TPD2S703-Q1 [TI]

汽车类 USB D+/D- 电池短路和 IEC ESD 保护;
TPD2S703-Q1
型号: TPD2S703-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 USB D+/D- 电池短路和 IEC ESD 保护

电池
文件: 总36页 (文件大小:3025K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPD2S703-Q1  
ZHCSG62A MARCH 2017REVISED MAY 2017  
TPD2S703-Q1 汽车类 USB 双通道数据线路电池短路、VBUS 短路保护和  
IEC ESD 保护  
1 特性  
3 说明  
1
符合 AEC-Q100 标准  
工作温度范围:–40°C +125°C  
TPD2S703-Q1 是一款用于汽车高速接口(如 USB  
2.0)的双通道线路电池短路、VBUS 短路保护和  
IEC61000-4-2 ESD 保护器件。TPD2S703-Q1 包含两  
个数据线路 nFET 开关。这些开关通过提供业界一流  
的带宽,实现最小的信号衰减,同时可保护内部系统电  
路的 VD+ VD– 引脚免受过压情况的损坏,从而确  
保安全的数据通信。在这些引脚上,此器件可实现高达  
18V 的直流电过压保护。这为汽车电池及 USB VBUS  
电压轨的数据线路短路提供了充分保护。过压保护电路  
可提供业内一流的电池短路保护,能在 200ns 内关断  
数据开关,以保护上游电路免受有害电压和电流尖峰的  
影响。  
VD+VD– 上的电池短路(高达 18V)和 VBUS  
短路保护  
ESD 性能 VD+VD–  
±8kV 接触放电(IEC 61000-4-2 ISO 10605  
330pF330)  
±15kV 气隙放电(IEC 61000-4-2 ISO  
10605 330pF330)  
高速数据开关(1GHz 带宽)  
只需要 5V 电源电压  
可调节 OVP 阈值  
快速过压响应时间(典型值 200ns)  
热关断特性  
此外,为优化电源树的大小和成本,TPD2S703-Q1 只  
需要一个 5V 单电源供电。该器件允许通过电阻分压器  
网络调整 OVP 阈值和钳位电路,从而为任何收发器的  
系统保护优化提供一种简单且具有成本效益的方法。  
TPD2S703-Q1 还包括一个 FLT 引脚,该引脚会在器  
件出现过压状况时发出指示,并在过压状况消除后自动  
复位。  
集成输入使能和故障输出信号  
直通路由可保证数据完整性  
10 引脚 VSSOP 封装 (3mm × 3mm)  
10 引脚 WSON 封装 (2.5mm × 2.5mm)  
2 应用  
终端设备  
TPD2S703-Q1 还在 VD+ VD– 引脚上集成了系统级  
别的 IEC 61000-4-2 ISO 10605 ESD 钳位,因此无  
需再在应用中配置高压、低电容的外部 TVS 钳位电  
路。  
音响主机  
后座娱乐系统  
远程信息处理  
USB 集线器  
导航模块  
器件信息(1)  
器件型号  
封装  
VSSOP (10)  
WSON (10)  
封装尺寸(标称值)  
3.00mm × 3.00mm  
2.50mm x 2.50mm  
媒体接口  
TPD2S703-Q1  
接口  
USB 2.0  
USB 3.0  
(1) 要了解所有可用封装,请参见产品说明书末尾的可订购产品附  
录。  
USB 2.0 端口提供电池短路和 IEC ESD 保护  
+5V  
+5V  
+5V  
U1  
VBUS  
D+  
2
1
7
8
VD+  
VPWR  
VREF  
VD+  
VD-  
R2  
R1  
VD-  
FLT  
EN  
VD+  
VD-  
4
5
9
10  
CCLAMP CPWR  
D+  
D-  
D-  
D+  
D-  
RTOP  
RBOT  
3
6
GND  
PAD  
MODE  
GND  
11  
GND  
TPD2S703QDSKRQ1  
GND  
GND  
GND  
GND  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEU8  
 
 
 
TPD2S703-Q1  
ZHCSG62A MARCH 2017REVISED MAY 2017  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 15  
8.3 Feature Description................................................. 16  
8.4 Device Functional Modes........................................ 17  
Application and Implementation ........................ 18  
9.1 Application Information............................................ 18  
9.2 Typical Application ................................................. 18  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings—AEC Specification ............................. 4  
6.3 ESD Ratings—IEC Specification .............................. 4  
6.4 ESD Ratings—ISO Specification .............................. 4  
6.5 Recommended Operating Conditions....................... 5  
6.6 Thermal Information.................................................. 5  
6.7 Electrical Characteristics........................................... 6  
9
10 Power Supply Recommendations ..................... 21  
10.1 VPWR Path............................................................. 21  
10.2 VREF Pin ................................................................ 21  
11 Layout................................................................... 22  
11.1 Layout Guidelines ................................................. 22  
11.2 Layout Example .................................................... 22  
12 器件和文档支持 ..................................................... 23  
12.1 文档支持................................................................ 23  
12.2 接收文档更新通知 ................................................. 23  
12.3 社区资源................................................................ 23  
12.4 ....................................................................... 23  
12.5 静电放电警告......................................................... 23  
12.6 Glossary................................................................ 23  
13 机械、封装和可订购信息....................................... 24  
6.8 Power Supply and Supply Current Consumption  
Chracteristics ............................................................. 8  
6.9 Timing Requirements................................................ 8  
6.10 Typical Characteristics.......................................... 11  
Parameter Measurement Information ................ 14  
Detailed Description ............................................ 15  
8.1 Overview ................................................................. 15  
7
8
4 修订历史记录  
Changes from Original (March 2017) to Revision A  
Page  
Updated description from enable to FLT in Recommended Operating Conditions table....................................................... 5  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TPD2S703-Q1  
www.ti.com.cn  
ZHCSG62A MARCH 2017REVISED MAY 2017  
5 Pin Configuration and Functions  
DGS Package  
10-Pin SSOP  
Top View  
DSK Package  
10-Pin WSON  
Top View  
VD-  
VD+  
GND  
FLT  
1
2
3
4
5
10  
9
D-  
VD-  
VD+  
GND  
FLT  
1
2
3
4
5
10  
9
D-  
D+  
D+  
8
VREF  
VPWR  
MODE  
Thermal  
Pad  
8
VREF  
VPWR  
MODE  
7
7
EN  
6
EN  
6
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
High voltage D– USB data line, connect to USB connector D+, D– IEC61000-4-2 ESD  
protection  
1
VD–  
I/O  
I/O  
High voltage D+ USB data line, connect to USB connector D+, D– IEC61000-4-2 ESD  
protection  
2
VD+  
3
4
GND  
FLT  
Ground  
O
Ground pin for internal circuits and IEC ESD clamps  
Open-drain fault pin. See 1  
Enable active-low input. Drive EN low to enable the switches. Drive EN high to disable the  
switches. See 1 for mode selection  
5
EN  
I
Selects between device modes. See the Detailed Description section. Acts as LDO reference  
voltage for mode 1  
6
7
8
MODE  
VPWR  
VREF  
I
I
5-V DC supply input for internal circuits. Connect to internal power rail on PCB  
Pin to set OVP threshold. See the Detailed Description section for instructions on how to set  
OVP threshold  
I/O  
9
D+  
D–  
I/O  
I/O  
I/O protected low voltage D+ USB data line, connects to transceiver  
Protected low voltage D– USB data line, connects to transceiver  
10  
Copyright © 2017, Texas Instruments Incorporated  
3
TPD2S703-Q1  
ZHCSG62A MARCH 2017REVISED MAY 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1) (2)  
MIN  
–0.3  
–0.3  
MAX  
7.7  
6
UNIT  
V
VPWR  
VREF  
5-V DC supply voltage for internal circuitry  
Pin to set OVP threshold  
V
VD+,  
VD–  
Voltage range from connector-side USB data lines  
–0.3  
18  
V
D+, D– Voltage range for internal USB data lines  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
VREF + 0.3  
7.7  
V
V
VMODE  
VFLT  
VEN  
Voltage on MODE pin  
Voltage on FLT pin  
7.7  
V
Voltage on enable pin  
Operating free air temperature(3)  
Storage temperature  
7.7  
V
TA  
125  
°C  
°C  
TSTG  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(3) Thermal limits and power dissipation limits must be observed.  
6.2 ESD Ratings—AEC Specification  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1) All pins  
All pins besides  
±2000  
V(ESD)  
Electrostatic discharge  
±500  
±750  
V
corners  
Charged-device model (CDM), per AEC Q100-011  
Corner pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 ESD Ratings—IEC Specification  
VALUE  
UNIT  
IEC 61000-4-2 contact discharge  
IEC 61000-4-2 air-gap discharge  
VD+, VD– pins(1)  
VD+, VD– pins(1)  
±8000  
V(ESD)  
Electrostatic discharge  
V
±15000  
(1) See 23 for details on system level ESD testing setup.  
6.4 ESD Ratings—ISO Specification  
VALUE  
UNIT  
ISO 10605 (330 pF, 330 ) contact discharge  
(10 strikes)  
VD+, VD– pins  
VD+, VD– pins  
VD+, VD– pins  
VD+, VD– pins  
VD+, VD– pins  
VD+, VD– pins  
VD+, VD– pins  
±8000  
ISO 10605 (330 pF, 330 ) air-gap discharge  
(10 strikes)  
±15000  
±8000  
ISO 10605 (150 pF, 330 ) contact discharge  
(10 strikes)  
ISO 10605 (150 pF, 330 ) air-gap discharge  
(10 strikes)  
(1)  
VESD  
Electrostatic discharge  
±15000  
±8000  
V
ISO 10605 (330 pF, 2 k) contact discharge (10  
stikes)(2)  
ISO 10605 (330 pF, 2 k) air-gap discharge (10  
strikes)  
±15000  
±25000  
ISO 10605 (150 pF, 2 k) air-gap discharge (10  
discharges)  
(1) See 23 for details on system level ESD testing setup.  
(2) VREF > 3 V.  
4
Copyright © 2017, Texas Instruments Incorporated  
TPD2S703-Q1  
www.ti.com.cn  
ZHCSG62A MARCH 2017REVISED MAY 2017  
6.5 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
3
TYP  
MAX  
7
UNIT  
V
VPWR  
5-V DC supply voltage for internal circuitry  
Mode 0. Voltage range for VREF pin (for setting OVP threshold)  
Mode 1. Voltage range for VREF pin (for setting OVP threshold)  
Voltage range from connector-side USB data lines  
Voltage range for internal USB data lines  
Voltage range for enable  
VREF  
3.6  
3.8  
3.6  
3.6  
7
V
VREF  
0.63  
0
V
VD+, VD–  
D+, D–  
VEN  
V
0
V
0
V
VFLT  
Voltage range for FLT  
0
7
V
IFLT  
Current into open drain FLT pin FET  
0
3
mA  
µF  
µF  
pF  
kΩ  
kΩ  
CVPWR  
CVREF  
CMODE  
RMODE_0  
VPWR capacitance(1)  
VPWR pin  
VREF pin  
1
10  
1
VREF capacitance  
0.3  
3
20  
Allowed parasitic capacitance on mode pin from PCB and mode 1 external resistors  
Resistance to GND to set to mode 0  
2
2.6  
Resistance to GND to set to mode 1 (calculate parallel combination of RTOP and  
14  
20  
RMODE_1  
RBOT  
)
(1) For recommended values for capacitors and resistors, the typical values assume a component placed on the board near the pin.  
Minimum and maximum values listed are inclusive of manufacturing tolerances, voltage derating, board capacitance, and temperature  
variation. The effective value presented should be within the minimum and maximums listed in the table.  
6.6 Thermal Information  
TPD2S703-Q1  
THERMAL METRIC(1)  
DGS (VSSOP)  
10 PINS  
167.3  
56.9  
DSK (WSON)  
UNIT  
10 PINS  
61.5  
51.3  
34  
θJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJCtop  
θJB  
87.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
7.7  
1.3  
ψJB  
86.2  
34.3  
7.7  
θJCbot  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017, Texas Instruments Incorporated  
5
TPD2S703-Q1  
ZHCSG62A MARCH 2017REVISED MAY 2017  
www.ti.com.cn  
6.7 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.5  
50  
MAX  
UNIT  
V
MODE 1 ADJUSTABLE VREF  
Mode 1 VREF feedback  
regulator voltage  
Standard mode 1 set-up. EN = 0 V. Once  
VREF = 3.3 V, measure voltage on mode pin  
VMODE_CMP  
VMODE  
0.47  
0.53  
200  
Standard mode 1. Remove RTOP and RBOT.  
Power up device and wait until start-up time has  
passed. Then force 0.53 V on the MODE pin  
and measure current into pin  
Mode pin mode 1 leakage  
current  
IMODE_LEAK  
IMODE  
nA  
Informative, test parameters below; accuracy  
with RTOP and RBOT as ±1% resistors  
VREF_ACCURACY  
VREF accuracy  
VREF  
–8%  
3.04  
8%  
Standard mode 1 set-up. RTOP = 140 k± 1%,  
RBOT = 24.9 k± 1%. EN = 0. Measure value  
of VREF once it settles  
VREF_3.3V  
Mode 1 VREF set to 3.3 V  
VREF  
3.31  
0.66  
3.81  
3.58  
V
V
V
Standard mode 1 set-up. RTOP = 47.5 k± 1%,  
RBOT = 150 k± 1%.EN = 0. Measure value of  
VREF once it settles  
VREF_0.66V  
Mode 1 VREF set to 0.66 V  
Mode 1 VREF set to 3.8 V  
VREF  
0.6  
3.5  
0.72  
4.12  
Standard mode 1 set-up. RTOP = 165 k± 1%,  
RBOT = 24.9 k± 1%. EN = 0. Measure value  
of VREF once it settles  
VREF_3.8V  
VREF  
EN, FLT PINS  
Mode 0. Connect VPWR = 5 V; VREF = 3.3 V;  
VD+ = 3.3 V; Set VIH(EN) = 0 V; Sweep VIH  
from 0 V to 1.4 V; Measure when D+ drops low  
(less than or equal to 5% of 3.3 V) from 3.3 V  
High-level input voltage  
Low-level input voltage  
1.2  
VIH  
EN  
V
Mode 0. Connect VPWR = 5 V; VREF = 3.3 V;  
VD+ = 3.3 V. Set VIH(EN) = 3.3 V; Sweep VIH  
from 3.3 V to 0.5 V; Measure when D+ rise to  
95% of 3.3 V from 0 V  
0.8  
Mode 0. VPWR = 5 V; VREF = 3.3 V; VI (EN) =  
3.3 V ; Measure current into EN pin  
IIL  
Input leakage current  
EN  
1
µA  
V
Mode 0. Drive the TPS2S703-Q1 in OVP to  
assert FLT pin. Source IOL = 1 mA into FLT pin  
and measure voltage on FLT pin when asserted  
VOL  
Low-level output voltage  
FLT  
0.4  
The rising over-temperature  
protection shutdown threshold  
VPWR = 5 V, ENZ = 0 V, TA stepped up until  
FLTZ is asserted  
TSD_RISING  
140  
125  
150  
138  
165  
150  
The falling over-temperature  
protection shutdown threshold  
VPWR = 5 V, ENZ = 0 V, TA stepped down  
from TSD_RISING until FLTZ is cleared  
TSD_FALLING  
The over-temperature  
protection shutdown threshold  
hysteresis  
TSD_HYST  
TSD_RISING – TSD_FALLING  
10  
12  
15  
OVP CIRCUIT—VD±  
Mode 1. Set VPWR = 5 V; EN = 0 V; RTOP = 165  
k, RBOT = 24.9 k. Connect D± to 40-load.  
Increase VD+ or VD– from 4.1 V to 4.9 V.  
Measure the value at which FLTZ is asserted  
Input overvoltage protection  
threshold, VREF > 3.6 V  
VOVP_RISING  
VD±  
4.3  
4.5  
4.7  
V
Mode 1. Set VPWR = 5 V; EN = 0 V; RTOP = 140  
k, RBOT = 24.9 k. Increase VD+ or VD– from  
3.6 V to 4.6 V. Measure the value at which  
FLTZ is asserted. Repeat for RTOP = 39 k,  
RBOT = 150 k. Increase VD+ or VD– from 0.6  
V to 0.9 V. Measure the value at which FLTZ is  
asserted. See the resultant values meet the  
equation, and make sure to observe data  
switches turnoff.  
1.19  
×
VREF  
1.25  
×
VREF  
Input overvoltage protection  
threshold  
1.31 ×  
VREF  
VOVP_RISING  
VD±  
VD±  
V
Also check for mode 0 when VREF = 3.3 V  
Difference between rising and falling OVP  
thresholds on VD±  
VHYS_OVP  
Hysteresis on OVP  
25  
mV  
VOV  
P_RI  
SING  
VHYS  
_OVP  
After collecting each rising OVP threshold,  
lower the VD± voltage until you see FLT  
deassert. This gives the falling OVP threshold.  
Use this value to calculate VHYS_OVP  
Input overvoltage protection  
threshold  
VOVP_FALLING  
VD±  
VD±  
V
Leakage current on VD±  
during normal operation  
Standard mode 0 or mode 1. Set VD± = 0 V. D±  
= floating. Measure current flowing into VD±  
µA  
IVD_LEAK_0 V  
–0.1  
0.1  
6
Copyright © 2017, Texas Instruments Incorporated  
TPD2S703-Q1  
www.ti.com.cn  
ZHCSG62A MARCH 2017REVISED MAY 2017  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Leakage current on VD±  
during normal operation  
VD±  
VD±  
Standard mode 0 or mode 1. Set VD± = 3.6 V.  
D± = floating. Measure current flowing into VD±  
µA  
IVD_LEAK_3.6V  
2.5  
4
Standard mode 1. RTOP = 140 k± 1%, RBOT  
24.9 k± 1%. Connect D± to 40-load.  
Measure the value at which FLTZ is asserted  
=
V
V
Input overvoltage threshold  
for VREF = 3.3 V  
VOVP_3.3V  
3.61  
0.72  
4.14  
0.83  
4.67  
0.94  
VD±  
Standard mode 1. RTOP = 47.5 k± 1%, RBOT  
150 k± 1%. Connect D± to 40-load.  
Measure the value at which FLTZ is asserted  
=
Input overvoltage threshold  
for VREF = 0.66 V  
VOVP_0.66V  
SHORT-TO-BATTERY  
Charge battery-equivalent capacitor to test  
Data line hotplug short-to-  
battery tolerance  
voltage then discharge to pin under test through  
a 1 meter, 18-ga wire. (See 23 application  
information for more details)  
VDATA_STB  
V±  
D±  
18  
6
V
V
Test both D+ and D– FETs. Test D+ and D–  
independently. Short VD+ and VD– to 18 V via  
hotplug to a battery-equivalent capacitor with a  
1 meter, 18-ga wire. VREF = 3.3 V, VPWR = 5 V.  
Test in standard mode 0 and mode 1  
Data line system side  
clamping voltage during STB  
VCLAMP_STB_DP/M_3V3  
5.5  
3.2  
D±  
Test both D+ and D– FETs. Short VD+ and  
VD– to 18 V via hotplug to a battery-equivalent  
Data line system side  
clamping voltage during STB  
VCLAMP_STB_DP/M_0V6  
capacitor with a 1 meter, 18-ga wire. VREF  
=
3.5  
V
0.63 V, VPWR = 5 V. Test in standard mode 0  
and mode 1  
DATA LINE SWITCHES – VD+ to D+ or VD– to D–  
Mode 0 or 1. Set VPWR = 5 V; VREF = 3.3 V; EN  
= 0 V; Measure resistance between D+ and  
VD+ or D– and VD–, voltage between 0 and 0.4  
V
RON  
On resistance  
4
6.5  
1
Ω
Ω
Mode 0 or 1. Set VPWR = 5 V; VREF = 3.3 V; EN  
= 0 V; Measure resistance between D+ and  
VD+ or D– and VD–, sweep voltage between 0  
and 0.4 V. Take difference of resistance at 0.4-  
V and 0-V VD± bias  
RON(Flat)  
On resistance flatness  
On bandwidth (–3-dB)  
Mode 0 or 1. Set VPWR = 5 V; VREF = 3.3 V; EN  
= 0 V; Measure S21 bandwidth from D+ to VD+  
or D– to VD– with voltage swing = 400 mVpp,  
Vcm = 0.2 V  
BWON  
960  
MHz  
Copyright © 2017, Texas Instruments Incorporated  
7
TPD2S703-Q1  
ZHCSG62A MARCH 2017REVISED MAY 2017  
www.ti.com.cn  
MAX UNIT  
6.8 Power Supply and Supply Current Consumption Chracteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
Use standard mode 0 set-up. Set EN = 0 V, load D+ to 45  
VPWR rising UVLO threshold , VD+ = 3.3 V. Set VPWR = 3.5 V, and step up VPWR until  
VUVLO_RISING_  
VPWR  
3.7  
3.95  
4.2  
400  
2.9  
V
mV  
V
90% of VD+ appears on D+  
Use standard mode 0 set up. Set EN = 0 V, load D+ to 45  
, VD+ = 3.3 V. Set VPWR = 4.3 V, and step down  
VUVLO_HYST_V  
PWR  
VPWR UVLO hysteresis  
VPWR until D+ falls to 10% of VD+. This gives  
VUVLO_FALLING_VPWR. VUVLO_RISING_VPWR  
250  
2.6  
75  
300  
2.7  
VUVLO_FALLING_VPWR = VUVLO_HYST_VPWR for this unit  
Use standard mode 0 set up. Set EN = 0V, load D+ to 45  
, VD+ = 3.3 V. Set VREF = 2.5 V, and step up  
VREF until 90% of VD+ appears on D+  
VUVLO_RISING_ VREF rising UVLO threshold  
in mode 0  
VREF  
Use standard mode 0 set up. Set EN = 0 V, load D+ to 45  
, VD+ = 3.3 V. Set VREF = 3 V, and step down  
VREF until D+ falls to 10% of VD+. This gives  
VUVLO_FALLING_VREF. VUVLO_RISING_VREF  
VUVLO_HYST_V  
REF  
VREF UVLO hysteresis  
125  
200  
mV  
–VUVLO_FALLING_VREF = VUVLO_HYST_VREF for this unit  
IVPWR_DISABLE VPWR disabled current  
Use standard mode 0. EN = 5 V . Measure current into  
VPWR  
110  
110  
10  
µA  
µA  
µA  
µA  
µA  
µA  
consumption  
D_MODE0  
IVPWR_DISABLE VPWR disabled current  
Use standard mode 1. EN = 5 V. Measure current into  
VPWR  
consumption  
D_MODE1  
IVREF_DISABLE VREF disabled current  
Use standard mode 0. EN = 5 V. Measure current into  
VREF  
consumption mode 0  
D
VPWR pperating current  
IVPWR_MODE0  
Use standard mode 0. EN = 0 V. Measure current into  
VPWR  
250  
350  
20  
consumption  
VPWR operating current  
IVPWR_MODE1  
Use standard mode 1. EN = 0 V. Measure current into  
VPWR  
consumption  
VREF operating current  
IVREF  
Use standard mode 0. EN = 0 V. Measure current into  
VREF  
12  
22  
consumption mode 0  
Standard mode 1. 0.1 µF < CVREF < 3 µF. Set-up for  
charging to 3.3 V. Use a high voltage capacitor that does  
not derate capacitance up the 3.3 V. Measure slope to  
calculate the current when CVREF cap is being  
ICHG_VREF  
VREF fast charge current  
mA  
µA  
charged. Test to check this OPEN LOOP method  
ID_OFF_LEAK_S  
TB  
Mode 0. Measured flowing into D+ or D– supply, VPWR = 0  
V, VD+ or VD– = 18 V, EN = 0 V, VREF = 0 V, D± = 0 V  
–1  
–1  
1
1
ID_ON_LEAK_ST  
B
Mode 0. Measured flowing into D+ or D– supply, VPWR = 5  
V, VD+ or VD– = 18 V, EN = 0 V, VREF = 3.3 V, D± = 0 V  
µA  
µA  
Mode 0. Measured flowing out of VD+ or VD– supply,  
VPWR = 0 V, VD+ or VD– = 18 V, EN = 0 V, VREF = 0 V,  
D± = 0 V  
IVD_OFF_LEAK_  
STB  
120  
120  
Mode 0. Measured flowing out of VD+ or VD– supply,  
VPWR = 5 V, VD+ or VD– = 18 V, EN = 0 V, VREF = 3.3 V,  
D± = 0 V  
IVD_ON_LEAK_S  
TB  
IVPWR_TO_VRE Leakage from VPWR to  
Use standard mode 0. Set VREF = 0 V. Measured  
current flowing out of VREF pin  
1
1
µA  
µA  
VREF  
F_LEAK  
IVREF_TO_VPW Leakage from VREF to  
Use standard mode 0. Set VPWR = 0 V. Measured as  
current flowing out of VPWR pin  
VPWR  
R_LEAK  
6.9 Timing Requirements  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM MAX UNIT  
ENABLE PIN AND VREF FAST CHARGE  
Time between when 5 V is applied to VPWR, and VREF  
TVREF_CHG  
VREF fast charge time  
reaches VVREF_FAST_CHG. Needs to happen before or at  
same time tON_STARTUP completes  
0.5  
1
ms  
8
Copyright © 2017, Texas Instruments Incorporated  
TPD2S703-Q1  
www.ti.com.cn  
ZHCSG62A MARCH 2017REVISED MAY 2017  
Timing Requirements (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM MAX UNIT  
Mode 0. EN = 0 V, measured from VPWR and VREF  
=
UVLO+ to data FET ON, VPWR comes to UVLO+ second.  
Place 3.3 V on VD±. Ramp VREF to 3.3 V, then VPWR  
to 5 V and measure the time it takes for D± to reach 90%  
of VD±  
TON_STARTU Device turnon time from UVLO  
0.5  
1
ms  
mode 0  
P_MODE0  
Informative. mode 1. EN = 0 V, measured from VPWR  
UVLO+ to data FET ON  
=
0.5 +  
TCHG_C  
TON_STARTU Device turnon time from UVLO  
ms  
ms  
µs  
mode 1  
P_MODE1  
VREF  
Mode 1. EN = 0 V, measured from VPWR = UVLO+ to  
data FET ON, CVREF = 1 µF, VREF_FINAL = 3.3 V.  
Measure the time it takes for D± to reach 90% of VD±  
TON_STARTU Device turnon time from UVLO  
0.6  
1
mode 1  
P_MODE1_3.3V  
Mode 0. VPWR = 5 V, VREF = 3.3 V, time from EN is  
asserted until data FET is ON. Place 3.3 V on VD±,  
measure the time it takes for D± to reach 90% of VD±  
TON_EN_MOD  
E0  
Device turnon time mode 0  
150  
Mode 1. VPWR = 5 V, VREF_INITIAL = 0 V, time from EN is  
asserted until data FET is ON. Place 3.3 V on VD±,  
measure the time it takes for D± to reach 90% of VD±  
150 +  
TCHG_V  
TON_EN_MOD  
E1  
Device turnon time mode 1  
µs  
REF  
Mode 1. VPWR = 5 V, VREF_INITIAL = 0 V, time from EN is  
TON_EN_MOD Device turnon time mode 1 for asserted until data FET is ON. Place 3.3 V on VD±,  
300  
µs  
µs  
VREF = 3.3 V  
measure the time it takes for D± to reach 90% of  
VD±. CVREF = 1 µF, VREF_FINAL = 3.3 V  
E1_3.3V  
Mode 0 or 1. VPWR = 5 V, VREF = 3.3 V, time from EN is  
deasserted until data FET is off. Place 3.3 V on VD±,  
measure the time it takes for D± to fall to 10% of  
VD±, R= 45 Ω  
TOFF_EN  
Device turnoff time  
5
Informative. Mode 1. Time from VREF = 0 V to 80% ×  
VREF_FINAL after EN transitions from high to low  
(CVREF  
× 0.8  
(VREF_FI  
NAL)/(IC  
TCHG_CVREF Time to charge CVREF  
s
HG_VREF  
)
TCHG_CVREF  
_3.3V  
Mode 1. Time from VREF = 0 V to 90% × 3.3 V after EN  
transitions from high to low, CVREF = 1 µF  
Time to charge CVREF to 3.3 V  
132  
µs  
µs  
Mode 1. Time from VREF = 0 V to 90% × 0.63 V after EN  
transitions from high to low, CVREF = 1 µF. RTOP = 47.5  
k± 1%, RBOT = 150 k± 1%  
TCHG_CVREF Time to charge CVREF to 0.66  
_0.66V  
26  
V
OVER VOLTAGE PROTECTION  
Mode 0 or 1. Measured from OVP condition to FET turn  
off . Short VD± to 5 V and measure the time it takes D±  
voltage to reach 0.1 × VD±_CLAMP_MAX from the time the 5-  
V hot-plug is applied. RLOAD_D± = 45 .(1) (2)  
tOVP_response  
_VBUS  
OVP response time to VBUS  
2
µs  
Mode 0 or 1. Measured from OVP condition to FET turn  
off . Short VD± to 18 V and measure the time it takes D±  
voltage to reach 0.1 × VD±_CLAMP_MAX from the time the  
18-V hot-plug is applied. RLOAD_D± = 45 (1) (2)  
tOVP_response OVP response time  
0.1  
1
µs  
tOVP_Recov  
_FLT  
Recovery time FLT pin  
Measured from OVP clear to FLT deassertion(1)  
32  
32  
ms  
Measured from OVP clear until FET turns back on. Drop  
VD+ from 16 V to 3.3 V with VREF = 3.3 V, measure time  
it takes for D+ to reach 90% of 3.3 V  
tOVP_Recov  
_FET  
Recovery time for data FET to  
turn back on  
ms  
ms  
tOVP_ASSERT FLT assertion time  
Measured from OVP on VD+ or VD– to FLT assertion  
12.6  
18 23.4  
(1) Shown in 1.  
(2) Specified by design, not production tested.  
版权 © 2017, Texas Instruments Incorporated  
9
TPD2S703-Q1  
ZHCSG62A MARCH 2017REVISED MAY 2017  
www.ti.com.cn  
VOVP  
VD+/-  
/EN  
tOVP_OFF  
tOVP_Recov  
D+/-  
/FLT  
tOVP_/FLT_ON  
tOVP_/FLT_OFF  
(1) OVP Operation – VD+, VD–  
1. TPD2S703-Q1 Timing Diagram  
10  
版权 © 2017, Texas Instruments Incorporated  
TPD2S703-Q1  
www.ti.com.cn  
ZHCSG62A MARCH 2017REVISED MAY 2017  
6.10 Typical Characteristics  
100  
80  
60  
40  
20  
0
60  
40  
20  
0
VD-  
D-  
VD-  
D-  
-20  
-40  
-60  
-20  
-40  
-10  
0
10 20 30 40 50 60 70 80 90 100  
Time (ns)  
-10  
0
10 20 30 40 50 60 70 80 90 100  
Time (ns)  
Fig1  
Fig2  
2. 8-kV IEC 61400-4-2 Contact Waveform  
3. –8-kV IEC 61400-4-2 Contact Waveform  
80  
40  
20  
VD-  
D-  
VD-  
D-  
60  
40  
20  
0
0
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-10  
0
10 20 30 40 50 60 70 80 90 100  
Time (ns)  
-10  
0
10 20 30 40 50 60 70 80 90 100  
Time (ns)  
Fig3  
Fig4  
4. 8-kV ISO 10605 (330-pF, 330-Ω) Contact Waveform  
5. –8-kV ISO 10605 (330-pF, 330-Ω) Contact Waveform  
6
1
0.8  
5
4
3
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
2
/EN  
VDê  
1
Dê  
/FLT  
0
-5  
0
5
10  
15  
20  
25  
-600  
-400  
-200  
0
200  
400  
600  
Voltage (V)  
Time (ms)  
Fig5  
Fig6  
6. Data Line I-V Curve  
7. Data Switch Turnon Time  
版权 © 2017, Texas Instruments Incorporated  
11  
TPD2S703-Q1  
ZHCSG62A MARCH 2017REVISED MAY 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
200  
200  
180  
160  
140  
120  
100  
80  
Diabled  
Enabled  
180  
160  
140  
120  
100  
80  
60  
60  
40  
40  
Disabled  
Enabled  
20  
20  
0
0
3
3.5  
4
4.5  
5
5.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Bias Voltage (V)  
Temperature (èC)  
Fig7  
Fig8  
8. VPWR Operating Current vs Bias Voltage  
9. VPWR Operating Current vs Temperature  
(VPWR = 5 V)  
6
5.5  
5
4.5  
4
3.5  
3
4.5  
4
2.5  
2
3.5  
3
1.5  
1
2.5  
2
-40èC  
25èC  
85èC  
125èC  
0.5  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Bias Voltage (V)  
Bias Voltage (V)  
D010  
Fig1  
10. VD± Leakage Current at 18 V Across Temperature  
11. Data Switch RON vs Bias Voltage  
(Enabled)  
10.5  
9.5  
8.5  
7.5  
6.5  
5.5  
4.5  
3.5  
2.5  
1.5  
0.5  
-0.5  
13.5  
25  
20  
15  
10  
5
12.5  
VD+ V  
VD+ I  
D+ V  
/FLT  
VD+ V  
12  
VD+ I  
D+ V  
/FLT  
10  
7.5  
5
10.5  
9
7.5  
6
4.5  
3
2.5  
0
1.5  
0
0
-1.5  
-3  
-5  
-2.5  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
-0.5  
-0.2  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
Time (us)  
Time (us)  
D011  
D012  
12. Data Switch Short-to-5 V Response Waveform  
13. Data Switch Short-to-18 V Response Waveform  
12  
版权 © 2017, Texas Instruments Incorporated  
TPD2S703-Q1  
www.ti.com.cn  
ZHCSG62A MARCH 2017REVISED MAY 2017  
Typical Characteristics (接下页)  
7
7
6
5
4
3
2
1
0
VDê  
/FLT  
VDê  
/FLT  
6
5
4
3
2
1
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Time (ms)  
Time (ms)  
Fig1  
Fig1  
14. FLT Assertion Time During OVP  
15. FLT Recover Time After OVP Clear  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
1E+5  
1E+6  
1E+7  
1E+8  
1E+9  
5E+9  
1E+5  
1E+6  
1E+7  
1E+8  
1E+9  
5E+9  
Frequency (Hz)  
Frequency (Hz)  
D01051  
D016  
16. Data Switch Differential Bandwidth  
17. Data Switch Single-Ended Bandwidth  
19. USB2.0 Eye Diagram (With TPD2S703-Q1)  
18. USB2.0 Eye Diagram (No TPD2S703-Q1)  
版权 © 2017, Texas Instruments Incorporated  
13  
TPD2S703-Q1  
ZHCSG62A MARCH 2017REVISED MAY 2017  
www.ti.com.cn  
7 Parameter Measurement Information  
USB 2.0  
CMC  
10 nH  
10 nH  
D-  
D+  
VD-  
45 Ω  
VD+  
GND  
45 Ω  
CCLAMP  
5V  
TPD2S703-Q1  
VREF  
RTOP  
5 V  
VPWR  
/FLT  
/EN  
CPWR  
MODE  
RBOT  
Copyright © 2017, Texas Instruments Incorporated  
20. ESD Setup  
USB 2.0  
CMC  
10nH  
VD-  
D-  
45Ω  
45Ω  
10nH  
VD+  
D+  
CCLAMP  
5 V  
TPD2S703-Q1  
VREF  
GND  
1m cable  
RTOP  
5V  
/FLT  
/EN  
VPWR  
CPWR  
DC Power  
Supply  
Strike  
Output  
MODE  
22 mF  
35 V  
RBOT  
STB Test Aparatus  
Copyright © 2017, Texas Instruments Incorporated  
21. Short-to-Battery Setup  
14  
版权 © 2017, Texas Instruments Incorporated  
TPD2S703-Q1  
www.ti.com.cn  
ZHCSG62A MARCH 2017REVISED MAY 2017  
8 Detailed Description  
8.1 Overview  
The TPD2S703-Q1 is a 2-Channel Data Line Short-to-Battery, Short-to-VBUS, and IEC61000-4-2 ESD protection  
device for automotive high-speed interfaces like USB2.0. The TPD2S703-Q1 contains two data line nFET  
switches which ensure safe data communication while protecting the internal system circuits from any  
overvoltage conditions at the VD+ and VD– pins. On these pins, this device can handle overvoltage protection up  
to 18-V DC. This provides sufficient protection for shorting the data lines to the car battery as well as the USB  
VBUS rail.  
Additionally, the TPD2S703-Q1 has a FLT pin which provides an indication when the device sees an overvoltage  
condition and automatically resets when the overvoltage condition is removed. The TPD2S703-Q1 also  
integrates IEC ESD clamps on the VD+ and VD– pins, thus eliminating the need for external TVS clamp circuits  
in the application.  
The TPD2S703-Q1 has an internal oscillator and charge pump that controls the turnon of the internal nFET  
switches. The internal oscillator controls the timers that enable the charge pump and resets the open-drain FLT  
output. If VD+ and VD– are less than VOVP, the internal charge pump is enabled. After an internal delay, the  
charge-pump starts-up, turning on the internal nFET switches. At any time, if VD+ or VD– rises above VOVP  
,
TPD2S703-Q1 asserts FLT pin LOW and the nFET switches are turned off.  
8.2 Functional Block Diagram  
VPWR  
VREF  
MODE  
Control Logic  
FLT  
EN  
Overvoltage  
Protection  
VD+  
VD-  
D+  
D-  
ESD  
Clamps  
GND  
Copyright © 2017, Texas Instruments Incorporated  
版权 © 2017, Texas Instruments Incorporated  
15  
 
TPD2S703-Q1  
ZHCSG62A MARCH 2017REVISED MAY 2017  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 OVP Operation  
When the VD+, or VD– voltages rise above VOVP, the internal nFET switches are turned off, protecting the  
transceiver from overvoltage conditions. The response is very rapid, with the FET switches turning off in less  
than 1 µs. Before the OVP condition, the FLT pin is High-Z, and is pulled HIGH via an external resistor to  
indicate there is no fault. Once the OVP condition occurs, the FLT pin is asserted LOW. When the VD+, or VD–  
voltages returns below VOVP – VHYS-OVP, the nFET switches are turned on again. When the OVP condition is  
cleared and the nFETs are completely turned on, the FLT is reset to high-Z.  
8.3.2 OVP Threshold  
5.0 V  
4.5 V  
4.5  
1.875 V  
0.9 V  
4.0 V  
0.375 V  
VOVP = 0.75 V  
3.6 V  
1 / Ratio = 1.25  
VREF = 0.6 V  
0.15 V  
1.5 V  
22. OVP Threshold  
The OVP Threshold VOVP is set by VREF according to 公式 1, 公式 2 and 公式 3.  
VOVP = 1.25 ì VREF  
(1)  
(2)  
(3)  
VREF Ç 3.6 V  
VOVP = 4.5 V for VREF > 3.6 V  
公式 1, 公式 2 and 公式 3 yield the typical VOVP values. See the parametric tables for the minimum and maximum  
values that include variation over temperature and process. 22 gives a graphical representation of the  
relationship between VOVP and VREF  
.
VREF can be set either by an external regulator (Mode 0) or an internal adjustable regulator (Mode 1). See the  
VREF Operation section for more details on how to operate VREF in Mode 0 and Mode 1.  
8.3.3 D± Clamping Voltage  
The TPD2S703-Q1 provides a differentiated device architecture which allows the system designer to control the  
clamping voltage the protected transceiver sees from the D+ and D– pins. This architecture allows the system  
designer to minimize the amount of stress the transceiver sees during Short-to-Battery and ESD events. The  
clamping voltage that appears on the D+ and D– lines during a short-to-battery or ESD event obeys 公式 4.  
VCLAMP _ DP / M = VREF + VBR + IRDYN  
(4)  
16  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
 
 
 
TPD2S703-Q1  
www.ti.com.cn  
ZHCSG62A MARCH 2017REVISED MAY 2017  
Feature Description (接下页)  
Where VBR approximately = 0.7 V, IRDYN approximately = 1 V. By adjusting VREF, the clamping voltage of the D+  
and D– lines can be adjusted. As VREF also controls the OVP threshold, take care to insure that the VREF setting  
both satisfies the OVP threshold requirements while simultaneously optimizing system protection on the D+ and  
D– lines.  
The size of the capacitor used on the VREF pin also influences the clamping voltage as transient currents during  
Short-to-Battery and ESD events flow into the VREF capacitor. This causes the VREF voltage to increase, and  
likewise the clamping voltage on D± according to 公式 4. The larger capacitor that is used, the better the  
clamping performance of the device is going to be. See the parametric tables for the clamping performance of  
the TPD2S703-Q1 with a 1-µF capacitor.  
8.4 Device Functional Modes  
The TPD2S703-Q1 has two modes of operation which vary the way the VREF pin functions. In Mode 0, the  
VREF pin is connected to an external regulator which sets the voltage on the VREF pin. In Mode 1, the  
TPD2S703-Q1 uses an adjustable internal regulator to set the VREF voltage. Mode 1 enables the system  
designer to operate the TPD2S703-Q1 with a single power supply, and have the flexibility to easily set the VREF  
voltage to any voltage between 0.6 V and 3.8 V with two external resistors.  
版权 © 2017, Texas Instruments Incorporated  
17  
TPD2S703-Q1  
ZHCSG62A MARCH 2017REVISED MAY 2017  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPD2S703-Q1 offers 2-channels of short-to-battery protection (up to 18-V DC), short-to-VBUS protection,  
and IEC ESD protection for automotive high speed interfaces such as USB 2.0. For the overvoltage protection  
(OVP), this device integrates N-channel FET’s which quickly isolate (200 ns) the protected circuitry in the event  
of an overvoltage condition on the VD+ and VD– lines. With respect to the ESD protection, the TPD2S703-Q1  
has an internal clamping diode on each data line (VD+ and VD–) which provides 8-kV contact ESD protection  
and 15-kV air-gap ESD protection. More details on the internal components of the TPD2S703-Q1 can be found in  
the Overview section.  
The TPD2S703-Q1 also has the ability to vary the OVP threshold based on the configuration of the Mode pin and  
the voltage present on the VREF pin (0.6 V-4.5 V). This functionality is discussed in greater depth in the OVP  
Threshold section. Once the VREF threshold is crossed, a fault is detectable to the user through the FLT pin,  
where 5 V on the pin indicates no fault is detected, and 0 V-0.4 V represents a fault condition. 23 shows the  
TPD2S703-Q1 in a typical application, interfacing between the protected internal circuitry and the connector side,  
where ESD vulnerability is at its highest.  
9.2 Typical Application  
+5V  
+5V  
+5V  
U1  
VD+  
VBUS  
D+  
2
1
7
8
VPWR  
VREF  
VD+  
VD-  
R2  
R1  
VD-  
FLT  
EN  
VD+  
VD-  
4
5
9
10  
CCLAMP CPWR  
D+  
D-  
D-  
D+  
D-  
RTOP  
RBOT  
3
6
GND  
PAD  
MODE  
GND  
11  
GND  
TPD2S703QDSKRQ1  
GND  
GND  
GND  
GND  
Copyright © 2017, Texas Instruments Incorporated  
23. USB 2.0 Port With Short-to-Battery and IEC ESD Protection  
18  
版权 © 2017, Texas Instruments Incorporated  
 
TPD2S703-Q1  
www.ti.com.cn  
ZHCSG62A MARCH 2017REVISED MAY 2017  
Typical Application (接下页)  
9.2.1 Design Requirements  
9.2.1.1 Device Operation  
1 gives the complete device functionality in response to the EN pin, to overvoltage conditions at the connector  
(VD± pins), to thermal shutdown, and to the conditions of the VPWR, VREF, and MODE pins.  
1. Device Operation Table  
Functional Mode EN  
NORMAL OPERATION  
MODE  
VREF  
VPWR  
VD±  
TJ  
FLT  
Comments  
Mode 0  
X
Device unpowered, data  
switches open  
R
bot 2.6 kΩ  
bot 2.6 kΩ  
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
unpowered 1  
Mode 0  
X
Device unpowered, data  
switches open  
R
X
X
unpowered 2  
Mode 1  
X
Device unpowered, data  
switches open  
Rtop | | Rbot > 14 kΩ  
bot 2.6 kΩ  
Rtop | | Rbot > 14 kΩ  
X
X
unpowered  
Device disabled, data switches  
open  
Mode 0 disabled  
Mode 1 disabled  
H
H
R
>UVLO  
>UVLO  
>UVLO  
<TSD  
<TSD  
Set by Rtop  
and Rbot  
Device disabled, data switches  
open, VREF is disabled  
Device enabled, data switches  
closed, VREF is the value set  
by the power supply on VREF  
Mode 0 enabled  
Mode 1 enabled  
L
L
R
bot 2.6 kΩ  
>UVLO  
>UVLO  
>UVLO  
<OVP  
<OVP  
<TSD  
<TSD  
H
H
Device enabled, data switches  
closed, VREF is the value set  
by the Rtop and Rbot resistor  
divider  
Set by Rtop  
and Rbot  
Rtop | | Rbot > 14 kΩ  
FAULT CONDITIONS  
Thermal shutdown, data  
switches opened, FLT pin  
asserted  
Mode 0 thermal  
X
R
bot 2.6 kΩ  
X
>UVLO  
>UVLO  
X
X
>TSD  
>TSD  
L
L
shutdown  
Thermal shutdown, data  
switches opened, VREF is  
disabled, FLT pin asserted  
Mode 1 thermal  
shutdown  
Set by Rtop  
and Rbot  
X
L
Rtop | | Rbot > 14 kΩ  
Data line overvoltage  
protection mode. OVP is set  
relative to the voltage on VREF  
Data switches opened, FLT  
pin asserted  
Mode 0 OVP fault  
Mode 1 OVP fault  
Rbot 2.6 kΩ  
>UVLO  
>UVLO  
>UVLO  
>OVP  
>OVP  
<TSD  
<TSD  
L
L
.
Data line overvoltage  
protection mode. OVP is set  
relative to the voltage on VREF  
Data switches opened, fault  
pin asserted  
Set by Rtop  
and Rbot  
L
Rtop | | Rbot > 14 kΩ  
.
9.2.2 Detailed Design Procedure  
9.2.2.1 VREF Operation  
The TPD2S703-Q1 has two modes of operation which vary the way the VREF pin functions. In Mode 0, the VREF  
pin is connected to an external regulator which sets the voltage on the VREF pin. In Mode 1, the TPD2S703-Q1  
uses an adjustable internal regulator to set the VREF voltage. Mode 1 enables the system designer to operate the  
TPD2S703-Q1 with a single power supply, and have the flexibility to easily set the VREF voltage to any voltage  
between 0.6 V and 3.8 V with two external resistors.  
9.2.2.1.1 Mode 0  
To set the device into Mode 0, ensure that Rbot, resistance between the MODE pin and ground, is less than 2.6  
k. The easiest way to implement Mode 0 is to directly connect the mode pin to GND on your PCB. With this  
resistance condition met, connect VREF to an external regulator to set the VREF voltage.  
版权 © 2017, Texas Instruments Incorporated  
19  
 
TPD2S703-Q1  
ZHCSG62A MARCH 2017REVISED MAY 2017  
www.ti.com.cn  
9.2.2.1.2 Mode 1  
To operate in Mode 1, ensure that Rtop || Rbot, resistance between the MODE pin and ground, is greater than 14  
k. This is accomplished by insuring Rtop || Rbot > 14 kbecause when the device is initially powered up, VREF is  
at ground until the internal circuitry recognizes if the device is in Mode 1 or Mode 2.  
In Mode 1, VREF is set by using an internal regulator to set the voltage. Using a resistor divider off of a feedback  
comparator is how to set VREF, similar to a standard LDO or DC/DC. VREF is set in Mode 1 according to 公式 5.  
VMODE RTOP + RBOT  
(
)
VREF =  
RBOT  
(5)  
公式 5 yields the typical value for VREF. When using ±1% resistors RTOP and RBOT, VREF accuracy is going to be  
±5%. Therefore, the minimum and maximum values for VREF can be calculated off of the typical VREF. The  
parametric tables above give example RTOP and RBOT resistors to use for standard output VREF voltages for Mode  
1.  
9.2.2.2 Mode 1 Enable Timing  
In Mode 1, when the TPD2S703-Q1 is disabled, the output regulator is disabled, leading VREF to discharge to 0 V  
through RTOP and RBOT. It is desired for VREF to be at 0 V when the device is disabled to minimize the clamping  
voltage during a power disabled Short-to-Battery or ESD event. If VREF is at 0 V, this holds D± near ground  
during these fault events.  
When enabling the TPD2S703-Q1, VREF is quickly charged up to insure a quick turnon time of the Data FETs.  
Data FET turnon is gated by VREF reaching 80% of its final voltage plus 150 µs to insure a proper OVP threshold  
is set before passing data. This prevents false OVPs due to normal operation. Because Data FET turnon is gated  
by charging the VREF clamping capacitor, the size of the capacitor influences the turnon time of the Data  
switches. The TPD2S703-Q1’s internal regulator uses a constant current source to quickly charge the VREF  
clamping capacitor, so the charging time of CVREF can easily be calculated with 公式 6.  
CVREF ì0.8 VREFFINAL  
(
)
tCHG _ CVREF =  
ICHG _ VREF  
(6)  
Where CVREF is the clamping capacitance on VREF, VREFFINAL is the final value VREF is set to, and ICHG_VREF = 22  
mA (typical). If VREF = 1 V, 0.8 is used in the above equation because 80% of VREF is the amount of time that  
gates the turnon of the Data FETs. Once tCHG_CVREF is calculated, the typical turnon time of the Data FETs can  
be calculated from 公式 7.  
tON_EN_MODE1 = tCHG_CVREF + 150 ms  
(7)  
20  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
TPD2S703-Q1  
www.ti.com.cn  
ZHCSG62A MARCH 2017REVISED MAY 2017  
9.2.3 Application Curves  
25. USB2.0 Eye Diagram (System from Typical  
24. USB2.0 Eye Diagram (Board Only, Through Path)  
Application Schematic)  
10 Power Supply Recommendations  
10.1 VPWR Path  
The VPWR pin provides power to the TPD2S703-Q1. A 10-μF capacitor is recommended on VPWR as close to the  
pin as possible for localized decoupling of transients. A supply voltage above the UVLO threshold for VPWR must  
be supplied for the device to power on.  
10.2 VREF Pin  
The VREF pin provides a voltage reference for the data switch OVP level as well as a bypass for ESD clamping. A  
1-μF capacitor must be placed as close to the pin as possible and the supply must be set to be above the UVLO  
threshold for VREF  
.
版权 © 2017, Texas Instruments Incorporated  
21  
TPD2S703-Q1  
ZHCSG62A MARCH 2017REVISED MAY 2017  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Proper routing and placement maintains signal integrity for high-speed signals. The following guidelines apply to  
the TPD2S703-Q1:  
Place the bypass capacitors as close as possible to the VPWR and VREF pins. Capacitors must be attached  
to a solid ground. This minimizes voltage disturbances during transient events such as short-to-battery, ESD,  
or overcurrent conditions.  
High speed traces (data switch path) must be routed as straight as possible and any sharp bends must be  
minimized.  
Standard ESD recommendations apply to the VD+, VD- pins as well:  
The optimum placement is as close to the connector as possible.  
EMI during an ESD event can couple from the trace being struck to other nearby unprotected traces,  
resulting in early system failures.  
The PCB designer must minimize the possibility of EMI coupling by keeping any unprotected traces away  
from the protected traces which are between the TVS and the connector.  
Route the protected traces as straight as possible.  
Eliminate any sharp corners on the protected traces between the TVS and the connector by using rounded  
corners with the largest radii possible.  
Electric fields tend to build up on corners, increasing EMI coupling.  
11.2 Layout Example  
26. TPD2S703-Q1 Layout  
22  
版权 © 2017, Texas Instruments Incorporated  
TPD2S703-Q1  
www.ti.com.cn  
ZHCSG62A MARCH 2017REVISED MAY 2017  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
如需相关文档,请参阅:  
TPD2S703-Q1 评估模块用户指南》  
12.2 接收文档更新通知  
如需接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。请单击右上角的提醒我 进行注册,即可每周接收  
产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2017, Texas Instruments Incorporated  
23  
TPD2S703-Q1  
ZHCSG62A MARCH 2017REVISED MAY 2017  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
24  
版权 © 2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPD2S703QDGSRQ1  
TPD2S703QDSKRQ1  
ACTIVE  
ACTIVE  
VSSOP  
SON  
DGS  
DSK  
10  
10  
2500 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
13Z  
NIPDAU  
14XI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPD2S703QDGSRQ1  
TPD2S703QDSKRQ1  
VSSOP  
SON  
DGS  
DSK  
10  
10  
2500  
3000  
330.0  
180.0  
12.4  
8.4  
5.3  
2.8  
3.4  
2.8  
1.4  
1.0  
8.0  
4.0  
12.0  
8.0  
Q1  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPD2S703QDGSRQ1  
TPD2S703QDSKRQ1  
VSSOP  
SON  
DGS  
DSK  
10  
10  
2500  
3000  
366.0  
210.0  
364.0  
185.0  
50.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
DSK 10  
2.5 x 2.5 mm, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225304/A  
PACKAGE OUTLINE  
DSK0010A  
WSON - 0.8 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
2.6  
2.4  
A
B
PIN 1 INDEX AREA  
2.6  
2.4  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
1.2 0.1  
6
5
1
2X  
2
11  
2
0.1  
10  
8X 0.5  
0.3  
10X  
0.45  
0.35  
0.2  
0.1  
0.05  
10X  
PIN 1 ID  
(OPTIONAL)  
C A B  
C
4218903/B 10/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSK0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (0.6)  
(1.2)  
10  
1
10X (0.25)  
SYMM  
(2)  
11  
8X (0.5)  
(0.75)  
(R0.05) TYP  
5
6
(0.35)  
(
0.2) VIA  
TYP  
SYMM  
(2.3)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218903/B 10/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSK0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (0.6)  
SYMM  
1
10  
METAL  
TYP  
10X (0.25)  
SYMM  
11  
8X (0.5)  
(0.89)  
6
(R0.05) TYP  
5
(1.13)  
(2.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11  
84% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4218903/B 10/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPD2S703QDGSRQ1

Automotive USB D+/D- short-to-battery and IEC ESD protection | DGS | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPD2S703QDSKRQ1

Automotive USB D+/D- short-to-battery and IEC ESD protection | DSK | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPD2XGKZRC00016G

DWDM 80km SFP Transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OPLINK

TPD2XGKZRC00017G

DWDM 80km SFP Transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OPLINK

TPD2XGKZRC00018G

DWDM 80km SFP Transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OPLINK

TPD2XGKZRC00019G

DWDM 80km SFP Transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OPLINK

TPD2XGKZRC00020G

DWDM 80km SFP Transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OPLINK

TPD2XGKZRC00021G

DWDM 80km SFP Transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OPLINK

TPD2XGKZRC00022G

DWDM 80km SFP Transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OPLINK

TPD2XGKZRC00023G

DWDM 80km SFP Transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OPLINK

TPD2XGKZRC00024G

DWDM 80km SFP Transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OPLINK

TPD2XGKZRC00025G

DWDM 80km SFP Transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OPLINK