TPD3S716-Q1 [TI]

汽车类 USB 0.5A 至 2.4A 可调节电流限制和 VBUS/D+/D- VBATT 短路保护;
TPD3S716-Q1
型号: TPD3S716-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 USB 0.5A 至 2.4A 可调节电流限制和 VBUS/D+/D- VBATT 短路保护

文件: 总33页 (文件大小:3133K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
TPD3S716-Q1 可提供可调电流限制、电池短路保护和其他短路保护的汽车类  
USB 2.0 接口保护器件  
1 特性  
3 说明  
• 符AEC-Q100 标准1 )  
– 工作温度范围40°C +125°C  
提供功能安全  
TPD3S716-Q1 是一套具有可调节电流限制功能的单芯  
片解决方案可为汽车应用中 USB 连接器的 VBUS  
数据线路提供电池短路保护、短路保护以及 ESD 保  
护。集成的数据开关提供了出色的带宽能够在提供  
18V 电池短路保护的同时最大限度地减少信号衰减。  
该器件具有 1GHz 的高带宽适用于一些采用 USB2.0  
高速数据速率的应用Car Play。此外该器件还  
具有 720MHz 以上的附加带宽裕量有助于保持一个  
干净的 USB 2.0 眼图并且支持使用较长的不可分离  
电缆常见于汽车 USB 环境中。电池短路保护可将  
内部系统电路隔离防止其受到 VBUS_CONVD+ 和  
VD– 引脚上的任何过压情况的影响。在这些引脚上,  
TPD3S716-Q1 能够处理高达 18V 的过压情况热插  
拔和直流事件。过压保护电路可提供业内一流的电池  
短路保护能够极为可靠地关断数据开关以保护上游电  
路免遭有害电压和电流尖峰的影响。  
– 可帮助进行功能安全系统设计的文档  
VBUS_CON 引脚上具有电池短路保护18V)  
和接地短路保护  
VD+ VD脚上具有电池短路保护高达  
18VVBUS 短路保护  
VBUS_CON  
VD+VDIEC 61000-4-2 ESD 保护  
±8kV 接触放电  
±15kV 气隙放电  
VBUS_CONVD+ VD脚上具ISO 10605  
330pF330ΩESD 保护  
±8kV 接触放电  
±15kV 气隙放电  
RON nFET VBUS 开关典型值63mΩ)  
• 高速数据开关3dB 带宽1GHz)  
• 可调节断续电流限制高2.4A  
• 短暂过压响应时间  
VBUS_CON 引脚还提供可调节的电流限制负载开关以及  
接地短路保护功能。该器件支持高达 2.4A VBUS  
支持 USB BC1.2USB Type-C 5V/1.5A 以及最  
2.4A 的专用充电方案。独立的数据和 VBUS 使能  
引脚可用于配置主机和客户端-OTG 式。此外,  
TPD3S716-Q1 还在 VBUS_CONVD+ VD– 引脚上  
集成了系统级 IEC 61000-4-2 ISO 10605 ESD 保  
无需使用高电压、低容值的外部二极管。  
VBUS 开关的典型值2µs  
– 数据开关的典型值200ns  
• 独立VBUS 和数据使能引脚用于配置主机和客  
户端/OTG 模式)  
• 故障输出信号  
• 热关断特性  
16 SSOP 封装  
器件信息(1)  
封装尺寸标称值)  
器件型号  
封装  
SSOP (16)  
TPD3S716-Q1  
4.90mm × 3.90mm  
(4.9mm x 3.9mm)直通布线  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
• 终端设备  
– 音响主机  
– 后座娱乐系统  
– 远程信息处理  
USB 集线器  
– 导航模块  
– 媒体接口  
• 接口  
5
V
TPD3S716-Q1  
VBUS_SYS  
VBUS_CON  
VBUS  
100 µF  
V
1
µF  
100  
X7R  
10 kΩ  
7
V
FLT  
USB  
Transceiver  
Dœ  
VDt  
VD+  
GND  
Dt  
10 nH  
10 nH  
D+  
D+  
USB2.0  
CMC  
VEN  
From Processor  
From Processor  
GND  
DEN  
VIN  
IADJ  
3.3  
V
RADJ  
1
7
µF  
V
Copyright  
© 2016, Texas Instruments Incorporated  
典型应用原理图  
USB 2.0  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDH9  
 
 
 
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................13  
8.4 Device Functional Modes..........................................16  
9 Application and Implementation..................................18  
9.1 Application Information............................................. 18  
9.2 Typical Application.................................................... 18  
10 Power Supply Recommendations..............................23  
10.1 VBUS Path................................................................23  
10.2 VIN Pin.....................................................................23  
11 Layout...........................................................................23  
11.1 Layout Guidelines................................................... 23  
11.2 Layout Example...................................................... 23  
11.3 Layout Optimized for Thermal Performance........... 24  
12 Device and Documentation Support..........................26  
12.1 Documentation Support.......................................... 26  
12.2 支持资源..................................................................26  
12.3 Trademarks.............................................................26  
12.4 静电放电警告.......................................................... 26  
12.5 术语表..................................................................... 26  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD RatingsAEC Specification...............................4  
6.3 ESD RatingsIEC Specification................................ 4  
6.4 ESD RatingsISO Specification................................ 4  
6.5 Recommended Operating Conditions.........................4  
6.6 Thermal Information....................................................5  
6.7 Electrical Characteristics.............................................5  
6.8 Timing Characteristics.................................................8  
6.9 Typical Characteristics................................................9  
7 Parameter Measurement Information..........................12  
8 Detailed Description......................................................13  
8.1 Overview...................................................................13  
8.2 Functional Block Diagram.........................................13  
Information.................................................................... 26  
4 Revision History  
Changes from Revision C (June 2016) to Revision D (August 2020)  
Page  
• 向部分添加了功能安全链接........................................................................................................................ 1  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Changes from Revision B (April 2016) to Revision C (June 2016)  
Page  
• 将部分中的可调节断续电流限1.7A 更改2.4A................................................................................1  
• 更新了部分..................................................................................................................................................1  
Changed Current through VBUS switch from 1.7 A to 2.4 A................................................................................4  
Updated the RADJ minimum resistance to 57 kΩin Recommended Operating Conditions table...................... 4  
aDDED new current limit values to Electrical Characteristics table ...................................................................5  
Updated 8-1 ................................................................................................................................................ 14  
Updated IVBUS Operating Maximum in 9-7 to go up to 2.4 A....................................................................... 21  
Changes from Revision A (April 2016) to Revision B (April 2016)  
Page  
• 更改了电气特..............................................................................................................................................1  
Changes from Revision * (March 2016) to Revision A (April 2016)  
Page  
• 将器件状态从产品预发更改为量产数.........................................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPD3S716-Q1  
 
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
IADJ  
NC  
VBUS_CON  
VBUS_CON  
GND  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VBUS_SYS  
VBUS_SYS  
GND  
Dœ  
VDœ  
D+  
VD+  
VEN  
FLT  
VIN  
DEN  
5-1. DBQ Package 16-Pin SSOP Top View  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
NC  
1
2
3
4
5
6
NC  
O
No connect, leave floating or connect to ground. Do not connect to VBUS_CON  
Connect to USB connector VBUS; provides IEC 61000-4-2 ESD protection  
VBUS_CON  
VBUS_CON  
GND  
O
Ground Connect to PCB ground plane  
I/O  
I/O  
VD–  
Connect to USB connector D; provides IEC 61000-4-2 ESD protection  
VD+  
Connect to USB connector D+; provides IEC 61000-4-2 ESD protection  
Enable Active-Low Input. Drive VEN low to enable the VBUS path of the device. Drive VEN high to  
disable the VBUS path of the device  
7
8
VEN  
DEN  
I
I
Enable Active-Low Input. Drive DEN low to enable the data path of the device. Drive DEN high to  
disable the data path of the device  
9
VIN  
FLT  
I
Connect to 3.3-V I/O. Controls the OVP threshold for VD+/VD–  
Open-Drain fault pin. See the Detailed Description section for operation  
Connect to the internal transceiver D+ pin  
10  
11  
12  
13  
14  
15  
16  
O
D+  
I/O  
I/O  
D–  
Connect to the internal transceiver Dpin  
GND  
Ground Connect to PCB ground plane  
VBUS_SYS  
VBUS_SYS  
IADJ  
I
Connect to internal VBUS plane  
I
I
Connect to a resistor to GND to adjust the current limit threshold  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPD3S716-Q1  
 
 
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1) (2)  
MIN  
MAX  
18  
UNIT  
VBUS_CON  
VBUS_SYS  
Supply voltage from USB connector  
V
V
V
0.3  
0.3  
0.3  
0.3  
0.3  
Internal Supply DC voltage Rail on the PCB  
Voltage range from connector-side USB data lines  
Voltage range for internal USB data lines  
Voltage range for VIN supply input  
6
18  
VD+, VD–  
D+, D–  
VIN  
VIN + 0.3  
V
V
V
V
A
4
7
DEN  
Voltage on enable pins  
VEN  
7
IBUS  
Maximum DC output current on VBUS_CON pin(3)  
Voltage range for IADJ pin  
2.4  
VVBUS_SYS  
0.3  
+
VIADJ  
V
0.3  
VFLT  
TA  
Voltage range for the FLT pin  
Operating free air temperature(3)  
Storage temperature  
7
V
0.3  
40  
65  
125  
150  
°C  
°C  
TSTG  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(3) Thermal limits and power dissipation limits must be observed.  
6.2 ESD RatingsAEC Specification  
VALUE  
±4000  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 ESD RatingsIEC Specification  
VALUE  
UNIT  
Contact discharge(1)  
Air-gap discharge(1)  
±8000  
IEC 61000-4-2, VBUS_CON  
VD+, VDpins  
,
V(ESD)  
Electrostatic discharge  
V
±15000  
(1) See 7-2 for details on system level ESD testing setup.  
6.4 ESD RatingsISO Specification  
VALUE  
±8000  
UNIT  
Contact discharge(1)  
Air-gap discharge(1)  
ISO 10605 (330 pF, 330 Ω),  
VBUS_CON, VD+, VDpins  
V(ESD)  
Electrostatic discharge  
V
±15000  
(1) See 7-2 for details on system level ESD testing setup.  
6.5 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
V
VBUS_CON  
VBUS_SYS  
Supply voltage from USB connector  
5.9  
5.9  
Internal supply DC voltage Rail on the PCB  
4.75  
V
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPD3S716-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
6.5 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0
NOM  
MAX  
VIN + 0.3  
VIN + 0.3  
3.6  
UNIT  
V
Voltage range from connector-side USB data lines  
Voltage range for internal USB data lines  
Voltage range for VIN supply  
VD+, VD–  
D+, D–  
VIN  
0
V
3
V
IBUS  
Current through VBUS switch(1)  
2.4  
A
VEN, DEN  
CSYS  
Voltage range for enable  
0
5.9  
V
Input capacitance(2)  
VBUS_SYS pin  
100  
µF  
µF  
µF  
kΩ  
CLOAD  
CVIN  
Output load capacitance(2)  
VIN capacitance(2)  
VBUS_CON pin  
VIN pin  
1
1
RADJ  
Resistance of RADJ resistor(2)  
IADJ pin  
57  
(1) Depending on your IBUS current level, maximum operating junction temperature derating may be required. For IBUS > 1.5A, care should  
be taken in the PCB design to improve the board's thermal coefficient. Please see both the Power Dissipation and Junction  
Temperature and Layout Optimized for Thermal Performance sections for more details.  
(2) See the 9-1 for configuration details.  
6.6 Thermal Information  
TPD3S716-Q1  
THERMAL METRIC(1)  
DBQ (SSOP)  
16 PINS  
98.8  
UNIT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJA  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
48.0  
θJCtop  
θJB  
41.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
See the Layout Optimized for Thermal Performance section  
8.5  
ψJT  
41.2  
ψJB  
N/A  
θJCbot  
θJA(Custom)  
57.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.7 Electrical Characteristics  
over operating free-air temperature range, VEN = 0 V, DEN = 0 V, VBUS_SYS = 5 V, VIN = 3.3 V, VD+/VD/D+/D/VBUS_CON  
= float (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY CURRENT CONSUMPTION  
IVBUS_SLEEP  
IVBUS  
VBUS Sleep current consumption  
Measured at VBUS_SYS pin, VEN = 5 V, DEN = 5 V  
Measured at VBUS_SYS pin  
45  
285  
12  
150  
380  
20  
µA  
µA  
µA  
VBUS Operating current consumption  
Leakage current for VIN  
IVIN  
Measured at VIN pin, VIN = 3.6 V  
Leakage into VBUS_SYS while shorted to Measured flowing into VBUS_SYS pin, VBUS_SYS = 5  
ION(LEAK)  
225  
300  
50  
1
µA  
µA  
µA  
battery and powered on  
V, VBUS_CON = 18 V  
Leakage through VBUS path while  
shorted to battery and unpowered  
Measured flowing out of VBUS_SYS pin, VBUS_SYS = 0  
V, VBUS_CON = 18 V  
IOFF(LEAK)  
Leakage out of data path while shorted Measured flowing out of D+ or Dpins, VBUS_SYS  
to battery and unpowered  
=
ID(OFF_LEAK)  
1  
1  
0 V, VD+ or VD= 18 V, VIN = 0 V, D+/D= 0 V  
Leakage out of data path while shorted Measured flowing out of D+ or Dpins, VBUS_SYS  
to battery and powered on  
=
ID(ON_LEAK)  
1
µA  
µA  
5 V, VD+ or VD= 18 V, VIN = 3.3 V, D+/D= 0 V  
Leakage into data path while shorted to Measured flowing in to VD+ or VDpins, VBUS_SYS  
battery and unpowered  
IVD(OFF_LEAK)  
85  
= 0 V, VD+ or VD= 18 V, VIN = 0 V, D+/D= 0 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPD3S716-Q1  
 
 
 
 
 
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
over operating free-air temperature range, VEN = 0 V, DEN = 0 V, VBUS_SYS = 5 V, VIN = 3.3 V, VD+/VD/D+/D/VBUS_CON  
= float (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Measured flowing in to VD+ or VDpins, VBUS_SYS  
= 5 V, VD+ or VD= 18 V, VIN = 3.3 V D+/D= 0  
V
Leakage into data path while shorted to  
battery and powered on  
IVD(ON_LEAK)  
85  
µA  
V
VIN PIN  
Undervoltage lockout  
rising for VIN  
Ramp VIN up until VBUS and Data FETs turn on,  
VEN =0 V, DEN = 0 V  
VUVLO(RISING)  
2.6  
2.5  
2.7  
2.6  
2.9  
2.8  
VIN  
Undervoltage lockout  
falling for VIN  
Ramp VIN down until VBUS and Data FETs turn off,  
VEN =0 V, DEN = 0 V  
VUVLO(FALLING)  
VEN, DEN, FLT PINS  
VIH  
Set VEN ( DEN)= 0 V; Sweep VEN ( DEN) to 1.4 V;  
Measure when VBUS (Data) FET turns off  
High-level input voltage VEN, DEN  
1.2  
V
V
Set VEN ( DEN) = 3.3 V; Sweep VEN ( DEN) from  
3.3 V to 0.5 V; Measure when VBUS (Data) FET  
turns on  
VIL  
Low-level input voltage  
Input Leakage Current  
VEN, DEN  
VEN, DEN  
0.8  
V( VEN) (V( DEN))= 3.3 V ; Measure Current into VEN  
( DEN) pin  
IIL  
1
µA  
V
VOL  
Low-level output voltage FLT  
IOL = 3 mA  
0.4  
OCP CIRCUITVBUS  
Overcurrent limit, RADJ  
280 kΩ± 1%  
=
=
=
=
=
=
=
Progressively load VBUS_CON until device asserts  
FLT  
ILIM  
ILIM  
ILIM  
ILIM  
ILIM  
ILIM  
ILIM  
ILIM  
ILIM  
VBUS  
VBUS  
VBUS  
VBUS  
VBUS  
VBUS  
VBUS  
VBUS  
VBUS  
505  
0.905  
1.005  
1.505  
1.8  
620  
1.1  
mA  
A
Overcurrent limit, RADJ  
158 kΩ± 1%  
Progressively load VBUS_CON until device asserts  
FLT  
Overcurrent limit, RADJ  
143 kΩ± 1%  
Progressively load VBUS_CON until device asserts  
FLT  
1.2  
A
Overcurrent limit, RADJ  
93.1 kΩ± 1%  
Progressively load VBUS_CON until device asserts  
FLT  
1.8  
A
Overcurrent limit, RADJ  
76.8 kΩ± 1%  
Progressively load VBUS_CON until device asserts  
FLT  
2.16  
2.57  
2.93  
850  
1.7  
A
Overcurrent limit, RADJ  
66.5 kΩ± 1%  
Progressively load VBUS_CON until device asserts  
FLT  
2.105  
2.405  
550  
A
Overcurrent limit, RADJ  
57.6 kΩ± 1%  
Progressively load VBUS_CON until device asserts  
FLT  
A
Overcurrent limit, IADJ  
GND  
=
Progressively load VBUS_CON until device asserts  
FLT  
700  
1.4  
mA  
A
Overcurrent limit, IADJ  
VBUS_SYS  
=
Progressively load VBUS_CON until device asserts  
FLT  
1.1  
OVER TEMPERATURE PROTECTION  
The rising over-temperature protection  
shutdown threshold  
VBUS_SYS = 5 V, VEN = 0 V, DEN = 0 V, No Load on  
VBUS_CON, TA stepped up until FLT is asserted  
TSD(RISING)  
150  
125  
10  
165  
130  
35  
180  
142  
55  
VBUS_SYS = 5 V, VEN = 0 V, DEN = 0 V, No Load on  
VBUS_CON, TA stepped down from TSD(RISING) until  
FLT is deasserted  
The falling over-temperature protection  
shutdown threshold  
TSD(FALLING)  
The over-temperature protection  
shutdown threshold hysteresis  
TSD(HYST)  
TSD(RISING) TSD(FALLING)  
OVP CIRCUITVBUS  
VOVP(RISING)  
Input overvoltage  
VBUS_CON  
Increase VBUS_CON from 5 V to 7 V. Measure when  
FLT is asserted  
5.6  
5.8  
50  
6
V
mV  
V
protection threshold  
Difference between rising and falling OVP  
thresholds on VBUS_CON  
VHYS(OVP)  
Hysteresis on OVP  
VBUS_CON  
VBUS_CON  
Input overvoltage  
protection threshold  
Decrease VBUS_CON from 7 V to 5 V. Measure when  
FLT is deasserted  
VOVP(FALLING)  
5.52  
140  
5.75  
5.98  
260  
Set VBUS_SYS to 5 V. Increase VBUS_CON from  
VBUS_SYS to VBUS_SYS + 300 mV. Measure the value  
of VBUS_CON VBUS_SYS when FLT asserts.  
25°C TA 125°C  
Reverse supply  
detection threshold  
VBUS_CON  
VBUS_SYS  
VREV_SUPPLY(RISING)  
200  
mV  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPD3S716-Q1  
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
over operating free-air temperature range, VEN = 0 V, DEN = 0 V, VBUS_SYS = 5 V, VIN = 3.3 V, VD+/VD/D+/D/VBUS_CON  
= float (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Set VBUS_SYS to 5 V. Decrease VBUS_CON from  
VBUS_SYS + 300 mV to VBUS_SYS. Measure the value  
of VBUS_CON VBUS_SYS when FLT deasserts.  
25°C TA 125°C  
Reverse supply  
detection threshold  
VBUS_CON  
VBUS_SYS  
VREV_SUPPLY(FALLING)  
70  
120  
165  
mV  
Hysteresis on reverse  
supply detection  
Difference between rising and falling reverse supply  
detection thresholds  
VBUS_CON  
VBUS_SYS  
VREV_SUPPLY(HYST)  
VUVLO(SYS_RISING)  
VHYS(UVLO_SYS)  
80  
3.3  
75  
mV  
V
Undervoltage lockout  
rising for VBUS_SYS  
VBUS_SYS  
VBUS_SYS  
VBUS_SYS  
VBUS_SYS voltage rising from 0 V to 5 V  
3.1  
50  
3
3.6  
100  
3.5  
VBUS_SYS UVLO  
Hysteresis  
Difference between rising and falling UVLO  
thresholds on VBUS_SYS  
mV  
V
Undervoltage lockout  
falling for VBUS_SYS  
VUVLO(SYS_FALLING)  
VBUS_SYS voltage falling from 5 V to 2.9 V  
3.2  
Short-to-ground  
comparator rising  
threshold  
Increase VBUS_CON voltage from 0 V until the device  
transitions from the short-circuit to over-current  
mode of operation  
VSHRT(RISING)  
VBUS_CON  
2.5  
2.4  
2.6  
2.7  
2.6  
V
V
Set VBUS_SYS = 5 V; VIN = 3.3 V; VEN = 0 V, DEN =  
0 V; Decrease VBUS_CON voltage from 5 V until the  
device transitions from the over-current to short-  
circuit mode of operation  
Short-to-ground  
comparator falling  
threshold  
VSHRT(FALLING)  
VBUS_CON  
2.5  
Short-to-ground  
comparator hysteresis  
Difference between VSHRT(RISING) and  
VSHRT(FALLING)  
VSHRT(HYST)  
ISHRT  
OVP CIRCUITVD+/VD–  
Input overvoltage  
VBUS_CON  
VBUS_CON  
125  
mV  
mA  
Short-to-ground current  
source  
Current sourced from VBUS_SYS when device is in  
short-circuit mode  
150  
350  
Increase VD+ or VD(with D+ and D) from 3.3  
V to 4.5 V. Measure the value at which FLT is  
asserted  
VOVP(RISING)  
VIN + 0.6 VIN + 0.8 VIN + 1  
V
VD+/VD–  
protection threshold  
Difference between rising and falling OVP  
thresholds on VD+/VD–  
VHYS(OVP)  
Hysteresis on OVP  
50  
VIN  
mV  
V
VD+/VD–  
VD+/VD–  
Input overvoltage  
protection threshold  
VIN  
0.525  
+
+
VIN +  
Decrease VD+ or VD(with D+ or D) from 4.5 V  
to 2 V. Measure the value at FLT is deasserted  
VOVP(FALLING)  
0.75 0.975  
SHORT TO BATTERY  
V(VBUS_STB)  
VBUS hotplug short-to-  
battery tolerance  
VBUS_CON  
18  
18  
V
V
Charge battery-equivalent capacitor to test voltage  
then discharge to pin under test through a 1 meter,  
18 gauge wire. (See 7-1 for more details)  
Data line hotplug short-  
to-battery tolerance  
V(DATA_STB)  
VD+/VD–  
DATA LINE SWITCHESVD+ to D+ or VDto D–  
Capacitance of D+/Dswitches when enabled –  
measure on connector side at VDx = 0.4 V  
CON  
Equivalent On Capacitance  
On Resistance  
6.9  
pF  
Measure resistance between D+ and VD+ or D–  
and VD, voltage between 0 V and 0.4 V  
RON  
4
0.2  
6.5  
1
Ω
Ω
Measure resistance between D+ and VD+ or D–  
and VD, sweep voltage between 0 V and 0.4 V  
RON(Flat)  
On Resistance flatness  
On Bandwidth (3dB)  
Measure S21 bandwidth from D+ to VD+ or Dto  
VDwith voltage swing = 400 mVpp, VCM= 0.2 V  
BWON  
910  
MHz  
Measure SDD21 bandwidth from D+ to VD+ and D–  
to VDwith voltage swing = 800 mVpp differential,  
VCM= 0.2 V  
BWON_DIFF  
1050  
MHz  
dB  
On Bandwidth (3dB)  
Measure S21 bandwidth from D+ to VDor Dto  
VD+ with voltage swing = 400 mVpp. Make sure to  
terminate open sides to 50 ohms. f = 480 MHz  
Xtalk  
Crosstalk  
28  
nFET SWITCHVBUS  
VEN = 5 V, DEN = 5 V, Set VBUS_CON = 5 V and  
measure current flow to ground  
R(DISCHARGE)  
Output discharge resistance  
18  
30  
k  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPD3S716-Q1  
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
over operating free-air temperature range, VEN = 0 V, DEN = 0 V, VBUS_SYS = 5 V, VIN = 3.3 V, VD+/VD/D+/D/VBUS_CON  
= float (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
135  
VBUS_CON = 5 V, IOUT = 1.5 A. See 9-8 for a plot  
of the maximum VBUS RON possible at a given  
junction temperature  
RON  
VBUS path ON resistance  
63  
mΩ  
6.8 Timing Characteristics  
over operating free-air temperature range, VEN = 0 V, DEN = 0 V, VBUS_SYS = 5 V, VIN = 3.3 V, D+/D= 45 Ωto GND,  
VD+/VD/VBUS_CON = float (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX  
UNIT  
ENABLE PIN  
Time between VEN and DEN asserted low and VBUS and  
Data FETs turn on, CVBUS_CON = 0 µF  
tON_HOST  
Host mode enable on time  
Client mode enable on time  
Host mode disable time  
Client mode disable time  
5.7  
2.4  
30  
5
ms  
ms  
µs  
Time between DEN asserted low and Data FETs turn on.  
VEN remains high  
tON_CLIENT  
tOFF_HOST  
tOFF_CLIENT  
Time between VEN and DEN deasserted high and VBUS  
and Data FETs turn off, CVBUS_CON = 0 µF  
Time between DEN deasserted high and Data FETs turn  
off. VEN remains high  
µs  
tHOST_TO_CLIE Host to Client mode transition Time between VEN deasserted high and VBUS FET turns  
time off. DEN remains low, CVBUS_CON = 0 µF  
70  
3.4  
µs  
NT  
tCLIENT_TO_HO Client to Host mode transition Time between VEN asserted low and VBUS FET turns on.  
ms  
time  
DEN remains low, CVBUS_CON = 0 µF  
ST  
OVER CURRENT PROTECTION  
Time from overcurrent condition until FLT assertion and  
VBUS FET turn off  
tBLANK  
tRETRY  
tRECV  
Overcurrent blanking time  
2
ms  
ms  
ms  
Time from overcurrent FET shut off until FET turns back  
on  
Overcurrent retry time  
100  
8
Time from end of tRETRY until FLT deassertion if  
overcurrent condition is removed  
Overcurrent recovery time  
OVER VOLTAGE PROTECTION  
tOVP_response  
tOVP_response  
Measured from OVP Condition to FET turnoff  
Measured from OVP Condition to FET turnoff  
2
4
µs  
ns  
OVP Response time VBUS  
OVP Response time data  
switches  
200  
tOVP_  
OVP FLT assertion time  
Measured from an OVP Condition to FLT assertion  
14  
µs  
FLT_ASSERT  
SHORT TO GROUND PROTECTION  
Time from short condition until current falls below 120%  
of ISHRT, CVBUS_CON = 0 µF  
tSHRT  
Short to ground response time  
2
4
2
µs  
µs  
Short to ground FLT assertion Time from short condition until FLT is asserted,  
time CVBUS_CON = 0 µF  
tSHRT_FLTZ  
20  
REVERSE SUPPLY DETECTION  
tREV_SUPPLY_  
Reverse supply blanking time Time from reverse current condition until FLT assertion  
ms  
BLANK  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPD3S716-Q1  
 
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
6.9 Typical Characteristics  
140  
120  
100  
80  
80  
60  
40  
20  
60  
0
40  
20  
-20  
-40  
-60  
-80  
-100  
0
-20  
-40  
-60  
-80  
VD-  
D-  
VD-  
D-  
-10  
0
10 20 30 40 50 60 70 80 90 100 110  
Time (ns)  
-10  
0
10 20 30 40 50 60 70 80 90 100 110  
Time (ns)  
D002  
D001  
6-2. 8-kV IEC Contact Waveform  
6-1. 8-kV IEC Contact Waveform  
1
0.75  
0.5  
8
7
6
5
4
3
2
1
VBUS_CON  
/VEN  
/FLT  
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
VD+  
VD-  
0
-15  
-5  
0
5
10  
Voltage (V)  
15  
20  
25  
-10  
-5  
Time (ms)  
0
5
D003  
D0034  
6-3. Data Line I-V Curve  
6-4. VBUS tON Time  
100  
80  
60  
40  
20  
0
6
5
4
3
2
1
-40 C  
25 C  
85 C  
130 C  
Unpowered  
Powered, Enabled  
0
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0.1  
0.2  
Bias Voltage (V)  
0.3  
0.4  
Temperature (èC)  
D007  
D008  
6-5. VD± Leakage Current at 18-V across  
6-6. Data Switch RON vs Bias Voltage  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPD3S716-Q1  
 
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
8
7
6
5
4
3
2
1
0
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
6
5
4
3
2
1
0
1500  
VBUS_CON  
IVBUS_CON  
/FLT  
VBUS_CON  
IVBUS_CON  
/FLT  
1250  
1000  
750  
500  
250  
0
-4.8 -4.4 -4 -3.6 -3.2 -2.8 -2.4 -2 -1.6 -1.2 -0.8  
Time (ms)  
-40 -20  
0
20  
40  
60  
Time (ms)  
80 100 120 140 160  
D009  
D010  
6-7. Overcurrent tBLANK Response Waveform  
6-8. Overcurrent tBLANK_RETRY Response  
Waveform  
50  
40  
30  
20  
10  
0
12.5  
10  
7.5  
5
9.5  
VBUS_CON  
IVBUS_CON  
VBUS_SYS  
/FLT  
VBUS_CON  
IVBUS_CON  
VBUS_SYS  
/FLT  
8.5  
7.5  
6.5  
5.5  
4.5  
3.5  
2.5  
1.5  
0.5  
-0.5  
-1.5  
-2.5  
2.5  
0
-10  
-20  
-2.5  
-5  
-10  
0
10  
20  
30  
40  
Time (ms)  
D012  
-8  
-3  
2
7
12  
Time (ms)  
17  
22  
27 30  
D011  
6-10. VBUS Short-to-18 V Response Waveform  
6-9. VBUS Short-to-Ground Response Waveform  
12.5  
25  
VD-  
IVD-  
D-  
/FLT  
VD-  
IVD-  
D-  
/FLT  
10.5  
20  
8.5  
15  
6.5  
4.5  
2.5  
0.5  
-1.5  
10  
5
0
-5  
-0.5  
-0.75  
-0.25  
0.25  
0.75  
0
0.5  
1
Time (ms)  
D014  
Time (ms)  
D005  
6-11. Data Switch Short-to-5 V Response  
6-12. Data Switch Short-to-18 V Response  
Waveform  
Waveform  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPD3S716-Q1  
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
29  
12.5  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
VD-  
IVD-  
D-  
24  
19  
14  
9
/FLT  
7.5  
5
2.5  
0
4
D- to VD+  
D+ to VD-  
-1  
-1  
-2.5  
4
9
14  
19  
Time (ms)  
D013  
0
1E+9  
2E+9  
3E+9  
Frequency (Hz)  
D017  
6-13. Data Switch Short-to-18 V Response  
6-14. Data Switch Crosstalk  
Waveform (Long)  
6-15. USB2.0 Eye Diagram (no TPD3S716-Q1)  
6-16. USB2.0 Eye Diagram (with TPD3S716-Q1)  
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-3  
-6  
-9  
-12  
1E+7  
1E+8  
Frequency (Hz)  
1E+9  
3E+9  
1E+7  
1E+8  
Frequency (Hz)  
1E+9  
3E+9  
D016  
D015  
6-18. Data Switch Single-Ended Bandwidth  
6-17. Data Switch Differential Bandwidth  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPD3S716-Q1  
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
7 Parameter Measurement Information  
5 V  
VBUS_SYS  
VBUS_CON  
100 µF  
7 V  
1 µF  
100 V  
X7R  
10 kΩ  
FLT  
VDœ  
VD+  
GND  
Dœ  
10 nH  
10 nH  
45 Ω  
D+  
USB2.0  
CMC  
45 Ω  
VEN  
1-m Cable  
STB  
Strike  
From GPIO  
DEN  
VIN  
From GPIO  
IADJ  
DC Power  
Output  
3.3 V  
Supply  
22 mF  
35 V  
RADJ  
TPD3S716-Q1  
1 µF  
7 V  
STB Test Aparatus  
Copyright © 2016, Texas Instruments Incorporated  
7-1. Short-to-Battery System Test Setup  
5 V  
VBUS_SYS  
VBUS_CON  
100 µF  
7 V  
1 µF  
100 V  
X7R  
10 kΩ  
FLT  
VDœ  
VD+  
GND  
Dœ  
10 nH  
10 nH  
45 Ω  
D+  
USB2.0  
CMC  
45 Ω  
VEN  
From GPIO  
DEN  
VIN  
From GPIO  
IADJ  
3.3 V  
RADJ  
TPD3S716-Q1  
1 µF  
7 V  
Copyright © 2016, Texas Instruments Incorporated  
7-2. ESD System Test Setup  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPD3S716-Q1  
 
 
 
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPD3S716-Q1 provides a single-chip ESD protection and over voltage protection solution for automotive  
USB interfaces. It offers short to battery protection up to 18 V and short to ground protection on VBUS_CON. The  
TPD3S716-Q1 also provides a FLT pin that indicates to the system if a fault condition has occurred. The  
TPD3S716-Q1 offers ESD clamps on the VBUS_CON, VD+, and VDpins, therefore eliminating the need for  
external TVS clamp circuits in the application.  
The TPD3S716-Q1 has internal circuitry that controls the turnon of the internal nFET switches. An internal  
oscillator controls the timers that enable the switches and resets the open-drain FLT output. If VBUS_CON and  
VD+/VDare less than VOVP, the switches are enabled. After an internal delay the charge-pump starts-up and  
turns on the internal nFET switches through a soft start. At any time, if any of the external USB pins rise above  
their respective VOVP thresholds, the nFET switches are turned OFF and the FLT pin is pulled LOW.  
8.2 Functional Block Diagram  
VBUS_CON  
VBUS_SYS  
Short to  
Ground  
Detection  
Undervoltage  
Lockout  
-
ESD  
Clamp  
+
RADJ  
IADJ  
Overcurrent  
Detection  
Over-  
voltage  
Protection  
Control Logic  
VEN  
FLT  
DEN  
VIN  
VD+  
D+  
ESD  
Clamps  
VDœ  
Dœ  
Copyright © 2016, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 AEC-Q100 Qualified  
The TPD3S716-Q1 is an automotive qualified device according to the AEC-Q100 standards. The TPD3S716-Q1  
is qualified to operate from 40 to +125°C ambient temperature.  
8.3.2 Short-to-Battery and Short-to-Ground Protection on VBUS_CON  
The VBUS_CON pin is protected against shorts to battery and shorts to ground.  
If a voltage on VBUS_CON is detected as too low (below the VSHRT threshold) after the device is enabled, the  
device enters short-circuit protection mode and asserts FLT. It sources the ISHRT current until it detects the  
voltage rising above the VSHRT threshold, where it resumes standard operating mode and deasserts FLT.  
If a voltage above the VOVP threshold is detected by the device, it shuts off all FETs and assert a fault on the FLT  
pin. When the excessive voltage is removed, the device automatically re-enables and FLT deasserts.  
8.3.3 Short-to-Battery and Short-to-VBUS Protection on VD+, VD–  
The VD+ and VDpins are protected against shorts to battery and shorts to bus. The OVP threshold on the  
VD+ and VDpins is low enough that it protects against shorts to VBUS  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPD3S716-Q1  
 
 
 
 
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
When a voltage above the VOVP threshold is detected by the device, it shuts off all FETs and asserts a fault on  
the FLT pin. When the excessive voltage is removed, the device automatically re-enables and FLT deasserts.  
8.3.4 ESD Protection on VBUS_CON, VD+, VD–  
The protected pins (VBUS_CON, VD+, VD) are tested to pass the IEC 61000-4-2 ESD standard up to Level 4  
ESD protection. Additionally, these pins are tested against ISO 10605 with the 330-pF, 330- Ω equivalent  
network. This guarantees passing of at least ±8-kV contact discharge and ±15-kV air gap discharge according to  
both standards. See 7-2 for the test set-up used for testing IEC 61000-4-2 and ISO 10605.  
8.3.5 Low RON nFET VBUS Switch  
The VBUS switch has a low RON that provides minimal voltage droop from system to connector. Typical  
resistance is 63 mΩand is specified for 135 mΩat 150°C junction temperature.  
8.3.6 High Speed Data Switches  
The D+ and Dswitches have a very low capacitance and a high bandwidth (1-GHz typical), allowing for a  
clean USB 2.0 eye diagram.  
8.3.7 Adjustable Hiccup Current Limit up to 2.4-A  
The VBUS path of this device has an integrated overcurrent protection circuit. The current limit threshold for the  
overcurrent protection is adjustable via an external resistor RADJ to GND on the IADJ pin. 方程式 1 to 方程式 3  
approximate the minimum, nominal, and maximum current limit values for TPD3S716-Q1 assuming a 1%  
tolerant resistor:  
(0.983)  
ILIM(TYP) = 143 × RADJ  
(1)  
(2)  
(3)  
ILIM(MIN) = 129 × RADJ (0.981) 0.02  
ILIM(MAX) = 141.5 × RADJ (0.962) + 0.015  
where  
ILIM(TYP) is the nominal current limit value in (A)  
ILIM(MIN) is the minimum current limit value in (A)  
ILIM(MAX) is the maximum current limit value in (A)  
RADJ is the nominal resistor to GND on the IADJ pin in (Ω)  
3
2.8  
2.6  
2.4  
2.2  
2
ILIM(MIN)  
ILIM(TYP)  
ILIM(MAX)  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
50 70 90 110 130 150 170 190 210 230 250 270  
RADJ (kW)  
D009  
8-1. TPD3S716-Q1 Current Limit Thresholds vs. RADJ  
方程式 1, 方程式 2 and 方程式 3 are useful for approximating the current limit threshold of TPD3S716-Q1;  
however, they do not constitute as part of TI's published device specifications for purposes of TI's product  
warranty. For the officially tested current limit threshold values, see the Electrical Characteristics table.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPD3S716-Q1  
 
 
 
 
 
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
When the VBUS current exceeds the overcurrent threshold, the device goes into a fault state where it limits the  
current to the overcurrent threshold value and asserts the FLT pin. After a short blanking time, the device cycles  
on and off to try to check if the connected device is still in overcurrent.  
8.3.8 Fast Over-Voltage Response Time  
The over-voltage FETs are designed to have a fast turnoff time to protect the upstream SoC as quickly as  
possible. Typical response time for complete turnoff is 2 µs for the VBUS path and 200 ns for the data path.  
8.3.9 Independent VBUS and Data Enable Pins for Configuring both Host and Client/OTG Mode  
The TPD3S716-Q1 has two enable inputs to turn on and off the device's internal FETs. The VEN pin disables  
and enables the VBUS path. The DEN pin disables and enables the data path. Independent control of the VBUS  
and data paths enables the TPD3S716-Q1 to be configured for both USB Host and Client/OTG mode. See 表  
8-1.  
8.3.10 Fault Output Signal  
The TPD3S716-Q1 has a fault pin , FLT that indicates when there is any sort of fault condition because of an  
OVP, OCP, short-circuit, reverse-current, or thermal shutdown event occurring.  
8.3.11 Thermal Shutdown Feature  
In the event that the device exceeds the maximum allowable junction temperature, the thermal shutdown circuit  
disables the VBUS and data switches and assert the fault pin low.  
8.3.12 16-Pin SSOP Package  
The TPD3S716-Q1 is packaged in a standard 16-pin SSOP leaded package.  
8.3.13 Reverse Current Detection  
If VBUS_CON exceeds VBUS_SYS by a voltage greater than VREV_SUPPLY(RISING) for tREV_SUPPLY_BLANK, then  
TPD3S716-Q1 detects this reverse current condition and asserts the fault pin. When VBUS_CON VBUS_SYS falls  
below VREV_SUPPLY(FALLING), the fault pin is be deasserted and TPD3S716-Q1 enters back into its normal  
operating mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPD3S716-Q1  
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Normal Operation  
The TPD3S716-Q1 operates in normal operation modes when enabled, both VBUS_SYS and VIN are above their  
UVLO thresholds, and the device is not in any fault conditions. 8-1 shows the normal operating modes of the  
TPD3S716-Q1.  
8-1. Device Normal Operating Mode Table  
MODE  
USB Host  
VEN  
DEN  
VBUS PATH  
DATA PATH  
ON  
0
0
1
1
0
1
0
1
ON  
Power Only  
USB Client/OTG  
Disabled  
ON  
OFF  
OFF  
ON  
OFF  
OFF  
8.4.2 Overvoltage Condition  
When the VD+, VD, or VBUS_CON pins exceed their OVP threshold, the device enters the overvoltage state. All  
FETs are disabled and the FLT pin is asserted. When the protected pins drop below their OVP threshold, the  
device automatically turns back on and deasserts the FLT pin. An overvoltage condition is only detected on an  
enabled path. For example, if the data path is enabled and the VBUS path is disabled (USB Client/OTG mode), if  
an overvoltage condition occurs on VBUS_CON, the fault pin is not be asserted. However, because the FETs of  
disabled paths are already turned off, proper protection from overvoltage conditions are still guaranteed by the  
device on disabled paths.  
8.4.3 Overcurrent Condition  
When the current through the VBUS path exceeds the ILIM current threshold, the device enters into the  
overcurrent state. The TPD3S716-Q1 limits current to the ILIM threshold by dropping voltage across the VBUS  
FET to maintain constant current. When it continues to sense an overcurrent condition for the blanking time  
(tBLANK), the device disables itself for the retry time (tRETRY) and then retry automatically for the retry time  
(tBLANK_RETRY). In the event that the current is below the overcurrent threshold, the device deasserts fault and  
resumes normal operation.  
8.4.4 Short-Circuit Condition  
If the voltage on the VBUS_CON side is pulled below the VSHRT threshold while the device is enabled, the  
TPD3S716-Q1 enters the short-circuit mode. It sources a constant current of ISHRT until it rises above the VSHRT  
threshold. When that occurs, the device automatically re-enters normal operation and deasserts the fault pin.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPD3S716-Q1  
 
 
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
8.4.5 Device Logic Table  
8-2 shows the TPD3S716-Q1 logic table.  
8-2. TPD3S716-Q1 Logic Table  
VBUS_SYS  
VIN  
,
Mode  
VEN DEN  
VBUS_CON  
VDx  
IVBUS  
TJ  
FLT  
VBUS PATH  
DATA PATH  
Unpowered  
Disabled  
X
H
X
H
X
X
X
X
None  
None  
< UVLO  
> UVLO  
X
H
H
OFF  
OFF  
OFF  
OFF  
< TSD  
< OVP & <  
VBUS_SYS  
200 mV(typical) & >  
VSHRT  
+
Host  
L
H
L
L
L
< OVP < OCP > UVLO  
< TSD  
< TSD  
< TSD  
H
H
H
ON  
OFF  
ON  
ON  
ON  
Client/OTG  
Power Only  
X
< OVP None  
> UVLO  
< OVP & <  
VBUS_SYS  
200 mV(typical) & >  
VSHRT  
+
H
X
< OCP > UVLO  
OFF  
Thermal  
Shutdown  
X
L
L
X
L
L
X
X
X
None  
None  
> UVLO  
> UVLO  
> UVLO  
> TSD  
< TSD  
< TSD  
L
L
L
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
Host: VBUS  
OVP Fault  
> OVP  
Host: Data  
OVP Fault  
X
> OVP None  
< OVP & <  
Host: OCP  
Fault  
VBUS_SYS  
200 mV(typical) & >  
VSHRT  
+
CURRENT LIMITED,  
AUTO-RETRY  
L
L
X
> OCP > UVLO  
< TSD  
L
AUTO-RETRY  
Host: Short-  
Circuit Fault  
CURRENT LIMITED  
250 mA (typical)  
L
L
H
L
L
L
L
L
< VSHRT  
X
X
X
X
> UVLO  
> UVLO  
> UVLO  
> UVLO  
< TSD  
< TSD  
< TSD  
< TSD  
< TSD  
< TSD  
L
L
L
L
L
L
OFF  
ON  
< OVP & >  
VBUS_SYS  
200 mV (typical)  
Host: RCP  
Fault  
+
ON  
OFF  
OFF  
OTG: Data  
OVP Fault  
L
X
> OVP None  
OFF  
OFF  
OFF  
OFF  
Power Only:  
VBUS OVP  
Fault  
H
H
H
> OVP  
X
X
X
X
None  
Power Only:  
OCP Fault  
CURRENT LIMITED,  
AUTO-RETRY  
> OCP > UVLO  
Power Only:  
Short-Circuit  
Fault  
CURRENT LIMITED  
250 mA (typical)  
< VSHRT  
X
X
> UVLO  
> UVLO  
< OVP & >  
VBUS_SYS  
200 mV (typical)  
Power Only:  
RCP Fault  
L
H
+
X
< TSD  
L
ON  
OFF  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPD3S716-Q1  
 
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
9 Application and Implementation  
Note  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TPD3S716-Q1 offers fully featured automotive USB2.0 protection including short-to-battery, overcurrent,  
and ESD protection. Care must be taken during the implementation to make sure the device provides adequate  
protection to the system.  
9.2 Typical Application  
9-1 shows a fully featured USB2.0 high speed port, with an 18-V short-to-battery requirement on the  
connector side.  
5 V  
TPD3S716-Q1  
VBUS_SYS  
VBUS_CON  
VBUS  
100 µF  
7 V  
1 µF  
100 V  
X7R  
10 kΩ  
FLT  
USB  
Transceiver  
Dœ  
VDt  
VD+  
GND  
Dt  
10 nH  
10 nH  
D+  
D+  
USB2.0  
CMC  
VEN  
From Processor  
GND  
DEN  
VIN  
From Processor  
3.3 V  
IADJ  
RADJ  
1 µF  
7 V  
Copyright © 2016, Texas Instruments Incorporated  
9-1. Typical Application Configuration for TPD3S716-Q1  
9.2.1 Design Requirements  
9-1 shows the TPD3S716-Q1 input parameters for this application example.  
9-1. Design Parameters  
DESIGN PARAMETER  
Short-to-battery tolerance on VD+, VD, VBUS_CON  
Max current in normal operation on VBUS  
Current Limit Setting on VBUS  
EXAMPLE VALUE  
18 V  
1.5 A  
1.505 A (minimum)  
105°C  
Maximum Ambient Temperature Requirement  
USB Data Rate  
480 Mbps  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPD3S716-Q1  
 
 
 
 
 
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
The following parameters must be known to the designer to begin the design process:  
Short-to-battery tolerance on connector pins  
Maximum current in normal operation on VBUS  
Maximum operating ambient temperature  
USB Data Rate  
9.2.2.1 Short-to-Battery Tolerance  
The TPD3S716-Q1 is capable of handling up to 18 V DC on the VD+, VD, and VBUS_CON pins. In the event of  
a short-to-battery on VBUS_CON, significant ringing would be expected because of the hot plug-like nature of the  
short-to-battery event. In typical ceramic capacitor configurations, a standard RLC response is expected which  
results in a ringing of nearly two times the applied DC voltage. The TPD3S716-Q1 is capable of withstanding the  
transient ringing from hot plug-like events, assuming some precautions are taken.  
Careful capacitor selection on the VBUS_CON pin must be observed. A capacitor with a low derating percentage  
under the applied voltages must be used to prevent excess ringing. In the example, a 1-µF, 100-V tolerant  
ceramic X7R capacitor is used. It is best practice to carefully select the capacitors used in this circuit to prevent  
derating-based voltage spikes under hot plug events. See 9-4 and 9-5 to compare ringing of a 50-V  
capacitor to a 100-V capacitor. 9-6 shows the 100-V capacitor with the TPD3S716-Q1 installed.  
Another alternative to a high rated ceramic capacitor is to implement either a standard R-C snubber circuit, or a  
small external TVS diode. Depending on the short-to-battery tolerance needed, no special precautions may be  
needed.  
9.2.2.2 Maximum Current on VBUS  
The TPD3S716-Q1 is capable of operating up to 2.4 A maximum DC current. In this example, the maximum  
current for USB2.0 BC1.2 of 1.5 A has been chosen.  
9.2.2.3 Power Dissipation and Junction Temperature  
This section demonstrates how to analyze the power dissipation and junction temperature of the TPD3S716-Q1  
to validate that the application requirements of an IVBUS operating current level of 1.5 A and a maximum  
operating ambient temperature of 105 °C can be met.  
It is good design practice to estimate power dissipation and maximum expected junction temperature of  
TPD3S716-Q1. This is important to insure the device does not go into thermal shutdown in normal operation and  
that the long term reliability of the device is maintained. Using 方程式 4 to 方程式 6, the system designer can  
control choices of the device's proximity to other power dissipating devices and the design of the printed circuit  
board (PCB). These have a direct influence on maximum junction temperature. Other factors, such as airflow  
and maximum ambient temperature, are often determined by system considerations. It is important to remember  
that these calculations do not include the effects of adjacent heat sources, and enhanced or restricted air flow.  
Addition of extra PCB copper area around these devices is recommended to reduce the thermal impedance and  
maintain the junction temperature as low as practical.  
For TPD3S716-Q1, the operating junction temperature must be kept below 150°C in order to prevent the device  
from going into thermal shutdown. 方程4 is used to calculate the junction temperature of the device:  
TJ = TA + [(IOUT 2 × RON) × RθJA  
]
(4)  
where  
IOUT = Rated OUT pin current (A)  
RON = Power path on-resistance at an assumed TJ (Ω)  
TA = Maximum ambient temperature (°C)  
TJ = Maximum junction temperature (°C)  
RθJA = Thermal resistance (°C/W)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPD3S716-Q1  
 
 
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
This application example requires an IVBUS operating current level of 1.5 A. TPD3S716-Q1 has maximum  
junction temperature derating requirements depending on the maximum operating current of the device  
according to 方程5:  
TJ(MAX) = 15.6 × (IVBUS(MAX OPERATING)) + 161.5 (°C)  
(5)  
where  
TJ(MAX) = Maximum allowed junction temperature (°C)  
IVBUS(MAX OPERATING) = Maximum IVBUS operating current (A)  
See 9-7 for a plot of the reliability curve equation. Using this equation, 138.1°C is the maximum allowed  
junction temperature in this application.  
This example requires a maximum operating ambient temperature of 105°C. To determine if this can be  
supported using 方程式 4, the maximum VBUS path RON must be determined. 方程式 6 calculates the maximum  
VBUS path RON possible for TPD3S716-Q1 for a given junction temperature:  
RON(MAX) = (TJ + 183.15) / 2726.7 (Ω)  
(6)  
where  
RON(MAX) = Maximum VBUS RON at a given junction temperature (Ω)  
TJ = Device junction temperature (°C)  
See 9-8 for a plot of the maximum VBUS path RON vs. Junction Temperature curve. Using the above equation,  
the maximum VBUS RON possible for TPD3S716-Q1 at 138.1°C is RON(MAX) = 0.118 Ω.  
Using the calculated parameters for this example and the standard datasheet RθJA for TPD3S716-Q1, the  
maximum operating ambient temperature possible in this example is TA = 111°C. Because this is greater than  
the application requirement of 105°C, TPD3S716-Q1 can safely be operated at 1.5 A with RθJA = 98.8 (°C/W). If  
the resulting ambient temperature in the above calculations resulted in a TA < 105 °C, methods for improving  
RθJA would need to be taken. See the Layout Optimized for Thermal Performance section for guidelines on  
improving RθJA for TPD3S716-Q1. The example given in the Layout Optimized for Thermal Performance yields  
an RθJA = 57 (°C/W). Excellent thermal performance of TPD3S716-Q1 can be achieved with the proper PCB  
layout.  
9.2.2.4 USB Data Rate  
The TPD3S716-Q1 is capable of operating at the maximum USB2.0 High Speed data rate of 480-Mbps because  
of the high data switch bandwidth of 1-GHz (typical). In this design example the maximum data rate of 480-Mbps  
has been chosen.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPD3S716-Q1  
 
 
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
9.2.3 Application Curves  
9-3. USB2.0 Eye Diagram (System from Typical  
9-2. USB2.0 Eye Diagram (Board only, Through  
Application Schematic)  
Path)  
60  
40  
Voltage  
Current  
Voltage  
Current  
50  
40  
30  
20  
10  
0
30  
20  
10  
0
-10  
-10  
-20  
-20  
-10  
0
10  
20  
30  
Time (ms)  
40  
50  
60  
70  
-10  
0
10  
20  
30  
Time (ms)  
40  
50  
60  
70  
D018  
D018  
9-4. 50-V, 1-µF X7R Ceramic Shorted to 18-V  
9-5. 100-V, 1-µF X7R Ceramic Shorted to 18 V  
(Not Recommended)  
35  
165  
160  
155  
150  
145  
140  
135  
130  
125  
120  
Voltage  
Current  
30  
25  
20  
15  
10  
5
0
-5  
-10  
-15  
0
0.4  
0.8  
1.2  
1.6  
IVBUS Operating Maximum (A)  
2
2.4  
-20 -10  
0
10  
20  
30  
Time (ms)  
40  
50  
60  
70  
80  
D006  
D018  
9-7. TPD3S716-Q1 IVBUS Temperature Derating  
9-6. TPD3S716-Q1 and 100-V, 1-µF X7R Shorted  
Curve  
to 18 V (Powered Off)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPD3S716-Q1  
 
 
 
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
D006  
9-8. TPD3S716-Q1 Maximum VBUS RON vs. Junction Temperature  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPD3S716-Q1  
 
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 VBUS Path  
The VBUS_SYS pins provide power to the chip and supply current through the load switch to VBUS_CON. A 100-µF  
bulk capacitor is recommended on VBUS_SYS to supply the USB port and maintain compliance. A 1-µF capacitor  
is recommended on the VBUS_CON pin with adequate voltage rating to tolerate short-to-battery conditions. A  
supply voltage above the UVLO threshold for VBUS_SYS must be supplied for the device to power on.  
10.2 VIN Pin  
The VIN pin provides a voltage reference for the data switch OVP level as well as a bypass for ESD clamping. A  
1-µF capacitor must be placed as close to the pin as possible and the supply must be set to be above the UVLO  
threshold for VIN.  
11 Layout  
11.1 Layout Guidelines  
Proper routing and placement maintains signal integrity for high-speed signals. The following guidelines apply to  
the TPD3S716-Q1:  
Place the bypass capacitors as close as possible to the VIN, VBUS_SYS, and VBUS_CON pins. Capacitors must  
be attached to a solid ground. This minimizes voltage disturbances during transient events such as short-to-  
battery, ESD, or overcurrent conditions.  
High speed traces (data switch path) must be routed as straight as possible and any sharp bends must be  
minimized.  
Standard ESD recommendations apply to the VD+, VD, and VBUS_CON pins as well:  
The optimum placement is as close to the connector as possible.  
EMI during an ESD event can couple from the trace being struck to other nearby unprotected traces,  
resulting in early system failures.  
The PCB designer must minimize the possibility of EMI coupling by keeping any unprotected traces away  
from the protected traces which are between the TVS and the connector.  
Route the protected traces as straight as possible.  
Eliminate any sharp corners on the protected traces between the TVS and the connector by using rounded  
corners with the largest radii possible.  
Electric fields tend to build up on corners, increasing EMI coupling.  
11.2 Layout Example  
11-1 shows a full layout for a standard USB2.0 port. A common mode choke and inductors are used on the  
high speed data lines, and the requisite bypassing caps are placed on VBUS_CON, VBUS_SYS, and VIN.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPD3S716-Q1  
 
 
 
 
 
 
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
VBUS  
IADJ  
VBUS_SYS  
VBUS_SYS  
N.C.  
VBUS_CON  
VBUS_CON  
GND  
D-  
GND  
D-  
TPD3S716-Q1  
VD-  
VD+  
VEN  
DEN  
To Transceiver  
To Transceiver  
To Transceiver  
D+  
FLT  
VIN  
To Processor  
To Processor  
D+  
Legend  
Pin to GND  
GND  
VIA to 3.3V Plane  
VIA to 5V Plane  
VIA to GND Plane  
USB2.0 Connector  
11-1. Typical Layout Example for TPD3S716-Q1  
11.3 Layout Optimized for Thermal Performance  
11-2 and 11-3 show images from a real PCB design optimized for the best thermal performance for  
TPD3S716-Q1. This PCB layout has 6 layers (2 signal and 4 plane layers). The 2 signal layers are the outer  
layers of the PCB and constructed with 2-oz copper, and the 4 internal plane layers are constructed with 1-oz  
copper. Using this PCB layout yielded an RθJA(CUSTOM) = 57 (°C/W). The images contain rough dimensions of  
the copper traces and pours used around the device. One key strategy to optimize thermal performance of the  
device is to maximize the area of the copper pours and traces used to route the device power, GND, and signal  
pins when possible. Another key strategy is to maximize the copper weight of the PCB metal layers. This  
example demonstrates that excellent thermal performance can be achieved with TPD3S716-Q1 with the proper  
PCB layout.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPD3S716-Q1  
 
 
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
11-2. Thermally Optimized PCB Layout Top Layer  
11-3. Thermally Optimized PCB Layout Bottom Layer  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPD3S716-Q1  
 
 
TPD3S716-Q1  
ZHCSAL0D MARCH 2016 REVISED AUGUST 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
TPD3S716-Q1 Evaluation Module, SLVUAL9  
12.2 支持资源  
TI E2E中文支持论坛是工程师的重要参考资料可直接从专家处获得快速、经过验证的解答和设计帮助。搜索  
现有解答或提出自己的问题获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 使用条款。  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPD3S716-Q1  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPD3S716QDBQRQ1  
ACTIVE  
SSOP  
DBQ  
16  
2500 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
RJ716Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPD3S716QDBQRQ1  
SSOP  
DBQ  
16  
2500  
330.0  
12.4  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SSOP DBQ 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
TPD3S716QDBQRQ1  
2500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBQ0016A  
SSOP - 1.75 mm max height  
SCALE 2.800  
SHRINK SMALL-OUTLINE PACKAGE  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
14X .0250  
[0.635]  
16  
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.175  
[4.45]  
8
9
16X .008-.012  
[0.21-0.30]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.007 [0.17]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
GAGE PLANE  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.035  
[0.41-0.88]  
DETAIL A  
TYPICAL  
(.041 )  
[1.04]  
4214846/A 03/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 inch, per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MO-137, variation AB.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SEE  
DETAILS  
SYMM  
1
16  
16X (.016 )  
[0.41]  
14X (.0250 )  
[0.635]  
8
9
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
.002 MAX  
[0.05]  
ALL AROUND  
.002 MIN  
[0.05]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214846/A 03/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SYMM  
1
16  
16X (.016 )  
[0.41]  
SYMM  
14X (.0250 )  
[0.635]  
9
8
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:8X  
4214846/A 03/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021,德州仪器 (TI) 公司  

相关型号:

TPD3S716QDBQRQ1

汽车类 USB 0.5A 至 2.4A 可调节电流限制和 VBUS/D+/D- VBATT 短路保护 | DBQ | 16 | -40 to 125
TI

TPD4001K

IC BUF OR INV BASED PRPHL DRVR, PSFM12, F-12, Peripheral Driver
TOSHIBA

TPD4005K

IC,MOTOR CONTROLLER,BIPOLAR,ZIP,18PIN
TOSHIBA

TPD4006KLB2

IC BRUSHLESS DC MOTOR CONTROLLER, 1 A, PZFM23, HEAT SINK, ZIP-23, Motion Control Electronics
TOSHIBA

TPD4008K

DC Motor Controller/Driver
ETC

TPD4008KLB2

IC BRUSHLESS DC MOTOR CONTROLLER, 1 A, PZFM23, HEAT SINK, ZIP-23, Motion Control Electronics
TOSHIBA

TPD4011K

MOTOR CONTROLLER
ETC

TPD4011KLBF

IC BRUSHLESS DC MOTOR CONTROLLER, 2 A, PZFM23, 1.27 MM PITCH, PLASTIC, HZIP-23, Motion Control Electronics
TOSHIBA

TPD4011KLBR

IC BRUSHLESS DC MOTOR CONTROLLER, 2 A, PZFM23, 1.27 MM PITCH, PLASTIC, HZIP-23, Motion Control Electronics
TOSHIBA

TPD4102K

TOSHIBA Intelligent Power Device High Voltage Monolithic Silicon Power IC
TOSHIBA

TPD4102KLB2

IC BRUSHLESS DC MOTOR CONTROLLER, 2 A, PZFM23, 1.27 MM PITCH, PLASTIC, HZIP-23, Motion Control Electronics
TOSHIBA

TPD4102KLBF

IC BRUSHLESS DC MOTOR CONTROLLER, 2 A, PZFM23, 1.27 MM PITCH, PLASTIC, HZIP-23, Motion Control Electronics
TOSHIBA