TPIC2060ADFDRG4 [TI]

TPIC2060A 用于 ODD 的串行 I/F 控制的 9 通道电机驱动器 | DFD | 56 | -20 to 75;
TPIC2060ADFDRG4
型号: TPIC2060ADFDRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TPIC2060A 用于 ODD 的串行 I/F 控制的 9 通道电机驱动器 | DFD | 56 | -20 to 75

电动机控制 电机 驱动 光电二极管 驱动器
文件: 总63页 (文件大小:1323K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPIC2060A  
ZHCSEQ4 JULY 2015  
TPIC2060A 用于 ODD、由串行接口控制的 9 通道电机驱动器  
1 特性  
负载机制支持:  
滑动电机和步进电机通道中具有独立的端点检测  
机制  
1
串行端口数字接口  
串行外设接口 (SPI)  
托盘锁定检测  
4 线接口:SSZSCLKSIMOSOMI  
最大读写频率 35MHz  
检测托盘推事件  
3.3V 数字输入输出 (I/O)  
2 应用  
执行器和电机驱动器  
光盘驱动器(Blu-ray™、数字化视频光盘 (DVD)、  
光盘 (CD))  
具有 H 桥输出的脉冲宽度调制 (PWM) 控制  
具有 12 位数模转换器 (DAC) 控制的聚焦/跟踪/  
倾斜执行器驱动器  
3 说明  
具有电流模式、10 DAC 控制的滑动电机驱  
动器  
TPIC2060A 是一款适用于 12V ODD 的超低噪声电机  
驱动器集成电路 (IC)。该驱动器 IC 9 条通道且由串  
行接口控制,非常适用于驱动主轴电机、滑动电机(适  
用的步进电机)、负载电机以及针对准直透镜的聚焦/  
跟踪/倾斜执行器和步进电机。  
具有 12 DAC 控制的负载驱动器  
具有 8 PWM 控制的步进电机驱动器  
主轴电机驱动器  
集成有电流感测电阻  
器件信息(1)  
可通过寄存器集更改电流限值  
器件型号  
TPIC2060A  
封装  
封装尺寸(标称值)  
无传感器:通过电机反电动势 (BEMF) 感测转  
子位置  
HTSSOP (56)  
6.10mm x 14.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
通过串行端口编程设定的 12 位主轴 DAC  
独立的感应位置感测和启动  
简化电路原理图  
通过自动控制制动实现急停:主动制动和短制动  
最大持续电流为 1.5A,不存在散热问题  
MCOM  
TPIC2060A  
U
12 V  
V
SPM  
0.35Ω 低导通电阻、典型金属氧化物半导体场效  
应晶体管 (MOSFET) 输出  
Driver  
12 V  
W
5 V  
SLED1+  
12 V  
3.3 V  
实用功能  
SLED1œ  
SLED1  
SLED2+  
状态锁存器:执行器定时器、SIF 错误、电源监  
视器、热保护和短路保护 (SCP) 故障  
12 V  
SLED2  
SLED2œ  
TLT+  
TLTœ  
FCS+  
SPI  
5 V  
片上温度计(15°C 165°C/1.2°C)  
Controller  
TLT  
9V LDO  
5 V  
FCSœ  
FCS  
9V LDO 集成有前置驱动器  
TRK+  
TRKœ  
5 V  
5 V  
5 V  
5 V  
根据电流要求选择外部 N 沟道场效应晶体管  
(NFET)  
TRK  
LOAD  
STP1  
STP2  
12 V  
LOAD+  
LIN9VG  
LOADœ  
STP1+  
STP1œ  
STP2+  
通过串行控制使能  
LDO  
Control  
9 Vout  
保护  
同步永磁电机 (SPM)、滑动电机、步进准直透  
镜和执行器上均配有独立热保护电路  
LINFB  
STP2œ  
两个警报级别:热保护中的预检测和检测  
ACTTEMP:监视由过去累积的 DAC 值计算得  
出的执行器温度  
SPM、滑动电机、负载、步进驱动器和执行器  
通道中具有短路保护  
硬件器件禁用引脚 XRSTIN  
具有欠压锁定 (UVLO) 和过压保护 (OVP) 的电  
源监视器  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLIS166  
 
 
 
 
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 15  
8.4 Device Functional Modes........................................ 18  
8.5 Programming........................................................... 19  
8.6 Register Maps......................................................... 21  
Application and Implementation ........................ 42  
9.1 Application Information............................................ 42  
9.2 Typical Application ................................................. 54  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Serial I/F Write Timing Requirements..................... 10  
7.7 Serial I/F Read Timing Requirements..................... 11  
7.8 Typical Characteristics............................................ 12  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
8.2 Functional Block Diagram ....................................... 14  
9
10 Power Supply Recommendations ..................... 55  
11 Layout................................................................... 56  
11.1 Layout Guidelines ................................................. 56  
11.2 Layout Example .................................................... 56  
12 器件和文档支持 ..................................................... 57  
12.1 社区资源................................................................ 57  
12.2 ....................................................................... 57  
12.3 静电放电警告......................................................... 57  
12.4 Glossary................................................................ 57  
13 机械、封装和可订购信息....................................... 57  
8
4 修订历史记录  
日期  
修订版本  
注释  
2015 7 月  
*
最初发布。  
2
版权 © 2015, Texas Instruments Incorporated  
 
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
5 说明 (续)  
IC 集成有电流感测电阻,能够测量 SPM 电流并降低驱动系统成本。主轴电机驱动器部分内置无传感器逻辑,可  
确保以低噪声启动和运行。用户无需使用启动电路使器件自启动或者通过电机或传感器(例如霍尔器件)的 BEMF  
执行位置检测。由于所有通道的输出级均在高效的 PWM 驱动下工作,用户可通过 PWM 控制实现低功率运行。可  
以对聚焦/跟踪/倾斜执行器驱动器进行无死区控制。此外,该器件还内置有主轴部件输出电流限制电路、热关断电  
路、滑动结束位置检测电路、准直透镜结束检测电路、执行器保护和 9V LDO 的前置驱动器。新增的内置温度计可  
测量 IC 温度。  
6 Pin Configuration and Functions  
DFD Package  
56-Pin HTSSOP  
Top View  
1
2
3
4
5
6
7
8
9
SLED1_ P  
SLED1_ N  
P12V_ SLD  
SLED2_ P  
SLED2_ N  
PGND_ 2  
C10V  
(N.C) 56  
LINFB 55  
LIN9VG 54  
IDCHG(TEST) 53  
(N.C) 52  
AGND  
51  
(N.C) 50  
CP1  
MCOM 49  
PGND_ SPM2  
W
CP2  
48  
47  
46  
45  
44  
43  
10 CP3  
P12V_ SPM2  
11 GPOUT  
12 XFG  
V
PGND_ SPM1  
U
13 RDY  
14 SSZ  
15 SCLK  
P12V_ SPM1 42  
PGND_ 1 41  
FCS_ N 40  
FCS_ P 39  
TRK_ N 38  
TRK_ P 37  
TLT_ P 36  
TLT_ N 35  
P5V 34  
16 SIMO  
17 SOMI  
18 SIOV  
19 XRSTIN  
20 (N.C)  
21 (N.C)  
22 CV3P3A  
23 AGND/DGND  
24 (N.C)  
33  
STP1_ P  
25 P5V12L  
26 LOAD_ N  
27 LOAD_ P  
28 CA5V  
STP1_ N 32  
STP2_ P 31  
STP2_ N 30  
(N.C) 29  
Copyright © 2015, Texas Instruments Incorporated  
3
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
51  
AGND  
PS  
PS  
Ground terminal for internal analog  
AGND/DGND  
23  
Ground terminal for internal digital and analog  
The capacitance connection terminal for control system power supply. Connect a 0.1-µF or  
lager decoupling capacitor.  
CA5V  
28  
MISC  
CP1  
8
CP2  
9
MISC  
Capacitance connections for charge pump  
CP3  
10  
22  
39  
40  
11  
53  
54  
55  
26  
27  
49  
CV3P3  
FCS_P  
FCS_N  
GPOUT  
IDCHG(TEST)  
LIN9VG  
LINFB  
MISC  
OUT  
OUT  
OUT  
Capacitance terminal for internal 3.3-V core (typ 0.1 µF)  
Focus positive output terminal  
Focus negative output terminal  
General-purpose output (test monitor)  
Test pin (leave open)  
9-V predriver output control signal for external NFET  
Voltage feedback of 9-V pre-driver (controlled to LINFB = 1.215 V)  
Load negative output terminal  
LOAD_N  
LOAD_P  
MCOM  
OUT  
OUT  
IN  
Load positive output terminal  
Motor center tap connection  
20, 21, 24, 29,  
50, 52, 56  
(N.C)  
Leave open  
P12V_SLD  
P12V_SPM1  
P12V_SPM2  
P5V  
3
PS  
PS  
Power supply terminal for SLED drivers  
Power supply terminal for SPM driver output stage  
Power supply terminal for SPM driver output stage  
Power supply terminal for 5-V driver output  
Power supply terminal (5 or 12 V) for load driver output stages  
GND terminal  
42  
46  
34  
25  
41  
6
PS  
PS  
P5V12L  
PGND_1  
PGND_2  
PGND_SPM1  
PGND_SPM2  
RDY  
PS  
PS  
PS  
GND terminal  
44  
48  
13  
15  
16  
18  
2
PS  
Ground terminal for spindle driver  
PS  
Ground terminal for spindle driver  
OUT  
IN  
Device ready signal internally pulled up to SIOV  
SIO Serial clock input terminal  
SCLK  
SIMO  
IN  
SIO slave input master output terminal  
Power supply terminal for serial port 3.3 V typical  
Sled1 negative output terminal  
SIOV  
PS  
SLED1_N  
SLED1_P  
SLED2_N  
SLED2_P  
SOMI  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
1
Sled1 positive output terminal  
5
Sled2 negative output terminal  
4
Sled2 positive output terminal  
17  
14  
32  
33  
30  
31  
35  
36  
37  
38  
43  
SIO slave output master input terminal  
SIO slave select active-low input terminal  
STP1 negative output terminal for collimator lens motor  
STP1 positive output terminal for collimator lens motor  
STP2 negative output terminal for collimator lens motor  
STP2 positive output terminal for collimator lens motor  
Tilt negative output terminal  
SSZ  
STP1_N  
STP1_P  
STP2_N  
STP2_P  
TLT_N  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
TLT_P  
Tilt positive output terminal  
TRK_P  
Tracking positive output terminal  
TRK_N  
Tracking negative output terminal  
U
U phase output terminal for spindle motor  
4
Copyright © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
45  
V
OUT  
OUT  
OUT  
IN  
V phase output terminal for spindle motor  
W
47  
W phase output terminal for spindle motor  
XFG  
XRSTIN  
12  
Motor speed signal output, internally pulled up to SIOV  
RESET input terminal to reset the driver IC (optional)  
19  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted)  
(1)  
MIN  
MAX  
6
UNIT  
5-V supply voltage P5V  
12-V supply voltage P12V  
15  
V
Load supply P5V12 voltage  
15  
Spindle output peak voltage  
Spindle output current  
15  
2.5  
3.5  
1.0  
1.0  
1.0  
Spindle output peak current(PW 2 msDuty 30%)  
Sled output peak current  
A
Focus/tracking/tilt driver output peak current  
Load driver output peak current  
Input/output voltage  
–0.3  
–20  
–60  
VCC + 0.3  
1344  
75  
V
(2)  
Power dissipation  
mW  
Operating temperature  
Lead temperature 1.6 mm from case for 10 s  
260  
°C  
Tstg  
Storage temperature  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) A lower RθJC is attainable if the exposed pad is connected to a large copper ground plane. RθJC and RθJA are values for 56-pin TSSOP  
without a exposed heat slug (HSL) on bottom. Actual thermal resistance would be better than the above values.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2015, Texas Instruments Incorporated  
5
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
5.0  
MAX  
5.5  
UNIT  
Operating supply voltage (apply for P5V)  
Driver 12-V supply voltage (apply for P12V)(1)  
10.8  
4.5  
12.0  
5.0  
13.2  
5.5  
V
Load operating supply voltage (apply for P5V12L)  
10.8  
3.0  
12.0  
3.3  
13.2  
3.6  
SIOV voltage  
Operating temperature range  
–20  
30  
25  
75  
°C  
SCLK frequency  
33.8688  
35  
MHz  
SIMO, SSZ, SCLK pin 'H' level input voltage range  
SIMO, SSZ, SCLK pin 'L' level input voltage range  
XRSTIN pin 'H' level input voltage  
2.2  
SIOV + 0.2  
0.8  
–0.2  
2.2  
V
P5V + 0.1  
0.8  
XRSTIN pin 'L' level input voltage range  
Spindle output current (U, V, W average total)  
Spindle output current [peak]  
–0.1  
1.7  
3.0  
A
Focus / tracking / tilt / loading / sled output current [average]  
Focus / tracking / tilt / loading / sled output current [peak]  
STP output average current  
0.4  
0.8  
300  
mA  
(1) (P5V = 4.5 to 5.5 V, P12V = 10.8 to 13.2 V, CATA –20to 75, unless otherwise noted)  
7.4 Thermal Information  
TPIC2060A  
THERMAL METRIC(1)  
DFD (HTSSOP)  
UNIT  
56 PINS  
16.9  
0.8  
RθJA  
RθJC  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-board thermal resistance  
5.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1
ψJB  
5.2  
RθJC(bot)  
0.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6
Copyright © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
7.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
COMMON PART  
ISTBY  
VCV3  
RXM  
Stand by supply current  
CV3P3 output voltage  
XRSTIN pulldown resistor  
RDY pullup resistor  
Standby mode (XSLEEP = 0)  
Iload = 25 mA  
0.6  
3.3  
200  
33  
1.2  
3.5  
mA  
V
3.1  
80  
320  
52.8  
0.3  
kΩ  
RRDY  
VRDY  
RXFG  
13.2  
RDY low level output voltage  
XFG output resistor  
SIOV = 3.3 V, IOL = –100 µA  
V
100  
200  
300  
Ω
SIOV = 3.3 V, XSLEEP = 1, IOH =  
100 µA  
VXFGH  
XFG high-level output voltage  
SIOV – 0.3  
V
SIOV = 3.3 V, XSLEEP = 1, IOL = -  
100 µA  
VSFGL  
RGPO  
VGPOH  
XFG low-level output voltage  
GPOUT output resistor  
0.3  
100  
200  
300  
Ω
SIOV = 3.3 V, XSLEEP = 1,  
GPOUT high-level output voltage GPOUT_ENA = 1,GPOUT_HL = 1,  
IOH = 100 µA  
SIOV – 0.3  
V
SIOV = 3.3 V, XSLEEP = 1,  
VGPOL  
GPOUT low-level output voltage  
GPOUT_ENA = 1,GPOUT_HL = 0,  
IOH = 100 µA  
0.3  
V
Thermal protection on  
temperature  
TTSD  
Design value  
135  
5
150  
15  
165  
25  
°C  
Thermal protection hysteresis  
temperature  
TTSDhys  
Vonvcc  
P5V reset on voltage  
P5V reset off voltage  
P12V reset on voltage  
P12V reset off voltage  
CV3P3 reset on voltage  
CV3P3 reset off voltage  
3.6  
3.6  
3.7  
3.8  
8.4  
8.8  
2.7  
2,8  
2
3.8  
4.0  
Voffvcc  
Vonvcc  
7.9  
8.9  
Voffvcc  
8.3  
9.3  
VonCV3  
VoffCV3  
VonSIOV  
VoffSIOV  
VovpspmOn  
VovpspmOff  
2.55  
2,65  
1.9  
2.85  
2,95  
2.1  
(1)  
SIOV reset on voltage  
V
(1)  
SIOV reset off voltage  
2
2.1  
14.9  
14.5  
2.2  
OVP detection voltage (spindle)(1)  
OVP release voltage (spindle)(1)  
OVP detection voltage (except  
14.2  
13.8  
15.6  
15.2  
VovpOn  
VovpOff  
5.9  
5.7  
6.2  
6.0  
6.5  
6.3  
(1)  
spindle)  
OVP release voltage (except  
(1)  
spindle)  
CHARGE PUMP PART  
FCHGP Frequency  
VCHGP Output voltage  
SPINDLE MOTOR DRIVER PART  
XSLEEP = 1  
132.6  
15.6  
156  
179.4  
21.4  
kHz  
V
Ccp1 = Ccp3 = 0.1 µF Io = –1 mA  
18.5  
Total output resistance high side  
+ low side  
RttlSPM  
IOUT = 500 mA  
0.4  
0.7  
Ω
ResSPM  
VoutSPM  
Resolution  
Spindle grain  
12  
14.0  
52h  
bit  
Magnification to 1.0 inputs  
Forward  
12.4  
12h  
15.6  
92h  
times  
WidDZSPM  
Spindle dead band  
Reverse  
–92h  
–52h  
–12h  
(1) These values are protection functions only, and stress beyond those listed under Recommended Operating Conditions may cause  
permanent damage to the device.  
Copyright © 2015, Texas Instruments Incorporated  
7
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SPM_RCOM_SEL = 00  
SPM_TQAJST = 00  
1019.7  
1133  
1246.3  
849.2  
1557.6  
1870.0  
–6%  
SPM_RCOM_SEL = 01  
SPM_TQAJST = 00  
694.8  
1274.4  
1530.0  
–4%  
772  
1416  
1700  
–5%  
SPMClim  
Current limit  
mA  
SPM_RCOM_SEL = 10  
SPM_TQAJST = 00  
SPM_RCOM_SEL = 11  
SPM_TQAJST = 00  
SPM_RCOM_SEL = xx  
SPM_TQAJST = 01  
SPM_RCOM_SEL = xx  
SPM_TQAJST = 10  
SPMClimF  
Current limit fine adjust  
–8%  
–10%  
–15%  
–12%  
–18%  
SPM_RCOM_SEL = xx  
SPM_TQAJST = 11  
–12%  
SLED MOTOR DRIVER PART  
Total output resistance high side P12 V = 10.8 to 13.2 V, IO = 500  
RttlSLD  
1.6  
2.5  
Ω
+ low side  
mA  
ResSLD  
Resolution  
10  
+1Fh  
–20h  
bit  
Forward  
Reverse  
WidDZSLD  
GnSLD  
input dead band  
Sled current gain  
P5V = 5 V,P12V = 12 V VSLED =  
7FFh  
760  
62  
880  
124  
1000  
186  
mA  
mV  
SLD_ENA = 1, SLD_ENDDET_ENA  
= 1, SLEDENDTH <1:0> = 00  
END_DET BEMF threshold  
voltage  
VthEdetSLD  
SLEDENDTH<1:0> = 01  
SLEDENDTH<1:0> = 11  
35  
80  
72  
105  
250  
168  
FOCUS/TILT/TRACKING DRIVER PART  
Each channel total output  
RttlAct  
P5V = 4.5 to 5.5 VIO = 500 mA  
0.7  
12  
0
1.1  
Ω
bit  
resistance high side + low side  
ResACT  
VOfstACT  
GnAct  
Resolution  
Each channel output offset  
voltage  
DAC_code = 000h  
–20  
5
20  
7
mV  
times  
mV  
Each channel voltage gain  
Magnification to 1.0 inputs  
DIFF_TLT = 1, FCS-TLT  
DIFF_TLT = 1, FCS-TLT (Typ = 1)  
6
FCS, TLT differential output offset  
voltage  
DifOff  
–40  
0.89  
0
40  
GnDAct  
FCS, TLT differential gain ratio  
1
1.13  
LOAD DRIVER PART  
P5V12L = 4.5 V to 5.5 VIO = 500  
mA  
Total output resistance high side  
+ low side  
RttlLOD  
1.2  
1.9  
Ω
P5V12L = 10.8 V to 13.2 VIO =  
500 mA  
ResLOD  
GnLOD  
Resolution  
12  
6.0  
bit  
P5V12L = 4.5 to 5.5 V  
P5V12L = 10.8 to 13.2 V  
Forward  
5.1  
6.9  
Voltage gain  
times  
12.6  
14.0  
20h  
15.4  
WidDZLOD  
Dead band  
Reverse  
–21h  
8
Copyright © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
P5V12L = 5 V,  
TRAY_LOCKDET[2:0] = 1  
80  
100  
120  
P5V12L = 12 V,  
TRAY_LOCKDET[2:0] = 1  
80  
120  
120  
160  
160  
212  
212  
255  
255  
297  
297  
340  
340  
0.8  
100  
150  
150  
200  
200  
250  
250  
300  
300  
350  
350  
400  
400  
1.0  
120  
180  
180  
240  
240  
287  
287  
345  
345  
402  
402  
460  
460  
1.2  
P5V12L = 5 V,  
TRAY_LOCKDET[2:0] = 2  
P5V12L = 12 V,  
TRAY_LOCKDET[2:0] = 2  
P5V12L = 5 V,  
TRAY_LOCKDET[2:0] = 3  
P5V12L = 12 V,  
TRAY_LOCKDET[2:0] = 3  
P5V12L = 5 V,  
TRAY_LOCKDET[2:0] = 4  
LockDth  
Tray lock detect threshold current  
mA  
P5V12L = 12 V,  
TRAY_LOCKDET[2:0] = 4  
P5V12L = 5 V,  
TRAY_LOCKDET[2:0] = 5  
P5V12L = 12 V,  
TRAY_LOCKDET[2:0] = 5  
P5V12L = 5 V,  
TRAY_LOCKDET[2:0] = 6  
P5V12L = 12 V,  
TRAY_LOCKDET[2:0] = 6  
P5V12L = 5 V,  
TRAY_LOCKDET[2:0] = 7  
P5V12L = 12 V,  
TRAY_LOCKDET[2:0] = 7  
LOAD_ENA = 0, P5V12L = 12V,  
PUSHDETTH[1:0] = 01  
Tray push detect voltage  
threshold  
LOAD_ENA = 0, P5V12L = 12V,  
PUSHDETTH[1:0] = 10  
PushDVth  
PushDTth  
0.52  
0.27  
78  
0.75  
0.5  
0.96  
0.63  
130  
260  
520  
25  
V
LOAD_ENA = 0, P5V12L = 12V,  
PUSHDETTH[1:0] = 11  
LOAD_ENA = 0, P5V12L = 12V,  
PUSHDETTH_TIME[1:0] = 00  
104  
208  
416  
0
LOAD_ENA = 0, P5V12L = 12V,  
PUSHDETTH_TIME[1:0] = 01  
156  
312  
Tray push detect time threshold  
ms  
LOAD_ENA = 0, P5V12L = 12V,  
PUSHDETTH_TIME[1:0] = 10  
LOAD_ENA = 0, P5V12L = 12V,  
PUSHDETTH_TIME[1:0] = 11  
STEPPING MOTOR DRIVER PART  
Total output resistance high side  
+ low side  
RttlSTP  
IO = 100 mA  
1.0  
8
1.5  
Ω
bit  
ResSTP  
VthEdetSTP  
Resolution  
STP_ENA = 1, STP_ENDDET_ENA  
= 1, STPDENDTH<1:0> = 00  
END_DET threshold level  
19  
39  
59  
mV  
9-V LDO DRIVER PART  
LINFBVth  
LINFB threshold voltage  
1.165  
1.215  
7
1.265  
V
THERMOMETER PART  
ResTEMP  
Resolution  
bit  
Copyright © 2015, Texas Instruments Incorporated  
9
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Temperature range  
Update cycle  
TEST CONDITIONS  
MIN  
8
TYP  
15  
MAX  
UNIT  
°C  
CHIPTEMP[6:0] = 00  
CHIPTEMP[6:0] = 7Fh  
22  
Trng  
155  
165  
10  
175  
FTEMP  
kHz  
ACTUATOR PROTECTION  
tintACTTEMP Update cycle  
SERIAL PORT VOLTAGE LEVELS  
26  
ms  
SOMI  
SOMI  
SIMO  
SIMO  
tSIMO  
High-level output voltage, VOH  
IOH = 1 mA  
IOL = 1 mA  
80% SIOV  
70% SIOV  
Low-level output voltage, VOL  
High-level input voltage, VIH  
Low level input voltage, VIL  
Input rise/fall time  
20% SIOV  
V
20% SIOV  
3.5  
20% to 80% of SIOV  
ns  
tSOMI  
Output rise/fall time  
Cload = 30 pF, 20% to 80% of SIOV  
10  
RSCLK  
RSSZ  
Internal pulldown resistance  
Internal pullup resistance  
Internal pulldown resistance  
80  
80  
80  
200  
200  
200  
320  
320  
kΩ  
RSIMO  
320  
7.6 Serial I/F Write Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
ƒck  
tckl  
SCLK clock frequency (SIOV = 3.3 V)  
SCLK low time  
35  
11  
11  
7
tckh  
tsens  
tsenh  
tsl  
SCLK high time  
ns  
SSZ setup time  
ns  
SSZ hold time  
7
ns  
SSZ disable high time  
SIMO setup time (Write)  
SIMO hold time (Write)  
11  
7
ns  
tds  
ns  
tdh  
7
ns  
Tsl  
SSZ  
Fck  
Tsens  
Tsenh  
SCLK  
Tckl  
Tckh  
SIMO  
Tds  
Tdh  
SOMI  
Hi-Z  
Figure 1. Serial Port Write Timing  
10  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
7.7 Serial I/F Read Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
ƒck  
tckl  
SCLK clock frequency (SIOV = 3.3 V)  
SCLK low time  
35  
11  
11  
7
tckh  
tsens  
tsenh  
tsl  
SCLK high time  
ns  
SSZ setup time  
ns  
SSZ hold time  
7
ns  
SSZ disable high time  
11  
7
ns  
tds  
SIMO setup time (Write)  
ns  
tdh  
SIMO hold time (Write)  
7
ns  
trdly  
tsendl  
trls  
SOMI delay time (Read) - (CLOAD = 10 pF, SIOV = 3.3 V)  
SOMI hold time (Read) - (CLOAD = 10 pF, SIOV = 3.3 V)  
2
9
9
9
ns  
2
ns  
SOMI release time (Read) - (CLOAD = 10 pF, SIOV = 3.3 V) From SSZ  
rise to SOMI HIZ  
0
ns  
Tsl  
SSZ  
Tsenh  
Fck  
Tsens  
Trls  
SCLK  
Tdh  
Tds  
Tckh Tckl  
SIMO  
SOMI  
R
Hi-Z  
Figure 2. Serial Port Read Timings  
Tsl  
SSZ  
Tsenh  
Fck  
Tsens  
SCLK  
Tdh  
Tds  
Tckh Tck l  
SIMO  
SOMI  
R
Trls  
Hi-Z  
Trdly  
Tsendl  
Figure 3. Serial Port Read Timings (Advanced Read Mode)  
Copyright © 2015, Texas Instruments Incorporated  
11  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
7.8 Typical Characteristics  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
STP1+  
STP1-  
STP2+  
STP2-  
-2047 -1547 -1047 -547  
-47  
453  
953 1453 1953  
-2047 -1547 -1047 -547  
-47  
453  
953 1453 1953  
DAC Code  
DAC Code  
D003  
D004  
Figure 4. STP1 Driver: DAC Code vs Output On Duty  
Figure 5. STP2 Driver: DAC Code vs Output On Duty  
12  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
8 Detailed Description  
8.1 Overview  
The TPIC2060A is a low-noise motor driver IC suitable for 12-V ODD. The 9-channel driver IC controlled by a  
serial interface is optimized for driving a spindle motor, a sled motor (stepping motor applicable), a load motor,  
focus / tracking / tilt actuators, and stepping motor for collimator lens. This IC has an integrated current sense  
resistance that measures SPM current, which reduces drive system costs. The spindle motor driver part builds in  
sensorless logic, which attains low-noise operation at the start and run times. The user does not need to self-  
start the device using the starting circuit or perform position detection by BEMF of a motor or sensors such as a  
Hall device. As the output stage of all channels works in efficient PWM driving, the user can attain low-power  
operation by PWM control. Dead-zone-less control is possible for a focus / tracking / tilt actuator driver. In  
addition, the spindle part output current limiting circuit, the thermal shutdown circuit, the sled-end detection  
circuit, collimator-lens-end detection circuit, actuator protection, and pre-driver for a 9-V LDO are built in. The  
newly added, built-in thermometer measures IC temperature.  
Copyright © 2015, Texas Instruments Incorporated  
13  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
8.2 Functional Block Diagram  
12V  
12V  
5V  
12V  
12V  
0.1u  
0.1u  
PGND_ SPM1  
analog  
SPM_ RCOM  
PGND_ SPM 2  
Charge  
pum p  
19V  
XSLEEP  
3.3V  
SPM  
Current lim it  
SPM_ ENA  
MCOM  
U
BEMF  
SPM Logic  
DAC PWM  
SIOV  
detector  
XFG  
XFG  
XSLEEP  
V
SIOV  
pre  
-driver  
pwrFET  
3.3V  
W
SSZ  
SSZ  
Digital core  
SLED1+  
SLED1-  
SCLK  
SCLK  
DACPWM  
pre  
-driver  
SIMO  
SIMO  
pwrFET  
pwrFET  
I-F/B  
SIOV  
SLD_ ENA  
SOMI  
SOMI  
SLED2+  
SLED2-  
pre  
3.3V  
-driver  
SIOV  
SLD_ E_ ENA  
I-F/B  
GPOUT  
GPOUT  
On chip  
therm ometer  
GPOUTENA  
TLT+  
TLT-  
XRSTIN  
InterLock  
DACPWM  
DACPWWM  
pre  
pwrFET  
-driver  
TLT_ ENA  
FCS_ ENA  
F/B  
FCS+  
FCS-  
CV3P3V  
int3.3V  
Regulator  
pre  
pwrFET  
-driver  
0.1u  
F/B  
P5V  
SIOV  
P12V  
SIOV  
P5V  
TRK+  
TRK-  
Power  
ACTTEMPTH>0  
pre  
pwrFET  
monitor  
RDY  
-driver  
RDY  
TRK_ ENA  
F/B  
P5V12L  
12V  
DACPWWM  
5V  
CA5V  
LOAD+  
5VAnalog  
pre  
0.1u  
pwrFET  
-driver  
LOAD-  
12V  
F/B  
TRAY_ E_ ENA  
DACPWM  
LIN9VG  
LINFB  
LDO  
LIN9V_ DIS  
LOAD_ ENA  
control  
STP1+  
9V  
pre  
pwrFET  
pwrFET  
-driver  
STP1-  
STP2+  
F/B  
pre  
-driver  
STP_ ENA STEP_E_ENA  
STP2-  
F/B  
C10V  
int10V  
Regulator  
TPIC2060A  
0.1u  
14  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
8.3 Feature Description  
8.3.1 Protection Functions  
The TPIC2060A has four protection features to protect target equipment: overvoltage protection (OVP), short-  
circuit protection (SCP), thermal protection (TSD), and actuator temperature protection (ACTTIMER).  
8.3.1.1 OVP  
The OVP function protects the unit from the supplying high voltage. When the supply voltage exceeds 6.2 V (for  
P5V), all driver output goes Hi-Z. SPM, sled, and load channels put Hi-Z when P12V is over 14.9 V. Regardless  
of the input voltage of P5V12L, the load channel become Hi-Z at the time of OVP_P5V or OVP_P12V. When the  
supply voltage falls below a typical 6.0 V, all outputs start to operate again. (14.5 V for 12-V driver channel) The  
OVP and POR (RDY) function is not interlocking.  
OVP is intended to protect the device in evaluation stage as temporary and back-up solution.  
8.3.1.2 SCP  
SCP protects the device from breakdown by large current. Each behavior is indicated on Table 1.  
Table 1. Protection Threshold Table  
BLOCK  
STEP driver  
FUNCTION  
DETECTION CURRENT  
DETECT TIME  
HI-Z HOLD TIME  
SPM driver  
Sled driver  
Monitor driver output voltage  
SCP  
0.8 to 1.6 µs  
1.6 ms  
Hi side FET output V = GND  
Load driver  
Actuator driver  
Lo side FET output V = Supply voltage  
When the large current is detected on each block, the device puts the output FET to Hi-Z.  
When SCP occurs, it returns automatically after expiring set Hi-Z hold time. The OCPSCPERR (REG7F) and  
SCP flag (REG7B) are set at detection.  
The SCP function always monitors the output voltage of the high-side and low-side FET of the output driver.  
When the setting voltage is not outputted, the device recognizes it as SCP and changes output Hi-Z. The device  
returns to the original state automatically after 1.6 ms.  
VDAC set  
Driver current  
Hi-Z  
Hi-Z  
detect1.6us  
Drivervoltage  
1.6m s  
RDY  
Figure 6. Example of SCP (Driver Short to GND)  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
8.3.1.3 Temperature Shutdown (TSD)  
TSD is a protection function which intercepts an output and suspends an operation when the IC temperature  
exceeds a maximum permissible on a safety. TSD makes an output Hi-Z when the temperature rises up and a  
threshold value is exceeded. There are two levels for threshold: Alert and Trip. An alarm is given by status  
register TSD_FAULT_ on Alert level with 135°C. If it the temperature continues to rise, the register TSD_ is set at  
150°C, and the driver output changes HI-Z. If the temperature falls and reaches 135°C, it will output again. The  
TPIC2060A has 11 temperature sensors in each circuit block. Particular sensors are assigned to the appropriate  
status flags in Table 2.  
Table 2. Thermal Sensor Assignment  
CIRCUIT  
U
ALERT (°C)  
135  
TRIP (°C)  
150  
RELEASE (°C)  
ALERT FLAG  
TSD_FAULT_SPM  
TSD_FAULT_SPM  
TSD_FAULT_SPM  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_P12DCHG  
TRIP FLAG  
TSD_SPM  
TSD_SPM  
TSD_SPM  
TSD_ACT  
TSD_ACT  
TSD_ACT  
TSD_ACT  
TSD_ACT  
TSD_ACT  
TSD_ACT  
TSD_P12DCHG  
135  
135  
135  
135  
135  
135  
135  
135  
135  
135  
135  
V
135  
150  
W
135  
150  
TLT  
135  
150  
FCS  
135  
150  
TRK  
135  
150  
SLED1  
SLED2  
STP  
135  
150  
135  
150  
135  
150  
LOAD  
P12DCHG  
135  
150  
135  
150  
8.3.1.4 ACTTIMER  
The TPIC2060A has an actuator protection function named ACTTIMER. This function sets the actuator channel  
output to Hi-Z when the actuator coil current exceeds a specific value. Some other devices use a simple actuator  
protection function that detects if max current is exceeded with time; however, this other type of actuator  
protection function lacks accuracy. This new protection calculates heat accumulation and judges accordingly.  
When this function operates, the load driver channel output will be Hi-Z, the spindle channel is forced to “Auto  
short brake” and the disc motor stops.  
Observe if the protection has occurred by checking the Fault register ACTTIMER_FAULT and  
ACT_TIMER_PROT. ACTTIMER_FAULT has  
a character for advance notice, set before detecting  
ACT_TIMER_PROT. After an ACT_TIMER_PROT is set, even if the temperature falls, it will not release the  
protection automatically. It is necessary to clear the flag by setting RST_ERR_FLAG or setting 0 to  
ACTTEMPTH. The ACTTIMER function is disabled by setting H to ACTPROT_OFF or setting 0 to ACTTEMPTH.  
To acquire the optimal value for ACTTEMPTH, set the device into the condition of the detection level, and read  
the value of ACTTEMP. The present value can be read from ACTTEMP. The ACTTEMP data is updated in the  
register in ACTPROT_OFF = 0 and ACTTEMPTH > 0.  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
RST_ ERR_ FLAG  
ACTTIMER_ FAULT  
ACT_ TIMER_ PROT  
ACTTEMPTH  
ACTTEMPTH-1  
ACTTEMPcount  
Hi-Z  
Hi-Z  
FCS+ , TRK+ , TLT+  
FCS-, TRK-, TLT-  
Sled1+ , Sled2+  
Sled1-, Sled2-  
Step1+ ,Step2+  
Step1-,Step2-  
Load+  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Load-  
Motor rpm  
0
auto short brake  
XFG  
disable 300m s  
Figure 7. Actuator Temperature Protections  
Copyright © 2015, Texas Instruments Incorporated  
17  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Differential Tilt Mode  
The TPIC2060A supports differential tilt mode, which outputs the value calculated from focus and tilt. Focus and  
tilt can be set in differential mode by DIFF_TLT (REG74) = 1. Because focus and tilt are updated at the same  
time, the update interval of tilt can be thinned out. Output data changes at after writing VFCS data. Therefore, it  
is necessary to write VFCS data when setting VTLT. In differential mode, the output value is calculated as  
follows.  
FCS_OUT = (VFCS + VTLT) × 6  
TLT_OUT = (VFCS – VTLT) × 6  
(1)  
(2)  
8.4.2 Power-On Reset (POR)  
8.4.2.1 RDY (Power Ready)  
The TPIC2060A prepares the RDY pin to show a power status to the host controller. A device sets RDY output  
to high (= POR), if the supply voltage and internal regulator voltage reach a rated value. All registers are  
initialized at the time of POR operation. Figure 8 shows the behavior of RDY.  
RDY: High  
(Write data)  
Register reset  
Register valid data  
XRSTIN = L (*1)  
or RST_REGS = 1  
P5V > 3.8 V  
P5V < 3.7 V  
and CV3P3 > 2.8 V  
and SIOV > 2.1 V  
and P12V > 8.8 V  
or CV3P3 < 2.7 V  
or SIOV < 2.0 V  
or P12V < 8.4 V  
RDY: Low  
A. *1 = The period of XRSTIN cannot be communicated with the device.  
Figure 8. 10 RDY Pin Behavior  
8.4.2.2 Voltage Monitoring  
Power faults are reported in the UVLOMon register. Each UVLOMon bit is initialized to 0 upon a cold power-up.  
After a fault is detected, the appropriate fault bit is latched high. Writing to the RST_ERR_FLG (REG77) clears  
all UVLOMon bits. Table 3 summarizes the power device faults and actions.  
Table 3. Power Fault Monitor  
DRIVER OUTPUT AT DETECTION  
FAULT TYPE  
LATCHED REGISTER  
POR  
CRITERIA  
SPM SLED LOAD STEP  
ACT  
P5V under voltage  
UVLO_P5V  
Yes  
Yes  
Yes(1)  
<3.7 V  
<2.7 V  
<8.4 V  
<2.0 V  
>6.2 V  
>14.9 V  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Internal 3.3 V under voltage UVLO_INT3P3  
P12V under voltage  
SIOV under voltage  
P5V over voltage  
P12V over voltage  
UVLO_P12V  
UVLO_SIOV  
OVP_P5V  
Yes  
OVP_P12V  
Hi-Z  
(1) P12VMUTE_NORST = 0: force POR, P12VMUTE_NORST = 1: no POR  
18  
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
8.5 Programming  
8.5.1 Serial Port Functional Description  
The serial communication of the TPIC2060A is based on a SPI communications protocol. TPIC2060A is put on  
the slave side. All 16-bit transmission data is effective in SSZ = L period.  
The bit stream sent through SIMO from a master (DSP) is latched to an internal shift register by the rising edge  
of SCLK. All data is transmitted in a 16-bit format of a command and data. A format has two types of data, 8 bits  
and 12 bits in length. To access specific registers, an address and R/W flag are specified as a command part. In  
addition, 12-bit data types do not have a R/W flag in the packet, as the DAC register(= 12-bit data form) is  
Write only. A transfer packet, command and data, is transmitted sequentially from MSB to LSB. A packet is  
distinguished in MSB 2 bits of command. In the case of 11, it handles a packet for control register access, and  
the other processed as a packet for a DAC data setting.  
These are the four kinds of serial-data communication packets:  
Write 12 bits DAC data (MSB two bit 11)  
Write 8 bits control register (MSB two bit = 11)  
Read 8 bits control register (MSB two bit = 11)  
Write 12 bits Focus DAC dataRead 8 bits status register at the same time (MSB two bit 11)  
8.5.2 Write Operation  
For write operations, DSP transmits 16-bit (command + address + data) data in an order from MSB. Only the 16-  
bit data, 16 SCLK sent from the master during SSZ = L, is effective. If >17 or <15 SCLK pulses are received  
during the time that SSZ is low, the whole packet is ignored. For all valid write operations, the data of the shift  
register is latched into its designated internal register at the rising edge of the 16th SCLK. All internal register bits,  
except as indicated otherwise, are reset to their default states upon power-on reset.  
SSZ  
SCLK  
SIMO  
C3  
C2  
C1  
C0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SOMI  
Hi-Z  
Figure 9. Write 12 Bits DAC Data  
SSZ  
SCLK  
SIMO  
SOMI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
W
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Hi-Z  
Figure 10. Write 8 Bits Control Register  
Copyright © 2015, Texas Instruments Incorporated  
19  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
Programming (continued)  
8.5.3 Read Operation  
DSP sends an 8-bit header through SIMO to perform the Read operation. The TPIC2060A starts to drive the  
SOMI line upon the eighth falling edge of SCLK and shifts out eight data bits. The master DSP inputs 8 bits of  
data from SOMI after the ninth rising edge of SCLK. ꢀ  
SSZ  
SCLK  
SIMO  
SOMI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Hi-Z  
Figure 11. Read 8 Bits Control Register  
8.5.4 Write and Read Operation  
Optionally, the master DSP can read the Status register during writing a 12 bits DAC (Focus DAC) packet. It is  
enabled by setting bit RDSTAT_ON_VFCS (REG74) = H.  
SSZ  
SCLK  
SIMO  
C3  
C2  
C1  
C0  
D11  
D10  
D9  
D8  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
SOMI  
Hi-Z  
Figure 12. Write 12 Bits Focus DAC Data + Read 8 Bits Status Data  
20  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
8.6 Register Maps  
All registers are in WRITE-protect mode after XRSTIN release. WRITE_ENA bit (REG76) = 1 is required before  
writing data in register.  
8.6.1 Register State Transition  
Device Pow er On  
version data  
(REG7E)  
POR  
Register initialized  
P5V < 2.0V  
P5V < 3.7V  
or C V3P3 < 2.0V  
or CV3P3 < 2.7V  
or RST_ ERR_ FLAG= 1  
orSIOV< 2.0V  
orP12V< 8.4V  
or SIF_ TIMEOUT_ ERR= 1  
or RST_ REGS= 1  
orXRSTIN= L  
W RITE_ ENABLE= 0  
orXSLEEP= 0  
XRSTIN= H  
P5V < 3.7V  
or CV3P3 < 2.7V  
orSIOV< 2.0V  
orP12V< 8.4V  
or P5V > 6.3V  
orP12V> 14.5V  
orXRSTIN= L  
VDAC Reg data  
(REG01-09)  
Control Reg data  
REG70-77,7C  
REG78[4:0]  
REG6B-6F  
or SIF_ TIMEOUT_ ERR= 1  
orRST_ REGS= 1  
Initial(000)  
Vxxx W rite  
RST_ INDAC= 1  
orXXX_ ENA= 0  
Error latched Reg data  
(REG78[5],79,7A,7B,7F[7:1])  
set Value  
(error occur)  
Register valid data  
The register contentsare not affected.  
Figure 13. Register Behavior  
Copyright © 2015, Texas Instruments Incorporated  
21  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
Register Maps (continued)  
8.6.2 DAC Register (12-Bit Write Only)  
Two different forms are prepared in the 12-bit DAC register. The forms are selected by setting VDAC_MAPSW  
(REG74h).  
Table 4. List 2 DAC Register (VDAC_MAPSW = 0)  
REG NAME  
11  
10  
9
8
7
6
5
4
3
2
1
0
00h  
01h  
N/A  
N/A  
VTLT  
[11]  
VTLT VTLT[9 VTLT[8 VTLT[7  
[10]  
VTLT  
VTLT[6] VTLT[5] VTLT[4]  
VFCS[6] VFCS[5] VFCS[4]  
VTRK[6] VTRK[5] VTRK[4]  
VTLT[3]  
VFCS[3]  
VTLT[2]  
VFCS[2]  
VTLT[1]  
VFCS[1]  
VTLT[0]  
VFCS[0]  
]
]
]
VFCS  
[11]  
VFCS VFCS[ VFCS[ VFCS[  
[10] 9] 8] 7]  
02h  
03h  
VFCS  
VTRK  
VTRK  
[11]  
VTRK VTRK[ VTRK[ VTRK[  
[10] 9] 8] 7]  
VTRK[3]  
VTRK[2]  
VTRK[1]  
VTRK[0]  
VSLD1 VSLD1 VSLD1 VSLD1 VSLD1 VSLD1  
[11] [10] [9] [8] [7] [6]  
VSLD1  
[5]  
VSLD1  
[4]  
04h VSLD1  
05h VSLD2  
06h VSTP1  
07h VSTP2  
VSLD1[3]  
VSLD2[3]  
VSTP1[3](1)  
VSTP2[3](1)  
VSPM[3]  
VSLD1[2]  
VSLD2[2]  
VSTP1[2](1)  
VSTP2[2](1)  
VSPM[2]  
VSLD1[1](1)  
VSLD2[1](1)  
VSTP1[1](1)  
VSTP2[1](1)  
VSPM[1]  
VSLD1[0](1)  
VSLD2[0](1)  
VSTP1[0](1)  
VSTP2[0](1)  
VSPM[0]  
VSLD2 VSLD2 VSLD2 VSLD2 VSLD2 VSLD2  
[11] [10] [9] [8] [7] [6]  
VSLD2  
[5]  
VSLD2  
[4]  
VSTP1 VSTP1 VSTP1 VSTP1 VSTP1 VSTP1  
[11] [10] [9] [8] [7] [6]  
VSTP1  
[5]  
VSTP1  
[4]  
VSTP2 VSTP2 VSTP2 VSTP2 VSTP2 VSTP2  
[11] [10] [9] [8] [7] [6]  
VSTP2  
[5]  
VSTP2  
[4]  
VSPM VSPM VSPM[ VSPM[ VSPM[  
08h  
09h  
VSPM  
VSPM[6] VSPM[5] VSPM[4]  
[11]  
[10]  
9]  
8]  
7]  
VLOA  
D
[11]  
VLOA  
D
[10]  
VLOA  
D
VLOA  
D[9]  
VLOA  
D[8]  
VLOA VLOAD[ VLOAD[ VLOAD[  
D[7] 6] 5] 4]  
VLOAD[3]  
VLOAD[2]  
VLOAD[1]  
VLOAD[0]  
0Ah  
0Bh  
N/A  
N/A  
N/A  
N/A  
(1) TPIC2060A process as 0 even if set as 1.  
Table 5. List 3 DAC Register (VDAC_MAPSW=1)  
REG  
NAME  
11  
10  
9
8
7
6
5
4
3
2
1
0
00h  
N/A  
N/A  
VTRK  
[11]  
VTRK  
[10]  
01h  
02h  
03h  
04h  
05h  
06h  
VTRK  
VFCS  
VTLT  
VTRK[9] VTRK[8] VTRK[7] VTRK[6] VTRK[5] VTRK[4] VTRK[3] VTRK[2] VTRK[1]  
VFCS[9] VFCS[8] VFCS[7] VFCS[6] VFCS[5] VFCS[4] VFCS[3] VFCS[2] VFCS[1]  
VTRK[0]  
VFCS[0]  
VTLT[0]  
VFCS  
[11]  
VFCS  
[10]  
VTLT  
[11]  
VTLT  
[10]  
VTLT[9]  
VTLT[8]  
VTLT[7]  
VTLT[6]  
VTLT[5]  
VTLT[4]  
VTLT[3]  
VTLT[2]  
VTLT[1]  
VSLD1  
[11]  
VSLD1  
[10]  
VSLD1  
[9]  
VSLD1  
[8]  
VSLD1  
[7]  
VSLD1  
[6]  
VSLD1  
[5]  
VSLD1  
[4]  
VSLD1  
[3]  
VSLD1  
[2]  
VSLD1  
[1](1)  
VSLD1  
[0](1)  
VSLD1  
VSLD2  
VSPM  
VSLD2  
[11]  
VSLD2  
[10]  
VSLD2  
[9]  
VSLD2  
[8]  
VSLD2  
[7]  
VSLD2  
[6]  
VSLD2  
[5]  
VSLD2  
[4]  
VSLD2  
[3]  
VSLD2  
[2]  
VSLD2  
[1](1)  
VSLD2  
[0](1)  
VSPM  
[11]  
VSPM  
[10]  
VSPM[9] VSPM[8] VSPM[7] VSPM[6] VSPM[5] VSPM[4] VSPM[3] VSPM[2] VSPM[1]  
VSPM[0]  
07h  
08h  
N/A  
N/A  
N/A  
N/A  
VLOAD  
[11]  
VLOAD  
[10]  
VLOAD  
[9]  
VLOAD  
[8]  
VLOAD  
[7]  
VLOAD  
[6]  
VLOAD  
[5]  
VLOAD  
[4]  
09h  
0Ah  
0Bh  
VLOAD  
VSTP1  
VSTP2  
N/A  
N/A  
N/A  
VSTP1  
[11]  
VSTP1  
[10]  
VSTP1  
[9]  
VSTP1  
[8]  
VSTP1  
[7]  
VSTP1  
[6]  
VSTP1  
[5]  
VSTP1  
[4]  
VSTP2  
[11]  
VSTP2  
[10]  
VSTP2  
[9]  
VSTP2  
[8]  
VSTP2  
[7]  
VSTP2  
[6]  
VSTP2  
[5]  
VSTP2  
[4]  
(1) TPIC2060A process as 0 even if set as 1.  
22  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
8.6.3 Control Register (8-Bit Read/Write)  
Table 6. List 4 Control Register (8-Bit Read/Write)  
REG  
NAME  
F
7
6
5
4
3
2
1
0
70h  
DriverEna  
R/W  
TLT_ENA  
FCS_ENA  
TRK_ENA  
SPM_ENA  
SLD_ENA  
STP_ENA  
LOAD_ENA  
XSLEEP  
SLD  
_ENDDET  
_ENA  
STP  
_ENDDET  
_ENA  
LIN9V  
_DISABLE  
TEMPMON  
_ENA  
71h  
FuncEna  
R/W  
TI Rsvd  
TI Rsvd  
SPM_RCOM_SEL  
P12VMUTE  
_NORST  
ACTPROT  
_OFF  
72h  
73h  
74h  
75h  
76h  
77h  
78h  
79h  
ACTCfg  
Parm0  
R/W  
R/W  
R/W  
R/W  
R/W  
W
RSTIN_OFF  
ACTTEMPTH  
SLEDEND  
_HZTIME  
STPEND  
_HZTIME  
SIF_TIMEOUT_TH  
SLDENDTH  
STPENDTH  
STATUS  
_ON_VFCS  
VSLD2  
_POL  
VSTP2  
_POL  
ADVANCE  
_RD  
VDAC  
_MAPSW  
SIFCfg  
DIFF_TLT  
TI Rsvd  
SOMI_HIZ  
SPM_FAST SPM_SLNT  
_BRK  
SPM  
Parm1  
TRAY_LOCKDET  
TI Reserved  
_BRK  
_HIZMODE  
WRITE  
_ENABLE  
REG6X  
_Write  
WriteEna  
ClrReg  
TI Reserved  
TI Rsvd  
RST_ERR  
_FLAG  
RST_INDAC RST_REGS  
TI Reserved  
TI Reserved  
ACTTEMP  
ACT_TIMER  
_PROT  
ActTemp  
UVLOMon  
R
UVLO  
UVLO  
R
LIN9V_RDY  
TI Rsvd  
TI Rsvd  
UVLO_P5V  
UVLO_SIOV OVP_P5V  
OVP_P12V  
_INT3P3  
_P12V  
TSD  
_FAULT  
_SPM  
TSD  
_FAULT  
_ACT  
TSD  
TSD  
_P12DCHG  
7Ah  
TSDMon  
R
_FAULT  
TI Rsvd  
TSD_SPM  
TSD_ACT  
SCP_ACT  
_P12DCHG  
7Bh  
7Ch  
SCPMon  
R
R
TI Reserved  
SCP_SPM  
SCP_SLED SCP_LOAD  
CHIPTEMP  
SCP_STP  
CHIPTEMP  
_STATUS  
TempMon  
SIF_TIMEO  
UTERR  
XRSTIN  
_DET  
TRAY_LOC TRAY_PUS TRAY_PUS  
STP  
_ENDDET  
SLD  
_ENDDET  
7Dh  
7Eh  
7Fh  
Monitor  
Version  
Status  
R
R
R
TI Rsvd  
TI Rsvd  
KDETECT  
HDETP  
HDETN  
Version  
ACTTIMER  
_FAULT  
MONITOR  
PWRERR  
TSDERR  
SCPERR  
TSDFAULT  
FG  
FG_SBRK  
_OFF  
IS_NZONE  
_OFF  
60h  
61h  
SPMCfg  
SPMCfg  
R/W  
R/W  
TI Rsvd  
TI Reserved  
TI Rsvd  
TI Rsvd  
PWMmaxDu  
ty_R_SEL  
TI Reserved  
62h  
63h  
64h  
65h  
66h  
67h  
68h  
SPMCfg  
Protect  
Protect  
SPMCfg  
Protect  
Protect  
Protect  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TI Reserved  
TIME_BASE_SEL  
TI Reserved  
FG5M_OFF  
TI Reserved  
TI Reserved  
TI Reserved  
TI Reserved  
TI Reserved  
HZSVR_SEL  
TI Reserved  
TI Reserved  
TI Reserved  
SCP_SLED SCP_LOAD SCP_ACT  
SPM_TQAJST  
TI Reserved  
SCP_SPM  
_OFF  
SCP_STP  
_OFF  
SPM  
_RCDDIS  
6Bh  
DisProt  
R/W  
_OFF  
_OFF  
_OFF  
6Ch  
6Dh  
ENDCfg  
Protect  
R/W  
R/W  
PUSHDETTH  
PUSHDET_TIME  
TI Reserved  
TI Reserved  
GPOUT  
_ENA  
6Eh  
6Fh  
UtilCfg  
R/W  
R/W  
GPOUT_HL  
TI Reserved  
ACTTIMER  
_FLT_MON  
MONITOR  
_MON  
PWRERR  
_MON  
TSDERR  
_MON  
OCPSCPER TSDFAULT  
R_MON _MON  
SPMRCD  
_BRK_MON  
GPOUTSet  
TI Rsvd  
VTRK and VLOAD is exclusive, using the same DAC circuit block.  
Copyright © 2015, Texas Instruments Incorporated  
23  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
8.6.4 Detailed Register Description  
8.6.4.1 REG01 12-Bit DAC for Tilt (offset = 01h)  
(VDAC_MAPSW = 0)  
Figure 14. REG01 12-Bit DAC for Tilt  
11  
10  
9
8
VTLT  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VTLT  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7. REG01 12-Bit DAC for Tilt Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
11-0  
VTLT  
W
0h  
Digital input code for tilt.  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
Output is changed by “differential tilt mode (REG74[7])”  
TLT_OUT = VTLT × (6.0/2048) (DIFF_TLT = 0)  
TLT_OUT = (VFCS-VTLT) × (6.0/2048) (DIFF_TLT = 1)  
TLT_OUT should be changed after writing VFCS. In DIFF_TLT  
mode (DIFF_TLT = 1), TLT_OUT should be changed after  
writing VFCS.  
8.6.4.2 REG02 12-Bit DAC for Focus (offset = 02h)  
(VDAC_MAPSW = 0)  
Figure 15. REG02 12-Bit DAC for Focus  
11  
10  
9
8
VFCS  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VFCS  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8. REG02 12-Bit DAC for Focus Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
11-0  
VFCS  
W
0h  
Digital input code for focus.  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
Output is changed by differential tilt mode (REG74[7])  
FCS_OUT = VFCS × (6.0/2048) (DIFF_TLT = 0)  
FCS_OUT = (VFCS + VTLT) × (6.0 / 2048) (DIFF_TLT = 1)  
24  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
8.6.4.3 REG03 12-Bit DAC for Tracking (offset = 03h)  
(VDAC_MAPSW = 0)  
Figure 16. REG03 12-Bit DAC for Tracking  
11  
10  
9
8
VTRK  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VTRK  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 9. REG03 12-Bit DAC for Tracking Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
11-0  
VTRK  
W
0h  
Digital input code for tracking.  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
TRK_OUT = VTRK × (6.0 / 2048)  
8.6.4.4 REG04 12-Bit DAC for Sled1 (offset = 04h)  
(VDAC_MAPSW = 0)  
Figure 17. REG04 12-Bit DAC for Sled1  
11  
10  
9
8
VSLD1  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VSLD1  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 10. REG04 12-Bit DAC for Sled1 Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
11-0  
VSLD1  
W
0h  
Digital input code for sled1.  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
Two bits on LSB, VSLD1[1:0], will be handled with 0.  
SLD1_OUT = VSLD1 × (880 mA / 2048)  
Copyright © 2015, Texas Instruments Incorporated  
25  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
8.6.4.5 REG05 12-Bit DAC for Sled2 (offset = 05h)  
(VDAC_MAPSW = 0)  
Figure 18. REG05 12-Bit DAC for Sled2  
11  
10  
9
8
VSLD2  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VSLD2  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. REG05 12-Bit DAC for Sled2 Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
11-0  
VSLD2  
W
0h  
Digital input code for sled2.  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
Two bits on LSB, VSLD2[1:0], will be handled with 0.  
SLD2_OUT = VSLD2 × (880 mA / 2048)  
8.6.4.6 REG06 12-Bit DAC for Stepping1 (offset = 06h)  
(VDAC_MAPSW = 0)  
Figure 19. REG06 12-Bit DAC for Stepping1  
11  
10  
9
8
VSTP1  
w-0  
w-0  
w-0  
1
w-0  
0
7
6
5
4
3
2
VSTP1  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 12. REG06 12-Bit DAC for Stepping1 Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
11-0  
VSTP1  
W
0h  
Digital input code for stepping1.  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
Although VSTP1 is 12-bit width, MSB 8 bits is effective.  
Four bits on LSB, VSTP1[3:0], will be handled with 0.  
VSTP1_OUT = VSTP1 × (P5V/2048)  
26  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
8.6.4.7 REG07 12-Bit DAC for Stepping2 (offset = 07h)  
(VDAC_MAPSW = 0)  
Figure 20. REG07 12-Bit DAC for Stepping2  
11  
10  
9
8
VSTP2  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VSTP2  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 13. REG07 12-Bit DAC for Stepping2 Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
11-0  
VSTP2  
W
0h  
Digital input code for stepping2.  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
Although VSTP2 is 12-bit width, MSB 8 bits is effective.  
Four bits on LSB, VSTP2[3:0], will be handled with 0.  
VSTP2_OUT = VSTP2 × (P5V/2048)  
8.6.4.8 REG08 12-Bit DAC for Spindle (offset = 08h)  
(VDAC_MAPSW = 0)  
Figure 21. REG08 12-Bit DAC for Spindle  
11  
10  
9
8
VSPM  
w-0  
w-0  
w-0  
1
w-0  
0
7
6
5
4
3
2
VSPM  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 14. REG08 12-Bit DAC for Spindle Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
11-0  
VSPM  
W
0h  
Digital input code for spindle.  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
SPM_OUT = VSPM × (14.0/2048)  
Copyright © 2015, Texas Instruments Incorporated  
27  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
8.6.4.9 REG09 12-Bit DAC for Load (offset = 09h)  
(VDAC_MAPSW = 0)  
Figure 22. REG09 12-Bit DAC for Load  
11  
10  
9
8
VLOAD  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VLOAD  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 15. REG09 12-Bit DAC for Load Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
11-0  
VLOAD  
W
0h  
Digital input code for load.  
2’s complement format 0x800(-2048) to 0x7ff(+2047)  
LOAD_OUT = VLOAD × (6.0 / 2048) at P5V12L = 5.0 V  
LOAD_OUT = VLOAD × (14.0 / 2048) at P5V12L = 12.0 V  
8.6.4.10 REG70 8-Bit Control Register for DriverEna (offset = 70h)  
Figure 23. REG70 8-Bit Control Register for DriverEna  
7
6
5
4
3
2
1
0
TLT_ENA  
rw-0  
FCS_ENA  
rw-0  
TRK_ENA  
rw-0  
SPM_ENA  
rw-0  
SLD_ENA  
rw-0  
STP_ENA  
rw-0  
LOAD_ENA  
rw-0  
XSLEEP  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 16. REG70 8-Bit Control Register for DriverEna Field Descriptions  
BIT  
7
FIELD  
TYPE  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RESET  
0h  
DESCRIPTION  
TLT_ENA  
FCS_ENA  
TRK_ENA  
SPM_ENA  
SLD_ENA  
STP_ENA  
LOAD_ENA  
1h = Tilt enable (with XSLEEP = 1)  
1h = Focus enable (with XSLEEP = 1)  
1h = Track enable (with XSLEEP = 1)  
1h = Spindle enable (with XSLEEP = 1)  
1h = Sled enable (with XSLEEP = 1)  
1h = Step enable (with XSLEEP = 1)  
6
0h  
5
0h  
4
0h  
3
0h  
2
0h  
1
0h  
1h = LOAD enable (with XSLEEP = 1)  
Track (bit5:TRK_ENA) will be disabled at LOAD_ENA = 1 because of sharing  
the DAC PWM module. Load priority is higher than TRK_ENA.  
0
XSLEEP  
RW  
0h  
1h = Operation mode (need 1 ms)  
0h = Standby mode  
Charge pump enable bit.  
All driver enable bit (Bit[7:1]) change disabled and output change to Hi-Z  
(regardless of setting xxx_ENA bit is 1) when setting XSLEEP to 0. Therefore,  
set 1 to XSLEEP before setting each enable bit.  
28  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
8.6.4.11 REG71 8-Bit Control Register for FuncEna (offset = 71h)  
Figure 24. REG71 8-Bit Control Register for FuncEna  
7
6
5
4
3
2
1
0
Reserved  
SLD_ENDDET STP_ENDDET  
Reserved  
LIN9V  
_DISABLE  
SPM_RCOM_SEL  
TEMPMON  
_ENA  
_ENA  
_ENA  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 17. REG71 8-Bit Control Register for FuncEna Field Descriptions  
BIT  
7
FIELD  
TYPE  
RW  
RESET  
0h  
DESCRIPTION  
Reserved  
6
SLD_ENDDET_ENA  
RW  
0h  
1h = Enable SLED channel end position detection (with XSLEEP = 1,  
SLD_ENA)  
5
STP_ENDDET_ENA  
RW  
0h  
1h = Enable STEP channel end position detection (with XSLEEP = 1,  
STP_ENA)  
4
3
Reserved  
RW  
RW  
RW  
0h  
0h  
0h  
LIN9V_DISABLE  
SPM_RCOM_SEL  
1h = Disable LDO predriver  
2-1  
Select resistor value of spindle current sense resistor. Current limit is  
set as following current (with SPM_TQAJST = 00)  
00: 1133 mA  
01: 772 mA  
10: 1416 mA  
11: 1700 mA  
0
TEMPMON_ENA  
RW  
0h  
1h = Enable chip temperature monitoring (with XSLEEP = 1)  
8.6.4.12 REG72 8-Bit Control Register for ACTCfg (offset = 72h)  
Figure 25. REG72 8-Bit Control Register for ACTCfg  
7
6
5
4
3
2
1
0
P12VMUTE  
_NORST  
RSTIN_OFF  
ACTPROT  
_OFF  
ACTTEMPTH  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 18. REG72 8-Bit Control Register for ACTCfg Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
P12VMUTE_NORST  
RW  
0h  
0h = System reset at P12V low voltage  
1h = Output High-Z only at P12V low-voltage detection  
6
5
RSTIN_OFF  
RW  
RW  
RW  
0h  
0h  
0h  
0h = XRSTIN input enable  
1h = Ignored XRSTIN pin input (do not reset device when XRSTIN = L)  
ACTPROT_OFF  
ACTTEMPTH  
0h = Actuator protection ON  
1h = Actuator fault monitor disable (no protection for ACT channel)  
4-0  
Actuator thermal protection (= ACT Timer) threshold level  
ACT Timer Protection enable except ACTTEMPTH[4:0] = 0x00  
ACTTEMPTH = 0x00 equal to ACTPROT_OFF = 1  
By writing value 0x00, ACTTIMER_PROT flag is cleared.  
Copyright © 2015, Texas Instruments Incorporated  
29  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
8.6.4.13 REG73 8-Bit Control Register for Parm0 (offset = 73h)  
Figure 26. REG73 8-Bit Control Register for Parm0  
7
6
5
4
3
2
1
0
SIF_TIMEOUT_TH  
SLEDEND  
_HZTIME  
SLDENDTH  
rw-0  
STPEND  
_HZTIME  
STPENDTH  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 19. REG73 8-Bit Control Register for Parm0 Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7-6  
SIF_TIMEOUT_TH  
RW  
0h  
Watch dog timer for Serial communication  
0h = Disable  
1h = 1 ms  
2h = 100 µs  
3h = 10 µs  
Set SIF_TIMEOUTERR (REG7D) if communication is suspended for this  
time period. Reset register processing is performed if a SIF_TIMEOUTERR  
occurs.  
5
SLEDEND_HZTIME  
SLDENDTH  
RW  
RW  
0h  
0h  
Time window for sled end detection.  
0h = 400 µs  
1h = 200 µs  
Note: The user must recycle SLD_ENDDET_ENA = 0 1 after writing this  
bit.  
4-3  
Sled end detection sensibility setting. Detection threshold for motor BEMF  
00: 124 mV  
01: 168 mV  
11: 72 mVꢀ  
10: 0 mV (use for test purpose)  
2
STPEND_HZTIME  
STPENDTH  
RW  
RW  
0h  
0h  
Step High-Z detection period in end detection  
0h = 400 µs  
1h = 200 µs  
Note: The user must recycle STP_ENDDET_ENA = 01 after writing this  
bit.  
1-0  
Step end detection sensibility setting  
00: 39 mV  
01: 61 mV  
11: 19 mV  
10: 0 mV (use for test purpose)  
30  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
8.6.4.14 REG74 8-Bit Control Register for SIFCfg (offset = 74h)  
Figure 27. REG74 8-Bit Control Register for SIFCfg  
7
6
5
4
3
2
1
0
DIFF_TLT  
Reserved  
STATUS_ON  
_VFCS  
VSLD2_POL  
VSTP2_POL  
ADVANCE_RD  
SOMI_HIZ  
VDAC_MAPSW  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 20. REG74 8-Bit Control Register for SIFCfg Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
DIFF_TLT  
RW  
0h  
1h = Differential tilt mode enable (with TLT_ENA = FCS_ENA = 1)  
Differential tilt mode (DIFF_TLT = 1), DAC value setting as follows  
FCS_OUT = (VFCS + VTLT) × 6 / 2048  
TLT_OUT = (VFCS – VTLT) × 6 / 2048  
In DIFF_TLT mode (DIFF_TLT = 1), TLT_OUT should be changed after  
writing VFCS.  
6
5
Reserved  
RW  
RW  
0h  
0h  
STATUS_ON_VFCS  
Set Read status data (REG7F) at VFCS write command (REG02)  
1h = enable Write and Read mode  
(Write 12 bits Focus DAC data + Read 8 bits status data)  
Change direction of SLED rotation  
4
3
2
VSLD2_POL  
VSTP2_POL  
ADVANCE_RD  
RW  
RW  
RW  
0h  
0h  
0h  
Change direction of STEP rotation  
0h = Normal read timing  
1h = Read timing is advanced half clock cycle  
1
0
SOMI_HIZ  
RW  
RW  
0h  
0h  
0h = SOMI line High-Z at bus idling time.  
1h = SOMI line Pull down at bus idling time.  
VDAC_MAPSW  
1h = Change channel assignments of DAC register (REG01~0A)  
Copyright © 2015, Texas Instruments Incorporated  
31  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
8.6.4.15 REG75 8-Bit Control Register for Parm1 (offset = 75h)  
Figure 28. REG75 8-Bit Control Register for Parm1  
7
6
5
4
3
2
1
0
TRAY_LOCKDET  
Reserved  
rw-0  
SPM_FAST  
_BRK  
SPM_SLNT  
_BRK  
SPM  
_HIZMODE  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 21. REG75 8-Bit Control Register for Parm1 Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7-5  
TRAY_LOCKDET  
RW  
0H  
Load tray locking detection control  
0h = Disable detection  
1-7: Detection threshold  
1h = 100 mA  
2h = 150 mA  
3h = 200 mA  
4h = 250 mA  
5h = 300 mA  
6h = 350 mA  
7h = 400 mA  
4-3  
2
Reserved  
RW  
RW  
0h  
0h  
SPM_FAST_BRK  
Fast brake mode selection  
0h = Normal brake mode perform auto short brake sequence in  
specific speed  
1h = No short brake under 5500 rpm  
1
0
SPM_SLNT_BRK  
SPM_HIZMODE  
RW  
RW  
0h  
0h  
Silent brake mode selection  
0h = Normal brake mode  
1h = No active brake under 5500 rpm  
Active brake mode is not performed inputting any value into  
VSPIN.  
Spindle output Hi-Z mode  
0h = Normal operation  
1h = Spindle output (UVW) put Hi-Z (use for test purpose)  
8.6.4.16 REG76 8-Bit Control Register for WriteEna (offset = 76h)  
Figure 29. REG76 8-Bit Control Register for WriteEna  
7
6
5
4
3
2
1
0
WRITE_ENABLE  
rw-0  
Reserved  
rw-0  
REG6X_Write  
rw-0  
Reserved  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 22. REG76 8-Bit Control Register for WriteEna Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
WRITE_ENABLE  
RW  
0h  
0h = Register Write disable except REG76  
1h = Write enable for registers REG01~09, REG70~7F  
6-2  
1
Reserved  
RW  
RW  
0h  
0h  
REG6X_Write  
0h = Disable Write access REG6X bank  
1h = Enable Write access REG6X bank  
32  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
8.6.4.17 REG77 8-Bit Control Register for ClrReg (offset = 77h)  
Figure 30. REG77 8-Bit Control Register for ClrReg  
7
6
5
RST_ERR_FLAG  
w-0  
4
3
2
1
0
RST_INDAC  
w-0  
RST_REGS  
w-0  
Reserved  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 23. REG77 8-Bit Control Register for ClrReg Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
RST_INDAC  
W
0h  
1h = Reset all 12-bit input DAC register (REG01~09)  
*Self clear bit  
6
5
RST_REGS  
RST_ERR_FLAG  
Reserved  
W
W
W
0h  
0h  
0h  
1h = Reset all 8-bit R/W registers (REG70h~77h, 60h-6Fh)  
*Self clear bit  
1h = Reset fault flag latch (REG7F, REG79~REG7D)  
*Self clear bit  
4-0  
8.6.4.18 REG78 8-Bit Control Register for ActTemp (offset = 78h)  
Figure 31. REG78 8-Bit Control Register for ActTemp  
7
6
5
4
3
2
1
0
Reserved  
r-0  
ACT_TIMER  
_PROT  
ACTTEMP  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 24. REG78 8-Bit Control Register for ActTemp Field Descriptions  
BIT  
7-6  
5
FIELD  
TYPE  
RESET  
0h  
DESCRIPTION  
Reserved  
R
R
ACT_TIMER_PROT  
0h  
ACT timer protection flag  
1h = ACT Timer Protection has detected and latched.  
(ACTTEMP > ACTTEMPTH)  
This bit holds data after temperature change to low since this is a latch bit.  
Also driver output keep Hi-Z until setting RST_ERR_FLAG or ACTTEMPTH  
= 0.  
4-0  
ACTTEMP  
R
0h  
An integrated value of ACT_TIMER counters at present.  
Copyright © 2015, Texas Instruments Incorporated  
33  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
8.6.4.19 REG79 8-Bit Control Register for UVLOMon (offset = 79h)  
Figure 32. REG79 8-Bit Control Register for UVLOMon  
7
LIN9V_RDY  
r-0  
6
RCD_BRK  
r-0  
5
UVLO_P5V  
r-0  
4
UVLO_INT3P3  
r-0  
3
UVLO_P12V  
r-0  
2
UVLO_SIOV  
r-0  
1
OVP_P5V  
r-0  
0
OVP_P12V  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 25. REG79 8-Bit Control Register for UVLOMon Field Descriptions  
BIT  
7
FIELD  
TYPE  
R
RESET  
0h  
DESCRIPTION  
LIN9V_RDY  
RCD_BRK  
UVLO_P5V  
UVLO_INT3P3  
UVLO_P12V  
UVLO_SIOV  
OVP_P5V  
LIN9V output status. LINFB voltage over 92% (typical) of target voltage.  
6
R
0h  
(1)  
5
R
0h  
UVLO flag for detection Low P5V supply  
UVLO flag for detection Low internal 3.3-V regulator(1)  
4
R
0h  
(1)  
3
R
0h  
UVLO flag for detection Low P12V supply  
(1)  
2
R
0h  
UVLO flag for detection Low SIOV supply  
(1)  
1
R
0h  
OVP flag for P5V supply  
(1)  
0
OVP_P12V  
R
0h  
OVP flag for P12V supply  
(1) Latched first reset event only. Cleared by RST_ERR_FLG (REG77)  
8.6.4.20 REG7A 8-Bit Control Register for TSDMon (offset = 7Ah)  
Figure 33. REG7A 8-Bit Control Register for TSDMon  
7
6
5
4
3
2
1
0
Reserved  
TSD_FAULT  
_SPM  
TSD_FAULT  
_ACT  
TSD_FAULT  
_P12DCHG  
Reserved  
TSD_SPM  
TSD_ACT  
TSD_  
P12DCHG  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 26. REG7A 8-Bit Control Register for TSDMon Field Descriptions  
BIT  
7
FIELD  
TYPE  
RESET  
0h  
DESCRIPTION  
Reserved  
R
R
R
6
TSD_FAULT_SPM  
TSD_FAULT_ACT  
0h  
Prealert of thermal protection of Spindle block(1)  
5
0h  
Prealert of thermal protection of focus /track /tilt sled1 /sled2 /step1  
/step2 /load(1)  
(1)  
4
3
2
TSD_FAULT_P12DCHG  
Reserved  
R
R
R
0h  
0h  
0h  
Prealert of thermal protection of P12V discharge block  
Thermal protection flag for spindle(1)  
SPM output Hi-Z until temperature falls on release level  
1h = Detect (latch)  
TSD_SPM  
1
0
TSD_ACT  
R
R
0h  
0h  
Thermal protection flag for focus /track /tilt sled1 /sled2 /step1 /step2  
/load(1)  
Actuator output Hi-Z until temperature falls on release level  
1h = Detect (latch)  
Thermal protection flag for P12V discharge block(1)  
IDCHG output Hi-Z until temperature falls on release level  
1h = Detect (latch)  
TSD_ P12DCHG  
(1) Cleared by RST_ERR_FLAG bit (REG77)  
34  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
8.6.4.21 REG7B 8-Bit Control Register for SCPMon (offset = 7Bh)  
Figure 34. REG7B 8-Bit Control Register for SCPMon  
7
6
Reserved  
r-0  
5
4
SCP_SPM  
r-0  
3
SCP_SLED  
r-0  
2
SCP_LOAD  
r-0  
1
SCP_ACT  
r-0  
0
SCP_STP  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 27. REG7B 8-Bit Control Register for SCPMon Field Descriptions  
BIT  
7-5  
4
FIELD  
TYPE  
RESET  
0h  
DESCRIPTION  
Reserved  
SCP_SPM  
SCP_SLED  
SCP_LOAD  
SCP_ACT  
SCP_STP  
R
R
R
R
R
R
0h  
Short protection flag bit for spindle block(1)  
Short protection flag bit for sled block(1)  
Short protection flag bit for load block(1)  
Short protection flag bit for Actuator block(1)  
Short protection flag bit for step block(1)  
3
0h  
2
0h  
1
0h  
0
0h  
(1) Cleared by RST_ERR_FLAG bit (REG77)  
8.6.4.22 REG7C 8-Bit Control Register for TempMon (offset = 7Ch)  
Figure 35. REG7C 8-Bit Control Register for TempMon  
7
6
5
4
3
2
1
0
CHIPTEMP  
_STATUS  
CHIPTEMP  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 28. REG7C 8-Bit Control Register for TempMon Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
CHIPTEMP_STATUS  
R
0h  
1h = New data CHIPTEMP[6:0] is updated It will be cleared after reading.  
6-0  
CHIPTEMP  
R
0h  
Chip temperature monitor (1.2°/LSB)  
15° (0) to 165° (127)  
For monitoring, TEMPMON_ENA = 1 and XSLEEP = 1 is required  
Copyright © 2015, Texas Instruments Incorporated  
35  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
8.6.4.23 REG7D 8-Bit Control Register for Status Monitor (offset = 7Dh)  
Figure 36. REG7D 8-Bit Control Register for Status Monitor  
7
6
5
4
3
2
1
0
SIF  
_TIMEOUTER  
R
XRSTIN_DET  
Reserved  
TRAY  
_LOCKDETEC  
T
TRAY  
_PUSHDETP  
TRAY  
_PUSHDETN  
STP_ENDDET SLD_ENDDET  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 29. REG7D 8-Bit Control Register for Status Monitor Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
SIF_TIMEOUTERR  
R
0h  
Error flag of serial I/F watch dog timer  
1h = SIF communication was interrupted, expired watch dog timer  
6
XRSTIN_DET  
R
0h  
XRSTIN event flag  
1h = Detect low event in XRSTIN pin  
5
4
Reserved  
R
R
0h  
0h  
TRAY_LOCKDETECT  
TRAY lock detection flag  
1h = Detect tray lock detection  
3
2
1
0
TRAY_PUSHDETP  
TRAY_PUSHDETN  
STP_ENDDET  
R
R
R
R
0h  
0h  
0h  
0h  
TRAY push event detection flag in LOAD_P pin  
1h = Detect tray push event in LOAD_P pin  
TRAY push event detection flag in LOAD_N pin  
1h = Detect tray push event in LOAD_N pin  
Step end event flag  
1h = Detect step end event  
SLD_ENDDET  
Sled end event flag  
1h = Detect sled end event  
8.6.4.24 REG7E 8-Bit Control Register for Version (offset = 7Eh)  
Figure 37. REG7E 8-Bit Control Register for Version  
7
6
5
4
3
2
1
0
Version  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 30. REG7E 8-Bit Control Register for Version Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0  
Version  
R
0h  
Version[7:4] = revision number of TPIC2060A  
Version[3:0] = option  
36  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
8.6.4.25 REG7F 8-Bit Control Register for Status (offset = 7Fh)  
Figure 38. REG7F 8-Bit Control Register for Status  
7
6
5
4
3
2
1
0
ACTTIMER  
_FAULT  
MONITOR  
Reserved  
PWRERR  
TSDERR  
SCPERR  
TSDFAULT  
FG  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 31. REG7F 8-Bit Control Register for Status Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
ACTTIMER_FAULT  
R
0h  
Status flag of ACTTIMER protection  
1h = Prealert of ACTTIMER protection. It is close to the threshold level.  
The user can get current ACTTIMER value in REG78.  
Both this bit and ACT_TIMER_PROT (REG78) will be set when over the  
threshold.  
6
MONITOR  
R
0h  
Event flag of any monitor event in REG7D  
1h = Event occurred, details in REG7Dh  
5
4
Reserved  
PWRERR  
R
R
0h  
0h  
Error flag of power  
1h = Voltage problem occurred, details in REG79  
3
2
1
0
TSDERR  
SCPERR  
TSDFAULT  
FG  
R
R
R
R
0h  
0h  
0h  
0h  
Error flag of any overthermal protections  
1h = Dispatched thermal protection, details in REG7A  
Error flag of any SCP  
1h = Dispatched SCP, details in REG7Bh  
Warning of TSD of any thermal protection  
1h = Detect pre-thermal protection, details in REG7A  
FG signal. Spindle rotation pulse for speed monitor  
8.6.4.26 REG60 8-Bit Control Register for SPMCfg (offset = 60h)  
Figure 39. REG60 8-Bit Control Register for SPMCfg  
7
6
5
4
3
2
1
0
Reserved  
FG_SBRK  
_OFF  
Reserved  
rw-0  
IS_NZONE  
_OFF  
Reserved  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 32. REG60 8-Bit Control Register for SPMCfg Field Descriptions  
BIT  
7
FIELD  
TYPE  
RW  
RW  
RW  
RW  
RW  
RESET  
0h  
DESCRIPTION  
Reserved  
6
FG_SBRK_OFF  
Reserved  
0h  
FG Jitter setting in short brake period. Should be set to 1  
Inductive position sense (IS) timing control. Should be set to 1  
5-2  
1
0h  
IS_NZONE_OFF  
Reserved  
0h  
0
0h  
Copyright © 2015, Texas Instruments Incorporated  
37  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
8.6.4.27 REG61 8-Bit Control Register for SPMCfg (offset = 61h)  
Figure 40. REG61 8-Bit Control Register for SPMCfg  
7
6
5
4
3
2
1
0
Reserved  
rw-0  
PWMmaxDuty  
_R_SEL  
Reserved  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 33. REG61 8-Bit Control Register for SPMCfg Field Descriptions  
BIT  
7-2  
1
FIELD  
TYPE  
RW  
RESET  
0h  
DESCRIPTION  
Reserved  
PWMmaxDuty_R_SEL  
RW  
0h  
PWM duty maximum setting in active brake mode  
0h = Maximum PWM duty 12.5%  
1h = Maximum PWM duty 25%  
(Recommend to set 0 if using in no-disk because it may not stop in a  
specific motor setting 25%.)  
0
Reserved  
RW  
0h  
8.6.4.28 REG62 8-Bit Control Register for SPMCfg (offset = 62h)  
Figure 41. REG62 8-Bit Control Register for SPMCfg  
7
6
5
4
3
2
1
0
Reserved  
rw-0  
TIME_BASE_SEL  
rw-0  
Reserved  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 34. REG62 8-Bit Control Register for SPMCfg Field Descriptions  
BIT  
7-4  
3-2  
1-0  
FIELD  
TYPE  
RW  
RESET  
0h  
DESCRIPTION  
Reserved  
TIME_BASE_SEL  
Reserved  
RW  
0h  
Spindle waveform selection. Should be set to 11  
RW  
0h  
8.6.4.29 REG64 8-Bit Control Register for Protect (offset = 64h)  
Figure 42. REG64 8-Bit Control Register for Protect  
7
6
5
4
3
2
1
0
Reserved  
rw-0  
FG5M_OFF  
rw-0  
Reserved  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 35. REG64 8-Bit Control Register for Protect Field Descriptions  
BIT  
7-4  
3
FIELD  
TYPE  
RW  
RESET  
0h  
DESCRIPTION  
Reserved  
FG5M_OFF  
Reserved  
RW  
0h  
Spindle FG filter selection. Should be set to 1  
2-0  
RW  
0h  
38  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
8.6.4.30 REG65 8-Bit Control Register for SPMCfg (offset = 65h)  
Figure 43. REG65 8-Bit Control Register for SPMCfg  
7
6
5
4
3
2
1
0
Reserved  
rw-0  
HZSVR_SEL  
rw-0  
Reserved  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 36. REG65 8-Bit Control Register for SPMCfg Field Descriptions  
BIT  
7-5  
4-3  
2-0  
FIELD  
TYPE  
RW  
RESET  
0h  
DESCRIPTION  
Reserved  
HZSVR_SEL  
Reserved  
RW  
0h  
Spindle waveform silent mode selection. Should be set to 11  
RW  
0h  
8.6.4.31 REG68 8-Bit Control Register for Protect (offset = 68h)  
Figure 44. REG68 8-Bit Control Register for Protect  
7
6
5
4
3
2
1
0
Reserved  
rw-0  
SPM_TQAJST  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 37. REG68 8-Bit Control Register for Protect Field Descriptions  
BIT  
7-2  
1-0  
FIELD  
TYPE  
RW  
RESET  
0h  
DESCRIPTION  
Reserved  
SPM_TQAJST  
RW  
0h  
Select fine adjust value of spindle limit current which is set by  
SPM_RCOM_SEL  
00: No adjust  
01: –5%  
10: –10%  
11: –15%  
Copyright © 2015, Texas Instruments Incorporated  
39  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
8.6.4.32 REG6B 8-Bit Control Register for DisProt (offset = 6Bh)  
Figure 45. REG6B 8-Bit Control Register for DisProt  
7
6
5
4
3
2
1
0
SCP_SPM  
_OFF  
SCP_SLED  
_OFF  
SCP_LOAD  
_OFF  
SCP_ACT  
_OFF  
SCP_STP_OFF SPM_RCDDIS  
Reserved  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0 rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 38. REG6B 8-Bit Control Register for DisProt Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
SCP_SPM_OFF  
RW  
0h  
Control bit of SCP function for spindle block.  
0h = Enable SCP function  
1h = Disable SCP function  
Caution(1) TI recommends using it only for test purposes.  
6
5
4
3
2
SCP_SLED_OFF  
SCP_LOAD_OFF  
SCP_ACT_OFF  
SCP_STP_OFF  
SPM_RCDDIS  
RW  
RW  
RW  
RW  
RW  
0h  
0h  
0h  
0h  
0h  
For Sled driver block.  
Caution(1) TI recommends using it only for test purposes.  
For Load driver block  
Caution(1) TI recommends using it only for test purposes.  
For Actuator driver block  
Caution(1) TI recommends using it only for test purposes.  
For Step driver block  
Caution(1) TI recommends using it only for test purposes.  
Spindle block reverse current detect function.  
0h = Enable  
1h = Disable  
1-0  
Reserved  
RW  
0h  
(1) Caution: Device will be fatally damaged if short circuit occurs in the xxx_OFF = 1.  
8.6.4.33 REG6C 8-Bit Control Register for ENDCfg (offset = 6Ch)  
Figure 46. REG6C 8-Bit Control Register for ENDCfg  
7
6
5
4
3
2
1
0
PUSHDETTH  
rw-0  
PUSHDET_TIME  
rw-0  
Reserved  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 39. REG6C 8-Bit Control Register for ENDCfg Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7-6  
PUSHDETTH  
RW  
0h  
Detection voltage threshold for PUSH detection  
00: Disable function  
01: 1 V  
10: 0.75 V  
11: 0.5 V  
5-4  
3-0  
PUSHDET_TIME  
RW  
RW  
0h  
0h  
Duration of PUSH detection  
00: 104 ms  
01: 208 ms  
10: 416 ms  
11: 0 ms (immediately at the exceeding threshold)  
Reserved  
40  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
8.6.4.34 REG6E 8-Bit Control Register for UtilCfg (offset = 6Eh)  
Figure 47. REG6E 8-Bit Control Register for UtilCfg  
7
6
5
4
3
2
1
0
GPOUT_HL  
rw-0  
GPOUT_ENA  
rw-0  
Reserved  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 40. REG6E 8-Bit Control Register for UtilCfg Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
GPOUT_HL  
RW  
0h  
General-purpose output (GPOUT) pin output selection  
0h = Low output  
1h = High output  
Valid only if REG6F = 00h  
6
GPOUT_ENA  
Reserved  
RW  
RW  
0h  
0h  
Enable monitor signal output to GPOUT pin  
0h = No signal output, Hi-Z  
1h = Output signal selected in REG6F with CMOS output  
Output is logical OR when selected two more signals  
5-0  
8.6.4.35 REG6F 8-Bit Control Register for GPOUTSet (offset = 6Fh)  
Figure 48. REG6F 8-Bit Control Register for GPOUTSet  
7
6
5
4
3
2
1
0
ACTTIMER  
_FLT_MON  
MONITOR  
_MON  
Reserved  
PWRERR  
_MON  
TSDERR_MON SCPERR_MON  
TSDFAULT  
_MON  
SPMRCD  
_BRK_MON  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0 rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 41. REG6F 8-Bit Control Register for GPOUTSet Field Descriptions  
BIT  
7
FIELD  
TYPE  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RESET  
0h  
DESCRIPTION  
ACTTIMER_FLT_MON  
MONITOR_MON  
Reserved  
1h = ACTTIMER fault output to GPOUT pin  
1h = ENDDET monitor output to GPOUT pin  
6
0h  
5
0h  
4
PWRERR_MON  
TSDERR_MON  
SCPERR_MON  
TSDFAULT_MON  
SPMRCD_BRK_MON  
0h  
1h = PWRERR monitor output to GPOUT pin  
1h = TSDERR fault output to GPOUT pin  
1h = SCPERR fault output to GPOUT pin  
1h = TSDFAULT fault output to GPOUT pin  
1h = SPMRCD_BRK fault output to GPOUT pin  
3
0h  
2
0h  
1
0h  
0
0h  
Copyright © 2015, Texas Instruments Incorporated  
41  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 DAC Type  
The TPIC2060A has nine-channel drivers and each channel is assigned to the most suitable DAC engine with a  
different type. ACT (FCS/TRK/TLT) has a 12-bit DAC. The upper 8 (MSB sign bit) are sampled in 5 MHz, and  
LSB 4 bits are output in sequence with 1.25-MHz PWM. SPIN and load DAC have the same types and sampling  
rate with 312 kHz. The SPM channel has 14× gain, and other channels (except SLED and STP) have 6× gain.  
The DAC for STP is 8-bit resolution output with 40-kHz PWM, and no feedback. The gain for STP is 5× relative  
to P5V voltage. Table 42 shows the configuration of each driver.  
Table 42. DAC Type  
FCS/TRK/TLT  
12 bit  
SLED  
SPIN  
LOAD  
STP  
Resolution  
Type  
10 bit  
12 bit  
12 bit  
8 bit  
8-bit oversampling  
10-bit voltage DAC  
8-bit oversampling  
8-bit oversampling  
1-bit direct duty PWM  
1.25M / 10 bit  
312K / 12 bit  
Sampling  
312K  
312K  
40 kHz  
About 156 kHz  
(variable)  
PWM frequency  
Out range  
312 kHz  
±6 V  
156 kHz  
±14 V  
312 kHz  
±6V  
40 kHz  
±880 mA  
±(P5V*1)  
Power supply  
compensation  
Voltage F/B shared  
with TRK  
Feedback  
Voltage F/B  
Current F/B  
Direct PWM No F/B  
9.1.2 Example of 12-Bit DAC Sampling Rate for FCS/TRK/TLT  
The input data is separated in the upper 8 bits and the lower 4 bits. Upper 8 bits (MSB sign 1 bit) are put into 8-  
bit current DAC in every 5 MHz. The lower 4 bits are put into one bit current DAC in sequence from upper to  
lower bit. This is a one-bit DAC output with PWM in 1.25 MHz. Any PWM duty, 100%, 75%, 50%, 25%, or 0%, is  
summed in 8-bit current DAC every 1.25 MHz. Thus, it takes 3.2 µs for all lower 4 bits summing to the PWM  
output. As a result, 12-bit data is sampled in every PWM cycle. Figure 49 shows an example of the sampling rate  
for FCS/TRK/TLT.  
42  
Copyright © 2015, Texas Instruments Incorporated  
 
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
WriteDAC  
5 MHz  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
1.25 MHz  
625 KHz  
10bit  
10bit  
10bit  
10bit  
11bit  
11bit  
312 KHz  
12bit  
LSB 4bit width  
PWM duty  
12bit DAC(8bit DAC+ 4bit PWM DAC) output  
one PWM cycle (312 KHz = 3.2us)  
Figure 49. Example of 12-Bit DAC Conversion Time (FCS/TRK/TLT)  
9.1.3 Digital Input Coding  
The output voltage (current) is commanded through programming to the DAC. All of the DAC input format is 12  
bit in complements of 2's, though some DAC has a low resolution. When 12 bits of data is input as 8-bits DAC,  
the TPIC2060A recognizes four subordinate position bits (LSB) as 0. To arrange for 12-bit DAC format, DSP  
should shift 8-bit or 10-bit data to an appropriate bit position. The full scale is ±1.0 V and driver gain is set to 6 or  
14. The output voltage (Vout) is given by the following equation:  
6.0  
Vout = DACcode ì  
2048  
14.0  
VSPMout = DACcode ì  
2048  
Calculation by fixed point number :  
Vdac = 1.0 ì bit[10] ì 0.51 + bit[9] ì 0.52 + bit[8] ì 0.53 + ... + bit[0] ì 0.511  
(
)
Vdac = (œ1.0) ì bit[10] ì 0.51 + bit[9] ì 0.52 + bit[8] ì 0.53 + ... + bit[0] ì 0.511 + 0.512  
(
)
Vout = Vdac ì 6.0 (V)  
VSPMout = Vdac ì 14.0 (V)  
STPVout = Vdac ì (P5V) (V)  
SLEDIout = Vdac ì 0.88 (A)  
where bit[11:0] is the digital input value, range 000000000000b to 111111111111b  
(3)  
Copyright © 2015, Texas Instruments Incorporated  
43  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
Table 43. DAC Format  
MSB Digital input (BIN) LSB  
1000_0000_0000  
1000_0000_0001  
1111_1111_1111  
0000_0000_0000  
0000_0000_0001  
0111_1111_1110  
0111_1111_1111  
Hex  
Dec  
–2048  
–2047  
–1  
Vdac  
–0.9995  
–0.9995  
–0.0005  
0
Analog Output (5 V)  
–5.997  
Analog Output (12 V)  
–13.993  
–13.993  
–0.007  
0x800  
0x801  
0xFFF  
0x000  
0x001  
0x7FE  
0x7FF  
–5.997  
–0.003  
0
0.000  
0.000  
1
0.0005  
0.9990  
0.9995  
0.003  
0.007  
2046  
2047  
5.994  
13.986  
5.997  
13.993  
Analog output(V)  
VDAC  
+ 1.000  
+6.0 / + 14.0  
+5.0 / + 12.0  
*
800h  
7FFh  
DACcode  
000  
-5.0 / -12.0  
-6.0 / -14.0  
*
-1.000  
* follow ing P5V, P12V inp u t voltag e  
Figure 50. Output Voltage vs DAC Code  
9.1.4 Example Timing of Target Control System  
The TPIC2060A is designed to meet the requirements for updating control data in 400 kHz. Table 44 lists an  
example of a control system parameter. It takes 0.51 µs to transmit a 16-bit data packet to the TPIC2060A with a  
35-MHz SCLK. Therefore, DSP can be sent four packets at 400-kHz intervals. If the SCLK is lower than 28.8  
MHz, the user must reduce packet quantity to less than three. For example, the Focus/Truck command updates  
every 2.5 µs (400 kHz), and can send another two kinds of packets during this time. Figure 51 shows an  
example of the control timing when using the TPIC2060A.  
Table 44. Example Timing of Target Control System  
UPDATE CYCLE  
SIGNAL  
BIT  
(kHz)  
400  
400  
100  
100  
100  
100  
Focus  
Track  
Tilt  
12  
12  
12  
10  
10  
12  
12  
8
Sled1  
Sled2  
Spindle  
Load  
Step1  
Step2  
40  
8
40  
44  
Copyright © 2015, Texas Instruments Incorporated  
 
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
312 kHz /3.2 µs (PW M 1 cycle)  
Track  
Focus  
Tilt  
R
R
R
R
R
Sled1  
Sled2  
SPM  
Load  
Step1  
Step2  
400 kHz / 2.5 µs  
Control  
register  
100KHz /10us (1control cycle)  
PWM cycle  
DACcommand  
R
DACcommand with statusread  
Control register command  
0.51 µs (SCLK: 35 MHz) for data transmit  
Figure 51. Example DAC Control  
9.1.5 Spindle Motor Driver Operating Sequence  
When the VSPM is set to a positive DAC code, it goes into acceleration mode. Initial position sense (IS) mode  
then operates, the start-up circuits offer a start-up pattern sequence to the driver, and then switch to spin-up  
mode by detecting the rotor position through BEMF signal from the spindle motor coil.  
The spin-down and brake functions are also controlled by the DAC value, VSPM. When the brake command to  
VSPM is set, the driver goes into active-brake mode, switches to short-brake mode in slow revolution speed, and  
then stops automatically. The FG signal is composed from EXOR of a three-phase signal and is output from XFG  
pin shown in Figure 52.  
Copyright © 2015, Texas Instruments Incorporated  
45  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
RDY  
XRSTIN  
WRITE_ENABLE  
XSLEEP  
SPM_ENA  
VSPM  
XFG  
VSPM[11:0] > 0  
VSPM[11:0] < 0  
0
brake  
speed  
>15ms  
release  
300ms  
260rpm  
time  
Figure 52. Spindle Operating Sequence  
Use the down-edge of the FG signal for monitoring the FG frequency.  
Short brake mode is asserted after 300 ms of FG signal stays L-level in deceleration.  
This value is the nominal number of using a 12-pole motor.  
9.1.6 Auto Short Brake Function  
The TPIC2060A provides an auto short brake function that selects the brake mode automatically by motor speed.  
The auto short brake is an intelligent brake function that includes two modes, short brake and active brake. If a  
value of 0xF90 or less is set to VSPM, brake mode automatically changes at rotation speed. This function  
enables low-power consumption and silent braking. Table 45 shows the relation between brake mode and speed.  
The overspeed protection function suspends the SPM driver output at 15000 or more revolutions.  
Table 45. Brake Mode  
ROTATION SPEED (RPM)(1)  
VSPM[11:0]  
MODE  
ABOUT 11500  
ABOUT 11500 TO 5600 ABOUT 5600 TO 4000  
2-phase short brake  
ABOUT 4000 TO 0  
0x000 - 0xFDD  
0xFDC - 0xF90  
0xF8F - 0xADB  
0xADA - 0x800  
Manual  
Manual  
Active brake  
Auto short  
Auto short  
Free run  
Free run  
3-phase short brake(2)  
3-phase short brake(3)  
Active brake  
Active brake  
(1) Typical value using 12-pole motor.  
(2) Active brake is chosen when it does not exceed 6400 rpm once from a rotation start.  
(3) Active brake is chosen when it does not exceed 4600 rpm once from a rotation start.  
46  
Copyright © 2015, Texas Instruments Incorporated  
 
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
rpm  
Hi-Z (overspeed protection)  
Free run  
15600  
*1  
11500  
3-phase short  
2-phase  
short  
auto  
5600  
4000  
*1  
auto  
Active  
(selectable 3-phase short)  
0
800h  
ADBh  
F90h FDDh000  
VSPM[11:0]  
A. 1* = Each threshold value has hysteresis. Brake mode changes to a specific mode at the threshold speed when it  
reaches a speed about 15% higher than the threshold speed. These speed values are the nominal number of using a  
12-pole motor. In applying to the 16-pole motor, the rotations speed becomes 75% of indicated rpm values.  
Figure 53. Brake Mode  
9.1.7 Spindle PWM Control  
The output PWM duty of the spindle is controlled by DAC code (VSPM). The gain in acceleration setting is  
always 14 times, while the maximum output is restricted to P12V voltage. A dead band which outputs = 0 exists  
in the width of plus or minus 0x52, focusing on zero.  
Copyright © 2015, Texas Instruments Incorporated  
47  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
PW M outputduty  
100%  
output (V)  
P12V  
(PWMmax  
Duty_R_SEL)  
dead band  
duty= 0%  
25.0%  
12.5%  
speed up  
slow down  
0%  
800h  
FAEh  
000  
52h  
7FFh  
VSPM[11:0]  
Figure 54. Spindle PWM Control  
9.1.8 Spindle Driver Current Limit Circuit  
This IC builds in the SPM current sense resistor, which can select the resistor value. The spindle current limit  
circuit monitors motor current (which flows through this resistance) and limits the output current by reducing  
PWM duty when detecting overcurrent conditions. Table 46 shows resistor value. A limit current value can be  
calculated from following formula, where the resistor value is the equivalent resistance for a current limit  
calculation:  
Limit current = 160 mV / resistor value  
(4)  
Table 46. SPM Current Sense Resistor  
RESISTANCE  
LIMIT CURRENT  
SPM_RCOM_SEL[1:0]  
VALUE (Ω)(1)  
(mA)  
1133  
772  
00  
01  
10  
11  
0.15  
0.22  
0.12  
0.10  
1416  
1700  
(1) The equivalent resistance for current limit calculation.  
48  
Copyright © 2015, Texas Instruments Incorporated  
 
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
9.1.9 Sled Driver Part  
The sled driver outputs the PWM pulse set as DAC code (VSLDx) with current feedback. The maximum output is  
restricted to 880 mA at 0x7FF and 0x800. A dead band with output = 0 exists in the width of plus or minus 0x1F  
focusing on zero.  
outputcurrent  
reverse  
forw ard  
880m A  
dead band  
ISLEDxP  
= ISLEDxN  
ISLEDxP < ISLEDxN  
ISLEDxP > ISLEDxN  
0
FE0h  
1Fh  
800h  
000  
7FFh  
VSLDx[11:0]  
Figure 55. Sled Output Current  
Both outputs of SLED1/2 are 'L' when the input code is in the dead band.  
9.1.10 Stepping Driver Part  
The step driver outputs the PWM pulse set as 8-bit DAC code (VSTPx) using VSTP[11:4]. There is no feedback  
monitor for output. The pulse duration according to the P5V power supply voltage is outputted.  
outputPW M duty  
flow STPxNSTPxP  
flow STPxPSTPxN  
100%  
dutySTPxN  
dutySTPxP  
0%  
FF0h  
020h  
800h  
000  
VSTPx[11:4]  
Figure 56. Step Output Duty  
7F0h  
Copyright © 2015, Texas Instruments Incorporated  
49  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
9.1.11 Focus/Track/Tilt Driver Part  
9.1.11.1 Input VS Output Duty  
PW M output duty  
100%  
P5V  
reverse  
forw ard  
ACT+ < ACT-  
ACT+ > ACT-  
0%  
800h  
000  
7FFh  
ACT(FCS/TRK/TLT)[11:0]  
Figure 57. FCS/TRK/TLT Output Duty  
9.1.12 Load Driver Part  
The load driver outputs the voltage, with voltage feedback corresponding to the input DAC value. This channel  
has power voltage compensation and therefore is suited for slot-in type load control. This channel becomes  
active exclusively to other actuator channels. The load driver is shared with the TRK driver.  
PW M output duty  
reverse  
forw ard  
P5V/P12V  
100%  
deadband  
LOAD+  
= LOAD-  
LOAD+<LOAD-  
LOAD+>LOAD-  
0%  
800h  
FE0h 000 01Fh  
VLOAD[11:0]  
7FFh  
Figure 58. Load Output Duty  
50  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
9.1.13 End Detect Function  
This device has the function of end position detection for sled and collimator lens. This function eliminates the  
position switch at the PUH inner and collimator lens end position. Sled channel and step channel can be used  
independently by setting XXX_ENDDET_ENA = 1. When this function is enabled, internal logic detects the sled  
out zero-cross point, then the internal BEMF detect circuit measures the BEMF level of the stepping motor. There  
are four threshold levels. If the BEMF is lower than the selected threshold, the device causes the motor to stop  
and sets the XXX_ENDDET bit to 1. The ENDDET bit is then cleared at the BEMF voltage exceed threshold.  
SLD_ ENA= 1, SLD_ ENDDET_ ENA= 1  
I-SLED1  
I-SLED2  
BEMF1  
BEMF2  
motorstop  
SLD_ ENDDET  
1
Figure 59. Timing of Sled End Detection  
STP_ ENA= 1, STP_ ENDDET_ ENA= 1  
1
STP_ ENDDET  
STP1  
STP2  
Step m otor  
BEMF1  
BEMF2  
deadend  
Figure 60. Timing of Step End Detection  
9.1.14 Load Tray Lock Detect Function  
The tray lock detect function detects inserted obstacles at the time of tray opening and closing, using the load  
motor BEMF. The user must adjust the TRAY_LOCKDET [2:0] for the optimal threshold level by the  
characteristics of the motor. By setting TRAY_LOCKDET, the user can select a threshold level from 100 to 400  
mA, with a 50-mA step. Observe the lock detection by reading the TRAY_LOCKDETECT flag where LOAD_ENA  
= 1 is set.  
Copyright © 2015, Texas Instruments Incorporated  
51  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
LOAD_ ENA= 1, TRAY_ LOCKDET> 00  
1
TRAY_ LOCKDETECT  
threshold  
(TRAY_ LOCKDET)  
(forward)  
(reverse)  
Load motor  
current(filtered)  
stop  
Figure 61. Load Tray Lock Detect  
9.1.15 Load Tray Push Detect Function  
The load tray can detect the event of push or pull using the TRAY_PUSHDETx flag. The push detect function  
monitors the motor BEMF voltage of LOAD_P and LOAD_N in the LOAD_ENA = 0. If the motor BEMF voltage  
exceeds the threshold level, the detection terminal flag is set where the voltage appeared. A detection threshold  
is determined by voltage (PUSHDETTH) and time (PUSHDET_TIME). Observe the push event by reading the  
TRAY_PUSHDETP or TRAY_PUSHDETN flags, where LOAD_ENA = 0 is set. Because TRAY_PUSHDETx is a  
latch flag, it is necessary to reset by RST_ERR_FLAG = 1.  
LOAD_ ENA= 0, PUSHD ETTH> 00, PUSHDET_ TIME= xx  
1 (latch)  
TRAY_ PUSHDETP  
threshold  
(RST_ERR_FLAG)  
(PUSHDETTH)  
PUSHDET_TIME  
Load m otor BEMF  
(reverse)  
TRAY_ PUSHDETN  
Figure 62. Load Tray Push Detect  
9.1.16 Monitor Signal on GPOUT  
The device can output a specific signal to the GPOUT pin. To output a signal, choose a signal from REG6F by  
enabling first, then enable GPOUT_ENA. When two or more signals are set for GPOUT, an output is a logical  
sum.  
52  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
9.1.17 9-V LDO  
The TPIC2060A has a built-in predriver for 9-V LDO. An arbitrary current can be supplied to the LDO by  
selecting the external NFET according to required current capacity. LIN9VG output (= NFET gate control) is  
controlled to the feedback voltage and LINFB is set as 1.215 V. The 220-nF capacitor for phase compensation is  
installed, and the division resistance for FB is chosen so that it may total less than 11 kΩ. Figure 63 shows an  
example of external components. The accuracy of the output voltage depends on the tolerance of the resistance.  
When not using the LDO, open both LIN9VG and LINFB with LIN9V_DISABLE = 1.  
P12V  
NFET  
ZXMN2A14F  
1.215V  
LIN9VG  
9V  
com pensation  
220nF(10% 25V)  
Storage  
0.1 .... 10.1uF(10% 25V)  
8.66K(1% )  
LINFB  
total resistance < 11kohm  
1.37K(1% )  
Figure 63. Example Circuit of 9-V LDO  
Copyright © 2015, Texas Instruments Incorporated  
53  
 
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
9.2 Typical Application  
P5V  
10uF  
0.1uF  
P12V  
10uF  
0.1uF  
1
2
3
4
5
6
7
8
9
SLED1_ P  
SLED1_ N  
P12V_ SLD  
SLED2_ P  
SLED2_ N  
PGND_ 2  
C10V  
56 (open)  
LINFB 55  
LIN9VG 54  
SLED COIL1  
220nF  
9V  
IDCHG(TEST) 53 (open)  
52 (open)  
8.66K  
1.37K  
10uF 0.1uF  
SLED COIL2  
0.1uF  
AGND  
51  
50 (open)  
MCOM 49  
CP1  
0.1uF  
0.1uF  
PGND_ SPM2  
CP2  
48  
47  
46  
45  
44  
43  
Rdump 1K  
Rdump 1K  
Rdump 1K  
W
10 CP3  
GPOUT  
XFG  
P12V_ SPM2  
11 GPOUT  
12 XFG  
V
PGND_ SPM1  
U
READY  
13 RDY  
14 SSZ  
0.1uF  
SSZ  
SCLK  
SIM O  
15 SCLK  
16 SIMO  
17 SOMI  
18 SIOV  
19 XRSTIN  
P12V_ SPM1 42  
PGND_ 1 41  
FCS_ N 40  
FCS_ P 39  
TRK_ N 38  
TRK_ P 37  
TLT_ P 36  
SOMI  
FOCUS COIL  
3.3V  
RESETIN  
TRACKING COIL  
TILT COIL  
(open) 20  
(open) 21  
22 CV3P3  
23 AGND/DGND  
(open) 24  
TLT_ N 35  
P5V 34  
0.1uF  
STP1_ P 33  
STP1_ N 32  
STP2_ P 31  
STP2_ N 30  
25 P5V12L  
26 LOAD_ N  
27 LOAD_ P  
28 CA5V  
Step COIL1  
Step COIL2  
0.1uF  
10000pF  
Load COIL  
10000pF  
29 (open)  
0.1uF  
Figure 64. Example of Application Circuit  
9.2.1 Design Requirements  
To begin the design process, determine the following:  
1. Motor configuration. Can use all motor channels or part of them.  
2. Usage for 9V LDO predriver. Can be disabled.  
3. RDY pin can be connected to Host CPU. Then Host CPU can know the power supply status of TPIC2060A  
54  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
Typical Application (continued)  
9.2.2 Detailed Design Procedure  
After power up on 5V and 12V supply, register can be changed following way and enabling motors.  
1. Set WRITE_ENABLE=1 on REG76 via SPI.  
2. Set XSLEEP=1 at REG70  
3. Enable motor channel by ENA_XXX bits on REG70  
4. Change the DAC settings for the motor on REG01-0B. Then output channels start driving load.  
9.2.3 Application Curves  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
14  
12  
10  
8
6
4
2
FCS+  
FCS-  
0
-2047 -1547 -1047 -547  
-47  
DAC Code  
453  
953 1453 1953  
1.1 1.12 1.14 1.16 1.18 1.2 1.22 1.24 1.26 1.28  
LINFB (V)  
D001  
D002  
Figure 65. FCS Driver: DAC Code vs Output On Duty  
Figure 66. LDO Control: LINFB vs LIN9VG Output  
10 Power Supply Recommendations  
All driver channels should be operated after the required power is supplied and stable.  
The appropriate capacity of the decoupling capacitor requires a value over 10 μF to reduce the influence of PWM  
switching noise. The P5V pin must connect to a 1-μF filter. Place a bypass capacitor (about 0.1 µF) near the  
power pin (P5V, P5V12L, P12V_SPM, P12V_SLD) for PWM switching noise reduction on the power and GND  
lines.  
Current flow to the driver circuits takes both pattern-layout, line-impedance, and noise influence from the supply  
line into consideration.  
Copyright © 2015, Texas Instruments Incorporated  
55  
TPIC2060A  
ZHCSEQ4 JULY 2015  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
1. CV3P3V, CA5V, and C10V requires external capacitor. Because these are reference voltage for device,  
locate the capacitor as close to device as possible. Keep away from noise source.  
2. TI recommends SCLK ground shielding.  
3. LINFB is feedback pin for LDO. External divided resistors should be located closer to LINFB pin.  
11.2 Layout Example  
To MPU  
To 3.3-V supply  
To MPU  
GPOUT  
To MPU  
XFG  
RDY  
SSZ  
GND Shield  
SCLK  
To MPU  
GND Shield  
SIMO  
SOMI  
To MPU  
SIOV  
XRTIN  
To MPU  
To 3.3-V supply  
To MPU  
GND  
A. GND shield is recommend for SCLK.  
Figure 67. Layout Example between TPIC2060A and MPU  
56  
版权 © 2015, Texas Instruments Incorporated  
TPIC2060A  
www.ti.com.cn  
ZHCSEQ4 JULY 2015  
12 器件和文档支持  
12.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.2 商标  
E2E is a trademark of Texas Instruments.  
Blu-ray is a trademark of Blue-ray Disc Association.  
All other trademarks are the property of their respective owners.  
12.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
57  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPIC2060ADFDRG4  
ACTIVE  
HTSSOP  
DFD  
56  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-20 to 75  
2060A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPIC2101

DC BRUSH MOTOR CONTROLLER
TI

TPIC2101D

DC BRUSH MOTOR CONTROLLER
TI

TPIC2101DG4

Single Phase Low-Side Pre-FET Driver 14-SOIC -40 to 125
TI

TPIC2101DR

Single Phase Low-Side Pre-FET Driver 14-SOIC
TI

TPIC2101N

DC BRUSH MOTOR CONTROLLER
TI

TPIC2101_12

DC BRUSH MOTOR CONTROLLER
TI

TPIC2202

2-CHANNEL COMMON-SOURCE POWER DMOS ARRAY
TI

TPIC2202KC

2-CHANNEL COMMON-SOURCE POWER DMOS ARRAY
TI

TPIC2202KC

7.5A, 60V, 0.125ohm, 2 CHANNEL, N-CHANNEL, Si, POWER, MOSFET
ROCHESTER

TPIC2301

3-CHANNEL COMMON-SOURCE POWER DMOS ARRAY
TI

TPIC2301KV

暂无描述
TI

TPIC2302

3-Channel Constant Current-SOURCE POWER DMOS ARRAY
TI