequencies together result in the fewest cases of interference throughout the AM  
band. The oscillator frequency can be selected by the value of the FREQ_ADJ resistor connected to GND in  
master mode.  
For slave mode operation, turn off the oscillator by pulling the FREQ_ADJ pin to DVDD. This configures the  
OSC_I/O pins as inputs to be slaved from an external differential clock. In a master/slave system inter-channel  
delay is automatically set up between the switching of the audio channels, which can be illustrated by no idle  
channels switching at the same time. This will not influence the audio output, but only the switch timing to  
minimize noise coupling between audio channels through the power supply. Inter-channel delay is needed to  
optimize audio performance and to get better operating conditions for the power supply. The inter-channel delay  
will be set up for a slave device depending on the polarity of the OSC_I/O connection as follows:  
Slave 1 mode has normal polarity (master + to slave + and master - to slave -)  
Slave 2 mode has reverse polarity (master + to slave - and master - to slave +)  
The interchannel delay for interleaved channel idle switching is given in the table below for the master/slave and  
output configuration modes in degrees relative to the PWM frame.  
7. Master/Slave Inter Channel Delay Settings  
Master  
M1 = 0, M2 = 0, 2 x M1 = 1, M2 = 0, 1 x M1 = 0, M2 = 1, 1 x M1 = 1, M2 = 1, 4 x  
BTL mode  
BTL + 2 x SE  
mode  
PBTL mode  
SE mode  
OUT_A  
OUT_B  
OUT_C  
OUT_D  
Slave 1  
OUT_A  
OUT_B  
OUT_C  
OUT_D  
Slave 2  
OUT_A  
OUT_B  
OUT_C  
OUT_D  
0°  
0°  
0°  
180°  
0°  
0°  
60°  
0°  
180°  
60°  
180°  
60°  
240°  
120°  
180°  
60°  
60°  
60°  
60°  
240°  
60°  
60°  
120°  
60°  
240°  
120°  
300°  
240°  
120°  
180°  
240°  
120°  
30°  
210°  
90°  
30°  
210°  
90°  
30°  
210°  
30°  
30°  
90°  
30°  
90°  
270°  
150°  
210°  
24  
版权 © 2019, Texas Instruments Incorporated  
TPA3255-Q1  
www.ti.com.cn  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
9.2.2 Application Curves  
Relevant performance plots for TPA3255-Q1 in BTL configuration are shown in Typical Characteristics, BTL  
Configuration  
8. Relevant Performance Plots, BTL Configuration  
PLOT TITLE  
Total Harmonic Distortion+Noise vs Frequency  
Total Harmonic Distortion+Noise vs Frequency, 80kHz analyzer BW  
Total Harmonic Distortion + Noise vs Output Power  
Output Power vs Supply Voltage, 10% THD+N  
Output Power vs Supply Voltage, 10% THD+N  
System Efficiency vs Output Power  
FIGURE NUMBER  
1  
2  
5  
7  
9  
9  
System Power Loss vs Output Power  
10  
11  
12  
Output Power vs Case Temperature  
Noise Amplitude vs Frequency  
版权 © 2019, Texas Instruments Incorporated  
25  
TPA3255-Q1  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
9.2.3 Typical Application, Single Ended (1N) SE  
TPA3255-Q1 can be configured either in stereo BTL mode, 4 channel SE mode, mono PBTL mode, or in 2.1  
mixed 1x BTL + 2x SE mode depending on output power conditions and system design.  
470uF  
15µH  
3R3  
GVDD  
470uF  
100nF  
100nF  
33nF  
1
2
3
4
5
6
7
8
9
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
10nF  
GVDD_AB  
VDD  
BST_A  
BST_B  
1nF  
1nF  
1µF  
1µF  
3R3  
33nF  
M1  
GND  
M2  
GND  
3R3  
10µF  
10µF  
INPUT_A  
INPUT_B  
INPUT_A  
INPUT_B  
OC_ADJ  
FREQ_ADJ  
OSC_IOM  
OSC_IOP  
DVDD  
OUT_A  
OUT_A  
PVDD_AB  
PVDD_AB  
PVDD_AB  
OUT_B  
GND  
10nF  
22k  
1µF  
470uF  
15µH  
30k  
470uF  
PVDD  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1µF  
1µF  
1µF  
TPA3255-Q1  
GND  
GND  
GND  
OUT_C  
PVDD_CD  
PVDD_CD  
PVDD_CD  
OUT_D  
OUT_D  
GND  
1µF  
AVDD  
470uF  
15µH  
1µF  
C_START  
INPUT_C  
INPUT_D  
/RESET  
1µF 470uF  
10µF  
10µF  
INPUT_C  
INPUT_D  
/RESET  
10nF  
1nF  
1nF  
1µF  
1µF  
26  
25  
24  
23  
3R3  
/FAULT  
/FAULT  
VBG  
1µF  
20  
21  
22  
GND  
33nF  
3R3  
/CLIP_OTW  
/CLIP_OTW  
GVDD_CD  
BST_C  
10nF  
3R3  
BST_D  
100nF  
33nF  
470uF  
15µH  
30. Typical Single Ended (1N) SE Application  
9.2.3.1 Design Requirements  
Refer to Stereo BTL Application for the Design Requirements.  
9. Design Requirements, SE Application  
DESIGN PARAMETER  
Low Power (Pull-up) Supply  
Mid Power Supply  
EXAMPLE  
3.3 V  
10.6 V  
High Power Supply  
18 - 51 V  
M2 = H  
M1 = H  
Mode Selection  
Analog Inputs  
INPUT_A = ±3.9 V (peak, max)  
INPUT_B = ±3.9 V (peak, max)  
INPUT_C = ±3.9 V (peak, max)  
INPUT_D = ±3.9 V (peak, max)  
Output Filters  
Inductor-Capacitor Low Pass FIlter (15 µH + 680 nF)  
Speaker Impedance  
2 - 8 Ω  
9.2.3.2 Detailed Design Procedures  
Refer to Stereo BTL Application for the Detailed Design Procedures.  
26  
版权 © 2019, Texas Instruments Incorporated  
TPA3255-Q1  
www.ti.com.cn  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
9.2.3.3 Application Curves  
Relevant performance plots for TPA3255-Q1 in PBTL configuration are shown in Typical Characteristics, SE  
Configuration  
10. Relevant Performance Plots, SE Configuration  
PLOT TITLE  
FIGURE NUMBER  
13  
Total Harmonic Distortion+Noise vs Output Power  
Total Harmonic Distortion+Noise vs Frequency  
Total Harmonic Distortion+Noise vs Frequency, 80kHz analyzer BW  
Output Power vs Supply Voltage, 10% THD+N  
Output Power vs Supply Voltage, 1% THD+N  
Output Power vs Case Temperature  
14  
15  
16  
17  
18  
版权 © 2019, Texas Instruments Incorporated  
27  
TPA3255-Q1  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
9.2.4 Typical Application, Differential (2N) PBTL  
TPA3255-Q1 can be configured either in stereo BTL mode, 4 channel SE mode, mono PBTL mode, or in 2.1  
mixed 1x BTL + 2x SE mode depending on output power conditions and system design.  
3R3  
GVDD  
470uF  
100nF  
100nF  
33nF  
1
2
3
4
5
6
7
8
9
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
GVDD_AB  
VDD  
BST_A  
BST_B  
33nF  
M1  
GND  
M2  
GND  
10µF  
10µF  
INPUT_A  
INPUT_B  
INPUT_A  
INPUT_B  
OC_ADJ  
FREQ_ADJ  
OSC_IOM  
OSC_IOP  
DVDD  
OUT_A  
OUT_A  
PVDD_AB  
PVDD_AB  
PVDD_AB  
OUT_B  
GND  
22k  
PVDD  
1µF  
30k  
10µH  
470uF  
10nF  
1nF  
1nF  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
470nF  
470nF  
470nF  
470nF  
1µF  
1µF  
1µF  
3R3  
TPA3255-Q1  
GND  
GND  
3R3  
GND  
OUT_C  
PVDD_CD  
PVDD_CD  
PVDD_CD  
OUT_D  
OUT_D  
GND  
10nF  
1µF  
10µH  
AVDD  
47nF  
C_START  
INPUT_C  
INPUT_D  
/RESET  
1µF 470uF  
GND  
/RESET  
/FAULT  
26  
25  
24  
23  
/FAULT  
VBG  
1µF  
20  
21  
22  
GND  
33nF  
/CLIP_OTW  
/CLIP_OTW  
GVDD_CD  
BST_C  
3R3  
BST_D  
100nF  
33nF  
31. Typical Differential (2N) PBTL Application  
9.2.4.1 Design Requirements  
Refer to Stereo BTL Application for the Design Requirements.  
11. Design Requirements, PBTL Application  
DESIGN PARAMETER  
Low Power (Pull-up) Supply  
Mid Power Supply  
EXAMPLE  
3.3 V  
10.6 V  
High Power Supply  
18 - 51 V  
M2 = H  
M1 = L  
Mode Selection  
Analog Inputs  
INPUT_A = ±3.9 V (peak, max)  
INPUT_B = ±3.9 V (peak, max)  
INPUT_C = Grounded  
INPUT_D = Grounded  
Output Filters  
Inductor-Capacitor Low Pass FIlter (10 µH + 1 µF)  
Speaker Impedance  
2 - 4 Ω  
9.2.4.2 Detailed Design Procedures  
Refer to Stereo BTL Application for the Detailed Design Procedures.  
28  
版权 © 2019, Texas Instruments Incorporated  
TPA3255-Q1  
www.ti.com.cn  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
9.2.4.3 Application Curves  
Relevant performance plots for TPA3255-Q1 in PBTL configuration are shown in Typical Characteristics, PBTL  
Configuration  
12. Relevant Performance Plots, PBTL Configuration  
PLOT TITLE  
FIGURE NUMBER  
19  
Total Harmonic Distortion+Noise vs Output Power  
Total Harmonic Distortion+Noise vs Frequency  
Total Harmonic Distortion+Noise vs Frequency, 80kHz analyzer BW  
Output Power vs Supply Voltage, 10% THD+N  
Output Power vs Supply Voltage, 1% THD+N  
Output Power vs Case Temperature  
20  
21  
22  
23  
24  
10 Power Supply Recommendations  
10.1 Power Supplies  
The TPA3255-Q1 device requires two external power supplies for proper operation. A high-voltage supply called  
PVDD is required to power the output stage of the speaker amplifier and its associated circuitry. Additionally, one  
mid-voltage power supply for GVDD_X and VDD is required to power the gate-drive and other internal digital and  
analog portions of the device. The allowable voltage range for both the PVDD and the GVDD_X/VDD supplies  
are listed in the Recommended Operating Conditions table. Ensure both the PVDD and the GVDD_X/VDD  
supplies can deliver more current than listed in the Electrical Characteristics table.  
10.1.1 VDD Supply  
The VDD supply required from the system is used to power several portions of the device. It provides power to  
internal regulators DVDD and AVDD that are used to power digital and analog sections of the device,  
respectively. Proper connection, routing, and decoupling techniques are highlighted in the TPA3255 device EVM  
User's Guide (SLOU441) (as well as the Application Information section and Layout Examples section) and must  
be followed as closely as possible for proper operation and performance. Deviation from the guidance offered in  
the TPA3255 device EVM User's Guide (SLOU441), which followed the same techniques as those shown in the  
Application Information section, may result in reduced performance, errant functionality, or even damage to the  
TPA3255-Q1 device. Some portions of the device also require a separate power supply which is a lower voltage  
than the VDD supply. To simplify the power supply requirements for the system, the TPA3255-Q1 device  
includes integrated low-dropout (LDO) linear regulators to create these supplies. These linear regulators are  
internally connected to the VDD supply and their outputs are presented on AVDD and DVDD pins, providing a  
connection point for an external bypass capacitors. It is important to note that the linear regulators integrated in  
the device have only been designed to support the current requirements of the internal circuitry, and should not  
be used to power any additional external circuitry. Additional loading on these pins could cause the voltage to  
sag and increase noise injection, which negatively affects the performance and operation of the device.  
10.1.2 GVDD_X Supply  
The GVDD_X supply required from the system is used to power the gate-drives for the output H-bridges. Proper  
connection, routing, and decoupling techniques are highlighted in the TPA3255 device EVM User's Guide  
(SLOU441) (as well as the Application Information section and Layout Examples section) and must be followed  
as closely as possible for proper operation and performance. Deviation from the guidance offered in the  
TPA3255 device EVM User's Guide (SLOU441), which followed the same techniques as those shown in the  
Application Information section, may result in reduced performance, errant functionality, or even damage to the  
TPA3255-Q1 device.  
版权 © 2019, Texas Instruments Incorporated  
29  
TPA3255-Q1  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
Power Supplies (接下页)  
10.1.3 PVDD Supply  
The output stage of the amplifier drives the load using the PVDD supply. This is the power supply which provides  
the drive current to the load during playback. Proper connection, routing, and decoupling techniques are  
highlighted in the TPA3255 device EVM User's Guide (SLOU441) (as well as the Application Information section  
and Layout Examples section) and must be followed as closely as possible for proper operation and  
performance. Due the high-voltage switching of the output stage, it is particularly important to properly decouple  
the output power stages in the manner described in the TPA3255 device EVM User's Guide (SLOU441). The  
lack of proper decoupling, like that shown in the EVM User's Guide (SLOU441), can results in voltage spikes  
which can damage the device, or cause poor audio performance and device shutdown faults.  
10.2 Powering Up  
The TPA3255-Q1 does not require a power-up sequence, but it is recommended to hold RESET low for at least  
250 ms after PVDD supply voltage is turned ON. The outputs of the H-bridges remain in a high-impedance state  
until the gate-drive supply voltage (GVDD_X) and VDD voltages are above the undervoltage protection (UVP)  
voltage threshold (see the Electrical Characteristics table of this data sheet). This allows an internal circuit to  
charge the external bootstrap capacitors by enabling a weak pulldown of the half-bridge output as well as  
initiating a controlled ramp up sequence of the output voltage.  
PVDD  
VDD  
GVDD  
DVDD  
/RESET  
AVDD  
C 70µs  
t
Precharge  
C 200ms  
/FAULT  
VIN_X  
OUT_X  
VOUT_X  
t
Startup ramp  
V_CSTART  
32. Startup Timing  
When RESET is released to turn on TPA3255-Q1, FAULT signal will turn low and AVDD voltage regulator will be  
enabled. FAULT will stay low until AVDD reaches the undervoltage protection (UVP) voltage threshold (see the  
Electrical Characteristics table of this data sheet). After a precharge time to stabilize the DC voltage across the  
input AC coupling capacitors, the ramp up sequence starts.  
30  
版权 © 2019, Texas Instruments Incorporated  
TPA3255-Q1  
www.ti.com.cn  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
10.3 Powering Down  
The TPA3255-Q1 does not require a power-down sequence. The device remains fully operational as long as the  
gate-drive supply (GVDD_X) voltage and VDD voltage are above the undervoltage protection (UVP) voltage  
threshold (see the Electrical Characteristics table of this data sheet). Although not specifically required, it is a  
good practice to hold RESET low during power down, thus preventing audible artifacts including pops or clicks by  
initiating a controlled ramp down sequence of the output voltage.  
10.4 Thermal Design  
10.4.1 Thermal Performance  
TPA3255-Q1 thermal performance is dependent on the design of the thermal system, which is the heatsink  
design and surrounding conditions including system enclosure (closed box with no air flow, or a fanned system  
etc.). As a result, the maximum continuous output power attainable will be influenced by the thermal design.  
To mitigate thermal limitations in systems with the device operated at continuous high power it is advised to  
increase the cooling capability of the thermal system, or to operate the device in PBTL operation mode.  
10.4.2 Thermal Performance with Continuous Output Power  
It is recommended to operate TPA3255-Q1 below the OTW threshold. In most systems normal use conditions  
will safely keep the device temperature with margin to the OTW threshold. However in some systems and use  
cases the device tempertaure can run high, dependent on the actual output power, operating voltage, and  
thermal system. At high operating temperature some thermal limitations for continuous output power may occur  
at low audio frequencies due to increased heating of the output MOSFETs. 33 shows maximum attainable  
continuous output power with a heatsink temperature of 75ºC and maximum 10% THD.  
320  
300  
280  
260  
240  
220  
200  
20  
60  
80  
100 120 150 200 500 1000  
Frequency (Hz)  
C026  
33. Maximum Continuous Output Power vs Frequency, BTL, 4Ω Load, Each Channel, TC = 75°C  
10.4.3 Thermal Performance with Non-Continuous Output Power  
As audio signals often have a peak to average ratio larger than one (average level below maximum peak output),  
the thermal performance for audio signals can be illustrated using burst signals with different burst ratios.  
版权 © 2019, Texas Instruments Incorporated  
31  
 
TPA3255-Q1  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
Thermal Design (接下页)  
34. Example of audio signal  
A burst signal is characterized by the high-level to low-level ratio as well as the duration of the high level and low  
level, e.g. a burst 1:4 stimuli is a single period of high level followed by 4 cycles of low level.  
High level  
Low level  
1cycle : 4cycles  
35. Example of 1:4 Burst Signal  
The following analysis of thermal performance for TPA3255-Q1 is made with the heatsink temperature controlled  
to 75°C.  
The device is not thermally limited with 8-load, but depending on the burst stimuli for operation at 75ºC  
heatsink temperature some thermal limitations may occur with a lower load impedance, depending on switching  
frequency and average to maximum power ratio. The figure below shows burst performance with a signal power  
ratio of 1:16 (low cycles power level 1/16 of the high cycles power level) and 1:8 .  
320  
310  
300  
290  
280  
270  
260  
250  
320  
310  
300  
290  
280  
270  
260  
250  
20 Hz  
20 Hz  
60 Hz  
60 Hz  
80 Hz  
80 Hz  
100 Hz  
120 Hz  
150 Hz  
100 Hz  
120 Hz  
150 Hz  
2:1  
2:2  
2:4  
2:8  
1:1  
1:4  
1:8  
2:1  
2:2  
2:4  
2:8  
1:1  
1:4  
1:8  
Burst Ratio (High:Low)  
Burst Ratio (High:Low)  
C027  
C028  
36. Maximum Burst Output Power vs Frequency, BTL,  
4Ω Load, Each Channel, TC = 75°C, Power Ratio 1:16  
37. Maximum Burst Output Power vs Frequency, BTL,  
4Ω Load, Each Channel, TC = 75°C, Power Ratio 1:8  
32  
版权 © 2019, Texas Instruments Incorporated  
TPA3255-Q1  
www.ti.com.cn  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
11 Layout  
11.1 Layout Guidelines  
Use an unbroken ground plane to have good low impedance and inductance return path to the power supply  
for power and audio signals.  
Maintain a contiguous ground plane from the ground pins to the PCB area surrounding the device for as  
many of the ground pins as possible, since the ground pins are the best conductors of heat in the package.  
PCB layout, audio performance and EMI are linked closely together.  
Routing the audio input should be kept short and together with the accompanied audio source ground.  
Route VBG decoupling capacitor to the VBG and GND pins with as short PCB traces as possible  
The small bypass capacitors on the PVDD lines of the DUT should be placed as close the PVDD pins as  
possible.  
A local ground area underneath the device is important to keep solid to minimize ground bounce.  
Orient the passive component so that the narrow end of the passive component is facing the TPA3255-Q1  
device, unless the area between two pads of a passive component is large enough to allow copper to flow in  
between the two pads.  
Avoid placing other heat producing components or structures near the TPA3255-Q1 device.  
Avoid cutting off the flow of heat from the TPA3255-Q1 device to the surrounding ground areas with traces or  
via strings, especially on output side of device.  
Netlist for this printed circuit board is generated from the schematic in 38.  
版权 © 2019, Texas Instruments Incorporated  
33  
TPA3255-Q1  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
11.2 Layout Examples  
11.2.1 BTL Application Printed Circuit Board Layout Example  
T3  
T1  
1
2
44  
43  
42  
41  
40  
39  
38  
37  
3
4
5
6
7
8
T2  
T2  
9
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
T1  
T3  
System Processor  
Bottom to top layer connection via  
Bottom Layer Signal Traces  
Pad to top layer ground pour  
Top Layer Signal Traces  
A. Note: PCB layout example shows composite layout. Dark grey: Top layer copper traces, light gray: Bottom layer  
copper traces. All PCB area not used for traces should be GND copper pour (transparent on example image)  
B. Note T1: PVDD decoupling bulk capacitors should be as close as possible to the PVDD and GND_X pins, the heat  
sink sets the distance. Wide traces should be routed on the top layer with direct connection to the pins and without  
going through vias. No vias or traces should be blocking the current path.  
C. Note T2: Close decoupling of PVDD with low impedance X7R ceramic capacitors is placed under the heat sink and  
close to the pins.  
D. Note T3: Heat sink needs to have a good connection to PCB ground.  
38. BTL Application Printed Circuit Board - Composite  
34  
版权 © 2019, Texas Instruments Incorporated  
TPA3255-Q1  
www.ti.com.cn  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
Layout Examples (接下页)  
11.2.2 SE Application Printed Circuit Board Layout Example  
T3  
T1  
1
2
44  
43  
42  
41  
40  
39  
38  
37  
3
4
5
6
7
8
T2  
9
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
10  
11  
12  
T2  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
T1  
T3  
System Processor  
Bottom to top layer connection via  
Bottom Layer Signal Traces  
Pad to top layer ground pour  
Top Layer Signal Traces  
A. Note: PCB layout example shows composite layout. Dark grey: Top layer copper traces, light gray: Bottom layer  
copper traces. All PCB area not used for traces should be GND copper pour (transparent on example image)  
B. Note T1: PVDD decoupling bulk capacitors should be as close as possible to the PVDD and GND_X pins, the heat  
sink sets the distance. Wide traces should be routed on the top layer with direct connection to the pins and without  
going through vias. No vias or traces should be blocking the current path.  
C. Note T2: Close decoupling of PVDD with low impedance X7R ceramic capacitors is placed under the heat sink and  
close to the pins.  
D. Note T3: Heat sink needs to have a good connection to PCB ground.  
39. SE Application Printed Circuit Board - Composite  
版权 © 2019, Texas Instruments Incorporated  
35  
TPA3255-Q1  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
www.ti.com.cn  
Layout Examples (接下页)  
11.2.3 PBTL Application Printed Circuit Board Layout Example  
T3  
T1  
1
2
44  
43  
42  
41  
40  
39  
38  
37  
3
4
5
6
7
8
T2  
T2  
9
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
Grounded for PBTL  
Grounded for PBTL  
T1  
T3  
System Processor  
Bottom to top layer connection via  
Bottom Layer Signal Traces  
Pad to top layer ground pour  
Top Layer Signal Traces  
A. Note: PCB layout example shows composite layout. Dark grey: Top layer copper traces, light gray: Bottom layer  
copper traces. All PCB area not used for traces should be GND copper pour (transparent on example image)  
B. Note T1: PVDD decoupling bulk capacitors should be as close as possible to the PVDD and GND_X pins, the heat  
sink sets the distance. Wide traces should be routed on the top layer with direct connection to the pins and without  
going through vias. No vias or traces should be blocking the current path.  
C. Note T2: Close decoupling of PVDD with low impedance X7R ceramic capacitors is placed under the heat sink and  
close to the pins.  
D. Note T3: Heat sink needs to have a good connection to PCB ground.  
40. PBTL Application Printed Circuit Board - Composite  
36  
版权 © 2019, Texas Instruments Incorporated  
TPA3255-Q1  
www.ti.com.cn  
ZHCSJA2A JANUARY 2019REVISED MARCH 2019  
12 器件和文档支持  
12.1 文档支持  
TPA3255EVM 用户指南》SLOU441  
TPA32xx 放大器的多器件配置  
TPA3255 安装指南和配置工具  
D LC 滤波器设计器和应用手册  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
37  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPA3255TDDVRQ1  
ACTIVE  
HTSSOP  
DDV  
44  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 105  
3255T  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPA3255TDDVRQ1  
HTSSOP DDV  
44  
2000  
330.0  
24.4  
8.6  
15.6  
1.8  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP DDV 44  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TPA3255TDDVRQ1  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDV0044D  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
2
5
0
PLASTIC SMALL OUTLINE  
C
8.3  
7.9  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
42X 0.635  
44  
1
2X (0.3)  
NOTE 6  
14.1  
13.9  
NOTE 3  
2X  
13.335  
7.30  
6.72  
EXPOSED  
THERMAL  
PAD  
(0.15) TYP  
NOTE 6  
2X (0.6)  
NOTE 6  
23  
22  
0.27  
0.17  
44X  
4.43  
3.85  
0.08  
C A B  
6.2  
6.0  
B
(0.15) TYP  
0.25  
1.2  
1.0  
GAGE PLANE  
SEE DETAIL A  
0.75  
0.50  
0.15  
0.05  
0 - 8  
DETAIL A  
TYPICAL  
4218830/A 08/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. The exposed thermal pad is designed to be attached to an external heatsink.  
6. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDV0044D  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
SEE DETAILS  
SYMM  
44X (1.45)  
44X (0.4)  
1
44  
42X (0.635)  
SYMM  
(R0.05) TYP  
23  
22  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:6X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
OPENING  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4218830/A 08/2016  
NOTES: (continued)  
7. Publication IPC-7351 may have alternate designs.  
8. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDV0044D  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
44X (1.45)  
44X (0.4)  
SYMM  
1
44  
42X (0.635)  
SYMM  
23  
22  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE :6X  
4218830/A 08/2016  
NOTES: (continued)  
9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
10. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPA3858

Audio Line Coupling / Bridging Transformer
FILTRAN

TPA3858-1

Audio Line Coupling / Bridging Transformer
FILTRAN

TPA3858-2

Audio Line Coupling / Bridging Transformer
FILTRAN

TPA411GPLFG

Navigation Tact Switch for SMT
ITT

TPA411GPLFS

Navigation Tact Switch for SMT
ITT

TPA413GPLFG

Navigation Tact Switch for SMT
ITT

TPA413GPLFS

Navigation Tact Switch for SMT
ITT

TPA4411

80-mW CAPLESS STEREO HEADPHONE DRIVER
TI

TPA4411

80-mW DIRECTPATH™ STEREO HEADPHONE DRIVER
TAOS

TPA4411M

80-mW DIRECTPATH STEREO HEADPHONE DRIVER
TI

TPA4411M

80-mW DIRECTPATH™ STEREO HEADPHONE DRIVER
TAOS

TPA4411MRTJ

80-mW DIRECTPATH STEREO HEADPHONE DRIVER
TI